
•

A/UX Toolbox: Macintosh ROM Interface

Release 3.0

LiMITED w ARRANfY ON MEDIA AND REPlACEMENT

If you discover physical defects in the manuals distributed with an Apple product or in the media on
which a ofrware product is distributed, Apple will replace the media or manuals at no charge to you.
provided you return the item to be replaced with proof of purchase to Apple or an authorized Apple
dealer during the 90-day period after you purchased the software. In addition, Apple will replace damaged
software media and manuals for as long as the software product is included in Apple's Media Exchange
Program. While not an upgrade or update method, this program offers additional protection for up to two
years or more from the elate of your original purchase. See your authorized Apple dealer for program
coverage and details. In some countries the replacement period may be different; check with your
authorized Apple dealer.

All IMPLIED WARRANTIES ON THE MEDIA AND MANUALS, INCLUDING IMPLIED WARRANTIES
OF I\1ERCHANTABILIIT AND FITNESS FOR A PARTICUlAR PURPOSE, ARE LIMITED IN
DURATION TO NINEIT (90) DAYS FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF
TillS PRODUCT.

Even though Apple has tested the software and reviewed the documentation, APPLE MAKES NO
WARRANIT OR REPRESENTATION, EITHER EXPRESS, OR IMPLIED, WITII RESPECT TO
SOFTWARE, ITS QUALIIT, PERFORMANCE, I\1ERCHANTABILIIT, OR FITNESS FOR A PARTICUlAR
PURPOSE. AS A RESULT, TillS SOFTWARE IS SOLD "AS IS," AND YOU, TIIE PURCHASER, ARE
ASSUMING TIIE ENTIRE RISK AS TO ITS QUALIIT AND PERFORMANCE.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN TIIE SOFTWARE OR ITS
DOCUMENTATION, even if advised of the possibility of such damages. In panicular, Apple shall have no
liability for any programs or data stored in or used with Apple products, including the costs of recovering
such programs or data.

THE WARRANTY AND REMEDIES SET FORTII ABOVE ARE EXCLUSIVE AND IN LIEU OF All
OTIIERS, ORAL OR WRITTEN, EXPRESS, OR IMPLIED. No Apple dealer, agent, or employee is
authorized to make any modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other rights which va1y from state to state.

tl Apple Computer, Inc.

This manual and the software described in it are copyrighted, with all rights reserved. Under the copyright
laws, this manual or the software may not be copied, in whole or pa1t, without written consent of Apple,
except in the normal use of the software or to make a backup copy of the software. The same proprieta1y
and copyright notices must be affixed to any permitted copies as were affixed to the originaL This
exception does not allow copies to be made for others, whether or not sold, but all of the material
purchased (with all backup copies) may be solei, given, or loaned to another person. Under the law,
copying includes translating into another language or format.

You may use the software on any computer owned by you, but extra copies cannot be made for this purpose.

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the '·keyboard" Apple logo
(Option-Shift-K) for commercial purposes without the prior written consent of Apple may constitute
trademark infringement and unfair competition in violation of federal and state laws.

©Apple Computer, Inc., 1992
20525 Mariani Avenue
Cupertino, CA 95014
(408) 996-1010

APDA, Apple, the Apple logo, AppleLink, AppleShare, AppleTalk, A/UX, EtherTalk, LaserWriter,
LocalTalk, Macintosh, MacTCP, MPW, MultiFinder, ProDOS, and SANE are trademarks of Apple
Computer, Inc., registered in the United States and other countries.

Finder, MacroMaker, MacX, QuickDraw, ResEdit, and TrueType are trademarks of Apple Computer, Inc.

Adobe, Adobe Illustrator, and PostScript are trademarks of Adobe Systems Incorporated, registered in the
United States.

Electrocomp 2000 is a trademark of Image Graphics, Inc.

lTC Garamond and lTC Zapf Dingbats are registered trademarks of International Typeface Corporation.

Motorola is a registered trademark of Motorola Corporation.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

NFS is a trademark of Sun Microsystems, Inc.

NuBus is a trademark of Texas Instruments.

QuarkXPress is a registered trademark of Quark, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

VMS is a trademark of Digital Equipment Corporation.

Simultaneously published in the United States and Canada.

Mention of third-pany products is for informational purposes only and constitutes neither an endorsement nor
a recommendation. Apple assumes no responsibility with regard to the performance or use of these products.

Contents

Figures and Tables I xiii

About This Guide I xv

What's in this manual I xvi

Conventions used in this guide I xvii
Keys and key combinations I xvii
Terminology I xvii
The Courier font I xviii
Font styles I xix
A/UX command syntax I xix
Manual page reference notation I xx

For more information I xxi

1 About the A/UX Toolbox I 1 -1

Overview I 1 -2

New features in AIUX Release 3 .0 I l -3
A/UX Finder user interface I 1-3
Increased manager support I 1-4
Connectivity support I 1-5

Compatibility requirements I 1-6

Debugging under A/UX I l-6

Contents of the A/UX Toolbox I 1 -7

How the A/UX Toolbox works I 1 -8

2 Using the AIUX Toolbox I 2-l

Application development environments I 2-2

Your application in the AIUX Finder environment I 2-4
Using the ui_setselect call I 2-5

Developing an A/UX Toolbox application I 2-6
Developing the source code I 2-7
Developing the resource file I 2-9

Building and running the sample programs I 2-10

3 AIUX Toolbox Utilities and Extensions I 3-l

Using the AIUX Toolbox utilities I 3-2

A/UX Toolbox variables I 3-3

Additional trap and routine I 3-4
AUXDispatch trap I 3-4
Using select to monitor A/UX I/0 activity and Macintosh events I 3-6

A/UX Toolbox environment variables I 3-6

Making AIUX system calls I 3-7

The MacsBug debugger under A/UX I 3-11
The dbx debugger under AIUX I 3-13

4 Compatibility Guidelines I 4-1

vi Contents

Introduction I 4-2
Differences in execution environments I 4-2

32-bit address violations I 4-3
Privileged microprocessor instructions I 4-4
Direct hardware access I 4-6
Newline characters I 4-7
File Manager I 4-9
Memmy Manager I 4-9
International character support I 4-9

Differences in C compilers I 4-10
Differences in language conventions I 4-11

5 A/UX and Macintosh User Interface Toolbox Differences I 5-1

About the Macintosh interface library I 5-2
32-Bit QuickDraw with Color QuickDraw I 5-4
Alias Manager I 5-5
Apple Desktop Bus I 5-5
Apple Event Manager I 5-5
AppleTalk Manager I 5-5
Bina1y-Decimal Conversion Package I 5-6
Color Manager I 5-6
Color Picker Package I 5-6
Control Manager I 5-6
Data Access Manager I 5-7
Deferred Task Manager I 5-7
De k (Accessmy) Manager I 5-7
Desktop Manager I 5-7
Device Manager I 5-7
Dialog Manager I 5-8
Disk Driver I 5-9
Disk Initialization Package I 5-9
Edition Manager I 5-9
Event Manager, Operating System I 5-9
Event Manager, Toolbox I 5-10
File Manager I 5-11
Floating-Point Arithmetic and Transcendental Functions Packages I 5-11
Font Manager I 5-12
Gestalt Manager I 5-12
Graphics Devices Manager I 5-13
Help Manager I 5-14
International Utilities Package I 5-14
List Manager Package I 5-14
Memmy Manager I 5-14
Menu Manager I 5-15
Notification Manager I 5-15
Package Manager I 5-15
Palette Manager I 5-15
Picture Utilities Package I 5-16
Power Manager I 5-16
PPC Toolbox I 5-16
Printing Manager I 5-16
Process Manager I 5-16

Contents vii

Resource Manager I 5-17
Scrap Manager I 5-18
Script Manager I 5-18
SCSI Manager I 5- 18
Segment Loader I 5-19

Finder information I 5-19
Segment Loader routines I 5-20
The jump table I 5-20
Alternate buffer support I 5-20

Serial Driver I 5-20
Shutdown Manager I 5-22
Slot Manager I 5-22
Sound Manager I 5-23

Support details I 5-24
The Raw Sound Driver I 5-25

Standard File Package I 5-27
System Error Handler I 5-27
TextEdit I 5-27
Time Manager I 5-28
Utilities, Operating System I 5-28

Date and time operations I 5-29
Miscellaneous utilities I 5-29

Utilities, Toolbox I 5-29
Vertical Retrace Manager I 5-29
Window Manager I 5-30

Calls patched under NUX I 5-31

Calls not supported under NUX I 5-34

6 File Systems and File Formats I 6-l

viii Contents

File systems I 6-2
Overall file organization I 6-2
Pathnames and filenames I 6-3
File permissions I 6-4
Extended file attributes I 6-6
Text files I 6-6
Mounting and unmounting floppy disks I 6-7

Storing files in the Macintosh OS and in the NUX operating system I 6-8
Automatic conversion I 6-14

AppleSingle and AppleDouble format internals I 6-16
AppleSingle format I 6-16
AppleDouble format I 6-19

Filename conventions I 6-20

Appendix A Additional Reading I A-1

Information sources I A-2

Required references I A-4

Supplementary references I A-5

Appendix B Toolbox Contents I B-1

Appendix C Implementation Notes I C-1

The A/UX Finder and Toolbox applications I C-2

Running an A/UX Toolbox application I C-2
User interface device driver I C-3
Initialization routine I C-3
A-line traps I C-4
"Not in ROM" routines I C-6
Macintosh global variables I C-6
File type and creator I C-6

Converting between C and Pascal conventions I C-7
Storing strings I C-8
Ordering and storing parameters I C-8
Passing small structures I C-9
Returning function results I C-9
Register conventions I C-10

Appendix D Low-Memory Global Variables I D-1

Appendix E Resource Compiler and Decompiler I E-1

About the resource compiler and decompiler I E-2
Standard type declaration files I E-3
Using rez and derez I E-4

Contents ix

Structure of a resource description file I E-5
Sample resource description file I E-6

Resource description statements I E-7
Syntax notation I E-7

Special terms I E-8
change-change a resource's vital information I E-9
data-specify raw data I E-10
delete-delete a resource I E-ll
include-include resources from another file I E-12
read-read data as a resource I E-15
resource-specify resource data I E-16
type-declare resource type I E-20
Labels I E-32

Preprocessor directives I E-39
Variable definitions I E-40
include directives I E-40
If-then-else processing I E-41
Print directive I E-42

Resource description syntax I E-43
Numbers and literals I E-43
Expressions I E-44
Variables and functions I E-46

String values I E-46
Numeric values I E-47

Strings I E-49
Escape characters I E-50

Appendix F C Interface Library I F-l

x Contents

Interface libra1y files I F-2

Structures and calls by libra�y I F-5
32-Bit QuickDraw with Color QuickDraw I F-5
Color Picker I F-14
Common type definitions I F- 15
Control Manager I F-15
Deferred Task Manager I F-17
Definitions for AUXDispatch I F-17
Definitions for ROM I F-17
Desk Manager I F- 18
Device Manager I F-18

Dialog Manager I F-19
Disk Driver I F-21
Disk Initialization Package I F-21
Event Manager, Operating System I F-22
Event Manager, Toolbox I F-22
File Manager I F-23
Font Manager I F-28
Gestalt Manager I F-29
List Manager Package I- F-29
List of Macintosh traps I F-30
Low-mem01y equates I F-30
Mem01y Manager I F-31
Menu Manager I F-34
Notification Manager I F-36
Package Manager I F-36
Palette Manager I F-38
Printing Manager I F-39
Print traps I F-40
Process Manager I F-41
Resource Manager I F-42
Scrap Manager I F-45
Script Manager I F-46
Segment Loader I F-48
Serial Driver I F-49
Shutdown Manager I F-49
Slot Manager I F-50
Sound Manager I F-52
String conversion between Pascal and C I F-54
System Error Handler I F-54
TextEdit I F-54
Time Manager I F-56
Utilities, Operating System I F-57
Utilities, Toolbox I F-58
Vertical Retrace Manager I F-60
Video Driver I F-60
Window Manager I F-61

Calls in alphabetical order I F-63

Index I In-1

Contents xi

Figures and Tables

Chapter 1 About the AIUX Toolbox I 1-1

Figure 1-1 Interactions among an application, the A/UX Toolbox, and the ROM
code I 1-9

Chapter 2 Using the AIUX Toolbox I 2-1

Figure 2-1 Application development and execution environments I 2-2

Figure 2-2 Incorporating the A/UX Toolbox into development code I 2-8

Figure 2-3 Developing a resource file by using rez I 2-9

Chapter 4 Compatibility Guidelines I 4-1

Table 4-1 Privileged microprocessor instructions within the A/UX Toolbox I 4-5

Chapter 5 A/UX and Macintosh User Interface Toolbox Differences I 5-1

Table 5-1

Table 5-2

Table 5-3

Status of User Interface Toolbox and Macintosh OS libraries in the
A/UX Toolbox I 5-2

ROM calls patched under the A/UX Toolbox I 5-31

ROM calls not supported under the A/UX Toolbox I 5-34

Chapter 6 File Systems and File Formats I 6-I

Figure 6-1

Figure 6-2

Figure 6-3

Figure 6-4

Figure 6-5

Table 6-1

Table 6-2

Table 6-3

Elements of a file in the native Macintosh OS environment I 6-9

Typical contents of an AppleSingle file I 6-1 1

Typical contents of a pair of AppleDouble files I 6-12

Elements of Macintosh data and resource files in simple A/UX format I 6-1 3

Formats for "file info" field entries I 6-19

A/UX permissions mapped to AppleShare privileges I 6-5

Automatic conversion of Macintosh files I 6-1 5
AppleSingle file header I 6-16

Appendix C Implementation Notes I C-1

Figure C-1 A-line trap handling in AIUX I C-5

Appendix D Low-Memory Global Variables I D-1

Table D-1

Table D-2

Table D-3

Table D-4

General global variables I D-2

Window Manager globals I D-6

TextEdit globals I D-6

Resource Manager globals I D-7

Appendix E Resource Compiler and Decompiler I E-1

Figure E-1 rez and derez I E-2
Figure E-2 Creating a resource file I E-4

Figure E-3 Padding of literals I E-44
Figure E-4 Internal representation of a Pascal string I E-49

Table E-1 Numeric constants I E-43

Table E-2
Table E-3
Table E-4

Resource-description expression operators I E-45

Resource compiler escape sequences I E-50
Numeric escape sequences I E-51

Appendix F C Interface Library I F-1

Table F-1 Interface libmy files I F-3

xiv Figures and Tables

About This Guide

This manual describes the A/UX Toolbox, which gives you access from within A/UX to
the Macintosh ser Interface Toolbox. The User Interface Toolbox is software in the
Macintosh ROM that facilitates implementation of the standard Macintosh interface in
applications. This manual also provides compatibility guidelines for programs intended
to run under both the A/UX operating system and the standard Macintosh Operating
System (OS).

This manual is intended for developers who are porting a Macintosh application to
A/UX or developing a Macintosh-like application under A/UX. This guide assumes that

• You are an experienced C programmer.

• You are familiar with the standard Macintosh User Interface Toolbox and Operating
System.

• You are familiar with the A/UX development environment.

If you need information on any of these subjects, please refer to the resources listed
in Appendix A. For a detailed description of the User Interface Toolbox, see Inside

Macintosh, Volumes I, IV, V, and VI . For a detailed description of the Macintosh OS, see
Inside Macintosh, Volumes II, IV, V, and VI.

XV

What's in this manual

Here is a description of the contents of this manual:

• Chapter 1, "About the NUX Toolbox," gives an overview of the NUX Toolbox. The

chapter discusses NUX features, standards compliance, and the new features in

Release 3.0.

• Chapter 2, "Using the NUX Toolbox," explains the role of the A/UX Toolbox in

program development and execution and describes the sample programs provided

with the A/UX Toolbox.

• Chapter 3, "NUX Toolbox Utilities and Extensions," describes the utilities and special

features in the A/UX Toolbox that support program development.

• Chapter 4, "Compatibility Guidelines," summarizes the compatibility guidelines you

must be aware of to write code that runs under both the Macintosh OS and A/UX.

• Chapter 5, "A/UX and Macintosh User Interface Toolbox Differences," describes in

detail the differences between the facilities available in the User Interface Toolbox
and Macintosh OS and those provided with the A/UX Toolbox.

• Chapter 6, "File Systems and File Formats," describes the differences between the file

systems in A/UX and those in the Macintosh Operating System, and how file-system

functions are mapped between the two systems. In addition, the chapter describes

the formats used for storing Macintosh files in A/UX, and the results of automatic
conversion of files transferred between the two systems.

• Appendix A, "Additional Reading," lists books and other information sources that are

helpful .

• Appendix B, "Toolbox Contents, " lists directories and files that are part of the A/UX

Toolbox or that are of special interest in application development.

• Appendix C, "Implementation Notes," provides background information about

implementation and compatibility issues.

• Appendix D, "Low-Mem01y Global Variables," lists the Macintosh low-memo1y
global variables that are supported in A/UX.

• Appendix E, "Resource Compiler and Decompiler," describes the resource
development tools that have been ported to the A/UX Toolbox from the Macintosh

Programmer's Workshop (MPW).

xvi About This Guide

• Appendix F, "C Interface Libraty," lists the functions, types, and parameters used by
the A/UX Toolbox libraries.

Conventions used in this guide

A/UX guides follow specific conventions. For example, words that require special
emphasis appear in specific fonts or font styles. The following sections describe the
conventions used in all A/UX guides.

Keys and key combinations

Certain keys on the keyboard have special names. These modifier and character keys,
often used in combination with other keys, perform various functions. In this guide, the

names of these keys are in Initial Capital letters followed by SMALL CAPITAL letters.

The key names are

CAPS LOCK DOWN ARROW (j,) OPTION

ENTER RETURN

SPACE BAR

TAB COMiv!AND 0€)

CoNTROL

DELETE

ESCAPE RIGHT ARHOW (---7) UP ARROW (i)

LEH ARROW (f-) SHIH

Sometimes you will see two or more names joined by hyphens. The hyphens indicate
that you use two or more keys together to perform a specific function. For example,

Press COMMAND-K

means "Hold clown the CoMMAND key and press the K key."

Terminology

In A/UX guides, a certain term can represent a specific set of actions. For example, the
word enter indicates that you type a series of characters on the command line and press
the RETURN key. The instruction

Enter ls

means "Type 1 s and press the RETURN key."

Conventions used in this guide xvii

Here is a list of common terms and the corresponding actions you take.

Term

Click

Drag

Choose

Select

Type

Enter

Action

Press and then immediately release the mouse button.

Position the mouse pointer, press and hold clown the mouse button
while moving the mouse, and then release the mouse button.

Activate a command in a menu. To choose a command from a pull
clown menu, click once on the menu title and, while holding clown the
mouse button, drag clown until the command is highlighted. Then
release the mouse button.

Highlight a selectable object by positioning the mouse pointer on the
object and clicking.

Type an entty without pressing the RETUJti\1 key.

Type the series of characters indicated and press the RETURN key.

The Couri er font

Throughout A/UX guides, words that you see on the screen or that you must type

exactly as shown are in the couri er font. For example, suppose you see this

instruction:

Type dat e on the command line and press Return.

The word dat e is in the Courier font to indicate that you must type it. Suppose

you then read this explanation:

Once you press RETUR1 , you'll see something like this:

Tues Oct 17 17 : 0 4 : 0 0 PDT 1989

In this case, courier is used to represent exactly what appears on the screen.

All A/UX manual page names are also shown in the Couri er font. For example,

the en tty 1 s(l) indicates that 1 s is the name of a manual page in an A/UX reference
manual. See "Manual Page Reference oration" below for more information on A/UX
command reference manuals.

xvili About This Guide

Font styles

Italics are used to indicate that a word or set of words is a placeholder for part of a

command. For example,

cat .filename

tells you that .filename is a placeholder for the name of a file you wish to view. If you

want to view rhe contents of a file named Elvi s, type the word Elvis in place of

filename. In other words, enter

cat Elv i s

New terms appear i n boldface where they are defined. Boldface i s also used for
steps in a series of instructions.

A/UX command syntax

A/U:X: commands follow a specific command syntax. A typical A/U:X: command gives the

command name first, followed by options and arguments. For example, here is rhe

syntax for the we command:

we [-1] [-w] [direct01y ...]

In this example, we is the command, -1 and -w are options, directo1y is an
argument, and the ellipses(. . .) indicate that more than one argument can be used. ore

that each command element is separated by a space.

The following list gives more information about the elements of an A/UX command.

Element

command

option

argument

[l

Description

The command name.

A character or group of characters that modifies the command. Most
options have the form -option, where option is a letter representing an
option. Most commands have one or more options.

A modification or specification of a command, usually a filename or
symbols representing one or more filenames.

Brackets used ro enclose an optional item-that is, an item that is not
essential for execution of the command.

Ellipses used ro indicate that more than one argument may be entered.

Conventions used in this guide xix

For example, the we command is used to count lines, words, and characters in a

file. Thus, you can enter

we -w Priscilla

In this command line, -w is the option that instructs the command to count all of the

words in the file, and the argument Prisc i l la is the file to be searched .

Manual page reference notation

A!UX Command Reference, A!UX Programmer's Reference, A!UX System Administrator's

Reference, XII Command Reference for A!UX, and XII Programmer's Reference for

A!UX contain descriptions of commands, subroutines, and other related information.

Such descriptions are known as manual pages (often shonened to man pages). Manual

pages are organized within these references by section numbers. The standard A/UX

cross-reference notation is

command(section)

where command is the name of the command, file, or other facility; section is the

number of the section in which the item resides.

• Items followed by section numbers (1M) and (8) are described in A/UX System

Administrator's Reference.

• Items followed by section numbers (1) and (6) are described in A!UX Command

Reference.

• Items followed by section numbers (2), (3), (4), and (5) are described in A!UX

Programmer's Reference.

• Items followed by section number (lX) are described in XJI Command Reference

forA/UX.

• Items followed by section numbers (3X) and (3Xt) are described in XJI

Programmer's R�ference for A!UX.

For example,

cat (l)

refers to the command cat , which is described in Section 1 of A!UX Command

Reference.

xx About This Guide

You can display manual pages on the screen by using the man command. For

example, enter the command

man cat

to display the manual page for the cat command, including its description, syntax,

options, and other pertinent information. To exit, press the SPACE BAR until you see a
command prompt, or type q at any time to return immediately to your command
prompt.

For more information

To find out where you need to go for more information about how to use A/UX, see
Road Map to A!UX. This guide contains descriptions of each A/UX guide and ordering
information for all the guides in the A/UX documentation suite.

Conventions used in this guide xxi

1 About the A/UX Toolbox

Ove1view I 1 -2

ew features in A/UX Release 3 .0 I 1 -3

Compatibility requirements I 1 -6

Debugging under AIUX I 1 -6

Contents of the A/UX Toolbox I 1 -7

How the A/UX Toolbox works I 1 -8

This chapter gives a general overview of the functions of the A/UX Toolbox and specific

information about the A/UX Toolbox in A/UX Release 3.0.

Overview

The A/UX Toolbox is a process environment that allows programs running under A/UX

to make calls to the Macintosh User Interface Toolbox routines and to native Macintosh

Operating System (OS) routines. With the A/UX Toolbox, you can run standard

Macintosh applications unmodified as well as UNIX® programs that take advantage of

the Macintosh interface. The A/UX Toolbox is included with the A/UX operating system.

To use the A/UX Toolbox, you need only the standard A/UX distribution.

The A/UX Toolbox bridges the Macintosh and UNIX environments and gives you
two kinds of code compatibility:

• You can execute Macintosh binary code (applications compiled in the Macintosh

environment) under A/UX, within the current limitations of the A/UX Toolbox. (As

the section "New Features in A/UX Release 3.0," later in this chapter, makes clear, the

new capabilities of the A/UX Toolbox remove many prior limitations.)

• Using the Macintosh Programmer's Workshop (MPW), you can write common source

code that can be separately built (compiled and linked) into executable code for
both environments.

Both the User Interface Toolbox and the Macintosh OS are built into read-only
memo1y (ROM) as well as into code modules in the System files. Because of differences

between the UNIX operating system and the Macintosh OS, not all Macintosh ROM

routines are available through the A/UX Toolbox. Release 3.0 has increased support for

Macintosh ROM routines. Programs that are intended to run in both environments can
use only the system routines common to both. Any Macintosh application that runs

under Macintosh System 7 and does not access hardware directly or call routines not

supported by the A/UX Toolbox can run under A/UX Release 3.0. Chapter 5, "A/UX and

Macintosh User Interface Toolbox Differences," gives details about all Macintosh

managers and their support under the A/UX Toolbox; Table 5-1 in that chapter

summarizes manager support. A/UX Release 3.0 also includes support for AppleTalk

Phase II communications software running on both LocalTalk and Ethernet hardware.
The A/UX Toolbox supports some Macintosh device drivers, but not those that

manipulate hardware directly.

1-2 Chapter 1 About the A/UX Toolbox

New features in A/UX Release 3.0

A/UX Release 3.0 is a major enhancement that combines a standard UNIX operating

system and programming environment with Macintosh System 7 capabilities, including

the standard Macintosh Finder user interface. Macintosh applications with extensive
multimedia capabilities, for example, can now run in a full UNIX environment.
Macintosh applications can run together in the A/UX Toolbox environment, and users

can transfer information between applications by using the Clipboard, the Scrapbook,
editions, and AppleEvents, as in the Macintosh OS. For example, a user can run a
graphics application to publish illustrations that can be subscribed to by a word
processing application. A user can run a computer-aided design (CAD) application and a
spreadsheet application, and copy numbers developed for the design into the

spreadsheet for use in cost calculations.
The complete features of A/UX Release 3 .0 are listed in the general A/UX manuals.

This section presents the major items of interest from a Toolbox developer viewpoint.

A/UX Finder user interface

A/UX Release 3.0 provides the user interface of Macintosh System 7, displaying both
Macintosh and UNIX applications and directories as icons. The UNIX file permissions are
shown in the icon display of files and folders. Icons are highlighted or dimmed
according to the file permissions accorded the user who logged in. Macintosh floppy
disks are accessible from the A/UX Finder. UNIX permissions can be modified from pull
down menus.

Users can open applications of both kinds by double-clicking, and can move files by
dragging. Text files moved between the UNIX and Macintosh environments are
automatically translated as needed. Chapter 6, "File Systems and File Formats, " discusses
the results of automatic conversion.

New features in A/UX Release 3.0 1-3

Increased manager support

The level of support for managers in Release 3 .0 of the A/UX Toolbox has been

generally extended to match the support provided by System 7. Several managers that

were not supported or were partially suppmted are now fully supported, and several

new managers have been added.

• Alias Manager The Alias Manager is fully supported. The Alias Manager allows you

to create and use aliases in the Macintosh environment, which are similar to symbolic

links in the UNIX environment.

• Apple Event Manager The Apple Event Manager is fully suppo1ted. The Apple Event

Manager provides mechanisms for sending and receiving events between applications.

• Data Access Manager The Data Access Manager is fully supported. The Data Access

Manager makes it easy for your application to communicate with data sources, such
as databases.

• Edition Manager The Edition Manager is fully supported. The Edition Manager gives

your application the ability to dynamically share data with other applications.

• File Manager The File Manager suppmts A/UX Toolbox access to the various UNIX

file systems (Berkeley UNIX file system [UFS], System V file system [SVFS], and

Network File System [NFS]) as well as those of the Macintosh OS (hierarchical file

system [HFS], Macintosh file system [MFS] , and AppleShare). The File Manager now

implements file IDs and file specification (FSSpec) records. Multiple HFS partitions

on a single disk are now supported.

• Help Manager The Help Manager is fully supported. The Help Manager Jets you

easily incorporate on-line assistance into your application.

• Memory Manager The Memory Manager is fully supported. The Memmy Manager
now allows you to use a p01tion of your hard disk as though it were chip-based RAM.

• PPC Toolbox The PPC Toolbox is fully supported. The PPC Toolbox allows your

application to communicate directly with other applications.

• Process Manager The Process Manager is fully supported. The Process Manager
allows your application to launch other applications.

• Sound Manager The Sound Manager is mostly supported. The Sound Manager now
provides for sound input, in addition to the continuous sampled sound output and '-..___./

note and wavetable synthesizing available previously.

1-4 Chapter 1 About the A/UX Toolbox

Connectivity support

A!UX Release 3 .0 supports the following features:

• AppleTalk 2.0 Phase II Access by LocalTalk or EtherTalk is fully supported.

• FileShare Peer-to-peer networking through FileShare is fully supported.

• NFS 4.0 enhancement A!UX 3.0 implements NFS 4.0 with 4. 1 enhancements. New

features include automounting and directory export.

• MacTCP Macintosh network applications written to the Macintosh Transmission
Control Protocol (MacTCP) programmer interface are supported.

• AFP server (FileShare) The AppleTalk Filing Protocol (AFP) built into Release 3.0
allows networked users access to shared volumes on the A/UX Finder desktop. The
AFP server implements the facility known as FileShare of Macintosh System 7.

• Macintosh Communications Toolbox The Communications Toolbox is fully supported.

• CD-ROM The Apple CD-SC peripheral is partially supported. CD-ROM discs with
either High Sierra or ISO 9660 formats can be used. Additionally, Macintosh HFS and
UNIX file systems are supported. Audio CDs are not supported.

Two implementations of the X Window System are shipped with Release 3.0 .
Developers of X applications will find a favorable development environment in A/UX

Release 3 .0 .

• X1 1 for A/UX is a standard implementation of the X Window System developed at
the Massachusetts Institute of Technology, which utilizes Release 4 of X Window
System Version 1 1 . X1 1 provides a complete development environment. Users can
switch between the X1 1 environment and the A/UX Finder environment. X1 1 is

described in Xl l User's Guide for A!UX.
• MacX, Apple's implementation of the X Window System, provides a Finder-like

environment for X1 1 , with such features as pull-down menus, dialog boxes, and
windows in which users can run X applications. MacX also implements Release 4 of
X. Users have a range of installation choices for the user environment displayed by
MacX. At one end of the range, MacX allows the user to switch between either the
standard X1 1 look or a Finder-like environment; at the other end, only a Finder-like

environment is displayed; and in the middle are a variety of tradeoffs, in which
portions of both interfaces can be used. Whatever kind of MacX display the user

chooses, the user can switch between the MacX environment and the A/UX Finder
environment. X1 1 is described in MacX User's Guide.

New features in A/U:X Release 3.0 1-5

Compatibility requirements

For a Macintosh application binary to run in the A/UX Release 3.0 environment, it must

meet certain requirements, which are briefly summarized here. Generally, any

application, INIT, or CDEV that runs under System 7 will run under A/UX. For more

information, see "Your Application in the A/UX Finder Environment" in Chapter 2 .

• 32-bit clean Macintosh applications must be 32-bit clean to run in the standard
A/UX Toolbox environment (as they must be to run under 32-bit mode in System 7).

A special 24-bit environment is also furnished that provides a 24-bit test environment

for developers who are making their applications 32-bit clean. This environment

supports the running of older applications that have not been converted and orphan

applications that never will be. The 24-bit environment is accessed by a special login.

For information on this special login, see A!UX Essentials.

• Compatible with System 7 A Macintosh binaty that does not run in a Macintosh OS
multitasking environment (either System 7 or MultiFinder) will not run under A/UX

Release 3.0.

• No calls on unsupported traps or system calls An application cannot make calls that

are not supported under the A/UX Toolbox. See Chapter 5, "A/UX and Macintosh
User Interface Toolbox Differences," for detailed information on call support.

• No direct access to hardware An application cannot issue instructions for direct
control of hardware (although video memoty is directly accessible).

Debugging under A/UX

The dbx, adb, and sdb debuggers, used frequently in UNIX development

environments, are delivered with A/UX 3.0. These debuggers require use of an
additional terminal that can communicate with your computer over either a serial line or
a network.

The MacsBug debugger provides a familiar Macintosh software debugging tool for

use with A/UX. MacsBug (version 6 .2 required) is available from the Apple Programmers

and Developers Association (APDA).

1-6 Chapter 1 About the A/UX Toolbox

Several new and enhanced application development tools are included in the A/UX

Developer's Tools product, also available from APDA. A new, ANSI-compliant C
compiler (c 8 9) is included, as is a complete library of A/UX system calls that can be

used from the MPW environment to assist in the development of hybrid applications.
Hybrid applications are programs that employ facilities from both the UNIX and

Macintosh application models. There are two basic types of hybrid applications. The

first type is a UNIX application that uses the A/UX Toolbox to provide an interface that

has the Macintosh look and feel . Hybrid applications of this type are called UNIX

hybrid applications. The A/UX CommandShell application is an example of a UNIX
hybrid application. The second type of hybrid application is a Macintosh application
that makes UNIX system calls. Hybrid applications of this type are called Macintosh

hybrid applications.

Contents of the A/UX Toolbox

This section summarizes the types of files that are included in the A/UX Toolbox, the
locations of these files, and where you can find more information about some of them.

The /mac directory contains Macintosh-specific material:

/mac I sys This directory contains the System Folders used for startup, login, and
users without a personal System Folder. (For more information on
personal System Folders, see A!UX Essentials and
sys t emfolder(lM).) The System file provided with Release 3 .0 of
A/UX is almost identical in functionality to the System file provided
with Macintosh System 7.

/mac /bin

/mac / src

This directoty contains various executables, including a few utilities
for use in developing and running applications with the A/UX
Toolbox. See Chapter 3, "A/UX Toolbox Utilities and Extensions," for
descriptions of fcnvt , set f i le , rez , and derez .

This directoty contains source code for sample applications, including
sample, qdsamp, and the Sound Manager demo, sndDemo. The
source material includes associated makefiles, which demonstrate
how to compile and link an application; it also includes Macintosh
system resource files for use with the sample programs. For additional
information, see Chapter 2, "Using the A/UX Toolbox."

Contents of the A/UX Toolbox 1-7

/mac/ l ib This directory contains libraries in three subdirectories. The
rinc ludes directory contains resource file material. The
s e s s i ontypes directory contains session-type information used at
login. The cmdo directory contains dialog scripts used to implement
the Commando functions for UNIX commands.

Outside the /mac directory are certain other files that should be mentioned:

1 l ib This directory contains library routines used in the
implementation of the A/UX Toolbox and in UNIX program
development. An example of the first kind is the file
mac crt 0 . o, and examples of the second kind are the files
l ibs . a , l ibposix . a, and t ermcap . a .

/usr 1 inc lude /mac This direct01y contains the C interface files that define the
constants, types, and functions used by the A/UX Toolbox
libraries. For additional information, see Appendix F, "C
Interface Library."

/ sh lib This directoty contains the shared libraries 1 ibc_s and
l ibmac_s . Shared libraries are discussed in A/UX
Programming Languages and Tools, Volume 1 .

Appendix B , "Toolbox Contents," lists the full pathnames of all files pertaining to the

A/UX Toolbox and briefly describes the function of each file.

How the A/UX Toolbox works

The primary function of the A/UX Toolbox is to allow applications developed for the

Macintosh to be used within a UNIX environment. Most of the support code consists of
routines built into the Macintosh ROM, supplemented by other routines loaded into

memory as necessary.

When an A/UX Toolbox application issues a call to one of the ROM-based routines,
the A/UX Toolbox intercepts the call and, as necessary, passes the call either to the ROM
routine or to an alternate A/UX Toolbox support routine.

Figure 1-1 illustrates how the two elements of the A/UX Toolbox library interact with
the application and the ROM code. For a more detailed description of how the A/UX
Toolbox works, see Appendix C, "Implementation Notes. "

1-8 Chapter 1 About the AIUX Toolbox

Standard
A/UX libraries

Application running under A/UX

Macintosh
OS emulation

Macintosh
User Interface

Toolbox

u D
Macintosh

A-line traps

A/UX Toolbox

interface routines

Macintosh system software
(ROM and extensions)

Figure 1-1 Interactions among an application, the A/UX Toolb�x, and the
ROM code

How the A/UX Toolbox works 1-9

2 Using the A/UX Toolbox

Application development environments I 2-2

Your application in the A/UX Finder environment I 2-4

Developing an A/UX Toolbox application I 2-6

Building and running the sample programs I 2-10

This chapter describes A/UX Toolbox development environments and some tools for

porting applications to AIUX, outlines the procedures for developing A/UX Toolbox

applications, and describes the sample programs included with the A/UX Toolbox.

Application development environments

You can develop applications under either the Macintosh OS or NUX. The NUX

Toolbox lets you run applications and tools under one environment that were developed

under the other. Figure 2-1 summarizes the four possible application development and

execution paths.

Execution environment

Macintosh A/UX

Develop, debug, and run Develop and debug program
program with Macintosh tools with Macintosh tools

..c:
"'
0

c
- ·o
= <:;;
� �

�
0

·=
�

Transfer source code to A/UX
environment

Compile and link to run in A/UX
environment

�
-
=
�
8
Q.

.Q
t � Q

Develop and debug program with Develop, debug, and run
A/UX tools or (optional) program with A/UX tools or
Macintosh tools (optional) Macintosh tools

Transfer source code to
:t: Macintosh environment

Compile and link to run in native
Macintosh environment

Figure 2-1 Application development and execution environments

You can use whichever development environment best meets your needs. Generally
speaking, a Macintosh application is usually developed on the Macintosh side and (if it is

a well-behaved Macintosh application) can be executed under the A/UX Finder with few
or no changes. A typical case for development on the A/UX side might be that of
providing a Finder interface to an existing UNIX application, creating a hybrid

application to run on both the A/UX side and the Macintosh side. Although such an
application could be developed in either environment, as convenient, an experienced
UNIX programmer might prefer to use the A/UX environment.

2-2 Chapter 2 Using the A/UX Toolbox

A/UX Release 3.0 supp01ts two key phases of application development:

• Porting an application from the Macintosh OS to the A!UX operating system and

running it under AIUX The section "Making A/UX System Calls," in Chapter 3,

outlines a strategy for using A/UX system calls in applications that will run optimally

in both Macintosh and A/UX environments. Chapter 4, "Compatibility Guidelines,"

and Chapter 5, "A/UX and Macintosh User Interface Toolbox Differences," provide
additional information to assist you in optimizing your applications.

• Developing a UNIX application under A!UX that exploits the Macintosh user

interface tools The section "Developing an A/UX Toolbox Application," later in this
chapter, outlines the procedures for developing an A/UX Toolbox program. The
section "Building and Running the Sample Programs, " later in this chapter, describes
the sample programs and makefiles provided as examples. Chapter 3 describes the
utilities that suppolt these procedures.

Both Macintosh binaty files ported to A/UX and A/UX Toolbox programs developed

under A/UX must meet the A/UX Toolbox compatibility requirements. With Release 3.0,

these requirements are likely to be met by most applications that meet the standards for
current Macintosh OS applications. For details, see Chapter 4, "Compatibility
Guidelines."

Through the A/UX Finder environment, a user can access files in either the UNIX or
the Macintosh file systems, and so can an application. You can transfer files between file

systems either from within an application or by dragging icons on the desktop. Files
transferred between the two file systems undergo certain changes that are generally
transparent to users, but of interest to programmers. In addition, because of design
differences pertaining to file handling in the two file systems (UNIX file permissions,
Macintosh file structure, and so on), transferring a file results in automatic changes in
information relating to that file in its new environment. These changes are described in
Chapter 6, "File Systems and File Formats. "

Application development environments 2-3

Your application in the A/UX Finder
environment

Applications must generally be 32-bit clean and must be compatible with System 7 to run
in the A/UX Finder environment. (A special 24-bit login environment is provided for

backward compatibility.) This section tells you how to ensure that an application is

A/UX Finder-friendly. The information in this section extends the information in Inside

Macintosh, Volume VI, which provides detailed information on System 7 compatibility.

Certain applications cannot run under A/UX because they violate A/UX
requirements-for example, by doing direct hardware manipulations or by relying on

Macintosh traps or functions that are not supported under A/UX. Information on these

matters is given elsewhere in this manual, particularly in Chapters 4 and 5. This section is
not concerned with these special requirements, but with how, in general, an application

can function better in the A/UX Finder environment. The following strategies will help
make your application more compatible with the A/UX Finder:

• Use the wai tNextEvent routine rather than the GetNextEvent routine.

The GetNext Event routine is ve1y unfriendly to the A/UX kernel scheduler. Use
wa itNextEvent , with timeouts and mouse regions, if at all possible. This routine
allows the kernel scheduler to put processes to sleep, improving the efficiency of CPU
usage. wai tNextEvent also improves responsiveness to the user, because processes

are penalized for accumulated CPU time.

• Perform blocking operations only if unavoidable.

The ui_setselect call is helpful in avoiding blocking. See the next section, "Using
the ui_se t select Call," for more information.

• Set the · s IzE • resource higher than you would for System 7. See Inside

Macintosh, Volume VI, for information on the · S I ZE · resource.

When setting the · S IZ E · resource, allow slightly more memory than would be
needed for running under System 7. Running Macintosh OS memo1y management under
A/UX requires some additional overhead.

2-4 Chapter 2 Using the NUX Toolbox

Using the u l s e t s e l e c t call

If you are porting an application, such as a terminal emulator, that normally blocks on

I/0 by using select(2) for events, you can use the ui_set select function to
block in Wai tNext Event . This technique gives you a means to break out of
Wai tNextEvent before its timeout. (Use of wai tNextEvent allows other

applications access to the CPU while you wait.) Effectively, the ui_setselect

function gives you a way to post a UNIX event. Usage of ui_setselec t i s similar to
that of select(2N):

u i_se tselect (rifds , readmask, writemask, exceptmask)

int 1�jds , readmask, writemask, exceptmask

The call is used before and after wai tNextEvent , as follows:

u i_set select (njds, readmask, writemask, exceptmask) / * set masks * 1

Wa itNextEvent (. . .) ;

ui_setselect (0 , 0 , 0 , 0) ; / * c lear sel ect masks * /

selec t U1(ds, readfds, writefds, execptfds, o) I * check I /O* I

The u i_set s e l ec t call causes WaitNextEvent to return a null event
whenever a select (2N) call would succeed, that is, when a file descriptor becomes
active. An example of when a s e l ec t call would succeed is the point at which data

becomes available to a read file descriptor. The method used with A/UX Release 1 . 1 ,

which first called select and then called GetNextEvent , will not work properly
with Release 3.0.

Whenever WaitNextEvent returns, you must call select with a t imeout

value of 0 to see if I/0 is pending on any file descriptors. Using this mechanism you
cannot tell why Wa i tNextEvent returned, so you need to call select to test if
the reason is the driven by Macintosh or UNIX requests.

Calling ui_set s e l ect to set the masks effectively adds another event type to the
event mask for the Wai tNext Event call. Thus, calling this routine a second time to
clear the masks prevents a potential problem. If, without the select masks cleared, the
application enters a different event loop that does not handle select (by calling
ModalDialog, for example) the event mask will still request an event. In such a case, a
null event may be returned to indicate that selec t would return. For the

ModalDialog example, this means that the update event for the dialog box would
not be returned, because it has a lower precedence than the select physical event,

and the contents of the dialog box would not be drawn.

Your application in the A/UX Finder environment 2-5

The ui_setse lect call is similar in function to select(2N), as documented in

A!UX Programmer's Reference, with the following exceptions:

• The ui_setselec t call has no timeout argument.

• The masks for ui_setselect are integers; for se lect , they are pointers to
integers.

• The ui_setse lect call does not return the number of active file descriptors.

• Active file descriptors are not passed back in the descriptor masks.

• You can only use the first 32 file descriptors.

Developing an A/UX Toolbox application

This section summarizes the procedures for developing an A/UX Toolbox application

under A/UX.

You must be familiar with the general Macintosh program development procedures

before you can write a Macintosh-like application under A/UX. If you have never written

a Macintosh application, see Appendix A, "Additional Reading," for suggested references.

Development of an application that uses the Macintosh interface follows two parallel

paths: development of source code and development of resources. This section briefly

describes the tools provided for developing the two elements. Chapter 3 contains details

on the special tools provided with the A/UX Toolbox for supp01t of program development.
The sample programs provided with the A/UX Toolbox illustrate the procedures for

compiling and building an A/UX Toolbox application, starting with separate files
containing the source code and the uncompiled resources. See the directory

/mac / l ib/ examp l es for the sample programs and the section "Building and
Running the Sample Programs," later in this chapter, for more information.

D Important Shared libraries are implemented in A/UX Release 3.0. Using shared library
code for routines subject to change and development provides a convenient method of
supporting future enhancements. You can update and ship the library code, and

applications that call upon the shared library will automatically use the current code in
the library without having to be recompiled. See A!UX Programming Languages and
Tools, Volume 1, for more information. L

2-6 Chapter 2 Using the A/UX Toolbox

Developing the source code

You can use the standard A/UX C development environment for developing and
debugging an A/UX Toolbox application. Additional enhanced development tools are
included in the A/UX Developer's Tools product, available from APDA. (For information

on the standard environment, see A!UX Programming Languages and Tools, Volumes 1
and 2. For information on the enhanced environment, see A!UX Development Tools and

AIUX c89 C.)

Use the standard C libraries (shared or nonshared) as usual, and incorporate the

special A/UX Toolbox components at each step:

• Writing source code

Include the header file for each Macintosh libra1y you use. (See Appendix F, "C Interface
Library," for a list of the available header files.) Check each libra1y's ent1y in Chapter 5
for any warnings about the A/U X implementation of that libra1y.

Follow the general A/UX compatibility guidelines in Chapter 4 and the general
Macintosh programming guidelines in Inside Macintosh.

• Building the application

Adapt the sample makefiles in /mac 1 src 1 examples to compile and link your

application as required by the A/UX Toolbox. The build procedure for an A/UX Toolbox
application differs from that for a typical UNIX C program in that you must call in

additional libraries and make provisions for Macintosh mem01y-use conventions. Your
build procedure should include these additional steps:

specifying the pathnames for the include files

linking to the files that contain the A/UX Toolbox routines, the symbols for
Macintosh global variables, and the initialization routine

As demonstrated in the sample makefiles, you can also define a constant to allow for

selective compiling of common source code for different execution environments.

For more information on how an application is built and executed, see Appendix C,
"Implementation Notes. "

Developing an A/UX Toolbox application 2-7

Figure 2-2 illustrates how to incorporate the A/UX Toolbox into an application.

appname . c represents your source file. Use the standard makefile to compile it, using

cc(l), and link it, using ld(l) . The output is an executable Common Object File Format

(COFF) object file.

appname . c--c

C source code

i nclude < types . h> / * i n c l ude header f i le s * /

I n i tGraf (&qd . thePort) ; / * cal l s t o too lbox * /

D

/ u s r / inc lud e / mac / *

A/UX C
-

Header files declare functions and data types.
compiler

D / u s r / l i b ! l ibmac_s . a or
/ u s r / l i b / l i bmac . a

- Libra1y contains ent1y points for all functions
- and variables.

/usr / l ib / l ow . ld
- Script reserves space for global variables.

A/UX C -

link editor /usr ! l i b/ low . o
- File contains symbols for global variables.
-

/ u s r / l i b /maccrt O . o

D
- Initialization routine communicates with kernel.
-

appname

COFF executable
ftle

Figure 2-2 Incorporating the A/UX Toolbox into development code

2-8 Chapter 2 Using the A/UX Toolbox

_____.,--

Developing the resource file

The resource editor ResEdit, which allows you to manipulate resources graphically and

to copy resources between applications, now nms under A/UX. (Version 2 . 1 of ResEdit
is the preferred version as of this writing.) Using ResEclit is by far the most efficient way
to create or manipulate resources on Macintosh systems, including those running A/UX.

Additional tools and utilities for development of resources under the Macintosh OS

are available from third-party developers. MPW offers several tools, described in
Macintosh Programmer's Workshop 3.2 Reference. If you develop your resources in the
Macintosh OS, you can transfer the compiled resources into a file of appropriate format
for A/UX.

For developers who want to do things the hard way, the A/UX Toolbox includes
A/UX versions of the rez(l) and derez(l) tools, ported from MPW, for compiling

and decompiling resources. Figure 2-3 illustrates this resource development path. You

will probably want to save a source version of your resource files. You can build
resources with ResEdit, then use derez on the file to obtain a source file. Should you

ever need to, you can then use rez on your source file to re-create the resource file.

appname . r ----..

rez source
code

D

Resource
compiler

D
appname . res

Resource ftle

/mac / l ib / r in c l ude s / * -------..

Resource libraty defines resource tools.

Figure 2-3 Developing a resource file by using rez

Developing an NUX Toolbox application 2-9

Appendix E, "Resource Compiler and Decompiler," documents rez and derez

in detail. The directo1y /mac ! l ib / r inc ludes contains the resource type definition

files used by rez and derez .

Building and running the sample programs

Source code for two sample programs is in the directory /mac 1 s rc 1 example

(provided that you have performed the complete A/UX installation). The direct01y
contains a makefile, a C source file, and a resource file for each of these applications.

(See Inside Macintosh, Volume I, for a detailed description of resource files and
Macintosh application development procedures.)

• The first example is a program that demonstrates basic QuickDraw graphic

operations. The relevant files are qdsamp . c , a C source file, and qdsamp . r, a

resource file.

• The second example is a generic application that displays a fixed-sized window in

which the user can enter and edit text. The relevant files are sample . c , a C source
file, and samp l e . r, a resource file .

To build executable code, copy the source files and makefile to the directory you are

working in, then enter the make(l) command with the name of the demonstration

program as an argument. The executable code is put into an executable file, and the
resources and header information are put into a resource file. You must explicitly build
both files. To build samp l e, for example, enter this command:

make samp l e % samp l e

I n this example, the executable file is sampl e and the resource information is i n the

file % sample .

To run one of the sample programs, enter the name of the executable file (sample ,

in this case) on a command line as you would for any other A/UX program, or double
click the program's icon. The A/UX Toolbox automatically looks for the associated
resource file, and uses the two files together so long as they are in the same direct01y.

2-10 Chapter 2 Using the A/UX Toolbox

The makefile provided with the sample programs illustrates the steps necessary to
compile and link a Macintosh application under A/UX. Examine make f i l e in the
/mac I l ib / examples directory. When you are ready to build your own application,
you can copy this makefile and adapt it for your program.

Another sample program resides in the /mac 1 src 1 sndDemo directo1y. The

directory contains a makefile, C source file, resource file, C header file, and sound demo

resource. When compiled, the program checks for sampled sound resources in its resource

fork and in the System file. It places these resources under a "SampledSynth" menu.

Building and running the sample programs 2-11

3 A/UX Toolbox Utilities
and Extensions

Using the A/UX Toolbox utilities I 3-2

A/UX Toolbox variables I 3-3

Additional trap and routine I 3-4

A/UX Toolbox environment variables I 3-6

Making A/UX system calls I 3-7

The MacsBug debugger under A/UX I 3-1 1

The dbx debugger under A/UX I 3-13

This chapter discusses some special features of the A/UX Toolbox that support program

development in A/UX. The features fall into five broad categories:

• utility programs for controlling the execution environment, converting file formats

and attributes, and compiling and decompiling Macintosh resource files

• variables defined in the A/UX Toolbox interface libraty that let you change how an

application is executed

• an additional trap and routine for use in A/UX Toolbox applications

• environment variables for use during debugging

• debuggers that assist in finding problems with applications

Using the A/UX Toolbox utilities

The A/UX Toolbox utilities discussed in this chapter are all in the directory /mac /bin,

which also contains many other useful utilities and programs. Al l of the A/UX Toolbox

utilities have Corrunando interfaces that present the choices available when you are

using the utilities. Descriptions of the files in the /mac /bin directory can be found in
I FILES . Several of the facilities available in /mac /bin are particularly useful in a

development environment:

st artmac These two utilities handle the transition between the standard
s tartmac2 4 A/UX environment and an A/UX Toolbox application

environment. The s t artmac utility provides the standard
32-bit A/UX Toolbox environment, while s tartmac2 4
provides a 24-bit A/UX Toolbox environment. The
s t artmac and startmac2 4 utilities are described in
Section 1 of A!UX Command Reference

launch

set f i le

The 24-bit environment is isolated from the rest of the
system; it is provided for testing when you are converting 24-
bit applications and for mnning obsolete 24-bit utilities and
tools, such as orphaned compilers. Information on accessing
the 24-bit environment is available in A!UX Essentials.

This utility is available for launching a Macintosh bina1y from
the conm1and line of CommandShell. It provides special
options and capabilities for a Macintosh bina1y launched
within the A/UX Finder. This utility is not necessa1y for
ordina1y launching; you can launch applications by double
clicking their icons, by dragging a document onto their icons,
or by opening an executable Macintosh binary. The utility is
provided for convenience in launching from CommandShell
and for use in application development. The l aunch
utility functions only in the 32-bit environment. The
l aunch utility is described in A!UX Programmer's
Reference.

This utility sets file creator and type, and other attributes. The
set f i l e utility is described in Section 1 of A!UX
Command Reference.

3-2 Chapter 3 NUX Toolbox Utilities and Extensions

changes i z e

f cnvt

rez
derez

This utility changes the value of the file's I S I ZE I attribute.
The I SIZE I attribute is described in Inside Macintosh,
Volume VI .

This utility converts files from and to six formats. The f cnvt
utility is described in detail in Section 1 of A!UX Command
Reference. For information on file formats, see Chapter 6,
"File Systems and File Formats, " in this manual .

These two utilities are available for compiling (rez) and
decompiling (derez) resources. Detailed information is in
Appendix E, "Resource Compiler and Decompiler." These
utilities are also described in Section 1 of A!UX Command
Reference.

Further information on utilities is available from many sources, including on-line and
printed manual pages and Commando dialog boxes.

A/UX Toolbox variables

The A/UX Toolbox interface library, in the file /usr 1 l ib/ 1 ibmac . a, defines two
variables:

dont Foreground

no CD

This variable specifies whether or not the program runs only
in the background. If it is set to 1 , the program runs only in
the background.

To set dontForeground to 1, include this line in your
program:
int dont Foreground = 1 ;

This variable sets the current directory. If it is set to 1 in a
program, the current direct01y is the direct01y from which the
user ran the program. Otherwise, the current directory is the
directo1y in which the program resides.

To set noCD to 1 , include this line in your program:
int noCD = 1 ;

A/UX Toolbox variables 3-3

Additional trap and routine

The A/UX Toolbox interface libraty includes one additional trap and one additional

routine for use in A/UX Toolbox applications: the AUXDi spat ch trap and the

select routine. These are described in the sections that follow.

AUXDi spatch trap

The AUXDi spatch trap is a multipurpose call that supports some A/UX-specific

extensions to the A/UX Toolbox. You should invoke this call only after using the Gestalt

function to determine that the application is running under A/UX. Information on the

Gestalt facility is available in Inside Macintosh, Volume VI.

The definitions for the AUXDi spatch trap are in the header file aux . h, found in

/usr 1 inc lude /mac. (See "Definitions for AUXDi spat ch" in Appendix F.) The

header file provides a syntax compatible with MPW C version 3.2 . AUXDi spatch

uses this syntax:

AUXDi spatch (selector, p)

short selector ;

char *P ;

The function of AUXDi spatch depends on the placeholder selector, which can be

one of these values:

AUX_HIGHEST

AUX_GET_ERRNO

Returns the highest available selector (for suppolt of future
releases, which may provide more selectors).

With this selector, the pointer p is not used.

Gets a pointer to errno, which is linked to your program
through the standard C library.

AUXDi spatch puts the address of errno in the address
that you specify with the pointer p.

3-4 Chapter 3 AIUX Toolbox Utilities and Extensions

AUX_GET_PRINTF

AUX_GET SIGNAL

AUX_GET_TIMEOUT

AUX SET_S ELRECT

AUX_CHECK_KIDS

Gets a pointer to the print f(3S) routine, which is linked to
your program through the standard C library.

AUXDi spatch puts the address of print f in the
address that you specify with the pointer p.

Gets a pointer to the s ignal (3) routine, which is linked to
your program through the standard C libra�y.

AUXDispatch puts the address of s igna l in the
address that you specify with the pointer p.

Returns a time period, in clock ticks, indicating when the
next Macintosh device driver will need to obtain processor
time through the wa i tNextEvent routine. See Inside
Macintosh, Volume VI, for a description of
Wai tNext Event .

With this selector, the pointer p is not used.

Defines a rectangle that the user interface device driver will
use to monitor mouse movements for the select (2N)
system call. For an explanation of the select call, see
"Using selec t to Monitor A/UX 1/0 Activity and
Macintosh Events, " later in this chapter.

With this selector, the pointer p points to the specified
rectangle.

Checks for the existence of child processes, returning 1 if
child processes exist for the specified process and 0 if not.

With this selector, you specify the process to be checked for
child processes by passing the pointer p to the process ID.

AUX_POST_MODIFIED Posts an event, with modifiers. With this selector, you pass
the pointer p to the event record.

AUX_F IND_EVENT Searches the event queue for an event. With this selector, you
pass the pointer p to a F i ndEven t structure (mask and
pointer to an event record) .

Additional trap and routine 3-5

Using s e l e c t to monitor A/UX I/0 activity and
Macintosh events

If you are writing an A/UX Toolbox application that will run only under A/UX, you can

use the s e l ect(2N) system call to monitor not only standard A/UX 1/0 activity but

also Macintosh events.

The select call examines a set of file descriptors that you specify through bit

masks. The A/UX Toolbox provides a user interface device driver, 1 dev 1 u in t erO , to

handle communications between the A/UX Toolbox libra1y and the kernel . The file

descriptor udevfd is opened to 1 dev luinterO . To include Macintosh events in the

list of I/0 activity to be monitored, include udevfd in the masks you pass to select .

You can use a combination of the select system call and the AUXDispatch

call to expand the definition of a Macintosh event to include movement of the mouse

outside a specified rectangle. (Ordinarily, mouse motion without the pressing or release

of the mouse button is not an event.) First, issue the AUXDi spa tch call, using the

AUX_SET_SELRECT selector and passing a pointer to the rectangle. AUXDi spat ch

passes the rectangle to the user interface device driver. In subsequent se lect calls,
include the udevfd descriptor in your masks. selec t will then wake up your

program if there is a Macintosh event or other specified event pending, if the mouse

moves out of the specified rectangle, or if the timer expires. Once selec t reports

activity through the user interface device driver, you must call GetNextEvent to

retrieve the event.
This sequence (AUXDi spatch followed by select) is an alternative for A/UX

Toolbox programs that cannot use the wai tNextEvent trap (described in the
section "Event Manager, Toolbox" in Chapter 5).

A/UX Toolbox environment variables

The A/UX Toolbox uses a number of environment variables to modify its actions under
certain circumstances. Most of these variables are useful only during program

development and debugging.

3-6 Chapter 3 A!UX Toolbox Utilities and Extensions

A/UX Toolbox environment variables are set and read like other environment
variables. (For information on environment variables, see environ(5) in A!UX

Programmer's Reference.) This section lists the environment variables used by the A/UX

Toolbox and their functions.

TBCORE

TBRAM

TBSYSTEM

TBTRAP

TBWARN

If this variable is set to a nonzero value, the A/UX Toolbox causes a
core clump if a fatal error occurs. If this variable is not set, the A/UX
Toolbox displays a message and exits when a fatal error occurs . One
example of the cause of a fatal error during development of A/UX
Toolbox applications is attempting to execute an unimplemented A
line trap.

If this variable is set to a nonzero value, the ROM code is copied into a
mem01y segment when a program is run. This variable lets you set a
breakpoint in the ROM code for debugging.

This variable contains the A/UX pathname of the directoty that
contains Macintosh system files. The default setting is
/ mac / l i b / S y s t emF i l e s .

I f this variable is set to a nonzero value, the system writes debugging
information to standard error evety time an A-line trap is executed.

If this variable is set to a nonzero value, the system writes a warning
message to standard error when certain error conditions are detected.
These messages generally repott that something unusual but not fatal
has happened. Developers may want to set TBWARN in . login or

. pro f i le .

Making A/UX system calls

This section describes a strategy for building an application under the Macintosh OS by
using A/UX system calls, resulting in an application that can be executed in both A/UX

and Macintosh environments.

+ Note The A/UX Developer's Tools product, available from APDA, already contains
all of the A/UX system calls in MPW format. If you are using this product, you will not

need to perform the first two steps of the following procedure. •

Making A/l!X system calls 3-7

The strategy described in this section is intended for applications that need to

perform functions available through the Macintosh OS or the User Interface Toolbox but

not available under A/UX. You can write an application that uses the required

function(s) when running under the Macintosh OS but uses alternative code, including

A/UX system calls, when running under A/UX. Use Gestalt to determine under which

system the application is running.

The basic procedure is to translate the A/UX system calls into assembly-language

routines and to make those routines available to the compiler under the Macintosh OS.

Specifically, you can use A/UX system calls in an application that will run under both
environments by following these steps:

1 Determine the assembly-language sequence that is generated by the A/UX
compiler when it encounters the system call you want to use.

a. Write a program that uses the call. If you want to use open(2), for example, you
could staJt with this program:

mai n ()

int fd ;

f d = open (" fred" , 2) ;

b. Compile the program in the A/UX environment.

c. Use the debugger adb(l) to disassemble the program. The open call, for
example, results in this disassembled code:

open :

mov . l

t rap

bcc . b

j mp

noerror :

r ts

cerror% :

mov . l

mov . l

mov . l

r ts

& Ox5 , &d0

& OxO

noerror

cerror%

%dO , errno

& - l , %d0

%d0 , %a0

3-8 Chapter 3 NUX Toolbox Utilities and Extensions

2 In your Macintosh development environment, create an assembly-language

routine that performs the same functions.

Give this routine a unique name. (The Macintosh OS equivalent to the open call, for

example, might be auxopen.)

3 Insert the call conditionally into your application.

Use Gestalt to determine if A/UX is running; the following code segment shows you

how. Gestalt will return the version of A/UX if it is currently running. (The result is
placed into the lower word of the response parameter.) If A/UX is not running, Gestalt
returns ge s t a 1 t UnknownErr. If Gestalt is not running, the glue code returns an

error. If you get an error, check the HWC fgFlags low-memory global, as shown in
the following code segment.

+ Note Checking that Gestalt is running is required only if you want your application

to be backward-compatible with Macintosh systems running a Macintosh OS version
prior to System 7. All systems running A/UX Release 2.0 or later releases implemenr the
Gestalt facility. •

The following MPW code segment returns the version of A/UX currently running, or 0 if
it is not running. This code relies on Gestalt glue code available in MPW version 3.2 and
later versions.

I *

*

*

*

*

*

*

*

*

* I

getAUXVers i on . c

Copyright © 1 9 9 0 Appl e Computer , Inc .

Thi s f i l e contains rout ines to test i f an appl i cat i on

i s running on A / UX . I f the Gestalt t rap i s avai labl e ,

i t uses that ; otherwise i t fal l s back to HWC fgFlags ,

which w i l l work on a l l A/UX systems .

(continued>--

Making A/UX system calls 3-9

inc lude <Type s . h>

inc lude <Ge s t a l t Equ . h>

#def ine HWCfgFlags OxB2 2

i s running * I

I * Global used t o check i f AIUX

I *

*

*

*

*

*

*

* I

getAUXVersion - - Checks for the presence o f AIUX by

whatever means i s appropriate . Returns the maj or

version number of AIUX (i . e . , 0 i f AIUX i s not present ,

1 for any l . x . x version 2 for any 2 . x ver s i on , etc .

Thi s code shoul d work for a l l pas t , present and future

AIUX sys t ems .

short getAUXVer s i on ()

l ong

short

short

I *

*

*

auxversion ;

err ;
* f lagpt r ;

Thi s code as sumes the Ges t a l t g lue checks for the

presence of the _Ge s t a l t t rap and does something
* i nt e l l igent i f �he t rap i s unavai l abl e , i . e .
* return unknown selector .
* I

auxversion = 0 ;

err = Ge s t a l t (gestaltAUXVers ion , &auxversion) ;

I *

*

*

*

*

*

* I

I f ges t a l t UnknownErr or gestal tUndefSelectorErr

was returned , then ei ther we weren ' t running on

AIUX , or the _Ge s t a l t t rap is unava i l able so use

HWCfgF l ags inst ead . Al l other errors are ignored

(impl i e s AIUX not present) .

3-10 Chapter 3 AIUX Toolbox Utilities and Extensions

-�

if (err = = gestal tUnknownErr I I err ==

! *

*

*

* I

ges tal tUndefSelectorErr) { f l agpt r = (short *)

HWCfgFlags ; ! * Use HWC fgFlags * /

i f (* f l agpt r & (1 << 9))
auxvers ion = Ox1 0 0 ; / * Do Have A/UX ; assume

vers ion l . x . x * /

Now r ight shi f t auxversion by 8 bits to get maj or

version number

auxver sion >>= 8 ;
return ((short) auxvers ion) ;

Once you have the A/UX version, it is a simple matter to use the optimal call for the

execution environment. For example:

inc lude < / : usr : inc lude : sys : uio . h>

i f auxvers ion >= 2

then auxread (4 , * t empbuf f , 5 1 2)

e l s e FSread (4 , 5 1 2 , tempbu f f ,)

The MacsBug debugger under A/UX:

The MacsBug debugger is available from APDA for use within the A/UX Toolbox
environment. (Version 6 .2 or a later version of MacsBug is required.) MacsBug comes
with a reference manual. For APDA contact information, see "Information Sources" in

Appendix A.

The MacsBug debugger under A/UX 3-11

When used with the A/UX Toolbox, MacsBug does not underlie the entire system, as

it does when used with the Macintosh OS. Pressing the hardware programmer switch

when A/UX is running places you into the UNIX kernel debugger (if present) .

To install MacsBug, place it in your System Folder. (By default, the System Folder is
the directoty /mac 1 sys 1 System Folder.) Placing MacsBug in this directoty is the

equivalent of placing it in the System Folder under the Macintosh OS. MacsBug will

automatically install itself the next time you log in to A/UX.

MacsBug is invoked when the system encounters an exception error. You can force

entty into MacsBug at any time by pressing COMMAND-CONTROL-I.

Once in MacsBug, you can use MacsBug commands to examine values, step through

code, attempt recovery, and so forth, as with any debugger.
The combination keypress CoMMAND-CONTROL-E exits the A/UX Toolbox and logs you

out. This command can be useful for getting out of a hung system. It does a general

tidying up of the system (closing open files, and so forth) before logging you out. If you

press this key combination when MacsBug is not installed, a similar logout takes place,

but it is not so tidy. (Open files may become corrupted, for example.)

When you are in MacsBug, many commands are available. Here are several:

Command

g

rs

rb

es

dm curapname

help

i l

s c

Result

Go; continues from current location.

Restart; actually logs you out.

Reboot; actually logs you out.

Exit to shell; exits current application.

This is not a good way to exit. Low-mem01y globals are left
in an indeterminate state, and after a while strange things
start to happen to your other applications.

Displays current application name.

The current application may not be what you think it is; it is
worth ttying this command before you exit the current
application.

Lists the commands available.

Disassembles from the current instruction pointer.

Stack crawl; shows a backtrace of calls to help discover what
broke the current application.

3-12 Chapter 3 A/UX Toolbox Utilities and Extensions

Additional information on MacsBug can be found in MacsBug 6.2 Reference and

Debugging Guide and in Debugging Macintosh Software with MacsBug. (See Appendix
A for bibliographic information.)

The dbx debugger under A/UX

The dbx debugger is included for use within the A/UX Toolbox environment. This

debugger, in conjunction with MacsBug, allows you to efficiently debug applications that
make A/UX system calls.

Here are a few of the commands available with dbx:

t race

stop

st atus

dele te

cant

step

next

Prints tracing information when the program is executed. A number is
associated with the command. You can use this number with the
delete command to turn the tracing off.

Stops execution when the given line is reached, procedure or function
is called, variable is changed, or condition becomes true. Execution
can be resumed with the cant command.

Prints the currently active trace and stop commands.

Removes the traces or stops corresponding to the given numbers. The
numbers associated with traces and stops are printed by the s t atus
command.

Continues execution from where the process stopped. If a signal is
specified, the process continues as though it had received the signal.
Otherwise, the process continues as though it had not been stopped.

Executes one source line.

Executes up to the next source line. The difference between next
and step is that if the next line contains a call to a procedure or
function, the s t ep command stops at the beginning of that block,
whereas the next command does not.

Additional information on dbx can be found in AIUX Programming Languages

and Tools, Volume 1 .

The dbx debugger under A/UX 3-13

4 Compatibility Guidelines

Introduction I 4-2

Differences in execution environments I 4-2

Differences in C compilers I 4-l 0

Differences in language conventions I 4-l l

This chapter discusses various requirements for compatibility between application code

that uses the Macintosh User Interface Toolbox and code that uses the A/UX Toolbox.

This information, combined with the information available in Inside Macintosh, tells you

what you need to consider when porting Macintosh applications to take full advantage

of the AIUX environment.

Introduction

To mn the same code in both the Macintosh OS and UNIX environments, you must
make provisions for a number of compatibility issues:

• differences between the Macintosh OS and UNIX execution environments

• differences between the C compilers used in A/UX and those used in other
Macintosh OS development environments

• differences between the C language typically used in A/UX and the Pascal language
used by the Macintosh ROM routines

For details about the A/UX implementation of the Macintosh ROM code, see

Chapter 5, "A/UX and Macintosh User Interface Toolbox Differences, " and Appendix C,

"Implementation Notes. "

Differences in execution environments

The Macintosh OS was designed as a single-user system. Individual applications and the

various l ibraries that support the Macintosh user interface can have much more control

over the system than individual processes are allowed in UNIX.

In UNIX, the kernel arbitrates all access to hardware, including mem01y allocation.

Only the kernel can use the hardware instructions of the MC680x0 microprocessor.
Like the current Macintosh OS in System 7, A/UX uses virtual memory. A/UX 3.0

allows control of virtual memory through the Memory control panel. While the A/UX
virtual memory implementation is completely different than that used in System 7, this is

transparent to the user and programmer.

This section lists the compatibility issues that result from the differences between the
Macintosh OS and UNIX execution environments. This section augments the Macintosh
programming guidelines provided in Inside Macintosh . To ensure that your code runs
under both the Macintosh OS and A/UX, follow both the rules outlined here and the

compatibility guidelines in Inside Macintosh, Volume VI.

4-2 Chapter 4 Compatibility Guidelines

Sometimes a program must perform differently depending on whether it is running
on an MC68020-based Macintosh or an MC68030-based Macintosh and whether it is

running under the native Macintosh OS or under A/UX. Use the Gestalt facility to
determine which operating system is currently running. See the section "Making A/UX
System Calls," in Chapter 3, for an example using Gestalt.

32-bit address violations

A/UX uses all 32 bits of an address, but the Macintosh OS prior to System 7 used only the
low-order 24 bits of an address. Historically, both the User Interface Toolbox and a
number of application programs used the high-order 8 address bits for storing additional
information. Present and future Macintosh OS applications must now be 32-bit clean in
order to fully use the system capabilities. In the A/UX system, a Macintosh application
must be 32-bit clean to run under the A/UX Finder. (A 24-bit environment is provided by

means of a special login so that progranuners making an application 32-bit clean can test
in both environments. For information on how to log in to A/UX in 24-bit mode, see
A!UX Essentials.)

To create 32-bit clean applications, use the Memo1y Manager in a safe manner.
Adhering to the following guidelines will help you avoid many common problems as
well as ensuring that your applications are 32-bit clean:

• Use Memo1y Manager operations for Mem01y Manager functions. Make no
assumptions about the contents of Memo1y Manager structures. Do not set bits

directly in these structures or manipulate them directly.

• In particular, never make your own handles; use NewHandl e.

• Check evety returned handle or pointer to ensure that it is not NIL. A NIL handle
may indicate that a mem01y allocation failed or that a requested resource could not
be found.

• Before using a handle marked purgeable, make sure that the handle is not empty.

Differences in execution environments 4-3

As an aid to upgrading old applications, here is a list of (deplorable) practices once

common in Macintosh applications that violate 32-bit address requirements:

• Creating or using fake handles A fake handle is one that was made not by the

Memo1y Manager (the NewHandle function), but by the program (a pointer to a

pointer). The Memo1y Manager has its own style of making handles, and a fake

handle can cause trouble.

• Use of direct access to the flag bits on relocatable blocks The Macintosh OS used to

store the flag bits, Lock, Purge, and Resource, in the high-order bits of a

block's master pointer. The A/UX Toolbox stores these flags elsewhere. Setting high

order bits in the master pointer invalidates the address. If your application uses a

bset instruction or moves bytes to change these flags, change your code to use the
appropriate Memoq Manager routines instead. See "The Mem01y Manager" in Inside

Macintosh, Volumes II, IV, and VI .

• Use of application-specific flags Some applications use the high-order bits of

addresses to store their own flags. This practice invalidates the address in A/UX (and

in System 7).

• Use of direct access to window and control variant codes The Macintosh OS

formerly stored the variant code for a window or control in the high-order bits of the

handle to the definition procedure, which is located in the window or control record.

Applications rarely access these codes, but custom definition procedures sometimes

do. In A/UX, the variant codes are stored elsewhere. You can read them with the

Getwvar i ant and Getcvariant calls. (For more information on these calls,
see Inside Macintosh, Volume VI.)

Privileged microprocessor instmctions

The A/UX Toolbox is run by an A/UX process in MC680x0 user mode. Therefore,

privileged processor instructions are not available within an A/UX Toolbox application.
However, commonly used privileged instructions are emulated by the A/UX kernel. This
emulation provides approximately the same functionality for the A/UX environment,
though the emulator executes far more slowly. Table 4-l lists the status of all MC68020
and MC68030 privileged instructions.

4-4 Chapter 4 Compatibility Guidelines

Table 4-1 Privileged microprocessor instructions within the A/UX Toolbox

Instruction

ANDI to SR

EORI to SR

FRESTORE

FSAVE

MOVE from SR

MOVE to SR

MOVE USP

MOVEC

MOVES

ORI to SR

RESET

RTE

STOP

TAS

Register and addressing modes supported

All

All

(An)+
(An)
(d16,An)

-(An)
(An)
Cd 16,An)

On
(An)
(An)+
-(An)
(d16,An)
xxx16
xxx.32

On
(An)
(An)+
-(An)
(d16,An)

xxx. 16
XX-'1:.32

None

Only null and idle frames are supported.

Only null and idle frames are supported.

CACr supported on a per process basis; other control registers may be accessed, but
no action is taken.

None

All

None

Only type 0 and type 2 fault frames are supported.

None

None

Differences in execution environments 4-5

As shown in Table 4-1 , the instructions that manipulate the status register are

supported. A special exception handler in the kernel emulates these instructions so that

they manipulate a virtual status register established for each process instead of the

processor status register. The exception handler can accommodate all status-register

instructions that are generated by calls to standard A/UX Toolbox routines. If you are
writing assembly code, you can use the ANDI , EORI , and ORI instructions and the

simple addressing modes of the MOVE from SR and MOVE to SR instructions.

Table 4-l lists the supported addressing modes.

You can use assembly-language routines to change any of the bits in the vittual status
register, including the priority bits. When the priority is any value higher than 0, all A/UX

signals are blocked.

Hardware processor instructions are available to device drivers and other software in

the kernel .

Direct hardware access

In A/UX, only the kernel is allowed direct access to the hardware. Therefore,

applications cannot bypass the A/UX Toolbox routines and manipulate hardware
directly to perform custom functions or save execution time. This limitation has these

implications:

• Serial port access You cannot access the serial port through the Serial
Communications Controller (SCC) registers.

• Disk drive access Copy-protection schemes that use direct access to the disk drive
controller chip do not work under A/UX.

• Hardware exception vectors The low-memoty CPU exception vectors are not

accessible from within an A/UX user process.

• Macintosh global variables Not all of the Macintosh low-mem01y global variables are

valid in A/UX. In general , variables related to hardware are not suppotted. QuickDraw
and Window Manager globals are accessible, because they are not hardware-specific.
The screen is directly accessible by an application. Appendix D, "Low-Mem01y Global

Variables," lists the low-memoty global variables supported in A/UX.

4-6 Chapter 4 Compatibility Guidelines

Because all input/output and processor-allocation functions are performed through
the A/UX kernel, the A/UX Toolbox libraries themselves do not have as much control

over the system as do their counterparts in the Macintosh environment.
The standard Macintosh environment provides the Vertical Retrace Manager to

handle the scheduling and execution of tasks during the vertical retrace interrupt, and

the Time Manager to schedule routines that require precise timing. (These managers are

described in Inside Macintosh, Volume VI.) The A/UX Toolbox implementation of these

managers is built on the A/UX signal mechanism. Depending on the activities of other
processes, routines scheduled to be run by either of these managers might be delayed.
Even if no other processes are active, the A/UX Time Manager provides coarser
granularity than its Macintosh counterpart. For more information, see "Vertical Retrace
Manager" and "Time Manager" in Chapter 5 .

An application that demands more precise timing probably requires a custom A/UX
device driver. See Building A!UX Device Drivers in the A/UX Device Drivers Kit,
available through APDA, for information on writing device drivers.

You can use standard A/UX device drivers to manage external devices, but programs

that use A/UX device drivers are not portable to the Macintosh OS. For a strategy to
include A/UX system calls in applications that are intended to run under both the
Macintosh OS and the A/UX operating system, see "Making A/UX System Calls" in
Chapter 3 .

Newline characters

The A/UX Toolbox supports the transfer of files between the Macintosh and A/UX
environments. When a user or an application transfers an unformatted ASCII text file
between the two environments, certain changes occur automatically. One change may
mask a simple, but important, difference in conventions: how the newline character is
defined.

In the Macintosh environment, lines are terminated with a return character,
represented by the ASCII value OxOD. In A/UX, lines are terminated with a line-feed
character, represented by the ASCII value OxOA.

Differences in execution environments 4-7

This difference is often masked by automatic conversion, which changes newline

characters when a file is moved between the environments. A text editor working with a

text file in its own environment will find the appropriate newline character in the file,

even if the file originated in the other environment. An A/UX utility processing a text file

that originated on the Macintosh side of the system and that is now on the A/UX side will

find the expected newline characters.

Automatic newline conversion is performed for Macintosh files identified as text files

and for A/UX files that are determined to be text or shell script files. See "Text Files" and

"Automatic Conversion," in Chapter 6, for more detailed information on these topics.
This difference is also masked from the programmer by the C language's newline

character (\ n) , which is translated differently in the two environments.

When sending multiple-line strings to the Dialog Manager or any of the A/UX
Toolbox managers that receive strings, remember that these managers require the

Macintosh newline termination. As with the other cases described here, if the file is on

the Macintosh side of the system, then the correct termination character will be present.

You should be aware of this issue, as you may encounter subtle difficulties involving

the two newline conventions. Automatic conversion of newline characters occurs only

for files known to be text files. A file that is actually a text file may be transferred

between environments without being identified as a text file. A file that is not a text file,
but which contains text, will not have newlines converted. For example, a resource file

contains text and nontext matter. No conversion is done for resource files. A binaty file

transferred between the two environments has its original newline convention when

running in the new environment, which may affect both the output of text and the
processing of input text. An application intended for execution in both environments

may need to determine its execution environment and select the desired newline
character accordingly.

4-8 Chapter 4 Compatibility Guidelines

'-._/.

File Manager

The A/UX File Manager is fully supported for all volumes except "/". The "/" volume is

almost fully supported. For details, see "File Manager " in Chapter 5. Chapter 6, "File

Systems and File Formats," provides details on what happens when files are transferred

between the Macintosh and A/UX environments.

Memory Manager

The A/UX Memory Manager supports all access routines in the same way as does the
Macinrosh OS Memory Manager. The A/UX Memory Manager supports these routines

within a virtual memory environment. Virtual memory has practical limits and

performance limits. On a practical level, the amount of Macintosh virtual memory
(specified by means of the Memory control panel) should be set no higher than twice the
size of physical memory. In general, performance degrades to an unacceptable level
unless all of the memory that is actively being used fits into physical memory.

International character support

The Script Manager is supported in its entirety; however, a caution applies to use of
international character sets within the A/UX environment. In brief, if you have a
Macintosh application that supports international character sets, the application should
run appropriately under A/UX. However, if you attempt to process international character
sets within the A/UX environment by using UNIX utilities, you are likely to encounter
difficulties. The kernel itself is 8-bit clean, but this is not necessarily true for the hundreds

of utilities and shell scripts furnished as part of A/UX (or any UNIX system), which were
developed over the years by many different people. Such utilities and scripts may process
characters as though implemented in 7 bits and, when processing text, may make
assumptions that do not hold true for international character sets.

Differences in execution environments 4-9

Differences in C compilers

This section lists the known differences between the A/UX C compilers and the MPW C
Compiler. These differences affect you if you are writing source code that you plan to

compile separately in the two environments. If you are using a different C compiler for

Macintosh program development, consult your software vendor.

• Zero-length-array warnings The A/UX C compilers cc and c 8 9 generate

warnings when they encounter zero-length arrays, which appear frequently in the

A/UX Toolbox header files. The c 8 9 compiler is an ANSI-compliant C compiler

contained in the A/UX Developer's Tools product, available from APDA.

• Newline characters The newline character is the return character (ASCII value OxOD)

in MPW C and the line-feed character (ASCII value OxOA) in A/UX C.

• Pascal function types MPW C has an extern pascal function type that can be
used for calling most of the ROM routines. To use these functions, an A/UX C

program must use intermediate assembly-language "glue," that is, routines that

rework the C call into a form understandable by the ROM.

The A/UX Toolbox provides assembly-language transformation routines (glue

routines) for most ROM calls in the files /usr ! l ib/ 1 ibmac . a and

/usr I 1 ib/ 1 ibmac_s . a. The second file, 1 ibmac_s . a , is a shared-library
version of the first, and can be used on the compile or link-edit command line in
exactly the same fashion as l ibmac . a . The shared-libra1y version saves some
space in an application bina1y, and has the advantage of always referring to the latest

version of the file. Shared libraries are discussed in Chapter 7 of A!UX Programming

Languages and Tools, Volume 1 . See A!UX Development Tools for an explanation of

how to call functions by using the Macintosh Toolbox library.

However, if you want to create your own definition functions or filter functions, you

must generate your own assembly-language glue. The A/UX Developer's Tools

product, available from APDA, provides most of the glue routines you may need.

See Appendix C, "Implementation Notes," for details about the requirements of the
Pascal routines. See A!UX Programming Languages and Tools, Volume 1 , for

information on the A/UX assembler as .

4-10 Chapter 4 Compatibility Guidelines

• Enumerated types In MPW C, enumerated types can be 8, 16, or 32 bits long,
depending on the range of possible values. In A/UX C, enumerated types are 32 bits
long, unless packed in structures using bitfields. A/UX C does not treat an
enumerated type as an integer in all cases; MPW C does.

• Functions returning pointers MPW C places the return value in register DO; A/UX C

places the value in both AO and DO.

Differences in language conventions

Most of the Macintosh ROM routines follow Pascal conventions for storing strings,

passing structures, pushing parameters on the stack, and returning function results.
These conventions differ from standard C conventions. (See Appendix C,
"Implementation Notes," for details about the differences between Pascal and C

conventions.)

The A/UX Toolbox interface to the ROM routines includes conversion code that takes
care of most of these incompatibilities. Since Release 1 . 1 , A/UX has provided two
versions of all routines that take parameters of type string or type point or that return
values of type string. One version, spelled as the routine appears in Inside Macintosh,

always uses Pascal-format strings and Pascal point-passing conventions. The second
version, spelled in all lowercase letters, uses C-format strings and points. The lowercase
version converts input parameters from C format to Pascal format before passing them to
the ROM, and converts string return values back to C format.

An alphabetical list of all calls in the C interface libraries, "Calls in Alphabetical

Order," is provided in Appendix F. You can consult this list to determine whether an
alternative version of a call is available, because lowercase and mixed-case versions of a
call name sort together.

Differences in language conventions 4-11

5 A/UX and Macintosh User
Interface Toolbox Differences

About the Macintosh interface libraty I 5-2

Calls patched under A/UX I 5-31

Calls nor supported under A/UX I 5-34

This chapter describes the differences between the A/CX Toolbox software libraries and

those of the standard Macintosh User Interface Toolbox and Operating System. For each

chapter in Inside Macintosh that describes a software l ibraty (typically called a

"manager" of the feature it supports), this chapter contains a section describing the A/UX

implementation of that library. The sections in this chapter appear in alphabetical order,

not Inside Macintosh order. This chapter also contains an alphabetical listing of calls not

supported under A/UX.

For a general description of how each libraty works, see the corresponding chapter in

Inside Macintosh . For a detailed list of the constants, types, and functions used by each

library, see Appendix F, "C Interface Libraty."

About the Macintosh interface library

Most of the Macintosh User Interface Toolbox libraries, such as the Menu Manager and

the Window Manager, work the same way in the A/UX Toolbox as they work in the

standard Macintosh User Interface Toolbox. Some A/UX Toolbox libraries are different

from their Macintosh OS counterparts because they replace parts of the Macintosh OS.

This chapter provides detailed discussions of the differences between the two

implementations. Appendix C, "Implementation Notes," describes some additional

implementation details.
Some of the standard Macintosh OS libraries, such as the SCSI Driver, are not

implemented in the A/UX Toolbox. Refer to the A/UX Device Drivers Kit, available from

APDA, for documentation and examples of source code for all A/UX device drivers.
Table 5-1 summarizes the status of the various ROM libraries at the time A/UX

Release 3 .0 was distributed.

Table 5-1 Status of User Interface Toolbox and Macintosh OS libraries
in the NUX Toolbox

ROM library

32-Bit QuickDraw with Color QuickDraw

Alias Manager

Apple Desktop Bus

Apple Event Manager

AppleTalk Manager

Binary-Decimal Conversion Package

Color Manager

Color Picker Package

Control Manager

Data Access Manager

Deferred Task Manager

Desk Manager

Desktop Manager

Device Manager

Dialog Manager

Supported?

Yes

Yes

No

Yes

Yes

Yes

Ye

Yes

Yes

Yes

Yes

Not needed

Yes

Yes

Yes

5-2 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

(continued;.

Table 5-1 Status of User Interface Toolbox and Macintosh OS libraries
in the A/UX Toolbox (continued)

ROM library

Disk Driver

Disk Initialization Package

Edition Manager

Event Manager, Operating System

Event Manager, Toolbox

File Manager

Floating-Point Arithmetic and
Transcendental Functions Packages

Font Manager

Gestalt Manager

Graphics Devices Manager

Help Manager

International Utilities Package

List Manager Package

Memoty Manager

Menu Manager

Notification Manager

Package Manager

Palette Manager

Picture Utilities Package

Power Manager

PPC Toolbox

Printing Manager

Process Manager

Resource Manager

Scrap Manager

Script Manager

SCSI Manager

Segment Loader

Supported?

Yes

Yes

Yes

Partially

Yes*

Mostly

Yes*

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Not needed

Yes

Yes

Yes

Yes

Yes

Yes

No

Partially

(continued�

About the Macintosh interface library 5-3

Table 5-1 Status of User Interface Toolbox and Macintosh OS libraries
in the A/UX Toolbox (continued)

ROM library Supported?

Serial Driver Yes

Shutdown Manager Yes

Slot Manager Partially

Sound Manager Mostly

Standard File Package Yes

Startup Manager ot needed

System Error Handler Yes*

TextEdit Yes

Time Manager Ye *

Utilities, Operating System Partially

Utilities, Toolbox Yes

Vertical Retrace Manager Partially

Window Manager Yes

* All calls are implemented in the NUX Toolbox, but functionality is not identical to that in the
Macintosh User Interface Toolbox. See the discussions later in this chapter for details.

The C interfaces to the standard Macintosh libraries are defined in a set of header files

shipped in the directo1y /usr 1 include /mac. Include the header file for each library
you use in your C program to declare the definitions, types, and functions provided by

the library. Appendix F, "C Interface Libra1y," contains a list of calls available through the
libraries, including the header to include for each call. Table F-l lists the header
filenames together with their libra1y titles.

32-Bit QuickDraw with Color QuickDraw

The A/UX Toolbox 32-Bit QuickDraw is identical to the Macintosh OS 32-Bit QuickDraw.
Color QuickDraw is included in 32-Bit QuickDraw.

See Inside Macintosh, Volumes I, V, and VI, for a description of QuickDraw and Color
QuickDraw, supplemented by the APDA document on 32-Bit QuickDraw. See "32-Bit

QuickDraw With Color QuickDraw" in Appendix F for the A/UX C interface.

5-4 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

Alias Manager

The A/UX Alias Manager is identical to the Macintosh OS Alias Manager. See Inside

Macintosh, Volume VI, for a description of the Alias Manager.

Apple Desktop Bus

The A/UX Toolbox does not support the Macintosh OS Apple Desktop Bus. Source code
for the UNIX ADB device driver can be found in the A/UX Device Drivers Kit, available

from APDA.

Apple Event Manager

The A/UX Apple Event Manager is identical to the Macintosh OS Apple Event Manager.
See Inside Macintosh, Volume VI, for a description of the Apple Event Manager.

AppleTalk Manager

All AppleTalk calls and protocols are supported under A/UX 3.0 .

AppleTalk printing operations are available either through direct AppleTalk calls in
Macintosh binaq programs or through calls to the Printing Manager under A/UX. See
"Printing Manager" or "Print Traps" in Appendix F for the A/UX C interface.

Other AppleTalk calls are available (at the program level) as UNIX system calls and
Macintosh bina1y calls. The equivalent A/UX C header files are in the libraq
/usr I inc lude / at .

See Inside Macintosh, Volumes II, IV, V , and VI, for a description of the Macintosh
OS AppleTalk Manager. See AIUX Network Applications Programming for a description
of the A/UX AppleTalk Manager.

About the Macintosh interface library 5-5

Binary-Decimal Conversion Package

The A/UX Toolbox Binary-Decimal Conversion Package is identical to the Macintosh OS

Binaty-Decimal Conversion Package.

See Inside Macintosh, Volumes I and IV, for a description of the package. See

"Package Manager" in Appendix F for the A/UX C interface to the Binaty-Decimal

Conversion Package.

Color Manager

The A/UX Color Manager is identical to the Macintosh OS Color Manager. See Inside

Macintosh, Volume V, for a description of the Color Manager. See "32-Bit QuickDraw

With Color QuickDraw" in Appendix F for the A/UX C interface to the Color Manager.

Color Picker Package

The A/UX Color Picker Package is identical to the Macintosh OS Color Picker Package.

See Inside Macintosh, Volume VI, for a description of the Color Picker Package. See

"Color Picker" in Appendix F for the A/UX C interface.

Control Manager

The A/UX Toolbox Control Manager is almost identical to the Macintosh OS Control

Manager. The diff�rence is that in A/UX a control's variant code is not stored in the

cont r lDef proc field of the control record. To retrieve the variant code, use the

Control Manager call GetCVariant , described in Inside Macintosh, Volume V.
See Inside Macintosh, Volumes I , IV, and V, for a description of the Control Manager.

See "Control Manager" in Appendix F for the A/UX C interface.

5-6 Chapter 5 A!UX and Macintosh User Interface Toolbox Differences

Data Access Manager

The A/UX Data Access Manager is identical to the Macintosh OS Data Access Manager.

See Inside Macintosh, Volume VI , for a description of the Data Access Manager.

Deferred Task Manager

The Deferred Task Manager is identical to the Macintosh OS Deferred Task Manager. See

Inside Macintosh, Volume VI, for a description of the Deferred Task Manager. See

"Deferred Task Manager" in Appendix F for the A/UX C interface.

Desk (Accessory) Manager

The Desk Manager is identical to the Macintosh OS Desk Manager. Usually, though not

always, when a desk accesso1y is opened, the Process Manager launches the desk
accessmy in its own partition, and othe1wise treats it as a small application.

See Inside Macintosh, Volume VI, for a description of the Process Manager. See
"Desk Manager" in Appendix F for the A/UX C interface.

Desktop Manager

The A/UX Desktop Manager is identical to the Macintosh OS Desktop Manager. See
Inside Macintosh, Volume VI, for a description of the Desktop Manager.

Device Manager

The A/UX Device Manager is identical to the Macintosh OS Device Manager, but A/UX
places the same restrictions on device drivers as on applications. Device drivers outside
the kernel cannot manipulate hardware directly. Therefore, desk accessories are

supported, but most custom NuBusrM card drivers are not. A/UX currently supports
custom video drivers, the AppleTalk drivers, and AppleTalk-based printer drivers.

About the Macintosh interface library 5-7

If your application needs to control hardware directly, you must use an A/UX device

driver. (For information on writing an A/UX device driver, see Building A!UX Device

Drivers.) You can then write a Macintosh device driver that uses A/UX system calls, such

as open(2) and ioc t l (2), to access the A/UX device driver that you have installed in
the kernel. A program that uses an A/UX device driver is not portable to the

Macintosh OS. See Chapter 3, "A/UX Toolbox Utilities and Extensions, " for a strategy for

including A/UX system calls in applications that are intended to mn under both the

Macintosh OS and the A/UX operating system.

See Inside Macintosh, Volumes II, IV, and V, for a description of the Device Manager.

See "Device Manager" in Appendix F for the A/UX C interface. For an example of driver
calls, see "Disk Driver" in Appendix F.

Dialog Manager

The A/UX Dialog Manager is identical to the Macintosh OS Dialog Manager.

Because the System Error Handler cannot resume processing after an error, it ignores

the resumeProc variable passed to it by the Ini tDialogs routine.

When using the Dialog Manager under A/UX, remember to make provisions for
these common compatibility problems:

• Newline character Individual lines in a multiple-line message passed to the Dialog
Manager must be separated by return characters (\ r) when using the cc (or c 8 9) C

compiler, though not with the MPW C compiler.

• ProcPtr parameters Any procedure passed as a parameter to a Dialog Manager

routine must use Pascal calling conventions. See Appendix C, "Implementation

Notes, " for a description of the Pascal conventions.

See Inside Macintosh, Volumes I, IV, V, and VI, for a description of the Dialog

Manager and the facilities it offers. See "Dialog Manager" in Appendix F for the A/UX C

interface.

5-8 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

Disk Driver

The Disk Driver is supported. See Inside Macintosh, Volumes II , IV, and V, for a
description of the Disk Driver. See "Disk Driver" in Appendix F for the NUX C interface.

Disk Initialization Package

The Disk Initialization Package is supponed. See Inside Macintosh, Volumes I I and IV,
for a description of the Disk Initialization Package. The Disk Initialization Package is

accessed through the Package Manager. See "Package Manager" in Appendix F for the
A/UX C interface.

Edition Manager

The A/UX Edition Manager is identical to the Macintosh OS Edition Manager. See Inside

Macintosh, Volume VI, for a description of the Edition Manager.

Event Manager, Operating System

The NUX Toolbox supports most of the standard Macintosh OS Event Manager routines.
Because the NUX kernel maintains the event queue, the NUX Toolbox version of the
manager performs differently than the Macintosh OS version. See Inside Macintosh,

Volumes II and IV, for a description of the Macintosh OS Event Manager. See "Event
Manager, Operating System" in Appendix F for the NUX C interface. Also, see
"AUXDi spatch Trap, " in Chapter 3, for related information.

The global variable EventQueue always contains the header of an empty queue.
Therefore, an application cannot look directly at the actual queue and must depend on
Event Manager routines for manipulating the queue. You can use the AUXDispatch

call AUX_FIND_EVENT to search the event queue for an event.

About the Macintosh interface l ibrary 5-9

In the Macintosh OS, all events are put into the queue through the PostEvent

routine. In A/UX, mouse and keyboard events are processed through the kernel, and the

system never calls PostEvent ; the PPostEvent trap is not supported. An

application cannot depend on a patch to Post Event to alert it to mouse and
keyboard events. The AUXDi spatch call AUX_POST_MODIFIED is the equivalent

A/UX call .

Event Manager, Toolbox

The A/UX Toolbox supports all of the routines in the Macintosh OS Toolbox Event

Manager, but some of the functions perform differently under the A/UX operating system
than under the Macintosh OS. See Inside Macintosh, Volumes VI, I, IV, and V, for a
description of the Toolbox Event Manager. See "Event Manager, Toolbox" in Appendix F
for the A/UX C interface.

The A/UX Toolbox supports the wa i tNextEvent call, which allows the system

to run more efficiently in the multitasking environment of the A/UX Finder. Use the

wai tNextEvent call instead of the GetNextEvent call. For more information on
the wai tNext Event call, see Inside Macintosh, Volume VI, and "Using the

ui_setselect Call" in Chapter 2 .

When using the Toolbox Event Manager, make provisions for these differences

between the A/UX operating system and the Macintosh OS:

• Because the global variables KeyThresh and KeyRepThresh are ignored, an

application cannot change key-repeat characteristics.

• Journaling is not supported, because events are handled differently by each

operating system. However, journals recorded under the Macintosh Operating

System (for example, macros made with MacroMaker) can be played under the A/UX
operating system.

5·1 0 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

File Manager

The A/UX Toolbox File Manager supports access to Macintosh OS volumes and UNIX

file systems. UNIX file systems are supported as external file systems in much the same
way that AppleShare file systems are supported. UNIX external file systems support

almost all File Manager calls, including file IDs, file specification (FSSpec) records, and

foreign privilege buffers. In addition, A/UX suppolts the _GetForeignPri vs and

_Set ForeignPri vs traps, returning the ioFore ignPri vBuf fer to store

information on UNIX permissions, so this information can be backed up and restored by

Macintosh backup utilities.

Files can be accessed across the bounda.ty between rl1e Macintosh file environment and the
A!UX file environment. Chapter 6, "File Systems and File Fonnats," provides information on how file
structure and contents d1::mge when files move across rl1e bounda.ty. Such changes include file

pennissions, me fom1ats, and line-termination codes.
The underlying support for the File Manager is provided by the Berkeley UNIX file

system (UFS), an implementation of the file system used by the BSD (Berkeley Software

Distribution) 4.2 operating system. In addition to being faster than the System V file system

(which is still available), the new file system allows filenames of up to 255 characters. The
maximum length of an HFS name is 32 characters; longer names brought into the
Macintosh OS environment are tmncated.

For information on the Macintosh OS File Manager, see Inside Macintosh, Volumes IV,
V, and VI. See "File Manager'' in Appendix F for the A/UX C interface.

Floating-Point Arithmetic and Transcendental
Functions Packages

C programmers rarely, if ever, explicitly call the routines in the Floating-Point Arithmetic
and Transcendental Functions Packages. These packages support the Standard Apple

Numeric Environment (SANE).
Most Macintosh C compilers use SANE. Mathematical functions in the standard C

libra�y are routed through the SANE packages. When a Macintosh binary file that uses
SANE is ported to A/UX, the SANE routines are already in place in the code.

About the Macintosh interface l ibrary 5-11

The A/UX C compiler cc uses the standard A/UX floating-point routines. The SANE

packages are not available to programs compiled under A/UX.

See Inside Macintosh, Volumes II and V, for a description of the Floating-Point

Arithmetic and Transcendental Functions Packages. See "Package Manager" in

Appendix F for the A/UX C interface to these packages.

Font Manager

The A/UX Toolbox Font Manager in Release 3.0 supports TrueType fonts. See Inside

Macintosh, Volumes I , IV, V, and VI, for a description of the Font Manager. See "Font

Manager" in Appendix F for the A/UX C interface.

Gestalt Manager

The A/UX Toolbox Gestalt Manager provides full suppott for the Macintosh OS Gestalt

facility. The following environmental selector is available; it can be used to determine if

your application is running under A/UX and, if so, which version:

gestaltAUXVersion = ' a /ux '

Calling Gestalt with this selector returns the version number, with implied decimal

points. If you are not running under A/UX, Gestalt returns a result code of
gestaltUnknownErr, value -5550.

To determine if Gestalt itself is available, use the TrapAva i l able function. The

Gestalt trap address is $A1AD. For example, use the following routine:

! * determine i f Gest a l t Manager i s avai lable by cal l ing

TrapAvai lable * /

uns i gned char GestaltAva i l abl e (void

return (TrapAvai labl e (_Gestalt)) ;

5-12 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

Here is a typical implementation of TrapAvai l able :

Boolean TrapAva i l able (tNumber , tType)

short

TrapType

tNumber ;

tType ;

i f (tType = = ToolTrap) & &

gMac . machineType > envMachUnknown) &&

gMac . machineType < envMacii)) { / * it ' s a 5 12 KE , * /

tNumber = tnumber & Ox0 3 FF ;

i f (tNumber > OxO l FF)

tNumber = _Unimpl emented ;

I * Plus , or SE * /

I * whi ch means the * /

I * tool t raps only * /

I * go t o OxO lFF * /

return NGetTrapAddress (tNumber , tType) ! =

GetTrapAddre s s (_Un imp l emen t ed) ;

+ Note Checking that Gestalt is available is required only if you want your application
to be backward-compatible with Macintosh systems running a Macintosh OS version
prior to System 7. All systems running A/UX Release 2 .0 or later releases implement the

Gestalt facility. •

See Inside Macintosh, Volume VI, for a description of the Gestalt Manager.

Graphics Devices Manager

The A/UX Graphics Devices Manager is identical to the Macintosh OS Graphics Devices

Manager. See Inside Macintosh, Volume VI, for a description of the Graphics Devices
Manager.

About the Macintosh interface libra�y 5-13

Help Manager

The A/UX Help Manager is identical to the Macintosh OS Help Manager. See Inside

Macintosh, Volume VI, for a description of the Help Manager.

International Utilities Package

The A/UX Toolbox fully supports the Macintosh OS International Utilities Package. See

Inside Macintosh, Volumes I, V, and VI, for a description of the International Utilities

Package. See "Package Manager" in Appendix F for the A/UX C interface to the

International Utilities Package.

List Manager Package

The A/UX Toolbox fully supports the Macintosh OS List Manager Package. See Inside

Macintosh, Volume IV, for a description of the List Manager Package. See "List Manager

Package" in Appendix F for the A/UX C interface.

Memory Manager

The A/UX Toolbox fully supports the Macintosh OS Memo1y Manager, including vinual

mem01y. While the implementation of virtual memo1y differs between the Macintosh OS

and A/UX operating system, this is transparent to both the user and the progranuner.

The Memo1y Manager is 32-bit clean and expects to serve applications that are 32-bit

clean. A/UX Release 3 .0 offers a special 24-bit environment in which older applications

can be run. The special environment takes care of mem01y addressing. From within the
24-bit environment, there is limited access to the standard 32-bit environment.

See "The Memoty Manager" in Inside Macintosh, Volume II, which is intended to be
read in conjunction with related chapters in Volumes IV and VI. See "Memo1y Manager"

in Appendix F for the A/UX C interface.

5-14 Chapter 5 AIUX and Macintosh User Interface Toolbox Differences

Menu Manager

The A/UX Toolbox Menu Manager is identical to the Macintosh OS Menu Manager.

If your application uses custom menu definition functions, you must provide

assembly-language routines to transform the parameters into Pascal format for
compatibility with the ROM. (For information on transforming parameters into Pascal

format, see Chapter 4 and Appendix C.)
See Inside Macintosh, Volumes I , IV, and V, for a description of the Menu Manager.

See "Menu Manager" in Appendix F for the A/UX C interface.

Notification Manager

The A/UX Toolbox Notification Manager is identical to the Macintosh OS Notification

Manager. See Inside Macintosh, Volume VI, for a description of the Notification
Manager. See "Notification Manager" in Appendix F for the A/UX C interface.

Package Manager

The A/UX Toolbox supports both Macintosh OS Package Manager routines. The A/UX
Package Manager supports interfaces to the Standard File, Floating-Point Arithmetic,

Transcendental Functions, International Utilities, Disk Initialization, and Bina1y-Decimal

Conversion Packages. The List Manager Package, available directly as a separate libra1y,
is also available through the Package Manager for historical reasons.

See Inside Macintosh, Volumes I and IV, for a description of the Package Manager. See
"Package Manager" and "List Manager Package" in Appendix F for the A/UX C interface.

Palette Manager

The A/UX Toolbox Palette Manager is identical to the Macintosh OS Palette Manager. See
Inside Macintosh, Volume VI, for a description of the Palette Manager. See "Palette
Manager" in Appendix F for the A/UX C interface.

About the Macintosh interface libra1y 5-15

Picture Utilities Package

The NUX Picture Utilities Package is identical to the Macintosh OS Picture Utilities Package.

See Inside Macintosh, Volume VI, for a description of rl1e Picture Utilities Package.

Power Manager

The Power Manager is not implemented in NUX Release 3.0. Macintosh portable
computers are the only systems that use this manager, and as of this writing A/UX is not

supported on portable computers.

PPC Toolbox

The A/UX Program-to-Program Communications (PPC) Toolbox is identical to the

Macintosh OS PPC Toolbox. See Inside Macintosh, Volume VI, for a description of the

PPC Toolbox.

Printing Manager

The A/UX Toolbox Printing Manager is identical to the Macintosh OS Printing Manager.
A!UX Release 3 .0 supports AppleTalk-based printer drivers (for Loca!Talk or Ethernet)

and serial printer drivers.
See Inside Macintosh, Volumes II and V, for a description of the Printing Manager.

See "Printing Manager" and "Print Traps" in Appendix F for the A/UX C interface.

Process Manager

The A/UX Process Manager is identical to the Macintosh OS Process Manager. See Inside

Macintosh, Volume VI, for a description of the Process Manager. See "Process Manager"
in Appendix F for the A/UX C interface. \...___/

5-16 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

Resource Manager

The A/UX Toolbox Resource Manager is almost identical to the standard Macintosh OS
Resource Manager. The differences between the two result primarily from differences

between file systems. All Resource Manager calls documented in Inside Macintosh are
implemented in the A/UX Toolbox.

See Inside Macintosh, Volumes I, IV, V, and VI, for a description of the Resource
Manager. See "Resource Manager" in Appendix F for the A/UX C interface. See ResEdit

Reference (for version 2 . 1) for information on editing resources. Additional information
on the resource compiler, rez , and resource decompiler, derez , is given in Chapter 3
and in Appendix E .

When using the Resource Manager, you must make provisions for these differences
between the environments:

• Resource jlles A!UX files in AppleDouble format (described in Chapter 6) have their
resources and data stored in separate files. Be careful to keep both files together
when copying, renaming, or othe1wise manipulating AppleDouble files with UNIX

commands such as mv. See Chapter 2 and Chapter 6 for descriptions of Macintosh
file formats in A/UX.

• Write permission Your application might not have write permission in the directo1y
containing the System Folder (typically /mac 1 1 ib/ Sys t em F i l e s) or the
application.

• Case-sensitive filenames Unlike the Macintosh OS, A/UX differentiates between

uppercase and lowercase characters in filenames. Be careful with the filenames in
OpenResFi l e and CreateResFi l e .

• Search paths The System 7 Macintosh OS File Manager uses FSSpec records to
unambiguously establish the location of files. When creating resource files, you are
encouraged to use the FSpCreat eRes F i l e procedure whenever possible.

The previous version of the Macintosh OS File Manager checks a number of search
paths if it cannot find a file in the specified direct01y. Because of this feature, the

Creat eResF i l e routine can introduce some subtle inconsistencies in search
paths when creating resource files. Searching of alternative paths is not supported
under A/UX. Programs that are intended to run in both environments should follow
the strategies recommended in Macintosh Technical Note# 101, even though those
strategies are not needed in A/UX. Technical notes are available through APDA.

About the Macintosh interface libra1y 5-17

• Note Checking search paths is an issue only if you want your application to be

backward-compatible with Macintosh systems running a Macintosh OS version prior

to System 7. •

In the absence of the default search paths, an application must explicitly set the

default directmy when opening a resource file in the "blessed" folder, usually the

System Folder. An application must first determine the working-directory reference
number of the desired directory, and then set the default directory with the File

Manager function Set Vol . See Macintosh Technical Notes #67and #77and Inside

Macintosh, Volumes IV and VI.

Scrap Manager

The A/UX Toolbox Scrap Manager is almost identical to the Macintosh OS Scrap Manager.

The only difference between the two Scrap Managers is the way in which they store

material cut to the Clipboard. The A/UX Toolbox Scrap Manager maintains a

. c l ipboard file in your home directory when you execute an A/UX Toolbox
application. The contents of the scrap are written into this file when an application exits,

allowing you to cut and paste between applications. '--....../

See Inside Macintosh, Volumes I and IV, for a description of the Scrap Manager. See
"Scrap Manager" in Appendix F for the A/UX C interface.

Script Manager

The A/UX Toolbox Script Manager is identical to the Macintosh OS Script Manager. See
Inside Macintosh, Volumes V and VI, for a description of the Script Manager. See "Script

Manager" in Appendix F for the A/UX C interface.

SCSI Manager

The A/UX Toolbox does not currently suppott the Macintosh OS SCSI Manager functions.

A call to a SCSI Manager routine returns an unimplemented t rap message.

5-18 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

For an application that is intended to run only under A/UX, you can write an A/UX
device driver. For more information, see Building A!UX Device Drivers in the A/UX
Device Drivers Kit, available from APDA. A program that uses an A/UX device driver is

not directly portable to the Macintosh OS. However, by using the Gestalt facility, you can
create binaty-compatible code that runs in both environments.

Segment Loader

Applications in the standard Macintosh development environment are written in
segments, which are loaded individually as needed so that memoty is used efficiently.
Segments are not used in the A/UX environment, but the Segment Loader has been

implemented to suppott Macintosh binaty applications launched under A/UX.

See Inside Macintosh, Volumes II, IV, and VI, for a description of the Segment
Loader. See "Segment Loader" in Appendix F for the A/UX C interface.

An application may or may not contain Segment Loader calls, depending on its
format and intended running environment:

• Standard Macintosh binary files launched under A/UX are loaded by the Segment
Loader in the normal fashion.

• Applications ported to A/UX from Macintosh sources or written to run in both
environments can include calls to Segment Loader routines.

• Applications written to run exclusively under A/UX need not use Segment Loader
calls.

Finder information

The format of the file information passed to an application by the A/UX Finder follows
Macintosh OS conventions.

When an application is started under A/UX, the application's Finder information is in
one of these states:

• An application developed for A/UX shows no documents selected.

• An application developed for A/UX shows one or several documents selected.

• A Macintosh application has a Finder document list based on the parameters in the

launch(l) command line.

About the Macintosh interface libraty 5-19

Segment Loader routines

This section lists the Segment Loader routines that are different in the A/UX Toolbox than

in the User Interface Toolbox. The Segment Loader routines not listed here are

implemented as described in Inside Macintosh.

UnloadSeg

Chain

LoadSeg

The jump table

Performs normally for Macintosh bina1y applications that are launched;
stubbed out for native A/UX applications.

Not used in multitasking environments; Launch is used instead.

Performs normally for Macintosh binary applications that are launched;
stubbed out for native A/UX applications.

The jump table works as described in Inside Macintosh for Macintosh applications that

are launched under A/UX; it is not implemented for native A/UX and UNIX applications.

Alternate buffer support

curPageOpt ion is always set to 0, meaning that there is no alternate screen or sound
buffer.

Serial Driver

The A/UX Toolbox partially supports the Macintosh OS Serial Driver. The five exceptions
to full support are as follows:

• ASYNC calls are not supported.

• Three baud rates are not supported: 3600, 7200, and 57600. These rates are mapped

to 2400, 4800, and 19200, respectively. This constraint affects control calls 8

(SerRe set) and 13 (baudRate) . The baud rate 38400 is supported.

• Control call 9 (serSetBuf) has no effect. When called, it just returns.

• Event-message posting is not supported. This limitation affects control calls 10 and
14 (serHShake). If the evt s field in the SerShk record is nonzero, an error �
is returned.

• Status callS (serStatus) will always return 0 in the rdPend and wrPend fields.

5-20 ChapterS A!UX and Macintosh User Interface Toolbox Differences

Eight ioctl calls have been acldecl to the A/UX Serial Driver to support the Serial

Driver running under A/UX:

ioctl (jd , TCRESET , O) ;
This ioctl causes a reset of the serial line denoted by the file descriptor, jd .

ioct l (jd , TCGETSTAT , &serstat) ;

This ioctl returns status information for the serial line denoted by fd into the structure
serstat . The variables ser_frame, ser_ovrun, and ser_parity represent
the error counts that have been tallied since the last call to TCGETSTAT. (These fields
are set to 0 when the call completes.) The variable ser_cts indicates the current
status of the CTS (Clear to Send) signal; TRUE indicates CTS ON (high). The variable
ser_inf low is TRUE if input is currently blocked because of flow control. The

variable ser_out f low is TRUE if output is blocked because of flow control. Here
is the data structure:

struct sererr

unsigned long ser_frame ; I * framing errors * I

uns igned long ser _ovrun ; I * overrun errors * I

unsigned long ser_parity ; I * parity errors * I

uns igned long ser_cts ; I * c t s signal * I

uns igned l ong ser_inf low ; I * input flow cont rol * I

uns igned l ong ser_out f low ; I * output flow control * I

ioc t l (jd , TCSETDTR , 0) ;
This ioctl turns on the DTR (Data Terminal Ready) line (drives it high) for the serial line

denoted by fd .

i oct l (jd , TCCLRDTR , 0) ;
This ioctl turns off the DTR line (drives it low) for the serial line denoted by fd .

i oct l (jd , TCSBRKM , O) ;
This ioctl sets break mode (starts a line-break signal) for the serial line denoted by fd .

ioct l (jd , TCCBRKM , O) ;

This ioctl clears break mode (terminates a line-break signal) for the serial line denoted by fd. .

About the Macintosh interface library 5-21

ioct l (jd, TCSETSTP,&chr) ;

This ioctl sets the stop character for flow control for the serial line denoted by fd . chr

points to a byte containing the new stop character.

ioct l (jd, TCSETSTA , &chr) ;

This ioctl sets the start character for flow control for the serial line denoted by fd. chr

points to a byte containing the new start character.

The developer of a driver for a serial card must support these eight calls in the driver's

ioctl routine if the A/UX Serial Driver is to work properly. See Building A!UX Device

Drivers for additional details. See "Serial Driver" in Appendix F for the A/UX C interface.

Shutdown Manager

The A/UX Toolbox supports all Macintosh OS Shutdown Manager routines. The

shutdown queue is traversed and executed at logout.

See Inside Macintosh, Volume V, for a description of the Shutdown Manager. See

"Shutdown Manager" in Appendix F for the A/UX C interface.

Slot Manager

The A/UX Toolbox Slot Manager partially supp01ts the Macintosh OS Slot Manager.

Details follow, keyed to the summary in "Slot Manager" in Inside Macintosh, Volume V.

• All principal routines are suppo1ted.

• Specialized routines are supp01ted except for one routine:

SDeleteSRTRec

• Advanced routines are supported except for the following routines:

Ini t SDeclMgr

SPrimaryinit

SExec

Init sRsrcTable

5·22 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

Ini tPRAMRecs

SGetDriver

SFindsinfoRecPtr

• Assembly-language routine selectors are supported except for the following routines:

sDi sposePtr

Ini t SDec lMgr

sPrirnaryini t

sExec

InitPRAMRecs

Init sRsrcTable

sGetDriver

sFindsin foRecPt r

sDeleteSRTRec

See Inside Macintosh, Volumes V and VI, for a description of the Slot Manager. See
"Slot Manager" in Appendix F for the A/UX C interface.

Sound Manager

The A/UX Toolbox partially supports the Macintosh OS Sound Manager. Operating with
the virtual mem01y environment of A/UX, the Sound Manager can process files of any
desired length. A raw sound driver is also available for use outside the A/UX Toolbox

for example, in shell scripts.

The exceptions to full suppott for the Sound Manager are as follows:

• The A/UX Toolbox supports only one sampled channel, instead of two.
• Some commands are currently available only on computers equipped with the Apple

Sound Chip (ASC). The following A/OX-capable systems use the ASC: the

Macintosh SE/30 and the Macintosh II family of computers, including the

Macintosh II, Ilx, Ilcx, IIci, Ilsi, and IIfx.

About the Macintosh interface l ibra1y 5-23

• For the _SndAddModif ier trap, no addMod command is supported for

synthesizer modules, because synthesizer modules must go in the kernel. Current

synthesizers are supported for not eSynth, waveSynth, and sampledSynth.

Modules for new synthesizers would need to be ported to the kernel.

The ability to call user routines at interrupt level has been emulated by means of a

circular buffering scheme, avoiding the anticipated problems with security, page faults,

and context switching.

If the system has too heavy a load of other activities, sound production is affected.

The process slows, and the sound begins to have gaps or sputtering. This situation can

occur under either the Macintosh Operating System or the A/UX operating system.

The folder /mac I src I sndDemo contains demonstration and sample programs

that use the Sound Manager.

See Inside Macintosh, Volume VI, for a description of the Sound Manager. See

"Sound Manager" in Appendix F for the A/UX C interface.

Support details

Here are the details on differences in trap support:

• Sound channel commands are supported with one exception:

SndAddModi fier not supported for synthesizer modules

• Sound recording commands are supponed with two exceptions:

SPBSigninDevice not suppo!ted

SPBSignOutDevice not supported

• Commands sent normally only by the Sound Manager are partially supported:

reinitCmd

t imbreCmd

waveTableCmd

supported for note, wave, and sampled synthesizers

supported for systems that have the ASC

supported for systems that have the ASC

5-24 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

• Initialization options for SndNewChannel, sampled synthesizer only, are partially
supported:

ini tChanLef t

ini tChanRight

ini t S tereo

ignored; defaults to mono

ignored

not supported; defaults to mono

• Synthesizer resource IDs with SndNewChannel are partially supported:

squareWaveSynth supported for systems that have the ASC

waveTableSynth supported for systems that have the ASC

• Initialization options for SndNewChannel, wave-table synthesizer only, are
supported:

initChanO

ini tChanl

initChan2

ini tChan3

The Raw Sound Driver

supported for wave-table synthesizers only

supported for wave-table synthesizers only

supported for wave-table synthesizers only

supported for wave-table synthesizers only

You can use the Raw Sound Driver under A/UX (for use in shell scripts and so forth)
without calling upon the Sound Manager. The Raw Sound Driver is available as

ldevlsndlraw

To use the Raw Sound Driver, prepare a file of sampled sound resources and send it

(by means of cat, for instance) to the device. For example, to send a file called
sndFile, use the following command line:

cat sndFile > ldevlsndlraw

Sending a character to 1 dev 1 sndlreset resets the synthesizer driver in the
kernel, resetting both the Sound Manager and the Raw Sound Driver. Here is a reset

example that uses the echo command:

'x' > ldevlsndlreset

About the Macintosh interface libra1y 5-25

The sampling rate of the Raw Sound Driver is 22 KHz by default. To change the rate,

use an ioctl to send a structure to the Raw Sound Driver. (See the example later in this

section.) The structure, named rawSndCtl, contains a field called sampleRate,

which contains a 4-byte value interpreted as a fixed-point bina1y number with an implied

binary point between the upper and lower words. The value is a multiplier used to

reduce the 22KHz maximum rate. The value of $00010000, meaning $1 . 0000, preserves

the default rate. Here is an example that sets the rate to 7KHz. Calculate the multiplier:

7K/22K = . 3 18 (decimal value)

Multiply by $00001 .0000 to adjust for the binary point and convert to hexadecimal
($00001 .0000 = 65536):

65536 * . 3 18 = 20852 = $0000.5222

In practice, the value need not be calculated so precisely.

Here is an example C routine that places $ 0 0 0 0 5222 in the rawSndCt l

structure and sets the driver with an ioct l (2) call:

inc lude <mac / sm . h>

include <sy s / types . h>

include <sys / s s ioct l.h>

include <sys / sys / sm_aux.h>

include <sys / file . h>

#define SAMPLERATE Ox5222 / * (7k /22k) * 6 5 5 3 6 * /

main ()

int snd_fd ;

s t ruct rawSndCtl rawSndinfo ;

i f ((snd_fd = open (" /dev/ snd/raw " , O_WRONLY)) < 0) {

print f (" open fai led\n ") ;

exi t (l) ;

rawSndinfo.sampleRat e

rawSndinfo.flags = 0 ;

SAMPLERATE ;

i f (ioct l (snd_fd , SND_RAW_CTL , &rawSndinfo) < 0)

print f (" ioct l fai led\n ") ;

close (snd_fd) ;

5-26 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

Standard File Package

The A/UX Toolbox Standard File Package is identical to the Macintosh OS Standard File
Package. See Inside Macintosh, Volumes I, IV, and VI, for a description of the package. See

"Package Manager" in Appendix F for the A/UX C interface to the Standard File Package.

System Error Handler

The A/UX Toolbox supports the single Macintosh OS System Error Handler routine,
SysError.

When the system issues the SysError call, and MacsBug is not installed, the
System Error Handler writes a brief error message to the program's s tderr file and

terminates the program, with an exit status of 1 . The error message contains the error
number and the location from which SysError was called.

See inside Macintosh, Volumes II, IV, and V, for a description of the System Error

Handler. See "System Error Handler" in Appendix F for the A/UX C interface.

TextEdit

The A/UX Toolbox TextEdit facility is identical to the Macintosh OS TextEdit facility. You
can set up low-level routines to perform tasks such as customized word-breaking, but

you must provide assembly-language routines to handle the interface between TextEdit
and your custom routines. The TextEdit interface is based on registers. This interface

follows neither Pascal nor C conventions, and it varies from call to call.
See Inside Macintosh, Volumes I , IV, V, and VI, for a description of TextEdit. See

"TextEdit" in Appendix F for the A/UX C interface.

About the Macintosh interface libra1y 5-27

Time Manager

The A/UX Toolbox provide a less accurate implementation of the standard Macintosh

Time Manager. The A/UX Toolhox Time Manager uses the A/UX setitimer(2)

system call. Because of the A/UX kernel's processor-allocation strategies, response from

the Time Manager may be delayed an arbitraty amount of time, depending on other

system activity. Even when it is operating without interference, the A/UX Time Manager

provides accuracy to only one-sixtieth of a second.

When you use the Time Manager in an application, you must observe these limitations:

• You must not make calls to the A/UX C libraty routines alarm(2),

set i t imer(2) , and sleep(2) .

• You must not use s ignal(2) to change the status of the SIGALRM signal .

See A!UX Programmer's Reference for more information on set i t imer(2). See

Inside Macintosh, Volume VI, for a description of the Time Manager. See "Time

Manager" in Appendix F for the A/UX C interface.

Utilities, Operating System

The A/UX Toolbox contains some of the Operating System utilities:

• Routines that manipulate pointers and handles and compare strings are fully

functional.

• Routines that read the date and time behave differently. (See the next section, "Date
and Time Operations. ")

• Routines that manipulate parameter RAM are fully functional.

• The queueing and trap vector routines are fully functional.

• The miscellaneous utility Delay is fully functional.

• The former Operating System utility SysBeep is now a Sound Manager routine.

• The StripAddress routine always returns the pointer unchanged in the 32-bit

environment; the routine functions in the 24-bit environment.

See Inside Macintosh, Volumes II, IV, and V, for a description of the Operating
System Utilities. See "Utilities, Operating System" in Appendix F for the A/UX C interface.

5-28 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

Date and time operations

To find out the correct elate and time, use the Readoa teTime utility. The global

variable Time is set when a program starts running, and it is not updated. Therefore,

GetDat eTime always returns the time at which the program started running.
Because you must be logged in to A/UX as root to set the system clock through

either the date(l) command or the st ime(2) command, you cannot change the

clock setting by using A/UX Toolbox calls. The SetDateTime utility returns the error

clkWrEr.

Miscellaneous utilities

Because the Res tart routine results in a privileged 680x0 instmction not available to

programs running at the user level, it is not supported in A/UX. Instead, use the

Shutdown Manager routines. (See "Shutdown Manager," earlier in this chapter.)
Delay is fully functional.

SetUpAS and RestoreAS are dummy routines that return with no action.
The StripAddress routine always returns the pointer unchanged in the 32-bit

environment; the routine functions in the 24-bit environment.

Utilities, Toolbox

All Macintosh OS Toolbox Utilities routines are implemented in the A/UX Toolbox. See
Inside Macintosh, Volumes I and IV, for a description of the Toolbox Utilities. See
"Utilities, Toolbox" in Appendix F for the A/UX C interface.

Vertical Retrace Manager

All of the Ve1tical Retrace Manager routines described in Inside Macintosh, Volumes II and
V, are implemented in A/UX, with the exception of DoVBLTask. You are encouraged to
use the Time Manager instead of the Vertical Retrace Manager in your applications.

About thl' Macintosh interfacl' library 5-29

The A/UX Vertical Retrace Manager routines are implemented by means of the A/UX

seti t imer(2) system call. Because of changes in the Macintosh II ROM that allow for

multiple video options, tasks scheduled by the Vertical Retrace Manager are not

necessarily run during the vertical retrace. Like Time Manager routines, Vertical Retrace

Manager routines under A/UX may be delayed an arbitraty length of time, depending on

other system activity.

When you use the Vertical Retrace Manager, you must observe these limitations:

• You cannot make calls to the A/UX C libraty routines alarm(2), seti timer(2),

and s l eep(2) .

• You cannot use signal(2) to change the status of the SIGALRM signal.

• You cannot use the DoVBLTask function.

See AIUX Programmer's Reference for more information on the A/UX calls used by

the Vertical Retrace Manager. See "Vertical Retrace Manager" in Appendix F for the A/UX

C interface.

Window Manager

The A/UX Toolbox Window Manager is almost identical to the Macintosh OS Window
Manager. The difference is that in A/UX the window's variant code is not stored in the

windowDef Proc field of the window record. To get the variant code, use the

Window Manager call Getwvariant , described in Inside Macintosh, Volume V.
See Inside Macintosh, Volumes I, IV, V, and VI, for a description of the Window

Manager. See "Window Manager" in Appendix F for the A/UX C interface.

5-30 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

Calls patched under A/UX

Table 5-2 lists alphabetically the calls that are patched under A/UX. Implementation
notes or cross-references are provided where available.

Table 5-2 ROM calls patched under the A/UX Toolbox

ROM call Notes

AttachVBL

Button

CompactMem

Debugger

DebugStr

Delay

DTinstall

EmptyHandle

EnQueue

FlushEvents

FreeMem

GetHandleSize

Get Keys

GetOSEvent

GetPtrS i ze

Get Zone

HGetState

HLock

HNoPurge

HPurge

HSetRBit

HSetState

HUnlock

InitAppl Zone

InitUt i l

(continued:;.

Calls patched under A/UX 5-31

Table 5-2 ROM calls patched under the A/UX Toolbox (continued)

ROM call

In it Zone

Ins Time

InsXTime

LoadSeg

MaxApplZone

MaxBlock

MaxMem

MoreMasters

Packl2

Post Event

PowerOff

PrimeTime

PtrZone

PurgeMem

Purge Space

ReadDateTime

ReadXPRam

RmvTime

ScriptUt i l

ScrnBitMap

SCSIDispatch

SerHShake

SerRe set

SerSetBuf

SerStatus

Notes

Performs normally for Macintosh binary applications that are
launched; stubbed out for native A/UX applications.

Applications cannot depend on patches to Post Event to
alert it to mouse and keyboard events. The AUXDi spatch

call AUX_ POST_MODI FIED is the equivalent A/UX call to
PPostEvent.

o calls are supported except for the sc iSrat selector of
_SCSIDi spatch.

Event-message posting is not supported. If the evts field in
the SerShk record is nonzero, an error is returned.

3600, 7200, and 57600 baud rates are not supported.

Has no effect. When called, it just returns.

Always returns 0 in the rdPend and wrPend fields.

(continuedJ--

5-32 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

Table 5-2 ROM calls patchecluncler the A/UX Toolbox (continued)

ROM call

SetAplLimit

SetDateTime

SetHandleSi z e

SetPtrS i ze

Set Zone

ShutDown

SlotManager

SlotVInstall

SlotVRemove

SndAddModi f ier

SndControl

SndDisposeChannel

SndDoCommand

SndDoimmediate

SndNewChannel

SndPlay

StripAddress

SwapMMUMode

SysBeep

UnloadSeg

VInstall

VRemove

Wri teParam

Wri t eXPRam

Notes

Not supported for synthesizer modules.

Always return the pointer unchanged in the 32-bit
environment; the routine functions in the 24-bit environment.

Performs normally for Macintosh binary applications that are
launched; stubbed out for native NUX applications.

Calls patched under A/UX 5-33

Calls not supported under A/UX

Table 5-3 lists alphabetically the calls that are not supported under A/UX.

Table 5-3 ROM calls not supported under the A/UX Toolbox

AD BOp IdleState

ADBReinit IdleUpdate

AddReference Packl O

Chain PMgrOP

CountADBs PPostEvent

DoVBLTask RmveReference

FinitQueue SCSIDi spatch

GetADBinfo Serial Po

GetindADB SetADBinf

5-34 Chapter 5 A/UX and Macintosh User Interface Toolbox Differences

SetOSDefault

Sin tins tall

SintRemove

Sleep

SlpQinstal l

SlpQRemove

SPBS igninDevice

SPBSignOutDevice

6 File Systems and File Formats

File systems I 6-2

Storing files in rhe Macintosh OS and in the A/UX operating system I 6-8

AppleSingle and AppleDouble format internals I 6-16

Filename conventions I 6-20

This chapter describes how the file systems in the A/UX operating system and the file

systems in the Macintosh environment differ. Users and applications can access files

either from the A/UX environment or from the A/UX Toolbox, as convenient, and can

transfer files between the two environments without any special requirements. This

chapter also describes the formats used for storing Macintosh files in the A/UX

environment, and the automatic conversion that occurs when files are transferred

between the two environments.

File systems

The design of file systems in the A/UX operating system differs from that of file systems

in the Macintosh OS, but file-system functions are mapped between the two

environments so that files can be transferred between them or accessed from either

environment by A/UX Toolbox programs.
The term jlle system, as used in this chapter, refers to general design and

implementation. In the context of the UNIX operating system, the term file system is used

for a subset of the general file-handling design. When the UNIX definition is meant, that

is specifically stated.

These general file systems offer high-level functionality. For A/UX, each file system

mounted under the root hierarchy provides high-level UNIX operations such as open,

create, and delete, regardless of the underlying physical implementation (System V file
system [SVFS], Berkeley UNIX file system [UFS], Network File System [NFS], and so on).

The Macintosh OS file system provides equivalent functionality for files in volumes
under its control . The discussion in this chapter is concerned with the high-level view,

except for description of the format of Macintosh files and the consequences of that

stmcture for file operations.

Overall file organization

The NUX kernel (or any UNIX kernel) represents external storage to applications as a

single, hierarchical volume having the root level designated by "slash" (;), the root

directOiy. The one volume can contain multiple file systems. A file system, in this
technical sense, is a combination of routines for manipulating files together with
associated data structures; it provides suppolt for high-level calls dealing with files (open,
create, delete, and so on) that are under the domain of the file system. An A/UX file (or
any UNIX file) is seen by the A/UX system as a stream of bytes. Any further structure

within a file is created and maintained by applications that need to have such a structure.
In the UNIX design, subordinate file systems can be added to or removed from the

one volume only by means of formal mount and unmount operations.

6-2 Chapter 6 File Systems and File Formats

The Macintosh File Manager represents external storage to applications as a
collection of volumes, each having an associated file system and driver. Each volume is
associated with a physical device. The file system interprets high-level operations into

low-level driver calls; the driver handles device-dependent requirements. Each volume

contains an independent file-system hierarchy, the root of which is represented by the

volume name. Applications call on the File Manager by means of A-line traps to
manipulate the volumes and the files within them. Each file within the volume has a
defined structure, consisting of two "forks," a data fork and a resource fork, and a third

element (a quasi-fork) containing the Finder information. In the Macintosh design,

volumes are independent. The user can add or remove volumes (floppy disks, for

instance) as desired. The system keeps track, in a general way, of these volumes.
Both designs organize files in a tree structure. Files are grouped into directories (in

the A/UX environment) or folders (in the Macintosh environment). Directories and
folders are functionally equivalent. A directoty or folder can hold other directories or
folders as well as files.

Pathnames and filenames

In both file-system designs, the location of any file within the complete file tree can be
specified by a pathname. The pathname lists the sequence of directories or folders in
hierarchical order and ends with the name of the file. (The pathname for a directory or
folder ends with the name of the direct01y or folder.) In the A/UX environment, the full
pathname starts with the root volume (/); in the Macintosh environment, the full
pathname starts with a volume name.

Pathnames require a special character as a delimiter between directoty or folder
names and the filename. The A/UX pathname uses the slash (;) as a delimiter and the

Macintosh pathname uses the colon (:). Here is an example of each type:

A/UX: /users / fred/memos / t ripmems

Macintosh: f red's stuff : memos : trip memos

The restrictions for an A/UX filename depend on the type of file system in use on the
physical volume where the file resides. The file system may be UFS, SVFS, or NFS; all are

supported under the A/UX operating system.

File systems 6-3

A Macintosh filename consists of any sequence of 1 to 32 eight-bit characters,

excluding colons (the pathname delimiter).

In System V, a filename consists of 1 to 14 seven-bit characters, excluding slashes

(the pathname delimiter). With UFS, which is now the default file system created by the

A/UX Installer, A/UX filenames can consist of 1 to 255 eight-bit characters (slashes

excluded).

When comparing filenames, the A/UX file system distinguishes between the

uppercase and lowercase versions of a character; the Macintosh file system does not

distinguish between uppercase and lowercase characters. This fact poses a problem for

programs, such as development tools and utilities, that assume a case-insensitive file

system environment. Although a space character can be used in an A/UX filename,

practical considerations suggest that a space should not be used. For example, suppose

that a user saves a text file under the name my report and attempts to access it

under A/UX by using the vi editor. When the user enters

vi my report

the editor will not locate the file . The editor will create two new files, called my and

report, or will access a file of either name, if present. To access my report under

A/UX, the user must quote the filename or the space, as follows:

vi "my report "

or

Vl my \ report

Because the space character is used as a practical delimiter between filenames by the

shell programs that provide user interface throughout the A/UX (or any UNIX) system,
blanks should not be used in filenames. However, Macintosh filenames routinely use

spaces.

File permissions

Because UNIX is a multi-user system, evety A/UX file has an associated set of file
permissions. There are three categories of user: owner, group, and other. For each
categoty, there are three types of permissions: read, write, and execute.

6-4 Chapter 6 File Systems and File Formats

The Macintosh file system has no set of file permissions for user files; privileges are set
for folders and volumes. (System files have restrictions on access.) The AppleShare access
privilege structure was developed for use of files in a multi-user environment. AppleShare

privileges are in three categories: "See Folders," "See Files, " and "Make Changes."

AppleShare privileges apply only to folders (directories) and not to individual files.
Both these permission structures are present and independently settable for folders on

the "/" volume. The UNIX permissions are the controlling permissions; the AppleShare

privileges provide a seconda1y constraint on what may be done with a folder.
When A/UX files are viewed through A/UX Toolbox traps designed specifically for

AppleShare (such as _GetDirAccess) folders will appear to have access privileges
set. In brief, UNIX (A!UX) permissions and AppleShare privileges are mapped as shown
in Table 6-1 . Effectively, write permission equates to Make Changes, while the
combination of read and execute permissions equate to the combination of See Files and

See Folders.

+ Note When AppleShare access privileges are set within a file system, the UNIX file

permissions are not affected. Nor, when UNIX permissions are set, are the AppleShare
access privileges affected. Table 6-1 shows only how the privileges and permissions
appear when files are viewed between file systems. •

Table 6-1 A/UX permissions mapped to AppleShare privileges

A/U:X: Permissions AppleShare Privileges

See Folders Make
Read Write Execute and See Files Changes

No No No No No

No No Yes No No

No Yes No No Yes

No Yes Yes No Yes

Yes No No No No

Yes No Yes Yes No

Yes Yes No No Yes

Yes Yes Yes Yes Yes

File systems 6-5

Extended file attributes

In the A/UX file system, a file has associated with it a general type-regular, directory,

character or block special, or FIFO (First In, First Out)-but no special repositmy of

information about the file . The Macintosh OS file system provides each file with a set of

extended attributes used by the Finder and other system tools. These attributes include

the file type, which among other things tells whether or not the file is executable; the file

creator name; the screen location and icon ID, which the Finder uses to display the file
icon; and the comment field, which contains text displayed when the user requests file

information.

In order to acconunodate the Macintosh environment's needs for such attributes,

A/UX uses special file formats when storing a file of Macintosh OS origin. These formats

preserve the extended file attributes.

The details of these file formats are given later in this chapter. The options available
are as follows:

• Place all of the attribute information at various specified locations within the one new

file, which also contains the file's data. (AppleSingle format.)

• Create two files, one containing the attribute information in specified locations,

together with other information. The second file contains the data. (AppleDouble
format.)

• Use additional special-purpose formats, one of which (the "triple" file) creates a

special file to hold the attribute information.

The advantages of each of these formats are discussed in the section "Storing Files in

the Macintosh OS and in the A/UX Operating System," later in this chapter.

Text files

A text file created by a Macintosh application running under the A/UX Toolbox has these
attributes:

• Each line is terminated by a return character (ASCII value OxOD).

• The file's data is accompanied by a set of Finder information that includes the file's
type and creator. The file type is 'TEXT' and the creator varies with the application.

6-6 Chapter 6 File Systems and File Formats

A text file created by an A/UX program, such as vi(l) , has these attributes:

• Each line is terminated by a line-feed character (ASCII value OxOA).

• The text file has no stored type or creator information (it is not in AppleDouble

format) . When such a file enters the A/UX Finder environment, it receives a file type

and creator based on the rules described in the section "Automatic Conversion," later

in this chapter. A/UX text files are assigned file type 'TEXT' and creator 'tefi'.

Line-termination characters are translated on the fly when a file is moved between
the two environments. Macintosh text-file return characters become line feeds, and A/UX

text-file line feeds become return characters. Text editors and other programs that handle
text find the expected line-termination character, depending on the environment in

which the file is read and not on the actual termination character used in the file. When
an application running under the A/UX Toolbox reads a text file, the lines will be
terminated by return characters. When that application stores the file, the line
termination character used depends on the environment in which the file is placed. If the

file goes into the A/UX environment, the termination characters will be line feeds. This
behavior is essentially transparent to the user.

Mounting and unmounting floppy disks

Under A/UX (or any UNIX system), the file system can recognize a UNIX file stmcture on
a floppy disk and grant appropriate access only if the disk is mounted. The mounting
process provides, among other things, a specific location in the file tree for the files on
the disk. To remove that file structure, the disk is unmounted. Mounting and unmounting
are system operations, separate from physically inserting and removing the floppy disk.
Mounted file structures do not appear as separate icons on the desktop.

Under the Macintosh file system, users are accustomed to inserting and removing
floppy disks as needed. To the file system, each physical device (such as a floppy disk) is

a separate volume and can be dealt with as an independent volume. If a disk has a
recognizable file structure, then it is accessible without a formal mount operation, and
removing the floppy disk does not require an unmount operation. (The floppy disk is
implicitly unmounted when it is ejected.) Macintosh volumes appear as icons on the
desktop.

File systems 6-7

A Macintosh OS file system cannot be mounted under the A/UX file tree. A Macintosh

application cannot use the A/UX Toolbox file system to mount (or unmount) a

Macintosh file volume (such as a floppy disk) as pa11 of the A/UX file tree. As described

in "Automatic Conversion," later in this chapter, an individual Macintosh file can be

placed under A/UX, after which the file becomes some variety of A/UX file.

An application may, by means of the appropriate A/UX system calls, mount, access,

and unmount floppy disks under the A/UX file system by using A/UX file-handling

methods. More typically, an application running under the A/UX Toolbox may deal with

any number of floppy disks as Macintosh volumes in the usual way.

In short, when an application is running under the A/UX Toolbox, all floppy disk

files that it "sees" (can access) are on Macintosh volumes. It does not "see" any A/UX

files on floppy disks except by access through the A/UX file system, that is, unless those

files have been mounted.

Storing files in the Macintosh OS and in the
A/UX operating system

Under the Macintosh OS, a file consists of two forks: a data fork and a resource fork. In

general, the data fork contains user data, such as the text in a word-processing

document, and the resource fork contains resources used by the application. Resources

include commonly used structures such as dialog boxes and icons, as well as the body of
an application's code. (See Inside Macintosh, Volume I , for a description of resources.)

Although a file can contain two forks, one of the two forks may be empty. A file that

holds a document created by an application, for example, often contains only a data

fork. with an empty resource fork. Similarly, a file that holds an executable application

may contain only resources, with an empty data fork. Figure 6-1 illustrates the elements

of a file under the Macintosh OS. Text in brackets in the figure represents elements that

may be absent from the file.

6-8 Chapter 6 File Systems and File Formats

appname

Data fork Resource fork

[Application- Resources,
specific datal including

' CODE '
resources

Macintosh application under
the Macintosh OS

docname

Data fork Resource fork

User data [Document-
specific

resources]

Document created by Macintosh
application under the Macintosh OS

Figure 6-1 Elements of a file in the native Macintosh OS environment

\

The Macintosh OS file system also stores extended-file-attribute information in a
separate record in the directory. See Inside Macintosh, Volume N, for a description of
the hierarchical file system (HFS) file-directory information. For a description of the
obsolete Macintosh flat file system (MFS) and its file-directory information, see Inside

Macintosh, Volume II .
The NUX file structure makes no distinction between data and resources, and the

NUX directory structure makes no provision for the Macintosh file-attribute information.
Apple has developed two standard file formats that you can use to store Macintosh-style

files in A/UX:

• AppleSingle format All contents and file information are kept in a single file.

• AppleDouble format The contents of the data fork are stored in one file, known as
the data file; resources and file-attribute information are stored in a separate file,
known as the header file. The header file has the same name as the data file, except
that the header file is prefixed with a percent sign (%) .

The AppleDouble format is a good choice for text data and data to be shared with
UNIX utilities, because the data fork is available as an isolated file . When moving an
AppleDouble file pair with UNIX utilities, remember to move both files.

The internal formats of AppleSingle and AppleDouble files are discussed in the
section "AppleSingle and AppleDouble Format Internals," later in this chapter.

Storing files in the Macintosh OS and in the A/UX operating system 6-9

+ Note From the point of view of an application or a user, the distinctions between the

two file formats discussed here are not important. The A/UX Toolbox File Manager

insulates applications from having to consider these details. •

An A/UX file, standing alone, remains a Plain file but is recognized as an

AppleDouble data file. (This convention allows A/UX Toolbox applications to access

files created by conventional UNIX utilities, such as text editors.) An A/UX Toolbox

application processing a Plain file may cause the creation of a header file for that data file

in certain circumstances, resulting in an actual AppleDouble file. The four cases in which
the file remains a Plain file are shown in the section "Automatic Conversion," later in this

chapter. If the combination of file type and creator is changed to anything other than a

file type of 'COFF', 'SHEL', 'XAPP', or 'BIN', with a matching creator of 'A/UX' , then

resource information is generated and written to a header file with the same name as the

data file, except that the header-file name is prefixed with a percent sign (%) .

Like a Macintosh OS file, an A/UX AppleSingle file may contain both data and resources,

data and no resources, or resources and no data. An AppleSingle file always contains file

information entries, although the entries for a newly created file might be undefined.

An AppleDouble data file is accompanied by a header file containing the file
attribute information. The header file can-but need not-contain resources. An
AppleDouble header file can exist without an associated data file. Figures 6-2 and 6-3

illustrate the typical contents of AppleSingle and AppleDouble files in A/UX. Text in

brackets in the figures represents elements that may be absent from the file.

6-10 Chapter 6 File Systems and File Formats

doc name

Header Finder info Resource fork Data fork

[Document-specific User data
resources]

AppleSingle document file

appname

Header Finder info Resource fork [Data fork]

Resources, [Application-specific datal
including
' CODE '
resources

Macintosh binary application transferred to an A/UX AppleSingle file

Figure 6-2 Typical contents of an AppleSingle file

Storing files in the Macintosh OS and in the A/UX operating system 6-11

Document
files

doc name 'Yodocname

Data fork Header

User data

Data file Header me

AppleDouble document file

appname

Data fork

[Application
specific datal

[Data file]

%appname

Header

Header file

Finder info Resource fork

[Document-
specific

resources]

Finder info Resource fork

Resource ,
including
' CODE '
resources

Application
files

Macintosh binary application transferred to a pair of AppleDouble files

appname

COFF
executable

me

NUX-linked
code

Data file

C?oappname

[Header] [Finder info]

[Header file]

NUX Toolbox application built in NUX

Figure 6-3 Typical contents of a pair of AppleDouble files

6-12 Chapter 6 File Systems and File Formats

[Resource fork]

[Resources,
including
' CODE '
resources]

-

doc name

Data ftle

User data

When you compile and link an application under A/UX, the result is a standard
executable COFF file. The Macintosh OS will consider the COFF file to be an
AppleDouble file. As mentioned earlier, so long as the type remains 'COFF' and the
creator 'A/UX' , no unnecessa1y header file is created.

If you have used a general-purpose utility to transfer files from the Macintosh OS to
the A/UX operating system, you might also have Macintosh files stored in a simple A/UX

format. The kermi t(lC) utility, for example, transfers the two forks of a Macintosh file
separately into a pair of A/UX files that follow neither AppleSingle nor AppleDouble
format. The data fork is placed in one file, and the resource fork is placed in a file with
the same name plus the extension res . (See AIUX Command Reference for a

description of kermi t .) For compatibility with other tools, the A/UX Toolbox file
conversion utility, f cnvtC l) , recognizes this structure.

Figure 6-4 illustrates the possible contents of Macintosh files in simple A/UX format.
Text in brackets in the figure represents elements that may be absent from the file.

docname . re s

[Resource ftle]

Document
specific

resources

appname

[Data ftle]

[Application
specific datal

appname . re s

Resource ftle

[Resources,
including

' CODE '
resources]

Document file either created by an A/UX
Toolbox application and converted to simple
A/UX format, or created in Macintosh OS and
transferred to a simple A/UX file

Macintosh binary appl ication transferred to
a simple A/UX file

Figure 6-4 Elements of Macintosh data and resource files in simple A/UX format

Storing files in the Macintosh OS and in the A/UX operating system 6-13

When you create a Macintosh-compatible file under A/UX, the A/UX Toolbox uses

these formatting strategies:

• In almost all circumstances, the A/UX File Manager creates AppleSingle files.

Therefore, when an A/UX Toolbox application creates a file through File Manager

calls, it creates an AppleSingle file.

• When the File Manager receives a request to open an AppleDouble data file, it

automatically looks for the associated header file. The application does not specify

the format of the file when issuing the call; the File Manager itself checks the format
of the file.

• The A/UX implementation of the resource compiler, rez(l) , creates only an

AppleSingle file. See Chapter 3, "A/UX Toolbox Utilities and Extensions, " and

Appendix E, "Resource Compiler and Decompiler," for a description of rez .

The A/UX Toolbox provides the following utilities for converting files and

manipulating their formats:

• The fcnvt(l) utility converts files among AppleSingle format, AppleDouble format,

and four other formats.

• The set f i 1 e(l) utility adds or changes the file type and creator of an AppleSingle

file or an AppleDouble header file.

See Chapter 3, "A/UX Toolbox Utilities and Extensions," for more details.

Automatic conversion

When a file is transferred from one file system to the other, for example by having its

icon dragged on the desktop, the file is automatically convened. When a Macintosh file

is placed in the A/UX file system, it goes into one of three formats: AppleDouble,
AppleSingle, or Plain. In brief, the AppleDouble format produces two files, one
containing data and the other containing resource and Finder information; the
AppleSingle file contains eve1ything in one file; and the Plain file contains data only and
corresponds to the data file of an AppleDouble pair. Which format is used depends on
information kept in three fields of the extended-attribute portion of the file: the type, the
creator, and the flag setting. The process is summarized in Table 6-2.

6-14 Chapter 6 File Systems and File Formats

Table 6-2 Automatic conversion of Macintosh files

Attributes

Type Creator Flag setting Resulting format

'APPL' [any] No IN!Ts=l AppleDouble

'TEXT' [any] !A AppleDouble (or Plain)

'A/UX ' [any] N/A AppleDouble

'COFF' 'A/UX' N/A Plain

'SHEL' 'A/UX' N/A Plain

'XAPP' 'A/UX' !A Plain

'BIN' 'A/UX' I /A Plain

All others AppleSingle

As Table 6-2 shows, there are three ways to ensure conversion to AppleDouble format:

• Set the type to 'APPL' and set the flag as shown. (The No INITs flag is bit 7 of
Info . fdFlags .)

• Set the type to 'TEXT' .

• Set the type to 'NUX' .

The first way allows programs (such as ConunandShell) to have their own icon while

ensuring conversion to the AppleDouble format. The second and third ways allow files

that may have system extensions to be converted to AppleDouble format. In the second
instance, the ent1y shows a special exception that occurs when there is no resource fork.
When a Macintosh OS application processes an NUX text file, the file remains a Plain
file unless the application creates resource information for that file, in which case the file
system makes a second file to hold that information. The two files constitute an
AppleDouble pair.

An NUX file transferred into the Macintosh file system simply becomes a standard

Macintosh file. File permissions are lost unless they have been explicitly saved as foreign
privileges. Text files and shell files have their line-termination characters automatically
translated from line-feed to return characters, as described in "Text Files," earlier in this
chapter.

Storing files in the Macintosh OS and in the NUX operating system 6-15

AppleSingle and AppleDouble
format internals

AppleSingle format stores the data, resources, and attributes of a Macintosh file in a

single A/UX file. AppleDouble format stores a file's data in one file and stores its

resources and attributes in another file.

This section uses these terms:

• Home ftle system is the file system for which the file's contents were created, not

necessarily the file system in which the file was created. The Macintosh file system is

the home file system for all A/UX Toolbox applications and all documents created

with A/UX Toolbox applications.

• Foreign ftle system is the other file system that will store or process the file. The

UNIX file systems are the foreign file systems for all A/UX Toolbox applications and

all documents created with A/UX Toolbox applications.

AppleSingle format

In AppleSingle format, all of a file's contents and attributes are stored in a single file in

the foreign file system.
An AppleSingle file consists of a header followed by one or more data entries. The

header consists of everal fixed fields and a list of entry descriptors, each pointing to an

entry. Table 6-3 describes the contents of an AppleSingle file header.

Table 6-3 AppleSingle file header

Field

Magic number

Version number

Home file system

Number of enu·ies

Enlly descriptor for each ent1y:
Entry ID
Offset
Length

6-16 Chapter 6 File Systems and File Formats

Length

4 bytes

4 bytes

16 bytes, ASCII encoclecl

2 bytes

4 bytes
4 bytes
4 bytes

Byte ordering in the file-header fields follows MC68000, MC68020, and MC68030
conventions. Here is a description of each field:

• Magic number This field, modeled after the NUX magic-number feature, specifies
the file's format. Apple has defined the magic number for AppleSingle format as
Ox00051600.

• Version number This field allows for the evolution of AppleSingle format. This
section describes version Ox00010000.

• Home file system This field defines the home file system. It contains a 16-byte ASCII
string, which is not preceded by a length byte but which can be padded with spaces.
Apple Computer has defined these strings:

Macintosh ' Macintosh ' or Ox4D6 1 6 3 6 9 Ox6E7 4 6F73 Ox6 8 2 0 2 0 2 0 . . .
Pro DOS ' ProDOS ' or Ox5 0 7 2 6F44 Ox4F5 3 2 0 2 0 Ox2 02 02 0 2 0 ...
MS-DOS ' MS-DOS ' or Ox4D5 3 2D44 Ox4F5 3 2 0 2 0 Ox2 02 02 0 2 0 ...
UNIX ' Unix ' or Ox5 5 6E 6 9 7 8 Ox2 02 02 0 2 0 Ox2 02 02 0 2 0 ...
VMS™ ' VAX VMS ' or Ox5 6 4 1 5 8 2 0 Ox5 64D5 3 2 0 Ox2 02 02 0 2 0 ...

All NUX Toolbox applications work with files whose home file system is Macintosh.

• Number of entries This field reports how many different entries are included in the
file. Its value is an unsigned 16-bit number. If the number of entries is any number
other than 0, then that number of ent1y descriptors immediately follows.

• Entry ID This field defines what the entry is. The field holds an unsigned, 32-bit
number. Apple Computer has defined a set of entry IDs and their values:

Data fork 1 standard Macintosh data fork
Resource fork 2 standard Macintosh resource fork
Real name 3 file's name in its home file system
Comment 4 standard Macintosh comments
Icon, B&W 5 standard Macintosh black-and-white icon
Icon, color 6 Macintosh color icon
file info 7 file information: attributes and so on
Finder info 9 standard Macintosh Finder information

Apple reserves the range of ently IDs from 0 to Ox7FFFFFFF. The rest of the range is
available for other definitions. Apple does not arbitrate the use of the rest of the
range.

AppleSingle and AppleDouble format internals 6-17

Icon entries do not appear in most files because they are typically stored as a bundle

in the resource fork of the application file .

The structure of the "file info" ent1y is different for each home file system. For

Macintosh HFS files, the ent1y is 16 bytes long and consists of three long-integer

dates (create elate, last modification date, and last backup date) and a long integer

containing 32 Boolean flags. Where 0 is the least-significant bit and 31 is the most
significant bit, bit 0 of the Macintosh "file info" ent1y is the Locked bit, and bit 1 is the

Protected bit. Figure 6-5 illustrates the formats for Macintosh HFS, A/UX, MS-DOS,

and ProDOS "file info" entries.

The "Finder info" ent!y consists of 16 bytes of Finder information followed by 16

bytes of extended Finder information (the fields ioFlFndrinfo followed by

ioFlXFndrinfo, as returned by the PBGetCat info call). These fields contain
extended-file-attribute information. See Inside Macintosh, Volume VI, for a

description of the subfields in these fields. Newly created files contain zeros in all
"Finder info" fields. When you are creating a file whose home file system is
Macintosh, you can use 0 in any subfield whose value is unknown, except that you

should set the fdType and fdCreator subfields. Values should be set by

means of standard File Manager calls such as setFinfo and PBSetCat info .

• Offset This field contains an unsigned 32-bit number that shows the offset of the

beginning of the ently's data from the beginning of the file.

• Length This field contains an unsigned 32-bit number that shows the length of the
data in bytes. The length can be 0.

The ent1y data follows all of the entry descriptors. The data in each ent1y must be in a
single, contiguous block. You can leave holes in the file for later expansion of data. For

example, even if a file's comment field is only 10 bytes long, you can place the offset of
the next field 200 bytes beyond the offset of the conm1ent field, to leave room for the

comment to grow to its maximum length of 200 bytes.
The entries can appear in any order, but you can maximize the efficiency of file

access by following these recommendations:

• Put the data fork ently at the end of the file. The data fork is the most commonly
extended entry, and it is easier to increase its length if it is the last thing in the file.

• Put the entries that are most often read, such as "Finder info," as close as possible to
the header, to increase the probability that a read of the first block or two will

retrieve these entries.

6-18 Chapter 6 File Systems and File Formats

Macintosh "ftle info" entry

t- -
t- Create date -
t- -

t- -
t- Modification elate -
t- -

r- -
r- Last backup elate -
r- -

r- -
t- Attributes -
t- -

MS-DOS "ille info" entry

r- -
t- Modification elate -
r- -

Attributes -

0
0
0
0

0 0
0 0
0 0
0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0

Protected � I
Locked

A/UX "ille info" entry

- -
- Create elate & time -
' -

- -
' Last use elate & time -
r- -

r- Last modification -
t- elate & time

-
r- -

ProDOS "ille info" entry

t- -
r- Create elate & time -
t- -

t- Modification -
r- date & time

-
t- -

t- Access -

r- File type -

t- -
r- A/UX type -
t- -

Figure 6-5 Formats for "file info" field entries

AppleDouble format

In AppleDouble format, the file's data fork is stored in a file called the AppleDouble data
file, and the file's attributes and resources are stored in a separate file called the
AppleDouble header JZ!e.

The AppleDouble data file contains the data fork, in exactly the form in which it
appears in a Macintosh file, with no extra header.

The AppleDouble header file has the same format as an AppleSingle file, except that

it contains no data fork ent1y. The magic number for an AppleDouble header file is
Ox00051607. The entries in the header file can appear in any order. It is usually more
efficient to put the resource fork at the end of the file because the resource fork is the
entry most likely to expand.

AppleSingle and AppleDouble format internals 6-19

Filename conventions

This section describes the conventions for naming Macintosh files in the A/UX

environment. The filename needs are slightly different for the AppleSingle and

AppleDouble formats. These considerations apply to both:

• Embedded spaces in filenames transfer between the Macintosh and UNIX environments.

Filenames with embedded spaces are legal but cause problems in UNIX because UNIX

commands consider that spaces delimit a filename. Changing the embedded spaces to

less problematic characters may be preferable to leaving the spaces.

• Filenames containing characters with ASCII values greater than 1 27 may not be

recognized by some UNIX implementations. Use character substitution to replace any

illegal character with an underscore (_) .

• Because different UNIX file systems impose different length restrictions, do not explicitly

tmncate the name to a specified length; allow tl1e tnmcation to be done by the file
handling functions such as creat(2) and open(2) . Remember tl1at A/UX suppotts

three file systems, one of which (UFS) allows filenames to contain up to 255 characters.

AppleSingle format does not specify an algorithm for deriving an AppleSingle

filename from the file's "real" name as stored on a native Macintosh volume. File systems
(and your applications) can exercise some discretion in choosing filenames because the ·'-...../

file's original name can be stored as data in the file and retrieved as necessaty.
The general strategy for AppleDouble-format filenames is to derive the data-file

name from the file's original Macintosh name and then to derive the header-file name

from the data-file name. The most important connection is between the two

AppleDouble filenames, which must often be treated as a single unit and therefore must
be clearly connected.

• For an AppleDouble data-file name, the general considerations apply.

• For an AppleDouble header-file name, prefix a single percent sign (%) to the
AppleDouble data-file name. If necessaty, truncate the last character to keep the
filename within the legal length range. The result is that the two files are kept
together in a single subdirectory.

6-20 Chapter 6 File Systems and File Formats

Appendix A: Additional Reading

Information sources I A-2

Required references I A-4

Supplementary references I A-5

This appendix tells you where to get more information about the A/UX Toolbox and lists

required and supplementaty documentation.

Information sources

APDA is Apple's source for a wide selection of Apple and third-party development tools

and information.

APDA offers convenient worldwide access to more than 300 development tools,

resources, training products, and information for anyone interested in developing

applications on Apple platforms. Customers receive the APDA Tools Catalog featuring

Apple and third-party development products. Ordering is easy; there are no membership
fees, and signed agreements are not required to order most products. APDA offers

convenient payment and shipping options, including site licensing. Anyone can receive

the APDA Tools Catalog by contacting APDA. To order products or get additional

information, contact

APDA
Apple Computer, Inc.
20525 Mariani Avenue, MIS 33-G
Cupertino, California 95014-6299 U.S.A.
800-282-2732 (U.S.)
800-637-0029 (Canada)
408-562-3910 (International)
408-562-3971 (Fax)
171-576 (TELEX)
AppleLink: APDA

A-2 Appendix A Additional Reading

Apple offers two developer programs: Associates and Partners.

• Associates Program A mainstream program for commercial developers;
convenient access to essential technical and marketing information.

The Associates Program, Apple's mainstream program for developers of commercial

products, is a convenient and cost-effective way to access essential technical and

marketing information. The Associates Program offers self-help technical support,

keeps you up-to-date with the latest products and technical documentation, and
facilitates access to the Apple developer conununity through AppleLink. Associates
also receive discounts on hardware, lowering the cost of getting started on a
development project.

Who Should Apply? This program is designed for developers who are working on a
standardized, commercial product which is sold publicly. Associates must deliver a
product within two years of joining the program.

• Partners Program A program for Apple-selected strategic conm1ercial developers

The Partners program is open to Apple-selected conu11ercial developers. In addition
to receiving the same program benefits as Associates, Partners receive direct
technical support via electronic mail .

Who Should Apply? Apple limits membership in the Partners Program to developers
of commercial , standardized products who contribute to Apple's long-term product
strategies and business objectives. Partners are expected to focus their resources on
the development of Apple-compatible products. Partners must deliver a product
within two years of joining the program.

For further information, write to

Apple Developer Programs
Apple Computer, Inc.
20525 Mariani Avenue, M/S 51-W
Cupertino, California 95014-6299 U.S .A.

Apple also offers courses at Apple Developer University. You do not need to be in a
developer program to attend. For information, write to

Developer University Registrar
Apple Computer, Inc.
20525 Mariani Avenue, M/S 51-M
Cupertino, California 95014-6299 U.S .A.

Information sources A-3

Required references

This section lists books that you will need for developing software under the A/UX

system or creating hardware interfaces to Macintosh computers running the A/UX

system. The guide Road Map to A/UX, listed in this section, provides a detailed

description of each A/UX book published by Apple Computer.

AIUX Command Reference. Apple Computer, Inc . , 1992. A collection of reference pages, also
known as manual pages, for A/UX user commands and games. This document corresponds
to Sections 1 and 6 of the traditional UNIX user manual. The information in AIUX Command
Reference is provided on-line wid1 A/UX Release 3.0. This document is available as part of
the A/UX Administration Manuals product.

AIUX Essentials. Apple Computer, Inc., 1992. A user's introduction to A/UX Release 3.0.

AIUX Programmer's Reference. Apple Computer, Inc., 1992. A collection of reference pages, also
known as manual pages, in two volumes for A/UX system calls, subroutines, file formats,
and miscellaneous facilities. This document corresponds to Sections 2 through 5 of the
traditional UNIX user manual. The information in AIUX Programmer's Reference is provided
on-line with A/UX Release 3.0. This document is available as part of the A/UX Programming
Manuals product.

AIUX Programming Languages and Tools, Volumes 1 and 2. Apple Computer, Inc., 1987, 1990,
and 1992. A description of the A/UX C and Fortran languages and the libraries and tools used
for program development and maintenance. These documents are available as palt of the
A/UX Programming Manuals product.

Inside Macintosh, Volumes I through III. Addison-Wesley, 1985. A complete description of the
architecture and operation of me 1 28K and 512K Macintosh computers, including the ROM
routines.

Inside Macintosh, Volume IV. Addison-Wesley, 1986. An update to the original volumes,
covering the Macintosh 512K enhanced and Macintosh Plus computers.

Inside Macintosh, Volume V. Addison-Wesley, 1987. An update to Volumes I through IV,
covering the Macintosh SE and Macintosh II computers.

Inside Macintosh, Volume VI. Addison-Wesley, 1991 . An update to Volumes I through V,
covering Macintosh System 7. An on-line version is available from APDA.

Inside the Macintosh Communications Toolbox. Addison-Wesley, 1990. A guide to the
Communications Toolbox, which is Apple's communications development platform and is
an integral palt of System 7.

Road Map to AIUX. Apple Computer, Inc . , 1992. A guide to d1e features of A/UX and to the A/UX
documentation.

A-4 Appendix A Additional Reading

Supplementary references

This section lists useful books available for developing software under, or creating

hardware interfaces to, the A/UX system. The list is not exhaustive. Many other excellent
books are available on various aspects of developing under System V UNIX, developing
with shell languages, and making use of BSD features. Useful books are also available on
developing under the Macintosh User Interface Toolbox and Macintosh OS. The
Macintosh Programmer's Workshop (MPW) references document a UNIX-like
development environment that runs under the Macintosh OS.

The Motorola manuals listed are a selection of documentation provided by Motorola
Corporation, useful to hardware developers and software developers working close to
the hardware.

A!UX c 8 9 C. APDA, 199 1 . Describes the implementation of Apple's ANSI-compliant C
compiler. This document is available as pa11 of the NUX Developer's Tools product.

A!UX Development Tools. APDA, 199 1 . Describes the suite of enhanced development tools
available for NUX, including the assembler, linker, Commando interface, and other
important tools. This document is available as pa11 of the A/UX Developer's Tools product.

Building A!UX Device Drivers. APDA, 1992. A reference for developing device drivers for NUX
systems. Included is the source code for drivers used in NUX. This document is available as
part of the NUX Device Drivers Kit product.

Chernicoff, Stephen. Macintosh Revealed, Volumes I through III . Hayden Book Company, 1985,
1987. A guide to writing programs that use the Macintosh User Interface Toolbox and
Macintosh OS. Later editions have tracked developments of the Macintosh OS.

Designing Cards and Drivers for the Macintosh Family. Second Edition. Addison-Wesley, 1990.
A general reference for developing expansion cards and device drivers for the Macintosh
family of computers.

Harbison, Samuel P . , and Guy L. Steele, Jr. C A Reference Manual. Third Edition. Prentice-Hall,
Inc., 199 1 . A standard reference book for the C language with the AT&T extensions used in
most UNIX operating-system environments. The third edition covers both "traditional" and
ANSI C.

Inside Macintosh X-Ref Revised Edition. Addison-Wesley, 199 1 . A key to eleven of the Addison
Wesley books that document the Macintosh: Inside Macintosh, Volumes I through VI ,
Programmer's Introduction to the Macintosh Family, Technical Introduction to the
Macintosh Family, Inside the Macintosh Communications Toolbox, Guide to Macintosh
Family Hardware, and Designing Cards and Drivers for the Macintosh Family. Provides a
general index to these volumes, a list of routines that move or purge mem01y, a list of system
traps, a list of global variables, and a glossa1y.

Supplementa1y references A-5

Kernighan, Brian W., and Rob Pike. The UNIX Programming Environment. Prentice-Hall, Inc.,
1984. A guide with valuable information, including chapters on shell programming, lex,

yacc, and text formatting.

Kernighan, Brian W, and Dennis M. Ritchie. The C Programming Language. Second Edition.
Prentice-Hall, Inc . , 1988. An update of the original, official C manual, with tutorial
information. This edition covers ANSI C, in addition to updating the first edition.

Knaster, Scott. How to Write Macintosh Software. Hayden Book Company, 1986. A guide to the
oddities of programming the Macintosh (non-A/UX:), with full discussion of memoty, stack,
and pointer concepts.

Knaster, Scott. Macintosh Programming Secrets. Hayden Book Company, 1986. A guide to the
concepts and ideas of (non-A/UX) Macintosh programming, use of color, and sending
PostScript commands to a PostScript laser printer.

Macintosh Programmer's Workshop 3.0 Assembler Reference. APDA, 1988. A reference on the
MPW Assembler and its tools. This document is available as patt of the MPW product.

Macintosh Programmer's Workshop 3.0 C Reference. APDA, 1988. A description of the MPW C
Compiler and tools that let you write C programs that use the Pascal routines in the
Macintosh ROM. The C language for MPW 3.0 and that for A/UX are closely linked. This
document is available as patt of the MPW product.

Macintosh Programmer's Workshop 3. 1 Pascal Reference. APDA, 1988. A description of the
Pascal Compiler and tools. This document is available as part of the MPW product.

Macintosh Programmer's Workshop 3 . 1 Reference. APDA, 1988. A full description of how to use
the MPW program preparation tools. This document is available as part of the MPW product.

Macintosh Technical Notes. Apple Computer, Inc . , 1984-1990. A set of technical bulletins
distributed at no charge by Apple Computer to all affiliated developers. Available through
APDA.

MacsBug 6.2 Reference and Debugging Guide. APDA, 1991 . A complete description of the
MacsBug debugger.

Manis, Rod, and Marc H. Meyer. The UNIX Shell Programming Language. Howard W. Sams &
Co., 1986. A clear exposition of shell programming, as of System V, Release 2.

MC68020 32-Bit Microprocessor User's Manual. Motorola Corporation, 1985. A detailed
description of the MC68020 CPU for hardware and software engineers.

MC68030 32-Bit Microprocessor User's Manual. Motorola Corporation, 1987. A detailed
description of the MC68030 CPU for hardware and software engineers.

MC68851 Paged Mem01y Management Unit User's Manual. Motorola Corporation, 1985. A
detailed description of the Paged Memoty Management Unit (PMMU) for hardware and
software engineers.

A-6 Appendix A Additional Reading

MC68881 Floating-Point Coprocessor User's Manual. Motorola Corporation, 1985. A description
of rhe instruction set and addressing conventions used by rhe MC68881 floating-point
coprocessor, which is used in the Macintosh II.

Othmer, Konstantin, and Jim Strmiss. Debugging Macintosh Software with MacsBug. Addison
Wesley, 1991. A lucid description of techniques and tricks for using MacsBug.

Programmer's Guide to MultiFinder. APDA, 1988. A guide to writing applications compatible
with MultiFinder; applicable to rhe A/UX Finder.

Programmer's Introduction to the Macintosh Family. Addison-Wesley, 1987. A programmer's
technical overview of the Macintosh system (non-A/UX), introducing the most important
features of the Macintosh User Interface Toolbox and Macintosh OS.

ResEdit v. 2.1 . APDA, 1991 . Describes the ResEdit resource editor.

Technical Introduction to the Macintosh Family. Addison-Wesley, 1987. An introduction to the
hardware and software design of the Macintosh fanlily of computers.

Supplementa1y references A-7

Appendix B : Toolbox Contents

This appendix lists directories and files that are pan of the A/UX Toolbox or that are of

special interest in application development.

The large text file /FILES contains an annotated list of files in NUX Release 3.0. You can

explore this file to get fmther information about the contents of the directories listed here.

The list of files given in this appendix is not exhaustive, but is meant to give a

general view of directories and files of interest. To obtain further information, check the

I FILES list, use the Commando facility associated with the utilities, and consult the on

line and printed manual pages.

/mac

The major directories relating to the A/UX Toolbox.

/mac/bin

The executables and associated resource files needed by the NUX Toolbox and NUX

Finder, which include files for logging in with the CommandShell and 24-bit
CommandShell applications, files for executing the Commando function, and several

utilities, some of which are discussed in Chapter 3.

change s i z e A utility that changes the ' S I ZE ' attribute.

rez Resource compiler. (See Appendix E .)

derez Resource decompiler. (See Appendix E.)

f cnvt A utility that performs file conversion.

launch A utility that launches a Macintosh bina1y application.

set f i le A utility that sets tl1e file creator and type for a file.

startmac A program that provides the NUX environment.

startmac2 4 A program that provides the 24-bit NUX environment.

TextEdi tor Macintosh-style text editor.

/mac / l ib
Specialized Macintosh files.

/mac / l ib / SystemF i l es
Equivalent to the Macintosh System Folder, with NUX Finder equivalents of the system

files.

/mac / l ib/ cmdo / *
Directories of Commando dialog boxes.

B-2 Appendix B Toolbox Contents

/mac / l ib/ rincludes
Contains resource header files. (See Chapter 3 and Appendix E .)

script types . r

systypes . r

types . r

Resource header file for Script Managers.

Resource header file.

Resource header file, generic.

/mac / l ib/ sessiontypes
Session-type description files . (See Login documentation .)

/mac / src

Sample Macintosh application sources.

examples Example application sources, resource, and makefile. (See Chapter 2 .)

sndDemo

/mac / sys / *

Sound demonstration example application sources, resource, sound
file, and makefile. (See Chapter 2 .)

Macintosh system files and directories relating to the A/UX Toolbox and A/UX Finder.

/usr ! l ib

Libraries for programmer use, some relating to the A/UX Toolbox.

1 ibmac . a Code for accessing toolbox, nonshared archive.

1 ibmac s . a Code for accessing toolbox, shared version (host).

1 ibc . a Standard C library, nonshared archive.

1 ibc s . a Standard C libra�y, shared version (host) .

/ shlib

Contains shared-libra�y executables.

l ibmac s Executable shared code (target) for accessing toolbox, linked by
1 ibmac_s . a .

l ibc s

/ dev/uinterO

Executable shared code (target) for standard C libraty, linked by
l ibc s . a .

Special file for user interface device used internally by the A/UX Toolbox.

Toolbox Contents B-3

/usr/inc lude /mac

Library of header files that define the constants, types, and functions used by the A/UX

Toolbox C implementation of the Macintosh ROM routines.

asd . h

aux . h

aux_rsrc . h

control s . h

desk . h

devices . h

dialogs . h

dtask . h

errors . h

event s . h

f i les . h

fonts . h

gestal t . h

l i sts . h

memory . h

menus . h

not i fy . h

osevent s . h

osut i l s . h

packages . h

palettes . h

pi cker . h

print ing . h

B-4 Appendix B Toolbox Contents

Calls to Macintosh resource material in
/usr / l ib / l ibmr . a .

Definitions for AUXDi spatch .

UNIX calls for Macintosh resource material in
/usr/ l ib/ l ibmr . a .

Control Manager.

Desk Manager.

Device Manager.

Dialog Manager.

Deferred Task Manager.

System Error Handler.

Toolbox Event Manager.

File Manager.

Font Manager.

Gestalt Manager.

List Manager.

Memory Manager.

Menu Manager.

Notification Manager.

Operating System Event Manager.

Operating System Utilities.

Package Manager, including Binary-Decimal Conversion
Package, Disk Initialization Package, International Utilities
Package, Standard File Package.

Palette Manager.

Color Picker.

Printing Manager.

print traps . h Print traps.

proces ses . h Process Manager.

quickdraw . h 32-Bit QuickDraw with Color QuickDraw.

resources . h Resource Manager.

retrace . h Vertical Retrace Manager.

rornde f s . h Definitions for ROMs.

scrap . h Scrap Manager.

s cript . h Script Manager.

segload . h Segment Loader.

serial . h Serial Driver.

shutdown . h Shutdown Manager.

s 1 o t s . h Slot Manager.

srn . h Sound Manager.

soundinput . h Sound Manager input.

soundinputpri v . h Sound Manager input privileges.

s trings . h String conversion routines.

sysequ . h Low-memo1y equates.

textedi t . h TextEdit.

t irner . h Time Manager.

t oolut i l s . h Toolbox Utilities.

t raps . h List of Macintosh traps.

types . h Type definitions.

video . h Video Driver.

vrnc a 1 1 s . h Memo1y Manager virtual mem01y.

windows . h Window Manager.

/usr ! l ib! l ibrnr . a

Declarations and routines for reading Macintosh resources.

Toolbox Contents B-5

Appendix C :
Implementation Notes

The A/UX Finder and Toolbox applications I C-2

Running an A/UX Toolbox application I C-2

Converting between C and Pascal conventions I C-7

This appendix describes how the A/UX Toolbox simulates the Macintosh environment.

You can use the A/UX Toolbox without the information in this appendix, but you will

need this information if you are writing an application that contains assembly-language

routines or deviates from recommended Macintosh programming practices.

This appendix covers two main topics: running A/UX Toolbox applications, and

converting between the Pascal-language conventions used by the Macintosh ROM and

the C-language conventions typically used in A/UX.

The A/UX Finder and Toolbox applications

The A/UX Finder must be running to support execution of NUX Toolbox applications.
NUX Toolbox applications cannot be launched without support of the NUX Finder.

System 7-compatible applications will execute under NUX 3.0; however,

System 7-friendly applications can take advantage of the advanced features of NUX 3.0 .
Developers should aim at the latter standard. Requirements for applications are listed in

Chapter 4, "Compatibility Guidelines. "

Running an A/UX Toolbox application

The NUX kernel contains a special user-interface device driver, 1 dev 1 uin t erO , that

handles communications between NUX Toolbox applications and the kernel. The driver
provides ioct l(2) functions. (The section "Serial Driver" in Chapter 5 describes some

i o c t 1 functions.) The NUX Toolbox libraty routines make calls to this device driver to
provide special control for the Macintosh environment.

An NUX Toolbox application uses a special initialization routine that opens the user

interface device driver and issues a series of setup instructions before starting the
program itself. The initialization routine is in / usr I lib/maccrtO . o. Each NUX

Toolbox application, including launch(l) , is linked with this file rather than with
! l ib/ crt O . o, which is used by non-Toolbox NUX applications.

Once an NUX Toolbox application is running, most NUX Toolbox functions are
called through an MC680x0 exception, known as an A-line trap, the same way that ROM
code is called in the Macintosh environment. In the NUX environment, however, trap

handling must be routed through the kernel.

C-2 Appendix C Implementation Notes

User interface device driver

The user interface device driver, 1 dev / uinterO , performs these functions:

• Memory mapping When an application is started, the device driver establishes
memoty mapping for the screen buffer and ROM code, and memoty for the

Macintosh environment.

• Event-queue handling The driver contains its own event-queue handler, similar to
the Macintosh OS Event Manager. The driver's event-queue handler supports the

queue-access routines of the Macintosh OS Event Manager. The driver posts mouse
and keyboard events.

• Cursor tracking The device driver enables vertical retrace interrupts and tracks the
cursor at each interrupt. The cursor data is shared by the kernel and the application.

• A-line trap dispatching During startup, the driver installs in shared memoty a
pointer to the A-line trap handler. When the kernel identifies an exception as a
Macintosh ROM call, it copies the return address from the kernel stack to the user
stack and invokes the trap handler. For more information on trap dispatching, see
"A-Line Traps" later in this appendix.

Initialization routine

The A/UX Toolbox initialization routine in /usr / 1 ib/maccrtO . o performs these
steps:

1 . Calls set 4 2 s ig(3), which invokes BSD 4 .2 signaling conventions.

2. Attaches to the shared data segment.

3. Opens the device driver and invokes the initialization steps described in the
preceding section, "User Interface Device Driver."

4. Initializes the dispatch tables and the Macintosh global variables.

5. Initializes various A/UX Toolbox modules.

6. Calls the application's main routine.

Running an AIUX Toolbox application C-3

A-line traps

The prima1y function of the A/UX Toolbox is to make available to programs running

under A/UX the Macintosh suppo11 code described in Inside Macintosh. Most of the

support code represents routines built into the Macintosh ROM and available as A-line

traps, that is, MC680x0 opcodes in the range OxAOOO to OxAFFF.

Under the standard Macintosh OS, A-line traps are routed by the CPU to an exception

handler. The exception handler uses a pair of dispatch tables (one for User Interface

Toolbox routines and one for Macintosh OS routines) to route the A-line traps either to
the ROM or to a ROM patch. A ROM patch is a change or bug fix to the Macintosh ROM.

In the standard Macintosh OS, the patches are stored in the System file. During

startup, the patches are loaded into memo1y, and the dispatch tables are updated as

necessa1y to point to patch routines rather than to ROM code. See Inside Macintosh,

Volumes I , II, IV, and V, for descriptions of the dispatch tables.
Because all exceptions put the CPU into supervisor mode, an A-line trap in A/UX

must be handled by the kernel. When the kernel recognizes an exception as a Macintosh
A-line trap, it invokes a trap handler that resides in user process memo1y, leaving the
processor in user mode.

The ROM dispatch tables in A/UX use two sets of ROM patches, the standard set and
the A/UX set. The standard set incorporates the standard Macintosh ROM changes and
the A/UX set accesses native ROM calls directly or provides A/UX alternatives, as
appropriate. As each application is started, startup files build dispatch tables from data in
the A/UX Toolbox libraries and the System file. No action by the application is

necessa1y. An application can install its own patches to the tables.

+ Note A-line traps cannot be called by UNIX device drivers. •

Figure C-1 illustrates the A-line trap-handling sequence in A/UX. The A/UX trap
dispatch code uses the application's trap-dispatch tables to route an A-line trap to one of
two places:

• ROM If the trap has no A/UX alternative, the table points to the ROM code.

• User RAM If the trap has an A/UX alternative, the table points to the alternative
routine in user RAM.

C-4 Appendix C Implementation Notes

A-line instruction triggers exception.

D
CPU switches to supervisor mode and

reads low-memory vector location to find
address of trap handler (in kernel) .

D
Kernel verifies that trap comes from an

A/UX Toolbox process, adjusts the user stack,
and jumps to trap-dispatch code

(in user address space) .

CPU returns to user mode.

D
Trap-dispatch routine looks in program's

dispatch table to route call.

D
ROM

(unpatched Ul
Toolbox trap or

OS trap)

D
User RA.rvJ

(patched UI
Toolbox trap or

OS trap)

Figure C-1 A-line trap handling in NUX

I;

DrawS t r ing (" H i ") ;

D
{!!!%j;

AOOO

A884

D AdJUSt stack

Trap handler

D
Trap-dispatch

code

D
xxxxxxxx

xxxx:xxxx

Trap-dispatch table J

t

Low memory

ijooomoooooO or t�. 07

[G
RAM

Running an NUX Toolbox application C-5

"Not in ROM" routines

The A/UX Toolbox also supports the "not in ROM" calls described in the Inside

Macintosh volumes. ("Nor in ROM" is explained at the end of the Preface in each volume
of Inside Macintosh.) There are two versions of code for these glue routines, both in

/usr / l ib. The nonshared archive is l ibmac . a, and the shared version is

1 ibmac_s . a. The two are functionally equivalent. You can use either version by
naming it on the command line for compiling or link editing, as with any archive file.
The shared version saves some space in applications that use it and has the advantage of
always providing the most current routines to applications that call on it. Shared libraries
are discussed in A!UX Programming Languages and Tools, Volume 1 . An A/UX Toolbox

application compiled and linked according to the instructions in Chapter 2, "Using the
A/U:X: Toolbox," will access one of these archives. Applications compiled in the
Macintosh environment must link to the appropriate libraries to use these calls.

Macintosh global variables

The standard Macintosh environment includes a set of global variables used by different

parts of the system and stored in low memory. (These global variables are described in
Inside Macintosh, Volumes III, IV, V, and VI.) To make room for these global variables,
an A/U:X: Toolbox application compiled under A/U:X: is linked at virtual memory address
OxlOOOOOOO. The launch(l) program for executing Macintosh applications from the
shell, itself an A/UX Toolbox application, is linked at this address.

Not all of the global variables listed in Inside Macintosh are supported by A/U:X:. In

general, variables related to hardware are not supp01ted. Appendix D, "Low-Memory
Global Variables," lists the supported Macintosh global variables.

File type and creator

A set of file information called the Finder information, which includes a file's type and

creator, is stored in a special entiy in both AppleSingle-format and AppleDouble-format
files in A/UX.

C-6 Appendix C Implementation Notes

The Macintosh Standard File Package, which is supported by A/UX, uses a file's type
and creator to filter the documents presented when the user opens a file from within an
application. When an A/UX file goes into the Macintosh OS environment, if no creator is
found, then 'A/UX' is assigned as creator. File types are assigned, if feasible. Files known
to be text files receive the 'TEXT' type; known shell scripts receive 'SHEL' . Chapter 6,

"File Systems and File Formats," provides general information on file handling across the
boundary between the two environments.

Converting between C
and Pascal conventions

Most of the Macintosh ROM routines use Pascal language conventions, which differ from
the convenrions usee! by the NUX C compilers.

The C and Pascal conventions differ in six primaty ways: how strings are stored, how
a parameter list is evaluated, how the parameter types are stored, how QuickDraw point
small strucn1res are passed, how function results are ren1rned, and how registers are
used. This section describes the differences.

When necessaty, the A/UX Toolbox interface routines convert C program calls to a
form usable by the ROM and then convert the ROM's output to a form usable by the C
program. The A/UX Toolbox routines that perform this conversion have three parts: the
ently conversion code, the A-line trap, and the exit conversion code.

The libraries in Release 3.0 of the A/UX Toolbox include two versions of all routines
that take strings or small strucn1res (such as QuickDraw point values) , or that return
strings. One version, spelled as the routine appears in Inside Macintosh, uses Pascal
string format and point-passing conventions. The second version, spelled in all
lowercase letters, uses C string format and point-passing conventions. The lowercase
version converts input parameters from C format to Pascal format before passing them to
the ROM and converts return values back to C format. Both versions use interface
routines to adjust for other differences in parameter-passing and return-value
conventions.

If you are writing procedures that will be called from the ROM code, you must write
assembly-language code to rework the parameters when your procedure is called.

Converting between C and Pascal conventions C-7

Storing strings

In C, a string is normally stored as an array of characters, of any length, terminated by the

null byte (\ o) . In Pascal, a string starts witl1 a byte that specifies the length of the string,

followed by a maximum of 255 characters. Because the length is specified explicitly, a
Pascal string is not terminated by a null byte.

Because both conventions contain an extra byte of information (the null byte at the
end of a C string and the count at the beginning of a Pascal string) , it is possible to

transform a string in place between the two formats. The A/UX Toolbox includes the

routines c2pstr and p2 cstr to perform these conversions. (See "String
Conversion Between Pascal and C" in Appendix F .)

The lowercase versions of all ROM routi:1es that take or return strings perform these

conversions automatically. Use the lowercase version when you are passing a string
directly to a routine. The mixed-case versions perform no conversion. Use the mixed
case version when you are using a string that is a field of a structure maintained by a
ROM routine.

The routine and parameter descriptions in Appendix F, "C Interface Libra1y," follow
these conventions:

• A pointer to a char data type (printed char *) represents a pointer to a
C-format string.

• A parameter of type s t r2 5 5 represents a Pascal-format string.

Ordering and storing parameters

Parameters in Pascal functions are evaluated from left to right and are pushed onto the
stack in the order in which they are evaluated. For example, with the function
f oo (a I b) , a is pushed first, and then b.

Parameters in C functions are evaluated from right to left (by the Macintosh C
compilers) and are pushed onto the stack in the order in which they are evaluated. With
the function foo (a I b) , b is pushed first, and then a.

When necessa1y, the A/UX Toolbox routines reorder the parameters passed to a

function before calling the ROM.

C-8 Appendix C Implementation Notes

Characters and enumerated types whose literal values fall in the range of type char
or unsigned char are pushed as bytes. (Pushing a byte on the stack requires a 16-
bit word on the stack. The value is in the high-order 8 bits; the low-order 8 bits are
unused.) short values and enumerated types whose literal values fall in the range of
type short or uns igned short are passed as 16-bit values. int and long

values and the remaining enumerated types are passed as 32-bit values. Pointers and
arrays are passed as 32-bit addresses. SANE types f loat , double, comp, and

extended are passed as extended 80-bit values.
Structures are also passed by value on the stack. Their size is rounded up to a

multiple of 16 bits (2 bytes) . If rounding occurs, the unused storage has the highest
memo1y address. The function being called removes the parameters from the stack.

Passing small structures

The Pascal language always passes small structures (less than or equal to four bytes),
such as QuickDraw point values, by value rather than by pointer, unless the structure is
declared as a VAR. (This convention is a general rule for Pascal, which passes by value
unless VAR is declared.) A/UX libra�y calls with mixed-case names follow the Pascal
convention.

The calls with lowercase names that pass small structures put the address of the
structure on the stack.

Returning function results

A/UX C functions return pointer values in registers AO and DO and non pointer values in
register DO. MPW C functions return all values in DO.

A Pascal function places its result on the stack. The caller reserves stack space for the
function result before pushing any parameters. Characters and enumerated types whose
literal values fall in the range of type char or uns igned char are returned as
bytes. (These values returned as bytes require a 16-bit word on the stack. The value is in
the high-order 8 bits; the low-order 8 bits are unused.) All short values and

enumerated types whose literal values fall in the range of type short or unsigned

short are returned as 1 6-bit values. All int and l ong values and the remaining

Converting between C and Pascal conventions C-9

enumerated types are ren1rned as 32-bit values. Pointers are ren1rned as 32-bit addresses.

Arrays cannot be returned as function results. Results of type f 1 oat are returned as

32-bit values. For types double , camp, and extended, the caller pushes the

address for a double , camp, or extended result, respectively, in the function
result location on the stack. The procedure being called stores the result at this address .

The caller removes the function results from the stack.

For structure results, if the Pascal function returns a structure of more than 4 bytes,

the caller pushes a pointer to a result space before pushing any parameters. If the

structure is 4 bytes or fewer, the caller reserves 4 or 2 bytes on the stack for it.
The A/UX Toolbox routines move the results returned by a Pascal-like ROM call to

the location appropriate for a C call .

Register conventions

Pascal treats registers DO, Dl , D2, AO, and Al as scratch registers. All other registers are

preserved. Register AS is the global frame pointer, register A6 is the local frame pointer,

and register A7 is the stack pointer. A/UX C treats only registers DO, D l , AO, and Al as
scratch registers. A6 is the frame pointer, A7 the stack pointer.

An A/UX Toolbox routine automatically saves and restores register D2 when using

ROM code.

C-10 Appendix C Implementation Notes

Appendix D :
Low-Memory Global Variables

This appendix lists the low-memoty global variables that are supported in the A/UX

Toolbox. For the function and memoty location of each variable, see the appendixes

titled "Global Variables" in Inside Macintosh, Volumes III, IV, V, and VI.

Generally, your software will have maximum portability if you don't rely on the low

memoty global variables, but instead use available routines that return the desired

information. For example, the TickCount function returns the same value that is

contained in the low-memoty global variable Ticks .

The low-memoty global variables are listed by the nanie used in the C include file

sysequ . h, available in 1 lib/ incl ude /rnac. The name of each variable is followed

by its low-memoty address, which is provided only for identification and reference to

Macintosh documentation and should never be used as an address .

The general list is followed by three brief lists of associated global variables for the

Window Manager, TextEdit, and the Resource Manager.

Table D-1 General global variables

Name Reference

ABusVars Ox2D8

ApplLirni t Ox130

ApplZone Ox2AA

BootDrive Ox210

BufPtr Ox10C

BufTgDate Ox304

BufTgFBkNurn Ox302

BufTgFFlg Ox300

BufTgFNurn Ox2FC

Caret Time Ox2F4

CPUFlag Ox1 2F

CurApName Ox910

CurApRefNurn Ox900

CurDirStore Ox398

CurJTOffset Ox934

CurPageOpt i on Ox936

Cur Pitch Ox280

CurrentA5 Ox904

CurStackBase Ox908

Def ltStack Ox322

DeviceLi st Ox8A8

DoubleTime Ox2FO

DrvQHdr Ox308

DSAlertRect Ox3F8

DSAlertTab Ox2BA

DSErrCode OxAFO

DTQueue Ox0D92

Event Queue Ox14A

Ext StsDT Ox2BE

D-2 Appendix D Low-Memory Global Variables

Description

Pointer to AppleTalk local variables

Application limit [pointer]

Application heap zone [pointer]

Drive number of boot drive [word]

Top of application memory [pointer]

Time stamp [word]

Logical block number [word]

Flags [word]

File number [long]

Caret blink ticks [long]

$00=68000, $01 =68010, $02=68020 (old ROM in its
to $00)

Name of application [STR1NG[31]]

refNurn of application's resFi l e [word]

Save directory across calls to Standard File [long]

Current jump table offset [word]

Current page 2 configuration [word]

Current pitch value [word]

Current value of A5 [pointed

Current stack base [pointer]

Default size of stack [long]

List of display devices [long]

Double-click ticks [long]

Queue header of drives in system [10 bytes]

Rectangle for disk-switch alert [8 bytes]

System error alerts [pointer]

Last system error alert ID

Deferred task queue header [10 bytes]

Event queue header [10 bytes]

sec external status interrupt vector table [16 bytes)

(conti11ued�

Table D-1 General global variables (continued)

Name

GZRootHnd

HeapEnd

H i l iteMode

H i l iteRGB

IntlSpec

JDTinstall

JFetch

JIODone

JournalRef

JStash

JVBLTask

KbdLast

Kbd'Iype

KeyRepThresh

KeyThresh

Lo3Bytes

Lvl2DT

MainDevice

MemErr

MemTop

MinStack

MinusOne

MMU32bit

OneOne

PortBUse

QDColors

RAMBase

Reference

Ox328

Ox1 14

Ox938

OxODAO

OxBAO

Ox0D9C

Ox8F4

Ox8FC

Ox8E8

Ox8F8

Ox0D28

Ox218

Ox21E

Ox190

Ox18E

Ox31A

Ox1 B2

Ox8A4

Ox220

Ox108

Ox3 1E

OxA06

OxOCB2

OxA02

Ox291

Ox8BO

Ox2B2

Description

Root handle for GrowZone [handle]

End of heap [poi mer]

Used for color highlighting

6 bytes: RGB of highlight color

International software installed if not equal to -1
[long]

Poimer to deferred task install routine [long]

Fetch a byte routine for drivers [pointer]

IODone entry location [pointer]

Journaling driver's refNum [word]

Stash a byte routine for drivers [pointer]

Vector to slot VBL task interrupt handler

Same as KbdVars + 2

Keyboard model number !byte]

Key repeat speed [word]

Threshold for key repeat [word]

Constant $00FFFFFF [long]

Interrupt level-2 dispatch table [32 bytes]

The main screen device [long]

Last Memory Manager error [word]

Top of memo1y [pointer]

Minimum stack size used in InitAppl Zone

[long]

Constant $FFFFFFFF [long]

Boolean value reflecting current machine MMU
mode [byte]

Constant $00010001 [long]

Port B use, same format as PortAUse

Handle to default colors [long]

RAM base address [poimer]

(continued,.

Low-Mem01y Global Variables D-3

Table D-1 General global variables (continued)

Name Reference

ResumeProc OxA8C

RndSeed Ox 156

ROM8 5 Ox28E

ROMBase Ox2AE

SCCRd Ox108

SCCWr OxlDC

ScrapCount Ox968

ScrapHandle Ox964

ScrapName Ox96C

ScrapSi ze Ox960

ScrapState Ox96A

ScratchS Ox9FA

Scratch2 0 Ox1E4

ScrDmpEnb Ox2F8

ScrHRes Ox104

ScrnBase Ox824

ScrVRes Ox102

SdVolume Ox260

SEvtEnb Ox15C

SFSaveDi sk Ox214

SoundBase Ox266

SoundLevel Ox27F

SoundPtr Ox262

SPAlarm Ox200

SPATalkA Ox1F9

SPATalkB OxlFA

SPC l i kCaret Ox209

SPConfig OxlFB

D-4 Appendix D Low-Memory Global Variables

Description

Address of resume procedure from
InitDialogs [pointer]

Random seed/number [long]

Actually high bit - 0 for ROM version $75 (·ic) and
later [word]

ROM base address [pointer]

sec base read address [pointed

sec base write address [pointed

Validation byte [word]

Memo1y scrap [handle)

Pointer to crap name [pointed

Scrap length [long]

Scrap state [word)

Scratch [8 bytes]

Scratch [20 bytes]

Screen dump enabled' [byte)

Screen horizontal dots/inch [word]

Screen base [pointed

Screen vertical dots/inch [word]

Global volume (sound) control [byte)

Enable SysEvent calls from GNE [byte]

Last vRefNum seen by standard file [word]

Base address for sound buffer [pointed

Current level in buffer [byte)

4VE sound definition table [pointed

Alarm time [long]

AppleTalk node number hint for port A

AppleTalk node number hint for port B

Double click/caret time in 4/60ths [4 bits)

Serial port config bits: 4-7 port A, 0-3 port B

(continued;.

Table D-1 General global variables (continued)

Name Reference Description

SPFont Ox204 Default application font number minus 1 [word]

SPKbd Ox206 Keyboard repeat threshold in 4/60ths [4 bits]
(ignored under A/ill()

SPMisc2 Ox20B Miscellaneous [1 byte!

SPPortA Ox1FC SCC port A configuration [word]

SPPortB Ox1 FE SCC port B configuration [word]

SPPrint Ox207 Print stuff [byte]

SPValid Ox1F8 Validation field ($A7) [byte]

SPVolCt l Ox208 Volume control [byte]

SysEvtMask Ox144 System event mask [word]

SysPararn Ox1F8 System parameter memo1y [20 bytes]

Syszone Ox2A6 System heap zone [pointer]

TheGDevice OxOCC8 The current graphics device [long]

TheZone Oxl 18 Current heap zone [pointed

Ticks Ox16A Tick-count, time since boot [long]

Time Ox20C Clock time (extrapolated) [long]

TimeDBRA OxODOO Number of iterations of DBRA per millisecond
[word]

TimeSCCDB Ox0002 umber of iterations of SCC access and DBRA
[word]

TimeSCS IDB Ox0DA6 Number of iterations of SCSI access and DBRA
[word]

UTableBase Oxl l C Unit 1/0 table [pointed

VBLQueue Ox160 VBL queue header [10 bytes]

VIA Ox1 04 VIA base address [pointer]

Low-Memo1y Global Variables D-5

Table D-2 Window Manager globals

Name Reference

CUrActivate OxA64

CurDeact ive OxA68

DeskHook OxA6C

DeskPattern OxA3C

DragHook Ox9F6

Ghost Window OxA84

GrayRgn Ox9EE

Paint Whi t e Ox9DC

WindowList Ox9D6

WMgrPort Ox9DE

Table D-3 TextEdit globals

Name Reference

TEDoText OxA70

TERecal OxA74

TEScrpHandle OxAB4

TEScrpLength OxABO

TESysJust OxBAC

WordRedraw Ox BAS

D-6 Appendix D Low-Memory Global Variables

Description

Window slated for activate event [pointer]

Window slated for deactivate event [pointer]

Hook for painting the desk [pointer]

Desk pattern [8 bytes]

User hook during dragging [pointer]

Window hidden from Front Window [pointer]

Rounded gray desk region [handle]

Erase newly drawn windows? [word]

Z-ordered linked list of windows [pointer]

Window Manager's grafport [pointer]

Description

TextEdit doText procedure hook [pointer]

TextEdit recal Text procedure hook [pointer]

TextEdit scrap [handle]

TextEdit scrap length [word]

System justification (international TextEdit) [word]

Used by TextEdit RecalDraw [byte]

Table D-4 Resource Manager globals

Name Reference Description

Cur Map OxASA Reference number of current map [word]

Res Err OxA60 Resource error code [word]

ResErrProc OxAF2 Resource error procedure [pointer]

Res Load OxASE Auto-load feature [word]

RomMapinsert OxB9E Determines if we should link in map [byte]

SysMap OxA58 Reference number of system map [word]

SysMapHndl OxA54 System map [handle]

SysResName OxAD8 Name of system resource file [STRING[19ll

TmpResLoad OxB9F Second byte is tempora1y ResLoad value

TopMapHndl OxA50 Topmost map in list [handle]

Low-Memory Global Variables D-7

Appendix E : Resource Compiler
and Decompiler

About the resource compiler and decompiler I E-2

Resource description statements I E-7

Preprocessor directives I E-39

Resource description syntax I E-43

This appendix explains how to build resources with the resource compiler, rez , and

how to use the resource decompiler, derez . See Inside Macintosh, Volume I, for a

description of resources.

About the resource compiler and decompiler

The resource compiler, rez , compiles one or more text files, called resource

desctiptionfiles, and produces a resource file. The resource decompiler, derez ,

decompiles a resource file, producing a new resource description file that can be

understood by re z . Figure E-1 illustrates the complementaJY relationship between
rez and derez .

Resource
file

D

Resource
decompiler

derez

Figure E-1 rez and derez

Resource
description

file

In A/UX, rez always creates an AppleDouble header file. derez always creates
a standard A/UX text file.

rez can combine resources or resource descriptions from a number of files into a
single resource file. rez can also delete resources or change resource attributes. rez

supports preprocessor directives that allow you to substitute macros, include other files,
and use if-then-else constructs. (These directives are described in "Preprocessor
Directives," later in this appendix.)

E-2 Appendix E Resource Compiler and Decompiler

derez creates a text representation of a resource file based on resource type
declarations identical to those used by rez . (If you don't specify any type declarations,
the output of derez is in the form of raw data statements.) The output of derez is a
resource description file that can be used as input to rez . You can edit this file to add
comments, translate resource data into a foreign language, or specify conditional
resource compilation by using the if-then-else structures of the preprocessor. You can
also use the A/UX di f f(l) command to compare resource description files.

Standard type declaration files

Four text files-types . r , systypes . r, script types . r, and pict . r
contain resource declarations for standard resource types. These files are located in the
directory /mac ! l ib/rinc ludes . They contain definitions for the following types:

types . r

systypes . r

script types . r

pict . r

type declarations for the most corru11on Macintosh resource
types (' ALRT ' , ' DITL ' , ' MENU ' , and SO on)

type declarations for ' DRVR ' , ' FOND ' , ' FONT ' ,
' FWID ' , ' INTL ' , and ' NFMT ' resources and many

others

type declarations for resource descriptions specific to the
Script Manager

type declarations for debugging ' PICT ' resources

About the resource compiler and decompiler E-3

Using rez and dere z

rez and derez are primarily used to create and modify resource files. Figure E-2

illustrates the process of creating a resource file.

Text editor
or

derez

f i l ename . r

Resource
description

'TEXT'

Resource
compiler

% f i l ename

Resource
file

ResEclit

Other
resource

files

Figure E-2 Creating a resource file

E-4 Appendix E Resource Compiler and Decompiler

Structure of a resource description file

The resource description file consists of resource type declarations (which can be
included from another file) followed by resource data for the declared types. The
resource compiler and resource decompiler have no built-in resource types. You must

either define your own types or include the appropriate type declaration (. r) files.

A resource description file contains any number of the seven resource statements:

change Changes the type, ID, name, or attributes of exi ring resources.

data

de lete

inc lude

read

resource

type

Specifies raw data.

Deletes existing resources.

Includes resources from another file.

Reads data file and includes it as a resource.

Specifies data for a resource type declared in a previous type
statement.

Declares resource type descriptions for subsequent resource
statements.

The section "Resource Description Statements, " later in this appendix, describes each
of these statements.

A type declaration provides the pattern for any associated resource clara
specifications by indicating data types, alignment, size and placement of strings, and so
on. You can intersperse type declarations and data in the resource description file as
long as the declaration for a given resource precedes any resource statements that
refer to it. An error is returned if data (that is, a resource statement) is given for a
type that has not been previously defined. Whether a type was declared in a resource
description file or in an include file, you can recleclare it by providing a new declaration
later in a resource description file.

About the resource compiler and decompiler E-5

A resource description file can also include comments and preprocessor directives:

• Comments can be included anywhere that white space is allowed in a resource

description file, within the comment delimiters 1 * and * / . Comments do not nest.
For example, this is one comment:

/ * Hello / * there * /

rez also support C++ style comments:

type ' tost ' { I I the rest o f this l ine i s ignored

• Preprocessor directives substitute macro definitions and include files and provide if
then-else processing before other rez processing takes place. The syntax of the

preprocessor is similar to that of the C-language preprocessor. For details, see

"Preprocessor Directives," later in this appendix.

Sample resource description file

An easy way to learn about the resource description format is to decompile some
existing resources. For example, the following command decompiles only the ' WIND '

resources in the sample application, according to the type declaration in types . r ,

in the /mac/ l ib/ rinc ludes directOiy: '-......./

derez sample -only WIND types . r > derez . out

After this conunand is run, derez . out contains this text:

resource

} ;

' WIND ' (1 2 8 , " Sample Window ") {

{ 6 4 , 6 0 , 3 1 4 , 4 6 0 } '

documentProc ,

vi s ible ,

noGoAway ,

OxO ,

" Sample Window "

E-6 Appendix E Resource Compiler and Decompiler

Note that this statement i identical to the resource description in the file
sample . r, which was originally used to build the resource. This resource data
corresponds to the following type declaration, contained in types . r :

type ' WIND '

rect ;

integer

byt e

f i l l byt e ;

byte

f i l l byte ;

/ * boundsRect * /

document Proc , dBoxProc , plainDBox , / * proc iD * /

altDBoxProc , noGrowDocProc ,

zoomProc=8 , rDocProc= l 6 ;

invi s ible , vi s ible ; I * vis ible * /

noGoAway , goAway ; / * goAway * /

uns igned hex longint ; / * re fCon * /
p s t r ing Unt i t l ed = " Unt i t l ed " ; / * t i t l e * /

} ;

type and resource statements are explained in detail in the next section,
"Resource Description Statements. "

Resource description statements

This section describes the syntax and use of the seven resource description statements:
change, data, delete, inc lude, read, resource, and type.

Syntax notation

The syntax notation in this appendix follows the conventions given in the Preface, with
these additions:

• Words that are part of the resource description language are shown in courier to
distinguish them from other text. rez is not sensitive to the case of these words.

• Punctuation characters such as commas (,), semicolons (;), and quotation marks (·

and ") are to be written as shown.

Resource description statements E-7

• If one of the syntax notation characters (for example, [or]) must be written as a

literal, it is shown enclosed by "curly" single quotation marks, like this:

bi tstring ' [' length '] '

In this case, the brackets are typed literally. The brackets do not mean that the

enclosed element is optional.

• Spaces between syntax elements, constants, and punctuation are optional. They are
used only to make reading code easier.

• Hexadecimal numbers are flagged with a leading dollar sign. Tokens in resource
de cription statements can be separated by spaces, tabs, newlines, or comments.

ore that braces ({ and }) are to be written as shown.

Special terms

The following terms represent a minimal subset of the nonterminal symbols used to
describe the syntax of commands in the resource description language.

Term Definition

resource-type long-expression

resource-name string

resource-ID word-expression

ID-range ID [: IDJ

+ Note The placeholder expression is defined in "Expressions," later in this
appendix. •

For more information on syntax, see "Resource Description Syntax," later in this
appendix.

E-8 Appendix E Resource Compiler and Decompiler

change-change a resource's vital information

Syntax

Description

The change statement changes a resource's vital information. Vital information
includes the resource type, ID, name, attributes, or any combination of these.

change resource-typel [' (' resource-namel l !Dl[: ID2] ') ']

to resource-type2 ' ('ID[, resource-name2] [, attributes .. .] ') ' ;

Changes the resource of type resource-typel in the output file with the specified
identifier resource-namel, ID, or range of ID numbers to a resource of type resource
type2 with the specified ID. You can optionally specify resource-name2 and attributes
for the new resource. If neither resource-name2 nor the attributes are specified, the
name and attributes are not changed.

For example, here is a shell command (echo) that calls on rez to set the protected
bit on for all ' CODE ' resources in the file Tes tDA:

echo " change ' CODE ' t o $ $ type ($ $ Id , $ $Attributes I 8) ; " a

I rez -a - o TestDA

The continuation character (a, obtained by pressing OPTION-D) at the end of the first
line of this example has the effect of continuing the command onto the next line. The
continuation character is used to escape the character that follows from performing its
usual action. In this case, the subsequent character is a newline, and the line-termination
function is escaped.

+ Note The change statement is valid only when the -a (append) option is
specified in the command line. It makes no sense to change resources when you're
creating a new resource file from scratch. •

chang�change a resource's vital information E-9

dat a-specify raw data

Syntax

Description

data statements specify raw data as a sequence of bits, without any formatting.

data ' resource-type · ' (' ID [, " resource-name"] [, attributes . . .] ') ' {
" data-string"

} ;

Reads the data found in the string data-string and writes it as a resource with the type

resource-type and the resource ID ID. You can optionally specify a resource name,
resource attributes, or both.

For example, the following statement reads the data string shown and writes it as a

' P ICT ' resource with resource ID 128:

data ' PICT ' (1 2 8) {

$ " 4F3 5FF8 7 9 0 0 0 0 0 0 0 "

$ " FF2 3 4F3 5FF7 9 0 0 0 0 "

} ;

+ Note When derez generates a resource description, it uses the data statement
to represent any resource type that doesn't have a corresponding type declaration or that
cannot be disassembled for some other reason. •

E-10 Appendix E Resource Compiler and Decompiler

de l ete-delete a resource

�yntax

Description

The delete statement deletes a resource. This statement can be useful, for example,
in the process of translating menu and dialog box text in system disks or applications

intended for use in non-English-speaking countries. The delete statement and the

change statement (described earlier in this appendix) allow you to delete and change
resources without switching to ResEdit.

delete · resource-�ype · [· (· resource-name ! IDI[: ID2] ·) ·] ;

Deletes the resource of type resource-type from the output file with the specified
identifier resource-name, ID, or range of ID numbers. If both the resource name and the
ID are omitted, all resources of type resource-type are deleted.

+ Note The de l e t e statement is valid only when the -a (append) option is

specified in the command line. It makes no sense to delete resources when you're
creating a new resource file from scratch. •

You can delete resources that have their protected bit set only if you use the -ov
option.

Here is an example of a shell command (echo) that calls on rez to delete all
resources of type · ckid · from the file SomeTextFi le :

echo " delete ' ckid ' ; " I rez -a -o SomeTextFile

delete-delete a resource E-ll

i n c 1 ude-include resources from another file

Syntax

Description

The include statement reads resources from an existing file and includes all or some
of them.

inc lude "filename" [· resource-type · [' (' " resource-name" 1 !Dl[: JD2] ') ']] ;

Reads the resource of type resource-type with the specified resource name, ID number,
or range of ID numbers in the file jztename. If both the resource name and the resource
ID are omitted, inc 1 ude reads all resources of the type resource-type in the file

filename. If resource-type is omitted, inc 1 ude reads all the resources in the file

filename. These three possibilities are illustrated in the following examples:

include " other f i l e " ' CODE ' (12 8) ; I * read only CODE resource 1 2 8 * I

include " other f i l e " ' CODE ' ; I * read only the CODE resources * I

include " other f i le " ; I * read a l l resources from the f i l e * I

inc lude "filename" not ' resource-type · ;
Read all resources not of the type resource-type in the file filename.

include "filename" ' resource-typel ' a s ' resource-type2 · ;

Read all resources of type resource-typel and include them as resources of type
resource-type2.

include "filename" · resource-typel · ' (' " resource-namel " I JDl[: ID2] ') '

a s · resource-type2 · ' (' ID [I " resource-name2"] [I attribute . . .]

') ' ;
Read the resource of type resource-typel with the specified resource name, ID number, or
range of ID numbers in the file filename, and include it as a resource of type resource
type2with the specified ID. You can optionally specify resource-name2 ancl new resource
attribute. Resource attributes are defined in "Resource Attributes," later in this section.

E-12 Appendix E Resource Compiler and Decompiler

Resource
attributes

The following string variables can be used in the include as resource
description statement to modify the resource information:

$ $Type type of resource from include file

$ $ 10 ID of resource from include file

$ $Name

$ $At t ributes

name of resource from include file

attributes of resource from include file

For example, to include all ' ORVR ' resources from one file and keep the same
information, but also set the SYSHEAP attribute, you would use a statement like this:

include " f i le " ' ORVR ' (0 : 4 0) as

' ORVR ' ($ $ 1 0 , $ $Name , $ $Att ributes I 6 4) ;

The $ $Type, $ $ 10, $ $Name, and $ $At t ributes variables are also set and
legal within a normal resource statement. At any other time the values of these
variables are undefined.

You can specify attributes by using a numeric expression (as described in the Resource
Manager chapters of Inside Macintosh, Volumes I, IV, and V), or you can set them
individually by specifying one of the keyword from any of the following pairs.

Default Alternative

appheap sysheap

nonpurgeable purgeable

unlocked locked

Meaning

Specifies whether the resource is to be loaded into
the application heap (appheap) or the system
heap (sy sheap) . This attribute is meaningless if
the resource is used only in A/UX.

Specifies whether purgeable resources can be
automatically purged by the Memoty Manager
(purgeable) , or not (nonpurgeable) .

Specifies whether locked resources can be moved
by the Memory Manager (unlocked), or not
(locked).

unprotected protected Specifies whether protected resources can be
modified by the Resource Manager
(unprotected), or not (protected) .

include-include resources from another file E-13

nonpreload preload

unchanged changed

Specifies whether preloacled resources are placed in
the heap as soon as the Resource Manager opens
the resource file (nonpreload), or not
(preload) .

Tells the Resource Manager whether a resource has
been changed (changed) or not (unchanged).
rez does not allow you to set this bit, but derez
displays i t i f i t is set.

Bits 0 and 7 of the resource attributes are reserved for use by the Resource Manager
and cannot be set by rez , but are displayed by derez .

You can list more than one attribute by separating the keywords with a comma (,) . An

example of attribute use is given in the next section, "read-Read Data as a Resource."

E-14 Appendix E Resource Compiler and Decompiler

read-read data as a resource

Syntax

Description

The read statement reads a data file or the data entty in a file as a resource.

read · resource-type · ' (' ID [, " resource-name"] [, attributes . . .] ') '

"filename" ;

Reads the file jtlename and writes it as a resource with the type resource-type and the
resource ID ID, with the optional resource name resource-name and optional resource
attributes attributes (as defined in the section "inc 1 ude-Include Resources From
Another File") . For example, the statement

read ' STR ' (- 7 8 9 , " Test String " , sysheap , preload) " Test8 " ;

reads Test 8 and writes it as a ' STR ' resource with the resource ID -789, the
resource name Test String, and the resource attributes sysheap and
preload.

read-read data as a resource E-15

resource-specify resource data

Syntax

Description

The resource statement specifies an actual resource, based on previous type
declarations.

resource ' resource-type · ' (' IDL resource-name] [, attributes] ') ' {

[data-statement1[, data-statement2] . . .]

} ;

Specifies the data for a resource of type resource-type and ID ID. The latest type
declaration declared for resource-type is used to parse the data specification. The data

statement parameter specifies the actual data; the data-statement term appropriate to

each resource type is defined in "Data Statements," later in this section.
The resource definition causes an actual resource to be generated. A

resource statement can appear anywhere in the resource description file, or in a
separate file specified on the conm1and line, or as an include file, as long as it comes

after the relevant type declaration.

Data statements The body of the data specification contains one data statement for each declaration in
the corresponding type declaration. The base type must match the declaration.

Base type

string

bit st ring

rect

point

Instance types

string, c s tring, pstring, wst ring char

boo lean, byte , integer, l ongint , bitstring

rect

point

Switch data Switch data statements are specified in the following format:

switch-name case-body

For example, the following statement could be specified for the ' DITL ' type
declaration example given in "Switch Type" in the description of the type declaration,
later in this appendix. The switch-name example is CheckBox.

CheckBox { enabled , " Check here " } ,

E-16 Appendix E Resource Compiler and Decompiler

Sample resource

d�jznition

The boo lean and ps tring values defined in the case-body section of the
CheckBox case are set to enabled and to " Check here " ; the key

bi tstring term was already set to a constant in the definition. Now data items are

provided for all terms of the case-body section.

Array data Array data statements have the following format:

{ [array-element [, array-element] . . .] }

An array-element parameter consists of any number of data statements, separated by
commas.

For example, the following data might be given for the · STR# ' type declaration
example in "Array Type" in the description of the type declaration, later in this appendix.

resource ' STR# ' (2 8 0) {

" this " ,

,, i s " ,
" a rr ,

" test "

} ;

The example given here describes a sample resource description file for a window.
(See the Window Manager chapter in Inside Macintosh, Volume I , for information about
resources for windows.)

Here is the type declaration given later i n this appendix in "Sample type
Statement":

type ' WIND ' {

rect ;

integer

byte

f i l l byte ;

document Proc , dBoxProc , plainDBox ,

altDBoxProc , noGrowDocProc ,

zoomProc=8 , rDocProc=l 6 ;

invi sible, vi sible;

/ * boundsRect * /

/ * prociD * I

! * visible * /

(conlinuedY.

resource-specify resource data E-17

byte noGoAway , goAway ; / * has c lose box * /

f i l l byte ;

uns igned hex longint ; / * refCon * I

pstring Unt i t l ed = " Unt itled" ; / * t i t l e * /

} ;

Here is a typical example of the window data corresponding to this declaration:

resource ' WIND ' (12 8 , "My window " , appheap , preload)

{ / * status report window* /

/ * status report window* /

{ 4 0 , 8 0 , 12 0 , 3 00 } , / *bounding rectangle*/

docurnent Proc , / *docurnentProc etc . * /

Vi sibl e , / *V i s ible o r Invi sibl e * /

goAway , / *GoAway or NoGoAway* /

0 , / * reference value RefCon * /

" Status Report " / * t i t le* /

} ;

This data definition declares a resource of type ' WIND ' , using whatever type
declaration was previously specified for ' WIND ' . The resource ID is 1 28; the resource
name is My window. Because the resource name is represented by the Resource
Manager as a pstring string, it should not contain more than 255 characters. The
resource name can contain any character, including the null character ($00). The
resource is placed in the application heap when loaded, and it is loaded when the
resource file is opened.

E-18 Appendix E Resource Compiler and Decompiler

The first statement in the window type declaration declares a bounding rectangle for

the window and corresponds to

rect ;

in the type declaration. The rectangle is described by two points: the upper-left corner
and the lower-right corner. The coordinates for these two points of a rectangle are
separated by commas:

{ top I l�jt I bottom I right}

Thus, the following values correspond to the coordinates top, l�fi, bottom, and right:

{ 4 0 , 8 0 , 12 0 , 3 0 0 }

Symbolic names Symbolic names can be associated with particular values of a numeric
type. A symbolic name is given for the data in the second, third, and fourth fields of the
window declaration. For example:

integer documentProc= O , dBoxProc=1 , p1ainDBox=2 ,

a l tDBoxProc=3 , noGrowDocProc =4 ,

zoomProc=8 , rDocProc=l 6 ; / *windowType * /

This statement specifies a signed 16-bit integer field with symbolic names associated
with the values 0 through 4 ancl 16. The values 0 through 4 need not be indicated in this
case; if no values are given, symbolic names are automatically given values starting at 0,
as explained earlier.

The sample window declaration assigns the values TRUE (1) and FALSE (0) to two
different byte variables. For clarity, the window's resource data uses the symbolic names

visible ,

goAway ,

instead of their equivalents

TRUE ,

TRUE ,

or

1 '

1 '

resource-specify resource data E-19

type-declare resource type

Syntax

Description

The type declaration provides a template that defines the structure of the resource

data for a single resource type or for individual resources. If more than one type

declaration is given for a resource type, the last one read before the data definition is the

one that's used. Therefore, you can override declarations from include files or previous
resource description files.

type ' resource-�ype · [' (' JDI[:!D2] ') ']
type-specification . . .

} ;

Causes any subsequent resource statement for the type resource-type to use the
declaration { type-specification . . . } . The optional !Dl[: ID2] specification causes the

declaration to apply only to a given resource ID or range of IDs. The first 12 type

specifications in the following list are data types.

type-specification can be any one of these options:

bitstring [n)
byte
integer
longint
boolean
char
string
pstring
wstring
cstring
point
rect
f i l l
al ign
switch
array

zero fill
zero fill to nibble, byte, word, or long word bounda1y
control construct (case statement)
array data specification-zero or more instances of data types

E-20 Appendix E Resource Compiler and Decompiler

Data-type
specifications

These types can be used singly or together in a type statement. Each of these type
specifiers is described later in this section.

+ Note Several of these types require additional fields. The exact syntax is given later
in this section. •

You can also declare a resource type that uses another resource's type

declaration, by using the following variant of the type statement:

type · resource-typel · [' (' 1Dl[: ID2] ') '] as · resource-type2 · [' (' JD ') '] ;

A data-type statement declares a field of the given data type. It can also associate
symbolic names or constant values with the data type. Data-type specifications can take
three forms, as shown in this example:

type ' XAMP '

byte ;

/ * dec l are a r e s our c e o f type ' XAMP ' * /

} ;

byt e o f f= O , on=l ;

byt e = 2 ;

• The first byt e statement declares a byte field; the actual data is supplied in a

subsequent resource statement.

• The second byt e statement is identical to the first, except that the two symbolic

names o f f and on are associated with the values 0 and 1 . These symbolic names
could be used in the resource data.

• The third byte statement declares a byte field whose value is always 2. In this
case, no corresponding statement appears in the resource data.

+ Note Numeric expressions and strings can appear in type statements; they are
defined in "Expressions," later in this appendix. •

type-declare resource type E-21

Numeric types The numeric types (bit string, byte , integer, and longint)

are fully specified as follows:

[unsigned] [radix] numeric-type [=expr I symhol-d�finition. . .] ;

Explanations of these fields follow. Information on the optional expr and symhol

dejlnition fields is given with the explanations of various numeric-type designations.

• The uns i gned prefix signals derez that the number should be displayed

without a sign-that the high-order bit may be used for data and the value of the
integer cannot be negative. The uns igned prefix is ignored by rez but is
needed by derez to correctly represent a decompiled number. rez uses a sign

if it is specified in the data. Precede a signed negative constant with a minus sign (-);

$FFFFFF85 and -$7B are equivalent in value.

• radix is one of the following string constants:

hex Data is supplied as hexadecimal .

dec imal Data is supplied as decimal.

octal

binary

Data is supplied as octal.

Data is supplied as binary.

l i teral Data is taken as literal input.

• numeric-type is one of the following types:

bi t s tr ing ' [' length' J ' Bitstring of length bits (maximum 32).

byt e Byte (8-bit) field. This type is the same as
bitstring [8] .

int eger

longint

Integer (16-bit) field. This type is the same as
bit string [1 6] .

Long integer (32-bit) field. This type is the same as
bit string [3 2] .

rez uses integer arithmetic and stores numeric values as integer numbers. rez
translates boolean, byte , integer, and longint values to bitst ring
equivalents. All computations are done in 32 bits and truncated.

An error is generated if a value won't fit in the number of bits defined for the type.
The byte , integer, and longint constants are valid in the ranges shown in the
list that follows.

E-2 2 Appendix E Resource Compiler and Decompiler

Type Maximum Minimum

byte 255 -128

int eger 65535 -32768

longint 4294967295 -2147483648

Boolean type A Boolean type is a single bit with two possible states: 0 (or FALSE)
and 1 (or TRUE) . (TRUE and FALSE are global predefined identifiers.) Boolean

values are declared as follows:

boolean [= constant I symbolic-value . . .] ;

For example, the following Boolean type declaration declares a value of FALSE:

type ' DONE ' {

boolean = false ;

} ;

Type boolean declares a 1-bit field equivalent to

uns igned bi t s t ring [l]

Note that this type is not the same as a Boolean variable as defined by Pascal.

Character type Characters are declared as follows:

char [= string I symbolic-value . . .] ;

For example:

type ' SYMB '

char dol lar " $ " , percent 11 9:- 11 . 0 '

} ;

resource ' SYMB ' (12 8)

dol lar

} ;

Type char declares an 8-bit field equivalent to

string [l]

type-declare resource type E-23

String type String data types are specified as follows:

string-type [' [' length ' l '] [= string 1 symbol-value . . .] ;

string-type is one of the following types:

[hex] s tring

Plain string (contains no length indicator or termination character). The optional hex

prefix tells derez to display the string as a hex string. The expression string [nJ

contains n characters and is n bytes long. Type char i s shorthand for string [1] .

pstring

Pascal string. (A leading byte contains the length information.) The expression
ps tri ng [n] contains n characters and is n + 1 bytes long. ps tring Ius a built-in

maximum length of 255 characters, the highest value the length byte can hold. If the
string is too long to fit the field, rez issues a warning and truncates the string.

ws tring

Vety large Pascal string. (Two leading bytes contain the length information.) A string of

this type can contain up to 65,535 characters. The expression wstring [nJ contains n

characters and is n + 2 bytes long.

est ring

C string. (A trailing null byte marks the end of the string.) The expression cstring [n]

contains n- 1 characters and is n bytes long. A C string o f length 1 can be assigned only
the value " " , because cstring [1] has room only for the terminating null.

Each string type can be followed by an optional length indicator in brackets ([n]) .

length is a n expression indicating the string length in bytes. length is a positive number

in the range 1 � length � 2147483647 for st ring and cstring, in the range 1 �

length � 255 for ps tring, and in the range 1 ,s. length .S. 65535 for wst ring.

• Note You cannot assign the value of literals to string data types. •

E-24 Appendix E Resource Compiler and Decompiler

Fill and
align types

If no length indicator is given, pstring, wstring, or cstring stores the
number of characters in the corresponding data definition. If a length indicator is given,
the data can be truncated on the right or padded on the right. The padding characters for
all string types are nulls. If the data contains more characters than the length indicator

provides for, rez issues a warning message and truncates the string.

A Warning A null byte within a C string is a termination indicator and may confuse
dere z and C programs. However, the full string, including the explicit null and any
text that follows it, is stored by rez as input. A.

Point and rectangle types Because points and rectangles appear so frequently in
resource files, they have their own simplified syntax:

point [= point-constant I symbolic-value . . J ;

rect [= rect-constant I symbolic-value . .] ;

where

point-constant = { x-integer-expr, y-integer-expr }

and

rect-constant = { integer-expr, integer-expr, integer-expr, integer-expr }

These type statements use integer expressions to declare a point (two 16-bit signed
integers) or a rectangle (four 16-bit signed integers) . The integers in a rectangle
definition specify the rectangle's upper-left and lower-right points, respectively.

The resource created by a resource definition has no implicit alignment. It's treated
as a bit stream, and integers and strings can start at any bit. The f i 1 1 and al ign
type specifiers allow you to pad fields so that they begin on a boundaty that corresponds
to the field type. align is automatic, and f i l l is explicit. Both f i l l and
align generate zero-filled fields.

type-declare resource type E-25

Fill specification The f i l l statement causes re z to add the specified number of

bits to the data stream. The fill is always 0. The form of the statement is

f i 11 fill-size [' [' length' J '] ;

where jtll-size is one of the following strings:

bit

nibble

byte

word

long

These strings declare a fill of 1, 4, 8, 16 , or 32 bits (optionally multiplied by length).

length is an expression whose value is less than or equal to 2147483647.

The following f i l l statements are equivalent:

f i l l word [2] ;

f i l l long ;

f i l l bit [3 2] ;

The full form of a type statement specifying a fill might be as follows:

type ' XRES ' { type-specification; f i l l bit [2] ; } ;

+ Note rez supplies zeros as specified by f i l l and align statements.
derez does not supply any values for f i l l or al ign statements; it just skips the
specified number of bits, or skips bits until data is aligned as specified. •

E-26 Appendix E Resource Compiler and Decompiler

Array type

Align specification Alignment causes rez to add fill bits of zero value until the data
is aligned at the specified boundary. An alignment statement takes the following form:

align align-size ;

where align-size is one of the following strings:

n ibbl e

byte

word

long

Alignment pads with zeros until data is aligned on a 4-bit, 8-bit, 16-bit, or 32-bit
boundary. This alignment affects all data from the point where it is specified to the
beginning of the next a 1 i gn statement.

An array is declared as follows:

[wide] array [array-name I ' [' length' J '] { array-list } ;

The array-list argument, a list of type specifications, is repeated zero or more times. The
wide option generates the array data in a wide display format (in derez)-the
elements that make up the array list are separated by a comma and space instead of a
comma, newline, and tab. Either array-name or [length] can be specified. array-name
is an identifier.

If the array is named, then a preceding statement must refer to that array in a constant
expression with the $ $ Countof(array-name) function; otherwise, derez is unable
to decompile resources of this type. For example, in the following declaration, the
$ $Coun t o f function returns the number of array elements (in this case, the number of
strings) from the resource data.

type ' STR# '

} ;

/ * de f ine a str ing l i st resource* /

integer = $ $Countof (St ringArray) ;

array StringArray

pstring ;

} ;

If [length] is specified, there must be exactly length elements.

type-declare resource type E-27

Array elements are generated by commas. Commas are element separators.

Semicolons (;) are element terminators. However, semicolons can be used as element

separators, as in this example:

type ' xy zy '

array Increment

integer = $ $Arrayindex (Increment) ;

} ;

} ;

resource ' xy zy ' (1) {

I * zero element s * I

} ;

resource ' xy zy ' (3) {

I * two elements * I

} ;

I * The only way to spec i fy one element in an array that has

al l constant element s is to use a semicolon terminator .

I *

resource ' xyzy ' (4) {

I * one element * I

} ;

E-28 Appendix E Resource Compiler and Decompiler

Switch type The swi tch statement specifies a number of case statements for a given field or fields
in the resource. The format is as follows:

switch { case-statement. . . } ;

where case-statement has the following form:

case case-name : [case-body;] . . .

The case-name argument is an identifier. The case-hody argument can contain any
number of type specifications and must include a single constant declaration per case, in
the following form:

key data-type = constant

Which case applies is based on the key value, as illustrated in this example:

type ' DITL ' { I * dialog i tem l i st declarat ion from types . r * I

} ;

type specijkations . . .

swit ch {

case Button :

bool ean

I * one of the following * I

enabled, di sabled ;

key b i t s tring [7] = 4 ;

pst ring ;

I * key value * I

case CheckBox :

bool ean enabled, disabled ;

key bitst ring [7] = 5 ; I * key value * I

pstring ;

. . . and so on.

} ;

type-declare resource type E-29

Sample type The following sample type statement is the standard declaration for a · WIND ·

statement resource, taken from the types . r file.

type ' WIND ' {

rect ;

integer

byte

fill byte ;

byte

f i l l byte ;

documentProc , dBoxProc , plainDBox ,

altDBoxProc , noGrowDocProc ,

zoomProc= 8 , rDocProc= 1 6 ;

invisible, vi s ible ;

noGoAway , goAway ;

unsigned hex longint ;

pstring Unt i t led = " Unt i t l ed " ;

} ;

I * boundsRect * I

I * prociD * I

I * vi sible * I

! * has close box * /

I * refCon * /

! * t i t l e * /

The type declaration consists of header information followed by a series of

statements, each terminated by a semicolon (;). The header of the sample window
declaration is

type ' WIND '

The header begins with the type keyword followed by the name of the resource
type being declared-in this case, a window. You can specify a standard Macintosh

resource type, as listed in the Resource Manager chapters of Inside Macintosh, Volumes

I, IV, and V, or you can declare a resource type specific to your application.
The left brace ({) introduces the body of the declaration. The declaration continues

for as many lines as necessaty and is terminated by a matching right brace (}). You can
write more than one statement on a line, and a statement can be on more than one line
(like the integer statement in the example) . Each statement represents a field in the
resource data. Comments can appear anywhere that white space can appear in the
resource description file; comments begin with /* and end with *I as in C.

E-30 Appendix E Resource Compiler and Decompiler

�)lmbol
d�finitions

Symbolic names for data-type fields simplify the reading and writing of resource
definitions. Symbol definitions have the form

name = value [, name = value] . . .

For numeric data, the = value part of the statement can be omitted. If a sequence of

values consists of consecutive numbers, the explicit assignment can be left out, and if
value is omitted, it's assumed to be one greater than the previous value. (The value is
assumed to be 0 if it's the first value in the list.) This implicit assignment is true for

bitstrings (and their derivatives, byte , int eger, and longint) . For example, in
the following statement, the symbolic names document Proc, dBoxProc,

plainDBox, al t DBoxProc, and noGrowDocProc are automatically assigned the
numeric values 0, 1, 2, 3, and 4 .

integer document Proc , dBoxProc , plainDBox ,

altDBoxProc , noGrowDocProc ,

z oomPro c = 8 , rDo c Proc = l 6 ;

Memory is the only limit to the number of symbolic values that can be declared for a
single field . There is also no limit other than memory to the number of names you can
assign to a given value; for example, this statement is valid:

integer documentProc= O , dBoxProc= l , plainDBox=2 , altDBoxProc=3 ,

rDocProc=l 6 ,

Document =O , Dialog=l , DialogNoShadow=2 , ModelessDialog=3 ,

DeskAccessory= l 6 ;

cype-cleclare resource type E-31

Labels

Syntax

Description

Labels are needed to support some of the more complicated resources such as I NFNT I

and Color QuickDraw resources. Use labels within a resource type declaration to

calculate offsets and permit accessing of data at the labels.

lahel ----t character l alphanuml ,,, ' : '

character ----t '_' I A I B I C . . .
number ----t 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9
alphanum ----t character I number

Labeled statements are valid only within a resource type declaration. Labels are local to

each type declaration. A single label can appear on any statement.
In expressions, only the identifier portion of the label (that is, everything up to, but

excluding, the colon) can be used. See "Declaring Labels Within Arrays, " later in this
section.

The value of a label is always the offset-in bits-between the beginning of the

resource and the position at which the label occurs when mapped to the resource data.
In the following label definition example, the label is defined as a cs t ring string
followed by an integer containing the bit count of the particular label:

type ' st rb I {

cstring ;

endOfString :

integer = endOfString ;

} ;

Here is an example of this label:

resource ' st rb ' (8) {

" He l l o "

The label c s tring is " He 1 1 o " , followed by an integer containing the value 48.
The value is calculated as follows, based on the definition of c string (string with an
added null byte) and the bit value of 8 provided for resource I s trb I :

(len (" He l lo ") [5] + null byte [1]) * 8 [bits per byte] = 4 8

E-32 Appendix E Resource Compiler and Decompiler

Built-in
functions that
access resource

data

In some cases, it is desirable to access the actual resource data that a label points to.
Several built-in functions allow access to that data:

$ $Bi tField (Label I startingPosition I numherQfBits)
Return value of the bitstring of length numberOJBits (maximum 32) found at
stmtingPosition bits from Label.

$ $Byte (label)

Return the byte found at label.

$ $Word (label)
Return the word found at label.

$ $Long (label)
Return the long word found at label.

For example, you could redefine the resource type ' STR ' without using a
ps tr ing string. Here is the definition of ' STR · from types . r :

type ' STR '

pstring ;

Here is a redefinition of ' STR ' using labels:

type ' STR '

l en :

s top :

} ;

byte = (s top - len) I 8 - 1 ;

s tring [$ $ Byte (len)] ;

Labels E-33

Declaring labels Labels declared within arrays can have many values. Each element in the array

within arrays corresponds to a value for each label defined within the array. Array subscripts provide
access to the individual values of these labels. Subscript values range from 1 to n, where

n is the number of elements in the array. Labels within arrays that are nested in other
arrays require multidimensional subscripts. Each level of nesting adds another subscript.
The rightmost subscript varies most quickly. Here is a label definition example:

type ' test '

integer = $ $Count0f (array1) ;

array array 1 {

integer = $ $Count0f (array2) ;

array array2 {

foo : integer ;

} ;

} ;

} ;

Here is an example of ' t e st ' in use:

resource ' test ' (1 2 8) {

} ;

{ 1 , 2 , 3 } ,

{ 4 ' 5 }

In the example just given, the label foo would take on these values:

foo [1 , 1] 3 2 $ $Word (foo [l , 1)) 1

foo [1 , 2] 4 8 $ $Word (foo [1 , 2]) 2

foo [l , 3] 6 4 $ $Word (foo [1 , 3]) 3

foo [2 , 1) 9 6 $ $Word (foo [2 , 1]) 4

foo [2 , 2] 1 1 2 $ $Word (foo [2 , 2]) 5

A new built-in function may be helpful in using labels within arrays:

$ $Array Index (array-name)

This function returns the current array index of the array array-name. An error occurs if
this function is used anywhere outside the scope of the array array-name.

E-34 Appendix E Resource Compiler and Decompiler

Label limitations The derez decompiler is basically a one-pass decompiler. In order for derez to
decompile a given type, no expression within that type can contain more than one

undefined label. Any label that occurs lexically after the expression is undefined. The
use of a label within an expression defines the label.

The decompiler can keep track of one unknown value at a time, pending definition of
the value. This example demonstrates an expression with more than one undefined label:

type ' test '

I * In the express ion bel ow , s tart i s def ined , next i s

undef ined . * I

start : int eger = next - s tart ;

I * In the expres s i on below , next i s defined because i t

was used in a previous expres sion , but f inal i s

unde f ined . * I

m i ddl e : i n t eger = f inal - next ;

next : integer ;

f i nal : I * f inal i s now def ined * I

} ;

In the example, if the expression defining middle (middle : integer =

f inal - next ;) had not been encountered while the value for next remained
unresolved, then the decompiler could have correctly processed the other statements.
Alternatively, if start had been defined in terms of middle (s tart : integer
middle - start ;) , then the entire expression could have been correctly processed.

The rez compiler can compile types that have expressions containing more than
one undefined label, but derez is not able to decompile those resources and simply
generates data resource statements.

+ Note The label specified in $ $ BitField (label) , $ $Byte (label) ,
$ $Word (label) , or $ $ Long (label) must occur lexically before the expression;
otherwise, an error is generated. •

Labels E-35

Two examples The first example shows the modified ' ppat · declaration using the new r e z labels.

+ Note Boldface text in the examples indicates the differences between the prior and
current versions of the type definition of · ppa t ' , that is, where using labels has

changed the definitions. •

Without using labels, the whole end section of the resource (eveJything after the
PixelData label) would have to be combined into a single hex string. Using labels,
you can express the complete ' ppat ' definition in r e z language.

type ' ppat ' {

PixMap :

I * PixPat record * I

integer oldPattern , I * pattern type

newPattern ,

ditherPattern;

unsigned longint

uns i gned longint

PixMap I 8 ;

PixelData I 8 ;

f i l l l ong ;

f i l l word ;

f i l l l ong ;

hex string [8] ;

f i l l long ;

unsigned bitstring [l]

unsigned bitstring [2]

I * old- style pattern

I * PixMap record

l ;

0 ;

* I

I * of fset to pixmap * I

I * offset to data * I

I * expanded pixel image * I

I * pattern val i d flag * I

I * expanded pattern * I

* I

* I

I * base address * I

I * new PixMap flag * I

I * must be 0 * I

I * offset to next row unsigned bitstring [13] ; * I

rect ; I * bi tmap bounds * I

I * PixMap vers number integer ; * I

integer unpacked ; I * packing format * I

unsigned longint ; / * s i ze of pixel data * I

unsigned hex longint ;

unsigned hex longint ;

I * b . resolution (pp i) (f ixed)

I* v . resolution (ppi) (f ixed)

* I

* I

E-36 Appendix E Resource Compiler and Decompiler

'----.,..)

integerchunky , chunkyPlanar , planar ; I * pixel storage format

I * # bits in pixel integer ;

integer ;

integer ;

uns igned longint ;

uns igned longint

I * # components in pixel

I * # bits per f i eld

I* o f f set to next plane

ColorTable I 8 ; I * o f f set to color table

* I

* I

* I

* I

* I

* I

f i l l long ;

PixelData :

I * reserved * I

hex string [(ColorTable - PixelData) I 8] ;

ColorTable :

} ;

unsigned hex longint ; I * ctSeed * I

integer; I * transindex *I

integer = $ $Countof (ColorSpec) - 1 ; 1 * ctSize *I

wide array ColorSpec

} ;

integer; I * value *I

unsigned integer ; I * RGB : red *I

unsigned integer; I* green *I

unsigned integer; I* blue *I

Here is another example of a new resource definition. In this example, the
$ $Bi tField () function is used to access information stored in the resource in order
to calculate the size of the various data areas added at the end of the resource. Without
labels, all of the data would have to be combined into one hex string. As in the
preceding example, boldface text indicates changes for the current (label) version.

type ' c icn ' {

I * IconPMap (pixMap) record * I

f i l l long ;

unsigned bitstring [l] 1 ;

unsigned bitstring [2] 0 ;

pMapRowBytes : unsigned bitstring [13] ;

I *

I *

I *

I *

base address * I

new pixMap f lag * I

must be 0 * I

offset t o next row * I

(continuedY.

Labels E-37

Bounds : rect ;

intege r ;

integer unpacked ;

uns igned longint ;

unsigned hex longint ;

unsigned hex longint ;

integer chunky , chunkyPlanar , planar ;

intege r ;

integer;

integer ;

unsigned longint ;

unsigned longint ;

f i l l long ;

/ * IconMask (bi tMap) record * /

f i l l long;

maskRowBytes : integer ;

rect ;

/ * IconBMap (b i tMap) record * /

f i l l l ong ;

i conBMapRowBytes : integer ;

rec t ;

f i l l long ;

I * Mask data * /

hex string [$ $Word (maskRowBytes) *

($ $BitField (Bounds , 32 , 1 6)

- $$BitField (Bounds , 0 , 1 6

I * BitMap data * /

hex string [$ $Word (iconBMapRowBytes) *

($ $BitField (Bounds , 32 , 1 6)

- $ $ BitField (Bounds , 0 , 1 6)

E-38 Appendix E Resource Compiler and Decompiler

I * bi tmap bounds

I * PixMap vers number

/ * Packing format

* I

* I

* I

/ * s i ze of pixel data * /

/ * h . resolut ion (pp i) (f ixed) * /

/ * v . resolut ion (ppi) (f ixed) * /

/ * pixel storage format * /

/ * # bits in pixel * /

/ * # components j n pixel * /

I * # bits per f ield */

/* of fset to next plane * /

/ * offset to color table * /

I * reserved * I

I * base address *I

/* rrow bytes */

/* bitmap bounds * I

/ * base address

/ * Row bytes

/* Bi tmap bounds

/ * Handle placeholder

/ *bottom* /

/ * top* /)) ;

/ *bottom* I

I * top * /)) ;

* I

* I

* I

* I

} ;

I * Color Table * I

unsigned hex longint ; I * ct Seed * I

integer ; I * t ransindex * I

integer = $$Countof (ColorSpec) - 1 ; I * ctSize * I

wide array ColorSpec

integer; I * value * I

unsigned integer ; I * RGB : red * I

unsigned integer ; I * green * I

uns igned integer ; I * blue * /

} ;

/ * PixelMap data * I

hex string [$ $BitField (pMapRowBytes , 0 , 1 3) *

($$BitField (Bounds , 3 2 , 1 6) I * bottom

- $ $ B i tFie1d (Bounds , 0 , 1 6) / * top* /)] ;

* I

Preprocessor directives

Preprocessor directives substitute macro definitions and include files and provide if-then
else processing before other r e z processing takes place.

The syntax of the r e z preprocessor is similar to that of the C-language
preprocessor. Preprocessor directives must observe these rules and restrictions:

• Each preprocessor statement must be expressed on a single line and placed at the
beginning of the line.

• The number sign (#) must be the first character on the line of the preprocessor
statement (except for spaces and tabs) .

• The placeholder identffier (used in macro names) can consist of letters (A-z , a-z) ,

digits (0 - 9) , or the underscore character (_) . Identifiers cannot start with a digit, are

not case sensitive, and can be of any length.

Prl'processor directives E-39

Variable definitions

The #def ine and #unde f directives let you assign values to identifiers:

#def ine macro data

#unde f macro

The #def ine directive causes any occurrence of the identifier macro to be
replaced with the text data . You can extend a macro over several lines by ending the
line with the backslash character (\) , which functions as the rez escape character.
Quotation marks within strings must also be escaped, as shown here:

#def ine poem " I wander \

thru \ ' each \

charter \ ' d street "

#undef removes the previously defined identifier macro. Macro definitions can
also be removed with the -undef option on the rez command line.

The following macros are predefined:

Variable Value

TRUE

FALSE

rez

derez

1

0

1 if rez is I'LIIU1ing; 0 if derez is running

1 if derez is running; 0 if rez is running

include directives

The # include directive reads a text file by using this syntax:

inc lude filename

This directive includes the text file .filename. The maximum directo1y nesting is to 10 levels.
Here is an example of an inc 1 ude directive:

include /mac / l ib/ rincludes /mytypes . r

Note that the # inc 1 ude preprocessor directive, which includes a file, is different from
the inc 1 ude statement, described earlier in this appendix, which copies resources
from another file .

E-40 Appendix E Resource Compiler and Decompiler

If-then-else processing

The following directives provide conditional processing:

i f expression

#el i f expression J

[# e lse l

endi f

+ Note The placeholder expression is defined in the section "Expressions," later in this

appendix. With the # i f and # e 1 i f directives, expression can also include the
following expression:

def ined identifier or de fined ' (' identifier ') ' +

The following directives can be used in place of # i f :

i fde f macro

i fnde f macro

Here is an example of if-then-else processing:

#def ine Thai

Resource ' STR ' (1 9 9) {

i fde f Eng l i sh

" He l l o "

e l i f de f ined (French)

" Bonj our "

#el i f de f ined (Thai)

" Sawat i "

#el i f de f ined (Japanese)

" Konnichiwa "

#endi f

} ;

Preprocessor directives E-41

Print directive

The #print f directive is provided to aid in debugging resource description files:

#prin t f (jonnat-string, arguments . . .)

The format of the #print f statement is exactly the same as that of the print f

statement in the C language, with one exception : There can be no more than 20

arguments. (The same restriction applies to the $ $Format function.) The #pr int f

directive writes its output to standard error. Note that the #print f directive does not

end with a semicolon.

Here is an example of the use of the print directive:

#define Tuesday 3

i fde f Monday

#print f (" The day i s Monday , day #%d\n " , Monday)

#el i f def ined (Tuesday)

#print f (" The day i s Tuesday , day # %d\n " , Tuesday)

#el i f def ined (Wednesday)

#print f (" The day i s Wednesday , day # %d\n " , Wednesday)

#el i f def ined (Thursday)

#print f (" The day i s Thursday , day # %d\n " , Thursday)

#else

#print f (" DON ' T KNOW WHAT DAY IT I S ! \n ")

endi f

The file just listed generates the following text:

The day i s Tuesday , day # 3

E-42 Appendix E Resource Compiler and Decompiler

Resource description syntax

This section describes the details of the resource description syntax. It includes numbers,

literals, expressions, variables, functions, and strings.

Numbers and literals

All arithmetic is performed as 32-bit signed arithmetic. The syntax uses the basic

constant. described in Table E-1.

Table E-1 Numeric constants

Numeric type

decimal

hex

octal

binary

literal

Form

171111 ...

OXhhh ...

$hhh ..

Oooo ..

OBhhb ..

'aaaa'

Meaning

Signed decimal constant between 4294967295 and
-2147483648.

Signed hexadecimal constant between OX7FFFFFFF and
oxsooooooo.

Alternate form for hexadecimal constants.

Signed octal constant between 017777777777 and
020000000000.

Signed binary constant between
OBlllllllllllllllllllllllllllllll and
OBlOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO.

A literal with one to four character . Characters are printable
ASCII characters or escape characters (defined later in this
section). If there are fewer than four characters in the literal,
then the characters to the left (high bits) are assumed to be
$00. Characters that are not in the printable character set and
are not the characters \' or \\ (which have special
meanings) can be escaped according to the character escape
rules. (See ·'Strings," later in this appendix.)

Resource description syntax E-43

Literals and numbers are treated in the same way by the resource compiler. A literal

is a value within single quotation marks; for instance, · A • is a number with the value

65, whereas "A" is the character A expressed as a string. Both are represented in

mem01y by the bitstring 01000001. (Note, however, that "A" is not a valid number and

' A ' is not a valid string.) The following numeric expressions are equivalent:

'B'

66

'A'+l

Literals are padded with nulls on the left side so that the literal ' ABC • is stored as

shown in Figure E-3.

B ' ABC I =I $00 I A

Figure E-3 Padding of literal

Expressions

An expression can consist of simply a number or a literal. Expressions can also include

numeric variables and the system functions.

Table E-2 lists the operators in order of precedence, with highest precedence first.

Groupings indicate equal precedence. Evaluation is always from left to right when the

priority is the same. Variables are defined after the table.

E-44 Appendix E Resource Compiler and Decompiler

Table E-2 Resource-description expression operators

Operator

1. (expr)

2. -expr

- expr

! e:xp r

3. e:xpr1 *

exprl I
e:xprl %

4. exprl +

exprl -

5. exprl <<

exprl >>

6. expr7 >
e.xprl >=
exprl <

exprl <=

7 exprl --

exprl !=

8. exprl &

9. expr l A

10. exprl

11. exprl &&

12. exprl I I

expr2

e:xpr2

expr2

exp12
expr2

expr2

expr2

expr2
expr2

expr2

exp12

expr2
exp12

expr2

exp12

expr2

expr2

exp12

Meaning

Parentheses can be used in the normal manner to force
precedence in expression calculation.

Arithmetic (two's complement) negation of expr.
Bitwise (one's complement) negation of expr.

Logical negation of expr.

Multiplication.
Division.
Remainder from dividing exprl by e:xpr2.

Addition.
Subtraction.

Shift left-shift e:xprlleft by expr2 bits.
Shift right-shift exprl right by e:xpr2 bits.

Greater than.
Greater than or equal to.
Less than.
Less than or equal to.

Equal to.
Not equal to.

Birwise AND.

Bitwise XOR.

Bitwise OR.

Logical AND.

Logical OR.

Note: The logical operators ! , >, >=, <, <=, = = , ! =, &&, and I I evaluate to 1

(TRUE) or 0 (FALSE)

Resource description syntax E-45

Variables and functions

Some resource compiler variables contain commonly used values. All resource compiler

variables start with $ $ followed by an alphanumeric identifier.

String values

The following variables and functions have tring values. (Typical values are given in

parentheses.)

$$Date

Current date function, which is useful for putting time-stamps into the resource file. The

format is generated through the ROM call IUDa t e S t ri ng. (An example of this format

is "Thursday,June 21, 1990".)

$$ Format (".format-string", arguments)

Format function, which works just like the #print f directive except that

$$ Format returns a tring rather than printing to standard output. (For a description of

print directives, see "Print Directive," earlier in this appendix.)

$$Name

Name of the current resource. The current resource is the resource being generated by a

re source statement, being included with an inc lude statement, being deleted by
a de l e t e statement, or being changed by a change statement. In addition to the

$$Name string variable, three numeric variables($ $Type, $$ I D, and

$$A t t r ibut e s) refer to the current resource. They are described in the next section,

"Numeric Values."

Here is example showing the use of three of these four variables in an inc 1 ude

statement that includes all ' DRVR ' resources from one file and keeps the same

information, while also setting the SYSHEAP attribute:

inc lude " f i l e" ' DRVR' (0:40) as ' DRVR'

$$Name, $$A t t r ibut e s I 64) ;

($$ID,

The $$Type, $$ ID, $$Name, and $$A t t r ibu t e s variables are undefined '-.....__/
outside a resource, include, delete, or change statement.

E-46 Appendix E Resource Compiler and Decompiler

$$Resource ("filename", ·type·, ID I "resource-name")

Resource read function, which reads the resource type with the ID ID or the name

resource-name from the resource file filename and returns a string.

$$Time

Current time function, which is useful for time-stamping the resource file. The format is

generated through the ROM call IUTime S t r i ng. (An example of this format is

"7:50:54 AM".)

$$Vers i on

Version number of the resource compiler. (An example of this format is "V3.0".)

Numeric values

The following variables and functions have numeric values.

$$At t ri bu t e s

Attributes of the current resource. See the description of the $$Name string variable in
the preceding section.

$ $Bi t F i e l d (label, stm1ingPosition, numberOjBits)

Return value of the bitstring of length numherO}Bits (maximum 32) found at

startingPosition bits from label.

$$By t e (label)

Return value of the byte found at label.

$$Day

Current day, range 1-31.

$$H our

Current hour, range 0-23.

Resource description syntax E-47

$$ ID

ID of resource from the current resource. See the description of the $$Name string

variable in the preceding section.

$$Long (label)

Return value of the long word found at label.

$$Minute

Current minute, range 0-59.

$$Month

Current month, range 1-12.

$$ PackedS i z e (Start, RowBytes, RowCount)

Reference to the current resource. (See the description of the $$Name string variable

in the preceding section.) Provided with an offset, Start, into the current resource and

two integers, Row Bytes and RowCount, this function calls the A/UX Toolbox utility

routine UnpackBi t s, the number of times specified by RowCount, and returns the

unpacked size of the data found at start. Use $$ Packeds i z e () only for

decompiling resource files. For an example that uses this function, see

/mac/ l ib/ r inc l udes/pi c t . r .

$$Re sourc e S i z e

Current size o f resource in bytes. When you are decompiling, $$Resources i z e is

the actual size of the resource being clecompiled. When you are compiling,

$$ Resource S i z e returns the number of bytes that have been compiled so far for the

current resource. For an example that uses this function, see the 'KCHR' resource in

/mac/ l ib/ rincludes/ sys type s . r .

$$ Second

Current second, range 0-59.

$$Type

Type of resource from the current resource. See the description of the $$Name

string variable in the preceding section.

E-48 Appendix E Resource Compiler and Decompiler

$$Weekday

Current clay of the week, range 1-7 (that is, Sunday-Saturday).

$$Word (label)

The word found at label.

$$Year

Current year.

Strings

There are two basic types of strings:

• Text string "a . . . "

A text string can contain any printable character except the double quotation mark

(") and the backslash (\). These and other characters can be created through escape
sequences. (See Table E-3.) The string " " is a valid string of length 0.

• Hex string $ " hh ... "

Spaces and tabs inside a hexadecimal string are ignored . There must be an even

number of hexadecimal digits. The string $ " " is a valid hexadecimal string of

length 0.

Any two strings (hexadecimal or text) are concatenated if they are placed next to

each other with only white space between them. (In this case, newlines and comments

are considered white space.)

Figure E-4 shows a Pascal string declared as

p s t r i ng [10 J ;

whose data definition is

"He l l o"

$05 H I e o 1 $00 $00 $00 $00 $00 1
Figure E-4 Internal representation of a Pascal string

Resource description syntax E-49

In the input file, string data is surrounded by quotation marks (") . You can continue

a string on the next line. A separating token (for example, a comma) or brace signifies

the end of the string data. A side effect of string continuation is that a sequence of two

quotation marks (" ") is simply ignored. For example,

"Hel l o "" out "

" t here . "

is the same string as

"Hel l o out there . "

To place a quotation mark i n a string, precede the quotation mark with a backslash (\ ") .

Escape characters

The backslash character(\) is provided as an escape character to allow you to insert

nonprintable characters in a string. For example, to include a return character in a string,

you use the escape sequence \ r . Table E-3 lists the valid escape sequences.

Table E-3 Resource compiler escape sequences

Escape Hex Printable
sequence Name value equivalent

\t Tab $09 None

\b Backspace $08 None

\r Return $00 None

\n Newline $0A None

\f Form feed $0C None

\V Vertical tab $08 None

\? Rubout $7F None

\\ Backslash $5C

\' Single quotation mark $3A

\" Double quotation mark $22

Note: Under the Macintosh OS, \n is treated as a return character ($0D) Under the AIUX
operating system, \n is treated as a line feed ($0A). rez always follows the Macintosh

convention.

E-50 Appendix E Resource Compiler and Decompiler

You can also use octal, hexadecimal, decimal, and binaty escape sequences to
specify characters that do nor have predefined escape equivalents. The forms are shown

in Table E-4.

Table E-4 umeric escape sequences

Number
Base Form of digits Example

2 \ 0 B bbbbbbbb s \OB01000001

8 \000 3 \101

10 \ O Dddd 3 \00065

16 \OXhh 2 \OX41

16 \$/ih 2 \$41

Here are some examples of numeric escape sequences:

\077

\OxFF

\$ F1 \$ F2 \$ F3

\O d099

I* 3 o c t a l dig i t s *I

I * 'Ox' plus 2 hex dig i t s * I

I * '$' plus 2 hex digi t s * I

I * 'Od' p l u s 3 dec ima l d ig i t s * I

+ Note An octal escape code consists of exactly three digits. For instance, to place an

octal escape code with a value of 7 in the middle of an alphabetic string, write

AB \007CD, not AB \ 7CD. +

You can use the derez command-line option -e to print characters that would

otherwise be escaped (characters preceded by a backslash, for example). Normally,

characters with values between $20 and $D8 are printed as Macintosh characters. With

this option, however, all characters (except null, newline, tab, backspace, form feed,

vertical tab, and rubout) are printed as characters, not as escape sequences.

Resource description syntax E-51

Appendix F: C Interface Library

Interface libraty files I F-2

Structures and calls by library I F-5

Calls in alphabetical order I F-63

The Macintosh C interface libraty, documented in this appendix, contains the C definitions

of the constants, types, and functions defined in Inside Macintosh and used in the AIUX

Toolbox . The information given here is the C equivalent of the Pascal definitions in the

summary section at the end of each chapter of Inside Macintosh. For complete

documentation of each of the constants, types, and functions defined here, see the

corresponding section of Inside Macintosh. For a description of the functional differences

between the standard Macintosh libraries as described in Inside Macintosh and the A/UX C

versions, see Chapter 5, "A/UX and Macintosh User Interface Toolbox Differences."

Libraries in this section appear in alphabetical order by libraty name, not in Inside

Macintosh order.

Interface library files

The A/UX C definitions of the Macintosh libraries are provided in the header files in the
directory /usr I inc l ude/mac . Include the header file for each software l ibrary

(typically called a manager in the Macintosh environment) that you use in your program.

The material in this appendix is accurate as this manual goes to press, but the header

files provided with your system may contain different information that reflects the most

recent changes.

Many of the routines in the A/UX Toolbox call code that is in the Macintosh ROM.

Most of these ROM routines use Pascal calling conventions, which differ from the C

conventions used by A/UX. Ordinarily, the A/UX Toolbox handles the interface between

the IV-'0. If you are writing your own definition functions or filter functions, or if you are

making direct use of data in structures, you must take the differences into account. For

more information, see "Converting Between C and Pascal Conventions" in Appendix C.

(For a description of definition functions and filter functions, see Inside Macintosh,

Volume I .)

The routine and parameter descriptions in the C interface libraries follow these

conventions:

• A pointer to type char (printed char *) represent a pointer to a C-format string.

• A parameter of type s t r2 55 represents a Pascal-format string.

Table F-llists the libraries described in this section and the name of the header file

for each l ibrary. Libraries appear in alphabetical order by library name. For a list of all

libraries described in Inside Macintosh and their status in the A/UX Toolbox, ee Chapter

5, "A/UX and Macintosh User Interface Toolbox Differences."

The sections "Structure and Calls by Libra1y" and "Calls in Alphabetical Order," later
in this appendix, provide information selected from the header files listed in Table F-1.

F-2 Appendix F C Interface Library

Table F-1 Interface library file

Library

32-Bit Quick Draw with Color QuickDraw

Color Picker

Common type definitions

Control Manager

Deferred Task Manager

Definitions for AUXDi spatch

Definitions for ROM

Desk Manager

Device Manager

Dialog Manager

Disk Driver

Disk fnitialization Package

Event Manager, Operating System

Event Manager, Toolbox

File Manager

Font Manager

Gestalt Manager

List Ylanager Package

List of Macintosh traps

Low-memo1y equates

Memo1y Manager

Menu Manager

Notification Manager

Package Manager
Bimuy-Decimal Conversion Package
Floating-Point Arithmetic and
Transcendental Functions Packages
International Utilities Package
Standard File Package

Palette Manager

Printing Manager

Header me

qui c kdraw.h

pic ke r . h

ty pe s. h

c ont rol s. h

dt ask .h

aux . h

romde f s. h

de sk.h

de vice s. h

di al og s.h

disks. h

diskin it .h

ose vent s.h

e vent s.h

f i l e s. h

font s. h

gestal t. h

l i st s. h

t raps. h

sy se qu. h

me mory. h

men us. h

n ot i fy . h

pack age s.h

palet t e s. h

print ing .h

(continued;.-

Interface libra1y files F-3

Table F-1 Interface libra1y files (continuecO

library

Print traps

Process Manager

Resource Manager

Scrap Manager

Script Manager

Segment Loader

Serial Driver

Shutdown Manager

Slot Manager

Sound Manager

String conversion between Pascal and C

System Error Handler

TextEdit

Time Manager

Utilities, Operating System

Utilities, Toolbox

Vertical Retrace Manager

Video Driver

Window Manager

Headerftle

p rintt rap s.h

p roce sse s.h

re source s . h

asd.h

aux_ rsrc. h

scrap . h

script . h

segl oad.h

se ri al.h

sh utdown.h

slot s. h

sm. h

soundinp ut .h

soundinputpriv.h

st ring s. h

errors.h

textedit . h

t ime r . h

osut i l s. h

t ool ut i l s.h

ret race .h

vide o. h

windows. h

Most of these files contain data structures and calls; some contain only definitions or

equates. These header files can be displayed, searched, and printed.
The next section, "Structures and Calls by Library," lists the structures and calls in the

header files listed in Table F-1. The subsequent section, "Calls in Alphabetical Order,"

lists all calls in alphabetical order by name.

F-4 Appendix F C Interface Library

Structures and calls by library

This section lists the names of the structures and calls that are available in the header

files in Table F-1. The structures and calls are arranged under the library name given in

the table. For instance, the structures and calls available in p i cker . hare under "Color

Picker." See the header file itself for additional information.

Structure names are in alphabetical order. Calls are in alphabetical order by name,

followed by the name of the return type for the call.
Chapter 5 contains additional information about those libraries that support

Macintosh managers and provide other Macinrosh support se1vices. Where available,

information will be found under the same library name in that chapter; for instance,
information on the serial driver is under "Serial Driver." Where information is available

elsewhere, as with "Low-Memory Equates," this appendix gives that reference.

32-Bit QuickDraw with Color QuickDraw

The following structures and calls are available in qu i ckdraw . h:

Structure name

Bi tMap Font i n f o

C C r s r Gamm aTbl

CGr a f Port GDev i c e

creon Gra f Port

Col orSpec Gra fVars

C o l o rTabl e I Tab

C ProcRec Mat c hRec

CQDProc s PenS t a t e

Cursor P i cture

P i xMap

P ixPat

Po lygon

QDProc s

qdvar

Reg ion

ReqLi s tRec

RGBColor

S ProcRec

Structures and calls by libr;uy F-5

Call

AddComp () ;

addpt () ;

AddPt () ;

AddSearch () ;

Al locCursor () ;

BackC o l or () ;

BackPat () ;

BackP ixPat () ;

Cal cCMa s k () ;

CalcMas k () ;

CharExtra () ;

CharWidth () ;

C l ipRect () ;

C l oseC Port () ;

C l o s e P i cture () ;

C l osePoly () ;

C l osePort () ;

C l o s eRgn () ;

Color2 I ndex () ;

ColorBit () ;

CopyBi t s () ;

CopyMas k () ;

Copy P i xMap () ;

CopyPixPat () ;

CopyRgn () ;

DelCamp () ;

Del Search () ;

D i f fRgn () ;

F-6 Appendix F C Interface Libraty

Return type

vo i d

v o i d

void

void

void

void

void

void

vo i d

v o i d

void

short

void

vo i d

vo i d

void '------./

vo i d

vo i d

l ong

vo i d

v o i d

vo i d

vo i d

void

void

void

void

void

Call

Di sposCCursor () ;

Di spo s C i con () ;

Di spo sCTabl e () ;

D i spos eRgn () ;

Di spo sGDev i c e () ;

D i sposP i xMap () ;

D i sposP ixPat () ;

DrawChar () ;

DrawPi cture () ;

draws t r ing () ;

DrawS t r i ng () ;

DrawText () ;

EmptyRect () ;

EmptyRgn () ;

-� equal p t () ;

Equal Pt () ;

EqualRect () ;

EqualRgn () ;

EraseArc () ;

Eras eOva l () ;

ErasePoly () ;

EraseRec t () ;

Era seRgn () ;

Eras eRoundRect () ;

F i l lArc () ;

F i l lCArc () ;

F i l l COval () ;

F i l l C Poly () ;

Return �ype

vo i d

void

void

vo i d

v o i d

v o i d

v o i d

vo i d

vo i d

vo i d

vo i d

v o i d

Boo l e an

Boo l ean

Boo l e an

Bool ean

Boolean

Boolean

vo i d

vo i d

vo i d

void

void

vo i d

voi d

voi d

void

voi d

Structures and calls by library F-7

Call

F i l l C Rec t () ;

F i l l CRgn () ;

F i l l CRoundRec t () ;

F i l lOval () ;

F i l l P o ly () ;

F i l lRect () ;

F i l l Rgn () ;

F i l l RoundRec t () ;

ForeC o l or () ;

FrameArc () ;

FrameOva l () ;

FramePoly () ;

FrameRect () ;

FrameRgn () ;

FrameRoundRec t () ;

GetBackCol o r () ;

GetCCursor () ;

Get C i con () ;

GetC l ip () ;

GetCPixel () ;

GetCTab l e () ;

GetCTSeed () ;

GetDev i c eL i s t () ;

Get Font i n f o () ;

GetForeC o l or () ;

GetGDev i c e () ;

GetMa i nDevi ce () ;

GetMa s kTab l e () ;

F-8 Appendix F C Interface Libraty

Return type

vo i d

vo i d

vo i d

v o i d

vo i d

vo i d

vo i d

vo i d

v o i d

vo i d

v o i d

v o i d

void

void

vo i d

vo i d �-

CCrs rHand l e

C i c onHand l e

vo i d

v o i d

CTabHandle

l ong

GDHand l e

vo i d

vo i d

GDHand l e

GDHandl e

P t r

Call

GetMaxDev i ce () ;

GetNext Devi c e () ;

GetPen () ;

G e t PenS t a t e () ;

GetPixel () ;

Get PixPat () ;

Get Por t () ;

Get SubTabl e () ;

G l oba lToLocal () ;

Gra fDev i c e () ;

H i deCursor () ;

H i de Pen () ;

H i l i teColor () ;

I ndex 2 C o l o r () ;

I n i tCPort () ;

I n i tCursor () ;

I n i t GDevi c e () ;

I n i tGraf () ;

I n i t Port () ;

InsetRect () ;

InsetRgn () ;

I nvertArc () ;

I nve r t C o l o r () ;

I nvertOva l () ;

I nve r t Po ly () ;

InvertRect () ;

I nver tRgn () ;

I nver tRoundRec t () ;

Return type

GDHandl e

GDHandl e

voi d

vo i d

Bool ean

P ixPatHand l e

vo i d

vo i d

vo i d

vo i d

vo i d

vo i d

vo i d

vo i d

vo i d

vo i d

vo i d

vo i d

vo i d

vo i d

vo i d

vo i d

v o i d

vo i d

void

vo i d

vo i d

void

Structures and calls by libraty F-9

Call

K i l l P i cture () ;

K i l l Poly () ;

L in e () ;

L ineTo () ;

LocalToG lobal () ;

Make iTab l e () ;

MakeRGBPat () ;

MapPoly () ;

MapPt () ;

MapRe c t () ;

MapRgn () ;

MeasureText () ;

Move () ;

MovePortTo () ;

MoveTo () ;

NewGDevi ce () ;

NewP i xMap () ;

NewPixPat () ;

NewRgn () ;

ObscureCursor () ;

O f f s et Po ly () ;

O f f s etRect () ;

O f f s et Rgn () ;

OpColor () ;

OpenC Port () ;

Open P i c ture () ;

OpenPoly () ;

OpenPor t () ;

F-10 Appendix F C Interface Libra1y

Return type

void

vo i d

vo i d

void

void

void

vo i d

vo i d

v o i d

vo i d

v o i d

vo i d

v o i d

void

void

GDHandle

P i xMapHandl e

P ixPatHandl e

RgnHandl e

void

vo i d

void

void

vo i d

void

P i cHand l e

Po lyHandl e '--.__/

void

Call

OpenRgn () ;

PaintArc () ;

PaintOval () ;

Paint Poly () ;

PaintRect () ;

PaintRgn () ;

PaintRoundRec t () ;

PenMode () ;

PenNorma l () ;

PenPat () ;

PenPi xPat () ;

PenS i ze () ;

PicComment () ;

P l o t C i con () ;

Port S i z e () ;

Pro t e c t En t ry () ;

pt2rect () ;

Pt2Rect {) ;

pt inrect () ;

Pt inRe c t () ;

p t i nrgn () ;

P t i nRgn () ;

pt toang l e () ;

PtToAng l e () ;

QDError () ;

Random () ;

Rea l C o l or () ;

Rec t inRgn () ;

Return �ype

void

void

vo i d

vo i d

vo i d

vo i d

vo i d

void

void

vo i d

vo i d

vo i d

v o i d

v o i d

v o i d

vo i d

vo i d

vo i d

Bool ean

Bool ean

Bool ean

Bool ean

void

vo i d

short

short

Boo l ean

Bool ean

Structurl'S and calls by library F-11

Call

RectRgn () ;

ReserveEn t ry (};

Rest oreEnt r i e s (} ;

RGBBackCol or (} ;

RGBForeCo lor (} ;

SaveEn t r i es (} ;

ScalePt () ;

Scro l l Re c t (} ;

SectRect () ;

SectRgn (} ;

S eedC F i l l (} ;

SeedF i l l (} ;

SetCCursor (} ;

SetC l i ent i D (} ;

SetC l ip (} ;

SetCPixe l (} ;

SetCursor (} ;

SetDevi c eAt t r i bu t e (} ;

S e t EmptyRgn (} ;

Set Ent r i e s (} ;

SetGDevi c e (} ;

SetOr i g i n (} ;

S e t PenStat e (} ;

S e t Port (} ;

SetPortBi t s (} ;

SetPortPix (} ;

SetPt (} ;

S etRect () ;

F-12 Appendix F C Interface libraty

Return type

void

void

void

void

void

void

vo id

void

Bool ean

vo id

void

void

void

void

void

void

vo id

void

void

void

void

void

void

void

void

vo id

vo id

void

Call

SetRectRgn () ;

S e t S t dC Proc s () ;

S e t S t dProcs () ;

ShowCursor () ;

ShowPen () ;

SpaceExtra () ;

S t dArc () ;

S tdBi t s () ;

S t dComrnent () ;

S t dGe t P i c () ;

stdl i ne () ;

S t dLine () ;

S t dOva l () ;

StdPoly () ;

S tdPut P i c () ;

S t dRec t () ;

S t dRgn () ;

S t dRRect () ;

s t dtext () ;

S t dText () ;

S tdTxMeas () ;

s t r ingwidth () ;

S t r ingW i dt h () ;

s tu f fhex () ;

S t u f fHex () ;

subpt () ;

SubPt () ;

Test Devi c eAt t ri but e () ;

Return type

vo id

void

void

void

vo i d

void

vo i d

v o i d

void

void

void

voi d

void

void

void

void

void

void

vo i d

vo i d

short

short

short

void

voi d

void

voi d

Boo l e an

Structures and calls by l ibrary F-13

Call Return type

Text Face () ; vo i d

TextFont() ; vo i d

TextMode () ; vo id

Text S i z e () ; vo i d

TextWidt h () ; short

UnionRect () ; void

UnionRgn () ; void

X orRgn () ; void

Color Picker

The following structures and cajls are available in p i cker . h:

Structure name

CMYCo l or

HSLColor

HSVC o l or

Call

CMY2RGB () ;

F i x2 Smal1Frac t () ;

GetCo l or () ;

HSL2 RGB () ;

HSV2 RGB () ;

RGB2 CMY () ;

RGB2HSL () ;

RGB2HSV () ;

Sma l l Fract2 F i x () ;

F-14 Appendix F C Interface Libraty

Return type

vo i d

Sma l l Fract

Bool ean

vo i d

vo i d

vo i d

vo i d

vo i d

F ixed

Common type definitions

The following structures and calls are available in type s . h:

Structure name

c omp

Rect

Point

Call

Debugger () ;

debugs t r () ;

DebugS t r () ;

Control Manager

Return type

vo id

void

void

The following structures and calls are available in cont ro l s . h:

Stmcture name

AuxC t l Rec

Con t ro l Record

C t lCTab

Call

Di sposeContro l () ;

dragcontrol() ;

DragCon t r o l() ;

DrawlCont r o l () ;

DrawContro l s () ;

f in dcontr o l() ;

F in dControl() ;

GetAuxCt l () ;

GetCRefCon () ;

Return type

vo id

voi d

vo id

vo id

vo id

short

short

Bool ean

l ong

Structures and calls by libra1y F-15

Call Return type

getc t i t l e () ; vo i d

GetCT i t l e () ; void

Get C t l Ac t i on () ; Proc P t r

GetCt l Max () ; short

GetCt lMin () ; short

GetC t l Value () ; short

GetCVar i ant () ; short

GetNewCon t ro l () ; Cont r o lHand l e

H ideCont rol () ; void

H i l i t eControl () ; void

K i l l Cont r o l s () ; void

MoveCon t ro l () ; vo i d

newcontro l () ; Cont r o lHand l e

NewCont rol () ; ControlHand l e

SetCRe fCon () ; void

set c t i t l e () ; vo i d

SetCT i t l e () ; vo id

SetC t l Ac t i on () ; vo i d

SetC t l C o l o r () ; void

SetC t lMax () ; void

SetCt lMin () ; vo id

SetCt lVa lue () ; void

ShowCont ro l () ; void

S i z eCont r o l () ; void

t e s t c ontrol () ; short

TestControl () ; short

t rackcont rol () ; short

TrackControl () ; short

UpdtCont rol () ; void

F-16 Appendix F C Interface Libraty

Deferred Task Manager

The following structure and calls are available in dtask . h:

Structure name

DeferredTask New in this release.

Call Return type

DTi n s t al l () ; OSErr New in this release.

Definitions for AUXDispatch

The following structures and calls are available in aux . h. The section "AUX D i spatch

Trap" in Chapter 3 contains additional information, including the selector codes used
with this trap.

Structure name

Aux S i g i o

ForkExecRec

GetAnyEventRec

IDToPathRec

TBLaunchRec

Call

AUXCOFFLaunch () ;

AUXDi spatch () ;

Definitions for ROM

Return type

pascal short

pascal l ong

New in this release.

No structures or calls are available in romde f s . h, which provides slot declaration

values for ROMs.

Structures and calls by l ibrary F-17

Desk Manager

The following calls are available in desk . h, which has no structures:

Call Return type

C l oseDeskAcc () ; vo i d

opende skacc () ; short

OpenDeskAcc () ; short

Sy s t emC l i ck () ; void

Sys t emEdi t () ; Boolean

Sys t emEvent () ; Boolean

Sys temMenu () ; voi d

Sys t emTa sk () ; void

Device Manager

The following stmctures and calls are available in dev i c e s . h :

Structure name

AuxDCE

DCt l En t ry

Call

C l oseDriver () ;

Control () ;

GetDC t l En t ry () ;

K i l liO () ;

opendriver () ;

OpenDriver () ;

PBCon t r o l () ;

PBKi l l iO () ;

F-18 Appendix F C Interface Libraty

Return type

OS Err

OS Err

DCt lHand l e

O S Err

OS Err

OSErr

OS Err

OSErr

Call

PBS t a t u s () ;

SetChooserA l e r t () ;

S t a t u s () ;

Dialog Manager

Return type

OS Err

Bool ean

OSErr

The following structures and calls are available in dialogs . h:

Structure name

Alert Temp l a t e

D i a l ogRecord

D i a l ogTemp l a t e

Call

Alert () ;

Caut i onA l e r t () ;

C lo s e D ia l og () ;

Cou l dA l e r t () ;

Cou l dD i a l og () ;

D i a logS e l ec t () ;

D i sp o s D i al og () ;

DlgCopy () ;

DlgCut () ;

DlgDel e t e () ;

DlgPa s t e () ;

DrawD i a l og () ;

ErrorSound () ;

f indd i t em () ;

F indDi t em () ;

FreeA l e r t () ;

Return type

short

short

void

void

void

Bool ean

void

void

vo i d

vo i d

vo i d

vo i d

vo i d

short

short

void

Structures and calls by libra1y F-19

Call

FreeDi alog () ;

GetAl r t S t age () ;

GetDi t em () ;

get i t ext () ;

Ge t i Text () ;

GetNewD i a l og () ;

H i deD i t em () ;

I n i t D i a l og s () ;

I sD i a l ogEvent () ;

Moda l D i al o g () ;

newcdi a l og () ;

NewC D i a l og () ;

newdia log () ;

NewD i a l og () ;

Not eAlert () ;

paramt ext () ;

ParamText () ;

ResetAl r t S t age () ;

S e l iText () ;

SetDAFont () ;

SetDi t em () ;

s e t i t ext () ;

Set iText () ;

ShowDI t ern () ;

S t opAl e r t () ;

Updt D i a l og () ;

F-20 Appendix F C Interface Library

Return type

vo i d

short

vo i d

vo i d

vo i d

D i a l ogPt r

vo i d

void

Boolean

voi d

D i a logPtr

D i a l og P t r

D i a logPt r

D i a l og P t r

short

voi d

void

vo i d

vo i d

vo i d

vo i d

vo i d

v o i d

voi d

short

vo i d

Disk Driver

The following structures and calls are available in di sks . h:

Structure name

DrvS t s

DrvS t s 2

Call

DiskEj ect () ;

SetTagBu f fer () ;

Drive S t atus () ;

Disk Initialization Package

Return zype

OS Err

OS Err

OS Err

The following structure and calls are available in d i s k i n i t . h:

Structure name

HFSDe f au l t s

Call

D ILoad () ;

D IUnl oad () ;

d i badrnount () ;

D IBadMount () ;

DIFormat () ;

D IVe r i fy () ;

DIZero () ;

di z ero () ;

Return (JijJe

vo i d

vo i d

OS Err

short

OSErr

OSErr

OSErr

OS Err

Structures and calls by Jibra1y F-21

Event Manager, Operating System

The following structure and calls are available in o s even t s . h:

Structure name

EvQEl

Call Return type

F lushEvent s () ; vo i d

GetEvQHdr () ; QHdrPtr

GetOSEvent () ; Bool ean

OSEventAva i l () ; Bool ean

Pos t Event () ; OS Err

PPostEvent () ; OSErr

S e t EventMask () ; void

Event Manager, Toolbox

The following structure and calls are available in event s . h :

Structure name

EventRecord

Call

But t on () ;

EventAva i l () ;

GetCaretTime () ;

GetDblTime () ;

GetKeys () ;

GetMouse () ;

GetNext Event () ;

S t i l lDown () ;

F-22 Appendix F C Interface Library

Return type

Bool ean

Boo l ean

uns i gned l ong

uns i gned l ong

vo i d

vo i d

Bool ean

Bool ean

Call

T i c kCount () ;

Wai t MouseUp () ;

Wai tN ex t Event () ;

File Manager

Return �ype

uns i gned l ong

Boo l ean

Boo l ean

The following structures and calls are available in f i 1 e s . h:

Structure name

AFPVo lMount B l oc k

AFPVolMoun t i n f o

Cat P o s i t i onRec

C i n f o PBRec

CMovePBRec

Cnt r l Param

Copy Param

C SParam

D i n f o

D i r i n f o

DrvQEl

DTPBRec

DXIn f o

Call

AddDr ive () ;

A l l oc a t e () ;

A l l ocCont ig () ;

Cat Move () ;

C l o s eWD () ;

FCBPBRec

F IDParam

F i l e Pa ram

F i n f o

Fore i gnPrivParam

FSSpec

FXI n f o

GetVol Parms i nfoBu f f e r

HFi l e i n f o

HFi l ePa ram

H IOParam

HParamB lockRec

Return type

vo i d

OS Err

OS Err

OS Err

OSErr

HVo l umeParam

IOParam

Mu l t i DevParam

NumVers i on

Obj Param

ParamB lockRec

S l o t DevParam

VCB

VersRec

Vo l umeParam

WDParam

WDPBRec

Structures and calls by library F-23

Call

create () ;

Creat e () ;

D i rCreate () ;

e j ect () ;

E j e c t () ;

F i n itQueue () ;

f lushvol () ;

F l ushVol () ;

F S C l o s e () ;

f s de l e t e () ;

FSDe l e t e () ;

f s open () ;

FSOpen () ;

FSRead () ;

f s rename () ;

FSWri t e () ;

GetDrvQHdr () ;

GetEOF () ;

ge t fi n f o () ;

GetFinfo () ;

Get FPos () ;

Get FSQHdr () ;

GetVCBQHdr () ;

getvinfo () ;

GetVI n f o () ;

getvol () ;

GetVo l () ;

Ge tVRe fNum () ;

F-24 Appendix F C Interface Library

Return type

OSErr

OS Err

OS Err

OS Err

OS Err

vo i d

OSErr

OS Err

OSErr

OS Err

OS Err

OS Err

OS Err

OS Err

OSErr

OS Err "'---/

QHdr P t r

OS Err

OS Err

OS Err

OS Err

QHdrPtr

QHdrPt r

OSErr

OSErr

OS Err ,---.

OSErr '-...__/

OS Err

Call

GetWDi n f o () ;

HCrea t e () ;

HDe l e t e () ;

HGe t F i n f o () ;

HGetVo l () ;

HOpen () ;

HOpenRF () ;

HRename () ;

HRs t FLock () ;

H S e t F i n f o () ;

HSe tFLock () ;

HSetVol () ;

openr f () ;

OpenRF () ;

OpenWD () ;

PBAl l oc at e () ;

PBAl l ocCont i g () ;

PBCatMove () ;

PBC l o s e () ;

PBC l oseWD () ;

PBCreate () ;

PBDe l e t e () ;

PBD i rCreat e () ;

PBEj e c t () ;

PBF lushFi l e () ;

PBFlushVol () ;

PBGetCat i n f o () ;

PBGet EOF () ;

Return type

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OSErr

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OSErr

OSErr

OSErr

OSErr

OSErr

OSErr

Structures and calls by libra1y F-25

Call

PBGetFCB i n f o () ;

PBGe t F i n f o () ;

PBGet FPos () ;

PBGetVInfo () ;

PBGetVo l () ;

PBGetWD i n f o () ;

PBHCopyF i l e () ;

PBHCreat e () ;

PBHD e l et e () ;

PBHGet D i rAcces s () ;

PBHGet F i n fo () ;

PBHGet Logi n i n f o () ;

PBHGetVInfo () ;

PBHGetVol () ;

PBHGetVo l Parms () ;

PBHMapi D () ;

PBHMapName () ;

PBHMoveRename () ;

PBHOpen () ;

PBHOpenDeny () ;

PBHOpenRF () ;

PBHOpenRFDeny () ;

PBHRename () ;

PBHR s t FLock () ;

PBHSet D i rAcce s s () ;

PBHS e t F i n f o () ;

PBHSe t FLock () ;

PBHSetVol () ;

F-26 Appendix F C Interface Libraty

Return type

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err "-.__/

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OSErr

OS Err

OSErr

OS Err

OS Err

Call

PBLockRange () ;

PBMountVol () ;

PBO f f L i ne () ;

PBOpen () ;

PBOpenRF () ;

PBOpenWD () ;

PBRead () ;

PBP.ename () ;

PBR s t FLock () ;

PBSet C a t i n f o () ;

PBSet EOF () ;

PBSet F i n f o () ;

PBSet FLock () ;

PBSe t F Po s () ;

PBSet FVers () ;

PBSetVInfo () ;

PBSetVol () ;

PBUnl o c kRange () ;

PBUnmountVo l () ;

PBWri t e () ;

Rename () ;

r s t f Lock () ;

P.s tFLock () ;

S e t EOF () ;

s e t f i n f o () ;

S e t F i n f o () ;

s e t f lo c k () ;

S e t FLock () ;

Return type

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OSErr

OS Err

OS Err

OS Err

OSErr

OS Err

OS Err

OS Err

OS Err

OSErr

OSErr

OS Err

OSErr

OS Err

OS Err

OSErr

OSErr

OS Err

OS Err

OS Err

OS Err

OS Err

Structure and calls by library F-27

Call Return type

SetFPos () ; OS Err

s e tvo l () ; OSErr

SetVo l () ; OSErr

unmountvo l () ; OS Err

UnmountVo l () ; OS Err

Font Manager

The following structures and calls are available in f ont s . h :

Structure name

As s e En t ry FontAssoc

FamRec FontRec

FMet r i cRec KernEn t ry

FMinput KernPai r

FMOutput KernTab l e

Call

FMSwapFont () ;

FontMe t r i c s () ;

get fnum () ;

GetFNum () ;

get fontname () ;

GetFontName () ;

I n i t Font s () ;

Real Font () ;

SetFontLock () ;

SetFra c t Enabl e () ;

SetFScaleDi s ab l e () ;

F-28 Appendix F C Interface Libra1y

NameTabl e

S t y l eTabl e

WidEn t ry

W i dTabl e

WidthTabl e

Retum type

FMOu t P t r

vo i d

vo i d

void

void

void

voi d

Bool ean

void

void

void

Gestalt Manager

o structures or calls are available in gesta l t . h:

List Manager Package

The following structure and calls are available in 1 i s t s . h:

Stntcture name

L i s t Ree

Call

LAct ivat e () ;

LAddCo lumn () ;

LAddRow () ;

LAddToCe l l () ;

LAutoScrol l () ;

l c e l l s i z e () ;

LCe l l S i z e () ;

l c l i c k () ;

L C l i c k () ;

LClrCe l l () ;

LDelColumn () ;

LDelRow () ;

LDispose () ;

LDoDraw () ;

l draw () ;

LDraw () ;

LFind () ;

LGetCe l l () ;

LGe t S e l e c t () ;

Return type

vo id

short

short

vo id

vo id

vo id

vo id

Bool ean

Bool ean

vo id

vo id

vo id

vo i d

vo i d

vo id

void

vo id

vo id

Bool ean

Structures and calls by libra1y F-29

Call Return type

LLas t C l i ck () ; C e l l

lnew () ; L i s tHandle

LNew () ; L i s t Hand l e

LNext C e l l () ; Bool ean

LRec t () ; vo i d

LScro l l () ; void

LSearch () ; Bool ean

LSetCe l l () ; vo i d

LSet S e l e c t () ; vo i d

LS i z e () ; voi d

LUpdat e () ; vo i d

List of Macintosh traps

No structures or calls are available in t raps . h, which provides a list of definitions for

A-line traps accessible through C code.

Low-memoty equates

No structures or calls are available in sys equ . h, which provides definitions for low

memoJy global variables. See Appendix D for further information.

F-30 Appendix F C Interface Libra1y

•\

Mem01y Manager

The Memory Manager uses definitions provided in the files memory . h and

vmc a l l s . h. The following structure and calls are available in the file memory . h:

Structure name

Zone

Call

App l i c Z one () ;

BlockMove () ;

Compac tMem () ;

D i spos Handl e () ;

D i sp o s P t r () ;

EmptyHandl e () ;

F reeMem () ;

GetApp l L im i t () ;

GetHand l e S i z e () ;

Get Pt r S i z e () ;

Get Zone () ;

GZSaveHnd () ;

Hand l e Z one () ;

HClrRB i t () ;

HGe t S t a t e () ;

HLock () ;

HNoPurge () ;

H Purge () ;

HSetRB i t () ;

HSet S t a t e () ;

Return type

THz

vo i d

S i z e

vo i d

void

vo i d

l ong

Pt r

S i z e

S i z e

THz

Hand l e

THz

voi d

short

vo id

vo i d

vo i d

vo i d

vo i d

Structures and calls by libra1y F-31

Call

HUnlock () ;

Ini tApp l Z one () ;

I n i t Zone () ;

MaxAppl Zone () ;

MaxB l oc k () ;

MaxMem () ;

MemError () ;

MFFreeMem () ;

MFMaxMem () ;

MFTempDi sposHandl e () ;

MFTempHLock () ;

MFTempHUnlock () ;

MFTempNewHandl e () ;

MFTopMem () ;

MoreMa s t e r s () ;

MoveHHi () ;

NewEmptyHandl e () ;

NewHandl e () ;

NewPt r () ;

Pt rZone () ;

PurgeMem () ;

PurgeSpace () ;

Real lo cHandl e () ;

RecoverHandl e () ;

Res rvMem () ;

F-32 Appendix F C Interface Libraty

Return type

void

void

vo id

vo i d

l ong

S i z e

OS Err

l ong

S i ze

void

void

void

Hand l e

P t r

void

void '-..._../

Hand l e

Hand l e

Pt r

THz

void

vo i d

vo id

Hand l e

vo id

Call Return type

S e tApp l Ba s e () ; void

SetApp l L imi t () ; vo i d

SetGrowZone () ; vo i d

SetHand l eS i z e () ; voi d

S e t P t rS i z e () ; void

Set Zone () ; vo id

S t ackSpace () ; l ong

S t r i pAddres s () ; P t r

Sys t emZone () ; TH z

TopMem () ; P t r

The following structures and calls are available in vmcal l s . h :

Structure name

Log i c a l ToPhy s i ca lTabl e

MemoryBlock

Call

De f erUs erFn ()

GetPhy s i c a l ()

HoldMemory ()

LockMemory ()

LockMemoryCont i guous ()

Unho l dMemory ()

Unl o c kMemory ()

New in this release.

New in this release.

Return t.ype

OS Err

OSErr

OS Err

OSErr

OS Err

OS Err

OSErr

New in this release.

New in this release.

ew in this release.

New in this release.

ew in this release.

New in this release.

ew in this release.

Structures and calls by libraty F-33

Menu Manager

The following strucnu·es and calls are available in menus . h :

Structure name

MCEnt ry

Menu I n f o

Call Return type

AddResMenu () ; vo i d

appendmenu () ; void

AppendMenu () ; void

Cal cMenu S i z e () ; void

Checki t em () ; void

C l ea rMenuBar () ; void

CountMi t ems () ; short

De l e t eMenu () ; void

De lMCEn t r i e s () ; void

De lMenui t em () ; vo i d

D i s ab l e i t em () ; vo i d

D i spMC info () ; vo i d

D i sposeMenu () ; void

DrawMenuBar () ; void

Enab l e i t em () ; void

F l a s hMenuBar () ; void

get i t em () ; void

Get I t em () ; void

Get i t emCmd () ; vo i d

Get i t emicon () ; voi d

Get i t emMark () ; void

Get i t emStyl e () ; vo i d

GetMCEn t ry () ; MCEn t ryPtr

F-34 Appendix F C Interface Libra1y

Call

GetMC in f o () ;

GetMenu () ;

GetMenuBar () ;

GetMHandle () ;

GetNewMBar () ;

H i l i t eMenu () ;

Ini tMenus () ;

I n i t ProcMenu () ;

InsertMenu () ;

Insert Re sMenu () ;

i nsmenu i t em () ;

InsMenui t em () ;

MenuCh o i c e () ;

MenuKey () ;

menu s e l e c t () ;

Menu S e l e c t () ;

newmenu () ;

NewMenu () ;

PopUpMenuS e l ec t () ;

s e t i t em () ;

Set I t em () ;

Set i t emCmd () ;

Set i t em i con () ;

Set i t emMark () ;

S e t i t emSty l e () ;

SetMCEnt r i e s () ;

SetMC i n fo () ;

SetMenuBar () ;

SetMenuF l ash () ;

Return �ype

MCTabl eHand l e

MenuHandl e

Hand l e

MenuHandl e

Hand l e

vo i d

void

void

void

vo id

void

vo id

l ong

l ong

l ong

l ong

MenuHandl e

MenuHandl e

long

vo i d

vo i d

vo i d

vo i d

void

void

void

void

void

vo id

Structures and calls by libr;uy F-35

Notification Manager

The following structure and calls are available in not i fy . h:

Structure name

NMRec

Call

NMins t a l l () ;

NMremove () ;

Package Manager

Return type

OSErr

OSErr

The following structures and calls are available in packages . h:

Structure name

Int l ORec

Int l lRec

SFReply

Call

Ini tAl l Packs () ;

I n i t Pack () ;

iucomp s t r ing () ;

I UComp S t r ing () ;

iuda t ep s t r i ng () ;

I UDa t e P S t r ing () ;

iuda t e s t r ing () ;

IUDa t e S t r ing () ;

iuequ al s t r i ng () ;

F-36 Appendix F C Interface Library

Return type

void

void

short

short

void

vo id

void

void

short

Call

IUEqu a l S t r ing () ;

IUGet int l () ;

IUMagi DS t r ing () ;

IUMagSt r i ng () ;

IUMe t r i c () ;

IUSet i nt l () ;

iut imep s t r ing () ;

IUTime P S t r i ng () ;

i u t ime s t r i ng () ;

I UTime S t ring () ;

numt o s t r ing () ;

NumTo S t r i ng () ;

s fget f i l e () ;

SFGe t F i l e () ;

s fpget f i l e () ;

SFPGe t F i l e () ;

s fpput f i l e () ;

SFPPu t F i l e () ;

s fput f i l e () ;

SFPut F i l e () ;

s t ri ngt onum () ;

S t r i ngToNum () ;

Return type

short

Hand l e

short

short

Boo l e an

void

vo i d

voi d

v o i d

vo i d

vo id

vo i d

vo i d

vo i d

vo i d

vo i d

void

void

void

void

void

void

Structures and calls by libraty F-37

Palette Manager

The following structures and calls are available in p a l e t t e s . h:

Structure name

Colorinfo

Palet t e

Call

Ac t ivat e Pa l e t t e () ;

Anima t e En t ry () ;

Anima t e Pa l e t t e () ;

CopyPa l e t t e () ;

CTab2 Pal e t t e () ;

D i sposePa l e t t e () ;

GetEnt ryCo l o r () ;

GetEn t ryUsage () ;

GetNewPal et t e () ;

Get Pa l e t t e () ;

I n i t Pa l e t t e s () ;

NewPa l e t t e () ;

NSetPa l e t t e () ;

Pal e t t e2 CTab () ;

PmBackCol or () ;

PmForeCol or () ;

SetEnt ryC o l or () ;

SetEnt ryUsage () ;

SetPa l e t t e () ;

F-38 Appendix F C Interface Library

Return type

voi d

vo i d

vo id

vo id

vo id

void

void

vo i d

Pal e t t eHand l e

Pal e t t eHand l e

vo i d

Pal e t t eHandle

vo id

vo id

void

vo id

vo i d

vo id

voi d

Printing Manager

The following structures and calls are available in print ing . h:

Structure name

TDf t Bi t s Blk

TGe t RotnBlk

TGet R s l B l k

TGnlDat a

TPfPgDir

TPrDlg

Call

PrC lo s e () ;

PrC l o s eDoc () ;

PrC lo s e Page () ;

PrC t l C a l l () ;

PrDlgMa in () ;

PrDrvr C l os e () ;

PrDrvrDCE () ;

PrDrvrOpen () ;

PrDrvrVer s () ;

PrError () ;

PrGeneral () ;

PrintDefault () ;

PrJobD i a l og () ;

PrJob i n i t () ;

PrJobMerge () ;

PrNoPurge () ;

PrOpen () ;

PrOpenDoc () ;

TPr i n f o

TPr int

TPrJob

TPrPort

TPrStatus

Return type

void

vo id

vo id

vo i d

Bool ean

void

Handl e

void

short

short

void

vo i d

Bool e an

TPPrD l g

vo i d

vo i d

vo i d

TPPrPort

TPr S t l

TPrXInfo

TRs lRec

TRs l Rg

TSetRs lBlk

Structures and calls by libraty F-39

Call Return type

PrOpenPage () ; vo i d

PrP i c F i l e () ; void

PrPurge () ; vo i d

PrSetError () ; vo i d

PrS t l D i a l og () ; Bool ean

PrSt l ini t () ; TPPrDlg

PrVa l idat e () ; Boolean

Print traps

The following structures and calls are available in print t raps . h:

Structure name

TDf t B i t s B l k

TGet RotnBlk

TGe t R s l B l k

TGnlData

TPfPgD i r

TPrDlg

Call

PrC l o s e () ;

PrC l os eDoc () ;

PrC l o sePage () ;

PrCt l Ca l l () ;

PrDlgMa i n () ;

PrDrvr C l o s e () ;

PrDrvrDCE () ;

PrDrvrOpen () ;

F-40 Appendix F C Interface Libra1y

TPri n f o

TPr int

TPrJob

TPrPort

TPrStatus

Return type

vo i d

vo i d

vo i d

vo i d

Bool e an

vo i d

Hand l e

vo i d

TPrSt l

TPrXInfo

TRs lRec

TRs l Rg

TSet R s l B l k

Call Return �ype

PrDrvrVers () ; short

PrError () ; short

PrGeneral () ; vo id

PrintDe fau l t () ; void

PrJobD i a l og () ; Boo l e an

PrJobi n i t () ; TPPrDl g

PrJobMerge () ; void

PrNoPurge () ; vo id

PrOpen () ; void

PrOpenDoc () ; TPPrPort

PrOpenPage () ; void

PrP i cF i l e () ; void

PrPurge () ; void

PrSet Error () ; vo id

PrS t l D i a l og () ; Bool ean

PrSt l in i t () ; TPPrDl g

PrVa l i dat e () ; Boo l ean

Process Manager

The following structures and calls are available in pro c e s s e s . h :

Structute name

AppParame t e r s

LaunchParamB l ockRec

Pro c e s s i nfoRec

Proc e s s Se r i a lNumber

New in this release.

New in this release.

New in this release.

New in this release.

Structures and calls by libraty F-41

Call Return type

GetCurrent Pro c e s s O S Err -New in this release.

Get Front Proc e s s O S Err New in this release.

GetNext Pro c e s s O S E r r New in this release.

Get Proc e s s i n fo rma t i on OSErr New in this release.

LaunchApp l i cat i on OSErr New in this release.

LaunchDes kAc c e s s o ry OS Err New in this release.

SameProce s s OS Err New in this release.

SetFront Proces s OS Err New in this release.

WakeUpProc e s s OSErr New in this release.

Resource Manager

Three header files support working with Macintosh resources: resources . h,

asd . h, and aux_rsrc . h. The first two header files provide Macintosh OS structures

and calls. The aux_rsrc . h header file provides UNIX calls. The following calls are

available in resources . h, which has no structures: �

Call

addresourc e () ;

AddRes ourc e () ;

ChangedRe s ource () ;

C l oseRe s Fi l e () ;

Count l Re source s () ;

Count l Types () ;

CountResource s () ;

CountType s () ;

creat ere s f i le () ;

Creat eRe s F i l e () ;

CurRes Fi l e () ;

F-42 Append ix F C Interface Libraty

Return type

voi d

voi d

voi d

voi d

short

short

short

short

voi d

voi d

short

Call

Det achRe source () ;

Get l indResource () ;

Get l indType () ;

get l namedre sourc e () ;

Get lNamedRe source () ;

Get l Re source () ;

Get i ndRe source () ;

Get i ndType () ;

getnamedresourc e () ;

GetNamedResource () ;

GetResAt t r s () ;

GetRes F i l eA t t r s () ;

get r e s i n f o () ;

GetRe s i n f o () ;

GetResource () ;

HCre a t e Re s F i l e () ;

HomeRe sF i l e () ;

HOpenR e s F i l e () ;

I n i t Re s ources () ;

LoadResource () ;

MaxS i z eRsrc () ;

openre s f i l e () ;

OpenRe s F i l e () ;

openr fperm () ;

OpenRFPerm () ;

Re l e a s eResource () ;

ResError () ;

RGetResource () ;

Return type

voi d

Hand l e

v o i d

Hand l e

Hand l e

Hand l e

Hand l e

vo i d

Hand l e

Handl e

short

short

vo i d

vo i d

Hand l e

vo i d

short

short

short

void

l ong

short

short

short

short

vo i d

short

Hand l e

Structures and calls by l ibra1y F-43

Call Return type

RmveResource () ; vo i d

RsrcMapEnt ry () ; l ong

RsrcZonei ni t () ; vo i d

SetResAt t r s () ; vo i d

SetRe s F i l eAt t r s () ; vo id

s e t re s i n f o () ; vo i d

SetRe s in f o () ; voi d

S e t Re s Load () ; vo i d

SetRes Purge () ; voi d

S i z eRes ource () ; l ong

Uni que l i D () ; short

Uni qu e i D () ; short

Upda t eResF i l e () ; vo i d

UseRes Fi l e () ; vo i d

Wr i t eResource () ; vo i d

The following structures and calls are available in asd . h :

Structure name

F i l eHeader HFi l e

F i l e i n f o

F i nder I n f o

Call

C l o s eASD () ;

OpenASD () ;

ReadASD () ;

SeekASD () ;

Wr i t eASD () ;

VFi l e

F-44 Appendix F C Interface Library

Return type

i n t

F i l eHand l e

l ong

l ong

l ong

The following structures and calls are available in aux r s rc . h :

Structure name

ResData New in this release.

Res F i l e New i n this release.

Re sHdr New in this release.

Re sMap New in this release.

ResRe f erence New in this release.

Type Entry New in this release.

TypeLi s t New i n this release.

Call Return type

mrat t r () ; short

mrc l o s e () ; int

mrget () ; Resource

mrgetnamed () ; Resource

mr info () ; i n t

mropen () ; Res Handl e

mrrel () ; vo i d

Scrap Manager

The following structures and calls are available in s crap . h :

Structure name

ScrapS t u f f

Call

Get Sc rap () ;

I n f o S c rap () ;

LoadSc rap () ;

Put S crap () ;

Return type

l ong

PSc rapSt u f f

l ong

l ong

Structures and calls by libraty F-45

Call

Un loadScrap () ;

zeroScrap () ;

Script Manager

Return type

l ong

l ong

The following strucmres and calls are available in s cript . h:

Structure name

BreakTabl e

DateCacheRecord

F i ndB l ockStatus

Forma t S t r ing

I t l 4 Rec

I t lbRecord

Call

Char2 Pixe l () ;

CharBy t e () ;

CharType () ;

DrawJus t () ;

F i ndBlock () ;

F i ndWord () ;

Font 2 Sc r ipt () ;

Font S c r ipt () ;

Form2 S t r () ;

FormS t r 2 X () ;

FormX 2 St r () ;

GetAppFont () ;

GetDefFont S i z e () ;

F-46 Appendix F C Interface Libra1y

I t l c Record

Loc a t i on

NumberPart s

Start Length

TokenBlock

TDf t B i t s B l k

Return type

short

short

short

voi d

Togg l ePB

Token

TPrJob

Unt okenTab l e

WideCharArr

s t ruct F indBlockStatus

vo i d

short

short

Forma t S tat us

Forma t S t at u s

Forma t S t atus

short

short

Call

Get Env i rons () ;

GetFormatOrder () ;

GetMBarHe i ght () ;

Get S c r ipt () ;

Get Sy s Font () ;

Get Sy sJust () ;

H i l i t eText () ;

I n i t Da t eCache () ;

Int l Sc r ipt () ;

I ULDa t e S t r i ng () ;

I ULT imeS t r ing () ;

Key S c r ipt () ;

L i neBreak () ;

LongDa t e 2 S ec s () ;

LongSec s 2 Dat e () ;

LwrText () ;

MeasureJu s t () ;

Pars eTabl e () ;

P i xe l 2 Char () ;

Por t i onText () ;

ReadLoca t i on () ;

S e t Envi rons () ;

S e t S c r ipt () ;

S e t Sy sJus t () ;

S t r2 Form () ;

S t ri ng 2 Da t e () ;

S t r ing2Time () ;

Toggl eDat e () ;

Retum �ype

l ong

void

short

long

short

short

void

OS Err

short

vo i d

vo i d

vo i d

L i neBreakCode

vo id

vo i d

vo i d

void

Bool ean

short

F i xed

void

OS Err

OS Err

void

Forma t St a t u s

S t r ing2 Dat eStatus

S t r ing2 Dat eStatus

Toggl eRe sul t s

Structures and calls by library F-47

Call Return type

Token i z e () ; TokenRes u l t

Trans l i t er a t e () ; OS Err

UprText () ; vo i d

Val idDa t e () ; short

Vi s ib l eLength () ; l ong

Wri t eLocat i on () ; vo i d

Segment Loader

The following structure and calls are available in segl oad . h:

Structure name

AppFi l e

Call

C lrAppF i l es () ;

CountAppF i l es () ;

Exi t ToShe l l () ;

GetAppFi l e s () ;

getappparms () ;

GetAppParms () ;

UnloadSeg () ;

F-48 Appendix F C Interface Library

Return �ype

vo i d

vo i d

vo i d

v o i d

vo i d

v o i d

voi d

Serial Driver

The following structures and calls are available in s e r i a l . h:

Structure name

SerShk

SerSt aRec

Call

RamSDC l o s e () ;

RamSDOpen () ;

SerCl rBrk () ;

S erGetBuf () ;

SerHShake () ;

SerR e s e t () ;

S erSetBrk () ;

SerSetBuf () ;

SerStatus () ;

Shutdown Manager

Return type

void

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

The following calls are available in shutdown . h, which has no structures:

Call

ShutDwnins t a l l () ;

Shut DwnRemove () ;

Return type

vo i d

void

ew in this release.

New in this release.

Structures and calls by libraty F-49

Slot Manager

The following structures and calls are available in s l o t s . h:

Structure name

FHeaderRec S inf oRecord

SDMRecord S lot i ntQE l ement

SEBl o c k SpBlock

Call

Init SDec lMgr () ;

Open S l o t () ;

SCa l c S Po i nt e r () ;

SCa l c S t ep () ;

SCardChanged () ;

SCkCardS t a t () ;

SDe l e t eSRTRec () ;

SExec () ;

SFindBigDevBa s e () ;

SFindDevBas e () ;

SFindS inf oRecPt r () ;

S FindSRs r c Pt r () ;

SFindS t ru c t () ;

SGetBlock () ;

SGetC S t r i ng () ;

SGet Dr iver () ;

SGet sRsrc () ;

SGet sRsrc i n f o () ;

SGetTypesRsrc () ;

S i n i t PRAMRec s () ;

S i n i t SRsrcTable () ;

F-50 Appendix F C Interface Libra1y

Return �ype

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OSErr

OS Err

OS Err

Call

S insert SRTRec () ;

S int i ns t a l l () ;

S intRemove () ;

SNext SRsrc () ;

SNextTypeSRsrc () ;

SOf f s et Da t a () ;

S Primary i ni t () ;

SPtrTo S l o t () ;

S Put PRAMRec () ;

SReadBy t e () ;

S ReadDrvrName () ;

S ReadFHeader () ;

SReadinfo () ;

SReadLong () ;

SReadPBS i z e () ;

SReadPRAMRec () ;

S ReadSt ru c t () ;

S ReadWord () ;

SRsrc i n f o () ;

SSearchSRT () ;

S S e t s R s r c S t a t e () ;

SUpdat eSRT () ;

SVe r s i on () ;

Return type

OSErr

OS Err

OS Err

OSErr

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

Structures and calls by libra1y F-51

Sound Manager

Three header files support working with Macintosh resources: sm . h,

s oundi nput . h, and s oundi nputpri v . h. The first header file provides Macintosh

OS structures and calls. The last two provide the calls that allow sound input under

UNIX. The following structures and calls are available in sm . h:

Structure name

CmpSoundHeader

Ext SoundHeader

Lef tOverBloc k

Modi f i erStub

SndChanne l

SndCommand

Call

aSndDi spos eChanne l () ;

aSndAddModi f i er () ;

aSndDoCommand () ;

aSndDo immedi a t e () ;

aSndPl ay () ;

aSndCont r o l () ;

a SndNewChanne l () ;

SndDoubleBu f f e r

SndDoubleBu f f erHeader

SndL i s t Re source

SoundHeader

S t ateBlock

Return type

short

short

short

short

short

short

short

The following structure and calls are available in s oundinput . h:

Structure name

S PB

Call

SetupAI FFHeader

SetupSndHeader

SndRecord

SndRecordToF i l e

F-52 Appendix F C Interface Libraty

New in this release.

Return type

OS Err New in this release.

OS Err New in this release.

OS Err New in this release.

OS Err New in this release.

Call Return type

S PBBy t esToMi l l i seconds OS Err New in this release.

S PBC l o s eDevi c e OSErr New in this release.

S PBGetDevi c e i n f o O S Err New in this release.

SPBGe t i ndexedDev i c e O S Err)Jew in this release.

S PBGe t RecordingStatus OS Err New in this release.

S PBMi l l i secondsToBytes OSErr New in this release.

S PBOpenDevi c e O S Err New in this release.

S PBPaus eRecording OS Err New in this release.

SPBRecord OS Err New in this release.

SPBRecordToFi l e OS Err New in this release.

S PBResumeRecording OS Err ew in this release.

S PBSet Devi c e i n f o O S Err New in this release.

S PBSigninDev i c e OS E r r ew in this release.

S PBSignOu t Device OSErr New in this release.

S PBSt opRecording OSErr ew in this release.

The following structures and calls are available in s oundinputpri v . h:

Structure name

AppRe f Rec

Drvr ParamBl ockRec

SndinG l oba l s

Call

SoundinDevi c e

S PBGet De f au l t Device

S PBSetDefau l t Devi ce

New in this release.

New in this release.

New in this release.

Return type

OSErr

OSErr

New in this release.

ew in this release.

New in this release.

Structures and calls by libra1y F-53

String conversion between Pascal and C

The following calls are available in s t r ings . h, which has no stmctures:

Call

*p2 c s t r () ;

c2ps t r () ;

System Error Handler

Return type

char

S t r i ngPt r

The following calls are available in errors . h, which has no structures:

Call

SysError () ;

TextEdit

Return type

void

The following structures and calls are available in t ext edi t . h :

Structure name

LHE l ement

Nu l l S t Ree

ScrpSTEl ement

STEl ement

S t S c rpRec

Call

Get S ty l Hand l e () ;

Get S t y l Sc rap () ;

SetC l i kLoop () ;

S e t S t y l Handl e () ;

Set S ty l Sc rap () ;

F-54 Appendix F C Interface Libra1y

StyleRun

TERec

TEStyl eRec

Text Style

Return type

TEStyl eHand l e

S t Sc rpHandle

vo id

vo id

vo id

Call

SetWordBreak () ;

TEAc t ivate () ;

TEAutoView () ;

TECalText () ;

t ec l i c k () ;

TEC l i c k () ;

TECon t i nuousSty l e () ;

TECopy () ;

TECu s t omHook () ;

TECut () ;

TEDea c t iva t e () ;

TEDe l e t e () ;

TEDi spo se () ;

TEFromScrap () ;

TEGetHeight () ;

TEGe t O f f s e t () ;

TEGet Po int () ;

TEGe t S c rapLen () ;

TEGe t S t y l e () ;

TEGetText () ;

TEidle () ;

TEinit () ;

TEinsert () ;

TEKey () ;

TENew () ;

TENumSt y l e s () ;

TEPas t e () ;

TEPinS c ro l l () ;

Return type

vo i d

vo i d

vo i d

vo i d

void

void

Bool ean

vo i d

vo i d

vo i d

vo i d

vo i d

vo i d

OSErr

l ong

short

s t ruct Point

l ong

vo i d

Chars Handl e

void

void

vo i d

void

TEHand l e

l ong

vo id

vo i d

Structures and calls by library F-55

Call Return type

TERep l aceSty l e () ; void

TEScrapHandl e () ; Hand l e

TES c ro l l () ; vo id

TES e l V i ew () ; vo id

TESetJu s t () ; vo id

TESet S c rapLen () ; vo id

TES e t S e l ec t () ; void

TES e t S t y l e () ; void

TESetText () ; void

TEStyl insert () ; void

TEStylNew () ; TEHand l e

TESty l Pa s t e () ; void

TEToSc rap () ; OS Err

TEUpdat e () ; void

TextBox () ; void

Time Manager

The following structure and calls are available in t imer . h :

Structure name

TMTask

Call

InsTime () ;

PrimeTi me () ;

RmvTime () ;

F-56 Appendix F C Interface Library

Return type

void

vo id

void

Utilities, Operating System

The following structures and calls are available in osut i l s . h :

Structure name

DateT imeRec

QEl em

QHdr

Call

Date2 S e c s () ;

De l ay () ;

Dequeue () ;

DTins t a l l () ;

Enqueue () ;

Envi rons () ;

equa l s t r ing () ;

Equa l S t r i ng () ;

GetDat eTime () ;

GetMMUMode () ;

GetSy s PP t r () ;

GetTime () ;

GetTrapAddres s () ;

HandAndHand () ;

HandToHand () ;

Ini tUt i l () ;

KeyTrans () ;

NGetTrapAddres s () ;

NSetTrapAddre s s () ;

Pt rAndHand () ;

Pt rToHand () ;

SysEnvRec

Sys ParmType

Return type

vo i d

vo id

OSErr

OS Err

void

void

Boo l ean

Bool ean

vo i d

char

Sys PP t r

vo i d

l ong

OS Err

OS Err

OS Err

l ong

l ong

void

OS Err

OSErr

New in this release.

Structures and calls by libra�y F-57

Call Return type

Pt rToXHand () ; OS Err

ReadDateT ime () ; OS Err

r e l s t r i ng () ; short

Re l S t r ing () ; short

Restart () ; void

S e c s 2 Da t e () ; void

SetAS () ; l ong

SetCurrentAS () ; l ong

S etDat eTime () ; OS Err

SetTime () ; void

SetTrapAddre s s () ; void

SwapMMUMode () ; void

SysBeep () ; void

SysEnvi rons () ; OS Err

UprS t r ing () ; vo id

uprs t r i ng () ; vo id

Wri t e Param () ; OSErr

Utilities, Toolbox

The following structure and calls are available in toolut i l s . h :

Structure name

I nt 6 4 B i t

Call

AngleFromS l ope () ;

Bi tAnd () ;

B i t C l r () ;

Bi tNot () ;

F-58 Appendix F C Interface Libra1y

Return type

short

l ong

vo i d

l ong

Call

Bi tOr () ;

B i t S e t () ;

B i t Sh i f t () ;

B i tT s t () ;

Bi tXor () ;

de l t apoint () ;

De l t aPoint () ;

F i xMul () ;

F ixRa t io () ;

F i xRound () ;

GetCursor () ;

Get I c on () ;

G e t i ndPa t t ern () ;

get inds t ring () ;

Get indSt r ing () ;

Get Pat t ern () ;

Get P i c ture () ;

Get S t r i ng () ;

Hi Word () ;

LongMul () ;

LoWord () ;

Munger () ;

news t ring () ;

NewS t ri ng () ;

PackB i t s () ;

Plot l con () ;

Sc reenRes () ;

s e t s t r i ng () ;

Return type

l ong

void

long

Bool ean

l ong

l ong

l ong

Fixed

F i xed

short

CursHand l e

Hand l e

v o i d

vo id

voi d

Pat Handl e

P i cHand l e

S t r i ngHandle

short

vo i d

short

l ong

S t r ingHandle

S t r ingHandle

vo id

vo i d

vo id

vo i d

Structures and calls by libra1y F-59

Call

Set S t r ing () ;

shieldcursor () ;

Shi e l dCursor () ;

S l opeFromAng l e () ;

UnpackBi t s () ;

Vertical Retrace Manager

Return type

void

void

vo id

Fixed

void

The following structure and calls are available in retrace . h :

Structure name

VBLTask

Call

AttachVBL () ;

DoVBLTas k () ;

GetVBLQHdr () ;

S lotVIns t a l l () ;

S l ot VRemove () ;

VIns t a l l () ;

VRemove () ;

Video Driver

Return type

OSErr

OS Err

QHdrP t r

O S E r r

O S E r r

O S Err

OSErr

The following structures are available in video . h, which has no calls:

Structure name

CSVidMsg

VDEnt ryRecord

VDGrayRecord

VDPage i n f o

F-60 Appendix F C Interface Library

VDSe t Ent ryRecord

VDSet t ing s

VDS i z e i n f o

VPBl ock

�

Window Manager

The following structures and calls are available in wi ndows . h:

Structure name

AuxWinRec

CWindowRecord

WinCTab

Call

BeginUpdat e () ;

BringToFront () ;

C a l c V i s () ;

Ca l cVi sBeh ind () ;

CheckUpdat e () ;

C l ipAbove () ;

C lo s eWindow () ;

D i sposeWindow () ;

draggrayrgn () ;

DragGrayRgn () ;

dragwindow () ;

DragWindow () ;

DrawGrowi con () ;

DrawNew () ;

EndUpdat e () ;

f indwindow () ;

F i ndWi ndow () ;

Front Window () ;

GetAuxW i n () ;

GetCWMgrPort () ;

GetGrayRgn () ;

WindowRecord

WS t a t eData

Return �ype

vo id

vo id

void

void

Boo lean

vo i d

void

void

l ong

l ong

vo id

vo id

vo id

vo id

vo id

short

short

WindowP t r

Boo l e an

vo id

RgnHand l e

Structures and calls b y libra1y F-61

Call

GetNewCWindow () ;

GetNewWindow () ;

GetWindowPi c () ;

GetWMgrPort () ;

GetWRe fCon () ;

getwt i t l e () ;

GetWT i t l e () ;

GetWVa r i ant () ;

growwindow () ;

GrowWindow () ;

H i deWindow () ;

H i l i t eWindow () ;

I n i t Windows () ;

InvalRect () ;

Inval Rgn () ;

MoveWindow () ;

newcwindow () ;

NewCWindow () ;

newwindow () ;

NewTtJindow () ;

PaintBehind () ;

PaintOne () ;

p inrect () ;

P inRec t () ;

S aveOl d () ;

S e l ec tWindow () ;

SendBeh i nd () ;

S e t DeskCPat () ;

F-62 Appendix F C Interface Libra1y

Return type

WindowPt r

WindowPt r

P i c Hand l e

void

l ong

vo i d

vo id

short

l ong

l ong

void

void

void

void

void

void

W i ndowPtr

WindowPt r

WindowP t r

WindowP t r

void

void

l ong

l ong

vo i d

voi d

vo i d

v o i d

Call Return �ype

SetWinC o l or () ; vo id

SetWindowPi c () ; vo i d

SetWR e f Con () ; voi d

setwt i t l e () ; vo id

SetWTi t l e () ; vo id

ShowHi de () ; vo id

ShowWindow () ; voi d

S i z eWindow () ; voi d

t r ackbox () ; Bool ean

TrackBox () ; Bool ean

t r ackgoaway () ; Bool ean

TrackGoAway () ; Bool ean

Val idRect () ; vo i d

Val idRgn () ; vo i d

ZoomWindow () ; vo id

Calls in alphabetical order

All calls in the preceding section are listed here in alphabetical order by name. This

section also gives the return type and the name of the header file containing each call. A
few calls are available in more than one header file. The major duplication is in

pr int ing . h and print t raps . h.

The names of two calls may differ only in case, one spelled as the name appears in

Inside Macintosh (mixed case) and the other spelled in lowercase only. A call named in
mixed case accepts Pascal-format strings and Pascal point-passing conventions. A call

named in lowercase accepts input parameters in C format and converts them before
passing them to the ROM routines, and converts string return values back to C format.

For additional information on these differences, see the section "Differences in Language

Conventions" in Chapter 4.

Calls in alphabetical order F-63

Call

*p2 c s t r () ;

Ac t ivat e Pal et t e () ;

AddComp () ;

AddDr ive () ;

addpt () ;

AddPt () ;

AddResMenu () ;

addr esource () ;

AddResource () ;

AddSearch () ;

Alert () ;

Al locate () ;

A l l ocCont i g () ;

A l l ocCursor () ;

Ang l eFromS l ope () ;

AnimateEn t ry () ;

Anima t eP a l et t e () ;

appendmenu () ;

AppendMenu () ;

App l i c Zone () ;

aSndAddModi f i er () ;

a SndCont ro l () ;

aSndD i sposeChanne l () ;

a SndDoCommand () ;

aSndDo lmmediat e () ;

a SndNewChanne l () ;

a SndPl ay () ;

At t achVBL () ;

F-64 Appendix F C Interface Libraty

Return type Header file

char s t r ings . h

void p a l e t t e s . h

vo i d qu i ckdraw . h

void f i les . h

void qu i ckdraw . h

vo i d qu i ckdraw . h

vo i d menus . h

void res ources . h

void re sources . h

void qui ckdraw . h

short d i a logs . h

OS Err f i les . h

OS Err f i les . h

void qu i ckdraw . h

short t oo lut i l s . h

void pa l et t e s . h

voi d p a l e t t e s . h

voi d menus . h

void menus . h

THz memory . h

short sm . h

short sm . h

short sm . h

short sm . h

short sm . h

short sm . h

short sm . h

OSErr retrace . h

Call

AUXCOFFLaunch () ;

AUXDi spat ch () ;

BackC o l or () ;

BackPat () ;

BackPixPat () ;

BeginUpdat e () ;

B i t And () ;

B i t C l r () ;

Bi tNot () ;

Bi t Or () ;

B i t Set () ;

B i t Shi f t () ;

B i t T s t () ;

B i t Xor () ;

BlockMove () ;

BringToFront () ;

But t on () ;

c 2 p s t r () ;

Cal cCMask () ;

C a l cMask () ;

Cal cMenuS i z e () ;

C a l c V i s () ;

C a l cV i sBehind () ;

CatMove () ;

Cau t i onAl e r t () ;

ChangedResourc e () ;

Char2 Pixel () ;

CharBy t e () ;

Retum type

pascal short

pa s c a l l ong

vo id

void

void

vo id

long

void

l ong

l ong

vo id

l ong

Bool ean

l ong

void

vo id

Boo l e an

S t r i ng P t r

v o i d

vo id

vo id

vo id

void

OSErr

short

vo id

short

short

Header file

aux . h

aux . h

qui c kdraw . h

qui c kdraw . h

qui c kdraw . h

windows . h

toolut i l s . h

toolut i l s . h

toolut i l s . h

toolut i l s . h

t oo lut i l s . h

t oo lut i l s . h

toolut i l s . h

toolut i l s . h

memory . h

windows . h

event s . h

s t r ings . h

qui c kdraw . h

qu i c kdraw . h

menus . h

windows . h

windows . h

f i l e s . h

d i a l ogs . h

resourc es . h

sc ript . h

s c r ipt . h

Calls in alphabetical order F-65

Call

CharExtra () ;

CharType () ;

CharWidth () ;

Checki t em () ;

CheckUpdat e () ;

C l earMenuBar () ;

C l ipAbove () ;

C l i pRect () ;

C l oseASD () ;

C l o seCPort () ;

C l oseDeskAcc () ;

C l o seDial og () ;

C l o s eDriver () ;

C lo s e P i c ture () ;

C l osePoly () ;

C l osePort () ;

C l o seRe s F i l e () ;

C loseRgn () ;

C lo s eWD () ;

C l o s eW indow () ;

C l rAppFi l e s () ;

CMY2RGB () ;

Co l or2 I ndex () ;

ColorB i t () ;

CompactMem () ;

Control () ;

CopyBi t s () ;

CopyMas k () ;

F-66 Appendix F C Interface Libraty

Return type

void

short

short

void

Bool ean

void

void

void

int

void

void

void

OS Err

void

void

void

void

vo i d

O S Err

void

void

void

l ong

void

S i z e

OS Err

void

void

Header file

qui ckdraw . h

s c r ipt . h

qui ckdraw . h

menu s . h

windows . h

menus . h

windows . h

qui ckdraw . h

a sd . h

qu i c kdraw . h

desk . h

dia l ogs . h

dev i c e s . h

qui c kdraw . h

qui c kdraw . h

qui c kdraw . h

resource s . h

qui c kdraw . h

f i l e s . h

windows . h

segload . h

p i cker . h

qui c kdraw . h

qui c kdraw . h

memory . h

dev i c e s . h

qui c kdraw . h

qu i c kdraw . h

Call

CopyPa l e t t e () ;

CopyPixMap () ;

CopyPixPa t () ;

CopyRgn () ;

Cou l dA l e r t () ;

Cou l dD ia l og () ;

Count l Resources () ;

Count l Types () ;

CountAppF i l es () ;

CountMi t ems () ;

CountResource s () ;

CountTypes () ;

crea t e () ;

Create () ;

c reat eres f i l e () ;

CreateRe s F i l e () ;

CTab2 P a l e t t e () ;

CurRe s F i l e () ;

Dat e2 S e c s () ;

Debugger () ;

debugs t r () ;

DebugS t r () ;

De ferUserFn () ;

De lay () ;

De lCamp () ;

De l e t eMenu () ;

De lMCEn t r i e s () ;

De lMenui t em () ;

Return type

void

vo i d

void

vo i d

void

void

short

short

void

short

short

short

OS Err

OS Err

vo id

void

void

short

void

void

vo i d

vo id

OSErr

vo id

vo i d

vo i d

vo i d

vo i d

Header jlle

p a l e t t e s . h

qui c kdraw . h

qui c kdraw . h

qui c kdraw . h

d i a l ogs . h

d i a l ogs . h

resources . h

resources . h

seg l oad . h

menus . h

resources . h

resources . h

f i l e s . h

f i l e s . h

resources . h

resourc es . h

p a l e t t e s . h

re sourc es . h

o s u t i l s . h

types . h

types . h

types . h

vmc a l l s . h

osu t i l s . h

qui c kdraw . h

menus . h

menus . h

menus . h

Calls in alphabetical order F-67

Call

Del Search () ;

de l t apoint () ;

De l t aPoint () ;

Dequeue () ;

Det achRes ource () ;

D i a l ogS e l e c t () ;

dibadrnount () ;

DI BadMount () ;

Di f fRgn () ;

D I Format () ;

D ILoad () ;

D i rCreate () ;

D i s ab l e i t em () ;

D i skE j e c t () ;

Di spMC i n f o () ;

Di sposCCursor () ;

D i spos C i con () ;

D i sposCTabl e () ;

D i sposDi a l og () ;

D i sposeCon t r o l () ;

D i spo s eMenu () ;

D i sposePa l e t t e () ;

D i spos eRgn () ;

D i spos eW indow () ;

D i sposGDev i c e () ;

Di sposHandl e () ;

D i spos Pi xMap () ;

D i spos PixPat () ;

F-68 Appendix F C Interface Libra1y

Return type Headerji:le

void qui ckdraw . h

l ong toolut i l s . h

l ong toolut i l s . h

OS Err osut i l s . h

void re sources . h

Bool ean d i a l ogs . h

OSErr d i skini t . h

short di skinit . h

void qu i c kdraw . h

OS Err d i s kini t . h

vo id di skini t . h

OS Err f i l e s . h

void menus . h

OS Err di sks . h

void menus . h

vo id qu i c kdraw . h

vo id qui c kdraw . h

vo id qui ckdraw . h

vo id d i a l ogs . h

vo id c on t ro l s . h

void menus . h

void p a l e t t e s . h

void qu i c kdraw . h

void windows . h

vo id qu i c kdraw . h

vo id memory . h

vo id qui c kdraw . h

void qui c kdraw . h

Call Return type

D i spo s P t r () ; voi d

D IUnl oad () ; vo i d

DIVe r i f y () ; OS Err

d i z ero () ; OSErr

DI Zero () ; OSErr

D lgCopy () ; vo i d

DlgCut () ; void

DlgDe l e t e () ; void

DlgPa s t e () ; vo i d

DoVBLTask () ; OS Err

dragcontrol () ; vo i d

DragControl () ; vo id

draggrayrgn () ; l ong

DragGrayRgn () ; l ong

dragwindow () ; void

DragWindow () ; void

Draw lCont r o l () ; void

DrawChar () ; vo i d

DrawContro l s () ; vo i d

DrawD i a log () ; vo i d

DrawGrowi con () ; vo i d

DrawJus t () ; vo i d

DrawMenuBar () ; vo i d

DrawNew () ; vo i d

DrawPi c ture () ; vo i d

draws t r i ng () ; vo i d

DrawSt r i ng () ; void

DrawText () ; void

Header file

memory . h

di skini t . h

d i skini t . h

d i s kini t . h

d i s ki ni t . h

d i a l ogs . h

d i a l ogs . h

d i a l ogs . h

d i a l ogs . h

ret race . h

cont rol s . h

cont rol s . h

windows . h

w indows . h

windows . h

windows . h

control s . h

qui c kdraw . h

control s . h

d i a l ogs . h

windows . h

s c r ipt . h

menus . h

windows . h

qu i c kdraw . h

qui c kdraw . h

qui ckdraw . h

qui c kdraw . h

Calls in alphabetical order F-69

Call

Dr ive S t a t u s () ;

DTins t a l l () ;

DTins t a l l () ;

ej ect () ;

Ej ect () ;

EmptyHandl e () ;

EmptyRect () ;

EmptyRgn () ;

Enabl e i t em () ;

EndUpdat e () ;

Enqueue () ;

Environs () ;

equalpt () ;

Equal P t () ;

EqualRect () ;

EqualRgn () ;

equa l s t r ing () ;

Equa l S t r ing () ;

EraseArc () ;

EraseOva l () ;

ErasePoly () ;

EraseRect () ;

EraseRgn () ;

EraseRoundRec t () ;

ErrorSound () ;

EventAvai l () ;

Exi tToShel l () ;

F i l lArc () ;

F-70 Appendix F C Interface Library

Return type Header file

OS Err di sks . h

OS Err dtas k . h

OS Err osut i l s . h

OS Err f i l e s . h

OS Err f i le s . h

vo i d memory . h

Bool ean qui c kdraw . h

Bool ean qui ckdraw . h

void menus . h

void wi ndows . h

void osut i l s . h

vo i d osut i l s . h

Bool ean qu i c kdraw . h

Bool ean qui c kdraw . h

Bool ean qu i c kdraw . h

Bool ean qui ckdraw . h

Bool ean osut i l s . h

Bool ean osut i l s . h

vo i d qui ckdraw . h

vo id qui ckdraw . h

vo id qui ckdraw . h

vo i d qui ckdraw . h

void qui ckdraw . h

void qu i ckdraw . h

vo i d d i a l ogs . h

Boolean event s . h

void segl oad . h

vo i d qu i c kdraw . h

Call

Fi l lCArc () ;

F i l l COval () ;

F i l l C Po ly () ;

F i l lCRect () ;

F i l l CRgn () ;

F i l l C RoundRec t () ;

F i l l Oval () ;

F i l l Po ly () ;

F i l l R e c t () ;

F i l l Rgn () ;

Fi l lRoundRec t () ;

F indB l o c k () ;

f indcont ro l () ;

FindCont rol () ;

f i nddi t em () ;

F i ndD i t em () ;

f i ndwi ndow () ;

F indWindow () ;

F indWord () ;

F i n i t Queue () ;

F ix2 Sma l l Fract () ;

F ixMu l () ;

F ixRa t i o () ;

F ixRound () ;

F l a s hMenuBar () ;

F lushEvent s () ;

f lushvo l () ;

F lushVo l () ;

Retum type Header file

void qui c kdraw . h

void qui c kdraw . h

vo i d qui c kdraw . h

void qui ckdraw . h

void qui c kdraw . h

void qui c kdraw . h

void qui c kdraw . h

void qui c kdraw . h

void qui c kdraw . h

void qui c kdraw . h

void qui c kdraw . h

s t ruct F indB l ockStatus s c r ipt . h

short

short

short

short

short

short

vo id

void

Sma l l Fract

F i xed

F ixed

short

vo id

vo id

OS Err

OS Err

contro l s . h

cont rol s . h

d i a l ogs . h

d i a l ogs . h

windows . h

windows . h

script . h

f i l e s . h

p i cker . h

t o o l ut i l s . h

t o o l ut i l s . h

toolut i l s . h

menus . h

o s event s . h

f i les . h

f i l e s . h

Calls in alphabetical order F-71

Call

FMSwapFont () ;

Font 2 Scr ipt () ;

FontMe t r i c s () ;

Font S c r ipt () ;

ForeC o l or () ;

Form2 St r () ;

FormS t r2 X () ;

FormX2 S t r () ;

FrameArc () ;

FrameOval () ;

FramePoly () ;

FrameRect () ;

FrameRgn () ;

FrameRoundRec t () ;

FreeA l e r t () ;

FreeD i a l og () ;

FreeMem () ;

Front Window () ;

FSClose () ;

f s de l e t e () ;

F S De l e t e () ;

f s open () ;

FSOpen () ;

FSRead () ;

f s rename () ;

FSWr i t e () ;

Get l i ndResourc e () ;

Get l indType () ;

F-72 Appendix F C Interface Library

Return type Header file

FMOu t P t r font s . h

short s c r ipt . h

voi d font s . h

short s c r ipt . h

voi d qu i c kdraw . h

Forma t S t atus s c r ipt . h

Format S t atus s c ript . h

Format S t a t u s s cr ipt . h

vo i d qui ckdraw . h

voi d qu i c kdraw . h

vo i d qu i c kdraw . h

vo i d qu i c kdraw . h

vo i d qui ckdraw . h

vo i d qui c kdraw . h

vo i d d i a l ogs . h

vo i d d i a l ogs . h

l ong memory . h

W i ndowPt r windows . h

OS Err f i l e s . h

OSErr f i l e s . h

OS Err f i l e s . h

OSErr f i l es . h

OSErr f i l e s . h

OS Err f i l e s . h

OS Err f i l e s . h

OS Err f i l e s . h

Handl e resource s . h

void r e sour c e s . h

Call Return type

get lnamedresource () ; Hand l e

Get lNamedRe source () ; Hand l e

Get l Re source () ; Handl e

GetAl r t S t age () ; short

GetAppF i l e s () ; vo i d

GetAppFont () ; short

GetApp lLimi t () ; P t r

getappparms () ; void

GetAppParms () ; voi d

GetAuxC t l () ; Boo l ean

GetAuxWin () ; Bool ean

GetBackCol or () ; vo i d

GetCaretT ime () ; uns i gned l ong

GetCCursor () ; CCrsrHand l e

Get C i c on () ; C i c onHand l e

Get C l ip () ; vo i d

GetCo l o r () ; Bool ean

GetCPixel () ; voi d

GetCRe fCon () ; l ong

GetCTab l e () ; CTabHandl e

get c t i t l e () ; vo i d

GetCTi t l e () ; vo i d

Get C t lAct i on () ; Pro c P t r

G e t C t lMax () ; short

GetCt lMin () ; short

GetCt lValue () ; short

GetCTSeed () ; l ong

GetCurrent Proc e s s () ; OS Err

Headerfile

resources . h

resourc es . h

re sourc es . h

d i al ogs . h

s eg load . h

s c r ipt . h

memory . h

seg l oad . h

segl oad . h

c on t ro l s . h

wi ndows . h

qui c kdraw . h

event s . h

qui c kdraw . h

qui c kdraw . h

qui c kdraw . h

p i cker . h

qui c kdraw . h

contro l s . h

qui c kdraw . h

cont ro l s . h

cont rol s . h

c ont ro l s . h

cont rol s . h

control s . h

c ont rol s . h

qui c kdraw . h

proc e s s es . h

Calls in alphabetical order F-73

Call

GetCursor () ;

GetCVar i ant () ;

GetCWMgrPort () ;

GetDat eTime () ;

GetDblTime () ;

GetDC t l En t ry () ;

GetDe fFont S i z e () ;

GetDeviceL i s t () ;

GetD i t em () ;

GetDrvQHdr () ;

GetEn t ryC o l o r () ;

GetEn t ryUsage () ;

GetEnvi r ons () ;

Get EOF () ;

GetEvQHdr () ;

get f in f o () ;

Get F i n f o () ;

get fnum () ;

GetFNum () ;

GetFont i n f o () ;

g e t fontname () ;

GetFontName () ;

GetForeC o l or () ;

GetFormatOrder () ;

GetFPos () ;

GetFront Proc e s s

GetFSQHdr () ;

GetGDevice () ;

F-74 Appendix F C Interface Libra1y

Return �ype Header file

Curs Handl e toolut i l s . h

short control s . h

vo id wi ndows . h

void osut i l s . h

uns igned l ong event s . h

DCt lHandl e dev i c es . h

short s c ript . h

GDHand l e qui ckdraw . h

void d i a l ogs . h

QHdr P t r f i l es . h

void pal et t e s . h

vo id pa l et t e s . h

l ong s c r ipt . h

OS Err f i l e s . h

QHdr P t r osevent s . h

OS Err f i l es . h

OS Err f i les . h

void font s . h

vo id f onts . h

void qui ckdraw . h

void fonts . h

void fonts . h

void qu ickdraw . h

void s c r ipt . h

OS Err f i l e s . h

OS Err processes . h

QHdrP t r f i l e s . h

GDHandl e quickdraw . h

Call

GetGrayRgn () ;

GetHand l e S i z e () ;

Get i c on () ;

G e t i ndPa t t ern () ;

Get indRe source () ;

get inds t ring () ;

Get ind S t r ing () ;

Get i ndType () ;

get i t em () ;

Get I t em () ;

Get i t emCmd () ;

Get i t emi con () ;

Get i t emMark () ;

Get i t emSt y l e () ;

get i t ext () ;

Get iText () ;

Get Keys () ;

GetMa inDevi c e () ;

GetMaskTabl e () ;

GetMaxDev i c e () ;

GetMBarH e i ght () ;

GetMCEn t ry () ;

GetMC in f o () ;

GetMenu () ;

GetMenuBar () ;

GetMHand l e () ;

GetMMUMode () ;

GetMouse () ;

Return type

RgnHandl e

S i z e

Handle

vo id

Handle

vo i d

vo id

void

vo id

void

void

void

voi d

vo id

vo i d

vo i d

vo id

GDHandle

Ptr

GDHandle

short

MCEnt ry P t r

MCTabl eHandl e

MenuHand l e

Handle

MenuHandle

char

vo id

Header file

windows . h

memory . h

toolut i l s . h

toolut i l s . h

resourc es . h

t oo l ut i l s . h

toolut i l s . h

resourc es . h

menus . h

menus . h

menus . h

menus . h

menus . h

menus . h

d i a l ogs . h

d i a l ogs . h

event s . h

qui c kdraw . h

qui c kdraw . h

qui c kdraw . h

s c r ipt . h

menus . h

menus . h

menus . h

menus . h

menus . h

o sut i l s . h

event s . h

Calls in alphabetical order F-75

Call

getnamedresourc e () ;

GetNamedResource () ;

GetNewControl () ;

GetNewCWindow () ;

GetNewD i a l og () ;

GetNewMBa r () ;

GetNewPal et t e () ;

GetNewWindow () ;

GetNextDevi ce () ;

GetNext Event () ;

GetNext Proc e s s

GetOSEvent () ;

Get Pa l e t t e () ;

GetPa t t ern () ;

Get Pen () ;

GetPen S t a t e () ;

GetPhy s i c a l ()

Get P i c ture () ;

Get P i xe l () ;

GetPixPat () ;

GetPort () ;

GetProc e s s informa t i on () ;

Get Ptr S i z e () ;

GetRe sAt t r s () ;

GetRe s F i l eA t t r s () ;

getres i n f o () ;

GetRe s in f o () ;

GetRes ource () ;

F-76 Appendix F C Interface Libra1y

Return type Header file

Hand l e resources . h

Hand l e resource s . h

Con t r o l Hand l e control s . h

WindowPtr windows . h

D i a l ogPtr di a logs . h

Hand l e menus . h

Pa l e t t eHandle pa l e t t e s . h

W i ndowPtr windows . h

GDHand l e qui c kdraw . h

Boolean event s . h

OS Err processes . h

Bool ean os event s . h

Pa l e t t eHand l e pa l e t t e s . h

PatHand l e t o o l ut i l s . h

void qu i ckdraw . h

vo i d qu i ckdraw . h

OS Err vmca l l s . h

P i cHand l e toolut i l s . h

Boolean qu i ckdraw . h

P i xPatHand l e qui c kdraw . h

void qui c kdraw . h

OS Err proc e s s e s . h

S i z e memory . h

short resource s . h

short resource s . h

void resources . h

void resources . h

Hand l e resource s . h

Call

Get Sc rap () ;

GetScript () ;

Get S t r ing () ;

G e t S t y l Handl e () ;

Get Styl Scrap () ;

Get SubTabl e () ;

G e t Sy s Font () ;

GetSy sJust () ;

GetSy s P Pt r () ;

GetTime () ;

GetTrapAddres s () ;

GetVBLQHdr () ;

GetVCBQHdr () ;

getvinfo () ;

GetVInfo () ;

getvol () ;

GetVol () ;

GetVRe fNum () ;

GetWDinfo () ;

GetWindowP i c () ;

GetWMgrPort () ;

GetWRe fCon () ;

getwt i t l e () ;

GetWT i t l e () ;

GetWVa r i ant () ;

Get Zone () ;

G l oba lToLoca l () ;

Gra fDev i c e () ;

Retum type

l ong

l ong

S t r ingHandl e

TEStyl eHand l e

S t S c rpHand l e

vo id

short

short

Sys P P t r

vo id

l ong

QHdrPtr

QHdrPtr

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

P i cHandl e

void

l ong

void

vo id

short

THz

vo id

void

Header file

s c rap . h

s c r ipt . h

t o o l ut i l s . h

t extedi t . h

t extedi t . h

qu i c kdraw . h

s c r ipt . h

s c r ipt . h

osut i l s . h

osut i l s . h

o sut i l s . h

retrace . h

f i l e s . h

f i l e s . h

f i l es . h

f i l es . h

f i l es . h

f i l es . h

f i l e s . h

windows . h

windows . h

windows . h

windows . h

windows . h

windows . h

memory . h

qui c kdraw . h

qui c kdraw . h

Calls in alphabetical order F-77

Call

growwindow () ;

GrowWindow () ;

GZSaveHnd () ;

HandAndHand () ;

HandleZone () ;

HandToHand () ;

HClrRB i t () ;

HCreate () ;

HCreat eResF i l e () ;

HDe l e t e () ;

HGet F i n f o () ;

HGet S t a t e () ;

HGetVo l () ;

H i deCon t r o l () ;

H i deCursor () ;

H i deD I t em () ;

H i dePen () ;

H i deWindow () ;

H i l i teColor () ;

H i l i t eCon t ro l () ;

H i l i t eMenu () ;

H i l i t eText () ;

H i l i t eWindow () ;

HiWord () ;

HLock () ;

HNoPurge () ;

HoldMemory ()

HorneRe s F i l e () ;

F-78 Appendix F C Interface Library

Return type Header.file

l ong windows . h

l ong windows . h

Hand l e memory . h

OS Err osut i l s . h

THz memory . h

OS Err osut i l s . h

void memory . h

OS Err f i l es . h

void re source s . h

OS Err f i l e s . h

OS Err f i l e s . h

short memory . h

OS Err f i les . h

vo i d control s . h

vo id qu i ckdraw . h

vo i d d i a logs . h

vo id qu i ckdraw . h

vo i d windows . h

vo i d qu i ckdraw . h

void control s . h

vo id menus . h

void s c r ipt . h

vo i d windows . h

short t o o l ut i l s . h

vo i d memory . h

vo i d memory . h

OS Err vmca l l s . h

short: resources . h

Call Return type

HOpen () ; OS E r r

HOpenRes F i l e () ; short

HOpenRF () ; OSErr

HPurge () ; vo i d

HRename () ; OSErr

HRs t FLock () ; OSErr

HSet F i n f o () ; OS Err

HSet FLock () ; OS Err

H S e t RB i t () ; voi d

HSet S t a t e () ; void

HSetVo l () ; OS Err

H S L 2 RGB () ; vo i d

H SV2 RGB () ; vo i d

HUn l o c k () ; vo i d

I ndex2 C o l o r () ; vo i d

I n f o S c rap () ; PScrapStu f f

Ini t A l l Packs () ; vo i d

I n i t Appl Zone () ; vo id

Ini t CPort () ; void

I n i t Cu r s o r () ; void

Init Dat eCache () ; OSErr

I n i t D i a l og s () ; vo id

I n i t Font s () ; vo id

I n i tGDev i c e () ; vo id

I n i t G r a f () ; vo id

I n i tMenus () ; vo id

Ini t Pack () ; vo id

I n i t Pa l e t t e s () ; vo id

Header file

f i l e s . h

resources . h

f i l e s . h

memory . h

f i l e s . h

f i l e s . h

f i l e s . h

f i l e s . h

memory . h

memory . h

f i l e s . h

p i c ke r . h

p i c ke r . h

memory . h

qui ckdraw . h

s c r ap . h

pac kages . h

memory . h

qui c kdraw . h

qui c kdraw . h

s c r i p t . h

d i a l ogs . h

font s . h

qu i cl<: draw . h

qu i ckdraw . h

menus . h

packages . h

p a l e t t e s . h

Calls in alphabetical order F-79

Call

Ini t Port () ;

I n i t ProcMenu () ;

InitRe sources () ;

I n i t SDec lMgr () ;

InitUt i l () ;

Ini tWindows () ;

Init Zone () ;

InsertMenu () ;

InsertRe sMenu () ;

InsetRect () ;

Inset Rgn () ;

insmenu i t em () ;

InsMenu i t em () ;

InsTime () ;

Int l Sc r ipt () ;

Inva l Re c t () ;

Inval Rgn () ;

InvertArc () ;

InvertColor () ;

Inver t Oval () ;

Invert Poly () ;

InvertRect () ;

Invert Rgn () ;

Inver tRoundRec t () ;

I sD i a l ogEvent () ;

iucomp s t ri ng () ;

I UComp S t r ing () ;

i uda t eps t r ing () ;

F-80 Appendix F C Interface Library

Return type Headerjlle

vo i d qu i ckdraw . h

void menus . h

short re sources . h

OS Err s l o t s . h

OS Err osut i l s . h

void windows . h

void memory . h

vo id menus . h

vo id menus . h

vo i d qui ckdraw . h

vo id qui c kdraw . h

vo id menus . h

vo id menus . h

vo id t imer . h

short s c r ipt . h

vo i d windows . h

void windows . h

void qu i c kdraw . h

void qui ckdraw . h

void qui c kdraw . h

void qui c kdraw . h

void qui ckdraw . h

void qui c kdraw . h

void qu i ckdraw . h

Boo l e an d i a l ogs . h

short packages . h

short packages . h

vo i d p a c kage s . h

Call

I UDa t e P S t r ing () ;

i udat e s t r ing () ;

IUDa t e S t ring () ;

iuequa l s t r ing () ;

IUEqu a l S t r ing () ;

IUGe t int l () ;

I ULDa t e S t r ing () ;

I ULTime S t r ing () ;

IUMagiDSt r i ng () ;

I UMagS t ri ng () ;

IUMe t r i c () ;

IUSet int l () ;

iut imeps t r ing () ;

IUTimePSt r i ng () ;

iut ime s t r ing () ;

I UTime S t r ing () ;

Key S c r ipt () ;

KeyTrans () ;

K i l l Cont rol s () ;

K i l l iO () ;

K i l l Pi c ture () ;

K i l l Poly () ;

LAc t ivat e () ;

LAddCo l umn () ;

LAddRow () ;

LAddToCel l () ;

LaunchAppl icat i on

LaunchDes kAc c e s sory

Return type

vo id

vo id

vo i d

short

short

Hand l e

vo id

vo id

short

short

Bool ean

vo id

vo i d

vo id

vo id

voi d

vo id

l ong

void

OS Err

void

void

void

short

short

void

OS Err

OS Err

Header file

packages . h

packages . h

packages . h

packages . h

packages . h

packages . h

s c r ipt . h

s c r ipt . h

packages . h

packages . h

packages . h

packages . h

packages . h

packages . h

packages . h

packages . h

s c r i p t . h

osut i l s . h

cont ro l s . h

devices . h

qui c kdraw . h

qui c kdraw . h

l i s t s . h

l i s t s . h

l i s t s . h

l i s t s . h

proc e s s e s . h

proc e s s es . h

Calls in alphabetical order F-81

Call

LAut oScro l l () ;

l cel l s i z e () ;

LCel l S i z e () ;

l c l i c k () ;

LC l i ck () ;

LC l rC e l l () ;

LDelColumn () ;

LDelRow () ;

LDispose () ;

LDoDraw () ;

l draw () ;

LDraw () ;

LFind () ;

LGetCe l l () ;

LGet S e l ec t () ;

L i ne () ;

L ineBreak () ;

LineTo () ;

LLas t C l i ck () ;

lnew () ;

LNew () ;

LNextCel l () ;

LoadResource () ;

LoadScrap () ;

LocalToGl oba l () ;

LockMemory () ;

LockMemoryCont i guous () ;

LongDa t e2 S e c s () ;

F-82 Appendix F C Interface Library

Retum type Headerjtle

vo id l i s t s . h

void l i s t s . h

vo id l i s t s . h

Bool ean l i s t s . h

Bool ean l i s t s . h

vo id l i s t s . h

void l i s t s . h

void l i s t s . h

vo id l i s t s . h

vo id l i s t s . h

void l i s t s . h

void l i s t s . h

void l i s t s . h

void l i s t s . h

Boolean l i s t s . h

void qui c kdraw . h

L ineBreakCode s cript . h

void qui c kdraw . h

C e l l l i s t s . h

L i s t Hand l e l i s t s . h

L i s tHand l e l i s t s . h

Boolean l i s t s . h

void re sources . h

l ong sc rap . h

void qui c kdraw . h

OS Err vmc a l l s . h

OS Err vmca l l s . h

void s cript . h

Call

LongMul () ;

LongSe c s 2 Da t e () ;

LoWord () ;

LRect () ;

LScro l l () ;

LSearch () ;

LSetCe l l () ;

LSet S e l ec t () ;

L S i z e () ;

LUpdat e () ;

LwrText () ;

Make iTabl e () ;

MakeRGBPat () ;

MapPoly () ;

MapPt () ;

MapRec t () ;

MapRgn () ;

MaxApp l Zone () ;

MaxBlock () ;

MaxMem () ;

MaxS i z eRsrc () ;

MeasureJus t {) ;

MeasureText () ;

MemError () ;

MenuCho i c e () ;

MenuKey () ;

menu s e l ec t () ;

Menu S e l e c t () ;

Return (ype

vo i d

vo i d

short

vo i d

vo i d

Boo l ean

void

vo i d

vo i d

vo i d

vo i d

vo i d

vo i d

voi d

vo i d

void

vo i d

vo i d

long

S i z e

l ong

vo i d

vo i d

O S E r r

long

l ong

long

l ong

Header file

t o o lu t i l s . h

s c r i p t . h

toolut i l s . h

l i s t s . h

l i s t s . h

l i s t s . h

l i s t s . h

l i s t s . h

l i s t s . h

l i s t s . h

s c r i p t . h

qui c kdraw . h

qui c kdraw . h

qui c kdraw . h

qui c kdraw . h

qui c kdraw . h

qui ckdraw . h

memory . h

memory . h

memory . h

resources . h

s c r i p t . h

qui ckdraw . h

memory . h

menus . h

menus . h

menus . h

menu s . h

Calls in a lphahttical order F-83

Call

MFFreeMem () ;

MFMaxMem () ;

MFTempDi sposHandl e () ;

MFTempHLock () ;

MFTempHUn lock () ;

MFTempNewHandl e () ;

MFTopMem () ;

Moda l D i al og () ;

MoreMa s t ers () ;

Move () ;

MoveCont r o l () ;

MoveHHi () ;

Move PortTo () ;

MoveTo () ;

Move Window () ;

mra t t r () ;

mrc l o s e () ;

mrget () ;

mrgetnamed () ;

mr info () ;

mropen () ;

mrrel () ;

Munger () ;

newc d i a l og () ;

NewCDi a l og () ;

newcontrol () ;

NewCont ro l () ;

newcwindow () ;

F-84 Appendix F C Interface Libra1y

Return type Header.file

l ong memory . h

S i z e memory . h

vo id memory . h

vo id memory . h

void memory . h

Handl e memory . h

P t r memory . h

vo id d i a l og s . h

vo id memory . h

vo id qu i ckdraw . h

vo id control s . h

vo id memory . h

void qu i c kdraw . h

void qu i ckdraw . h

void windows . h

short aux_rsrc . h

int aux_r s r c . h

Resource aux_rsrc . h

Resource aux_r s r c . h

int aux r s r c . h -

ResHand l e aux rsrc . h -

void aux_rsrc . h

l ong toolut i l s . h

D i a l ogPt r d i a logs . h

D i a l ogPtr d i alogs . h

Cont rolHand l e contro l s . h

ControlHandl e contro l s . h

WindowPt r windows . h

Call Return type

NewCWindow () ; WindowPtr

newdia l og () ; D i a l og P t r

NewD i a l o g () ; D i a l ogPt r

NewEmptyHandl e () ; Hand l e

NewGDevi c e () ; GDHandl e

NewHandl e () ; Hand l e

newmenu () ; MenuHandl e

NewMenu () ; MenuHandl e

NewPal e t t e () ; Pa l e t t eHand l e

NewPi xMap () ; P i xMapHandl e

NewPi xPat () ; PixPatHand l e

NewP t r () ; P t r

NewRgn () ; RgnHand l e

news t r ing () ; S t r i ngHand l e

NewS t r ing () ; S t r i ngHand l e

newwindow () ; WindowPt r

NewWindow () ; WindowPt r

NGetTrapAddres s () ; l ong

NMins t a l l () ; OSErr

NMremove () ; OS Err

NoteAl ert () ; short

NSe t Pa l e t t e () ; vo id

NSetTrapAddres s () ; vo i d

numt o s t r i ng () ; vo i d

NumToS t r i ng () ; vo i d

ObscureCursor () ; voi d

O f f s e t Poly () ; void

O f f s e t Re c t () ; voi d

Header file

windows . h

d i a l ogs . h

d i a l ogs . h

memory . h

qui c kdraw . h

memory . h

menus . h

menus . h

pal e t t e s . h

qui c kdraw . h

qui c kdraw . h

memory . h

qu i ckdraw . h

t o o l ut i l s . h

t o o l ut i l s . h

w indows . h

w indows . h

osut i l s . h

not i fy . h .

not i fy . h .

d i a l ogs . h

p a l e t t e s . h

osut i l s . h

package s . h

packages . h

qui ckdraw . h

qui ckdraw . h

qu i ckdraw . h

Calls in alphabetical order F-85

Call

Of f s e t Rgn () ;

OpColor () ;

OpenASD () ;

OpenC Port () ;

opende skacc () ;

OpenDeskAc c () ;

opendr iver () ;

OpenDri ver () ;

Open P i c t ure () ;

OpenPoly () ;

OpenPort () ;

openres f i l e () ;

OpenR e s F i l e () ;

openr f () ;

OpenRF () ;

openr fperm () ;

OpenRFPerm () ;

OpenRgn () ;

OpenS lot () ;

OpenWD () ;

OSEventAva i l () ;

PackBi t s () ;

PaintArc () ;

PaintBehind () ;

PaintOne () ;

PaintOval () ;

PaintPoly () ;

P a i n t R e c t () ;

F-86 Appendix F C Interface Library

Return �ype Header file

vo i d qui ckdraw . h

vo i d qui ckdraw . h

F i l eHand l e asd . h

vo i d qui ckdraw . h

short desk . h

short desk . h

OS Err devices . h

OS Err devi ces . h

P i cHand l e quickdraw . h

PolyHand l e qui ckdraw . h

void qu i ckdraw . h

short res ources . h

short resources . h

OS Err f i l es . h

OS Err f i les . h

short resources . h '-.__./

short resources . h

vo i d qu i ckdraw . h

OS Err s l ot s . h

OS Err f i l es . h

Bool ean o sevent s . h

vo i d t o o l ut i l s . h

void qu i ckdraw . h

vo i d windows . h

vo i d windows . h

voi d qui ckdraw . h

void qui ckdraw . h

v o i d qui c kdraw . h

Call

PaintRgn () ;

Paint RoundRect () ;

Pal e t t e 2 CTab () ;

paramt ext () ;

ParamText () ;

ParseTabl e () ;

PBAl l o c a t e () ;

PBAl l o cCont ig () ;

PBCatMove () ;

PBC l o s e () ;

PBC l o s eWD () ;

PBControl () ;

PBCrea t e () ;

PBDe l e t e () ;

PBD i rCreat e () ;

PBEj ect () ;

PBFlushFi l e () ;

PBFlushVo l () ;

PBGe t C a t i n f o () ;

PBGet EOF () ;

PBGet FCBinfo () ;

PBGetFinfo () ;

PBGetFPos () ;

PBGetVInfo () ;

PBGetVol () ;

PBGetWDinfo () ;

PBHCopyF i l e () ;

PBHCreate () ;

Return type

vo i d

vo i d

void

vo id

vo id

Boo l ean

OS Err

OSErr

OS Err

OS Err

OSErr

OS Err

OS Err

OS Err

OS Err

OSErr

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OS Err

OSErr

Header.file

qu i ckdraw . h

qu i c kdraw . h

pal e t t es . h

d i a l ogs . h

d i a l ogs . h

s c r ipt . h

f i l es . h

f i l es . h

f i l e s . h

f i l e s . h

f i l e s . h

dev i ce s . h

f i l e s . h

f i l e s . h

f i le s . h

f i l es . h

f i l es . h

f i l es . h

f i l es . h

f i l es . h

f i l e s . h

f i l es . h

f i l e s . h

f i l e s . h

f i l e s . h

f i l e s . h

f i l e s . h

f i l e s . h

Calls in alphabetical order F-87

Call

PBHDe l e t e () ;

PBHGet D i rAcce s s () ;

PBHGet F i n f o () ;

PBHGet Logininfo () ;

PBHGetVInfo () ;

PBHGetVol () ;

PBHGetVo l Pa rms () ;

PBHMap i D () ;

PBHMapName () ;

PBHMoveRename () ;

PBHOpen () ;

PBHOpenDeny () ;

PBHOpenRF () ;

PBHOpenRFDeny () ;

PBHRename () ;

PBHR s t FLock () ;

PBHSet D i rAcc e s s () ;

PBHSetFinfo () ;

PBHSetFLock () ;

PBHSetVo l () ;

PBKi l l iO () ;

PBLockRange () ;

PBMountVo l () ;

PBO f f L ine () ;

PBOpen () ;

PBOpenRF () ;

PBOpenWD () ;

PBRead () ;

F-88 Appendix F C Interface Libraty

Return type Headerfile

OS Err f i les . h

OS Err f i les . h

OS Err f i les . h

OSErr f i l es . h

OSErr f i les . h

OSErr f i l e s . h

OSErr f i l e s . h

OS Err f i l e s . h

OSErr f i l e s . h

OSErr f i l e s . h

OS Err f i l e s . h

OS Err f i l e s . h

OS Err f i l e s . h

OS Err f i les . h

OS Err f i l e s . h

OS Err f i l e s . h

OS Err f i l e s . h

OS Err f i les . h

OS Err f i les . h

OS Err f i l e s . h

OS Err devices . h

OS Err f i l e s . h

OS Err f i l e s . h

OS Err f i l e s . h

OS Err f i l es . h

OSErr f i l es . h

OSErr f i l es . h

OSErr f i l es . h

Call Retum type

PBRename () ; OS Err

PBR s t FLock () ; OS Err

PBSetC a t i n f o () ; OS Err

PBSet EOF () ; OSErr

PBS e t F i n f o () ; OSErr

PBSet FLock () ; OSErr

PBS e t F Po s () ; OS Err

PBSet FVers () ; OS Err

PBSetVI n f o () ; OS Err

PBSetVol () ; OSErr

PBS t atus () ; OS Err

PBUnl o c kRange () ; OS Err

PBUnmountVo l () ; OS Err

PBWr i t e () ; OS Err

PenMode () ; vo id

PenNormal () ; vo id

PenPat () ; vo id

PenPixPat () ; vo id

Pen S i z e () ; vo id

PicComment () ; vo id

pinrect () ; l ong

PinRe c t () ; l ong

Pixe l 2 Char () ; short

P l o t C i c on () ; void

Plot i c on () ; vo id

PmBackCol o r () ; void

PmForeC o l or () ; void

PopUpMenuSe l ec t () ; l ong

Header file

f i l e s . h

f i l e s . h

f i l es . h

f i l e s . h

f i l e s . h

f i l e s . h

f i l e s . h

f i l e s . h

f i l es . h

f i l e s . h

devices . h

f i l e s . h

f i l e s . h

f i l e s . h

qui c kdraw . h

qui c kdraw . h

qui c kdraw . h

qu i c kdraw . h

qu i c kdraw . h

qui c kdraw . h

windows . h

windows . h

s c r ipt . h

qui c kdraw . h

toolut i l s . h

pal e t t e s . h

pal e t t e s . h

menu s . h

Calls in alphabetical order F-89

Call

Port i onText () ;

Port S i z e () ;

PostEvent () ;

PPo s t Event () ;

PrC l o s e () ;

PrC l o s e () ;

PrC l o seDoc () ;

PrC l o seDoc () ;

PrC l o s e Page () ;

PrC l o s e Page () ;

PrCt l Ca l l () ;

PrCt lCa l l () ;

PrDlgMai n () ;

PrDlgMa i n () ;

PrDrvrC l o s e () ;

PrDrvrC l o s e () ;

PrDrvrDCE () ;

PrDrvrDCE () ;

PrDrvrOpen () ;

PrDrvrOpen () ;

PrDrvrVers () ;

PrDrvrVers () ;

PrError () ;

PrError () ;

PrGeneral () ;

PrGeneral () ;

Pr imeTime () ;

Print De f a u l t () ;

F-90 Appendix F C Interface Library

Return type

F ixed

vo id

OS Err

OS Err

void

void

void

vo i d

void

void

void

vo i d

Bool ean

Bool ean

void

void

Hand l e

Hand l e

vo i d

void

short

short

short

short

void

voi d

vo i d

voi d

Header file

s c r ipt . h

qui c kdraw . h

o s event s . h

o sevent s . h

print ing . h

print t raps . h

print ing . h

print t raps . h

p r i n t ing . h

print t raps . h

print ing . h

print t raps . h

print ing . h

p r i n t t raps . h

print ing . h

print t raps . h

print ing . h

print t raps . h

print ing . h

pr int t raps . h

print ing . h

printt raps . h

print ing . h

printt raps . h

print ing . h

print traps . h

t imer . h
"----./

print ing . h

Call

Print De fau l t () ;

PrJobD ialog () ;

PrJobDi a l og () ;

PrJobini t () ;

PrJobin i t () ;

PrJobMerge () ;

PrJobMerge () ;

PrNoPurge () ;

PrNoPurge () ;

PrOpen () ;

PrOpen () ;

PrOpenDoc () ;

PrOpenDoc () ;

PrOpenPage () ;

PrOpenPage () ;

Prot e c t En t ry () ;

PrP i cF i l e () ;

PrP i c Fi l e () ;

PrPurge () ;

PrPurge () ;

PrSet Error () ;

PrSet Error () ;

PrSt l D i al o g () ;

PrS t l D i a l og () ;

PrSt l in i t () ;

PrSt l in i t () ;
4

PrVa l i dat e () ;

PrVa l i dat e () ;

Retw·n �ype

vo i d

Bool ean

Boo l ean

TPPrD l g

TPPrDl g

void

void

void

vo i d

vo i d

vo i d

TPPrPort

TPPrPort

vo i d

vo i d

vo i d

voi d

vo i d

vo i d

vo i d

void

vo i d

Bool ean

Boo l e an

TPPrDl g

TPPrDl g

Bool ean

Bool ean

Header file

print t raps . h

print i ng . h

p r i n t t raps . h

print ing . h

p r i nt t raps . h

print i ng . h

print t raps . h

print ing . h

p r i nt t raps . h

print ing . h

print t raps . h

p r i nt ing . h

p r i n t t raps . h

print ing . h

print t raps . h

qui c kdraw . h

print ing . h

p r i n t t raps . h

print ing . h

printtraps . h

p r i nt ing . h

printtraps . h

print ing . h

print t raps . h

print ing . h

pr int t raps . h

print ing . h

print t raps . h

Calls in alphabetical order F-91

Call

pt2rect () ;

Pt 2 Re c t () ;

pt inrect () ;

Pt inRect () ;

pt inrgn () ;

P t i nRgn () ;

Pt rAndHand () ;

Pt rToHand () ;

Pt rToXHand () ;

P t r Zone () ;

p t t oangl e () ;

PtToAngl e () ;

PurgeMem () ;

PurgeSpace () ;

Put S crap () ;

QDError () ;

RamSDC l o s e () ;

RamSDOpen () ;

Random () ;

ReadASD () ;

ReadDat eT ime () ;

ReadLocat ion () ;

RealColor () ;

Real Font () ;

Rea l l ocHand l e () ;

RecoverHandl e () ;

Rec t inRgn () ;

Rect Rgn () ;

F-92 Appendix F C Interface Library

Return type Headerfile

void qui ckdraw . h

voi d qui c kdraw . h

Boo lean qu i c kdraw . h

Bool ean qui c kdraw . h

Boo l e an qui c kdraw . h

Bool ean qui c kdraw . h

OS Err osut i l s . h

OS Err osut i l s . h

OS Err osut i l s . h

TH z memory . h

void qui c kdraw . h

void qui c kdraw . h

vo id memory . h

vo id memory . h

l ong scrap . h

short qui ckdraw . h

void s e r i a l . h

OS Err s e r i a l . h

short qui ckdraw . h

l ong asd . h

OSErr osut i l s . h

vo id sc r i pt . h

Boo l ean qu i ckdraw . h

Boo l ean f ont s . h

voi d memory . h

Handl e memory . h

Bool e an qu i c kdraw . h -�

vo id qu i ckdraw . h

Call Return type

Releas eResource () ; vo id

r e l s t r i ng () ; short

Rel S t r i ng () ; short

Rename () ; OS Err

ResError () ; short

ReserveEn t ry () ; vo i d

Res etAl r t S tage () ; vo i d

Res rvMem () ; void

Res tart () ; vo id

RestoreEn t r i e s () ; void

RGB2 CMY () ; vo id

RGB2 HSL () ; vo i d

RGB2 HSV () ; vo id

RGBBackColor () ; void

RGBForeC o l or () ; void

RGetResource () ; Hand l e

RrnveResource () ; vo i d

RrnvT i m e () ; voi d

RsrcMapEntry () ; l ong

Rsrc Z one i n i t () ; vo id

r s t fLock () ; OS Err

R s t FLock () ; OS Err

S ame Pro c e s s O S Err

S aveEnt r i e s () ; voi d

S aveOl d () ; void

S Ca l c S Po i nt e r () ; OS Err

SCa l c S t ep {) ; OSErr

Scal ePt () ; vo id

Header file

resources . h

osut i l s . h

osut i l s . h

f i le s . h

resourc es . h

qu i ckdraw . h

d i a logs . h

memory . h

osut i l s . h

qui ckdraw . h

pi cker . h

p i c ker . h

p i cker . h

qui c kdraw . h

qu i ckdraw . h

resources . h

resources . h

t imer . h

res ourc e s . h

resource s . h

f i l e s . h

f i l e s . h

proc e s s e s . h

qui c kdraw . h

w indows . h

s l ot s . h

s lot s . h

qu i c kdraw . h

Calls in alphabetical order F-93

Call

SCardChanged () ;

SCkCardSt at () ;

ScreenRes () ;

Scro l l Re c t () ;

SDe l e t eSRTRec () ;

S e c s 2 Da t e () ;

SectRect () ;

SectRgn () ;

SeedC F i l l () ;

SeedF i l l () ;

SeekASD () ;

S e l ec t Window () ;

S e l i Text () ;

SendBehind () ;

SerCl rBrk () ;

SerGetBuf () ;

S e rHShake () ;

S e rReset () ;

SerSetBrk () ;

SerSetBuf () ;

SerStatus () ;

SetAS () ;

SetApp l Ba s e () ;

SetApp l L imi t () ;

Set CCursor () ;

Set Choo s erAlert () ;

SetCl i ent i D () ;

SetC l i kLoop () ;

F-94 Appendix F C Interface Libra1y

Return type Header file

OS Err s l o t s . h

OS Err s l o t s . h

void toolut i l s . h

void qui ckdraw . h

OS Err s l o t s . h

void osut i l s . h

Bool ean qu i c kdraw . h

vo id qui c kdraw . h

void qu i c kdraw . h

void qui c kdraw . h

l ong asd . h

vo id windows . h

void d i a l ogs . h

vo id windows . h

OS Err s e r i a l . h

OS Err s e r i a l . h '�

OS Err s e r i a l . h

OS Err s e r i a l . h

OS Err s e r i a l . h

OS Err s e r i a l . h

OS Err s e r i a l . h

l ong osut i l s . h

vo i d memory . h

vo i d memory . h

vo id qu i c kdraw . h

Bool ean devices . h

void qui c kdraw . h

void t ex t edi t . h

Call

SetC l ip () ;

SetCPixel () ;

SetCRefCon () ;

s e t c t i t l e () ;

S etCTi t l e () ;

Set C t l Ac t i on () ;

Set C t l C o l o r () ;

S e t C t l Max () ;

S e t C t lMin () ;

Set C t l Val ue () ;

S et CurrentA5 () ;

Set Cursor () ;

SetDAFont () ;

SetDat eT ime () ;

SetDeskC Pat () ;

SetDevi c eAt t r ibut e () ;

SetDi t em () ;

S e t EmptyRgn () ;

S e t Ent r i e s () ;

Set EntryCol o r () ;

S e t Ent ryUsage () ;

SetEnvirons () ;

S e t EOF () ;

Set EventMa s k () ;

set f i n f o () ;

S e t F i n f o () ;

set f lo c k () ;

Set FLock () ;

Return type

vo id

vo id

vo id

void

void

vo id

vo id

void

void

vo id

l ong

vo id

void

OS Err

voi d

void

void

void

void

vo id

void

OS Err

OS Err

vo id

OS Err

OS Err

OS Err

OS Err

Header file

qui c kdraw . h

qui c kdraw . h

c on t rol s . h

cont ro l s . h

cont ro l s . h

cont ro l s . h

cont rol s . h

cont ro l s . h

cont ro l s . h

cont ro l s . h

osut i l s . h

qui c kdraw . h

d i a l ogs . h

osut i l s . h

windows . h

qu i ckdraw . h

d i a l ogs . h

qui c kdraw . h

qu i c kdraw . h

pal e t t e s . h

p a l e t t e s . h

s c r ipt . h

f i l e s . h

o s event s . h

f i l e s . h

f i l e s . h

f i l es . h

f i l es . h

Calls in alphabetical order F-95

Call

SetFontLock () ;

S e t FPos () ;

SetFra c t Enabl e () ;

Set Front Proc e s s

SetFScal eDi sabl e () ;

SetGDevi c e () ;

SetGrowZone () ;

SetHandl e S i z e () ;

s e t i t em () ;

Set I t em () ;

S e t i t emCmd () ;

S e t i t emicon () ;

S et i t emMark () ;

S e t i t emSty l e () ;

s e t i t ext () ;

Set iText () ;

SetMCEn t r i es () ;

SetMC in f o () ;

SetMenuBar () ;

SetMenu F l a sh () ;

SetOrigin () ;

S e t Pa l e t t e () ;

Set PenS t a t e () ;

S e t Port () ;

S e t PortB i t s () ;

S e t Po r t P i x () ;

S e t pt () ;

S e t Pt r S i ze () ;

F-96 Appendix F C Interface Libra1y

Return type Header file

void font s . h

OS Err f i l e s . h

void font s . h

OS Err proces s e s . h

void font s . h

void qui ckdraw . h

vo id memory . h

void memory . h

void menu s . h

void menus . h

void menu s . h

void menu s . h

void menu s . h

void menus . h

void d i a l ogs . h

void di a l ogs . h

void menu s . h

vo i d menu s . h

void menu s . h

void menu s . h

void qui ckdraw . h

vo i d p a l e t t e s . h

vo i d qui c kdraw . h

vo i d qui c kdraw . h

voi d qui c kdraw . h

voi d qui ckdraw . h

void qu i c kdraw . h

void memory . h

Call

S e t Rec t () ;

SetRectRgn () ;

Set ResAt t r s () ;

S e t Re s F i l eA t t r s () ;

s e t re s i n f o () ;

S e t Res i n f o () ;

SetResLoad () ;

SetRes Purge () ;

S e t S c r ipt () ;

S e t St dCProc s () ;

Set S t dProc s () ;

s e t s t r i ng () ;

S e t S t r i ng () ;

Set Sty l Handl e () ;

SetStyl Scrap () ;

S e t Sy sJus t () ;

SetTagBu f f e r () ;

S e t Time () ;

S e tTrapAddres s () ;

S etupAI F FHeader

S etupSndHeader

s etvol () ;

SetVol () ;

SetWinC o l or () ;

SetWindowPi c () ;

SetWordBreak () ;

SetWRe fCon () ;

setwt i t l e () ;

Return type

vo i d

void

vo id

vo i d

voi d

void

vo id

vo i d

OS Err

voi d

void

void

void

vo i d

vo i d

vo i d

O S Err

vo i d

vo id

OS Err

OSErr

OS Err

OSErr

vo id

void

void

void

vo id

Header file

qu i c kdraw . h

qui c kdraw . h

resources . h

resources . h

resources . h

resources . h

resources . h

resources . h

s c r ip t . h

qu i c kdraw . h

qui c kdraw . h

toolut i l s . h

toolut i l s . h

t extedi t . h

t extedit . h

s c ri pt . h

di sks . h

o su t i l s . h

osut i l s . h

s oundinput . h

s oundinput . h

f i l e s . h

f i l es . h

windows . h

windows . h

t ex t edi t . h

windows . h

windows . h

Calls in alphabetical order F-97

Call

SetWT i t l e () ;

S e t Z one () ;

SExec () ;

s fget f i l e () ;

SFGe t Fi l e () ;

SFindB igDevBas e () ;

S F indDevBas e () ;

S FindS infoRe c Pt r () ;

SF indSRs r c Pt r () ;

SFind S t ruct () ;

s fpge t f i l e () ;

S F PGet F i l e () ;

s fpput f i l e () ;

SFPPut F i le () ;

s fput f i l e () ;

S F Put F i l e () ;

SGetBlock () ;

SGet C S t r i ng () ;

SGe t Dr iver () ;

SGet sRsrc () ;

SGet sRsrc i n f o () ;

SGetTypesRsrc () ;

s h i e l dcursor () ;

Shi e l dCursor () ;

ShowCont ro l () ;

ShowCurso r () ;

ShowDi t em () ;

ShowH i de () ;

F-98 Appendix F C Interface Libra1y

Return type Header file

voi d windows . h

void memory . h

OS Err s l o t s . h

vo id packages . h

void packages . h

OS Err s l ot s . h

OS Err s l o t s . h

OS Err s l o t s . h

OS Err s l ot s . h

OS Err s l o t s . h

void packages . h

void packages . h

void packages . h

void packages . h

vo i d packages . h

vo id packages . h

OSErr s l o t s . h

OS Err s l o t s . h

OS Err s l o t s . h

OSErr s l o t s . h

OS Err s l o t s . h

OS Err s l o t s . h

void toolut i l s . h

void toolut i l s . h

void control s . h

vo id qui c kdraw . h

vo id d i a l ogs . h "--.._./

vo i d wi ndows . h

Call

ShowPen () ;

ShowWindow () ;

ShutDwn i n s t a l l () ;

Shut DwnRemove () ;

S i n i t PRAMRec s () ;

S i n i t SRs rcTabl e () ;

S insert SRTRec () ;

S in t i n s t al l () ;

S intRemove () ;

S i z eCon t r o l () ;

S i z eResource () ;

S i z eWindow () ;

S l opeFromAngl e () ;

S l otVIns t a l l () ;

S l otVRemove () ;

Smal l Frac t 2 F i x () ;

SndRecord

SndRec ordToF i l e

SNextSRsrc () ;

SNextTypeSRsrc () ;

S O f f s e t Da t a () ;

Spac eExt ra () ;

S PBBy t e sToMi l l i seconds

S PBC l o s eDevi c e

S PBGe t De f au l t Devi ce

S PBGetDev i c e i n f o

S PBG e t i ndexedDev i c e

S PBGe t Recording S t atus

Return type

void

void

vo i d

vo i d

O S Err

OS Err

OS Err

OSErr

OSErr

vo i d

l ong

void

F i xed

OS Err

OS Err

Fi xed

OSErr

OSErr

OS Err

OS Err

OS Err

vo i d

OS Err

OS Err

OSErr

OSErr

OS Err

OS Err

Headerfile

qui c kdraw . h

windows . h

shut down . h

shutdown . h

s l ot s . h

s l ot s . h

s l o t s . h

s l ot s . h

s l ot s . h

control s . h

resourc e s . h

windows . h

toolut i l s . h

retrace . h

retrace . h

picker . h

soundinput . h

soundinput . h

s l o t s . h

s l ot s . h

s l ot s . h

qui ckdraw . h

soundinput . h

soundinpu t . h

soundinputpr iv . h

soundinput . h

soundinpu t . h

soundinpu t . h

Calls in alphabetical order F-99

Call

SPBMi l l i sec ondsToBy t e s

S PBOpenDevi c e

S PBPaus eRecording

S PBRecord

SPBRec ordToF i l e

SPBRe sumeRecording

SPBSetDe fau l t Devi ce

SPBSetDev i c e i n f o

SPBSigninDev i c e

S PBSignOu t Dev i c e

S PBSt opRecording

S Pr imary i ni t () ;

S Pt rToS l o t () ;

S Put PRAMRec () ;

SReadByt e () ;

SReadDrvrName () ;

SReadFHeader () ;

SRead i n f o () ;

SReadLong () ;

SReadPBS i z e () ;

SReadPRAMRec () ;

SReadSt ruct () ;

SReadWord () ;

SRs r c i n f o () ;

SSearchSRT () ;

SSet sRsrc S t a t e () ;

S t ackSpace () ;

Status () ;

F-1 00 Appendix F C Interface Libra1y

Return type Header file

OSErr soundinput . h

OS Err soundinput . h

OS Err soundinput . h

OS Err soundinput . h

OS Err soundinput . h

OS Err soundinput . h

OS Err soundinputpriv . h

OS Err soundinput . h

OS Err soundinput . h

OS Err soundinput . h

OS Err soundinput . h

OS Err s l o t s . h

OS Err s l o t s . h

OS Err s l o t s . h

OS Err s l o t s . h

OS Err s l ot s . h

OS Err s l o t s . h

OS Err s l o t s . h

OS Err s l o t s . h

OS Err s l o t s . h

OS Err s l o t s . h

OS Err s l ot s . h

OS Err s l o t s . h

OS Err s l o t s . h

OS Err s l ot s . h

OSErr s l ot s . h

l ong memory . h "-.__./

OS Err devices . h

Call

S t dArc () ;

S t dB i t s () ;

S t dCornrnent () ;

S t dGet P i c () ;

s td l i ne () ;

S t dL ine () ;

S t dOva l () ;

S tdPoly () ;

S tdPu t P i c () ;

S t dRe c t () ;

S tdRgn () ;

S t dRRec t () ;

s tdtext () ;

S t dText () ;

S t dTxMeas () ;

S t i l l Down () ;

S t opA l e r t () ;

S t r2 Form () ;

S t r ing2 Date () ;

S t r ing2Time () ;

s t r ingt onum () ;

S t r ingToNum () ;

s t ringwi dt h () ;

S t r ingWi dth () ;

S t r ipAddres s () ;

s tu f fhex () ;

S t u f fHex () ;

subpt () ;

Return type Header file

vo id qui c kdraw . h

void qui c kdraw . h

vo i d qu i ckdraw . h

vo i d qu i ckdraw . h

vo i d qui c kdraw . h

vo i d qui c kdraw . h

void qui ckdraw . h

vo id qui c kdraw . h

vo i d qui c kdraw . h

vo i d qui ckdraw . h

vo i d qu i c kdraw . h

vo i d qu i c kdraw . h

vo i d qui c kdraw . h

vo id qui c kdraw . h

short qui c kdraw . h

Boo l ean event s . h

short d i a l ogs . h

Forma t S t a tu s s c r i p t . h

S t r ing2 Dat eStatus s c r ipt . h

S t ring2Da t e S t a t u s s c r ipt . h

void packages . h

void packages . h

short qui ckdraw . h

short qui c kdraw . h

P t r memory . h

void qui c kdraw . h

void qui c kdraw . h

void qu i c kdraw . h

Calls in alphabetical order F-101

Call

SubPt () ;

SUpdat eSRT () ;

SVe r s i on () ;

SwapMMUMode () ;

SysBeep () ;

SysEnvi rons () ;

SysError () ;

Sys t emC l ick () ;

Sys t emEdi t () ;

Sys t emEvent () ;

Sys t emMenu () ;

Sys t emTask () ;

Syst emZone () ;

TEAc t iva t e () ;

TEAut oVi ew () ;

TECalText () ;

t e c l i c k () ;

TEC l i c k () ;

TECont i nuou s S ty l e () ;

TECopy () ;

TECu s t omHook () ;

TECut () ;

TEDeac t ivate () ;

TEDe l e t e () ;

TEDi spose () ;

TEFromSc rap () ;

TEGet H e i gh t () ;

TEGe t O f f s e t () ;

F-102 Appendix F C Interface Libraty

Return type Header file

void qui c kdraw . h

OSErr s l o t s . h

OSErr s l o t s . h

vo id osut i l s . h

vo id osut i l s . h

OS Err osut i l s . h

void errors . h

void des k . h

Bool ean desk . h

Boolean desk . h

void des k . h

vo id de sk . h

THz memory . h

void t extedi t . h

void t extedi t . h

void t extedi t . h

void t extedi t . h

void t extedi t . h

Boolean t ext edi t . h

void t extedi t . h

void t extedi t . h

void t extedi t . h

vo id t extedi t . h

vo id t extedi t . h

void t extedi t . h

OS Err t ex t edi t . h

l ong t ex t edi t . h

short t ex t e di t . h

Call

TEGet Point () ;

TEGet S crapLen () ;

TEGet S ty l e () ;

TEGetText () ;

TEidle () ;

TE i n i t () ;

TEinsert () ;

TEKey () ;

TENew () ;

TENumSt y l e s () ;

TEPa s t e () ;

TEPinScro l l () ;

TERep l aceSty l e () ;

TEScrapHand l e () ;

TESc ro l l () ;

TESe l View () ;

TESetJu s t () ;

TESe t Sc rapLen () ;

TES e t S e l e c t () ;

TES e t S t y l e () ;

TESetText () ;

t es t cont rol () ;

Test Cont rol () ;

T e s t DeviceAt t r ibut e () ;

TESty l insert () ;

TEStylNew () ;

TESty l Pa s t e () ;

TETo S crap () ;

Return type

s t ruct Point

l ong

vo id

CharsHand l e

vo i d

vo id

void

void

TEHandle

l ong

void

voi d

void

Hand l e

vo i d

vo i d

vo id

void

vo id

vo id

voi d

short

short

Bool ean

voi d

TEHandl e

vo id

OS Err

Header file

t extedi t . h

t ex t edi t . h

t ex t edi t . h

t extedi t . h

t extedi t . h

t ex t edit . h

t ext edi t . h

t ex t edi t . h

t extedi t . h

t ext edi t . h

t ex t edi t . h

t ex t edi t . h

t ex t ed i t . h

t ex t edi t . h

t ex t edi t . h

t ex t edi t . h

t ex t edi t . h

t extedi t . h

t extedi t . h

t ex t edi t . h

t ex t ed i t . h

control s . h

cont ro l s . h

qui c kdraw . h

t ex t edi t . h

t ex t ed i t . h

t ex t edi t . h

t ex t ed i t . h

Calls in alphabetical order F-103

Call

TEUpdate () ;

Text Box () ;

TextFace () ;

TextFont () ;

TextMode () ;

Text S i z e () ;

Text Width () ;

Ti ckCount () ;

Togg l eDat e () ;

Tokeni z e () ;

TopMem () ;

t rackbox () ;

TrackBox () ;

t rackcontrol () ;

TrackCon t ro l () ;

t rackcontrol () ;

TrackGoAway () ;

t rackcontrol () ;

Trans l i t e r a t e () ;

UnholdMemory () ;

UnionRect () ;

Uni onRgn () ;

Un ique l i D () ;

Uniqu e i D () ;

Unl oadScrap () ;

UnloadSeg () ;

UnlockMemory () ;

unmountvol () ;

F-104 Appendix F C Interface Libra1y

Return type Header file

void t extedi t . h

void t extedi t . h

void qui c kdraw . h

void qui ckdraw . h

void qui c kdraw . h

void qui c kdraw . h

short qui ckdraw . h

uns i gned l ong event s . h

Toggl eResul t s s c r ipt . h

TokenRes u l t s c r ipt . h

P t r memory . h

Boolean wi ndows . h

Bool ean windows . h

short c ont rol s . h

short cont rol s . h

short cont rol s . h

Boolean windows . h

short control s . h

OS Err s c r ipt . h

OSErr vmca l l s . h

vo id qui c kdraw . h

vo i d qu i c kdraw . h

short resources . h

short resources . h

l ong sc rap . h

vo id segload . h

OSErr vmca l l s . h

O S E r r f i l e s . h

Call

UnmountVo l () ;

UnpackB i t s () ;

UpdateResFi l e () ;

UpdtContr o l () ;

UpdtD i a l og () ;

uprs t r ing () ;

UprSt r i ng () ;

UprText () ;

UseRe s F i l e () ;

Val i dDate () ;

Va l i dRect () ;

Va l i dRgn () ;

VIns t a l l () ;

V i s ibl eLength () ;

VRemove () ;

Wai tMouseUp () ;

Wai tNex t Event () ;

WakeUpProc e s s

Wri t eASD () ;

Wri t eLoc a t i on () ;

Wri t eParam () ;

Wri t eResource () ;

XorRgn () ;

ZeroScrap () ;

ZoomWindow () ;

Return type

OSErr

void

vo id

vo i d

void

vo id

void

void

vo id

short

vo id

vo id

OS Err

l ong

OS Err

Boo l e an

Bool ean

OS Err

l ong

void

OS Err

vo id

vo id

l ong

vo i d

Header .file

f i l es . h

t o o l ut i l s . h

re sourc es . h

cont ro l s . h

d i a l ogs . h

osut i l s . h

osut i l s . h

s c r ipt . h

resourc es . h

s c ript . h

windows . h

windows . h

retrace . h

s c r ipt . h

ret race . h

event s . h

event s . h

proc e s s es . h

asd . h

s cript . h

osut i l s . h

resourc es . h

qui c kdraw . h

s crap . h

windows . h

Calls in alphabetical order F-105

Index

32-bir addressing 4-3
32-Bit QuickDraw 5-4

C header file for F-5

A
accessing resource clara E-33
access privileges 6-5
al arm routine 5-28, 5-30
Alias Manager 5-5
al ign type E-25 to E-26
A-line traps

and UNIX device drivers C-4
C header file for F-30
handling C-4

Apple Desktop Bus 5-5
AppleDouble-format files

filename conventions for 6-20
magic number for 6-19
maximizing efficiency of 6-19
overview of 6-9 to 6-10, 6-19

Apple Eve.nt Manager 5-5
AppleSingle-format files 6-16 to 6-18

entry 10 field 6-17
filename conventions for 6-20
header contents 6-16 to 6-18
home file system field 6-17
length field 6-18
magic number for 6-17

maximizing efficiency of 6-18
number of entries field 6-17
offset field 6-1 8
ove1view of 6-9 t o 6-1 0
version number for 6-17

Apple Sound Chip (ASC), systems
containing --23

AppleTalk (communications software) 1-2
AppleTalk Manager 5-5
application development

environments 2-2
application portability 4-7

array type E-27
ASC, systems containing 5-23
AUXDispatch trap 3-4

C header file for F- 17
A/UX files. See also files

file structure 6-9
simple A/UX format 6-13

A/UX Finder
developing applications for 2-4
entry ID value for "Finder info" field

6-17 to 6-19
file information and Segment

Loader 5-19
A/UX Release 3 0

connectivity support 1-5
Finder user interface 1-3

increased manager suppo11 1-4
new features in 1-3 to 1-5

A/UX system calls 3-8
A/UX Toolbox

B

access to Macinto h ROM routines 1-2
code compatibility provided by 1-2
configuration requirements 1-2
contents 1-7 to 1-8
environment variables 3-6 to 3-7
initialization of C-2 to C-3
overview of functions in 1 -8
utilities 3-2 to 3-3
variables 3-3

\ (backslash), escape character in
resource descriptions E-50

Berkeley UNIX file system (UFS) 1 -4,
5-1 1

Bimuy-Decimal Conversion Package 5-6
C header file for F-36

binary files, transferring to A/UX 6-10
bi t s t ring type E-22
Boolean type E-23

I I (braces) in type declarations E-31
byte type E-22

In-1

c
C and Pascal language conventions

compared C-7 to C- 10
case-sensitive filenames 5-17
C compilers 4-10
C hain routine 5-20
change si ze utility 3-3
change statement E-9
character sets 4-9
char:�cter type E-23
C header files F-2 to F-4. See also

individual libraries

' cicn ' resource E-37

C interface l ibraries F-2 to F-4
clkWrE r error 5-29
Color Manager 5-6
Color Picker Package 5-6

C header file for F-14
Color QuickDraw 5-4

C header file for F-5

, (comma), element separator in
arrays E-28

CoMMAND-CON'mOL-E 3-12
COMMAND-CONTROL-I 3-12
commands, resource compilation

derez E-3, E-6
ech o E-9

escaping in de rez E-51
rez E-2 to E-51

comments
entry ID value for 6-1 7
i n resource descriptions E-6

compatibility between UNIX and
Macintosh OS 4-2 to 4-1 1

compilers

c 4-10
rez E-2 to E-51

Control Manager 5-6
C header file for F-15

conversions between C and Pascal 4-1 1
conveJting between file types 3-3
cstring type E-24
C urPageO pt i on (Segment

Loader) 5-20

In-2 Index

D
Data Access Manager 5-7

data files, filename conventions for
6-9, 6-20

data fork, entry ID value for 6-17
data statement E-10
data-type statement E-21
date command 5-29
dbx debugger 3-13
debuggers 1-6

dbx 3-13
MacsBug 3-1 1 to 3-13 , 5-27

Deferred Task Manager 5-7

C header file for F-17
define directive E-40
Delay utility 5-28, 5-29
delete statement E-l l
de rez resource decompiler E-2

to E-51
derez utility 3-3

Desk (Accessory) Manager 5-7
C header file for F-18

Desktop Manager 5-7
developing applications

creating resource files 2-9, E-4
resource files 2-9 to 2-10
summary 2-6 to 2-10

writing source code 2-7 to 2-8
device drivers 4-6, 5-7 to 5-8

and A-line traps C-4
Device Manager 5-7 to 5-8

C header file for F-18
Dialog Manager 5-8

C header file for F-19
Disk Driver 5-9

C header file for F-21

Disk Initialization Package 5-9
C header file for F-2 1 , F-36

$$ (dollar-sign) functions E-33 to E-39,
E-46 to E-49

d ontF oreg round variable 3-3
DoVBLTask function 5-30

E
Edition Manager 5-9

entiy lD field (AppleSingle-formar
files) 6-17

escape characters in resource descriptions

\ (backslash) E-50
a (OPTioN-D) E-9

Event Manager, Operating System 5-9
to 5-10

C header file for F-22

Event Manager, Toolbox 5-10
C header file for F-22

events, monitoring 3-6

examples of resource code 2-1 0 to 2-1 1
numeric escape sequences E-51
resource definition E-17
resource description file E-6
resource type statement E-30
using labels E-36 to E-39

expressions in resource descriptions E-44

F
fcnvt utility 3-3, 6-13
"file info" field

entry ID value for 6-17
structure of entries in 6-18

File Manager 5-1 1
C header file for F-23

filenames
Apple Double file conventions 6-20
AppleSingle file conventions 6-20
case-sensitivity of 5-17, 6-4
compatibility problems for blanks

embedded in 6-4
overview of 6-3 to 6-4

file permissions 6-4 to 6-5
files

AppleDouble-format 6-9 to 6-10,
6-19, 6-20

AppleSingle-format 6-9 to 6-10, 6-16
to 6-18, 6-20

A/UX 6-9 to 6-10, 6-1 3

formatting strategies of A/UX
Toolbox 6-14

Macintosh OS file structure 6-8 to 6-9
resource 5-17, E-5
simple A/UX format 6- 13
standard type declaration for E-3

file systems
access privileges 6-5
automatic conversion between UNIX

and Macintosh OS files 6-15
defined 6-2
extended file attributes 6-6
file permissions 6-4 to 6-5
foreign file system defined 6- 14
home file system defined 6- 1 4
implementation i n A/UX and

Macintosh OS 6-2
mounting and unmounting floppy

disks 6-7 to 6-8
overall organization (A/UX) 6-2 to 6-3
text files 6-6 to 6-7

f i l l type E-25
Finder. See A!UX Finder
Floating-Point Arithmetic Package 5-1 1

C header file for F-36
floppy disks, mounting 6- 1 -
folders, file permissions for 6-5 to 6-6
Font Manager 5-1 2

C header file for F-28

foreign file system, defined 6- 16
functions in resource descriptions E-46

G
gest altAUXVers i on 3-9
Gestalt Manager 5-1 2 to 5-13
GetDateTime util ity 5-29
GetNextEvent routine 2-4, 5-10
global variables, Macintosh C-6, 0-1

to 0-7
glue routines C-6
Graphics Devices Manager 5-13

H
hardware access 4-6 to 4-7
header files (AppleOouble-format)

filename conventions for 6-20
magic number in 6-19
overview of 6-9 to 6-10, 6-19

Help Manager 5-1 4
HFS 1-4
hierarchical file system (HFS) 1-4
home file system

I

defined 6- 1 6
field for 6-17

icons, entry 10 value for 6-17

limitations of E-35
language conventions, differences in 4- 1 1
L aun ch routine 5-20
l aun ch utility 3-2
l ibraries implemented in A/UX Toolbox

5-2 to 5-4
List Manager Package 5-14

available through Package
Manager 5-15

C header file for F-29
l iterals in resource descriptions E-43
L oadSeg routine 5-20
logout 5-22
l ongint type E-22
low-memory global variables C-6, 0-1

to 0-7
identifiers in preprocessor directives E-39 M
i fdef directive E-41
i fndef directive E-41
i f-then-else directives E-41
incl ude directive E-40
incl ude statement E-1 2
intege r type E-22
international character support 4-9
International Utilities Package 5-14

C header file for F-36

J
journaling 5- 10
jump table F-30

K
kermit utility 6-13
KeyRepThresh global variable,

compatibility problems with 5-10
KeyTh resh global variable,

compatibility problems with 5-10

L
labels E-32 to E-39

in arrays E-34
built-in functions for E-33

Macintosh events, monitoring 3-6

Macintosh file system (MFS) 1-4
Macintosh OS

file structure 6-8 to 6-9
interface with A/UX Toolbox 1 -8
utilities implemented in A/UX

Toolbox 5-28 to 5-29
Macintosh traps F-30
/mac! l ib/ rin cl udes directory E-3
MacsBug debugger 3-1 1 to 3-13, 5-27
magic number

for AppleOouble-format files 6-19
for AppleSingle-format files 6-17

Memory Manager 5-14
C header files for F-31
importance of using 4-3

Menu Manager 5-1 5
C header file for F-34

MF 1-4

N
Network File System (NFS) 1-4
newline character 4-7 to 4-8

compatibility problems with 5-8
NFS 1-4
noCD variable 3-3

Index In-3

Notification Manager 5-1 5
C header file for F-36

"not in ROM" routines C-6

(number sign) in preprocessor
directives E-39

numbers in resource descriptions E-43
numeric escape sequences in resource

descriptions E-51
numeric types E-21

0
Operating System Utilities 5-28 to 5-29

C header file for F-57
operators in resource descriptions E-45

p
Package Manager 5-1 5

C header file for F-36
Palette Manager 5-15

C header file for F-38

Pascal, passing small structures in C-9
Pascal and C language conventions

compared C-7 to C-10
Pascal function type 4-10
patched Toolbox calls 5-31 to 5-33
pathnames 6-3
permissions, file 6-4 to 6-5
pict . r file E-3
Picture Utilities Package 5-16
point type E-25
(pound sign) in preprocessor

directives E-39
Power Manager 5-16
' ppat ' resource E-36

PPC Toolbox 5-16
PPostEvent 5-10, 5-32, 5-34
preprocessor directives E-6, E-39 to E-42

for assigning variables E-40
for conditional processing E-41
include E-40
print E-42

print directive E-42

In-4 Index

Printing Manager 5-16
C header file for F-39

print traps F-40
privileged microprocessor instructions

4-4 to 4-6

privileges, access 6-5
privileges, file 6-5
Process Manager 5-16

and desk accessories 5-7
C header file for F-41

ProcPtr parameters 5-8
pstring type E-24

Q
QuickDraw 5-4

R
Raw Sound Driver 5-25 to 5-26
ReadDateTime utility 5-29
read statement E-15

real name, entry ID value for 6-17
rect type E-25
resource compilation using rez E-51
resource description files E-2 to E-7

comments in E-6
preprocessor directives in E-6, E-39

to E-42
structure of E-5
type declarations in E-5

resource description statements E-7
to E-39

al ign type E-25
array type E-27
Boolean type E-23
change statement E-9
character type E-23
data statement E-10
data-type statement E-21
delete statement E-l l
expressions in E-44
fill type E-25
funGions in E-46

include statement E- 1 2

literals i n E-43
numbers in E-43

numeric escape sequences in E-5 1
numeric types E-22
operators in E-44
point type E-25
read statement E-15
rect type E-25
resource statement E-16
separators in arrays E-28
special terms in E-8
string type E-24
swi tch statement E-29
syntax of E-7 to E-8, E-43 to E-51

terminators in arrays E-28
type statement E-20
variables in E-46

resource fork, entry 10 value for 6-1 7

Resource Manager 5-17 t o 5-18
C header files for F-42
differences between

environments 5-17
resource statement E- 16
resources (Macintosh) 2-9. See also

examples of resource code
attributes of E-1 3

data statements i n E-16 to E-17
preprocessor directives in E-39 to E-42
symbol definitions in E-31
symbolic names in E-19
type declaration files for E-3
type declarations in E-5

RestoreA5 routine 5-29
rez resource compiler E-2 to E-51 . See

also resource description files;
resource description statements

rez utility 3-3

RO!vl definitions F-17

s
sample programs, Toolbox 2-10 to 2-1 1
SANE (Standard Apple Numeric

Environment) 5-1 1

Scrap Mamger 5-18
C header file for F-45

Script Manager 5-18
C header file for F-45

scripttypes . r file E-3
SCSI Manager 5-18 to 5-19
search paths, compatibility issues

with �,il7
Segment Lcr.1der 5-19 to 5-20

C header file for F-48
CurPageOption setting 5-20
routines different in A/UX 5-20

select system call 3-6
; (semicolon), element terminator in

arrays E-28
separators in arrays E-28
Serial Driver 5-20 to 5-22

C header file for F-49
differences in A/UX 5-20 to 5-21

SetDateTirne utility 5-29
set f i le utility 3-2
set i t ir�er routine 5-28, 5-30
SetUpA5 routine 5-29
Shutdown Manager 5-22

C header file for F-49
S IGALRM signal 5-28, 5-30
' SIZE ' resource 2-4
s l eep routine 5-28, 5-30
Slot Manager 5-22 to 5-23

C header file for F-50
declarations F-17

Sound Manager 5-23 to 5-26
C header files for F-52

special terms in resource description
statements E-8

Standard Apple Numeric Environment
(SANE) 5-1 1

Standard File Package 5-27
C header file for F-36

startrnac utility 3-2
startrnac24 utility 3-2
stirne call 5-29

string type E-24
strings

conve1ting between Pascal and C F-54
in resource descriptions E-49
types of E-23

StripAddress routine 5-28
structures, passing C-9
SVFS 1 -4
switch statement E-29
symbolic names E-19

of resource description statements E-7
syntax of resource description statements

E-7 to E-8
SysBeep routine 5-28
SysError system call 5-27
system calls 3-8
System Error Handler 5-27

C header file for F-54
System V file system (SVFS) 1-4
systypes . r file E-3

T
TBCORE variable 3-7
TBRAM variable 3-7
TBSYSTEM variable 3-7
TBTRAP variable 3-7
TBWARN variable 3-7
terminators in arrays E-28
TextEdit 5-27

C header file for F-54
32-bit addressing 4-3
32-Bit QuickDraw 5-4

C header file for F-5
Time Manager 5-28

C header file for F-56
time operations 4-7, 5-29
Toolbox Utilities 5-29

C header file for F-58
Transcendental Functions Package 5-1 1

to 5-12
C header file for F-36

type statement E-20
types . r file E-3

u
UFS 1-4, 5-1 1
uinterO device driver C-3
u i_setselect call 2-5 to 2-6
undef directive E-40
UnloadSeg routine 5-20
unsupported Toolbox calls 5-34
user-interface device driver C-2
utilities, Macintosh 5-28

Delay 5-28
fcnvt 6-13
kerrni t 6-13

Utilities, Operating System 5-28 to 5-29
C header file for F-57

Utilities, Toolbox 5-29
C header file for F-58

v
variables, A/UX Toolbox 3-3
variables in resource descriptions E-46
version number, for AppleSingle-format

files 6-17
Vertical Retrace Manager 5-29

C header file for F-60
Video Driver

C header file for F-60
virtual memo1y, limits 4-9

W, X, Y, Z
Wai tNextEvent routine 2-4 to 2-5

using select after 2-5
Window Manager 5-30

C header file for F-61
'WIND' resource type, example E-18
wstring type E-24

Index In-5

The Apple Publishing System

A/UX Toolbox. Macintosh ROM InteJjace was written,
edited, and composed on a desktop publishing system
using Apple Macintosh computers, an AppleTalk
network system, Microsoft Word, and QuarkXPress. Line
art was created with Adobe Illustrator. Proof pages were
printed on Apple LaserWriter printers. Final pages were
output directly to 70-mm film on an Electrocomp 2000
Electron Beam Recorder. PostScript, the LaserWriter
page-description language, was developed by Adobe
Systems Incorporated.

Text and display type are Apple's corporate font, a
condensed version of ITC Garamond®. Bullets are ITC
Zapf Dingbats®. Some elements, such as program
li tings, are set in Apple Courier, a fixed-width font.

Writer: Tom Beny
Developmental Editor: Paul Dreyfus and Silvio Orsino
Design Director: Lisa Mirski
Art Director: joyce Zavarro
Production Editor: Debbie McDaniel

Special thanks to Winston Hendrickson, Michael
Hinkson, and Kelly King.

Additional thanks to Eric Castle, Tim Dierks, Jim Mullin,
and Kent Sandvik.

030-1790-A
Printed in U.S.A.

