
tl® Apple® A/UX™ Programmer's
Reference

•••••

•

•

Copyright
This material contains trade secrets and
confidential and proprietary information of
Apple Computer, Inc., and UniSoft Corpora
tion. Use of this copyright notice is precau
tionary only and does not imply publication.
Copyright© 1985, 1986, 1987, Apple Com
puter, Inc., and UniSoft Corporation. All
rights reserved. Portions of this document
have been previously copyrighted by AT&T
Information Systems, the Regents of the
University of California, Adobe Systems,
Inc., and Sun Microsystems, Inc., and are
reproduced with permission. Under the copy
right laws, this manual or the software may
not be copied, in whole or part, without writ
ten consent of Apple or UniSoft, except in the
normal use of the software or to make a
backup copy of the software. The same
proprietary and copyright notices must be
affixed to any permitted copies as were
affixed to the original. This exception does
not allow copies to be made for others,
whether or not sold, but all of the material
purchased (with all backup copies) may be
sold, given, or loaned to another person.
Under the law, copying includes translating
into another language or format. You may
use the software on any computer owned by
you, but extra copies cannot be made for this
purpose.

Apple Computer, Inc.
20525 Mariani Ave.
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo, Image Writer, Laser
Writer, and Macintosh are registered trade
marks of Apple Computer, Inc.

AIUX is a trademark of Apple Computer, Inc.

UNIX is a registered trademark of AT&T
Information Systems.

B-NET is a trademark of UniSoft Corpora
tion.

Ethernet is a trademark of Xerox Corporation.

Diablo is a registered trademark of Xerox
Corporation.

PoSTSCRIPT and TRANSCRIPT are trademarks
of Adobe Systems, Inc.© 1984 Adobe Sys
tems, Inc. All rights reserved.

DEC is a tradernatk of Digital Equipment
Corporation.

Hewlett-Packard 2631 is a trademark of
Hewlett-Packard.

Limited Warranty on Media and
Replacement

If you discover physical defects in the manu
als distributed with an Apple product or in the
media on which a software product is distri
buted, Apple will replace the media or manu
als at no charge to you, provided you return
the item to be replaced with proof of purchase
to Apple or an authorized Apple dealer during
the 90-day period after you purchased the
software. In addition, Apple will replace darn
aged software media and manuals for as long
as the software product is included in Apple's
Media Exchange Program. While not an
upgrade or update method, this program
offers additional protection for up to two
years or more from the date of your original
purchase. See your authorized Apple dealer
for program coverage and details. In some
countries the replacement period may be dif
ferent; check with your authorized Apple
dealer.

ALL IMPLIED WARRANTIES ON THE

• .•

•

•

•

•

•

MEDIA AND MANUALS, INCLUDING
IMPLIED WARRANTIES OF MER
CHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ARE LIM

ITED IN DURATION TO NINETY (90)
DAYS FROM THE DATE OF THE ORI

GINAL RETAIL PURCHASE OF THIS

PRODUCT.

Even though Apple has tested the software
and reviewed the documentation, APPLE
AND ITS SOFTWARE SUPPLIER MAKE

NO WARRANTIES OR REPRESENTA

TIONS, EITHER EXPRESS OR

IMPLIED, Wim RESPECT TO

SOFTWARE, ITS QUALITY, PERFOR
MANCE, MERCHANTABILITY, OR

FITNESS FOR A PARTICULAR PUR
POSE. AS A RESULT, THIS SOFTWARE
IS SOLD AS IS, AND YOU mE PUR
CHASER ARE ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY AND PER

FORMANCE.

IN NO EVENT WILL APPLE OR ITS
SOFTWARE SUPPLIER BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL

DAMAGES RESULTING FROM ANY
DEFECT IN THE SOFTWARE OR ITS
DOCUMENTATION, even if advised of the
possibility of such damages. In particular,
Apple and its software supplier shall have no
liability for any programs or data stored in or
used with Apple products, including the costs
of recovering such programs or data.

THE W ARRANTY AND REMEDIES SET
FORTH ABOVE ARE. EXCLUSIVE AND

IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is author
ized to make any modification, extension, or
addition to this warranty.

Some states do not allow the exclusion or lim
itation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply
to you. This warranty gives you specific legal
rights, and you may also have other rights
which vary from state to state.

•

•

•

AIUX Programmer's Reference

• Contents

Preface

Introduction

Section 2 System Calls

Section 3 Subroutines

Section 4 File Formats

Section 5 Miscellaneous Faci lities

Appendix A Permuted Index

•

•

•

•

•

•

•

•

Preface

Conventions Used in This Manual
Throughout the AIUX manuals, words that must be typed exactly as
shown or that would actually appear on the screen are in Courier
type. Words that you must replace with actual values appear in italics
(for example, user-name might have an actual value of joe). Key
names appear in CAPS (for example, RETURN). Special terms are in
bold type when they are introduced; many of these terms are also
defined in the glossary in the AIUX System Overview.

Syntax notation
All AIUX manuals use the following conventions to represent
command syntax. A typical AIUX command has the form

command [flag-option] [argument] . . .

where:

command

flag-option

argument

[]

Command name (the name of an executable file).

One or more flag options. Historically, flag options
have the form

-[opt ...]

where opt is a letter representing an option. The
form of flag options varies from program to
program. Note that with respect to flag options, the
notation

[-a][-b)[-c)
means you can select one or more letters from the
list enclosed in brackets. If you select more than one
letter you use only one hyphen, for example, -ab.

Represents an argument to the command, in this
context usually a filename or symbols representing
one or more filenames .

Surround an optional item.

Follows an argument that may be repeated any
number of times.

Courier type anywhere in the syntax diagrai!l indicates that
characters must be typed literally as shown.

italics for an argument name indicates that a value must be
supplied for that argument.

Other conventions used in this manual are:
<CR>

cmd(sect)

indicates that the RETURN key must be pressed.

An abbreviation for CONTROL-X, where x may be
any key.

A cross-reference to an A/UX reference manual.
cmd is the name of a command, program, or other
facility, and sect is the section number where the
entry resides. For example, cat(l).

•

•

•

•

•

•

Introduction

to the A/UX Reference Manuals

1. How to use the reference manuals

The A!UX Command Reference, A!UX Programmer's Reference, and
A!UX System Administrator's Reference are reference manuals for all
the programs and utilities included with your NUX system. These
manuals provide complete information on these programs and utilities,
but they are designed for quick reference and are not tutorials. If you
are just learning the NUX system, or are unfamiliar with a group of
programs (such as the shells or the text formatting programs) you
should first refer to Getting Started With AIUX and the narrative user
guides provided with your system. After you have worked with the
NUX system, use these reference manuals to look up a new command
or refresh your memory on a command you already know .

2. Information contai ned in the reference manuals

NUX reference manuals are divided into three volumes:

• The 2-part A!UX Command Reference contains information for
the general user. It describes commands you type at the NUX
prompt which list your files, compile programs, format text,
change your shell, and so on. It also includes programs used in
scripts and command language procedures. The commands in
this manual generally reside in the directories /bin, /us r /bin
and / u s r / ucb.

• The A!UX Programmer's Reference contains information for the
programmer. It describes utilities for programming, such as
system calls, subroutines file formats, and miscellaneous
programming facilities.

• The A!UX System Administrator's Reference contains
information for the system administrator. It describes commands
you type at the NUX prompt to control your machine, such as

+

accounting commands, backing up your system, and charting
your system's activity. These commands generally reside in the
directories /etc, / u s r /etc, and / us r / l ib.

These areas can overlap. For example, if you are the only person using
your machine, then you are both the general user and the system
administrator.

3. How the reference manuals are organized

All manual pages are grouped by section. The sections are grouped by
general function and are numbered according to standard conventions
as follows:

1 User commands

1M System maintenance commands

2 System calls

3 Subroutines

4 File formats

5 Miscellaneous facilities

6 Games

7 Special files (files that refer to devices)

8 System maintenance procedures

Each of the reference manuals is divided into two or more sections and
lists each command or utility alphabetically within each section. The
sections included in each volume are as follows:

The AIUX Command Reference contains sections 1 and 6. Note that
both of these sections describe commands and programs available to
the general user.

• Section 1
The commands in Section 1 fall into four categories. These
categories are indicated next to the command name at the top of

-i i-

•

•

•

•

•

•

the page:

1 General-purpose commands, such as cat and ls .

lC Communications commands, such as cu and t ip.

lG Graphics commands, such as graph and tplot.

lN Networking commands used by the B-NET program and
NFS such as rep and ypcat.

• Section 6
This contains all the games, such as cribbage and worms.

The AIUX Programmer's Reference contains sections 2 through 5.

• Section 2-System Calls
This describes the services provided by the NUX system kernel,
including the C language interface. It includes two categories
(indicated next to the command name at the top of the page) :

2 General system calls

2N Networking system calls

• Section 3-Subroutines
This describes the available subroutines. The binary versions are
in the system libraries in the / l ib and /usr/ lib directories.
This section includes six categories (indicated next to the
command name at the top of the page):

3C C and assembler library routines

3F Fortran library routines

3M Mathematical library routines

3N Networking routines

3S Standard 1/0 library routines

3X Miscellaneous routines

• Section 4--File Formats
This describes the structure of some files, but does not include

- i i i-

files that are used by only one command (such as the assembler's
intermediate files). The C language st ruct declarations
corresponding to these formats are in the /usr/ include and

/usr/ include / sys directories. There are two categories in
this section (indicated next to the file name at the top of the
page):

4 General file formats

4N Networking formats

• Section 5-Miscellaneous facilities
This section contains various character sets, macro packages, etc.
There are three categories in this section (indicated next to the
name at the top of the page):

5 General miscellaneous facilities

SF Protocol families

5P Protocol descriptions

The A!UX System Administrator's Reference contains sections 1M, 7
and8.

• Section 1M-System Maintenance Commands
This section contains system maintenance programs such as
fsck and mkfs.

• Section 7-Special Files
This section discusses special files that refer to specific hardware
peripherals and system device drivers. The names in this section
generally refer to device names for the hardware, rather than to
the names of the special files themselves.

• Section 8-System Maintenance Procedures
This section includes crash recovery and boot procedures and the
standalone environnment.

-iv-

•

•

•

•

•

•

4. How a manual entry is organized

Each section of the reference volumes has an introduction and several
entries arranged alphabetically. The entry name and its category (for
example 1M or 2N) appear in the upper corners of each page. Each
entry is numbered separately (that is, each entry begins on a page
numbered "1").

Some entries describe several routines or commands. These multiple
subentries are listed under the main entry, and each subentry refers you
back to the main entry. For example, chown and chgrp share a page
with the name chown(l) at the upper comers. If you tum to the page
chgrp(l), you will find a reference to chown(l). (This is true only for
the AIUX Command Reference and A/UX System Administrator's
Reference .

All of the entries have a common format, and may include any of the
following parts:

NAME
the name(s) and a brief description .

SYNOPSIS
describes the syntax for using the command or routine.

DESCRIPTION
discusses what the program does.

EXAMPLE
gives example(s) of usage.

RETURN VALUE
describes the value returned by a function.

ERRORS
describes the possible error conditions.

Fll..ES
lists the file names that are used by the program.

SEE ALSO
provides pointers to related information .

-v-

DIAGNOSTICS
discusses the diagnostic messages that may be produced. Self
explanatory messages are not listed.

WARNINGS
points out potential pitfalls.

BUGS

gives known bugs and sometimes deficiencies. Occasionally, it
describes the suggested fix.

5. Locating information in the reference manuals

The A/UX Command Reference and AIUX System Administrator's
Reference have four summaries to help you locate information. The
AIUX Programmer's Reference contains two summaries: the table of
contents and the permuted index.

5.1 Table of contents
Each book contains an overall table of contents and individual chapter
table of contents. The general table of contents lists the overall
contents of each volume. The more detailed chapter table of contents
lists the manual pages contained in each section and a brief description
of their function. Note that they appear in alphabetic order within each
section.

5.2 Command summary by function
This summary groups the commands in the A/UX Command Reference
and AIUX System Administrator's Reference by their general function.
This will give you some idea of the commands that are available and
how they are used.

5.3 Command synopses
This lists the synopsis of the commands in the AIUX Command
Reference and AIUX System Administrator's Reference and is provided
as an even briefer reference to help you use commands you are already
familiar with.

-vi-

•

•

•

•

•

5.4 Permuted Index

The permuted index lists commands by the information in the NAME
part of each entry. The permuted index contains three columns. The
center column is sorted alphabetically by keywords that describe the
basic function you may be looking for. When you use the permuted
index, you should scan the first words in the center column to find the
general area of functionality for various commands.

For example, to look for a text editor, scan the center column for the
word "editor." There are several index lines containing an "editor"
reference, e.g.:

ed, red: text
files. ld: link

editor ... ed(l)
editor for common object.. ld(l)

The first column contains the the rest of the information that either
precedes or follows the keyword in the description of a command's
function, and the third column shows the manual page where the
command is fully described. This entry is followed by the appropriate
section number in parentheses .

You can then turn to the entries listed in the last column, ed(l) and
ld(l), to find information on that editor.

5.5 On-line manual pages
You can call up these entries on-line with the man(l) command. Just
type man and the name of the entry you want to look at.

If you are not sure of the manual page name, you can use the
apropo s command with the name of a related command or general
function, for example:

apropo s compile

shows you commands related to compiling (see apropos(l) for more
information) .

-vii-

Table of Contents

•
Section 2: System Calls

intro . .introduction to system calls and error numbers
_exit . see exit(2)
accept. accept a connection on a socket
access . determine accessibility of a file
acct . enable or disable process accounting
adjtime correct the time to allow synchronization of system clock
alarm . set a process's alarm clock
async_daemon . see nfssvc(2)
bind . bind a name to a socket
brk . change data segment space allocation
chdir . change working directory
chmod . change mode of file
chown . change owner and group of a file
chroot . change root directory
close . close a file descriptor
connect . initiate a connection on a socket

•
creat. create a new file or rewrite an existing one
dup . duplicate a descriptor
exec . execute a file
execl . see exec(2)
execle . see exec(2)
execlp . see exec(2)
execv . see exec(2)
execve . see exec(2)
execvp . see exec(2)
exit. terminate process
fchown ... see chown(2)
fcntl . file control
flock . apply or remove an advisory lock on an open file
fork . create a new process

• fsmount . mount an NFS file system
fstat ... see stat(2)

+

fsync synchronize a file's in-core state with that on disk
ftruncate ... see truncate(2)
getcompat ... see setcompat(2)
getdirentries get directory entries in a file system independent format
getdomainname get/set name of current network domain •
getdtablesize .. get descriptor table size
getegid .. see getuid(2)
geteuid .. see getuid(2)
getgid .. see getuid(2)
getgroups ... get group access list
gethostid get/set unique identifier of current host
gethostname .. get/set name of current host
getitimer ... get/set value of interval timer
getpeername .. get name of connected peer
getpgrp .. see getpid(2)
getpid get process, process group, and parent process IDs
getppid .. see getpid(2)
getsockname .. get socket name
getsockopt .. get and set options on sockets
gettimeofday ... get/set date and time
getuid ... get real user, effective user, real group, and effective group IDs •
ioctl ... control device
kill... send a signal to a process or a group of processes
link .. .link to a file
listen .. .listen for connections on a socket
locking provide exclusive file regions for reading or writing
lseek .. move read/write file pointer
lstat. ... see stat(2)
mkdir .. make a directory file
mknod make a directory, or a special or ordinary file
msgctl .. message control operations
msgget ... get message queue
msgop ... message operations
msgrcv ... see msgop(2)
msgsnd ... see msgop(2)
nfs_getfh .. get a file handle
nfssvc . NFS daemons
nice ... change priority of a process •

-ii-

open . open for reading or writing
pause . suspend process until signal
phys . allow a process to access physical addresses
pipe . create an interprocess channel
plock . .lock process, text, or data in memory •
profil . execution time profile
ptrace . process trace
read . read from file
readlink . .read value of a symbolic link
readv•... see read(2)
reboot . reboot the system
recv . receive a message from a socket
recvfrom . see recv(2N)
recvmsg . see recv(2N)
rename . change the name of a file
rmdir . remove a directory file
sbrk .. see brk(2)
select. synchronous 1/0 multiplexing
semctl . semaphore control operations
semget. get set of semaphores
semop . semaphore operations •
send . send a message from a socket
sendmsg . see send(2N)
sendto . see send(2N)
setcompat. set or get process compatibility mode
setdomainname . see getdomainname(2N)
setgid . see setuid(2)
setgroups . set group access list
sethostid . see gethostid(2N)
sethostname . see gethostname(2N)
setitimer . see getitimer(2)
setpgrp . set process group ID
setregid . set real and effective group I D
setreuid . set real and effective user ID's
setsockopt. see getsockopt(2N)

•
settimeofday .. see gettimeofday(2)
setuid . set user and group IDs
shmat . see shmop(2)

- i i i-

shmctl ... shared memory control operations
shmdt ... see shmop(2)
shmget. ... get shared memory segment
shmop .. shared memory operations
shutdown shut down part of a full-duplex connection
sigblock .. block signals
sigpause atomically release blocked signals and wait for interrupt
sigsetmask .. set current signal mask
sigstack .. set and/or get signal stack context
sigvec optional BSD-compatible software signal facilities

•

socket ... create an endpoint for communication
stat .. get file status
statfs .. get file system statistics
stime .. set time
symlink ... make symbolic link to a file
sync .. update superblock
time ... get time
times .. get process and child process times
truncate ... truncate a file to a specified length

ulimit get and set user limits
umask .. set and get file creation mask
umount ... unmount a file system

•
uname ... get name of current system
unlink .. remove directory entry
unmount ... remove a file system
ustat ... get file system statistics
utime .. set file access and modification times
uvar returns system-specific configuration information
wait. .. wait for child process to stop or terminate
wait3 wait for child process to stop or terminate
write .. write on a file
writev ... see write(2)

•

- iv-

•

•

•

int ro(2) int ro(2)

NAME
int ro - introduction to system calls and error numbers

SYNOPSIS
finclude <errno . h>

DESCRIPfiON
This section describes all of the A/UX system calls. Most of these
calls have one or more error retmns. An error condition is indi
cated by an otherwise impossible retmned value. This is almost
always -1; the individual descriptions specify the details. An
error number is also made available in the external variable
errno. errno is not cleared on successful calls, so it should
be tested only after an error has been indicated.

There is a table of messages associated with each error, and a rou
tine for printing the message; see perror(3C). Each system call
description attempts to list all possible error numbers.

ERRORS
The following is a complete list of A/UX error numbers and their
names as defined in <errno . h>.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in
some way forbidden except to its owner or the superuser. It
is also retmned for attempts by ordinary users to do things
allowed only by the superuser.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file
should exist but doesn't, or when one of the directories in a
pathname does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by
pid in kill or pt race.

4 E INTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the
user program has elected to catch, occurred during a system
call. If execution is resumed after processing the signal, it
will appear as if the interrupted system call retmned this error
condition .

5 EIO 1/0 error
Some physical 1/0 error has occurred. This error may in
some cases occur on a call following the one to which it actu
ally applies.

- 1 - September, 1987

intro(2) int ro(2)

6 ENXIO No such device or address
1/0 on a special file refers to a subdevice which does not
exist, or beyond the limits of the device. It may also occur
when, for example, a tape drive is not on-line or no disk pack
is loaded on a drive.

7 E2BIG Argument list too long
An argument list longer than ARG_MAX is presented to a
member of the exec family.

8 ENOEXEC exec format error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic
number (see a . out(4)).

9 EBADF Bad file number
Either a file descriptor does not refer to an open file, or a read
(respectively, write) request is made to a file that is open only
for writing (respectively, reading).

10 ECHI LD No children
A wait was executed by a process that had no existing or
unwaited-for child processes.

1 1 EAGAIN No more processes
The system is out of a resource which may be available later.
A fork failed because the system's process table is full or
the user is not allowed to create any more processes. A sys
tem call which requires memory may also fail with this error
if the system is out of memory or swap space, but the request
is less than the system-imposed per process limit (see
ulimit(2)).

12 ENOMEM Not enough space
During an exec, brk, or sbrk, a program asks for more
space than the system is able to supply. This is not a tem
porary condition; the maximum space size is a system param
eter. The error may also occur if the arrangement of text,
data, and stack segments requires too many segmentation
registers, or if there is not enough swap space during a fork.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by
the protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to use
an argument of a system call.

- 2 - September, 1987

•

•

•

•

•

•

int ro (2) int ro (2)

1 5 ENOTBLK Block device required
A nonblock file was mentioned where a block device was
required. e.g., in mount .

16 EBUSY Mount device busy
The device or resource is currently unavailable. An attempt
was made to mount a device that was already mounted or to
dismount a device on which there is an active file (open file,
current directory, mounted-on file, active text segment). It
will also occur if an attempt is made to enable accounting
when it is already enabled.

17 EEXI ST File exists
An existing file was mentioned in an inappropriate context,
e.g., link.

1 8 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to
a device; e.g., read a write-only device.

20 ENOTD IR Not a directory
A nondirectory was specified where a directory is required,
for example in a path prefix or as an argument to chdir(2).

2 1 E I SD IR Is a directory
An attempt was made to write on a directory.

22 E INVAL Invalid argument
Some invalid argument (e.g., dismounting a nonmounted
device; mentioning an undefined signal in s ignal, or
kill ; reading or writing a file for which lseek has gen
erated a negative pointer). Also set by the math functions
described in the (3M) entries of this manual.

23 ENF I LE File table overflow
The system file table is full, and temporarily no more
opens can be accepted.

24 EMF I LE Too many open files
No process may have more than the maximum number of file
descriptors OPEN_MAX open at a time. When a record lock
is being created with fcnt l, there are too many files with
record locks on them.

25 ENOTTY Not a typewriter
An attempt was made to ioct 1(2) a file that is not a special

-3- September, 1987

intro(2) intro(2)

character device.

26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure program
which is currently open for writing. Also an attempt to open
for writing a pure-procedure program that is being executed.

Note: If you are running an NFS system and you are
accessing a shared binary remotely, it is possible that
you will not get this errno.

27 EFBIG File too large
The size of a file exceeded the maximum file size ULIMIT;
see ulimit(2).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space
left on the device. In fcnt l, the setting or removing of
record locks on a file cannot be accomplished because there
are no more record entries left on the system

29 ESP IPE Illegal seek
An !seek was issued to a pipe. This error should also be
issued for other nonseekable devices.

30 EROF s Read-only file system
An attempt to modify a file or directory was made on a dev
ice mounted read-only.

3 1 EMLINK Too many links
An attempt was made to create more than the maximum
number of links LINK_MAX to a file.

32 EP IPE Broken pipe
A write was attempted on a pipe for which there is no process
to read the data. This condition normally genemtes a signal;
the error is returned if the signal is ignored.

33 EDOM Argument out of domain of func
The argument of a function in the math package (3M) is out
of the domain of the function.

34 ERANGE Math result not representable
The value of a function in the math package (3M) is not
representable within machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that
does not exist on the specified message queue; see

- 4 - September, 1987

•

•

•

•

•

•

int ro(2) int ro (2)

msgop(2).

36 E IDRM Identifierremoved
This error is returned to processes that resume execution due
to the removal of an identifier from the file system's name
space (see msgct 1(2), semct 1(2), and shmct 1(2)).

37 ECHRNG Channel number out of range
This errno is included for compatibility with AT&T.

38 EL2NSYNC Level2 not synchronized
This errno is included for compatibility with AT&T.

39 EL3HLT Level 3 halted
This errno is included for compatibility with AT&T.

40 EL3RS T Level3 reset
This errno is included for compatibility with AT&T.

4 1 ELNRNG Link number out of range
This errno is included for compatibility with AT&T.

42 EUNATCH Protocol driver not attached
This errno is included for compatibility with AT&T.

43 ENOCS I No CSI structure available
This errno is included for compatibility with AT&T.

44 EL2HLT Level2 halted
This errno is included for compatibility with AT&T.

45 EDEADLK Deadlock
A deadlock situation was detected and avoided.

55 EWOULDBLOCK Operation would block
An operation which would cause a process to block was
attempted on an object in nonblocking mode (see
socket(2N) and setcompat(2)).

56 EINPROGRESS Operation now in progress
An operation which takes a long time to complete (such as a
connect(2N)) was started on a nonblocking object (see
socket(2N)).

57 EALREADY Operation already in progress
An operation was attempted on a nonblocking object which
already had an operation in progress .

58 ENOTSOCK Socket operation on nonsocket
A socket operation was attentped on an object that is not a
socket

- 5 - September, 1987

int ro(2) int ro (2)

59 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a
socket

60 EMSGS I ZE Message too long
A message sent on a socket was larger than the internal mes
sage buffer.

61 EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support the seman
tics of the socket type requested. For example, you cannot
use the internet UDP protocol with type SOCK_STREAM.

62 ENOPROTOOPT Bad protocol option
A bad option was specified in a get sockopt(2) or
set sockopt(2) system call.

63 EPROTONOSUPPORT Protocol not supported
The protocol has not been configured into the system or there
is no implementation for it

64 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into
the system or there is no implementation for it

65 EOPNOTSUPP Operation not supported on socket
The support for the operation on the selected socket type has
not been configured or there is no implementation for it. For
example, trying to accept a connection on a datagram
socket

66 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system
or there is no implementation for it.

67 EAFNOSUPPORT Address not supported by protocol family
An address incompatible with the requested protocol was
used. For example, PUP Internet addresses cannot neces
sarily be used with ARPA Internet protocols.

68 EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

�9 EADDRNOTAVAIL Can't assign requested address
Normally results from an attempt to create a socket with an
address not on this machine.

70 ENETDOWN Network is down
A socket operation encountered a dead network.

- 6 - September, 1987

•

•

•

•

•

•

int ro (2) int ro (2)

71 ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

72 ENETRESET Network dropped connection on reset
The connected host crashed and rebooted.

73 ECONNABORTED Software caused connection abort
A connection abort was caused internal to the host machine.

74 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally
results from the peer executing a shutdown(2) system call.

75 ENOBUFS No buffer space available
An operation on a socket or pipe was not performed because
the system lacked sufficient buffer space.

76 E I SCONN Socket is already connected
A connect request was made on an already connected
socket; or a sendto or sendmsg request on a connected
socket specified a destination other than the connected party.

77 ENOTCONN Socket is not connected
A request to send or receive data was disallowed because the
socket had already been shut down with a previous shut
down{2) call.

78 ESHUTDOWN Can't send after socket shutdown
A request to send data was disallowed because the socket had
already been shut down with a previous shutdown(2) call.

80 ETIMEDOUT Connection timed out
A connect request failed because the connected party did
not properly respond after a period of time. (The timeout
period is dependent on the communication protocol.)

81 ECONNREFUSED Connection refused
No connection could be made because the target machine
actively refused it. This usually results from trying to con
nect to a service which is inactive on the foreign host

82 ELOOP Too many levels of symbolic links
A pathname lookup involved more than 8 symbolic links.

83 ENAMETOOLONG File name too long
A component of a pathname exceeded NAME_MAX charac
ters, or an entire pathname exceeded PA TH_MAX charac
ters.

-7- September, 1987

int ro (2) int ro (2)

84 EHOSTDOWN Host is down
A socket opemtion encountered a defunct host

85 EHOSTUNREACH No route to host
A socket opemtion was attempted to an unreachable host

86 ENOTEMPTY Directory not empty
A directory with entries other than "." and " .. " was sup
plied to a remove directory or rename call.

87 ENOSTR Device not a stream
A stream opemtion was attempted on a file descriptor that is
not a streams device.

88 ENODATA No data {for no delay 1/0)
Reading from a stream and the o NEDELAY flag set (from
open(2) or fcnt l(2)) but no data is ready to be read.

89 ET IME Stream ioctl timeout
The timer set for a streams ioct l(2) system call has
expired. The cause of this error is device specific and could
indicate either a hardware or software failure, or perhaps a
timeout value that is too short for the specific opemtion. The
status of the ioct 1(2) opemtion is indeterminate.

90 ENOSR Out of stream resources
During a streams open(2), either no streams queues or no
streams head data structures were available.

95 EST ALE Stale NFS file handle
A client referenced an open file when the file has been
deleted.

96 EREMOTE Too many levels of remote in path
An attempt was made to remotely mount a file system into a
path which already has a remotely-mounted component.

97 EPROCLIM Too many processes

98 EUSERS Too many users
A write to an ordinary file, the creation of a directory or
symbolic link, or the creation of a directory entry failed
abecause the user's quota of disk blocks was exhausted, or
the allocation of an inode for a newly created file failed
because the user's quota of inodes was exhausted.

100 EDEADLOCK Locking deadlock error
Returned by locking(2) system call if deadlock would
occur or when locktable overflows.

-8- September, 1987

•

•

•

•

•

•

int ro(2) int ro (2)

DEFINITIONS
System Constants

The following are the default implementation-specific constants
defined for the NUX system on the Macintosh II:

ARG_MAX Maximum length of argument to exec
(5, 120).

CHAR_BIT

CiiAR_MAX

CHILD_MAX

INT_MAX

LINK_MAX

LONG_MAX

MAXOOUBLE

NAME_MAX

OPEN_MAX

PATH_MAX

PID_MAX

PIPE_MAX

PROC_MAX

SHRT_MAX

SYS_NMLN

UID_MAX

Number of bits in a char (8).

Maximum integer value of a char (255).

Maximum number of processes per user ID
(25).

Maximum decimal value of an int
(2,147,483,647).

Maximum number of links to a single file
(1000)
Maximum decimal value of a long
(2,147 ,483,647).

Maximum decimal value of a double
(1 . 797693 1348623 1470e+308) .

Maximum number of characters in a
filename (255). On System V file systems,
names are limited to 14 characters.

Maximum number of files a process can
have open (32).

Maximum number of characters in a path
name (1 ,024).

Maximum value for a process ID (30,001).

Maximum number of bytes written to a
pipe in a write (5, 120).

Maximum number of simultaneous
processes, system wide (50).

Maximum decimal value of a short
(65,535).

Number of characters in a string returned
by uname (9).

Maximum value for a user ID or group ID
(60,001).

- 9 - September, 1987

int ro(2) int ro (2)

USI_MAX Maximum decimal value of an uns igned
(4,294,967,295).

INT_MIN Minimum decimal value for an int
(-2,147 ,483,648).

LONG_MIN Minimum decimal value for a long
(-2,147,483,648).

SHRT_MIN Minimum decimal value for a short
(-32,768).

ULIMIT Maximum number of bytes in a file
(16,777,216).

Process ID
Each active process in the system is identified uniquely by a posi
tive integer called a process ID. The range of this ID is from 1 to
PID_MAX.

Parent Process ID
A new process is created by a currently active process; see
fork(2). The parent process ID of a process is the process ID of
its creator.

Process Group
Each active process is a member of a process group that is
identified by a positive integer called the process group ID. This
ID is the process ID of the group leader. This grouping permits
the signaling of related processes; see kill(2).

Tty Group iD
Each active process can be a member of a terminal group that is
identified by a positive integer called the tty group ID. This
grouping is used to terminate a group of related processes upon
termination of one of the processes in the group; see exi t(2) and
s igna l(3).

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive integer
called a real user IDs.

Each user is also a member of a group. The group is identified by
a positive integer called the real group ID.

An active process has a real user ID and real group ID that are set
to the real user ID and real group ID, respectively, of the user
responsible for the creation of the process.

- 10 - September, 1987

•

•

•

•

•

•

int ro (2) int ro (2)

Effective User ID and Effective Group ID
An active process has an effective user ID and an effective group
ID that are used to determine file access permissions (see below) .
The effective user ID and effective group ID are equal to the
process's real user ID and real group ID respectively, unless the
process or one of its ancestors evolved from a file that had the
set-user-ID bit or set-group ID bit set; see exec(2).

Superuser
A process is recognized as a " superuser" process and is granted
special privileges if its effective user ID is 0.

Special Processes
The processes with a process ID of 0 and a process ID of 1 are
special processes and are referred to as procO and procl .

procO is the scheduler. procl is the initialization process (init).
procl is the ancestor of every other process in the system and is
used to control the process structure.

File Descriptor
A file descriptor is a small integer used to do 1/0 on a file. The
value of a file descriptor is from 0 to OPEN_MAX-1 . A process
may have no more than OPEN_MAX file descriptors open simul
taneously. A file descriptor is returned by system calls such as
open(2), or pipe(2). The file descriptor is used as an argument
by calls such as read(2), write(2), ioct l(2), and close(2).

File Pointer
A file with the associated stdio buffering is called a stream . A
stream is a pointer to a type F I LE defined by the <stdio . h>
header file. The fopen(3S) routine creates descriptive data for a
stream and returns a pointer that identifies the stream in all further
transactions with other stdio routines.

Most stdio routines manipulate either a stream created by the
fopen(3S) function or one of the three streams that are associ
ated with three files that are expected to be open in the base sys
tem (see termio(7). These three streams are declared in the
<stdio . h> header file:

stdin the standard input file.

stdout

stderr

the standard output file.

the standard error file.

Output streams, with the exception of the standard error stream
stderr, are by default buffered if the output refers to a file and

- 11 - September, 1987

intro{2) int ro {2)

line-buffered if the output refers to a terminal. The standard error
output stream stderr is by default unbuffered. When an output
stream is unbuffered, information is queued for writing on the des
tination file or terminal as soon as written; when it is buffered,
many characters are saved up and written as a block. When it is
line-buffered, each line of output is queued for writing on the des
tination terminal as soon as the line is completed (that is, as soon
as a newline character is written or terminal input is requested).
The setbuf(3S) routines may be used to change the stream's
buffering strategy.

Filename
Names consisting of 1 to 14 characters may be used to name an
ordinary file, special file or directory.

These characters may be selected from the set of all character
values excluding 'n (null) and the ASCII code for I (slash).

Note that it is generally unwise to use *, ? , [, or] as part of file
names because of the special meaning attached to these characters
by the shell. See sh{l). Although permitted, it is advisable to
avoid the use of unprintable characters in file names.

Pathname and Path Prefix
A pathname is a null-terminated character string starting with an
optional slash (/), followed by zero or more directory names
separated by slashes, optionally followed by a file name.

Unless specifically stated otherwise, the null pathname is treated
as if it named a nonexistent file.

More precisely, a pathnarne is a null-terminated character string
constructed as follows:

<path-name>: :=<file>kpath-pre.fix><file>l I

<path-prefix>: :=<rtpre.fix>l I <rtpre.fix>

<rtpre.fix>::=<dirname> I l<rtpre.fix><dirname> I

where <file > is a string of I to 14 characters other than the ASCII
slash and null, and <dirname> is a string of 1 to 14 characters
(other than the ASCII slash and null) that names a directory.

If a pathname begins with a slash, the path search begins at the
root directory. Otherwise, the search begins from the current
working directory.

- 12 - September, 1987

•

•

•

•

•

•

int ro (2) int ro (2)

A slash by itself names the root directory.

Directory
Directory entries are called links. By convention, a directory con
tains at least two links, • and • • , referred to as "dot" and "dot
dot" respectively. Dot refers to the directory itself and dot-dot
refers to its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a root directory and a current
working directory for the purpose of resolving pathname searches.
The root directory of a process need not be the root directory of
the root file system.

File Access Permissions
Read, write, and execute/search permissions on a file are granted
to a process if one or more of the following is true:

The effective user ID of the process is superuser.

The effective user ID of the process matches the user ID of
the owner of the file and the appropriate access bit of the
"owner" portion (0700) of the file mode is set.

The effective user ID of the process does not match the user
ID of the owner of the file, and the effective group ID of the
process matches the group of the file and the appropriate
access bit of the "group" portion (070) of the file mode is
set.

The effective user ID of the process does not match the user
ID of the owner of the file, and the effective group ID of the
process does not match the group ID of the file, and the
appropriate access bit of the "other" portion (07) of the file
mode is set.

Otherwise, the corresponding permissions are denied.

INTERPROCESS COMMUNICATION
Message Queue Identifier

A message queue identifier (msqid) is a unique positive integer
created by a msgget(2) system call. Each msqid has a message
queue and a data structure associated with it. The data structure is
referred to as msqid _ ds and contains the following members:

st ruct ipc_pe rm msg_perm; / * ope rat ion pe rmi s s ion

st ruct * /

ushort msg_qnum;

ushort msg_qbyte s ;

/ * numbe r o f msgs o n q * /

/ * max numbe r o f byt e s on q * /

-1 3 - September, 1987

int ro (2) int ro (2)

ushort msg_l spid; I* pid of last msgsnd

operat ion *I

ushort msg_lrpid; I* pid o f last msgrcv

operat ion *I
t ime t msg_ st ime ; I * last msgsnd t ime * I
t ime t msg_rt ime ; I * last msgrcv t ime * I
t ime -t msg_ct ime ; I * last change t ime * I

I * T ime s mea sured i n sees

s i nce 0 0 : 0 0 : 0 0 GMT , 1 1 1 1 7 0 * I

msg_perm is an ipc_perm structure that specifies the message
operation permission (see below). This structure includes the fol
lowing members:

ushort cu id; I * creat o r user ID * I

ushort cgid; I * creat o r group ID * I

ushort uid; I * user ID *I
u short gid; I * group ID * I
ushort mode ; I * r l w pe rmi s s ion * I

msg_ qnum is the number of messages currently on the queue.
msg_qbytes is the maximum number of bytes allowed on the
queue. msg_lspid is the process ID of the last process that
performed a msgsnd operation. msg l rpid is the process id
of the last process that performed a msgrcv operation.
msg_st ime is the time of the last msgsnd operation,
msg rt ime is the time of the last msgrcv operation, and
msg

-
ct ime is the time of the last msgctl(2) operation that

changed a member of the above structure.

Semaphore Identifier
A semaphore identifier (semid) is a unique positive integer created
by a semget(2) system call. Each semid has a set of semaphores
and a data structure associated with it. The data structure is
referred to as semid _ ds and contains the following members:

st ruct ipc_pe rm sem_perm;

ushort sem nsems ;

t ime t - sem ot ime ;

t ime t - sem ct ime ;

I *

I *

I *

I *

I *

ope rat ion pe rmi s s ion

st ruct *I

numbe r o f sems in set *I

last ope rat i on t ime *I

last change t ime *I

T ime s measured in sees s ince

0 0 : 0 0 : 0 0 GMT , 1 1 1 / 9 7 0 * I

sem_perm is an ipc_perm structure that specifies the sema
phore operation permission (see below). This structure includes

- 14 - September, 1987

•

•

•

•

•

•

intro(2) int ro (2)

the following members:

u short cu id; I * creat o r user ID * /

u short cgid; I * creat o r group ID * /

u short uid; I* user ID * /

u short gid; I* group ID */

u short mode ; / * r / a pe rmi s s ion *I

The value of sem nsems is equal to the number of semaphores
in the set Each semaphore in the set is referenced by a positive
integer referred to as a sem num. sem num values run
sequentially from 0 to the value of sem nsems minus 1 .
sem ot ime is the time of the last semoP{2) operation, and
sem

-
ct ime is the time of the last semctl(2) operation that

changed a member of the above structure.

A semaphore is a data structure that contains the following
members:

u short semval ;

short sempid;

ushort semncnt ;

u short semzcnt ;

I * semaphore value * /

/ * p i d o f l a s t operation * /

/ * I awa it ing semval > cva l * /
/ * I awa it ing semva l = 0 * /

semval is a non-negative integer. sempid i s equal to the
process ID of the last process that performed a semaphore
operation on this semaphore. semncnt is a count of the
number of processes that are currently suspended awaiting
this semaphore's semva l to become greater than its current
value. semzcnt is a count of the number of process.es that
are currently suspended awaiting this semaphore's semval to
become zero.

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive integer
created by a shmget(2) system call. Each shmid has a segment
of memory (referred to as a shared memory segment) and a data
structure associated with it. The data structure referred to as
shmid _ ds contains the following members:
st ruct

int

ushort

ushort

short

ipc_perm shm_perm; / * operat ion pe rmi s s i o n st ruct * /

shm_segs z ; / * s i z e o f segment * /

shm_cpid; /* creat o r pid*/

shm_lpid; / * pid o f last ope rat i o n * /

shm_nat t ch ; / * numbe r o f current att ache s * /

t ime t shm_atime ; I * last at tach t ime * /

-1 5 - September, 1987

int ro (2) int ro (2)

t ime t shm_dt ime ;

t ime t shm_ctime ;

/ * last detach t ime * /

I * last change t ime * /

I * T ime s mea sured in sees

s i nce 0 0 : 0 0 : 0 0 GMT , 1 / 1 / 7 0 * /

shm_pe rm is an ipc_perm structure that specifies the shared
memory operation permission (see below). This structure includes
the following members:

ushort cu id; I* creator user I D *I
ushort cgid; / * creator group I D *I

ushort uid; I * user I D * I
ushort gid; I* group I D * I
ushort mode ; / * r / w pe rmi s s ion * I

shm_ segs z specifies the size of the shared memory segment
shm_cpid is the process ID of the process that created the
shared memory identifier. shm lpid is the process ID of the
last process that performed a shmop(2) operation.
shm_nattch is the number of processes that currently have this
segment attached. shm a t ime is the time of the last shmat
operation, shm dt ime iS the time of the last shmdt operation,
and shm_ct ime is the time of the last shmctl(2) operation
that changed one of the members of the above structure.

IPC PERMISSIONS
In the msgop(2) and msgct l(2) system call descriptions, the
permission required for an operation is interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Message Operation Permissions
Read and Write permissions on a msqid are granted to a process if
one or more of the following is true:

The effective user ID of the process is superuser.

The effective user ID of the process matches
msg_perm . (c]uid in the data structure associated with
msqid and the appropriate bit of the "user" portion (0600)
of msg_perm . mode is set.

The effective user ID of the process does not match
msg_perm . (c]uid and the process's effective group ID
matches msg_perm . [c]gid and the appropriate bit of the

- 16 - September, 1987

•

•

•

•

•

•

int ro(2) int ro {2)

"group" portion (060) of msg__perm . mode is set

The effective user ID of the process does not match
msg__perm . [c]uid and the effective group ID of the pro
cess does not match msg__perm . [c]gid and the appropri
ate bit of the "other" portion (06) of msg__pe rm . mode is
set

Otherwise, the corresponding permissions are denied.

Semaphore Operation Permissions
Read and Alter permissions on a semid are granted to a process if
one or more of the following is true:

The effective user ID of the process is superuser.

The effective user ID of the process matches
sem__pe rm . [c]uid in the data structure associated with
semid and the appropriate bit of the "user" portion (0600)
of sem__perm . mode is set.

The effective user ID of the process does not match
sem__pe rm . [c]uid and the effective group ID of the pro
cess matches sem__pe rm . [c]gid and the appropriate bit of
the "group" portion (060) of sem__pe rm . mode is set.

The effective user ID of the process does not match
sem__pe rm . [c]uid and the effective group ID of the pro
cess does not match sem_pe rm . [c]gid and the appropri
ate bit of the "other" portion (06) of sem__pe rm . mode is ·
set

Otherwise, the corresponding permissions are denied.

Shared Memory Operation Permissions
Read and Write permissions on a shmid are granted to a process if
one or more of the following is true:

The effective user ID of the process is superuser.

The effective user ID of the process matches
shm__pe rm . [c]uid in the data structure associated with
shmid and the appropriate bit of the "user" portion (0600)
of shm __perm . mode is set.

The effective user ID of the process does not match
shm__perm . [c]uid and the effective group ID of the pro
cess matches shm__pe rm . [c]gid and the appropriate bit of

-17 - September, 1987

int ro (2) int ro (2)

the "group. , portion (060) of shm_perm . mode is set.

The effective user ID of the process does not match
shm_perm . [c]uid and the effective group ID of the pro
cess does not match shm_perm . [c]gid and the appropri
ate bit of the "other . . portion (06) of shm_pe rm . mode is
set

Otherwise, the corresponding permissions are denied.

SEE ALSO
close(2), ioctl(2), open(2), pipe(2), read(2), write{2),
int ro(3), perror(3).
' 'Overview of the Programming Environment' ' in AIUX Program
ming Languages and Tools, Volume 1 .

- 1 8 - September, 1987

•

•

•

•

•

•

accept(2N)

NAME
accept - accept a connection on a socket

SYNOPSIS
inc lude <sys /type s . h>
inc lude <sys / s ocket . h>

int accept (s , addr, addrlen)
int s;
st ruct sockaddr *addr;
int *addrlen ;

DESCRIPTION

accept(2N)

The argument s is a socket which has been created with
socket(2N), bound to an address with bind(2N), and is listen
ing for connections after a listen(2N). accept extracts the
first connection on the queue of pending connections, creates a
new socket with the same properties of s and allocates a new file
descriptor for the socket If no pending connections are present on
the queue, and the socket is not marked as nonblocking, accept
blocks the caller until a connection is present If the socket is
marked nonblocking and no pending connections are present on
the queue, accept returns an error as described below. The
accepted socket may not be used to accept more connections. The
original socket s remains open.

The argument addr is a result parameter which is filled in with the
address of the connecting entity, as known to the communications
layer. The exact format of the addr parameter is determined by
the domain in which the communication is occurring. The
addrlen is a value-result parameter; it should initially contain the
amount of space pointed to by addr; on return it will contain the
actual length (in bytes) of the address returned. This call is used
with connection-based socket types, currently with
SOCK STREAM.

It is possible to select(2N) a socket for the purposes of doing
an accept by selecting it for read.

RETURN VALUE
The call returns -1 on error. If it succeeds it returns a non
negative integer which is a descriptor for the accepted socket.

ERRORS
accept will fail if:

[EBADF] The descriptor is invalid.

- 1 - September, 1987

accept (2N)

[ENOTSOCK]

[EOPNOTSUPP]

[EFAULT]

[EWOULDBLOCK]

SEE ALSO

accept(2N)

The descriptor references a file, not a
socket.

The referenced socket is not of type
SOCK STREAM.

The addr parameter is not in a writable
part of the user address space.

The socket is marked nonblocking and no
connections are present to be accepted.

bind(2N), connect(2N), listen(2N), select(2N),
socket{2N).

- 2 - September, 1987

•

•

•

•

•

•

acces s (2) acce s s (2)

NAME
acce s s - determine accessibility of a file

SYNOPSIS
int acce s s (path, amode >
char *path ;
int amode ;

DESCRIPTION
acce s s is used to determine the accessibility of a file. path
points to a path name naming a file. acce s s checks the named
file for accessibility according to the bit pattern contained in
amode, using the real user ID in place of the effective user ID and
the real group ID in place of the effective group ID. The bit pat
tern contained in amode is constructed as follows:

04 read
02 write
01 execute (search)
00 check existence of file

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Oth
erwise, a value of -1 is returned and e r r n o is set to indicate the
error.

ERRORS
a c ce s s will fail if one or more of the following are true:

[EPERM] A pathname contains a character with the
high-order bit set.

[ENAMETOOLONG]

[ELOOP]

[ENOTD IR]

[ENOENT]

[ENOENT]

[EACCES]

A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

Too many symbolic links were encoun
tered in translating a pathname.

A component of the path prefix is not a
directory.

Read, write, or execute (search) permis
sion is requested for a null path name.

The named file does not exist

Search permission is denied on a com
ponent of the path prefix.

-1 - September, 1987

acce s s (2)

[EROFS]

[ETXTBSY]

[EACCE S S]

[EFAULT]

acce s s (2)

Write access is requested for a file on a
read-only file system.

Write access is requested for a pure pro
cedure (shared text) file that is being exe
cuted.

Note: If you are running an NFS
system and you are accessing a
shared binary remotely, it is pos
sible that you will not get this
errno.

Permission bits of the file mode do not
permit the requested access.

path points outside the allocated address
space for the process.

The owner of a file has permission checked with respect to the
"owner" read, write, and execute mode bits. Members of the
file's group other than the owner have permissions checked with
respect to the ' 'group ' ' mode bits, and all others have permissions
checked with respect to the "other" mode bits.

The superuser is always granted execute permission even though
(1) execute permission is meaningful only for directories and reg
ular files, and (2) exec requires that at least one execute mode
bit be set for regular file to be executable.

Notice that it is only access bits that are checked. A directory may
be announced as writable by a c ce s s , but an attempt to open it
for writing will fail because it is not allowed to write into the
directory structure itself, although files may be created there. A
file may look executable, but exec will fail unless it is in proper
format

SEE ALSO
chmod(2), stat(2).

- 2 - September, 1987

•

•

•

•

•

•

acct (2) acct (2)

NAME
acct - enable or disable process accounting

SYNOPSIS
int acct (path)
char *path ;

DESCRIPTION
acct is used to enable or disable the system process accounting
routine. If the routine is enabled, an accounting record will be
written on an accounting file for each process that terminates.
Termination can be caused by one of two things: an exit call or
a signal; see exit(2) and s ignal(3). The effective user ID of
the calling process must be superuser to use this call.

path points to a path name naming the accounting file. The
accounting file format is given in acct(4).

The accounting routine is enabled if path is nonzero and no errors
occur during the system call. It is disabled if path is zero and no
errors occur during the system call.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and e r rno is set to indicate the error .

ERRORS
acct will fail if one or more of the following are true:

[EPERM] A pathname contains a character with the
high-order bit set.

[EPERM] The effective user ID of the calling pro
cess is not superuser.

[ENAMETOOLONG] A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

[ELOOP]

[EBUSY]

[ENOTD IR]

[ENOENT]

Too many symbolic links were encoun
tered in translating a pathname.

An attempt is being made to enable
accounting when it is already enabled.

A component of the path prefix is not a
directory .

One or more components of the account
ing file path name do not exist.

- 1 - September, 1987

acct (2)

[EACCES]

[EACCES]

[EACCES]

[EROFS]

acct (2)

A component of the path prefix denies
search permission.

The file named by path is not an ordinary
file.

mode permission is denied for the named
accounting file.

The named file resides on a read-only file
system.

[EFAULT] path points to an illegal address.

SEE ALSO
acct{lM), exit(2), s ignal{3), acct(4).

- 2 - September, 1987

•

•

•

•

•

•

adj t ime (2) adj t ime (2)

NAME
adj t ime - correct the time to allow synchronization of the sys-
tem clock

SYNOPSIS
:ftinclude <sys /time . h>

adj t ime <delta , olddelta)
struct timeval *delta ;
struct timeval *olddelta ;

DESCRIPTION
adj t ime makes small adjusttnents to the system time, as
returned by gett imeofday(2), advancing or retarding it by the
time specified by the t imeva l delta. If delta is negative, the
clock is slowed down by incrementing it more slowly than normal
until the correction is complete. If delta is positive, a larger incre
ment than normal is used. The skew used to perform the correc
tion is generally a fraction of one percent. Thus, the time is
always a monotonically increasing function. A time correction
from an earlier call to adjt ime may not be finished when adj
t ime is called again. If olddelta is nonzero, then the structure
pointed to will contain, upon return, the number of microseconds
still to be corrected from the earlier call.

This call may be used by time servers that synchronize the clocks
of computers in a local area network. Such time servers would
slow down the clocks of some machines and speed up the clocks
of others to bring them to the average network time.

The call adj t ime(2) is restricted to the superuser.

RETURN VALUE
A return value of 0 indicates that the call succeeded. A return
value of -1 indicates that an error occurred, and in this case an
error code is stored in the global variable errno.

ERRORS
adjt ime will fail if:

[EFAULT] An argument points outside the process's allo
cated address space.

[EPERM]

SEE ALSO
date(1).

The process's effective user ID is not that of
the superuser .

-1 - September, 1987

alarm(2)

NAME
alarm - set a process's alarm clock

SYNOPSIS
uns igned alarm (sec)
uns igned sec ;

DESCRIPI'ION

alarm(2)

a 1 arm instructs the calling process's alarm clock to send the sig
nal s IGALRM to the calling process after the number of real time
seconds specified by sec have elapsed; see signal{3).

alarm requests are not stacked; successive calls reset the calling
process's alarm clock. If the argument is 0, any alann request is
canceled. Because the clock has a 1 -second resolution, the signal
may occur up to one second early; because of scheduling delays,
resumption of execution of when the signal is caught may be
delayed an arbitrary amount. The longest specifiable delay time is
4,294,967,295 (2**32- 1) seconds, or 1 36 years.

RETURN VALUE
alarm returns the amount of time previously remaining in the
calling process's alann clock.

SEE ALSO
pause(2), set it imer(2), s ignal{3).

- 1 - September, 1987

•

•

•

•

•

•

bind(2N) bind(2N)

NAME
bind - bind a name to a socket

SYNOPSIS
tinclude <sys /types . h>
tinclude <sys / socket . h>

int bind (s , name , namelen)
int s ;
st ruct sockaddr *name ;
in t name len ;

DESCRIPTION
bind assigns a name to an unnamed socket. When a socket is
created with socket(2N) it exists in a name space (address fam
ily) but has no name assigned. bind requests that the name be
assigned to the socket

NOTES
The rules used in name binding vary between communication
domains. Consult the manual entries in Section 5 (specifically
inet(SF)) for detailed information.

RETURN VALUE
If the bind is successful, a 0 value is returned. A return value of
-1 indicates an error, which is further specified in the global
errno.

ERRORS
bind will fail if:

[EBADF]

[ENOTSOCK]

[EADDRNOTAVAIL]

[EADDRINUSE]

[E INVAL]

[EACCES S]

[EFAULT]

s is not a valid descriptor.

s is not a socket.

The specified address is not available
from the local machine.

The specified address is already in use.

The socket is already bound to an
address.

The requested address is protected, and
the current user has inadequate permis
sion to access it .

The name parameter is not in a valid part
of the user address space.

- 1 - September, 1987

bind(2N)

SEE ALSO
connect(2N),
socket(2N).

get sockname(2N),

- 2 -

bind(2N)

listen(2N),

•

•

•
September, 1987

•

•

•

brk{2) brk(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
int brk (endds>
char *endds;

char * sbrk (incr)
int incr ;

DESCRIPI'ION
brk and sbrk are used to change dynamically the amount of
space allocated for the calling process's data segment; see
exec(2). The change is made by resetting the process's break
value and allocating the appropriate amount of space. The break
value is the address of the first location beyond the end of the data
segment The amount of allocated space increases as the break
value increases. The newly allocated space is set to zero.

brk sets the break value to endds and changes the allocated space
accordingly.

sbrk adds incr bytes to the break value and changes the allocated
space accordingly. incr can be negative, in which case the amount
of allocated space is decreased.

RETURN VALUE
Upon successful completion, brk returns a value of O and sbrk
returns the old break value. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
brk and sbrk will fail without making any change in the allo
cated space if the following is true:

[ENOMEM] Not enough space. Program asks for more space
than the system is able to supply.

[EAGAIN] The system has temporarily exhausted its avail-
able memory or swap space.

Such a change would result in more space being allocated than is
allowed by a system-imposed maximum (see ulimi t(2)). Such
a change would result in the break value being greater than or
equal to the start address of any attached shared memory segment
(see shmop(2)).

SEE ALSO
exec(2), shmop(2), ulimi t(2).

- 1 - September, 1987

chdir(2) chdir (2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char *path ;

DESCRIPI'ION
chdir causes the named directory to become the current working
directory, the starting point for path searches for path names not
beginning with I . path points to the path name of a directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of - 1 is returned and e r rno is set to indicate the error.

ERRORS
chdi r will fail and the current working directory will be
unchanged if one or more of the following are true:

[EPERM] A pathname contains a character with the
high-order bit set.

[ENAMETOOLONG]

[ELOOP]

[ENOTD IR]

[ENOENT]

[EACCES]

[EFAULT]

SEE ALSO

A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PA TH_MAX.

Too many symbolic links were encoun
tered in translating a pathname.

A component of the path name is not a
directory.

The named directory does not exist

Search permission is denied for any com
ponent of the path name.

path points outside the allocated address
space of the process.

csh{l), ksh{l), sh{l), chroot(2).

- 1 - September, 1987

•

•

•

•

•

•

chmod(2)

NAME
chmod - change mode of file

SYNOPSIS
int chmod (path , mode)
char *path ;
int mode ;

DESCRIPTION

chmod(2)

chmod sets the access pennission portion of the named file's
mode according to the bit pattern contained in mode . path points
to a path name naming a file.

Access pennission bits are interpreted as follows:

04000 Set effective user ID on execution.

02000

01000

00400

00200

00100

00070

00007

Set effective group ID on execution.

Save text image after execution.

Read by owner.

Write by owner.

Execute (search if a directory) by owner .

Read, write, execute (search) by group.

Read, write, execute (search) by others.

The effective user ID of the calling process must match the owner
of the file or be the superuser to change the mode of a file.

If the effective user ID of the process is not the superuser, mode
bit 01000 (save text image on execution) is cleared.

If the effective user ID of the process is not superuser and the
effective group ID of the process does not match the group ID of
the file, mode bit 02000 (set group ID on execution) is cleared.

If an executable file is prepared for sharing (see the cc -n
option), then mode bit 01000 prevents the system from abandon
ing the swap-space image of the program-text portion of the file
when its last user tenninates. Thus, when the next user of the file
executes it, the text need not be read from the file system but can
simply be swapped in, saving time.

Changing the owner of a file turns off the set user ID bit, unless
the superuser does it This makes the system somewhat more
secure at the expense of a degree of compatibility.

- 1 - September, 1987

chmod(2) chmod(2)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
chmod will fail and the file mode will be unchanged if one or
more of the following are true:

[ENOTD IR] A component of the path prefix is not a
directory.

[ENAMETOOLONG] A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

[ELOOP] Too many symbolic links were encoun-
tered in translating a pathname.

[ENOENT] The named file does not exist

[EACCES] Search permission is denied on a com-
ponent of the path prefix.

[EPERM] A pathname contains a character with the
high-order bit set.

[EPERM] The effective user ID does not match the
owner of the file and the effective user
ID is not superuser.

[EROF S] The named file resides on a read-only file
system.

[EFAULT] path points outside the allocated address
space of the process.

SEE ALSO
chmod(1), chown(2), mknod(2), open(2), stat(2), mknod(2),
umask(2).

- 2 - September, 1987

•

•

•

•

•

•

chown(2) chown(2)

NAME
chown, fchown - change owner and group of a file

SYNOPSIS
int chown (path , owner, group)
char *path ;
int owner, group ;

int fchown (fd, owner, group)
int fd, owner, group ;

DESCRIPTION
The file which is named by path or referenced by fd has its owner
and group changed as specified. Only the superuser or the file's
owner may execute this call.

chown clears the set useriD and set group ID bits on the file to
prevent accidental creation of set user ID and set group ID pro
grams owned by the superuser.

If chown is invoked successfully by other than the superuser, the
set user ID and set group ID bits of the file mode, 04000 and
02000 respectively, will be cleared. {This prevents ordinary users
from making themselves effectively other users or members of a
group to which they don't belong.)

Only one of the owner and group ID's may be set by specifying
the other as -1 .

RETURN VALUE
Zero is returned if the operation was successful; -1 is returned if
an error occurs, with a more specific error code being placed in
the global variable errno.

ERRORS
chown will fail and the file will be unchanged if:

[E INVAL]

[ENOTD IR]

[ENOENT]

[EPERM]

[ENOENT]

The argument path does not refer to a
file.

A component of the path prefix is not a
directory.

The argument pathname is too long.

The argument contains a byte with the
high-order bit set.

The named file does not exist.

- 1 - September, 1987

chown(2) chown(2)

[EACCES] Search pennission is denied on a com-
ponent of the path prefix.

[EPERM] A pathname contains a character with the • high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

[ELOOP] Too many symbolic links were encoun-
tered in translating a pathname.

[EPERM] The effective user ID does not match the
owner of the file and the effective user
ID is not the superuser.

[EROFS] The named file resides on a read-only file
system.

[EFAULT] path points outside the process's allo-
cated address space.

[ELOOP] Too many symbolic links were encoun-
tered in translating the pathname.

fchown will fail if: • [EBADF] fd does not refer to a valid descriptor.

[E INVAL] fd refers to a socket, not a file.

SEE ALSO
chown(l), chgrp(2), chmod(2).

•

- 2 - September, 1987

•

•

•

chroot (2) chroot (2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (path)
char *path ;

DESCRIPTION
chroot causes the named directory to become the root directory,
the starting point for path searches for path names beginning with
I . The user's working directory is unaffected by the chroot
system call. path points to a path name naming a directory.

The effective user ID of the process must be the superuser to
change the root directory.

The . . entry in the root directory is interpreted to mean the root
directory itself. Thus, . . cannot be used to access files outside the
subtree rooted at the root directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
chroot will fail and the root directory will remain unchanged if
one or more of the following are true:

[ENOTD IR] Any component of the path name is not a
directory.

[ENAMETOOLONG]

[ELOOP]

[ENOENT]

[EPERM]

[EPERM]

[EFAULT]

SEE ALSO

A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

Too many symbolic links were encoun
tered in translating a pathname.

The named directory does not exist.

A pathname contains a character with the
high-order bit set

The effective user ID is not the superuser.

path points outside the allocated address
space of the process .

chroot(1M), chdir(2).

- 1 - September, 1987

close (2)

NAME
close - close a file descriptor

SYNOPSIS
int c lose (fildes)
int fildes;

DESCRIPTION

close (2)

close closes the file descriptor indicated by fildes. All outstand
ing record locks owned by the process (on the file indicated by
fildes) are removed.

fildes is a file descriptor obtained from a c reat, open, dup,
fcnt l, pipe, or socket system call. A c lose of all files is
automatic on exit, but since there is a small, finite limit on the
number of open files per process, OPEN_MAX, close is neces
sary for programs which deal with many files.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
close will fail if:

[EBADF] fildes is not a valid open file descriptor.

SEE ALSO
creat(2), dup(2), exec(2), fcnt l{2), open(2), pipe(2),
socket{2N).

- 1 - September, 1987

•

•

•

•

•

•

connect (2N) connect (2N)

NAMB
connect - initiate a connection on a socket

SYNOPSIS
#include <sys /types . h>
#include <sys / socket . h>

int connect (s, name, namelen)
int s ;
st ruct sockaddr *name ;
int namelen ;

DESCRIPTION
connect is used to initiate a connection on a socket The param
eter s is a socket If it is of type SOCK_ DGRAM, then this call per
manently specifies the peer to which datagrams are to be sent; if it
is of type SOCK_STREAM, then this call attempts to make a con
nection to another socket. The other socket is specified by name
which is an address in the commWtications space of the socket
Each commWlications space interprets the name parameter in its
own way.

RBTURN V ALUB
If the connection or binding succeeds, then 0 is returned. Other
wise a - 1 is returned, and a more specific error code is stored in
errno.

BRRORS
connect fails if:

[EBADF]

[ENOTSOCK]

[EADDRNOTAVAIL]

[EAFNOSUPPORT]

[E ISCONN]

[ET IMEDOUT]

[ECONNREFUSED]

[ENETUNREACH]

s is not a valid descriptor.

s is a descriptor for a file, not a socket.

The specified address is not available on
this machine.

Addresses in the specified address family
cannot be used with this socket.

The socket is already connected.

Connection establishment timed out
without establishing a connection.

The attempt to connect was forcefully
rejected.

The network isn't reachable from this
host

- 1 - September, 1987

connect (2N)

[EADDRINUSE]

[EFAULT]

[EWOULDBLOCK]

SEE ALSO

connect (2N)

The address is already in use.

The name parameter specifies an area
outside the process address space.

The socket is nonblocking and the and
the connection cannot be completed
immediately. It is possible to
se lect(2N) the socket while it is con
necting by selecting it for writing.

accept(2N), getsockname(2N), select(2N), socket(2N).

- 2 - September, 1987

•

•

•

•

•

•

creat (2) creat (2)

NAME
c rea t - create a new file or rewrite an existing one

SYNOPSIS
int c reat (path , mode)
char *path ;
int mode ;

DESCRIPTION
c reat creates a new ordinary file or prepares to rewrite an exist
ing file named by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and
owner are unchanged. Otherwise, the file's owner ID is set to the
effective user ID, of the process the group ID of the process is set
to the effective group ID, of the process and the low-order 12 bits
of the file mode are set to the value of mode modified as follows:

All bits set in the process's file mode creation mask are
cleared. See umask(2).

The "save text image after execution bit" of the mode is
cleared. See chmod(2).

Upon successful completion, the file descriptor is returned and the
file is open for writing, even if the mode does not permit writing.
The file pointer is set to the beginning of the file. The file descrip
tor is set to remain open across exec system calls. See
fcnt l(2). No process may have more than the maximum
number of files, OPEN_MAX, open simultaneously.

The mode given is arbitrary; it need not allow writing. This
feature is used by programs which deal with temporary files of
fixed names. The creation is done with a mode that forbids writ
ing. Then, if a second instance of the program attempts a c reat,
an error is returned and the program knows that the name is unus
able for the moment.

RETURN VALUE
Upon successful completion, a non-negative integer, namely the
file descriptor, is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
creat will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a
directory.

- 1 - September, 1987

creat (2)

[EPERM]

creat (2)

A pathname contains a character with the
high-order bit set

[ENAMETOOLONG] A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PA TH_MAX.

[ELOOP]

[ENOENT]

[EACCES]

[ENOENT]

[EACCES]

[EROF S]

[ETXTBSY]

[EACCES]

[E I SD IR]

[EMFILE]

[EFAULT]

[ENF ILE]

BUGS

Too many symbolic links were encoun
tered in translating a pathname.

A component of the path prefix does not
exist.

Search permission is denied on a com
ponent of the path prefix.

The path name is null.

The file does not exist and the directory in
which the file is to be created does not per
mit writing.

The named file resides or would reside on
a read-only file system.

The file is a pure procedure (shared text)
file that is being executed.

Note: If you are running an NFS
system and you are accessing a
shared binary remotely, it is possi
ble that you will not get this
errno.

The file exists and write permission is
denied.

The named file is an existing directory.

the maximum number of file descriptors
are currently open.

path points outside the allocated address
space of the process.

The system file table is full.

The system-scheduling algorithm does not make this a true unin
terruptible operation, and a race condition may develop if creat
is done at precisely the same time by two different processes.

- 2 - September, 1987

•

•

•

•

•

•

creat (2) creat (2)

SEE ALSO
chmod(2), close(2), dup(2), fcnt l(2), lseek(2), open(2),
read(2), umask(2), write(2) .

- 3 - September, 1987

dup(2) dup(2)

NAME
dup - duplicate a descriptor

SYNOPSIS
int dup (oldd)
int oldd;

DBSCRIPriON
dup duplicates an existing object descriptor. The argument oldd
is a small non-negative integer index in the per-process descriptor
table. The value must be less than the size of the table, which is
returned by getdtables i ze(2N). The new descriptor returned
by the call is the lowest numbered descriptor which is not
currently in use by the process.

The object referenced by the descriptor does not distinguish
between references using the old and new descriptor in any way.
Thus if the old and new descriptor are duplicate references to an
open file, read(2), write(2), and lseek(2) calls all move a
single pointer into the file. If a separate pointer into the file is
desired, a different object reference to the file must be obtained by
issuing an additional open(2) call.

RETURN VALUE
The value - 1 is returned if an error occurs in either call and
errno is set to indicate the error.

ERRORS
dup fails if:

[EBADF]

[EMFILE]

SEE ALSO

The old descriptor is not a valid active descrip
tor

Too many descriptors are active.

accept(2N), open(2), close(2), getdtablesi ze(2N),
pipe(2), socket(2N), dup2(3N).

- I - September, 1987

•

•

•

•

•

•

exec (2) exec (2)

NAME
exec!, execv, execle, execve, execlp, execvp - exe
cute a file

SYNOPSIS
int execl (path , argO, argl , . . . , argn , 0) ;
char *path, *argO, *argl , . • . , *argn ;

int execv (path , argv)
char *path, *argv [] ;

int execle (path, argO, argl , . . . , argn , 0 , envp �
char *path , *argO, *argl , . . . , *argn , *envp [] ; !
int execve (path , argv, envp)
char *path, *argv [] , *envp [] ;

int execlp (file , argO, argl , . . . , argn , 0)
char *file , *argO, *argl , . . . , *argn ;

int execvp (file , argv)
char *file , *argv [] ;

DESCRIPriON i
exec in all its fonns transfonns the calling process into a ne.Y.,
process. The new process is constructed from an ordinary, e=
cutable file called the ' 'new process file. ' ' There can be no re
from a successful exec because the calling process is over · d
by the new process.

'

path points to a path name that identifies the new process file.

file points to the new process file. The path prefix for this file fs
obtained by a search of the directories passed as the environme*t
variable PATH (see environ(5)). i

The shell is invoked if a command file is found by execlp �
execvp.

argO , argl , . . . , argn are pointers to null tenninat.ed characttr
strings. These strings constitute the argument list available to �e
new process. By convention, at least argO must be present �d
point to a string that is the same as path (or its last component). i
argv is an array of character pointers to null terminated stri�g' .
These strings constitute the argument list available to the new -
cess. By convention, argv must have at least one member, and " t
must point to a string that is the same as path (or its last c -
ponent). argv is terminated by a null pointer and is directly usab e
in another execv because argv [argc] is 0. !

- 1 - September, 19�7

exec (2) exec(2)

envp is an array of character pointers to null terminated strings.
These strings constitute the environment for the new process.
envp is terminated by a null pointer. For exec! and execv, the
C runtime start-off routine places a pointer to the environment of
the calling process in the global cell:

extern char * *environ ;

and it is used to pass the environment of the calling process to the
new process.

File descriptors open in the calling process remain open in the new
process, except for those whose close-on-exec flag is set; see
fcnt l{2). For those file descriptors that remain open, the file
pointer is unchanged.

The new process automatically has the System V, Release 2 signal
mechanism. Signals set to terminate the calling process will be set
to terminate the new process. Signals set to be ignored by the cal
ling process will be set to be ignored by the new process. Signals
set to be caught by the calling process will be set to terminate new
process; see s ignal{3).

If the set user ID mode bit of the new process file is set (see
chmod{2)), exec sets the effective user ID of the new process to
the owner ID of the new process file. Similarly, if the set group
ID mode bit of the new process file is set, the effective group ID
of the new process is set to the group ID of the new process file.
The real user ID and real group ID of the new process remain the
same as those of the calling process.

The shared memory segments attached to the calling process will
not be attached to the new process (see shmop(2)).

Profiling is disabled for the new process; see profi1(2).

Regions of physical memory mapped into the virtual address
space of the calling process are detached from the address space
of the new process; see phys(2).

The new process also inherits the following attributes from the
calling process:

access groups (see getgroups(2))
nice value (see nice(2))
process ID
parent process ID

- 2 - September, 1987

•

•

•

•

•

•

exec (2)

process group ID
semadj values (see semop(2))
tty group ID (see exit(2) and s ignal(3))
ttace flag (see pt race(2) request 0)
time left until an alarm clock signal (see alarm(2))
current working directory
root directory
file mode creation mask (see umask(2))
file size limit (see ulimi t(2))

exec (2)

ut ime, st ime, cut ime, and cst ime (see t imes(2))

exec! is useful when a known file with known arguments is
being called; the arguments to exec! are the character strings
constituting the file and the arguments; the first argument is con
ventionally the same as the file name (or its last component). A 0
argument must end the argument list

When a C program is executed, it is called as follows:

main (argc , argv, envp)
int argc ;
char * *argv, * *envp ;

where argc is the argument count and argv is an array of character
pointers to the arguments themselves. As indicated, argc is con
ventionally at least one and the first member of the array points to
a string containing the name of the file.

envp is a pointer to an array of strings that constitute the environ
ment of the process. Each string consists of a name, an ' '=' ' , and
a null-terminated value. The array of pointers is terminated by a
null pointer. The shell sh(l) passes an environment entry for
each global shell variable defined when the program is called. See
environ(5) for some conventionally used names. The C run
time start-off routine places a copy of envp in the global cell
environ, which is used by execv and exec! to pass the
environment to any subprograms executed by the current program.
The exec routines use lower-level routines as follows to pass an
environment explicitly:

execve (file, argv, environ) ;
execle (file, argO, argl , . . • , argn, 0 , environ) ;

execlp and execvp are called with the same arguments as
exec! and execv, but duplicate the shell's actions in searching
for an executable file in a list of directories. The directory list is

- 3 - September, 1987

exec (2) exec (2)

obtained from the environment.

RETURN VALUE

If exec returns to the calling process an error has occurred; the
relllm value will be -1 and errno will be set to indicate the
error.

ERRORS
exec will fail and relllm to the calling process if one or more of
the following are true:

[ENOENT] One or more components of the new pro
cess file's path name do not exist.

[EPERM] A pathname contains a character with the
high-order bit set

[ENAMETOOLONG] A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

[ELOOP] Too many symbolic links were encoun
tered in translating a pathname.

[ENOTD IR]

[EACCES]

[EACCES]

[EACCES]

[EAGAIN]

[ENOEXEC]

[ETXTBSY]

A component of the new process file's path
prefix is not a directory.

Search permission is denied for a directory
listed in the new process file's path prefix.

The new process file is not an ordinary file.

The new process file mode denies execu
tion permission.

The system has temporarily exhausted its
available memory or swap space.

The exec is not an execlp or execvp,
and the new process file has the appropri
ate access permission but an invalid magic
number in its header.

The new process file is a pure procedure
(shared text) file that is currently open for
writing by some process.

Note: If you are running an NFS
system and you are accessing a
shared binary remotely, it is possi
ble that you will not get this

-4 - September, 1987

•

•

•

•

•

•

exec (2)

[ENOMEM]

[E2BIG]

[EFAULT]

[EFAULT]

SEE ALSO

exec (2)

errno.

The new process requires more memory
than is allowed by the system-imposed
maximum (MAXMEM).

The number of bytes in the new process's
argument list is greater than the system
imposed limit of ARG_MAX.

The new process file is not as long as indi
cated by the size values in its header.

path , argv, or envp point to an illegal
address.

c sh(l), ksh{l), sh{l), alarm{2), exit(2), fork{2), nice(2),
phys{2), pt race(2), semop(2), setcompat{2), t imes{2),
s ignal(3) .

- 5 - September, 1987

exit (2) exit (2)

NAME
exit, _ exit - terminate process

SYNOPSIS
void exit (status)
int status;

void exit (status)
int status;

DESCRIPfiON
exit terminates the calling process with the following conse
quences:

All of the file descriptors open in the calling process are
closed.

If the parent process of the calling process is executing a
wait, it is notified of the calling process's termination and
the low order eight bits (i.e., bits 0377) of status are made
available to it; see wait(2).

If the parent process of the calling process is not executing a
wait, the calling process is transformed into a zombie pro
cess. A "zombie process" is a process that only occupies a
slot in the process table. It has no other space allocated
either in user or kernel space. The process table slot that it
occupies is partially overlaid with time accounting informa
tion (see <sys /proc . h>) to be used by t imes .

The parent process ID of all of the calling process's existing
child processes and zombie processes is set to 1 . This means
the initialization process (see int ro(2)) inherits each of
these processes.

Each attached shared memory segment is detached and the
value of shm nattach in the data structure associated
with its shared memory identifier is decremented by 1 .

For each semaphore for which the calling process has set a
semadj value (see semop(2)), that semadj value is added to
the semval of the specified semaphore.

If the process has a process, text, or data lock, an unlock
is performed (see plock(2)).

An accounting record is written on the accounting file if the
system's accounting routine is enabled; see acct(2).

- 1 - September, 1987

•

•

•

•

•

•

exit (2) exit (2)

If the process ID, tty group ID, and process group ID of the
calling process are equal, the s IGHUP signal is sent to each
process that has a process group ID equal to that of the cal
ling process .

The C function exit may cause cleanup actions before the pro
cess exits. The function _exit circumvents all cleanup.

SEE ALSO
acct(2), fork(2), int ro(2), plock(2), semop(2), wait(2),
s ignal(3).

WARNING
See WARNING section in s ignal(3) .

- 2 - September, 1987

fcnt l (2) fcntl(2)

NAME
fcnt l - file control

SYNOPSIS
#include <fcnt l . h>

int fcnt l (jildes, cmd, arg)
int fildes, cmd, arg;

DESCRIPTION
fcnt l provides for control over open files. fildes is an open file
descriptor obtained from a creat, open, dup, fcnt l,
socket, or pipe system call.

The cmds available are:

F DUPFD

F GETFD

F_SETFD

F GETFL

F SETFL

F GETLK

Return a new file descriptor as follows:

Lowest numbered available file descriptor
greater than or equal to arg .

Same open file (ot pipe) as the original file.

Same file pointer as the original file (i.e., both
file descriptors share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors
share the same file status flags).

The close-on-exec flag associated with the new
file descriptor is set to remain open across
exec(2) system calls.

Get the close-on-exec flag associated with the
file descriptor fildes. If the low-order bit is 0 the
file will remain open across exec, otherwise the
file will be closed upon execution of exec.

Set the close-on-exec flag associated with fildes
to the low-order bit of arg (0 or 1 as above).

Get file status flags.

Set file status flags to arg. Only certain flags
can be set; see fcnt l{S).

Get the first lock which blocks the lock descrip
tion given by the variable of type struct
f lock pointed to by arg . The information
retrieved overwrites the information passed to

� 1 - September, 1987

•

•

•

•

•

•

fcnt l (2)

F SETLK

F SETLKW

F GETOWN

fcnt l (2)

fcntl in the flock structure. If no lock is
found that would prevent this lock from being
created. then the structure is passed back
unchanged except for the lock type which will
be set to F UNLCK.

Set or clear a file segment lock according to the
variable of type st ruct flock pointed to
by arg (see fcnt l(5)). The cmd F SETLK is
used to establish read (F RDLCK)

-
and write

(F _ WRLCK) locks. as well as remove either type
of lock (F _ UNLCK). If a read or write lock can
not be set. fcntl will return immedia,tely with
an error value of -1 .

This cmd is the same as F_SETLK except that
if a read or write lock is blocked by other locks.
the process will sleep until the segment is free to
be locked.

Get the process ID or process group currently
receiving S IGIO and S IGURG signals; pro
cess groups are returned as negative values .

F SETOWN Set the process or process group to receive
S IG IO and S IGURG signals; process groups
are specified by supplying arg as negative. oth
erwise arg is interpreted as a process ID.

A read lock prevents any process from write locking the protected
area. More than one read lock may exist for a given segment of a
file at a given time. The file descriptor on which a read lock is
being placed must have been opened with read access.

A write lock prevents any process from read locking or write lock
ing the protected area. Only one write lock may exist for a given
segment of a file at a given time. The file descriptor on which a
write lock is being placed must have been opened with write
access.

The structure f lock describes the type {!_type). starting
offset (1 whence). relative offset (1 start). size {1 len).
and proceSs ID (l_pid) of the segmentof the file to be affected.
The process ID field is only used with the F_GETLK cmd to
return the value for a block in lock. Locks may start and extend
beyond the current end of a file. but may not be negative relative
to the beginning of the file. A lock may be set to always extend to

- 2 - September. 1987

fcntl (2) fcnt l (2)

the end of file by setting 1 len to zero (0). If such a lock also
has 1 start set to zero -(0), the whole file will be locked.
Changmg or unlocking a segment from the middle of a larger
locked segment leaves two smaller segments for either end. Lock
ing a segment that is already locked by the calling process causes
the old lock type to be removed and the new lock type to take
affect All locks associated with a file for a given process are
removed when a file descriptor for that file is closed by that pro
cess or the process holding that file descriptor terminates. Locks
are not inherited by a child process in a fork(2) system call.

RETURN VALUE
Upon successful completion, the value returned depends on cmd
as follows:

F DUPFD

F GETFD

F SETFD

F_GETFL

F SETFL

F_GETLK

F SETLK

F_SETLKW

F GETOWN

F SETOWN

A new file descriptor.

Value of flag (only the low-order bit is
defined).

Value other than -1.

Value of file flags.

Value other than -1.

Value other that -1.

Value other than -1.

Value other than -1.

Value other than -1.

Value other than -1.

Otherwise, a value of -1 is returned and errno is set to indicate
the error.

ERRORS
fcnt l will fail if one or more of the following are true:

[EBADF]

[EMF I LE]

[E INFI LE]

fildes is not a valid open file descriptor.

cmd is F DUPFD and the maximum
number of fiie descriptors are currently open.

cmd is F DUPFD and arg is negative or
greater thiit the maximum number file
descriptors currently open.

- 3 - September, 1987

•

•

•

•

•

•

fcntl {2)

[E INVAL]

[EACCE S S]

[EMF I LE]

[ENOSPC]

[EDEADLK]

[ENOTSOCK]

[EREMOTE]

SEE ALSO

fcntl (2)

cmd is F GETLK, F SETLK, or SETLKW
and arg or the data it iX>ints to is not valid.

cmd is F _ SETLK the type of lock
(1 type) is a read (F RDLCK) or write
(F:::: WRLCK) lock and the "Segment of a file to
be locked is already write locked by another
process or the type is a write lock and the
segment of a file to be locked is already read
or write locked by another process.

cmd is F SETLK or F SETLKW, the type
of lock isa read or write lock and there are
no more file locking headers available (too
many files have segments locked).

cmd is F SETLK o r F SETLKW, the
type of lock is a read or write lock and there
are no more file locking headers available
(too many files have segments locked) or
there are no more record locks available (too
many file segments locked).
cmd is F SETLK, when the lock is
blocked by 'SOme lock from another process
and sleeping (waiting) for that lock to
become free, this causes a deadlock situa
tion.
cmd is F GETOWN or F SETOWN and
fildes is nota file descriptor for a socket.

cmd is F GETLK F SETLK or
F SETLKW andfildes references a file on a
remotely mounted file system.

close(2), creat(2), dup(2), exec(2), ioctl(2), open(2),
pipe(2), socket(2N), lockf(3C), fcnt l(5) .

- 4 - September, 1987

flock{2) flock{2)

NAME
flock - apply or remove an advisory lock on an open file

SYNOPSIS
finclude <sys / file . h>

fdefine LOCK SH 1 / * shared lock * /
#de fine LOCK

-
EX 2 / * exclus ive lock * /

fde fine LOCK NB 4 / * nonblocking lock * /
#define LOCK UN 8 / * unlock * /

flock ifd, operation)
int fd, operation ;

DESCRIPTION
flock applies or removes an advisory lock on the file associated
with the file descriptor fd. A lock is applied by specifying an
operation parameter that is the inclusive OR of LOCK SH or
LOCK_EX and, possibly, LOCK_NB. To unlock an existitlg lock,
the operation should be LOCK_UN.

AdvisOry locks allow cooperating processes to perform consistent
operations on files, but do not guarantee exclusive access (i.e.,
processes may still access files without using advisory locks, pos
sibly resulting in inconsistencies).
The locking mechanism allows two types of locks: shared locks
and exclusive locks. More than one process may hold a shared
lock for a file at any given time, but multiple exclusive, or both
shared and exclusive, locks may not exist simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice
versa, simply by specifying the appropriate lock type; the previous
lock will be released and the new lock applied (possibly after
other processes have gained and released the lock).
Requesting a lock on an object that is already locked normally
causes the caller to block until the lock may be acquired. If
LOCK NB is included in operation , then this will not happen;
instead the call will fail and the error EWOULDBLOCK will be
returned.

NOTES
Locks are on files, not file descriptors. That is, file descriptors
duplicated through dup(2) or fork{2) do not result in multiple
instances of a lock, but rather multiple references to a single lock.
If a process holding a lock on a file forlcs and the child explicitly
unlocks the file, the parent will lose its lock.

- 1 - September, 1987

•

•

•

•

•

•

flock(2) flock(2)

Processes blocked awaiting a lock may be awakened by signals.

RETURN VALUE
Zero is returned on success, -1 on error, with an error code stored
in errno.

ERRORS
The flock call fails if:

[EWOULDBLOCK] The file is locked and the LOCK NB
option was specified.

[EBADF]

[EOPNOTSUPP]

SEE ALSO

The argumentfd is an invalid descriptor.

The argument fd refers to an object other
than a file.

close(2), dup(2), execve(2), fcnt l(2), fork(2), open(2),
lockf(3).

BUGS
Locks obtained through the flock mechanism are known only
within the system on which they were placed. Thus, multiple
clients may successfully acquire exclusive locks on the same
remote file. If this behavior is not explicitly desired, the
fcnt l(2) or lockf(3) system calls should be used instead .

- 2 - September, 1987

fork{2) fork{2)

NAME
fork - create a new process

SYNOPSIS
int fork ()

DESCRIPTION
fork causes creation of a new process. The new process (child
process) is an exact copy of the calling process (parent process).
The child process inherits the following attributes from the parent
process:

environment
close-on-exec flag (see exec(2))
signal handling settings (i.e., S IG DFL, S IG_IGN, func-
tion address) -
set user ID mode bit
set group ID mode bit
process compatibility flags (see setcompat(2))
profiling on/off status
access groups (see getgroups(2))
nice value (see nice(2))
all attached shared memory segments (see shmop(2))
process group ID
tty group ID (see exit(2) and s ignal(3))
trace flag (see pt race(2) request 0)
time left until an alarm clock signal (see alarm(2))
current working directory
root directory
file mode creation mask (see umask(2))
file size limit (see ulimit(2))
phys regions see phys{2).

The child process differs from the parent process in the following
ways:

The child process has a unique process ID.
The child process has a different parent process ID (i.e. , the
process ID of the parent process).

The child process has its own copy of the parent's file
descriptors. Each of the child's file descriptors shares a com
mon file pointer with the corresponding file descriptor of the
parent

All semadj values are cleared (see semop(2)).

- 1 - September, 1987

•

•

•

•

•

•

fork(2) fork(2)

Process locks, text locks and data locks are not inherited by
the child (see plock(2)) .

The child process's ut ime, stime, cut ime, and
cstime are set to 0 (see t imes(2)). The time left until an
alarm clock signal is reset to 0.

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the
child process and returns the process ID of the child process to the
parent process. Otherwise, a value of -1 is returned to the parent
process, no child process is created, and errno is set to indicate
the error.

ERRORS
fork will fail and no child process will be created if one or more
of the following are true:

[EAGAIN]

[EAGAIN]

[EAGAIN]

SEE ALSO

The system-imposed limit on the total number
of processes under execution would be
exceeded.

The system-imposed limit on the total number
of processes under execution by a single user
would be exceeded.

The system has temporarily exhausted its avail
able memory or swap space.

exec(2), nice(2), phys(2), plock(2), pt race(2), semop(2),
setcompat(2), shmop(2), t imes(2), wait(2), wait 3(2N),
s ignal(3) .

- 2 - September, 1987

fsmount (2) fsmount (2)

NAME

fsmount - mount an NFS file system

SYNOPSIS
#include <sys /mount . h>
int fsmount (type , dir, flags, data)
int type ;
char *dir;
int flags;
caddr_t data ;

DESCRIYI'ION
fsmount attaches a file system to a directory. After a successful
return, references to directory dir will refer to the root directory
on the newly mounted file system. dir is a pointer to a null
terminated string containing a path name. dir must exist already,
and must be a directory. Its old contents are inaccessible while
the file system is mounted.

The flags argument determines whether the file system can be
written on, and if set user ID execution is allowed. Physically
write-protected and magnetic tape file systems must be mounted
read-only or errors will occur when access times are updated,
whether or not any explicit write is attempted
type indicates the type of the file system. It must be one of the
types defined in mount . h. data is a pointer to a structure which
contains the type specific arguments to mount Below is a list of
the file system types supported and the type specific arguments to
each:

MOUNT UFS

st ruct u f s_args

char * f spec ;

} ;

MOUNT NFS

#inc lude < n f s ln f s . h>

inc lude <net inet l in . h>

st ruct n f s_args {

I * Block spe c i a l f i l e

I * t o mount * /

st ruct sockaddr in *addr ; I * f i l e serve r addre s s * I

fhandle_t * fh ; I * F i le handle t o be

int f l ags ;

I * mounted * I

I * flags * I

i n t w s i z e ; I * write s i z e in byt e s * /

- 1 - September, 1987

•

•

•

•

•

•

fsmount (2)

} ;

int r s i z e ;

i n t t imeo ;

int retran s ;

RETURN VALUE

fsmount (2)

I* read s i z e in byt e s *I

I* init i a l t imeout in

I * . 1 sees *I

I* t ime s t o ret ry send *I

fsmount returns 0 if the action occurred, and -1 if special is
inaccessible or not an appropriate file, if name does not exist, if
special is already mounted, if name is in use, or if there are
already too many file systems mounted.

ERRORS
fsmount will fail when one of the following occurs:

[EPERM] The caller is not the superuser.

[ENOTBLK]

[ENXIO]

[EBUSY]

[EBUSY]

[EBUSY]

[EBUSY]

[ENOTD IR]

[EPERM]

special is not a block device.
The major device number of special is out
of range (this indicates no device driver
exists for the associated hardware).

dir is not a directory, or another process
currently holds a reference to it .
No space remains in the mount table.

The super block for the file system had a
bad magic number or an out of range block
size.

Not enough memory was available to read
the cylinder group infonnation for the file
system.

A component of the path prefix in special or
name is not a directory.

The pathname of special or name contains a
character with the high-order bit set

[ENAMETOOLONG] The pathname of special or name was too

[ENOENT]

[EACCES]

long.

special or name does not exist.
Search permission is denied for a com
ponent of the path prefix of special or
name .

- 2 - September, 1987

fsmount (2)

[EFAULT]

[ELOOP]

[E IO)

SEE ALSO

fsmount (2)

special or name points outside the process's
allocated address space.

Too many symbolic links were encountered
in translating the pathname of special or
name .

An I/0 error occurred while reading from
or writing to the file system.

unrnount(2), umount(2), mount(3).

BUGS
Too many errors appear to the caller as one value.

- 3 - September, 1987

•

•

•

•

•

•

fsync(2) fsync (2)

NAME
fsync - synchronize a file's in-core state with that on disk

SYNOPSIS
int fsync (fd)
int fd;

DESCRIP'I10N

fsync causes all modified data and attributes offd to be moved
to a permanent storage device. This normally results in all in-core
modified copies of buffers for the associated file to be written to a
disk.

fsync should be used by programs which require a file to be in a
known state; for example in building a simple transaction facility.

RETURN VALUE
A 0 value is returned on success. A -1 value indicates an error.

ERRORS
fsync fails if:

[EBADF] fd is not a valid descriptor.

[E INVAL] fd refers to a socket, not to a file .

SEE ALSO
sync{l), sync(2).

BUGS
The current implementation of this call is expensive for large files .

- I - September, 1987

qetdirentries (2) qetdirent ries (2)

NAME
getdirent ries
independent format

gets directory entries in a file system

SYNOPSIS
#include <sys /types . h>
#include <sys /dir . h>

int getdirent ries (d, buf, nbytes, basep)
int d;
char *buf;
int nbytes ;
long *basep

DBSCRIPI10N
getdirent ries attempts to put directory entries from the
directory referenced by the descriptor d into the buffer pointed to
by buf, in a file system independent format. Up to nbytes of data
will be transferred. nbytes must be greater than or equal to the
block size associated with the file, see stat(2) . Sizes less than
this may cause errors on certain file systems.

The data in the buffer is a series of direct structures. The
direct structure is defined as

st ru ct direct {

} ;

unsigned l ong
uns igned short
uns igned short
char

d_fi leno ;
d_reclen ;
d_namlen ;
d_name [MAXNAMELEN + 1] ;

The d_fi leno entry is a number which is unique for each dis
tinct file in the file system. Files that are linked by hard links (see
link(2)) have the same d_fileno. The d_reclen entry is
the length, in bytes, of the directory record. The d _name and
d _name len entries specify the actual file name and its length.

Upon return, the actual number of bytes transferred is returned.
The current position pointer associated with d is set to point to the
next block of entries. The pointer is not necessarily incremented
by the number of bytes returned by getdirent ries. H the
value returned is zero, the end of the directory has been reached.
The current position pointer may be set and retrieved by
lseek(2) . The basep entry is a pointer to a location into which
the current position of the buffer just transferred is placed. It is
not safe to set the current position pointer to any value other than a

- 1 - September, 1987

•

•

•

•

•

•

getdirent ries (2) getdirent ries (2)

value previously returned by lseek(2) or a value previously
returned in basep or zero.

RETURN VALUE
If successful, the number of bytes actually transferred is returned.
Otherwise, a -1 is returned and the global variable errno is set
to indicate the error.

SEE ALSO
l ink(2), lseek(2), open(2), stat(2), directory(3) .

- 2 - September, 1987

getdornainname (2N) getdornainname (2N)

NAME
getdomainname, setdomainname - get/set name of current
network domain

SYNOPSIS

int getdoma inname (name, namelen)
char *name ;
int namelen ;

int setdomainname (name, namelen)
char *name ;
int namelen ;

DESCRIPTION
getdomainname returns the name of the network domain for
the current processor, as previously set by setdomainname.
The parameter name len specifies the size of the name array. The
returned name is null-terminated unless insufficient space is pro
vided.

setdomainname sets the domain of the host machine to be
name , which has length name len . This call is restricted to the
superuser and is normally used only when the system is
bootstrapped.

The purpose of domains is to enable two distinct networks that
may have host names in common to merge. Each network would
be distinguished by having a different domain name. At the
current time, only the yellow pages service makes use of domains.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a
value of -1 is retwned and an error code is placed in the global
location errno.

ERRORS
The following errors may be returned by these calls:

[EFAULT] The name or namelen parameter gave an
invalid address.

[EPERM] The caller was not the superuser.

BUGS
Domain names are limited to 255 characters.

- 1 - September, 1987

•

•

•

•

•

•

qetdtablesize(ZN) qetdtablesize (ZN)

NAME
getdtablesize - get descriptor table size

SYNOPSIS
int getdtablesize ()

DESCRIPTION
Each process has a fixed size descriptor table which is guaranteed
to have at least the maximum number of open slots OPEN_MAX.
The entries in the descriptor table are numbered with small
integers starting at 0. getdtablesize retwns the size of this
table.

SEE ALSO
close(2), dup(2), open(2) .

- 1 - September, 1987

getgroups (2)

NAME
getgroups - get group access list

SYNOPSIS
#include <sys /param . h>

int getgroups (gidsetlen, gidset)
int gidsetlen , *gidset;

DESCRIPTION

getgroups (2)

getgroups gets the current group access list of the user process
and stores it in the array gidset. The parameter gidsetlen indicates
the number of entries that may be placed in gidset.

getgroups returns the actual number of groups returned in gid
set . No more than NGROUPS , as defined in <sys /param . h>,
will ever be returned.

RETURN VALUE
A successful call returns the number of groups in the group set. A
value of -1 indicates that an error occurred, and the error code is
stored in the global variable errno .

ERRORS
The possible errors for get groups are:

[E INVAL] The argument gidsetlen is smaller than the
number of groups in the group set.

[EFAULT]

SEE ALSO

The argument gidset specifies an invalid
address.

setgroups(2), ini tgroups(3X).

BUGS
The gidset array should be of type gid _ t, but remains integer for
compatibility with earlier systems.

- 1 - September, 1987

•

•

•

•

•

•

gethost id(2N) gethostid(2N)

NAME
gethost id, sethostid - get/set unique identifier of current
host

SYNOPSIS
int gethostid ()

int sethostid (hostid)
int hostid

DESCRIPTION
sethostid establishes a 32-bit identifier for the current proces
sor. This identifier is intended to be unique among all systems in
existence and is normally a DARPA Internet address for the local
machine. This call is allowed only to the superuser and is nor
mally performed at boot time.

RETURN VALUE
gethost id returns the 32-bit identifier for the current processor.

sethostid returns zero upon successful completion and -1
upon error.

SEE ALSO
host id(1N), gethostname(2N) .

BUGS
32 bits for the identifier is too small.

- 1 - September, 1987

gethostname (2N) gethostname (2N)

NAME
gethostname, sethostname - get/set name of current host

SYNOPSIS
int gethostname (name, namelen)
char *name ;
in t name len ;

int sethostname (name, namelen)
char *name ;
int namelen ;

DESCRIPr.ION
gethostname returns the standard host name for the current
processor, as previously set by sethostname. The parameter
namelen specifies the size of the name array. The returned name
is null-terminated unless insufficient space is provided.

sethostname sets the name of the host machine to be name ,
which has length namelen . This call is restricted to the superuser
and is normally used only when the system is bootstrapped.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a
value of -1 is returned and an error code is placed in the global
location errno.

ERRORS
The following errors may be returned by these calls:

[EFAULT] The name or namelen parameter gave an
invalid address.

[EPERM] The caller was not the superuser.

SEE ALSO
gethostid(2N).

BUGS
Host names are limited to 255 characters.

- 1 - September, 1987

•

•

•

•

•

•

get it imer(2) get it imer (2)

NAME
get it imer, set it imer - get/set value of interval timer

SYNOPSIS
#include <sys /time . h>

get it imer (which , value)
int which ;
st ruct it imerval *value ;

setitimer (which , value , ovalue >
int which;
st ruct it imerval *value, *ovalue ;

DESCRIPTION
The system provides each process with three interval timers,
defined in <sys /time . h>. The get it imer call returns the
current value for the timer specified in which in the structure at
value . The set it imer call sets a timer to the specified value
(returning the previous value of the timer if ovalue is nonzero).

A timer value is defined by the it imerval structure:

st ruct it imerva l {
st ruct t imeval it_inte rva l ; / * t ime r interva l * /

st ruct t imeval it_va lue ; / * current va lue * /

} ;

If it value is nonzero, it indicates the time to the next timer
expiration. If it interval is nonzero, it specifies a value to
be used in reloadiilg it value when the timer expires. Setting
it_ value to 0 disables a timer. Setting it_interval to 0
causes a timer to be disabled after its next expiration (assuming
it_value is nonzero).

Time values smaller than the resolution of the system clock are
rounded up to this resolution (16 milliseconds on this system, 10
milliseconds on the VAX).

The !T IMER REAL timer decrements in real time. A
S IGALRM sigruifis delivered when this timer expires.

The !T IMER VIRTUAL timer decrements in process virtual
time. It runs only when the process is executing. A
s IGVTALRM signal is delivered when it expires .

The !T IMER PROF timer decrements both in process virtual
time and when the system is running on behalf of the process. It is
designed to be used by interpreters in statistically profiling the
execution of interpreted programs. Each time the

- 1 - September, 1987

getit irner(2) get it irner{2)

!T IMER PROF timer expires, the S IGPROF signal is delivered.
Because this signal may interrupt in-progress system calls, pro
grams using this timer must be prepared to restart interrupted sys
tem calls.

NOTES
Three macros for manipulating time values are defined in
<sys /time . h>. t imerclear sets a time value to zero,
t imeris set tests if a time value is nonzero, and t imercmp
compares two time values (beware that >= and <= do not work
with this macro).

RETURN VALUE
If the calls succeed, a value of 0 is returned. If an error occurs,
the value -1 is returned, and a more precise error code is placed in
the global variable errno.

ERRORS
The possible errors are:

[EFAULT] The value parameter specified a bad address.

[E INVAL] A value parameter specified a time was too
large to be handled.

SEE ALSO
s igvec(2), gett imeofday(2).

- 2 - September, 1987

•

•

•

•

•

•

getpeername (2N) getpeername (2N)

NAME
getpeername - get name of connected peer

SYNOPSIS
int getpeername (s , name , name/en)
int s;
st ruct sockaddr *name ;
int *name/en ;

DESCRIPTION
getpeername returns the name of the peer connected to socket
s . The name/en parameter should be initialized to indicate the
amount of space pointed to by name . On return it contains the
actual size of the name returned (in bytes).

RETURN VALUES
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
getpeername fails if:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket

[ENOTCONN] The socket is not connected.

[ENOBUF s J Insufficient resources were available in the sys
tem to perform the operation.

[EFAULT]

SEE ALSO

The name parameter points to memory not in a
valid part of the process address space.

bind(2N), get sockname(2N), socket(2N) .

- 1 - September, 1987

getpid(2) getpid(2)

NAME
getpid, getpgrp, getppid - get process, process group, and
parent process IDs

SYNOPSIS
int getpid ()

int getpgrp ()

int getppid ()

DESCRIPTION
The getpid system call returns the process ID of the calling
process. Each active process in the system is uniquely identified
by a positive integer. The range of this integer is from 1 to the
system-imposed limit, or PID_MAX.

The getpgrp system call returns the process group ID of the
calling process. Each active process is a member of a process
group that is identified by a positive integer. This grouping per
mits the signaling of related processes.

The getppid system call returns the parent process ID of the
calling process. The parent process ID is the process ID of its
creator.

RETURN VALUE
getpid returns the process ID of the calling process.

getpgrp

getppid

returns the process group ID of the calling process.

returns the parent process ID of the calling process.

These system calls are useful for generating uniquely-named tem
porary files.

SEE ALSO
exec(2), fork{2), gethostid(2N), int ro(2), setpgrp(2),
s ignal(3).

- 1 - September, 1987

•

•

•

•

•

•

getsockname(2N) get sockname (2N)

NAME
get sockname - get socket name

SYNOPSIS
int getsockname (s, name , namelen)
int s ;
st ruct sockaddr *name ;
int *namelen ;

DESCRIPTION
getsockname returns the current name for the specified sockeL
The namelen pammeter should be initialized to indicate the
amount of space pointed to by name . On return it contains the
actual size of the name returned (in bytes).

RETURN VALUES
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
get sockname fails if:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK]

[ENOBUFS]

[EFAULT]

SEE ALSO

The argument s is a file, not a sockeL

Insufficient resources were available in the sys
tem to perform the operation.

The name pammeter points to memory not in a
valid part of the process address space.

bind(2N), get pee rname(2N), get sockopt(2N),
socket(2N) .

- 1 - September, 1987

getsockopt (2N) get sockopt (2N)

NAME
get sockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include <sys /types . h>
#include <sys / s ocket . h>

int get sockopt (s , level, optname , optval, optlen)
int s, level, optname ;
char *optval ;
int *optlen ;

int set sockopt (s, level, optname , optval, optlen)
int s, level, optname ;
char *optval ;
int *optlen ;

DESCRIPTION
get sockopt and setsockopt manipulate options associated
with a socket. Options may exist at multiple protocol levels; they
are always present at the uppermost "socket" level.

When manipulating socket options the level at which the option
resides and the name of the option must be specified. To manipu
late options at the "socket" level, level is specified as
SOL SOCKET. To manipulate options at any other level the pro
tocolnumber of the appropriate protocol controlling the option is
supplied. For example, to indicate an option is to be interpreted
by the TCP protocol, level should be set to the protocol number of
TCP; see getprotoent(3N).

The parameters optval and optlen are used to access option values
for set sockopt . For get sockopt they identify a buffer in
which the value of the requested options(s) are to be returned. For
get sockopt , optlen is a value-result parameter, initially con
taining the size of the buffer pointed to by optval , and modified
on return to indicate the actual size of the value returned. If no
option value is to be supplied or returned, optval may be supplied
as O.

optname and any specified options are passed uninterpreted to the
appropriate protocol module for interpretation. The include file
<sys I socket . h> contains definitions for "socket" level
options; see socket(2N). Options at other protocol levels vary
in fonnat and name; consult the appropriate entries in Section 5 of
this manual (appropriate entries are marked (5P)).

- 1 - September, 1987

•

•

•

•

•

•

get sockopt (2N) get sockopt (2N)

RETURN VALUE
A 0 is returned if the call succeeds, -1 if it fails .

ERRORS
The callls fail if:

[EBADF]

[ENOTSOCK]

[ENOPROTOOPT]

[EFAULT]

SEE ALSO

The argument s is not a valid descrip
tor.

The argument s is a file, not a socket.

The option is unknown.

The options are not in a valid part of
the process address space.

get sockname(2N), socket{2N), getprotoent(3N) .

- 2 - September, 1987

gett imeofday(2) gett imeofday(2)

NAME
gett imeofday, sett imeofday - get/set date and time

SYNOPSIS
#include <sys / t ime . h>

int gett imeofday (tp , tzp)
st ruct t imeval *tp ;
st ruct t ime zone *tzp ;

int sett imeofday (tp , tzp)
st ruct t imeval *tp ;
st ruct t imezone *tzp;

DESCRIPITON
The system's notion of the current Greenwich time and the current
time zone is obtained with the gett imeofday call, and set
with the sett imeofday call. The time is expressed in seconds
and microseconds since midnight (0 hour), January 1 , 1970. The
resolution of the system clock is hardware dependent, and the time
may be updated continuously or in "ticks." If tzp is zero, the
time zone information will not be returned or set.

The structures referenced by tp and tzp are defined in
<sys / t ime . h> as:

st ruct t imeval {
long t v_sec;

l ong tv_usec;

} ;

st ruct t ime z one {

I * seconds s i nce Jan . 1 , 1 9 7 0 * I
I * and micro seconds * I

i n t t z_minuteswe s t ;

i n t t z_dst t ime ;

I * o f G reenwich * I

I * t ype o f d s t correct ion

t o apply * I

} ;

The t ime zone structure indicates the local time zone (meas
ured in minutes of time westward from Greenwich), and a flag
that, if nonzero, indicates that Daylight Saving time applies locally
only when Dayling Savings Time is in effect.

Only the superuser may set the time of day or time zone. Changes
to the time zone structure are effective for the current process
only.

RETURN VALUE
A 0 return value indicates that the call succeeded A -1 return
value indicates an error occurred, and in this case an error code is

- 1 - September, 1987

•

•

•

•

•

•

gett imeofday(2) gett imeofday(2)

stored into the global variable errno.

ERRORS
The calls fail if:
[EFAULT]

[EPERM]

SEE ALSO

An argument address referenced invalid
memory.

A user other than the superuser attempted to set
the time.

date(l), adj t ime(2), t ime(2), st ime(2), ct ime(3) .

- 2 - September, 1987

getuid(2) getuid{2)

NAME
getuid, geteuid, getgid, getegid - get real user, effec
tive user, real group, and effective group IDs

SYNOPSIS
uns igned short getuid ()

uns igned short geteuid ()

uns igned short getgid ()

uns igned short getegid ()

DESCRIPriON
Each user allowed on the system is identified by a positive integer
called a real user ID. The get uid system call returns the real
user ID of the calling process.

Each active process has an effective user ID which is equal to the
process's real user ID (unless the process of one of its ancestors
evolved from a fail that had the set-user-ID bit set; see exec(2)).
The geteuid system call returns the effective user ID of the
calling process.

Each user is a member of a group which is identified by a positive
integer called a real group ID. The getgid system call returns
the real group ID of the calling process.

Each active process has an effective group ID which is equal to
the process's real group ID (unless the process of one of its ances
tors evolved from a fail that had the set-group-ID bit set; see
exec(2)). The getegid system call returns the effective group
ID of the calling process.

RETURN VALUE
getuid

geteuid

getgid

getegid

SEE ALSO

returns the real user ID of the calling process.

returns the effective user ID of the calling pro
cess.

returns the real group ID of the calling process.

returns the effective group ID of the calling pro
cess.

int ro(2), set reuid(2), setuid(2).

- 1 - September, 1987

•

•

•

•

•

•

ioct l (2)

NAME
ioct l - control device

SYNOPSIS
int ioctl (fildes, request , arg)
in t fildes, request ;

DESCRIPI'ON

ioct l (2)

ioct l performs a variety of functions on character special files
(devices). Section 7 of the A!UX System Administrator' s Refer
ence describes the ioctl requests that apply to the given device.

RETURN VALUE
If an error has occurred, a value of -1 is returned and errno is
set to indicate the error.

ERRORS
ioct l will fail if one or more of the following are true:

[EBADF] fildes is not a valid open file descriptor.

[ENOTTY] fildes i s not associated with a character special
device.

[E INVAL] request or arg is not valid. See Section 7 of the
A!UX System Administrator' s Reference .

[E INTR] A signal was caught during the ioct l system
call.

SEE ALSO
int ro(2), fcnt l(2), int ro{7). termio(7) .

- 1 - September, 1987

k i l l {2) kill {2)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
int kill (pid, sig)
int pid, sig ;

DESCRIYITON
kill sends a signal to a process or a group of processes. The
process or group of processes to which the signal is to be sent is
specified by pid. The signal that is to be sent is specified by sig
and is either one from the list given in s ignal(3), or 0. If sig is
0 (the null signal), error checking is performed but no signal is
actually sent This can be used to check the validity of pid.

The real or effective user ID of the sending process must match
the real or effective user ID of the receiving process, unless the
effective user ID of the sending process is the superuser.

The processes with a process ID of 0 and a process ID of 1 are
special processes (see int ro{2)) and will be referred to below as
procO and procl respectively.

If pid is greater than zero, sig will be sent to the process whose
process ID is equal to pid. pid may equal I .
If pid is 0 , sig will be sent to all processes excluding procO and
procl whose process group ID is equal to the process group ID of
the sender.

If pid is -1 and the effective user ID of the sender is not the
superuser, sig will be sent to all processes excluding procO and
procl whose real user ID is equal to the effective user ID of the
sender.

If pid is -1 and the effective user ID of the sender is the superuser,
sig will be sent to all processes excluding procO and procl .

If pid is negative but not - 1 , sig will be sent to all processes
whose process group ID is equal to the absolute value of pid.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
kill will fail and no signal will be sent if one or more of the fol
lowing are true:

- 1 - September, 1987

•

•

•

•

•

•

ki11 (2)

[E INVAL]

[E INVAL]

[ESRCH]

[EPERM]

SEE ALSO

ki11 (2)

sig is not a valid signal number.

sig is S IGKILL and pid is 1 (procl).

No process can be found corresponding to that
specified by pid.

The sending process is not sending to itself, its
effective user ID is not the superuser, and its
real or effective user ID does not match the real
or effective user ID of the receiving process.

kill(l), getpid(2), setpgrp(2), s igvec(2), s igna1(3) .

- 2 - September, 1987

l ink{2) l ink{2)

NAME
link - link to a file

SYNOPSIS
int l ink (pathl , path2)
char *pathl , *path2 ;

DESCRIPITON
link creates a new link (directory entry) for an existing file.
pathl points to a path name naming an existing file. path2 points
to a path name naming the new directory entry to be created.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
link will fail and no link will be created if one or more of the
following are true:

[ENOTD IR]

[EPERM]

A component of either path prefix is not a
directory.

A pathname contains a character with the
high-order bit set

[ENAMETOOLONG] A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

[ELOOP]

[ENOENT]

[EACCES]

[ENOENT]

[EEXI S T]

[EPERM]

[EXDEV]

[ENOENT]

Too many symbolic links were encoun
tered in translating a pathname.

A component of either path prefix does not
exist.

A component of either path prefix denies
search permission.

The file named by pathl does not exist.

The link named by path2 exists.

The file named by pathl is a directory and
the effective user ID is not the superuser.

The link named by path2 and the file
named by pathl are on different logical
devices (file systems).

path2 points to a null path name.

- 1 - September, 1987

•

•

•

•

•

•

link(2)

[EACCES]

[EROFS]

[EFAULT]

[EMLINK]

SEE ALSO

l ink (2)

The requested link requires writing in a
directory with a mode that denies write
permission .

The requested link requires writing in a
directory on a read-only file system.

path points outside the allocated address
space of the process.

The maximum number of links to a file
would be exceeded.

symlink(2), unlink(2) .

- 2 - September, 1987

l i sten (2N)

NAME
li sten - listen for connections on a socket

SYNOPSIS
l isten (s , backlog)
int s, backlog ;

DESCRIPITON

listen(2N)

To accept connections, a socket is first created with socket(2N),
a backlog for incoming connections is specified with
l isten{2N) and then the connections are accepted with
accept{2N). The l i sten call applies only to sockets of type
SOCK STREAM or SOCK PKTSTREAM .

The backlog parameter defines the maximum length the queue of
pending connections may grow to.

RETURN VALUE
A 0 return value indicates success; -1 indicates an error.

ERRORS
l i sten will fail if:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK]

[EOPNOTSUPP]

The argument s is not a socket

The operation is not supported on a
socket

If a connection request arrives with the queue full the client will
receive an error with an indication of ECONNREFUSED. The
socket is not of a type that supports the operation 1 i s ten.

SEE ALSO
accept(2N), connect{2N), socket{2N).

BUGS
The backlog is currently limited (silently) to 5.

- 1 - September, 1987

•

•

•

•

•

•

locking(2) locking(2)

NAME
locking - provide exclusive file regions for reading or writing

SYNOPSIS
int locking (fildes, mode , size)
int fildes;
int mode ;
int size ;

DESCRIYI10N
locking will allow a specified number of bytes to be accessed
only by the locking process (mandatory locking). Other processes
which attempt to lock, read, or write the locked area will sleep
until the area becomes unlocked. (Advisory locking is available
via lockf(3C)).

fildes is the word returned from a successful open, creat, dup,
or pipe system call.
mode is zero to unlock the area. mode is one or two for making
the area locked. If the mode is one and the area has some other
lock on it, then the process will sleep until the entire area is avail
able. If the mode is two and the area is locked, an error will be
returned .

size is the number of contiguous bytes to be locked or unlocked.
The area to be locked starts at the current offset in the file. If size
is zero, the area to the end of file is locked.

The potential for a deadlock occurs when a process controlling a
locked area is put to sleep by accessing another process's locked
area. Thus calls to locking, read, or write scan for a
deadlock prior to sleeping on a locked area An error return is
made if sleeping on the locked area would cause a deadlock.

Lock requests may, in whole or part, contain or be contained by a
previously locked area for the same process. When this or adja
cent areas occur, the areas are combined into a single area. If the
request requires a new lock element with the lock table full, an
error is returned, and the area is not locked.

Unlock requests may, in whole or part, release one or more locked
regions controlled by the process. When regions are not fully
released, the remaining areas are still locked by the process .
Release of the center section of a locked area requires an addi
tional lock element to hold the cut off section. If the lock table is
full, an error is returned, and the requested area is not released.

- I - September, 1987

locking(2) locking(2)

While locks may be applied to special files or pipes, read/write
operations will not be blocked. Locks may not be applied to a
directory.

Note that c lose(2) automatically removes any locks that were
associated with the closed file descriptor.

RETURN VALUE
The value -1 is returned if the file does not exist, or if a deadlock
using file locks would occur.

ERRORS
locking will fail if the following are true:

[EACCES l The area is already locked by another process.

[EDEADLOCK] Returned by read, write, or locking if a
deadlock would occur.

[EDEADLOCK] Locktable overflow.

[EREMOTE]

SEE ALSO

fildes is a file descriptor that refers to file on a
remotely mounted file system.

close(2), creat(2), dup(2), open{2), read(2), write(2),
lockf{3C).

- 2 - September, 1987

•

•

•

•

•

•

lseek(2)

NAME
lseek - move read/write file pointer

SYNOPSIS
long ! seek <fildes, offset, whence)
int ftldes;
long offset;
int whence ;

DESCRIPTION

lseek (2)

ftldes is a file descriptor returned from a c reat, open, dup, or
fcnt l system call. ! seek sets the file pointer associated with
ftldes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1 , the pointer is set to its current location plus
offset .

If whence is 2, the pointer is set to the size of the file plus
offset .

Upon successful completion, the resulting pointer location, as
measured in bytes from the beginning of the file, is returned .

RETURN VALUE
Upon successful completion, a non-negative integer indicating the
file pointer value is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
!seek will fail and the file pointer will remain unchanged if one
or more of the following are true:

[EBADF] ftldes is not an open file descriptor.

[ESP IPE] ftldes is associated with a pipe or FIFO.

[E INVAL] and the S IGSYS signal
whence is not 0, 1 , or 2.

[E INVAL] The resulting file pointer would be negative.

Some devices are incapable of seeking. The value of the file
pointer associated with such a device is undefined.

SEE ALSO
c reat(2), dup(2), fcnt l(2), open(2) .

- 1 - September, 1987

mkdir (2)

NAME
mkdi r - make a directory file

SYNOPSIS
int mkdir (path , mode)
char *path ;
int mode ;

DESCRIPITON

mkdir (2)

mkdi r creates a new directory file with name path . The mode of
the new file is initialized from mode . (The protection part of the
mode is modified by the process's mode mask; see uma s k(2)).

The directory's owner ID is set to the process's effective user ID.
The directory's group ID is set to that of the parent directory in
which it is created.

The low-order 9 bits of mode are modified by the process's file
mode creation mask: all bits set in the process 's file mode creation
mask are cleared. See uma sk(2).

RETURN VALUE
A 0 return value indicates success. A -1 return value indicates an
error, and an error code is stored in errno.

ERRORS
mkdi r will fail and no directory will be created if:

[EPERM] The process's effective user ID is not the
superuser.

[EPERM] A pathname contains a character with the
high-order bit set

[ENAMETOOLONG] A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

[ELOOP] Too many symbolic links were encoun
tered in translating a pathname.

[EPERM] The path argument contains a byte with the
high-order bit set

[ENOTD IR] A component o f the path prefix i s not a
directory.

[ENOENT] A component of the path prefix does not
exist.

- 1 - September, 1987

•

•

•

•

•

•

mkdir{2)

[EROFS]

[EEXI S T]

[EFAULT]

[ELOOP]

[E IO]

SEE ALSO

mkdir{2)

The named file resides on a read-only file
system.

The named file exists.

path points outside the process's allocated
address space.

Too many symbolic links were encoun
tered in translating the pathname.

An 1/0 error occured while writing to the
file system.

mkdi r(l), chmod(2), rmdi r(2), stat(2), umas k(2) .

- 2 - September, 1987

mknod(2)

NAME

mknod - make a directory, or a special or ordinary file

SYNOPSIS
int mknod (path , mode, dev)
cha r *path ;
int mode, dev ;

DESCRIPITON

mknod(2)

mk.nod creates a new file named by the path name pointed to by
path. The mode of the new file is initialized from mode , where
the value of mode is interpreted as follows:

0170000 file type mask; one of the following:

0010000 FIFO special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file
0120000 symbolic link
0140000 socket
0004000 set user 10 on execution
0002000 set group ID on execution
0001000 save text image after execution

0000777 access permissions; constructed from the following

0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of the pro
cess. The group ID of the file is set to the effective group ID of
the process.

V aloes of mode other than those above are undefined and should
not be used. The low-order 9 bits of mode are modified by the
process's file mode creation mask: all bits set in the process's file
mode creation mask are cleared. See umask(2). If mode indi
cates a block or character special file, dev is a configuration
dependent specification of a character or block 1/0 device. If
mode does not indicate a block special or character special device,
dev is ignored.

- 1 - September, 1987

•

•

•

•

•

•

mknod(2) mknod(2)

mknod may be invoked only by the superuser for file types other
than FIFO special .

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

ERRORS
mknod will fail and the new file will not be created if one or more
of the following are true:

[EPERM] The effective user ID of the process is not
superuser.

[EPERM] A pathname contains a character with the
high-order bit set

[ENAMETOOLONG] A component of a pathname exceeded
NAME MAX characters, or an entire
pathnaffie exceeded PATH_ MAX.

[ELOOP]

[ENOTD IR]

[ENOENT]

[EROFS]

[EEXI ST]

[EFAULT]

SEE ALSO

Too many symbolic links were encoun
tered in translating a pathname.

A component of the path prefix is not a
directory.

A component of the path prefix does not
exist.

The directory in which the file is to be
created is located on a read-only file sys-
tem.

The named file exists.

path points outside the allocated address
space of the process.

mkdir(1), mknod(1), chmod(2), exec(2), stat(2), uma sk(2),
fs(4), stat(5) .

- 2 - September, 1987

msgct l (2) msgct l (2)

NAME
msgct l - message control operations

SYNOPSIS
inc lude <sys /type s . h>
include <sys / ipc . h>
inc lude <sys /msg . h>

int msgctl (id, cmd, buj)
int id, cmd;
st ruct msqid_ds *buf;

DESCRIPTION
msgctl provides a variety of message control operations as
specified by cmd. The following cmds are available:

IPC S TAT

IPC SET

Place the current value of each member of the
data structure associated with id into the struc
ture referenced by buf. The contents of this
structure are defined in int ro(2).

Set the value of the following members of the
data structure associated with id to the
corresponding value found in the structure
referenced by buf:

msg_perm . uid
msg_pe rm . gid
msg_pe rm . mode (only low 9 bits)
msg_qbyte s

This cmd can only be executed by a process that has an effective
user ID equal to either that of superuser or to the value of
msg_perm . uid in the data structure associated with id. Only
the superuser can raise the value of msg_ qbyte s .

IPC_RMID Remove the message queue identifier specified
by id from the system and destroy the message
queue and data structure associated with it.
This cmd can only be executed by a process
that has an effective user ID equal to either that
of super user or to the value of
msg_perm . uid in the data structure associ
ated with id. The identifier and its associated
data structure are not actually removed until
there are no more referencing processes. See
ipc rm(l), and ipc s(1).

- 1 - September, 1987

•

•

•

•

•

•

msgct l (2) msgct l (2)

RETURN V ALUB
Upon successful completion. a value of 0 is returned. Otherwise.
a value of -1 is returned and errno is set to indicate the error .

ERRORS
msgct 1 will fail if one or more of the following are true:

[E INVAL] id is not a valid message queue identifier.

[E INVAL]

[EACCES]

[EPERM]

[EPERM]

[EFAULT]

SEE ALSO

cmd is not a valid command.

cmd is equal to IPC STAT and operation per
mission is denied to

-
the calling process (see

int ro(2)).

cmd is equal to IPC_RMID or IPC_SET. The
effective user ID of the calling process is not
equal to that of superuser and it is not equal to
the value of msg_perm . uid in the data
structure associated with id.

cmd is equal to IPC SET. an attempt is being
made to increase to the value of
msg qbytes , and the effective user ID of
the Calling process is not equal to that of
superuser.

bl(points to an illegal address.

int ro(2). msgget(2). msgop(2) .

- 2 - September. 1987

msgget (2)

NAME
msgget - get message queue

SYNOPSIS
#include <sys /types . h>
#include <sys / ipc . h>
#include <sys /msg . h>

int msgget (key, msgflg)
key t key ;
in t

-
msgflg ;

DESCRIPriON

msgget (2)

msgget returns the message queue identifier associated with key .

A message queue identifier and associated message queue and
data structure (see int ro(2)) are created for key if one of the fol
lowing is true:

key is equal to IPC_PRIVATE.

key does not already have a message queue identifier associ
ated with it, and (msgflg & IPC_CREAT) is "true".

The key IPC PRIVATE will create an identifier and associated
data structure ihat is unique to the calling process and its children.

Upon creation, the data structure associated with the new message
queue identifier is initialized as follows:

msg_perm . cuid, msg_perm . uid, msg_perm . cgid,
and msg_perm . gid are set equal to the effective user ID
and effective group ID, respectively, of the calling process.

The low-order 9 bits of msg_perm . mode are set equal to
the low-order 9 bits of msgflg .

msg_qnum, msg_lspid, msg_lrpid, msg_st ime,
and msg_ rt ime are set equal to 0.

msg_ ct ime is set equal to the current time.

msg_ qbytes is set equal to the system limit.

RETURN VALUE
Upon successful completion, a non-negative integer, namely a
message queue identifier, is returned. Otherwise, a value of -I is
returned and errno is set to indicate the error.

ERRORS
msgget will fail if one or more of the following are true:

- 1 - September, 1987

•

•

•

•

•

•

msgget (2)

[EACCES]

[ENOENT]

[ENOSPC]

[EEXI S T]

SEE ALSO

msgget (2)

A message queue identifier exists for key , but
operation permission (see int ro(2)) as
specified by the low-order 9 bits of msgflg
would not be granted.

A message queue identifier does not exist for
key and (msgflg & IPC_CREAT) is "false" .

A message queue identifier is to be created but
the system-imposed limit on the maximum
number of allowed message queue identifiers
system wide would be exceeded.

A message queue identifier exists for key but
((msgflg & IPC CREAT) & & (msgflg &
IPC_EXCL)) is "true".

int ro(2), msgct l(2), msgop(2) .

- 2 - September, 1987

msgop(2)

NAME
msgop, msgsnd, msgs rv - message operations

SYNOPSIS
#include <sys ltypes . h>
#include <sys l ipc . h>
#include <sys lmsg . h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
st ruct msgbuf *msgp;
int msgsz , msgflg;

msgop(2)

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
st ruct msgbuf *msgp ;
int msgsz ;
long msgtyp ;
int msgflg ;

DESCRIPITON
msgsnd is used to send a message to the queue associated with
the message queue identifier specified by msqid. msgp points to a
structure containing the message. This structure is composed of
the following members:

long mtype ;
char mtext [] ;

I * mes sage type * /
I * message text * I

mtype is a positive integer that can be used by the receiving pro
cess for message selection (see msgrcv below). mtext is any
text of length msgsz bytes. msgsz can range from 0 to a system
imposed maximum.

msgflg specifies the action to be taken if one or more of the fol
lowing are true:

The number of bytes already on the queue is equal to
msg_qbytes (see int ro(2)).

The total number of messages on all queues systemwide is
equal to the system-imposed limit

These actions are as follows:

If (msgflg & IPC NOWAIT) is "true" , the message will
not be sent and the catling process will return immediately.

If (msgflg & IPC_NOWAIT) is "false" , the calling pro
cess will suspend execution until one of the following

- 1 - September, 1987

•

•

•

•

•

•

msgop(2) msgop(2)

occurs:

The condition responsible for the suspension no longer
exists, in which case the message is sent.

msqid is removed from the system (see msgct l{2)).
When this occurs, errno is set equal to E IDRM, and a
value of -1 is returned.

The calling process receives a signal that is to be
caught. In this case the message is not sent and the cal
ling process resumes execution in the manner
prescribed in s igvec(2)).

Upon successful completion, the following actions are taken with
respect to the data structure associated with msqid (see
int ro(2)).

msg_ qnum is incremented by 1 .

msg_lspid is set equal to the process ID of the calling pro
cess.

msg_ st ime is set equal to the current time.
msgrcv reads a message from the queue associated with the mes
sage queue identifier specified by msqid and places it in the struc
ture pointed to by msgp. This structure is composed of the follow
ing members:

long mtype ; / * mes sage type * /
char nue� [] ; I * message text * /

mtype is the received message's type as specified by the sending
process. mte� is the text of the message. msgsz specifies the size
in bytes of nuext. The received message is truncated to msgsz
bytes if it is larger than msgsz and (msgflg & MSG_NOERROR)
is ' 'true' ' . The truncated part of the message is lost and no indica
tion of the truncation is given to the calling process.

msgtyp specifies the type of message requested as follows:

If msgtyp is equal to 0, the first message on the queue is
received.

If msgtyp is greater than 0, the first message of type msgtyp
is received .

If msgtyp is less than 0, the first message of the lowest type
that is less than or equal to the absolute value of msgtyp is
received.

- 2 - September, 1987

znsgop(2) msgop(2)

msgflg specifies the action to be taken if a message of the desired
type is not on the queue. These are as follows:

If (msgflg & IPC_NOWAIT) is "true", the calling process
will return immediately with a return value of -1 and
e rrno is set to ENOMSG.

If (msgflg & IPC_NOWAIT) is "false" , the calling pro
cess will suspend execution until one of the following
occurs:

A message of the desired type is placed on the queue.

msqid is removed from the system. When this occurs,
e rrno is set equal to E IDRM, and a value of -1 is
returned.

The calling process receives a signal that is to be
caught. In this case a message is not received and the
calling process resumes execution in the manner
prescribed in s igvec(2)).

Upon successful completion, the following actions are taken with
respect to the data structure associated with msqid (see
int ro(2)).

msg_ qnum is decremented by 1 .

ms g_l rpid is set equal to the process ID of the calling pro
cess.

msg_ rt ime is set equal to the current time.

RETURN VALUES
If msgsnd or msgrcv return due to the receipt of a signal, a
value of -1 is returned to the calling process and errno is set to
E INTR. If they return due to removal of msqid from the system, a
value of -1 is returned and errno is set to E IDRM.

Upon successful completion, the return value is as follows:

msgsnd returns a value of 0.

msgrcv returns a value equal to the number of bytes actu
ally placed into mtext.

Otherwise, a value of -1 is returned and errno is set to indicate
the error.

ERRORS
msgsnd will fail and no message will be sent if one or more of
the following are true:

- 3 - September, 1987

•

•

•

•

•

•

msgop(2)

[E INVAL]

[EACCES]

[E INVAL]

[EAGAIN]

[E INVAL]

[EFAULT]

msgop(2)

msqid is not a valid message queue identifier.

Operation pennission is denied to the calling
process (see int ro(2)).

mtype is less than 1 .

Th e message cannot be sent for one o f th e rea
sons cited above and (msgflg &
IPC_NOWAIT) is "true " .

msgsz i s less than zero or greater than the
system-imposed limit.

msgp points to an illegal address.

msgrcv will fail and no message will be received if one or more
of the following are true:

[E INVAL] msqid is not a valid message queue identifier.

[EACCES]

[E INVAL]

[E2BIG]

[ENOMSG]

Operation pennission is denied to the calling
process.

msgsz is less than 0.

mtext is greater than msgsz and (msgflg &
MSG_NOERROR) is "false" .

Th e queue does not contain a message of the
desired type and (msgtyp & IPC_NOWAIT)
is "true" .

[EFAULT] msgp points to an illegal address.

SEE ALSO
int ro(2), msgct l(2), msgget(2), s igvec(2), s ignal(3) .

- 4 - September, 1987

nice (2)

NAME
nice - change priority of a process

SYNOPSIS
int nice (incr)
int incr;

DESCRIPTION

nice (2)

nice adds the value of incr to the value of the calling process. A
process's nice value is a positive number for which a higher value
results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are
imposed by the system. Requests for values above or below these
limits result in the nice value being set to the corresponding limit.

RETURN VALUE
Upon successful completion, nice returns the new nice value
minus 20. Otherwise, a value of -1 is returned and e rrno is set
to indicate the error. If a value of -1 is a valid return value on
successful completion (i.e., if your new nice value is 19), errno
is not changed.

ERRORS
nice will fail if:

[EPERM]

SEE ALSO

nice will fail and not change the nice value if
incr is negative or greater than 40 and the effec
tive user ID of the calling process is not
superuser.

nice(1), exec(2).

- 1 - September, 1987

•

•

•

•

•

•

nfs svc(2)

NAME
nfssvc, async_daemon - NFS daemons

SYNOPSIS
int nfs svc (sock)
int sock ;

async_daemon ()

DBSCRIPITON

nfs svc (2)

nfs svc starts an NFS daemon listening on socket sock. The
socket must be AF INET, and SOCK DGRAM (protocol
UDP/IP). The system call will return only if the process is killed.

async_daemon implements the NFS daemon that handles asyn
chronous I/0 for an NFS client The system call never returns.

BUGS
These two system calls allow kernel processes to have user con
text.

SEE ALSO
mountd(1M), nfsd(1M) .

- 1 - September, 1987

nfs get fh{2)

NAME
nfs_get fh - get a file handle

SYNOPSIS
f include <rpc /type s . h>
finclude <sys /errno . h>
finclude <sys /time . h>
finclude <nfs /nfs . h>

int nfs_get fh (fildes, fhp)
int fildes;
fhandle t *fhp ;

DESCRIPI'ION

nfs get fh {2)

nf s get fh returns the file handle associated with the file
descriptor fd. This call is restricted to the superuser.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a
value of -1 is returned and an error code is placed int the global
location errno.

ERRORS
The following errors may be returned by these calls:

[EPERM] The caller was not the superuser.

[EBADF]

[EFAULT]

fd is not a valid open file descriptor.

The fhp parameter gave an invalid address.

- 1 - September, 1987

•

•

•

•

•

•

open(2) open(2)

NAME
open - open for reading or writing

SYNOPSIS
include <fcnt l . h>
int open (path , ojlag [, mode])
char *path ;
int oflag , mode ;

DESCRIPTION
open opens a file descriptor for the named file and sets the file
status flags according to the value of ojlag . path points to a path
name naming a file. ojlag values are constructed by or-ing flags
from the following list (only one of the first three flags below may
be used):

0 RDONLY

0 WRONLY

0 RDWR

0 NDELAY

Open for reading only.

Open for writing only.

Open for reading and writing.

This flag may affect subsequent reads and
writes. See read(2) and write(2) .

When opening a FIFO with o RDONLY or
0 WRONLY set:

If 0 NDELAY is set:

An open for reading-only will return
without delay. An open for writing-only
will return an error if no process currently
has the file open for reading.

If 0 NDELAY is clear:

An open for reading-only will block until
a process opens the file for writing. An
open for writing-only will block until a
process opens the file for reading.

When opening a file associated with a communi
cation line:

If 0 NDELAY is set:

The open will return without waiting for
carrier.

If 0 NDELAY is clear:

- 1 - September, 1987

open (2)

0 APPEND

0 CREAT

0 TRUNC

0 EXCL

open(2)

The open will block until carrier is present.

If set, the file pointer will be set to the end of the
file prior to each write.

If the file exists, this flag has no effect. Other
wise, the owner ID of the file is set to the effec-
tive user ID of the process, the group ID of the
file is set to the effective group ID of the pro
cess, and the low-order 12 bits of the file mode
are set to the value of mode modified as follows
(see creat(2)):

All bits set in the file mode creation mask
of the process are cleared. See urnask(2).

The "save text image after execution bit"
of the mode is cleared. See chrnod(2).

If the file exists, its length is truncated to 0 and
the mode and owner are unchanged.

If 0 EXCL and 0 CREAT are set, open will
fail ifihe file exists.

-

The file pointer used to mark the current position within the file is
set to the beginning of the file.

The new file descriptor is set to remain open across exec system
calls. See fcnt l(2).

RETURN VALUE
Upon successful completion, the file descriptor is returned. Other
wise, a value of -1 is returned and errno is set to indicate the
error.

ERRORS
The named file is opened unless one or more of the following are
true:

[ENOTD IR] A component of the path prefix is not a
directory.

[EPERM] A pathname contains a character with the
high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

- 2 - September, 1987

•

•

•

open(2) open(2)

[ELOOP] Too many symbolic links were encoun-
tered in translating a pathnarne .

•
[ENOENT] o CREAT is not set and the named file

does not exist

[EACCES] A component of the path prefix denies
search permission.

[EACCE S] ojlag permission is denied for the named
file.

[E I SD IR] The named file is a directory and ojlag is
write or read/write.

[EROF S] The named file resides on a read-only file
system and ojlag is write or read/write.

[EMF I LE] The per-process open file limit would be
exceeded.

[ENXIO] The named file i s a character special or
block special file, and the device associ-
ated with this special file does not exist

• [ETXTBSY] Th e file is a pure procedure (shared text)
file that is being executed and ojlag is write
or read/write.

Note: If you are running an NFS
system and you are accessing a
shared binary remotely, it is possi-
ble that you will not get this
errno.

[EFAULT] path points outside the allocated address
space of the process.

[EEXI ST] 0 CREAT and 0 EXCL are set, and the
named file exists.

-

[ENXIO] o NDELAY i s set, the named file is a
FIFO, o_WRONLY is set, and no process
has the file open for reading.

[E INTR] A signal was caught during the open sys-

• tern call.

[ENF I LE] The system file table is full.

- 3 - September, 1987

open(2) open(2)

SEE ALSO
chmod(2), close(2), c reat(2), dup(2), fcnt l{2), lseek{2),
read(2), umask{2), write(2), fopen(3), ferror{3).

- 4 - September, 1987

•

•

•

•

•

•

pause (2) pause (2)

NAME
pause - suspend process until signal

SYNOPSIS
pause ()

DESCRIYfiON
pause suspends the calling process until it receives a signal. The
signal must be one that is not currently set to be ignored by the
calling process.

If the signal causes termination of the calling process, pause
will not return.

The behavior of pause will vary when a signal is caught by the
calling process according to flags set by setcompat(2) or
set 4 2 s ig(3). If the COMPAT SYSCALLS flag is set when
control is returned from the signal catching function, then the pro
cess will once again pause; otherwise, flag not set will resume as
above.

ERRORS
If the signal is caught by the calling process and control is
returned from the signal-catching function (see s ignal(3)), the
calling process resumes execution from the point of suspension;
with a return value of -1 from pause and e rrno set to
E INTR .

SEE ALSO
alarm(2), kill(2), wait(2), s ignal(3) .

- 1 - September, 1987

phys (2)

NAME
phys - allow a process to access physical addresses

SYNOPSIS
int phys (physnum, virtaddr, size , physaddr)
int physnum ;
char *virtaddr;
uns igned int size ;
char *physaddr;

DESCRIPTION

phys (2)

The phys system call allows the superuser to map a region of
physical memory into a process's virtual address space.

The calling process chooses physnum to specify the phys region
this call references. The maximum number of regions per process
is defined by the v _phys field in the var structure returned by
uvar(2). physnum must be between zero and v_phys -1 , and is
only used to identify a particular phys region to the kernel dur
ing a phys system call.

virtaddr is the base virtual address for the region in the process's
virtual address space, and size is the length in bytes of the desired
region. The virtual address range of the region must not overlap
any of the existing address space of the process, including text,
data, stack, shared memory regions (see shmget(2)), and any
other active phys regions. All addresses in this range must be
valid user virtual addresses (see the example below). Care should
also be taken to avoid placing a phys region at a virtual address
that the data or stack segments might grow to encompass.

If size is zero, any previous phys mapping is cleared for the
region specified by physnum.

A phys region's virtaddr and size are dependent on the imple
mentation decisions for the memory management unit In particu
lar, the base virtaddr must be on a kernel segment boundary and
the size will be rounded up to an integral multiple of the page size.
These values may be computed from the v_segshift and
v _page shift fields returned by uvar(2); i.e. , the segment size
is

1 << v_segshift

and the page size is

1 << v _pageshift

- 1 - September, 1987

•

•

•

•

•

•

phys (2) phys (2)

The physaddr argument is the base physical address for the
region. physaddr is rounded down to the previous page boundary.
Also, physaddr to physaddr + size should be inside the range of
physical addresses supported by the hardware. phys regions
are inherited across fork{2) system calls and disowned across
execs.

phys may only be executed by a process with an effective user
ID of root

As an example, suppose a process wishes to map a piece of
memory-mapped hardware into its address space. This hardware
has Ox8800 bytes of memory and control registers located at phy
sical address OxFAOOOOOO. By calling uvar{2), the process finds
that v_page shift is 12 and v_segshift is 20; thus, the
page size is Ox1000 and the segment size is Ox100000. Also,
v _phys is found to be 32, so any number from zero to 3 1 may be
used for physnum.

The var structure also contains v ustart and v uend, the
starting and ending virtual addresses

-
for user processes. For this

example, assume v ustart is zero and v uend is
Ox20000000. The first few segments are used for the running
program's text and data and the last are used for the user stack.
The process might decide it is unlikely its data and text segment
will exceed Ox4000000, which is an integral multiple of Ox100000
{the segment size).

The call:

phys (O , Ox4 0 0 0 0 0 0 , O x8 8 0 0 , OxFAO O O O O O) ;

will allow the process access to physical locations from
OxFAOOOOO to OxF A009000 by referencing virtual addresses
Ox4000000 to Ox4009000. The range has been adjusted to Ox9000
bytes because that is the next page boundary.

In this example, referencing Ox4008804 (an address in the phys
region, but outside of the known hardware memory) will result in
unpredictable failures. A useless value may be read off the
hardware lines, a write may appear to succeed without affecting
anything, the program may get a S IGSEGV (see s ignal(3)), the
hardware may react randomly, or the entire system may crash .
There may be other possibilities depending on system
configuration.

- 2 - September, 1987

phys (2) phys (2)

If the process wished to add another phys region without delet
ing the first region, the next available virtaddr would be
Ox4 100000 (the next segment boundary) and physnum could be
any number from one to 3 1 .

RETURN VALUES
The value zero is returned if the call was successful; otherwise -1
is returned. phys will fail if the effective user ID of the calling
process is not root, if virtaddr or physaddr is not in the proper
range, or if the range of virtual addresses overlaps a portion of the
user's virtual address space that is already in use.

NOTES
phys is hardware and implementation dependent and must be
used with extreme caution. The intention is to give the superuser
complete access to the physical hardware. To insure maximum
portability, virtaddr and size should be calculated as described in
the example.

Different hardware may respond differently to mistakes in
addressing. Sometimes all the bits of a physical address are not
decoded, making (for example) OxFDIOOOOO the same as
OxFDOOOOOO. If physaddr or size is wrong it is possible to crash
the system.

Most versions of UNIX do not support this system call.

SEE ALSO
uvar{2), shmget(2), s ignal(3).

- 3 - September, 1987

•

•

•

•

•

•

pipe (2)

NAME
pipe - create an interprocess channel

SYNOPSIS
int pipe <fildes)
int .fildes [2] ;

DESCRIPTION

pipe (2)

pipe creates an 1/0 mechanism called a pipe and returns two file
descriptors, .fildes [0] and .fildes [1] . .fildes [0] is opened for
reading and.fildes [1] is opened for writing.

Up to PIPE_MAX bytes of data are buffered by the pipe before
the writing process is blocked. A read only file descriptor
.fildes [0] accesses the data written to .fildes [1] on a first-in
first-out (FIFO) basis.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and e r rno is set to indicate the error.

ERRORS
pipe will fail if one or more of the following is true:

[EMF I LE] pipe will fail if the per-process open file limit
would be exceeded.

[ENF I LE] The system file table is full.

SEE ALSO
read(2), write(2) .

- 1 - September, 1987

plock{2) plock(2)

NAME
plock - lock process, text, or data in memory

SYNOPSIS
#include <sys / lock . h>

int plock (op)
int op ;

DESCRIPITON
plock allows the calling process to lock its text segment (text
lock), its data segment (data lock), or both its text and data seg
ments (process lock) into memory. Locked segments are immune
to all routine swapping. plock also allows these segments to
be unlocked. The effective user ID of the calling process must be
superuser to use this call. op specifies the following:

PROCLOCK

TXT LOCK

DATLOCK

UNLOCK

RETURN VALUE

lock text and data segments into memory (pro
cess lock)

lock text segment into memory (text lock)

lock data segment into memory (data lock)

remove locks

Upon successful completion, a value of 0 is returned to the calling
process. Otherwise, a value of -1 is returned and e rrno is set to
indicate the error.

ERRORS
plock will fail and not perform the requested operation if one or
more of the following are true:

[EPERM] The effective user ID of the calling process is
not superuser.

[EAGAIN]

[E INVAL]

[E INVAL]

[EINVAL]

The system has temporarily exhausted its avail
able memory or swap space.

op is equal to PROCLOCK and a process lock,
a text lock, or a data lock already exists on the
calling process.

op is equal to TXTLOCK and a text lock, or a
process lock already exists on the calling pro
cess.

op is equal to DATLOCK and a data lock, or a
process lock already exists on the calling pro
cess.

- I - September, 1987

•

•

•

•

•

•

plock(2)

[E INVAL]

SEE ALSO

plock (2)

op is equal to UNLOCK and no type of lock
exists on the calling process.

exec(2), exit(2), fork(2) .

- 2 - September, 1987

profil (2)

NAME
profil - execution time profile

SYNOPSIS
profil < buff, bufsiz , offset, scale)
char *buff;
in t bufsiz, offset, scale ;

DESCRIPTION

profil{2)

profil is used to report performance analysis of an application.
buff points to an area of core whose length (in bytes) is given by
bufsiz . After the call, the user's program counter (pc) is examined
for each clock tick; offset is subtracted from it, and the result mul
tiplied by scale . If the resulting number corresponds to a word
inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with
16 bits of fraction: Ox10000 gives a 1-1 mapping of pc's to words
in buff; Ox8000 maps each pair of instruction words together; 2
maps all instructions onto the beginning of buff (producing a
noninterrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered
ineffective by giving a bufsiz of 0. Profiling is turned off when an
exec is executed, but remains on in child and parent both after a
fork. Profiling will be turned off if an update in buff would
cause a memory fault.

RETURN VALUE
Not defined.

SEE ALSO
prof(1), moni tor(3C).

- 1 - September, 1987

•

•

•

•

•

•

pt race (2) pt race(2)

NAME
ptrace - process trace

SYNOPSIS
int ptrace (request, pid, addr , data)
int request, pid, addr , data ;

DESCRIYI10N
ptrace provides a means by which a parent process may control
the execution of a child process. Its primary use is for the imple
mentation of breakpoint debugging. The child process behaves
normally until it encounters a signal (see s igvec(2) for the list),
at which time it enters a stopped state and its parent is notified via
wait(2). When the child is in the stopped state, its parent can
examine and modify its "core image" using pt race. Also, the
parent can cause the child either to terminate or continue, with the
possibility of ignoring the signal that caused it to stop.

The request argument determines the precise action to be taken by
ptrace and is one of the following:

0 This request must be issued by the child process if it is to
be traced by its parent It turns on the child's trace flag that
stipulates that the child should be left in a stopped state
upon receipt of a signal mther than the state specified by
june ; see s igvec(2). The pid, addr, and data arguments
are ignored, and a return value is not defined for this
request Peculiar results will ensue if the parent does not
expect to trace the child.

The remainder of the requests can only be used by the parent pro
cess. For each, pid is the process ID of the child. The child must
be in a stopped state before these requests are made.

1, 2
With these requests, the word at location addr in the address
space of the child is returned to the parent process. Either
request 1 or request 2 may be used with equal results. The
data argument is ignored. These two requests will fail if
addr is not the start address of a word, in which case a value
of -1 is returned to the parent process and the parent's
errno is set to E IO.

3 With this request, the word at location addr in the child's
USER area in the system's address space (see
<sys /user . h>) is returned to the parent process.
Addresses are system dependent. The data argument is

- 1 - September, 1987

pt race (2) pt race (2)

ignored. This request will fail if addr is not the start address
of a word or is outside the USER area, in which case a value
of -1 is returned to the parent process and the parent's • errno is set to E IO.

4 , 5
With these requests, the value given by the data argument is
written into the address space of the child at location addr .
Either request 4 or request 5 may be used with equal results.
Upon successful completion, the value written into the
address space of the child is returned to the parent These
two requests will fail if addr is a location in a pure procedure
space and another process is executing in that space, or addr
is not the start address of a word. Upon failure, a value of -1
is returned to the parent process and the parent's e rrno is
set to E IO.

6 With this request, a few entries in the child's USER area can
be written. data gives the value that is to be written and addr
is the location of the entry. The few entries that can be writ-
ten are:

the general registers • the condition codes
certain bits of the Processor Status Word

7 This request causes the child to resume execution. If the data
argument is 0, all pending signals including the one that
caused the child to stop are canceled before it resumes execu-
tion. If the data argument is a valid signal number, the child
resumes execution as if it had incurred that signal, and any
other pending signals are canceled. The addr argument must
be equal to 1 for this request. Upon successful completion,
the value of data is returned to the parent This request will
fail if data is not 0 or a valid signal number, in which case a
value of -1 is returned to the parent process and the parent's
e rrno is set to E IO.

8 This request causes the child to terminate with the same
consequences as exit(2).

9 This request sets the ttace bit in the Processor Status Word of
the child and then executes the same steps as listed above for

• request 7 . The ttace bit causes an interrupt upon completion
of one machine instruction. This effectively allows single
stepping of the child.

- 2 - September, 1987

•

•

•

pt race(2) ptrace(2)

Note: The trace bit remains set after an interrupt.

1 0 Read user register; pid = child process ID; addr = register
number; data is ignored; returns value of child's register .

1 1 Write user register; pid = child process ID; addr = register
number; data = integer value to be written into named regis
ter.

Note: For both requests 10 and 1 1 , the register
numbers are as shown below for the 68000 family
(these numbers are system dependent).

Register Register # Register Register #
dO 0 a1 9
d1 1 a2 10
d2 2 a3 1 1
d3 3 a4 12
d4 4 a5 13
d5 5 a6 14
d6 6 SP 15
d7 7 PC 16
aO 8 PS 17

To forestall possible fraud, ptrace inhibits the set-user-ID
facility on subsequent exec(2) calls. If a ttaced process calls
exec, it will stop before executing the first instruction of the new
image showing signal S IGTRAP.

ERRORS
pt race will in general fail if one or more of the following are
true:

[E IO]

[ESRCH]

NOTE

request is an illegal number.

pid identifies a child that does not exist or has
not executed a pt race with request 0 .

Request 1 1 largely supercedes request 6 , and request 1 0 largely
supercedes request 3 (request 3 can read any part of the child's
user area while request 10 can only read register values of the
child) .

SEE ALSO
exec(2), s igvec(2), wait(2), signal(3).

- 3 - September, 1987

read(2)

NAME
read, readv - read from file

SYNOPSIS
int read <fildes, buf, nbytes)
int fildes;
char *buf;
int nbytes ;

f include <sys /types . h>
finclude <sys /uio . h>

int readv <fildes, iov, iovcnt)
int fildes;
st ruct iovec *iov;
int iovcnt ;

DESCRIP'ITON

read(2)

read attempts to read nbytes bytes from the file associated with
fildes into the buffer pointed to by buf. readv performs the
same action, but scatters the input data into the iovcnt buffers
specified by the members of the iovec

fildes is a file descriptor obtained from a creat, open, dup,
fcnt l, pipe, or socket system call.

array: iov [0 J , iov [1 J , • • • , iov[iovcnt - 1] .

For readv, the iovec structure is defined as

st ruct iovec {
caddr t
int

} ;

iov base ;
iov=len ;

Each iovec entry specifies the base address and length of an
area in memory where data should be placed. readv will always
fill an area completely before proceeding to the next

On devices capable of seeking, the read starts at a position in
the file given by the file pointer associated with fildes. Upon
return from read, the file pointer is incremented by the number
of bytes actually read

Devices that are incapable of seeking always read from the current
position. The value of a file pointer associated with such a file is
undefined.

Upon successful completion, read and readv return the
number of bytes actually read and placed in the buffer; this

- 1 - September, 1987

•

•

•

•

•

•

read(2) read(2)

number may be less than nbytes if the file is associated with a
communication line (see ioctl(2), socket(2N), and
termio(7)), or if the number of bytes left in the file is less than
nbytes bytes. A value of 0 is returned when an end-of-file has
been reached.

When attempting to read from an empty pipe (or FIFO):

If o _NDELAY is set, the read will return a 0.

If o NDELAY is clear, the read will block until data is writ
ten tO the file or the file is no longer open for writing.

When attempting to read a file associated with a tty that has no
data currently available:

If o _ NDELAY is set, the read will return a 0.

If o NDELAY is clear, the read will block until data
becomes available.

RETURN VALUE
Upon successful completion, a nonnegative integer is returned
indicating the number of bytes actually read. Otherwise, a -1 is
returned and errno is set to indicate the error .

ERRORS
When attempting to read from a stream that has no data currently
available, if 0 NDELAY is set, the read will return -1 and
errno will be set to ENODATA. If 0 NDELAY is clear, the
read will block until data becomes available.

read and readv will fail if one or more of the following is true:

[E IO] A physical I/O error has occurred.

[ENXIO] The device associated with the file descrip
tor is a block-special or character-special
file and the value of the file pointer is out
of range.

[EWOULDBLOCK] The file was marked for nonblocking 1/0,
and no data were ready to be read.

[EBADF] fildes is not a valid file descriptor open for
reading.

[EFAULT]

[EINTR]

buf points outside the allocated address
space.

A signal was caught during the read sys
tem call.

- 2 - September, 1987

read(2)

[ENODATA]

read(2)

A read from a stream was attempted
when no data was available and
0 NDELAY was set

In addition, readv may return one of the following errors:

[EINVAL] iovcnt was less than or equal to 0, or greater
than 16.

[E INVAL]

[E INVAL]

SEE ALSO

One of the iov len values in the iov
array was negative.

The sum of the iov len values in the
iov array overflowed a 32-bit integer.

creat(2), fcnt l{2), ioct l{2), open(2), pipe(2),
socket(2N), setcompat(2), termio(7).

- 3 - September, 1987

•

•

•

•

•

•

readlink (2) readlink(2)

NAME
readlink - read value of a symbolic link

SYNOPSIS
int readlink (path, buf, bufsiz)
char *path, *buf;
int bufsiz ;

DESCRIPTION
readlink places the contents of the symbolic link name in the
buffer buf which has size bufsiz. The contents of the link are not
null terminated when returned.

RETURN VALUE
The call returns the count of characters placed in the buffer if it
succeeds, or a -1 if an error occurs, placing the error code in the
global variable errno.

ERRORS
readlink will fail and the file mode will be unchanged if:

[EPERM]

[EPERM]

[ENAMETOOLONG]

[ELOOP]

[ENOENT]

[ENOTD IR]

[ENOENT]

[ENXIO]

[EACCES]

[EPERM]

[E INVAL]

The path argument contained a byte with
the high-order bit set.

A pathname contains a character with the
high-order bit set

A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

Too many symbolic links were encoun
tered in translating a pathname.

The pathname was too long.

A component of the path prefix is not a
directory.

The named file does not exist.

The named file is not a symbolic link.

Search permission is denied on a com
ponent of the path prefix.

The effective user ID does not match the
owner of the file and the effective user ID
is not the superuser.

The named file is not a symbolic link.

- 1 - September, 1987

readlink(2)

[EFAULT]

[ELOOP]

SEE ALSO

readlink (2)

buf extends outside the process's allocated
address space.

Too many symbolic links were encoun
tered in translating the pathname.

stat(2), l stat(2), syml ink(2).

- 2 - September, 1987

•

•

•

•

•

•

reboot (2) reboot (2)

NAME
reboot - reboot the system

SYNOPSIS
reboot ()

DESCRIPI'ION
reboot causes the kernel to execute the initial bootstrap code
that was used to boot the operating system.

The reboot(2) call takes the place of a manual restart and
requres effective user ID of root (superuser) to run.

SEE ALSO
reboot (1M) .

- 1 - September, 1987

recv(2N) recv(2N)

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#include <sys /types . h>
#include <sys / s ocket . h>

int recv (s , buf, len , flags)
int s ;
char *buf;
int len , flags;

int recvfrom (s , buf, len , flags, from, from/en)
int s ;
char *buf;
int len , flags ;
struct s ockaddr *from;
int *fromlen ;

int recvmsg (s , msg , flags)
int s ;
struct msghdr msg [] ;
int flags;

DESCRIPTION
recv, recvfrom, and recvmsg are used to receive messages
from a socket.

The recv call may be used only on a connected socket (i.e.,
when connect(2N) has been used), while recvfrom and
recvmsg may be used to receive data on a socket whether it is in
a connected state or not.

If from is nonzero, the source address of the message is filled in.
fromlen is a value-result parameter, initialized to the size of the
buffer associated with from, and modified on return to indicate the
actual size of the address stored there. The length of the message
is returned. If a message is too long to fit in the supplied buffer,
excess bytes may be discarded depending on the type of socket the
message is received from; see socket(2N).

If no messages are available at the socket, the receive call waits
for a message to arrive, unless the socket is nonblocking (see
ioct l(2)) in which case a -1 is returned with the external vari
able e rrno set to EWOULDBLOCK.

The select(2N) call may be used to determine when more data
arrives.

- 1 - September, 1987

•

•

•

•

•

•

recv(2N) recv(2N)

The flags argument to a send call is formed by or'ing one or
more of the values,

#de fine MSG_PEEK Oxl /* peek at incoming me s s age */

ide f ine MSG_OOB Ox2 /* proce s s out -of-band dat a * /

The recvmsg call uses a msghdr structure to minimize the
number of directly supplied parameters. This structure has the
following form, as defined in <sys I socket . h>:

st ruct msghdr {
caddr t msg_name ; / * opt ional addre s s * /

int msg_namelen; / * s i z e o f addre s s * /

st ruct iov *msg_iov; / * scatt e r / gather array * /

int msg_iovlen ; / * i e lement s i n msg_iov * /

caddr t msg_accright s ; / * acce s s right s sent / received * /

int msg_accright s len;

} ;

Here msg name and msg name len specify the destination
address if die socket is unconnected; msg name may be given
as a null pointer if no names are desrred or required. The
msg iov and msg iovlen describe the scatter gather loca
tioni" Access rights

-
to be sent along with the message are

specified in msg accright s , which has length
msg_accright s len�

RETURN VALUE
These calls return the number of bytes received, or -1 if an error
occurred.

ERRORS
The calls fail if:

[EBADF]

[ENOTSOCK]

[EWOULDBLOCK]

[EINTR]

[EFAULT]

The argument s is an invalid descriptor.

The argument s is not a socket

The socket is marked nonblocking and
the receive operation would block.

The receive was interrupted by delivery
of a signal before any data was available
for the receive.

The data was specified to be received into
a nonexistent or protected part of the pro
cess address space.

- 2 - September, 1987

recv(2N) recv(2N)

SEE ALSO
connect(2N), read(2), send(2N), socket(2N).

•

•

•

- 3 - September, 1987

•

•

•

rename (2) rename (2)

NAME
rename - change the name of a file

SYNOPSIS
int rename <from, to)
char *from, *to ;

DESCRIPTION
rename causes the link named /rom to be renamed as to . If to
exists, then it is first removed. Both from and to must be of the
same type (that is, both directories or both nondirectories), and
must reside on the same file system.

rename guarantees that an instance of the file will always exist,
even if the system should crash in the middle of the operation.

CAVEAT
The system can deadlock if a loop in the file system graph is
present. This loop takes the form of an entry in directory ' ' a ' ' say
a I f oo, being a hard link to directory "b", and an entry in direc
tory "b", say b/bar, being a hard link to directory " a " . When
such a loop exists and two separate processes attempt to perform
rename a / foo b/bar and rename b/bar a / foo,
respectively, the system may deadlock attempting to lock both
directories for modification. Hard links to directories should be
replaced by symbolic links by the system administrator.

RETURN VALUE
A 0 value is returned if the operation succeeds, otherwise
rename returns -1 and the global variable errno indicates the
reason for the failure.

ERRORS
rename will fail and neither of the files named as arguments will
be affected if any of the following are true:

[ENOTD IR]

[EPERM]

A component of either path prefix is not a
directory.

A pathname contains a character with the
high-order bit set

[ENAMETOOLONG] A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX .

[ELOOP] Too many symbolic links were encoun
tered in translating a pathname.

- 1 - September, 1987

rename (2) rename (2)

[ENOENT] A component of either path prefix does not
exist.

[EACCE S] A component of either path prefix denies • search permission.

[ENOENT] The file named by from does not exist

[EPERM] The file named by from is a directory and
the effective user ID is not superuser.

[EXDEV] The link named by to and the file named by
from are on different logical devices (file
systems).

[EACCES] The requested link requires writing in a
directory with a mode that denies write
permission.

[EROFS] The requested link requires writing in a
directory on a read-only file system.

[EFAULT] path points outside the process's allocated
address space.

[E INVAL] from is a parent directory of to . • SEE ALSO
mv{l), open(2).

•
- 2 - September, 1987

•

•

•

rmdir(2) rmdir(2)

NAME
rmdir - remove a directory file

SYNOPSIS
int rmdir (path)
char *path ;

DESCRIPTION
rmdir removes a directory file whose name is given by path .
The directory must not have any entries other than ' ' . ' ' and ' ' . . ' ' .

RETURN VALUE
A 0 is returned if the remove succeeds; otherwise a - 1 is returned
and an error code is stored in the global location errno .

ERRORS
The named file is removed unless one or more of the following are
true:

[ENOTEMPTY]

[EPERM]

The named directory contains files other
than " ." and " . . " in it

A pathname contains a character with the
high-order bit set

[ENAMETOOLONG] A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

[ELOOP]

[ENOTD IR]

[ENOENT]

[EACCES]

[EACCES]

[EBUSY]

[EROFS]

[EFAULT]

Too many symbolic links were encoun
tered in translating a pathname.

A component of the path prefix is not a
directory.

The named file does not exist.

A component of the path prefix denies
search permission.

Write permission is denied on the directory
containing the link to be removed.

The directory to be removed is the mount
point for a mounted file system.

The directory entry to be removed resides
on a read-only file system .

path points outside the process's allocated
address space.

- 1 - September, 1987

rmdir(2) rmdir(2)

SEE ALSO
rmdir(l), mk.dir(2), unlink(2).

•

•

•
- 2 - September, 1987

•

•

•

select (2N) select (2N)

NAME
select - synchronous l/0 multiplexing

SYNOPSIS
:floinclude <sys / t ime . h>

int select <nfds, readfds, writefds, execptfds , timeout)
int nfds, *readfds, *writefds, *execptfds ;
st ruct t imeval *timeout;

DESCRIPTION
select examines the l/0 descriptors specified by the bit masks
readfds, writefds, and execptfds to see if they are ready for read
ing, writing, or have an exceptional condition pending, respec
tively. File descriptor f is represented by the bit 1 <<f in the mask.
nfds descriptors are checked, i.e., the bits from 0 through nfds-1
in the masks are examined. select returns, in place, a mask of
those descriptors which are ready. The total number of ready
descriptors is returned.

If timeout is a nonzero pointer, it specifies a maximum interval to
wait for the selection to complete. If timeout is a zero pointer, the
select blocks indefinitely. To affect a poll, the timeout argument
should be nonzero, pointing to a zero valued timeval
structure.

Any of readfds, writefds, and execptfds may be given as 0 if no
descriptors are of interest.

RETURN VALUE
select returns the number of descriptors which are contained in
the bit masks, or -1 if an error occurred. If the time limit expires
then select returns 0.

ERRORS
An error return from select indicates:

[EBADF] One of the bit masks specified an invalid
descriptor.

[E INTR] A signal was delivered before any of the
selected for events occurred or the time limit
expired.

SEE ALSO
accept(2N), connect(2N), recv(2N), readv(2), send(2N),
writev(2).

- 1 - September, 1987

select (2N) select (2N)

BUGS
The descriptor masks are always modified on return, even if the
call returns as the result of the timeout.

- 2 - September, 1987

•

•

•

•

•

•

semctl (2)

NAME
semctl - semaphore control operations

SYNOPSIS
:fl:include <sys /types . h>
:fl:include < sys / ipc . h>
:fl:include < sys /sem . h>

int semctl (semid, semnum, cmd, arg)
int semid, cmd ;
int semnum ;
union semun {

int val ;
st ruct semid ds *buf;
ushort *array ;

arg ;

DESCRIPTION

semct l(2)

semctl provides a variety of semaphore control operations as
specified by cmd.

The following cmds are executed with respect to the semaphore
specified by semid and semnum (see int ro(2) for required per
missions � structure declarations):

GETVAL Return the value of semval (see int ro(2)).

SETVAL Set the value of semval to arg.val . When this
command is successfully executed, the semadj
value corresponding to the specified semaphore in
all processes is cleared.

GETP ID Return the value of sempid.

GETNCNT Return the value of semncnt.

GETZCNT Return the value of semzcnt .

The following cmds return and set, respectively, every semval in
the set of semaphores.

GET ALL

SET ALL

Place semvals into array pointed to by arg.array.

Set semvals according to the array pointed to by
arg.array. When this command is successfully exe-
cuted, the semadj values corresponding to each
specified semaphore in all processes are cleared .

The following cmds are also available:

- 1 - September, 1987

semct l {2) semct l(2)

IPC STAT Place the current value of each member of the data
structure associated with semid into the structure
pointed to by arg.buf. The contents of this structure
are defined in int ro(2).

IPC SET Set the value of the following members of the data
structure associated with semid to the corresponding
value found in the structure pointed to by arg.buf:
sem_perm . uid
sem_pe rm . gid
sem_perm . mode / * only low 9 bit s * /

This command can only be executed by a process
that has an effective user ID equal to either that of
superuser or to the value of sem_perm . uid in the
data structure associated with semid.

IPC RMID Remove the semaphore identifier specified by semid
from the system and destroy the set of semaphores
and data structure associated with it This command
can only be executed by a process that has an effec
tive user ID equal to either that of superuser or to the
value of sem_perm . uid in the data structure
associated with semid. The identifier and its associ
ated data structure are not actually removed until
there are no more referencing processes. See
ipcrm{l), and ipcs(l).

RETURN VALUE
Upon successful completion, the value returned depends on cmd
as follows:

GETVAL

GETP ID

GETNCNT

GETZCNT

All others

The value of semval.

The value of sempid.

The value of semncnt.

The value of semzcnt .

A value of O.

Otherwise, a value of -1 is returned and e rrno is set to indicate
the error.

ERRORS
semct 1 will fail if one or more of the following are true:

[E INVAL] semid is not a valid semaphore identifier.

- 2 - September, 1987

•

•

•

•

•

•

semctl (2)

[E INVAL]

[E INVAL]

[EACCES]

[ERANGE]

[EPERM]

[EFAULT]

SEE ALSO

semct l (2)

semnum is less than zero or greater than
sem nsems .

cmd is not a valid command.

Operation pennission is denied to the calling
process (see int ro(2)).

cmd is SETVAL or SETALL and the value to
which semval is to be set is greater than the
system imposed maximum.

cmd is equal to IPC RMID or IPC SET and
the effective user ID-of the calling process is
not equal to that of superuser and it is not equal
to the value of sem_perm . uid in the data
structure associated with semid.

arg.blifpoints to an illegal address.

int ro(2), semget(2), semop(2) .

- 3 - September, 1987

semget (2)

NAME
semget - get set of semaphores

SYNOPSIS
:fl:include <sys /types . h>
:fl:include <sys / ipc . h>
:fl:include <sys / sem . h>

int semget (key, nsems,
key_t key ;
int nsems, semjlg;

DESCRIPTION

semget (2)

semjlg)

semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set con
taining nsems semaphores (see int ro(2)) are created for key if
one of the following are true:

key is equal to IPC_PRIVATE.

key does not already have a semaphore identifier associated
with it, and (semjlg & IPC_CREAT) is "true".

The key IPC_PRIVATE will create an identifier and associated
data structure that is unique to the calling process and its children.

Upon creation, the data structure associated with the new sema
phore identifier is initialized as follows:

sem_perm . cuid, sem_perm . uid, sem_perm . cgid,
and sem_perm . gid are set equal to the effective user ID
and effective group ID. respectively, of the calling process.

The low-order 9 bits of sem_perm . mode are set equal to
the low-order 9 bits of semjlg .

sem_ nsems is set equal to the value of nsems.

sem_ot ime is set equal to 0 and sem_ct ime is set equal
to the current time.

RETURN VALUE
Upon successful completion, a non-negative integer, namely a
semaphore identifier, is returned. Otherwise, a value of - 1 is
returned and errno is set to indicate the error.

ERRORS
semget will fail if one or more of the following are true:

[E INVAL] nsems is either less than or equal to zero or
greater than the system-imposed limit.

- 1 - September, 1987

•

•

•

•

•

•

semget (2)

[EACCES]

[EINVAL]

[ENOENT]

[ENOSPC]

[ENOSPC]

[EEXI S T]

SEE ALSO

semget (2)

A semaphore identifier exists for key, but
operation permission (see int ro(2)) as
specified by the low-order 9 bits of semjlg
would not be granted .

A semaphore identifier exists for key, but the
number of semaphores in the set associated
with it is less than nsems and nsems is not equal
to zero.

A semaphore identifier does not exist for key
and (semjlg & IPC_CREAT) is "false" .

A semaphore identifier is to be created but the
system-imposed limit on the maximum number
of allowed semaphore identifiers system wide
would be exceeded.

A semaphore identifier is to be created but the
system-imposed limit on the maximum number
of allowed semaphores system wide would be
exceeded.

A semaphore identifier exists for key but
((semflg & IPC_CREAT) & & (semjlg &
IPC_EXCL)) is "true".

int ro{2), semct l(2), semop(2) .

- 2 - September, 1987

semop(2) semop{2)

NAME
semop - semaphore operations

SYNOPSIS
#include <sys /types . h>
#include <sys / ipc . h>
#include <sys /sem . h>

int semop (semid, sops, nsops)
int semid;
st ruct sembuf * *sops;
int nsops;

DESCRIPI'ION
semop is used to automatically perfonn an array of semaphore
operations on the set of semaphores associated with the sema
phore identifier specified by semid. sops is a pointer to the array
of semaphore-operation structures. nsops is the number of such
structures in the array. The contents of each structure includes the
following members:

short sem_num; / * semaphore number * /
short sem_op ; / * semaphore operat ion * /
short sem_flg; / * operat ion flags * /

Each semaphore operation specified by sem op is performed on
the corresponding semaphore specified by semtdand sem_num.

sem op specifies one of three semaphore operations as follows
(see int ro(2) for pennissions and structure declarations:

If sem_op is a negative integer, one of the following will occur:

If semval (see int ro(2)) is greater than or equal to the
absolute value of sem op, the absolute value of sem op is
subtracted from semval. Also, if (sem f lg &
SEM UNDO) is "true", the absolute value of sem op is
addtil to the calling process's semadj value (see ex1t(2))
for the specified semaphore.

If semval is less than the absolute value of sem op and
(sem flg & IPC NOWAIT) is "true", semop will

return immediately.
-

If semval is less than the absolute value of sem_op and
(sem flg & IPC NOWAIT) is "false", semop will

increment the semncnt associated with the specified sema
phore and suspend execution of the calling process until one
of the following conditions occur:

- 1 - September, 1987

•

•

•

•

•

•

semop(2) semop(2)

semval becomes greater than or equal to the absolute
value of sem op. When this occurs, the value of
semncnt associated with the specified semaphore is
decremented, the absolute value of sem op is sub
tracted from semval and, if (sem flg &
SEM UNDO) is "true", the absolute value oC sem op
is added to the calling process's semadj value for the
specified semaphore.

The semid for which the calling process is awaiting
action is removed from the system (see semct l(2)).
When this occurs, errno is set equal to E IDRM, and a
value of -1 is returned.

The calling process receives a signal that is to be caught
When this occurs, the value of semncnt associated with
the specified semaphore is decremented, and the calling
process resumes execution in the manner prescribed in
s ignal(3).

If sem_op is a positive integer, the value of sem_op is added
to semval and, if (sem flg & SEM UNDO) is "true", the
value of sem_op is subtracted from

-
the calling process's

semadj value for the specified semaphore .

If sem _ op is zero, one of the following will occur:

If semval is zero, semop will return immediately.

If semval is not equal to zero and (sem flg &
IPC_NOWAIT) is "true", semop will return immeruately.

If semval is not equal to zero and (sem f lg &
IPC NOWAIT) is "false" , semop will increment the
sem-;cnt associated with the specified semaphore and
suspend execution of the calling process until one of the fol
lowing occurs:

semval becomes zero, at which time the value of
semzcnt associated with the specified semaphore is
decremented.

The semid for which the calling process is awaiting
action is removed from the system. When this occurs,
errno is set equal to E IDRM, and a value of -1 is
returned .

The calling process receives a signal that is to be caught
When this occurs, the value of semzcnt associated

- 2 - September, 1987

semop(2) semop(2)

with the specified semaphore is decremented, and the
calling process resumes execution in the manner
prescribed in s ignal(3).

RETURN VALUE
If semop returns due to the receipt of a signal, a value of -1 is
returned to the calling process and errno is set to E INTR. If it
returns due to the removal of a semid from the system, a value of
-1 is returned and errno is set to E IDRM.

Upon successful completion, the value of semval at the time of
the call for the last operation in the array pointed to by sops is
returned. Otherwise, a value of -1 is returned and errno is set
to indicate the error.

ERRORS
semop will fail if one or more of the following are true for any of
the semaphore opemtions specified by sops:

[E INVAL]

[EFBIG]

[E2BIG]

[EACCES]

[EAGAIN]

[ENOSPC]

[E INVAL]

[ERANGE]

[ERANGE]

[EFAULT]

semid is not a valid semaphore identifier.

sem num is less than zero or greater than or
equal to the number of semaphores in the set
associated with semid.

nsops is greater than the system-imposed max
imum.

Operation permission is denied to the calling
process (see int ro(2)).

The opemtion would result in suspension of the
calling process but (sem_flg &
IPC_NOWAIT) is "true".

The limit on the number of individual processes
requesting an SEM _UNDO would be exceeded.

The number of individual semaphores for
which the calling process requests a
SEM UNDO would exceed the limit

An opemtion would cause a semval to
overflow the system-imposed limit

An operation would cause a semadj value to
overflow the system-imposed limit

sops points to an illegal address.

- 3 - September, 1987

•

•

•

•

•

•

semop(2) semop(2)

Upon successful completion, the value of semid for each sema
phore specified in the array pointed to by sops is set equal to the
process ID of the calling process .

SEE ALSO
exec(2), exit(2), fork(2), int ro(2), semctl(2),
semget(2) .

- 4 - September, 1987

send(2N) send(2N)

NAME
send, sendto, send.msg - send a message from a socket

SYNOPSIS
#include <sys /types . h>
#include <sys / socket , h>

int send (s, msg , len , flags)
int s ;
char *msg ;
int len , flags;

int sendto (s, msg, len , flags, to , tolen)
int s ;
char *msg ;
int len , flags;
st ruct sockaddr *to ;
int tolen ;

int send.msg (s, msg, flags)
int s ;
st ruct msghdr msg [] ;
int flags;

DESCRIPfiON
send, sendto, and send.msg are used to ttansmit a message to
another socket. send may be used only when the socket is in a
connected state (i.e., when connect(2N) has been used), while
send to and send.msg may be used at any time.

The address of the target is given by to with tolen specifying its
size. The length of the message is given by len . If the message is
too long to pass atomically through the underlying protocol, then
the error EMSGS I ZE is returned, and the message is not ttansmit
ted.

If no message space is available at the socket to hold the message
to be ttansmitted, then send normally blocks, unless the socket
has been placed in nonblocking 1/0 mode. The select(2N) call
may be used to determine when it is possible to send more data.

The flags parameter may be set to MSG _ OOB to send ' 'out-of
band" data on sockets which support this notion (e.g.
SOCK_ STREAM).

See recv(2N) for a description of the msghdr structure.

RETURN VALUE
The call returns the number of characters sent, or -1 if an error

- 1 - September, 1987

•

•

•

•

•

•

send(2N) send(2N)

occurred.

No indication of failure to deliver is implicit in a send. Return
values of -1 indicate some locally detected errors .

ERRORS
[EBADF] An invalid descriptor was specified.

[ENOTSOCK]

[EFAULT]

[EMSGS I ZE]

[EWOULDBLOCK]

SEE ALSO

The argument s is not a socket

An invalid user space address was
specified for a parameter.

The socket requires that message be sent
atomically, and the size of the message to
be sent made this impossible.

The socket is marked nonblocking and
the requested operation would block.

connect(2N), recv(2N), socket(2N) .

- 2 - September, 1987

setcompat (2) setcompat (2)

NAME
setcompat. getcompat - set or get process compatibility
mode

SYNOPSIS
f include <compat . h>

int setcompat (flags)
int flags;

int getcompat ()

DBSCRIPITON
setcompat sets a process's compatibility mode according to the
flags argument flags governs the type of compatibility enforced.
flags may be COMPAT_SVID for strictest adherence to the Sys
tem V interface definition or the bitwise or of one or more of the
following symbolic constants. If set. other flags always take pre
cedence over COMPAT SVID.

COMPAT_BSDNBIO

COMPAT BSDPROT

Changes the error handling in 4.2
BSD nonblocking 1/0 code. Read
and write system calls on slow
devices. i.e. . terminals. which are
marked for non-blocking may return
-1 with errno set to EWOULD
BLOCK instead of returning 0.
(Operations which may block. i.e . •
connect. accept and recv. on
sockets which are marked for non
blocking always return an error and
set errno to EWOULDBLOCK.)
Enables the use of the 4.2 BSD
groups code which permits users to
be members of more than one group
simultaneously and creates files
whose group is determined by the
group of the directory in which the
file is created. When selected.
changes the behavior of the setuid
and setgid calls to be BSD
compatible; i.e.. no handling of the
saved set-user (group) ID from exec.
When cleared. the setreuid and setre
gid calls behave as setuid and setgid.
respectively.

- 1 - September. 1987

•

•

•

•

•

•

setcompat (2) setcompat (2)

COMPAT BSD S IGNALS Allows a process to use 4.2 BSD
compatible signals. The state of this
flag may not be changed unless no
signals are pending, caught, or held.
This option enables reliable signal
delivery. Caught signals will be held
while a signal handler is invoked,
and reset upon exit from the signal
bander.

COMP AT BSDTTY Enables 4.2 BSD job control. When
first set, this process and its descen
dants will be identified as 4.2
processes via a bit in the flag word
of the kernel proc data structure.
Membership in a 4.2 process group
persists across exec system calls.
Jobs that are 4.2 process group
members are effected by job control
signals. When COMP AT_ BSDTTY
is set the setpgrp system call
may be used to manipulate the pro
cess group of other processes. This
flag may only be used in conjunction
with the COMPAT BSD S IGNALS
flag. Normally COMP AT BSDTTY
is set by a login shell.

-

COMPAT CLRPGROUP Disables 4.2 BSD job control.
Resets the 4.2 process group bit in
the flag word of the kernel proc
data structure. It may be used by a
V.2 process which wants to sever
any job control associations with an
invoking shell (for itself and its des
cendants). This bit provides a "one
shot" clear. When read by
getcompat, this bit is always zero.

COMP AT EXEC If this flag is set, compatability flags
are inherited across exec system
calls. To provide child process with
a System V interface environment,
both COMPAT SVID and
COMP AT_ EXEC flags must be set by

- 2 - September, 1987

setcompat (2)

COMPAT_SYSCALLS

setcompat (2)

ORing the flags.

If selected, read, write, ioct l,
or wait calls which are interrupted
by a signal handler will not return an
E INTR error, but will instead
resume at the point they were inter
rupted. This flag may only be used
in conjunction with the
COMPAT_BSD S IGNALS flag.

getcompat returns the current process compatibility flags. By
default, compatibility flags are preserved across forks and are
reset by execs (see COMP AT_ EXEC above).

The default process compatibility flags are COMP AT_ BSDPROT
and COMPAT BSDNBIO.

RETURN VALUE
Upon successful completion, setcompat returns the previous
compatibility mask and getcompat returns the current compa
tibility mask. Otherwise, a value of -1 is returned and e rrno is
set to indicate the error.

ERRORS
setcompat will return the following error code:

[E INVAL]

[E INVAL]

SEE ALSO

flag results in a change in the state of the
COMPAT BSD S IGNALS bit and a signal is
currently "Pending, caught, or held.

flag is either COMP AT BSDTTY or
COMPAT SYSCALLS and
COMPAT

-
BSD S IGNALS is not also set

exec(2), fork(2), s igvec(2), set 4 2 sig(3), s ignal(3),
setuid(3), termio(7).

- 3 - September, 1987

•

•

•

•

•

•

setgroups (2)

NAME
set groups - set group access list

SYNOPSIS
:§:include <sys /param . h>

int setgroups (ngroups, gidset)
int ngroups, *gidset;

DESCRIYI'ION

setgroups (2)

set groups sets the group access list of the current user process
according to the array gidset . The parameter ngroups indicates
the number of entries in the array and must be no more than
NGROUP S , as defined in <sys /param . h>.

Only the superuser may set new groups.

RETURN VALUE
A 0 value is returned on success, -1 on error, with a error code
stored in errno.

ERRORS
The setgroups call will fail if:

[E INVAL] The value of ngroups is greater than NGROUP S .

[EPERM] The caller is not the superuser.

[EFAULT] The address specified for gidset is outside the
process address space.

SEE ALSO
getgroups(2), ini tgroups(3X) .

- 1 - September, 1987

setpgrp(2)

NAME
setpgrp - set process group ID

SYNOPSIS
int setpgrp ()

or

int setpgrp (pid, pgrp)
int pid, pgrp ;

DESCRIPTION

setpgrp(2)

The first form of setpgrp sets the process group ID of the cal
ling process to the process ID of the calling process and returns
the new process group ID.

The second form of setpgrp is available when the process has
requested 4.2 BSD compatibility. setpgrp will then set the
process group of the specified process pid to the specified pgrp . If
pid is zero, then the call applies to the current process.

If the user is not superuser, then the affected process must have
the same effective user ID as the invoking user or be a descendant
of the invoking process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
The setpgrp call fails if:

[ESRCH] the process is not found

[EPERM] The caller is not superuser.

SEE ALSO
exec(2), fork(2), getpid(2), int ro(2), kill(2), setcom
pat(2), s ignal(3).

- 1 - September, 1987

•

•

•

•

•

•

set regid(2) set regid(2)

NAME
set regid - set real and effective group ID

SYNOPSIS
int set regid (rgid, egid)
int rgid, egid:

DESCR.IPI10N
The real and effective group ID's of the current process are set to
the arguments. Only the superuser may change the real group ID
of a process. Unprivileged users may change the effective group
ID to the real group ID, but to no other.

Supplying a value of - 1 for either the real or effective group ID
forces the system to substitute the current ID in place of the -1
parameter.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
[EPERM]

NOTE

The current process is not the superuser and a
change other than changing the effective group ID to
the real group ID was specified.

This call only works in COMP AT_ BSDPROT compatibility mode.

SEE ALSO
getgid(2), setcompat(2), set reuid(2), setgid(3) .

- 1 - September, 1987

set reuid(2) set reuid(2)

NAME
set reuid - set real and effective user ID's

SYNOPSIS
int set reuid (ruid, euid)
int ruid, euid;

DESCRIPTION
The real and effective user ID's of the current process are set
according to the arguments. If ruid or euid is -1 , the current uid is
filled in by the system. Only the superuser may modify the real
uid of a process. Users other than the superuser may change the
effective uid of a process only to the real user ID.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and e r rno is set to indicate the error.

ERRORS
[EPERM]

NOTE

The current process is not the superuser and a
change other than changing the effective user
ID to the real user ID was specified.

This call only works in COMP AT_ BSDPROT compatibility mode.

SEE ALSO
getuid(2), setcompat(2), set regid(2), setuid(2).

- 1 - September, 1987

•

•

•

•

•

•

setuid(2)

NAME
set uid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;

int setgid (gid)
int gid;

DESCRIPTION

setuid(2)

setuid (setgid) sets the real user (group) ID and effective
user (group) ID of the calling process.

If the effective user ID of the calling process is superuser, the real
user (group) ID and effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not superuser, but
its real user (group) ID is equal to uid (gid), the effective user
(group) ID is set to uid (gid).

If the effective user ID of the calling process is not superuser, but
the saved set-user (group) ID from exec(2) is equal to uid (gid),
the effective user (group) ID is set to uid (gid) .

ERRORS
setuid (setgid) will fail if one or more of the following are
true:

[EPERM]

[E INVAL]

RETURN VALUE

the real user (group) ID of the calling process is
not equal to uid (gid) and its effective user ID is
not superuser.

The uid is out of range.

Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

SEE ALSO
getuid(2), set regid(2), set reuid(2), int ro{2) .

- 1 - September, 1987

shmct l (2) shmct l (2)

NAME
shmct l - shared memory control operations

SYNOPSIS
'if:include <sys /types . h>
'if:include <sys / ipc . h>
'if:include <sys /shm . h>

int shmct l (shmid, cmd, buf>
int shmid, cmd;
st ruct shmid_ds *buf;

DESCRIPTION
shmct l provides a variety of shared memory control operations
as specified by cmd. (Structure definitions and permissions are
described in int ro(2).) The following cmds are available:

IPC STAT Place the current value of each member of the
data structure associated with shmid into the
structure pointed to by buf.

IPC SET Set the value of the following members of the
data structure associated with shmid to the
corresponding value found in the structure
pointed to by buf:

shm _perm . uid
shm_perm . gid
shm_perm . mode / *only low 9 bit s * /

This cmd can only be executed by a process that
has an effective user ID equal to either that of
superuser or to the value of shm _perm . uid in
the data structure associated with shmid.

IPC RMID Remove the shared memory identifier specified by
shmid from the system and destroy the shared
memory segment and data structure associated
with it This cmd can only be executed by a pro
cess that has an effective user ID equal to either
that of superuser or to the value of
shm_perm . uid in the data structure associated
with shmid. The identifier and its associated data
structure are not actually removed until there are
no more referencing processes. See ipcrm(l),
and ipcs(l).

- 1 - September, 1987

•

•

•

•

•

•

shmctl (2) shmct l(2)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error .

ERRORS
shmctl will fail if one or more of the following are true:

[EINVAL] shmid is not a valid shared memory identifier.

[E INVAL] cmd is not a valid command.

[EACCE S] cmd is equal to IPC_STAT and READ opera
tion permission is denied to the calling process
(see int ro{2)).

[EAGAIN]

[EPERM]

[EFAULT]

SEE ALSO

The system has temporarily exhausted its avail
able memory or swap space.

cmd is equal to IPC_RMID or IPC_SET and
the effective user ID of the calling process is
not equal to that of superuser and it is not equal
to the value of shin __perm . uid in the data
structure associated with shmid.

bl(points to an illegal address.

int ro(2), shmget(2), shmop(2) .

- 2 - September, 1987

shmget (2) shmget (2)

NAME
shmget - get shared memory segment

SYNOPSIS
#include <sys /types . h>
#include <sys / ipc . h>
#include <sys /shm . h>

int shmget (key , size, shmjlg)
key_t key;
in t size, shmjlg ;

DESCRIPnON
shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and
shared memory segment of at least size size bytes are created for
key if one of the following are true (see int ro(2)):

key is equal to IPC_PRIVATE.

key does not already have a shared memory identifier associ
ated with it, and (shmflg & IPC_CREAT) is "true".

Note: A shared memory segment of size is always
rounded up to the nearest whole page.

The key IPC PRIVATE will Crte an identifier and associated
data structure that is unique to the calling gprocess and its chil
dren.

Upon creation, the data structure associated with the new shared
memory identifier is initialized as follows:

shm_perm . cuid, shm_perm . uid, shm_perm . cgid,
and shm_pe rm . gid are set equal to the effective user ID
and effective group ID, respectively, of the calling process.

The low-order 9 bits of shm_perm . mode are set equal to
the low-order 9 bits of shmflg. shm_ segs z is set equal to
the value of size .

shm lpid, shm nattch, shm a t ime, and shm dtime
are set equal to 0.

- - -

shm_ ct ime is set equal to the cmrent time.

RETURN VALUE
Upon successful completion, a non-negative integer, namely a
shared memory identifier is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

- 1 - September, 1987

•

•

•

•

•

•

shmget (2) shmget (2)

ERRORS
shmget will fail if one or more of the following are true:

[EINVAL] size is less than the system-imposed minimum
or greater than the system-imposed maximum.

[EACCES]

[EAGAIN]

[EINVAL]

[ENOENT]

[ENOSPC]

[ENOMEM]

[EEXIS T]

SEE ALSO

A shared memory identifier exists for lcey but
operation permission (see int ro(2)) as
specified by the low-order 9 bits of shtriflg
would not be granted.

The system has temporarily exhausted its avail
able memory or swap space.

A shared memory identifier exists for lcey but
the size of the segment associated with it is less
than size and size is not equal to zero.

A shared memory identifier does not exist for
/cey and (shmjlg & IPC_CREAT) is "false" .

A shared memory identifier is to be created but
the system-imposed limit on the maximum
number of allowed shared memory identifiers
system wide would be exceeded .

A shared memory identifier and associated
shared memory segment are to be created but
the amount of available physical memory is not
sufficient to fill the requesL

A shared memory identifier exists for key but
((shtriflg & IPC_CREAT) & & (shtriflg &
IPC_EXCL)) is "true".

int ro{2), shmct l(2), shmop(2) .

- 2 - September, 1987

shmop(2) shmop(2)

NAME
shmop, shmat, shmdt - shared memory operations

SYNOPSIS
finclude <sys /types . h>
tinclude <sys / ipc . h>
finclude <sys / shm . h>

char *shmat (shmid, shmaddr, shmjlg)
int shmid;
char * shmaddr
int shmjlg ;

int shmdt (shmaddr)
char *shmaddr

DESCRIPTION
shmat attaches the shared memory segment associated with the
shared memory identifier specified by shmid to the data segment
of the calling process. The segment is attached at the address
specified by one of the following criteria:

If shmaddr is equal to zero, the segment is attached at the
first available address as selected by the system.

If shmaddr is not equal to zero and (shmjlg & SHM RND)
is "true", the segment is attached at the address giVen by
(shmaddr - (shmaddr modulus SHMLBA)).

If shmaddr is not equal to zero and < shmjlg & SHM_RND)
is "false," the segment is attached at the address given by
shmaddr .

The segment i s attached for reading i f (shmjlg &
SHM _ RDONLY) is "true", otherwise it is attached for reading and
writing.

RETURN VALUES
Upon successful completion, the return value is as follows:

shmat returns the data segment start address of the attached
shared memory segment.

shmdt returns a value of 0.

Otherwise, a value of -1 is returned and errno is set to indicate
the error.

ERRORS
shmat will fail and not attach the shared memory segment if one
or more of the following are true:

- 1 - September, 1987

•

•

•

•

•

•

shmop(2)

[E INVAL]

[EACCES]

[EAGAIN]

[ENOMEM]

[EINVAL]

[E INVAL]

[EMFILE]

[EINVAL]

[E INVAL]

SEE ALSO

shmop(2)

shmid is not a valid shared memory identifier.

Operation pennission is denied to the calling
process (see int ro{2)) .

The system has temporarily exhausted its avail
able memory or swap space.

The available data space is not large enough to
accommodate the shared memory segmenL

shmoddr is not equal to zero, and the value of
(shmaddr - (shmaddr modulus SHMLBA))

is an illegal address.

shmaddr is not equal to zero, < shrriflg &
SHM RND) is "false . . , and the value of
shmDddr is an illegal address.

The number of shared memory segments
attached to the calling process would exceed
the system-imposed limiL

shmdt detaches from the calling process•s data
segment the shared memory segment located at
the address specified by shmaddr.

shmdt will fail and not detach the shared
memory segment if shmaddr is not the data seg
ment start address of a shared memory seg
menL

exec(2), exit(2), fork{2), int ro(2), shmct l(2),
shmget(2) .

- 2 - September, 1987

shutdown(2N) shutdown(2N)

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
int shutdown (s, how)
int s, how ;

DESCRIPI'ION
The shutdown call causes all or part of a full-duplex connec
tion on the socket associated with s to be shut down. If how is 0,
then further receives will be disallowed. If how is 1 , then further
sends will be disallowed. If how is 2, then further sends and
receives will be disallowed.

RETURN VALUE
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] s is not a valid descriptor.

s is a file, not a sockeL [ENOTSOCK]

[ENOTCONN]

SEE ALSO

The specified socket is not connected.

connect{2N), socket(2N).

- 1 - September, 1987

•

•

•

•

•

•

s igblock(2)

NAME
s igblock - block signals

SYNOPSIS
:fl: include <s ignal . h>

int s igblock (mask> ;
int mask ;

s igmask (signum)
int signum ;

DESCRIYfiON

s igblock(2)

s igblock causes the signals specified in mask to be added to the
set of signals currently being blocked from delivery. Signals are
blocked if the corresponding bit in mask is a 1 ; the macro s ig
mask is provided to construct the mask for a given signum.

It is not possible to block S IGKILL, S IGSTOP, or S IGCONT;
this restriction is silently imposed by the system.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), s igvec(2), s igsetmask{2), s ignal(3) .

- 1 - September, 1987

s igpause (2) s igpause (2)

NAME
s igpause - atomically release blocked signals and wait for
interrupt

SYNOPSIS
int s igpause (sigmask)
int sigmask;

DESCRIPI'ION
s igpause assigns sigmask to the set of blocked signals and then
waits for a signal to arrive; on retmn the set of masked signals is
restored. sigmask is usually 0 to indicate that no signals are now
to be blocked.

In normal usage, a signal is blocked using s igblock{2), to begin
a critical section, variables modified on the occurrence of the sig
nal are examined to determine that there is no work to be done,
and the process pauses awaiting work by using s igpause with
the mask retmned by s igblock.

RETURN VALUE
s igpause always terminates by being interrupted, returning - 1 .

ERRORS
s igpause always terminates by being interrupted with errno
set to E INTR.

SEE ALSO
s igblock{2), s igvec(2), s ignal(3).

- 1 - September, 1987

•

•

•

•

•

•

s iqsetmask(2)

NAME
s igsetmask - set current signal mask

SYNOPSIS
:fl: include <s ignal . h>

int s igsetmask (mask) ;
int mask ;

int signum;
s igmask (signum)

DESCRIPTION

siqsetmask{2)

s igsetmask sets the current signal mask (those signals that are
blocked from delivery). Signals are blocked if the corresponding
bit in mask is a 1 ; the macro s igmask is provided to construct
the mask for a given signum.

The system quietly disallows S IGKILL, S IGSTOP, or
S IGCONT to be blocked.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), s igvec(2), s igblock{2), s igpause(2),
s ignal(3) .

- 1 - September, 1987

s igstack(2)

NAME
s igstack - set and/or get signal stack context

SYNOPSIS
#include <s igna l . h>

st ruct s igstack {
caddr t s s sp ;
int ss_onstack ;

} ;

int s igstack (ss, oss) ;
st ruct s igstack *ss, *oss;

DESCRIPTION

sigstack(2)

s igstack allows users to define an alternate stack on which sig
nals are to be processed. If ss is nonzero, it specifies a signal stack
on which to deliver signals and tells the system if the process is
currently executing on that stack. When a signal 's action indi
cates its handler should execute on the signal stack (specified with
a s igvec(2) call), the system checks to see if the process is
currently executing on that stack. If the process is not currently
executing on the signal stack, the system arranges a switch to the
signal stack for the duration of the signal handler's execution. If
oss is nonzero, the current signal stack state is returned.

NOTES
Signal stacks are not . . grown" automatically, as is done for the
normal stack. If the stack overflows unpredictable results may
occur.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
s igstack will fail and the signal stack context will remain
unchanged if one of the following occurs.

[EFAULT] Either ss or oss points to memory that is not a
valid part of the process address space.

SEE ALSO
s igvec(2), set jmp(3), s ignal(3).

- I - September, 1987

•

•

•

•

•

•

s igvec (2) s igvec (2)

NAME
s igvec - optional BSD-compatible software signal facilities

SYNOPSIS
t include <s igna l . h>

st ruct s igvec {

} ;

int (* sv_handler) () ;
int sv_mas k ;
int sv_onstack ;

int s igvec (sig, vee , ovec)
int sig ;
st ruct s igvec *vee , *ovec ;

DESCRIPTION
The system defines a set of signals that may be delivered to a pro
cess. Signal delivery resembles the occurrence of a hardware
interrupt: the signal is blocked from further occurrence, the
current process context is saved, and a new one is built. A process
may specify a handler to which a signal is delivered, or specify
that a signal is to be blocked or ignored. A process may also
specify that a default action is to be taken by the system when a
signal occurs. Normally, signal handlers execute on the current
stack of the process. This may be changed, on a per-handler basis,
so that signals are taken on a special "signal stack."

All signals have the same priority. Signal routines execute with
the signal that caused their invocation blocked, but other signals
may yet occur. A global ' 'signal mask' ' defines the set of signals
currently blocked from delivery to a process. The signal mask for
a process is initialized from that of its parent (normally 0). It may
be changed with a s igblock(2) or s igsetmask(2) call, or
when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to
a set of signals pending for the process. If the signal is not
currently blocked by the process then it is delivered to the process.
When a signal is delivered, the current state of the process is
saved, a new signal mask is calculated (as described below), and
the signal handler is invoked. The call to the handler is arranged
so that if the signal handling routine returns normally the process
will resume execution in the context from before the signal's
delivery. If the process wishes to resume in a different context,
then it must arrange to restore the previous context itself.

- 1 - September, 1987

s igvec (2) s igvec (2)

When a signal is delivered to a process a new signal mask is
installed for the duration of the process' signal handler (or until a
s igblock or s igsetmask call is made). This mask is
formed by taking the current signal mask, adding the signal to be
delivered, and or'ing in the signal mask associated with the
handler to be invoked.

s igvec assigns a handler for a specific signal. If vee is nonzero,
it specifies a handler routine and mask to be used when delivering
the specified signal. Further, if sv onstack is one, the system
will deliver the signal to the process on a • 'signal stack, • • specified
with s igstack(2). If ovec is nonzero, the previous handling
information for the signal is returned to the user.

The following is a list of the A/UX signals with names as in the
include file <s ignal . h>:

SIGHUP 1 hangup
SIGINT 2 mrenu�
SIGQUIT 3* qWt
SIGILL 4* illegal instruction
S IGTRAP 5* lrace lrap
SIGIOT 6* IOf instruction
SIGEMT 7* EMT instruction
SIGFPE 8* ftoatmg pomt exception
SIGKILL 9 kill (cannot be caught, blocked, or ignored)
SIGBUS 10* bus error
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM
SIGUSRl
S IGUSR2
SIGCLD
SIGPWR
SIGTSTP
SIGTTIN
SIGTTOU
S IGSTOP
SIGXCPU
SIGXFSZ
SIGVTALRM
SIGPROF
SIGWINCH

1 1 * segmentation violation
12* bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination signal
16 user defined signa1 1
17 user defined signal 2
18e child status has changed
19 power-fail restart
2ot stop signal generated from keyboard
21 t background read attempted from control termmal
22t background write attempted to control termmal
23t stop (cannot be caught, blocked. or ignored)
24 cpu time limit exceeded
25 file size limit exceeded
26 virtual time a1ann (see setitimer(2))
27 profilmg timer alarm (see setit imer(2))
28e wmdow size change

- 2 - September, 1987

•

•

•

•

•

•

s igvec (2) s igvec (2)

S IGCONT 29e continue after stop (cannot be blocked)
s I GURG 30. mgent condition present on socket
SIGIO 3 1• 1/0 is possible on a descriptor (see fcntl(2))

The starred signals (*) in the list above cause a core image if not
caught or ignored.

Once a signal handler is installed, it remains installed until another
s igvec call is made, or an execve{2) is performed. The
default action for a signal may be reinstated by setting
sv handler to S IG DFL; this default is termination (with a
core image for starred Signals) except for signals marked with • or
t. Signals marked with • are discarded if the action is S IG_DFL;
signals marked with t cause the process to stop if the process is
part of a 4.2 job control group. They are ignored when using 5.2
signals. If sv handler is S IG IGN the signal is subse
quently ignored, and pending instanceS of the signal are discarded.

If a caught signal occurs during certain system calls, the call is
normally restarted. The affect system calls are read(2) or
write(2) on a slow device (such as a terminal, but not a file) and
during a (wait(2). This behavior may be modified by options
suplied to the setcompat(2) system call .

After a fork{2), the child inherits all signals, the signal mask,
and the signal stack.

execve(2) resets all caught signals to default action and resets all
signals to be caught on the user stack. Ignored signals remain
ignored; the signal mask remains the same; the signal handler
reverts to the 5.2 signal mechanism.

NOTES
The mask specified in vee is not allowed to block S IGKILL,
s IGSTOP, or s IGCONT. This is done silently by the system.

RETURN VALUE
A 0 value indicated that the call succeeded. A -1 return value
indicates an error occurred and errno is set to indicated the rea
son.

ERRORS
s igvec will fail and no new signal handler will be installed if
one of the following occurs:

[EFAULT] Either vee or ovee points to memory that is not
a valid part of the process address space.

- 3 - September, 1987

s igvec (2)

[E INVAL]

[E INVAL]

[E INVAL]

SEE ALSO

sigvec (2)

sig is not a valid signal number.

An attempt is made to ignore or supply a
handler for S IGKILL or S IGSTOP.

An attempt is made to ignore S IGCONT (by
default S IGCONT is ignored).

kill{l). pt race(2). kill{2). s igblock{2). setcompat(2).
s igsetmask(2). s igpause(2). s igstack{2).
set 4 2 s ig(3). s ignal{3). termio(7).

- 4 - September. 1987

•

•

•

•

•

•

socket (2N) socket (2N)

NAME
socket - create an endpoint for communication

SYNOPSIS
:fl: include <sys / types . h>
:fl: include <sys / socket . h>

int socket <af, type , protocol)
int af, type, protocol ;

DESCRIPTION
socket creates an endpoint for communication and returns a
descriptor.

The a/parameter specifies an address format with which addresses
specified in later opemtions using the socket should be interpreted.
These formats are defined in the include file <sys I socket . h>.
The currently understood formats are:

AF UNIX {UNIX path names)
AF INET {ARPA Internet addresses)
AF PUP {Xerox PUP-I Internet addresses)
AF IMP LINK {IMP . . host at IMP" addresses)

Note: The only address format currently supported on this
implementation is AF _ INET.

The socket has the indicated type which specifies the semantics of
communication. Currently defined types are:

SOCK STREAM
SOCK DGRAM
SOCK RAW
SOCK_SEQPACKET
SOCK RDM

A SOCK STREAM type provides sequenced, reliable, two-way
connection based byte streams with an out-of-band data transmis
sion mechanism. A SOCK DGRAM socket supports datagrams
(connectionless, unreliable messages of a fixed (typically small)
maximum length). SOCK_ RAW sockets provide access to inter
nal network interfaces. The types SOCK_RAW, which is available
only to the superuser, and SOCK SEQPACKET and SOCK RDM,
which are planned, but not yet unplemented, are not described
here .

The protocol specifies a particular protocol to be used with the
socket. Normally only a single protocol exists to support a partic
ular socket type using a given address format. However, it is

- 1 - September, 1987

socket (2N) socket (2N)

possible that many protocols may exist in which case a particular
protocol must be specified in this manner. The protocol number to
use is particular to the "communication domain" in which com
munication is to take place; see services(4N) and
protocols{4N).

Sockets of type SOCK STREAM are full-duplex byte streams,
similar to pipes. A stnim socket must be in a connected state
before any data may be sent or received on iL A connection to
another socket is created with a connect(2N) call. Once con
nected, data may be transferred using read(2) and write{2)
calls or some variant of the send{2N) and recv{2N) calls.
When a session has been completed a close(2) may be per
formed. Out-of-band data may also be transmitted as described in
send{2N) and received as described in recv{2N).

The communications protocols used to implement a
SOCK_S TREAM insure that data is not lost or duplicated If a
piece of data for which the peer protocol has buffer space cannot
be successfully transmitted within a reasonable length of time,
then the connection is considered broken and calls will indicate an
error with -1 returns and with ET IMEDOUT as the specific code
in the global variable errno. The protocols optionally keep sockets
"warm" by forcing transmissions roughly every minute in the
absence of other activity. An error is then indicated if no response
can be elicited on an otherwise idle connection for a extended
period (e.g. 5 minutes). A S IGP IPE signal is raised if a process
sends on a broken stream; this causes naive processes, which do
not handle the signal, to exit.

SOCK_ DGRAM and SOCK_ RAW sockets allow sending of
datagrams to correspondents named in send(2N) calls. It is also
possible to receive datagrams at such a socket with recv(2N).

An fcnt l(2) call can be used to specify a process group to
receive a S IGURG signal when the out-of-band data arrives.

The operation of sockets is controlled by socket level options .
These options are defined in the file <sys I socket . h> and
explained below. setsockopt and get sockopt(2N) are
used to set and get options, respectively.

so DEBUG turn on recording of debugging
information

SO_REUSEADDR allow local address reuse

- 2 - September, 1987

•

•

•

•

•

•

socket (2N)

SO KEEPAL IVE

SO DONTROUTE

SO LINGER

socket (2N)

keep connections alive

do no apply routing on outgoing
messages

linger on close if data present

so DONTL INGER do not linger on close

so DEBUG enables debugging in the underlying protocol
modules. SO REUSEADDR indicates that the rules used in vali
dating addresses supplied in a bind(2N) call should allow reuse
of local addresses. so_KEEPALIVE enables the periodic
transmission of messages on a connected socket Should the con
nected party fail to respond to these messages, the cQnnection is
considered broken and processes using the socket are notified via
a S IGP IPE signal. SO DONTROUTE indicates that outgoing
messages should bypass the standard routing facilities. Instead,
messages are directed to the appropriate network interface accord
ing to the network portion of the destination address.
SO LINGER and SO DONTLINGER control the actions taken
when unsent messages-are queued on socket and a close(2) is
performed. If the socket promises reliable delivery of data and
SO_LINGER is set, the system will block the process on the
close attempt until it is able to transmit the data or until it
decides it is unable to deliver the information (a timeout period,
termed the linger interval, is specified in the set sockopt call
when SO L INGER is requested). If SO DONTLINGER is
specified and a close is issued, the system will process the
close in a manner which allows the process to continue as quickly
as possible.

RETURN VALUE
A -1 is returned if an error occurs, otherwise the return value is a
descriptor referencing the socket

ERRORS
The socket call fails if:

[EAFNOSUPPORT]

[E SOCKTNOSUPPORT]

[EPROTONOSUPPORT]

The specified address family is not
supported in this version of the sys
tem.

The specified socket type is not
supported in this address family .

The specified protocol is not sup
ported.

- 3 - September, 1987

socket {2N)

[EMF I LE]

[ENOBUF S]

SEE ALSO

socket (2N)

The per-process descriptor table is
full.

No buffer space is available. The
socket cannot be created.

accept(2N), bind(2N), connect(2N), get sockname(2N),
getsockopt(2N), ioctl(2), l isten(2N), recv(2N),
select(2N), send(2N), shutdown(2N).

BUGS
The use of keepalives is a questionable feature for this layer.

- 4 - September, 1987

•

•

•

•

•

•

stat (2) stat (2)

NAME
stat, fstat, lstat - get file status

SYNOPSIS
#include <sys / types . h>
#include <sys / stat . h>

int stat (path , buf>
char *path ;
st ruct stat *buf;

int fstat <fildes, buf>
int fildes ;
st ruct stat *buf;

int lstat (path , buff)
char *path ;
st ruct stat *buf;

DESCRIPTION
stat obtains information about the named file. path points to a
path name naming a file. Read, write, or execute permission of
the named file is not required, but all directories listed in the path
name leading to the file must be searchable .

lsta t is like stat except in the case where the named file is a
symbolic link, in which case lstat returns information about
the link, while stat returns information about the file the link
references.

Similarly, fstat obtains information about an open file known
by the file descriptor fildes , obtained from a successful open,
creat, dup, fcnt l, or pipe system call.

buf is a pointer to a stat structure into which information is
placed concerning the file.

The contents of the structure referenced by buf include the follow
ing members:

ushort st_mode ;

ino t st_ino ;

dev t st_dev ;

dev t st_rdev;

File mode; see stat(5)

Inode number

ID of device containing a directory
entry for this file

ID of device. This entry is defined
only for character special or block
special files

- 1 - September, 1987

stat (2)

short st_nl ink ;

usho rt st_uid;

ushort st_gid;

off_t st_s i ze ;

t ime t st_atime ;

t ime t st_mt ime ;

t ime t st_ct ime ;

stat (2)

Number of links

User ID of the file's owner

Group ID of the file's group

File size in bytes

Time when file data was last
accessed (times measured in
seconds since 00:00:00 GMT, Jan.
1 , 1970). Changed by the follow
ing system calls: c reat(2),
mknod(2), pipe(2), ut ime(2),
and read{2).

Time when data was last modified
(times measured in seconds since
00:00:00 GMT, Jan. 1 , 1970).
Changed by the following system
calls: c reat(2), mknod{2),
pipe(2), ut ime{2), and
write(2).

Time wehn file status last changed
(times measured in seconds since
00:00:00 GMT, Jan. 1 , 1970)
Changed by the following system
calls: chmod(2), chown(2),
c reat(2), 1ink{2), mknod(2),
pipe(2), unlink{2), ut ime(2),
and wri te(2).

long st_blks i ze ; optimal blocksize for 1/0 ops

long st_blocks ; actual number of blocks allocated
RETURN VALUE

Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and e r rno is set to indicate the error.

ERRORS
stat and ! stat will fail if one or more of the following are
true:

[ENOTD IR]

[EPERM]

A component of the path prefix is not a
directory.

A pathname contains a character with the
high-order bit set.

- 2 - September, 1987

•

•

•

•

•

•

stat (2) stat (2)

[ENAMETOOLONG] A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PA TH_MAX .

[E LOOP] Too many symbolic links were encoun
tered in translating a pathname.

[ENOENT]

[EACCES]

[EFAULT]

The named file does not exist.

Search permission is denied for a com
ponent of the path prefix.

buf or path points to an invalid address.

f stat will fail if one or more of the following are true:

[EBADF] ftldes is not a valid open file descriptor.

[EFAULT] bufpoints to an invalid address.

SEE ALSO
chrnod(2), chown(2), creat(2), l ink(2), rnknod(2), pipe(2),
read(2), readlink(2), stat fs(2), t irne(2), unl ink(2),
ustat(2), ut irne(2), write(2), stat(S) .

- 3 - September, 1987

statfs (2) statfs {2)

NAME
stat f s - get file system statistics

SYNOPSIS
#include <sys /vfs . h>
include <sys /type s . h>

int statfs (path , buj}
cha r *path ;
st ruct statfs *buf;

int fstatfs <fildes, buj}
int fildes ;
st ruct statfs *buf;

DESCRIPTION
stat fs returns infonnation about a mounted file system. path is
the pathname of any file within the mounted file system. buf is a
pointer to a stat f s structure defined as follows:

typedef l ong f s i d_t [2] ;

s t ruct stat f s (
long f_type ;

} ;

long f_bs i z e ;

long f_bl ock s ;

long f_bfre e ;
long f_bava i l ;

long f_fi le s ;

long f ffre e ;
f s id t f_f s i d ;
long f_spare [7] ;

I * type of info , z ero
for now * I

I * fundamenta l f i l e system
block s i ze * I

I * total block s i n f i l e
system * I

I * free blocks * I
I * free blocks ava i l able t o

non superu ser * I
I * t o t a l f i l e node s i n

f i l e syst em * I
I * free f i l e node s in f s * I
I * f i l e system I D * I
I * spare for later * I

Fields that are undefined for a particular file system are set to -1 .
fstatfs returns the same infonnation about an open file refer
enced by descriptor fildes .

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
-1 is returned and the global variable errno is set to indicate the
error.

- 1 - September, 1987

•

•

•

stat f s (2) statfs (2)

SEE ALSO
s t at(2), ust at(2) .

•

•

•

- 2 - September, 1987

st ime {2) stime(2)

NAME
st ime - set time

SYNOPSIS
int st ime (tp)
long *tp ;

DESCRIPTION
s t ime sets the the time and date. tp points to the value of time as
measured in seconds from 00:00:00 GMT January 1 , 1970.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
s t ime will fail if:

[EPERM]

SEE ALSO

the effective user ID of the calling process is
not superuser.

date(1) , gett imeofday(2), sett imeo fday(2), t ime(2).

- 1 - September, 1987

•

•

•

•

•

•

symlink(2) symlink(2)

NAME
symlink - make symbolic link to a file

SYNOPSIS
int syml ink (name} , name2)
char *name] , *name2 ;

DESCRIPI'ION
A symbolic link name2 is created to name] (name2 is the name of
the file created, name] is the string used in creating the symbolic
link). Either name may be an arbitrary path name; the files need
not be on the same file system.

RETURN VALUE
Upon successful completion, a zero value is returned. If an error
occurs, the error code is stored in errno and a -1 value is
returned.

ERRORS
The symbolic link is made unless on or more of the following are
true:

[EPERM]

[EPERM]

[ENAMETOOLONG]

[ELOOP]

[ENOENT]

[ENOTD IR]

[EEXI S T]

[EACCES]

[EROFS]

[EFAULT]

Either namel or name2 contains a char
acter with the high-order bit set.

A pathname contains a character with the
high-order bit set.

A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

Too many symbolic links were encoun
tered in translating a pathname.

One of the pathnames specified was too
long.

A component of the name2 prefix is not a
directory.

name2 already exists.

A component of the name2 path prefix
denies search permission.

The file name2 would reside on a read
only file system.

namel or name2 points outside the
process's allocated address space.

- 1 - September, 1987

sym.link(2) sym.link(2)

SEE ALSO
ln(l), link(2), readlink(2), unlink(2).

•

•

•

- 2 - September, 1987

•

•

•

sync (2) sync (2)

NAME
sync - update superblock

SYNOPSIS
void sync ()

DESCRIPTION
The sync system call causes all information in memory that
should be on disk to be written out This includes modified super
blocks, modified inodes, and delayed block 1/0.
It should be used by programs which examine a file system, for
example f s ck, df, etc. It is mandatory before a reboot or a sys
tem shutdown.

The writing, although scheduled, is not necessarily complete upon
return from sync.

SEE ALSO
sync(l), fsync(2) .

- 1 - September, 1987

t ime (2)

NAME
t ime - get time

SYNOPSIS
long t ime ((long*) 0)

long t ime (tloc)
long *tloc ;

DESCRIPTION

t ime (2)

t ime returns the value of time in seconds since 00:00:00 GMT,
January 1 , 1970.

If tloc (taken as an integer) is nonzero, the return value is also
stored in the location to which tloc points.

RETURN VALUE
Upon successful completion, t ime returns the value of time.
Otherwise, a value of -1 is returned and errno is set to indicate
the error.

ERRORS
t ime will fail if
[EFAULT] tloc points to an illegal address.

SEE ALSO
date(1), gett imeo fday(2), st ime(2), ct ime(3).

- 1 - September, 1987

•

•

•

•

•

•

t ime s (2)

NAME
t imes - get process and child process times

SYNOPSIS
:JI:inc lude <sys /types . h>
:JI: inc lude <sys / t ime s . h>

long t imes < buffer)
st ruct tms *buffer ;

DESCRIPI10N

t imes (2)

t imes fills the structw-e pointed to by buffer with time
accounting information. The following are the contents of this
structure:

st ruct tms {
t ime t tms ut ime ;

tms:=st ime ;
tms_cut ime ;
tms_cstime ;

t ime-t
t ime t
t ime t

} ;

This information comes from the calling process and each of its
terminated child processes for which it has executed a wa it. All
times are in 60ths of a second.

tms ut ime

tms st ime

tms cut ime

tms cst ime

RETURN VALUE

CPU time used while executing instructions in
the user space of the calling process.

CPU time used by the system on behalf of the
calling process.

sum of the tms ut imes and tms cut imes
of the child processes.

sum of the tms st imes and tms cst imes
of the child processes.

-

Upon successful completion, t ime s returns the elapsed real
time, in 60ths of a second, since an arbitrary point in the past (e.g.,
system start-up time). This point does not change from one invo
cation of t imes to another. If t ime s fails, a -1 is returned
and errno is set to indicate the error.

ERRORS
t imes will fail if

[EFAULT] buffer points to an illegal address .

- 1 - September, 1987

t imes (2) t imes (2)

SEE ALSO
exec(2), fork{2), t ime(2), wait(2).

•

•

•
- 2 - September, 1987

•

•

•

t runcate (2) t runcate {2)

NAME
t runcate, ft runcate - truncate a file to a specified length

SYNOPSIS
int t runcate (path , length)
cha r *path ;
int length ;

int ft runcate <fd, length)
int fd, length ;

DESCRIPITON
t runcate causes the file named by path or referenced by fd to
be truncated to at most length bytes in size. If the file previously
was larger than this size, the extra data is lost. With ft runcate,
the file must be open for writing.

RETURN VALUES
A value of 0 is returned if the call succeeds. If the call fails a -1
is returned, and the global variable errno specifies the error.

ERRORS
t runcate will fail if:

[EPERM] The pathname contains a character with the
high-order bit set.

[ENOENT] The pathname was too long.

[ENOTD IR] A component of the path prefix of path is
not a directory.

[EPERM] A pathname contains a character with the
high-order bit set.

[ENAMETOOLONG] A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

[ELOOP] Too many symbolic links were encoun-
tered in translating a pathname.

[ENOENT] The named file does not exist.

[EACCE S] A component of the path prefix denies
search permission.

[E I SDIR] The named file i s a directory.

[EROFS] The named file resides on a read-only file
system.

- 1 - September, 1987

t runcate (2)

[E TXTBSY]

[EFAULT]

t runcate (2)

The file is a pure procedure (shared text)
file that is being executed.

Note: If you are running an NFS
system and you are accessing a
shared binary remotely, it is possi
ble that you will not get this
errno.

name points outside the process's allocated
address space.

£t runcate will fail if:
[EBADF] Thefd is not a valid descriptor.

[E INVAL]

SEE ALSO
open(2).

BUGS

The fd references a socket, not a file.

Partial blocks discarded as the result of truncation are not zero
filled; this can result in holes in files which do not read as zero.

These calls should be generalized to allow ranges of bytes in a file
to be discarded.

- 2 - September, 1987

•

•

•

•

•

•

ulimit (2)

NAME
ul imi t - get and set user limits

SYNOPSIS
long ulimit (cmd, newlimit)
int cmd;
long newlimit ;

DESCRIPI'ION

ulimit (2)

This function provides for control over process limits. The cmd
values available are:

1 Get the file size limit of the process. The limit is in units of
512-byte blocks and is inherited by child processes. Files of
any size can be react.

2 Set the file size limit of the process to the value of new limit .
Any process may decrease this limit, but only a process with
an effective user ID of superuser may increase the limit

3 Get the maximum possible break value. See brk(2).

RETURN VALUE
Upon successful completion, a non-negative value is returned.
Otherwise, a value of -1 is returned and e r rno is set to indicate
the error.

ERRORS
ul imi t will fail and the limit will be unchanged if the following
is true:

[EPERM]

SEE ALSO

a process with an effective user ID other than
superuser attempts to increase its file size limit.

brk{2), write(2) .

- 1 - September, 1987

umask(2)

NAME
uma s k - set and get file creation mask

SYNOPSIS
int uma s k (cmask)
int cmask ;

DESCRIPTION

uma s k (2)

umas k sets the calling process's file mode creation mask to
cmask and returns the previous value of the mask. Only the low
order 9 bits of cmask and the file mode creation mask are used.

The file mode creation mask is used whenever a file is created by
creat(2), mknod(2) or open(2). The actual mode (see
chmod{2)) of the newly-created file is the difference between the
given mode and cmask. In other words, cmask shows the bits to
be turned off when a new file is created.

The previous value of cmask is returned by the call. The value is
initially 022, which is an octal "mask" number representing the
complement of the desired mode. "022" here means that no per
missions are withheld from the owner, but write permission is for
bidden to group and to others. Its complement, the mode of the
file, would be 0755. The file mode creation mask is inherited by
child processes.

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
csh{l) , ksh{l), chmod(l), mkdi r{l), sh{l), chmod(2),
creat(2), mknod(2), open(2).

- 1 - September, 1987

•

•

•

•

•

•

umount (2)

NAME
umount - unmount a file system

SYNOPSIS
int umount (spec)
char *spec ;

DESCRIPTION

umount (2)

umount is used to unmount System V file systems only.
unmount is used to unmount all others (see unmount(2)).

umount requests that a previously mounted file system contained
on the block special device identified by spec be unmounted. spec
is a pointer to a path name. After unmounting the file system, the
directory upon which the file system was mounted reverts to its
ordinary interpretation.

umount may be invoked only by the superuser.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

ERRORS
umount will fail if one or more of the following are true:

[EPERM] The process's effective user ID is not
superuser.

[ENXI O]

[ENOTBLK]

[E INVAL]

[EBUSY]

[EFAULT]

SEE ALSO

spec does not exist.

spec is not a block special device.

spec is not mounted.

A file on spec is busy.

spec points to an illegal address.

unmount(2), mount(3) .

- 1 - September, 1987

uname (2) uname (2)

NAME
uname - get name of current system

SYNOPSIS
#include <sys /ut sname . h>

int uname (name)
st ruct ut sname *name ;

DESCRI}7J'JON
uname stores information identifying the current system in the
structure referenced by name .

uname uses the structure defined in <sys /ut sname . h>:

st ruct
char
cha r
char
char
char

} ;

ut sname {
sysname [9] ;
nodename [9] ;
re lease [9] ;
ve rs ion [9] ;
machine [9] ;

extern st ruct ut sname ut sname ;

uname returns a null-terminated character string naming the
current system in the character array sysname. Similarly,
node name contains the name by which the system is known on a
communications network. re lease and ve rs ion further
identify the operating system. machine contains a standard
name that identifies the hardware that the system is running on.

RETURN VALUE
Upon successful completion, a non-negative value is returned.
Otherwise, -1 is returned and errno is set to indicate the error.

ERRORS
uname will fail if the following is true:

[EFAULT] name points to an invalid address.

SEE ALSO
uname(1).

- 1 - September, 1987

•

•

•

•

•

•

unlink(2) unlink(2)

NAME
unlink - remove directory entry

SYNOPSIS
int unlink (path)
char *path ;

DESCRIPTION
unlink removes the directory entry named by the path name
referenced by path .

When all links to a file have been removed and no process has the
file open, the space occupied by the file is freed and the file ceases
to exist. If one or more processes have the file open when the last
link is removed, the removal is postponed until all references to
the file have been closed.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
The named file is unlinked unless one or more of the following are
true:

[ENOTD IR]

[EPERM]

[ENAMETOOLONG]

[E LOOP]

[ENOENT]

[EACCES]

[EACCES]

[E I SD IR]

[EBUSY]

A component of the path prefix i s not a
directory.

A pathname contains a character with the
high-order bit set

A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

Too many symbolic links were encoun
tered in translating a pathname.

The named file does not exist.

Search permission is denied for a com
ponent of the path prefix.

Write permission is denied on the directory
containing the link to be removed.

The named file is a directory.

The entry to be unlinked is the mount point
for a mounted file system.

- 1 - September, 1987

unlink(2)

[E TXTBSY]

[EROF S]

[EFAULT]

SEE ALSO

unlink(2)

The entry to be unlinked is the last link to a
pure procedure (shared text) file that is
being executed.

Note: If you are running an NFS
system and you are accessing a
shared binary remotely, it is possi
ble that you will not get this
errno.

The directory entry to be unlinked is part
of a read-only file system.

path points outside the process's allocated
address space.

rm(l), rmdi r(l), close(2), link(2), open(2), rmdi r(2).

- 2 - September, 1987

•

•

•

•

•

•

unmount (2)

NAME
unmount - remove a file system

SYNOPSIS
unmount (name)
char *name ;

DESCRIPTION

unmount (2)

unmount is used to unmount all non-System V file systems.
umount is used to unmount System V file systems only (see
umount(2)).

unmount announces to the system that the directory name is no
longer to refer to the root of a mounted file system. The directory
name reverts to its ordinary interpretation.

RETURN VALUE
unmoun t returns 0 if the action occurred; -1 if if the directory is
inaccessible or does not have a mounted file system, or if there are
active files in the mounted file system.

ERRORS
unmount may fail with one of the following errors:

[E INVAL] The caller is not the superuser .
[E INVAL]

[EBUSY]

SEE ALSO

name is not the root of a mounted file system.

A process is holding a reference to a file
located on the file system.

f smount(2), mount(3), umount(2).

BUGS
The error codes are in a state of disarray; too many errors appear
to the caller as one value .

- 1 - September, 1987

ust at (2)

NAME
us tat - get file system statistics

SYNOPSIS
finclude <sys / type s . h>
f inc lude <us tat . h>

int ustat (dev , buf>
int dev ;
st ruct ustat *buf;

DESCRIPTION

ustat (2)

us tat returns information about a mounted file system. dev is a
device number identifying a device containing a mounted file sys
tem. buf is a pointer to a us tat structure that includes to fol
lowing elements:

daddr_t f_t f re e ;
inc t f_t inode ;
cha r f_fname [6) ;
cha r f_fpack [6) ;

RETURN VALUE

I * Tot a l free blocks * I
I *
I *

I *

Numbe r o f f ree inode s * I
F i l sy s name * I
F i l sy s pack name * I

Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and e r rno is set to indicate the error.

ERRORS
us tat will fail if one or more of the following are true:

[E INVAL]

[EFAULT]

SEE ALSO

dev is not the device number of a device con
taining a mounted file system.

buf points outside the process's allocated
address space.

stat(2), statfs(2), fs(4).

- 1 - September, 1987

•

•

•

•

•

•

ut ime (2) ut ime (2)

NAME

u t ime - set file access and modification times

SYNOPSIS
include < sys /types . h>
int ut ime (path , times)
char *path ;
st ruct ut imbuf *times ;

DESCRIPTION
u t ime sets the access and modification times of the named file.
path points to a path name naming a file.

If times is NULL , the access and modification times of the file are
set to the current time. A process must be the owner of the file or
have write permission to use ut ime in this manner.

If t ime s is not NULL, times is interpreted as a pointer to a
ut imbuf structure and the access and modification times are set
to the values contained in the designated structure. Only the
owner of the file or the superuser may use ut ime this way.

The times in the following structure are measured in seconds since
00:00:00 GMT, Jan. 1 , 1970 .

s t ruct ut imbuf
t ime t act ime ;
t ime t modt ime ;

I * acces s t ime * I
I * modifi cat ion t i me * I

} ;

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
u t ime will fail if one or more of the following are true:

[ENOENT] The named file does not exist.

[EPERM] A pathname contains a character with the
high-order bit set

[ENAMETOOLONG] A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

[ELOOP]

[ENOTD IR]

Too many symbolic links were encoun
tered in translating a pathname.

A component of the path prefix is not a
directory.

- 1 - September, 1987

ut ime (2)

[EACCES]

[EPERM]

[EACCES]

[EROFS]

[EFAULT]

[EFAULT]

SEE ALSO
stat(2).

ut ime (2)

Search permission is denied by a com
ponent of the path prefix.

The effective user ID is not superuser and
not the owner of the file and t imes is not
NULL.

The effective user ID is not superuser and
not the owner of the file and t imes is
NULL and write access is denied.

The file system containing the file is
mounted read-only.

times is not NULL and points outside the
process's allocated address space.

path points outside the process's allocated
address space.

- 2 - September, 1987

•

•

•

•

•

•

uva r (2) uva r(2)

NAME
uva r - returns system-specific configuration information

SYNOPSIS
* inc lude <sys / va r . h>

int uva r (V)
st ruct va r * v ;

DESCRIPTION
uva r returns system-specific configuration information contained
in the kernel. The information returned contains table sizes, mask
words, and other system-specific information for programs such as
and ps (1) .

Presently a maximum of 512 bytes of information is returned. v
points to the va r structure:
st ruct var {

int

int

int

v_bu f ;

v_ca l l ;

v inode ;

cha r * ve_i node ;

int v f i le ;

cha r * ve_f i l e ;

int v_mount ;

char * ve_mount ;

int v_pro c ;

cha r * ve_p r o c ;

i n t v_t e xt ;

ch a r * ve_t e xt ;

int

int

int

v_c l i s t ;

v_sabu f ;

v_maxup ;

I * Number o f system bu f f e r s * I

I * Maximum numbe r o f
s i mu l t aneous ca l l out s * I

I * Maximum number o f i n c o re
inodes * I

I * P o i n t e r t o l a s t i n c o re
i node t able * I

I * Maximum numbe r o f open

f i l e s * I
I * P o i n t e r t o l a s t open

f i le t ab l e * I

I * Max i mum number o f f i le

systems mountable * I

I * P o i n t e r t o l a s t mounted
f i le system t ab l e * I

I * Maximum number o f
proce s se s * I

I * P o i n t e r t o l a s t proce s s

t ab l e * I

I * Maximum numbe r o f shared
t ext segment s * I

I * P o i n t e r t o l a s t shared

t ext segment t ab l e * I

I * Maximum numbe r o f c l i s t s * I

I * Maximum number o f system

act i v i t y bu f f e r s * I

I * Maximum number o f u s e r

proce s se s * I

- 1 - September, 1987

uva r (2)

int

int

int

int

int

int

int

int

int

int

int

int

int
int

int
int

int

int

int

v_cmap ;

v_smap ;

v_hbu f ;

v_hma s k ;

v_f l o c k ;

v_phys ;

v_c l s i z e ;

v_t xt rnd ;

v_b s i z e ;

v_cxmap ;

v c l k t i ck

v_h z ;

v_u s i z e ;
v_page sh i ft ;

v_pagema s k ;
v segsh i ft ;

v segma s k ;

v_u s t art ;

v_uend;

cha r * ve_ca l l ;

int v_s t kgap ;

i n t v_cputype ;
int

int

int

int
int

v_cpuve r ;

v_mmutype ;

v_do f fset ;

v_kvo f f s e t ;

v_svt ext ;

cha r * ve_svtext ;

int v_pbu f ;

uva r (2)

I* S i z e o f core memo ry

a l l o cat ion map * I

I * S i z e o f swap memo ry

a l locat ion map * I

I * Maximum number o f bu f f e r

he ade r s * I

I * Maximum number o f bu f f e r

he ade r s - l * I

I * Maximum numbe r o f f i l e l o c k s * I

I * Maximum number o f s imu l t aneou s

phys ca l l s * I
I * C l i ck s i z e * I

I * Number o f c l i c k s per segme nt * I

I * B l o ck s i z e * I
I * Cont ext map s i z a * I

I * C l ock t i ck * I

I * H z * I
I * S i z e o f u s e r s t ructure * I

I * P age s h i ft * I

I * P age mask * I
I * Segment sh i ft * I

I * Segment ma sk * I
I * S t a r t ing v i r t u a l addre s s f o r

u s e r program * I
I * Ending v i rt u a l addre s s f o r

u s e r program * I
I * P o i n t e r t o l a s t ca l l out t ab l e * I

I * Ob s o lete * I

I * C P U t ype (1 = 6 8 0 0 0) * I
I * C P U ve r s i on I D

(1 = 6 8 0 0 0 , 2 = 6 8 0 1 0 , 3 = 6 8 0 2 0) * I

I * MMU t ype

(l =none , 2 = S UN , 3 = 6 8 4 5 1) * I
I * D a t a o f f s e t * I

I * Ke rne l v i r t u a l o f fset * I

I * Maximum numbe r o f t e xt

l o it e r i ng segment s * I
I * P o i n t e r t o l a s t t e xt

l o it e r i ng segment

i n t ab l e * I

I * Maximum numbe r o f bu f f e r s

f o r phys i c * I

i n t v_n s cat l o ad ; I * Maximum numbe r o f ent r i e s

- 2 - September, 1987

•

•

•

•

•

•

uva r {2)

int

int

int

int

int

int

int

int

int

int

v_udot ;

v_region ;

v_sptmap ;

v_vhndfrac;

v_maxpmem;

v_nmbuf s ;

v_npt y ;

v_maxcore ;

v_maxheader;

v_nstream;

int v_nqueue ;

int v_nblk4 0 9 6 ;

int v_nblk2 0 4 8 ;

int v_nblk1 0 2 4 ;

int v_nblk5 1 2 ;

int v_nblk2 5 6 ;

int v_nb lk 6 4 ;

int v_nblk1 6 ;

int v_nblk 4 ;

char *ve_proct ab

uva r{2)

in scat t e r map *I

I* Addre s s o f user structure *I

I* Number o f memory regi ons *I

I* S i ze o f system virtua l space *I

I* Fract ion o f MAXMEM t o set a

l imit for runn ing vehand * I

I * Maximum physical memo ry t o u s e * I

I * Bu ffers f o r networking * I

I * Number o f pseudo t t y ' s * I

I * Space used b y kerne l ' s heap

(. . . /GENI sys lhe ap _ kmem . c) * I

I * Heade rs u sed b y kerne l ' s heap

(. . . /GENI sys lhe ap _ kmem . c) *I

I* Numbe r o f st ream heads * I

I * Number o f st ream queues * I

I * Number o f o f 4K st ream b l ocks * I

I * Number o f o f 2 K st ream b l ocks * I

I * Numbe r o f 1 K st ream blocks * I

I * Number o f 5 1 2K st ream b l ocks * I
/ * Number o f 2 5 6K st ream blocks * /

I * Numbe r o f 2 5 6K st ream blocks * I

I * Number o f 1 6 byt e st re am b l ocks * I

I * Number o f 6 byt e st ream b l o ck s * I

I * &proc [O] * I

i n t v s l ice I * a proce s s ' s t ime s l ice

int v_f i l l [1 2 8 - 6 7] 1 * s i zed t o make var 5 1 2 byt e s * /

} ;

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and e r rn o is set to indicate the error.

ERRORS
uva r will fail if:

[EFAULT]

SEE ALSO
ps(1) .

v points to an illegal address.

- 3 - September, 1987

wa it (2) wait (2)

NAME
wait - wait for child process to stop or terminate

SYNOPSIS
int wait (stat loc)
int *stat_loc ;

-

int wait ((int*) 0)

DESCRIPriON
wait suspends the calling process until one of the immediate
children terminates or until a child that is being traced stops,
because it has hit a break point. The wa it system call will return
prematurely if a signal is received and if a child process stopped
or terminated prior to the call on wa it, return is immediate.

If stat loc {taken as an integer) is nonzero, 16 bits of information
called -status are stored in the low order 16 bits of the location
pointed to by stat loc . status can be used to differentiate between
stopped and terminated child processes and if the child process
terminated, status identifies the cause of termination and passes
useful information to the parent. This is accomplished in the fol
lowing manner:

If the child process stopped, the high order 8 bits of status
will contain the number of the signal that caused the process
to stop and the low order 8 bits will be set equal to 0177.

If the child process terminated due to an exit call, the low
order 8 bits of status will be zero and the high order 8 bits
will contain the low order 8 bits of the argument that the
child process passed to exit ; see exit(2).

If the child process terminated due to a signal, the high order
8 bits of status will be zero and the low order 8 bits will con
tain the number of the signal that caused the termination. In
addition, if the low order seventh bit (i.e. , bit 200) is set, a
"core image" will have been produced; see s igna l(3).

If a parent process terminates without waiting for its child
processes to 'terminate, the parent process ID of each child process
is set to 1 . This means the initialization process inherits the child
processes; see int ro(2).

RETURN VALUE
If wait returns due to the receipt of a signal, a value of -1 is
returned to the calling process and errno is set to E INTR. If
wait returns due to a stopped or terminated child process, the
process ID of the child is returned to the calling process.

- 1 - September, 1987

•

•

•

•

•

•

wa it (2) wait (2)

Otherwise, a value of -1 is returned and errno is set to indicate
the error.

ERRORS
wait will fail and return immediately if one or more of the fol
lowing are true:

[ECH I LD] The calling process has no existing unwaited
for child processes.

SEE ALSO
exec(2), exit(2), fork(2), int ro(2), pause(2), ptrace(2),
wa it3(2N), s ignal(3).

WARNING
See WARNING in s ignal(3) .

- 2 - September, 1987

wa it 3 {2N) wait 3 {2N)

NAME

wa i t 3 - wait for child process to stop or terminate

SYNOPSIS
* include <sys / wait . h>

int wa it 3 (status, options, 0)
union wait *status;
int options ;

DESCRIPTION
wa it 3 provides an interface for programs which must not block
when collecting the status of child processes. The status parame
ter is defined as above. The options parameter is used to indicate
the call should not block if there are no processes which wish to
report status (WNOHANG) , and/or that children of the current pro
cess that are stopped due to a S IGTT IN, S IGTTOU, S IGTSTP ,
or S IGS TOP signal should also have their status reported (WUN
TRACED).

When the WNOHANG option is specified and no processes wish to
report status, wa it3 returns a pid of 0. The WNOHANG and
WUNTRACED options may be combined by oRing the two values.

The declaration of "union wait " is found in
<sys / wait . h>. The third argument, 0 , is a placeholder. The
"normal case" is the same as wait{2).

RETURN VALUE
wa it 3 returns -1 if there are no children not previously waited
for; 0 is returned if WNOHANG is specified and there are no
stopped or exited children.

SEE ALSO
exit(2), wait(2).

- 1 - September, 1987

•

•

•

•

•

•

write (2)

NAME
write, writev - write on a file

SYNOPSIS
int write (jildes, buf, nbytes)
int fildes;
cha r *buf;
uns igned nbytes ;

include <sys /type s . h>
include < sys /uio . h>

int writev (jildes, iov, ioveclen)
int fildesd;
st ruct iovec *iov;
in t ioveclen ;

DESCRIPTION

writ e (2)

write attempts to write nbytes bytes from the buffer pointed to
by buf to the file associated with the fildes . wr i tev performs
the same action, but gathers the output data from the iovlen
buffers specified by the members of the iovec array: iov [0] ,
iov [1] , etc.

fildes is a file descriptor obtained from a c reat, open, dup,
fcnt l, pipe, or socket system call.

On devices capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file pointer. Upon
return from write, the file pointer is incremented by the number
of bytes actually written.

On devices incapable of seeking, writing always takes place start
ing at the current position. The value of a file pointer associated
with such a device is undefined.

If the o APPEND flag of the file status flags is set, the file pointer
will be set to the end of the file prior to each write.

RETURN VALUE
Upon successful completion the number of bytes actually written
is returned. Otherwise, -1 is returned and errno is set to indi
cate the error.

ERRORS
When attempting to write to a stream when no buffer space is
currently available, if 0 NDELAY is set, the write will return
the number of bytes written before there were no buffers avail
able. If O_NDELAY is clear, the write will block until buffers

- 1 - September, 1987

write (2) writ e (2)

become available.

write will fail and the file pointer will remain unchanged if one
or more of the following are true:

[E I o] A physical 1/0 error has occurred.

[ENXIO] The device associated with the file descriptor i s a
block-special or character-special file and the value of
the file pointer is out of range.

[EBADF] fildes is not a valid file descriptor open for writing.

[E P I P E] and S IGP IPE signal
An attempt is made to write to a pipe that is not open
for reading by any process.

[E P I P E] An attempt is made to write to a pipe that i s not open
for reading by any process.

[EFBIG] An attempt was made to write a file that exceeds the
process's file size limit or the maximum file size. See
ul imit(2).

[EFAULT]

[EFAULT]

Part of iov or data to be written to the file points out
side the process 's allocated address space.

buf points outside the process's allocated address
space.

[E INTR] A signal was caught during the write system call.

[ENOSP C]
Not enough space left on the device containing the
file.

If the number of bytes specified in a write request exceeds the
available space (i.e., the per-process file size) limit (see
ul imi t(2)) or the size of the physical media, only as many bytes
as there is room for will be written. For example, suppose there is
space for 20 bytes more in a file before reaching a limit. A write
of 512 bytes will return 20. The next write of a nonzero number
of bytes will give a failure return (except as noted below).

If the file being written is a pipe (or FIFO) and the o NDELAY
flag of the file flag word is set, then write to a full pipe (or FIFO)
will return a count of 0. Otherwise (o NDELAY clear), writes to a
full pipe (or FIFO) will block until space becomes available.

- 2 - September, 1987

•

•

•

•

•

•

write(2) write (2)

SEE ALSO
creat(2), dup(2), fcnt l(2), lseek(2), open(2), pipe(2),
se lect(2N), socket(2N), ul imit(2) .

- 3 - September, 1987

Table of Contents

• Section 3: Su brouti nes

intra . .introduction to subroutines and libraries
_tolower . see conv(3C)
_toupper . see conv(3C)
a64l convert between long integer and base-64 ASCII string
abort . generate, an lOT fault
abort . terminate Fortran program
abs . return integer absolute value
abs . Fortran absolute value
acos . Fortran arccosine intrinsic function
acos . see trig(3M)
addmntent . see getmntent(3)
addptabent. see getptabent(3)
aimag . Fortran imaginary part of complex argument
aint . Fortran integer part intrinsic function
alog . see log(3F)
alog l O . see log 10(3F) •
amaxO . see max(3F)
amax l . see max(3F)
aminO . see min(3F)
amin l . see min(3F)
amod . see mod(3F)
and . see bool(3F)
anint . see round(3F)
asctime . see ctime(3)
asin . Fortran arcsine intrinsic function
asin . see trig(3M)
assert . verify program assertion
atan . Fortran arctangent intrinsic function

atan . see trig(3M)
atan2 . Fortran arctangent intrinsic function

•
atan2 . see trig(3M)
atof.. convert ASCII string to floating-point number

-i-

atoi . see strtol(3C)
atol . see strtol(3C)
bcmp . see bstring(3)
bcopy . see bstring(3)
bessel. Bessel functions
blt . block transfer data
blt5 1 2 . see blt(3C)
bool. Fortran bitwise boolean functions
bsearch . binary search a sorted table
bstring . bit and byte string operations
byteorder convert values between host and network byte order
bzero . see bstring(3)
cabs . see abs(3F)
calloc . see malloc(3C)
calloc . see malloc(3X)

•

ccos . see cos(3F)
ceil . see floor(3M)
cexp . see exp(3F)
cfree . see malloc(3C)
char . see ftype(3F)
clearerr . see ferror(3S)
clock . report CPU time used
clog . see log(3F)
closedir . see directory(3)
cmplx . see ftype(3F)
conjg . Fortran complex conjugate intrinsic function

•

conv . translate characters
cos . Fortran cosine intrinsic function
cos . see trig(3M)
cosh . Fortran hyperbolic cosine intrinsic function
cosh . see sinh(3M)
crypt . generate DES encryption
csin . see sin(3F)
csqrt . see sqrt(3F)
ctermid . generate filename for terminal
ctime . convert date and time to ASCII
ctype . classify characters
curses . CRT screen handling and optimization package •

- i i-

curses5.0 BSD-style screen functions with "optimal" cursor motion
cuserid get character login name of the user
dabs . see abs(3F)
dacos see acos(3F)
dasin .. see asin(3F) •
datan see atan(3F)
datan2 see atan2(3F)
dble see ftype(3F)
dbm . data base subroutines
dbminit . see dbm(3X)
dcmplx . see ftype(3F)
dconjg . see conjg(3F)
dcos . see cos(3F)
dcosh .. see cosh(3F)
ddim .. see dim(3F)
delete .. see dbm(3X)
dexp .. see exp(3F)
dial . establish an out-going terminal line connection
dim . Fortran positive difference intrinsic functions
dimag . see aimag(3F)
dint . see aint(3F) •
directory . directory operations
dlog . see log(3F)
dloglO .. see log10(3F)
dmax l . see max(3F)
dminl . see min(3F)
dn_comp .. see resolver(3N)
dn_expand . see resolver(3N)
dmod . see mod(3F)
dnint . see round(3F)
dprod .. Fortran double precision product intrinsic function
drand48 generate uniformly distributed pseudo-random numbers
dsign .. see sign(3F)
dsin . see sin(3F)
dsinh . see sinh(3F)

•
dsqrt. see sqrt(3F)
dtan . see tan(3F)
dtanh . see tanh(3F)

- i i i -

dup2 .. duplicate a descriptor
ecvt . conven floating-point number to string
edata see end(3C)
encrypt . see crypt(3C)
end . last locations in program
endgrent . see getgrent(3C)
endhostent . see gethostent(3N)
endmntent . see getmntent(3)
endnetent . see getnetent(3N)
endnetgrent . see getnetgrent(3N)
endptabent see getptabent(3)
endpwent . see getpwent(3C)
endservent . see getservent(3N)
endutent . see getut(3C)

•

enprotoent . see getprotoent(3N)
emnd48 . see dmnd48(3C)
erf . error function and complementary error function
erfc . see erf(3M)
ermo . , . see perror(3C)
etext . see end(3C)
exp . Fortran exponential intrinsic function
exp . exponential, logarithm, power, square root functions
fabs . see floor(3M)
fclose . close or flush a stream

•
fcvt . see ecvt(3C)
fdopen . see fopen(3S)
feof . see ferror(3S)
ferror . stream status inquiries
fetch . see dbm(3X)
fflush . see fclose(3S)
ffs . see bstring(3)
fgetc . see getc(3S)
fgetgrent . see getgrent(3C)
fgetpwent . see getpwent(3C)
fgets . see gets(3S)
fileno . see ferror(3S)
firstkey . see dbm(3X)
float see ftype(3F) •

- iv-

mallinfo . see malloc(3X)
malloc . main memory allocator
malloc . fast main memory allocator
mallopt . see malloc(3X)
matherr . error-handling function •
max . Fortran maximum-value functions
maxO . see max(3F)
maxl . see max(3F)
mclock . return Fortran time accounting
memccpy . see memory(3C)
memchr . see memory(3C)
memcmp . see memory(3C)
memcpy . see memory(3C)
memory . memory operations
memset . see memory(3C)
min . Fortran minimum-value functions
minO . see min(3F)
min 1 . see min(3F)
mktemp . make a unique filename
mod . Fortran remaindering intrinsic functions
modf . see frexp(3C)
monitor . prepare execution profile

•
mount . mount a file system
mrand48 . see drand48(3C)
nextkey . see dbm(3X)
nint . see round(3F)
nlist . get entries from name list
not . see bool(3F)
nrand48 . see drand48(3C)
ntohl . see byteorder(3N)
ntohs . see byteorder(3N)
numbptabent . see getptabent(3)
opendir . see directory(3)
or . see bool(3F)
pclose . see popen(3S)

• perror . system error messages
plot . graphics interface subroutines
popen . initiate pipe to/from a process

- ix-

floor . floor, ceiling, remainder, absolute value functions
fmod . see floor(3M)
fopen . open a stream
fprintf . see printf(3S)
fputc . see putc(3S) •
fputs . see puts(3S)
fread . binary input/output
free . see malloc(3C)
free . , see malloc(3X)
freopen . see fopen(3S)
frexp . manipulate parts of floating-point numbers
fscanf . see scanf(3S)
fseek . reposition a file pointer in a stream
ftell . see fseek(3S)
ftok . standard interprocess communication package
ftw . walk a file tree
ftype . explicit Fortran type conversion
fwrite . see fread(3S)
gamma . .log gamma function
gcvt. see ecvt(3C)
getarg return Fortran command-line argument •
getc .. get character or word from a stream
getchar . see getc(3S)
getcwd . get pathname of current working directory
getenv . return value for environment name
getenv . return Fortran environment variable
getgrent . . obtain group file entry from a group file
getgrgid see getgrent(3C)
getgrnam .. see getgrent(3C)
gethostbyaddr . see gethostent(3N)
gethostbyname . see gethostent(3N)
gethostent . get network host entry
getlogin . get login name
getmntent get file system descriptor file entry
getnetbyaddr . see getnetent(3N)

•
getnetbyname . see getnetent(3N)
getnetent . get network entry
getnetgrent . get network group entry

-v-

getopt get option letter from argument vector

getpass . read a password
getprotobyname . see getprotoent(3N)
getprotobynumber see getprotoent(3N)
getprotoent . get protocol entry
getptabent . get partition table file entry
getpw . get name from UID

•
getpwent. get password file entry
getpwnam . see getpwent(3C)
getpwuid . see getpwent(3C)
gets . get a string from a stream
getservbyname . see getservent(3N)
getservbyport . see getservent(3N)
getservent. get service entry
getut . access utmp file entry
getutent . see getut(3C)
getutid . see getut(3C)
getutline . see getut(3C)
getw . see getc(3S)
getwd . get current working directory pathname
gmtime . see ctime(3)
gsignal. see ssignal(3C)
hasmntopt . see getmntent(3)
hcreate . see hsearch(3C)
hdestroy . see hsearch(3C)
hsearch . manage hash search tables
htonl . see byteorder(3N)
htons see byteorder(3N)
hypot . Euclidean distance function

•

iabs . see abs(3F)
iargc . return command line arguments
ichar . see ftype(3F)
idim . see dim(3F)
idiot . see ftype(3F)
idnint . see round(3F)
ifix . see ftype(3F)
index . return location of Fortran substring
inet . .Internet address manipulation routines •

-v i-

inet_addr . see inet(3N)
inet_lnaof . see inet(3N)
inet_makeaddr . see inet(3N)
inet_netof . see inet(3N)
inet_network see inet(3N)

•
inet_ntoa . see inet(3N)
initgroups .. initialize group access list
innetgr . see getnetgrent(3N)
insque . .insert/remove element from a queue
int . see ftype(3F)
irand see rand(3F)
isalnum see ctype(3C)
isalpha . • . see ctype(3C)
isascii . see ctype(3C)
isatty .. see ttyname(3C)
iscntrl. see ctype(3C)
isdigit. see ctype(3C)
isgraph . see ctype(3C)
isign see sign(3F)
islower . see ctype(3C)
isprint see ctype(3C) •
ispunct see ctype(3C)
isspace see ctype(3C)
isupper see ctype(3C)
isxdigit .. see ctype(3C)
jO . see bessel(3M)
j 1 . see bessel(3M)
jn . .. see bessel(3M)
jrand48 . see drand48(3C)
killpg . send signal to a process group
13tol . convert between 3-byte integers and long integers
164a . .. see a641(3C)
lcong48 . see drand48(3C)
ldaclose see ldclose(3X)
ldahreadread the archive header of a member of an archive file

• ldaopen . see ldopen(3X)
ldclose close a common object file
ldexp . see frexp(3C)

-vii-

ldfcn common object file access routines
ldfhread . read the file header of a common object file
ldgetname . retrieve symbol name for object file
ldlinit .. see ldlread(3X)
ldlitem . see ldlread(3X) •
ldlread manipulate line no. entries of a common object file function
ldlseek seek to line no. entries of a section of a common object file
ldnlseek .. see ldlseek(3X)
ldnrseek . see ldrseek(3X)
ldnshread . see ldshread(3X)
ldnsseek .. see ldsseek(3X)
ldohseek seek to the optional file header of a common object file
ldopen . open a common object file for reading
ldrseek seek to relocation entries of a section of a common object file
ldshread read indexed/named section header of a common object file
ldsseek seek to an indexed/named section of a common object file
ldtbindex .. compute index of symbol table entry of a common object file
ldtbread read indexed symbol table entry of a common object file
ldtbseek . seek to the symbol table of a common object file
len . .return length of Fortran string
!find see lsearch(3C) •
lge . string comparision intrinsic functions
lgt . see lge(3F)
line_push . routine used to push streams line disciplines
lle . see lge(3F)
lit . see lge(3F)
local time . see ctime(3)
lockf. record locking on files
log . Fortran natural logarithm intrinsic function
log . see exp(3M)
loglO . Fortran common logarithm intrinsic function
loglO . see exp(3M)
logname . return login name of user
longjmp .. see setjmp(3C)
lrand48 . see drand48(3C)
lsearch . .linear search and update
lshift . see bool(3F)
ltol3 . see 13tol(3C) •

-vii i-

pow . see exp(3M)
printf .. print fonnatted output
putc . put character or word on a stremn
putchar . see putc(3S)
putenv . change or add value to environment

•
putpwent . write password file entry
puts . put a string on a stream
pututline . see getut(3C)
putw .. see putc(3S)
qsort . quicker sort
rand . simple random-number generator
rand Fortran unifonn random-number generator
rcmd . routines for returning a stream to a remote command
readdir . see directory(3)
real . see ftype(3F)
realloc . see malloc(3C)
realloc . see malloc(3X)
regcmp . compile and execute a regular expression
regex . see regcmp(3X)
remque . see insque(3N)
res_mkquery . see resolver(3N)
res_send . see resolver(3N)
res_init . see resolver(3N)
resolver . resolver routines

•
rewind . see fseek(3S)
rewinddir . see directory(3)
rexec . return stream to a remote command
round .. Fortran nearest integer functions
rpc . library routines for remote procedure calls
rresvport . see rcmd(3N)
rshift . see bool(3F)
ruserok . see rcmd(3N)
scandir . scan a directory
scanf .. convert fonnatted input
seed48 . see drand48(3C)
seekdir . see directory(3)
set42sig . set 4.2 BSD signal interface
setbuf . assign buffering to a stream •

-x-

•

•

•

setgid . • . • • • • . • . • see setuid(3)
setgrent • • . • • • . . • see getgrent(3C)
sethostent. see gethostent(3N)
setjmp . • . non-local goto
setkey . see crypt(3C)
setinntent . • see getinntent(3)
setnetent • • . see getnetent(3N)
setnetgrent . • • . see getnetgrent(3N)
setprotoent . see getprotoent(3N)
setptabent • . see getptabent(3)
setpwent . see getpwent(3C)
setservent . • . see getservent(3N)
setuid . • . set user and group IDs
setutent . • • . see getut(3C)
setvbuf . see setbuf(3S)
sgetl .. see sputl(3X)
sign . • Fortran transfer-of-sign intrinsic function
signal . specify what to do upon receipt of a signal
signal . specify Fortran action on receipt of a system signal
sin . Fortran sine intrinsic function
sin . • . • see trig(3M)
sinh . Fortran hyperbolic sine intrinsic function
sinh • . hyperbolic functions
sleep . suspend execution for interval
slots ROM library functions
sngl . see ftype(3F)
sprintf . see printf(3S)
sputl access long integer data in a machine independent fashion
sqrt. .Fortran square root intrinsic function
sqrt. .. see exp(3M)
srand . • . see rand(3C)
srand . see rand(3F)
srand48 see drand48(3C)
sscanf . see scanf(3S)
ssignal . software signals
store . see dbm(3X)
strcat • . see string(3C)
strchr . see string(3C)

-xi -

strcmp . • see string(3C)
strcpy . see string(3C)
strcspn . see string(3C)
string . string operations
strlen . see string(3C)
strncat . see string(3C)
strncmp . • see string(3C)
strncpy . • . see string(3C)
strpbrk . see string(3C)
strrchr . see string(3C)
strspn . see string(3C)
strtod .. convert string to double-precision number
strtok . see string(3C)
strtol . convert string to integer
swab . swap bytes
sys_errlist . see perror(3C)
sys_nerr . see perror(3C)
systemissue a shell command from Fortran
system . .issue a shell command
tan . Fortran tangent intrinsic function
tan . see trig(3M)
tanh . .Fortran hyperbolic tangent intrinsic function
tanh . see sinh(3M)
tdelete . see tsearch(3C)
telldir . see directory(3)
tempnam . see tmpnam(3S)
termcap . terminal independent operation routines
tfind . see tsearch(3C)
tgetent . see termcap(3X)
tgetflag . see termcap(3X)
tgetnum . see termcap(3X)
tgetstr . see termcap(3X)
tgoto . see termcap(3X)
tmpfile . create a temporary file
tmpnam . create a name for a temporary file
toascii . see conv(3C)
tolower . see conv(3C)
toupper . see conv(3C)

-xi i-

•

•

•

tputs see termcap(3X)
trig . trigonometric functions
tsearch . manage binary search trees
ttyname . find name of a terminal
ttyslot . find the slot in the utmp file of the current user
twalk . see tsearch(3C)

•
tzset . see ctime(3)
tzsetwall. see ctime(3)
umount . unmount a file system
ungetc . push character back into input stream
utmpname . see getut(3C)
varargs . handle variable argument list
vfprintf . see vprintf(3S)
vprintf . print formatted output of a varargs argument list
vsprintf . see vprintf(3S)
xdr . library routines for external data representation
xor . see bool(3F)

•
yO . see bessel(3M)
yl . see bessel(3M)
yn . see bessel(3M)
yp_all . see ypclnt(3N)
yp_bind . see ypclnt(3N)
yp_first . see ypclnt(3N)
yp_get_default_domain . see ypclnt(3N)
yp_master . see ypclnt(3N)
yp_match . see ypclnt(3N)
yp_next . see ypclnt(3N)
yp_order . see ypclnt(3N)
yp_unbind . see ypclnt(3N)
ypclnt . yellow pages client interface
yperr_string . see ypclnt(3N)
ypprot_err . see ypclnt(3N)
zabs .. see abs(3F)

•
-xi i i -

•

•

•

•

•

•

int ro(3) int ro (3)

NAME

int ro - introduction to subroutines and libraries

SYNOPSIS
#include <stdio . h>

:II: include <math . h>

DESCRIPTION
This section describes functions found in various libraries, other
than those functions that directly invoke system primitives
(described in Section 2 of this volume). Major collections are
identified by a letter after the section number:

(3C) These functions, together with those of Section 2 (and
those marked (3S)), constitute the Standard C Library,
l ibc, which is automatically loaded by the C compiler,
cc(l). The link editor ld(1) searches this library under
the -lc flag option. Some functions require declarations
that can be included in the program being compiled by
adding the line

(3F)

(3M)

#include <header-filename>

The appropriate header file is indicated in the SYNOPSIS
part of a function description.

These functions constitute the Fortran intrinsic function
library, libF 7 7 and are automatically available to the
Fortran programmer, requiring no special invocation of
the compiler. These functions are flagged with the (3F)
suffix on the associated manual page entries and appear
in their own alphabetically organized subsection at the
end of this section.

These functions constitute the Math Library, 1 ibm.
They are automatically loaded as needed by the Fortran
compiler £ 7 7 {1). They are not automatically loaded by
the C compiler, cc{l); however, the link editor searches
this library under the -1m flag option. Declarations for
these functions may be obtained from the header file
<math . h>.

(3N) These functions are networking routines and, unless oth
erwise noted, are found in the Standard C Library
libc . a.

- 1 - September, 1987

intro (3) int ro (3)

(3X) Various specialized libraries. The files in which these
libraries are found are given on the appropriate pages.

(3S) These functions constitute the standard 1/0 package; An
introduction to this package follows under the heading
"STANDARD 1/0." The functions are in the library
l ibc, already mentioned. Declarations should be
obtained from the #:include file <stdio . h>.

DEFINITIONS
A character is any bit pattern able to fit into a byte on the
machine. The null character is a character with value 0,
represented in the C language as ' ' \ 0 ' ' . A character array is a
sequence of characters. A null-terminated character array is a
sequence of characters, the last of which is the null character. A
string is a designation for a null-terminated character array. The
null string is a character array containing only the null character.
A null pointer is the value that is obtained by casting 0 into a
pointer. The C language guarantees that this value will not match
that of any legitimate pointer, so many functions that return
pointers return it to indicate an error. NULL is defined as 0 in
<stdio . h>; the user can include his own definition if he is not
using <stdio . h>.

Many groups of Fortran intrinsic functions have "generic" func
tion names that do not require explicit or implicit type declaration.
The type of the function is determined by the type of its
argument(s). For example, the generic function max returns an
integer value if given integer arguments (maxO), a real value if
given real arguments (amaxl), or a double-precision value if
given double-precision arguments (dmaxl).

STANDARD 1/0
The functions described in the entries of subclass (3S) in this
manual provide an efficient, user level 1/0 buffering scheme. The
functions are in the library l ibc and declarations should be
obtained from the header file <stdio . h>.

The input/output function may be grouped into the following
categories: file access, file status, input, output, and miscellane
ous. For lists of the functions in each category, refer to the
"Libraries" sections of AIUX Programming Languages and
Tools, Volume 1 . The inline macros getc(3S) and put c(3S)
handle characters quickly. The macros getcha r and putchar,
and the higher-level routines fget c, fget s , fprint f, fput c,
£put s , fread, f scanf, £write, get s , getw, print £,

- 2 - September, 1987

•

•

•

•

•

•

int ro(3) int ro(3)

put s , putw, and scanf all use get c and put c; they can be
freely intennixed.

A file with associated buffering is called a stream and is declared
to be a pointer to a defined type F I LE. fopen(3S) creates cer
tain descriptive data for a stream and returns a pointer to designate
the stream in all further transactions. Normally, there are three
open streams with constant pointers declared in the <stdio . h>
header file and associated with the standard open files:

stdin standard input file
stdout standard output file
s t de r r standard error file.

A constant NULL (0) designates a nonexistent pointer.

An integer constant EOF (-1) is returned upon end-of-file or error
by most integer functions that deal with streams (see the indivi
dual descriptions for details).

An integer constant BUF s I z specifies the size of the buffers used
by the particular implementation.

Any program that uses this package must include the header file of
pertinent macro definitions, as follows:

tinc lude <stdio . h>

The functions and constants mentioned in the (3S) entries are
declared in that header file <stdio . h> and need no further
declaration. The constants and the following functions are imple
mented as macros: getc, get char, putc, put char, feof,
ferror, c learerr, and fileno. Redeclaration of these
names is perilous.

The <stdio . h> file is illustrated in the "Libraries" sections of
the A/UX Programming Languages and Tools, Volume 1 .

Note: Invalid stream pointers cause serious errors, possi
bly including program termination. Individual function
descriptions describe the possible error conditions.

For descriptions and examples of header files, refer to ' 'The Stan
dard C Library (l ibc)," "The C Math Library," and "The C
Object Library" in AIUX Programming Languages and Tools,
Volume 1 .

FILES
I l ib / l ibc . a
/ u s r / l ib / libF7 7 . a

- 3 - September, 1987

int ro (3) int ro (3)

I lib/ l ibm . a

SEE ALSO
a r(l), cc{l), £7 7{1) , ld{l), l int{!), nm{l), open(2),
close(2), lseek{2), pipe(2), read(2), write(2),
ctermid(3S), cuserid(3S), fclose(3S), ferro r(3S),
fopen(3S), f read(3S), fseek(3S), getc(3S), get s (3S),
popen(3S), print f(3S), putc(3S), put s(3S), s canf(3S),
setbuf(3S), system(3S), tmpfile(3S), tmpnam(3S),
ungetc(3S), math(S). AIUX Programming Languages and
Tools, Volume 1 .

RETURN VALUE
Functions in the C and Math Libraries (3C and 3M) may return
the conventional values 0 or ± HUGE (the largest-magnitude
single-precision floating-point numbers; HUGE is defined in the
<math . h> header file) when the function is undefined for the
given arguments or when the value is not representable. In these
cases, the external variable e r rno (see int ro(2)) is set to the
value EDOM or ERANGE. Because many of the Fortran intrinsic
functions use the routines found in the Math Library, the same
conventions apply.

WARNING
Many of the functions in the libraries call and/or refer to other
functions and external variables described in this section and in
Section 2 (System Calls). If a program inadvertantly defines a
function or external variable with the same name, the presumed
library version of the function or external variable may not be
loaded. The l int(!) program checker reports name conflicts of
this kind as "multiple declarations" of the names in question.
Definitions for sections 2, 3C, and 3S are checked automatically.
Other definitions can be included by using the -1 option (for
example, -lm includes definitions for ! ibm, the Math Library,
section 3M). Use of l int is highly recommended.

- 4 - September, 1987

•

•

•

•

•

•

a 6 4 1 {3C) a 6 4 1 (3C)

NAME
a 6 41 , 1 6 4a - convert between long integer and base-64 ASCll
string

SYNOPSIS
long a 6 4 1 (s)
char *s;

char * 1 6 4a (l)
long I ;

DESCRIPTION
These functions are used to maintain numbers stored in base-64
ASCll characters. This is a notation by which long integers can
be represented by up to 6 characters; each character represents a
"digit" in a radix-64 notation.

The characters used to represent "digits" are . for 0, I for 1 , 0
through 9 for 2-1 1 , A through z for 12-37, and a through z

for 38-63.

a 6 4 1 takes a pointer to a null-terminated base-64 representation
and returns a corresponding long value. If the string pointed to
by s contains more than 6 characters, uses the first 6 .

1 6 4a takes a long argument and returns a pointer to the
corresponding base-64 representation. If the argument is 0,
16 4 a returns a pointer to a null string.

BUGS
The value returned by 1 6 4 a is a pointer into a static buffer, the
contents of which are overwritten by each call.

- 1 - September, 1987

abort (3C) abort (3C)

NAME
abort - generate an lOT fault

SYNOPSIS
int abort ()

DESCRIPTION
abort first closes all open files if possible. then causes an lOT
signal to be sent to the process. This usually results in termination
with a core dump.

It is possible for abort to return control if S IGIOT is caught
or ignored. in which case the value returned is that of the kill{2)
system call.

DIAGNOSTICS
If S IGIOT is neither caught nor ignored. and the current direc
tory is writable. a core dump is produced and the message abort
- core dumped is written by the shell.

SEE ALSO
sdb{1). exit(2). kill(2). s ignal{3).

- 1 - September. 1987

•

•

•

•

•

•

abort (3F) abort (3F)

NAME
abo rt - terminate Fortran program

SYNOPSIS
call abort ()

DESCRIPTION
abo rt terminates the program which calls it, closing all open
files truncated to the current position of the file pointer.

DIAGNOSTICS
When invoked, prints "Fort ran abort rout ine
cal led" on the standard error output

SEE ALSO
abort(3C) .

- 1 - September, 1987

abs {3C) abs (3C)

NAME
abs - return integer absolute value

SYNOPSIS
int abs (i)
int i ;

DESCRIPTION
abs returns the absolute value of its integer operand.

BUGS
In two's-complement representation, the absolute value of the
negative integer with largest magnitude is returned.

Some implementations trap this error, but others simply ignore it.

SEE ALSO
floor(3M).

- 1 - September, 1987

•

•

•

•

•

•

abs (3F) abs (3F)

NAME
abs , iabs , dabs , cabs , z abs - Fortran absolute value

SYNOPSIS
intege r il , i2
rea l rl , r2
double prec i s ion dpl , dp2
complex cxl , cx2
double complex dxl , dx2

r2=abs (rl)

i2=iabs (il)
i2=abs (il)

dp2=dabs (dpl)
dp2=abs (dpl)

cx2=cabs (cxl)
cx2=abs (cxl)

dx2=zabs (dxl)
dx2=abs (dxl)

DESCRIPI'ION
abs is the family of absolute value functions. iabs returns the
integer absolute value of its integer argument. dabs returns the
double-precision absolute value of its double-precision argument
cabs returns the complex absolute value of its complex argu
ment. z abs returns the double-complex absolute value of its
double-complex argument The generic form abs returns the
type of its argument.

SEE ALSO
f loo r(3M) .

- 1 - September, 1987

acos (3F) acos (3F)

NAME
acos , dacos - Fortran arccosine intrinsic function

SYNOPSIS
rea l rl , r2
double p recis ion dpl , dp2

r2=acos (r})

dp2=dacos (dpl)
dp2=acos (dpl)

DESCRIPITON
acos returns the real arccosine of its real argument. dacos
returns the double-precision arccosine of its double-precision
argument. The generic form acos may be used with impunity
because its argument determines the type of the returned value.

SEE ALSO
t rig(3M).

- 1 - September, 1987

•

•

•

•

•

•

a imag(3F) aimag(3F)

NAME
a imag, dimag - Fortran imaginary part of complex argument

SYNOPSIS
real r
complex cxr
double pre c i s ion dp
double complex cxd

r=a imag (c.xr)

dp=dimag (cxd)

DESCRIPTION
a imag returns the imaginary part of its single-precision complex
argument. dimag returns the double-precision imaginary part
of its double-complex argument

- 1 - September, 1987

aint(3F) aint(3F)

NAME
aint, dint - Fortran integer part intrinsic function

SYNOPSIS
rea l rl , r2
double prec i s ion dpl , dp2
r2=aint (rl)
dp2=dint (dpl)
dp2=aint (dpl)

DESCRIPTION
aint returns the truncated value of its real argument in a real.
dint returns the truncated value of its double-precision argument
as a double-precision value. aint may be used as a generic
function name, returning either a real or double-precision value
depending on the type of its argument.

- 1 - September, 1987

•

•

•

•

•

•

a s in(3F) a s in(3F)

NAME
a s in, das in - Fortran arcsine intrinsic function

SYNOPSIS
real rl , r2
double preci s ion dpl , dp2

r2=a s in (rl)

dp2=das in (dpl)
dp2=a s in (dpl)

DESCRIPTION
a s in returns the real arcsine of its real argument. da s in
returns the double-precision arcsine of its double-precision argu
ment. The generic form a s in may be used with impunity as it
derives its type from that of its argument.

SEE ALSO
t rig(3M) .

. 1 . September, 1987

a s s e rt (3X) a s sert (3X)

NAME
a s sert - verify program assertion

SYNOPSIS
inc lude <assert . h>

a s sert (expression)
in t expression ;

DESCRIPITON
This macro is useful for putting diagnostics into programs. If
expression is false (zero) when a s sert is executed, a s sert
prints

As sert ion failed : expression, file xyz, line nnn

on the standard error output and aborts. In the error message, xyz
is the name of the source file and nnn is the source line number of
the a s sert statement

Compiling with the preprocessor option -DNDEBUG (see cpp(1))
or with the preprocessor control statement .JI:def ine NDEBUG
ahead of the #include <assert . h> statement, stops asser
tions from being compiled into the program.

NOTE
a s s e rt cannot be used in an expression since it turns into and
i f statement

SEE ALSO
cpp(1), abort(3C).

- 1 - September, 1987

•

•

•

•

•

•

atan(3F) atan(3F)

NAME
at an, da tan - Fortran arctangent intrinsic function

SYNOPSIS
rea l r l , r2
double precis ion dpl , dp2

r2=atan (rl)

dp2=datan (dpl)
dp2=atan (dpl)

DESCRIPTION
a tan returns the real arctangent of its real argument. dat an
returns the double-precision arctangent of its double-precision
argument. The generic form atan may be used with a double
precision argument returning a double-precision value.

SEE ALSO
t rig(3M) .

- 1 - September, 1987

atan2 (3F) atan2 (3F)

NAME
atan2 , datan2 - Fortran arctangent intrinsic function

SYNOPSIS
rea l rl , r2 , r3
double prec i s ion dpl , dp2 , dp3

r3=at an2 (rl , r2)

dp3=datan2 (dpl , dp2)
dp3=atan2 (dpl , dp2)

DESCRIPTION
atan2 returns the arctangent of argl!arg2 as a real value.
dat an2 returns the double-precision arctangent of its double
precision arguments. The generic form atan2 may be used with
impunity with double-precision arguments.

SEE ALSO
t rig(3M).

- 1 - September, 1987

•

•

•

•

•

•

atof (3C) atof (3C)

NAME
at o f - convert ASCII string to floating-point number

SYNOPSIS
double ato f (nptr)
char *nptr ;

DESCRIPfiON
atof converts a character string pointed to by nptr to a double
precision floating point number. The first unrecognized character
ends the conversion. atof recognizes an optional string of
white space characters (blanks or tabs), then an optional sign, then
a string of digits optionally containing a decimal point, then an
optional e or E followed by an optionally signed integer. If the
string begins with an unrecognized character, atof returns the
value zero.

atof (str)

is equivalent to

s t rt od (str, (char * *) NULL)

ERRORS
When the correct value would overflow, at of returns HUGE, and
sets errno to ERANGE. Zero is returned on underflow.

SEE ALSO
scanf(3S), s t rtod(3C), s t rto l(3C) .

- 1 - September, 1987

bessel (3M) bessel (3M)

NAME
j 0 , j 1 , j n, yO , y1 , yn - Bessel functions

SYNOPSIS
include <math . h>

double j O (X)
double X ;

double j 1 (X)
double x;

double jn (n , X)
int n ;
double x;

double yO (X)
double x;

double y1 (X)
double x;

double yn (n , X)
int n ;
double x ;

DESCRIYITON
j 0 and j 1 return Bessel functions of x of the first kind of orders
0 and 1 respectively. j n returns the Bessel function of x of the
first kind of order n .

yO and y1 return the Bessel functions of x of the second kind of
orders 0 and 1 respectively. yn returns the Bessel function of x
of the second kind of order n . The value of x must be positive.

ERRORS
Nonpositive arguments cause yO , y1 , and yn to return the value
-HUGE and to set errno to EDOM. In addition, a message indi
cating DOMAIN error is printed on the standard error output.

Arguments too large in magnitude cause j 0 , j 1 , yO and y1 to
return zero and set e rrno to ERANGE. In addition, a message
indicating TLOSS error is printed on the standard error output.

NOTE
These error-handling procedures may be changed with the func
tion matherr(3M).

SEE ALSO
matherr(3M).

- 1 - September, 1987

•

•

•

•

•

•

blt (3C)

NAME
blt, blt 5 12 - block transfer data

SYNOPSIS
int blt (to , from, count)
cha r *to ;
cha r *from ;
int count ;

int blt 5 12 (to , from, count)
cha r *to ;
cha r *from ;
int count ;

DESCRIPITON

blt (3C)

blt does a fast copy of count bytes of data starting at address
from to address to .

blt 5 12 does a fast copy of count number of consecutive 512
byte units starting at address from to address to .

SEE ALSO
memory{3) .

- 1 - September, 1987

bool{3F) bool (3F)

NAME
and, o r, xo r, not , !shift, rshift - Fortran bitwise
boolean functions

SYNOPSIS
integer i, j, k
rea l a, b , c
double prec i s ion dpl , dp2 , dp3

k=and (i , j)
c=o r (a , b)
j=xo r (i, a)
j=not (i)
k=l shift (i , j)
k=rshift (i , j)

DESCRIPTION
The generic intrinsic boolean functions and, or, and xo r return
the value of the binary operations on their arguments. not is a
unary operator returning the one's complement of its argument.
!shift and rshift return the value of the first argument
shifted left or right, respectively, the number of times specified by
the second (integer) argument

The boolean functions are generic, i.e., defined for all data types
as arguments and return values. Where required, the compiler
generates appropriate type conversions.

NOTE
Although defined for all data types, use of boolean functions on
non-integer data is not productive.

BUGS
The implementation of the shift functions may cause large shift
values to deliver unexpected results.

- 1 - September, 1987

•

•

•

•

•

•

bsearch(3C) bsearch(3C)

NAME
bsearch - binary search a sorted table

SYNOPSIS
:fl:include <search . h>

char *bsearch (key, base , nel, width, compar)
char *key ;
char *base ;
uns igned nel ; width ;
int (*compar) () ;

DBSCRIPITON
bsearch is a binary search routine generalized from Knuth
(6.2. 1) Algorithm B. It returns a pointer into a table indicating
where a datum may be found. The table must be previously sorted
in increasing order according to a provided comparison function.
key points to a datum instance to be sought in the table. base
points to the element at the base of the table. nel is the number of
elements in the table. width is the width of an element in bytes;
sizeof (*key) should be used. compar is the name of the com
parison function, which is called with two arguments that point to
the elements being compared. The function must return an integer
less than, equal to, or greater than zero as accordingly the first
argument is to be considered less than, equal to, or greater than the
second.

EXAMPLE
The example below searches a table containing pointers to nodes
consisting of a string and its length. The table is ordered alphabet
ically on the string in the node pointed to by each entry.

This code fragment reads in strings and either finds the
corresponding node and prints out the string and its length, or
prints an error message.

t i n c l ude < st d i o . h>

f i n c l ude < s e a r ch . h>

f d e f i ne TABS IZE

st ruct node 1

cha r * st ri ng ;

i nt l e ngt h ;

I ;

1 0 0 0

I * t hese a r e st ored i n t h e t a b l e * I

st ruct node t a b l e [TABS I Z E] ; I * t a b l e t o be sea rched * I

- 1 - September, 1987

bsearch(3C) bsearch(3C)

I *

* I

i nt

st ruct node l * node_pt r , node ;

i nt node_compare () ; I * rout ine to compare 2 nodes * I

char s t r_space [2 0) ; I * space to read st r i nq i nt o * I

node . s t r i nq = str_spa ce;

whi l e (scanf (" 'lo s " , node . s t r i nq) ! • EOF) I
node_pt r = (st ruct node *) b s earch ((char *) (& node) ,

(cha r *) tabl e , TABS I Z E ,

s i z e o f (struct node) , node_compare) ;

i f (node_pt r ! • NULL)
(vo i d) printf (" st r i n q = % 2 0 s , l enqt h = % d \ n " ,

node_pt r-> s t r i nq , node_pt r-> l enqt h) ;

e l s e I
(vo i d) pri nt f (" not found : % s \ n " , node . s t r i nq) ;

T h i s rout i ne compa res two nodes ba sed on an

a l phabet i ca l orde r i nq o f t he s t r i nq f i e l d .

no de_compare (noda l , node 2)

st ruct node * node l , *node 2 ;

return st rcmp (node l - > s t r i n q , node 2 - > st r i nq) ;

NOTES
The pointers to the key and the element at the base of the table
should be of type pointer-to-element, and cast to type pointer-to
character.
The comparison function need not compare every byte, so arbi
trary data may be contained in the elements in addition to the
values being compared.
Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

- 2 - September, 1987

•

•

•

•

•

•

bsearch (3C) bsearch (3C)

RETURN V ALUB
A NUlL pointer is returned if the key cannot be found in the
table .

SEE ALSO
hsearch(3C), lsearch(3C), qso rt{3C), tsearch(3C) .

- 3 - September, 1987

bst ring(3) bst ring(3)

NAME
bcopy, bcmp, bzero, f f s - bit and byte string operations

SYNOPSIS
int bcopy (bl , b2 , length)
cha r *bl , *b2 ;
int length ;

int bcmp (bl , b2, length)
char *bl , *b2 ;
int length ;

int bzero (b , length)
char *b ;
int length ;

int f f s (i)
int i ;

DESCRIYfiON
The macro bcopy, and the functions bcmp, and b z e ro operate
on variable length strings of bytes. They do not check for null
bytes as the routines in st ring(3C) do.

bcopy copies length bytes from string bl to the string b2 .

bcmp compares byte string bl against byte string b2 , returning
zero if they are identical, nonzero otherwise. Both strings are
assumed to be length bytes long.

b z e r o places length 0 bytes in the string bl .

ffs finds the first bit set in the argument passed it and returns the
index of that bit. Bits are numbered starting at 1 . A return value
of -1 indicates the value passed is zero.

FILES
/ u s r / inc lude / sys /param . h

BUGS
The bcmp and bcopy routines take parameters backwards from
st rcmp and st rcpy.

SEE ALSO
memory(3C), string(3).

- 1 - September, 1987

•

•

•

•

•

•

byteorder(3N) byteorde r (3N)

NAME
htonl, htons, ntohl, ntohs - convert values between host
and network byte order

SYNOPSIS
*include <sys /types . h>
* include <net inet / in . h>

u _long htonl (hostlong) ;
u_long hostlong;

u short htons (hostshort) ;
u=short hostshort ;

u_long ntohl (netlong) :
u _long netlong ;

u short ntohs (netshort) ;
u=short netshort;

DESCRIPTION
These macros convert 16 and 32 bit quantities between network
byte order and host byte order. On machines in the Motorola
68000 family such as the Macintosh II, these routines are defined
as null macros in the include file <net inet I in . h> .

These routines are most often used in conjunction with Internet
addresses and ports as returned by gethostent(3N) and
get servent(3N).

SEE ALSO
gethostent(3N), get s ervent(3N) .

- 1 - September, 1987

clock{3C) clock{3C)

NAME
clock - report CPU time used

SYNOPSIS
long clock ()

DESCRIPriON
clock returns the amount of CPU time (in microseconds) used
since the first call to c lock. The time reported is the sum of the
user and system times of the calling process and its terminated
child processes for which it has executed wai t(2) or
system(3S).

SEE ALSO
t imes(2), wait(2), system(3S).

BUGS
The value retmned by clock is defined in microseconds for
compatibility with systems that have CPU clocks with much
higher resolution. Because of this, the value retmned wraps
around after accumulating only 2, 147 seconds of CPU time (about
36 minutes).

- 1 - September, 1987

•

•

•

•

•

•

con j g(3F) con j g(3F)

NAME
con j g, dcon j g - Fortran complex conjugate intrinsic function

SYNOPSIS
complex cxl , cx2
double complex dxl , dx2

c.x2=con j g (ex])

dx2=dcon j g (dxl)
DESCRIPTION

con j g returns the complex conjugate of its complex argument
dcon j g returns the double-complex conjugate of its double
complex argument .

- 1 - September, 1987

conv(3C) conv (3C)

NAME
t oupper, tolower, _t oupper, _tolower, toascii -
translate characters

SYNOPSIS
inc lude <ctype . h>

int t oupper (c)
int c ;

int tolower (c)
int c ;

int _toupper (c)
int c ;

int _tolower (c)
int c ;

int toascii (c)
int c ;

DESCRIPTION
t ouppe r and t olower have as domain the range of
getc(3S): the integers from -1 through 255. If the argument of
t ouppe r represents a lowercase letter, the result is the
corresponding uppercase letter. If the argument of tolowe r
represents an uppercase letter, the result is the corresponding
lowercase letter. All other arguments in the domain are returned
unchanged.

The macros t oupper and tolowe r, are macros that accom
plish the same thing as t oupper and tolower but have res
tricted domains and are faster. _t oupper requires a lowercase
letter as its argument; its result is the corresponding uppercase
letter. The macro tolowe r requires an uppercase letter as its
argument; its resultis the corresponding lowercase letter. Argu
ments outside the domain cause undefined results.

The toascii macro yields its argument with all bits turned off
that are not part of a standard ASCII character; it is intended for
compatibility with other systems.

SEE ALSO
ctype(3C), getc(3S).

- 1 - September, 1987

•

•

•

•

•

•

cos (3F) cos (3F)

NAME
cos, dcos , ccos - Forttan cosine inttinsic function

SYNOPSIS
rea l rl , r2
double precision dpl , dp2
complex cx1 , fx2

r2=cos (rJ)

dp2=dcos <dpl)
dp2=cos <dpl)

cx2=ccos (cxl)
cx2=cos < cxl)

DBSCRIPITON
cos returns the real cosine of its real argument dcos returns
the double-precision cosine of its double-precision argument
ccos returns the complex cosine of its complex argument. The
generic form cos may be used with impunity because its
returned type is determined by that of its argument

SEE ALSO
t rig(3M) .

- 1 - September, 1987

cosh(3F) cosh(3F)

NAME
cosh, dcosh - Fortran hyperbolic cosine intrinsic function

SYNOPSIS
real rl , r2
double precis ion dpl , dp2

r2=cosh (rl)

dp2 =dcosh (dpl)
dp2=cosh (dpl)

DESCRIPTION
cosh returns the real hyperbolic cosine of its real argument
dcosh returns the double-precision hyperbolic cosine of its
double-precision argument. The generic form cosh may be used
to return the hyperbolic cosine in the type of its argument.

SEE ALSO
s inh(3M).

- 1 - September, 1987

•

•

•

•

•

•

crypt (3C) crypt (3C)

NAME
c rypt , setkey, enc rypt - generate DES encryption

SYNOPSIS
char * crypt (key, salt)
char *key, *salt ;

void set key (key)
char *key ;

void encrypt (block, edjlag)
char *block;
int edjlag ;

DESCRIPTION
c rypt is the password encryption function. It is based on the
NBS Data Encryption Standard (DES), with variations intended to
frustrate use of hardware implementations of the DES for key
search.

key is a user's typed password. salt is a 2-character string chosen
from the set [a- zA-Z 0 - 9 . /] ; this string is used to perturb the
DES algorithm in one of 4,096 different ways, after which the
password is used as the key to encrypt repeatedly a constant
string. The returned value points to the encrypted password. The
first 2 characters are the salt itself.

The setkey and encrypt entries provide (rather primitive)
access to the actual DES algorithm. The argument of set key is
a character array of length 64 containing only the characters with
numerical value 0 and 1 . If this string is divided into groups of 8,
the low-order bit in each group is ignored; this gives a 56-bit key
which is set into the machine. The 56-bit key is used with the
above-mentioned algorithm to encrypt or decrypt the string block
with the function encrypt .

The argument to the encrypt entry is a character array of
length 64 containing only the characters with numerical value 0
and 1 . The argument array is modified in place to a similar array
representing the bits of the argument after having been subjected
to the DES algorithm using the key set by setkey. If edjlag is
zero, the argument is encrypted; if nonzero, it is decrypted.

SEE ALSO
c rypt(1) , login(1), passwd(1), getpa s s(3C), pa s swd(4).

BUGS
The return value points to static data that is overwritten by each
call.

- 1 - September, 1987

ctermid(3S)

NAME
ctermid - generate filename for terminal

SYNOPSIS
.finc1ude <stdio . h>

cha r *ctermid (s)
cha r *s;

DESCRIPTION

ctermid(3S)

cte rmid generates the pathname of the controlling terminal for
the current process, and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static
area, the contents of which are overwritten at the next call to
ctermid, and the address of which is returned. Otherwise, s is
assumed to point to a character array of at least 1 ctermid ele
ments; the pathname is placed in this array and the value of s is
returned. The constant 1 ctermid is defined in the
<stdio . h> header file.

-

NOTES
The difference between ctermid and ttyname(3C) is that
t t yname must be handed a file descriptor and returns the actual
name of the terminal associated with that file descriptor, while
ctermid returns a string (/dev/tty) that refers to the terminal
if used as a filename. For this reason, t t yname is useful only if
the process already has at least one file open to a terminal.

SEE ALSO
t t yname(3C).

- 1 - September, 1987

•

•

•

•

•

•

ct ime (3) ctime (3)

NAMB
ct ime, localt ime, gmt ime, asctime, t z set,
t zsetwall - convert date and time to ASCll

SYNOPSIS
extern char *tzname [2] ;

void t z set ()

void t zsetwall ()

char *ct ime (cloc/c)
long *clock ;

#include <t ime . h>

char *asctime (tm)
st ruct tm *tm;

st ruct tm * localtime (clock)
long *clock ;

st ruct tm *gmt ime (clock)
long *clock ;

extern long timezone ;
extern int daylight ;

DESCRIPTION
t z set uses the value of the environment variable TZ to set time
conversion information used by localtime. If T z does not appear
in the environment, the best available approximation to local wall
clock time is used by localtime. If T z appears in the environ
ment but its value is a null string, Greenwich Mean Time is used;
if TZ appears and begins with a slash, it is used as the absolute
pathname of the t z file(4)-format file from which to read the
time conversion information; if T z appears and begins with a
character other than a slash, it's used as a pathname relative to a
system time conversion infonnation directory.

t zsetwall sets things up so that local t ime retmns the best
available approximation of local wall clock time.

ct ime converts a long integer, pointed to by clock , representing
the time in seconds since 00:00:00 GMT, January 1 , 1970, and
returns a pointer to a 26-character string of the fonn

Thu Nov 2 4 1 8 : 2 2 : 4 8 1 9 8 6 \n\ 0

All the fields have constant width.

- 1 - September, 1987

ct ime(3) ctime(3)

localt ime an d gmt ime return pointers to "tm" structmes,
described below. localt ime corrects for the time zone and
any time zone adjustments (such as Daylight Savings time in the
U.S.A.). Before doing so, localtime calls t z set (if
t z s�t has not been called in the current process). After filling in
the "tm" structure, localt ime sets the tm isdst 'th ele
ment of t zname to a pointer to an ASOI string that's the time
zone abbreviation to be used with local t ime 's return value.

gmt ime converts to Greenwich Mean Time (GM1).

asct ime converts a time value contained in a "tm" structme to
a 26-character string, as shown in the above example, and returns
a pointer to the string.

Declarations of all the functions and externals, and the "tm"
structme, are in the <t ime . h> header file. The structure (of
type) st ruct tm includes the following fields:

int tm sec ; / * seconds (0 - 5 9) * /
int tm=min ; / * minutes (0 - 5 9) * /
int tm_hour ; / * hours (0 - 2 3) * /
int tm_mday ; / * day of month (1 - 3 1) * /
int tm_mon ; / * month o f year (0 - 1 1) * /
int tm_yea r ; / * year - 1 9 0 0 * /
int tm_wday ; / * day of week (Sunday = 0) * /
int tm_yday ; / * day of year (0 - 3 65) * /
int tm_isdst ; / * is DST in effect ? * /

tm isdst is nonzero if a time zone adjusbnent such as Daylight
Savings time is in effect

The external long variable timezone contains the difference, in
seconds, between GMT and local standard time (in EST, timezone
is 5*60*60); the external variable daylight is nonzero if, and only
if, the standard U.S.A. Daylight Savings Time conversion should
be applied. The program knows about the peculiarities of this
conversion in 1974 and 1975; if necessary, a table for these years
can be extended.

If an environment variable named TZ is present, asct ime uses
the contents of the variable to override the default time zone. The
value of TZ must be a 3-letter time zone name, followed by a
number representing the difference between local time and
Greenwich Mean Time in hours, followed by an optional 3-letter
name for a daylight time zone. For example, the setting for New
Jersey would be EST5EDT. The effects of setting TZ are thus to

- 2 - September, 1987

•

•

•

•

•

•

ct ime (3) ct ime(3)

change the values of the external variables timezone an d daylight;
in addition, the time zone names contained in the external variable

char *t zname [2] = { "EST " , "EDT" } ;

are set from the environment variable TZ. The function t z set
sets these external variables from TZ; t z set is called by asc
t ime and may also be called explicitly by the user.

Note that in most installations, T Z is set by default when the user
logs on, to a value in the local /etc/profile file (see pro
file(4)).

Fll..ES
/etc / zoneinfo

/et c / zoneinfo / localt ime

SEE ALSO

time zone information
directory
local time zone file

t ime(2), getenv(3), t z f ile(4), profile(4), environ(S).

NOTE
The return values point to static data whose content is overwritten
by each call .

- 3 - September, 1987

ctype (3C) ctype (3C)

NAME
isalpha, isupper, is lower, isdigit, isxdigit ,
isalnum, is space, ispunct, isprint, isgraph,
iscnt rl, isascii - classify characters

SYNOPSIS
#include <ctype . h>

int isalpha (c)
int c ;

DESCRIPI'ION
These macros classify character-coded integer values by table
lookup. Each is a predicate returning nonzero for true, zero for
false. isascii is defined on all integer values; the rest are
defined only where isascii is true and on the single non
ASCIT value EOF (-1); see int ro(3)).

is alpha

is upper

is lower

isdigit

isxdigit

isalnum

is space

ispunct

isprint

isgraph

iscnt rl

isascii

RETURN VALUE

c is a letter.

c is an upper-case letter.
c is a lower-case letter.

c is a digit [0-9].

c is a hexadecimal digit [0-9] , [A-F] or [a
f].
c is an alphanumeric (letter or digit).

c is a space, tab, carriage return, newline,
vertical tab, or form-feed.

c is a punctuation character (neither control
nor alphanumeric).

c is a printing character, code 040 (space)
through 0176 (tilde).

c is a printing character, similar to
isprint except false for space.

c is a delete character (0 177) or an ordinary
control character (less than 040).
c is an ASCII character, code less than
0200.

If the argument to any of these macros is not in the domain of the

- 1 - September, 1987

•

•

•

ctype (3C) ctype (3C)

function, the result is undefined.

SEE ALSO

•
int ro(3), ascii(5) .

•

•

- 2 - September, 1987

curses (3X) curses (3X)

NAME
curses - CRT screen handling and optimization package

SYNOPSIS
:fl:include <curses . h>
cc [flags] files -!curses [libraries]

DESCRIPI10N
These routines give the user a method of updating screens with
reasonable optimization. In order to initialize the routines, the
routine initscr () must be called before any of the other rou
tines that deal with windows and screens are used The routine
endwin () should be called before exiting. To get character-at
a-time input without echoing, (most interactive, screen oriented
programs want this) after calling init scr () you should call
' ' non! () ; cbreak () ; noecho () ; ' '

The full curses interface permits manipulation of data structures
called "windows" which can be thought of as two dimensional
arrays of characters representing all or part of a terminal screen.
A default window called stdscr is supplied, and others can be
created with newwin. Windows are referred to by variables
declared "WINDOW *," the type WINDOW is defined in
curses . h to be a C structure. These data structures are manipu
lated with functions described below, among which the most basic
are move, and addch. (More general versions of these functions
are included with names beginning with "w", allowing you to
specify a window. The routines not beginning with "w", affect
stdscr.) Then ref resh () is called, telling the routines to
make the users CRT screen look like stdscr.

"Mini-Curses" is a subset of curses which does not allow mani
pulation of more than one window. To invoke this subset, use
-DMINICURSES as a cc option. This level is smaller and faster
than full curses.

If the environment variable TERMINFO is defined, any program
using curses will check for a local terminal definition before
checking in the standard place. For example, if the standard place
is /us r / l ib/terminfo, and TERM is set to "vt 1 0 0 " , then
nonnally the compiled file is found in
/us r / l ib/terminfo/v/vt l O O . (The "v" is copied from
the first letter of "vt 1 0 0 " to avoid creation of huge directories.)
However, if TERMINFO is set to /usr/paul /myte rms ,
curses will first check /usr/paul /myterms /v/vt l O O ,
and if that fails, will then check

- I - September, 1987

•

•

•

•

•

•

curses (3X) curses (3X)

/us r / l ib/terminfo/v/vt l O O . This is useful for develop
ing experimental definitions or when write permission in
/ u s r I l ib/terminfo is not available .

SEE ALSO
terminfo(4).

FUNCTIONS
Routines listed here may be called when using the full curses.
Those marked with a plus (+) are macros. Those marked with an
asterisk (*) may be called when using Mini-Curses.

addch (ch) *

addst r (str) •
a t t r o f f (attrs) *

att ron (attrs) •
att r set (attrs) •
baudrate () •

beep o •
box (win, vert, hor)

clear ()

clearok (win , bj)

c lrtobot ()

c l rtoeo l ()
cbreak () *

de l ay_output (nu) *

de l ch ()

de let e l n ()

de lwin (win)

doupdate ()
echo () *

endwin () *

erase ()

erasechar ()

f i xterm ()

f l a sh ()

flush i np () *

get ch () *

get str (st r)

get tmode ()

getyx (win ,y , x) +

- 2 -

add a character to stdscr

(like put char) (wraps to next

line at end of line)

calls addch with each character in str

tum off auributes named

tum on attributes named

set current attributes to attrs

cummt terminal speed

BOIDld beep on terminal

draw a bOx around edges of win

vert and hor are chars to use for venical

and horizontal edges of box
clear stdscr

clear screen before next redraw of win

clear to bottcm of stdscr

clear to end of line on stdscr
set cbrealt mode

insert nu millisecond pause in output

delete a character

delete a line

delete win

update screen from all wnoout re fre sh
set echo mode

end window modes

erase stdscr

return user's erase character

restore tty to "in curses" state

ftash screen or beep

throw away any typeahead

get a char from tty

get a string through stdscr

establish cummt tty modes

get (y ,x) coordinates

September, 1987

curses (3X) curses (3X)

has_ic () true if tenninal can do insert character

has_i l () true if tenninal can do insert line

idlok (win , bj) • use tenninal' s insert/delete line if bf I= 0
inch () get char at current (y,x) coordinates

initscr () * initialize screens

insch (c) insert a char

in sert ln () insert a line

int r f lush (win , bj) interrupts ftush output if bfis 1RUE
keypad (win, bfl enable keypad input

k i l lchar () return current user's kill character

leaveok (win ,jlag) OK to leave cursor anywhere after

refresh if ftag 1=0 for win, otherwise

cursor must be left at current position.

longname () return verbose name of tenninal

met a (win,jlag) • allow meta characters oo input if ftag I= 0
move (y, x) * move to (y,x) oo stdscr

mvaddch (y, x, ch) + move(y,x) then addch (ch)

mvadds t r (y, x, su) + move(y,x) then addst r(str)

mvcur (oldrow, oldcol, newrow, newcol)

mvde l ch (y, x) +

mvget ch (y, x) +

mvget s t r (y, x) +

mvinch (y, x) +

mvin sch (y, x, c)

mvprintw (y, x,fmt, args) +

mvscanw (y, x,fmt, args)

mvwaddch (win, y, x, ch) +

mvwadds t r (win , y , x, su) +

mvwde l ch (win , y, x) +

mvwgetch (win , y, x) +

mvwget s t r (win , y , x) +

mvwin (win , by, bx)

mvwinch (win , y, x) +

mvwinsch (win, y, x, c) +
mvwprintw (win, y , x,fmt, args) +

mvwscanw (win , y, x,fmt, args) +

low level cursor motioo
like de 1 ch, but move(y ,x) first

like get ch, but move(y,x) first

like get str, but move(y,x) first

like inch, but move(y,x) first

like insch, but move(y,x) first

like printw, but move(y,x) first

like scanw, but move(y,x) first

like addch, but move(y,x) first

like waddst r, but move(y,x) first

like wde lch, but move(y,x) first

like wget ch, but move(y,x) first

like wget st r, but move(y,x)

like win, but move(y,x)

like winch, but move(y,x)

like winsch, but move(y,x)

like wprintw, but move(y,x)

like wscanw, but move(y,x)

newpad (nlines, neola) create a new pad with given dimensions

- 3 - September, 1987

•

•

•

•

•

•

curses (3X)

newterm (type ,fd)

new in (lias, cola, begin_y, begiii_JC)

nl () *

nocbreak () *

node lay (win , b/)

noecho () *

nonl () *

curses (3X)

set up new terminal of given type to

our.put onfd

create a new window

set newline mapping

unset cbreak mode

enable node lay input mode through get ch

unset echo mode

unset newline mapping

noraw () * unset raw mode

over lay (winl , win2) overlay winl on win2

overwr ite (willl , win2) overwrite winl on top of win2

pnout re fre sh (pad, pminrow, pmincol,

SnUriTOW, sminco[, SmtD&TOW, SmDJCCO[)

prefresh (pad, pminrow, pmincol,

smiMow, smincol, smtD&Tow, smDJCCol)

print w (fint argl , arg2 , . . .)

raw () *

refre sh () *

re set term () *
re set t y () *

savete rm () *

savet t y () *

scanw (fint , argl , arg2 , . . .)

scro l l (win)

scro l lok (win,jfag)

set_ term (Mw)

set scrreg (t , b)

set term (type)

setupte rm (term,jileiiJIIII, urret)

st andend () *

st andout () *

like pre fresh but with no output until
doupdate called

refresh from pad starting with given upper
left comer of pad with output to given

portion of screen

print f on stdscr

set raw mode

make current screen look like stdscr

set tty modes to "out of curses" state

reset tty flags to stored value

save current modes as "in curses" state

store current tty flags

scanf through stdscr

saon win one line

allow terminal to scroll ifjfag I= 0

now talk to terminal aw

set user scrolling region to lines t

through b

establish tenninal with given type

clear standout mode attribute

set standout mode attribute

subwin (win , lias, cola, begi11_y, begiii_JC)

create a subwindow

t ouchwindow (win) change all of win

- 4 - September, 1987

curses (3X)

t raceo f f ()

t raceon ()

t ypeahead C/d)

unct r l (ch) •

waddch (will , ch)

waddstr (will , str)

wat t r o f f (will , attrs)
watt ron (will , attrs)

wat t r s t (will , attrs)

wc lear (will)

wc lrt obot (win)

wcl rtoeol (win)

wde l ch (will , c)

wde leteln (win)

werase (will)

wge t ch (will)

wge t s t r (will , str)

winch (win) +

winsch (will , c)

winsert ln (win)

wmove (win , y , x)

wnout refre sh (will)

wpr intw (will ,fmt, argl , arg2, . . .)

wre fresh (will)

wscanw (will ,fmt, argljC,arg2 , . . .)

wset scrreg (win, t, b)

wst andend (win)

wst andout (win)

TERMINFO LEVEL ROliTINES

curses (3X)

tum off debugging trace output
tum on debugging trace output

use file descriptor fd to check typeahead

printable version of ch

add char to will

add string to will

tum off attrs in win

tum on attrs in will

set attrs in will to attrs

clear will

clear to bottom of will

clear to end of line on win

delete char from will

delete line from will

erase win

get a char through will

get a string through will

get char at current (:y ,x) in will

insert char into will

insert line into win

set current (y ,x) coordinates on will

refresh but no screen output

print f on will

make screen look like win

scanf through will

set scrolling region of will

clear standout auribute in will

set standout attribute in will

These routines should be called by programs wishing to deal
directly with the terminfo database. Due to the low level of
this interface, it is discouraged. Initially, setupterm should be
called. This will define the set of terminal dependent variables
defined in terminfo(4). The include files <curses . h> and
<term . h> should be included to get the definitions for these
strings, numbers, and flags. Parmeterized strings should be passed
through tparm to instantiate them. All terminfo strings
(including the oulput of tparm) should be printed with tput s
or putp. Before exiting, resetterm should be called to
restore the tty modes. (Programs desiring shell escapes or
suspending with CON1ROL-Z can call resetterm before the

- 5 - September, 1987

•

•

•

•

•

•

curses (3X) curses (3X)

shell is called and fixterm after returning from the shell.)

f i xterm () restore tty modes for terminfo use

(called by setupterm)

reset term () reset tty modes to state before program enuy

set up term (term,fd, rc)read in database. Terminal type is the

character string term, all output is to UNIX
System file descriptor/d. A status value is

returned in the integer pointed to by rc: 1
is normal. The simplest call would be
setupterm (0 , 1 , 0) which uses all defaults.

tparm (str, pl , p2 , . • • , p9)

instantiate string str with penns Pi·

tput s (str, affcnt, pule) apply padding info to string str.

affcnt is the number of lines affected,
or 1 if not applicable. putc is a

put char-like function to which the characters

are passed, one at a time.

put p (str) handy function that calls t put s

(str, 1 , put cha r)

vidput s (attrs , pule) output the string to put tenninal in video
attribute mode attrs, which is any

combination of the attributes listed below.

Chars are passed to put char-like

function putc.

vidat t r (attrs) Like vidput s but outputs through

put char

TERMCAP COMPATIBll.ITY ROUTINES
These routines were included as a conversion aid for programs
that use termcap. Their parameters are the same as for termcap.
They are emulated using the terminfo database. They may go
away at a later date.

t getent (bp, name)
tget flag (id)
t getnum (id)

tget str (id, area)

tgoto (cap, col, row)
tput s (cap, affcnt, fn)

ATTRIBUTES

look up termcap enuy for name

get boolean enuy for id
get nmneric enuy for id
get string enuy for id

apply panns to given cap

apply padding t o cap call ing fn as put char

The following video attributes can be passed to the functions
att ron, attroff, attrset.

- 6 - September, 1987

curses (3X) curses (3X)

A S TANDOUT Tenninal's best highlighting mode

A UNDERLINE Underlining

A REVERSE Revene video

A_BLINK Blinking

A D IM Half bright

A BOLD Extra bright or bold

A BLANK Blanking (invisible)

A PROTECT Protected

A_ALTCHARSET Ahemate character set

FUNCTION KEYS
The following function keys might be returned by getch if
keypad has been enabled. Note that not all of these are currently
supported, due to lack of definitions in terminfo or the terminal
not transmitting a unique code when the key is pressed.

NAME

KEY BREAK

KEY DOWN

KEY UP

KEY_LEFT
KEY RIGHT

KEY HOME

KEY BACKSPACE

KEY F O

KEY_F (11)

KEY DL
KEY IL

KEY DC

KEY IC

KEY_E IC

KEY CLEAR

KEY EOS

KEY EOL

KEY_SF

KEY SR

KEY NPAGE

KEY PPAGE

KEY_STAB

KEY CTAB

KEY CATAB

KEY ENTER

KEY SRESET

VALUE

0401

0402
0403

0404 '
0405

0406
0407
0410

(KEY_F<H-(n))

0510

051 1

0512

0513

0514

0515

0516

0517

0520

0521

0522

0523

0524

0525

0526

0527

0530

- 7 -

KEY NAME

break key (unreliable)

The four arrow keys . . .

Home key (upward+left arrow)

backspace (unreliable)

F1mction keys. Space for 64 is reserved.

Fonnula for fn.

Delete line

Insert line

Delete character

Insert char or enter insert mode

Exit insert char mode

Clear screen

Clear to end of screen

Clear to end of line

Scroll 1 line forward

Scroll 1 1ine backwards (revene)

Next page

Previous page

Set tab

Clear tab

Clear all tabs

Enter or send (1Dlreliable)

soft (partial) reset (unreliable)

September, 1987

•

•

•

•

•

•

curses (3X)

KEY_RESET

KEY_PRINT

KEY_LL

WARNING

OS31
0532
0533

curses (3X)

reset or bard reset (unreliable)
print or copy
heme down or bottom (lower left)

The plotting library plot(3X) and the curses library
curses(3X) both use the names erase () and move () . The
curses versions are macros. If you need both libraries, put the
plot(3X) code in a different source file than the curses(3X)
code and/or tundef move () and erase () in the
plot(3X)) code •

- 8 - September, 1987

curses S . 0 (3X) curses5 . 0 (3X)

NAME
curses S . 0 - BSD-style screen functions with "optimal" cur
sor motion

SYNOPSIS
cc [flags] files -lcursesS . 0 -ltermcap [libraries]

DESCRIPI'ION
These routines are a subset of the routines provided in the new
curses library. They are provided for compatibility with pro
grams that use the old curses and termcap libraries. These
routines give the user a method of updating screens with reason
able optimization. They keep an image of the cmrent screen, and
the user sets up an image of a new one. Then the refresh ()
tells the routines to make the current screen look like the new one.
In order to initialize the routines, the routine init scr () must
be called before any of the other routines that deal with windows
and screens are used. The routine end win () should be called
before exiting.

SEE ALSO
ioct l{2), curses(3X), getenv(3), termcap(4), ter
rninfo{4), tty(4).

FUNCTIONS
addch (ch)
addstr (str)

box (win,vert,hor)

crmode ()
clear ()

clearok (scr,bool/)

c l rtobot ()

clrtoe o l ()

de l ch ()

de let e l n ()

de l win (wlir)

echo ()

endwin ()

erase ()

get ch ()

get cap (name)

get s t r (str)

get tmode ()

get yx (win,y,x)

inch ()

add a character to stdscr
add a string to stdscr

draw a box around a window

set cbreak mode

clear stdscr

set clear flag for scr

clear to bottom on stdscr

clear to end of line on stdscr

delete a character

delete a line

delete win

set echo mode

end window modes

erase stdscr

get a char through stdscr

get terminal capability name
get a string through stdscr

get tty modes

get (y,x) co-ordinates

get char at current (y,x) co-ordinates

i n i t s c r () initialize screens

- 1 - September, 1987

•

•

•

•

•

•

curses S . 0 (3X)

i n s ch (c)

in sert ln ()

leaveok (win,boolf)

l ongname (termbuf,Mmtl)

move (y,x)
mvcur (lasty,lasbc,uwy,uw;c)

newwin (lines,cola,bcgin _y,bcgin _x)

n l ()

nocrmode ()

noecho ()

nonl ()

noraw ()

over lay (winl,win2)

ove rwr ite (winl,win2)

print w (ftnt,argl ,arg2, . . .)

raw ()

re fresh ()

resetty ()

s avett y ()

scanw (ftnt,argl ,arg2, .. .)

scro l l (win)

scro l l ok (win,boolf)

setterm (riiJI'M)

st andend ()

st andout ()

insert a char

insert a line

curses S . 0 (3X)

set leave flag for win

get long name from termbuf

move to (y,x) on stdscr

actually move cursor

create a new window

set newline mapping

unset cbreak mode

unset echo mode

unset newline mapping

unset raw mode

overlay winl on win2

overwrite winl on top of win2

printf on stdscr

set raw mode

make current screen look like stdscr

reset tty flags to stored value

stored current tty flags

scanf through stdscr

scroll win one line

set scroll flag

set term variables for name

end standout mode

start standout mode

subwin (win,liMs,cola,bcgin _y,bcgin _x) create a subwindow

t ouchwin (win) change all of win

unct r l (ch) printable version of ch

waddch (win,ch)

waddst r (win,str)

wclear (win)

wcl rt obot (win)

wcl rt o e o l (win)

wde l ch (win,c)

wde let e l n (win)

werase (win)

wgetch (win)

wget s t r (win,str)

winch (win)

winsch (win,c)

winsert ln (win)

wmove (win.y,x)

wpr int w (win.fmt,argl ,arg2, . . .)

- 2 -

add char to win

add string to win

clear win

clear to bottom of win

clear to end of line on win

delete char from win

delete line from win

erase win

get a char through win

get a string through win

get char at current (y,x) in win

insert char into win

insert line into win

set current (y,x) co-ordinates on win

print f on win

September, 1987

cursesS . 0 (3X)

wre fresh (will)

wscanw (willfml,argl,arg2, . . .)

wst andend (win)

wst andout (win)

- 3 -

curses 5 . 0 (3X)

make screen look like win

scanf through win

end standout mode on will

start standout mode on win

September, 1987

•

•

•

•

•

•

cuserid(3S)

NAME
cuserid - get character login name of the user

SYNOPSIS
tinclude <stdio . h>

char *cuserid (s)
char *s;

DESCRIPTION

cuserid(3S)

cuserid generates a character string representation of the login
name of the owner of the current process. If s is a NUlL pointer,
this representation is generated in an internal static area, the
address of which is retmned. Otherwise, s is assumed to point to
an array of at least L_cuserid characters; the representation is
left in this array. The constant L cuserid is defined in the
<stdio . h> header file.

RETURN V ALUB
If the login name cannot be found, cuserid returns a NUlL
pointer; if s is not a NULL pointer, a null character (\ 0) is placed
at s [0] .

SEE ALSO
get login(3C), getpwent(3C).

BUGS
cuserid uses getpwnam(3C); thus the results of a user's call to
the latter will be obliterated by a subsequent call to the former.

The name cuserid is rather a misnomer •

- 1 - September, 1987

dbm{3X) dbm(3X)

NAME
dbminit, fetch, store, delete, firstkey, nextkey
data base subroutines

SYNOPSIS
typedef struct

char *dptr;
int dsize ;

} datum;

dbminit (file)
char *file;

datum * fetch (key)
datum key;

store (key, content)
da turn key, content :

delete (key)
datum key ;

datum firstkey ()

datum next key (key)
datum key ;

DESCRIPTION
These functions maintain key/content pairs in a data base. The
functions will handle very large (a billion blocks) databases and
will access a keyed item in one or two file system accesses. The
functions are obtained with the loader option -ldbm.

keys and contents are described by the datum typedef. A
datum specifies a string of ds ize bytes pointed to by dpt r.
Arbitrary binary data, as well as normal ASCIT strings, are
allowed. The data base is stored in two files. One file is a direc
tory containing a bit map and has " • di r" as its suffix. The
second file contains all data and has ' .pag' as its suffix.

Before a database can be accessed, it must be opened by
dbminit . At the time of this call, the files file . di r and
file • pag must exisL (An empty database is created by creating
zero-length . di r and • pag files.)

Once open, the data stored under a key is accessed by fetch
and data is placed under a key by store. A key (and its associ
ated contents) is deleted by delete. A linear pass through all
keys in a database may be made, in an (apparently) random order,
by use of firstkey and nextkey. firstkey will return

- 1 - September, 1987

•

•

•

•

•

•

dbm(3X) dbm(3X)

the first key in the database. With any key next key will return
the next key in the database. This code will traverse the data base:

for (hry - firstkey () ; key . dptr ! = NULL ; hry = nextkey (hry))

RETURN VALUE
All functions that return an int indicate errors with negative
values. A zero return indicates ok. Routines that return a datum
indicate errors with a null (0) dpt r .

BUGS
The • pag file will contain holes so that its apparent size is about
four times its actual content. Older UNIX systems may create real
file blocks for these holes when touched. These files cannot be
copied by normal means (cp, cat, tp, tar, ar) without filling
in the holes.

dpt r pointers returned by these subroutines point into static
storage that is changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the
internal block size (currently 1024 bytes). Moreover all
key/content pairs that hash together must fit on a single block.
store will return an error in the event that a disk block fills with
inseparable data.

delete does not physically reclaim file space, although it does
make it available for reuse.

The order of keys presented by firstkey and nextkey
depends on a hashing function, not on anything interesting .

- 2 - September, 1987

dial {3C) dial (3C)

NAME
dia l - establish an out-going terminal line connection

SYNOPSIS
#include <dia l . h>

int dial (call)
CALL call ;

void undial (/d)
int fd;

DESCRIPTION
dia l returns a file descriptor for a terminal line open for
read/write. The argument to dial is a CALL structure (defined
in the <dial . h> header file).

When finished with the terminal line, the calling program must
invoke undial to release the semaphore that has been set during
the allocation of the terminal device.

The CALL typedef in the <dial . h> header file is:

typede f st ruct {
st ruct t e rmio * at t r ; I * po inter t o termio

int baud ;

int speed;

char * l ine ;

char *t e l no

int modem;

char *device ;

int dev len

CALL ;

attr ibute st ruct * I

I * t ransmi s s ion dat a rate * I

I * 2 1 2A modem : l ow=3 0 0 ,

h igh= l 2 0 0 * I

I * device name for

out -going l ine *I
I* pointer t o te l -no digits

s t r ing *I

I* spe c i fy modem cont r o l for

d i rect l ines * I
I * Wi l l hold the name o f the

device used to make a

connect ion * I

I * The length o f the device

used to make connect ion * I

The CALL element speed is intended only for use with an out
going dialed call, in which case its value should be either 300 or
1200 to identify the 1 13A modem, or the high-speed or low-speed
setting on the 212A modem. Note that the 1 13A modem or the
low-speed setting of the 212A modem will transmit at any rate
between 0 and 300 bits per second. However, the high-speed

- 1 - September, 1987

•

•

•

•

•

•

dial(3C) dial (3C)

setting of the 2121 modem transmits and receives at 1200 bits per
second only. The CALL element baud is for the desired
transmission baud rate. For example, one might set baud to 1 10
and speed to 300 (or 1200). However, if speed is set to 1200
baud must be set to high (1200).

H the desired terminal line is a direct line, a string pointer to its
device name should be placed in the line element in the CALL
structure. Legal values for such terminal device names are kept in
the L-devices file. In this case, the value of the baud ele
ment need not be specified as it will be determined from the L
devices file.
The telno element is for a pointer to a character string
representing the telephone number to be dialed. The termination
symbol will be supplied by the dia l function, and should not be
included in the telno string passed to dia l in the CALL struc
ture.

The CALL element modem is used to specify modem control for
direct lines. This element should be nonzero if modem control is
required. The CALL element attr is a pointer to a termio struc
ture, as defined in the <termio . h> header file. A NULL value
for this pointer element may be passed to the dia l function, but
if such a structure is included, the elements specified in it will be
set for the outgoing terminal line before the connection is esta
blished. This is important for attributes such as parity and baud
rate.

The CALL element device is used to hold the device name
(cui..) that establishes the connection.

The CALL element dev _len is the length of the device name
that is copied into the array device.

ERRORS
On failure, a negative value indicating the reason for the failure is
returned. Mnemonics for these negative indices as listed here are
defined in the <dial . h> header file.

INTRP T -1 I * interrupt occurred * I

D HUNG -2 I * dialer hung (no return from wr ite) * I
N O ANS -3 I * no answer within 1 0 seconds * I

ILL BD -4 I * i l lega l baud-rate * I

A PROB -5 I * acu problem (open () fai lure) * I
L PROB -6 I * l ine problem (open () fai lure) * I
N O Ldv -7 I * can' t open LDEVS f i l e * I

- 2 - September, 1987

dial (3C) dial(3C)

DV_NT_A -8 /* reque sted device not available */

DV_NT_K -9 /* requested device not known */

NO_BD_A -1 0 /* no device avai lable at reque sted baud */

NO_BD_K -1 1 /* no device known at reque sted baud */

FILES
/us r / l ib/uucp/L-devices
/usr I spool / uucp/LCK • . tty-device

SEE ALSO
uucp(lC), alarm(2), read(2), write(2), termio(7).

WARNINGS
Including the <dia l . h> header file automatically includes the
<termio . h> header file.

Because the above routine uses <stdio . h>, the size of pro
grams not otherwise using standard 1/0 is increased more than
might be expected.

BUGS
An alarm(2) system call for 3,600 seconds is made (and caught)
within the dia l module for the purpose of "touching" the
LCK • • file and constitutes the device allocation semaphore for the
terminal device. Otherwise, uucp(lC) may simply delete the
LCK . • entry on its 90-minute clean-up rounds. The alarm may
go off while the usee program is in a read(2) or write(2) sys
tem call, causing an apparent error return. H the user program is
to run for an hour or more, error returns from reads should be
checked for (errno==EINTR) , and the read possibly reis
sued.

- 3 - September, 1987

•

•

•

•

•

•

dim(3F) dim(3F)

NAME
dim, ddim, idim - Fortran positive difference intrinsic func
tions

SYNOPSIS
integer al , a2 , a3
a3=idim (al , a2)

rea l al , a2 , a3
a3=dim (al , a2)

double precis ion al , a2 , a3
a3=ddim (al , a2)

DESCRIYfiON
These functions return:

al-a2 if al > a2
0 if al <= a2

- 1 - September, 1987

directory(3) directo ry(3)

NAME
opendir, readdir, telldir, seekdir, rewinddir,
closedir - directory operations

SYNOPSIS
:if: include <sys /dir . h>

DIR *opendir (filename)
char *filename ;

st ruct direct * readdir (dirp)
DIR *dirp ;

long telldir (dirp)
DIR *dirp ;

seekdir (dirpb loc)
DIR *dirp ;
long loc ;

int rewinddir (dirp)
DIR *dirp ;

int closedir (dirp)
DIR *dirp ;

DESCRIPTION
opendir opens the directory named by filename and associates a
directory stream with iL opendir returns a pointer to be used
to identify the directory stream in subsequent operations. The
pointer NUll is returned if filename cannot be accessed, or if it
cannot malloc(3) enough memory to hold the whole thing.

readdir returns a pointer to the next directory entry. It returns
NULL upon reaching the end of the directory or detecting an
invalid seekdir operation.

telldir returns the current location associated with the named
directory stream.

seekdir sets the position of the next readdir operation on
the directory stream. The new position reverts to the one associ
ated with the directory stream when the telldir operation was
performed. Values returned by telldir are good only for the
lifetime of the D IR pointer from which they are derived. If the
directory is closed and then reopened, the telldir value may
be invalidated due to undetected directory compaction. It is safe
to use a previous telldir value immediately after a call to
opendir and before any calls to readdir .

- 1 - September, 1987

•

•

•

•

•

•

directory{3) directory{3)

The rewinddir macro resets the position of the named direc
tory stream to the beginning of the directory .

closedir closes the named directory stream and frees the struc
ture associated with the DIR pointer.

Sample code which searchs a directory for entry ' ' name' ' is:

len = strlen (name) ;

d i rp = opendir (" . ") ;

for (dp = readdi r (d i rp) ; dp ! = NULL ; dp = readdir (dirp))

i f (dp->d_namlen == len & & ! st rcmp (dp->d_name , name))

clo sedir (dirp) ;

return FOUND ;

c l o sedir (d i rp) ;

return NOT_FOUND ;

SEE ALSO
ls(l), open(2), close(2), getdirent ries(2), read(2),
lseek(2), dir(4) .

- 2 - September, 1987

dprod(3F) dprod(3F)

NAME
dprod - Forttan double precision product intrinsic function

SYNOPSIS
real al , a2
double precis ion a3
a3=dprod (al , a2)

DESCRIPTION
dprod returns the double precision product of its real arguments.

- 1 - September, 1987

•

•

•

•

•

•

drand4 8 (3C) drand4 8 (3C)

NAME
drand4 8 , erand4 8 , lrand4 8 , nrand4 8 , mrand4 8 ,
j rand4 8 , s rand4 8 , seed4 8 , lcong4 8 - generate uniformly
distributed pseudo-random numbers

SYNOPSIS
double drand4 8 ()

double erand4 8 (xsubi)
uns igned short xsubi [3] ;

long l rand4 8 ()

long nrand4 8 (xsubi)
uns igned short xsubi [3] ;

long mrand4 8 ()

long j rand4 8 (xsubi)
uns igned short xsubi [3] ;

void s rand4 8 (seedval)
· long seedval ;

uns igned short * seed48 (seedl6v)
uns igned short seed16v [3] ;

void lcong4 8 (param)
uns igned short param [7] ;

DESCRIPTION
This family of functions generates pseudo-random numbers using
the well-known linear congruential algorithm and 48-bit integer
arithmetic.

Functions drand4 8 and erand4 8 return non-negative
double-precision floating-point values uniformly distributed over
the interval [0.0, 1 .0).

Functions l rand4 8 and nrand4 8 return non-negative long
integers uniformly distributed over the interval [0, 231).

Functions mrand4 8 and j rand4 8 return signed long integers
uniformly distributed over the interval [-23 1

, 23 1). Functions
s rand4 8 ,seed4 8 , and lcong48 are initialization entry
points, one of which should be invoked before
drand4 8 ,lrand4 8 , or mr:and4 8 is called. (Although it is not
recommended practice, constant default initializer values are sup
plied automatically if drand4 8 ,lrand4 8 , or mrand4 8 is
called without a prior call to an initialization entry point.) Func
tions erand4 8 , nrand4 8 , and j rand4 8 do not require an

- 1 - September, 1987

drand4 8 (3C) drand4 8 (3C)

initialization entry point to be called first

All the routines work by generating a sequence of 48-bit integer
values, Xi, according to the linear congruential formula

xn+l = (aX + c)
!f!fX1 m n�

The parameter m = 2 ; hence 48-bit integer arithmetic is per-
formed. Unless lcong4 8 has been invoked, the multiplier value
a and the addend value c are given by

a = 5DEECE66D16 =>-273673 163 1558
c = B16 = 138•

The value returned by any of the functions drand4 8 , erand4 8 ,
lrand4 8 , nrand4 8 , mrand4 8 , or j rand4 8 i s computed by
first generating the next 48-bit X. in the sequence. Then the
appropriate number of bits, accordfug to the type of data item to
be returned, are copied from the high-order (leftmost) bits of Xi
and transformed into the returned value.

The functions drand4 8 , lrand4 8 , and mrand4 8 store the last
48-bit X. generated in an internal buffer; that is why they must be
initializ� prior to being invoked. The functions erand4 8 ,
nrand4 8 , and j rand4 8 require the calling program to provide
storage for the successive X. values in the array specified as an
argument when the functions

'
are invoked. That is why these rou

tines do not have to be initialized; the calling program merely has
to place the desired initial value of X. into the array and pass it as
an argument. By using different arg�ents, functions erand4 8 ,
nrand4 8 , and j rand4 8 allow separate modules of a large pro
gram to generate several independent streams of pseudo-random
numbers, i.e. , the sequence of numbers in each stream does not
depend upon how many times the routines have been called to
generate numbers for the other streams.

The initializer function s rand4 8 sets the high-order 32 bits of
X. to the 32 bits contained in its argument. The low-order 16 bits
ol Xi are set to the arbitrary value 330E16•
The initializer function seed4 8 sets the value of X. to the 48-bit
value specified in the argument array. The previous �alue of X. is
copied into a 48-bit internal buffer, used only by seed4 8 . 1 A
pointer to this buffer is the value returned by seed4 8 . The
returned pointer, which can be ignored if not needed, is useful if a
program is to be restarted from a given point at some future time.
Use the pointer to get and store the last X. value; then use this
value to reinitialize via seed4 8 when the program is restarted.

- 2 - September, 1987

•

•

•

•

•

•

drand4 8 (3C) drand4 8 (3C)

The initialization function lcong4 8 allows the user to specify
the initial X., the multiplier value a, and the addend value c.
Argument my elements param[0-2] specify x .. elements
param[3-5] specify the multiplier a, and param[6] �ifies the
16-bit addend c. After lcong 4 8 has been called, a subsequent
call to either s rand4 8 or seed4 8 will restore the "standard"
multiplier and addend values, a and c, specified on the previous
page.

NOTES
The routines are coded in portable C. The source code for the
portable version can even be used on computers which do not
have floating-point arithmetic. In such a situation, functions
drand4 8 and e rand4 8 do not exist; instead, they are replaced
by the following two functions:

long irand4 8 (m)
uns igned short m ;

long krand4 8 (xsubi , m)
uns igned short xsubi [3] ,m;

Functions irand4 8 and krand4 8 return non-negative long
integers uniformly distributed over the interval [0, m-1] .

SEE ALSO
rand(3C) .

- 3 - September, 1987

dup2 (3N) dup2 (3N)

NAME
dup2 - duplicate a descriptor

SYNOPSIS
dup2 (oldd, newd)
int oldd, newd;

DESCRIPriON
dup2 causes newd to become a duplicate of oldd. If newd is
a1ready in use, the descriptor is first deallocated as if a close(2)
call had been done first.

The object referenced by the descriptor does not distinguish
between references using oldd and newd in any way. Thus, if
newd and oldd are duplicate references to an open file, read(2),
write(2), and lseek(2) calls all move a single pointer into the
file. If a separate pointer into the file is desired, a different object
reference to the file must be obtained by issuing an additional
open(2) call.

RETURN VALUE
The value -1 is returned if an error occurs in either call. The
external variable errno indicates the cause of the error.

ERRORS
dup2 fails if:

[EBADF]

[EMFILE]

SEE ALSO

oldd or newd is not a valid active descrip
tor

Too many descriptors are active.

accept(2N), close(2), dup(2), fcnt l(2),
getdtable s i ze(2N), open(2), pipe(2), socket(2N).

- 1 - September, 1987

•

•

•

•

•

•

ecvt (3C) ecvt (3C)

NAME
ecvt , fcvt , gcvt - convert floating-point number to string

SYNOPSIS
char *ecvt (value ndigit, decpt, sign)
double value ;
int ndigit *decpt, *sign ;

cha r * fcvt (value , ndigit, decpt, sign)
double value ;
int ndigit , *decpt,

char *gcvt (value ,
double value ;
int ndigit ;
char *buf;

DESCRIPTION

*sign ;

ndigit, buj)

ecvt converts value to a null-terminated string of ndigit digits
and returns a pointer to this string. The high-order digit is non
zero, unless the value is zero. The low-order digit is rounded.
The position of the decimal point relative to the beginning of the
string is stored indirectly through decpt (negative means to the left
of the returned digits). The decimal point is not included in the
returned string. If the sign of the result is negative, the word
pointed to by sign is non-zero; otherwise it is zero.

fcvt is identical to ecvt , except that the correct digit has been
rounded for print f " %f' ' (Fortran F-format) output of the
number of digits specified by ndigit.

gcvt converts the value to a null-terminated string in the array
pointed to by buf and returns buf. It attempts to produce ndigit
significant digits in Fortran F-format, ready for printing; E-format
is produced when F-format is not possible. A minus sign, if there
is one, or a decimal point is included as part of the returned string.
Trailing zeros are suppressed.

SEE ALSO
print f(3S).

BUGS
The values returned by ecvt and fcvt point to a single static
data array .

- 1 - September, 1987

end(3C)

NAME
end, etext , edata - last locations in program

SYNOPSIS
extern end ;
extern etext ;
extern edata ;

DESCRIPITON

end(3C)

These names refer neither to routines nor to locations with
interesting contents. The address of etext is the first address
above the program text, edata above the initialized data region,
and end above the uninitialized data region.

When execution begins, the program break (the first location
beyond the data) coincides with end, but the program break may
be reset by the routines of brk(2), ma lloc(3C), standard
input/output, the profile (-p) option of cc(l), and so on. Thus,
the current value of the program break should be determined by
sbrk (0) (see brk(2)).

SEE ALSO
cc(l), brk(2), int ro(3), malloc(3C).

- 1 - September, 1987

•

•

•

•

•

•

erf (3M) erf (3M)

NAME
erf, erfc - error function and complementary error function

SYNOPSIS
f include <math . h>

double erf (X)
double x ;

double e r f c (X)
double x ;

DESCRIPI10N
The erf function returns the error function of x (the precise for
mula is available in at standard calculus text).

erfc, which returns 1 .0 - erf (X) , is provided because of the
extreme loss of relative accuracy if erf (x) is called for large x
and the result subtracted from 1 .0 (e.g. for x = 5, 12 places are
lost).

SEE ALSO
exp(3M) .

- 1 - September, 1987

exp(3F) exp(3F)

NAME
exp, dexp, cexp - Fortran exponential intrinsic function

SYNOPSIS
real rl , r2
double precis ion dpl , dp2
complex exl , cx2
r2=exp (rl)

dp2=dexp (dpl)
dp2=exp (dpl)

cx2=cexp (ex])
cx2=exp (ex})

DESCRIPTION
exp returns the real exponential function ex of its real argument
dexp returns the double-precision exponential function of its
double-precision argument. cexp returns the complex
exponential function of its complex argument. The generic func
tion exp becomes a call to dexp or cexp, as required, depend
ing on the type of its argument.

SEE ALSO
exp(3M).

- 1 - September, 1987

•

•

•

•

•

•

exp (3M) exp (3M)

NAME
exp, log, logl O , pow, sqrt - exponential, logarithm, power,
square root functions

SYNOPSIS
4tinc lude <math . h>

double exp (X)
double x;

double log (X)
double X i
double logl O (X)
double x;

double pow (X, y)
double x, y;

double sqrt (X)
double x;

DESCRIPTION
The exp function returns e raised to the power of x.

log returns the natural logarithm of x. The value of x must be
positive .

logl O returns the logarithm base ten of x. The value of x must
be positive.

The pow function returns x raised to the power of y. If x is zero,
y must be positive. If x is negative, y must be an integer.

sqrt returns the nonnegative square root of x. The value of x
may not be negative.

RETURN VALUE
exp returns HUGE when the correct value would overflow, or 0
when the correct value would underflow, and sets errno to
ERANGE.

log and logl O return -HUGE and set e rrno to EDOM when
x is nonpositive. A message indicating DOMAIN error (or S ING
error when x is 0) is printed on the standard error output.

pow returns 0 and sets errno to EDOM when x is 0 and y is
nonpositive, or when x is negative and y is not an integer. In these
cases a message indicating DOMAIN error is printed on the stan
dard error output When the correct value for pow would
overflow or underflow, pow returns ±HUGE or 0 respectively,
and sets errno to ERANGE.

- 1 - September, 1987

exp (3M) exp (3M)

sqrt returns 0 and sets e rrno to EDOM when x is negative. A
message indicating DOMAIN error is printed on the standard error
output.

These error-handling procedures may be changed with the func
tion mathe rr{3M).

SEE ALSO
int ro(2), hypot{3M), mathe rr(3M), s inh(3M).

- 2 - September, 1987

•

•

•

•

•

•

fclose(3S)

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
:fl:include <stdio . h>

int fclose (stream)
FILE *stream ;

int fflush (stream)
F I LE *stream;

DESCRIPTION

fclose (3S)

fclose causes any buffered data for the named stream to be
written out and the stream to be closed.

fclose is perfonned automatically for all open files upon calling
exit(2).

fflush causes any buffered data for the named stream to be
written to that file. The stream remains open.

RETURN VALUE
These functions return 0 for success, and EOF if any error (such
as trying to write to a file that has not been opened for writing)
was detected .

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3S) .

- 1 - September, 1987

ferror(3S) ferror(3S)

NAME
ferror, feof, clearerr, fileno - stream status
inquiries

SYNOPSIS
:If: include <stdio . h>

int feof (stream)
F I LE *stream ;

int ferror (stream)
F I LE *stream ;

void c learerr (stream)
F I LE *stream;

int fileno (stream)
F I LE *stream ;

DESCRIPTION
feof returns nonzero when EOF has previously been detected
reading the named input stream; otherwise, it returns zero.

ferror returns nonzero when an 1/0 error has previously
occurred reading from or writing to the named stream; otherwise,
it returns zero.

clearerr resets the error indicator and EOF indicator to zero
on the named stream.

fileno returns the integer file descriptor associated with the
named stream; see open(2).

NOTE
All these functions are implemented as macros; they cannot be
declared or redeclared.

SEE ALSO
open(2), fopen(3S).

- 1 - September, 1987

•

•

•

•

•

•

floor (3M) floor (3M)

NAME
floor, ceil , fmod, fabs - floor, ceiling, remainder, absolute
value functions

SYNOPSIS
inc lude <math . h>

double floor (X)
double x;

double ceil (x)
double x ;

double fmod (x, y)
double x, y ;

double fabs (X)
double x;

DESCRIPITON
floor returns the largest integer (as a double-precision number)
not greater than x .

ce i l returns the smallest integer not less than x.

returns the floating-point remainder of the division of x by y : zero
if y is zero or if xly would overflow; otherwise the number f with
the same sign as x, such that x = iy + f for some integer i, and If I
< l y I .

fabs returns the absolute value of l x I .
SEE ALSO

abs(3C) .

- 1 - September, 1987

fopen(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
:fl:include <stdio . h>

F I LE *fopen (filename, type)
char * filename, *type ;

F ILE * freopen (filename , type , stream)
char *filename, *type ;
FILE *stream;

F I LE * fdopen (fildes, type)
int fildes ;
char *type ;

DESCRIPTION

fopen(3S)

fopen opens the file named by filename and associates a stream
with it. fopen returns a pointer to the F I LE structure associ
ated with the stream.

filename points to a character string that contains the name of the
file to be opened.

type is a character string having one of the following values:

r open for reading

w truncate or create for writing

a append; open for writing at end of file, or create
for writing

r+ open for update (reading and writing)

w+ truncate or create for update

a+ append; open or create for update at end-of-file

freopen substitutes the named file in place of the open stream .
The original stream is closed, regardless of whether the open ulti
mately succeeds. freopen returns a pointer to the F I LE
structure associated with stream.

freopen is typically used to attach the preopened streams asso
ciated with stdin, stdout, and stderr to other files.

fdopen associates a stream with a file descriptor by formatting a
file structure from the file descriptor. Thus, fdopen can be used
to access the file descriptors returned by open(2), dup(2),
creat(2), or pipe(2). (These calls open files but do not return
pointers to a F I LE structure.) The type of stream must agree

- 1 - September, 1987

•

•

•

•

•

•

fopen(3S) fopen(3S)

with the mode of the open file.

When a file is opened for update, both input and output may be
done on the resulting stream . However, output may not be
directly followed by input without an intervening fseek or
rewind, and input may not be directly followed by output
without an intervening fseek, rewind, or an input operation
which encounters end-of-file.

When a file is opened for append (i.e., when type is "a" or "a+"
it is impossible to overwrite information already in the file.
f seek may be used to reposition the file pointer to any position
in the file, but when output is written to the file the current file
pointer is disregarded. All output is written at the end of the file
and causes the file pointer to be repositioned at the end of the out
poL If two separate processes open the same file for append, each
process may write freely to the file without fear of destroying out
put being written by the other. The output from the two processes
will be intermixed in the file in the order in which it is written.

RETURN VALUE
f open and f reopen return a NUll.. pointer on failure.

SEE ALSO
creat(2), dup(2), open(2), pipe(2), fc1ose(3S),
fseek{3S) .

- 2 - September, 1987

fread(3S)

NAME
fread, fwrite - binary input/output

SYNOPSIS
4f:include <stdio . h>

int fread (ptr, size , nitems, stream)
char *ptr ;
int size , nitems;
FILE *stream ;

int fwrite (ptr, size, nitems, stream)
char *ptr;
int size, nitems ;
FILE *stream;

DESCRIPTION

f read(3S)

fread copies nitems items of data from the named input stream
into an array beginning at ptr. An item of data is a sequence of
bytes (not necessarily terminated by a null byte) of length size .
fread stops appending bytes if an end-of-file or error condition
is encountered while reading stream or if nitems items have been
read. fread leaves the file pointer in stream, if defined, point
ing to the byte following the last byte read if there is one.
fread does not change the contents of stream.

fwrite appends at most nitems items of data from the the array
pointed to by ptr to the named output stream. fwrite stops
appending when it has appended nitems items of data or if an error
condition is encountered on stream. fwrite does not change
the contents of the array pointed to by ptr.

The variable size is typically sizeof(*ptr) where the pseudo
function sizeof specifies the length of an item pointed to by ptr. If
ptr points to a data type other than char it should be cast into a
pointer to char.

RETURN VALUE
fread and fwrite return the number of items read or written.
If size or nitems is non-positive, no characters are read or written
and 0 is returned by both f read and fwr i te.

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), gets(3S),
print f(3S), putc(3S), puts(3S), s canf(3S).

- 1 - September, 1987

•

•

•

•

•

•

f rexp(3C) frexp(3C)

NAME
f rexp, ldexp, modf - manipulate parts of floating-point
numbers

SYNOPSIS
double f rexp (value, eptr)
double value ;
int *eptr ;

double ldexp (value, exp)
double value ;
int exp ;

double modf (value, iptr)
double value, *iptr ;

DESCRIPTION
Every nonzero number can be written uniquely as x*
pow (2 , n) , where the "mantissa" (fraction) x is in the range 0.5
:S l x I < 1 .0, and the "exponent" n is an integer. frexp returns
the mantissa of a double value , and stores the exponent indirectly
in the location pointed to · by eptr. If value is zero, both results
returned by f rexp are zero.

ldexp returns the quantity value* pow (2 , exp) .

modf returns the signed fractional part of value and stores the
integral part indirectly in the location pointed to by iptr.

ERRORS
If ldexp would cause overflow, ± HUGE is returned (according
to the sign of value), and errno is set to ERANGE.

If ldexp would cause underflow, zero is returned and errno is
set to ERRANGE.

SEE ALSO
exp(3M) .

- 1 - September, 1987

fseek(3S) fseek(3S)

NAME
f seek, rewind, fte l l - reposition a file pointer in a stream

SYNOPSIS
#include <stdio . h>

int fseek (stream, offset, ptrname)
FILE *stream;
long offset ;
int ptrname ;

void rewind (stream)
FILE *stream;

long ftell (stream)
FILE *stream;

DESCRIPTION
f seek sets the position of the next input or oulput operation on
the stream. The new position is at the signed distance offset bytes
from the beginning, the current position, or the end of the file,
when the value of ptrname is 0, I , or 2, respectively.

rewind (stream) is equivalent to fseek (stream , O L , 0) ,
except that no value is returned.

f seek and rewind undo any effects of ungetc(3S).

Mter fseek or rewind, the next operation on a file opened for
update may be either input or output.

ftell returns the offset of the current byte relative to the begin
ning of the file associated with the named stream.

RETURN VALUE
fseek returns non-zero for improper seeks; otherwise it returns
zero.

An improper seek can be, for example, an f seek done on a file
that has not been opened via fopen; in particular, fseek may
not be used on a terminal or on a file opened via popen(3S).

SEE ALSO
lseek(2), fopen(3S), popen(3S), ungetc(3S).

- 1 - September, 1987

•

•

•

•

•

•

fseek(3S) fseek(3S)

WARNING
On NUX an offset returned by ftel l is measured in bytes, and
it is permissible to seek to positions relative to that offset; how
ever, portability to systems other than NUX requires that an offset
be used by fseek directly. Arithmetic may not meaningfully be
performed on such an offset, which is not necessarily measured in
bytes .

- 2 - September, 1987

ftok(3C)

NAME
ftok - standard interprocess communication package

SYNOPSIS
#include <sys /types . h>
#include <sys / ipc . h>

key_t ftok (path, id)
char *path ;
char id;

DESCRIPITON

ftok(3C)

All interprocess communication facilities require the user to sup
ply a key to be used by the msgget(2), semget(2), and
shmget(2) system calls to obtain interprocess communication
identifiers. One method for fonning a key is to use the ftok
subroutine described below. Another way to compose keys is to
include the project ID in the most significant byte and to use the
remaining portion as a sequence number. There are many other
ways to form keys, but it is necessary for each system to define
standards for forming them. If a standard is not adhered to, unre
lated processes may interfere with each other's operation. There
fore, it is strongly suggested that the most significant byte of a key
in some sense refer to a project so that keys do not conflict across
a given system.

ftok returns a key based on path and id that is usable in subse
quent msgget, semget , and shmget system calls. path must
be the pathname of an existing file that is accessible to the process.
id is a character that uniquely identifies a project ftok returns
the same key for linked files when called with the same id; it
returns different keys when called with the same filename but dif
ferent ids.

SEE ALSO
int ro(2), msgget(2), semget(2), shmget(2).

DIAGNOSTICS
ftok returns (key t) -1 if path does not exist or if it is not
accessible to the procCsS.

WARNING
If the file whose path is passed to ftok is removed when keys
still refer to the file, futw'e calls to ftok with the same path and
id will return an error. If the same file is recreated, f t ok is
likely to return a different key than it did the original time it was
called.

- 1 - September, 1987

•

•

•

•

•

•

ftw(3C)

NAME
ftw - waJk a file tree

SYNOPSIS
.f include <ftw . h>

int ftw (path , fn, depth)
char *path ;
int (*/n) () ;
int depth ;

DESCRIPTION

ftw(3C)

ftw recursively descends the directory hierarchy rooted in path .
For each object in the hierarchy, ftw callsfn, passing it a pointer
to a nullterminated character string containing the name of the
object, a pointer to a stat structure (see stat(2)) containing
information about the object, and an integer. Possible values of
the integer, defined in the <ftw . h> header file, are FTW F for a
file, FTW_D for a directory, FTW_DNR for a directory that cannot
be read, and FTW NS for an object for which stat could not be
executed successfully. If the integer is FTW DNR, descendants of
that directory will not be processed. If the mteger is FTW NS, the
stat structure will contain garbage. An example of ali object
that would cause FTW NS to be passed to fn is a file in a direc
tory with read permission but not execute (search) permission.

ft w visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invoca
tion of fn returns a nonzero value, or an error is detected within
ftw (such as an 1/0 error). If the tree is exhausted, ftw returns
zero. If fn returns a nonzero value, ft w stops its tree traversal
and returns whatever value was returned by fn. If ftw detects an
error, it returns -1 , and sets the error type in errno.

ftw uses one file descriptor for each level in the tree. The depth
argument limits the number of file descriptors so used. If depth is
zero or negative, the effect is the same as if it were 1 . depth must
not be greater than the number of file descriptors currently avail
able for use. ft w runs more quickly if depth is at least as large
as the number of levels in the tree.

RETURN VALUE
The tree traversal continues until the tree is exhausted, and invo
cation of fn returns a nonzero value or some error is detected
within ft w (such as an 1/0 error). If the tree is exahusted, ft w
returns 0. If fn returns a nonzero value, ftw stops its tree

- 1 - September, 1987

ftw(3C) ftw(3C)

traversal and returns whatever value was returned by fn .

If ftw encounters an error other than EACCES S , it returns -1
and errno is set to indicate the error. The external variable
errno may contain the error values that are possible when a
directory is opened or when stat(2) is executed on a directory or
file.

SEE ALSO
stat(2), malloc(3C).

BUGS
Because ft w is recursive, it is possible for it to terminate with a
memory fault when applied to very deep file structures.
ft w could be made to run faster and use less . storage on deep
structures at the cost of considerable complexity.
ftw uses malloc(3C) to allocate dynamic storage during its
operation. If ftw is forcibly terminated, such as by longjmp
being executed by fn or an interrupt routine, ft w does not have a
chance to free that storage, so it remains permanently allocated. A
safe way to handle interrupts is to store the fact that an interrupt
has occurred, and arrange to have fn return a nonzero value at its
next invocation.

- 2 - September, 1987

•

•

•

•

•

•

ftype(3F) ftype (3F)

NAME
int, ifix, idint, real, float, sngl, dble, cmplx,
dcmplx, ichar, char - explicit Fortran type conversion

SYNOPSIS
intege r i, j
rea l r, s
double precision dp, d(/
complex ex
double complex dcx
character * 1 ch

i=int (r)
i=int (dp)
i=int (ex)
i=int (dex)
i=ifix (r)
i=idint (dp)

r=real (i)
r=real (dp)
r=real (ex)
r=real (dcx)
r=float (i)
r=sngl (dp)

dp=dble (i)
dp=dble (r)
dp=dble (ex)
dp=dble (dex)

cx=cmplx (i)
cx=cmplx (i , j)
cx=cmplx (r)
cx=cmplx (r , s)
cx=cmplx (dp)
cx=cmplx (dp, d(/)
cx=cmplx (dex)

dcx=dcmplx (i)
dcx=dcmplx (i , j)
dcx=dcmplx (r)
dcx=dcmplx (r , s)
dcx=dcmplx (dp)
dcx=dcmplx (dp, d(/)
dcx=dcmplx (ex)

- 1 - September, 1987

ftype (3F)

i=ichar (ch)
ch=char (i)

DESCRIPITON

ftype (3F)

These functions perform conversion from one data type to
another.

int converts to integer form its real, double preci
s ion, complex, or double complex argument. If the argu
ment is rea l or double precis ion, int returns the integer
whose magnitude is the largest integer that does not exceed the
magnitude of the argument and whose sign is the same as the sign
of the argument (i.e., truncation). For complex types, the above
rule is applied to the real part. ifix and idint convert only
rea l and double precis ion arguments respectively.

rea l converts to real form an integer, double preci
sion, complex, or double complex argument. If the argu
ment is double precision or double complex, as much precision is
kept as is possible. If the argument is one of the complex types,
the real part is returned. float and sngl convert only
integer and double precis ion arguments, respectively.

dble converts any integer, real , complex, or double
complex argument to double precis ion fonn. If the argu
ment is of a complex type, the real part is returned.

cmplx converts its integer, real , double precis ion, or
double complex argument(s) to complex fonn.

dcmplx converts its integer, rea l, double precis ion,
or complex argument(s) to double complex form.

Either one or two arguments may be supplied to cmplx and
dcmplx. If there is only one argument, it is taken as the real part
of the complex type and a imaginary part of zero is supplied. If
two arguments are supplied, the first is taken as the real part and
the second as the imaginary part.
ichar converts from a character to an integer depending on the
character's position in the collating sequence.

char returns the character in the ith position in the processor col
lating sequence, where i is the supplied argument

For a processor capable of representing n characters,

ichar (char (i)) = i for 0 <= i < n, and

char(ichar(ch)) = ch for any representable character ch.

- 2 - September, 1987

•

•

•

•

•

•

gamma(3M)

NAME
gamma - log gamma function

SYNOPSIS
include <math . h>

extern int s igngam;

double gamma (X)
double x;

DESCRIPITON

gamma (3M)

gamma returns the natural log of gamma as a function of the abso
lute value of a given value. gamma returns ln(l r(x) l), where
r(x) is defined as

le-t t.z-1dt .
The sign of r(x)

i s returned in the external integer s igngam. The argument x may
not be a nonpositive integer.

The following C program fragment might be used to calculate r:

if ((y = gamma (x)) > LN_MAXDOUBLE)
error () ;

y = s igngam * exp (y) ;

where LN _ MAXDOUBLE is the least value that causes exp(3M)
to return a range error, and is defined in the <values . h>
header file.

RETURN VALUE
For non-negative integer arguments HUGE is returned, and
errno is set to EDOM. A message indicating S ING error is
printed on the standard error output

If the correct value would overflow, gamma returns HUGE and
sets e rrno to ERANGE.

These error-handling procedures may be changed with the func
tion matherr(3M).

SEE ALSO
exp(3M), matherr(3M), values(5) .

- 1 - September, 1987

getarg(3F) geta rg(3F)

NAME
getarg - return Fortran command-line argument

SYNOPSIS
character *N c
integer i

get a rg (i , c)

DESCRIPfiON
geta rg retwns the ith command-line argument of the current
process. Thus. if a program were invoked with:

foo arg1 arg2 arg3

geta rg (2 , c) would return the string arg2 in the character
variable c .

SEE ALSO
getopt(3C).

- 1 - September. 1987

•

•

•

•

•

•

getc (3S) getc (3S)

NAME
getc, getchar, fgetc, getw - get character or word from a
stream

SYNOPSIS
#include <stdio . h>

int get c (stream)
FI LE *stream;

int get char ()

int fgetc (stream)
FI LE *stream;

int getw (stream)
FI LE *stream;

DESCRIPITON
The getc macro returns the next character (i.e., byte) from the
named input stream, as an integer. It also moves the file pointer,
if defined, ahead one character in stream. The get char macro
is defined as getc (stdin) .

fgetc behaves like getc, but is a function rather than a macro.
fgetc runs more slowly than getc, but takes less space per
invocation and its name can be passed as an argument to a func
tion.

get w returns the next word (32-bit integer on a Macintosh II)
from the named input stream. getw increments the associated
file pointer, if defined, to point to the next word. get w assumes
no special alignment in the file.

RETURN VALUE
These functions return the constant EOF at end-of-file or upon an
error. Because EOF is a valid integer, ferror(3S) should be
used to detect getw errors.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S),
putc(3S), scanf(3S), ungetc(3S).

WARNING
If the integer value returned by getc, getchar, or fgetc is
stored into a character variable and then compared against the
integer constant EOF, the comparison may never succeed, because
sign-extension of a character on widening to integer is machine
dependent.

- 1 - September, 1987

getc (3S) getc (3S)

BUGS
Because it is implemented as a macro, getc treats incorrectly a
stream argument with side effects. In particular, getc (* f++)
does not work sensibly. fgetc should be used instead.
Because of possible differences in word length and byte ordering,
files written using putw are machine-dependent, and may not be
read using get w on a different processor.

- 2 - September, 1987

•

•

•

•

•

•

getcwd(3C) getcwd(3C)

NAME
getcwd - get pathname of current working directory

SYNOPSIS
char *getcwd <buf, size)
char *buf;
int size ;

DESCRIPI'ION
getcwd returns a pointer to the current directory pathname. The
value of size must be at least two greater than the length of the
pathname to be returned.

If buj is a NULL pointer, getcwd obtains size bytes of space
using malloc(3C). In this case, the pointer returned by
getcwd may be used as the argument in a subsequent call to
f ree .

The function is implemented by using popen(3S) to pipe the out
put of the pwd(1) command into the specified string space.

EXAMPLE
char *cwd, *getcwd () ;

if ((cwd=get cwd ((char *) NULL, 6 4)) ==NULL) {
perror (' 'pwd' ') ;
exit (l) ;

print f (' ' % s \n ' ' , cwd) ;

RETURN VALUE
Returns NULL with errno set if size is not large enough, or if
an error occurs in a lower-level function.

SEE ALSO
pwd(1), malloc(3C), popen(3S) .

- 1 - September, 1987

getenv(3C)

NAME
getenv - retwn value for environment name

SYNOPSIS
char *getenv (name)
char *name ;

DESCRIPI'ION

getenv(3C)

getenv searches the environment list (see environ(5)) for a
string of the fonn name=value , and retwns a pointer to the value
in the current environment if such a string is present; otherwise a
NULL pointer-is retwned.

SEE ALSO
exec(2), putenv(3C), environ(5).

- 1 - September, 1987

•

•

•

•

•

•

getenv(3F) getenv(3F)

NAME
getenv - return Fortran environment variable

SYNOPSIS
character *N c

getenv (tmpdir, c)

DESCRIPITON
getenv returns the character-string value of the environment
variable represented by its first argument into the character vari
able of its second argument If no such environment variable
exists, all blanks are returned.

SEE ALSO
getenv(3C), environ(5) .

. 1 . September, 1987

getgrent (3C) getgrent (3C)

NAME
getgrent, getgrgid, getgrna� setgrent, endgrent,
fgetgrent - obtain group file entry from a group file

SYNOPSIS
#include <grp . h>

st ruct group *getgrent ()

st ruct group *getgrgid (gid)
int gid;

st ruct group *getgrnam (name)
char *name;

void setgrent ()

st ruct group * fgetgrent if>
FIT...E *f;

void endgrent ()

DESCRIPI'ION
getgrent, getgrgid, and getgrnam each return pointers to
an object with the following sttucture containing the broken-out
fields of a line in the /etc/group file. Each line contains a
group structure, defined in the <grp . h> header file.

st ruct group {

} ;

char *gr_name ; I* the name o f the group *I

char *gr_pas swd; I * the encrypted group

int gr_gid;

cha r * *gr_mem;

pas sword * I
I * the nume r i c group ID * I

I * vector o f pointers t o

member name s * I

When first called, getgrent returns a pointer to the first group
sttucture in the file; thereafter, it returns a pointer to the next
group sttucture in the file; therefore, successive calls may be used
to search the entire file. getgrgid searches from the begin
ning of the file until a numeric group ID matching gid is found; it
returns a pointer to the particular sttucture in which the match was
found. getgrnam searches from the beginning of the file until
a group name matching name is found; it returns a pointer to the
particular sttucture in which the match was found. If an end-of
file or an error is encountered on reading, these functions return a
NULL pointer.

- 1 - September, 1987

•

•

•

•

•

•

getgrent (3C) getgrent (3C)

A call to setgrent has the effect of rewinding the group file to
allow repeated searches. endgrent may be called to close the
group file when processing is complete .

fgetgrent returns a pointer to the next group structure in the
stream/, which matches the format of /etc/group.

RETURN VALUE
A NULL pointer is returned on EOF or error.

FILES
/ etc/group

SEE ALSO
get login(3C), getpwent(3C), group(4).

WARNING
The above routines use <stdio . h>. This causes them to
increase the size of programs not otherwise using standard 1/0
more than might be expected.

BUGS
All information is contained in a static area, so it must be copied if
it is to be saved .

- 2 - September, 1987

gethostent (3N) gethostent (3N)

NAME
gethostent, gethostbyaddr, gethostbyname,
sethostent, endhostent - get network host entry

SYNOPSIS
#include <netdb . h>

st ruct hostent *gethostent 0
st ruct hostent *gethostbyname(name)
char *name;

st ruct hostent *gethostbyaddr (addr, len , type)
char *addr;
int len , type ;

int sethostent (stayopen)
int stayopen

int endhostent ()

DESCRIPTION
gethostent, gethostbyname, and gethostbyaddr each
return a pointer to an object with the following structure contain
ing the broken-out fields of a line in the netwolk host data base,
/etc/hosts .

struct hostent {
char *h_name;
char * *h_al iase s ;
int h_addrtype ;
int h_length ;
char *h_addr;

/ * official name of host * /
/ * alias l i st * /
/ * addres s type * /
/ * length of addres s * /
/ * addres s * /

} ;

The members of this structure are:

h _name Official name of the host

h_a l iases

h_addrtype

h_length

h_addr

A zero terminated array of alternate names
for the host

The type of address being returned;
currently always AF _ INET.

The length, in bytes, of the address.

A pointer to the netwolk address for the
host Host addresses are returned in net
work byte order.

- 1 - September, 1987

•

•

•

•

•

•

gethostent (3N) gethostent (3N)

gethostent reads the next line of the file, opening the file if
necessary.

sethostent opens and rewinds the file. If the stayopen flag is
non-zero, the host data base will not be closed after each call to
gethostent (either directly, or indirectly through one of the
other "gethost" calls).

endhostent closes the file.

gethostbyname and gethostbyaddr sequentially search
from the beginning of the file until a matching host name or host
address is found, or until EOF is encountered. Host addresses are
supplied in network order.

RETURN VALUE
NULL pointer (0) returned on EOF or error.

FILES
/etc/hosts

SEE ALSO
hosts(4N).

BUGS
All information is contained in a static area so it must be copied if
it is to be saved. Only the Internet address format is currently
understood.

- 2 - September, 1987

get login(3C) get login(3C)

NAME
get login - get login name

SYNOPSIS
char *get login () ;

DESCRIPTION
getlogin returns a pointer to the login name as found in
/et c /utmp. It may be used in conjunction with getpwnam to
locate the correct password file entry when the same user ID is
shared by several login names.

If getlogin is called within a process that is not attached to a
tenninal, it returns a NULL pointer. The correct procedure for
determining the login name is to call cuserid or get login .
If get login fails, call getpwuid.

RETURN VALUE
get login returns the NULL pointer if name is not found.

FILES
/et c /utmp

SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), utmp(4).

BUGS
The return values point to static data whose content is overwritten
by each call.

- 1 - September, 1987

•

•

•

•

•

•

getmntent (3) getmntent (3)

NAME
setmntent, getmntent, addmntent, endmntent ,
hasmntopt - get file system descriptor file entry

SYNOPSIS
:It include <stdio . h>
:It include <mntent . h>

F I LE * setmntent (filep, type)
char *filep ;
char *type ;

st ruct mntent *getmntent (filep)
F I LE *filep ;

int addmntent (filep, mnt)
F I LE *filep ;
st ruct mntent *mnt;

char *hasmntopt (mnt, opt)
st ruct mntent *mnt;
char *opt ;

int endmntent (filep)
F I LE *filep ;

DESCRIYI'ION
These routines replace the get fsent(3) routines for accessing
the file system description file /et c / f stab, and the mounted
file system description file /etc /mtab.

setmntent opens a file system description file and returns a file
pointer for use with getmntent, addmntent, or endmntent.
The type argument is the same as in fopen(3). getmntent
reads the next line from f i lep and returns a pointer to an object
with the following structure containing broken-out fields of a line
in the file system description file, <mntent . h>. The fields have
meanings described in fstab(4).

s truct mnt ent {

I ;

char *mnt_f s name ; I* f i l e sys t em name *I

char *mnt _d i r ;

char *mnt_t ype ;

char *mnt _opt s ;

i nt mnt fre q ; -
i nt mnt_J>a s s no ;

I * f i l e system pat h pre fix * I

I * 4 . 2 , 5 . 2 , n f s , swap , o r i onore * /

I * ro, rw, quot a , noquot a , hard, soft * /

I * dump frequency, i n days * I

I * p a s s number o n para l l el fsck * I

- 1 - September, 1987

getmntent (3) getmntent (3)

addmntent adds the mntent structure mnt to the end of the
open file filep. Note that filep has to be opened for writing if this
is to work. hasmntopt scans the mnt opt s field of the
mntent structure mnt for a substring th8t matches opt . It
returns the address of the substring if a match is found, 0 other
wise. endmntent closes the file.

RETURN VALUE
NULL pointer (0) returned on EOF or error.

FILES
/ et c / fstab
/etc /mtab

SEE ALSO
fstab(4), mtab(4).

BUGS
The returned mntent structure points to static information that
is overwritten in each call.

- 2 - September, 1987

•

•

•

•

•

•

getnetent (3N) getneten t (3N)

NAME
getnetent, getnetbyaddr, getnetbyname, set
netent, endnetent - get network entry

SYNOPSIS
:fl: include <netdb . h>

st ruct netent *getnetent ()

st ruct netent *getnetbyname (name)
char *name ;

st ruct netent *getnetbyaddr (net)
long net ;

setnetent (stayopen)
int stayopen

endnetent ()

DESCRIPI'ION
getnetent, getnetbyname, and getnetbyaddr each
return a pointer to an object with the following structure contain
ing the broken-out fields of a line in the network data base,
/etc/networks .

st ruct netent
char

char

int

l ong

} ;

* n_name ; / * o f f i c i a l name o f net * /

* *n_al i a se s ; / * a l i a s l i st * /

n_addrt ype ; / * net numbe r t ype * /
n_net ; I * net numbe r * /

The members of this structure are:

n _name The official name of the network.

n aliases A zero terminated list of alternate names for the
network.

n _ addrt ype The type of the network number returned;
currently only AF _ INET.

n_net The network number. Network numbers are
returned in machine byte order.

getnetent reads the next line of the file, opening the file if
necessary .

setnetent opens and rewinds the file. If the stayopen flag is
nonzero, the net data base will not be closed after each call to
getnetent (either directly, or indirectly through one of the

- 1 - September, 1987

getnetent (3N)

other "getnet" calls).

endnetent closes the file.

getnetent (3N)

getnetbyname and getnetbyaddr sequentially search
from the beginning of the file until a matching net name or net
address is found, or until EOF is encountered. Network numbers
are supplied in host order.

RETURN VALUE
NULL pointer (0) returned on EOF or error.

FILES
/etc/networks

SEE ALSO
networks(4N).

BUGS
All information is contained in a static area so it must be copied if
it is to be saved. Only Internet network numbers are currently
understood. Expecting network numbers to fit in no more than 32
bits is probably naive.

- 2 - September, 1987

•

•

•

•

•

•

getnetgrent (3N) getnetgrent (3N)

NAME
getnetgrent, setnetgrent, endnetgrent , innetgr
get network group entry

SYNOPSIS
innetgr (netgroup, machine ,
char *netgroup, *machine ,

int setnetgrent (netgroup)
char *netgroup

int endnetgrent ()

user,
*user,

domain)
*domain ;

getnetgrent (machinep , userp, domainp)
char * *machinep, * *userp, * *domainp ;

DESCRIPTION
inngetgr returns 1 or 0, depending on whether netgroup
contains the machine, user, domain triple as a member. Any of
the three strings machine, user, or domain can be NULL, in which
case it signifies a wild card.

getnetgrent returns the next member of a network group.
Mter the call, machinep will contain a pointer to a string contain
ing the name of the machine part of the network group member,
and similarly for userp and domainp. getnetgrent will malloc
space for the name. This space is released when a endnetgrent
call is made. getnetgrent returns 1 if it succeeding in obtain
ing another member of the network group, 0 if it has reached the
end of the group.

setnetgrent establishes the network group from which get
netgrent will obtain members, and also restarts calls to get
netgrent from the beginning of the lisL If the previous set
netgrent call was to a different network group, a endnet
grent call is implied. endnetgrent frees the space allo
cated during the getnetgrent calls.

FILES
/etc/netgroup

- 1 - September, 1987

getopt (3C) getopt (3C)

NAME
get opt - get option letter from argument vector

SYNOPSIS
int getopt (argc, argv, optstring)
int argc ;
char * *argv, *optstring ;

extern char *optarg ;
extern int opt ind, opterr ;

DESCRIPTION
get opt returns the next option letter in argv that matches a letter
in optstring . optst ring is a string of recognized option
letters; if a letter is followed by a colon, the option is expected to
have an argument that may or may not be separated from it by
white space. optarg is set to point to the start of the option
argument on retum from get opt .

get opt places in opt ind the argv index of the next argument
to be processed. Because opt ind is external, it is normally ini
tialized to zero automatically before the first call to get opt .

When all options have been processed (i.e., up to the first non
option argument), getopt returns EOF. The special option -
may be used to delimit the end of the options; EOF will be
returned, and - will be skipped.

DIAGNOSTICS
get opt prints an error message on stderr and retums a ques
tion mark (?) when it encounters an option letter not included in
optstring. This error message may be disabled by setting
opterr to O.

EXAMPLE
The following code fragment shows how one might process the
arguments for a command that can take the mutually exclusive
options a and b, and the options f and o, both of which require
arguments:

main (argc, argv)

int a rgc ;

char * *argv;

int c ;

extern int opt ind;

extern char * opt arg;

- 1 - September, 1987

•

•

•

•

•

•

getopt (3C) get opt (3C)

wh i le ((c = get opt (argc , argv , " ab f : o : ")) ! = EOF)
s w i t ch (c) {
c a s e 'a' :

i f (b f l g)

e r r f l g + + ;

e l se

a f lg++ ;

break ;

case 'b' :

i f (a f l g)

e r r f lg++ ;

e l se

bpr o c () ;

break ;

case 'f' :

i f i le = opt arg;

break ;

case 'o' :

o f i le = opt arg;

break ;

case ' ?' :
e r r fl g + + ;

i f (e r r f l g)
fpr int f (st de r r , " u s age : . . fl. ") ;
e x i t (2) ;

f o r (; opt ind < argc ; opt ind+ +)
i f (acce s s (a rgv [opt ind) , 4))

SEE ALSO
getopt(l) .

- 2 - September, 1987

getpa s s (3C)

NAME
get pa s s - read a password

SYNOPSIS
char *getpa s s (prompt)
char *prompt;

DESCRIPTION

getpas s (3C)

get pass reads up to a newline or EOF from the file I dev /tty,
after prompting on the standard error output with the null
terminated string prompt and disabling echo. A pointer is returned
to a null-terminated string of at most 8 characters. If I dev Itt y
cannot be opened, a NULL pointer is returned. An interrupt ter
minates input and sends an interrupt signal to the calling program
before returning.

FILES
/dev/tty

SEE ALSO
c rypt(3C).

WARNING
The above routine uses <stdio . h>. This causes the size of pro
grams not otherwise using standard 1/0 to increase more than
might be expected.

BUGS
The return value points to static data whose content is overwritten
by each call.

- 1 - September, 1987

•

•

•

•

•

•

getprot oent (3N) getprotoent (3N)

NAME
getprot oent , getprot obynumber, getprot obyname,
setprotoent, endprotoent - get protocol entry

SYNOPSIS
inc lude <netdb . h>

st ruct prot oent *getprot oent ()

s t ruct prot oent *getprot obyname (name)
char *name ;

st ruct protoent *getprot obynumbe r (proto)
int proto ;

int setprotoent (stayopen)
int stayopen

int endprotoent ()

DESCRIPTION
getprot oent , getprot obyname, and getprot o
bynumber each return a pointer to an object with the following
structure containing the broken-out fields of a line in the network
protocol data base, /etc /protocols .

st ruct prot oent {
char *p_name ; / * o f f i c i a l name o f prot ocol * /

char * *p_a l ia se s ; / * a l i a s l i st * /

l ong p_prot o ; / * protoco l numbe r * /

) ;

The members of this structure are:

p _name The official name of the protocol.

p_a l iases A zero terminated list of alternate names for the
protocol.

p _proto The protocol number.

getprotoent reads the next line of the file, opening the file if
necessary.

setprotoent opens and rewinds the file. If the stayopen flag is
nonzero, the net data base will not be closed after each call to
getprotoent (either directly, or indirectly through one of the
other "getproto" calls) .

endprotoent closes the file.

getprotobyname and getprotobynumber sequentially
search from the beginning of the file until a matching protocol

- 1 - September, 1987

getprot oent (3N) getprotoent (3N)

name or protocol number is found, or until EOF is encountered.

RETURN VALUE
NULL pointer (0) returned on EOF or error.

FILES
/etc /protocols

SEE ALSO
protocols{4N).

BUGS
All information is contained in a static area so it must be copied if
it is to be saved. Only the Internet protocols are currently under
stood.

- 2 - September, 1987

•

•

•

•

•

•

getptabent (3) getptabent (3)

NAME
getptabent , addptabent, endptabent, setptabent ,
numbptabent - get partition table file entry

SYNOPSIS
f: include <stdio . h>
f: include <apple /ptabent . h>

st ruct ptabent *getptabent <filep)
F ILE *filep ;

int addptabent <filep, ptab)
F I LE *filep ;
st ruct ptabent *ptab ;

int endptabent (ftlep)
F I LE *filep ;

F I LE * setptabent (/name, type)
char */name ;
char *type ;

int numptabent <filep)
F I LE *filep ;

cc (flags] files -lptab [libraries]

DESCRIPTION
setptabent opens a partition table file and returns a file pointer
which can then be used with getptabent or addptabent .
The type argument is the same as in fopen(3). getptabent
returns a pointer to an object with the following structure contain
ing the broken-out fields of a line in the partition table file. The
fields have meanings described in ptab(4).

struct ptabent {
char *ptab_name ; I * partition name * I
char *ptab_type ; I * partition type * I
int ptab ct rl ; I * controller number * I
int ptab_di sk ; I * di sk number * I
int ptab_part ; I * partition number * I

} ;

addptabent adds the ptabent structure ptab to the end of
the open file filep . numptabent returns the number of parti
tion table file entries and has the effect of rewinding the partition
table file to allow repeated searches. endptabtent closes the
file.

- 1 - September, 1987

getptabent (3)

FILES
/etc /ptab

RETURN VALUE

getptabent (3)

A NULL pointer (0) is returned on EOF or error by setpta
bent and getptabent. addptabent , endptabent, and
numbptabent return EOF on error.

BUGS
The returned ptabent structure points to static information that
is overwritten in each call.

SEE ALSO
pname(lM), ptab(4).

- 2 - September, 1987

•

•

•

•

•

•

getpw(3C)

NAME
getpw - get name from UID

SYNOPSIS
int getpw (uid, buj)
int uid;
char *buf;

DESCRIPTION

getpw(3C)

getpw searches the password file for a user ID number that
equals uid, copies the line of the password file in which uid was
found into the array pointed to by buf, and returns 0. The line is
null terminated. getpw returns nonzero if uid cannot be found.

This routine is included only for compatibility with prior systems
and should not be used; see getpwent(3C) for routines to use
instead

RETURN VALUE
getpw returns nonzero on error.

FILES
/etc/pas swd

SEE ALSO
getpwent(3C), pas swd{4).

WARNING
The above routine uses <stdio . h>. Therefore, the size of pro
grams not otherwise using standard 1/0 is increased more than
might be expected .

- 1 - September, 1987

get pwen t (3C) getpwent (3C)

NAME
getpwent, getpwuid, getpwna� setpwent , endpwent,
fgetpwent - get password file entry

SYNOPSIS
#include <pwd . h>

st ruct passwd *getpwent ()

st ruct pas swd *getpwuid (uid)
int uid;

struct passwd *getpwnam (name)
char *name ;

void setpwent ()

void endpwent ()

st ruct pas swd * fgetpwent (/)
FILE */;

DESCRIPnON
getpwent, getpwuid, and getpwnam each return a pointer
to an object with the following structure containing the broken-out
fields of a line in the /etc /pas swd file. Each line in the file
contains a pas swd structure, declared in the <pwd . h> header
file:

st ruct pas swd {

} ;

char *pw_name ;
char *pw_pas swd;
int pw uid;
int pw=gid;
char *pw_age ;
char *pw_comment ;
char *pw gecos ;
char *pw=dir ;
char *pw_shell ;

Because this structure is declared in <pwd . h>, it is not necessary
to redeclare it.

The pw_ comment field is unused; the others have meanings
described in passwd(4).

When first called, getpwent returns a pointer to the first
pas swd structure in the file; thereafter, it returns a pointer to the
next pas swd structure in the file; therefore, successive calls can

- 1 - September, 1987

•

•

•

•

•

•

getpwent (3C) getpwent (3C)

be used to search the entire file. getpwuid searches from the
beginning of the file until a numerical user id matching uid is
found; it returns a pointer to the particular structure in which the
match was found. getpwnam searches from the beginning of
the file until a login name matching name is found; it returns a
pointer to the particular structure in which the match was found.
If an end-of-file or an error is encountered on reading, these func
tions return a NULL pointer.

A call to setpwent has the effect of rewinding the password
file to allow repeated searches. endpwent may be called to
close the password file when processing is complete.

fgetpwent returns a pointer to the next pas swd structure in
the stream/, which matches the format of I etc I pas swd.

RETURN VALUE
A NULL pointer is returned on EOF or error.

FILES
letc lpasswd

SEE ALSO
cuserid(3S), qetloqin(3C), qetqrent(3C),
putpwent(3C), pas swd(4).

WARNING
The above routines use <stdio . h>. Therefore the size of pro
grams not otherwise using standard 1/0 is increased more than
might be expected.

BUGS
All information is contained in a static area, so it must be copied if
it is to be saved .

- 2 - September, 1987

get s (3S)

NAME
get s , fgets - get a suing from a stream

SYNOPSIS
:fl:include <stdio . h>

char *gets (s)
char *s;

char * fget s (s,n,stream)
char *s;
int n ;
F I LE *stream;

DESCRIPTION

get s (3S)

get s reads characters from the standard input stream, stdin ,
into the array pointed to by s, until a newline character is read or
an end-of-file condition is encountered. The newline character is
discarded and the suing is terminated with a null character.

fgets reads characters from the stream into the array pointed to
by s until n-1 characters are read, or a newline character is read
and transferred to s, or an end-of-file condition is encountered.
The string is then terminated with a null character.

RETURN VALUE
If end-of-file is encountered and no characters have been read, no
characters are transferred to s and a NULL pointer is returned. If
a read error (e.g., trying to use these functions on a file that has
not been opened for reading) occurs, a NULL pointer is returned.
Otherwise s is returned.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S).

NOTE
gets deletes the newline ending its input, but fgets keeps it.

- 1 - September, 1987

•

•

•

•

•

•

get servent (3N) get servent (3N)

NAME
get servent , get servbyport, get servbyname, set
servant, endservent - get service entry

SYNOPSIS
:fl: include <netdb . h>

st ruct servant *get servent ()

st ruct servent *get servbyname (name , proto)
char *name, *proto ;

st ruct servent *getservbyport (port , proto)
int port ;
char *proto ;

int set servent (stayopen)
in t stayopen

int endservent ()
DESCRIPTION

get servent , get servbyname, and getservbyport each
return a pointer to an object with the following structure contain
ing the broken-out fields of a line in the network services data
base, /etc/ services .

st ruct servent {
char * s_name ; / * o f f i c i a l name o f service * /

char * * s_a l i a se s ; / * a l i a s l i st * /

l ong s_port ; / * port service res ides a t * /

} ;
char * s_prot o ; / * prot oco l t o use * /

The members of this structure are:

s name The official name of the service.

s aliases A zero terminated list of alternate names for the
service.

s_port The port number at which the service resides.
Port numbers are returned in network byte order.

s _proto The name of the protocol to use when contacting
the service.

getservent reads the next line of the file, opening the file if
necessary.

setservent opens and rewinds the file. If the stayopen flag is
non-zero, the net data base will not be closed after each call to

- 1 - September, 1987

getservent (3N) getservent (3N)

get servent (either directly, or indirectly through one of the
other "getserv" calls).

endservent closes the file.

get servbyname and get servbyport sequentially search
from the beginning of the file until a matching protocol name or
port number is found, or until EOF is encountered. If a protocol
name is also supplied (non-NULL}, searches must also match the
protocol.

RETURN VALUE
NULL pointer (0) returned on EOF or error.

FILES
/etc/ services

SEE ALSO
getprotoent(3N}, services(4N).

BUGS
All information is contained in a static area so it must be copied if
it is to be saved. Expecting port numbers to fit in a 32 bit quantity
is probably naive.

- 2 - September, 1987

•

•

•

•

•

•

getut (3C) getut (3C)

NAME
getutent, getut id, getut line, putut line, setu
tent, endutent, utmpname - access utmp file entry

SYNOPSIS
f include <sys /types . h>
:fl: include <utmp . h>

st ruct utmp *getutent ()

st ruct utmp *getut id (id)
st ruct utmp *id;

st ruct utmp *getut l ine (line)
st ruct utmp *line ;

void putut line (utmp)
st ruct utmp *utmp ;

void setutent ()

void endutent ()

ivoid utmpname <file)
char *file ;

DESCRIPriON
getutent, getut id, and getut l ine each return a pointer
to a structure of the following type:

st ruct utmp {

} ;

char ut_user (8] ;

char ut_id [4] ;

char ut_l ine [l2] ;

short ut_pid;

short ut_type ;
st ruct exit_status
short e_t e rminat i on ;

short e_exit ;

} ut_exit ;

I * User login name * I
I * letcl inittab I D

(u sua l l y l i ne #) * I

I * device name (conso le , lnxx) * I

I * proce s s I D * I

I * t ype o f entry * I

I * P roce s s t e rminat ion status * I

I * P roce s s exit status * I

I * Exit status o f a proce s s

I * marked a s DEAD_PROCESS * I

t ime t ut_t ime ; I * t ime entry was made * I
char ut_h o st [l 6] ; I * host name , i f remote * I

getutent reads in th e next entry from a utmp-like file. If the
file is not already open, it opens it. If it reaches the end of the file,
it fails.

- 1 - September, 1987

getut (3C) getut (3C)

getutid searches forward from the current point in the utmp
file until it finds an entry with a ut_type matching
id->ut type if the type specified is RUN LVL, BOOT T IME,
OLD_T IME, or NEW_TIME. If the type

-
specified m id is

!NIT PROCES S , LOGIN PROCES S , USER PROCES S , m
DEAD

-
PROCES S , getut fd will return a pointer to the first

entry whose type is one of these four and whose ut_id field
matches id->ut id. getutid fails if the end of file is
reached without a match.

getutl ine searches forward from the current point in the
utmp file until it finds an entry of the type LOGIN PROCES S m
USER PROCES S which also has a ut l ine string matching
the .line->ut l ine string. If the end of file is reached
without a match, it fails.

putut line writes out the supplied utmp structure into the
utrnp file. It uses getut id to search forward for the proper
place if it finds that it is not already at the proper place. It is
assumed that the user of pututl ine has searched for the
proper entry using one of the getut routines. If this has been
done, putut line will not search. If putut l ine does not
find a matching slot fm the new entry, it will add a new entry to
the end of the file.

setutent resets the input stream to the beginning of the file.
This should be done before each search for a new entry if it is
desired that the entire file be examined.

endutent closes the currently open file.
utmpname allows the user to change the name of the file exam
ined from / etc/utmp to any other filename. It is expected that
most often this other file will be / etc/wtmp. If the file doesn't
exist, this will not be apparent until the first attempt to reference
the file is made. utmpname does not open the file. It just
closes the old file, if it is currently open, and saves the new
filename.

RETURN VALUE
A NULL pointer is returned upon failure to read or write. Failure
to read may be due to permissions or because end-of-file has been
reached.

Fll..ES
/et c /utmp
/etc/wtmp

- 2 - September, 1987

•

•

•

•

•

•

getut (3C) getut (3C)

SEE ALSO
ttys lot(3C), utmp(4) .

COMMENTS
The most current entry is saved in a static structure. Multiple
accesses require that it be copied before further accesses are
made. Each call to either getut id or getut l ine sees the
routine examine the static structure before performing more 1/0.
If the search of the static structure results in a match, no further
search is performed. To use getut line to search for multiple
occurences, zero out the static structure after each success; other
wise getut l ine will just return the same pointer over and over
again. There is one exception to the rule about removing the
structure before further reads are done. If the implicit read done
by putut line finds that it isn't already at the correct place in
the file, the contents of the static structure returned by the get u
tent, getut id, or getut line routines are not harmed, if the
user has just modified those contents and passed the pointer back
to putut line.

These routines use buffered standard 1/0 for input, but putut
line uses an unbuffered non-standard write to avoid race condi
tions between processes trying to modify the utmp and wtmp
files .

- 3 - September, 1987

getwd(3)

NAME
getwd - get current worlcing directory pathname

SYNOPSIS
char *getwd (pathname)
char *pathname;

DESCRIPTION

getwd(3)

get wd copies the absolute pathname of the current working
directory to pathname and returns a pointer to the result

Maximum pathname length is PATH_MAX characters (see
int ro(2)).

DIAGNOSTICS
get wd returns zero and places a message in pathname if an error
occurs.

- 1 - September, 1987

•

•

•

•

•

•

hsearch(3C) hsearch(3C)

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
#include <search . h>

ENTRY *hsearch (item , action)
ENTRY item ;
ACTION action ;

int hcreate (nel)
uns igned nel ;

void hdestroy ()

DESCRIPTION
hsearch is a hash-table search routine generalized from Knuth
(6.4) Algorithm D. It returns a pointer into a hash table indicating
the location at which an entry can be found. item is a structure of
type ENTRY (defined in the < search . h> header file) contain
ing two pointers: item.key points to the comparison key, and
item.data points to any other data to be associated with that key.
(Pointers to types other than character should be cast to pointer
to-character.) action is a member of an enumeration type
ACT ION indicating the disposition of the entry if it cannot be
found in the table. ENTER indicates that the item should be
inserted in the table at an appropriate point. FIND indicates that
no entry should be made. Unsuccessful resolution is indicated by
the return of a NULL pointer.

hcreate allocates sufficient space for the table, and must be
called before hsearch is used. nel is an estimate of the max
imum number of entries that the table will contain. This number
may be adjusted upward by the algorithm in order to obtain certain
mathematically favorable circumstances.

hdestroy destroys the search table, and may be followed by
another call to he reate.

NOTES
hsearch uses "open addressing" with a "multiplicative" hash
function. However, its source code has many other options avail
able which the user may select by compiling the hsearch
source with the following symbols defined to the preprocessor:

o rv Use the remaintkr modulo table size as the hash func
tion instead of the multiplicative algorithm.

- 1 - September, 1987

hsearch(3C) hsearch{3C)

useR Use a User Supplied Comparison Routine for ascer
taining table membership. The routine should be
named hcompar and should behave in a mannner
similar to strcmp (see string(3C)).

CHAINED Use a linked list to resolve collisions. If this option is
selected, the following other options become avail
able.

START Place new entries at the beginning of the
linked list (default is at the end).

SORTUP Keep the linked list sorted by key in
ascending order.

SORTDOWN Keep the linked list sorted by key in
descending order.

Additionally, there are preprocessor flags for obtain
ing debugging printout (-DDEBUG) and for including
a test driver in the calling routine (-DDRIVER). The
source code should be consulted for further details.

RETURN VALUE
hsearch returns a NULL pointer if either the action is F IND
and the item could not be found or the action is ENTER and the
table is full.
he reate returns zero if it cannot allocate sufficient space for the
table.

EXAMPLE
The following example will read in strings followed by two
numbers and store them in a hash table, discarding duplicates. It
will then read in strings and find the matching entry in the hash
table and print it out

include < stdio . h>

include < search . h>

st ruct i n fo

int age , room;

} ;

I * this i s the info s t o red in

the t able other than the key * I

#de f ine NUM EMPL 5 0 0 0 I * # o f e lement s i n search

t able * I

main (

{
I * space t o store strings * I

- 2 - September, 1987

•

•

•

•

•

•

hsearch(3C)

char st r ing_ space [NUM_EMPL*2 0] ;

I * space t o s t o re empl oyee info * I

st ruct i n fo info_ space [NUM _ EMPL] ;

hsearch(3C)

I* next ava i l space in s t r i ng_space *I

char * s t r_pt r = string_space ;

I * next ava i l space in info_space * I

st ruct info *info_pt r = info_space ;

ENTRY item, * found_item, *hsearch () ;

I * name t o look for in t able * I

char name_to_find [3 0] ;

int i = 0 ;

I * create t able * I

(vo id) hcreate (NUM_EMPL) ;

wh i le (scanf (" % s%d%d" , st r_pt r , & info_pt r->age ,

& info_pt r->room) ! = EOF & & i++ < NUM_EMPL)

I * put i n f o in s t ructure ,

and structure in item * /

item . key = s t r_pt r ;

item . data = (char *) in fo_pt r ;

st r_pt r + = st rlen (st r_ptr) + 1 ;
info_pt r++;

I* put item into t able */

(vo id) hsearch (item, ENTER) ;

I * acce s s t able * I

item . key = name_t o_find;

whi le (s canf (" \ s " , item . key) ! = EOF)

i f ((found_item = hsearch (item, F IND)) ! = NULL)

I * i f item i s in the t able * /
(vo id) print f (" found % s , age = % d , room = %d\n" ,

found_item->key,

((st ruct info *l found_item->dat a) - > age ,

((st ruct info *) found_item->dat a) - > room) ;

e l se {

- 3 - September, 1987

hsearch(3C)

}
}

SEE ALSO

hsearch(3C)

(void) printf ("no such employee % s \ n " ,

name_t o_find)

bsearch(3C), lsearch(3C), malloc(3C), malloc(3X),
st r ing(3C), t search(3C).

WARNING
hsearch and he reate use mal loc(3C) to allocate space.

BUGS
Only one hash search table may be active at any given time.

- 4 - September, 1987

•

•

•

•

•

•

hypot (3M)

NAME
hypot - Euclidean distance function

SYNOPSIS
#include <math . h>

double hypot (x, y)
double x, y ;

DESCRIPTION

hypot (3M)

hypot returns the following, taking precautions against unwar
ranted overflows:

sqrt (X * x + y * y)

RETURN VALUE
When the correct value would overflow, hypot retmns HUGE
and sets errno to ERANGE .

These error-handling procedures may be changed with the func
tion matherr(3M).

SEE ALSO
mathe rr(3M) .

- 1 - September, 1987

iargc (3F) iargc (3F)

NAME
iargc - return command line arguments

SYNOPSIS
intege r i
i=iargc ()

DESCRIPITON
The ia rgc function returns the number of command line argu
ments passed to the program. Thus, if a program were invoked
via

foo argl arg2 arg3

ia rgc () would return "3".

SEE ALSO
getarg(3F).

- 1 - September, 1987

•

•

•

•

•

•

index(3F)

NAME
index - return location of Fortran substring

SYNOPSIS
character *Nl chl
character *N2 ch2
intege r i

i=index (chl , ch2 >

DESCRIPfiON

index(3F)

index returns the location of substring ch2 in string chl . The
value returned is either the position at which substring ch2 starts
or 0 if ch2 is not present in string chl .

- 1 - September, 1987

inet (3N) inet (3N)

NAME
inet_addr, inet network, inet ntoa,
inet makeaddr, inet inaof, inet netof - Internet
address manipulation routines

-

SYNOPSIS
#include <sys / socket . h>
#include <net inet / in . h>
#include <arpa / inet . h>

struct in_addr inet_addr (cp)
char *cp ;

int inet_network (cp)
char *cp ; ·

char * inet ntoa (in)
st ruct inet_addr in ;

st ruct in addr inet makeaddr (net, Ina)
int net, ina;

-

int inet lnaof (in)
struct in_addr in ;

int inet netof (in)
st ruct in_addr in ;

DESCRIYI'ION
The routines inet addr and inet network each interpret
character strings rePresenting numbers expressed in the Internet
standard "." notation, returning numbers suitable for use as
Internet addresses and Internet network numbers, respectively.
The routine inet ntoa takes an Internet address and returns an
ASCII string representing the address in ' ' . ' ' notation. The rou
tine inet makeaddr takes an Internet network number and a
local networlc address and constructs an Internet address from it.
The routines inet netof and inet lnaof break apart
Internet host addresse8, returning the network number and local
network address part, respectively.

All Internet address are returned in network order (bytes ordered
from left to right). All network numbers and local address parts
are returned as machine format integer values.

INTERNET ADDRESSES
V aloes specified using the ' ' . ' ' notation take one of the following
forms:

ab.c.d

- 1 - September, 1987

•

•

•

•

•

•

inet (3N)

a.b.c
a.b
a

inet (3N)

When four parts are specified, each is interpreted as a byte of data
and assigned, from left to right, to the four bytes of an Internet
address.

When a three part address is specified, the last part is interpreted
as a 16-bit quantity and placed in the right most two bytes of the
network address. This makes the three part address format con
venient for specifying Class B network addresses as
" 1 2 8 . net . host" .

When a two part address is supplied, the last part i s interpreted as
a 24-bit quantity and placed in the right most three bytes of the
network address. This makes the two part address fonnat con
venient for specifying Class A network addresses as
"net . host" .

When only one part i s given, the value is stored directly in the net
work address without any byte rearrangement.

All numbers supplied as "parts" in a " ." notation may be
decimal, octal, or hexadecimal, as specified in the C language (i.e .
a leading Ox or OX implies hexadecimal; otherwise, a leading 0
implies octal; otherwise, the number is interpreted as decimal).

RETURN VALUE
The value -1 is returned by inet addr and inet net work
for malformed requests.

SEE ALSO
gethostent(3N), getnetent(3N), hosts(4N),
netwo rks(4N)

BUGS
The problem of host byte ordering versus network byte ordering is
confusing. A simple way to specify Oass C network addresses in
a manner similar to that for Class B and Class A is needed. The
string returned by inet _ ntoa resides in a static memory area.

- 2 - September, 1987

ini tgroups (3)

NAME
ini tgroups - initialize group access list

SYNOPSIS
initgroups (name , basegid)
char * name ;
int basegid;

DESCRIPI'ION

ini tgroups (3)

ini tgroups reads through the group file and sets up, using the
setgroups(2) call, the group access list for the user specified in
name . The basegid is automatically included in the groups list.
Typically this value is given as the group number from the pass
word file.

RETURN VALUE
ini tgroups returns -1 if it was not invoked by the superuser.

FILES
/et c /group
/etc /pas swd

SEE ALSO
setgroups(2).

BUGS
initgroups uses the routines based on getgrent(3). If the
invoking program uses any of these routines, the group structure
will be overwritten in the call to initgroups.

- 1 - September, 1987

•

•

•

•

•

•

insque (3N) insque (3N)

NAME
ins que, remque - insert/remove element from a queue

SYNOPSIS
st ruct qelem

} ;

st ruct qelem *q_forw ;
st ruct qelem *q_back ;
char q_data [] ;

int insque (elem, pred)
st ruct qelem *elem, *pred;

int remque (elem)
st ruct qelem *elem ;

DESCRIPTION
The insque and remque macros manipulate queues built
from doubly linked lists. Each element in the queue must be in the
form of st ruct qelem. insque inserts elem in a queue
immediately after pred; remque removes an entry elem from a
queue.

Fll..ES
/usr/ include / ? / insque . h

- 1 - September, 1987

killpg(3N) killpg(3N)

NAME
killpg - send signal to a process group

SYNOPSIS
int killpg (pgrp, sig)
int pgrp, sig ;

DESCRIPITON
killpg sends the signal sig to the process group pgrp.

The sending process and members of the process group must have
the same effective user ID, otherwise this call is restricted to the
superuser. As a single special case the continue signal S IGCONT
may be sent to any process which is a descendant of the current
process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of - 1 is returned and the global variable errno is set to
indicate the error.

ERRORS
killpg will fail and no signal will be sent if any of the following
occur:

[E INVAL]

[ESRCH]

[EPERM]

SEE ALSO
kill(2), getpid(2).

sig is not a valid signal number.

No process can be found corresponding to
that specified by pgrp.

The sending process is not the super-user
and one or more of the target processes has
an effective user ID different from that of
the sending process.

- 1 - September, 1987

•

•

•

•

•

•

13tol (3C) 13tol {3C)

NAME
13tol, ltol3 - convert between 3-byte integers and long
integers

SYNOPSIS
void 13tol (lp, cp, n)
long *lp ;
char *cp ;
int n ;

void ltol3 (cp, lp, n)
char *cp ;
long *lp ;
int n ;

DESCRIPTION
13tol converts a list of n 3-byte integers (packed into a character
string pointed to by cp) into a list of long integers pointed to by
lp.

1 tol3 performs the reverse conversion from long integers (lp) to
3-byte integers (cp).

These functions are useful for file system maintenance where the
block numbers are 3 bytes long .

SEE ALSO
fs(4).

BUGS
Because of possible differences in byte ordering, the numerical
values of the long integers are machine-dependent .

- 1 - September, 1987

ldahread(3X) ldahread(3X)

NAME
ldahread - read the archive header of a member of an archive
file

SYNOPSIS
:fl:include <stdio . h>
:fl: include <ar . h>
:fl:include <filehdr . h>
:fl: include < ldfcn . h>

int ldahread (/dptr, arhead
LDFI LE *ldptr;
ARCHDR *arhead;

DESCRIPITON
If TYPE (ldptr) is the archive file magic number, ldahread
reads the archive header of the common object file currently asso
ciated with ldptr into the area of memory beginning at arhead.

Programs using this routine should be loaded with the object file
access library l ibld . a.

RETURN VALUE
ldahread returns SUCCES S or FAILURE. ldahread fails
if TYPE (ldptr) does not represent an archive file or if it cannot
read the archive header.

SEE ALSO
ldclose(3X), ldopen(3X), ldfcn(3X), a r(4).

- 1 - September, 1987

•

•

•

•

•

•

ldclose (3X) ldclose (3X)

NAME
ldclose, ldaclose - close a common object file

SYNOPSIS
#include <stdio . h>
f include <filehdr . h>
finclude < ldfcn . h>

int ldclose (ldptr)
LDF ILE *ldptr;

int ldaclose (ldptr)
LDF ILE *ldptr ;

DESCRIPriON
ldopen(3X) and ldclose are designed to provide unifonn
access to both simple object files and object files that are members
of archive files. Thus an archive of common object files can be
processed as if it were a series of simple common object files.

If TYPE (ldptr) does not represent an archive file, ldclose
closes the file and frees the memory allocated to the LDFILE
structure associated with ldptr. If TYPE (ldptr) is the magic
number of an archive file, and if there are any more files in the
archive, ldclose reinitializes OFFSET (ldptr) to the file
address of the next archive member and returns FAILURE. The
LDF ILE structure is prepared for a subsequent ldopen(3X). In
all other cases, ldclose returns succEss.

ldaclose closes the file and frees the memory allocated to the
LDFILE structure associated with ldptr regardless of the value of
TYPE(ldptr). ldaclose always returns SUCCESS. The func
tion is often used in conjunction with ldaopen.

Programs using this routine must be loaded with the object file
access library libld . a .

SEE ALSO
fclose(3S), ldfcn(3X), ldopen(3X) .

- 1 - September, 1987

ldfcn(3X)

NAME
ldfcn - common object file access routines

SYNOPSIS
#include <stdio . h>
#include <filehdr . h>
#include <ldfcn . h>

DBSCRIPI'ION

ldfcn (3X)

The common object file access routines are a collection of func
tions for reading an object file that is in common object file form.
Although the calling program must know the detailed structure of
the parts of the object file that it processes, the routines effectively
insulate the calling program from knowledge of the overall struc
ture of the object file.

The interface between the calling program and the object file
access routines is based on the defined type LDF ILE (defined as
s t ruct ldfi le), which is declared in the header file
<ldfcn . h>. The primary purpose of this structure is to provide
uniform access to both simple object files and object files that are
members of an archive file.

The function ldopen(3X) allocates and initializes the LDF I LE
structure and returns a pointer to the structure to the calling pro
gram. The fields of the LDF ILE structure may be accessed indi
vidually through macros defined in <ldfcn . h> and contain the
following information:

LDFILE *ldptr;

TYPE (ldptr) The file magic number, used to distinguish
between archive members and simple object
files.

IOPTR (ldptr) The file pointer returned by fopen(3S) and
used by the standard input/output functions.

OFFSET (ldptr) The file address of the beginning of the object
file; the offset is nonzero if the object file is a
member of an archive file.

HEADER (ldptr) The file header structure of the object file.

The object file access functions may be divided into four
categories:

(1) functions that open or close an object file

- 1 - September, 1987

•

•

•

•

•

•

ldfcn(3X) ldfcn (3X)

ldopen(3X) and ldaopen
open a common object file

ldclose(3X) and ldaclose
close a common object file

(2) functions that read header or symbol table information

ldahread(3X) read the archive header of a member
of an archive file

ldfhread(3X) read the file header of a common
object file

ldshread(3X) and ldnshread

ldtbread(3X)

ldgetname(3X)

read a section header of a common
object file

read a symbol table entry of a com
mon object file

retrieve a symbol name from a sym
bol table entry or from the string table

(3) functions that position an object file at (seek to) the start
of the section, relocation, or line number information for a
particular section.

ldohseek(3X) seek to the optional file header of a
common object file

ldsseek(3X) and ldns seek
seek to a section of a common object
file

ldrseek(3X) and ldnrseek
seek to the relocation information for
a section of a common object file

ldlseek(3X) and ldnlseek
seek to the line number information
for a section of a common object file

ldtbseek(3X) seek to the symbol table of a common
object file

(4) the function ldtbindex(3X) which returns the index of
a particular common object file symbol table entry

These functions are described in detail in the manual pages
identified for each function.

- 2 - September, 1987

ldfcn(3X) ldfcn (3X)

All the functions except ldopen, ldgetname{3X), ldaopen,
and ldtbindex return either SUCCES S or FAILURE, which
are constants defined in <ldfcn . h>. ldopen and ldaopen
both return pointers to a LDFILE structure.

Programs using this routine must be loaded with the object file
access library libld . a.

MACROS
Additional access to an object file is provided through a set of
macros defined in <ldfcn . h>. These macros parallel the stan
dard input/output file reading and manipulating functions, translat
ing a reference of the LDFILE structure into a reference to its file
descriptor field.

The following macros are provided:

GETC (ldptr)
FGETC (ldptr)
GETW (ldptr)
UNGETC (c, ldptr)
FGETS (s, n , ldPtr)
FREAD (ptr, size , nitems, ldptr)
FSEEK (ldptr, offset, ptrname)
FTELL (ldptr)
REWIND (ldptr)
FEOF (ldptr)
FERROR (ldptr)
F I LENO (ldptr)
SETBUF < ldPtr, buj)
S TROFFSET < ldPtr)

The S TROFFSET macro calculates the address of the string table
in an object file. See the manual entries for the corresponding
standard input/output library functions for details on the use of
these macros. (The functions are identified as 3S in this manual.)

WARNINGS
The macro FSEEK defined in the header file <ldfcn . h>
translates into a call to the standard input/output function
fseek{3S). FSEEK should not be used to seek from the end of
an archive file since the end of an archive file may not be the same
as the end of one of its object file members.

SEE ALSO
fopen(3S), fseek{3S), ldahread{3X), ldc lose{3X),
ldfhread{3X), ldgetname{3X), ldlread(3X),

- 3 - September, 1987

•

•

•

•

•

•

ldfcn(3X) ldfcn (3X)

ldlseek(3X), ldohseek(3X), ldopen(3X), ldrseek(3X),
ldlseek(3X), ldshread(3X), ldtbindex(3X),
ldtbread(3X), ldtbseek(3X) .
"COFF Reference" and "C Object Library" A/UX Programming
Languages and Tools, Volume 1 •

- 4 - September, 1987

ldfhread{3X) ldfhread{3X)

NAME
ldfhread - read the file header of a common object file

SYNOPSIS
#include <stdio . h>
#include <filehdr . h>
#include <ldfcn . h>

int ldfhread (ldptr, file head)
LDF I LE *ldptr;
F I LHDR *filehead;

DESCRIPnON
ldfhread reads the file header of the common object file
currently associated with ldptr into the area of memory beginning
at file head.

ldfhread returns SUCCESS or FAILURE. ldfhread fails if
it cannot read the file header.

In most cases the use of ldfhread can be avoided by using the
macro HEADER (ldptr) defined in <ldfcn . h> (see ldfcn(3)).
The information in any field of the file header may be accessed by
applying the dot operator to the value returned by the HEADER
macro; for example: HEADER (/dptr) . f_t imdat . .

The program using this routine must be loaded with the object file
access library libld . a.

SEE ALSO
l.dcl.ose{3X), l.dfcn(3X), ldopen(3X), filehdr(4).

- 1 - September, 1987

•

•

•

•

•

•

ldgetname (3X) ldgetname (3X)

NAME
ldgetname - retrieve symbol name for object file symbol table
entry

SYNOPSIS
#include <stdio . h>
#include <filehdr . h>
#include <syms . h>
#include <ldfcn . h>

char * ldgetname (ldptr, symbol>
LDF ILE *ldptr ;
SYMENT *symbol ;

DESCRIPTION
ldgetname returns a pointer to the name associated with symbol
as a string. The string is contained in a static buffer local to
ldgetname. Because the buffer is overwritten by each call to
ldgetname, it must be copied by the caller if the name is to be
saved.

The common object file format has been extended to handle arbi
trary length symbol names with the addition of a "string table."
ldgetname returns the symbol name associated with a symbol
table entry for either an object file or a preobject file. Thus,
ldgetname can be used to retrieve names from object files
without any backward compatibility problems.

Typically, ldgetname is called immediately after a successful
call to ldtbread to retrieve the name associated with the sym
bol table entry filled by ldtbread

Programs using this routine should be loaded with the object file
access library libld . a.

ERRORS
ldgetname returns NULL (defined in <stdio . h>) for an
object file if the name cannot be retrieved. This occurs when:

the string table cannot be found.

not enough memory can be allocated for the string table.

the string table appears not to be a string table (e.g. , if an
auxiliary entry is handed to ldgetname that looks like a
reference to a name in a nonexistent string table) .

the name's offset into the string table is beyond the end of the
string table.

- 1 - September, 1987

ldgetname (3X) ldgetname (3X)

SEE ALSO
ldclose(3X), ldfcn(3X), ldopen(3X), ldtbseek(3X),
ldtbread(3X).

- 2 - September, 1987

•

•

•

•

•

•

ldlread(3X) ldl read (3X)

NAME
ldl read, ldl init , ldl itern - manipulate line number
entries of a common object file function

SYNOPSIS
inc lude <stdio . h>
include < f i lehdr . h>
inc lude <l inenum . h>
include < ldfcn . h>

int ldlread (ldptr, fcnindx, linenum, linent)
LDF ILE *ldptr ;
long fcnindx ;
uns igned short linenum ;
LINENO linent ;

int ldlinit (ldptr, fcnindx)
LDF ILE *ldptr ;
long fcnindx ;

int ldl itern < ldptr, linenum, linent)
LDF ILE *ldptr ;
uns igned short linenum ;
LINENO linent ;

DESCRIPTION
ldlread searches the line number entries of the common object
file currently associated with ldptr. ldlread begins its search
with the line number entry for the beginning of a function and
confines its search to the line numbers associated with a single
function. The function is identified by fcnindx, the index of its
entry in the object file symbol table. ldlread reads the entry
with the smallest line number equal to or greater than linenum into
linent .

ldl ini t and ldli tern together perform exactly the same func
tion as ldl read. After an initial call to ldlread or
ldlinit , ldlitern may be used to retrieve a series of line
number entries associated with a single function. ldl init
simply locates the line number entries for the function identified
by fcnindx . ldl i tern finds and reads the entry with the smallest
line number equal to or greater than linenum into linent .

Programs using this routine should be loaded with the object file
access library l ibld . a.

ERRORS
ldl read, ldl init , and ldl itern each return either

- 1 - September, 1987

ldlread(3X) ldlread(3X)

SUCCES S or FAILURE. ldlread fails if there are no line
number entries in the object file, if fcnindx does not index a func
tion entry in the symbol table, or if it finds no line number equal to
or greater than linenum.

ldlini t fails if there are no line number entries in the object file
or if fcnindx does not index a function entry in the symbol table.
ldlitem fails if it finds no line number equal to or greater than
linenum.

SEE ALSO
ldclose(3X), ldfcn(3X), ldopen(3X), ldtbindex(3X).

- 2 - September, 1987

•

•

•

•

•

•

ldlseek(3X) ldlseek (3X)

NAME
ldlseek, ldnlseek - seek to line number entries of a section
of a common object file

SYNOPSIS
:ltinclude <stdio . h>
:ltinclude <filehdr . h>
:lt include <ldfcn . h>

int ldlseek (ldptr, sectindx)
LDF I LE *ldptr ;
uns igned short sectindx;

int ldnlseek (ldptr, sectname)
LDF ILE *ldptr ;
char *sectname ;

DESCRIPTION
ldlseek seeks to the line number entries of the section specified
by sectindx of the common object file currently associated with
ldptr .

ldnlseek seeks to the line number entries of the section
specified by sectname .

ldlseek and ldnlseek return SUCCES S or FAILURE.
ldlseek fails if sectindx is greater than the number of sections
in the object file; ldnlseek fails if there is no section name
corresponding to * sectname . Either function fails if the specified
section has no line number entries or if it cannot seek to the
specified line number entries.

Note that the first section has an index of one.

Programs using this routine must be loaded with the object file
access library l ibld . a .

SEE ALSO
ldclose(3X}, ldfcn(3X), ldopen(3X), ldshread(3X) .

- 1 - September, 1987

ldohseek{3X) ldohseek {3X)

NAME
ldohseek - seek to the optional file header of a common object
file

SYNOPSIS
I include <stdio . h>
finclude <filehdr . h>
I include <ldfcn . h>

int ldohseek (ldptr)
LDF ILE *ldptr ;

DESCRIPTION
ldohseek seeks to the optional file header of the common object
file currently associated with ldptr.

ldohseek returns SUCCES S or FAILURE. ldohseek fails
if the object file has no optional header or if it cannot seek to the
optional header.

Programs using this routine should be loaded with the object file
access routine library libld . a.

SEE ALSO
ldclose(3X), ldfcn(3X), ldopen(3X), ldfhread(3X).

- 1 - September, 1987

•

•

•

•

•

•

ldopen (3X) ldopen (3X)

NAME
ldopen, ldaopen - open a common object file for reading

SYNOPSIS
:fl: inc lude <stdio . h>
:fl: inc lude < f i lehdr . h>
:fl: inc lude < ldfcn . h>

LDF I LE * ldopen <filename , ldptr)
char *filename ;
LDF I LE *ldptr ;

LDF I LE * ldaopen <filename , oldptr)
char *filename ;
LDF ILE *oldptr ;

DESCRIPTION
ldopen and ldclose(3X) are designed to provide uniform
access to both simple object files and object files that are members
of archive files. Thus, an archive of common object files can be
processed as if it were a series of simple common object files.

If ldpt r has the value NULL, ldopen opens filename , allo
cates and initializes the LDF I LE structure, and returns a pointer
to the structure to the calling program.

If ldptr is valid and TYPE (ldptr) is the archive magic number,
ldopen reinitializes the LDF I LE structure for the next archive
member of filename .

ldopen and ldc l o s e are designed to work in concert.
ldclose returns FAILURE only when TYPE (ldptr) is the
archive magic number and there is another file in the archive to be
processed. Only then should ldopen be called with the current
value of ldptr . In all other cases, in particular whenever a new
filename is opened, ldopen should be called with a NULL
ldpt r argument

The following is a prototype for the use of ldopen and
ldclose .

- 1 - September, 1987

ldopen(3X) ldopen (3X)

I * for each filename to be proces sed * I

ldpt r = NULL ;
do

if ((ldpt r ldopen (filename , ldpt r)) ! = NULL)

I * check magic number * I
I * proces s the file * I

while (ldclose (ldpt r) == FAILURE) ;

If the value of oldptr is not NULL, ldaopen opens filename
anew and allocates and initializes a new LDF ILE structure, copy
ing the TYPE, OFFSET, and HEADER fields from oldptr .
ldaopen returns a pointer to the new LDF ILE structure. This
new pointer is independent of the old pointer, oldptr. The two
pointers may be used concurrently to read separate parts of the
object file. For example, one pointer may be used to step sequen
tially through the relocation information, while the other is used to
read indexed symbol table entries.

Both ldopen and ldaopen open filename for reading. Both
functions return NULL if filename cannot be opened or if memory
for the LDF ILE structure cannot be allocated. A successful open
does not insure that the given file is a common object file or an
archived object file.

Programs using this routine must be loaded with the object file
access library libld . a.

SEE ALSO
fopen(3S), ldclose(3X), ldfcn(3X).

- 2 - September, 1987

•

•

•

•

•

•

ldrseek(3X) ldrseek (3X)

NAME
ldrseek, ldnrseek - seek to relocation entries of a section of
a common object file

SYNOPSIS
:fl:include <stdio . h>
:fl:include <filehdr . h>
:fl:include < ldfcn . h>

int ldrseek (ldptr, sectindx)
LDF ILE *ldptr ;
uns igned short sectindx;

int ldnrseek (ldptr, sectname)
LDF ILE *ldptr ;
char *sectname ;

DESCRIPITON
ldrseek seeks to the relocation entries of the section specified
by sectindx of the common object file currently associated with
ldptr.

ldnrseek seeks to the relocation entries of the section specified
by sectname .

The routines ldrseek and ldnrseek return SUCCES S or
FAILURE. ldrseek fails if sectindx is greater than the
number of sections in the object file; ldnrseek fails if there is
no section name corresponding with sectname . Either function
fails if the specified section has no relocation entries or if it cannot
seek to the specified relocation entries.

Note that the first section has an index of one.

Programs using this routine should be loaded with the object file
access library 1 ibld . a .

SEE ALSO
ldclose(3X), ldfcn(3X), ldopen(3X), ldshread(3X) .

- 1 - September, 1987

ldshread(3X) ldshread(3X)

NAME
ldshread, ldnshread - read an indexed/named section
header of a common object file

SYNOPSIS
#include <stdio . h>
#include <filehdr . h>
#include <scnhdr . h>
#include <ldfcn . h>

int ldshread (ldptr, sectindx, secthead)
LDF ILE *ldptr ;
uns igned short sectindx;
SCNHDR *secthead;

int ldnshread (ldptr, sectname , secthead)
LDF ILE *ldptr;
char *sectname ;
SCNHDR *secthead;

DESCRIPITON
ldshread reads the section header specified by sectindx of the
common object file currently associated with ldptr into the area of
memory beginning at secthead.

ldnshread reads the section header specified by sectname into
the area of memory beginning at sect head.

ldshread and ldnshread retmn SUCCES S or FAILURE.
ldshread fails if sectindx is greater than the number of sec
tions in the object file; ldnshread fails if there is no section
name corresponding with sectname . Either function fails if it can
not read the specified section header.

Note that the first section header has an index of one.

Programs using this routine must be loaded with the object file
access library libld . a.

SEE ALSO
ldclose(3X), ldfcn(3X), ldopen(3X).

- 1 - September, 1987

•

•

•

•

•

•

lds seek(3X) lds seek (3X)

NAME
lds seek, ldns seek - seek to an indexed/named section of a
common object file

SYNOPSIS
#include <stdio . h>
#include <filehdr . h>
#include < ldfcn . h>

int lds seek (ldptr, sectindx)
LDF I LE *ldptr ;
uns igned short sectindx;

int ldns seek (ldptr, sectname)
LDF I LE *ldptr ;
char *sectname ;

DESCRIPTION
lds seek seeks to the section specified by sectindx of the com
mon object file currently associated with ldptr .

ldns seek seeks to the section specified by sectname .

lds seek and ldns seek retmn SUCCES S or FAILURE.
lds seek fails if sectindx is greater than the number of sections
in the object file; ldns seek fails if there is no section name
corresponding with sectname . Either function fails if there is no
section data for the specified section or if it cannot seek to the
specified section.

Note that the first section has an index of one.

Programs using this routine should be loaded with the object file
access library libld . a.

SEE ALSO
ldclose(3X), ldfcn(3X), ldopen(3X), ldshread(3X) .

- 1 - September, 1987

ldtbindex(3X) ldtbindex(3X)

NAME
ldtbindex - compute the index of a symbol table entry of a
common object file

SYNOPSIS
finclude <stdio . h>
f include <filehdr . h>
finclude <syms . h>
finclude <ldfcn . h>

long ldtbindex (ldptr)
LDF I LE *ldptr;

DESCRIPTION
ldtbindex returns the (long) index of the symbol table entry
at the current position of the common object file associated with
ldptr.

The index returned by ldtbindex may be used in subsequent
calls to ldtbread(3X). However, since ldtbindex returns
the index of the symbol table entry that begins at the current posi
tion of the object file, if ldtbindex is called immediately after
a particular symbol table entry has been read, it returns the the
index of the next entry.

ldtbindex fails if there are no symbols in the object file or if
the object file is not positioned at the beginning of a symbol table
entry.

Note that the first symbol in the symbol table has an index of zero.

Programs using this routine should be loaded with the object file
access library libld . a.

SEE ALSO
ldclose(3X), ldfcn(3X), ldopen(3X), ldtbread(3X),
ldtbseek(3X).

- 1 - September, 1987

•

•

•

•

•

•

ldtbread(3X) ldtbread(3X)

NAME
ldtbread - read an indexed symbol table entry of a common
object file

SYNOPSIS
*include <stdio . h>
*include <filehdr . h>
*include <syms . h>
:It include <ldfcn . h>

int ldtbread (ldptr, symindex, symbol)
LDF ILE *ldptr;
long symindex ;
SYMENT *symbol ;

DESCRIPI'ION
ldtbread reads the symbol table entry specified by symindex of
the common object file currently associated with ldptr into the
area of memory beginning at symbol.

ldtbread returns SUCCES S or FAILURE. ldtbread fails
if symindex is greater than the number of symbols in the object file
or if it cannot read the specified symbol table entry .

Note that the first symbol in the symbol table has an index of zero.

Programs using this routine must be loaded with the object file
access library libld . a .

SEE ALSO
ldclose(3X), ldfcn(3X), ldgetname(3X), ldopen(3X),
ldtbseek(3X) .

- 1 - September, 1987

ldtbseek(3X) ldtbseek (3X)

NAME
ldtbseek - seek to the symbol table of a common object file

SYNOPSIS
#include <stdio . h>
:fl:include <filehdr . h>
#include <ldfcn . h>

int ldtbseek (ldptr)
LDF ILE *ldptr;

DESCRIPTION
ldtbseek seeks to the symbol table of the common object file
currently associated with ldptr.

ldtbseek returns SUCCES S or FAILURE. ldtbseek fails
if the symbol table has been stripped from the object file or if it
cannot seek to the symbol table.

Programs using this routine must be loaded with the object file
access library libld . a.

SEE ALSO
ldclose(3X), ldfcn(3X), ldopen(3X), ldtbread(3X).

- 1 - September, 1987

•

•

•

•

•

•

len(3F)

NAME
len - return length of Fortran string

SYNOPSIS
character *N ch
integer i
i=len (ch)

DESCRIPTION
len returns the length of string ch .

- 1 -

len (3F)

September, 1987

lge (3F) lge (3F)

NAME
lge, lgt , l le, llt - string comparision intrinsic functions

SYNOPSIS
character *N al , a2
logical I
l=lge (al , a2)
l=lgt (al , a2)
l=l le (al , a2)
l=llt (al , a2)

DESCRIPTION
These functions return TRUE if the inequality holds and FALSE
otherwise.

- 1 - September, 1987

•

•

•

•

•

•

l ine_push(3) line_push(3)

NAME
l ine _push - routine used to push streams line disciplines

SYNOPSIS
line _push <fildes)
int fildes;

DESCRIPTION
line _push will push the streams line discipline "line" onto the
stream referenced by the file descriptor fildes . If fildes does not
reference a stream or it references a stream that already has a line
discipline pushed onto it nothing will happen.

SEE ALSO
line_sane(1M), streams(?) .

- 1 - September, 1987

lockf(3C) lockf (3C)

NAME
lock£ - record locking on files

SYNOPSIS
#include <unistd . h>

int lock£ Cfildes, function , size)
long size ;
int fildes, function ;

DESCRIPTION
The lock£ call will allow sections of a file to be locked
(advisory write locks). (Mandatory locking is available via lock
ing(2)). Locking calls from other processes which attempt to
lock the locked file section will either return an error value or be
put to sleep until the resource becomes unlocked. All the locks for
a process are removed when the process terminates. (See
fcnt l(2) for more information about record locking.)

fildes is an open file descriptor. The file descriptor must have
o _ WRONLY or o _ RDWR permission in order to establish lock
with this function call.

function is a control value which specifies the action to be taken.
The permissible values for function are defined in <unistd . h>
as follows:

#de f ine F ULOCK 0 / * Unlock a previous ly
l ocked sect ion * /

#de f ine F_LOCK 1 / * Lock a sect ion for

exc lu s ive use * /

#de f ine F_TLOCK 2 / * Test and lock a sect ion

for exclu sive use * /

#de f ine F_TEST 3 / * Test sect ion for other
proce s se s locks * /

All other values of function are reserved for future extensions and
will result in an error return if not implemented.

F TEST is used to detect if a lock by another process is present
on the specified section. F LOCK and F TLOCK both lock a
section of a file if the section is available. - F ULOCK removes
locks from a section of the file. -

size is the number of contiguous bytes to be locked or unlocked.
The resource to be locked starts at the current offset in the file and
extends forward for a positive size and backward for a negative

- 1 - September, 1987

•

•

•

•

•

•

lockf (3C) lockf (3C)

size. If size is zero, the section from the current offset through the
largest file offset is locked (i.e., from the current offset through the
present or any future end-of-file). An area need not be allocated
to the file in order to be locked, as such locks may exist past the
end-of-file.

The sections locked with F_LOCK or F_TLOCK may, in whole
or in part, contain or be contained by a previously locked section
for the same process. When this occurs, or if adjacent sections
occur, the sections are combined into a single section. If the
request requires that a new element be added to the table of active
locks and this table is already full, an error is returned, and the
new section is not locked.

F LOCK and F TLOCK requests differ only by the action taken
if the resource iS not available. F LOCK will cause the calling
process to sleep until the resource is available. F _ TLOCK will
cause the function to return a -1 and set errno to [EACCE S]
error if the section is already locked by another process.

F _ ULOCK requests may, in whole or in part, release one or more
locked sections controlled by the process. When sections are not
fully released, the remaining sections are still locked by the pro
cess. Releasing the center section of a locked section requires an
additional element in the table of active locks. If this table is full,
an [EDEADLK] error is returned and the requested section is not
released.

A potential for deadlock occurs if a process controlling a locked
resource is put to sleep by accessing another process's locked
resource. Thus calls to lock or fcnt l scan for a deadlock
prior to sleeping on a locked resource. An error return is made if
sleeping on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The
alarm(2) command may be used to provide a timeout facility in
applications which require this facility.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and e r rno is set to indicate the error.

ERRORS
The lockf utility will fail if one or more of the following are
true:

[EBADF] fildes is not a valid open descriptor.

- 2 - September, 1987

lockf (3C)

[EACCES]

[EDEADLK]

[EREMOTE]

CAVEATS

lockf (3C)

funct ion is F TLOCK or F TEST and
the section is alre8dy locked by another pro
cess.

function is F LOCK or F TLOCK and
a deadlock would occur. Also

-
the func

t ion is either of the above or F ULOCK
and the number of entries in the lock table
would exceed the number allocated on the
system.

fildes is a file descriptor referring to a file on
a remotely mounted file system.

Unexpected results may occur in processes that do buffering in the
user address space. The process may later read/write data which
is/was locked. The standard 1/0 package is the most common
source of unexpected buffering.

SEE ALSO
close(2), creat(2), fcnt l(2), intro(2), locking(2),
open(2), read(2), write(2).

- 3 - September, 1987

•

•

•

•

•

•

log(3F) log(3F)

NAME
log, alog, dlog, clog - Forttan natural logarithm intrinsic
function

SYNOPSIS
real rl , r2
double precis ion dpl , dp2
complex cxl , cx2
r2=a log (rl)
r2=log (rl)

dp2=dlog (dpl)
dp2=log (dpl)

cx2=clog (cxl)
cx2=log (cxl)

DESCRIPTION
alog returns the real natural logarithm of its real argument.
dlog returns the double-precision natural logarithm of its
double-precision argument. clog returns the complex loga
rithm of its complex argument. The generic function log

becomes a call to alog, dlog, or clog depending on the type
of its argument.

SEE ALSO
exp(3M) .

- 1 - September, 1987

log 1 0 {3F) log1 0 {3F)

NAME
logl O , alogl O , dlogl O - Fortran common logarithm intrinsic
function

SYNOPSIS
real rl , r2
double precis ion dpl , dp2

r2=alog1 0 (rl)
r2=log1 0 (rl)

dp2=dlog1 0 (dpl)
dp2=log1 0 (dpl)

DESCRIPTION
alogl O returns the real common logarithm of its real argument
dlogl 0 returns the double-precision common logarithm of its
double-precision argument The generic function logl O
becomes a call to alog l O or dlogl O depending on the type of
its argument

SEE ALSO
exp{3M).

- 1 - September, 1987

•

•

•

•

•

•

logname (3X) logname (3X)

NAME
logname - return login name of user

SYNOPSIS
char * logname ()

DESCRIPITON
logname returns a pointer to the null-terminated login name; it
extracts the $LOGNAME variable from the user's environment.

This routine is kept in I lib/ libPW . a .

FILES
/etc /profile

SEE ALSO
env(1), login(1), profile(4), environ(5).

BUGS
The return values point to static data whose content is overwritten
by each call.

This method of determining a login name is subject to forgery .

- 1 - September, 1987

lsearch(3C)

NAME
lsearch, l f ind - linear search and update

SYNOPSIS
#include <stdio . h>
#include <search . h>

lsearch (3C)

char *lsearch (key, base , nelp, width, compar)
char *key ;
char *base;
uns igned *nelp ;
uns igned *width ;
int (*compar) () ;

char *lfind (key, base , nelp, width, compar)
char *key ;
char *base ;
uns igned *nelp ;
uns igned *width ;
int (*compar) () ;

DESCRIPTION
lsearch is a linear search routine generalized from Knuth (6. 1)
Algorithm S . It returns a pointer into a table indicating where a
datum may be found If the datum does not occur, it is added at
the end of the table. key points to the datum to be sought in the
table. base points to the first element in the table. nelp points to
an integer containing the current number of elements in the table.
The integer at *nelp is incremented if the datum is added to the
table. width is the width of an element in bytes. compar is the
name of the comparison function which the user must supply
(st rcmp, for example). It is called with two arguments that point
to the elements being compared. The function must return zero if
the elements are equal and non-zero otherwise.

lfind is the same as lsearch except that if the datum is not
found, it is not added to the table. Instead, a -1 pointer is
returned.

RETURN VALUE
If the searched for datum is found, both lsearch and l find
return a pointer to it. Otherwise, 1 find returns NULL and
!search returns a pointer to the newly added element

NOTES
The pointers to the key and the element at the base of the table
should be of type pointer-to-element, and cast to type pointer-to-

- 1 - September, 1987

•

•

•

•

•

•

lsearch(3C) lsearch(3C)

character.
The comparison function need not compare every byte, so arbi
trary data may be contained in the elements in addition to the
values being compared .
Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

EXAMPLE
This fragment will read in � TABS I ZE strings of length �
ELS I ZE and store them in a table, eliminating duplicates.

include < stdio .h>

i include < search . h>

#de f ine TABSIZE 5 0

#de f ine ELSIZE 1 2 0

char l ine [ELSIZE] , t ab [TABS IZE] [ELSIZE] , * ! search () ;
uns igned ne l = 0 ;

int strcmp () ;

wh i l e (fget s (l ine , ELS IZE , stdi n) ! = NULL & &

ne l < TABS I Z E)

(void) ! search (l ine , (char *) t ab , & ne l ,
ELS I Z E , st rcmp) ;

SEE ALSO
bsearch(3C), hsearch(3C), tsearch(3C).

BUGS
Undefined results can occur if there is not enough room in the
table to add a new item .

- 2 - September, 1987

malloc(3C) malloc (3C)

NAME
malloc, free, realloc, calloc, cfree - mrun memory
allocator

SYNOPSIS
char *malloc (size)
uns igned size ;

void free (ptr)
char * ptr ;

char * realloc (ptr, size)
char *ptr;
uns igned size ;

char *calloc (nelem, elsize)
uns igned nelem , elsize ;

cfree (ptr , nelem, elsize)
char *ptr,
uns igned nelem , elsize ;

DESCRIPTION
mal loc and free provide a simple general-purpose memory
allocation package. malloc returns a pointer to a block of at
least size bytes suitably aligned for any use.

The argument to free is a pointer to a block previously allo
cated by mal loc; after free is performed this space is made
available for further allocation, but its contents are left undis
turbed.

Undefined results occur if the space assigned by malloc is over
run or if some random number is handed to free.

malloc allocates the first contiguous reach of free space of
sufficient size found in a circular search from the last block allo
cated or freed; it coalesces adjacent free blocks as it searches. It
calls sbrk (see brk(2)) to get more memory from the system
when there is no suitable space already free.

real loc changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The
contents are unchanged up to the lesser of the new and old sizes.
If no free block of size bytes is available in the storage arena,
real loc asks malloc to enlarge the arena by size bytes and
then moves the data to the new space.

real loc also works if ptr points to a block freed since the last
call of mal loc, realloc, or calloc; thus sequences of free,

- 1 - September, 1987

•

•

•

•

•

•

malloc (3C) mal loc (3C)

mal loc, and realloc can exploit the search strategy of
mal l.oc to do storage compaction.

calloc allocates space for an array of nelem elements of size
elsize . The space is initialized to zeros.

The arguments to cfree are the pointer to a block previously
allocated by calloc plus the parameters to calloc.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of
object

RETURN VALUE
malloc, rea lloc, and calloc return a NULL pointer if
there is no available memory or if the arena has been detectably
corrupted by storing outside the bounds of a block. When this
happens the block pointed to by ptr may be destroyed.

NOTE
Search time increases when many objects have been allocated;
i.e., if a program allocates space but never frees it, each successive
allocation takes longer.

SEE ALSO
brk(2), mal loc(3X) .

- 2 - September, 1987

malloc (3X) malloc (3X)

NAME
malloc. free. realloc. calloc. mallopt. mallinfo
fast main memory allocator

SYNOPSIS
:II= include <ma lloc . h>

char *malloc (size)
uns igned size ;

void f ree (ptr)
char *ptr;

char * realloc (ptr, size)
char *ptr;
uns igned size ;

char *calloc (nelem, elsize)
uns igned nelem, elsize ;

int mallopt (cmd, value)
int cmd, value :

struct mallinfo mallinfo (max)
int max;

DESCRIPI'ION
malloc and f ree provide a simple general-purpose memory
allocation package. which runs considerably faster than the
malloc(3C) package. It is found in the library "malloc•\ and
is loaded if the option "-lmalloc

. . is used with cc(l} or ld(l}.

mal loc returns a pointer to a block of at least size bytes suitably
aligned for any use.

The argument to f ree is a pointer to a block previously allo
cated by malloc; after free is performed this space is made
available for further allocation. and its contents have been des
troyed (but see mallopt below for a way to change this
behavior).

Undefined results will occur if the space assigned by malloc is
overrun or if some random number is handed to f ree.

realloc changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The
contents will be unchanged up to the lesser of the new and old
sizes.

calloc allocates space for an array of nelem elements of size
elsize . The space is initialized to zeros.

- 1 - September. 1987

•

•

•

•

•

•

malloc(3X) malloc (3X)

mall opt provides for conttol over the allocation algorithm. The
avai1able values for cmd are:

M MXFAST

M NLBLKS

Set maxfast to value . The algorithm allocates
all blocks below the size of maxfast in large
groups and then doles them out very quickly. The
default value for maxfast is 0.

Set numlblks to value . The above mentioned
"large groups" each contain numlblks blocks.
numlblks must be greater than 0. The default
value for numlblks is 100.

M GRAIN Set grain to value . The sizes of all blocks
smaller than maxfast are considered to be
rounded up to the nearest multiple of grain.
grain must be greater than 0. The default value
of grain is the smallest number of bytes which
will allow alignment of any data type. Value will
be rowtded up to a multiple of the default when
grain is set.

M KEEP Preserve data in a freed block until the next rna 1-
loc, realloc, or calloc. This option is pro
vided only for compatibility with the old version
of malloc and is not recommended.

These values are defined in the <malloc . h> header file.

mallopt may be called repeatedly, but may not be called after
the first small block is allocated.

mallinfo provides instrumentation describing space usage. It
returns the structure:

st ruct mal l info

int arena ; I * t o t a l space in arena * I

int o rdb l k s ; I * number o f o rdinary b locks *I

int smb lk s ; I * number o f sma l l blocks * /

int hblkhd ; I * space i n ho lding block header s * I

i n t hblks ; I * numbe r o f holding b locks * I

int u smb lk s ; I * space in sma l l b l ocks in use * I

int fsmb l k s ; I * space in free sma l l b locks * I

int uordblks ; I * space in o rdinary b locks in use *I

int fordb lk s ; I * space in free o rdinary b l ocks * I

int keepcost ; I * space penalty i f keep opt ion * I

I * i s u sed * I

- 2 - September, 1987

mal loc (3X) malloc (3X)

This structure is defined in the <malloc . h> header file.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of
object

RTURN VALUE
malloc, realloc and calloc retmn a NULL pointer if
there is not enough available memory. When realloc retmns
NULL, the block pointed to by ptr is left intact If mallopt is
called after any allocation or if cmd or value are invalid, non-zero
is retmned. Otherwise, it retmns zero.

SEE ALSO
brk(2), malloc(3C).

WARNINGS
This package usually uses more data space than malloc(3C).
The code size is also bigger than ma lloc(3C).
Note that unlike mal loc(3C), this package doe.s not preserve the
contents of a block when it is freed, unless the M _KEEP option of
mallopt is used.
Undocumented features of malloc(3C) have not been dupli
cated.

- 3 - September, 1987

•

•

•

•

•

•

matherr(3M) matherr(3M)

NAME
matherr - error-handling function

SYNOPSIS
finclude <math . h>

int matherr (X)
st ruct exception *x ;

DESCRIPITON
matherr is invoked by functions in the Math Library when
errors are detected. Users may define their own procedures for
handling errors, by including a function named matherr in their
programs. matherr must be of the form described above.
When an error occurs, a pointer to the except ion structure x
will be passed to the user-supplied matherr function. This
structure, which is defined in the <math . h> header file, is as
follows:

st ruct except ion {
int type ;
char *name ;
double argl , arg2 , retval ;

} ;

The element type is an integer describing the type of error that has
occurred, from the following list of constants (defined in the
header file):

DOMAIN
S ING
OVERFLOW
UNDERFLOW
TLOSS
PLOS S

argument domain error
argument singularity
overflow range error
underflow range error
total loss of significance
partial loss of significance

The element name points to a string containing the name of the
function that incurred the error. The variables argl and arg2 are
the arguments with which the function was invoked. retval is set
to the default value that will be returned by the function unless the
user's matherr sets it to a different value.

If the user's matherr function returns nonzero, no error mes
sage will be printed, and errno will not be set.

If matherr is not supplied by the user, the default error
handling procedures, described with the math functions involved,
will be invoked upon error. These procedures are also summar
ized in the table below. In every case, errno is set to EDOM or

- 1 - September, 1987

matherr(3M)

ERANGE and the program continues.

EXAMPLE
i include <math . h>

int

mathe r r (x)

regi ster st ruct except ion *x;

switch (x->type) {
case DOMAIN :

matherr(3M)

I * change sqrt to return sqrt (-argl) , not 0 * I

i f (! strcmp (x->name , " sqrt ")) {
x->retva l = sqrt (-x->argl) ;

return (0) ; I * print me ssage and set errno * I

case S ING :
I * a l l other doma in o r s ing erro r s ,

print me s s age and abo rt * I

fpr int f (stderr, "domain error i n % s \ n " , x->name) ;
abort () ;

case P LOS S :

/ * print det ai led error me s s age * /
fpr int f (stderr, " lo s s o f sign i ficance in % s (%g)

x->name , x->arg l , x-> retva l) ;
return (1) ; / * t ake no other act ion * /

return (0) ; I * a l l othe r e r ro r s ,

execute de fau lt procedure * /

- 2 - September, 1987

•

%g\n " , •

•

•

•

•

matherr(3M) matherr(3M)

DEFAULT ERROR HANDLING PROCEDURES
Types o_f Errors

type DOMAIN SING OVERFLOW UNDERFLOW
errno EDOM BDOM ERANGB ERANGB

BESSEL: - - - -
yO, yl, yn (arg :!> 0) M, -H - - -
EXP: - - H 0
LOG, LOGlO:
(arg < 0) M, -H - - -
(arg = 0) - M, -H - -

POW: - - ±H 0
neg ** nonint M, O - - -

0 •• nonpos

SQRT: M, O - - -
GAMMA: - M, H H -
HYPOT: - - H -
SINH: - - ±H -

COSH: - - H -
SIN, COS, TAN: - - - -

ASIN, ACOS, ATAN2 M, O - - -

ABBREVIATIONS
* As much as possible of the value is returned.
M Message is printed (EOOM error).
H HUGE is returned.

-H -HUGE is returned.
±H HUGE or -HUGE is returned.
0 0 is returned.

- 3 -

n.oss PLOSS
ERANGB BRANGB

M, O •
- -
- -

- -
- -
- -
- -

- -
- -
- -
- -
- -

M, O *
- -

September, 1987

max(3F) max(3F)

NAME
max, maxO, amaxO , maxl, amaxl, dmaxl - Fortran
maximum-value functions

SYNOPSIS
integer i, j, k, l
real a , b, c , d
double preci s ion dpl , dp2 , dp3

l=max (i , j, k)
c=max (a, b)
d=max (a, b, c)
k=maxO (i , j)
a=amaxO (i , j, k>
i=maxl (a , b)
d=amaxl (a , b, c)
dp3=dmaxl (dpl , dp2)

DESCRIPTION
The maximum-value functions return the largest of their argu
ments; there may be any number of arguments. max is the gen
eric form which can be used for all data types and takes its return
type from that of its arguments. All arguments must be of the
same type. maxO returns the integer form of the maximum
value of its integer arguments; amaxO, the real form of its integer
arguments; maxl, the integer form of its real arguments; amaxl,
the real form of its real arguments; and dmaxl, the double
precision form of its double-precision arguments.

SEE ALSO
min(3F) .

- 1 - September, 1987

•

•

•

•

•

•

mclock(3F) mclock(3F)

NAME
me lock - return Fortran time accounting

SYNOPSIS
integer i

i=mclock ()

DESCRIPTION
mclock returns time accounting information about the current
process and its child processes. The value returned is the sum of
the current process's user time and the user and system times of
all child processes.

SEE ALSO
t imes(2), clock(3C), system(3F) .

- 1 - September, 1987

memory(3C) memory(3C)

NAME
memccpy, memchr, memcmp, memcpy, memset - memory
operations

SYNOPSIS
:fl:include <memory . h>

char *memccpy (sl , s2 , c , n)
char *sl , *s2 ;
int c , n ;

char *memchr (s , c , n)
char *s;
int c, n ;

int memcmp (sl , s2 , n)
char *sl , *s2 ;
int n ;

char *memcpy (sl , s2 , n)
char *sl , *s2 ;
int n ;

char *memset (s , c , n)
char *s;
int c , n ;

DESCRIPTION
These functions operate efficiently on memory areas (arrays of
characters bounded by a count, not terminated by a null charac
ter). They do not check for the overflow of any receiving memory
area.

memccpy copies characters from memory area s2 into sl , stop
ping after the first occurrence of character c has been copied or
after n characters have been copied, whichever comes first. It
returns either a pointer to the character after the copy of c in sl or
a NULL pointer if c was not found in the first n characters of s2 .

memchr returns either a pointer to the first occurrence of charac
ter c in the first n characters of memory area s or a NULL pointer
if c does not occur.

memcmp compares its arguments, looking at the first n characters
only. It returns an integer less than, equal to, or greater than 0,
depending on whether sl is lexicographically less than, equal to,
or greater than s2 .

memcpy copies n characters from memory area s2 to sl . It
returns sl .

- 1 - September, 1987

•

•

•

•

•

•

memory(3C) memory(3C)

memset sets the first n characters in memory area s to the value
of character c . It returns s .

NOTE
For user convenience, all these functions are declared in the
optional <memory . h> header file.

BUGS
memcmp uses native character comparison.

Because character movement is performed differently in different
implementations, overlapping moves may yield unexpected
results .

- 2 - September, 1987

min(3F) min(3F)

NAME
min, minO , aminO , minl , aminl, dminl - Fortran
minimum-value functions

SYNOPSIS
intege r i, j, k, 1
real a , b, c , d
double precis ion dpl , dp2 , dp3

l=min (i , j, k)
c=min (a , b)
d=min (a , b, c)
k=minO (i , j)
a=aminO (i , j, k)
i=minl (a , b)
d=aminl (a , b, c)
dp3=dmin l (dpl , dp2)

DESCRIPTION
The minimum-value functions return the minimum of their argu
ments. There may be any number of arguments. min is the
generic form which can be used for all data types. It takes its
return type from that of its arguments, which must all be of the
same type. minO returns the integer form of the minimum value
of its integer arguments; aminO , the real form of its integer argu
ments; minl , the integer form of its real arguments; aminl , the
real form of its real arguments; and dminl, the double-precision
form of its double-precision arguments.

SEE ALSO
max(3F).

- 1 - September, 1987

•

•

•

•

•

•

mktemp (3C)

NAME
mktemp - make a unique filename

SYNOPSIS
char *mktemp (template)
char *template ;

DESCRIPTION

mktemp(3C)

The function mktemp alters the contents of the string referenced
by *template so that it becomes a unique filename. The string at
*template should be initialized to a filenamed with six trailing x
characters; mktemp replaces the xs with a letter and the current
process ID. The letter is selected so that the resulting name is not
a duplicate an existing file.

RETURN VALUE
mktemp returns the address of the unique (altered) filename. If a
unique name cannot be created, template will point to a null
(empty) string.

SEE ALSO
getpid(2), tmpfile(3S), tmpnam(3S).

BUGS
It is possible to run out of letters .

- 1 - September, 1987

mod(3F) mod(3F)

NAME
mod, amod, dmod - Fortran remaindering intrinsic functions

SYNOPSIS
integer i, j, k
rea l rl , r2 , r3
double precis ion dpl , dp2 , dp3

k=mod (i , j)

r3=amod (rl , r2)
r3=mod (rl , r2)

dp3=dmod (dpl , dp2 >
dp3=mod (dpl , dp2)

DESCRIJ71'10N
mod returns the integer remainder of its first argument divided by
its second argument amod and dmod return, respectively, the
real and double-precision whole number remainder of the integer
division of their two arguments. The generic version mod returns
the data type of its arguments.

- 1 - September, 1987

•

•

•

•

•

•

monitor(3C) monitor(3C)

NAME
monitor - prepare execution profile

SYNOPSIS
:fl: include <mon . h>

void monitor (lowpc, highpc , buffer, bufsize , nfunc)
int (*lowpc) () , (*highpc) () ;
WORD *buffer ;
int bufsize , nfunc ;

DESCRIPfiON
An executable program created by cc -p automatically includes
calls for monitor with default parameters; monitor needn't
be called explicitly except to gain fine control over profiling.

monitor is an interface to profil(2). lowpc and highpc are
the addresses of two functions; buffer is the address of a (user sup
plied) array of bufsize elements of type WORD (defined in the
<mon . h> header file). monitor arranges to record a histo
gram in the buffer. This histogram shows periodically sampled
values of the program counter and counts of calls of certain func
tions. The lowest address sampled is that of lowpc ; the highest
address is just below highpc. lowpc may not equal 0 for this use
of monitor . nfunc is the maximum number of call counts that
can be kept; only calls of functions compiled with the profiling
option -p of cc(1) are recorded. (The C Library and Math
Library supplied when cc -p is used also have call counts
recorded.) For the results to be significant. especially where there
are small, heavily used routines, it is suggested that the buffer be
no more than a few times smaller than the range of locations sam
pled.

To profile the entire program, it is sufficient to use:

extern etext ;
monitor ((int (*) ()) 2 , etext , buf, bufsize , nfunc) ;

etext lies just above all the program text; see end(3C) .

To stop execution monitoring and write the results on the file
mon . out, use

monitor ((int (*) ()) 0 , 0 , 0 , 0 , 0) ;

prof(l) can then be used to examine the results.

Fll..ES
mon . out
I lib/ l ibp/ libc . a

- 1 - September, 1987

monitor(3C)

/ lib/ l ibp/ l ibm . a

SEE ALSO
cc(l), prof(l), profil(2), end(3C).

- 2 -

monitor(3C)

•

•

•

September, 1987

•

•

•

mount (3) mount (3)

NAME
mount - mount a file system

SYNOPSIS
int mount
char *spec ,
int rwjlag ;

DESCRIPTION

(spec ,
*dir;

dir, rwjlag)

mount requests that a removable file system contained on the
block special file identified by spec be mounted on the directory
identified by dir. spec and dir are pointers to path names.

Upon successful completion, references to the file dir will refer to
the root directory on the mounted file system.

The low-order bit of rwjlag is used to control write pennission on
the mounted file system; if 1 , writing is forbidden, otherwise writ
ing is permitted according to individual file accessibility. Physi
cally write-protected and magnetic tape file systems must be
mounted read-only or errors will occur when access times are
updated, whether or not any explicit write is attempted.

mount may be invoked only by the superuser .

ERRORS
mount will fail if one or more of the following are true:

[EPERM] The effective user ID is not superuser.

[ENOENT] Any of the named files does not exist.

[ENOTDIR] A component of a path prefix is not a
directory.

[ENOTBLK]

[ENXI O]

[ENOTDIR]

[EFAULT]

[EBUSY]

[EPERM]

spec is not a block special device.

The device associated with spec does not
exist.

dir is not a directory.

spec or dir points outside the allocated
address space of the process.

dir is currently mounted on, is someone's
current working directory, or is otherwise
busy .

A pathname contains a character with the
high-order bit set.

- 1 - September, 1987

mount (3)

[ENAMETOOLONG]

[ELOOP]

[EBUSY]

mount (3)

A component of a pathname exceeded
NAME_MAX characters, or an entire
pathname exceeded PATH_MAX.

Too many symbolic links were encoun
tered in translating a pathname.

The device associated with spec is
currently mounted

[EBUSY] There are no more mount table entries.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
fsmount(2), unmount(2), umount(3), fstab(4).

- 2 - September, 1987

•

•

•

•

•

•

nlist (3C)

NAME
nlist - get entries from name list

SYNOPSIS
finclude <a . out . h>

int nlist (filename , nl)
char *filename ;
st ruct nlist *nl

DESCRIPTION

nlist (3C)

nlist examines the name list in the executable file whose name
is pointed to by filename ; it selectively extracts a list of values and
puts them in the array of nlist structures pointed to by nl . The
name list nl consists of an array of structures containing names of
variables, types, and values. The list is terminated with a null
name; i.e., a null string is in the name position of the structure.
Each variable name is looked up in the name list of the file. If the
name is found, the type and value of the name are inserted in the
next two fields. The type filed will be set to 0 unless the file was
compiled with the -g option. If the name is not found, both
entries are set to 0. See a . out(4) for a discussion of the symbol
table structure .

This function is useful for examining the system name list kept in
the file / unix. In this way programs can obtain system addresses
that are up to date.

RETURN VALUE
nlist returns -1 upon error; otherwise it returns 0.

All value entries are set to 0 if the file cannot be read or if it does
not contain a valid name list

SEE ALSO
a . out(4) .

- 1 - September, 1987

perror(3C) perror(3C)

NAME
perror, errno, sys_errlist, sys_nerr - system error
messages

SYNOPSIS
void perror (s)
char *s;

extern int errno ;

extern char *sys_errlist [] ;

extern int sys_nerr ;

DESCRIPITON
perror produces a message on the standard error output,
describing the last error encountered during a call to a system or
library function. The argument string s is printed first, then a
colon and a blank, then the message and a newline. To be of most
use, the argument string should include the name of the program
that incurred the error. The error number is taken from the exter
nal variable errno, which is set when errors occur but not
cleared when nonerroneous calls are made.

To simplify variant formatting of messages, the array of message
strings sys_errlist is provided; e rrno can be used as an
index in this table to get the message string without the newline.
sys_nerr is the largest message number provided for in the
table; it should be checked because new error codes may be added
to the system before they are added to the table.

SEE ALSO
int ro(2).

- 1 - September, 1987

•

•

•

•

•

•

plot (3X)

NAME
plot - graphics interface subroutines

SYNOPSIS
int openpl ()

int e rase ()

int label (s)
char *s;

int l ine (xl ,
int xl , yl ,

yl ,
:x2 ,

int circle (x, y ,
int x, y , r ;

int arc (x , y,

x2 , y2)
y2 ;

T)

xO, yO, xl ,
int x, y , xO, yO, xl , yl ;

int move (x, y)
int x, y ;

int cont (x, y)
int x, y ;

int point (x, y)
int x, y ;

int linemod (s)
char *s;

int space (x0, yO , xl , yl)
int xO, yO, xl , yl ;

int closepl ()

DESCRIPTION

plot (3X)

yl >

These subroutines generate graphic output in a relatively device
independent manner. space must be used before any of these
functions to declare the amount of space necessary; see plot(4).
openpl must be used before any of the others to open the device
for writing. closepl flushes the output.

circle draws a circle of radius r with center at the point (x,y).

arc draws an arc of a circle with center at the point (x,y) between
the points (xO ,yO) and (xl ,yl) .

String arguments to label and linemod are terminated by
nulls and do not contain newlines.

- 1 - September, 1987

plot (3X) plot (3X)

See plot(4) for a description of the effect of the remaining func
tions.

The library files listed below provide several variations of these
routines.

FILES
/usr/ l ib / l ibplot . a

/usr/ lib / l ib3 0 0 . a
/us r / l ib/ lib3 0 0 s . a
/us r / l ib/ lib4 5 0 . a
/us r / l ib/ lib4 0 1 4 . a

WARNINGS

produces output
filters
for DASI 300
for DASI 300s
for DASI 450
for Tektronix 4014

for tplot(1G)

To compile a program containing these functions in file . c, use
cc file . c -lplot.

To execute it, use a . out I tplc.,t.

The above routines use <stdio . h>. Therefore, the size of pro
grams not otherwise using standard 1/0 is increased more than
might be expected.

SEE ALSO
tplot(1G), plot(4).

- 2 - September, 1987

•

•

•

•

•

•

popen(3S)

NAME
popen, pclose - initiate pipe to/from a process

SYNOPSIS
:f include <stdio . h>

FILE *popen (command, type)
char *command, *type ;

int pclose (stream)
FILE *stream;

DESCRIPnON

popen(3S)

The arguments to popen are pointers to null-tenninated strings;
one string contains a shell command line and the other contains an
I/0 mode. The mode may be either " r" for reading or "w" for
writing. popen creates a pipe between the calling program and
the command to be executed. The value returned is a stream
pointer. If the l/0 mode is w, one can write to the standard input
of the command by writing to the file stream; if the I/0 mode is
' ' r ' ' , one can read from the standard output of the command, by
reading from the file stream .

A stream opened by popen should be closed by pclose, which
waits for the associated process to tenninate and returns the exit
status of the command.

Because open files are shared, a type ' 'r ' ' command may be used
as an input filter and a type " w " as an output filter.

RETURN VALUE
popen returns a NULL pointer if files or processes cannot be
created.

pclose returns -1 if stream is not associated with a command
opened by popen.

SEE ALSO
pipe(2), wait(2), fclose(3S), fopen(3S), system(3S).

BUGS
If the original processes and processes opened by popen con
currently read or write a common file, neither should use buffered
I/0, because the buffering gets all mixed up. Problems with an
output filter may be forestalled by careful buffer flushing, e.g., by
using fflush; see fclose(3S) .

- 1 - September, 1987

popen(3S) popen(3S)

If an illegal type i s passed, popen will fork and exec the com
mand line passed to it before it discovers that the type was illegal.
This will result in a NULL pointer being retmned and a broken
pipe (with the command executing in the background).

- 2 - September, 1987

•

•

•

•

•

•

print f (3S) print f (3S)

NAME
print f, fprint f, sprint f - print fonnatted output

SYNOPSIS
#"include <stdio . h>

int print f iformat [, arg] . . .)
char *format ;

int fprint f (stream'{RfC, format [, arg] . . .)
F I LE *stream ;
char *format ;

int sprint f (s , format [, arg] . . .)
char *s, format;

DESCRIPTION
printf places output on the standard output stream stdout.
fprint f places output on the named output stream .
sprint f places output, followed by the null character (\ 0) in
consecutive bytes starting at *s; it is the user's responsibility to
ensure that enough storage is available.

Each of these functions converts, formats, and prints its args
under control of the format. The format is a character string that
contains two types of objects: plain characters, which are simply
copied to the output stream, and conversion specifications, each of
which results in fetching zero or more args. The results are
undefined if there are insufficient args for the fonnat. If the for
mat is exhausted while args remain, the excess args are simply
ignored.

Each conversion specification is introduced by the character % .
After the % , the following appear in sequence:

Zero or more flags, which modify the meaning of the conver
sion specification.

An optional decimal digit string specifying a minimum field
width . If the converted value has fewer characters than the
field width, it will be padded to the field width on the left
(default) or right (if the left-adjustment flag "-" has been
given); see below for flag specification. If the field width for
an s conversion is preceded by a 0, the string is right adjusted
with zero padding on the left .

A precision that gives the minimum number of digits to
appear for the d, o, u, x, or X conversions, the number of
digits to appear after the decimal point for the e and f

- 1 - September, 1987

print f (3S) print f (3S)

conversions, the maximum number of significant digits for
the g conversion, or the maximum number of characters to
be printed from a string in s conversion. The format of the
precision is a period (•) followed by a decimal digit string; a
null digit string is treated as zero.

An optional 1 (ell) specifying that a following d, o, u, x, or
X conversion character applies to a long integer arg. An 1
before any other conversion character is ignored.

A character that indicates the type of conversion to be
applied.

A field width or precision may be indicated by an asterisk (*)
instead of a digit string. In this case, an integer arg supplies the
field width or precision. The arg that is actually converted is not
fetched until the conversion letter is seen; therefore, the args
specifying field width or precision must appear before the arg (if
any) to be converted.

The flag characters and their meanings are:

+

The result of the conversion will be left-justified
within the field.

The result of a signed conversion will always begin
with a sign (+ or -).

blank If the first character of a signed conversion is not a
sign, a blank will be prefixed to the result. This
implies that if the blank and + flags both appear, the
blank flag will be ignored.

This flag specifies that the value is to be converted to
an "alternate form." For c, d, s , and u conver
sions, the flag has no effect. For o conversion, it
increases the precision to force the first digit of the
result to be a zero. For x (X) conversion, a non-zero
result will have Ox (OX) prefixed to iL For e, E, f,
g, and G conversions, the result will always contain a
decimal point, even if no digits follow the point (nor
mally, a decimal point appears in the result of these
conversions only if a digit follows it). For g and G
conversions, trailing zeroes will not be removed from
the result (which they normally are).

- 2 - September, 1987

•

•

•

printf (3S) print f (3S)

The conversion characters and their meanings are:

d,o,u,x,X The integer arg is converted to signed decimal,

•
unsigned octal, decimal, or hexadecimal notation {x
and X), respectively; the letters abcde f are used for
x conversion and the letters ABCDEF for X conver-
sion. The precision specifies the minimum number of
digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with
leading zeroes. (For compatibility with older ver-
sions, padding with leading zeroes may alternatively
be specified by prefixing a zero to the field width.)
This does not imply an octal value for the field width.
The default precision is 1 . The result of converting a
zero value with a precision of zero is a null string.

f The float or double arg is converted to decimal nota-
tion in the style ' ' [-] ddd . ddd" , where the number
of digits after the decimal point is equal to the preci-
sion specification. If the precision is missing, 6 digits
are output; if the precision is explicitly 0, no decimal
point appears .

• e,E The float or double arg is converted in the style
" [-] d . ddde±dd", where there is one digit before
the decimal point and the number of digits after it is
equal to the precision; when the precision is missing,
6 digits are produced; if the precision is zero, no
decimal point appears. The E format code produces
a number with E instead of e introducing the
exponent The exponent always contains at least two
digits.

g,G The float or double arg is printed in style f or e (or in
style E in the case of a G format code), with the pre-
cision specifying the number of significant digits.
The style used depends on the value converted: style
e is used only if the exponent resulting from the
conversion is less than -4 or greater than the preci-
sion. Trailing zeroes are removed from the result; a

•
decimal point appears only if it is followed by a digit.

c The character arg is printed.

- 3 - September, 1987

print f (3S)

s

print f (3S)

The arg is taken to be a string (character pointer) and
characters from the string are printed until a null char
acter (\ 0) is encountered or the number of characters
indicated by the precision specification is reached. If
the precision is missing, it is taken to be infinite, so all
characters up to the first null character are printed. A
NULL value for arg yields undefined results.

% Print a % ; no argument is converted

In no case does a non-existent or small field width cause trunca
tion of a field; if the result of a conversion is wider than the field
width, the field is simply expanded to contain the conversion
result. Characters generated by print £ and fprint f are
printed as if putc(3S) had been called.

RETURN VALUE
Each function returns the number of characters transmitted (not
including the \ 0 in the case of sprint f), or a negative value if
an output error was encountered.

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02" ,
where weekday and month are pointers to null-terminated strings:

print f (" % s , % s %d, % . 2d : % . 2d" , wukday, ntiNith, day, hour , min) ;

To print pi to 5 decimal places:

print f ("pi=% . 5 £ " , 4 *atan (1 . 0)) ;

SEE ALSO
ecvt(3C), int ro(3), putc(3S), scanf(3S).

- 4 - September, 1987

•

•

•

•

•

•

putc (3S) putc (3S)

NAME
putc, putchar, fputc, putw - put character or word on a
stream

SYNOPSIS
include < stdio . h>

int putc (c , stream)
int c ;
FILE *stream ;

int putchar (c)
int c ;

int fputc (c , stream)
int c ;
F ILE *stream ;

int putw (w, stream)
int w;
F I LE *stream ;

DESCRIPTION
The putc macro writes the character c onto the output stream at
the position where the file pointer, if defined, is pointing. The
putchar macro is defined as putc (c , stdout) .

fputc behaves like putc, but is a function rather than a macro.
fputc runs more slowly than putc, but it takes less space per
invocation and its name can be passed as an argument to a func
tion.

putw writes the word (32-bit integer on the Macintosh IT) w to the
output stream at the position at which the file pointer, if defined, is
pointing. putw neither assumes nor causes special alignment in
the file.

Output streams, with the exception of the standard error stream
stderr, are by default buffered if the output refers to a file and
line-buffered if the output refers to a terminal. The standard error
output stream stderr is by default unbuffered, but use of
freopen (see fopen(3S)) causes it to become buffered or line
buffered. When an output stream is unbuffered information, it is
queued for writing on the destination file or terminal as soon as
written; when it is buffered, many characters are saved up and
written as a block; when it is line-buffered, each line of output is
queued for writing on the destination terminal as soon as the line
is completed (i.e. , as soon as a newline character is written or ter
minal input is requested). setbuf(3S) may be used to change

- 1 - September, 1987

putc (3S) putc (3S)

the stream's buffering strategy.

RETURN VALUE
On success, these functions each return the value they have writ
ten. On failure, they return the constant EOF. This occurs if the
file stream is not open for writing or if the output file cannot be
grown. Because EOF is a valid integer, ferror(3S) should be
used to detect putw errors.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), getc(3S),
print f(3S), puts(3S), setbuf(3S).

BUGS
Because it is implemented as a macro, putc treats incorrectly a
stream argument with side effects. In particular, putc (c ,
*f++) ; doesn't work sensibly. fputc should be used instead.
Because of possible differences in word length and byte ordering,
files written using putw are machine-dependent and may not be
read using get w on a different processor.

- 2 - September, 1987

•

•

•

•

•

•

putenv(3C)

NAMB
putenv - change or add value to environment

SYNOPSIS
int putenv (string)
char *string ;

DESCRIPTION

putenv(3C)

string points to a string of the form "name=value " . putenv
makes the value of the environment variable name equal to value
by altering an existing variable or creating a new one. In either
case, the string pointed to by string becomes part of the environ
ment, so altering the string will change the environment The
space used by string is no longer used once a new string-defining
name is passed to putenv.

RETURN V ALUB
putenv returns nonzero if it was unable to obtain enough space
via malloc for an expanded environment, otherwise zero.

SBB ALSO
exec(2), qetenv(3C), malloc(3C), environ(5).

WARNINGS
putenv manipulates the environment pointed to by environ,
and can be used in conjunction with qetenv. However, envp
(the third argument to main) is not changed.
This routine uses malloc(3C) to enlarge the environment
After putenv is called, environmental variables are not in
alphabetical order.
A potential error is to call putenv with an automatic variable as
the argument, then exit the calling function while string is still part
of the environment •

- 1 - September, 1987

putpwent (3C)

NAME
putpwent - write password file entry

SYNOPSIS
#include <pwd . h>

int putpwent (p, /)
st ruct passwd *p ;
FILE */;

DESCRIPTION

putpwent (3C)

putpwent is the inverse of getpwent(3C). Given a pointer to
a pas swd structure created by getpwent (or getpwuid or
getpwnam), putpwuid writes a line on the stream f which
matches the format of I etc/pas swd.

The <pwd . h> header file is described in getpwent(3C).

RETURN VALUE
putpwent retmns nonzero if an error was detected during its
operation; otherwise it returns zero.

SEE ALSO
getpwent(3C).

WARNING
The above routine uses <stdio . h>. Therefore, the size of pro
grams not otherwise using standard 1/0 is increased more than
might be expected.

- 1 - September, 1987

•

•

•

•

•

•

put s (3S)

NAME
put s , fput s - put a string on a stream

SYNOPSIS
f: include <stdio . h>

int put s (S)
char *s;

int fput s (s, stream)
char *s;
F I LE *stream ;

DESCRIPTION

put s (3S)

put s writes the null-terminated string referenced by s , followed
by a newline character, to the standard output stream stdout.

fput s writes the null-terminated string pointed to by s to the
named output stream .

Neither function writes the terminating null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), print f(3S), putc(3S).

RETURN VALUE
On success, both routines return the number of characters written .

Both functions return EOF on error. This occurs if the routines try
to write on a file that has not been opened for writing.

NOTES
put s appends a newline character while fput s does not .

- 1 - September, 1987

qsort (3C)

NAME
qsort - quicker sort

SYNOPSIS
void qsort (base, nel , width , compar)
char *base ;
uns igned nel , width ;
int (*compar) () ;

DESCRIPITON

qsort (3C)

qso rt is an implementation of the quicker-sort algorithm. It
sorts a table of data in place.

base points to the element at the base of the table. nel is the
number of elements in the table. width is the width of an element
in bytes. compar is the name of the comparison function, which is
called with two arguments that point to the elements being com
pared. The function must return an integer less than, equal to, or
greater than zero according as the first argument is to be con
sidered less than, equal to, or greater than the second.

NOTES
The pointer to the base of the table should be of type pointer-to
element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbi
trary data may be contained in the elements in addition to the
values being compared. The order in the output of the two items
which compare as equal is unpredictable.

EXAMPLE
struct ent ry {

char *name ;
int flags ;

} ;

main ()
{

struct ent ry hp [l OO] ;
int ent cmp () ;
int i , count ;

for (i - 0 ; i < (count - 1 0 0) ; i++) {
I * fill the st ructure with the name

and flags * /

qsort ((char *) hp , count , s i zeof (hp [O]) , ent cmp) ;

- 1 - September, 1987

•

•

•

qsort (3C) qsort (3C)

entcmp (ep , ep2)

•
struct ent ry * ep , * ep2 ;
{

return (strcmp (ep->name , ep2 ->name)) ;

will sort a set of names with associated flags in ASCll order.

SEE ALSO
sort(l), bsearch(3C), lsearch(3C), st ring(3C) .

•

•

- 2 - September, 1987

rand(3C) rand(3C)

NAME
rand, s rand - simple random-number generator

SYNOPSIS
int rand ()

void s rand (seed)
uns igned seed;

DESCRIPTION
rand uses a multiplicative congruential random-number genera
tor with period 2 power of 32 that returns successive pseudo
random numbers in the range from 0 to 32767.

s rand can be called at any time to reset the random-number gen
erator to a random starting point. The generator is initially seeded
with a value of 1 .

NOTE
The spectral properties of rand leave a great deal to be desired.
drand4 8{3C) provides a much better, though more elaborate,
random-number generator.

SEE ALSO
drand4 8{3C).

- I - September, 1987

•

•

•

•

•

•

rand(3F) rand(3F)

NAME
irand, s rand, rand - Fortran uniform random-number gen-
erator

SYNOPSIS
call s rand (iseed)

i=irand ()

x=rand ()

DESCRIPTION
i rand generates successive pseudo-random numbers in the range
from 0 to 2**15- 1 . rand generates pseudo-random numbers
distributed in (0, 1 .0). s rand uses its integer argument to reini
tialize the seed for successive invocations of irand and rand.

SEE ALSO
rand(3C) .

- 1 - September, 1987

rcmd{3N) rcmd(3N)

NAME
rcmd, rresvport, ruserok - routines for returning a stream
to a remote command

SYNOPSIS
int rcmd (ahost, inport, locuser, remuser , cmd, fd2p) ;
char * *ahost;
u_short inport;
char *locuser , *remuser, *cmd;
int *fd2p;

int rresvport (port) ;
int *port;

int ruserok (rhost, superuser, ruser, luser) ;
char *rhost;
int superuser;
char *ruser , * luser;

DESCRIPTION
rcmd is a routine used by the superuser to execute a command on
a remote machine using an authentication scheme based on
reserved port numbers. rresvport is a routine which returns
a descriptor to a socket with an address in the privileged port
space. ruserok is a routine used by servers to authenticate
clients requesting service with rcmd. All three functions are
present in the same file and are used by the remshd{IM) server
(among others).

rcmd looks up the host *ahost using gethostent(3N), return
ing -1 if the host does not exist. Otherwise *ahost is set to the
standard name of the host and a connection is established to a
server residing at the well-known Internet port inport.

If the call succeeds, a socket of type SOCK_ STREAM is returned
to the caller, and given to the remote command as stdin and
stdout . If fd2p is nonzero, then an auxiliary channel to a con
trol process will be set up, and a descriptor for it will be placed in
*fd2p. The control process will return the stderr (descriptor 2
of the remote(lM) command) on this channel, and will accept
bytes on this channel as AIUX signal numbers to be forwarded to
the process group of the command. If fd2p is 0, then the
stderr (descriptor 2 of the remote(IM) command) will be
made the same as stdout; no provision will be made for sending
arbitrary signals to the remote process, although you may be able
to get its attention by using out-of-band data.

- I - September, 1987

•

•

•

•

•

•

rcmd(3N) rcmd(3N)

The protocol is described in detail in remshd(1M).

The rresvport routine is used to obtain a socket with a
privileged address bound to iL This socket is suitable for use by
rcmd and several other routines. Privileged addresses consist of a
port in the range 0 to 1023. Only the superuser is allowed to bind
an address of this sort to a sockeL

ruserok takes a remote host's name, as returned by a
gethostent(3N) routine, two user names and a flag indicating
if the local user's name is the superuser. It then checks the files
I etc/host s . equi v and, possibly, • rhosts in the current
working directory (normally the local user's home directory) to
see if the request for service is allowed. A 1 is returned if the
machine name is listed in the "hosts . equi v" file, or the host
and remote user name are found in the " . rhost s" file; other
wise ruserok returns 0. H the superuser flag is 1 , the checking
of the "host . equi v" file is bypassed.

SEE ALSO
remsh(1N), rlogin(1N), remshd(1M), rexecd(lM),
rlogind(1M), rexec(3N).

BUGS
There is no way to specify options to the socket call which
rcmd makes .

- 2 - September, 1987

regcmp (3X) regcmp (3X)

NAME
regcmp, regex - compile and execute a regular expression

SYNOPSIS
char * regcmp (stringl [, string2 , . . .] , (char *) 0))
char *string] , *string2 , . . . ;

char * regex (re , subject [, retO, . . .])
char *re , *subject, *retO , . . . ;

extern char *locl ;

DESCRIPTION
regcmp compiles a regular expression and returns a pointer to
the compiled form. malloc(3C) is used to create space for the
vector. It is the user's responsibility to free unneeded space that
has been allocated by malloc. A NULL return from regcmp
indicates an incorrect argument regcmp(l) has been written to
generally preclude the need for this routine at execution time.

regex executes a compiled pattern against the subject string.
Additional arguments are passed to receive values back. regex
returns NULL on failure or a pointer to the next unmatched char
acter on success. A global character pointer loc 1 points to
where the match began. regcmp and regex were mostly bor
rowed from the editor, ed(l); however, the syntax and semantics
have been changed slightly. The following are the valid symbols
and their associated meanings.

[] * . �

$

+

These symbols retain their current meaning.

This symbol matches the end of the string; \n
matches the newline.

Within brackets the minus means ' 'through. ' ' For
example, [a-z] is equivalent to
[abed . . . xyz] . The - can appear as itself only

if used as the last or first character. For example, the
character class expression [] -] matches the char
acters l and -.

A regular expression followed by + means "one or
more times." For example, [0- 9] + is equivalent
to [0- 9] [0-9] * ·

{ m } { m, } { m,u } Integer values enclosed in { } indicate the
number of times the preceding regular expression is
to be applied. The minimum number is m and the
maximum number is u , which must be less than 256.

- 1 - September, 1987

•

•

•

•

•

•

regcmp(3X) regcmp (3X)

If only m is present (e.g., { m }) , it indicates the exact
number of times the regular expression is to be
applied. { m, } is analogous to { m,infinity } .
The plus (+) and star (*) operations are equivalent to
{ 1 , } and { 0 , } , respectively.

(. . .) $n
The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+l) th
argument following the subject argument. At
present, at most 10 enclosed regular expressions are
allowed. regex makes its assignments uncondi
tionally.

(. . .) Parentheses are used for grouping. An operator
(e.g., * , +, { }) can work on a single character or a
regular expression enclosed in parentheses. For
example, (a*(cb+)*)$0.

By necessity, all the above defined symbols are special. They
must, therefore, be escaped to be used as themselves.

EXAMPLES
Example 1 :

char *cursor , *newcursor, *ptr;

newcursor == regex ({ptr == regcmp (" � \n" , 0)) , cursor) ;
f ree {ptr) ;
This example will match a leading newline in the subject string
pointed at by cursor.

Example 2:

char ret 0 [9] ;
char * newcursor, *TUUI'I.e;

name = regcmp (" { [A-Za-z] [A-za-z0-9_] { 0 , 7 }) $ 0 " , 0) ;

newcursor - regex (name , " 1 2 3Testing3 2 1 " , ret O) ;

This example will match through the string "Test ing3" and
will return the address of the character after the last matched char
acter (cursor+l l). The string "Test ing3" will be copied to the
character array ret O .

Example 3 :

- 2 - September, 1987

regcmp(3X)

in clude "file . i "
char *string, *newcwsor;

newcwsor - regex (name, string) ;

regcmp (3X)

This example applies a precompiled regular expression in
file . i (see regcmp{l)) against string.

This routine is kept in I l ib I libPW . a.

SEE ALSO
ed{l), regcmp{l), malloc{3C).

BUGS
The user program may run out of memory if regcmp is called
iteratively without freeing the vectors no longer required. The fol
lowing user-supplied replacement for mal loc(3C) reuses the
same vector, saving time and space:

/ * u s e r ' s program * /

char *

mal lo c (n)

uns igned n ;

stat ic char rebuf [5 12] ;

return (n <= s i ze o f rebu f) ? rebu f NULL ;

- 3 - September, 1987

•

•

•

•

•

•

resol ver(3N) resol ver(3N)

NAMB
res mkquery, res send, res_init,
dn-expand - resolver routines

dn_comp,

SYNOPSIS
finclude <sys /types . h>
finclude <net inet / in . h>
finclude <arpa /nameser . h>
finclude <resolv . h>

res_mkquery (op, dname , class, type , data , datalen ,
new", buf, buflen >

int op ;
char *dname ;
int class, type ;
char *data ;
int datalen ;
st ruct "ec *new" ;
char *buf;
int bujlen ;

res_send (msg, msglen , answer, anslen)
char *msg ;
int msglen ;
char *answer;
int anslen ;

res_init ()

dn comp (exp dn, comp dn , length, dnptrs, lastdnptr)
char *exp tin , *comp_dn ;
int length"'i
char * *dnptrs, * *lastdnptr;

dn expand (msg, eomorig , comp_dn , exp_dn, length)
char *msg , *eomorig, *comp_dn , exp_dn ;
int length ;

DBSCRIPI'ION
These routines are used for making, sending and interpreting
packets to Internet domain name servers. Global information that
is used by the resolver routines is kept in the variable _res.
Most of the values have reasonable defaults and can be ignored.
Options stored in res . opt ions are defined in resolv . h
and are as follows. Options are a simple bit mask and are or' ed in
to enable.

- 1 - September, 1987

resol ver(3N) resolve r (3N)

RES !NIT
True if the initial name server address and default domain
name are initialized (i.e. , res_ ini t has been called).

RES DEBUG
"Print debugging messages.

RES AAONLY
Accept authoritative answers only. res send will con
tinue until it finds an authoritative answer or finds an error.
Currently this is not implemented.

RES USEVC
Use TCP connections for queries instead of UDP.

RES STAYOPEN
Used with RES_USEVC to keep the TCP connection open
between queries. This is useful only in programs that regu
larly do many queries. UDP should be the normal mode
used.

RES IGNTC
Unused currently (ignore truncation errors, i.e. , don't retry
with TCP).

RES RECURSE
Set the recursion desired bit in queries. This is the default
(res send does not do iterative queries and expects the
name

-
server to handle recursion.)

RES DEFNAMES
Append the default domain name to single label queries. This
is the default.

res init

reads the initialization file to get the default domain name and the
Internet address of the initial hosts running the name server. If
this line does not exist, the host running the resolver is tried
res mkquery makes a standard query message and places it in
buf.

-
res mkquery will return the size of the query or -1 if

the query is
-

larger than buflen . op is usually QUERY but can be
any of the query types defined in nameser . h. dname is the
domain name. If dname consists of a single label and the
RES DEFNAMES flag is enabled (the default}, dname will be
appended with the current domain name. The current domain
name is defined in a system file and can be overridden by the
environment variable LOCALDOMAIN. newrr is currently unused
but is intended for making update messages.

- 2 - September, 1987

•

•

•

•

•

•

re sol ver(3N) resolver (3N)

res_send sends a query to name servers and returns an answer.
It will call res init if RES INIT is not set, send the query
to the local name server, and bindle timeouts and retries. The
length of the message is returned or -1 if there were errors.

dn _expand expands the compressed domain name comp _ dn
to a full domain name. Expanded names are converted to upper
case. msg is a pointer to the beginning of the message, exp dn is a
pointer to a buffer of size length for the result. The size of
compressed name is returned or -1 if there was an error.

dn _ comp compresses the domain name exp _ dn and stores it in
comp dn. The size of the compressed name is returned or -1 if
there were errors. length is the size of the array pointed to by
comp _ dn. dnptrs is a list of pointers to previously compressed
names in the current message. The first pointer points to to the
beginning of the message and the list ends with NULL. lastdnptr
is a pointer to the end of the array pointed to dnptrs . A side effect
is to update the list of pointers for labels inserted into the message
by dn _ comp as the name is compressed. If dnptr is NULL, we
don't try to compress names. If lastdnptr is NULL, we don't
update the list .

FILES
/et c / resolv . conf

SEE ALSO
named(lM), res o lver(4) .

- 3 - September, 1987

rexec(3N) rexec (3N)

NAME
rexec - return stream to a remote command

SYNOPSIS
int rexec (ahost, inport, user, passwd, cmd, fd2p) ;
char * *ahost ;
u_short inport;
char *user, *passwd, *cmd;
int *fd2p ;

DESCRIPfiON
rexec looks up the host *ahost using gethostent(3N),
returning -1 if the host does not exist Otherwise * ahost is set to
the standard name of the host. If a usemame and password are
both specified, then these are used to authenticate to the foreign
host; otherwise the environment and then the user's . net rc file
in his home directory are searched for appropriate information. If
all this fails, the user is prompted for the information.

The port inport specifies which well-known DARPA Internet port
to use for the connection; it will normally be the value returned
from the call • •getservbyname ("exec " , "tcp") " (see
get servent(3N)). The protocol for connection is described in
detail in rexecd(1M).

If the call succeeds, a socket of type SOCK STREAM is returned
to the caller, and given to the remote command as stdin and
stdout. Ifjd2p is nonzero, then a auxiliary channel to a control
process will be setup, and a descriptor for it will be placed in
*fd2p. The control process will return diagnostic output from the
command (unit 2) on this channel. and will also accept bytes on
this channel as being A/UX signal numbers. to be forwarded to the
process group of the command. If fd2p is 0. then the stderr
(unit 2 of the remote command) will be made the same as the
stdout and no provision is made for sending arbitrary signals to
the remote process. although you may be able to get its attention
by using out-of-band data.

SEE ALSO
rcmd{3N). rexecd{1M).

BUGS
There is no way to specify options to the socket call which
rexec makes.

- 1 - September. 1987

•

•

•

•

•

•

round(3F) round(3F)

NAME
anint, dnint, nint, idnint - Fortran nearest integer func
tions

SYNOPSIS
intege r i
rea l rl , r2
double precision dpl , dp2

r2=anint (rl)
i=nint (rl)

dp2=anint (dpl)
dp2=dnint (dpl)

i=nint (dpl)
i=idnint (dpl)

DESCRIPTION
anint returns the nearest whole real number to its real argument
(i.e., int (a+O . S) if a ::2!: 0 , int (a-0 . 5) otherwise).
dnint does the same for its double-precision argument. nint
returns the nearest integer to its real argument. idnint is the
double-precision version. anint is the generic form of
anint and dnint , performing the same operation and returning
the data type of its argument. nint is also the generic form of
idnint .

- 1 - September, 1987

rpc (3N) rpc (3N)

NAME
rpc - library routines for remote procedure calls

DESCRIPTION
These routines allow C programs to make procedure calls on other
machines across the network. First, the client calls a procedure to
send a data packet to the server. Upon receipt of the packet, the
server calls a dispatch routine to perform the requested service,
and then sends back a reply. Finally, the procedure call returns to
the client

FUNCTIONS
auth_dest roy ()

authnone_create ()

authunix_create ()

destroy authentication
information handle

return RPC authentication
handle with no checking

return RPC authentication
handle with A/UX permis-
sions

authunix_create_default () return default A/UX
authentication handle

ca11rpc () call remore procedure,

c1nt_broadcast ()

c1nt_ca11 ()

c1nt_dest roy ()

clnt_freeres ()

c lnt_geterr ()

c lnt_pcreateerror ()

clnt_perrno ()

- 1 -

given
[prognum,versnum.procnum]

b��t remore p�wre
call everywhere

call remore procedure asso
ciared with client handle

destroy client's RPC handle

free data allocated by
RPCIXDR sysrem when
decoding results

copy error information
from client handle to error
structure

print message to stderr
about why client handle
creation failed

print message to stderr
corresponing to condition

Seprember, 1987

•

•

•

•

•

•

rpc (3N)

c lnt_perror ()

c lnt_sperrno ()

c lnt _ sperror ()

clnt raw_create ()

c lnttcp_create ()

c lntudp_create ()

get_myaddre s s ()

pmap _getmaps ()

pmap_getport ()

pmap_rmtcall ()

pmap_set ()

pmap _unset ()

registerrpc ()

rpc_createerr

svc_dest roy ()

svc fds

- 2 -

rpc (3N)

given

print message to stderr
about why RPC call failed

print message to a string
corresponding to condition
given

print message to a string

create toy RPC client for
simulation

create RPC client using
TCP transport

create RPC client using
UDP transport

get the machine's IP
address

return list of RPC
program-to-port mappings
return port number on
which waits supporting ser
vice

instructs portmapper to
make an RPC call

establish mapping between
[prognum,versnum,procnum]
and port

destroy mapping between
[prognum,versnum,procnum]
and port

register procedure with
RPC service package

global variable indicating
reason why client creation
failed

destroy RPC service tran
sport handle

global variable with RPC
service file descriptor mask

September, 1987

rpc (3N)

svc_freeargs ()

svc_getargs ()

svc _getcaller ()

svc_get req ()

svc_register ()

svc_run ()

svc_sendreply ()

svc_unregister ()

svcerr _auth ()

svcerr_decode ()

svcerr_noproc ()

svcerr_noprog ()

svcerr_progvers ()

svcerr_systemerr ()

- 3 -

rpc (3N)

free data allocated by
RPC/XDR system when
decoding arguments

decodes the arguments of
an RPC request

get the networlc address of
the caller of a procedure

returns when all associated
sockets have been serviced

associates prognum and
versnum with service
dispatch procedure

wait for RPC requests to
arrive and call appropriate
service

send back results of a
remote procedure call

remove mapping of
[prognum,versnum] to
dispatch routines

called when refusing ser
vice because of authentica
tion error

called when service cannot
decode its parameters

called when service hasn't
implemented the desired
procedure

called when program is not
registered with RPC pack
age

called when version is not
registered with RPC pack
age

called when service detects
system error

September, 1987

•

•

•

rpc (3N)

svcerr_weakauth ()

• svcraw_create ()

svctcp_create ()

svcudp_create ()

xdr_accepted_reply ()

xdr_authunix_parms ()

xdr_callhdr ()

xdr_callrnsg ()

• xdr_opaque_auth ()

xdr _prnap ()

xdr _prnaplist ()

xdr_re jected_reply ()

xdr _ replyrnsg ()

xprt _register ()

• xprt_unregister ()

- 4 -

rpc (3N)

called when refusing ser
vice because of insufficient
authentication

creates a toy RPC service
transport for testing

creates an RPC service
based on TCP transport

creates an RPC service
based on UDP transport

generates RPC-style replies
without using RPC package

generates A/UX credentials
without using RPC package

generates RPC-style
headers without using RPC
package

generates RPC-style mes
sages without using RPC
package

describes RPC messages,
externally

describes parameters for
portmap procedures, exter
nally

describes a list of port map
pings, externally

generates RPC-style rejec
tions without using RPC
package

generates RPC-style replies
without using RPC package

registers RPC service tran
sport with RPC package

unregisters RPC service
transport from RPC pack
age

September, 1987

rpc (3N) rpc (3N)

SEE ALSO
A!UX Network Applications Programming.

•

•

•

- 5 - September, 1987

•

•

•

scandir(3)

NAME
scandir - scan a directory

SYNOPSIS
#include <sys /types . h>
#include <sys /dir . h>

scandir(3)

scandir (dirname, namelist, select , compar)
char *dirname ;
st ruct direct * (*namelist []) ;
int (*select) () ;
int (*compar) () ;

alphasort (dl , d2)
st ruct direct * *dl , * *d2 ;

DESCRIPTION
scandir reads the directory dirname and builds an array of
pointers to directory entries using malloc(3). It returns the
number of entries in the array and a pointer to the array through
namelist .

The select parameter is a pointer to a user supplied subroutine
which is called by scandir to select which entries are to be
included in the array. The select routine is passed a pointer to a
directory entry and should return a non-zero value if the directory
entry is to be included in the array. If select is null, then all the
directory entries will be included.

The compar parameter is a pointer to a user supplied subroutine
which is passed to qsort(3) to sort the completed array. If this
pointer is null, the array is not sorted. a lphasort is a routine
which can be used for the compar parameter to sort the array
alphabetically.

The memory allocated for the array can be deallocated with
free (see malloc(3)) by freeing each pointer in the array and
the array itself.

RETURN VALUE
Returns -1 if the directory cannot be opened for reading or if can
not allocate enough memory to hold all the data structures.

SEE ALSO
directory(3), malloc(3C), malloc(3X), qsort(3C),
dir(4).

- 1 - September, 1987

scanf(3S)

NAME
scanf, fscanf, s scanf - convert fonnatted input

SYNOPSIS
:If: include <stdio . h>

int scanf (format [, pointer] . . .)
char *format;

int fscanf (stream, format [, pointer] . . .)
F ILE *stream;
char *format;

int s scanf (s , format [, pointer] . . .)
char *s, *format;

DESCRIPI'ION

scanf (3S)

scanf reads from the standard input stream stdin. fscanf
reads from the named input stream. s s canf reads from the
character sbing at *s. Each function reads characters, interprets
them according to format, and stores the results in the location
specified by the pointer arguments. Each function expects as
arguments: a control sbing format (described below) and a set of
pointer arguments indicating where the converted input should be
stored.

The control string usually contains conversion specifications,
which are used to direct interpretation of input sequences. The
control sbing may contain:

1 . White-space characters (blanks and tabs) which, except in two
cases described below, cause input to be read up to the next
nonwhite-space character.

2. An ordinary character (not %), which must match the next
character of the input stream.

3. Conversion specifications, consisting of the character % , an
optional assignment suppression character * , an optional
numerical maximum field width, an optional 1 (ell) or h indi
cating the size of the receiving variable, and a conversion
code.

A conversion specification directs the conversion of the next input
field; the result is placed in the variable pointed to by the
corresponding argument, unless assignment suppression has been
indicated by * . The suppression of assignment provides a way of
describing an input field which is to be skipped. An input field is
defined as a string of nonwhite-space characters; it extends to the
next inappropriate character or until the field width, if specified, is

- 1 - September, 1987

•

•

•

•

•

•

s canf(3S) scanf (3S)

exhausted. For all descriptors except ' ' [' ' and ' ' c'' , white space
leading an input field is ignored.

The conversion code indicates the interpretation of the input field;
the corresponding pointer argument must usually be of a restricted
type. For a suppressed field, no pointer argument should be given.
The following conversion codes are legal:

% A single % is expected in the input at this point; no assign
ment is done.

d A decimal integer is expected; the corresponding argument
should be an integer pointer.

u An unsigned decimal integer is expected; the correspond
ing argument should be an unsigned integer pointer.

o An octal integer is expected; the corresponding argument
should be an integer pointer.

x A hexadecimal integer is expected; the corresponding argu
ment should be an integer pointer.

e,f,g A floating point number is expected; the next field is con
verted accordingly and stored through the corresponding
argument, which should be a pointer to a float. The input
format for floating point numbers is an optionally signed
string of digits, possibly containing a decimal point, fol
lowed by an optional exponent field consisting of an E or
an e, followed by an optional +, -, or space followed by an
integer.

s A character string is expected; the corresponding argument
should be a character pointer to an array of characters large
enough to accept the string and a terminating \ 0 , which
will be added automatically. The input field is terminated
by a white-space character.

c A character is expected; the corresponding argument
should be a character pointer. The normal skip over white
space is suppressed in this case; to read the next nonspace
character, use % 1 s . If a field width is given, the
corresponding argument should refer to a character array;
the indicated number of characters is read.
String data and the normal skip over leading white space is
suppressed. The left bracket is followed by a set of charac
ters (the scanset) and a right bracket; the input field is the
maximal sequence of input characters consisting entirely of

- 2 - September, 1987

scanf(3S) scanf(3S)

characters in the scanset. The caret, (�), when it appears as
the first character in the scanset, serves as a complement
operator and redefines the scanset as the set of all charac
ters not contained in the remainder of the scanset string.
There are some conventions used in the construction of the
scanset. A range of characters may be represented by the
construct first-last; thus, [0 1 2 3 4 5 6 7 8 9] may be
expressed [0 - 9] . Using this convention, first must be lex
ically less than or equal to last, or else the dash will stand
for itself. The dash will also stand for itself whenever it is
the first or the last character in the scanset. To include the
right square bracket as an element of the scanset, it must
appear as the first character (possibly preceded by a
circumflex) of the scanset; otherwise it will be interpreted
syntactically as the closing bmcket The corresponding
argument must point to a chamcter array large enough to
hold the data field and the terminating \ 0 , which will be
added automatically. At least one chamcter must match for
this conversion to be considered successful.

The conversion chamcters d. u, o, and x may be preceded by 1
or h to indicate that a pointer to long or short , mther than
int, is in the argument list. Similarly, the conversion chamcters
e, f , and g may be preceded by 1 to indicate that a pointer to
double, mther than float, is in the argument list.

The 1 or h modifier is ignored for other conversion characters.
scanf conversion terminates at EOF, at the end of the control
string, or when an input character conflicts with the control string.
In the latter case, the offending character is left unread in the input
stream.

scanf returns the number of successfully matched and assigned
input items; this number can be zero when an early conflict
between an input character and the control string occurs. If the
input ends before the first conflict or conversion, EOF is returned.

EXAMPLES
The call:

int i ; n ; f loat x ; char name [5 0] ;
n =scanf (" %d% f% s " , & i , &x, name) ;

with the input line

2 5 5 4 . 32E-l thompson

- 3 - September, 1987

•

•

•

•

•

•

s canf(3S) s canf(3S)

will assign the value 3 to n , the value 2 5 to i , and the value
5 . 4 32 to x; name will contain thompson\ 0 .

The call

int i ; f loat x ; char name [5 0] ;
(void) s canf (" %2d% f % *d % [0 - 9] " , & i , &x ,

name) ;

with input

5 6 7 8 9 0 12 3 5 6a72

will assign 5 6 to i , 7 8 9 . 0 to x, skip 0 12 3 , and place the string
5 6 \ 0 in name . The next call to getchar (see getc(3S)) will
return a.

RETURN VALUE
These functions return EOF on end of input and a short count for
missing or illegal data items.

NOTE
Trailing white space is left unread unless matched in the control
string.

BUGS
The success of literal matches and suppressed assignments is not
directly determinable.

SEE ALSO
getc(3S), print f(3S), strtod(3C), strtol(3C) .

- 4 - September, 1987

set 4 2 s ig(3)

NAME
set 4 2 s ig - set 4.2 BSD signal interface

SYNOPSIS
int set 4 2 s ig ()

DESCRIPITON

set 4 2 s ig(3)

set 4 2 s ig changes the signal interface to one closely resembling
BSD 4.2 systems. This call is similar to the setcompat system
call. Unlike setcompat(2), set 4 2 s ig ananges for the
current compatibility flags to be logically OR'ed with the new
flags. set 4 2 s ig is functionally equivalent to the following C
code fragment

#include <compat . h>

return (set compat (get compat () I COMPAT_BSDSIGNALS I
COMPAT_BSDTTY I COMPAT_BSDSYSCALLS)) ;

For the process calling it, it enables reliable signal delivery, the
job control tty signals, and restarting of system calls when an
interrupt is received.

If the COMPAT svro flag is set before calling set 4 2 s ig, both
BSD 4.2 and System V modes are set and 4.2 BSD mode will
have precedence. COMP AT SVID can be set in two ways, by
calling setcompat(2) and by compiling the program with the
-z s flag option (see cc(l).

All aspects of 4.2 signals are inherited across fork system calls.
4.2 job control group membership is inherited across exec sys
tem calls. When exec is invoked, the inherited 4.2 signals are
lost and the signal-handling mechanism returns to System V style.
See setcompat(2) for more information.

ERRORS
[E INVAL] The process has already ananged to catch

signals. Normally set 4 2 s ig is called
prior to any other signal activity.

SEE ALSO
cc(1), setcompat(2), s igvec(2), s ignal(3), termio(7).

- 1 - September, 1987

•

•

•

•

•

•

setbuf(3S)

NAME
setbuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf (stream, buj)
FILE *stream;
char *buf;

int setvbuf (stream, buf, type , size)
F I LE *stream;
char *buf;
int type , size ;

DESCRIYI10N

setbuf(3S)

setbuf may be used after a s tream has been opened but before it
is read or written. It causes the array pointed to by buf to be used
instead of an automatically allocated buffer. If buf is the NULL
pointer input/output will be completely unbuffered.

A constant BUF S I Z , defined in the <stdio . h> header file,
tells how big an array is needed:

char buf [BUFS I Z] ;

setvbuf may be used after a stream has been opened but before
it is read or written. type determines how stream will be buffered.
Legal values for type (defined in stdio . h) are:

IOFBF causes input/output to be fully buffered.

IOLBF causes output to be line buffered; the buffer will be
flushed when a newline is written, the buffer is full,
or input is requested.

IONBF causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be used
for buffering, instead of an automatically allocated buffer. size
specifies the size of the buffer to be used. The constant BUF S I Z
in <stdio . h > is suggested as a good buffer size. If
input/output is unbuffered, buf and size are ignored.

By default, output to a terminal is line buffered and all other
input/output is fully buffered.

RETURN VALUE
If an illegal value for type or size is provided, set vbuf returns a
nonzero value. Otherwise, the value returned will be zero.

- 1 - September, 1987

setbuf (3S) setbuf(3S)

SEE ALSO
fopen(3S), getc(3S), int ro(3), mal loc(3C), putc(3S).

NOTE
A common source of error is allocating buffer space as an
"automatic" variable in a code block, and then failing to close the
stream in the same block.

setbuf allows assignment of a new 1/0 buffer after the stream
has been read (written), and if unflushed data remains in the origi
nal buffer. This could lead to a loss of data error.

- 2 - September, 1987

•

•

•

•

•

•

set jmp(3C)

NAME
set jmp, longjmp - non-local goto

SYNOPSIS
:lf:include <set jmp . h>

int set jmp (env)
jmp _ buf env ;

void longjmp (env , val)
jmp buf env ;
int

-
val ;

DESCRIPTION

set jmp(3C)

These functions are useful for dealing with errors and interrupts
encountered in a low-level subroutine of a program.

set jmp saves its stack environment in env for later use by
longjmp. The environment type jmp buf is defined in the
<set jmp . h> header file.

-

RETURN VALUE
When set jmp has been called by the calling process, returns 0.

longjmp restores the environment saved by the last call of
set jmp with the corresponding env argument. After longjmp
is completed, program execution continues as if the corresponding
call of set jmp (which must not itself have returned in the
interim) had just returned the value val . longjmp cannot cause
set jmp to return the value 0. If longjmp is invoked with a
second argument of O, set jmp will return 1 . All accessible data
have values as of the time longjmp was called.

SEE ALSO
s ignal(3).

WARNING
longjmp fails if it is called when env was never primed by a call
to set jmp or when the last such call is in a function which has
since returned .

- 1 - September, 1987

setuid{3)

NAME
set uid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;
int setgid (gid)
int gid;

DESCRIPTION

setuid(3)

setuid (setgid) i s used to set the real user (group) ID and
effective user (group) ID of the calling process.

If the effective user ID of the calling process is superuser, the real
user (group) ID and effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not superuser, but
its real user (group) ID is equal to uid (gid), the effective user
(group) ID is set to uid (gid).

If the effective user ID of the calling process is not superuser, but
the saved set-user (group) ID from exec(2) is equal to uid (gid),
the effective user (group) ID is set to uid(gid) .

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
setuid (setgid) will fail if one of the following is true:

[EPERM] the real user (group) ID of the calling process is
not equal to uid (gid) and its effective user ID is
not superuser.

[E INVAL] The uid (gid) is out of range.

SEE ALSO
getuid(2), int ro(2), set regid(2), set reuid(2).

- 1 - September, 1987

•

•

•

•

•

•

s ign(3F) s ign (3F)

NAME
s ign, isign, dsign - Fortran ttansfer-of-sign intrinsic func
tion

SYNOPSIS
integer i, j, k
rea l rl , r2 , r3
double precision dpl , dp2 , dp3

k=i s ign (i , j)
k=s ign (i , j)

r3=s ign (rl , r2)

dp3=ds ign (dpl , dp2)
dp3=s ign (dpl , dp2)

DESCRIPI'ION
is ign returns the magnitude of its first argument with the sign of
its second argument. s ign and ds ign are its real and
double-precision counterparts, respectively. The generic version
is s ign, which devolves to the appropriate type depending on its
arguments .

- 1 - September, 1987

s ignal (3) signal(3)

NAME
s igna l - specify what to do upon receipt of a signal

SYNOPSIS
#include <signa l . h>

int (*s igna l (sig , June)) ()
int sig;
void (*june) () ;

DESCRIPTION

s ignal allows the calling process to choose one of three ways in
which it is possible to handle the receipt of a specific signal. sig
specifies the signal and June specifies the choice.

sig can be assigned any one of the following except S IGKILL:

SIGHUP 1 hangup
S I GINT 2 interrupt
S IGQUIT 3* quit
S IGILL 4* illegal instruction
S IGTRAP s• lrace trap
SIGIOT 6* Jar instruction
SIGEMT 7• EMT instruction
SIGFPE s• ftoating poun exception
SIGKILL 9 kill (cannot be caught, blocked, or ignored)
S I GBUS 10* bus error
S IGSEGV n • segmentation violation
SIGSYS 12* bad argument to system call
S I GPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGUSRl 1 6 user defined signal 1
S I GUSR2 17 user defined signal 2
SIGCLD IS. child status has changed
SIGPWR 19 power-fail restart
SIGTSTP 20t stop signal generated from keyboard
S I GTTIN 21t background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
S IGSTOP 23t stop (cannot be caught, blocked, or ignored)
S I GXCPU 24 cpu time limit exceeded
SIGXFSZ 25 file size limit exceeded
SIGVTALRM 26 virtual time alarm (see setitimer(2))
SIGPROF 27 profiling timer alarm (see setitimer(2))
SIGWINCH 2S. window size change
S IGCONT 29e continue after stop (cannot be blocked)

- 1 - September, 1987

•

•

•

•

•

•

s ignal(3) s ignal (3)

S I GURG 30. urgent condition present on socket
S IGIO 3 1• 1/0 is possible on a descriptor (see fcnt l(2))

The starred signals in the above list cause a core image if not
caught or ignored (see below).

Signals marked with • are discarded if the action is S IG DFL ;
signals marked with t cause the process to stop if the process is
part of 4.2 job control.

June is assigned one of three values: S IG_DFL, S IG_IGN, or a
function-address . The actions prescribed by these values are as
follows:

S IG _ DFL - terminate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is to be
terminated with the following consequences:

All of the receiving process's open file descriptors will
be closed.

If the parent process of the receiving process is execut
ing a wait, it will be notified of the termination of the
receiving process and the terminating signal's number
will be made available to the parent process; see
wait(2).

If the parent process of the receiving process is not exe
cuting a wait, the receiving process will be
transformed into a zombie process (see exi t(2) for
definition of zombie process).

The parent process ID of each of the receiving
process's existing child processes and zombie processes
will be set to 1 . This means the initialization process
(see in t ro(2)) inherits each of these processes.

Each attached shared memory segment is detached and
the value of shm nat tach in the data structure asso
ciated with its shafed memory identifier is decremented
by 1 .

For each semaphore for which the receiving process
has set a semadj value (see semop(2)), that
semadj value is added to the semval of the
specified semaphore .

If the process has a process, text, or data lock, an
unlock is performed (see plock(2)).

- 2 - September, 1987

signal (3) s igna l (3)

An accounting record will be written on the accounting
file if the system's accounting routine is enabled; see
acct(2).

If the receiving process's process ID, tty group ID, and
process group ID are equal, the signal S IGHUP will be
sent to all of the processes that have a process group ID
equal to the process group ID of the receiving process.

A ' 'core image' ' will be made in the current working
directory of the receiving process if sig is one for which
an asterisk appears in the above list and the following
conditions are met:

The effective user ID and the real user ID of the
receiving process are equal.

An ordinary file named core exists and is writ
able or can be created. If the file must be created,
it will have the following properties:

a mode of 0666 modified by the file creation
mask (see umask(2))

a file owner ID that is the same as the effec
tive user ID of the receiving process

a file group ID that is the same as the effec
tive group ID of the receiving process

S IG IGN - ignore signal -
The signal sig is to be ignored.

Note: The signal s IGKILL cannot be ignored.

function-address - catch signal
Upon receipt of the signal sig , the receiving process is to
execute the signal-catching function pointed to by June . The
signal number sig will be passed as the only argument to the
signal-catching function. Additional arguments are passed to
the signal-catching function for hardware-generated signals.
Before entering the signal-catching function, the value of
june for the caught signal will be set to S IG_DFL unless the
signal is S IGILL, S IGTRAP, or S IGPWR.

Upon return from the signal-catching function, the receiving
process will resume execution at the point it was interrupted.

When a signal that is to be caught occurs during a read, a
write, an open, or an ioct l system call on a slow

- 3 - September, 1987

•

•

•

•

•

•

signal (3) s ignal (3)

device (like a terminal; but not a file), during a pause sys
tem call, or dwing a wait system call that does not return
immediately due to the existence of a previously stopped or
zombie process, the signal-catching function will be exe
cuted and then the interrupted system call may return a -1 to
the calling process with errno set to E INTR. This
behavior is the default for 5.2 systems and it may be
modified by the setcompat(2) system call.

Note: The signal S IGKILL cannot be caught

A call to s ignal cancels a pending signal sig except for a pend
ing S IGKILL signal.

RETURN VALUE
Upon successful completion, s igna l returns the previous value
of june for the specified signal sig. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

ERRORS
s igna l will fail if:

[EINVAL] sig is an illegal signal number, including S IG
KILL .

WARNJNG
Two other signals that behave differently than the signals
described above exist in this release of the system; they are:

s IGCLD 18 death of a child (reset when caught)
s IGPWR 19 power fail (not reset when caught)

There is no guarantee that, in future releases of the UNIX system,
these signals will continue to behave as described below; they are
included only for compatibility with other versions of the UNIX
system. Their use in new programs is strongly discouraged.

For these signals ,func is assigned one of three values: S IG_DFL,
S IG IGN, or afunction-address. The actions prescribed by these
values of are as follows:

S IG DFL - ignore signal -
The signal is to be ignored.

S IG IGN - ignore signal
The signal is to be ignored. Also, if sig is S IGCLD, the cal
ling process's child processes will not create zombie
processes when they terminate; see exit(2).

- 4 - September, 1987

s ignal (3) s ignal (3)

function-address - catch signal
H the signal is s IGPWR, the action to be taken is the same as
that described above for june equal to junction-address. The
same is true if the signal is s I GCLD except, that while the
process is executing the signal-catching function, any
received s IGCLD signals will be queued and the signal
catching function will be continually reentered until the
queue is empty.

The S IGCLD affects two other system calls (wait(2), and
exit(2)) in the following ways:

wait If the june value of S IGCLD is set to S IG_IGN
and a wait is executed, the wait will block until
all of the calling process • s child processes terminate;
it will then return a value of -1 with errno set to
ECH I LD.

exit If in the exiting process•s parent process the june
value of S IGCLD is set to S IG_IGN, the exiting
process will not create a zombie process.

When processing a pipeline, the shell makes the last process in the
pipeline the parent of the proceeding processes. A process that
may be piped into in this manner {and thus become the parent of
other processes) should take care not to set S IGCLD to be caught.

SEE ALSO
kill(1), kill{2), pause(2), pt race(2), setcompat(2),
s igvec(2), wait(2), set 4 2 s ig(3), set jmp(3C).

BUGS
If a repeated signal arrives before the last one can be reset, there is
no chance to catch it. However, see the setcompat flag
COMPAT BSDS IGNALS.

The type specification of the routine and its june argument are
problematical.

The symbols s ighnd and s igt rap are globally defined sym
bols used by s igna l and are reserved words.

- 5 - September, 1987

•

•

•

•

•

•

s igna l (3F) s ignal (3F)

NAME
s ignal - specify Fortran action on receipt of a system signal

SYNOPSIS
integer i
external integer intfnc

call s igna l (i , intfnc)

DESCRIPTION
s ignal allows a process to specify a function to be invoked
upon receipt of a specific signal. The first argument specifies a
fault or exception; the second argument specifies the function to
be invoked.

SEE ALSO
kill(2), s ignal(3) .

- 1 - September, 1987

s in(3F) s in(3F)

NAME
s in, ds in, c s in - Fortran sine intrinsic function

SYNOPSIS
rea l rl , r2
double precis ion dpl , dp2
complex exl , cx2
r2=s in (rJ)

dp2=dsin (dpl)
dp2=s in (dpl)

cx2=cs in (cxl)
cx2=sin (exJ)

DESCRIPTION
s in returns the real sine of its real argument. ds in returns the
double-precision sine of its double-precision argument. c s in
returns the complex sine of its complex argument. The generic
s in function becomes ds in or c s in as required by argument
type.

SEE ALSO
t rig(3M).

- 1 - September, 1987

•

•

•

•

•

•

s inh(3F) s inh(3F)

NAME
s inh, dsinh - Fortran hyperbolic sine intrinsic function

SYNOPSIS
real rl , r2
double precision dpl , dp2

r2=s inh (rl)

dp2=dsinh (dpl)
dp2=s inh (dpl)

DESCRIPTION
s inh returns the real hyperbolic sine of its real argument
ds inh retwns the double-precision hyperbolic sine of its
double-precision argument. The generic fonn s inh may be used
to return a double-precision value given a double-precision argu
ment.

SEE ALSO
s inh(3M) .

- 1 - September, 1987

s inh(3M)

NAME
s inh, cosh, tanh - hyperbolic functions

SYNOPSIS
:finclude <math . h>

double s inh (x)
doublex;

double cosh (X)
doublex ;

double tanh (X)
doublex;

DESCRIPTION

s inh(3M)

s inh, cosh, and tanh return, respectively, the hyberbolic sine,
cosine, and tangent of their argument

RETURN V ALUB
s inh and cosh return HUGE (and s inh may return -HUGE
for negative x) when the correct value would overflow and set
errno to ERANGE .

These error-handling procedures may be changed with the func
tion mathe rr(3M).

SEE ALSO
mathe rr(3M).

- 1 - September, 1987

•

•

•

•

•

•

s leep(3C)

NAME
s leep - suspend execution for interval

SYNOPSIS
uns igned s leep (seconds)
uns igned seconds;

DESCRIPTION

s leep(3C)

s leep suspends the current process from execution for the
number of seconds specified by the argument. The actual suspen
sion time may be less than that requested for two reasons: (1)
scheduled wakeups occur at fixed 1-second intervals, (on the
second, according to an internal clock) and (2) any caught signal
will terminate s leep following execution of the signal catching
routine. The suspension time may be longer than requested by an
arbitrary amount, due to the scheduling of other activity in the sys
tem. The value returned by s leep is the "unslept" amount (the
requested time minus the time actually slept) in case the caller had
an alarm set to go off earlier than the end of the requested s leep
time or in case there is premature arousal due to another caught
signal.

The routine is implemented by setting an alarm signal and pausing
until it (or some other signal) occurs. The previous state of the
alarm signal is saved and restored. The calling program may have
set up an alarm signal before calling s leep. If the s leep time
exceeds the time before the alarm signal, the process sleeps only
until the alarm signal would have occurred and the caller's alarm
catch routine is executed just before the s leep routine returns.
If the s leep time is less than the time before the calling
program's alarm, the prior alarm time is reset to go off at the same
time it would have without the intervening s leep.

SEE ALSO
alarm(2), pause(2), s ignal(3) .

- 1 - September, 1987

s lots (3X) slots (3X)

NAME
slot s - ROM library functions

SYNTAX
cc rftags]files -lslot s [libraries]

DESCRIPI10N
The routines in the slots library provide access to board slot ROM
from either user or kernel processes. Calls to library routines do
not require knowledge of either the board ROM configuration or
the ROM addressing requirements.

USER FUNCTIONS
s lot PRAM init (slot, data)

Reoo the PRAM init structure for slot into the buffer pointed
to by data.

slot board flags (slot)
Reoo and return the board flags for slot.

s lot board id (slot)
Reoo and return the board ID number for slot.

s lot board name (slot, data, size)
Reoo up tO size bytes of the board name string for slot into
the buffer pointed to by data.

s lot board type (slot, data)
Reoo and return the unsigned 64 bit or 8 byte board type for
slot into the buffer pointed to by data.

s lot ether addr (slot, data)
For slot read 6 bytes of ethernet address into the buffer
pointed to by data.

s lot_primary_init (slot, data)
For slot read the primary init structure into the buffer pointed
to by data.

s lot_part_num (slot, data, size)
For slot get size bytes of the part number string into the
buffer pointed to by data.

s lot rev level (slot, data, size)
For slot get size bytes of the revision level of the ROM into
the buffer pointed to by data.

s lot serial number (slot, data, size)
FOr slot getsize bytes of serial number string into the buffer
pointed to by data.

- 1 - Septem�r. 1987

•

•

•

•

•

•

s lots (3X) slots (3X)

s lot vendor id (slot, data, size)
FOr slot read size bytes of vendor ID string into the buffer
pointed to by data .

UTILITY FUNCTIONS
s lot board vendor info (kind, slot, data , size)

F'Or slot get size bytes of the vendor information string of
type kind into the buffer pointed to by data.

s lot byte (address)
Retmn the byte located at address.

s lot data (slot, kind, request, data, s i z e)
F'Or slotlot, read size BITS of data for resource of type kind
from the resource list item of type request and put it into the
location pointed to by data.

s lot directory (slot, data , size)
F'Or slot read the resource directory into the buffer of size
entries pointed to by data.

s lot long (address, data)
Retmn 32 bits of data from address offset by data.

s lot resource (address, kind, request , data , size)
For ROM starting at base address read size bytes of the
request resource item from the kind resource into the buffer
pointed to by data.

s lot resource list (address, kind, data , size)
For ROM sWting at base address read size entries of
resource list of kind into the buffer pointed to by data.

s lot_st ructure (address, from, data, size)
From ROM starting at address plus the offset in parameter
from read size bytes of data into the buffer pointed to by data.

s lot word (address)
Return 16 bits of data located at address.

WW LEVEL FUNCTIONS
s lot seq violat ion ()

This routine is passed to s lot catch to handle bus errors.

s lot catch (kind, routine)
Setup routine to handle interrupts of type kind .

s lot ignore <kind>
Return the system to default handling of interrupts of type
kind.

- 2 - September, 1987

s lots (3X) s lots (3X)

s lot addres s (slot)
Retmns a computed ROM base address for slot.

s lot_bytelane (address, bytelane)
Retmn the ROM bytelane byte into bytelane for ROM start
ing at address.

s lot_calc_pointer (current, offset)
Retmn a ROM pointer offset bytes from current.

s lot rom data (address, width , data)
Stuung with address fill the buffer pointed to by data with
width bytes of data.

s lot_check_crc (top, fhp, bytelane)
Check the CRC for the ROM with base address top using the
format header information pointed to by fhp and the byte lane
information in bytelane.

s lot header (address, format hdrp)
Reoo the ROM format headef into the buffer pointed to by
format_ hdrp for the ROM starting at base address address.

SEE ALSO
Writing AIUX Device Drivers

BUGS
The slots library is only accessible to processes with superuser
privileges due to the required phys call to access board ROM.

- 3 - September, 1987

•

•

•

•

•

•

sput l (3X) sput l (3X)

NAME
sput l, sget l - access long integer data in a machine indepen
dent fashion

SYNOPSIS
void sput l (value , buffer)
long value ;
char *buffer ;

long sget l < buffer)
char *buffer ;

DESCRIPITON
sput l takes the 4 bytes of the long integer value and places them
in memory, starting at the address pointed to by buffer. The ord
ering of the bytes is the same across all machines.

sgetl retrieves the 4 bytes in memory, starting at the address
pointed to by buffer, and returns the long integer value in the byte
ordering of the host machine.

Use of sput l and sgetl provide a machine independent way
of storing long numeric data in a file in binary form without
conversion to characters .

A program that uses these functions must be loaded with the
object file access routine library libld . a.

SEE ALSO
a r{4) .

- 1 - September, 1987

sqrt (3F) sqrt (3F)

NAME
sqrt, dsqrt, csqrt - Fortran square root intrinsic function

SYNOPSIS
rea l rl , r2
double precis ion dpl , dp2
complex cxl , cx2
r2=sqrt (rl)

dp2=dsqrt (dpl)
dp2=sqrt (dpl)

cx2=csqrt (cxl)
cx2=sqrt (cxl)

DESCRIPilON
sqrt returns the real square root of its real argument dsqrt
returns the double-precision square root of its double-precision
argument csqrt returns the complex square root of its com
plex argument sqrt, the generic form, will become dsqrt or
csqrt as required by its argument type.

SEE ALSO
exp(3M).

- 1 - September, 1987

•

•

•

•

•

•

s signal (3C) s signal (3C)

NAME
s s ignal, qsiqnal - software signals

SYNOPSIS
tinclude <s iqnal . h>

int (* s s igna l (sig , action)) ()
int sig, (*action) () ;

int qs iqnal (sig)
int sig ;

DESCRIPTION
s siqnal and qs iqnal implement a software facility similar to
s iqnal(3). This facility is used by the Standard C Library to
enable users to indicate the disposition of error conditions; it is
also made available to users for their own purposes.

Software signals made available to users are associated with
integers in the inclusive range 1 through 15. A call to s s iqnal
associates a procedure, action , with the software signal, sig; the
software signal, sig , is raised by a call to qsiqnal. Raising a
software signal causes the action established for that signal to be
taken .

The first argument to s s iqnal is a number identifying the type
of signal for which an action is to be established. The second
argument defines the action; it is either the name of a user-defined
action function or one of the manifest constants S IG DFL
(default) or S IG IGN (ignore). s s iqnal returns the action
previously establiShed for that signal type; if no action has been
established or the signal number (sig) is illegal, s s ignal returns
S IG DFL.

gs ignal raises the signal identified by its argument, sig :

If an action function has been established for sig , then that
action is reset to S IG DFL and the action function is
entered with argument Slg. gsignal returns the value
returned to it by the action function.

If the action for sig is S IG_IGN, qs iqnal returns the
value 1 and takes no other action.

If the action for sig is S IG DFL, qs iqnal returns the
value 0 and takes no other action .

If sig has an illegal value or no action was ever specified for
sig , qs ignal returns the value 0 and takes no other
action.

- 1 - September, 1987

s s ignal (3C) s s ignal (3C)

SEE ALSO
s igvec(2), s ignal(3).

NOTES
There are some additional signals with numbers outside the range
1 through 15 which are used by the Standard C Library to indicate
error conditions. Thus, some signal numbers outside the range 1
through 15 are legal, although their use may interfere with the
operation of the Standard C Library.

- 2 - September, 1987

•

•

•

•

•

•

st ring(3C) st ring(3C)

NAME
st rcat, st rncat, st rcmp, st rncmp, st rcpy, st rncpy,
st rlen, st rchr, st rrchr, st rpbrk, st rspn, st rcspn,
st rtok - string operations

SYNOPSIS
#include <st ring . h>

char *st rcat (sl , s2)
char *sl , *s2 ;

char *strncat (sl , s2 ,
char *sl , *s2 ;
int n ;

int st rcmp (sl , s2)
char *sl , *s2 ;

int st rncmp (sJ , s2 , n)
char *sl , *s2 ;
int n ;

char *st rcpy (sl , s2)
char *sl , *s2 ;

char *st rncpy (sl ,
char *sl , *s2 ;
int n ;

int st rlen (s)
char *s ;

char * st rchr (s , c)
char *s ;
int c ;

s2 ,

char *st rrchr (s , c)
char *s;
int c ;

char * s t rpbrk (sl , s2)
char *sl , *s2 ;

int st rspn (sl , s2)
char *sl , *s2 ;

int strcspn (sJ , s2)
char *sl , *s2 ;

char *strtok (sl ,s2)
char *sl , *s2 ;

n)

- 1 -

n)

September, 1987

st ring(3C) st ring(3C)

DESCRIPTION
The arguments sl , s2 , and s point to strings (arrays of characters
terminated by a null character). The functions st rcat,
st rncat, st rcpy, and st rncpy all alter sl . These functions
do not check for overflow of the array pointed to by sl .

st rcat appends a copy of string s2 to the end of string sl .
strncat appends at most n characters. Each function returns a
pointer to the null-terminated result

st rcmp performs a lexicographical comparison of its arguments
and returns an integer less than, equal to, or greater than 0, when
sl is less than, equal to, or greater than s2 , respectively.
st rncmp makes the same comparison but looks at a maximum of
n characters.

st rcpy copies string s2 to string sl , stopping after the null char
acter has been copied. st rncpy copies exactly n characters,
truncating s2 or adding null characters to sl if necessary. The
result is not null-terminated if the length of s2 is n or more. Each
function returns sl .

st rlen returns the number of characters in s, not including the
terminating null character.

st rchr (st rrchr) returns a pointer to the first (last)
occurrence of character c in string s, or a NULL pointer if c does
not occur in the string. The null character terminating a string is
considered to be part of the string.
st rpbrk returns a pointer to the first occurrence in string sl of
any character from string s2 , or a NULL pointer if no character
from s2 exists in sl .

strspn (strcspn) returns the length of the initial segment of
string sl which consists entirely of characters from (not from)
string s2 .

st rtok considers the string sl to consist of a sequence of zero or
more text tokens separated by spans of one or more characters
from the separator string s2 . The first call (with pointer sl
specified) returns a pointer to the first character of the first token,
and writes a null character into sl immediately following the
returned token. The function keeps ttack of its position in the
string between separate calls, so that on subsequent calls (which
must be made with a NULL pointer as the first argument) it works
through the string sl immediately following that token. This can
be continued until no tokens remain. The separator string s2 may

- 2 - September, 1987

•

•

•

•

•

•

strinq(3C) string(3C)

be different from call to call. When no token remains in sl , a
NULL pointer is returned.

NOTE
For user convenience, all these functions are declared in the
optional <string . h> header file.

BUGS
strcmp use native character comparison. Thus the sign of the
value returned when one of the characters has its high-order bit set
is implementation-dependent

All string movement is performed character by character starting
at the left Thus overlapping moves toward the left will work as
expected, but overlapping moves to the right may yield surprises .

- 3 - September, 1987

st rtod(3C) st rtod(3C)

NAME
st rtod - convert string to double-precision number

SYNOPSIS
double strtod (str, ptr)
char *str, * *ptr ;

DESCRIPTION
st rtod returns as a double-precision floating-point number the
value represented by the character string pointed to by str. The
string is scanned up to the first unrecognized character.

st rtod recognizes an optional string of "white-space" charac
ters (as defined by isspace in ctype(3C)), then an optional sign,
then a string of digits optionally containing a decimal point, then
an optional e or E followed by an optional sign or space, fol
lowed by an integer.

If the value of ptr is not (char * *) NULL, a pointer to the char
acter terminating the scan is returned in the location pointed to by
ptr. If no number can be formed, * ptr is set to str, and zero is
returned.

SEE ALSO
atof(3C), ctype(3C), scanf(3S), strtol(3C).

DIAGNOSTICS
If the correct value would cause overflow, ±HUGE is returned
(according to the sign of the value), and errno is set to
ERANGE.
If the correct value would cause underflow, zero is returned and
errno is set to ERANGE.

- 1 - September, 1987

•

•

•

•

•

•

strtol (3C) strtol (3C)

NAME
strtol, atol, atoi - convert string to integer

SYNOPSIS
long strtol (str, ptr , base)
char *str, * *ptr ;
int base ;

long atol (str)
char *str ;

int atoi (str)
char *str ;

DESCRIYfiON
strtol returns as a long integer the value represented by the
character string pointed to by str. The string is scanned up to the
first character inconsistent with the base. Leading white-space
characters (blanks and tabs) are ignored.

If the value of ptr is not (char * *) NULL, a pointer to the char
acter terminating the scan is returned in the location pointed to by
ptr. If no integer can be formed, zero is returned

If base is positive (and not greater than 36), it is used as the base
for conversion. After an optional leading sign, leading zeros are
ignored; a leading Ox or OX is ignored if base is 16.

If base is zero, the string itself determines the base. After an
optional leading sign, a leading zero indicates octal conversion
and a leading Ox or OX indicates hexadecimal conversion; other
wise, decimal conversion is used.

Truncation from long to int qm take place upon assignment
or by an explicit cast.

atol (str) is equivalent to:

strtol (str, (char * *) NULL, 1 0)

atoi (str) is equivalent to:

(int) strtol (str, (char * *) NULL, 1 0)

SEE ALSO
ctype(3C), scanf(3S), strtod(3C).

BUGS
Overflow conditions are ignored .

- 1 - September, 1987

swab(3C)

NAME
swab - swap bytes

SYNOPSIS
void swab ifrom, to , nbytes)
char *from, *to ;
int nbytes ;

DESCRIPITON

swab{3C)

swab copies nbytes bytes referenced by from to the array refer
enced by to , exchanging adjacent even and odd bytes. It is useful
for carrying binary data between PDP-l ls and other machines.
nbytes should be even and non-negative. If nbytes is odd and
positive, swab uses nbytes-1 instead. If nbytes is negative,
swab does nothing.

- 1 - September, 1987

•

•

•

•

•

•

system(3F) system(3F)

NAME
system - issue a shell command from Fortran

SYNOPSIS
character *N c

call system (c)

DESCRIPI10N
system causes its character argument to be given to sh(l) as
input, as if the string had been typed at a terminal. The current
process waits until the shell has completed.

SEE ALSO
sh(l), exec(2), system(3S) .

- 1 - September, 1987

system(3S)

NAME
system - issue a shell command

SYNOPSIS
#include <stdio . h>

int system (string)
char *string ;

DESCRIPTION

system(3S)

system causes string to be given to sh{1) input, as if the string
had been typed as a command at a terminal. The current process
waits until the shell has completed, then returns the exit status of
the shell.

RETURN VALUE
system forks to create a child process that in turn performs
exec(2) on /bin / sh in order to execute string. If the fork
or exec fails, system returns a negative value and sets
errno.

FILES
/bin / sh

SEE ALSO
sh(1), exec(2).

- 1 - September, 1987

•

•

•

•

•

•

tan(3F) tan(3F)

NAME
tan, dtan - Fortran tangent intrinsic function

SYNOPSIS
rea l rl , r2
double precis ion dpl , dp2

r2=tan (rl)

dp2=dtan (dpl)
dp2=ftan (dpl)

DESCRIPTION
tan returns the real tangent of its real argument dtan returns
the double-precision tangent of its double-precision argument.
The generic tan function becomes dtan as required with a
double-precision argument.

SEE ALSO
t rig(3M) .

- 1 - September, 1987

tanh{3F) tanh{3F)

NAME
tanh, dtanh - Fortran hyperbolic tangent intrinsic function

SYNOPSIS
real rl , r2
double precis ion dpl , dp2

r2=tanh (rl)

dp2=dtanh (dpl)
dp2=tanh (dpl)

DESCRIPTION
tanh returns the real hyperbolic tangent of its real argument.
dtanh returns the double-precision hyperbolic tangent of its dou
ble precision argument. The generic form tanh may be used to
return a double-precision value given a double-precision argu
ment.

SEE ALSO
s inh(3M).

- 1 - September, 1987

•

•

•

•

•

•

termcap(3X) termcap(3X)

NAME
tgetent, tgetnum, tgetflag, tget str, tgoto, tput s
terminal independent operation routines

SYNOPSIS
char P C ;
char *BC ;
char *UP ;
short ospeed;

int tgetent (bp, name)
char *bp, *name

int tgetnum (id
char *id;

int tget flag (id)
char *id;

char *tgetstr (id, area)
char *id, * *area ;

char *tgoto (em, desteol , destline)
char *em ;
int desteol ;
int destline ;

int tputs (ep , affent, oute)
char *ep ;
int affent ;
int (*oute) () ;

DESCRIPTION
These functions extract and use capabilities from the terminal
capability data base termcap(4). Note that these are low-level
routines.

tgetent extracts the entry for terminal name into the buffer at
bp . bp should be a character buffer of size 1024 and must be
retained through all subsequent calls to tgetnum, tget flag,
and tget str. tgetent returns -1 if it cannot open the
termcap file, 0 if the terminal name given does not have an
entry, and 1 if successful. It looks in the environment for a
TERMCAP variable. If a variable is found whose value does not
begin with a slash and the terminal type name is the same as the
environment string TERM, the TERMCAP string is used instead of
reading the termcap file. If the value does begin with a slash,
the string is used as a pathname rather than /etc/termcap.
This can speed up entry into programs that call tgetent . Bt can

- 1 - September, 1987

termcap(3X) termcap(3X)

also help debug new terminal descriptions or be used to make one
for your terminal if you can't write the file /etc/termcap.

tgetnum gets the numeric value of capability id, retmning -1 if
is not given for the terminal. tgetflag returns 1 if the
specified capability is present in the terminal's entry, 0 if it is not.
tget str gets the string value of capability id, placing it in the
buffer at area , advancing the area pointer. It decodes the abbrevi
ations for this field described in termcap(4), except for cursor
addressing and padding infonnation.

tgoto returns a cursor addressing string decoded from em to go
to column destcol in line destline . It uses the external variables
UP (from the up capability) and BC (if be is given rather than
bs) if necessary to avoid placing \n, A D or A @ in the returned
string. (Programs that call tgoto should be sure to turn off the
XTABS bit(s), since tgoto may now output a tab. Note that pro
grams using termcap should in geneml turn off XTABS anyway
since some terminals use CONTROL-I for other functions, such as
nondestructive space.) If a % sequence is given which is not
understood, then tgoto returns . . OOP S " .

tput s decodes the leading padding information of the string cp ;
affcnt gives the number of lines affected by the operation, or 1
if this is not applicable; outc is a routine that is called with each
character in turn. The external variable ospeed should contain
the output speed of the terminal as encoded by st t y (1) • The
external variable PC should contain a pad character to be used
(from the pc capability) if a null (A @) is inappropriate.

Fll..ES
/ lib/ l ibtermcap . a
/etc/te rmcap

SEE ALSO
ex(1), termcap(4).

- 2 - September, 1987

•

•

•

•

•

•

tmpfi1e (3S) tmpfile(3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
:It include <stdio . h>

F I LE *tmpfile ()

DESCRIPITON
tmpfile creates a temporary file using a name generated by
tmpnam(3S), and returns a corresponding F I LE pointer. The
file is automatically deleted when the process using it terminates.
The file is opened for update ("w+"). tmpfile calls fopen
and so returns any error code passed to it from

RETURN VALUE
If the temporary file cannot be opened, an error message is printed
using perror(3C), and a NULL pointer is returned. fopen.

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C), perror(3C),
tmpnam(3S) .

- 1 - September, 1987

tmpnam(3S) tmpnam(3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
:fl:include <stdio . h>

char *tmpnam (s)
char *s;

char *tempnam (dir, pfx)
char *dir, *pfx;

DESCRIPTION
These functions generate filenames that can safely be used for a
temporary file.

tmpnam always generates a filename using the pathname defined
as p tmpdir in the <stdio . h> header file. If s is NULL,
tmpnam leaves its result in an internal static area and returns a
pointer to that area. The next call to tmpnam will destroy the
contents of the area. If s is not NULL, it is assumed to be the
address of an array of at least 1_ tmpnam bytes, where
1_ tmpnam is a constant defined in <stdio . h>; tmpnam
places its result in that array and returns s.

tempnam allows the user to control the choice of a directory.
The argument dir points to the pathname of the directory in which
the file is to be created. If dir is NULL or points to a string which
is not a pathname for an appropriate directory, the pathname
defined as p tmpdir in the <stdio . h> header file is used.
If that pat:hruiine is not accessible, I tmp will be used as a last
resort This entire sequence can be upstaged by providing an
environment variable TMPDIR in the user's environment, whose
value is a pathname for the desired temporary-file directory.

Many applications prefer that names of temporary files contain
favorite initial letter sequences. Use the pfx argument for this.
This argument may be NULL or point to a string of up to 5 char
acters to be used as the first few characters of the name of the tem
porary file.

tempnam uses malloc(3C) to get space for the constructed
filename and returns a pointer to this area. Thus, any pointer
value returned from tempnam may serve as an argument to free
(see malloc(3C)). If tempnam cannot return the expected
result for any reason (i.e. , malloc failed or attempts to find an
appropriate directory were unsuccessful), a NULL pointer will be
returned.

- l - September, 1987

•

•

•

•

•

•

tmpnam(3S) tmpnam(3S)

NOTES
These functions generate a different filename each time they are
called .

Files created using these functions and either fopen(3S) or
c reat(2) are temporary only in the sense that they reside in a
directory intended for temporary use and their names are unique.
It is the user's responsibility to use unlink(2) to remove the file
when its use is ended.

SEE ALSO
c reat(2), unlink(2}, fopen(3S), malloc(3C), mktemp(3C),
tmpf ile(3S).

BUGS
If called more than 17,576 times in a single process, tmpnam and
tempnam will start recycling previously used names.
Between the time a filename is created and the file is opened, it is
possible for some other process to create a file with the same
name. This can never happen if that other process is using
tmpnam, tempnam, or mktemp(3C) and the filenames are
chosen carefully to avoid duplication by other means .

- 2 - September, 1987

t rig(3M) t rig(3M)

NAME
s in, cos , tan, as in, acos, atan, atan2 - tri
gonometric functions

SYNOPSIS
#include <math.h>

double s in (x)
double x;

double C O S (X)
double X;
double tan (x)
double x;

double asin (X)
double x;

double acos (x)
double x ;

double a tan (x)
double x;

double atan2 (y, X)
double x, y;

DESCRIPTION
s in, cos , and tan return, respectively, the sine, cosine, and
tangent of their argument, which is in radians.
a s in returns the arcsine of x, in the range -TC/2 to TC/2.
acos returns the arccosine of x, in the range 0 to 1t.

a tan returns the arctangent of x, in the range -'lt/2 to 1tfl..

atan2 returns the arctangent of y/x, in the range -'It to 1t, using
the signs of both arguments to determine the quadrant of the return
value.

RETURN VALUE
sin, cos , and tan lose accuracy when their argument is far
from zero. For arguments sufficiently large, these functions return
0 when there would otherwise be a complete loss of significance.
In this case a message indicating TLOSS error is printed on the
standard error output. For less extreme arguments, a PLOSS
error is generated but no message is printed. In both cases,
errno is set to ERANGE.

- 1 - September, 1987

•

•

•

•

•

•

t rig(3M) t rig(3M)

If the magnitude of the argument of asin or acos is greater
than one, or if both arguments of atan2 are zero, zero is
returned and errno is set to EDOM. In addition, a message indi
cating DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the func
tion matherr(3M).

SEE ALSO
matherr(3M) .

- 2 - September, 1987

tsearch(3C) t search(3C)

NAME
tsearch, t find, tdelete, twalk - manage binary search
trees

SYNOPSIS
#include <search . h>

char *tsearch (key, rootp, compar)
char *key ;
char * *rootp ;
int (*compar) () ;

char *tfind (key, rootp , compar) ;
char *key;
char * *rootp ;
int (*compar) () ;

char *tdelete (key, rootp, compar) ;
char *key ;
char * *rootp;
int (*compar) () ;

void twalk (root, action)
char *root;
void (*action) () ;

DESCRIPTION
tsearch, t find, tdelete, and twalk are routines for
manipulating binary search trees. They are generalized from
Knuth (6.2.2) Algorithms T and D. All comparisons are done
with a user-supplied routine. This routine is called with two argu
ments, the pointers to the elements being compared. It returns an
integer less than, equal to, or greater than 0, according to whether
the first argument is to be considered less than, equal to or greater
than the second argument The comparison function need not
compare every byte, so arbitrary data may be contained in the ele
ments in addition to the values being compared.

t search is used to build and access the tree. key is a pointer to
a datum to be accessed or stored. If there is a datum in the tree
equal to */cey (the value referenced by /cey), a pointer to this found
datum is returned. Otherwise, *key is inserted, and a pointer to it
returned. Only pointers are copied, so the calling routine must
store the data. rootp points to a variable that points to the root of
the tree. A NUlL value for the variable referenced by rootp
denotes an empty tree; in this case, the variable will be set to point
to the datum which will be at the root of the new tree.

- 1 - September, 1987

•

•

•

•

•

•

tsearch(3C) tsearch(3C)

Like t search, tfind will search for a datum in the tree,
returning a pointer to it if found However, if it is not found,
t find will return a NULL pointer. The arguments for tfind
are the same as for tsearch.

tdelete deletes a node from a binary search tree. The argu
ments are the same as for t search. The variable pointed to by
rootp will be changed if the deleted node was the root of the tree.
tdelete returns a pointer to the parent of the deleted node, or a
NULL pointer if the node is not found.

twalk traverses a binary search tree. root is the root of the tree
to be traversed. (Any node in a tree may be used as the root for a
walk below that node.) action is the name of a routine to be
invoked at each node. This routine is, in turn, called with three
arguments. The first argument is the address of the node being
visited. The second argument is a value from an enumeration data
type

t ypedef en urn {preorder, postorder, endorder , leaf } VI S I T ;

(defined in the <search . h> header file), depending on whether
this is the first, second or third time that the node has been visited
(during a depth-first, left-to-right traversal of the tree), or whether
the node is a leaf. The third argument is the level of the node in
the tree, with the root being level zero.

The pointers to the key and the root of the tree should be of type
pointer-to-element, and cast to type pointer-to-character. Simi
larly, although declared as type pointer-to-character, the value
returned should be cast into type pointer-to-element.

EXAMPLE
The following code reads in strings and stores structures contain
ing a pointer to each string and a count of its length. It then walks
the tree, printing out the stored strings and their lengths in alpha
betical order.
i inc lude < search . h>

i inc lude < stdio . h>

st ruct node { / *pointers to these are

} ;

cha r * st r ing; stored in the t ree * I

int length;

char string_ space [1 0 0 0 0] ; / * space t o store

s t r ings * /

- 2 - September, 1987

tsearch(3C) t search(3C)

st ruct node node s [5 0 0] ; / *node s t o store * /

st ruct node * root = NULL ; / *this point s t o the

root * /

ma in ()

{

I *

* I

int

char * st rpt r = s t ring_space ;

st ruct node *nodept r = node s ;

vo id print_node () , twalk () ;

int i = 0 , node_compare () ;

wh i le (get s (st rpt r) ! = NULL & & i++ < 5 0 0)

I * set node * /

nodept r->string = strpt r ;

nodept r-> length = strlen (st rpt r) ;

I * put node into the t ree * /

(void) tsearch ((char *) nodeptr , & root ,

node_compare) ;

I * adjust po inte r s , so we

don ' t overwr ite t ree * /
s t rpt r += nodept r->length + 1 ;

nodept r + + ;

t w a l k (root , print_node) ;

Th i s rout ine compare s two node s , based on an

a lphabet ical o rder ing o f the str ing f i e ld .

node_compare (node l , node2)

st ruct node *node l , *node2 ;

I *

* I

vo id

return st rcmp (node l - > st ring, node 2 - > s t r ing) ;

Th i s rout ine print s out a node , the

first t ime twalk encounters it .

print_node (node , orde r , leve l)

st ruct node * *node ;

VIS I T orde r ;

- 3 - September, 1987

•

•

•

•

•

•

tsearch(3C) t search(3C)

int leve l ;

i f (orde r = = preo rde r I I o rde r = = leaf)

(void) print f (" st r ing = % 2 0 s , length %d\n" ,

(*node) ->str ing, (*node) -> length) ;

RETURN VALUE
A NUll.. pointer is returned by tsearch if there is not enough
space available to create a new node.

A NUll.. pointer is returned by tsearch, t f ind and
tde lete if rootp is NULL on entry.

If the datum is found, both tsearch and t find return a
pointer to it. If not, t f ind returns NULL, and tsearch
returns a pointer to the inserted item.

SEE ALSO
bsea rch(3C), hsearch(3C), lsearch(3C).

WARNINGS
The root argument to twalk is one level of indirection less than
the rootp arguments to t search and tde lete.
There are two nomenclatures used to refer to the order in which
tree nodes are visited. t search uses preorder, postorder and
endorder to respectively refer to visting a node before any of its
children, after its left child and before its right, and after both its
children. The alternate nomenclature uses preorder, inorder and
postorder to refer to the same visits, which could result in some
confusion over the meaning of postorder.

BUGS
If the calling function alters the pointer to the root, results are
unpredictable .

- 4 - September, 1987

ttyname (3C)

NAME
ttyname, isatty - find name of a tenninal

SYNOPSIS
char *ttyname (fildes)
int fildes;

int isatty (fildes)
int fildes;

DESCRIPTION

ttyname (3C)

ttyname returns a pointer to a string containing the null
terminated pathname of the tenninal device associated with file
descriptor fildes.

RETURN VALUE
ttyname returns a NULL pointer iffildes does not describe a ter
minal device in directory I dev.

isatty returns 1 if fildes is associated with a tenninal device;
otherwise, it returns 0.

Fll.ES
/dev/ *

BUGS
The return value points to static data whose content is overwritten
by each call.

- 1 - September, 1987

•

•

•

•

•

•

ttys lot (3C) ttys lot (3C)

NAME
t tyslot - find the slot in the utmp file of the current user

SYNOPSIS
int ttyslot ()

DESCRIPI'ION
ttyslot retmns the index of the current user's entry in the
/etc/utmp file. This is accomplished by scanning the file
/et c / inittab for the name of the terminal device associated
with the standard input. the standard output. or the error output (0.
1 . or 2).

SEE ALSO
getut(3C). ttyname(3C).

FILES
/etc/ inittab
/ etc/utmp

RETURN V ALUB
A value of 0 is returned if an error is encountered while searching
for the terminal name or if none of the above file descriptors is
associated with a terminal device .

- 1 - September. 1987

umount (3)

NAME
umount - unmount a file system

SYNOPSIS
int umount (spec)
char *spec ;

DESCRIPITON

umount (3)

umount requests that a previously mounted file system contained
on the block special device identified by spec be unmounted. spec
is a pointer to a path name. After unmounting the file system, the
directory upon which the file system was mounted reverts to its
ordinary interpretation.

umount may be invoked only by the superuser.

ERRORS
urnount will fail if one or more of the following are true:

[EPERM] The process's effective user ID is not
superuser.

[ENXIO] spec does not exist.

[ENOTBLK]

[E INVAL]

[EBUSY]

[EFAULT]

spec is not a block special device.

spec is not mounted.

A file on spec is busy.

spec points to an illegal address.

RETURN VALUE
Upon successful completion a value of 0 is returned Otherwise, a
value of - 1 is returned and e r rno is set to indicate the error.

SEE ALSO
fsmount(2), unrnount(2), rnount(3).

- 1 - September, 1987

•

•

•

•

•

•

ungetc (3S)

NAME
ungetc - push character back into input stream

SYNOPSIS
:It include <stdio . h>

int ungetc (c , stream)
char c ;
F I LE *stream ;

DESCRIPTION

ungetc (3S)

ungetc inserts the character c into the buffer associated with an
input stream . That character, c , will be returned by the next
getc call on that stream. ungetc returns c and leaves the file
stream unchanged.

One character of pushback is guaranteed provided something has
been read from the stream and the stream is actually buffered. In
the case that stream is stdin, one character may be pushed back
onto the buffer without a previous read statement.

If c equals EOF, ungetc does nothing to the buffer and returns
EOF.

f seek(3S) erases all memory of inserted characters .

RETURN VALUE.
ungetc returns EOF if it can't insert the character.

SEE ALSO
fseek(3S), getc(3S), setbuf(3S) .

- 1 - September, 1987

varargs (3X)

NAME
varargs - handle variable argument list

SYNOPSIS
:fl:inelude <varargs . h>

va alist

va del

void va start (pvar)
va_list pvar;

type va_arg (pvar, type)
va_list pvar;

void va _end (pvar)
va_list pvar;

DESCRIPITON

varargs (3X)

This set of macros allows portable procedures that accept variable
argument lists to be written. Routines that have variable argument
lists (such as print f(3S)) but do not use varargs are
inherently nonportable, as different machines use different
argument-passing conventions.

va _a list is used as the parameter list in a function header.

va del is a decdaration for va alist . No semicolon should
follow va del.

-

va list is a type defined for the variable used to traverse the
IisC
va _start is called to initialize pvar to the beginning of the list

va arg will return the next argument in the list referenced by
pvar. type is the type the argument is expected to be. Different
types can be mixed, but it is up to the routine to know what type of
argument is expected, as it cannot be determined at runtime.

va _end is used to clean up.

Multiple traversals, each bracketed by va start . . . va_end,
are possible.

EXAMPLE
This example is a possible implementation of execl(2).

i include <varargs . h>

ide f ine MAXARGS 1 0 0

/ *exe c ! i s cal led by

- 1 - September, 1987

•

•

•

•

•

•

varargs (3X)

exe c ! (f i le , a rg l , a rg2 , • . . , (char *) 0) ;

* I

execl (va_a l i s t)

v a del

va_l i s t ap ;

char * f i le ;

cha r * a rgs [MAXARGS] ;

int argno = 0 ;

va_st art (ap) ;

f i le = va_arg (a p , char *) ;

varargs (3X)

wh i le ((args [argno ++ l = va_arg (ap, char *)) ! = (char *) 0)

va_end (ap) ;

return execv (fi l e , args) ;

}

SEE ALSO
exec(2), printf(3S).

BUGS
It is up to the calling routine to specify how many arguments there
are, since it is not always possible to determine this from the stack
frame. For example, exec! is passed a zero pointer to signal the
end of the list print f can tell how many arguments are there
by the format.
It is non-portable to specify a second argument of char, short,
or float to va_arg, since arguments seen by the called func
tion are not char, short, or float. C converts char and
short arguments to int and converts float arguments to
double before passing them to a function .

- 2 - September, 1987

vprint f(3S) vprint f (3S)

NAME
vprint f, vfprint f, vsprint f - print formatted output of a
varargs argument list

SYNOPSIS
#include <stdio . h>
:lf:include <varargs . h>

int vprint f Cjormat, ap)
char *format;
va_list ap;

int vfprint f (stream, format, ap)
FILE *stream;
char *format;
va_list ap;

int vsprint f (s , format, ap)
char *s, *format;
va list ap;

DESCRIPnON
vprint f, vfprint f, and vsprint f are the same as
print £, fprint f, and sprint £ respectively, except that
instead of being called with a variable number of arguments, they
are called with an argument list as defined by varargs(S).

EXAMPLE
The following demonstrates how vfprint f could be used to
write an error routine.

!I inc lude < st d i o . h >

!I inc lude <varargs . h >

I *

* e r r o r shou ld be cal led l ike

* error (funct i on_name , fo rmat , argl , arg2 . . .) ;

* I

/ *VARARGSO * /

void

error (va_a l i s t)

I * Note that the funct i on_name and format argument s

* cannot be separate ly de c l ared becau se o f the

* / de fi n i t ion of varargs .

va del

- 1 - September, 1987

•

•

•

•

•

•

vprint f (3S)

va_ l i s t args ;

cha r * fmt ;

va_s t a rt (args) ;

vprint f (3S)

I * p r i n t o u t n ame o f funct i o n cau s ing e r r o r * I

(vo i d) fpr i nt f (s t de r r , "ERROR i n % s : " ,

va_a rg (a rgs , cha r *)) ;

fmt = va_arg (a rgs , char *) ;

I * p r int out rema inde r o f me s s age * I
(vo i d) v fp r i nt f (fmt , args) ;

va _end (a rg s) ;

(vo i d) abo rt () ;

SEE ALSO
varargs(5) .

- 2 - September, 1987

xdr(3N) xdr (3N)

NAME
xdr - library routines for external data representation

DESCRIPTION
These routines allow C programmers to describe arbitrary data
structures in a machine-independent fashion. Data for remote pro
cedure calls are transmitted using these routines.

FUNCTIONS
xdr_array ()

xdr_bool ()

xdr _bytes ()

xdr_de st roy ()

xdr _double ()

xdr_enum ()

xdr_f loat ()

xdr_getpos ()

xdr_inl ine ()

xdr_int ()

xdr_long ()

xdr _opaque ()

xdr_refe rence ()
xdr_setpos ()

xdr_short ()

xdr_st ring ()

xdr_u_int ()

xdr_u_long ()

translate arrays to/from external
representation
tr.mslate Booleans to/from exter
nal representation
translate counted byte strings
to/from external representation
destroy XDR stream and free
associated memory
translate double precision to/from
external representation
translate enumerations to/from
external representation
translate floating point to/from
external representation
return current position in XDR
stream
invoke the in-line routines associ
ated with XDR stream
translate integers to/from external
representation
translate long integers to/from
external representation
translate fixed-size opaque data
to/from external representation
chase pointers within structures
change current position in XDR
stream
translate short integers to/from
external representation
translate null-terminated strings
to/from external representation
translate unsigned integers
to/from external representation
translate unsigned long integers
to/from external representation

- 1 - September, 1987

•

•

•

•

•

•

xdr(3N)

xdr_u_short ()

xdr _union ()

xdr_void ()
xdr_wrapstring ()

xdrmem_create ()
xdrrec_create ()

xdrrec_endofrecord ()

xdrrec_eof ()

xdrrec_skiprecord ()

xdrstdio_create ()

SEE ALSO

xdr (3N)

translate unsigned short integers
to/from external representation
translate discriminated unions
to/from external representation
always return one (1)
package RPC routine for XDR
routine, or vice-versa
initialize an XDR stream
initialize an XDR stream with
record boundaries
mark XDR record stream with an
end-of-record
mark XDR record stream with an
end-of-file

skip remaining record in XDR
record stream
initialize an XDR stream as stan
dard 1/0 FILE stream

AIUX Network Applications Programming .

- 2 - September, 1987

ypclnt (3N) ypclnt (3N)

NAME
yp_bind, yp unbind, yp get default domain,
yp match, yp first, yp next, yp all , yp orde r,
yp=master, yperr_strini' ypprot_err - yellow pages
client interface

SYNOPSIS
#include <rpcsvc/ypclnt . h>
yp bind (indomain) ;
char *indomain ;

void yp unbind (indomain)
char *iiidomain ;

yp get default domain (outdomain) ;
char **outdomain;

yp_match (indomain , inmap, inkey, inkeylen ,
outval, outvallen)

char *indomain ;
char *inmap ;
char *in/cey ;
int inkeylen ;
char * *outval ;
int *outvallen ;

yp_first (indomain , inmap, outkey, outkeylen ,
outval , outvallen)

char *indomain ;
char *inmap ;
cha r * *outkey ;
int *outkeylen ;
char * *outval ;
int *outvallen ;

yp next (indomain , inmap, inkey, inkeylen , -
outkeylen , outval, outvallen) ;

outkey,

char *indomain ;
char *inmap ;
char *inkey ;
int inkeylen ;
char * *outkey ;
int *outkeylen ;
char * * outval ;
int *outvallen ;

- 1 - September, 1987

•

•

•

•

•

•

ypclnt (3N)

yp all (indomain, inmap, incallback> ;
char *indomain ;
char *inmap ;
st ruct ypall_callback incallback ;

yp order (indomain, inmap, outorder> ;
char *indomain ;
char *inmap ;
int *outorder ;

yp master (indomain, inmap, outname) ;
char *indomain ;
char *inmap ;
char * *outname ;

char *yperr_string (incode)
int incode ;

ypprot err (incode)
uns igned int incode ;

DESCRIPTION

ypclnt (3N)

This package of functions provides an interface to the yellow
pages (YP) network lookup service. The package can be loaded
from the standard library I lib/ libc . a . Refer to ypfiles(4)
and ypserv(lM) for an overview of the yellow pages, including
the definitions of map and domain , and a description of the vari
ous servers, databases, and commands that comprise the YP.
All input parameters names begin with ' ' in" . OUtput parameters
begin with "out" . Output parameters of type "char * * "
should be addresses of uninitialized character pointers. Memory
is allocated by the YP client package using malloc(3), and may
be freed if the user code has no continuing need for it. For each
outkey and outval , two extra bytes of memory are allocated at the
end that contain NEWLINE and NULL, respectively, but these
two bytes are not reflected in outkeylen or outvallen .

indomain and inmap strings must be non-null and null-terminated.
String parameters which are accompanied by a count parameter
may not be null, but may point to null strings, with the count
parameter indicating this. Counted strings need not be null
terminated .

All functions in this package of type " int" return 0 if they
succeed, and a failure code (YPERR xxxx) otherwise. Failure
codes are described under ERRORS below.

- 2 - September, 1987

ypclnt (3N) ypclnt (3N)

The YP lookup calls require a map name and a domain name, at
minimum. It is assumed that the client process knows the name of
the map of interest. Client processes should fetch the node's
default domain by calling yp_get_default_domain () , and
use the returned outdomain as the indomain parameter to succes
sive YP calls.

To use the YP services, the client process must be "bound" to a
YP server that serves the appropriate domain using yp _bind.
Binding need not be done explicitly by user code; this is done
automatically whenever a YP lookup function is called.
yp _bind can be called directly for processes that make use of a
backup stmtegy (e.g. , a local file) in cases when YP services are
not available.

Each binding allocates (uses up) one client process socket descrip
tor; each bound domain costs one socket descriptor. However,
multiple requests to the same domain use that same descriptor.
yp unbind () is available at the client interface for processes
that explicitly manage their socket descriptors while accessing
multiple domains. The call to yp _unbind () make the domain
"unbound," and free all per-process and per-node resources used
to bind it.

If an RPC failure results upon use of a binding, that domain will
be unbound automatically. At that point, the ypclnt layer will
retry forever or until the operation succeeds, provided that
ypbind is running, and either

the client process can't bind a server for the proper domain,
or

RPC requests to the server fail.

If an error is not RPC-related, or if ypbind is not running, or if
a bound ypserv process returns any answer (success or failure),
the ypclnt layer will return control to the user code, either with
an error code, or a success code and any results.

yp match returns the value associated with a passed key. This
key must be exact; no pattern matching is available.

yp_first returns the first key-value pair from the named map in
the named domain.

yp next () returns the next key-value pair in a named map.
· The inkey parameter should be the outkey returned from an initial

call to yp first () (to get the second key-value pair) or the
one returned from the nth call to yp _next () (to get the nth +

- 3 - September, 1987

•

•

•

•

•

•

ypclnt (3N) ypclnt (3N)

second key-value pair).
The concept of first (and, for that matter, of next) is particular to
the structure of the YP map being processing; there is no relation
in retrieval order to either the lexical order within any original
(non-YP) data base, or to any obvious numerical sorting order on
the keys, values, or key-value pairs. The only ordering guarantee
made is that if the yp first () function is called on a particu
lar map, and then the Y.P _next () function is repeatedly called
on the same map at the same server until the call fails with a rea
son of YPERR NOMORE, every entry in the data base will be seen
exactly once. Further, if the same sequence of operations is per
formed on the same map at the same server, the entries will be
seen in the same order.

Under conditions of heavy server load or server failure, it is possi
ble for the domain to become unbound, then bound once again
(perhaps to a different server) while a client is running. This can
cause a break in one of the enumeration rules; specific entries may
be seen twice by the client, or not at all. This approach protects
the client from error messages that would otherwise be returned in
the midst of the enumeration. The next paragraph describes a
better solution to enumerating all entries in a map .

yp all provides a way to transfer an entire map from server to
client in a single request using TCP (rather than UDP as with
other functions in this package). The entire transaction take place
as a single RPC request and response. You can use yp _all just
like any other YP procedure, identify the map in the normal
manner, and supply the name of a function which will be called to
process each key-value pair within the map. You return from the
call to yp all only when the transaction is completed (success
fully or unsuccessfully), or your . . foreach" function decides
that it doesn't want to see any more key-value pairs.
The third parameter to yp _a 11 is

struct ypall_callback * incallback {
int (* foreach) () ;
char *data ;
} ;

The function foreach is called

foreach (instatus, inh:y, inkeylen , inval , invallen , indata) ;
int instatus;
char *inkey ;

- 4 - September, 1987

ypclnt (3N)

int inkeylen ;
char *inval ;
int invalllen ;
char *indata ;

ypclnt (3N)

The instatus parameter will hold one of the return status values
defined in <:rpcsvc /yp_prot . h>; either YP_TRUE or an
error code. (See ypprot err, below, for a function which con
verts a YP protocol error cOde to a ypclnt layer error code.)

The key and value parameters are somewhat different than defined
in the synopsis section above. First, the memory pointed to by the
inkey and inval parameters is private to the yp all function,
and is overwritten with the arrival of each new key-value pair. It
is the responsibility of the foreach function to do something
useful with the contents of that memory, but it does not own the
memory itself. Key and value objects presented to the foreach
function look exactly as they do in the server's map; if they were
not newline-terminated or null-terminated in the map, they won't
be here either.

The indata parameter is the contents of the incallback->data ele
ment passed to yp all . The data element of the callback struc
ture may be used to share state information between the
foreach function and the mainline code. Its use is optional, and
no part of the YP client package inspects its contents; cast it to
something useful, or ignore it as you see fit.

The foreach function is a Boolean. It should return zero to
indicate that it wants to be called again for further received key
value pairs, or non-zero to stop the flow of key-value pairs. If
foreach returns a non-zero value, it is not called again; the
functional value of yp_all is then 0.

yp _order returns the order number for a map.

yp ma ster returns the machine name of the master YP server
fora map.

yperr st ring returns a pointer to an error message string that
is null-terminated but contains no period or newline.

ypprot err takes a YP protocol error code as input, and
returns a

-
ypclnt layer error code, which may be used in tum as

an input to yperr_st ring.

ERRORS
All integer functions return 0 if the requested operation is success
ful, or one of the following errors if the operation fails.

- 5 - September, 1987

•

•

•

ypclnt (3N) ypclnt (3N)

#de fine YPERR BADARGS 1 I * args t o funct ion are bad * I
#de f ine YPERR RPC 2 I * RPC fai lure - doma in has

been unbound * I

• #de f ine YPERR DOMAIN 3 I * can ' t bind t o se rve r on this

doma in * I

#de f ine YPERR MAP 4 I * no such map in serve r ' s

doma in * I

#de f ine YPERR KEY 5 I * no such key in map * I
#de f ine YPERR YPERR 6 I * intern a l yp se rver or

cl ient error * I

#de f ine YPERR RESRC 7 I * re source al locat ion

fai lure * I

#de fine YPERR NOMORE 8 I * no more reco rds in map

database * I
#de f ine YPERR PMAP 9 I * can ' t communi cate with

portmappe r * I

#de f ine YPERR YPBIND 1 0 I * can' t communi cate with

ypbind * I
#de f ine YPERR YP SERV 1 1 I * can ' t communi cate with

ypserv * I

!Ide f ine YPERR NODOM 1 2 I * l o c a l doma in name not set * I

• Fll.ES
/usr/ include / rpcsvc/ypclnt . h
/usr/ inc lude / rpcsvc/yp_prot . h

SEE ALSO
ypserv(lM), ypfiles(4) .

•
- 6 - September, 1987

Table of Contents

• Section 5 : Miscel laneous Faci l ities

intra . introduction to miscellaneous facilities
ae . .3Com 10 Mb/s Ethernet interface
arp • • • • • • • • • • • • • • . . Address Resolution Protocol
ascii . map of ASCII character set
environ .. user environment
eqnchar . special character definitions for eqn and neqn
fcntl . file control options
font. description files for device-independent troff
greek . graphics for the extended TTY-37 type-box
inet . .Internet protocol family
ip . .Internet Protocol
lo software loopback network interface
man . macros for formatting entries in this manual
math . math functions and constants • mm . macro package for formatting documents
mptx . the macro package for formatting a permuted index
ms . text formatting macros
mv a troff macro package for typesetting viewgraphs and slides
nterm . terminal driving tables for nroff
prof . profile within a function
regexp . regular expression compile and match routines
stat . data returned by stat system call
tcpInternet Transmission Control Protocol
term . conventional names for terminals
troff . description of output language
types . primitive system data types
udp . .Internet User Datagram Protocol
values . machine-dependent values

•

- i-

•

•

•

•

•

•

int ro(5)

NAME
int ro - introduction to miscellaneous facilities

SYNOPSIS
#include <sys / socket . h>
:fl:include <net / route . h>
:fl:include <net / i f . h>

DESCRIPTION

int ro(5)

This section describes miscellaneous facilities (such as macro
packages, character set tables, etc.) and networking facilities (such
as network protocols) available in the system.

Macro packages, character set tables and hardware support for
network interfaces are found among the standard Section 5 entries.
Entries describing a protocol family are marked "SF", while
entries describing protocol use are marked ' ' 5P' ' .

NETWORKING FACH.ITIES
All network protocols are associated with a specific protocol fam
ily. A protocol family provides basic services to the protocol
implementation to allow it to function within a specific network
environmenL These services may include packet fragmentation
and reassembly, routing, addressing, and basic transport. A proto
col family may support multiple methods of addressing, though
the current protocol implementations do not. A protocol family is
normally comprised of a number of protocols, one per
socket(2N) type. It is not required that a protocol family sup
port all socket types. A protocol family may contain multiple pro
tocols supporting the same socket abstraction.

A protocol supports one of the socket abstractions detailed in
socket(2N). A specific protocol may be accessed either by
creating a socket of the appropriate type and protocol family, or
by requesting the protocol explicitly when creating a socket. Pro
tocols normally accept only one type of address format, usually
determined by the addressing structure inherent in the design of
the protocol family/network architecture. Certain semantics of the
basic socket abstractions are protocol specific. All protocols are
expected to support the basic model for their particular socket
type, but may, in addition, provide nonstandard facilities or exten
sions to a mechanism. For example, a protocol supporting the
SOCK STREAM abstraction may allow more than one byte of
out-of-=band data to be transmitted per out-of-band message.

A network interface is similar to a device interface. Network
interfaces comprise the lowest layer of the networking subsystem,

- 1 - September, 1987

int ro (S) int ro(S)

interacting with the actual transport hardware. An interface may
support one or more protocol families, and/or address formats.

PROTOCOLS
The system currently supports only the DARPA Internet protocols
fully. Raw socket interfaces are provided to IP protocol layer of
the DARPA Internet, to the IMP link layer (1822), and to Xerox
PUP-I layer operating on top of 3Mb/s Ethernet interfaces. Con
sult the appropriate manual pages in this section for more informa
tion regarding the support for each protocol family.

ADDRESSING
Associated with each protocol family is an address format. The
following address formats are used by the system:

ide f ine AF UN IX 1 / * local t o host (pipe s , port a l s) * /

ide fine AF INET 2 / * internetwork : UDP , TCP , etc . * /

ide fine AF IMPLINK 3 / *arpanet imp addre s se s * /

ide f ine AF PUP 4 / *pup protoco l s : e . g . BSP * /

Note: Only AF _ INET is appropriate for this implementa
tion.

ROUTING
The network facilities provided limited packet routing. A simple
set of data structures comprise a ' 'routing table' ' used in selecting
the appropriate network interface when transmitting packets. This
table contains a single entry for each route to a specific network or
host. A user process, the routing daemon, maintains this data base
with the aid of two socket specific ioctl(2) commands,
S IOCADDRT and S IOCDELRT. The .commands allow the addi
tion and deletion of a single routing table entry, respectively.
Routing table manipulations may only be carried out by superuser.

A routing table entry has the following form, as defined in
<net I route . h>;

st ruct rtentry

u_l ong rt _hash;

st ruct sockaddr rt _dst ;

st ruct sockaddr rt _gateway;

short rt_f l ags ;

sho rt rt re fcnt ; -
u_l ong rt _u se ;

st ruct i f net *rt _ifp ;

} ;

- 2 - September, 1987

•

•

•

•

•

•

int ro(5)

with rt_flags defined from,

#de f ine RTF UP O x l / * rout e usable * /

int ro(5)

#de f i ne RTF GATEWAY O x2
#de f ine RTF_HOST O x 4

/ *de st inat ion i s a gateway* /

/ *host entry (net otherw i se) * /

Routing table entries come in three flavors: for a specific host, for
all hosts on a specific network, for any destination not matched by
entries of the first two types (a wildcard route). When the system
is booted, each network interface autoconfigured installs a routing
table entry when it wishes to have packets sent through it. Nor
mally the interface specifies the route through it is a "direct" con
nection to the destination host or network. If the route is direct,
the transport layer of a protocol family usually requests the packet
be sent to the same host specified in the packet. Otherwise, the
interface may be requested to address the packet to an entity dif
ferent from the eventual recipient (i.e. the packet is forwarded).

R{)uting table entries installed by a user process may not specify
the hash, reference count, use, or interface fields; these are filled
in by the routing routines. If a route is in use when it is deleted
(rt refcnt is nonzero), the resources associated with it will not
be reclaimed until further references to it are released .

The routing code returns EEXIST if requested to duplicate an
existing entry, ESRCH if requested to delete a nonexistent entry,
or ENOBUF s if insufficient resources were available to install a
new route.

User processes read the routing tables through the I dev I kmem
device.

The rt use field contains the number of packets sent along the
route. This value is used to select among multiple routes to the
same destination. When multiple routes to the same destination
exist, the least used route is selected.

A wildcard routing entry is specified with a zero destination
address value. Wildcard routes are used only when the system
fails to find a route to the destination host and network. The com
bination of wildcard routes and routing redirects can provide an
economical mechanism for routing traffic.

INTERFACES
Each network interface in a system corresponds to a path through
which messages may be sent and received. A network interface
usually has a hardware device associated with it, though certain

- 3 - September, 1987

int ro(5) int ro (5)

interfaces such as the loopback interface, lo(S), do not.

At boot time each interface which has underlying hardware sup
port makes itself known to the system during the
autoconfiguration process. Once the interface has acquired its
address it is expected to install a routing table entry so that mes
sages may be routed through it. Most interfaces require some part
of their address specified with an S IOCS IFADDR ioctl
before they will allow traffic to flow through them. On interfaces
where the network-link layer address mapping is static, only the
network number is taken from the ioctl; the remainder is found in
a hardware specific manner. On interfaces which provide
dynamic network-link layer address mapping facilities (e.g.
lOMb/s Ethemets), the entire address specified in the ioctl is used.

The following ioct 1 calls may be used to manipulate network
interfaces. Unless specified otherwise, the request takes an
ifrequest structure as its parameter. This structure has the
form:

#de f ine i fr_addr i fr_i fru . i fru_addr / * addre s s * /

#de f ine i f r_dst addr i fr_i fru . i fru_dstaddr / * other end o f

p-to-p l ink * /

#de f ine i f r_flags i f r_i fru . i fru_flags / * f l ags * /

st ruct i freq

char i f r_name [l 6] ; I * name o f inter face
(e . g . "ec0 ") * /

union

st ruct

st ruct

short

} i fr_i fru ;

} ;

S IOCS IFADDR

S IOCGIFADDR

sockaddr i fru_addr ;

sockaddr i fru_dst addr ;

i fru_fl ag s ;

Set interface address. Following the
address assignment, the "initialization"
routine for the interface is called.

Get interface address.

S IOCS IFDSTADDR Set point to point address for interface.

S IOCGIFDSTADDR Get point to point address for interface.

S IOCS IFFLAGS Set interface flags field. If the interface
is marked down, any processes currently
routing packets through the interface are

- 4 - September, 1987

•

•

•

•

•

•

int ro(S) int ro(S)

notified.

S IOCGIFFLAGS

S IOCGIFCONF

Get interface flags.
Get interface configuration list. This
request takes an ifconf structure (see
below) as a value-result parameter. The
ifc len field should be initially set to
the size of the buffer pointed to by
ifc buf. On return it will contain the
lengiii, in bytes, of the configuration list.

I *

* St ructure used in S IOCGIFCONF reque st .

* Used t o ret r ieve inter face conf igurat ion

* f o r mach ine (u s e fu l for programs wh i ch

* mu st know a l l netwo rks acce s s ible) .

* I

#de f ine i fc_bu f i fc_i fcu . i fcu_bu f I * bu f fer addre s s * /

#de f ine i fc_req i fc_i fcu . i fcu_req I * array o f structure s

s t ruct i fconf {

} ;

SEE ALSO

int i fc len ;

u n i o n

caddr_t i fcu_bu f ;

I * s i z e o f a s s o c iated

bu f fer * I

st ruct i freq * i fcu_req ;

i fc_i fcu ;

retu rned * I

routed(IM), socket(2N}, ioct l(2) .

- 5 - September, 1987

ae (5) ae(5)

NAME
ae - 3Com 10 Mb/s Ethernet interface

DESCRIPTION
The ae interface provides host access to an industry standard 10
Mb/s Ethernet

The host's Internet address is specified at boot time with an
S IOCS IFADDR ioct l . The hosts's Ethernet address is read
from ROM on the Ethernet board using etheraddr{1M). The
ae interface employs the address resolution protocol described in
arp(5P) to dynamically map between Internet and Ethernet
addresses on the local network.

DIAGNOSTICS
ae%d : init failed. The NIC chip on the Ethernet board
would not initalize.

ae%d t ransmitter frozen - resett ing. A packet
transmission failed to complete within a predetermined timeout
period.

ae%d spurious interrupt . An interrupt was received but
no operation was active.
ae%d : can ' t handle af%d. The interface was handed a
message with addresses formatted in an unsuitable address family;
the packet was dropped.

SEE ALSO
etheraddr{lM), inet(SF), int ro(5), arp(SP).

FILES
/etc /boot . d/ ae 6
/etc /master . d/ ae 6
/etc / startup . d/ ae 6

- 1 - September, 1987

•

•

•

•

•

•

arp(5P) arp(5P)

NAME
arp - Address Resolution Protocol

DESCRIPTION
arp is a protocol used to dynamically map between DARPA
Internet and 10Mb/s Ethernet addresses on a local area network.
It is used by all the lOMb/s Ethernet interface drivers and is not
directly accessible to users.

arp caches Internet-Ethernet address mappings. When an inter
face requests a mapping for an address not in the cache, arp
queues the message which requires the mapping and broadcasts a
message on the associated network requesting the address map
ping. If a response is provided, the new mapping is cached and
any pending messages are transmitted. arp itself is not Internet
or Ethernet specific; this implementation, however, is. a rp will
queue at most one packet while waiting for a mapping request to
be responded to; only the most recently "transmitted" packet is
kept.

a rp watches passively for hosts impersonating the local host (i.e.
a host which responds to an a rp mapping request for the local
host's address) and will, optionally, periodically probe a network
looking for impostors.

DIAGNOSTICS
"duplicate IP addre s s ! ! sent from ethernet
addre s s : %x %x %x %x %x %x"

arp has discovered another host on the local network which
responds to mapping requests for its own Internet address .

- 1 - September, 1987

ascii (5) ascii (5)

NAME
ascii - map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION
ascii is a map of the ASCII character set, giving both octal and
hexadecimal equivalents of each character, to be printed as
needed. It contains:

000 nul 1 00 1 s oh l 002 s t x l 003 e t x l 004 e o t 1 005 enq l 006 a ck 1 007 b e l

0 1 0 b s 1 0 1 1 h t 1 0 1 2 n l 1 01 3 v t 1 0 1 4 np 1 01 5 c r 1 0 1 6 s o 1 0 1 7 s i

020 d l e 1 02 1 de l 1 022 dc2 1 023 d c 3 1 024 dc4 1 02S nak 1 026 s yn l 027 e t b

0 3 0 c a n I 03 1 em

040 sp 1 04 1 I
1 032 sub l 033 e s c 1 034 fs 1 035 gs 1 036 r s 1 037 u s

1 042 " 1 043 # 1 044 $ 1 045 % 1 046 & 1 047

1 052 • 1 053 + 1 054 , l OS S - 1 056 . 1 057 I
1 062 2 1 063 3 1 064 4 1 065 5 1 066 6 1 067 7

oso (1 05 1)

060 0 1 06 1 1

070 8

1 00 @

1 1 0 H

1 20 p
1 30 X
1 40

1 50 h

1 60 p

1 7 0 X

00 n u l

08 bs

10 d l e

1 8 can

20 s p

28 (

30 0

38 8

40 @

48 H

so p
58 X
60

68 h

70 p

78 X

1 07 1 9 1 072 : 1 07 3 ; 1 074 < 1 075 =
1 1 0 1 A 1 1 02 B 1 1 03 C 1 1 04 D 1 1 05 E

1 076 > 1 077 ?
1 1 06 F 1 1 07 G

1 1 1 1 I
1 1 2 1 Q

1 1 3 1 y
1 1 4 1 a

1 1 5 1 i

1 1 6 1 q

1 1 7 1 y

1 1 1 2 1
1 1 22 R
1 1 32 z
1 1 42 b

1 1 52 j

1 1 62 r
1 1 72 z

1 1 1 3 K
1 1 23 s
1 1 3 3 [

1 1 43 c

1 1 5 3 k

1 1 63 •
1 1 7 3 (

1 1 1 4 L
1 1 24 T
1 1 34 \
1 1 44 d

1 1 54 1
1 1 64 t

1 1 74 I

l l l S M 1 1 1 6 N 1 1 1 7 0

1 1 25 u 1 1 26 v 1 1 27 w
1 1 35 1 1 1 36 A 1 1 37

1 1 45 e 1 1 46 f 1 1 47 g

1 1 55 m 1 1 56 n 1 1 57 o

1 1 65 u

1 1 75

1 1 66 v

1 1 76 -

1 1 67 w
1 1 77 d e l

0 1 s oh ! 0 2 s t x l 03 e t x I 0 4 e o t I O S enq l 06 a ck I 0 7 b e l

09 h t I Oa n l I O b v t I Oc np I Od c r I O e s o I Of s i

1 1 de l I 1 2 dc2 1 1 3 d c 3 1 1 4 dc4 1 I S nak I 1 6 s yn I 1 7 e t b

1 9 em 1 a s u b I 1 b e s c I 1 c f s 1 d g s 1 e r s I 1 f u s

2 1 I 22 " 23 # 24 $ 25 % 26 & I 27

29) 2a • 2b + 2c , 2d - 2e • 2f I
3 1 1 32 2 33 3 34 4 35 s 36 6 37 7

39 9

4 1 A
49 I
5 1 Q

59 y
61 a

69 i

7 1 q
79 y

3a :

42 B
4a 1
52 R
Sa Z
62 b

6a j

72 r
7a z

3c <
44 D
4c L
54 T
Sc \
64 d

6c 1
74 t

3b ;

43 c
4b K
53 s
Sb [

63 c

6b k

73 •
7b (I 7c I

- 1 -

3d =
45 E

3e >
46 F

4d M 4e N

55 u 56 v
Sd 1 Se A
65 " 66 f

6d m 6e n

15 u 76 v

7d 1 I 7e -

3f 7
47 G
4f 0

57 w
S f

6 7 g

6f 0
77 w

I 7f d e l

Sep t erme r , 1 9 8 7

•

•

•

•

•

•

ascii (5)

FliES
/usr/pub/ascii

ascii (5)

- 2 - Sep t embe r , 1987

environ(5) environ(5)

NAME
environ - user environment

SYNOPSIS
extern char * *environ ;

DESCRIPriON
An array of strings called the environment is made available by
exec(2) when a process begins. By convention these strings
have the form "name=value " . The following names are used by
various commands:

PATH The sequence of directory prefixes that sh,
t ime , nice(l}, etc., apply in searching for a file
known by an incomplete path name. The prefixes
are separated by " · " login(l) sets:
PATH= : /bin : /usr/bin .

HOME A user's login directory, set by login(l) from the
password file pas swd(4).

TERM The kind of terminal for which output is to be
prepared. This information is used by commands,
such as nroff , more , or vi , which may
exploit special terminal capabilities. See
/etc/termcap or (termcap(4)) for a list of ter
minal types.

SHELL The file name of the user's login shell.

TERMCAP The string describing the terminal in TERM, or the
name of the termcap file, see termcap(4).

EXINIT A startup list of commands read by ex(l), edit(l),
and vi(l).

LOGNAME The login name of the user.

T z Time zone information. The format is xxxn z z z

where xxx is standard local time zone abbreviation,
n is the difference is hours from GMT, and z z z is
the abbreviation for the daylight-saving local time
zone, if any; for example, ESTSEDT.

Further names may be placed in the environment by the export
command and "name=value" arguments in sh(l}, or by the
setenv command if you use csh(l). Arguments may also be
placed in the environment at the point of an exec(2). It is unwise
to conflict with certain sh(l} variables that are frequently
exported by " . profile" files: MAIL,P S l ,P S 2 ,

- 1 - September, 1987

•

•

•

environ(5) environ(S)

•

SEE ALSO
csh(l), ex(l) , ksh(l), login(l), sh(l), exec(2),
system(3S), te rmcap(4), tty(7) .

•

•

- 2 - September, 1987

eqnchar(5) eqnchar(5)

NAME
eqnchar - special character definitions for eqn and neqn

SYNOPSIS
eqn /usr/pub/eqnchar [options] [-] files] I t roff
[options]

eqn /usr/pub/ cateqnchar [options] [-] files]
I t roff [options]

neqn /usr/pub/eqnchar [options] [-] files] t roff
[options]

eqn -Taps /usr /pub/ apseqnchar [options] [-] files]
I t roff [options]

DESCRIPI'ION
/us r/pub/eqnchar contains t roff(l) and nroff{1) char
acter definitions for constructing characters that are not ordinarily
available on a phototypesetter or printer. These definitions are
primarily intended for use with eqn(l) and neqn(l).

For a complete list of input and output characters contained in
/usr/pub/eqnchar, see the "eqn Reference" in AJUX Text
Processing Tools.

/usr/pub/apseqnchar is a version of eqnchar tailored
for the Autologic APS-5 phototypesetter. If you use
apseqnchar, output will not look optimal on other photo
typesetters. cateqnchar is more "device independent," and
should look reasonable on any device supported by troff(l).
You may link /usr/pub/eqnchar to
/usr /pub/ cateqnchar or to /usr /pub/ apseqnchar .
By default, /usr/pub/eqnchar is linked to
/usr/pub/ apseqnchar .

FILES
/usr/pub/eqnchar
/usr/pub/ apseqnchar
/usr/pub/ cateqnchar

SEE ALSO
eqn(1), neqn(1), t roff{1).
"eqn Reference" in AIUX Text Processing Tools.

- 1 - September, 1987

•

•

•

•

•

•

fcntl(5) fcnt l (5)

NAME
fcnt l - file control options

SYNOPSIS
finclude <fcnt l . h>

DBSCRIP110N
The fcnt l(2) function provides for control over open files. The
include file describes requests and arguments to fcnt l and
open(2).

I * F l ag va lue s acce s s ible to open (2) and fcnt l (2) * I

I * (The f i r s t three can only b e set b y ope n) * I

ide fine O_RDONLY 0

ide f i ne O_WRONLY 1

ide f ine 0 RDWR 2

ide f ine O_NDELAY

ide f ine O_APPEND

0 4

0 1 0

I * Non-b locking I /O * I

I * append (w r i t e s

guaranteed at t h e e n d) * I

I * F l ag va lue s acce s s ible o n l y t o open (2) * I

ide f ine O_CREAT 0 0 4 0 0 I * open with f i le create

(uses t h i rd open arg) *I

ide f ine O_TRUNC 0 1 0 0 0

ide f ine O_EXCL 0 2 0 0 0

I * open with t runcat ion * I

I * exclusive open * I

I * fcnt l (2) reque s t s * I
ide f ine F_DUPFD 0 I * Dup l i cate f i lde s * I

ide fine F_GETFD 1 I * Get f i lde s f l ags *I
ide f ine F SETFD 2 I * Set f i lde s f l ags * I

ide f ine F GETFL 3 I * Get f i le f l ags * I

ide f ine F_SETFL 4 I * Set f i le f l ags * I

ide f ine F_GETLK 5 I * Get b l o ck ing f i le locks

ide f ine F SETLK 6 I * Set o r clear f i l e locks

and fa i l on bu sy *I

ide f ine F SETLKW 7 I * Set o r c l e a r f i le l o c k s

a n d w a i t on bu sy *I

!lde f ine F_GETOWN 8 I * Get owne r * I
ide f ine F SETOWN 9 I * Set owne r * I

I * f i le segment locking cont r o l st ructure * I

st ruct f l ock {
short l_t ype ;

short !_whence ;

* I

- 1 - September, 1987

fcnt l (S) fcntl (5)

!_s t a rt ; long

long

int

!_len ; I* if 0 then unt i l EOF * I

l_p i d ; I * returned with F_GETLK * I

I * f i l e segment locking t ypes * I

#de f ine F_RDLCK 0 1 I * Read lock * I

#de fine F_WRLCK 0 2 I * Wr i t e lock * I
#de fine F_UNLCK 0 3

SEE ALSO
fcnt l(2), open(2).

I * Remove locks * I

- 2 - September, 1987

•

•

•

•

•

•

font (5) font {5)

NAME
font - description files for device-independent troff

SYNOPSIS
t roff -T tty-type . . .

DESCRIPTION
For each phototypesetter that t roff(1) supports and that is avail
able on your system, there is a directory containing files describ
ing the device and its fonts. This directory is named
/ u s r / l ib / font /devtty-type where tty-type is the name of the
phototypesetter. Currently the supported devices are aps for the
Autologic APS-5 and i l O for the Imagen Imprint-10 laser
printer.

For a particular phototypesetter, tty-type , the ASCII file D ESC in
the directory /usr I lib/ font I devtty-type describes its
characteristics. A binary version of the file (described below) is
found in /usr/lib/ font /devtty-type /DESC . out . Each
line of this ASCII file starts with a word that identifies the charac
teristic, which is followed by appropriate specifiers. Blank lines
and lines beginning with the t character are ignored.

The legal lines for DESC are:

res num

hor num

vert num

unit width num

resolution of device in basic incre
ments per inch

smallest unit of horizontal motion

smallest unit of vertical motion

pointsize in which widths are
specified

s izescale num scaling for fractional pointsizes

paperwidth num width of paper in basic increments

paper length num length of paper in basic increments

biggest font num maximum size of a font

s i ze s num num . .1. list of pointsizes available on
typesetter

font s num name . . . number of initial fonts followed by
the names of the fonts. For exam-
ple:
font s 4 R I B S

- 1 - September, 1987

font (S)

char set

font (5)

this always comes last in the file and
is on a line by itself. Following it is
the list of special character names
for this device. Names are
separated by a space or a newline.
The list can be as long as necessary.
Names not in this list are not
allowed in the font description files.

res is the basic resolution of the device in increments per inch.
hor and vert describe the relationships between motions in the
horizontal and vertical directions. If the device is capable of mov
ing in single basic increments in both directions, both hor and
vert would have values of 1 . If the vertical motions only take
place in multiples of two basic units while the horizontal motions
take place in the basic increments, then hor would be 1 , while
vert would be 2. unitwidth is the pointsize in which all
width tables in the font description files are given. t roff
automatically scales the widths from the unit width size to the
pointsize it is working with. s i zescale is not currently used
and is 1 . paperwidth is the width of the paper in basic incre
ments. The APS-5 is 6120 increments wide. paper length is
the length of a sheet of paper in the basic increments. big
gest font is the maximum number of characters on a font.

For each font supported by the phototypesetter, there is also an
ASCIT file with the same name as the font (e.g., R, I, cw). The
format for a font description file is:

name name name of the font, such as R or cw
internalname name internal name of font

special sets flag indicating that the font is
special

l igatures name . . . 0

spacewidth num

Sets flag indicating font has liga
tures. The list of ligatures follows
and is terminated by a zero.
Accepted ligatures are:
ff fi fl ffi ffl .

specifies width of space if some
thing other than default (1/3 of em)
is desired.

- 2 - September, 1987

•

•

•

font (S)

•

•

•

char set

font (5)

The charset must come at the end.
Each line following the word
charset descn"bes one character
in the font. Each line has one of two
formats:
name width kerning code
name "

where name is either a single ASCll character or a special
character name from the list found in DESC. The width is in
basic increments. The kerning information is 1 if the charac
ter descends below the line, 2 if it rises above the letter ' 'a,' '
and 3 if it both rises and descends. The kerning information
for special characters is not used and so may be 0. The code
is the number sent to the typesetter to produce the character.
The second format is used to indicate that the character has
more than one name. The double quote indicates that this
name has the same values as the preceding line. The kerning
and code fields are not used if the width field is a double
quote character. The total number of different characters in
this list should not be greater than the value of biggest
font in the DESC file (see above) .
t roff and its postprocessors read this information from
binary files produced from the ASCll files by a program dis
tributed with troff called makedev. For those with a
need to know, a description of the format of these files fol
lows:

The file DESC . out starts with the dev structure, defined by
dev . h:

I *

dev . h : charact e r i s t ics o f a t ype setter

* I

st ruct dev

short f i le s i z e ; / * numbe r o f byt e s i n f i l e , * /

/ * excluding dev part * /

short re s ; / * bas i c re s o lut i o n i n goob i e s

pe r inch * /

s h o r t h o r ; / * goob i e s h o r i z ont a l l y * /

short ve rt ;

short unitwidth ; / * s i z e at wh ich widths

are give n * /

- 3 - September, 1987

font (5) font {5)

short nfont s ; I * number font s phys i c a l l y

ava i l able * I

short n s i z e s ; I * number o f point s i z e s * I

short s i zescale ; I * scal ing for fract ional

point s i ze s *I

short paperwidt h ; I * max l ine length in unit s * I
short paper lengt h ; I * max paper length in un i t s * I

short ncht ab ; I * numbe r o f funny name s

in cht ab * I

short lchname ; I * l ength o f chname t ab l e * I

short b igge s t font ; I * max # o f cha r s in a font * I

short spare 2 ; I * i n case o f expan s i o n * I

} ;

filesize is just the size of everything in DESC . out exclud
ing the dev structure. nfont s is the number of different
font positions available. nsizes is the number of dif
ferent point sizes supported by this typesetter. nchtab is
the number of special character names. lchname is the
total number of characters, including nulls, needed to list all
the special character names. At the end of the structure are
two spares for later expansions.

Immediately following the dev structure are a number of
tables. First is the sizes table, which contains nsizes + 1
shorts(a null at the end), describing the pointsizes of text
available on this device. The second table is the
funny char index table. It contains indexes into the
the table which follows it, the funny char st rings.
The indexes point to the beginning of eaCh speciil character
name which is stored in the funny char strings
table. The funny char st rings table is

-
lchname

characters long, while the funny_char_index_table
is nchtab shorts long.

Following the dev structure will occur nfont s {font } .out
ffont) .out which are used to initialize the font positions.
These {font) .out files, which also exist as separate files,
begin with a font structure and then are followed by four
character arrays:

st ruct Font {
char nwfont ;

char specfont ;

I * charact e r i s t i c s o f a font * I

I * numbe r o f width ent r i e s * I

I * 1 = = spe c i a l font * I

- 4 - September, 1987

•

•

•

font (S)

•

•

•

font (5)

char l igfont ; I * 1 == l igatures exist

on t h i s font * I
char name font [l O) ; I * name o f t h i s font ,

e . g . , R * I

char intname [lO) ; I * interna l name o f font ,

in ASC I I * I

} ;

The font structure tells how many defined characters there are
in the font, whether the font is a "special" font and if it con
tains ligatures. It also has the ASCII name of the font, which
should match the name of the file it appears in, and the inter
nal name of the font on the typesetting device (intname).
The internal name is independent of the font position and
nall!e that t roff knows about. For example, you might
say "mount R in pos it ion 4" , but when asking the
typeSetter to actually produce a character from the R font, the
postprocessor which instructs the typeSetter would use
intname .

The first three character arrays are specific for the font and
run in parallel. The first array, widths, contains the width of
each character relative to unitwidth. unitwidth is defined in
DESC. The second array, kerning , contains kerning informa
tion. If a character rises above the letter "a," 02 is set. If it
descends below the line, 01 is set The third array, codes ,
contains the code that is sent to the typesetter to produce the
character.

The fourth array is defined by the device description in
DESC. It is the font index table. This table contains
indices into the width: kerning, and code tables for each
character. The order that characters appear in these three
tables is arbitrary and changes from one font to the next. In
order for t roff to be able to translate from ASCII and the
special character names to these arbitrary tables, the
font index table is created with an order which is
constalit for each device. The number of entries in this table
is 96 plus the number of special character names for this dev
ice. The value 96 is 128 - 32, the number of printable char
acters in the ASCII alphabet To determine whether a normal
ASCII character exists, t roff takes the ASCII value of the
character, subtracts 32, and looks in the
font_ index_ table. If it finds a 0, the character is not

- 5 - September, 1987

font (5) font (S)

defined in this font. If it finds anything else, that is the index
into widths, kerning , and codes that describe that character.

To look up a special character name, for example \ (pl, the
mathematical plus sign, and determine whether it appears in a
particular font or not, the following procedure is followed. A
counter is set to 0 and an index to a special character name is
picked out of the counter' th position in the
funny char index table. A string comparision is
perfonn� -

-
between

funny_char_strings lfunny_char_index_table [counter]] and
the special character name, in our example pl, and if it
matches, then t roff refers to this character as (96 +
counter). When it wants to detennine whether a specific font
supports this character, it looks in
font index table [(9 6+counter)] , (see below), to
see whether there is a 0, meaning the character does not
appear in this font, or number, which is the index into the
widths, kerning , and codes tables.

Notice that since a value of 0 in the font index table indi
cates that a character does not exist, the Oih element of the
width , kerning, and codes arrays are not used. For this rea
son the Oth element of the width array can be used for a spe
cial purpose, defining the width of a space for a font. Nor
mally a space is defined by t roff to be 1/3 of the width of
the \{em character, but if the Oth element of the width array is
nonzero, then that value is used for the width of a space.

SEE ALSO
t roff(1).

Fll.ES
/ us r / l ib/ font /devt�-�pe/DESC . out
/usr/ lib/ font /devtty-�pe/ {font } . out

- 6 - September, 1987

•

•

•

•

•

•

greek(5) greek(5)

NAME
greek - graphics for the extended TIY -37 type-box

SYNOPSIS
cat /us r/pub/greek [I greek -Tterminal]

DESCRIPTION
greek gives the mapping from ASCll to the "shift-out" graphics
in effect between so and s I on TELETYPE Model 37 tenninals
equipped with a 128-character type-box. These are the default
greek characters produced by nroff. The filters of greek(1)
attempt to print them on various other terminals. The file con
tains:

a1pha u A beta p B gamma y \
GAMMA r G delta 8 D DELTA A w
epsilon £ s zeta � Q eta 11 N
TIIBTA e T theta 9 0 lambda ;.. L
LAMBDA A E mu " M nu v @
xi I; X pi 1t J PI n p
mo p K sigma (J y SIGMA :t R
tau 't I phi • u PHI 4' F
psi v v PSI 'I' H omega Q) c
OMEGA n z nabla v [not ..,

paJtia1 a] integral I
FILES

/usr/pub/greek

SEE ALSO
3 0 0(1), 4 0 1 4(1), 4 5 0 (1), greek(1), nrof £(1), tc(1).
"Other Text Processing Tools" in AIUX Text Processing Tools .

- 1 - September, 1987

inet (5F)

NAME
inet - Internet protocol family

SYNOPSIS
#include <sys /types . h>
include <netinet / in . h>

DESCRIPTION

inet (5F)

The Internet protocol family is a collection of protocols layered
atop the Internet Protocol {IP) transport layer, and utilizing the
Internet address format The Internet family provides protocol
support for the SOCK STREAM, SOCK DGRAM, and SOCK RAW
socket types; the SOCK RAW interface provides access to iiie IP
protocol.

-

ADDRESSING
Internet addresses are four byte quantities, stored in networlc: stan
dard format (on the VAX these are word and byte reversed). The
include file <net inet I in . h> defines this address as a
discriminated union.

Sockets bound to the Internet protocol family utilize the following
addressing structure,

struct sockaddr in {

} ;

short sin_family ;
u short s in_port ;
st ruct in_addr s in_addr ;
char s in_zero [8) ;

Sockets may be created with the address INADDR _ANY to effect
"wildcard" matching on incoming messages.

PROTOCOLS
The Internet protocol family is comprised of the IP transport pro
tocol, Internet Control Message Protocol {ICMP), Transmission
Control Protocol (TCP), and User Datagram Protocol (UDP).
TCP is used to support the SOCK_STREAM abstraction while
UDP is used to support the SOCK DGRAM abstraction. A raw
interface to IP is available by creatiig an Internet socket of type
SOCK RAW. The ICMP message protocol is not directly accessi
ble. -

SEE ALSO
tcp(5P), udp(5P), ip(5P).

- 1 - September, 1987

•

•

•

•

•

•

inet (SF) inet (SF)

CAVEAT
The Internet protocol support is subject to change as the Internet
protocols develop. Users should not depend on details of the
current implementation, but rather the services exported .

- 2 - September, 1987

ip(5P) ip(5P)

NAME
ip - Internet Protocol

SYNOPSIS
://:include <sys / socket . h>
include <net inet / in . h>

s=socket (AF_INET, SOCK_RAW, 0) ;

DESCRIPfiON
IP is the transport layer protocol used by the Internet protocol
family. It may be accessed through a "raw socket" when
developing new protocols. or special purpose applications. IP
sockets are connectionless. and are normally used with the
sendto and recvfrom calls, though the connect(2N) call
may also be used to fix the destination for future packets (in which
case the read(2) or recv(2N) and write(2) or send{2N) sys
tem calls may be used).

Outgoing packets automatically have an IP header prefixed to
them (based on the destination address and the protocol number
the socket is created with). Likewise, incoming packets have their
IP header stripped before being sent to the user.

ERRORS
A socket operation may fail with one of the following errors
returned:

[E ISCONN]

[ENOTCONN]

[ENOBUFS]

[EADDRNOTAVAIL]

SEE ALSO

when trying to establish a connection
on a socket which already has one. or
when trying to send a datagram with
the destination address specified and
the socket is already connected;

when trying to send a datagram, but no
destination address is specified. and the
socket hasn •t been connected;

when the system runs out of memory
for an internal data structure;

when an attempt is made to create a
socket with a network address for
which no network interface exists.

send(2N). recv(2N). intro(S). inet(SF).

- 1 - September, 1987

•

•

•

ip(SP) ip(5P)

BUGS
One should be able to send and receive ip options.

•
The protocol should be settable after socket creation .

•

•
- 2 - September, 1987

lo(5)

NAME
lo - software loopback network interface

SYNOPSIS
pseudo-device loop

DESCRIYilON

lo(5)

The loop interface is a software loopback mechanism which
may be used for performance analysis, software testing, and/or
local communication. By default, the loopback interface is acces
sible at address 127.0.0. 1 (nonstandard); this address may be
changed with the S IOCS IFADDR ioctl.

DIAGNOSTICS
lo%d : can ' t handle af%d. The interface was handed a
message with addresses formatted in an unsuitable address family;
the packet was dropped.

SEE ALSO
int ro(5), inet(SF).

BUGS
It should handle all address and protocol families. An approved
network address should be reserved for this interface.

- 1 - September, 1987

•

•

•

•

•

•

man (5) man (S)

NAME
man - macros for fonnatting entries in this manual

SYNOPSIS
nroff -man files

t roff -man [-rs l] files

DESCRIPTION
These nroff(1)/ t roff(1) macros are used to lay out the format
of the entries of this manual. The default page size is 8.S"x1 1",
with a 6.5"x10" text area; the -rs 1 flag option reduces these
dimensions to 6"x9" and 4.75"x8.375", respectively; this option
(which is not effective in nroff(1)) also reduces the default type
size from 10-point to 9-point, and the vertical line spacing from
12-point to 10-poinL The -rv2 flag option may be used to set
certain parameters to values appropriate for certain Versatec
printers: it sets the line length to 82 characters, the page length to
84 lines, and it inhibits underlining.

Any text argument below may be one to six "words" . Double
quotes (" ") may be used to include blanks in a "word" . If text is
empty, the special treatment is applied to the next line that con
tains text to be printed. For example, . I may be used to italicize
a whole line, or . SM followed by . B to make small bold text.
By default, hyphenation is turned off for nroff(1) , but remains
on for t roff(1) .

Type font and size are reset to default values before each para
graph and after processing font- and size-setting macros, e.g., . I ,

• RB , • SM. Tab stops are neither used nor set by any macro
except • DT and . TH.

Default units for indents in are ens. When in is omitted, the previ
ous indent is used. This remembered indent is set to its default
value \1.2 ens in t roff(1) , 5 ens in nroffthis corresponds to
0.5" in the default page size) by • TH, • P , and . RS, and restored
by . RE.

• TH t s c n

• SH text
. s s text
• B text

Set the title and entry heading; t is the title, s is
the section number, c is extra commentary,
e.g., "local," n is new manual name. Invokes

• DT (see below).
Place subhead text , e.g. , SYNOPSIS, here .
Place sub-subhead text , e.g., "Options", here .
Make text bold .

- 1 - September, 1987

man(S)

. I text

. SM text

. Ri a b

. P

. HP in
• TP in

. IP I in

. RS in

. RE k

• PM m
. DT

. PD v

man (5)

Make text italic .
Make text 1 point smaller than default point
size.
Concatenate roman a with italic b , and alter
nate these two fonts for up to six arguments.
Similar macros alternate between any two of
roman, italic, and bold:

. IR . R B . BR . IB . BI
Begin a paragraph with normal font, point size,
and indenL . PP is a synonym for . P .
Begin paragraph with hanging indent.
Begin indented paragraph with hanging tag .
The next line that contains text to be printed is
taken as the tag. If the tag does not fit, it is
printed on a separate line.
Same as • TP in with tag t; often used to get an
indented paragraph without a tag.
Increase relative indent (initially zero). Indent
all output an extra in units from the current left
margin.
Return to the kth relative indent level (initially,
k=l; k=O is equivalent to k=l); if k is omitted,
return to the most recent lower indent level.
Produces proprietary markings; see mm(l) .
Restore default tab settings (every 7.2 ens in
t rof£{1), 5 ens in nroff{l)) .
Set the interparagraph distance to v vertical
spaces. If v is omitted, set the inteiparagraph
distance to the default value (0.4v in
t roff(l) , lv in nroff(l)) .

The following strings are defined:

\ *R
\ *S
\ * (Tm

® in t roff{l) , (Reg .) in nroff.
Change to default type size.
Trademark indicator.

The following number registers are given default values by . TH:

IN Left margin indent relative to subheads
(default is 7.2 ens in t rof£{1) , 5 ens in
nroff{l)) .

LL Line length including IN.
PD Current interparagraph distance.

- 2 - September, 1987

•

•

•

•

•

•

man (5) man (5)

EXAMPLES
The man macros are provided to process manual pages already
on-line at a given location and to enable users to make their own
manual pages. The preceding section demonstrated the usage of
the macros themselves; the following section provides examples
of command lines typically used to process the completed files.

man macros are designed to run with either nroff or t roff .
The first command line will process a file using only macros and
nroff requests:

nroff -Tlp -man file I lp

The file is piped to the local line printer, lp.

The next command line will process a file containing tables as
well as macros and nroff requests:

tbl 1 nroff -Tlp -man file I col I lp

Notice that before it is sent to the line printer, the output is first
filtered through col, to process the reverse line feeds used by
tbl.

The final example is a command line that processes an unusual
manual page, one using pic. H the manual pages created with
man are intended for an on-line facility, components requiring
t roff , such as pic (or grap) should be avoided since the aver
age installation of terminals will not be able to process typeset
documents.

pic file I tbl I t roff -Taps -man I typesetter

grap precedes pic because it is a preprocessor to pic; the
reverse order, of course, will not format correctly. The file con
tains one or more tables, requiring tbl, but col is no longer
necessary because typeset documents do not use reverse line feeds
with which to make tables. The -T flag option for specifying the
output device (terminal type) takes the argument aps here, ready
ing the document for processing on the APS-5 phototypesetter.

CAVEATS
Special macros, strings, and number registers exist, internal to
man, in addition to those mentioned above. Except for names
predefined by t roff (1) and number registers d, m, and y, all
such internal names are of the form XA , where X is one of) , J ,
and } , and A stands for any alphanumeric character.

The programs that prepare the table of contents and the permuted
index for this manual assume the NAME section of each entry

- 3 - September, 1987

man {5) man (5)

consists of a single line of input that has the following fonnat:

name[, name, name . . .] \- explanatory text

increases The macro package the interword spaces (to eliminate
ambiguity) in the SYNOPSIS section of each entry.

The macro package itself uses only the roman font (so that one
can replace, for example, the bold font by the constant-width font
(cw). Of course, if the input text of an entry contains requests for
other fonts (e.g. , . I , • RB, \ f i), the corresponding fonts must be
mounted.

FILES
/usr/ lib/tmac /tmac . an
/us r / l ib/macro s / cmp . n . [dt] . an
/us r / l ib/macros /ucmp . n . an

SEE ALSO
eqn(l), man{l), tbl{l), tc{l), troff{l).
"Other Text Processing Tools" in AIUX Text Processing Tools.

BUGS
If the argument to . TH contains any blanks and is not enclosed
by double quotes (" "), there will be strange irregular dots on the
output.

- 4 - September, 1987

•

•

•

•

•

•

math(S) math(5)

NAME
math - math functions and constants

SYNOPSIS
:ft include <math . h>

DESCRIYI10N
This file contains declarations of all the functions in the Math
Library (described in Section 3M), as well as various functions in
the C Library (Section 3C) that return floating-point values.

It defines the structure and constants used by the matherr(3M)
error-handling mechanisms, including the following constant used
as an error-return value:

HUGE The maximum value of a single-precision
floating-point number.

The following mathematical constants are defined for user con
venience:

M E

M LOG2E

M LOG l O E

M LN2

M LNl O

M P I

M_SQRT2

M_SQRT 1_2

The base of natural logarithms (e) .

The base-2 logarithm of e .

The base-10 logarithm of e .

The natural logarithm of 2.

The natural logarithm of 10.

The ratio of the circumference of a circle
to its diameter. (There are also several
fractions of its reciprocal and its square
root.)

The positive square root of 2.

The positive square root of 1/2.

For the definitions of various machine-dependent "constants,"
see the description of the <values . h> header file.

FILES
/usr/ include /math . h

SEE ALSO
int ro(3), matherr(3M), values(S) .

- 1 - September, 1987

mm(5)

NAME
mm - macro package for formatting documents

SYNOPSIS
mm [options] rftles]

nroff -mm [options] rftles]

nroff -em [options] rftles]

mmt [options] rftles]

t roff -mm [options] rftles]

DESCRIPnON

mm(5)

This package provides a formatting capability for a very wide
variety of documents. The manner in which you type and edit a
document is essentially independent of whether the document is to
be eventually formatted at a terminal or is to be phototypeset.

Full details are provided in AIUX Text Processing Tools.

FILES
I us r I l ib I tmac I tmac . m pointer to the noncompacted

version of the package
lusrlliblmacro s lmm [nt] noncompacted version of the

package

SEE ALSO
mm(1), mmt(1), nroff(1), troff(1).
"mm Reference' ' in A!UX Text Processing Tools.

- 1 - September, 1987

•

•

•

•

•

•

mptx(5) mptx(5)

NAME
mptx - the macro package for formatting a permuted index

SYNOPSIS
nroff -mptx [options] [Iiles]

t roff -mptx [options] [files]

DESCRIPI'ION
This package provides a definition for the . xx macro used for
formatting a permuted index as produced by ptx(1). This pack
age does not provide any other formatting capabilities such as
headers and footers. If these or other capabilities are required, the
mptx macro package may be used in conjuction with the mm
macro package. In this case, the -mptx flag option must be
invoked after the -mm call. For example:

nroff -mm -mptx file
or

mm -mptx file

FILES
/usr/ lib/tmac /tmac . ptx

/us r / l ib/macros /ptx

SEE ALSO

pointer to the macro pack
age
macro package

mm(l), nroff(l), ptx(l), t roff(1), mm(5).
• •other Text Processing Tools" in AIUX Text Processing Tools .

- 1 - September, 1987

ms (5)

NAME
ms - text formatting macros

SYNOPSIS
nroff -ms [options] file . . .
t roff -ms [options] file . . .

DESCRIPTION

ms (5)

This package of nroff and t roff macro definitions provides a
formatting facility for various styles of articles, theses, and books.
When producing 2-column output on a terminal or lineprinter, or
when reverse line motions are needed, filter the output through
col{l). All external ms macros are defined below. Many
nroff and t roff requests are unsafe in conjunction with this
package. However, the first four requests below may be used with
impunity after initialization, and the last two may be used even
before initialization:

. bp begin new page

. br break output line

. sp n insert n spacing lines

. ce n center next n lines

. ls n line spacing: n=1 single, n=2 double space

. na no alignment of right margin

Font and point size changes with \ f and \ s are also allowed;
for example, " \ f iword\ fR" will italicize word. Output of the
tbl, eqn , and refer(l) preprocessors for equations, tables,
and references is acceptable as input.

Full details are provided in AIUX Text Processing Tools.

Fll..ES
/ u s r / l ib/tmac / tmac . x
/us r/ lib/ms /x . ? ? ?

SEE ALSO
eqn(l), refer(l), tbl(l), troff{l).
"ms Reference" in A/UX Text Processing Tools.

REQUESTS
MACRO INITIAL BREAK? EXPLANATION
NAM E VALUE RESET?

. AB x

. AE

. AI

. AU

y

y

y

y

begin abstract; if x =no don't label abstract

end abstract

author's institution

author's name

- 1 - September, 1987

•

•

•

ms (5) ms (5)

. B x n embolden x ; if no x , switch to boldface

. Bl y begin text to be enclosed in a box

. B2 y end boxed text and print it

• . BT date n bottom title, printed at foot of page

. BX x n print word x in a box

. CM if t n cut mark between pages

. CT y,y chapter title: page number moved to CF (TM only)

. DA x if n n force date x at bottom of page; today if no x

. DE y end display (unfilled text) of any kind

. D S X y I y begin display with keep; x =I,L,C,B; y=indent

. ID y Sn,.Si y indented display with no keep; y =indent

. LD y left display with no keep

. CD y centered display with no keep

. BD y block display; center entire block

. EF x n even page footer x (3 part as for • t l)

. EH x n even page header x (3 part as for . t l)

. EN y end displayed equation produced by eqn

. EQ x y - y break out equation; x=L,I.C; y =equation number

. FE n end footnote to be placed at bottom of page

. FP n numbered footnote paragraph; may be redefined

. FS X n start footnote; x is optional footnote label

• . HD undef n optional page header below header margin

. I X n italicize x ; if no x , switch to italics

. IP x y - y,y indented paragraph, with hanging tag x ; y =indent

. IX x y y index words x y and so on (up to S levels)

. KE n end keep of any kind

. KF n begin floating keep; text fills remainder of page

. KS y begin keep; unit kept together on a single page

. LG n larger; increase point size by 2

. LP y,y left (block) paragraph.

. MC x y,y multiple columns; x =column width

. ND X if t n no date in page footer; x is date on cover

. NH X y y,y numbered header; x =level, x =0 resets, x=S sets to y

. NL lOp n set point size back to nonnal

. OF x n odd page footer x (3 part as for • t l)

. OH x n odd page header x (3 part as for • t l)

. P l if TM n print header on ln page

. PP y,y paragraph with first line indented

. P T - % - n page title, printed at head of page

•
. P X x y print index (table of coo tents); x =no suppresses title

. QP y,y quote paragraph (indented and shorter)

. R on n return to Roman font

. RE Sn y,y retreat: end level of relative indentation

- 2 - September, 1987

ms (S) ms (S)

. RP .x n released paper fonnat; .x =no stops title on 1 st page

. RS 5n y,y right shift: start level of relative indentation

. SH y,y section header, in boldface

. SM n smaller; decrease point size by 2

. TA 8n,5n n set tabs to Sn 16n . . . (nr o f f} 5n IOn ... (t r o f f}

• TC .x y print table of contents at end; .x =no suppresses title

. TE y end of table processed by tbl

. TH y end multi-page header of table

. TL y title in boldface and two points larger

. TM off n thesis mode

• TS .x y;y begin table; if .x=H table has multi-page header

- UL .x n underline .x , (t ro f f)

• UX .x n UNIX; trademark message tint time; .x appended

. XA .x y - y another index entry; .x=page or no for none; y =indent

. XE y end index entry (or series of • I X entries)

. XP y,y paragraph with tint line exdented, othen indented

. XS % y - y begin index entry; %=page or no for none; y =indent

. 1c on y,y one oolumn fonnat, on a new page

. 2C y,y begin two column fonnat

.] - n beginning of refer reference

• [0 n end of unclassifiable type of reference

• [N n N= l :joumal-article, 2:book, 3:book-article, 4:report

REGISTERS
Formatting distances can be controlled in ms by means of built-in
number registers. For example, this sets the line length to 6.5
inches:

. nr LL 6 . 5i

Here is a table of number registers and their default values:

P S point size paragraph 10
vs vertical spacing paragraph 12
LL line length paragraph 6i
LT title length next page same as LL
FL footnote length next . FS 5.5i
PD paragraph distance paragraph I v (if n), .3v (if t)
DD display distance displays 1 v (if n), .5v (if t)
P I paragraph indent paragraph So
QI quote indent next . QP So
F I footnote indent next . F s 2n
PO page offset next page 0 (if n), -li (if t)
HM header margin next page 1 i
FM footer margin next page li

- 3 - September, 1987

•

•

•

•

•

•

ms (5) ms (5)

FF footnote fmnat next . FS 0 (1 , 2, 3 available)

When resetting these values. make sure to specify the appropriate
units. Setting the line length to 7. for example, will result in out
put with one character per line. Setting FF to 1 suppresses foot
note superscripting; setting it to 2 also suppresses indentation of
the first line; and setting it to 3 produces an . IP-like footnote

paragraph.

Here is a list of suing registers available in ms; they may be used
anywhere in the text:

NAME STRING'S FUNcnON

\ *0 quote (" in nroff, " in troff)
\ * U unquote (" in nroff, " in troff)
\ *- duh (-- in nroff, - in troff)
\ * (MO momh (manth of the year)

\ * (D Y day (cunent date)
\ * * automatically numbered fOOinote

\ * ' acute ac:c:cnt (before letter)
\ * ' graw ac:c:cnt (before letter)
\ * . circumflex (before letter)
\ * , c:edilla (before letter)
\ * : umlaut (before letter)
\ * - tilde (before letter)

BUGS
Floating keeps and regular keeps are diverted to the same space,
so they cannot be mixed together with predictable results •

- 4 - September, 1987

mv(5) mv(S)

NAME

mv - a troff macro package for typesetting viewgraphs and
slides

SYNOPSIS
mvt [-a] [options] [files]

t roff [-a] [-rXl] -mv [options] [files]

DESCRIPTION
This package makes it easy to typeset viewgraphs and projection
slides in a variety of sizes. A few macros (briefly described
below) accomplish most of the formatting tasks needed in making
transparencies. All of the facilities of t roff(1), eqn(l), tbl(1),
pic(l), and grap(1) are available for more difficult tasks.
The output can be previewed on most terminals, and, in particular,
on the TEKTRONIX 4014. For this device, specify the -rXl
option (this option is automatically specified by the mvt com
mand when that command is invoked with the -0 4 0 1 4 option).
To preview output on other terminals, specify the -a option.

The available macros are:

. vs [n] [z] [d] Foil-start macro; foil size is to be 7"x7"; n is
the foil number, i is the foil identification, d is
the date; the foil-start macro resets all parame
ters (indent, point size, etc.) to initial default
values, except for the values of i and d argu
ments inherited from a previous foil-start
macro; it also invokes the . A macro (see
below).

The naming convention for this and the fol
lowing eight macros is that the first character
of the name (v or s) distinguishes between
viewgraphs and slides, respectively, while the
second character indicates whether the foil is
square (S), small wide (w), small high (h), big
wide (W), or big high (H). Slides are "skin
nier" than the corresponding viewgraphs: the
ratio of the longer dimension to the shorter one
is larger for slides than for viewgraphs. As a
result, slide foils can be used for viewgraphs,
but not vice versa; on the other hand, view
graphs can accommodate a bit more text.

- 1 - September, 1987

•

•

•

•

•

•

mv(5)

• Vw [n] [ll [d]

. Vh [n] [ll [d]
• vw [n] [ll [d]
• VH [n] [l] [d]
• Sw [n] [ll [d]
• Sh [n] [ll [d]
• SW [n] [ll [d]
• SH [n] [l] [d]
. A [x]

. B [m [s]]

. C [m [s]]

. D [m [s]]

• T string
. I [in] [a [x]]

. s fp] [l]

mv(5)

Same as • vs, except that foil size is 7" wide x
5" high.
Same as • vs, except that foil size is 5"x7" .
Same as . vs, except that foil size is 7"x5.4" .
Same as . vs, except that foil size is 7"><9" .
Same as . vs, except that foil size is 7"x5" .
Same as . vs, except that foil size is 5"x7" .
Same as • vs, except that foil size is 7"x5.4" .
Same as . vs, except that foil size is 7"><9" .
Place text that follows at the first indentation
level (left margin); the presence of x
suppresses the 1h line spacing from the preced
ing text.
Place text that follows at the second indenta
tion level; text is preceded by a mark; m is the
mark {default is a large bullet); s is the incre
ment or decrement to the point size of the
mark with respect to the prevailing point size
(default is 0); if s is 100, it causes the point
size of the mark to be the same as that of the
default mark •
Same as . B, but for the third indentation level;
default mark is a dash.
Same as • B, but for the fourth indentation
level; default mark is a small bullet.
string is printed as an oversize, centered title .
Change the current text indent (does not affect
titles); in is the indent (in inches unless dimen
sioned, default is 0); if in is signed, it is an
increment or decrement; the presence of a
invokes the . A macro (see below) and passes
x (if any) to it
Set the point size and line length; p is the point
size (default is .. previous"); if p is 100, the
point size reverts to the initial default for the
current foil-start macro; if p is signed, it is an
increment or decrement (default is 18 for • vs,

• VH, and . SH, and 14 for the other foil-start
macros); l is the line length (in inches unless
dimensioned; default is 4.2" for . Vh, 3.8" for

. Sh, 5" for . SH, and 6" for the other foil-start
macros).

- 2 - September, 1987

mv(5) mv(5)

. DF n f [n f . . .] Define font positions; may not appear within a
foil's input text (i.e. , it may only appear after
all the input text for a foil, but before the next
foil-start macro); n is the position of font/: up
to four "n f" pairs may be specified; the first
font named becomes the prevailing font; the
initial setting is (H is a synonym for G):

DF 1 H 2 I 3 B 4 S
. ov [a] [b) [c) [d)

Alter the vertical spacing between indentation
levels; a is the spacing for • A, b is for • B, c is
for • c, and d is for . o; all nonnull arguments
must be dimensioned; null arguments leave the
corresponding spacing unaffected; initial set
ting is:

DV 5v 5v 5v Ov
. u strl [str2] Underline strl and concatenate str2 (if any) to

it.

The last four macros in the above list do not cause a break; the
. I macro causes a break only if it is invoked with more than one
argument; all the other macros cause a break.

The macro package also recognizes the following uppercase
synonyms for the corresponding lowercase troff requests:

AD BR CE F I HY NA NF NH NX SO SP
T A T I

The Tm string produces the trademark symbol.

The input tilde (-) character is translated into a blank on output

See the user's manual cited below for further details.

Fn..ES
/usr/lib/tmac/tmac . v
/usr / l ib/macros /vmca

SEE ALSO
eqn(l), mmt(l), tbl(l), t roff{l).
"Other Text Processing Tools" in AIUX Text Processing Tools.

- 3 - September, 1987

•

•

•

•

•

•

nterm(5) nterm(5)

NAME
nte rm - terminal driving tables for nroff

DBSCRIPI10N
nroff(1) uses driving tables to customize its output for various
types of output devices, such as printing terminals, special word
processing terminals (such as Diablo, Qume, or NEC Spinwriter
mechanisms), or special output filter programs. These driving
tables are written as ASCII files, and are installed in
/us r / l ib/nterm/tab . name, where name is the name for
that terminal type as given in term(5).

The first line of a driving table should contain the name of the ter
minal: simply a string with no embedded white space. ' 'white
space" means any combination of spaces, tabs and newlines. The
next part of the driver table is structured as follows:

bset [integer] (not supported in all versions of nroff)
breset [integer] (not supported in all versions of nroff)
Hor [integer]
Vert [integer]
Newline [integer]
Char [integer]
Em [integer]
Halfline [integer]
Adj [integer]
twinit [character-string]
twrest [character-string]
t wnl [character-string]
hlr [character-string]
hlf [character-string]
f lr [character-string]
bdon [character-string]
bdoff [character-string]
i ton [character-string]
i toff [character-string]
plot on [character-string]
plot off [character-string]
up [character-string]
down [character-string]
right [character-string]
left [character-string]

The meanings of these fields are as follows:

- 1 - September, 1987

nterm(S)

bset

breset

Hor

nterm(S)

bits to set in the c_oflag field of the ter
mio structure before output.

bits to reset in the c oflag field of the
termio structure before output.

horizontal resolution in units of 1/240 of an
inch.

Vert vertical resolution in units of 11240 of an inch.

Newline space moved by a newline (linefeed) character
in units of 1/240 of an inch.

Char quantum of character sizes, in units of 1/240 of
an inch. (i.e. , a character is a multiple of
Char units wide)

Em size of an em in units of 11240 of an inch.

Halfline space moved by a half-linefeed (or half
reverse-linefeed) character in units in l/240 of
an inch.

Ad j quantum of white space, in 1/240 of an inch.
(i.e., white spaces are a multiple of Adj units
wide)

twinit

twrest

twnl

hlr

hlf

flr

Note: i f this is less than the size of the space
character, nroff will output fractional spaces
using plot mode. Also, if the -e switch to
nroff is used, Adj is set equal to Hor by
nroff.

sequence of characters used to initialize the ter
minal in a mode suitable for nroff.

sequence of characters used to restore the termi
nal to normal mode.

sequence of characters used to move down one
line.

sequence of characters used to move up one
half line.
sequence of characters used to move down
one-half line.

sequence of characters used to move up one
line.

- 2 - September, 1987

•

•

•

•

•

•

nterm(S)

bdon

bdoff

it on

nterm(5)

sequence of characters used to turn on hardware
boldface mode, if any.

sequence of characters used to turn off
hardware boldface mode, if any.

sequence of characters used to turn on hardware
italics mode, if any.

itoff sequence of characters used to turn off
hardware italics mode, if any.

plot on sequence of characters used to turn on hardware
plot mode (for Diablo type mechanisms), if any.

plotoff sequence of characters used to turn off
hardware plot mode (for Diablo type mechan
isms), if any.

up sequence of characters used to move up one
resolution unit {Vert) in plot mode, if any.

down sequence of characters used to move down one
resolution unit {Ve rt) in plot mode, if any.

right sequence of characters used to move right one
resolution unit {Hor) in plot mode, if any.

left sequence of characters used to move left one
resolution unit {Hor) in plot mode, if any.

This part of the driving table is fixed format, and you cannot
change the order of entries. You should put entries on
separate lines, and these lines should contain exactly two
fields (no comments allowed) separated by white space. For
example,

Cbset 0
breset 0
Hor 2 4

and so on.

Follow this first part of the driving table with a line contain
ing the word " charset," and then specify a table of spe
cial characters that you want to include. That is, specify all
the non-ASCII characters that nroff{l) knows by two char
acter names, such as - . If nroff does not find the word
"charset " where it expects to, it will abort with an error
message.

- 3 - September, 1987

nterm(S) nterm(S)

Each definition in the part after "char set " occupies one
line, and has the following fonnat:

chname width output

where "chname" is the (two letter) name of the special char
acter, "width" is its width in ems, and "output" is the string
of characters and escape sequences to send to the terminal to
produce the special character.

If any field in the "cha rset" part of the driving table does
not pertain to the output device, you may give that particular
sequence as a null string, or leave out the entry. Special char
acters that do not have a definition in this file are ignored on
output by nroff(l).

You may put the " charset" definitions in any order, so it
is possible to speed up nroff by putting the most used
characters first For example,

char set
em 1 -
hy 1 -
\ - 1 -
bu 1 +

and so on.

The best way to create a terminal table for a new device is to
take an existing terminal table and edit it to suit your needs.
Once you create such a file, put it in the directory
/usr/ 1ib/nterm, and give it the name tab . xyz where
xyz is the name of the terminal and the name that you pass
nroff via the -T flag option (for example, nroff
-Txy z).

Fll..ES
/us r / l ib /nterm/tab . name

SEE ALSO
nroff(l).

- 4 - September, 1987

•

•

•

•

•

•

prof(5)

NAME
prof - profile within a function

SYNOPSIS
#de fine MARK

#include <prof . h>

void MARK (name)

DESCRIPTION

prof (5)

MARK will introduce a mark called name that will be treated the
same as a function entry point Execution of the mark will add to a
counter for that mark, and program-counter time spent will be
accounted to the immediately preceding mark or to the function if
there are no preceding marks within the active function.

name may be any combination of up to six letters, numbers or
underscores. Each name in a single compilation must be unique,
but may be the same as any ordinary program symbol.

For marks to be effective, the symbol MARK must be defined
before the header file <prof . h> is included. This may be
defined by a preprocessor directive as in the synopsis, or by a
command line argument, i.e:

cc -p -DMARK foo . c

If MARK is not defined, the MARK (name) statements may be left
in the source files containing them and will be ignored.

EXAMPLE
In this example, marks can be used to determine how much time is
spent in each loop. Unless this example is compiled with MARK
defined on the command line, the marks are ignored.

#include <prof . h>

foo (
{

int i , j ;

MARK (loopl) ;
for (i = 0 ; i < 2 0 0 0 ; i++)

}
MARK (loop2) ;

- 1 - September, 1987

prof(5) pro f (5)

for (j = 0 ; j < 2 0 0 0 ; j ++)

SEE ALSO •
prof{l), profil(2), monitor(3C).

•

•
- 2 - September, 1987

•

•

•

regexp(5) regexp(5)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
#define INIT <declarations>
#define GETC () <getc code >
fdefine PEEKC () <peekc code >
#define UNGETC (c) <ungetc code >
#define RETURN (pointer) <return code >
fdefine ERROR (val) <error code >

#include <regexp . h>

char *compile (instring ,
char *instring, *expbuf,
int eof;

expbuf, endbuf, eof>
*endbuf;

int step (string, exbuj)
char *string , *exbuf;
extern char *loc l , * loc2 , * locs ;

extern int circ f , sed, nbra ;

DESCRIPI'ION
This page describes general-purpose regular expression matching
routines in the form of ed(l), defined in
/usr/ include / regexp . h. Programs such as ed(l), sed(l),
grep(l), bs(l), expr(l), etc., which perform regular expression
matching use this source file. In this way, only this file need be
changed to maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs that
include this file must have the following five macros declared
before the " f include <regexp . h> " statement These mac
ros are used by the compile routine.

GETC () Return the value of the next character in
the regular expression pattern. Succes
sive calls to GETC () should return suc
cessive characters of the regular expres
sion.

PEEKC () Return the next character in the regular
expression. Successive calls to
PEEKC () should return the same charac
ter (which should also be the next charac
ter returned by GETC ()) .

- 1 - September, 1987

regexp(5)

UNGETC (c)

RETURN (pointer)

ERROR (val)

ERROR
1 1
16
25
36
41
42
43
44
45
46
49
50

regexp(5)

Cause the argument c to be returned by
the next call to GETC () (and
PEEKC ()). No more that one character
of pushback is ever needed and this char
acter is guaranteed to be the last charac
ter read by GETC () . The value of the
macro UNGETC (c) is always ignored.

This macro is used on normal exit of the
compile routine. The value of the
argument pointer is a pointer to the char
acter after the last character of the com
piled regular expression. This is useful to
programs which have memory allocation
to manage.

This is the abnormal return from the
compile routine. The argument val is
an error number (see table below for
meanings). This call should never return.

MEANING
Range endpoint too large.
Bad number.
"\digit.

,
out of range.

illegal or missing delimiter.
No remembered search string.
\(\) imbalance.
Too many \(.
More than 2 numbers given in \{ \}.
} expected after \.
First number exceeds second in \{ \}.
[] imbalance.
Regular expression overflow.

The syntax of the compile routine is as follows:

compile (instring, expbuf, endbuf, eoj)

The first parameter instring is never used explicitly by the com
pile routine but is useful for programs that pass down different
pointers to input characters. It is sometimes used in the INIT
declaration (see below). Programs which call functions to input
characters or have characters in an external array can pass down a
value of ((char *) 0) for this parameter.

- 2 - September, 1987

•

•

•

•

•

•

regexp(5) regexp(5)

The next parameter expbuf is a character pointer. I t points to the
place where the compiled regular expression will be placed .

The parameter endbuf is one more than the highest address where
the compiled regular expression may be placed. If the compiled
expression cannot fit in (endbuf-expbuf) bytes, a call to
ERROR (5 0) is made.

The parameter eof is the character which marks the end of the reg
ular expression. For example, in ed(l), this character is usually a
/ .

Each program that includes this file must have a tdefine state
ment for INIT. This definition will be placed right after the
declaration for the function compile and the opening curly
brace ({) . It is used for dependent declarations and initializations.
Most often it is used to set a register variable to point the begin
ning of the regular expression so that this register variable can be
used in the declarations for GETC () , . PEEKC () and UNGETC () .
Otherwise it can be used to declare external variables that might
be used by GETC () , PEEKC () and UNGETC () • See the exam
ple below of the declarations taken from grep(l) .

There are other functions in this file which perform actual regular
expression matching, one of which is the function step. The call
to step is as follows:

step (string , expbuf>

The first parameter to step is a pointer to a string of characters
to be checked for a match. This string should be null terminated.

The second parameter expbuf is the compiled regular expression
which was obtained by a call of the function compile.

The function step returns non-zero if the given string matches
the regular expression, and zero if the expressions do not match.
If there is a match, two external character pointers are set as a side
effect to the call to step. The variable set in step is loc l .
This is a pointer to the first character that matched the regular
expression. The variable loc2, which is set by the function
advance, points to the character after the last character that
matches the regular expression. Thus if the regular expression
matches the entire line, locl will point to the first character of
string and loc2 will point to the null at the end of string .

step uses the external variable circf which is set by com
pile if the regular expression begins with � . If this is set then
step will try to match the regular expression to the beginning of

- 3 - September, 1987

regexp(5) regexp{5)

the string only. If more than one regular expression is to be com
piled before the first is executed the value of circf should be
saved for each compiled expression and circf should be set to
that saved value before each call to step.

The function advance is called from step with the same
arguments as step. The purpose of step is to step through the
string argument and call advance until advance returns
non-zero indicating a match or until the end of string is reached.
If one wants to constrain string to the beginning of the line in all
cases, step need not be called; simply call advance.

When advance encounters a • or \{ \} sequence in the regular
expression, it will advance its pointer to the string to be matched
as far as possible and will recursively call itself trying to match
the rest of the string to the rest of the regular expression. As long
as there is no match, advance will back up along the string
until it finds a match or reaches the point in the string that initially
matched the • or \{ \} . It is sometimes desirable to stop this back
ing up before the initial point in the string is reached. If the exter
nal character pointer locs is equal to the point in the string at
sometime during the backing up process, advance will break
out of the loop that backs up and will return zero. This is used by
ed{l) and sed{l) for substitutions done globally (not just the first
occurrence, but the whole line) so, for example, expressions like
s ly* I lg do not loop forever.

The additional external variables sed and nbra are used for
special purposes.

EXAMPLES
The following is an example of how the regular expression macros
and calls look from grep(l):

#define !NIT
4t define GETC ()
4t define PEEKC ()
#define UNGETC (c)
#define RETURN (c)
#de fine ERROR (c)

in clude <regexp . h>

regi ster char * sp=instring;
(* sp++)
(* sp)
(-sp)

return ;
regerr ()

(void) compi le (*argv , expbu f , &expbuf [ES I ZE] , ' \ 0 ') ;

if (step (linebuf , expbuf))
succeed () ;

- 4 - September, 1987

•

•

•

•

•

•

regexp(S)

Fll.ES
/usr/ inc lude / regexp . h

SEE ALSO
bs{l), ed(l), expr{l), grep{l), sed(l).

BUGS

regexp(S)

The handling of circf is kludgy.
The actual code is probably easier to understand than this manual
page .

- 5 - September, 1987

stat {5)

NAME
stat - data returned by stat system call

SYNOPSIS
:fl:include <sys /types . h>
#include <sys / stat . h>

DESCRIPriON

stat (5)

The system calls stat and fstat return data whose structure
is defined by this include file. The encoding of the field
st _mode is defined in this file also.

I *

* St ructure o f the result o f stat

* I

st ruct s t at

dev t st _dev ;

i n o t st inc ; -
u short st _mode ;

short st _n l i nk ;

short st _u id;
short st_gid;

dev t st rdev; -
o f f t st s i z e ; -
t ime -t st -at ime ;

int st_spare 1 ;

t ime -t st _mt ime ;
int st_spare2 ;

t ime t st -ct ime ;

int st_spare 3 ;

long st _bl k s i ze ;

l ong st _blocks;

l ong st_spare 4 [2] ;

} ;

ide f i ne S IFMT 0 1 7 0 0 0 0 I * t ype o f f i le * I

ltde f ine S IFDIR 0 0 4 0 0 0 0 I * direct ory * I

itde fine S IFCHR 0 0 2 0 0 0 0 I * character spe c i a l

#de fine S IFBLK 0 0 6 0 0 0 0 I * block spe c i a l * I
itde fine S IFREG 0 1 0 0 0 0 0 I * regu l a r * I

itde f ine S !F IFO 0 0 1 0 0 0 0 I * F IFO * I

* I

- 1 - September, 1987

•

•

•

•

•

•

stat(5) stat (5)

ltde f ine s IFLNK 0 1 2 0 0 0 0 I * symbo l i c l ink * / -
I de f ine s IF SOC 0 1 4 0 0 0 0 / * socket * / -
Ide f ine S ISUID 0 4 0 0 0 I * set user I D o n execut ion *I

It de fine S ISGID 0 2 0 0 0 / * set group I D o n execution *I

#de f ine s I SVTX 0 1 0 0 0 / * save swapped text even -
after use * /

#de f ine S IREAD 0 0 4 0 0 / * read permi s s io n , owne r * I

#de f ine S IWR I T 0 0 2 0 0 I * write permi s s i o n , owne r * /

ltde f ine s I EXEC 0 0 1 0 0 I * execut e / search pe rmi s s i o n , -
owner * I

Fll..ES
/usr/ include / sys /types . h
/usr/ include / sys / stat . h

SEE ALSO
stat(2), types(5) .

- 2 - September, 1987

tcp(5P)

NAME
t cp - Internet Transmission Control Protocol

SYNOPSIS
*include <sys / socket . h>
*include <net inet / in . h>

tcp(5P)

s = socket (AF_INET, SOCK_STREAM, 0) ;

DESCRIPITON

The TCP protocol provides reliable, flow-controlled, two-way
transmission of data. It is a byte-stream protocol used to support
the SOCK STREAM abstraction. TCP uses the standard Internet
address format and, in addition, provides a per-host collection of
' 'port addresses' ' . Thus, each address is composed of an Internet
address specifying the host and network, with a specific TCP port
on the host identifying the peer entity.

Sockets utilizing the tcp protocol are either "active" or "pas
sive". Active sockets initiate connections to passive sockets. By
default TCP sockets are created active; to create a passive socket
the listen(2N) system call must be used after binding the
socket with the bind{2N) system call. Only passive sockets may
use the accept{2N) call to accept incoming connections. Only
active sockets may use the connect{2N) call to initiate connec
tions.

Passive sockets may "underspecify" their location to match
incoming connection requests from multiple networks. This tech
nique, termed "wildcard addressing," allows a single server to
provide service to clients on multiple networks. To create a
socket which listens on all networks, the Internet address
INADDR_ANY must be bound. The TCP port may still be
specified at this time; if the port is not specified the system will
assign one. Once a connection has been established the socket's
address is fixed by the peer entity's location. The address
assigned the socket is the address associated with the network
interface through which packets are being transmitted and
received. Normally this address corresponds to the peer entity's
network.

ERRORS
A socket operation may fail with one of the following errors
returned:

[E I SCONN] when trying to establish a connection on
a socket which already has one;

- 1 - September, 1987

•

•

•

•

•

•

t cp(SP)

[ENOBUF S]

[E T IMEDOUT]

tcp(SP)

when the system runs out of memory for
an internal data structure;

when a connection was dropped due to
excessive retransmissions;

[ECONNRESET] when the remote peer forces the connec
tion to be closed;

[ECONNREFUSED] when the remote peer actively refuses
connection establishment (usually
because no process is listening to the
port);

[EADDRINUSE] when an attempt is made to create a
socket with a port which has already been
allocated;

[EADDRNOTAVAI L] when an attempt i s made to create a
socket with a network address for which
no network interface exists.

SEE ALSO
int ro(S), inet(SF) .

BUGS
It should be possible to send and receive TCP options. The sys
tem always tries to negotiates the maximum TCP segment size to
be 1024 bytes. This can result in poor performance if an interven
ing network performs excessive fragmentation .

- 2 - September, 1987

te rm(5) term(5)

NAME
term - conventional names for terminals

DESCRIPriON
These names are used by certain commands (e.g., nroff(l),
mm(l), man(1), tabs{l)) and are maintained as part of the shell
environment (see sh(1), profile{4), and environ(5)) in the
variable $TERM:

1520 Datamedia 1520
1620 Diablo 1620 and others using the HyType II printer
1620-12 same, in 12-pitch mode
2621 Hewlett-Packard HP2621 series
263 1 Hewlett-Packard 263 1 1ine printer
263 1--c Hewlett-Packard 263 1 line printer - compressed mode
263 1-e Hewlett-Packard 263 1 line printer - expanded mode
2640 Hewlett-Packard HP2640 series
2645 Hewlett-Packard HP264n series (other than the 2640 series)
300 DASI/DTC/GSI 300 and others using the HyType I printer
300-12 same, in 12-pitch mode
300s DASI/DTC/GSI 300s
382 DTC 382
300s-12 same, in 12-pitch mode
3045 Datamedia 3045
33 TELETYPE Terminal Model 33 KSR
37 TELETYPE Terminal Model 37 KSR
40-2 TELETYPE Terminal Model 40/2
40-4 TELETYPE Terminal Model 40/4
4540 TELETYPE Terminal Model 4540
3270 mM Model 3270
4000a Trendata 4000a
4014 Tektronix 40 14
43 TELETYPE Model 43 KSR
450 DASI 450 (same as Diablo 1620)
450-12 same, in 12-pitch mode
735 Texas Instruments TI735 and TI725
745 Texas Instruments TI745
dumb generic name for terminals that lack reverse

sync

hp
lp
tn 1200

linefeed and other special escape sequences
generic name for synchronous 1ELETYPE
4540-compatible terminals
Hewlett-Packard (same as 2645)
generic name for a line printer
General Electric TermiNet 1200

- 1 - September, 1987

•

•

•

•

•

•

term(5) term(5)

tn300 General Electric TermiNet 300

Up to 8 characters, chosen from [-a-zQ-9] , make up a basic ter
minal name. Terminal submodels and operational modes are dis
tinguished by suffixes beginning with a -. Names should gen
erally be based on original vendors, rather than local distributors.
A terminal acquired from one vendor should not have more than
one distinct basic name.

Commands whose behavior depends on the type of terminal
should accept arguments of the form -Tterm where term is one of
the names given above; if no such argument is present, such com
mands should obtain the terminal type from the environment vari
able $TERM, which, in turn, should contain te rm.

See /etc/termcap on your system for a complete list.

SEE ALSO
mm(l), nroff(l), sh{l), stty(l), tabs{l), tplot(lG), pro
f i le(4), environ(5).

BUGS
This is a small candle trying to illuminate a large, dark problem.
Programs that ought to adhere to this nomenclature do so some
what fitfully .

- 2 - September, 1987

t roff (5) t roff(5)

NAME
t roff - description of output language

DESCRIPTION
The device-independent troff outputs a pure ASCII description
of a typeset document. The description specifies the typesetting
device, the fonts, and the point sizes of characters to be used as
well as the position of each character on the page. A list of all the
legal commands follows. Most numbers are denoted as n and are
ASCII strings. Strings inside of brackets ([]) are optional.
t ro f f may produce them, but they are not required for the
specification of the language. The character \ n has the standard
meaning of "newline" character. Between commands, white
space has no meaning. White space characters are spaces and
new lines.

sn

fn

ex

Cxyz

Hn

The point size of the characters to be
generated.

The font mounted in the specified posi
tion is to be used. The number ranges
from 0 to the highest font presently
mounted. 0 is a special position, invoked
by t roff , but not directly accessible to
the t roff user. Normally fonts are
mounted starting at position 1 .

Generate the character x at the current
location on the page; x is a single ASCII
character.

Generate the special character xyz . The
name of the character is delimited by
white space. The name will be one of the
special characters legal for the typeset
ting device as specified by the device
specification found in the file DESC.
This file resides in a directory specific for
the typesetting device. (See font(5) and
/ u s r / l ib/ font /dev*.)

Change the horizonal position on the
page to the number specified. The
number is in basic units of motions as
specified by DESC. This is an absolute
"goto " .

- 1 - September, 1987

•

•

•

t rof£ (5)

hn

• vn

vn

nnx

nb a

•

w

pn

* \n

• D l X y \ n

t rof£ (5)

Add the number specified to the current
horizontal position. This is a relative
"goto" .

Change the vertical position on the page
to the number specified (down is posi
tive).

Add the number specified to the current
vertical position.

This is a two-digit number followed by
an ASCII character. The meaning is a
combination of hn {ollowed by ex. The
two digits nn are added to the current
horizontal position and then the ASCII
character, x, is produced. This is the
most common form of character
specification.

This command indicates that the end of a
line has been reached. No action is
required, though by convention the hor
izontal position is set to 0. t roff will
specify a resetting of the x ,y coordinates
on the page before requesting that more
characters be printed. The first number,
b, is the amount of space before the line
and the second number, a , the amount of
space after the line. The second number
is delimited by white space.

A w appears between words of the input
document No action is required. It is
included so that one device can be emu
lated more easily on another device.

Begin a new page. The new page
number is included in this command.
The vertical position on the page should
be set to O.

A line beginning with a pound sign is a
comment .

Draw a line from the current location to
x;y.

- 2 - September, 1987

t roff {5)

Dc d\n

De dx dy \n

Da X y U V

o - x y x y . . . \ n

x i [nit] \ n

x T device \n

x r [es] n h v \n

t roff (5)

Draw a circle of diameter d with the left
most edge being at the CWTent location
(x, y). The current location after drawing
the circle will be x+d,y, the rightmost
edge of the circle.

Draw an ellipse with the specified axes.
dx is the axis in the x direction and dy is
the axis in the y direction. The leftmost
edge of the ellipse will be at the current
location. After drawing the ellipse the
current location will be x+dx ,y.

Draw a counterclockwise arc from the
current location to x+u ,y+v using a circle
of whose center is x,y from the current
location. The current location after
drawing the arc will be at its end.

Draw a spline curve (wiggly line)
between each of the x ,y coordinate pairs
starting at the current location. The final
location will be the final x ,y pair of the
list.

Initialize the typesetting device. The
actions required are dependent on the
device. An init command will always
occur before any output generation is
attempted.

The name of the typesetter is device .
This is the same as the argument to the
-T option. The information about the
typesetter will be found in the directory
/us r / l ib/ font /dev{device} .

The resolution of the typesetting device
in increments per inch is n . Motion in
the horizontal direction can take place in
units of h basic increments. Motion in
the vertical direction can take place in
units of v basic increments. For example,
the APS-5 typesetter has a basic resolu
tion of 723 increments per inch and can

move in either direction in 723rds of an
inch. Its specification is:

- 3 - September, 1987

•

•

•

•

•

•

trof£(5)

x p [ause] \n

x s [top] \n

x t [railer] \n

x f [ont] n name \n

x H [eight] n \ n

x S [lant] n \n

t rof£ (5)

x res 723 1 1

Pause. Cause the current page to finish
but do not relinquish the typesetter .

Stop. Cause the current page to finish
and then relinquish the typesetter. Per
Conn any shutdown and bookkeeping
procedures required.

Generate a trailer. On some devices no
operation is perfonned.

Load the font name into position n .

Set the character height to n points. This
causes the letters to be elongated or shor
tened. It does not affect the width of a
letter.

Set the slant to n degrees. Only some
typesetters can do this and not all angles
are supported.

SEE ALSO
t rof£(1) .
"nroff /troff Reference" and "Introduction to t roff and
mm" in AJUX Text Processing Tools .

- 4 - September, 1987

types (5)

NAME
types - primitive system data types

SYNOPSIS
#inc lude <sys /types . h>

DESCRIPI'ION

types (5)

The data types defined in the include file are used in A/UX System
code; some data of these types are accessible to user code:

typedef st ruct { int r (l] ; } *physadr ;
typedef long daddr_t ;
typedef char *caddr_t ;
typedef uns igned int uint ;
typedef uns igned short ushort ;
typedef ushort ino_t ;
typedef short cnt_t ;
typedef long t irne_t ;
typedef int label_t [l O] ;
typedef shor tdev_t ;
typedef long off_t ;
typedef long paddr_t ;
typedef long key_t ;

The form daddr t is used for disk addresses except in an inode
on disk, see fs{4)-:- Times are encoded in seconds since 00:00:00
GMT, January I, I970. The major and minor parts of a device
code specify kind and unit number of a device and are
installation-dependent. Offsets are measured in bytes from the
beginning of a file. The label_t variables are used to save the
processor state while another process is running.

SEE ALSO
fs{4).

- I - September, I987

•

•

•

•

•

•

udp (SP) udp (SP)

NAME
udp - Internet User Datagram Protocol

SYNOPSIS
f inc lude < s y s / s o c ket . h>
f inc lude <net inet / in . h>

s = s ocket (AF_INET , S OCK_DGRAM, 0) ;

DESCRIPTION
UDP is a simple, unreliable datagram protocol which is used to
support the S OCK DGRAM abstraction for the Internet protocol
family. UDP sockets are connectionless, and are normally used
with the s endt o and recvf rom calls, though the
c onne ct (2N) call may also be used to fix the destination for
future packets (in which case the recv(2N) or send(2N) system
calls may be used) .

UDP address formats are identical to those used by TCP. In par
ticular UDP provides a port identifier in addition to the normal
Internet address format. Note that the UDP port space is separate
from the TCP port space (i.e., a UDP port may not be "con
nected' ' to a TCP port) . In addition broadcast packets may be
sent (assuming the underlying network supports this) by using a
reserved "broadcast address" ; this address is network interface
dependent.

ERRORS
A socket operation may fail with one of the following errors
returned:

[E I S CONN]

[ENOTCONN]

[ENOBUFS]

[EADDRINUSE]

when trying to establish a connection on
a socket which already has one, or when
trying to send a datagram with the desti
nation address specified and the socket is
already connected;

when trying to send a datagram, but no
destination address is specified, and the
socket hasn't been connected;

when the system runs out of memory for
an internal data structure;

when an attempt is made to create a
socket with a port which has already been
allocated;

- 1 - September, 1987

udp(5P)
udp(5P)

[EADDRNOTAVA I L] when an attempt is made to create a
socket with a network address for which
no network interface exists .

SEE ALSO
send(2N}, recv(2N}, int ro(5}, inet(5F).

- 2 - September, 1987

•

•

•

•

•

•

values (5) values (5)

NAME
values - machine-dependent values

SYNOPSIS
:fl:inc lude <values . h>

DESCRIPTION
This file contains a set of manifest constants, conditionally defined
for particular processor architectures.

The model assumed for integers is binary representation (one's or
two's complement), where the sign is represented by the value of
the high-order bit.

BITS (type)
The number of bits in a specified type (e.g. , int).

HIBITS
The value of a short integer with only the high-order bit set
(in most implementations, Ox8000).

HIBITL
The value of a long integer with only the high-order bit set
(in most implementations, Ox80000000).

HIBITI
The value of a regular integer with only the high-order bit set
(usually the same as HIBITS o r HIBITL) .

MAXSHORT
The maximum value of a signed short integer (in most imple
mentations, Ox7FFF = 32767) .

MAXLONG
The maximum value of a signed long integer (in most imple
mentations, Ox7FFFFFFF = 2147483647).

MAXI NT
The maximum value of a signed regular integer (usually the
same as MAXSHORT or MAXLONG) .

MAXFLOAT, LN MAXFLOAT
The maximum value of a single-precision floating-point
number, and its natural logarithm.

MAXDOUBLE, LN MAXDOUBLE
The maximum value of a double-precision floating-point
number, and its natural logarithm.

MINFLOAT, LN MINFLOAT
The minimum positive value of a single-precision floating-

- 1 - September, 1987

value s (5) value s (5)

point number, and its natural logarithm.

MINDOUBLE, LN MINDOUBLE
The minimum positive value of a double-precision floating
point number, and its natural logarithm.

F S IGN I F
The number of significant bits in the mantissa of a single
precision floating-point number.

D S IGN I F
The number of significant bits in the mantissa of a double
precision floating-point number.

FILES
/us r / include / va lues . h

SEE ALSO
int ro(3), math(5).

- 2 - September, 1987

•

•

•

•

•

•

Appendix A

Permuted Index

ae: 3Com 10 Mb/s Ethernet interface. • ae(5)
functions of DASI 300 and 300s/ 300, 300s: handle special • 300(1)
handle special functions of DASI 300 and 300s terminals. /300s: 300(1)

DASI 300 and 300s/ 300, 300s: handle special functions of 300(1)
special functions o f DASI 3 00 and 300s terminals. /300s: handle • 300(1)

13tol, ltol3 : convert between 3-byte integers and long/ • • 13tol(3C)
ae: 3Com 10 Mb/s Ethernet interface. ae(5)

diagnostic. dual: 3Com Ethernet interface • • • dual(1M)
comparison. diff3: 3-way differential file • • • • diff3(1)

4014 terminal. 4014: paginator for the Tektronix 4014(1)
4014: paginator for the Tektronix 4014 terminal. • • • • • • • 4014(1)

set42sig: set 4.2 BSD signal interface. • • set42sig(3)
the DASI 450 terminal. 450: handle special functions of 450(1)

special functions of the DASI 450 terminal. 450: handle • • 450(1)
i17: Fortran 77 compiler. • • • • • • • i17(1)

integer and base-64 ASCIT/ a641, 164a: convert between long a641(3C)
abort: generate an lOT fault. • abort(3C)
abort: terminate Fortran program. abort(3F)

Fortran absolute value. abs, iabs, dabs, cabs, zabs: abs(3F)
value. abs: return integer absolute • • abs(3C)

abs: return integer absolute value. • • • • • • abs(3C)
iabs, dabs, cabs, zabs: Fortran absolute value. abs, • • • • abs(3F)
fabs: floor, ceiling, remainder, absolute value functions. /fmod, floor(3M)

accept: accept a connection on a socket. accept(2N)
sockeL accept: accept a connection on a accept(2N)

accept: allow LP requests. • • accept(lM)
a file. touch: update access and modification times of touch(l)

utime: set file access and modification times. utime(2)
of a file. access: determine accessibility access(2)

getgroups: get group access list. getgroups(2)
initgroups: initialize group access list. • • • • • • • initgroups(3)

setgroups: set group access list. • • • • • • • setgroups(2)
machine/ sputl, sgetl: access long integer data in a sput1(3X)

phys: allow a process to access physical addresses. phys(2)
ldfcn: common object file access routines. ldfcn(3X)

copy file systems for optimal access time. dcopy: dcopy(lM)
/setutent, endutent, utmpname: access utmp file entry. getut(3C)

access: determine accessibility of a file. access(2)
acct: enable or disable process accounting. • • • • acct(2)

acctconl , acctcon2: connect-time accounting. • • • • acctcon(lM)
acctprcl, acctprc2: process accounting. • • • • acctprc(1M)

turnacct: shell procedures for accounting. /shutacct, startup, acctsh(lM)
/accton, acctwtmp: overview of accounting and miscellaneous/ acct(lM)

of accounting and miscellaneous accounting commands. /overview acct(lM)
diskusg: generate disk accounting data by user ID. diskusg(1M)

Permuted I ndex A-1

acct: per-process accounting file fonnat. acct(4)
acctcom: seuch and print process accounting file(s). acctcom(lM)

acctmerg: merge or add total accounting files. • • • • • • acctmerg(lM)
mclock: retmn Fortran time accounting. • • • • • • mclock(3F)

command summiiiY from per-process accounting records. acctcms: acctcms(lM)
wtmpfix: manipulate connect accounting records. fwtmp, fwtmp(lM)

runacct: run daily accounting. • • • • • • • runacct(lM)
accounting. acct: enable or disable process acct(2)

fonnat. acct: per-process accounting file acct(4)
per-process accounting records. acctcms: command summiiiY from acctcms(lM)

accounting file(s). acctcom: search and print process acctcom(lM)
accounting. acctconl , acctcon2: connect-time acctcon(lM)

accounting. acctconl , acctcon2: connect-time acctcon(lM)
acctwtmp: overview of accounting/ acctdisk, acctdusg, accton, • • acct(lM)

overview of accounting/ acctdisk, acctdusg, accton, acctwtmp: acct(lM)
accounting files. acctmerg: merge or add total • acctmerg(lM)

accounting/ acctdisk, acctdusg, accton, acctwtmp: overview of acct(lM)
accounting. acctprcl, acctprc2: process • • acctprc(lM)

acctprcl , acctprc2: process accounting. • acctprc(lM)
and/ acctdisk, acctdusg, accton, acctwtmp: overview of accounting acct(lM)

functions. sin, cos, tan, asin, acos, atan, atan2: trigonometric trig(3M)
intrinsic function. acos, dacos: Fortran arccosine acos(3F)

rdumpfs: file system dump across the network. • • • • • rdumpfs(lM)
restore a file system dump across the network. rrestore: • rrestore(lM)

signal. signal: specify Fortran action on receipt of a system signal(3F)
killall: kill all active processes. • • • killall(lM)

sag: system activity graph. • • • • sag(lG)
sadc, sal , sa2: system activity report package. • sadc(lM)

sar: system activity reporter. • • • • sar(l)
print current sees file editing activity. sact: • • • • • sact(l)
report process data and system activity. timex: time a command; timex(l)

a random, hopefully interesting, adage. fortune: print fortune(6)
adb: debugger. adb(l)

acctmerg: merge or add total accounting files. • • acctmerg(lM)
putenv: change or add value to environment. • • putenv(3C)

bibliographic database. addbib: create or extend • • • addbib(l)
get fil e/ setmntent, getmntent, addmntent, endmntent, hasmntopt: getmntent(3)

setptabent,/ getptabent, addptabent, endptabent, • • getptabent(3)
read an interface's Ethernet address .. etheraddr: etheraddr(lM)

{met_lnaof, inet_netof: Internet address manipulation routines. inet(3N)
arp: Address Resolution Protocol. arp(5P)

a process to access physical addresses. phys: allow phys(2)
allow synchronization of the/ adjtime: correct the time to • • adjtime(2)

files. admin: create and administer sees admin(l)
admin : create and administer sees files. admin(l)

A-2

escher: autorecovery administration. • • • • • escher(lM)
swap: swap administrative interface. • • • swap(1M)

file fonnat. afm: Adobe PostScript font metrics afm(7)
flock: apply or remove an advisory lock on an open file. flock(2)

interface. ae: 3Com 10 Mb/s Ethernet ae(5)
yes: be repetitively affinnative. • • • • • yes(I)

Permuted I ndex

•

•

•

•

•

•

metrics file format. afm: Adobe PostScript font • afm(7)
part of complex argument. aimag, dimag: Fortran imaginary aimag(3F)

intrinsic function. aint, dint: Fortran integer part aint(3F)
alarm: set a process's alarm clock. • • • • • • alarm(2)

clock. alarm: set a process's alarm alarm(2)
sendmail. aliases: aliases file for • • aliases(4)

locate a program file including aliases and paths. which: which(l)
aliases: aliases file for sendmail. • aliases(4)

the data base for the mail aliases file. /rebuild • newaliases(lM)
aliens: alien invaders attack the earth. aliens(6)
earth. aliens: alien invaders attack the aliens(6)

sbrk: change data segment space allocation. brk, brk(2)
calloc, cfree: main memory allocator. /free, realloc, • malloc(3C)
mallinfo: fast main memory allocator. /calloc, mallopt, malloc(3X)

physical addresses. phys: allow a process to access phys(2)
accept: allow LP requests. • • • accept(lM)

adjtime: correct the time to allow synchronization of the/ adjtime(2)
logarithm intrinsic/ log, alog, dlog, clog: Fortran natural log(3F)

logarithm intrinsic/ log tO, aloglO, dloglO: Fortran common log10(3F)
information for bad block/ altblk: alternate block • • • • altblk(4)

bad block handling. altblk: alternate block information for altblk(4)
Fortran maximum-value/ max, maxO, amaxO, maxl, amaxl, dmaxl : max(3F)

max, maxO, amaxO, maxl, amaxl , dmaxl : Fortran/ • • • max(3F)
Fortran minimum-value/ min, minO, aminO, mint , aminl , dminl: min(3F)

min, minO, aminO, minl , aminl , dminl : Fortran/ min(3F)
intrinsic functions. mod, amod, dmod: Fortran remaindering mod(3F)

of a document. style: analyze surface characteristics style(I)
rshift: Fortran bitwise boolean/ and, or, xor, not, !shift, bool(3F)

sigstack: set and/or get signal stack context. sigstack(2)
whereis: locate source, binary, and/or manual for program. whereis(l)

sort: sort and/or merge files. • • • • sort(l)
terminal. worms: animate worms on a display worms(6)

rain: animated raindrops display. rain(6)
Fortran nearest integer/ anint, dnint, nint, idnint: • • round(3F)

bed: convert to antique media. • • • • • • • bcd(6)
editor output. a.out: common assembler and link a.out(4)

files. aouthdr.h: a.out header for common object aouthdr(4)
common object files. aouthdr.h: a.out header for • • aouthdr(4)

execute a Macintosh binary application. launch: • • • • launch(I)
arguments. apply: apply a command to a set of • apply(l)

of arguments. apply: apply a command to a set apply(l)
on an open file. flock: apply or remove an advisory lock flock(2)

keyword lookup. apropos: locate commands by apropos(!)
Postprocessor for the Autologic APS-5 phototypesetter. daps: • daps(l)

maintainer for portable/ ar: archive and library • • • • ar(l)
ar : common archive file format. ar(4)

number: convert Arabic numerals to English. number(6)
language. be: arbitrary-precision arithmetic • bc(l)

acos, dacos: Fortran arccosine intrinsic function. acos(3F)
for portable archives. ar: archive and library maintainer ar(1)

cpio: format o f cpio archive. • • • • • • • • • cpio(4)

Permuted I ndex A-3

ar: common archive file format. • • • • • ar(4)
archive header of a member of an archive file. ldahread: read the ldahread(3X)

archive file. ldahread: read the archive header of a member of an ldahread(3X)
tp: manipulate tape archive. • • • • • • tp(1)

tar: tape file archiver. • • • • • • tar(1)
library maintainer for portable archives. ar : archive and ar(1)

cpio: copy file archives in and out. • • • cpio(1)
asin, dasin: Fortran arcsine intrinsic function. asin(3F)

atan2, datan2: Fortran arctangent intrinsic function. atan2(3F)
atan, datan: Fortran arctangent intrinsic function. atan(3F)

Fortran imaginary part of complex argument. aimag, dimag: aimag(3F)
return Fortran command-line argument. getarg: getarg(3F)

varargs: handle variable argument list. • • • • varargs(3X)
formatted output of a varargs argument list. /vsprintf: print vprintf(3S)

command. xargs: construct argument list(s) and execute xargs(1)
getopt: get option letter from argument vector. • • • • getopt(3C)
apply a command to a set of arguments. apply: apply(1)

expr: evaluate arguments as an expression. expr(1)
echo: echo arguments. • • • • • • echo(1)

iargc: re turn command line arguments. • • • • • • . iargc(3F)
be: arbitrary-precision arithmetic language. bc(l)

number facts. arithmetic: provide drill in • arithmetic(6)
arp: Address Resolution Protocol. arp(5P)

ftp: ARPANET file transfer program. ftp(1N)
biff: be notified if mail arrives and who it is from. • • biff(1)

as: common assembler. • • • as(l)
asa: interpret ASA carriage control characters. asa(1)

control characters. asa: interpret ASA carriage asa(1)
ascii: map of ASCll character set. ascii(5)

convert date and time to ASCll. /tzset, tzsetwall: • • • ctime(3)
set. ascii: map of ASCll character ascii(5)

between long integer and base-64 ASCII string. /l64a: convert a641(3C)
number. atof: convert ASCll string to floating-point atof(3C)

ctime, localtime, gmtime, asctime, tzset, tzsetwall:/ ctime(3)
trigonometric/ sin, cos, tan, asin, acos, atan, atan2: trig(3M)

intrinsic function. asin, dasin: Fortran arcsine • asin(3F)
help: ask for help in using sees . help(1)

a.out: common assembler and link editor output. a.out(4)
as: common assembler. • • • • • • • as(1)

assert: verify program assertion. assert(3X)
assert: verify program assertion. • • • • • • • assert(3X)

setbuf, setvbuf: assign buffering to a stream. • setbuf(3S)
device nodes. pname: associate named partitions with pname(1M)

nfssvc, async_daemon: NFS daemons. nfssvc(2)
later time. at, batch: execute commands at a at(1)

sin, cos, tan, asin, acos, atan, atan2: trigonometric/ • • trig(3M)
intrinsic function. atan, datan: Fortran arctangent atan(3F)
intrinsic function. atan2, datan2: Fortran arctangent atan2(3F)

sin, cos, tan, asin, acos, atan, atan2: trigonometric functions. trig(3M)
floating-point number. atof: convert ASCll string to atof(3C)

strtol, atol, atoi: convert string to integer. • strtol(3C)

A-4 Permuted Index

•

•

•

•

•

•

integer. strtol, atol, atoi: convert string to strtol(3C)
signals and wait for/ sigpause: atomically release blocked • sigpause(2)

aliens: alien invaders attack the earth. aliens(6)
up-to-date kernel. autoconfig: build a new • • autoconfig(lM)

daps: Postprocessor for the Autologic APS-5 phototypesetter. daps(l)
autcrrobots: escape from the automatic robots. autorobots(6)

escher: autorecovery administration. • escher(lM)
system repair. autorecovery: standalone file • autorecovery(8)

automatic robots. autcrrobots: escape from the • autorobots(6)
environment. launch: launch an A/UX kernel from the standalone launch(8)

dumps out information from A/UX kernels. module_ dump: module_dump(lM)
chgnod: change current A/UX system nodename. chgnod(lM)

/set up for and clean up after A/UX Toolbox programs. • • toolboxd(lM)
lav: print load average statistics. • • • • • lav(l)

processing language. awk: pattern scanning and • • awk(l)
back: the game of backgammon. back(6)

back: the game of backgammon. • • • • • back(6)
fine: fast incremental backup. • • • • • • • fine(1M)

free: recover files from a backup tape. • • • • free(1M)
alternate block information for bad block handling. altblk: altblk(4)

badblk: set or update bad block information. badblk(lM)
information. badblk: set err update bad block badblk(lM)

banner: make posters. • • • • banner(l)
banner7: print large banner on printer. • • • • • banner7(1)

printer. banner7: print large banner on banner7(1)
newaliases: rebuild the data base for the mail aliases file. newaliases(lM)

hosts: host name data base. • • • • • • • • • • hosts(4)
networks: network name data base. • • • • • • • • • • networks(4N)

ttytype: data base of terminal types by port. ttytype(4)
remote host phone number data base. phones: phones(4)

protocols: protocol name data base. protocols(4N)
servers: Inet server data base. servers(4)

services: service name data base. services(4N)
delete, fi.rstkey, nextkey: data base subroutines. /fetch, store, dbm(3X)

termcap: terminal capability data base. termcap(4)
terminal capability data base. terminfo: • • • • • terminfo(4)

ypcat: print values in a YP data base. • • • • • ypcat(l)
convert between long integer and base-64 ASCll string. /l64a: a641(3C)

portions of patlmames. basename, dimame: deliver basename(l)
later time. at, batch: execute commands at a at(l)

arithmetic language. be : arbitrary-precision bc(l)
bed: convert to antique media. bcd(6)

initialization shelV brc, bcheckrc, rc, powerfail: system brc(lM)
string operations. bcopy, bcmp, bzero, ffs: bit and byte • bstring(3)

byte string operations. bcopy, bcmp, bzero, ffs: bit and bstring(3)
bcopy: interactive block copy. bcopy(lM)
bdiff: diff large files. bdiff(l)

cb: C program beautifier. • • • • • cb(l)
jO, j l , jn, yO, yl , yn : Bessel functions. • • • besse1(3M)

bfs: big file scanner. bfs(l)
addbib: create or extend bibliographic database. addbib(l)

Permuted I ndex A-5

roffbib: run off bibliographic database. roffbib(l)
sortbib: sort bibliographic database. sortbib(l)

a/ /build inverted index for a bibliography, find references in lookbib(l)
find references in a bibliography. /a bibliography, lookbib(l)
and who it is from. biff: be notified i f mail arrives biff(l)

comsat: biff(l) server. • • • • • comsat(lM)
bfs: big file scanner. bfs(l)

program. whereis: locate source, binary, and/or manual for whereis(l)
launch: execute a Macintosh binary application. • • • launch(l)

cpset: install object files in binary directories. cpset(lM)
mail. /uudecode: encode/decode a binary file for transmission via uuencode(lC)

strings in an object, or other binary file. /find the printable strings(I)
fread, fwrite: binary input/output fread(3S)

bsearch: binary search a sorted table. bsearch(3C)
tfind, tdelete, twalk: manage binary search trees. tsearch, tsearch(3C)

bind: bind a name to a socket. • • bind(2N)
bind: bind a name to a socket. bind(2N)

ypbind: yellow pages server and binder processes. ypserv, ypserv(lM)
nfsd, biod: NFS daemons. nfsd(lM)

bcopy, bcmp, bzero, ffs: bit and byte string operations. bstring(3)
reset: set or reset the teletype bits to a sensible state. tset, tset(l)
xor, not, lshift, rshift: Fortran bitwise boolean functions. /or, bool(3F)

bj: the game of black jack. bj(6)
bj : the game of black jack. bj(6)

bcopy: interactive block copy. • • • • • • bcopy(lM)
sum: print checksum and block count of a file. sum(l)
block information for bad block handling. /alternate altblk(4)
badblk: set or update bad block information. • • • badblk(lM)

handling. altblk: alternate block information for bad block altblk(4)
sigblock: block signals. • • • • • • sigblock(2)

blt, blt5 12: block transfer data. • • • • • blt(3C)
bzb: format of Block Zero Blocks . • • • • • bzb(4)

sigpause: atomically release blocked signals and wait for/ sigpause(2)
bzb: format of Block Zero Blocks. • • • • • • • • bzb(4)

elf: report number of free disk blocks. • • • • • • . • • df(l)
bit, blt512: block transfer data. blt(3C)

blt, blt5 12: block transfer data. • • blt(3C)
all users over a network running B-NET software. rwall: write to rwall(lM)

lshift, rshift: Fortran bitwise boolean functions. /or, xor, not, bool(3F)
boot: startup procedures. • • boot(8)

command programming/ sh, rsh: Bourne shell, standard/restricted sh(l)
system initialization shelV brc, bcheckrc, rc, powerfail: • brc(lM)

space allocation. brk, sbrk: change data segment brk(2)
modest-sized programs. bs: a compiler/inteipreter for • bs(l)

set42sig: set 4.2 BSD signal interface. • • • • set42sig(3)
facilities. sigvec: optional BSD-compatible software signal sigvec(2)

"optimal" cursor/ curses5.0: BSD-style screen functions with curses5.0(3X)
table. bsearch: binary search a sorted bsearch(3C)

setbuf, setvbuf: assign buffering to a stream. • • • • setbuf(3S)
autoconfig: build a new up-to-date kernel. autoconfig(lM)

database. ypinit: build and install yellow pages ypinit(lM)

A-6 Permuted Index

•

•

•

•

•

•

bibliographyJ lookbib, indxbib: build inverted index for a lookbib(l)
mknod: build special file. • • • • mknod(lM)

values between host and network byte order. /ntohs: convert byteorder(3N)
bcopy, bcmp, bzero, ffs: bit and byte string operations. bstring(3)

swab: swap bytes. • • • • • • • • swab(3e)
bzb: format of Block Zero Blocks. bzb(4)

operations. bcopy, bcmp, bzero, ffs: bit and byte string bstring(3)
cc: e compiler. • • • • • cc(l)

cflow: generate C flowgraph. • • • cflow(l)
cpp: the e language preprocessor. cpp(l)

cb: e program beautifier. • • cb(l)
lint: a e program checker. lint(l)

cxref: generate e program cross-reference. cxref(l)
ctags: maintain a tags file for a e program. • • • • • ctags(l)

ctrace: e program debugger. • • ctrace(l)
indent indent and format e program source. • • indent(l)
xstr: extract strings from C programs to implement shared/ xstr(l)
with e-like syntax. csh: e shell, a command interpreter csh(l)

error message file by massaging e source. mkstr: create an • mkstr(l)
value. abs, iabs, dabs, cabs, zabs: Fortran absolute abs(3F)

ncstats: display kernel name cache statistics. ncstats(lM)
cal: print calendar. • • • cal(l)

de : desk calculator. • • • • • • dc(l)
cal: print calendar. • • • • • • • cal(l)

calendar: reminder service. calendar(l)
cu: call another system. cu(te)

data returned by stat system call. stat: • • • • • • • stat(5)
malloc, free, realloc, calloc, cfree: main memory/ malloc(3e)

main/ malloc, free, realloc, calloc, mallopt, mallinfo: fast malloc(3X)
intro: introduction to system calls and error numbers. • • intro(2)

routines for remote procedure calls. rpc: library rpc(3N)
line printer. lp, cancel: send/cancel requests to a lp(l)

termcap: terminal capability data base. termcap(4)
terminfo: terminal capability data base. terminfo(4)

cribbage: the card game cribbage. cribbage(6)
asa: interpret ASA carriage control characters. asa(l)

cat: concatenate and print files. cat(l)
and uncompress files, and cat them. /ccat: compress compact(l)

cb: e program beautifier. cb(l)
cc: e compiler. cc(l)

files, and/ compact, uncompact, ccat compress and uncompress compact(l)
function. cos, dcos, ccos: Fortran cosine intrinsic • cos(3F)

of an sees delta. cdc: change the delta commentary cdc(l)
remainder, absolute value/ floor, ceil, fmod, fabs: floor, ceiling, floor(3M)

floor, ceil, fmod, fabs: floor, ceiling, remainder, absolute/ • floor(3M)
intrinsic function. exp, dexp, cexp: Fortran exponential exp(3F)

cflow: generate C flowgraph. • cflow(l)
malloc, free, realloc, calloc, cfree: main memory allocator. malloc(3C)

tuning. kconfig: change a kernel's parameters for kconfig(lM)
nodename. chgnod: change current A/UX system chgnod(lM)

allocation. brk, sbrk: change data segment space • • brk(2)

Permuted I ndex A-7

chsh: change default login shell. • • chsh(l)
chfn: change finger entty. • • • • chfn(l)

pages. yppasswd: change login password in yellow yppasswd(l)
passwd: change login password. • passwd(l)
chmod: change mode. • . • • • • • chmod(l)
chmod: change mode o f file. • • • • chmod(2)

environment putenv: change or add value to • • • putenv(3C)
chown, fchown: change owner and group of a file. chown(2)

chown, chgrp: change owner or group. • chown(l)
nice: change priority of a process. • nice(2)

chroot: change root directory. • • • chroot(2)
command. chroot: change root directory for a • . chroot(lM)

sees delta. cdc: change the delta commentary of an cdc(l)
newform: change the format of a text file. newform(l)

rename: change the name of a file. rename(2)
color. scr_color: program to change the terminal's screen scr_color(l)

delta: make a delta (change) to an sees file. delta(l)
chdir: change working directory. chdir(2)

yppush: force propagation of a changed YP map. yppush(lM)
pipe: create an interprocess channel. • • • • • • • pipe(2)

/sngl, dble, cmplx, dcmplx, ichar, char: explicit Fortran type/ ftype(3F)
ungetc: push character back into input stream. ungetc(3S)

neqn. eqnchar: special character definitions for eqn and eqnchar(5)
freq: report on character frequencies in a file. freq(l)

cuserid: get character login name of the user. cuserid(3S)
iwmap: format of iwprep(l) character map description files. iwmap(4)

getc, getchar, fgetc, getw: get character or word from a stream. getc(3S)
putc, putchar, fputc, putw: put character or word on a stream. putc(3S)

ascii: map of ASCIT character set • • • • • • ascii(5)
style: analyze surface characteristics of a document. style(I)

interpret ASA carriage control characters. asa: • • • • • asa(l)
_tolower, toascii: translate characters. /tolower, _toupper, conv(3e)

iscntrl, isascii: classify characters. /isprint, isgraph, ctype(3C)
given/ sumdir: sum and count characters in the files in the • sumdir(l)

tr: translate characters. • • • • • • • • tr(l)
lastlogin, monacct, nulladmJ chargefee, ckpacct, dodisk, • • acctsh(lM)

robots. chase: tty to escape the killer • chase(6)
chdir: change working directory. chdir(2)

fsck: file system consistency check and interactive repair. • fsck(lM)
the mm macros. checkmm: check documents formatted with checkmm(l)

checknr: check nroff/troff files. • • • • checknr(l)
text for otroff. cw, checkcw: prepare constant-width cw(l)

lint: a e program checker. • • • • • • • • lint(I)
pwck, grpck: password/group file checkers. • • • • • • • • pwck(lM)

copy file systems with label checking. volcopy, labelit: • • volcopy(lM)
formatted with the mm macros. checkmm: check documents checkmm(l)

checknr: check nroff/troff files. checknr(l)
file. sum: print checksum and block count o f a sum(l)

chfn: change finger entty. chfn(l)
system nodename. chgnod: change current A/UX chgnod(lM)

chown, chgrp: change owner or group. chown(l)

A-8 Permuted I ndex

•

•

•

•

•

•

times: get process and child process times. times(2)
termina1e. wait: wait for child process to stop or wait(2)

tenninate. wait3: wait for child process to stop or wait3(2N)
set the system time/real time chip. mactime: mactime(lM)

chmod: change mode. • • • chmod(l)
chmod: change mode of file. chmod(2)

group. chown, chgrp: change owner or chown(l)
group of a file. chown, fchown: change owner and chown(2)

chroot: change root directory. • chroot(2)
a command. chroot: change root directory for chroot(lM)

chsh: change default login shell. chsh(l)
monacct, nulladmJ chargefee, ckpacct, dodisk, lastlogin, • • acctsh(lM)

isgraph. iscntrl, isascii: classify characters. {lsprint, ctype(3C)
toolboxdaemon: set up for and clean up after A/UX Toolbox/ toolboxd(lM)
uuclean: uucp spool directory clean-up. • • • • • • • • uuclean(lM)

clear: clear terminal screen. clear(l)
clri: clear inode. • • • • • • • clri(lM)

clear: clear terminal screen. • • • clear(l)
inquiries. ferror, feof, clearerr, fileno: stream status ferror(3S)

ypclnt: yellow pages client interface. • • • • • ypclnt(3N)
shell, a command interpreter with C-like syntax. csh: C • • • csh(l)

synchronization of the system clock. /correct the time to allow adjtime(2)
alarm: set a process's alarm clock. • • • • • • • • alarm(2)

cron: clock daemon. • • • • • • • cron(lM)
nonvolatile memory/time of day clock interface. nvram: • • • nvram(7)

clock: report CPU time used. • clock(3C)
intrinsic/ log, alog, dlog, clog: Fortran natural logarithm log(3F)

ldclose, ldaclose: close a common object file. ldclose(3X)
close: close a file descriptor. • • • • close(2)

close: close a file descriptor. close(2)
fclose, ffiush: close or flush a stream. fclose(3S)

/telldir, seekdir, rewinddir, closedir: directory operations. directory(3)
clri: clear inode. • • • • • clri(lM)

formaL cml: configuration master list cm1(4)
cmp: compare two files. • • cmp(l)

/idint, real, float, sngl, dble, cmplx, dcmplx, ichar, char:/ ftype(3F)
col: filter reverse linefeeds. • col(l)

tenninal previewing. colcrt: filter nroff output for colcrt(l)
to change the tenninal's screen color. scr_color: program • scr_color(l)

file. colrm: remove columns from a colrm(l)
colrm: remove columns from a file. colrm(l)

comb: combine sees deltas. comb(l)
comb: combine sees deltas. comb(l)

common to two sorted files. comm: select or reject lines comm(l)
nice: run a command at low priority. nice(l)

change root directory for a command. chroot: • chroot(lM)
env: set environment for command execution. env(l)

uux: UNIX-to-UNIX system command execution. uux(lC)
system: issue a shell command from Fortran. system(3F)

nohup: run a command immune to hangups. nohup(l)

standalone environment. sash: a command interpreter for the sash(8)

Permuted I ndex A-9

syntax. csh: e shell, a command interpreter with e-like csh(l)
whatis: describe what a command is. • • • • • • • whatis(l)

iargc: return command line arguments. • • iargc(3F)
getopt: parse command options. • • • • • getopt(l)

ksh: Kom shell, a command programming language. ksh(l)
/Bourne shell, standard/restricted command programming language. sh(l)

returning a stream to a remote command. /ruserok: routines for rcmd(3N)
system activity. timex: time a command; report process data and timex(I)

rexec: return stream to a remote command. • • • • • • • • rexec(3N)
accotmting records. acctcms: command summary from per-process acctcms(lM)

system: issue a shell command. system(3S)
test: condition evaluation command. • • • • • • • • test(I)

time: time a command. • • • • • • • • time(l)
apply: apply a command to a set of arguments. apply(I)

argument list(s) and execute command. xargs: construct xargs(l)
getarg: return Fortran command-line argument getarg(3F)

and miscellaneous acco1Dlting commands. /overview of accounting acct(lM)
at, batch: execute commands at a later time. at(l)

apropos: locate commands by keyword lookup. apropos(l)
install: install commands. • • • • • • • • install(lM)

magic: file command's magic number file. magic(4)
cdc: change the delta commentary of an sees delta. cdc(I)

ar: common archive file format. • ar(4)
output a.out: common assembler and link editor a.out(4)

as: common assembler. as(l)
log lO, aloglO, dloglO: Fortran common logarithm intrinsic/ • logl0(3F)

routines. ldfcn: common object file access • • ldfcn(3X)
ldopen, ldaopen: open a common object file for reading. ldopen(3X)

/line number entries of a common object file function. • ldlread(3X)
ldclose, ldaclose: close a common object file. ldclose(3X)
read the file header of a common object file. ldthread: ldthread(3X)

number entries of a section of a common object file. /seek to line ldlseek(3X)
to the optional file header of a common object file. /seek • • ldohseek(3X)

entries of a section of a common object file. /relocation ldrseek(3X)
/section header of a common object file. ldshread(3X)

to an indexed/named section of a common object file. /seek • • ldsseek(3X)
of a symbol table entry of a common object file. /the index ldtbindex(3X)

indexed symbol table entry of a common object file. /read an ldtbread(3X)
seek to the symbol table of a common object file. ldtbseek: ldtbseek(3X)

linenum: line number entries in a common object file. linenum(4)
nm: print name list of common object file. nm(l)

relocation information for a common object file. reloc: • reloc(4)
scnhdr: section header for a common object file. scnhdr(4)

format. syms: common object file symbol table syms(4)
aouthdr.h: a.out header for common object files. aouthdr(4)

filehdr: file header for common object files. filehdr(4)
ld: link editor for common object files. ld(l)

size: print section sizes of common object files. size(l)
comm: select or reject lines common to two sorted files. comm(l)

ipcs: report interprocess communication facilities status. ipcs(l)
ftok: standard interprocess communication package. ftok(3C)

A-1 0 Permuted Index

•

•

•

•

•

•

talkd: remote user communication server. • • talkd(lM)
socket: create an endpoint for communication. • • • • • • socket(2N)

the system. users: compact list of users who are on users(l)
compress and uncompress filesJ compact, uncompact, ccat: compact(l)

differential file and directory comparator. diff: • • • • • diff(l)
cmp: compare two files. • • • • • cmp(l)

file. sccsdiff: compare two versions o f an sees sccsdiff(l)
lge, lgt, lie, lit: string comparision intrinsic functions. lge(3F)

diff3: 3-way differential file comparison. • • • • • • dift3(1)
dircmp: directory comparison. • • • • • • • dircmp(l)

getcompat: set or get process compatibility mode. setcompat, setcompat(2)
expression. regcmp, regex: compile and execute a regular regcmp(3X)
regexp: regular expression compile and match routines. regexp(5)

regcmp: regular expression compile. • • • regcmp(l)
rez: compile resources. rez(l)

term: format of compiled term file.. term(4)
cc: e compiler. cc(l)

f17: Fortran 7 7 compiler. • • • • f17(1)
tic: termipfo compiler. • • • • • tic(lM)

tzic: time zone compiler. • • • • tzic(lM)
yacc: yet another compiler-compiler. yacc(l)

modest-sized programs. bs : a compiler/interpreter for bs(l)
erf, erfc: error function and complementary error function. erf(3M)

dimag: Fortran imaginary part of complex argument. aimag, • aimag(3F)
function. conjg, dconjg: Fortran complex conjugate intrinsic conjg(3F)

pack, peat, unpack: compress and expand files. • • pack(l)
and/ compact, uncompact, ccat: compress and uncompress files, compact(l)

table entry of a/ ldtbindex: compute the index of a symbol ldtbindex(3X)
comsat: biff(l) server. comsat(lM)

cat: concatenate and print files. • • cat(l)
test: condition evaluation command. test(l)

resolver: resolver configuration file. • • • • • resolver(4)
uvar: returns system-specific configuration information. • • uvar(2)

cml: configuration master list format. cm1(4)
parameters. ifconfig: configure network interface • ifconfig(lM)

Ipadmin: configure the LP spooling system. lpadmin(lM)
conjugate intrinsic function. conjg, dconjg: Fortran complex conjg(3F)

conjg, dconjg: Fortran complex conjugate intrinsic function. • conjg(3F)
fwtmp, wtmpfix: manipulate connect accounting records. • fwtmp(lM)

a socket. connect: initiate a connection on connect(2N)
tip: connect to a remote system. tip(le)

getpeemame: get name of connected peer. getpeemame(2N)
an out-going terminal line connection. dial: establish dial(3C)

accept: accept a connection on a socket. accept(2N)
connect: initiate a connection on a socket. connect(2N)

shut down part of a full-duplex connection. shutdown: shutdown(2N)
listen: listen for connections on a socket. listen(2N)

acctconl, acctcon2: connect-time accounting. acctcon(lM)
repair. fsck: file system consistency check and interactive fsck(lM)

console: keyboard/screen driver. console(?)
math: math functions and constants. • • • • • • • • math(5)

Permuted I ndex A-1 1

cw, checkcw: prepare constant-width text for otroff. cw(l)
mkfslb: construct a file system. mkfslb(lM)

mkfs: construct a file system. • mkfs(lM)
execute command. xargs: construct argument list(s) and xargs(l)

remove moff/troff, tbl, and eqn constructs. deroff: • deroff(l)
Is: list contents o f directory. ls(l)

set and/or get signal stack context sigstack: sigstack(2)
csplit: context split csplit(l)

asa: interpret ASA carriage control characters. asa(l)
ioctl: control device. ioctl(2)

fcntl: file control. fcntl(2)
init, telinit: process control initialization. init(lM)

msgctl: message control operations. msgctl(2)
semctl:. semaphore control operations. semctl(2)

shmctl: shared memory control operations. shmct1(2)
fcntl: file control options. fcnt1(5)

tcp: Internet Transmission Control Protocol. tcp(5P)
uucp status inquiry and job control. uustat: uustat(l C)

vc: version control. vc(l)
tty: controlling terminal interface. tty(?)

conv: object file converter. • conv(l)
term: conventional names for terminals. term(5)

char: explicit Fortran type conversion. /dcmplx, ichar, ftype(3F)
units: conversion program. units(I)

dd: convert and copy a file. dd(l)
English. number: convert Arabic numerals to number(6)

floating-point number. atof: convert ASCII string to • atof(3C)
and long integers. 13tol, lto13 : convert between 3-byte integers 13tol(3C)

base-64 ASCII/ a641, 164a: convert between long integer and a641(3C)
/asctime, tzset, tzsetwall: convert date and time to ASCII. ctime(3)

string. ecvt, fcvt, gcvt: convert floating-point number to ecvt(3C)
scanf, fscanf, sscanf: convert formatted input. • scanf(3S)

double-precision number. strtod: convert string to • • • • • • strtod(3C)
strtol, atol, atoi: convert string to integer. • • • strtol(3C)

bed: convert to antique media. • • bcd(6)
to/ psdit: convert troff intermediate format psdit(l)

htonl, htons, ntohl, ntohs: convert values between host and/ byteorder(3N)
conv: object file converter. conv(l)
dd: convert and copy a file. • • • • • • • dd(l)

bcopy: interactive block copy. • • • • • • • • • bcopy(lM)
cpio: copy file archives in and out. cpio(l)

access time. dcopy: copy file systems for optimal dcopy(lM)
checking. volcopy, labelit: copy file systems with label volcopy(lM)

cp: copy files. • • • • • • • cp(l)
rep: remote file copy. • • • • • • • • • rep(I C)

UNIX system to UNIX system copy. uucp, uulog, uuname: uucp(lC)
public UNIX-to-UNIX system file copy. uuto, uupick: • • • • uuto(lC)

core: format of core image file. core(4)
core: format of core image file. core(4)

mem, kmem: core memory. • • • • • mem(7)
synchronization of the/ adjtime: correct the time to allow • adjtime(2)

A-1 2 Permuted Index

•

•

•

•

•

•

inlrinsic function. cos, dcos, ccos: Fortran cosine cos(3F)
atan2: trigonometric/ sin, cos, tan, asin, acos, atan, • • • trig(3M)
cosine inlrinsic function. cosh. dcosh: Fortran hyperbolic cosh(3F)

sinh, cosh. tanh: hyperbolic functions. sinh(3M)
cos, dcos, ccos: Fortran cosine inlrinsic function. cos(3F)

cosh. dcosh: Fortran hyperbolic cosine inlrinsic function. cosh(3F)
the given/ sumdir: sum and count characters in the files in sumdir(l)

sum : print checksum and block count of a file. • • sum(l)
we: word count. • • • wc(l)

cp : copy files. cp(l)
cpio: format o f cpio archive. cpio(4)

out. cpio: copy file archives in and cpio(l)
cpio: format of cpio archive. • cpio(4)
cpp: the C language preprocessor. cpp(l)

binary directories. cpset: install object files in cpset(lM)
clock: report CPU time used. • • • • • • clock(3C)

craps: the game of craps. • • • • • • • • • • craps(6)
craps: the game of craps. • • craps(6)

crashes. crash: what to do when the system crash(S)
crash: what to do when the system crashes. • • • • • • • • • crash(S)

rewrite an existing one. creal: create a new file or creat(2)
file. tmpnam, tempnam: create a name for a temporary tmpnam(3S)

existing one. creal: create a new file or rewrite an • creat(2)
fork: create a new process. • • • • fork(2)

document. ndx: create a subject-page index for a ndx(l)
tmpfile: create a temporary file. tmpfile(3S)

communication. socket: create an endpoint for • • • • socket(2N)
massaging C source. mkstr: create an error message file by mkstr(l)

pipe: create an interprocess channel. pipe(2)
admin: create and administer sees files. admin(1)

database. addbib: create or extend bibliographic addbib(l)
umask : set and get file creation mask. • • • • • • • umask(2)

file. settc: set the type and creator of a Macintosh resource settc(l)
cribbage: the card game cribbage. • • • • • • • • • cribbage(6)

cribbage: the card game cribbage. cribbage(6)
cron: clock daemon. cron(lM)
crontab: user crontab utility. crontab(l)

crontab : user crontab utility. • • • • • • • crontab(l)
cxref: generate C program cross-reference. • • • • • • cxref(l)

files. macref: produce cross-reference listing of macro macref(l)
optimization package. curses : CRT screen handling and curses(3X)

more: file perusal filter for CRT viewing. • • • • • • • more(l)
crypt: encode/decode. • • • • crypt(l)

DES encryption. crypt, setkey, encrypt: generate crypt(3C)
interpreter with C-like syntax. csh: C shell, a command • csh(l)

function. sin, dsin, csin: Fortran sine inlrinsic sin(3F)
csplit: context split. • • • • • csplit(l)

inlrinsic function. sqrt, dsqrt, csqrt: Fortran square root sqrt(3F)
terminal. ct: spawn getty to a remote • • ct(1 C)

Permuted I ndex

C program. ctags: maintain a tags file for a ctags(l)
terminal. ctermid: generate filename for ctermid(3S)

A-1 3

asctime, tzset, tzsetwall:/ ctime, localtime, gmtime, • ctime(3)
ctrace: C program debugger. • ctrace(l)
cu: call another system. • • cu(lC)

ttt, cubic: tic-tac-toe. • ttt(6)
chgnod: change current NUX system nodename. chgnod(lM)

/set or display name of current domain system. • • domainname(l)
printenv: print the current environment. • • printenv(l)

get/set unique identifier of current host. /sethostid: • • gethostid(2N)
sethostname: get/set name of current host. gethostname, • gethostname(2N)

set or print identifier of current host system. hostid: hostid(lN)
hostname: set or print name of current host system. hostname(lN)

/setdomainname: get/set name of current network domain. • getdomainname(2N)
activity. sact: print current sees file editing • • sact(l)

sigsetmask: set current signal mask. sigsetmask(2)
uname: print name of current system. • uname(l)

uname: get name of current system. uname(2)
whoami: print effective current user ID. whoami(l)

the slot in the utmp file of the current user. ttyslot: find ttyslot(3C)
getcwd: get pathname of current working directory. • getcwd(3C)

pathname. getwd: get current working directory getwd(3)
optimization package. curses: CRT screen handling and curses(3X)

functions with "optimal"/ curses5 .0: BSD-style screen • curses5.0(3X)
screen functions with "optimal" cursor motion. /BSD-style • • curses5.0(3X)

spline: interpolate smooth curve. • • • • • • • • • • spline(lG)
of the user. cuserid: get character login name cuserid(3S)

each line of a file. cut: cut out selected fields of cut(I)
line of a file. cut: cut out selected fields of each cut(I)

constant-width text for otroff. cw, checkcw: prepare • • cw(l)
cross-reference. cxref: generate C program cxref(l)

absolute value. abs, iabs, dabs, cabs, zabs: Fortran abs(3F)
intrinsic function. acos, dacos: Fortran arccosine acos(3F)

cron: clock daemon. • • • cron(lM)
errdemon: error-logging daemon. • • • errdemon(lM)

terminate the error-logging daemon. errstop: errstop(lM)
inetd: Internet services daemon. inetd(lM)

routed: network routing daemon. routed(1M)
nfsd, biod: NFS daemons. nfsd(lM)

nfssvc, async_daemon: NFS daemons. nfssvc(2)
runacct: run daily accounting. runacct(lM)

postprocessor filter. daiw: Apple Image Writer II troff daiw(l)
Autologic APS-5 phototypesetter. daps: Postprocessor for the • • daps(l)

Protocol server. ftpd: DARPA Internet File Transfer ftpd(lM)
mapper. portmap: DARPA port to RPC program number portmap(lM)

telnetd: DARPA TELNET protocol server. telnetd(lM)
Protocol server. tftpd: DARPA Trivial File Transfer • tftpd(lM)

1300s: handle special functions of DASI 300 and 300s terminals. 300(1)
handle special functions of the DASI 450 terminal. 450: 450(1)

function. asin, dasin: Fortran arcsine intrinsic asin(3F)
time a command; report process data and system activity. timex: timex(l)

file. newaliases: rebuild the data base for the mail aliases newaliases(lM)
hosts: host name data base. • • • • • • • • hosts(4)

A-1 4 Permuted Index

•

•

•

•

•

•

networks: network name data base. • • • • • • networks(4N)
port. ttytype: data base of terminal types by ttytype(4)

phones: remote host phone nmnber data base. phones(4)
protocols: protocol name data base. protocols(4N)

servers: Inet server data base. servers(4)
services: service name data base. services(4N)

store, delete, firstkey, nextkey: data base subroutines. /fetch, • dbm(3X)
termcap: terminal capability data base. termcap(4)
terminfo: terminal capability data base. terminfo(4)

ypcat: print values in a YP data base. ypcat(l)
blt, blt5 12: block transfer data. blt(3C)

diskusg: generate disk accounting data by user ID. diskusg(lM)
sputl, sgetl: access long integer data in a machine independent/ sput1(3X)

plock: lock process, text, or data in memory. • • • • plock(2)
prof: display profile data. • • • • • • • • prof(l)

library routines for external data representation. xdr: • • xdr(3N)
call. stat: data returned by stat system stat(5)

brk, sbrk: change data segment space allocation. brk(2)
types: primitive system data types. • • • • • • • • types(5)

create or extend bibliographic database. addbib: • • • addbib(l)
ypfiles: the yellowpages database and directory structure. ypfiles(4)

join: relational database operator. • join(I)
roffbib: run off bibliographic database. roftbib(l)

sortbib: sort bibliographic database. • • sortbib(l)
tput: query terminfo database. • • • tput(l)

build and install yellow pages database. ypinit: ypinit(lM)
ypmake: rebuild yellow pages database. • • • ypmake(lM)

udp: Internet User Datagram Protocol. udp(5P)
intrinsic function. atan, datan: Fortran arctangent atan(3F)

intrinsic function. atan2, datan2: Fortran arctangent atan2(3F)
settimeofday: get/set date and time. gettimeofday, gettimeofday(2)

tzset, tzsetwall: convert date and time to ASCII. /asctime, ctime(3)
date: print and set the date. • • • • • • • • • • date(l)

date: print and set the date. • • date(l)
{lfix, idint, real, float. sngl, dble. cmplx, dcmplx, ichar, char:/ ftype(3F)

makedbm: make a yellow pages dbm file. • • • • • • • • makedbm(lM)
firstkey, nextkey: data base/ dbminit, fetch, store, delete, • dbm(3X)

de: desk calculator. • • • • dc(l)
/real, float, sngl, dble, cmplx, dcmplx, ichar, char: explicit/ • ftype(3F)

intrinsic function. conjg, dconjg: Fortran complex conjugate conjg(3F)
optimal access time. dcopy: copy file systems for • dcopy(lM)

intrinsic function. cos, dcos, ccos: Fortran cosine • • cos(3F)
intrinsic function. cosh, dcosh: Fortran hyperbolic cosine cosh(3F)

dd: convert and copy a file. • • dd(l)
difference intrinsic/ dim, ddim, idim: Fortran positive dim(3F)

adb: debugger. adb(l)
ctrace: C program debugger. ctrace(l)

fsdb: file system debugger. fsdb(lM)
sdb: symbolic debugger. sdb(l)

derez: decompiles a resource file. derez(l)
chsh: change default login shell. • • • chsh(l)

Permuted I ndex A-1 5

eqnchar: special character definitions for eqn and neqn. • eqnchar(S)
base/ dbminit, fetch. store, delete, firstkey, nextkey: data • dbm(3X)

basename, dirname: deliver portions of pathnames. basename(l)
tail: deliver the last part of a file. tail(I)

the delta commentary of an sees delta. cdc: change • • • • • cdc(l)
delta: make a delta (change) to an sees file. delta(I)

delta. cdc : change the delta commentary of an sees cdc(l)
rmdel: remove a delta from an sees file. • • • rmdel(l)

an sees file. delta: make a delta (change) to delta(I)
comb: combine sees deltas. • • • • • • • comb(l)

mesg: permit or deny messages. • • • • • • mesg(l)
file. derez: decompiles a resource • derez(l)

and eqn constructs. deroff: remove nroff/troff, tbl, deroff(l)
crypt, setkey, encrypt: generate DES encryption. • • • • • crypt(3C)

whatis: describe what a command is. whatis(l)
remote: remote host description file. remote(4)

device-independent troff. font: description files for • • • • font(S)
format of iwprep(l) character map description files. iwmap: iwmap(4)

iwprep: prepare troff description files. • • • • • iwprep(l)
troff: description o f output language. troff(S)

close: close a file descriptor. close(2)
dup: duplicate a descriptor. dup(2)

dup2: duplicate a descriptor. dup2(3N)
/hasmntopt: get file system descriptor file entry. getmntent(3)

getdtablesize: get descriptor table size getdtablesize(2)
de: desk calculator. dc(l)

file. access: determine accessibility o f a access(2)
file: determine file type. • • • • • file(1)

mouse: mouse input device driver. • • • • • mouse(7)
extended errors in the specified device. /on/off the reporting of exterr(lM)

lines for finite-width output device. fold: fold long fold(l)
ioctl: control device. • • • • • • • • ioctl(2)

devnm: device name. • • • • devnm(lM)
associate named partitions with device nodes. pname: • • pname(lM)

font: description files for device-independent troff. • font(S)
dev_kill: remove special devices from directories. • • dev_kill(lM)

from directories. dev _kill: remove special devices dev _kill(lM)
devnm: device name. • • • • devnm(lM)

intrinsic function. exp, dexp, cexp: Fortran exponential exp(3F)
blocks. df: report number of free disk • df(l)

dual: 3Com Ethernet interface diagnostic. • • • • • • • • dual(lM)
terminal line connection. dial: establish an out-going • • dial(3e)

file. dialup: modem escape sequence dialup(4)
wordy sentences; thesaurus for diction. diction, explain: print diction(l)

sentences; thesaurus for/ diction, explain: print wordy diction(I)
directory comparator. diff: differential file and • • diff(l)

bdiff: diff large files. • • • • • • bdiff(l)
comparison. diff3: 3-way differential file diff3(1)

dim, ddim, idim: Fortran positive difference intrinsic functions. dim(3F)
sdiff: side-by-side difference program. • • sdiff(l)

A-1 6

diffmk: mark differences between files. diffmk(l)

Permuted I ndex

•

•

•

•

•

•

comparator. diff: differential file and directory • diff(l)
diff3: 3-way differential file comparison. • diff3(1)

files. diffmk: mark differences between diffmk(l)
difference intrinsic functions. dim, ddim, idim: Fortran positive dim(3F)

complex argumenL aimag, dimag: Fortran imaginary part of aimag(3F)
inlrinsic function. aint, dint: Fortran integer part • • • aint(3F)

directories. dir: format of System V • • • dir(4)
dircmp: directory comparison. dircmp(l)

install object files in binary directories. cpset: cpset(lM)
remove special devices from directories. dev _kill: • • • dev _kill(1M)

dir: format of System V directories. • • • • • • • • dir(4)
rm, rmdir: remove files or directories. • • • • • • • • rm(l)

in the files in the given directories. /count characters • sumdir(l)
chdir: change working directory. • • • • • • chdir(2)

chroot: change root directory. • • • • • • • chroot(2)
uuclean: uucp spool directory clean-up. • • • • uuclean(lM)

cliff: differential file and directory comparator. • • • • diff(l)
dircmp: directory comparison. • • dircmp(l)

system/ getdirentries: gets directory entries in a file • getdirentries(2)
unlink: remove directory entty. • • unlink(2)
mkdir: make a directory file. • • • • • mkdir(2)

rmdir: remove a directory file. • • • • • rmdir(2)
chroot: change root directory for a command. • chroot(lM)

get pathname of current working directory. getcwd: • • getcwd(3C)
ls: list contents of directory. • • • • • • • • ls(l)

mkdir: make a directory. • • • • • • • • mkdir(l)
pwd: print working directory name. • • pwd(l)

seekdir, rewinddir, closedir: directory operations. /telldir, • directory(3)
ordinary file. mknod: make a directory, or a special or • • • mknod(2)

getwd: get current working directory pathname. getwd(3)
scandir: scan a directory. • • • • • • • • • scandir(3)

the yellowpages database and directory structure. ypfiles: • ypfiles(4)
pathnames. basename, dimame: deliver portions of • basename(l)

dis: disassembler. dis(l)
printers. enable, disable: enable/disable LP • enable(l)

acct: enable or disable process accounting. acct(2)
dis: disassembler. • • • • • • • dis(l)

type, modes, speed, and line discipline. getty: set terminal getty(1M)
routine used to push streams line disciplines. line_push: • line_push(3)

line_sane: push streams line disciplines. • • • • • • • • line_sane(lM)
diskusg: generate disk accounting data by user ID. diskusg(lM)

df: report number of free disk blocks. • • • • df(l)
diskformat: format a disk. • • • • • • • • diskformat(lM)

fd: floppy disk drive interface. • • fd(7)
file's in-core state with that on disk. fsync: synchronize a • fsync(2)

gd: generic disk interface. • • • • • gd(7)
read a Macintosh flat file system disk. mfs: • • • • • • mfs(l)

dpme: format of disk partition map entries. dpme(4)
dp: perform disk partitioning. • dp(lM)

du: sUmmarize disk usage. • • • du(l)
eject: eject diskette from drive. • • eject(l)

Permuted I ndex A-1 7

diskformat: format a disk. • • diskformat(lM)
data by user ID. diskusg: generate disk accounting diskusg(lM)

mount, umount: mount and dismount file systems. mount(1M)
vedit: screen-oriented (visual) display editor. vi, view, • • • vi(l)

statistics. ncstats: display kernel name cache • • ncstats(lM)
system. domainname: set or display name of current domain domainname(l)

prof: display profile data. prof(l)
rain: animated raindrops display. • • • • • • • • • rain(6)

line of a terminal. sysline: display system status on status sysline(l)
worms : animate worms on a display terminal. • • • • • worms(6)

hypot: Euclidean distance function. hypot(3M)
/lcong48: generate uniformly distributed pseudo-random/ drand48(3C)

rdist: remote file distribution program. • • • rdist(l)
logarithm intrinsic/ log, alog, dlog, clog: Fortran natural • log(3F)

intrinsic/ loglO, aloglO, dloglO: Fortran common logarithm log10(3F)
max, maxO, amaxO, maxi , amaxl, dmaxl : Fortran maximum-value/ max(3F)

min, minO, aminO, mini , aminl, dminl: Fortran minimum-value/ min(3F)
intrinsic functions. mod, amod, dmod: Fortran remaindering mod(3F)

res_mkquery, res_send, res_init, dn_comp, dn_expand: resolver/ resolver(3N)
/res_send, res_init, dn_comp, dn_expand: resolver routines. resolver(3N)

nearest integer/ anint, dnint, nint, idnint: Fortran round(3F)
create a subject-page index for a document. ndx: ndx(l)

surface characteristics o f a document. style: analyze style(I)
a list of subjects from a document. subj: generate subj(l)

macros. checkmm: check documents formatted with the mm checkmm(l)
macros. mm: prints documents formatted with the mm mm(l)

mm : macro package for formatting documents. • • • • • • mm(5)
mmt: typeset documents. • • • • • • mmt(l)

insert literature references in documents. refer: find and refer(I)
nulladmj chargefee, ckpacct, dodisk, lastlogin, monacct, acctsh(lM)

w: who is on and what they are doing. • • • • • • • • w(l)
whodo: who i s doing what. • • • • • • whodo(lM)

get/set name of current network domain. /setdomainname: getdomainname(2N)
named: Internet domain name server. named(1M)

set or display name of current domain system. domainname: domainname(l)
of current domain system. domainname: set or display name domainname(l)

intrinsic/ dprod: Fortran double precision product dprod(3F)
strtod: convert string to double-precision number. strtod(3C)

/Motorola S-records from downloading into a file. • • • rcvhex(l)
dp: perform disk partitioning. • dp(lM)

map entries. dpme: format of disk partition dpme(4)
product intrinsic function. dprod: Fortran double precision dprod(3F)

nrand48, mrand48, jrand48j drand48, erand48, lrand48, drand48(3C)
graph: draw a graph. • graph(! G)

grap: pic preprocessor for drawing graphs. grap(l)
pic: troff preprocessor for drawing pictures. pic(l)

arithmetic: provide drill in number facts. arithmetic(6)
eject: eject diskette from drive. eject(l)

fd: floppy disk drive interface. fd(7)
console: keyboard/screen driver. console(7)

mouse: mouse input device driver. • • • • mouse(7)

A-1 8 Permuted I ndex

•

•

•

•

•

•

pty: pseudo terminal driver. • • • • • • • • • • pty(7)
sxt: pseudo-device driver. • • • • • • • • • • sxt(7)

ntenn: terminal driving tables for nroff. • • • ntenn(5)
intrinsic function. sign, isign, dsign: Fortran transfer-of-sign sign(3F)

intrinsic function. sin, dsin. csin: Fortran sine sin(3F)
intrinsic function. sinh, dsinh: Fortran hyperbolic sine sinh(3F)
intrinsic function. sqrt, dsqrt, csqrt: Fortran square root sqrt(3F)

function. tan, dtan: Fortran tangent intrinsic tan(3F)
intrinsic function. tanh, dtanh: Fortran hyperbolic tangent tanh(3F)

du: summarize disk usage. • • du(l)
diagnostic. dual: 3Com Ethernet interface dual(lM)

rdumpfs: file system dump across the network. rdumpfs(1M)
rrestore: restore a file system dump across the network. rrestore(lM)

object file. dump: dump selected parts of an dump(l)
dumpfs: incremental file system dump. • • • • • • • • • • dumpfs(lM)

dumpfs: incremental dump format. • • • • • • • dumpfs(4)
od: octal dump. • • • • • • • • • • od(l)

file. dump: dump selected parts of an object dump(l)
tzdump: time zone dumper. • • • • • • • • • tzdump(lM)

extract error records from dumpfs. errdead: • • • • • errdead(lM)
dumpfs: incremental dump format. dumpfs(4)

dump. dumpfs: incremental file system dumpfs(lM)
kernels. module_dump: dumps out information from A/UX module_dump(lM)

dup: duplicate a descriptor. • dup(2)
dup2: duplicate a descriptor. dup2(3N)

dup: duplicate a descriptor. dup(2)
dup2: duplicate a descriptor. • • dup2(3N)

aliens: alien invaders attack the earth. • • • • • • • aliens(6)
echo: echo arguments. • • • • echo(l)

echo: echo arguments. echo(l)
hosts. ping: send ICMP ECHO_REQUEST packets to network ping(lM)

floating-point number to string. ecvt, fcvt, gcvt: convert • • • ecvt(3C)
ed, red: text editor. • • • • • ed(l)

end, etext, edata: last locations in program. end(3C)
ex, edit: text editor. ex(l)

vipw: edit the password file. vipw(lM)
sact: print current sees file editing activity. sact(l)

ed, red: text editor. • • • • • • ed(l)
ex, edit: text editor. • • • • • • ex(l)

ld: l ink editor for common object files. ld(l)
a.out: common assembler and l ink editor output. • • • • • a.out(4)

sed: stream editor. • • • • • • • • sed(l)
screen-oriented (visual) display editor. vi, view, vedit: vi(l)

whoami: print effective current user ID . whoami(l)
setregid: set real and effective group ID. • • • setregid(2)

effeCtive user, real group, and -effective group IDs. /real user, getuid(2)
setreuid: set real and effective user ID's. • • • • • setreuid{2)

/getgid, getegid: get real user, effective user, real group, and/ getuid(2)
efl: Extended Fortran Language. efl(l)

fsplit: split f77 or eft files. • • • • • • • • • fsplit(l)
pattern. grep, egrep, fgrep: search a file for a grep(l)

Permuted I ndex A-1 9

eject: eject diskette from drive. eject(I)
eject: eject diskette from drive. eject(I)

insque, remque: insert/remove element from a queue. insque(3N)
input. soelim: eliminate .so's from nroff soelim(l)

LP printers. enable, disable: enable/disable enable(I)
accounting. acct: enable or disable process acct(2)

enable, disable: enable/disable LP printers. • enable(I)
transmission/ uuencode, uudecode: encode/decode a binary file for uuencode(lC)

crypt: encode/decode. • • • crypt(1)
crypt, setkey, encrypt: generate DES encryption. crypt(3e)

setkey, encrypt: generate DES encryption. crypt, • crypt(3e)
makekey: generate encryption key. • • makekey(l)

in program. end, etext, edata: last locations end(3e)
sees: front end for the sees subsystem. • sees(I)

/getgrgid, getgrnam, setgrent, endgrent, fgetgrent: obtain group/ getgrent(3C)
/gethostbyname, sethostent, endhostent: get network host/ • gethostent(3N)

setmntent, getmntent, addmntent, endmntent, hasmntopt: get file/ getmntent(3)
/getnetbyname, setnetent, endnetent: get network entry. • getnetent(3N)

group/ getnetgrent, setnetgrent, endnetgrent, innetgr: get network getnetgrent(3N)
socket: create an endpoint for communication. • socket(2N)

/getprotobyname, setprotoent, endprotoent: get protocol entry. getprotoent(3N)
getptabent, addptabent, endptabent, setptabent,/ • • • getptabent(3)

/getpwuid, getpwnam, setpwent, endpwent, fgetpwent: get password/ getpwent(3C)
/getservbyname, setservent, endservent: get service entry. • getservent(3N)

/getutline, pututline, setutent, endutent, utmpname: access utmp/ getut(3C)
convert Arabic numerals to English. number: number(6)

format of disk partition map entries. dpme: • • • • • dpme(4)
nlist: get entries from name list. nlist(3e)

linenum: line number entries in a common object file. linenum(4)
getdirentries: gets directory entries in a file system/ getdirentries(2)

man: print entries in this manual. • man(l)
man: macros for formatting entries in this manual. • • man(5)

/ldlitem: manipulate line number entries of a common object file/ ldlread(3X)
/ldnlseek: seek to line number entries of a section of a common/ ldlseek(3X)

/ldnrseek: seek to relocation entries of a section of a common/ ldrseek(3X)
chfn: change finger entry. • • • • • chfn(l)

utmp, wtmp: utmp and wtmp entry formats. • • • • • utmp(4)
/fgetgrent: obtain group file entry from a group file. getgrent(3C)

endhostent: get network host entry. /sethostent, • • • gethostent(3N)
get file system descriptor file entry. /endmntent, hasmntopt: getmntent(3)

setnetent, endnetent: get network entry. /getnetbyname, • • getnetent(3N)
innetgr: get network group entry. /setnetgrent, endnetgrent, getnetgrent(3N)

endprotoent: get protocol entry. /setprotoent, • • • • getprotoent(3N)
get partition table file entry. /setptabent, numbptabent: getptabent(3)

fgetpwent: get password file entry. /setpwent, endpwent, getpwent(3C)
endservent: get service entry. /setservent, • • • • getservent(3N)

utmpname: access utmp file entry. /setutent, endutent, getut(3C)
/the index of a symbol table entry of a common object file. ldtbindex(3X)

/read an indexed symbol table entry of a common object file. ldtbread(3X)
putpwent: write password file entry. putpwent(3C)

A-20

unlink: remove directory entry. • • • • • • unlink(2)

Permuted I ndex

•

•

•

•

•

•

execution. env: set environment for command env(l)
environ: user environment. • environ(5)

profile: setting up an environment at login time. • • profile(4)
environ: user environment. • • • • • • • environ(5)

execution. env: set environment for command • • env(l)
A!UX kernel from the standalone environment. launch: launch an launch(8)

getenv: retmn value for environment name. • • • • • getenv(3C)
printenv: print the current environment. • • • • • • • printenv(l)

putenv: change or add value to environment. • • • • • • • putenv(3C)
interpreter for the standalone environment. sash: a command sash(8)

getenv: retmn Fortran environment variable. • getenv(3F)
special character definitions for eqn and neqn. eqnchar: • • • eqnchar(5)

remove nroff/troff, tbl, and eqn constructs. deroff: deroff(l)
troff. eqn: format mathematical text for eqn(l)

definitions for eqn and neqn. eqnchar: special character • eqnchar(5)
mrand48, jrand48J drand48, erand48, lrand48, nrand48, • drand48(3C)

complementary error function. erf, erfc: error function and erf(3M)
complementary error/ erf, erfc: error function and erf(3M)

from dumpfs. errdead: extract error records errdead(lM)
errdemon: error-logging daemon. errdemon(lM)
errfile: error-log file format. • errfile(4)

system error messages. perror, errno, sys_errlist, sys_nerr: • • perror(3C)
error: error-logging interface. • error(7)

error function. erf, erfc: error function and complementary erf(3M)
error function and complementary error function. erf, erfc: • • • erf(3M)

source. mkstr: create an error message file by massaging C mkstr(l)
sys_errlist, sys_nerr: system error messages. �rror, errno, perror(3C)

introduction to system calls and error numbers. intro: • • • intro(2)
errdead: extract error records from dumpfs. • errdead(lM)

matherr: error-handling function. • • • matherr(3M)
errfile: error-log file format. errfile(4)

errdemon: error-logging daemon. errdemon(lM)
errstop: terminate the error-logging daemon. errstop(lM)

error: error-logging interface. error(7)
errpt: process a report of logged errors. • • • • • • • • errpt(lM)

/on/off the reporting of extended errors in the specified device. exterr(lM)
spellin, hashcheck: find spelling errors. spell, hashmake, • • spell(l)

errors. enpt: process a report of logged errpt(lM)
error-logging daemon. errstop: terminate the • • • • errstop(lM)

autorobots: escape from the automatic robots. autorobots(6)
robots: escape from the robots. robots(6)

dialup: modem escape sequence file. dialup(4)
chase: try to escape the killer robots. chase(6)

administration. escher: autorecovery escher(lM)
line cormection. dial: establish an out-going terminal dial(3C)

tty_add, tty_kill: modify the /etc/inittab file. • • • • • tty_add(lM)
program. end, etext, edata: last locations in end(3C)

Ethernet address.. etheraddr: read an interface's etheraddr(lM)
etheraddr: read an interface's Ethernet address.. etheraddr(lM)

ae: 3Com 10 Mb/s Ethernet interface. • • • • ae(5)
dual: 3Com Ethernet interface diagnostic. dual(lM)

Permuted I ndex A-21

hypot: Euclidean distance function. hypot(3M)
expression. expr: evaluate arguments as an expr(l)

test: condition evaluation command. test(l)
ex, edit: text editor. • • • ex(l)

lpq: spool queue examination program. • lpq(l)
reading or/ locking: provide exclusive file regions for locking(2)

execl, execv, execle, execve,. exec(2)
execl, execv, execle, execve, . • • • • • exec(2)

application. launch: execute a Macintosh binary launch(I)
regcmp, regex: compile and execute a regular expression. regcmp(3X)

construct argument list(s) and execute command xargs: xargs(l)
at, batch: execute commands at a later time. at(l)

env: set environment for command execution. • • • • • env(l)
sleep: suspend execution for an interval. sleep(I)
sleep: suspend execution for interval. • sleep(3C)

monitor: prepare execution profile. monitor(3C)
rexecd: remote execution server. • • • rexecd(lM)

profil: execution time profile. profil(2)
uux: UNIX-to-UNIX system command execution. • • • • • uux(lC)

execl, execv, execle, execve,. exec(2)
execl, execv, execle, execve,. • • • • • exec(2)

create a new file or rewrite an existing one. creat: • • creat(2)
exit, _exit: terminate process. exit(2)

exit, _exit: terminate process. exit(2)
exponential intrinsic function. exp, dexp, cexp: Fortran • • exp(3F)

exponential, logarithm, powerJ exp, log, loglO, pow, sqrt: • exp(3M)
pack, peat, unpack: compress and expand files. • • • • • • pack(l)

versa. expand, unexpand: expand tabs to spaces, and vice expand(l)
spaces, and vice versa. expand, unexpand: expand tabs to expand(l)

thesaurus for diction. diction, explain: print wordy sentences; diction(l)
/dble, cmplx, dcmplx, ichar, char: explicit Fortran type conversion. ftype(3F)

exp, dexp, cexp: Fortran exponential intrinsic function. exp(3F)
exp, log, loglO, pow, sqrt: exponential, logarithm, powerJ exp(3M)

exports: NFS file systems being exported . • • • • • • • • • exports(4)
exported. exports: NFS file systems being exports(4)

expression. expr: evaluate arguments as an expr(l)
routines. regexp: regular expression compile and match regexp(5)

regcmp: regular expression compile. regcmp(l)
expr: evaluate arguments as an expression. • • • • • • • • expr(l)
compile and execute a regular expression. regcmp, regex: regcmp(3X)

addbib: create or extend bibliographic database. addbib(l)
/tum on/off the reporting o f extended errors in the specified/ exterr(lM)

efl: Extended Fortran Language. efl(l)
greek: graphics for the extended TIY-37 type-box. greek(5)

xdr: library routines for external data representation. xdr(3N)
of extended errors in the/ ex terr. tum on/off the reporting exterr(lM)

dumpfs. errdead: extract error records from errdead(lM)
to implement shared/ xstr: extract strings from C programs xstr(l)

f77: Fortran 7 7 compiler. f77(1)
fsplit: split f77 or efl files. • • • • • • • fsplit(1)

absolute/ floor, ceil, fmod, fabs: floor, ceiling, remainder, floor(3M)

A-22 Permuted I ndex

•

•

•

•

•

•

introduction to miscellaneous facilities. intro: intro(S)
BSD-compatible software signal facilities. sigvec: optional sigvec(2)

report interprocess communication facilities status. ipcs: • ipcs(l)
factor: factor a number. • • • factor(l)

factor: factor a number. factor(l)
provide drill in number facts. arithmetic: • • arithmetic(6)

pstat: print system facts. • • • • • • pstat(lM)
true, false: provide truth values. true(l)

inet: Internet protocol family. • • • • • • • • inet(St)
data in a machine independent fashion. /access long integer sputl(3X)

fine: fast incremental backup. • • fine(1M)
/calloc, mallopt, mallinfo: fast main memory allocator. malloc(3X)

abort: generate an lOT fault. • • • • • • • • • abort(3C)
a file. chown, fchown: change owner and group of chown(2)

stream. fclose, ffiush: close or flush a fclose(3S)
fcntl: file control. fcntl(2)
fcntl: file control options. fcntl(S)

floating-point number to/ ecvt, fcvt, gcvt: convert ecvt(3C)
fd: floppy disk drive interface. fd(7)

fopen, freopen, fdopen: open a stream. fopen(3S)
status inquiries. ferror, feof, clearerr, fileno: stream ferror(3S)
stream status inquiries. ferror, feof, clearerr, fileno: ferror(3S)

nextkey: data base/ dbminit, fetch, store, delete, firstkey, dbm(3X)
head: give first few lines. • • • • • • • • head(l)

statistics for a file system. ff: list file names and • • ff(lM)
fclose, ffiush: close or flush a stream. fclose(3S)

operations. bcopy, hemp, bzero, ffs: bit and byte string • • • bstring(3)
word from a/ getc, getchar, fgetc, getw: get character or getc(3S)

/getgrnam, setgrent, endgrent, fgetgrent: obtain group file/ getgrent(3C)
/getpwnam, setpwent, endpwent, fgetpwent: get password file/ getpwent(3C)

stream. gets, fgets: get a string from a • • gets(3S)
pattern. grep, egrep, fgrep: search a file for a • • grep(l)
cut: cut out selected fields o f each line o f a file. • cut(l)

times. utime: set file access and modification utime(2)
ldfcn: common object file access routines. • • • • ldfcn(3X)

determine accessibility of a file. access: • • • • • • • access(2)
diff: differential file and directory comparator. diff(l)

tar: tape file archiver. • • • • • • tar(l)
cpio: copy file archives in and ouL cpio(l)

mkstr: create an error message file by massaging C source. mkstr(l)
pwck, grpck: password/group file checkers. pwck(lM)

chmod: change mode of file. • • • • • • chmod(2)
change owner and group of a file. chown, fchown: chown(2)

colnn: remove columns from a file. • • • • • • • colrm(l)
magic: file command's magic number file. magic(4)

diff3: 3-way differential file comparison. • diff3(1)
fcntl: file control. • • • • fcntl(2)
fcntl: file control options. • fcntl(S)

conv: object file converter. • • conv(l)
rep: remote file copy. • • • • rcp(lC)

public UNIX-to-UNIX system file copy. uuto, uupick: uuto(lC)

Permuted I ndex A-23

core: format of core image file. • • • • • • core(4)
umask: set and get file creation mask. umask(2)

selected fields of each line of a file. cut: cut out cut(l)
dd: convert and copy a file. • • • dd(l)

make a delta (change) to an sees file. delta: • delta(l)
derez: decompiles a resource file. • • • derez(l)

close: close a file descriptor. close(2)
file: determine file type. file(1)

dialup: modem escape sequence file. • • • • • • • • • dialup(4)
rdist: remote file distribution program. rdist(l)

dump selected p arts o f an object file. dump: • • • • • • dump(l)
sact: print current sees file editing activity. • • • sact(l)

/endgrent, fgetgrent: obtain group file entry from a group file. getgrent(3e)
get file system descriptor file entry. /hasmntopt: getmntent(3)

numbptabent: get partition table file entry. /setptabent, • • getptabent(3)
endpwent, fgetpwent: get password file entry. /getpwnam, setpwent, getpwent(3e)

endutent, utmpname: access utmp file entry. /pututline, setutent, getut(3e)
putpwent: write password file entry. • • • • • • • • putpwent(3e)

an advisory lock on an open file. flock: apply or remove tlock(2)
ctags: maintain a tags file for a e program. ctags(l)

grep, egrep, fgrep: search a file for a pattern. • • • • • grep(l)
ldaopen: open a common object file for reading. ldopen, • • ldopen(3X)

aliases: aliases file for sendmail. • • • • • aliases(4)
/uudecode: encode/decode a binary file for transmission via mail. uuencode(le)

acct: per-process accounting file format. • • acct(4)
Adobe PostScript font metrics file format. afm: afm(7)

ar: common archive file format. ar(4)
errfile: error-log file format. errfile(4)
postscript: print file format. postscript(4)

intro: introduction to file formats. intro(4)
fpr: print Fortran file. • • • fpr(l)

on character frequencies in a file. freq: report freq(l)
take: takes a file from a remote machine. take(I C)

number entries of a common object file function. /manipulate line ldlread(3X)
get: get a version of an sees file. • • • • • • • get(I)
group file entry from a group file. /fgetgrent: obtain • • • • getgrent(3C)

group: group file. • • • • • • • • • • • group(4)
nfs_getfh: get a file handle. • • • • • • • • nfs_getfh(2)

files. filehdr: file header for common object filehdr(4)
file. ldfhread: read the file header of a common object ldfhread(3X)

ldohseek: seek to the optional file header of a common object/ ldohseek(3X)
which: locate a program file including aliases and paths. which(l)

split: split a file into pieces. • • • • • • split(I)
issue: issue identification file. • • • • • • • • • • • issue(4)

header of a member of an archive file. ldahread: read the archive ldahread(3X)
ldaclose: close a common object file. ldclose, ldclose(3X)

file header of a common object file. ldfhread: read the ldfhread(3X)
retrieve symbol name for object file. ldgetname: ldgelname(3X)
of a section of a common object file. /to line number entries ldlseek(3X)
file header of a common object file. /seek to the optional ldohseek(3X)

of a section of a common object file. /seek to relocation entries ldrseek(3X)

A-24 Permuted I ndex

•

•

•

•

•

•

section header of a common object
section of a common object

table entry of a common object
table entry of a common object

symbol table of a common object
number entries in a common object

link: link to a
file command's magic number

makedbm: make a yellow pages dbm
mkdir: make a directory

mknod: build special
or a special or ordinary

file system. ff: list
data base for the mail aliases

change the format of a text
print name list of common object

null: the null
/find the slot in the utmp

put: puts a
fuser: identify processes using a

creat: create a new
passwd: password

files or subsequent lines of one
viewing. more:

terminals. pg:
rewind, ftell: reposition a

lseek: move read/Write
prs: print an sees

ptab: partition table
S-records from downloading into a

read, readv: read from
locking: provide exclusive

information for a common object
remote: remote host description

rename: change the name of a
resolver: resolver configuration

rev: reverse lines of a
remove a delta from an sees

rmdir: remove a directory
bfs: big

compare two versions of an sees
sccsfile: format of an sees
header for a common object

creator of a Macintosh resource
stat, fstat, lstat: get

in an object, or other binary
number information from an object

processes using a file or
checksum and block count of a

syms: common object
symlink: make symbolic link to a

Permuted I ndex

ldshread(3X)
ldsseek(3X)
ldtbindex(3X)

file. /read an indexed/named •
file. /seek to an indexed/named
file. /the index of a symbol •
file. /read an indexed symbol
file. ldtbseek: seek to the

• ldtbread(3X)
ldtbseek(3X)
linenum(4)
link(2)
magic(4)
makedbm(lM)
mkdir(2)
mknod(lM)
mknod(2)
ff(lM)

file. linenum: line
file. • • •
file. magic:
file.
file. • • •
file. • • •
file. mknod: make a directory,
file names and statistics for a
file. newaliases: rebuild the
file. newform:
file. nm: • • • • • •
file. • • • • • • • •
file of the current user.
file onto a remote machine.
file or file structure. • • •
file or rewrite an existing one.
file. • • • • • • • • •
file. /same lines of several •
file perusal filter for CRT
file perusal filter for soft-copy
file pointer in a stream. (seek,
file pointer. • • • • •
file. • • • • • • • • •
file. • • • • • • •
file. /translates Motorola
file. • • • • • • • • •
file regions for reading or/
file. reloc: relocation
file.
file.
file.
file.
file. rmdel:
file. • • •
file scanner.
file. sccsdiff:
file. • • • •
file. scnhdr: section
file. settc: set the type and
file status. • • • • • •
file. /find the printable strings
file. /strip symbol and line •
file structure. fuser: identify
file. sum: print
file symbol table format.
file. • • • • • • •

new aliases(1M)
newform(l)
nm(l)
null(?)
ttyslot(3C)

• put(lC)
fuser(lM)
creat(2)
passwd(4)
paste(l)
more(l)
pg(l)
fseek(3S)
lseek(2)
prs(l)
ptab(4)
rcvhex(l)
read(2)
locking(2)
reloc(4)
remote(4)
rename(2)
resolver(4)
rev(l)
rmdel(l)
rmdir(2)
bfs(l)
sccsdiff(l)
sees file(4)
scnhdr(4)
settc(l)
stat(2)
strings(l)
strip(l)
fuser(lM)
sum(l)
syms(4)
symlink(2)

A-25

interactive repair. fsck: file system consistency check and fsck.(lM)
fsdb: file system debugger. • • • • fsdb(lM)

entry. /enc:lmntent, hasrnntopt: get file system descriptor file • • getrnntent(3)
mfs: read a Macintosh flat file system disk. • • • • • • mfs(l)

network. rdumpfs: file system dump across the • rdumpfs(lM)
network. rrestore: restore a file system dump across the • rrestore(lM)

dumpfs: incremental file system dump. dumpfs(lM)
file names and statistics for a file system. ff: list • • • • • ff(lM)

fsmount: mount an NFS file system. • • • • • • • • fsmount(2)
/gets directory entries in a file system independent format getdirentries(2)

mkfslb: construct a file system. • • • • • mkfslb(lM)
mkfs: construct a file system. • • • mkfs(lM)

mount: mount a file system. • • • • mount(3)
autorecovery: standalone file system repair. autorecovery(8)

restore: incremental file system restore. • restore(1M)
nfsstat: Network File System statistics. nfsstat(lM)

statfs: get file system statistics. statfs(2)
ustat: get file system statistics. ustat(2)

mtab: mounted file system table. mtab(4)
rmtab: remotely mounted file system table. • rmtab(4)

umount: unmount a file system. • • umount(2)
umount: unmmmt a file system. • • umount(3)
unmount: remove a file system. • • unmount(2)

exports: NFS file systems being exported. exports(4)
time. dcopy: copy file systems for optimal access dcopy(lM)

fstab: static information about file systems. • • • • • • • fstab(4)
mount, umount: mount and dismount file systems. • • • • • • • mount(1M)

volcopy, labelit: copy file systems with label checking. volcopy(lM)
tail: deliver the last part of a file. tail(l)

term: format of compiled term file. . • • • • • • • • term(4)
tmpfile: create a temporary file. • • • • • • • • tmpfile(3S)

create a name for a temporary file. tmpnam, tempnam: tmpnam(3S)
uusend: send a file to a remote host. uusend(l C)

truncate, ftruncate: truncate a file to a specified length. truncate(2)
and modification times of a file. touch: update access touch(l)

kermit: kermit file transfer. • • • • • kermit(lC)
ftp: ARPANET file triii)Sfer program. • • ftp(lN)

tftp: trivial file transfer program. • • tftp(le)
ftpd: DARPA Internet File Transfer Protocol server. • ftpd(lM)
tftpd: DARPA Trivial File Transfer Protocol server. tftpd(lM)

ftw: walk a file tree. ftw(3e)
tty _kill: modify the /etc/inittab file. tty _add, tty _add(1M)

file: determine file type. • file(l)
undo a previous get of an sees file. unget: unget(l)

uniq: report repeated lines in a file. uniq(l)
v al : validate sees file. val(l)

vipw: edit the password file. vipw(lM)
write, writev: write on a file. write(2)

modifying yellow pages password file. yppasswdd: server for yppasswdd(lM)
object files. filehdr: file header for common filehdr(4)

ctermid: generate filename for terminal. • ctermid(3S)

A-26 Permuted I ndex

•

•

•

mktemp: make a unique
ferror, feof, clearerr,

and print process accmmting
merge or add total acc01mting

admin: create and administer sees

• ccat: compress and uncompress
a.out header for common object

bdiff: diff large
updater: update

cat: concatenate and print
checknr: check nroff/troff

cmp: compare two
reject lines common to two sorted

cp: copy
diffmk: mark differences between

file header for common object
find: find

troff. font: description
free: recover

format specification in text
fsplit: split f77 or eft

hex: translates object
cpset: install object

/sum and count characters in the
disk. fsync: synchronize a

• character map description
iwprep: prepare troff description

ld: link editor for common object
lockf: record locking on

cross-reference listing of macro
mv: move or rename

rm, nndir: remove
/merge same lines of several

peat, unpack: compress and expand
pr: print

section sizes of common object
sort: sort and/or merge

reports version number of
what: identify sees

n troff postprocessor
more: file perusal

pg: file perusal
greek: select tenninal

iw2: Apple Image Writer print
nl: line numbering

• previewing. colcrt:
col:

/psinterface: TranScript spooler
tplot: graphics

references in documents. refer:

Permuted I ndex

filename.
fileno: stream status inquiries.
file(s). acctcom: search
files. acctmerg:
files.

. .

. .

.
. .
. .

.

.

.

. mktemp(3C)
ferror(3S)

. acctcom(lM)

. acctmerg(lM)

. admin(l)
files, and cat them. /uncompact, compact(l)
files. aouthdr.h:
files. . . .

. .

. .
. .
. .

files between two machines.
files.
files.
files.
files. comm: select or
files.
files.
files. filehdr:
files.
files for device-independent
files from a backup tape.
files. fspec:
files.
files.
files in binary directories.

.

.

files in the given directories.
file's in-core state with that on
files. /fonnat of iwprep(l)
files.
files.
files.
files. macre� �uce
files.
files or directories. .

aouthdr(4)
• bdiff(l)
• updater(l)
• cat(l)

checknr(l)
cmp(l)
comm(l)

• cp(l)
diffmk(l)
filehdr(4)
find(l)
font(5)
free(1M)
fspec(4)
fsplit(l)
hex(l)
cpset(lM)
sumdir(l)
fsync(2)
iwmap(4)
iwprep(l)
ld(l)
lockf(3C)
macref(l)
mv(l)
nn(l)

files or subsequent lines of one/ paste(l)
files. pack, . • pack(l)
files. pr(l)
files. size: print size(l)
files. sort(l)
files. version: . version(l)
files. what(l)
filter. daiw: Apple Image Writer daiw(l)
filter for CRT viewing.
filter for soft-copy terminals.
filter.
filter. . . .
filter. . . .

.

.
. .
. .

. .

. .
.
.

filter nroff output for tenninal
filter reverse linefeeds.
filters for PostScript printers.
filters.
fine: fast incremental backup.
find and insert literature . .

more(l)
pg(l)
greek(l)
iw2(1)
nl(l)
colcrt(l)
col(l)
transcript(1M)
tplot(lG)
fine(1M)

• refer(l)

A-27

find: find files. • • • • • • find(l)
find: find files. • • • • find(I)

hyphen: find hyphenated words. hyphen(l)
ttyname, isatty: find name o f a terminal. ttyname(3C)

object library. lorder: find ordering relation for an lorder(l)
index for a bibliography, find references in a/ /inverted lookbib(l)

hashmake, spellin, hashcheck: find spelling errors. spell, spell(l)
object, or other binary/ strings: find the printable strings in an strings(I)

the current user. ttyslot: find the slot in the utmp file of ttyslot(3C)
chfn: change finger entry. • • • • • • • • chfn(l)

program. finger: user information lookup finger(I)
fold: fold long lines for finite-width output device. • fold(l)

dbminit, fetch, store, delete, firstk:ey, nextk:ey: data base/ dbm(3X)
fish: play "Go Fish". • • • • • • fish(6)

fish: play "Go Fish". • • • fish(6)
tee: pipe fitting. • • • • • • • • • tee(I)

mfs: read a Macintosh flat file system disk. mfs(l)
ichar/ int, ifix, idint, real, float, sngl, dble, cmplx, dcmplx, ftype(3F)

atof: convert ASCIT string to floating-point number. atof(3C)
ecvt, fcvt, gcvt: convert floating-point number to string. ecvt(3C)

ldexp, modf: manipulate parts of floating-point numbers. frexp, frexp(3C)
advisory lock on an open file. flock: apply or remove an flock(2)
ceiling, remainder, absolute/ floor, ceil, fmod, fabs: floor, floor(3M)

floor, ceil, fmod, fabs: floor, ceiling, remainder/ floor(3M)
fd: floppy disk drive interface. fd(7)

cflow: generate e flowgraph. • • • • • cflow(l)
fclose, ffiush: close or flush a stream. • • • • • • fclose(3S)

remainder, absolute/ floor, ceil, fmod, fabs: floor, ceiling, floor(3M)
fmt: simple text formatter. fmt(l)

finite-width output device. fold: fold long lines for • fold(l)
output device. fold: fold long lines for finite-width fold(l)

device-independent troff. font: description files for font(5)
afm: Adobe PostScript font metrics file format. • • • afm(7)

stream. fopen, freopen, fdopen: open a fopen(3S)
map. yppush: force propagation of a changed YP yppush(lM)

fork: create a new process. fork(2)
diskformat: format a disk. • • • diskformat(lM)

acct: per-process accounting file format. • • • • • acct(4)
PostScript font metrics file format. afm: Adobe afm(7)

ar: common archive file format. • • • • • ar(4)
indent: indent and format C program source. indent(l)

cml: configuration master list format. cml(4)
dumpfs: incremental dump format. • • • • • • • dumpfs(4)

errfile: error-log file format. • • • • • • • errfile(4)
in a file system independent format /gets directory entries getdirentries(2)

nroff. neqn: format mathematical text for neqn(l)
troff. eqn: format mathematical text for eqn(l)

inode: format o f a System V inode. inode(4)
volume. fs: format of a System V system fs(4)

newform: change the format of a text file. newform(l)
sccsfile: format of an sees file. sccsfile(4)

A-28 Permuted I ndex

•

•

•

•

•

•

bzb: format of Block Zero Blocks . • bzb(4)
term: format of compiled term file.. term(4)
core: format of core image file. • core(4)
cpio: format of cpio archive. • cpio(4)

entries. dpme: format of disk partition map • dpme(4)
description files. iwmap: format of iwprep(l) character map iwmap(4)

dir: format of System V directories. dir(4)
postscript: print file format. • • • • • • • • postscript(4)

to POSTSCRIPI' format. (mtermediate format • psdit(l)
files. fspec: format specification in text • • fspec(4)

common object file symbol table format. syms: • • • • • • • syms(4)
tbl: format tables for nroff or troff. tbl(l)

psdit: convert troff intermediate format to/ psdit(l)
intro: introduction to file formats. intro(4)

utmp, wtm.p: utmp and wtmp entry formats. utmp(4)
scanf, fscanf, sscanf: convert formatted input. scanf(3S)

/vfprintf, vsprintf: print formatted output of a varargs/ vprintf(3S)
printf, fprintf, sprintf: print formatted output. • • • • • printf(3S)

checkmm: check documents formatted with the mm macros. checkmm(l)
mm: prints documents formatted with the mm macros. mm(l)

frnt: simple text formatter. • • • • • • • fmt(l)
mptx: the macro package for formatting a permuted index. mptx(5)

otroff: text formatting and typesetting. otroff(l)
troff: text formatting and typesetting. troff(l)

mm: macro package for formatting documents. mm(5)
manual. man: macros for formatting entries in this man(5)

nroff: text formatting language. • nroff(l)
ms: text formatting macros. • • ms(5)

f11: Fortran 77 compiler. f17(1)
abs, iabs, dabs, cabs, zabs: Fortran absolute value. • • abs(3F)

system signal. signal: specify Fortran action on receipt of a signal(3F)
function. acos, dacos: Fortran arccosine intrinsic acos(3F)
function. asin, dasin: Fortran arcsine intrinsic • asin(3F)

function. atan2, datan2: Fortran arctangent intrinsic atan2(3F)
function. atan, datan: Fortran arctangent intrinsic • atan(3F)

or, xor, not, lshift, rshift: Fortran bitwise boolean/ and, bool(3F)
getarg: return Fortran command-line argument. getarg(3F)

intrinsic/ loglO, aloglO, dloglO: Fortran common logarithm • • log10(3F)
intrinsic/ conjg, dconjg: Fortran complex conjugate • • conjg(3F)

function. cos, dcos, ccos: Fortran cosine intrinsic • • • cos(3F)
intrinsic function. dprod: Fortran double precision product dprod(3F)

getenv: return Fortran environment variable. getenv(3F)
function. exp, dexp, cexp: Fortran exponential intrinsic • exp(3F)

fpr: print Fortran file. • • • • • • • • fpr(l)
intrinsic function. cosh, dcosh: Fortran hyperbolic cosine • • cosh(3F)

function. sinh, dsinh: Fortran hyperbolic sine intrinsic sinh(3F)
intrinsic function. tanh, dtanh: Fortran hyperbolic tangent • • tanh(3F)

argument. aimag, dimag: Fortran imaginary part of complex aimag(3F)
function. aint, dint: Fortran integer part intrinsic • aint(3F)

eft: Extended Fortran Language. • • • • • eft(l)
/maxO, amaxO, maxl, amaxl, dmaxl : Fortran maximum-value functions. max(3F)

Permuted I ndex A-29

IminO, aminO, minl , aminl, dminl : Fortran minimum-value functions. min(3F)
intrinsic/ log, alog, dlog, clog: Fortran natural logarithm • log(3F)

anint, dnint, nint, idnint: Fortran nearest integer/ • • • round(3F)
intrinsic/ dim, ddim, idim: Fortran positive difference • • dim(3F)

abort: terminate Fortran program. • • • • • • abort(3F)
functions. mod, amod, dmod: Fortran remaindering intrinsic mod(3F)

sin, dsin, csin: Fortran sine intrinsic function. sin(3F)
function. sqrt, dsqrt, csqrt: Fortran square root intrinsic sqrt(3F)

len: return length of Fortran string. • • • • • len(3F)
index: return location of Fortran substring. • index(3F)

issue a shell command from Fortran. system: • • • • • system(3F)
function. tan, dtan: Fortran tangent intrinsic tan(3F)

mclock: return Fortran time accounting. • mclock(3F)
intrinsic/ sign, isign, dsign: Fortran transfer-of-sign sign(3F)
dcmplx, ichar, char: explicit Fortran type conversion. /cmplx, ftype(3F)

generator. irand, srand, rand: Fortran uniform random-number rand(3F)
hopefully interesting, adage. fortune: print a random, • • • fortune(6)

fpr: print Fortran file. • • • • fpr(l)
output. printf, fprintf, sprintf: print formatted printf(3S)

word on a stream. putc, putchar, fputc, putw: put character or • putc(3S)
puts, fputs: put a string on a stream. puts(3S)

input/output. fread. fwrite: binary • • • • fread(3S)
tape. free: recover files from a backup free(1M)

df: report number of free disk blocks. • • • • • df(l)
main memory allocator. malloc, free, realloc, calloc, cfree: , • malloc(3C)

mallinfo: fast main/ malloc, free, realloc, calloc, mallopt, • malloc(3X)
fopen, freopen, fdopen: open a stream. fopen(3S)

frequencies in a file. freq: report on character • • • freq(l)
freq: report on character frequencies in a file. freq(l)

parts of floating-point numbers. frexp, ldexp, modf: manipulate frexp(3C)
if mail arrives and who it is from. biff: be notified • • • biff(l)

from: who i s my mail from?. • • • • • • • • • • from(l)
from: who is my mail from?. • from(l)

sees : front end for the sees subsystem. sccs(l)
volume. fs: format o f a System V system fs(4)

input scanf, fscanf, sscanf: convert formatted scanf(3S)
check and interactive repair. fsck: file system consistency • fsck(lM)

fsdb: file system debugger. • • fsdb(lM)
a file pointer in a stream. fseek, rewind, ftell: reposition fseek(3S)

generation numbers. fsirand: install random inode fsirand(lM)
system. fsmount: mount an NFS file fsmount(2)

text files. fspec: format specification in • fspec(4)
fsplit: split t77 or eft files. • • fsplit(l)

file systems. fstab: static information about fstab(4)
stat, fstat, lstat: get file status. stat(2)

in-core state with that on disk. fsync: synchronize a file's • fsync(2)
in a stream. fseek, rewind, ftell: reposition a file pointer fseek(3S)

communication package. ftok: standard interprocess • ftok(3C)
program. ftp: ARPANET file transfer ftp(lN)

Transfer Protocol server. ftpd: DARPA Internet File • ftpd(lM)
specified length. truncate, ftruncate: truncate a file to a truncate(2)

A-30 Permuted Index

•

•

•

•

•

•

ftw: walk a file tree. ftw(3C)
shutdown: shut down part of a full-duplex connection. shutdown(2N)

Fortran arccosine intrinsic function. acos, dacos: • • acos(3F)
Fortran integer part intrinsic function. aint, dint: • • aint(3F)

function. erf, erfc: error function and complementary error erf(3M)
dasin: Fortran arcsine intrinsic function. asin, • • • • • • • asin(3F)

Fortran arctangent intrinsic function. atan2, datan2: • • • atan2(3F)
Fortran arctangent intrinsic function. atan, datan: • • • • atan(3F)

complex conjugate intrinsic function. conjg, dconjg: Fortran conjg(3F)
ccos: Fortran cosine intrinsic function. cos, dcos, cos(3F)

hyperbolic cosine intrinsic function. cosh, dcosh: Fortran cosh(3F)
precision product intrinsic function. dprod: Fortran double dprod(3F)

function and complementary error function. erf, erfc: error • erf(3M)
Fortran exponential intrinsic function. exp, dexp, cexp: • • exp(3F)

gamma: log gamma function. • • • • . • • • • gamma(3M)
hypot: Euclidean distance function. • • • • • • • • • hypot(3M)

entries of a common object file function. /manipulate line number ldlread(3X)
common logarithm intrinsic function. /dloglO: Fortran • log10(3F)

natural logarithm intrinsic function. /dlog, clog: Fortran • log(3F)
matherr: error-handling function. • • • • • • • . • matherr(3M)

prof: profile within a function. • • • • • • • • • prof(S)
transfer-of-sign intrinsic function. /isign, dsign: Fortran sign(3F)

csin: Fortran sine intrinsic function. sin, dsin, • • • sin(3F)
Fortran hyperbolic sine intrinsic function. sinh, dsinh: • • • • sinh(3F)

Fortran square root intrinsic function. sqrt, dsqrt, csqrt: • . sqrt(3F)
dtan: Fortran tangent intrinsic function. tan, • • • • • • • tan(3F)

hyperbolic tangent intrinsic function. tanh, dtanh: Fortran tanh(3F)
math: math functions and constants. • • math(5)

jO, j i , jn, yO, yi , yn: Bessel functions. • • • • • • • • bessel(3M)
rshift: Fortran bitwise boolean functions. /or, xor, not, lshift, bool(3F)

positive difference intrinsic functions. /ddim, idim: Fortran dim(3F)
logarithm, power, square root functions. /sqrt: exponential, • exp(3M)

remainder, absolute value functions. /fabs: floor, ceiling, floor(3M)
llt: string comparision intrinsic functions. lge, lgt, lle, lge(3F)

dmaxi : Fortran maximum-value functions. /amaxO, maxi, amaxi, max(3F)
dmini: Fortran minimum-value functions. /aminO, mini , amini, min(3F)

Fortran remaindering intrinsic functions. mod, amod, dmod: mod(3F)
300, 300s: handle special functions of DASI 300 and 300s/ 300(I)

terminal. 450: handle special functions of the DASI 450 • 450(I)
idnint: Fortran nearest integer functions. anint, dnint, nint, round(3F)

sinh, cosh, tanh: hyperbolic functions. • • • • • • • • sinh(3M)
slots: ROM library functions. • • • • • • • • slots(3X)

acos, atan, atan2: trigonometric functions. sin, cos, tan, asin, • trig(3M)
curses5.0: BSD-style screen functions with "optimal" cursor/ curses5 .0(3X)

file or file structure. fuser: identify processes using a fuser(IM)
fread, fwrite: binary input/output. • fread(3S)

connect accounting records. fwtmp, wtmpfix: manipulate • fwtmp(IM)
cribbage: the card game cribbage. cribbage(6)

moo: guessing game. • • • • • • • • moo(6)
back: the game of backgammon. back(6)

Permuted I ndex

bj: the game of black jack. • • • • bj(6)

A-31

craps: the game of craps. • • • • craps(6)
wump: the game of hunt-the-wumpus. wump(6)

life: play the game of life. life(6)
trek: trekkie game. trek(6)

worm: play the growing worm game. worm(6)
gamma: log gamma function. gamma(3M)

gamma: log gamma function. gamma(3M)
number to string. ecvt, fcvt, gcvt: convert floating-point ecvt(3C)

gd: generic disk interface. gd(7)
termio: general terminal interface. termio(7)

a document. subj: generate a list of subjects from subj(l)
maze: generate a maze. • maze(6)
abort: generate an lOT fault. abort(3C)

cflow: generate e flowgraph. cflow(l)
cross-reference. cxref: generate e program cxref(l)
crypt, setkey, encrypt: generate DES encryption. crypt(3C)

user ID. diskusg: generate disk accounting data by diskusg(lM)
makekey: generate encryption key. • • makekey(l)

ctermid: generate filename for terminal. ctermid(3S)
ncheck: generate names from i-numbers. ncheck(lM)

lexical tasks. lex: generate programs for simple • lex(I)
/srand48, seed48, lcong48: generate uniformly distributed/ drand48(3C)

fsirand: install random inode generation numbers. fsirand(lM)
rand, srand: simple random-number generator. • • • • • rand(3C)

Fortran uniform random-number generator. irand, srand, rand: rand(3F)
gd: generic disk interface. • • • gd(7)

file. get: get a version of an sees get(I)
command-line argument. getarg: return Fortran • • getarg(3F)

character or word from a stream. getc, getchar, fgetc, getw: get getc(3S)
character or word from a/ getc, getchar, fgetc, getw: get getc(3S)

compatibility mode. setcompat, getcompat: set or get process setcompat(2)
working directory. getcwd: get pathname of current getcwd(3e)

entries in a file system/ getdirentries: gets directory • getdirentries(2)
get/set name of current network/ getdomainname, setdomainname: getdomainname(2N)

table size getdtablesize: get descriptor getdtablesize(2)
user,/ getuid, geteuid, getgid, getegid: get real user, effective getuid(2)

environment variable. getenv: return Fortran • • getenv(3F)
environment name. getenv: return value for • getenv(3e)

real user, effective/ getuid, geteuid, getgid, getegid: get getuid(2)
effective userj getuid, geteuid, getgid, getegid: get real user, getuid(2)

setgrent, endgrent, fgetgrent:/ getgrent, getgrgid, getgmam, getgrent(3C)
endgrent, fgetgrent:/ getgrent, getgrgid, getgmam, setgrent, getgrent(3e)
fgetgrent:/ getgrent, getgrgid, getgmam, setgrent, endgrent, getgrent(3C)

getgroups: get group access list. getgroups(2)
sethostentj gethostent, gethostbyaddr, gethostbyname, gethostent(3N)

gethostent, gethostbyaddr, gethostbyname, sethostent,/ gethostent(3N)
gethostbyname, sethostentj gethostent, gethostbyaddr, • • gethostent(3N)
unique identifier of current/ gethostid, sethostid: get/set • • gethostid(2N)

name of current host. gethostname, sethostname: get/set gethostname(2N)
value of interval timer. getitimer, setitimer: get/set getitimer(2)

getlogin: get login name. • • getlogin(3C)

A-32 Permuted I ndex

•

•

•

•

•

•

hasmntopt: get file/ setmntent, getmntent, addmntent, endmntent, getmntent(3)
setnetent, endnetent:/ getnetent, getnetbyaddr, getnetbyname, getnetent(3N)

getnetent, getnetbyaddr, getnetbyname, setnetent,/ getnetent(3N)
getnetbyname, setnetent,/ getnetent, getnetbyaddr, • • getnetent(3N)
endnetgrent, innetgr: get/ getnetgrent, setnetgrent, • • getnetgrent(3N)

argument vector. getopt: get option letter from getopt(3C)
getopt: parse command options. getopt(l)
getpass: read a password. getpass(3C)

connected peer. getpeername: get name of • getpeername(2N)
process group, and/ getpid, getpgrp, getppid: get process, • getpid(2)

process, process group, and/ getpid, getpgrp, getppid: get getpid(2)
group, and/ getpid, getpgrp, getppid: get process, process • getpid(2)

getprotoent, getprotobynumber, getprotobyname, setprotoentJ getprotoent(3N)
setprotoentj getprotoent, getprotobynumber, getprotobyname, getprotoent(3N)

getprotobyname, setprotoent,/ getprotoent, getprotobynumber. getprotoent(3N)
endptabent, setptabent,/ getptabent, addptabent, getptabent(3)

getpw: get name from UID. getpw(3C)
setpwent, endpwent, fgetpwent:/ getpwent, getpwuid, getpwnam, getpwent(3C)
fgetpwent:/ getpwent, getpwuid, getpwnam, setpwent, endpwent, getpwent(3C)
endpwent, fgetpwent:/ getpwent, getpwuid, getpwnam, setpwent, getpwent(3C)

system/ getdirentries: gets directory entries in a file • getdirentries(2)
stream. gets, fgets: get a string from a gets(3S)

getservent, getservbyport, getservbyname, setservent,/ getservent(3N)
setservent,/ getservent, getservbyport, getservbyname, getservent(3N)

getservbyname, setserventj getservent, getservbyport. getservent(3N)
gettimeofday, settimeofday: get/set date and time. • • • • gettimeofday(2)
gethostname, sethostname: get/set name of current host. gethostname(2N)

getdomainname, setdomainname: get/set name of current network/ getdomainname(2N)
current/ gethostid, sethostid: get/set unique identifier of • • gethostid(2N)

getitimer, setitimer: get/set value of interval timer. getitimer(2)
getsockname: get socket name. getsockname(2N)

set options on sockets. getsockopt, setsockopt: get and getsockopt(2N)
get/set date and time. gettimeofday, settimeofday: gettimeofday(2)

and terminal settings used by getty. gettydefs: speed gettydefs(4)
speed, and line discipline. getty: set terminal type, modes, getty(1M)

ct: spawn getty to a remote terminal. • • ct(lC)
settings used by getty. gettydefs: speed and terminal • gettydefs(4)

get real user, effective userj getuid, geteuid, getgid, getegid: getuid(2)
pututline, setutent, endutentj getutent, getutid, getutline, • getut(3C)
setutent, endutentJ getutent, getutid, getutline, pututline, getut(3C)
endutentj getutent, getutid. getutline, pututline, setutent, getut(3C)

a stream. getc, getchar, fgetc, getw: get character or word from getc(3S)
directory pathname. getwd: get current working • • getwd(3)

head: give first few lines. • • • • • head(l)
characters in the files in the given directories. /sum and count sumdir(l)

tzsetwall:/ ctime, localtime, gmtime, asctime, tzset, ctime(3)
fish: play "Go Fish" . • • • • • • fish(6)

setjmp, longjmp: non-local goto. • • • • • • • • setjmp(3C)
drawing graphs. grap: pic preprocessor for grap(l)

graph: draw a graph. graph(! G)
graph: draw a graph. • • • • • • • • graph(lG)

Permuted I ndex A-33

sag: system activity graph. • • • • • • • • • • sag(lG)
tplot: graphics filters. • • • • • • tplot(l G)

type-box. greek: graphics for the extended TIY-37 greek:(5)
plot: graphics interface. • • • • • plot(4)
plot: graphics interface subroutines. plot(3X)

mvt: typeset view graphs and slides. • • • • • mvt(l)
pic preprocessor for drawing graphs. grap: • • • • • • • grap(l)

TIY-37 type-box. greek: graphics for the extended greek(5)
greek: select terminal filter. • greek(l)

for a pattern. grep, egrep, fgrep: search a file grep(l)
getgroups: get group access list. • • • • • • getgroups(2)

initgroups: initialize group access list. • • • • • • initgroups(3)
setgroups: set group access list. • • • • • • setgroups(2)

/real user, effective user, real group, and effective group IDs. getuid(2)
/getppid: get process, process group, and parent process IDs. getpid(2)

chown, chgrp: change owner or group. • • • • • • • • • • chown(l)
endnetgrent, innetgr: get network group entry. /setnetgrent, getnetgrent(3N)

/endgrent, fgetgrent: obtain group file entry from a group/ getgrent(3C)
obtain group file entry from a group file. /endgrent, fgetgrent: getgrent(3C)

group: group file. group(4)
group: group file. • • group(4)

setpgrp: set process group ID. • • • • • • • • • setpgrp(2)
setregid: set real and effective group ID. • • • • • • • • • setregid(2)

id: print user and group IDs and names. • • • • id(l)
user, real group, and effective group IDs. /real user, effective getuid(2)

setuid, setgid: set user and group IDs. setuid(2)
setuid, setgid: set user and group IDs. setuid(3)

killpg: send signal to a process group. • • killpg(3N)
groups: show group memberships. groups(I)

newgrp: log in to a new group. • • • • • • • newgrp(l)
chown, fchown: change owner and group o f a file. • • • • chown(2)

send a signal to a process or a group of processes. kill: • kill(2)
netgroup: list of network groups. • • • • • • • netgroup(4)

maintain, update, and regenerate groups of programs. make: • make(I)
groups: show group memberships. groups(I)

worm: play the growing worm game. • • • worm(6)
checkers. pwck, grpck: password/group file • pwck(lM)

ssignal, gsignal: software signals. • ssignal(3C)
hangman: guess the word. • hangman(6)

moo: guessing game. • moo(6)
nfs_getfh: get a file handle. • nfs_getfh(2)

300 and 300s/ 300, 300s: handle special functions of DASI 300(1)
DASI 450 terminal. 450: handle special functions of the 450(1)

varargs: handle variable argument list. • varargs(3X)
block information for bad block handling. altblk: alternate • altblk(4)

package. curses: CRT screen handling and optimization • • curses(3X)
hangman: guess the word. • • hangman(6)

nohup: run a command immune to hangups. • • • • • • • • • nohup(l)
hcreate, hdestroy: manage hash search tables. hsearch, hsearch(3C)

spell, hashmake. spellin, hashcheck: find spelling errors. spell(l)
find spelling errors. spell, hashmake, spellin, hashcheck: spell(I)

A-34 Permuted Index

•

•

•

•

•

•

/ge1mntent, addrnntent, endrnntent, hasmntopt: get file system/ • • ge1mntent(3)
search tables. hsearch, hcreate, hdestroy: manage hash hsearch(3e)

tables. hsearch, hcreate, hdestroy: manage hash search hsearch(3C)
head: give first few lines. head(l)

scnhdr: section header for a common object file. scnhdr(4)
aouthdr.h: a.out header for common object files. aouthdr(4)

filehdr: file header for common object files. filehdr(4)
ldfbread: read the file header of a common object file. ldfhread(3X)

/seek to the optional file header of a common object file. ldohseek(3X)
/read an indexed/named section header of a common object file. ldshread(3X)
file. ldahread: read the archive header of a member of an archive ldahread(3X)

help: ask for help in using sees. help(l)
help: ask for help in using sees. • help(l)

a YP map from some YP server to here. ypxfr: transfer • ypxfr(lM)
hex: translates object files. • hex(l)

fortune: print a random, hopefully interesting, adage. fortune(6)
/ntohs: convert values between host and network byte order. byteorder(3N)

remote: remote host description file. remote(4)
endhostent: get network host entry. /sethostent, gethostent(3N)

unique identifier of current host. /sethostid: get/set gethostid(2N)
get/set name of current host. gethoslname, sethoslname: gethoslname(2N)

master?. ypwhich: which host is the YP server or map ypwhich(1)
hosts: host name data base. hosts(4)

phones: remote host phone number data base. • phones(4)
(RPC version). rup: show host status of local machines • rup(le)

ruptime: show host status of local machines. • ruptime(lN)
or print identifier of current host system. hostid: set . • hostid(lN)
set or print name of current host system. hoslname: • • hoslname(lN)

uusend: send a file to a remote host. • • • • • • • • • uusend(le)
of a YP map is at a YP server host. yppoll: what version • yppoll(lM)

of current host system. hostid: set or print identifier • hostid(lN)
current host system. hoslname: set or print name of hoslname(lN)

hosts: host name data base. • hosts(4)
hosts.equiv: list of trusted hosts. • • • • • • • • • hosts.equiv(4)

EeHO_REQUEST packets to network hosts. ping: send IeMP • • ping(lM)
hosts. hosts.equiv: list of trusted hosts.equiv(4)

manage hash search tables. hsearch, hcreate, hdestroy: hsearch(3C)
convert values between host and/ htonl, htons, ntohl, ntohs: byteorder(3N)

values between host and/ htonl, htons, ntohl, ntohs: convert byteorder(3N)
wump: the game of hunt-the-wumpus. • wump(6)

function. cosh, dcosh: Fortran hyperbolic cosine intrinsic • cosh(3F)
sinh, cosh, tanh: hyperbolic functions. • • • sinh(3M)

function. sinh, dsinh: Fortran hyperbolic sine intrinsic • • sinh(3F)
function. tanh, dtanh: Fortran hyperbolic tangent intrinsic tanh(3F)

hyphen: find hyphenated words. hyphen(l)
hyphen: find hyphenated words. • • • • • hyphen(l)

function. hypot: Euclidean distance hypot(3M)
absolute val1Je. abs, iabs, dabs, cabs, zabs: Fortran abs(3F)

arguments. iargc: return command line • • iargc(3F)
/float, sngl, dble, cmplx, dcmplx, ichar, char: explicit Fortran/ • ftype(3F)

network hosts. ping: send IeMP ECHO_REQUEST packets to ping(1M)

Permuted I ndex A-35

disk accounting data by user ID. diskusg: generate • • • • diskusg(lM)
semaphore set, or shared memory ID. ipcnn: remove message queue, ipcnn(l)

names. id: print user and group IDs and id(l)
setpgrp: set process group ID. setpgrp(2)

set real and effective group ID. setregid: setregid(2)
su: substitute user ID. su(l)

print effective current user ID. whoami: whoami(l)
issue: issue identification file. issue(4)

/sethostid: get/set unique identifier of current host. gethostid(2N)
system. hostid: set or print identifier of current host hostid(lN)

or file structure. fuser: identify processes using a file fuser(lM)
what: identify sees files. what(I)

intrinsic functions. dim, ddim, idim: Fortran positive difference dim(3F)
cmplx, dcmplx, ichar,/ int, ifix, idint, real, float, sngl, dble, • ftype(3F)

functions. anint, dnint, nint, idnint: Fortran nearest integer round(3F)
id: print user and group IDs and names. • • • • • id(l)

process group, an d parent process IDs. /getppid: get process, • getpid(2)
real group, and effective group IDs. /real user, effective user, getuid(2)

set real and effective user ID's. setreuid: setreuid(2)
setgid: set user and group IDs. setuid, • • . . • • • setuid(2)
setgid: set user and group IDs. setuid, • , • • • • • setuid(3)

interface parameters. ifconfig: configure network • ifconfig(lM)
dble, cmplx, dcmplx, icharJ int, ifix, idint, real, float, sngl, ftype(3F)

daiw: Apple Image Writer II troff postprocessor filter. daiw(l)
core: format of core image file. • • • • • core(4)

postprocessor/ daiw: Apple Image Writer II troff daiw(l)
iw2: Apple Image Writer print filter. • iw2(1)

argument aimag, dimag: Fortran imaginary part o f complex aimag(3F)
nohup: run a command immune to hangups. nohup(l)

/strings from e programs to implement shared strings. xstr(l)
which: locate a program file including aliases and paths. which(l)

fsync: synchronize a file's in-core state with that on disk. fsync(2)
fine: fast incremental backup. finc(lM)
dumpfs: incremental dump format. • . dumpfs(4)
dumpfs: incremental file system dump. dumpfs(lM)
restore: incremental file system restore. restore(1M)

source. indent: indent and format e program • indent(l)
program source. indent: indent and format C indent(l)

long integer data in a machine independent fashion. /access • sputl(3X)
entries in a file system independent format /directory getdirentries(2)

/tgetstr, tgoto, tputs: terminal independent operation routines. termcap(3X)
lookbib, indxbib: build inverted index for a bibliography, find/ lookbib(l)

ndx: create a subject-page index for a document. • • • • ndx(l)
package for formatting a permuted index. mptx: the macro • • • mptx(5)

a common/ ldtbindex: compute the index of a symbol table entry of ldtbindex(3X)
ptx: make permuted index. • • • • • • • • • • ptx(l)

substring. index: return location of Fortran index(3F)
common object/ ldtbread: read an indexed symbol table entry of a ldtbread(3X)

a/ ldshread, ldnshread: read an indexed/named section header of ldshread(3X)
ldsseek, ldnsseek: seek to an indexed/named section of a/ ldsseek(3X)

teletypes. last: indicate last logins of users and last(l)

A-36 Permuted I ndex

•

•

•

•

•

•

a bibliography, find/ lookbib, indxbib: build inverted index for lookbib(l)
inet: Internet protocol family. • inet(Sf)

servers: Inet server data base. • • • • servers(4)
inet_ntoa, inet_makeaddrJ inet_addr, inet_network, • • • inet(3N)

inetd: Internet services daemon. inetd(lM)
/inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof: Internet/ inet(3N)

/inet_network, inet_ntoa. inet_makeaddr, inet_lnaof,/ inet(3N)
/inet_makeaddr, inet_lnaof, inet_netof: Internet address/ inet(3N)
inet_makeaddrJ inet_addr, inet_network. inet_ntoa, • • • inet(3N)

inet_addr, inet_network, inet_ntoa, inet_makeaddrJ • • inet(3N)
fstab: static information about file systems. fstab(4)

badblk: set or update bad block information. • • • • • • • badblk(lM)
file. reloc: relocation information for a common object reloc(4)

altblk: alternate block information for bad block/ • • altb1k(4)
/strip symbol and line nwnber information from an object file. strip(l)

module_dwnp: dwnps out information from A/UX kernels. module_dump(lM)
finger: user information lookup program. finger(l)

lpstat: print LP status information. lpstat(l)
rpcinfo: report RPC information. • • • • • • rpcinfo(lM)

tzfile: time zone information. • • • • • tzfile(4)
system-specific configuration information. uvar: returns uvar(2)

inittab: script for the init process. • • • • • • inittab(4)
initialization. init, telinit: process control • init(lM)

access list. initgroups: initialize group initgroups(3)
init, telinit: process control initialization. • • • • • init(lM)

/bcheclac, rc, powerfail: system initialization shell scripts. brc(lM)
initgroups: initialize group access list. initgroups(3)

socket. connect: initiate a connection on a • connect(2N)
popen. pclose: initiate pipe to/from a process. popen(3S)

process. inittab: script for the init • • • inittab(4)
/selnetgrent, endnetgrent, innetgr: get network group entry. gelnetgrent(3N)

clri: clear inode. • • • • • • • • • clri(lM)
inode. inode: format of a System V inode(4)

fsirand: install random inode generation numbers. fsirand(lM)
inode: format of a System V inode. • • • • • inode(4)

mouse: mouse input device driver. mouse(?)
fscanf, sscanf: convert formatted input. scanf, • scanf(3S)

eliminate .so's from nroff input. soelim: • • soelim(l)
ungetc: push character back into input stream. ungetc(3S)

fread, fwrite: binary input/output. fread(3S)
clearerr, fileno: stream status inquiries. ferror, feof, ferror(3S)

uustat: uucp status inquiry and job control. uustat(l C)
docwnents. refer: find and insert literature references in refer(l)

queue. insque, remque: insert/remove element from a insque(3N)
element from a queue. insque. remque: insert/remove insque(3N)

install: install commands. install(lM)
install: install commands. install(lM)

directories. cpset: install object files in binary • • cpset(lM)
numbers. fsirand: install random inode generation fsirand(lM)

ypinit: build and install yellow pages database. ypinit(lM)
sngl, dble, cmplx, dcmplxJ int, ifix, idint, real, float, • • • ftype(3F)

Permuted I ndex A-37

abs: return integer absolute value. o o o abs(3C)
a64l, 164a: convert between long integer and base-64 ASCII siring. a641(3C)

sputl, sgetl: access long integer data in a machine/ o o sputl(3X)
nint, idnint: For1ran nearest integer functions. anint, dnint, round(3F)

aint, dint: Fortran integer part inlrinsic function. aint(3F)
atol, atoi: convert siring to integer. strtol, o o o o o o strtol(3C)

/ltol3: convert between 3-byte integers and long integers. o l3tol(3C)
between 3-byte integers and long integers. 13tol, ltol3 : convert o l3tol(3C)

bcopy: interactive block copy. bcopy(lM)
system. mailx: interactive message processing mailx(l)

file system consistency check and interactive repair. fsck: o fsck(lM)
print a random, hopefully interesting, adage. fortune: fortune(6)

ae: 3Com 10 Mb/s Ethernet interface. o o o o o ae(5)
dual: 3Com Ethernet interface diagnostic. dual(lM)

error: error-logging interface. error(?)
fd: floppy disk drive interface. fd(7)

gd: generic disk interface. gd(7)
lo: software loopback network interface. o lo(5)

memory/time of day clock interface. nvram: nonvolatile o nvram(7)
ifconfig: configure network interface parameters. ifconfig(lM)

plot: graphics interface. o o plot(4)
set42sig: set 4.2 BSD signal interface. • o o o o set42sig(3)

streams: ioctl interface. o o o o • streams(?)
plot: graphics interface subroutines. plot(3X)

swap: swap administrative interface. o o • o o swap(1M)
termio: general terminal interface. o o o o • o termio(7)

telnet: user interface to the TELNET protocol. telnet(lC)
tty: controlling terminal interface. o o o o o o o o tty(?)

ypclnt: yellow pages client interface. • o o o o o o o o ypclnt(3N)
etheraddr: read an interface's Ethernet address. . o etheraddr(lM)

psdit: convert troff intermediate format to/ psdit(l)
{met_lnaof, inet_netof: Internet address manipulation/ inet(3N)

named: Internet domain name server. o named(1M)
server. ftpd: DARPA Internet File Transfer Protocol ftpd(lM)

inet: Internet protocol family. • inet(5f)
ip: Internet Protocol. ip(5P)

sendmail: send mail over the Internet o o o • o o • sendmail(lM)
inetd: Internet services daemon. inetd(lM)

Protocol. tcp: Internet Transmission Control tcp(5P)
udp: Internet User Datagram Protocol. udp(5P)

spline: interpolate smooth curve. spline(lG)
characters. asa: interpret ASA carriage control asa(l)

environment sash: a command interpreter for the standalone o sash(8)
sno: SNOBOL interpreter. o o o o o o o o sno(l)
tc : troff output interpreter. • o o o o o o o tc(l)

csh: C shell, a command interpreter with C-like syntax. csh(l)
pipe: create an interprocess channel. o o o pipe(2)

facilities status. ipcs: report interprocess communication ipcs(l)
package. ftok: standard interprocess communication ftok(3C)

blocked signals and wait for interrupt. /atomically release sigpause(2)
sleep: suspend execution for an interval. • o o o o o sleep(I)

A-38 Permuted I ndex

•

•

•

•

•

•

sleep: suspend execution for
setitimer: get/set value of

acos, dacos: Fortran arccosine
aint, dint: Fortran integer part

asin, dasin: Fortran arcsine
atan2, datan2: Fortran arctangent

atan, datan: Fortran arctangent
dconjg: Fortran complex conjugate

cos, dcos, ccos: Fortran cosine
dcosh: Fortran hyperbolic cosine
Fortran double precision product
dexp, cexp: Fortran exponential

dloglO: Fortran common logarithm
clog: Fortran natural logarithm
dsign: Fortran transfer-of-sign

sin, dsin, csin: Fortran sine
dsinh: Fortran hyperbolic sine

dsqrt, csqrt: Fortran square root
tan, dtan: Fortran tangent

dtanh: Fortran hyperbolic tangent
idim: Fortran positive difference

lgt, lle, llt: string comparision
amod, dmod: Fortran remaindering

formats.
miscellaneous facilities.

subroutines and libraries.
calls and error numbers.

intro:
facilities. intro:
libraries. intro:

error numbers. intro:
ncheck: generate names from

aliens: alien
lookbib, indxbib: build

select: synchronous

streams:
abort: generate an

semaphore set, or shared memory/
communication facilities status.

uniform random-number generator.
whatis: describe what a command

/islower, isdigit, isxdigit,
isdigit, isxdigit, isalnumj

/isprint, isgraph, iscntrl,
ttyname,

/ispunct, isprint, isgraph,
isalpha, isupper, islower,
/isspace, ispunct, isprint,

transfer-of-sign intrinsic/ sign,

Permuted I ndex

interval. • • • •
interval timer. getitimer,
intrinsic function.
intrinsic function.
intrinsic function .
intrinsic function.
intrinsic function.
intrinsic function. conjg,
intrinsic function.
intrinsic function. cosh,
intrinsic function. dprod:
intrinsic function. exp,
intrinsic function. /aloglO,
intrinsic function. /alog, dlog,
intrinsic function. sign, isign,
intrinsic function.
intrinsic function. sinh,
intrinsic function. sqrt,
intrinsic function.
intrinsic function. tanh,
intrinsic functions. dim, ddim,
intrinsic functions. lge,
intrinsic functions. mod,
intro: introduction to file
intro: introduction to
intro: introduction to
intro: introduction to system
introduction to file formats.
introduction to miscellaneous
introduction to subroutines and
introduction to system calls and
i-numbers. • • •
invaders attack the earth.
inverted index for a/
1/0 multiplexing.
ioctl: control device.
ioctl interface. • •
lOT fault.
ip: Internet Protocol.
ipcrm: remove message queue,
ipcs: report interprocess
irand, srand, rand: Fortran
is. • • •
isalnum, isspace, ispunctj
isalpha, isupper, islower,
isascii: classify characters.
isatty: find name of a terminal.
iscntrl, isascii: classify/
isdigit, isxdigit, isalnum,/
isgraph, iscntrl, isascii:/
isign, dsign: Fortran

sleep(3C)
getitimer(2)
acos(3F)
aint(3F)
asin(3F)
atan2(3F)
atan(3F)
conjg(3F)
cos(3F)
cosh(3F)
dprod(3F)
exp(3F)
log10(3F)
log(3F)
sign(3F)
sin(3F)
sinh(3F)
sqrt(3F)
tan(3F)
tanh(3F)
dim(3F)
lge(3F)
mod(3F)
intro(4)
intro(5)
intro(3)
intro(2)
intro(4)
intro(5)
intro(3)
intro(2)
ncheck(lM)
aliens(6)
lookbib(l)
select(2N)
ioct1(2)
streams(?)
abort(3C)
ip(5P)
ipcrm(l)
ipcs(l)
rand(3F)
whatis(l)
ctype(3C)
ctype(3C)
ctype(3C)
ttyname(3C)
ctype(3C)
ctype(3C)
ctype(3C)
sign(3F)

A-39

isalnumj isalpha, isupper, islower, isdigit, isxdigit, • ctype(3C)
/isalnum, isspace, ispunct, isprint, isgraph, iscntrlJ • ctype(3C)
/isxdigit, isalnum, isspace, ispunct, isprint, isgraphJ ctype(3C)
/isdigit, isxdigit, isalnum, isspace, ispunct, isprintJ • ctype(3C)

Fortran. system: issue a shell command from system(3F)
system: issue a shell command. system(3S)

issue: issue identification file. issue(4)
issue: issue identification file. issue(4)

isxdigit, isalnum,/ isalpha, isupper, islower, isdigit, • • ctype(3C)
(1Supper, islower, isdigit, isxdigit, isalnum, isspaceJ • • ctype(3C)

news: print local news items. • • • • • • • • • news(l)
filter. iw2: Apple Image Writer print iw2(1)

character m ap description files. iwmap: fonnat o f iwprep(l) iwmap(4)
files. iwprep: prepare troff description iwprep(l)

description/ iwmap: format of iwprep(l) character map • • iwmap(4)
functions. jO, j l , jn, yO, yl, yn: Bessel bessel(3M)

functions. jO, j l , jn, yO, y1, yn: Bessel • • bessel(3M)
bj: the game of black jack. • • • • • • • • bj(6)

jO, j l , jn, yO, yl, yn: Bessel functions. bessel(3M)
uustat: uucp status inquiry and job control. • • • • • • uustat(lC)
spooling queue. lpnn: remove jobs from the line printer lpnn(l)

operator. join: relational database • • join(l)
/lrand48, nrand48, mrand48, jrand48, srand48, seed48J drand48(3C)

parameters for tuning. kconfig: change a kernel's kconfig(lM)
kermit: kennit file transfer. • • • kermit(I C)

kennit: kermit file transfer. kermit(I C)
build a new up-to-date kernel. autoconfig: • • • • autoconfig(lM)

launch: launch an A/UX kernel from the standalone/ launch(8)
ncstats: display kernel name cache statistics. ncstats(lM)

rstatd: kernel statistics server. rstatd(lM)
dumps out information from A/UX kernels. module_dump: • • • module_dump(lM)

kconfig: change a kernel's parameters for tuning. kconfig(lM)
makekey: generate encryption key. • • • • • • • • • • • makekey(l)

console: keyboard/screen driver. • • • console(?)
print the value of one or more keys from a YP map. ypmatch: ypmatch(1)
apropos: locate commands by keyword lookup. • • • • • • apropos(I)

killall: kill all active processes. • • • killall(lM)
or a group of processes. kill: send a signal to a process kill(2)

kill: terminate a process. • • • kill(1)
processes . killall: kill all active killall(lM)

chase: try to escape the killer robots. • • • • • • • chase(6)
group. killpg: send signal to a process killpg(3N)
mem, kmem: core memory. • • • • mem(7)

quiz: test your knowledge. • • • • • • • • quiz(6)
language. ksh: Kom shell, a command programming ksh(l)

programming language. ksh: K om shell, a command ksh(1)
3-byte integers and long/ 13tol, lto13: convert between 13tol(3C)

integer and base-64 ASCII/ a641, 164a: convert between long • • a641(3C)
labelit: copy file systems with label checking. volcopy, volcopy(1M)

label checking. volcopy, labelit: copy file systems with volcopy(lM)
pattern scanning and processing language. awk: • • • awk(1)

A-40 Permuted I ndex

•

•

•

•

•

•

arbitrary-precision arithmetic language. be: bc(l)
eft: Extended Fortran Language. eft(l)

Korn shell, a command programming language. ksh: ksh(l)
nroff: text formatting language. • • nroff(l)

cpp: the C language preprocessor. cpp(l)
command programming language. /standard/restricted sh(l)

troff: description of output language. • • • • • • • troff(5)
banner7: print large banner on printer. banner7(1)

bdiff: diff large files. • • • • • • bdiff(l)
users and teletypes. last: indicate last logins of last(l)

chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm,/ acctsh(lM)
at, batch: execute commands at a later time. • • • • • • • at(l)
standalone environment launch: launch an A/UX kernel from the launch(8)

binary application. launch: execute a Macintosh • launch(I)
from the standalone environment launch: launch an A/UX kernel launch(8)

statistics. lav: print load average lav(l)
shl: shell layer manager. • • • • • • shl(l)

/jrand48, srand48, seed48, lcong48: generate uniformly/ • drand48(3C)
files. ld: link editor for common object ld(l)

file. ldclose, ldaclose: close a common object ldclose(3X)
of a member of an archive file. ldahread: read the archive header ldahread(3X)

file for reading. ldopen, ldaopen: open a common object ldopen(3X)
object file. ldclose, ldaclose: close a common ldclose(3X)

floating-point numbers. frexp, ldexp, modf: manipulate parts of frexp(3C)
routines. ldfcn: common object file access ldfcn(3X)

a common object file. ldfhread: read the file header of ldfhread(3X)
for object file. ldgetname: retrieve symbol name ldgelname(3X)

number entries of a/ ldlread, ldlinit, ldlitem: manipulate line ldlread(3X)
entries of a/ ldlread, ldlinit, ldlitem: manipulate line number ldlread(3X)

manipulate line number entries/ ldlread. ldlinit, ldlitem: ldlread(3X)
number entries of a section of a/ ldlseek, ldnlseek: seek to line • ldlseek(3X)

entries of a section of/ ldlseek, ldnlseek: seek to line number • ldlseek(3X)
entries of a section of/ ldrseek, ldnrseek: seek to relocation • ldrseek(3X)

section header of a/ ldshread, ldnshread: read an indexed/named ldshread(3X)
indexed/named section/ ldsseek, ldnsseek: seek to an • • • • ldsseek(3X)
file header of a common object/ ldohseek: seek to the optional • ldohseek(3X)

object file for reading. ldopen, ldaopen: open a common ldopen(3X)
relocation entries of a section/ ldrseek, ldnrseek: seek to • • ldrseek(3X)

indexed/named section header of/ ldshread. ldnshread: read an • ldshread(3X)
indexed/named section of a/ ldsseek, ldnsseek: seek to an • ldsseek(3X)

symbol table entry of a common/ ldtbindex: compute the index of a ldtbindex(3X)
table entry of a common object/ ldtbread: read an indexed symbol ldtbread(3X)

table of a common object file. ldtbseek: seek to the symbol • ldtbseek(3X)
remind you when you have to leave. leave: • • • • • • • leave(l)

to leave. leave: remind you when you have leave(l)
string. len: return length of Fortran len(3F)

len: return length of Fortran string. • • • len(3F)
truncate a file to a specified length. truncate, ftruncate: • • truncate(2)

getopt: get option letter from argument vector. • getopt(3C)
lexical tasks. lex: generate programs for simple lex(l)

lex: generate programs for simple lexical tasks. • • • • • • • lex(l)

Permuted I ndex A-41

lsearch, lfind: linear search and update. lsearch(3C)
comparision intrinsic functions. lge. lgt, lie, lit: string • • • lge(3F)

intrinsic functions. lge, lgt, lie. lit: string comparision lge(3F)
introduction to subroutines and libraries. intro: intro(3)

slots: ROM library functions. • • • • • • slots(3X)
ordering relation for an object library. lorder: find • • • • lorder(1)

archives. ar : archive and library maintainer for portable ar(1)
data representation. xdr: library routines for external xdr(3N)

procedure calls. rpc: library routines for remote rpc(3N)
life: play the game of life. • • • • • • • • • life(6)

life: play the game of life. life(6)
ulimit: get and set user limits. • • • • • • • ulimit(2)
iargc: return command line arguments. iargc(3F)

establish an out-going terminal line connection. dial: • dial(3C)
terminal type, modes, speed, and line discipline. getty: set getty(lM)

routine used to push streams line disciplines. line _push: line_push(3)
line_sane: push streams line disciplines. line_sane(1M)

line: read one line. • • • • • • • • • line(1)
object file. linenum: line number entries in a common linenum(4)

/ldlinit, ldlitem: manipulate line number entries of a common/ ldlread(3X)
of a/ ldlseek, ldnlseek: seek to line number entries of a section ldlseek(3X)
object/ strip: strip symbol and line number information from an strip(1)

nl: line numbering filter. • • nl(1)
cut out selected fields o f each line o f a file. cut: cut(1)

display system status on status line of a terminal. sysline: • sysline(1)
cancel: send/cancel requests to a line printer. lp, • • • • • lp(1)

lpr: send requests to a line printer. • • • • • • lpr(1)
lprm: remove jobs from the line printer spooling queue. lprm(l)

line: read one line. • • • • line(1)
!search, lfind: linear search and update. lsearch(3C)

col: filter reverse linefeeds. • • • • • • • • col(1)
common object file. linenum: line number entries in a linenum(4)

streams line disciplines. line _push: routine used to push line_push(3)
comm: select or reject lines common to two sorted files. comm(1)
device. fold: fold long lines for finite-width output fold(l)

head: give first few lines. head(1)
uniq: report repeated lines in a file. • • • • • uniq(l)

rev: reverse lines o f a file. • • • • • rev(l)
of several files or subsequent lines of one file. /same lines paste(1)

subsequent/ paste: merge same lines o f several files or paste(I)
disciplines. line_sane: push streams line line_sane(lM)

files. ld: link editor for common object ld(1)
a.out: common assembler and link editor output a.out(4)

link: link to a file. link(2)

A-42

read value of a symbolic link. readlink: readlink(2)
link: link to a file. link(2)

symlink: make symbolic link to a file. symlink(2)
In: make links. ln(l)

lint: a C program checker. lint(l)
Is: list contents of directory. ls(l)

for a file system. ff: list file names and statistics ff(lM)

Permuted I ndex

•

•

•

•

•

•

cml: configuration master list format. • • cm1(4)
getgroups: get group access list • • • • • getgroups(2)

initialize group access list. initgroups: initgroups(3)
nlist: get entries from name list • • • • nlist(3C)

nm: print name list of common object file. nm(l)
netgroup: list of network groups. netgroup(4)

subj : generate a list of subjects from a document. subj(l)
hosts.equiv : list of trusted hosts. • • hosts.equiv(4)

system. users: compact list of users who are on the users(l)
setgroups: set group access list. • • • • • • • • • setgroups(2)

varargs: handle variable argument list • • • • • • • • • varargs(3X)
output of a varargs argument list. /vsprintf: print formatted vprintf(3S)

socket. listen: listen for connections on a • listen(2N)
a socket. listen: listen for connections on listen(2N)

macref: produce cross-reference listing of macro files. • • • • macref(l)
xargs: construct argument list(s) and execute command. xargs(l)

refer: find and ins ert literature references in/ refer(l)
intrinsic functions. lge, lgt, lie, lit: string comparision • lge(3F)

functions. lge, lgt, lie, lit: string comparision intrinsic lge(3F)
In: make links. • • • • • ln(l)

interface. lo: software loopback network lo(5)
lav: print load average statistics. lav(l)

rup: show host status of local machines (RPC version). rup(lC)
rusers: who's logged in on local machines (RPC version). rusers(lN)

ruptime: show host status of local machines. ruptime(lN)
rwho: who's logged in on local machines. • • • rwho(lN)

news: print local news items. news(l)
tzset, tzsetwall: convert/ ctime, localtime, gmtime, asctime, ctime(3)

aliases and paths. which: locate a program file including which(l)
lookup. apropos: locate commands by keyword apropos(I)

manual for program. whereis: locate source, binary, and/or whereis(l)
index: return location of Fortran substring. index(3F)

end, etext, edata: last locations in program. • • • end(3C)
apply or remove an advisory lock on an open file. flock: • flock(2)

memory. plock: lock process, text, or data in plock(2)
lockf: record locking on files. lockf(3C)

lockf: record locking on files. • • • • lockf(3C)
regions for reading or writing. locking: provide exclusive file locking(2)

natural logarithm intrinsic/ log, alog, dlog, clog: Fortran log(3F)
gamma: log gamma function. gamma(3M)
newgrp: log in to a new group. • • • newgrp(l)

exponential, logarithmJ exp, log, loglO, pow, sqrt: • • • • exp(3M)
common logarithm intrinsic/ loglO, aloglO, dloglO: Fortran log10(3F)
logarithm, powerJ exp, log, loglO, pow, sqrt: exponential, exp(3M)

/aloglO, dloglO: Fortran common logarithm intrinsic function. log10(3F)
/alog, dlog, clog: Fortran natural logarithm intrinsic function. • log(3F)

/loglO, pow, sqrt: exponential, logarithm, power, square root/ exp(3M)
errpt: process a report of logged errors. • • • • • • • errpt(lM)

version). rusers: who's logged in on local machines (RPC rusers(lN)
rwho: who's logged in on local machines. • rwho(lN)
getlogin: get login name. • • • • • • • • getlogin(3C)

Permuted I ndex A-43

lognarne: get login name. • • • • • • • • logname(l)
cuserid: get character login name of the user. • • • cuserid(3S)

logname: return login name of user. • • • • • logname(3X)
yppasswd: change login password in yellow pages. yppasswd(l)

passwd: change login password. passwd(l)
rlogin: remote login. rlogin(lN)

rlogind: remote login server. rlogind(lM)
chsh: change default login shell. • • chsh(l)

login: sign on. login(I)
setting u p an environment at login time. profile: profile(4)

last: indicate last logins of users and teletypes. last(l)
lognarne: get login name. logname(l)

user. lognarne: return login name of logname(3X)
setjmp, longjmp: non-local goto. setjmp(3C)

index for a bibliography, find/ lookbib, indxbib: build inverted lookbib(l)
locate commands by keyword lookup. apropos: • • • • • apropos(I)

finger: user information lookup program. • • • • • finger(I)
lo: software loopback network interface. lo(5)

for an object library. lorder: find ordering relation lorder(l)
nice: run a command at low priority. • • . • • • nice(l)

to a line printer. lp, cancel: send/cancel requests lp(l)
enable, disable: enable/disable LP printers. • • • • • • • • enable(l)
/lpshut, lpmove: start/stop the LP request scheduler and move/ lpsched(lM)

accept: allow LP requests. accept(lM)
reject: prevent LP requests. reject(1M)

Ipadmin: configure the LP spooling system. • • • • lpadmin(lM)
lpstat: print LP status information. • • • lpstat(l)

spooling system. Ipadmin: configure the LP • • Ipadmin(1M)
scheduler and/ lpsched, lpshut, lpmove: start/stop the LP request lpsched(lM)

program. lpq: spool queue examination • lpq(l)
printer. lpr: send requests to a line • • lpr(l)

printer spooling queue. lprm: remove jobs from the line lprm(l)
start/stop the LP request/ lpsched, lpshut, lpmove: • • • lpsched(lM)

request scheduler and/ lpsched, lpshut, lpmove: start/stop the LP lpsched(lM)
information. lpstat: print LP status • • • • lpstat(l)

jrand48,/ drand48, erand48, lrand48, nrand48, mrand48, drand48(3C)
Is: list contents of directory. ls(l)

update. lsearch, lfind: linear search and lsearch(3C)
pointer. lseek: move read/write file • lseek(2)

boolean/ and, or, xor, not, lshift, rshift: Fortran bitwise bool(3F)
stat, fstat, lstat: get file status. • • • • • stat(2)

integers and long/ l3tol, ltol3: convert between 3-byte • l3tol(3C)
m4: macro processor. • • • • m4(1)

u3b15, vax: provide truth value/ m68k, pdpl l , u3b, u3b2, u3b5, machid(l)
/access long integer data in a machine independent fashion. sputl(3X)
put: puts a file onto a remote machine. • • • • • • • put(lC)

take: takes a file from a remote machine. • • • • • • • take(I C)
values: machine-dependent values. values(5)

rup: show host status of local machines (RPC version). rup(lC)
rusers: who's logged in on local machines (RPC version). rusers(lN)

A-44

show host status of local machines. ruptime: • • ruptime(lN)

Permuted Index

•

•

•

•

•

•

rwho: who's logged in on local machines. • • • • • • • rwho(lN)
updater: update files between two machines. • • • • • • • updater(l)

launch: execute a Macintosh binary application. launch(I)
mfs: read a Macintosh fiat file system disk. mfs(l)

set the type and creator of a Macintosh resource file. settc: settc(l)
listing of macro files. macref: produce cross-reference macref(l)

cross-reference listing of macro files. macref: produce • macref(l)
permuted index. mptx: the macro package for formatting a mptx(5)

documents. mm: macro package for formatting mm(S)
viewgraphs and/ mv: a troff macro package for typesetting mv(5)

m4: macro processor . • • • • • • m4(1)
documents formatted with the mm macros. checkmm: check checkmm(l)

this manual. man: macros for formatting entries in man(5)
documents formatted with the mm macros. mm: prints mm(l)

ms: text formatting macros. • • • • • • • • • ms(5)
time chip. mactime: set the system time/real mactime(lM)

number file. magic: file command's magic magic(4)
magic: file command's magic number file. • • • • • magic(4)

rebuild the data base for the mail aliases file. newaliases: • newaliases(lM)
biff: be notified if mail arrives and who it is from. biff(l)

from: who i s my mail from?. • • • • from(l)
rmail: send mail to users or read mail. mail, • • • • • • • • mail(l)

sendmail: send mail over the Internet. • • • • sendmail(lM)
or read mail. mail, rmail: send mail to users mail(l)

mail, rmail: send mail to users or read mail. mail(l)
binary file for transmission via mail. /uudecode: encode/decode a uuencode(l C)

processing system. mailx: interactive message • • mailx(l)
free, realloc, calloc, cfree: main memory allocator. malloc, malloc(3C)

calloc, mallopt, mallinfo: fast main memory allocator. /realloc, malloc(3X)
program. ctags: maintain a tags file for a C • • ctags(l)

groups of programs. make: maintain, update, and regenerate make(l)
ar: archive and library maintainer for portable archives. ar(l)

regenerate groups of programs. make: maintain, update, and • make(l)
file. makedbm: make a yellow pages dbm makedbm(lM)

makekey: generate encryption key. makekey(l)
/free, realloc, calloc, mallopt, mallinfo: fast main memory/ malloc(3X)

cfree: main memory allocator. malloc, free, realloc, calloc, malloc(3C)
mallopt, mallinfo: fast main/ malloc, free, realloc, calloc, malloc(3X)
malloc, free, realloc, calloc, mallopt, mallinfo: fast main/ malloc(3X)

entries in this manual. man: macros for formatting man(5)
manual. man: print entries in this • • man(l)

tsearch, tfind, tdelete, twalk: manage binary search trees. tsearch(3C)
hsearch, hcreate, hdestroy: manage hash search tables. • hsearch(3C)

shl: shell layer manager. • • • • • • • • shl(l)
records. fwtmp, wtmpfix: manipulate connect accounting fwtmp(lM)
a/ ldlread, ldlinit, ldlitem: manipulate line number entries of ldlread(3X)

frexp, ldexp, modf: manipulate parts of/ frexp(3C)
tp: manipulate tape archive. • • • tp(1)

route: manually manipulate the routing tables . • route(1M)
/inet_netof: Internet address manipulation routines. inet(3N)
locate source, binary, and/or manual for program. whereis: whereis(1)

Permuted I ndex A-45

man: print entries in this manual. • • • • • • • man(I)
for formatting entries in this manual. man: macros • • • man(5)

tables. route: manually manipulate the routing route(1M)
format of iwprep(l) character map description files. iwmap: iwmap(4)

dpme: format of disk partition map entries. • • • • dpme(4)
ypxfr: transfer a YP map from some YP server to here. ypxfr(lM)

yppoll: what version of a YP map is at a YP server host yppoll(lM)
which host is the YP server or map master?. ypwhich: ypwhich(1)

ascii: map of ASCII character set. ascii(5)
of one or more keys from a YP map. ypmatch: print the value ypmatch(1)

force propagation of a changed YP map. yppush: • • • • • • yppush(lM)
DARPA port to RPC program number mapper. portmap: • portmap(lM)

diffmk: mark differences between files. diffmk(l)
sigsetmask: set current signal mask. • • • • • sigsetmask(2)

umask: set and get file creation mask. • • • • • umask(2)
create an error message file by massaging C source. mkstr: mkstr(l)

cml: configuration master list format. cml(4)
host is the YP server or map master?. ypwhich: which ypwhich(l)

regular expression compile and match routines. regexp: regexp(5)
math: math functions and constants. math(5)

constants. math: math functions and math(5)
neqn: format mathematical text for nroff. neqn(1)

eqn: format mathematical text for troff. eqn(l)
matherr: error-handling function. matherr(3M)

dmax l : Fortran maximum-value/ max, maxO, amaxO, maxi , amaxl , max(3F)
Fortran maximum-value/ max, maxO, amaxO, maxi, amaxl , dmaxl : max(3F)

maximum-value/ max, maxO, amaxO, maxi , amaxl , dmax l : Fortran max(3F)
maxi, amaxl , dmaxl : Fortran maximum-value functions. /amaxO, max(3F)

maze: generate a maze. maze(6)
maze: generate a maze. • • • • maze(6)

ae: 3Com 10 Mb/s Ethernet interface. ae(5)
accounting. mclock: return Fortran time mclock(3F)

bed: convert to antique media. • • • bcd(6)
mem, kmem: core memory. mem(7)

/read the archive header of a member of an archive file. ldahread(3X)
groups: show group memberships. • • groups(!)

memset: memory operations. memccpy, memchr, memcmp, memcpy, memory(3C)
memory operations. memccpy, memchr, memcmp, memcpy, memset: memory(3C)
operations. memccpy, memchr, memcmp, memcpy, memset: memory memory(3C)

memccpy, memchr, memcmp, memcpy, memset: memory/ memory(3C)
realloc, calloc, cfree: main memory allocator. malloc, free, malloc(3C)

mallopt, mallinfo: fast main memory allocator. /calloc, • • malloc(3X)
shmctl: shared memory control operations. shmctl(2)

queue, semaphore set, or shared memory ID. ipcrm: remove message ipcrm(l)
mem, kmem: core memory. • • • • • mem(7)

memchr, memcmp, memcpy, memset: memory operations. memccpy, memory(3C)
shmop, shmat, shmdt: shared memory operations. shmop(2)
lock process, text, or data in memory. plock: plock(2)

shmget: get shared memory segment shmget(2)
interface. nvram: nonvolatile memory/time of day clock nvram(7)

memccpy, memchr, memcmp, memcpy, memset: memory operations. memory(3C)

A-46 Permuted Index

•

•

•

•

•

•

sort: sort and/or merge files. • • • • • • • . sort(l)
files. acctmerg: merge or add total accounting acctmerg(lM)

or subsequent lines of/ paste: merge same lines of several files paste(l)
mesg: permit or deny messages. mesg(l)

msgctl: message control operations. msgct1(2)
source. mkstr: create an error message file by massaging C mkstr(l)
recvfrom, recvmsg: receive a message from a socket. recv, recv(2N)

send, sendto, sendmsg: send a message from a socket send(2N)
msgop, msgsnd, msgsrv: message operations. msgop(2)

mailx: interactive message processing system. mailx(l)
msgget: get message queue. • o • o • o msgget(2)

shared memory ID. ipcrm: remove message queue, semaphore set, or ipcrm(l)
mesg: permit or deny messages. • • • • • • • mesg(l)

sys_nerr: system error messages. /ermo, sys_errlist, • perror(3C)
afm: Adobe PostScript font metrics file format. • • • • o afm(7)

system disk. mfs: read a Macintosh flat file mfs(l)
dminl : Fortran minimum-value/ min, minO, aminO, minl, aminl, min(3F)

Fortran minimum-value/ min, minO, aminO, minl , aminl, dminl : min(3F)
minimum-value/ min, minO, aminO, minl, aminl , dminl : Fortran • min(3F)

minl, aminl , dminl: Fortran minimum-value functions. /aminO, min(3F)
/overview of accounting and miscellaneous accounting/ • acct(lM)

intro: introduction to miscellaneous facilities. • • intro(5)
mkdir: make a directory file. • mkdir(2)
mkdir: make a directory. • • • mkdir(l)
mkfs: construct a file system. • mkfs(lM)
mkfslb: construct a file system. mkfslb(lM)
rnknod: build special file. • • mknod(lM)

special or ordinary file. rnknod: make a directory, or a mknod(2)
file by massaging C source. mkstr: create an error message mkstr(l)

mktemp: make a unique filename. mktemp(3C)
documents. mm: macro package for formatting mm(5)

documents formatted with the mm macros. checkmm: check checkmm(l)
documents formatted with the mm macros. mm: prints • • • mm(l)

with the mm macros . mm : prints documents formatted mm(l)
mmt: typeset documents. mmt(l)

remaindering intrinsic/ mod, amod, dmod: Fortran • mod(3F)
chmod: change mode. • • • o • • • • • chmod(l)
chmod: change mode o f file. • • • • • • chmod(2)

set or get process compatibility mode. setcompat, getcompat: setcompat(2)
dialup: modem escape sequence file. dialup(4)

getty: set terminal type, modes, speed, and line/ • • getty(1M)
bs: a compiler(mterpreter for modest-sized programs. • • bs(l)
floating-point/ frexp, ldexp, modf: manipulate parts of • o frexp(3C)

touch: update access and modification times of a file. touch(l)
utime: set file access and modification times. • • • • utime(2)

tty_add, tty_kill: modify the /etc(mittab file. • tty_add(lM)
file. yppasswdd: server for modifying yellow pages password yppasswdd(lM)

information from .A/UX kernels. module_dump: dumps out • module_dump(lM)
/ckpacct, dodisk, lastlogin, monacct, nulladm. prctmp,/ • acctsh(lM)

profile. monitor: prepare execution monitor(3C)
uusub: monitor uucp netwoxk.. uusub(lM)

Permuted I ndex A-47

moo: guessing game. moo(6)
viewing. more: file perusal filter for CRT more(I)

functions with "optimal" cursor motion. /BSD-style screen curses5.0(3X)
downloading/ rcvhex: translates Motorola S-records from rcvhex(l)

mount: mount a file system. mount(3)
fsmount: mount an NFS file system. fsmount(2)

mount, umount: mount and dismount file systems. mount(1M)
mount: mount a file system. • mount(3)

mountd: NFS mount request server. • • • mountd(lM)
file systems. mount, umount: mount and dismount mount(1M)

mountd: NFS mount request server. mountd(lM)
mtab: mounted file system table. mtab(4)

nntab: remotely mounted file system table. nntab(4)
showmount: show all remote mounts. • • • • • • showmount(lM)

mouse: mouse input device driver. mouse(?)
mouse: mouse input device driver. mouse(?)

mv: move or rename files. • • • mv(l)
lseek: move read/write file pointer. lseek(2)

the LP request scheduler and move requests. /start/stop lpsched(lM)
fonnatting a permuted index. mptx: the macro package for mptx(5)

/erand48, lrand48, nrand48, mrand48, jrand48, srand48J drand48(3C)
ms: text fonnatting macros. ms(5)

operations. msgctl: message control • msgctl(2)
msgget: get message queue. msgget(2)

operations. msgop, msgsnd, msgsrv: message msgop(2)
operations. msgop, msgsnd, msgsrv: message • • msgop(2)

msgop, msgsnd, msgsrv: message operations. • msgop(2)
mtab: mounted file system table. mtab(4)

select: synchronous 1/0 multiplexing. • • • • • • • select(2N)
typesetting viewgraphs and/ mv: a troff macro package for mv(5)

mv: move or rename files. • mv(l)
slides. mvt: typeset view graphs and mvt(l)

ncstats: display kernel name cache statistics. ncstats(lM)
hosts: host name data base. hosts(4)

networks: network name data base. networks(4N)
protocols: protocol name data base. protocols(4N)

services: service name data base. services(4N)
devnm: device name. • • • • devnm(lM)

tmpnam, tempnam: create a name for a temporary file. tmpnam(3S)
ldgetname: retrieve symbol name for object file. ldgetname(3X)

getpw: get name from UID. getpw(3C)
return value for environment name. getenv: • getenv(3C)

getlogin: get login name. getlogin(3C)
getsockname: get socket name. getsockname(2N)

nlist: get entries from name list • • nlist(3C)
nm: print name list of common object file. nm(l)

logname: get login name. • • • • • logname(l)
rename: change the name o f a file. • • • • • • • rename(2)
ttyname, isatty: find name of a tenninal. • • • • • ttyname(3C)

getpeemame: get name of connected peer. • • • getpeername(2N)
domainname: set or display name of current domain system. domainname(l)

A-48 Permuted Index

•

•

•

•

•

•

gethostname, sethostname: get/set name of current hosL • • • • gethostname(2N)
hostname: set or print name of cmrent host system. • hostname(lN)

/setdomainname: get/set name of current network domain. getdomainname(2N)
\U181Jle: print name of cmrent system. • • uname(l)

\U181Jle: get name of current system. • • lU181Jle(2)
cuserid: get character login name of the user. • • • cuserid(3S)

logname: return login name of user. • • logname(3X)
pwd: print worlcing directory name. • • • • • • • pwd(l)

named: Internet domain name server. • • named(1M)
bind: bind a name to a socket. • bind(2N)

tty: get the terminal's name. • • • • • tty(l)
server. named: Internet domain name named(lM)

nodes. pname: associate named partitions with device pname(lM)
system. ff: list file names and statistics for a file ff(lM)
term: conventional names for terminals. term(5)

ncheck: generate names from i-numbers. • ncheck(lM)
id: print user and group IDs and names. • • • • • • • • id(l)

log, alog, dlog, clog: Fortran natural logarithm intrinsic/ • log(3F)
i-numbers. ncheck: generate names from • ncheck(lM)

cache statistics. ncstats: display kernel name • ncstats(lM)
for a documenL ndx: create a subject-page index ndx(l)

/dnint, nint, idnint: Fortran nearest integer functions. • • round(3F)
character definitions for eqn and neqn. eqnchar: special • • • eqnchar(5)

for nroff. neqn: format mathematical text neqn(l)
netgroup: list of network groups. netgroup(4)
netstat: show network status. • netstat(lN)

convert values between host and network byte order. /ntohs: • byteorder(3N)
get/set name of current network domain. /setdomainname: getdomainname(2N)

setnetent, endnetent: get network entry. /getnetbyname, getnetent(3N)
nfsstat: Network File System statistics. nfsstat(lM)

/endnetgrent, innetgr: get network group entry. gelnetgrent(3N)
netgroup: list of network groups. • • netgroup(4)

/sethostent, endhostent: get network host entry. • gethostent(3N)
send ICMP ECHO_REQUEST packets to network hosts. ping: ping(lM)

lo: software loopback network interface. lo(5)
ifconfig: configure network interface parameters. ifconfig(lM)

networks: network name data base. • networks(4N)
file system dump across the network. rdumpfs: • • • • • rdumpfs(lM)

routed: network routing daemon. • • routed(1M)
a file system dump across the network. rrestore: restore • rrestore(lM)

rwall: write to all users over a network running B-NET software. rwall(lM)
rwalld: network rwall server. • • • • rwalld(lM)

netstat: show network status. • • • • • • netstat(lN)
uusub: monitor uucp network. • • • • • • • • • uusub(lM)

networks: network name data base. networks(4N)
for the mail aliases file. newaliases: rebuild the data base newaliases(lM)

text file. newform: change the format of a newform(l)
newgrp: log in to a new group. newgrp(l)

news: print local news items. • • • • • • • • news(l)
news: print local news items. • news(l)

/fetch, store, delete, firstkey, nextkey: data base subroutines. dbm(3X)

Permuted I ndex A-49

nfsd, biod: NFS daemons. • • • • • • • nfsd(lM)
nfssvc, async_daemon: NFS daemons. • • • • • • • nfssvc(2)

fsmount: mount an NFS file system. • • • • • • fsmount(2)
exports: NFS file systems being exported. exports(4)
mountd: NFS mount request server. • mountd(lM)

nfsd, biod: NFS daemons. • nfsd(lM)
nfs_getfh: get a file handle. nfs_getfb(2)

statistics. nfsstat: Network File System nfsstat(lM)
daemons. nfssvc, async_daemon: NFS nfssvc(2)

process. nice: change priority of a nice(2)
priority. nice: run a command at low nice(l)

integer functions. anint. dnint. nint. idnint: Fortran nearest round(3F)
nl: line numbering filter. • • nl(l)

list nlist: get entries from name nlist(3C)
object file. nm: print name list of common nm(l)

change current A!UX system nodename. chgnod: chgnod(lM)
named partitions with device nodes. pname: associate • • • pname(lM)

hangups. nohup: run a command immune to nohup(l)
setjmp, longjmp: non-local goto. • • • • • • setjmp(3C)

clock interface. nvram: nonvolatile memory/time of day nvram(7)
bitwise boolean/ and, or, xor, not. lshift. rshift: Fortran bool(3F)

it is from. biff: be notified if mail arrives and who biff(1)
drand48, erand48, lrand48, nrand48, mrand48, jrand48J drand48(3C)

soelim: eliminate .so's from nroff input • soelim(l)
format mathematical text for nroff. neqn: • • • • • neqn(l)

terminal driving tables for nroff. nterm: nterm(5)
tbl: format tables for nroff or troff. tbl(l)

previewing. colcrt: filter nroff output for terminal • colcrt(l)
nroff: text formatting language. nroff(l)

checknr: check nroff/troff files. • • • • • checkm(l)
constructs. deroff: remove nroff/troff, tbl, and eqn deroff(l)

for nroff. ntenn: terminal driving tables nterm(5)
between host and/ htonl, htons, ntohl, ntohs: convert values byteorder(3N)

host and/ htonl, htons, ntohl, ntohs: convert values between byteorder(3N)
null: the null file. • • • • • • • null(7)

null: the null file. • • • • null(7)
/dodisk, lastlogin, monacct. nulladm, prctmp, prdailyJ • acctsh(lM)

ASCII string to floating-point number. atof: convert • • • atof(3C)
to English. number: convert Arabic numerals number(6)

phones: remote host phone number data base. • • • • • phones(4)
file. linenum: line number entries in a common object linenum(4)

/ldlinit. ldlitem: manipulate line number entries of a common object/ ldlread(3X)
ldlseek, ldnlseek: seek to line number entries of a section of a/ ldlseek(3X)

factor: factor a number. • • • • • • • • • factor(l)
arithmetic: provide drill in number facts. • • • • • • • arithmetic(6)

magic: file command's magic number file. • • • • • • • • magic(4)
strip: strip symbol and line number information from an object/ strip(I)

DARPA port to RPC program number mapper. portmap: portmap(lM)

A-50

version: reports version number of files. version(I)
df: report number o f free disk blocks. df(l)

string to double-precision number. strtod: convert strtod(3C)

Permuted I ndex

•

•

•

•

•

gcvt: convert floating-point number to string. ecvt, fcvt, • ecvt(3C)
nl: line numbering filter. • • • • • • nl(l)

distributed pseudo-random numbers. /generate uniformly drand48(3C)
parts of floating-point numbers. /ldexp, modf: manipulate frexp(3C)

install random inode generation numbers. fsirand: • • • • • fsirand(lM)
to system calls and error numbers. intro: introduction • intro(2)

file/ /endptabent, setptabent, numbptabent: get partition table getptabent(3)
number: convert Arabic numerals to English. • • • • number(6)

day clock interface. nvram: nonvolatile memory/time of nvram(7)
ldfcn: common object file access routines. ldfcn(3X)

conv: object file converter. • • • • conv(l)
dump: dump selected parts of an object file. • • • • • • • • dump(l)

ldopen, ldaopen: open a common object file for reading. • • • • ldopen(3X)
line number entries of a common object file function. /manipulate ldlread(3X)

ldclose, ldaclose: close a common object file. • • • • • • • • ldclose(3X)
read the file header of a common object file. ldfhread: • • • • ldfhread(3X)

retrieve symbol name for object file. ldgetname: • • • ldgetname(3X)
entries of a section of a common object file. /seek to line number ldlseek(3X)
optional file header of a common object file. /seek to the ldohseek(3X)
entries of a section of a common object file. /seek to relocation ldrseek(3X)

section header of a common object file. /an indexed/named ldshread(3X)
section of a common object file. /an indexed/named ldsseek(3X)

a symbol table entry of a common object file. /the index of • • ldtbindex(3X)
symbol table entry of a common object file. /read an indexed ldtbread(3X)
to the symbol table of a common object file. ldtbseek: seek ldtbseek(3X)
line number entries in a common object file. linenum: • linenum(4)

nm: print name list of common object file. • • • • • • • nm(1)
information for a common object file. reloc: relocation • reloc(4)

section header for a common object file. scnhdr: • • • • scnhdr(4)
line number information from an object file. /strip symbol and strip(I)

syms: common object file symbol table format. syms(4)
a.out header for common object files. aouthdr.h: aouthdr(4)

filehdr: file header for common object files. • • • • filehdr(4)
hex: translates object files. • • • • hex(l)

directories. cpset: install object files in binary • cpset(lM)
ld: link editor for common object files. • • • • ld(1)

print section sizes o f common object files. size: • • size(l)
find ordering relation for an object library. lorder: lorder(l)

/find the printable strings in an object, or other binary file. strings(I)
/setgrent, endgrent, fgetgrent: obtain group file entry from a/ getgrent(3C)

od: octal dump. • • • • od(l)
od: octal dump. od(l)

login: sign on. • • • • • • • login(l)
serial: the on-board serial ports. serial(?)

a new file or rewrite an existing one. creat: create creat(2)
errors in the/ exterr: tum on/off the reporting of extended exterr(lM)

put: puts a file onto a remote machine. • • • put(I C)
reading. ldopen, ldaopen: open a common object file for ldopen(3X)

fopen, freopen, fdopen: open a stream. • • • • • • fopen(3S)
or remove an advisory lock on an open file. flock: apply • • • flock(2)

open: open for reading or writing. open(2)

Permuted I ndex A-51

writing. open: open for reading or open(2)
seekdir, rewinddir, closedir:/ opendir, readdir, telldir, • directory(3)

tputs: terminal independent operation routines. /tgoto, termcap(3X)
bzero, ffs: bit and byte string operations. bcopy, hemp, bstring(3)
rewinddir, closedir: directory operations. /telldir, seekdir, directory(3)

memcmp, memcpy, memset: memory operations. memccpy, memchr, memory(3C)
msgctl: message control operations. msgct1(2)

msgop, msgsnd, msgsrv: message operations. msgop(2)
semctl: semaphore control operations. • • • semct1(2)

semop: semaphore operations. • • • semop(2)
shmctl: shared memory control operations. • • • shmct1(2)
shmat, shmdt: shared memory operations. shmop, shmop(2)

strspn, strcspn, strtok: string operations. /strrchr, stipbrk, string(3C)
join: relational database operator. • • • • • • • • join(l)

dcopy: copy file systems for optimal access time. dcopy(lM)
/BSD-style screen functions with "optimal" cursor motion. • curses5.0(3X)
curses: CRT screen handling and optimization package. • • • curses(3X)

vector. getopt: get option letter from argument • getopt(3C)
signal facilities. sigvec: optional BSD-compatible software sigvec(2)

object/ ldohseek: seek to the optional file header of a common ldohseek(3X)
fcntl: file control options. • • • • • fcnt1(5)

stty: set the options for a terminal. • • • stty(l)
getopt: parse command options. • • • • • • • • • getopt(l)
setsockopt: get and set options on sockets. getsockopt, getsockopt(2N)

Fortran bitwise boolean/ and, or, xor, not, lshift, rshift: • • • bool(3F)
between host and network byte order. /ntohs: convert values • byteorder(3N)

library. lorder: find ordering relation for an object lorder(l)
make a directory, or a special or ordinary file. mknod: • • mknod(2)

prepare constant-width text for otroff. cw, checkcw: cw(l)
typesetting. otroff: text formatting and otroff(l)

cpio: copy file archives in and out. • • • • • • • cpio(l)
connection. dial: establish an out-going terminal line dia1(3C)

common assembler and link editor output. a.out: • • • • a.out(4)
fold long lines for finite-width output device. fold: fold(l)

colcrt: filter nroff output for terminal previewing. colcrt(l)
tc : troff output interpreter. tc(l)

troff: description o f output language. • • • • troff(5)
list. /vsprintf: print formatted output of a varargs argument vprintf(3S)

fprintf, sprintf: print formatted output. printf, • • • • • • printf(3S)
ssp: make output single spaced. • • • ssp(I)

/acctdusg, accton, acctwtmp: overview of accounting and/ acct(lM)
chown, fchown: change owner and group of a file. chown(2)

chown, chgrp: change owner or group. • • • • • chown(l)
expand files. pack, peat, unpack: compress and pack(l)

screen handling and optimization package. curses: CRT • • • curses(3X)
index. mptx: the macro package for formatting a permuted mptx(5)

mm: macro package for formatting documents. mm(5)
viewgraphs and/ mv: a troff macro package for typesetting mv(5)

interprocess communication package. ftok: standard ftok(3C)
sal , sa2: system activity report package. sadc, sadc(lM)

A-52

spray: spray packets. • • • • • spray(lM)

Permuted I ndex

•

•

•

•

•

•

ping: send ICMP ECHO_REQUEST packets to network hosts. • ping(1M)
pagesize: print system page size. • pagesize(1)

ypclnt: yellow pages client interface. • • ypclnt(3N)
ypinit: build and install yellow pages database. • • ypinit(1M)

ypmake: rebuild yellow pages database. • ypmake(1M)
makedbm: make a yellow pages dbm file. • makedbm(1M)

server for modifying yellow pages password file. yppasswdd: yppasswdd(1M)
ypserv, ypbind: yellow pages server and binder/ • • • ypserv(1M)

change login password in yellow pages. yppasswd: • • • • • yppasswd(1)
pagesize: print system page size. pagesize(1)

terminal. 4014: paginator for the Tektronix 4014 4014(1)
kconfig: change a kernel's parameters for nming. • • • • kconfig(1M)

configure network interface parameters. ifconfig: • • • ifconfig(1M)
get process, process group, and parent process IDs. /getppid: getpid(2)

getopt: parse command options. • • • getopt(1)
aint, dint: Fortran integer part intrinsic function. • aint(3F)

tail: deliver the last part of a file. • • • • • • • tail(1)
shutdown: shut down part of a full-duplex connection. shutdown(2N)

aimag, dimag: Fortran imaginary part of complex argument. • aimag(3F)
ypset: point ypbind at a particular server. • • • • • ypset(1M)

dpme: format of disk partition map entries. • dpme(4)
/setptabent, numbptabent: get partition table file entry. • getptabent(3)

ptab: partition table file. • • • ptab(4)
dp: perform disk partitioning. • • • • • dp(1M)

pname: associate named partitions with device nodes. pname(1M)
dump: dump selected parts of an object file. • • • dump(l)

frexp, ldexp, modf: manipulate parts of floating-point numbers. frexp(3C)
passwd: change login password. passwd(l)
passwd: password file. • • • passwd(4)

endpwent, fgetpwent: get password file entry. /setpwent, getpwent(3C)
putpwent: write password file entry. • • • • putpwent(3C)

passwd: password file. • • • • • • passwd(4)
vipw: edit the password file. • • • • • • vipw(lM)

server for modifying yellow pages password file. yppasswdd: • yppasswdd(lM)
getpass: read a password. • • • • • • • getpass(3C)

yppasswd: change login password in yellow pages. • yppasswd(l)
passwd: change login password. • • • • • • • passwd(l)

pwck. grpck: password/group file checkers. pwck(lM)
several files or subsequent/ paste: merge same lines of • • paste(l)

get current working directory pathname. getwd: • getwd(3)
directory. getcwd: get pathname of current working • getcwd(3C)

dirname: deliver portions of pathnames. basename, • basename(l)
file including aliases and paths. which: locate a program which(l)

egrep, fgrep: search a file for a pattern. grep, • • • • • • • grep(1)
language. awk: pattern scanning and processing awk(1)

signal. pause: suspend process until • pause(2)
files. pack, peat, unpack: compress and expand pack(l)

process. popen. pclose: initiate pipe to/from a • popen(3S)
vax: provide truth value/ m68k, pdp1 1, u3b, u3b2, u3b5, u3b15, machid(1)

get name o f connected peer. getpeemame: • • • getpeemame(2N)

Permuted I ndex

dp: perform disk partitioning. dp(lM)

A-53

mesg: pennit or deny messages. mesg(l)
m acro package for formatting a pennuted index. mptx: the mptx(5)

ptx: make pennuted index. • • • • • ptx(l)
format. acct: per-process accounting file acct(4)

acctcms: command summary from per-process accounting records. acctcms(lM)
sys_nerr: system error messages. perror, errno, sys_errlist, perror(3C)

more: file perusal filter for CRT viewing. more(I)
terminals. pg: file perusal filter for soft-copy • • pg(l)

soft-copy terminals. pg: file perusal filter for • • • pg(l)
phones: remote host phone number data base. • • phones(4)

data base. phones: remote host phone number phones(4)
for the Autologic APS-5 phototypesetter. /Postprocessor daps(l)

physical addresses. phys: allow a process to access phys(2)
phys: allow a process to access physical addresses. • • • • phys(2)

graphs. grap: pic preprocessor for drawing grap(l)
drawing pictures. pic: troff preprocessor for • • pic(l)

troff preprocessor for drawing pictures. pic: • • • • • • • pic(l)
split: split a file into pieces. • • • • • • • • • • split(I)

packets to network hosts. ping: send ICMP ECHO_REQUEST ping(1M)
channel. pipe: create an interprocess pipe(2)

tee: pipe fitting. • • • • • tee(l)
popen, pclose: initiate pipe to/from a process. • popen(3S)

fish: play "Go Fish". • • • fish(6)
life: play the game of life. • • life(6)

worm: play the growing worm game. worm(6)
data in memory. plock: lock process, text, or plock(2)

plot: graphics interface. • • • plot(4)
subroutines. plot: graphics interface plot(3X)

with device nodes. pname: associate named partitions pname(lM)
server. ypset: point ypbind at a particular • ypset(lM)

rewind, ftell: reposition a file pointer in a stream. fseek, • • fseek(3S)
lseek: move read/write file pointer. • • • • • • • • • lseek(2)

to/from a process. popen, pclose: initiate pipe • • popen(3S)
mapper. portmap: DARPA port to RPC program number portmap(lM)

data base of terminal types by port. ttytype: • • • • • • ttytype(4)
and library maintainer for portable archives. ar: archive ar(l)

basename, dimame: deliver portions of pathnames. basename(l)
program number mapper. portmap: DARPA port to RPC portmap(lM)
serial: the on-board serial ports. • • • • • • • • • serial(7)
dim, ddim, idim: Fortran positive difference intrinsic/ dim(3F)

banner: make posters. • • • • • • • • banner(l)
daiw: Apple ImageWJ;iter II troff postprocessor filter. • • • • daiw(l)

APS-5 phototypesetter. daps: Postprocessor for the Autologic daps(l)
format afm: Adobe PostScript font metrics file • afm(7)

postscript: print file format. postscript(4)
/TranScript spooler filters for PostScript printers. • • • • transcript(lM)

logarithmJ exp, log, loglO, pow, sqrt: exponential, exp(3M)
powerdown: power down the system. • • powerdown(lM)

/sqrt: exponential, logarithm, power, square root functions. exp(3M)

A-54

powerdown: power down the system. powerdown(lM)
shelV brc, bcheckrc, rc, powerfail: system initialization brc(lM)

Permuted I ndex

•

•

•

•

•

•

pr: print files. • • • • pr(1)
/lastlogin, monacct, nulladm, prctmp, prdaily, prtacctj acctsh(lM)

/monacct, nulladm, prctmp, prdaily, prtacct, shutacct,/ acctsh(lM)
function. dprod: Fortran double precision product intrinsic dprod(3F)

otroff. cw, checkcw: prepare constant-width text for cw(l)
monitor: prepare execution profile. monitor(3e)
iwprep: prepare troff description files . • iwprep(l)

cpp: the e language preprocessor. • • • • • • • cpp(l)
grap: pic preprocessor for drawing graphs. grap(l)

pictures. pic: troff preprocessor for drawing pic(l)
reject: prevent LP requests. reject(1M)

filter nroff output for terminal previewing. colcrt: • • • colcrt(l)
unget: undo a previous get o f an sees file. unget(l)

types: primitive system data types. types(5)
interesting, adage. fortune: print a random, hopefully fortune(6)

prs: print an sees file. • • • • prs(l)
date: print and set the date. • • • date(l)

cal: print calendar. • • • • • cal(l)
a file. sum: print checksum and block count o f sum(l)

activity. sact: print current sees file editing sact(l)
whoami: print effective current user ID. whoami(l)

man: print entries in this manual. man(l)
postscript: print file formal postscript(4)

cat: concatenate and print files. cat(l)
pr: print files. pr(1)

iw2: Apple Image Writer print filter. iw2(1)
vprintf, vfprintf, vsprintf: print formatted output o f a/ • vprintf(3S)

printf, fprintf, sprintf: print formatted output. printf(3S)
fpr: print Fortran file. • • • • fpr(l)

system. hostid: set or print identifier o f current host hostid(lN)
banner?: print large banner on printer. banner7(1)

lav: print load average statistics. lav(l)
news: print local news items. news(l)
lpstat: print LP status information. lpstat(l)

file. nm : print name list o f common object nm(l)
system. hostname: set or print name of current host • • hostname(lN)

uname: print name of current system. • uname(l)
acctcom: search and print process accounting file(s). acctcom(lM)

object files. size: print section sizes of common size(l)
pstat: print system facts. • • • • • pstat(lM)

pagesize: print system page size. pagesize(l)
printenv: print the current environment. printenv(l)

keys from a YP map. ypmatch: print the value of one or more ypmatch(l)
names. id: print user and group IDs and • id(l)

ypcat: print values in a YP data base. ypcat(l)
for diction. diction, explain: print wordy sentences; thesaurus diction(l)

pwd: print working directory name. pwd(l)
o r other/ strings: find the printable strings in an object, strings(I)

environment printenv: print the current printenv(l)
banner?: print large banner on printer. banner7(1)

send/cancel requests to a line printer. lp, cancel: • • • lp(l)

Permuted I ndex A-55

lpr: send requests to a line printer. • • • • • lpr(l)
to a PoSTSCRIPr printer. psroff: troff psroff(l)

lprm: remove jobs from the line printer spooling queue. lprm(l)
disable: enable/disable LP printers. enable, • • enable(I)

spooler filters for PostScript printers. !franScript transcript(1M)
formatted output. printf, fprintf, sprintf: print printf(3S)

the mm macros. mm: prints documents formatted with mm(l)
nice: nm a command at low priority. • • • • • nice(l)

nice: change priority of a process. nice(2)
rpc: library routines for remote procedure calls. rpc(3N)

boot: startup procedures. • • boot(8)
/startup, tumacct: shell procedures for accounting. acctsh(lM)

errors. errpt: process a report of logged errpt(lM)
acct: enable or disable process accounting. • • acct(2)

acctprcl , acctprc2: process accounting. • • • acctprc(lM)
acctcom: search and print process accounting file(s). acctcom(lM)

times: get process and child process times. times(2)
setcompat, getcompat: set or get process compatibility mode. • setcompat(2)

init, telinit: process control initialization. • init(lM)
timex: time a command; report process data and system activity. timex(I)

exit, _exit: terminate process. • • • • • • • • exit(2)
fork: create a new process. • • • • • • • • • fork(2)

/getpgrp, getppid: get process, process group, and parent process/ getpid(2)
setpgip: set process group ID. setpgip(2)

killpg: send signal to a process group. • • • • • killpg(3N)
process group, and parent process IDs. /get process, getpid(2)

inittab: script for the init process. inittab(4)
kill: terminate a process. • • • • • • kill(I)

nice: change priority of a process. • • • • • • • nice(2)
kill: send a signal to a process or a group of processes. kill(2)

pclose: initiate pipe to/from a process. popen, • • • • • popen(3S)
getpid, getpgip, getppid: get process, process group, and/ • getpid(2)

ps: report process status. • • • • • • • ps(l)
plock: lock process, text, or data in memory. plock(2)

times: get process and child process times. • • • • • • • times(2)
addresses. phys: allow a process to access physical • • phys(2)

wait: wait for child process to stop or terminate. wait(2)
wait3: wait for child process to stop or terminate. wait3(2N)

ptrace: process trace. • • • ptrace(2)
pause: suspend process until signal. pause(2)

signal to a process or a group of processes. kill: send a kill(2)
killall: kill all active processes. killall(lM)

structure. fuser: identify processes using a file or file fuser(lM)
yellow pages server and binder processes. ypserv, ypbind: ypserv(lM)

awk: pattern scanning and processing language. awk(l)
shutdown: terminate all processing. • • • • • • shutdown(1M)

mailx: interactive message processing system. • • • mailx("l)
m4: macro processor. • • • • • • • m4(1)

vax: provide truth value about processor type. /u3b5, u3bl5, machid(l)
alarm: set a process 's al arm clock. alarm(2)

A-56

of macro files. macref: produce cross-reference listing macref(1)

Permuted I ndex

•

•

•

•

•

•

dprod: Fortran double precision product intrinsic function. • • dprod(3F)
JXUf: display JXUfile data. • • prof(l)
prof: profile within a function. prof(S)
profil: execution time profile. • profil(2)

prof: display profile data. • • • • • prof(l)
monitor: prepare execution profile. • • • • • • • • monitor(3C)

profil: execution time JXUfile. • • • • • • • • • profil(2)
environment at login time. profile: setting up an • • profile(4)

prof: profile within a function. • prof(5)
abort: tenninate Fortran program. • • • • • abort(3F)

assert: verify program assertion. • • assert(3X)
cb: C program beautifier. • • cb(l)

lint: a C program checker. lint(l)
cxref: generate C program cross-reference. cxref(l)

maintain a tags file for a C program. ctags: • • • • ctags(l)
ctrace: C program debugger. • • • ctrace(l)

etext, edata: last locations in JXUgram. end, • • • • • end(3C)
and paths. which: locate a JXUgram file including aliases which(l)

fing er: user information lookup program. • • • • • • • • finger(l)
ftp: ARPANET file transfer program. • • • • • • • ftp(lN)

lpq: spool queue examination program. • • • • • • • lpq(l)
portmap: DARPA port to RPC JXUgram number mapper. • portmap(lM)

rdist: remote file distribution program. • • • • rdist(l)
sdiff: side-by-side difference program. • • • • • • • • • sdiff(l)

indent: indent and format C program source. • • • • • indent(l)
tftp: trivial file transfer program. • • • • • • • • tftp(lC)

screen color. scr_color: program to change the terminal's scr_color(l)
units: conversion program. • • • • • • • • • units(l)

source, binary, and/or manual for program. whereis: locate • • whereis(l)
ksh: Korn shell, a command programming language. • • • ksh(l)

standard/restricted conunand programming language. /shell, sh(l)
for modest-sized programs. /a compiler(mterpreter bs(l)

tasks. lex: generate programs for simple lexical • lex(l)
update, and regenerate groups of programs. make: maintain, • • make(l)

xstr: extract strings from C programs to implement shared/ xslr(l)
and clean up after A/UX Toolbox programs. /set up for • • • • toolboxd(lM)

yppush: force propagation of a changed YP map. yppush(lM)
arp: Address Resolution Protocol. • • • • • • • • • arp(5P)

setprotoent, endprotoent: get }X'Otocol entry. /getprotobyname, getprotoent(3N)
inet: Internet protocol family. • • • • • inet(5f)

ip: Internet Protocol. • • • • • • • ip(5P)
protocols: protocol name data base. • protocols(4N)

DARPA Internet File Transfer Protocol server. ftpd: ftpd(lM)
telnetd: DARPA TELNET }X'Otocol server. telnetd(lM)

DARPA Trivial File Transfer Protocol server. tftpd: tftpd(lM)
Internet Transmission Control Protocol. tcp: • tcp(5P)
user interface to the TELNET protocol. telnet: • • telnet(lC)

trpt: transliterate protocol trace. • • • trpt(lM)
udp: Internet User Datagram Protocol. • • • • • udp(5P)

base. protocols: protocol name data protocols(4N)
arithmetic: provide drill in number facts. • arithmetic(6)

Permuted I ndex A-57

for reading or writing. locking: provide exclusive file regions • locking(2)
u3b, u3b2, u3b5, u3b15, vax: provide truth value about/ /pdpl l , machid(l)

true, false: provide truth values. true(l)
prs: print an sees file. prs(l)

/nulladm, prclmp, prdaily, prtacct, shutacct, startup,/ acctsh(lM)
ps: report process status. • ps(l)

/troff intermediate format to PosTSCRm/ • • • • • • psdit(l)
printer. psroff: troff to a PosTSCRm • • • • • • • psroff(l)

spooler/ pscomm, psrv, pstext, psbanner, psinterface: TranScript transcript(lM)
psinterface: TranScript spooler/ pscomm, psrv, pstext, psbanner, transcript(lM)

format to/ psdit: convert troff intermediate psdit(l)
pty: pseudo terminal driver. • • • pty(7)
sxt: pseudo-device driver. • • • • sxt(7)

generate lD'liformly distributed pseudo-random numbers. /lcong48: drand48(3e)
pscomm, psrv, pstext, psbanner, psinterface: TranScript spooler/ transcript(lM)

PosTSCRm/ psroff: troff to a • • • • • psroff(l)
psinterface: TranScript/ pscomm, psrv, pstext, psbanner, transcript(IM)

pstat: print system facts. • • pstat(lM)
TranScript spooler/ pscomm, psrv, pstext, psbanner, psinterface: transcript(lM)

ptab: partition table file. • • ptab(4)
ptrace: process trace. • • • ptrace(2)
ptx: make permuted index. • ptx(l)
pty: pseudo terminal driver. pty(7)

copy. uuto, uupick: public UNIX-to-UNIX system file uuto(le)
stream. ungele: push character back into input ungetc(3S)

line_push: routine used to push streams line disciplines. • line_push(3)
line_sane: push streams line disciplines. • line_sane(lM)

puts, fputs: put a string on a stream. • • • puts(3S)
pule, putchar, fputc, putw: put character or word on a/ • • pule(3S)

machine. put: puts a file onto a remote • put(I C)
character or word on a stream. pule, putchar, fputc, putw: put pule(3S)

character or word on a/ pule, pulehar, fpule, putw: put • • • pule(3S)
environment. putenv: change or add value to putenv(3e)

entry. putpwent: write password file putpwent(3C)
machine. put: puts a file onto a remote • • • put(I e)

stream. puts, fputs: put a string on a puts(3S)
getutent, getutid, getutline, pututline, setutent, endutent,/ • getut(3e)

stream. pule, pulehar, fpule, putw: put character or word on a putc(3S)
checkers. pwck, grpck: password/group file pwck(lM)

name. pwd: print working directory pwd(l)
qsort: quicker sort. • • • • qsort(3e)

tput: query terminfo database. tput(l)
lpq: spool queue examination program. lpq(l)

insert/remove element from a queue. insque, remque: • • insque(3N)
from the line printer spooling queue. lprm: remove jobs • lprm(l)

msgget: get message queue. • • • • • • • • • msgget(2)
memory ID. ipcrm: remove message queue, semaphore set, or shared ipcrm(l)

A-58

qsort: quicker sort. • • • • • • • qsort(3C)
quiz: test your knowledge. • • quiz(6)
rain: animated raindrops display. rain(6)

rain: animated raindrops display. • • • rain(6)

Permuted Index

•

•

•

•

•

•

random-number/ irand. srand, rand: Fortran uniform • • • • rand(3F)
generator. rand, srand: simple random-number rand(3C)

adage. fortune: print a random, hopefully interesting, fortune(6)
fsirand: install random inode generation numbers. fsirand(lM)

rand, srand: simple random-number generator. • • rand(3C)
srand, rand: Fortran uniform random-number generator. irand, rand(3F)
initialization/ brc, bcheckrc, rc, powerfail: system • • • • brc(lM)

routines for returning a stream/ rcmd, rresvport, ruserok: • rcmd(3N)
rep: remote file copy. • • • • rcp(lC)

S-records from downloading into/ rcvhex: translates Motorola • rcvhex(l)
program. rdist: remote file distribution . rdist(l)

the network. rdumpfs: file system dump across rdumpfs(lM)
disk. mfs: read a Macintosh fiat file system mfs(l)

getpass: read a password. • • • • • • getpass(3C)
entry of a common/ ldtbread: read an indexed symbol table • ldtbread(3X)

header of a/ ldshread, ldnshread: read an indexed/named section ldshread(3X)
address .. etheraddr: read an interface's Ethernet etheraddr(lM)

read, readv: read from file. • read(2)
rmail: send mail to users or read mail. mail, • • • • mail(l)

line: read one line. • • • . • line(1)
read, readv: read from file. • read(2)

member of an archive/ ldahread: read the archive header of a • ldahread(3X)
object file. ldfhread: read the file header of a common ldfhread(3X)

readlink: read value of a symbolic link. readlink(2)
rewinddir, closedir:/ opendir, readdir, telldir, seekdir, directory(3)
open a common object file for reading. ldopen, ldaopen: ldopen(3X)

exclusive file regions for reading or writing. /provide locking(2)
open: open for reading or writing. • . • open(2)
symbolic link. readlink: read value of a readlink(2)

read, readv: read from file. • read(2)
lseek: move read/write file pointer. lseek(2)
setregid: set real and effective group ID. setregid(2)
setreuid: set real and effective user ID's. setreuid(2)

dcmplx, icharJ int, ifix, idint, real, float, sngl, dble, cmplx, ftype(3F)
/get real user, effective user, real group, and effective group/ getuid(2)
/geteuid, getgid, getegid: get real user, effective user, real/ getuid(2)

memory allocator. malloc, free, realloc, calloc, cfree: main malloc(3C)
mallinfo: fast/ malloc, free, realloc, calloc, mallopt, • • malloc(3X)

reboot: reboot the system. reboot(1M)
reboot: reboot the system. reboot(2)

reboot: reboot the system. reboot(1M)
reboot: reboot the system. reboot(2)

mail aliases file. newaliases: rebuild the data base for the newaliases(lM)
ypmake: rebuild yellow pages database. ypmake(lM)

signal: specify what to do upon receipt of a signal. • • • • • signal(3)
signal: specify Fortran action on receipt of a system signal. • • signal(3F)

recv, recvfrorn, recvmsg: receive a message from a socket. recv(2N)
lockf: record locking on files. lockf(3C)

from per-process acc01mting records. /command summary acctcms(lM)
errdead: extract error records from dumpfs. • • errdead(lM)

manipulate connect accounting records. fwtmp, wtmpfix: fwtmp(lM)

Permuted I ndex A-59

free: recover files from a backup tape. free(1M)
a message from a socket recv, recvfrom, recvmsg: receive recv(2N)

message from a socket recv, recvfrom, recvmsg: receive a • recv(2N)
socket recv, recvfrom, recvmsg: receive a message from a recv(2N)

eel, red: text editor. • • • • • • ed(l)
references in documents. refer: find and insert literature refer(l)

/index for a bibliography, find references in a bibliography. lookbib(l)
refer: find and insert literature references in documents. refer(l)
execute a regular expression. regcmp, regex: compile and regcmp(3X)

compile. regcmp: regular expression • regcmp(l)
make: maintain, update , and regenerate groups of programs. make(l)
regular expression. regcmp, regex: compile and execute a • regcmp(3X)
compile and match routines. regexp: regular expression • • regexp(5)

locking: provide exclusive file regions for reading or writing. locking(2)
match routines. regexp: regular expression compile and regexp(5)

regcmp: regular expression compile. regcmp(l)
regex: compile and execute a regular expression. regcmp, regcmp(3X)

files. comm: select or reject lines common to two sorted comm(l)
reject: prevent LP requests. • reject(1M)

lorder: find ordering relation for an object library. • lorder(l)
join: relational database operator. • join(l)

for/ sigpause: atomically release blocked signals and wait sigpause(2)
a common object file. reloc: relocation information for reloc(4)

of a/ ldrseek, ldnrseek: seek to relocation entries of a section • ldrseek(3X)
common object file. reloc: relocation information for a • reloc(4)

ceil, fmod, fabs: floor, ceiling, remainder, absolute value/ floor, floor(3M)
mod, amod, dmod: Fortran remaindering intrinsic functions. mod(3F)

leave. leave: remind you when you have to leave(l)
calendar: reminder service. calendar(I)

A-60

for returning a stream to a remote command. /routines rcmd(3N)
rexec: return stream to a remote command. rexec(3N)

rexecd: remote execution server. • • rexecd(lM)
rep: remote file copy. • • • • • rcp(lC)

rdist: remote file distribution program. rdist(l)
remote: remote host description file. remote(4)

base. phones: remote host phone number data phones(4)
uusend: send a file to a remote host. uusend(lC)

rlogin: remote login. rlogin(lN)
rlogind: remote login server. rlogind(lM)

put: puts a file onto a remote machine. put(I e)
take: takes a file from a remote machine. • • take(lC)

showmount: show all remote mounts. showmount(lM)
rpc: library routines for remote procedure calls. rpc(3N)

file. remote: remote host description remote(4)
remsh: remote shell. remsh(lN)

remshd: remote shell server. • • remshd(lM)
tip: connect to a remote system. tip(lC)

ct: spawn getty to a remote terminal. • ct(lC)
talkd: remote user communication server. talkd(lM)

table. rmtab: remotely mounted file system • rmtab(4)
rmdel: remove a delta from an sees file. rmdel(l)

Permuted I ndex

•

•

•

•

•

•

nndir: remove a directory file. • • • rmdir(2)
unmount: remove a file system. • • • • unmount(2)

open file. flock: apply or remove an advisory lock on an flock(2)
colrm: remove columns from a file. • colrm(l)

unlink: remove directory entry. • • • unlink(2)
rm, nndir: remove files or directories. • • rm(l)

spooling queue. lprm: remove jobs from the line printer lprm(l)
set, or shared memory ID. ipcnn: remove message queue, semaphore ipcnn(l)

constructs. deroff: remove nroff/troff, tbl, and eqn deroff(l)
directories. dev_kill: remove special devices from • dev_kill(lM)

from a queue. insque, remque: insert/remove element insque(3N)
remsh: remote shell. • • • • remsh(lN)
remshd: remote shell server. remshd(lM)

file. rename: change the name of a rename(2)
mv: move or rename files. • • • • • mv(l)

standalone file system repair. autorecovery: • autorecovery(8)
consistency check and interactive repair. fsck: file system fsck(lM)

uniq: report repeated lines in a file. • uniq(l)
yes: be repetitively affirmative. yes(l)
clock: report CPU time used. clock(3C)

facilities status. ipcs: report interprocess communication ipcs(l)
blocks. df: report number of free disk • • df(l)

errpt: process a report of logged errors. errpt(lM)
in a file. freq: report on character frequencies freq(l)

sadc, sal , sa2: system activity report package. • • • • • • sadc(lM)
activity. timex: time a command; report process data and system timex(l)

ps: report process status. • • • • ps(l)
uniq: report repeated lines in a file. • uniq(l)

rpcinfo: report RPC information. • • • rpcinfo(lM)
sar: system activity reporter. • • • • • • • • • sar(l)

the/ exterr: tum on/off the reporting of extended errors in exterr(lM)
version: reports version number of files. version(I)

stream. fseelc, rewind, ftell: reposition a file pointer in a fseek(3S)
routines for external data representation. xdr: library • xdr(3N)

/lpshut, lpmove: start/stop the LP request scheduler and move/ lpsched(lM)
mountd: NFS mount request server. • • • • • • mountd(lM)

accept: allow LP requests. • • • • • • • • accept(1M)
the LP request scheduler and move requests. /lpmove: start/stop lpsched(lM)

reject: prevent LP requests. • • • • • • • • reject(lM)
lp, cancel: send/cancel requests to a line printer. lp(l)

lpr: send requests to a line printer. lpr(l)
bits to a sensible state. tset, reset: set or reset the teletype • tset(l)

sensible/ tset, reset: set or reset the teletype bits to a tset(1)
resolver/ res_mkquery, res_send, res_init, dn_comp, dn_expand: resolver(3N)

dn_comp, dn_expand: resolver/ res_mkquery, res_send, res_init, resolver(3N)
arp: Address Resolution Protocol. arp(5P)

resolver: resolver configuration file. • • resolver(4)
file. resolver: resolver configuration resolver(4)

res_init, dn_comp, dn_expand: resolver routines. /res_send, resolver(3N)
derez: decompiles a resource file. • • • • • derez(l)

type and creator of a Macintosh resource file. settc: set the • • settc(l)

Permuted I ndex A-61

rez: compile resources. • • • • • • • • rez(l)
dn_expand: resolver/ res_mkquery, res_send, res_init, cbt_comp, • resolver(3N)

the network. rrestore: restore a file system dump across rrestore(lM)
restore. restore: incremental file system restore(1M)

restore: incremental file system restore. • • • • • • • • • restore(1M)
file. ldgetname: retrieve symbol name for object ldgetname(3X)

iargc: return command line arguments. iargc(3F)
argument getarg: return Fortran command-line • getarg(3F)
variable. getenv: return Fortran environment • • getenv(3F)

mclock: return Fortran time accounting. mclock(3F)
abs: return integer absolute value. • abs(3C)
len: return length of Fortran string. len(3F)

substring. index: return location of Fortran index(3F)
logname: return login name of user. • logname(3X)

command. rexec: return stream to a remote rexec(3N)
name. getenv: return value for environment getenv(3C)

stat: data returned by stat system call. stat(5)
/rresvport, ruserok: routines for returning a stream to a remote/ rcmd(3N)

configuration information. uvar: returns system-specific uvar(2)
rev: reverse lines of a file. rev(l)

col: filter reverse linefeeds. col(I)
rev: reverse lines of a file. • • rev(l)

pointer in a stream. fseek, rewind, ftell: reposition a file fseek(3S)
/readdir, telldir, seekdir, rewinddir, closedir: directory/ directory(3)

creat: create a new file or rewrite an existing one. • • • creat(2)
command. rexec: return stream to a remote rexec(3N)

rexecd: remote execution server. rexecd(lM)
rez: compile resources. rez(l)
rlogin: remote login. • • • • rlogin(lN)
rlogind: remote login server. • rlogind(lM)

directories. rm, rmdir: remove files or • • rm(l)
mail. mail, rmail: send mail to users or read mail(l)
sees file. rmdel: remove a delta fro m an rmdel(l)

rmdir: remove a directory file. rmdir(2)
directories. rm, rmdir: remove files or • • • rm(l)

system table. rmtab: remotely mounted file • rmtab(4)
escape from the automatic robots. autorobots: • • • • • autorobots(6)

chase: try to escape the killer robots. • • • • • • • • • . chase(6)
robots: escape from the robots. robots(6)

robots: escape from the robots. • • • • • • • • • robots(6)
database. roffbib: run off bibliographic • roffbib(l)

slots: ROM library functions. • • • slots(3X)
chroot: change root directory. • • • • • • • chroot(2)
chroot: change root directory for a command. chroot(lM)

logarithm, power, square root functions. /exponential, • exp(3M)
dsqrt, csqrt: Fortran square root intrinsic function. sqrt, sqrt(3F)

routing tables. route: manually manipulate the route(1M)
routed: network routing daemon. routed(1M)

disciplines. line _push: routine used to push streams line line_push(3)
representation. xdr: library routines for external data xdr(3N)

calls. rpc: library routines for remote procedure rpc(3N)

A-62 Permuted I ndex

•

•

•

•

•

•

to a/ rcmd, rresvport, ruserok: routines for returning a stream rcmd(3N)
Internet address manipulation routines. /inet_netof: • • inet(3N)

ldfcn: common object file access routines. • • • • • • • ldfcn(3X)
expression compile and match routines. regexp: regular regexp(5)
dn_comp, dn_expand: resolver routines. /res_send, res_init, resolver(3N)
terminal independent operation routines. /tgetstr, tgoto, tputs: termcap(3X)

routed: network routing daemon. • routed(1M)
route: manually manipulate the routing tables. • • • • • route(1M)

rpcinfo: report RPC information. rpcinfo(lM)
procedure calls. rpc: library routines for remote rpc(3N)

portmap: DARPA port to RPC program number mapper. portmap(lM)
host status of local machines (RPC version). rup: show rup(lC)

who 's logged in on local machines (RPC version). rusers: rusers(lN)
rpcinfo: report RPC information. rpcinfo(lM)

dump across the network. rrestore: restore a file system • rrestore(lM)
returning a stream to a/ rcmd, rresvport, ruserok: routines for rcmd(3N)

standard/restricted command/ sh, rsh: Bourne shell, • • • • • sh(l)
and, or, xor, not, lshift, rshift: Fortran bitwise boolean/ bool(3F)

rstatd: kernel statistics server. • rstatd(lM)
nice: run a command at low priority. nice(l)

nohup: run a command immune to hangups. nohup(l)
runacct: run daily accounting. • • • • runacct(lM)
roffbib: run off bibliographic database. roffbib(l)

runacct: run daily accounting. runacct(lM)
write to all users over a network running B-NET software. rwall: rwall(lM)

machines (RPC version). rup: show host status of local • rup(1 C)
local machines. ruptime: show host status of ruptime(lN)

stream to a/ rcmd, rresvport, ruserok: routines for returning a rcmd(3N)
rusersd: rusers server. • • • • • • rusersd(lM)

machines (RPC version). rusers: who's logged in on local rusers(lN)
rusersd: rusers server. • • • • rusersd(lM)

rwalld: network rwall server. • • • • • rwalld(lM)
network running B-NET software. rwall: write to all users over a rwall(lM)

rwalld: network rwall server. rwalld(lM)
machines. rwho: who's logged in on local rwho(lN)

rwhod: system status server. rwhod(lM)
package. sadc, sal , sa2: system activity report sadc(lM)

package. sadc, sal , sa2: system activity report • • sadc(lM)
editing activity. sact: print current sees file sact(l)
report package. sadc, sal , sa2: system activity sadc(lM)

sag: system activity graph. • • sag(lG)
sar: system activity reporter. sar(l)

the standalone environment. sash: a command interpreter for sash(8)
allocation. brk, sbrk: change data segment space brk(2)

scandir: scan a directory. • • • • • scandir(3)
scandir: scan a directory. scandir(3)

formatted input. scanf, fscanf, sscanf: convert scanf(3S)
bfs: big file scanner. • • • • • • • • bfs(l)

awk: pattern scanning and processing language. awk(l)
change th e delta commentary o f an sees delta. cdc: cdc(l)

comb: combine sees deltas. • • • • • • comb(l)

Permuted I ndex A-63

make a delta (change) to an sees file. delta: • • • • • delta(l)
sact: print current sees file editing activity. • sact(l)

get: get a version of an sees file. • get(l)
prs: print an sees file. • prs(l)

rmdel: remove a delta from an sees file. • rmdel(l)
compare two versions of an sees file. sccsdiff: • sccsdiff(l)

sccsfile: format of an sees file. • sccsfile(4)
unget: undo a previous get of an sees file. • unget(l)

val: validate sees file. • val(l)
admin: create and administer sees files. admin(l)

what: identify sees files. what(l)
subsystem. sees: front end for the sees sccs(l)

help: ask for help i n using sees. help(l)
sees: front end for the sees subsystem. sccs(l)

an sees file. sccsdiff: compare two versions of sccsdiff(l)
sccsfile: format of an sees file. sccsfile(4)

/lpmove: start/stop the LP request scheduler and move requests. • lpsched(lM)
common object file. scnhdr: section header for a • scnhdr(4)

terminal's screen color. scr_color: program to change the scr_color(l)
clear: clear terminal screen. • • • • • • • • • • clear(l)

program to change the terminal's screen color. scr_color: • • • scr_color(l)
cursor/ curses5.0: BSD-style screen functions with "optimal' ' curses5 .0(3X)

package. curses: CRT screen handling and optimization curses(3X)
twinkle: twinkle stars on the screen. • • • • • • • • • • twinkle(6)

editor. vi, view, vedit: screen-oriented (visual) display vi(l)
inittab: script for the init process. inittab(4)

terminal session. script: make typescript of • • script(l)
system initialization shell scripts. /rc, powerfail: • brc(lM)

sdb: symbolic debugger. • • sdb(l)
program. sdiff: side-by-side difference • sdiff(l)

grep, egrep, fgrep: search a file for a pattern. • grep(l)
bsearch: binary search a sorted table. • • bsearch(3C)

accounting file(s). acctcom: search and print process • • acctcom(lM)
lsearch, lfind: linear search and update. • • • • lsearch(3C)

hcreate, hdestroy: manage hash search tables. hsearch, • hsearch(3C)
tdelete, twalk: manage binary search trees. tsearch, tfind, • tsearch(3C)

object file. scnhdr: section header for a common • scnhdr(4)
/ldnshread: read an indexed/named section header of a common object/ ldshread(3X)

/seek to line number entries of a section of a common object file. ldlseek(3X)
/seek to relocation entries of a section of a common object file. ldrseek(3X)

/seek to an indexed/named section of a common object file. ldsseek(3X)
files. size: print section sizes of common object size(l)

sed : stream editor. • • • • • sed(l)
/mrand48, jrand48, srand48, seed48, lcong48: generate/ • • drand48(3C)

of a common/ ldsseek, ldnsseek: seek to an indexed/named section ldsseek(3X)
section of a/ ldlseek, ldnlseek: seek to line number entries of a ldlseek(3X)
section of a/ ldrseek, ldnrseek: seek to relocation entries of a • ldrseek(3X)
of a common object/ ldohseek: seek to the optional file header ldohseek(3X)

common object file. ldtbseek: seek to the symbol table of a • ldtbseek(3X)
opendir, readdir, telldir, seekdir, rewinddir, closedir:/ • directory(3)

shmget: get shared memory segment. • • • • • • • • • shmget(2)

A-64 Permuted I ndex

•

•

•

•

•

•

bik, sbrk: change data segment space allocation. brk(2)
two sorted files. comm: select or reject lines common to comm(l)

multiplexing. select: synchronous 1/0 • • • select(2N)
greek: select terminal filter. greek(l)

file. cut: cut out selected fields of each line of a cut(l)
dump: dump selected parts of an object file. dump(l)

semctl: semaphore control operations. semctl(2)
semop: semaphore operations. semop(2)

ID. ipcrm: remove message queue, semaphore set, or shared memory ipcrm(l)
semget: get set of semaphores. • • • • • • • semget(2)

operations. semctl: semaphore control • • semct1(2)
semget: get set of semaphores. semget(2)
semop: semaphore operations. semop(2)

uusend: send a file to a remote host. uusend(lC)
send, sendto, sendmsg: send a message from a socket. send(2N)

group of processes. kill: send a signal to a process or a kill(2)
network hosts. ping: send ICMP ECHO_REQUEST packets to ping(1M)

sendmail: send mail over the Internet. sendmail(lM)
mail. nnail: send mail to users or read mail. mail(l)

lpr: send requests to a line printer. lpr(l)
message from a socket. send, sendto, sendmsg: send a send(2N)

killpg: send signal to a process group. killpg(3N)
printer. lp, cancel: send/cancel requests to a line • lp(l)

aliases: aliases file for sendmail. • • • • • • • • • aliases(4)
Internet. sendmail: send mail over the • sendmail(lM)

socket. send, sendto, sendmsg: send a message from a send(2N)
from a socket. send, sendto, sendmsg: send a message send(2N)

or reset the teletype bits to a sensible state. tset, reset: set • tset(l)
diction, explain: print wordy sentences; thesaurus for diction. diction(1)

dialup: modem escape sequence file. • • • • • • dialup(4)
serial: the on-board serial ports. • • • • • • serial(7)

ports. serial: the on-board serial serial(7)
ypserv, ypbind: yellow pages server and binder processes. ypserv(lM)

comsat: biff(l) server. • • • • • • • • • comsat(lM)
servers: Inet server data base. • • • • • servers(4)

password file. yppasswdd: server for modifying yellow pages yppasswdd(lM)
Internet File Transfer Protocol server. ftpd: DARPA • • ftpd(lM)
version of a YP map is at a YP server host. yppoll: what yppoll(lM)

mountd: NFS mount request server. • • • • • • • • mountd(lM)
named: Internet domain name server. • • • • • • • • named(1M)

ypwhich: which host is the YP server or map master?. • ypwhich(l)
remshd: remote shell server. • remshd(lM)

rexecd: remote execution server. • rexecd(lM)
rlogind: remote login server. • rlogind(lM)

rstatd: kernel statistics server. • rstatd(lM)
rusersd: rusers server. rusersd(lM)

rwalld: network rwall server. rwalld(lM)
rwhod: system status server. rwhod(lM)

sprayd: spray server. sprayd(lM)
talkd: remote user communication server. talkd(lM)

telnetd: DARPA TELNET protocol server. telnetd(lM)

Permuted I ndex A-65

Trivial File Transfer Protocol server. tftpd: DARPA • tftpd(lM)
transfer a YP map from some YP server to here. ypxfr: ypxfr(lM)

point ypbind at a particular server. ypset: • • • • ypset(lM)
servers: Inet server data base. servers(4)

calendar: reminder service. • • • • • • • • calendar(l)
setservent, endservent: get service entry. /getservbyname, getservent(3N)

services: service name data base. • • • services(4N)
inetd: Internet services daemon. • • • • • • inetd(lM)

services: service name data base. services(4N)
make typescript of terminal session. script: • • • • • script(I)

set42sig: set 4.2 BSD signal interface. set42sig(3)
alarm: set a process's alarm clock. alarm(2)

umask: set and get file creation mask. umask(2)
context sigstack: set and/or get signal stack sigstack(2)

ascii: map of ASCII character set. • • • • • • • • • • ascii(5)
sigsetmask: set current signal mask. • • sigsetmask(2)

execution. env: set environment for command env(l)
times. utime: set file access and modification utime(2)

setgroups: set group access list. setgroups(2)
apply: apply a command to a set of arguments. • • • • • apply(l)

semget: get set of semaphores. semget(2)
getsockopt, setsockopt: get and set options on sockets. getsockopt(2N)
domain system. domainname: set or display name of current domainname(l)
mode. setcompat, getcompat: se t or get process compatibility setcompat(2)

current host system. hostid: set or print identifier of hostid(lN)
system. hostname: set or print name of current host hostname(lN)

a sensible state. tset, reset: set or reset the teletype bits to tset(1)
remove message queue, semaphore set, or shared memory ID. ipcrm: ipcrm(l)

information. badblk: set or update bad block badblk(lM)
setpgrp: set process group ID. • • • • setpgrp(2)
setregid: set real and effective group ID. setregid(2)
setreuid: set real and effective user ID's. setreuid(2)

tabs: set tabs on a terminal. • • • • tabs(l)
and line discipline. getty: set terminal type, modes, speed, getty(1M)

date: print and set the date. • • • • • • • date(l)
stty: set the options for a terminal. stty(l)

chip. mactime: set the system time/real time mactime(lM)
Macintosh resource file. settc: set the type and creator of a settc(l)

stime: set time. • • • • • • • • stime(2)
A/UX Toolbox/ toolboxdaemon: set up for and clean up after toolboxd(lM)

setuid. setgid: set user and group IDs. setuid(2)
setuid. setgid: set user and group IDs. setuid(3)

ulimit: get and set user limits. • • • • ulimit(2)
interface. set42sig: set 4.2 BSD signal set42sig(3)

to a stream. setbuf, setvbuf: assign buffering setbuf(3S)
process compatibility mode. setcompat, getcompat: set or get setcompat(2)

current network/ getdomainname, setdomainname: get/set name of getdomainname(2N)
setuid. setgid: set user and group IDs. setuid(2)
setuid, setgid: set user and group IDs. setuid(3)

getgrent, getgrgid. getgmam, setgrent, endgrent, fgetgrent:/ • getgrent(3C)
setgroups: set group access list setgroups(2)

A-66 Permuted Index

•

•

•

•

•

•

/gethostbyaddr, gethostbyname, sethostent, endhostent: get/ • gethostent(3N)
identifier of current/ gethostid, sethostid: get/set unique • gethostid(2N)

current host. gethostname, sethostname: get/set name of gethostname(2N)
interval timer. getitimer, setitimer: get/set value of getitimer(2)

setjmp, longjmp: non-local goto. setjmp(3C)
encryption. crypt, setkey, encrypt: generate DES crypt(3C)

endmntent, hasmntopt: get file/ setmntent, getmntent, addmntent, getmntent(3)
/getnetbyaddr, getnetbyname, setnetent, endnetent: get network/ getnetent(3N)

innetgr: get/ getnetgrent, setnetgrent, endnetgrent, • getnetgrent(3N)
setpgrp: set process group ID. setpgrp(2)

/getprotobynumber, getprotobyname, setprotoent, endprotoent: get/ . getprotoent(3N)
/addptabent, endptabent, setptabent, numbptabent: get/ • getptabent(3)

getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent:/ getpwent(3C)
group ID. setregid: set real and effective setregid(2)
user ID's. setreuid: set real and effective setreuid(2)

/getservbyport, getservbyname, setservent, endservent: get/ • • getservent(3N)
on sockets. getsockopt, setsockopt: get and set options getsockopt(2N)

of a Macintosh resource file. settc: set the type and creator settc(l)
time. gettimeofday, settimeofday: get/set date and gettimeofday(2)
login time. profile: setting up an environment at profile(4)

gettydefs: speed and terminal settings used by getty. • gettydefs(4)
group IDs. setuid, setgid: set user and setuid(2)
group IDs. setuid, setgid: set user and • setuid(3)

/getutid, getutline, pututline, setutent, endutent, utmpname:/ getut(3C)
stream. setbuf, setvbuf: assign buffering to a • setbuf(3S)

of/ paste: merge same lines of several files or subsequent lines paste(I)
in a machine independent/ sputl, sgetl: access long integer data sputl(3X)

standard/restricted command/ sh, rsh: Bourne shell, • sh(l)
shmctl: shared memory control operations. shmctl(2)

message queue, semaphore set, or shared memory ID. ipcrm: remove ipcrm(l)
shmop, shmat, shmdt: shared memory operations. . shmop(2)

shmget: get shared memory segment. • • shmget(2)
from C programs to implement shared strings. /extract strings xstr(l)

C-like syntax. csh: C shell, a command interpreter with csh(l)
language. ksh: Korn shell, a command programming ksh(l)

chsh: change default login shell. • • • • chsh(l)
system: issue a shell command from Fortran. system(3F)
system: issue a shell command. • system(3S)

shl: shell layer manager. shl(l)
/shutacct, startup, turnacct: shell procedures for accounting. acctsh(lM)

remsh: remote shell. • • • remsh(lN)
powerfail: system initialization shell scripts. /bcheckrc, rc, brc(lM)

remshd: remote shell server. • • • remshd(lM)
command/ sh, rsh: Bourne shell, standard/restricted • sh(l)

shl: shell layer manager. shl(l)
operations. shmop, shmat, shmdt: shared memory shmop(2)

operations. shmctl: shared memory control shmctl(2)
shmop, shmat, shmdt: shared memory operations. shmop(2)

segment. shmget: get shared memory shmget(2)
memory operations. shmop, shmat, shmdt: shared shmop(2)

showmount: show all remote mounts. • • • showmount(lM)

Permuted I ndex A-67

groups: show group memberships. • • groups(l)
machines (RPC version). rup: show host status o f local • • • rup (1 C)

machines. ruptime: show host status of local • • • ruptime(lN)
uptime: show how long system has been up. uptime(l)
netstat: show network status. • • • • netstat(lN)

mounts. showmount: show all remote • showmount(lM)
connection. shutdown: shut down part of a full-duplex shutdown(2N)

shell/ /prctmp, prdaily, prtacct, shutacct, startup, turnacct: • • acctsh(lM)
full-duplex connection. shutdown: shut down part of a shutdown(2N)

processing. shutdown: terminate all • • • shutdown(1M)
sdiff: side-by-side difference program. sdiff(l)

sigblock: block signals. • sigblock(2)
transfer-of-sign intrinsic/ sign, isign, dsign: Fortran sign(3F)

login: sign on. • • • • • • login(l)
optional BSD-compatible software signal facilities. sigvec: sigvec(2)

set42sig: set 4.2 BSD signal interface. • • set42sig(3)
sigsetmask: set current signal mask. sigsetmask(2)

pause: suspend process until signal. • • • • • • pause(2)
what to do upon receipt of a signal. signal: specify signal(3)

action on receipt of a system signal. signal: specify Fortran signal(3F)
receipt of a system signal. signal: specify Fortran action on signal(3F)

receipt of a signal. signal: specify what to do upon signal(3)
sigstack: set and/or get signal stack context • • • • sigstack(2)

killpg: send signal to a process group. • • killpg(3N)
processes. kill: send a signal to a process or a group of kill(2)

/atomically release blocked signals and wait for interrupt. sigpause(2)
sigblock: block signals. • • • • • • • . sigblock(2)

ssignal, gsignal: software signals. • • • • • • • • ssignal(3C)
blocked signals and wait for/ sigpause: atomically release sigpause(2)

mask. sigsetmask: set current signal sigsetmask(2)
stack contexL sigstack: set and/or get signal sigstack(2)

software signal facilities. sigvec: optional BSD-compatible sigvec(2)
lex: generate programs for simple lexical tasks. • • • • lex(l)

rand, srand: simple random-number generator. rand(3C)
fmt: simple text formatter. • • • fmt(l)

atan2: trigonometric functions. sin, cos, tan, asin, acos, atan, trig(3M)
intrinsic function. sin, dsin, csin: Fortran sine sin(3F)

sin, dsin, csin: Fortran sine intrinsic function. sin(3F)
sinh, dsinh: Fortran hyperbolic sine intrinsic function. sinh(3F)

ssp: make output single spaced. • • • ssp(l)
functions. sinh, cosh, tanh: hyperbolic sinh(3M)

sine intrinsic function. sinh, dsinh: Fortran hyperbolic sinh(3F)
get descriptor table size getdtablesize: • • • • getdtablesize(2)

pagesize: print system page size. • • • • • • • • • • pagesize(l)
common object files. size: print section sizes o f • size(l)

size: print section sizes o f common object files. size(l)
interval. sleep: suspend execution for an sleep(l)
interval. sleep: suspend execution for • sleep(3C)

for typesetting viewgraphs and slides. /a troff macro package mv(5)
mvt: typeset view graphs and slides. • • • • • • • • mvt(l)
current user. ttyslot: find the slot in the utmp file of the ttyslot(3C)

A-68 Permuted I ndex

•

•

•

•

•

•

slots: ROM library functions. • slots(3X)
spline: interpolate smooth curve. • • • • • • • spline(lG)

int, ifix, idint, real, float, sngl, dble, cmplx, dcmplx, icharJ ftype(3F)
sno: SNOBOL interpreter. sno(l)

sno: SNOBOL interpreter. sno(l)
accept: accept a connection on a socket • • • • accept(2N)

bind: bind a name to a socket • • • • • • bind(2N)
initiate a connection on a socket connect: • • • • coiU'lect(2N)

communication. socket: create an endpoint for socket(2N)
listen for connections on a socket. listen: • • • • • listen(2N)

getsockname: get socket name. getsockname(2N)
recvmsg: receive a message from a socket recv, recvfrom, recv(2N)

sendmsg: send a message from a socket send, sendto, • send(2N)
get and set options on sockets. getsockopt, setsockopt: getsockopt(2N)

nroff input soelim: eliminate .so's from soelim(l)
pg: file perusal filter for soft-copy tenninals. pg(l)

interface. lo: software loopback network • lo(5)
over a network running B-NET software. /write to all users rwall(lM)

sigvec: optional BSD-compatible software signal facilities. sigvec(2)
ssignal, gsignal: software signals. • • • • • ssignal(3C)

sort: sort and/or merge files. sort(l)
sortbib: sort bibliographic database. • sortbib(l)

qsort: quicker sort. • • • • • • • • • • qsort(3C)
sort: sort and/or merge files. sort(l)

tsort: topological sort. • • • • • • • • • tsort(l)
database. sortbib: sort bibliographic sortbib(l)

or reject lines common to two sorted files. comm: select comm(l)
bsearch: binary search a sorted table. • • • • • • bsearch(3C)

soelim: eliminate .so's from nroff input. • • soelim(l)
program. whereis: locate source, binary, and/or manual for whereis(l)

indent and format C program source. indent: indent(l)
error message file by massaging C source. mkstr: create an mkstr(l)

brk, sbrk: change data segment sp ace allocation. • • • • • • brk(2)
ssp: make output single spaced. • • • • • • • • • ssp(l)

expand, unexpand: expand tabs to spaces, and vice versa. • • • expand(l)
ct: spawn getty to a remote tenninal. ct(lC)

eqn and neqiL eqnchar: special character definitions for eqnchar(5)
dev _kill: remove special devices from directories. dev _kill(lM)

mknod: build special file. • • • • • • • • mknod(lM)
300s/ 300, 300s: handle special functions of DASI 300 and 300(1)

terminal. 450: handle special functions of the DASI 450 450(1)
mknod: make a directory, or a special or ordinary file. mknod(2)

fspec: format specification in text files. • • fspec(4)
of extended errors in the specified device. /the reporting exterr(lM)

ftruncate: truncate a file to a specified length. truncate, • • truncate(2)
of a system signal. signal: specify Fortran action on receipt signal(3F)

of a signal. signal: specify what to do upon receipt signal(3)
getty: set terminal type, modes, speed, and line discipline. • • getty(1M)

by getty. gettydefs: speed and terminal settings used gettydefs(4)
hashcheck: find spelling errors. spell, hashmalce, spellin, • • • spell(l)

errors. spell, hashmake, spellin, hashcheck: find spelling spell(l)

Permuted I ndex A-69

spellin, hashcheck: find spelling errors. /hashmake, • spell(I)
spline: interpolate smooth curve. spline(lG)

split: split a file into pieces. • • • split(I)
csplit: context split. • • • • • • • • • • csplit(1)

fsplit: split f77 o r efl files. • • • • • fsplit(1)
split: split a file into pieces. • split(I)

uuclean: uucp spool directory clean-up. • • uuclean(1M)
lpq: spool queue examination program. lpq(1)

/psbanner, psinterface: TranScript spooler filters for PostScript/ transcript(lM)
remove jobs from the line printer spooling queue. lpnn: lpnn(1)

Ipadmin: configure the LP spooling system. • • Ipadmin(1M)
spray: spray packets. • • • spray(1M)

sprayd: spray server. sprayd(1M)
spray: spray packets. spray(1M)
sprayd: spray server. sprayd(1M)

printf, fprintf, sprintf: print formatted output. printf(3S)
data in a machine independent/ sputl, sgetl: access long integer sputl(3X)

square root intrinsic function. sqrt, dsqrt, csqrt: Fortran sqrt(3F)
power,/ exp, log, log10, pow, sqrt: exponential, logarithm, exp(3M)

exponential, logarithm, power, square root functions. /sqrt: exp(3M)
sqrt, dsqrt, csqrt: Fortran square root intrinsic function. sqrt(3F)

random-number generator. irand, srand, rand: Fortran uniform rand(3F)
generator. rand, srand: simple random-number rand(3C)

/nrand48, mrand48, jrand48, srand48, seed48, lcong48:/ • • drand48(3C)
rev hex: translates Motorola S-records from downloading into a/ rcvhex(l)

scanf, fscanf, sscanf: convert formatted input. scanf(3S)
signals. ssignal, gsignal: software • • ssignal(3C)

ssp: make output single spaced. ssp(1)
sigstack: set and/or get signal stack context. • • • • • • • sigstack(2)

launch an A/UX kernel from the standalone environment. launch: launch(8)
a command interpreter for the standalone environment. sash: sash(8)

autorecovery: standalone file system repair. autorecovery(8)
communication package. ftok: standard interprocess • • • ftok(3C)

sh, rsh: Bourne shell, standard/restricted command/ sh(l)
twinkle: twinkle stars on the screen. • • • twinkle(6)

1psched, lpshut, lpmove: start/stop the LP request/ lpsched(1M)
boot: startup procedures. • • • boot(8)

prdaily, prtacct, shutacct, startup, turnacct: shell/ /prctmp, acctsh(1M)
system call. stat: data returned by stat stat(5)

status. stat, fstat, lstat: get file stat(2)
stat: data returned by stat system call. • • • • • stat(5)

the teletype bits to a sensible state. tset, reset: set or reset tset(l)
statistics. statfs: get file system • • • statfs(2)

systems. fstab: static information about file fstab(4)
ff: list file names and statistics for a file system. ff(1M)

lav: print load average statistics. • • • • lav(l)
display kernel name cache statistics. ncstats: ncstats(lM)

nfsstat: Network File System statistics. • • • nfsstat(lM)

A-70

rstatd: kernel statistics server. rstatd(lM)
statfs: get file system statistics. statfs(2)
ustat: get file system statistics. • • • ustat(2)

Permuted Index

•

•

•

•

•

•

lpstat: print LP status information. • • lpstat(l)
feof, clearerr, fileno: stream status inquiries. ferror, ferror(3S)

uustat: uucp status inquiry and job control. uustat(l C)
communication facilities status. /report interprocess • ipcs(l)

sysline: display system status on status line of a terminal. • • sysline(l)
netstat: show network status. • • • netstat(lN)

version). rup: show host status of local machines (RPC rup(lC)
ruptime: show host status of local machines. ruptime(lN)

sysline: display system status on status line of a/ sysline(l)
ps: report process status. • • • ps(l)

rwhod: system status server. rwhod(lM)
stat, fstat, lstat: get file status. • • • stat(2)

stime: set time. stime(2)
wait: wait for child process to stop or terminate. wait(2)

wait3: wait for child process to stop or terminate. wait3(2N)
data base/ dbminit, fetch, store, delete, firstkey, nextkey: dbm(3X)

strcpy, strncpy, strlen, strchr,/ strcat, strncat, strcmp, strncmp, string(3C)
/strncmp, strcpy, strncpy, strlen, strchr, strrchr, strpbrk, strspn,/ string(3C)

strlen, strchr,/ strcat, strncat, strcmp, strncmp, strcpy, strncpy, string(3C)
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr,/ string(3C)

strchr, strrchr, strpbrk, strspn, strcspn, strtok: string/ /strlen, string(3C)
sed: stream editor. sed(I)

fclose, ffiush: close or flush a stream. • • • • • • • fclose(3S)
fopen, freopen, fdopen: open a stream. • • • • • fopen(3S)

reposition a file pointer in a stream. fseek, rewind, ftell: fseek(3S)
get character or word from a stream. /getchar, fgetc, getw: getc(3S)

gets, fgets: get a string from a stream. • • • • • • • gets(3S)
putw: put character or word on a stream. putc, putchar, fputc, putc(3S)

puts, fputs: put a string on a stream. • • • • puts(3S)
setvbuf: assign buffering to a stream. setbuf, • • • • setbuf(3S)

ferror, feof, clearerr, fileno: stream status inquiries. ferror(3S)
/ruserok: routines for returning a stream to a remote command. rcmd(3N)

rexec: return stream to a remote command. rexec(3N)
push character back into input stream. ungetc: ungetc(3S)

streams: ioctl interface. streams(?)
line_push: routine used to push streams line disciplines. line_push(3)

line_sane: push streams line disciplines. line_sane(lM)
long integer and base-64 ASCII string. /164a: convert between a641(3C)

functions. lge. lgt, lie, lit: string comparision intrinsic lge(3F)
convert floating-point number to string. ecvt, fcvt, gcvt: ecvt(3C)

gets, fgets: get a string from a stream. gets(3S)
len: return length of Fortran string. • • • • • • • len(3F)

puts, fputs: put a string on a stream. puts(3S)
bcmp, bzero, ffs: bit and byte string operations. bcopy, bstring(3)

strpbrk, strspn, strcspn, strtok: string operations. /strrchr, string(3C)
number. strtod: convert string to double-precision strtod(3C)

atof: convert ASCII string to floating -point number. atof(3C)
strtol, atol, atoi: convert string to integer. • • • • strtol(3C)

strings in an object, or other/ strings: find the printable strings(l)
implement shared/ xstr: extract strings from C programs to • xstr(l)

strings: find the printable strings in an object, or other/ strings(!)

Permuted I ndex A-71

e programs to implement shared strings. /extract strings from xstr(l)
number information from an/ strip: strip symbol and line • • strip(l)

information from an/ strip: strip symbol and line number • strip(l)
/strcmp, stmcmp, strcpy, stmcpy, strlen, strchr, strrchr, strpbrk,/ string(3e)

stmcpy, strlen, strchr,/ strcat, stmcat, strcmp, strncmp, strcpy, string(3e)
strchrJ strcat, strncat, strcmp, stmcmp, strcpy, strncpy, strlen, string(3e)

/strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchrJ string(3e)
/stmcpy, strlen, strchr, strrchr, strpbrk, strspn, strcspn, strtok:/ string(3C)
/strcpy, strncpy, strlen, strchr, strrchr, strpbrk, strspnJ • • string(3C)
/strlen, strchr, strrchr, strpbrk, strspn, strcspn, strtok: string/ string(3C)

double-precision number. strtod: convert string to strtod(3C)
/strpbrk, strspn, strcspn, strtok: string operations. • string(3C)

string to integer. strtol, atol, atoi: convert • strtol(3e)
processes using a file or file structure. fuser: identify • fuser(lM)

database and directory structure. /the yellowpages • ypfiles(4)
terminal. stty: set the options for a • stty(l)

characteristics of a document style: analyze surface • • style(l)
su: substitute user ID. • • su(l)

from a document subj: generate a list of subjects subj(l)
document. ndx: create a subject-page index for a • ndx(l)

subj: generate a list of subjects from a document. subj(l)
intro: introduction to subroutines and libraries. intro(3)

firstkey, nextkey: data base subroutines. /store, delete, • • dbm(3X)
plot: graphics interface subroutines. • • • • • • • • plot(3X)

/same lines of several files or subsequent lines of one file. • paste(l)
su: substitute user ID. • su(l)

index: return location of Fortran substring. • • • • • • • index(3F)
sees: front end for the sees subsystem. • • • • • • • • sees(I)

files in the given/ sumdir: sum and count characters in the sumdir(l)
count of a file. sum : print checksum and block sum(l)

in the files in the given/ sumdir: sum and count characters sumdir(l)
du : summarize disk usage. • du(l)

accounting/ acctcms: command summary from per-process acctcms(lM)
sync: update the superblock. • • • • • • • • sync(l)

sync: update superblock. • • • • • • • sync(2)
document style: analyze surface characteristics of a style(l)

interval. sleep: suspend execution for an sleep(l)
sleep: suspend execution for interval. sleep(3e)

pause: suspend process until signal. • pause(2)
swab: swap bytes. • • • • swab(3C)

swap: swap administrative interface. swap(1M)
swab: swap bytes. • • • • • • • swab(3e)

interface. swap: swap administrative • • swap(1M)
sxt: pseudo-device driver. • • sxt(7)

information from an/ strip: strip symbol and line number • • • strip(l)
ldgetname: retrieve symbol name for object file. ldgetname(3X)

ldtbindex: compute the index of a symbol table entry of a common/ ldtbindex(3X)
object/ ldtbread: read an indexed symbol table entry of a common ldtbread(3X)

syms: common object file symbol table format. • • • • syms(4)
file. ldtbseek: seek to the symbol table of a common object ldtbseek(3X)

sdb: symbolic debugger. • • • • • sdb(l)

A-72 Permuted I ndex

•

•

•

•

•

•

readlink: read value of a symbolic link. • • • • • • • readlink(2)
symlink: make symbolic link to a file. • • • symlink(2)

file. symlink: make symbolic link to a symlink(2)
table format. syms: common object file symbol syms(4)

sync: update superblock. sync(2)
sync: update the superblock. • sync(l)

clock. /correct the time to allow synchronization of the system adjtime(2)
state with that on disk. fsync: synchronize a file's in-core • • fsync(2)

select: synchronous I/0 multiplexing. select(2N)
a command interpreter with C-like syntax. csh: C shell, csh(l)

error messages. perror, enno, sys_errlist, sys_nerr: system perror(3C)
status line of a terminal. sysline: display system status on sysline(l)

perror, errno, sys_errlist, sys_nerr: system error messages. perror(3C)
sag: system activity graph. • • • • sag(lG)

sadc, sal, sa2: system activity report package. sadc(lM)
sar: system activity reporter. • • • sar(l)

command; report process data and system activity. timex: time a timex(l)
stat: data returned by stat system call. • • • • • • • • stat(5)

intro: introduction to system calls and error numbers. intro(2)
to allow synchronization of the system clock. /correct the time adjtime(2)

uux: UNIX-to-UNIX system command execution. uux(lC)
interactive repair. fsck: file system consistency check and fsck(lM)

u\Ulame: UNIX system to UNIX system copy. uucp, uulog, uucp(lC)
crash: what to do when the system crashes. crash(&)

cu: call another system. • • • • • cu(lC)
types: primitive system data types. types(5)

fsdb: file system debugger. fsdb(lM)
/endmntent, hasmntopt: get file system descriptor file entry. getrnntent(3)

mfs: read a Macintosh fiat file system disk. • • • • • • mfs(l)
o r display name of current domain system. domainname: set domainname(l)

rdumpfs: file system dump across the network. rdumpfs(lM)
rrestore: restore a file system dump across the network. rrestore(lM)

dumpfs: incremental file system dump. • • • • • • • dumpfs(lM)
ermo, sys_errlist, sys_nerr: system error messages. perror, perror(3C)

pstat: print system facts. pstat(lM)
names and statistics for a file system. ff: list file ff(lM)

uuto, uupick: public UNIX-to-UNIX system file copy. • • uuto(lC)
fsmo\Ult: mo\Ult an NFS file system. • • • • • fsmount(2)

uptime: show how long system has been up. uptime(l)
print identifier of current host system. hostid: set or hostid(lN)

set or print name of current host system. hoslname: • • hoslname(lN)
/gets directory entries in a file system independent format getdirentries(2)

brc, bcheckrc, rc, powerfail: system initialization shell/ brc(lM)
from Fortran. system: issue a shell command system(3F)

system: issue a shell command. system(3S)
configure the LP spooling system. Ipadmin: Ipadmin(1M)

interactive message processing system. mailx: mailx(l)
mkfslb: construct a file system. mkfslb(lM)

mkfs: construct a file system. mkfs(lM)
mount: mount a file system. mount(3)

chgnod: change current A/UX system nodename. chgnod(lM)

Permuted I ndex A-73

pagesize: print system page size. • pagesize(l)
powerdown: power down the system. powerdown(lM)

reboot: reboot the system. reboot(lM)
reboot: reboot the system. reboot(2)

autorecovery: standalone file system repair. autorecovery(8)
restore: incremental file system restore. restore(1M)

Fortran action on receipt of a system signal. signal: specify signal(3F)
nfsstat: Network File System statistics. • • • • • • nfsstat(lM)

statfs: get file system statistics. • • • • • statfs(2)
ustat: get file system statistics. • • • • • ustat(2)

terminal. sysline: display system status on status line of a sysline(l)
rwhod: system status server. rwhod(lM)

mtab: mounted file system table. • • • • • mtab(4)
rmtab: remotely mounted file system table. • • • • • rmtab(4)

mactime: set the system time/real time chip. mactime(lM)
tip: connect to a remote system. • • • • • • • tip(lC)

uucp, uulog, uuname: UNIX system to UNIX system copy. uucp(lC)
umount: unmount a file system. • • umount(2)
umount: unmount a file system. umount(3)

uname: print name of current system. uname(l)
uname: get name of current system. • uname(2)

unmount: remove a file system. unmount(2)
list of users who are on the system. users: compact users(l)

dir: format o f System V directories. • dir(4)
inode: format of a System V inode. • • • inode(4)

fs: format of a System V system volume. fs(4)
fs: format of a System V system volume. fs(4)

who: who is on the system. • • • • • • • who(l)
exports: NFS file systems being exported. • exports(4)
dcopy: copy file systems for optimal access time. dcopy(lM)

static information about file systems. fstab: • • • • • fstab(4)
umount: mount and dismount file systems. mount, • • • • • mount(1M)

volcopy, labelit: copy file systems with label checking. • volcopy(lM)
information. uvar: returns system-specific configuration • uvar(2)

bsearch: binary search a sorted table. • • • • • • • • • • bsearch(3C)
/compute the index of a symbol table entty of a common object/ ldtbindex(3X)

ldtbread: read an indexed symbol table entty of a common object/ ldtbread(3X)
numbptabent: get partition table file entry. /setptabent, getptabent(3)

ptab: partition table file. • • ptab(4)
syms: common object file symbol table format. • • • • • • syms(4)

mtab: mounted file system table. • • • • • • mtab(4)
ldtbseek: seek to the symbol table of a common object file. ldtbseek(3X)

remotely mounted file system table. rmtab: • rmtab(4)
getdtablesize: get descriptor table size • • • • • • getdtablesize(2)

nterm: terminal driving tables for nroff. nterm(5)
tbl: format tables for nroff or troff. tbl(l)

hdestroy: manage hash search tables. hsearch, hcreate, hsearch(3C)
manually manipulate the routing tables. route: route(1M)

tabs: set tabs on a terminal. • • tabs(l)
tabs: set tabs on a terminal . tabs(l)

expand, unexpand: expand tabs to spaces, and vice versa. expand(l)

A-74 Permuted I ndex

•

•

•

•

•

•

ctags: maintain a tags file for a C program. • • ctags(1)
file. tail : deliver the last part o f a • tail(1)

machine. take: takes a file from a remote take(1C)
machine. take: takes a file from a remote • • take(1C)

talk: talk to another user. • • talk(1N)
talk: talk to another user. • • talk(1N)

server. talkd: remote user communication talkd(1M)
trigonometric/ sin, cos, tan, asin, acos, atan, atan2: trig(3M)

intrinsic function. tan, dtan: Fortran tangent tan(3F)
tan, dtan: Fortran tangent intrinsic function. tan(3F)

tanh, dtanh: Fortran hyperbolic tangent intrinsic function. tanh(3F)
tangent intrinsic function. tanh, dtanh: Fortran hyperbolic tanh(3F)

sinh, cosh, tanh: hyperbolic functions. sinh(3M)
tp: manipulate tape archive. tp(1)

tar: tape file archiver. tar(l)
free: recover files from a backup tape. • • • • • • • free(1M)

tar: tape file archiver. tar(1)
programs for simple lexical tasks. lex: generate • lex(l)

deroff: remove nroff/troff, tbl, and eqn constructs. deroff(l)
troff. tbl: format tables for nroff or tbl(1)

tc : troff output interpreter. • tc(1)
Control Protocol. tcp: Internet Transmission • tcp(5P)

search trees. tsearch, tfind, tdelete, twalk: manage binary tsearch(3C)
tee: pipe fitting. tee(l)

4014: paginator for the Tektronix 4014 terminal. • 4014(1)
tset, reset: set or reset the teletype bits to a sensible/ tset(l)

indicate last logins o f users and teletypes. last: • • • • • last(l)
initialization. init, telinit: process control init(lM)

closedir:/ opendir, readdir, telldir, seekdir, rewinddir, directory(3)
telnetd: DARPA TELNET protocol server. telnetd(1M)

telnet: user interface to the TELNET protocol. • • • telnet(lC)
TELNET protocol. telnet: user interface to the telnet(1 C)

server. telnetd: DARPA TELNET protocol telnetd(lM)
temporary file. tmpnam, tempnam: create a name for a • tmpnam(3S)

tmpfile: create a temporary file. • • • • • • • tmpfile(3S)
tempnam: create a name for a temporary file. tmpnarn, • • • tmpnam(3S)

terminals. term: conventional names for • term(5)
term: format of compiled term file.. • • • • • • • • • term(4)

file.. term: format of compiled term term(4)
base. termcap: terminal capability data termcap(4)

paginator for the Tektronix 4014 terminal. 4014: • • • • • • 4014(1)
special functions of the DASI 450 terminal. 450: handle • • • • 450(1)

termcap: terminal capability data base. • termcap(4)
terminfo: terminal capability data base. • terminfo(4)

ct: spawn getty to a remote terminal. • • • • • • • • ct(1C)
ctermid: generate filename for terminal. • • • • • • • • ctermid(3S)

pty: pseudo terminal driver. • pty(7)
nroff. nterm: terminal driving tables for • • nterm(5)
greek: select terminal filter. • • • • • • • greek(1)

/tgetflag, tgetstr, tgoto, tputs: terminal independent operation/ termcap(3X)
termio: general terminal interface. • • • • • termio(7)

Permuted I ndex A-75

tty: controlling terminal interface. • • • tty(7)
dial: establish an out-going tenninal line connection. dial(3C)

colcrt: filter nroff output for terminal previewing. • • colcrt(l)
clear: clear termin al screen. • • • • • clear(I)

script: make typescript o f termin al session. • • • • script(l)
gettydefs: speed and tenninal settings used by getty. gettydefs(4)

stty: set the options for a terminal. • • • • • • • stty(l)
system status o n status line o f a tenninal. sysline: display sysline(l)

tabs: set tabs on a terminal. • • • • • • • • . tabs(l)
ttyname, isatty: find name of a terminal. • • • • • • • • • ttyname(3C)

line discipline. getty: set terminal type, modes, speed, and getty(1M)
ttytype: data base of tenninal types by port. • • • ttytype(4)

wonns: animate wonns on a display terminal. • • • • • • • • • wonns(6)
functions of DASI 300 and 300s terminals. 1300s: handle special 300(1)

tty: get the terminal's name. • • • • tty(l)
file perusal filter for soft-copy terminals. pg: • • • • • pg(l)

scr_color: program to change the terminal 's screen color. scr_color(l)
tenn: conventional names for terminals. • • • • . term(S)

kill: terminate a process. • kill(l)
shutdown: terminate all processing. shutdown(1M)

abort: terminate Fortran program. • abort(3F)
exit, _exit: terminate process. exit(2)

daemon. errstop: terminate the error-logging errstop(lM)
wait for child process to stop or terminate. wait: • wait(2)
wait for child process to stop or terminate. wait3: wait3(2N)

tic: tenninfo compiler. • • • tic(lM)
tput: query tenninfo database. • • • • tput(l)
data base. tenninfo: terminal capability terminfo(4)
interface. termio: general tenninal • • termio(7)

command. test: condition evaluation test(l)
quiz: test your knowledge. quiz(6)

ed, red: text editor. ed(l)
ex, edit: text editor. • • ex(l)

newform: change the format o f a text file. newform(l)
fspec: format specification in text files. • • • fspec(4)

neqn: format mathematical text for nroff. • neqn(l)
checlccw: prepare constant-width text for otroff. cw, cw(l)

eqn : format mathematical text for troff. eqn(l)
fmt: simple text formatter. • • • fmt(l)

otroff: text formatting and typesetting. otroff(l)
troff: text formatting and typesetting. troff(l)

nroff: text formatting language. nroff(l)
ms: text formatting macros. • • • ms(S)

plock: lock process, text, or data in memory. • • • plock(2)
binary sean:h trees. tsean:h, tfind, tdelete, twalk: manage tsean:h(3C)

program. tftp: trivial file transfer • tftp(lC)
Transfer Protocol server. tftpd: DARPA Trivial File • tftpd(lM)

tgetstr, tgoto, tputs: terminal/ tgetent, tgetnum, tgetftag, tenncap(3X)
terminal/ tgetent, tgetnum, tgetftag, tgetstr, tgoto, tputs: • termcap(3X)

tgoto, tputs: tenninall tgetent, tgetnum, tgetftag, tgetstr, tenncap(3X)
tgetent, tgetnum, tgetftag, tgetstr, tgoto, tputs: terminal/ termcap(3X)

Permuted I ndex

•

•

•

•

•

•

tgetnum. tgetflag, tgetstr, tgoto, tputs: tennina1/ tgetent, termcap(3X)
and uncompress files, and cat them. /uncompact, ccat: compress compact(l)

explain: print wordy sentences; thesaurus for diction. diction, diction(I)
tic : tenninfo compiler. tic(lM)

ttt, cubic: tic-tac-toe. • • • ttt(6)
execute commands at a later time. at, batch: at(I)

file systems for optimal access time. dcopy : copy dcopy(lM)
time: get time. • • • time(2)

settimeofday: get/set date and time. gettimeofday, • • gettimeofday(2)
up an environment at login time. profile: setting • • profile(4)

stime: set time. • • • • • • stime(2)
time: time a command. • time(l)

time: get time. • • • • • • • • • time(2)
get/set value of interval timer. getitimer, setitimer: • • getitimer(2)
mactime: set the system time/real time chip. • • • • mactime(lM)

process times. times: get process and child • times(2)
update access and modification times of a file. touch: • • • • touch(l)

get proces s and child proces s times. times: • • • • • • • times(2)
set file access and modification times. utime: • • • • • • • utime(2)

process data and system/ timex: time a command; report timex(l)
tip: connect to a remote system. tip(lC)
tmpfile: create a temporary file. tmpfile(3S)

for a temporary file. tmpnarn, tempnam: create a name tmpnarn(3S)
/tolower, _toupper, _tolower, toascii: translate characters. • conv(3C)

popen, pclose: initiate pipe to/from a process. • popen(3S)
toupper, tolower, _toupper, _tolower, toascii: translate/ • • conv(3C)
toascii: translate/ toupper, tolower, _toupper, _tolower, • conv(3C)

up for and clean up after A/UX Toolbox programs. /set • • • toolboxd(lM)
clean up after A/UX Toolbox/ toolboxdaemon: set up for and toolboxd(lM)

tsort: topological sort • • • • • • tsort(l)
acctmerg: merge or add total accounting files. • • • acctmerg(lM)

modification times of a file. touch: update access and touch(l)
translate/ toupper, tolower, _toupper, _tolower, toascii: conv(3C)
_tolower, toascii: translate/ toupper, tolower, _toupper, • conv(3C)

tp: manipulate tape archive. tp(l)
tplot: graphics filters. • • • • tplot(lG)
tput: query tenninfo database. tput(l)

/tgetflag, tgetstr, tgoto, tputs: terminal independent/ • termcap(3X)
tr: translate characters. • tr(l)

ptrace: process trace. • • • • • • • • • • ptrace(2)
trpt: transliterate protocol trace. • • • • • • • • • • trpt(lM)

/pstext, psbanner, psinterface: TranScript spooler filters for/ • transcript(lM)
server to here. ypxfr: transfer a YP map from some YP ypxfr(lM)

bit, blt512: block transfer data. • blt(3C)
kermit: kermit file transfer. • • • • kermit(lC)

ftp: ARPANET file transfer program. ftp(lN)
tftp: trivial file transfer program. • tftp(lC)

ftpd: DARPA Internet File Transfer Protocol server. ftpd(lM)
tftpd: DARPA Trivial File Transfer Protocol server. tftpd(lM)
sign, isign, dsign: Fortran transfer-of-sign intrinsic/ sign(3F)

_toupper, _tolower, toascii: translate characters. /tolower, conv(3C)

Permuted I ndex A-77

tr: lranslate characters. • tr(1)
from downloading into a/ rcvhex: lranslates Motorola S-records • rcvhex(l)

hex: lranslates object files. • • • • hex(l)
lrpt: lransliterate protocol lrace. • • lrpt(lM)

tcp: Internet Transmission Control Protocol. tcp(5P)
encode/decode a binary file for lransmission via mail. /uudecode: uuencode(lC)

ftw: walk a file lree. • • • • • • • • • • • ftw(3C)
twalk: manage binary search lrees. tsearch. tfind, tdelete, • tsearch(3C)

lrek: lrekkie game. • • • • • lrek(6)
lrek: lrekkie game. • • • • • • • lrek(6)

tan, asin, acos, atan, atan2: lrigonomelric fimctions. /cos, lrig(3M)
tftp: lrivial file lransfer program. tftp(lC)

server. tftpd: DARPA Trivial File Transfer Protocol tftpd(lM)
iwprep: prepare troff description files. • • • iwprep(l)

language. troff: description of output • troff(5)
eqn: format mathematical text for lroff. • • • • • • • • • • eqn(l)

files for device-independent troff. font: description • font(5)
psdit: convert lroff intermediate format to/ • psdit(l)

typesetting view graphs and/ mv: a troff macro package for • • • mv(5)
tc: troff output interpreter. • tc(l)

daiw: Apple Image Writer II lroff postprocessor filter. • daiw(l)
pictures. pic: lroff preprocessor for drawing pic(I)

tbl: format tables for nroff or troff. • • • • • • • • • tbl(l)
typesetting. troff: text formatting and • • troff(l)

psroff: troff to a/ • • • • • • • • • psroff(l)
lrace. trpt: lransliterate protocol lrpt(lM)

values. lrUe, false: provide truth • • • true(l)
length. lruncate, ftruncate: truncate a file to a specified • lruncate(2)

file to a specified length. truncate, ftruncate: lrUncate a • 1runcate(2)
hosts.equiv: list of !rUsted hosts. • • • • • • • hosts.equiv(4)

/u3b2, u3b5, u3bl5, vax: provide truth value about processor type. machid(l)
true, false: provide truth values. • • • • • • • true(l)

chase: try to escape the killer robots. • chase(6)
manage binary search lrees. tsearch, tfind, tdelete, twalk: tsearch(3C)

teletype bits to a sensible/ tset, reset: set or reset the tset(l)
tsort: topological sort. • • • tsort(l)
ttl, cubic: tic-�toe. • • • ttt(6)

interface. tty: controlling terminal • • tty(7)
tty: get the terminal's name. tty(l)

greek: graphics for the extended TTY -37 type-box. • • • • greek(5)
/etc(mittab file. tty_add, tty_kill: modify the tty_add(lM)

file. tty_add, tty_kill: modify the /etc(mittab tty_add(lM)
terminal. ttyname, isatty: find name of a ttyname(3C)

utmp file of the current user. ttyslot: find the slot in the ttyslot(3C)
types by port. ttytype: data base of terminal • ttytype(4)

change a kernel's parameters for tuning. kconfig: • • • • • • kconfig(lM)
extended errors in the/ exterr: tum on/off the reporting of • • exterr(lM)

/prtacct, shutacct, startup, tumacct: shell procedures for/ acctsh(lM)
lrees. tsearch. tfind, tdelete, twalk: manage binary search • tsearch(3C)

twinkle: twinkle stars on the screen. • twinkle(6)
screen. twinkle: twinkle stars on the . twinkle(6)

A-78 Permuted I ndex

•

•

•

•

•

•

resource file. settc: set the type and creator of a Macintosh settc(l)
ichar, char: explicit Fortran type conversion. /cmplx, dcmplx, ftype(3F)

file: determine file type. • • • • • • • • • • file(1)
truth value about processor type. /u3b5, u3b15, vax: provide machid(l)

discipline. getty: set terminal type, modes, speed, and line getty(lM)
graphics for the extended TIY-37 type-box. greek: • • • • • greek(S)

ttytype: data base of terminal types by port. • • • • • • • ttytype(4)
types. types: primitive system data types(S)

types: primitive system data types. • • • • • • • • • • types(S)
script: make typescript of terminal session. script(l)

mmt: typeset documents. • • • • • mmt(l)
mvt: typeset view graphs and slides. mvt(l)

otroff: text formatting and typesetting. • • • • • • • otroff(l)
troff: text formatting and typesetting. • • • • • • • troff(l)

mv: a tro ff macro package for typesetting viewgraphs and/ mv(S)
tzdump: time zone dumper. tzdump(lM)
tzfile: time zone information. tzfile(4)
tzic: time zone compiler. tzic(lM)

and/ /localtime, gmtime, asctime, tzset, tzsetwall: convert date ctime(3)
to/ /gmtime, asctime, tzset, tzsetwall: convert date and time ctime(3)

provide truth value/ m68k, pdpl l , u3b, u3b2, u3b5, u3bl5, vax: • machid(l)
m68k, pdpl l , u3b, u3b2, u3b5, u3bl5, vax: provide truth value/ machid(l)
truth value/ m68k, pdpl l , u3b, u3b2, u3b5, u3bl5, vax: provide machid(l)

value/ m68k, pdpl l, u3b, u3b2, u3b5, u3b15, vax: provide truth machid(l)
Protocol. udp: Internet User Datagram udp(SP)

getpw: get name from UID. • • • • • • • • • getpw(3e)
ul: do underlining. • • • • • ul(l)
ulimit: get and set user limits. • ulimit(2)

mask. umask: set and get file creation umask(2)
systems. mount, umount: mount and dismount file mount(1M)

umount: unmount a file system. umount(2)
umount: unmount a file system. umount(3)

system. uname: get name of current uname(2)
system. uname: print name of current • uname(l)

uncompress files, and/ compact, uncompact, ccat: compress and compact(I)
/uncompact, ccat: compress and uncompress files, and cat them. compact(l)

ul: do underlining. • • • • • • • • ul(l)
file. unget: undo a previous get o f an sees unget(l)

and vice versa. expand, unexpand: expand tabs to spaces, expand(l)
sees file. unget: undo a previous get o f an unget(l)

input stream. ungetc: push character back into ungetc(3S)
irand, srand, rand: Fortran uniform random-number generator. rand(3F)
seed48, lcong48: generate uniformly distributed/ /srand48, drand48(3C)

file. uniq: report repeated lines in a uniq(l)
mktemp: make a unique filename. • • • • • mktemp(3e)

gethostid, sethostid: get/set unique identifier of current/ • gethostid(2N)
units: conversion program. • • units(l)

uulog, uuname: UNIX system to UNIX system copy. uucp, • • uucp(le)
uucp, uulog, uuname: UNIX system to UNIX system copy. uucp(le)

execution. uux: UNIX-to-UNIX system command uux(te)
uuto, uupick: public UNIX-to-UNIX system file copy. uuto(le)

Permuted I ndex A-79

unlink: remove directory entry. unlink(2)
umount: munount a file system. umount(2)
umount: munount a file system. umount(3)

munount: remove a file system. unmount(2)
files. pack, peat, unpack: compress and expand pack(l)

pause: suspend proces s until signal. • • • • • • • • pause(2)
show how long system has been up. uptime: • • • • • • • • uptime(I)

times o f a file. touch: update access and modification touch(l)
programs. make: maintain, update, and regenerate groups o f make(I)

badblk: set or update bad block information. badblk(lM)
machines. updater: update files between two updater(l)

lsearch, lfind: linear search and update. • • • • • • • • • lsearch(3C)
sync: update superblock. • • • • • sync(2)
sync: update the superblock. • • sync(I)

machines. updater: update files between two updater(l)
signal: specify what to do upon receipt o f a signal. • • • signal(3)

been up. uptime: show how long system has uptime(I)
autoconfig: build a new up-to-date kernel. autoconfig(lM)

du: summarize disk usage. • • • • • • • • • • du(l)
clock: report CPU time used. • • • • • • • • • • clock(3C)

id: print user and group IDs and names. id(l)
setuid, setgid: set user and group IDs. • • • • setuid(2)
setuid, setgid: set user and group IDs. • • • • setuid(3)

talkd: remote user communication server. talkd(lM)
crontab: user crontab utility. • • • • crontab(l)

get character login name o f the user. cuserid: • • • • • • cuserid(3S)
udp: Internet User Datagram Protocol. udp(5P)

and/ /getgid, getegid: get real user, effective user, real group, getuid(2)
environ: user environmenl environ(5)

generate disk accounting data by user ID. diskusg: diskusg(lM)
su: substitute user ID. su(l)

whoami: print effective current user iD. whoami(l)
setreuid: set real and effective user ID's. setreuid(2)

finger: user information lookup program. finger(I)
protocol. telnet: user interface to the TELNET telnet(lC)

ulimit: get and set user limits. • • • • • • • • ulimit(2)
logname: return login name of user. • • • • • • • • • • logname(3X)

/getegid: get real user, effective user, real group, and effective/ getuid(2)
talk: talk to another user. • • • • • • • • talk(lN)

in the utmp file of the current user. ttyslot: find the slot ttyslot(3C)
write: write to another user. • • • • • • • • write(l)

last: indicate last logins o f users and teletypes. • • • last(I)
are on the system. users: compact list o f users who users(l)

mail, rmail: send mail to users or re ad mail. • • • • • mail(l)
B-NET/ rwall: write to all users over a network running • rwall(lM)

wall: write to all users. • • • • • • • • • • wall(lM)
users: compact list of users who are on the system. • users(l)

fuser: identify processes using a file or file structure. fuser(lM)

A-80

help: ask for help in using sees. . help(l)
statistics. ustat: get file system • ustat(2)

crontab: user crontab utility. • • • • • • • crontab(l)

Permuted I ndex

•

•

•

•

•

•

modification times. utime: set file access and utime(2)
utmp, wtmp: utmp and W1mp entry formats. utmp(4)

endutent, utmpname: access utmp file entry. /setutent, getut(3C)
ttyslot: :find the slot in the utmp file of the current user. • ttyslot(3C)

formats. utmp, wtmp: utmp and wtmp entry utmp(4)
/pututline, setutent, endutent, utmpname: access utmp file entry. getut(3C)

clean-up. uuclean: uucp spool directory • uuclean(lM)
uusub: monitor uucp network. • • • • • • • uusub(lM)

uuclean: uucp spool directory clean-up. uuclean(lM)
control. uustat: uucp status inquiry and job • • uustat(l C)

to UNIX system copy. uucp, uulog, uuname: UNIX system uucp(lC)
file for transmission/ uuencode, uudecode: encode/decode a binary uuencode(lC)

a binary file for transmission/ uuencode, uudecode: encode/decode uuencode(l C)
UNIX system copy. uucp, uulog, uuname: UNIX system to uucp(lC)
system copy. uucp, uulog, uuname: UNIX system to UNIX uucp(lC)

system file copy. uuto, uupick: public UNIX-to-UNIX uuto(lC)
host uusend: send a file to a remote uusend(lC)

job control. uustat: uucp status inquiry and uustat(lC)
uusub: monitor uucp network. uusub(lM)

system file copy. uuto, uupick: public UNIX-to-UNIX uuto(lC)
execution. uux: UNIX-to-UNIX system command uux(lC)

configuration information. uvar: returns system-specific • uvar(2)
dir: format of System V directories. • • dir(4)

inode: format of a System V inode. • • • • • • inode(4)
fs: format of a System V system volume. fs(4)

val: validate sees file. val(l)
val: validate sees file. • • • • val(l)

/u3b5, u3b15, vax: provide truth value about processor type. machid(l)
abs: return integer absolute value. • • • • • • • • • abs(3C)

cabs, zabs: Fortran absolute value. abs, iabs, dabs, • • abs(3F)
getenv: return value for environment name. getenv(3C)

ceiling, remainder, absolute value functions. /fabs: ftoor, ftoor(3M)
readlink: read value of a symbolic link. • readlink(2)

getitimer, setitimer: get/set value of interval timer. getitimer(2)
YP map. ypmatch: print the value of one or more keys from a ypmatch(l)

putenv: change or add value to environment • • • • putenv(3C)
/htons, ntohl, ntohs: convert values between host and network/ byteorder(3N)

ypcat: print values in a YP data base. • • ypcat(l)
values: machine-dependent values. values(S)

true, false: provide truth values. • • • • • • • • • • true(l)
values: machine-dependent values. • • • • • • • • • • values(S)
print formatted output of a varargs argument list /vsprintf: vprintf(3S)

list varargs: handle variable argument varargs(3X)
varargs: handle variable argument list. • • • varargs(3X)

retum Fortran environment variable. getenv: • • • • • • getenv(3F)
/pdpll , u3b, u3b2, u3b5, u3bl5, vax: provide truth value about/ machid(l)

vc: version control. • • • • • vc(l)
get option letter from argument vector. getopt: • • • • • • getopt(3C)

display editor. vi, view, vedit: screen-oriented (visual) vi(l)
assert: verify program assertion. assert(3X)

expand tabs to spaces, and vice versa. expand, unexpand: expand(l)

Permuted I ndex A-81

vc: version control. • • • • • • vc(l)
version: reports version number of files. • • • version(l)

server host yppoll: what version of a YP map is at a YP yppoll(lM)
get: get a version of an sees file. • • • get(I)

of files. version: reports version number version(l)
status of local machines (RPC version). rup: show host • rup(lC)

logged in on local machines (RPC version). rusers: who's rusers(lN)
sccsdiff: compare two versions of an sees file. sccsdiff(l)

formatted output of a/ vprintf, vfprintf, vsprintf: print • vprintf(3S)
(visual) display editor. vi, view, vedit: screen-oriented vi(l)

a binary file for transmission via mail. /encode/decode uuencode(lC)
expand tabs to spaces, and vice versa. expand, unexpand: expand(l)

mvt: typeset view graphs and slides. mvt(l)
(visual) display editor. vi, view, vedit: screen-oriented vi(l)

macro package for typesetting viewgraphs and slides. /a troff mv(5)
more: file perusal filter for CRT viewing. • • • • • • • • more(l)

vipw: edit the password file. vipw(lM)
vi, view, vedit: screen-oriented (visual) display editor. vi(l)

systems with label checking. volcopy, labelit: copy file volcopy(lM)
fs: format of a System V system volume. • • • • • • • fs(4)

print formatted output of a/ vprintf, vfprintf, vsprintf: vprintf(3S)
of a varargs/ vprintf, vfprintf, vsprintf: print formatted output vprintf(3S)

doing. w: who is on and what they are w(l)
terminate. wait: wait for child process to stop or wait(2)

terminate. wait3: wait for child process to stop or wait3(2N)
release blocked signals and wait for interrupt. /atomically sigpause(2)

stop or terminate. wait: wait for child process to wait(2)
stop or terminate. wait3: wait for child process to wait3(2N)

ftw: walk a file tree. ftw(3C)
wall: write to all users. wall(lM)
we: word count. • • • • wc(l)
what: identify sees files. what(l)

whodo: who is doing what. • • • • • • • • whodo(lM)
is. whatis: describe what a command whatis(l)

and/or manual for program. whereis: locate source, binary, whereis(l)
including aliases and paths. which: locate a program file which(l)

who: who is on the system. • • who(l)
user ID. whoami: print effective current whoami(l)

whodo: who is doing what. . • whodo(lM)
(RPC version). rusers: who's logged in on local machines rusers(lN)

machines. rwho: who's logged in on local • • • rwho(lN)
prof: profile within a function. • • • • • prof(5)

we: word count. • • • • • • • • wc(l)
fgetc, getw: get character or word fro m a stream. /getchar, getc(3S)

hangman: guess the word. • • • • • • • • • • hangman(6)
fputc, putw: put character or word on a stream. putc, putchar, putc(3S)

hyphen: find hyphenated words. • • • • • • • • • • hyphen(l)
diction. diction, explain: print wordy sentences; thesaurus for diction(l)

chdir: change working directory. • • chdir(2)
getcwd: get pathname of current working directory. • • getcwd(3C)

pwd: print working directory name. pwd(l)

A-82 Permuted I ndex

•

•

•

•

•

•

getwd: get current working directory patlmame. • getwd(3)
worm: play the growing worm game. • • • • • • • worm(6)

worm: play the growing worm game. worm(6)
terminal. worms: animate worms on a display worms(6)

worms: animate worms on a display terminal. • worms(6)
write, writev: write on a file. • • • • • • • write(2)

putpwent: write password file entry. • • putpwent(3C)
running B-NET software. rwall: write to all users over a network rwall(lM)

wall: write to all users. • • • • • • wall(lM)
write: write to another user. • • • write(l)

write: write to another user. write(l)
write, writev: write on a file. write(2)

write, writev: write on a file. • • write(2)
file regions for reading or writing. /provide exclusive locking(2)
open: open for reading or writing. • • • • • • • open(2)

utmp, wtmp: utmp and wtmp entry formats. • • utmp(4)
formats. utmp, wtmp: utmp and wtmp entry • utmp(4)

accounting records. fwtmp, wtmpfix: manipulate connect • fwtmp(lM)
hunt-the-wumpus. wump: the game of • • • • • wump(6)

and execute command. xargs: construct argument list(s) xargs(l)
external data representation. xdr: library routines for • • • xdr(3N)

bitwise boolean/ and, or, xor, not, lshift, rshift: Fortran • bool(3F)
programs to implement shared/ xstr: extract strings from C • • xstr(l)

jO, j l , jn. yO, y l , yn: Bessel functions. • bessel(3M)
jO, j l , jn, yO, yl, yn: Bessel functions. • • • bessel(3M)

compiler-compiler. yacc: yet another • • • • • • yacc(l)
ypclnt: yellow pages client interface. • ypclnt(3N)

ypinit: build and install yellow pages database. • ypinit(lM)
ypmake: rebuild yellow pages database. • ypmake(lM)

makedbm: make a yellow pages dbm file. • makedbm(lM)
yppasswdd: server for modifying yellow pages password file. • yppasswdd(lM)

processes. ypserv, ypbind: yellow pages server and binder ypserv(lM)
change login password in yellow pages. yppasswd: • • yppasswd(l)

directory/ ypfiles: the yellowpages database and • • ypfiles(4)
yes: be repetitively affirmative. yes(l)

yacc: yet another compiler-compiler. yacc(l)
jO, j l , jn, yO, yl, yn : Bessel functions. • • • • bessel(3M)

ypcat: print values in a YP data base. • • • • • • • ypcat(l)
here. ypxfr: transfer a YP map from some YP server to ypxfr(lM)

yppoll: what version of a YP map is at a YP server host. yppoll(lM)
value of one or more keys from a YP map. ypmatch: print the • ypmatch(l)

force propagation of a changed YP map. yppush: • • yppush(lM)
what version of a YP map is at a YP server host yppoll: • • • yppoll(lM)

ypwhich: which host is the YP server or map master?. • • ypwhich(l)
transfer a YP map fro m some YP server to here. ypxfr: • ypxfr(lM)

ypset: point ypbind at a particular server. • ypset(lM)
binder processes. ypserv, ypbind: yellow pages server and ypserv(lM)

base. ypcat: print values in a YP data ypcat(l)
interface. ypclnt: yellow pages client • • ypclnt(3N)

and directory structure. ypfiles: the yellowpages database ypfiles(4)
pages database. ypinit: build and install yellow ypinit(lM)

Permuted I ndex A-83

database. ypmake: rebuild yellow pages ypmake(lM)
or more keys from a YP map. ypmatch: print the value of one ypmatch(l)

in yellow pages. yppasswd: change login password yppasswd(l)
yellow pages password file. yppasswdd: server for modifying yppasswdd(lM)

is at a YP server host yppoll: what version of a YP map yppoll(lM)
changed YP map. yppush: force propagation of a yppush(lM)

server and binder processes. ypserv, ypbind: yellow pages • ypserv(lM)
particular server. ypset: point ypbind at a • • • ypset(lM)

server or map master?. ypwhich: which host is the YP ypwhich(l)
some YP server to here. ypxfr: transfer a YP map from ypxfr(lM)

A-84

abs, iabs, dabs, cabs, zabs: Fortran absolute value. abs(3F)
bzb: format of Block Zero Blocks. bzb(4)

tzic: time zone compiler. tzic(lM)
tzdump: time zone dumper. tzdump(lM)

tzfile: time zone information. tzfile(4)

Permuted I ndex

•

•

•

	AUX_Programmers_Reference_Ch00-01
	AUX_Programmers_Reference_Ch00-02
	AUX_Programmers_Reference_Ch00-03
	AUX_Programmers_Reference_Ch00-04
	AUX_Programmers_Reference_Ch00-05
	AUX_Programmers_Reference_Ch00-06
	AUX_Programmers_Reference_Ch00-07
	AUX_Programmers_Reference_Ch00-08
	AUX_Programmers_Reference_Ch01-00-i
	AUX_Programmers_Reference_Ch01-00-ii
	AUX_Programmers_Reference_Ch01-00-iii
	AUX_Programmers_Reference_Ch01-00-iv
	AUX_Programmers_Reference_Ch01-00-v
	AUX_Programmers_Reference_Ch01-00-vi
	AUX_Programmers_Reference_Ch01-00-vii
	AUX_Programmers_Reference_Ch02-000-i
	AUX_Programmers_Reference_Ch02-000-ii
	AUX_Programmers_Reference_Ch02-000-iii
	AUX_Programmers_Reference_Ch02-000-iv
	AUX_Programmers_Reference_Ch02-001
	AUX_Programmers_Reference_Ch02-002
	AUX_Programmers_Reference_Ch02-003
	AUX_Programmers_Reference_Ch02-004
	AUX_Programmers_Reference_Ch02-005
	AUX_Programmers_Reference_Ch02-006
	AUX_Programmers_Reference_Ch02-007
	AUX_Programmers_Reference_Ch02-008
	AUX_Programmers_Reference_Ch02-009
	AUX_Programmers_Reference_Ch02-010
	AUX_Programmers_Reference_Ch02-011
	AUX_Programmers_Reference_Ch02-012
	AUX_Programmers_Reference_Ch02-013
	AUX_Programmers_Reference_Ch02-014
	AUX_Programmers_Reference_Ch02-015
	AUX_Programmers_Reference_Ch02-016
	AUX_Programmers_Reference_Ch02-017
	AUX_Programmers_Reference_Ch02-018
	AUX_Programmers_Reference_Ch02-019
	AUX_Programmers_Reference_Ch02-020
	AUX_Programmers_Reference_Ch02-021
	AUX_Programmers_Reference_Ch02-022
	AUX_Programmers_Reference_Ch02-023
	AUX_Programmers_Reference_Ch02-024
	AUX_Programmers_Reference_Ch02-025
	AUX_Programmers_Reference_Ch02-026
	AUX_Programmers_Reference_Ch02-027
	AUX_Programmers_Reference_Ch02-028
	AUX_Programmers_Reference_Ch02-029
	AUX_Programmers_Reference_Ch02-030
	AUX_Programmers_Reference_Ch02-031
	AUX_Programmers_Reference_Ch02-032
	AUX_Programmers_Reference_Ch02-033
	AUX_Programmers_Reference_Ch02-034
	AUX_Programmers_Reference_Ch02-035
	AUX_Programmers_Reference_Ch02-036
	AUX_Programmers_Reference_Ch02-037
	AUX_Programmers_Reference_Ch02-038
	AUX_Programmers_Reference_Ch02-039
	AUX_Programmers_Reference_Ch02-040
	AUX_Programmers_Reference_Ch02-041
	AUX_Programmers_Reference_Ch02-042
	AUX_Programmers_Reference_Ch02-043
	AUX_Programmers_Reference_Ch02-044
	AUX_Programmers_Reference_Ch02-045
	AUX_Programmers_Reference_Ch02-046
	AUX_Programmers_Reference_Ch02-047
	AUX_Programmers_Reference_Ch02-048
	AUX_Programmers_Reference_Ch02-049
	AUX_Programmers_Reference_Ch02-050
	AUX_Programmers_Reference_Ch02-051
	AUX_Programmers_Reference_Ch02-052
	AUX_Programmers_Reference_Ch02-053
	AUX_Programmers_Reference_Ch02-054
	AUX_Programmers_Reference_Ch02-055
	AUX_Programmers_Reference_Ch02-056
	AUX_Programmers_Reference_Ch02-057
	AUX_Programmers_Reference_Ch02-058
	AUX_Programmers_Reference_Ch02-059
	AUX_Programmers_Reference_Ch02-060
	AUX_Programmers_Reference_Ch02-061
	AUX_Programmers_Reference_Ch02-062
	AUX_Programmers_Reference_Ch02-063
	AUX_Programmers_Reference_Ch02-064
	AUX_Programmers_Reference_Ch02-065
	AUX_Programmers_Reference_Ch02-066
	AUX_Programmers_Reference_Ch02-067
	AUX_Programmers_Reference_Ch02-068
	AUX_Programmers_Reference_Ch02-069
	AUX_Programmers_Reference_Ch02-070
	AUX_Programmers_Reference_Ch02-071
	AUX_Programmers_Reference_Ch02-072
	AUX_Programmers_Reference_Ch02-073
	AUX_Programmers_Reference_Ch02-074
	AUX_Programmers_Reference_Ch02-075
	AUX_Programmers_Reference_Ch02-076
	AUX_Programmers_Reference_Ch02-077
	AUX_Programmers_Reference_Ch02-078
	AUX_Programmers_Reference_Ch02-079
	AUX_Programmers_Reference_Ch02-080
	AUX_Programmers_Reference_Ch02-081
	AUX_Programmers_Reference_Ch02-082
	AUX_Programmers_Reference_Ch02-083
	AUX_Programmers_Reference_Ch02-084
	AUX_Programmers_Reference_Ch02-085
	AUX_Programmers_Reference_Ch02-086
	AUX_Programmers_Reference_Ch02-087
	AUX_Programmers_Reference_Ch02-088
	AUX_Programmers_Reference_Ch02-089
	AUX_Programmers_Reference_Ch02-090
	AUX_Programmers_Reference_Ch02-091
	AUX_Programmers_Reference_Ch02-092
	AUX_Programmers_Reference_Ch02-093
	AUX_Programmers_Reference_Ch02-094
	AUX_Programmers_Reference_Ch02-095
	AUX_Programmers_Reference_Ch02-096
	AUX_Programmers_Reference_Ch02-097
	AUX_Programmers_Reference_Ch02-098
	AUX_Programmers_Reference_Ch02-099
	AUX_Programmers_Reference_Ch02-100
	AUX_Programmers_Reference_Ch02-101
	AUX_Programmers_Reference_Ch02-102
	AUX_Programmers_Reference_Ch02-103
	AUX_Programmers_Reference_Ch02-104
	AUX_Programmers_Reference_Ch02-105
	AUX_Programmers_Reference_Ch02-106
	AUX_Programmers_Reference_Ch02-107
	AUX_Programmers_Reference_Ch02-108
	AUX_Programmers_Reference_Ch02-109
	AUX_Programmers_Reference_Ch02-110
	AUX_Programmers_Reference_Ch02-111
	AUX_Programmers_Reference_Ch02-112
	AUX_Programmers_Reference_Ch02-113
	AUX_Programmers_Reference_Ch02-114
	AUX_Programmers_Reference_Ch02-115
	AUX_Programmers_Reference_Ch02-116
	AUX_Programmers_Reference_Ch02-117
	AUX_Programmers_Reference_Ch02-118
	AUX_Programmers_Reference_Ch02-119
	AUX_Programmers_Reference_Ch02-120
	AUX_Programmers_Reference_Ch02-121
	AUX_Programmers_Reference_Ch02-122
	AUX_Programmers_Reference_Ch02-123
	AUX_Programmers_Reference_Ch02-124
	AUX_Programmers_Reference_Ch02-125
	AUX_Programmers_Reference_Ch02-126
	AUX_Programmers_Reference_Ch02-127
	AUX_Programmers_Reference_Ch02-128
	AUX_Programmers_Reference_Ch02-129
	AUX_Programmers_Reference_Ch02-130
	AUX_Programmers_Reference_Ch02-131
	AUX_Programmers_Reference_Ch02-132
	AUX_Programmers_Reference_Ch02-133
	AUX_Programmers_Reference_Ch02-134
	AUX_Programmers_Reference_Ch02-135
	AUX_Programmers_Reference_Ch02-136
	AUX_Programmers_Reference_Ch02-137
	AUX_Programmers_Reference_Ch02-138
	AUX_Programmers_Reference_Ch02-139
	AUX_Programmers_Reference_Ch02-140
	AUX_Programmers_Reference_Ch02-141
	AUX_Programmers_Reference_Ch02-142
	AUX_Programmers_Reference_Ch02-143
	AUX_Programmers_Reference_Ch02-144
	AUX_Programmers_Reference_Ch02-145
	AUX_Programmers_Reference_Ch02-146
	AUX_Programmers_Reference_Ch02-147
	AUX_Programmers_Reference_Ch02-148
	AUX_Programmers_Reference_Ch02-149
	AUX_Programmers_Reference_Ch02-150
	AUX_Programmers_Reference_Ch02-151
	AUX_Programmers_Reference_Ch02-152
	AUX_Programmers_Reference_Ch02-153
	AUX_Programmers_Reference_Ch02-154
	AUX_Programmers_Reference_Ch02-155
	AUX_Programmers_Reference_Ch02-156
	AUX_Programmers_Reference_Ch02-157
	AUX_Programmers_Reference_Ch02-158
	AUX_Programmers_Reference_Ch02-159
	AUX_Programmers_Reference_Ch02-160
	AUX_Programmers_Reference_Ch02-161
	AUX_Programmers_Reference_Ch02-162
	AUX_Programmers_Reference_Ch02-163
	AUX_Programmers_Reference_Ch02-164
	AUX_Programmers_Reference_Ch02-165
	AUX_Programmers_Reference_Ch02-166
	AUX_Programmers_Reference_Ch02-167
	AUX_Programmers_Reference_Ch02-168
	AUX_Programmers_Reference_Ch02-169
	AUX_Programmers_Reference_Ch02-170
	AUX_Programmers_Reference_Ch02-171
	AUX_Programmers_Reference_Ch02-172
	AUX_Programmers_Reference_Ch02-173
	AUX_Programmers_Reference_Ch02-174
	AUX_Programmers_Reference_Ch02-175
	AUX_Programmers_Reference_Ch02-176
	AUX_Programmers_Reference_Ch02-177
	AUX_Programmers_Reference_Ch02-178
	AUX_Programmers_Reference_Ch02-179
	AUX_Programmers_Reference_Ch02-180
	AUX_Programmers_Reference_Ch02-181
	AUX_Programmers_Reference_Ch02-182
	AUX_Programmers_Reference_Ch02-183
	AUX_Programmers_Reference_Ch02-184
	AUX_Programmers_Reference_Ch02-185
	AUX_Programmers_Reference_Ch02-186
	AUX_Programmers_Reference_Ch02-187
	AUX_Programmers_Reference_Ch02-188
	AUX_Programmers_Reference_Ch02-189
	AUX_Programmers_Reference_Ch02-190
	AUX_Programmers_Reference_Ch02-191
	AUX_Programmers_Reference_Ch02-192
	AUX_Programmers_Reference_Ch02-193
	AUX_Programmers_Reference_Ch02-194
	AUX_Programmers_Reference_Ch02-195
	AUX_Programmers_Reference_Ch02-196
	AUX_Programmers_Reference_Ch02-197
	AUX_Programmers_Reference_Ch02-198
	AUX_Programmers_Reference_Ch02-199
	AUX_Programmers_Reference_Ch02-200
	AUX_Programmers_Reference_Ch02-201
	AUX_Programmers_Reference_Ch02-202
	AUX_Programmers_Reference_Ch02-203
	AUX_Programmers_Reference_Ch03-000-i
	AUX_Programmers_Reference_Ch03-000-ii
	AUX_Programmers_Reference_Ch03-000-iii
	AUX_Programmers_Reference_Ch03-000-iv
	AUX_Programmers_Reference_Ch03-000-ix
	AUX_Programmers_Reference_Ch03-000-v
	AUX_Programmers_Reference_Ch03-000-vi
	AUX_Programmers_Reference_Ch03-000-vii
	AUX_Programmers_Reference_Ch03-000-viii
	AUX_Programmers_Reference_Ch03-000-x
	AUX_Programmers_Reference_Ch03-000-xi
	AUX_Programmers_Reference_Ch03-000-xii
	AUX_Programmers_Reference_Ch03-000-xiii
	AUX_Programmers_Reference_Ch03-000-xiv
	AUX_Programmers_Reference_Ch03-001
	AUX_Programmers_Reference_Ch03-002
	AUX_Programmers_Reference_Ch03-003
	AUX_Programmers_Reference_Ch03-004
	AUX_Programmers_Reference_Ch03-005
	AUX_Programmers_Reference_Ch03-006
	AUX_Programmers_Reference_Ch03-007
	AUX_Programmers_Reference_Ch03-008
	AUX_Programmers_Reference_Ch03-009
	AUX_Programmers_Reference_Ch03-010
	AUX_Programmers_Reference_Ch03-011
	AUX_Programmers_Reference_Ch03-012
	AUX_Programmers_Reference_Ch03-013
	AUX_Programmers_Reference_Ch03-014
	AUX_Programmers_Reference_Ch03-015
	AUX_Programmers_Reference_Ch03-016
	AUX_Programmers_Reference_Ch03-017
	AUX_Programmers_Reference_Ch03-018
	AUX_Programmers_Reference_Ch03-019
	AUX_Programmers_Reference_Ch03-020
	AUX_Programmers_Reference_Ch03-021
	AUX_Programmers_Reference_Ch03-022
	AUX_Programmers_Reference_Ch03-023
	AUX_Programmers_Reference_Ch03-024
	AUX_Programmers_Reference_Ch03-025
	AUX_Programmers_Reference_Ch03-026
	AUX_Programmers_Reference_Ch03-027
	AUX_Programmers_Reference_Ch03-028
	AUX_Programmers_Reference_Ch03-029
	AUX_Programmers_Reference_Ch03-030
	AUX_Programmers_Reference_Ch03-031
	AUX_Programmers_Reference_Ch03-032
	AUX_Programmers_Reference_Ch03-033
	AUX_Programmers_Reference_Ch03-034
	AUX_Programmers_Reference_Ch03-035
	AUX_Programmers_Reference_Ch03-036
	AUX_Programmers_Reference_Ch03-037
	AUX_Programmers_Reference_Ch03-038
	AUX_Programmers_Reference_Ch03-039
	AUX_Programmers_Reference_Ch03-040
	AUX_Programmers_Reference_Ch03-041
	AUX_Programmers_Reference_Ch03-042
	AUX_Programmers_Reference_Ch03-043
	AUX_Programmers_Reference_Ch03-044
	AUX_Programmers_Reference_Ch03-045
	AUX_Programmers_Reference_Ch03-046
	AUX_Programmers_Reference_Ch03-047
	AUX_Programmers_Reference_Ch03-048
	AUX_Programmers_Reference_Ch03-049
	AUX_Programmers_Reference_Ch03-050
	AUX_Programmers_Reference_Ch03-051
	AUX_Programmers_Reference_Ch03-052
	AUX_Programmers_Reference_Ch03-053
	AUX_Programmers_Reference_Ch03-054
	AUX_Programmers_Reference_Ch03-055
	AUX_Programmers_Reference_Ch03-056
	AUX_Programmers_Reference_Ch03-057
	AUX_Programmers_Reference_Ch03-058
	AUX_Programmers_Reference_Ch03-059
	AUX_Programmers_Reference_Ch03-060
	AUX_Programmers_Reference_Ch03-061
	AUX_Programmers_Reference_Ch03-062
	AUX_Programmers_Reference_Ch03-063
	AUX_Programmers_Reference_Ch03-064
	AUX_Programmers_Reference_Ch03-065
	AUX_Programmers_Reference_Ch03-066
	AUX_Programmers_Reference_Ch03-067
	AUX_Programmers_Reference_Ch03-068
	AUX_Programmers_Reference_Ch03-069
	AUX_Programmers_Reference_Ch03-070
	AUX_Programmers_Reference_Ch03-071
	AUX_Programmers_Reference_Ch03-072
	AUX_Programmers_Reference_Ch03-073
	AUX_Programmers_Reference_Ch03-074
	AUX_Programmers_Reference_Ch03-075
	AUX_Programmers_Reference_Ch03-076
	AUX_Programmers_Reference_Ch03-077
	AUX_Programmers_Reference_Ch03-078
	AUX_Programmers_Reference_Ch03-079
	AUX_Programmers_Reference_Ch03-080
	AUX_Programmers_Reference_Ch03-081
	AUX_Programmers_Reference_Ch03-082
	AUX_Programmers_Reference_Ch03-083
	AUX_Programmers_Reference_Ch03-084
	AUX_Programmers_Reference_Ch03-085
	AUX_Programmers_Reference_Ch03-086
	AUX_Programmers_Reference_Ch03-087
	AUX_Programmers_Reference_Ch03-088
	AUX_Programmers_Reference_Ch03-089
	AUX_Programmers_Reference_Ch03-090
	AUX_Programmers_Reference_Ch03-091
	AUX_Programmers_Reference_Ch03-092
	AUX_Programmers_Reference_Ch03-093
	AUX_Programmers_Reference_Ch03-094
	AUX_Programmers_Reference_Ch03-095
	AUX_Programmers_Reference_Ch03-096
	AUX_Programmers_Reference_Ch03-097
	AUX_Programmers_Reference_Ch03-098
	AUX_Programmers_Reference_Ch03-099
	AUX_Programmers_Reference_Ch03-100
	AUX_Programmers_Reference_Ch03-101
	AUX_Programmers_Reference_Ch03-102
	AUX_Programmers_Reference_Ch03-103
	AUX_Programmers_Reference_Ch03-104
	AUX_Programmers_Reference_Ch03-105
	AUX_Programmers_Reference_Ch03-106
	AUX_Programmers_Reference_Ch03-107
	AUX_Programmers_Reference_Ch03-108
	AUX_Programmers_Reference_Ch03-109
	AUX_Programmers_Reference_Ch03-110
	AUX_Programmers_Reference_Ch03-111
	AUX_Programmers_Reference_Ch03-112
	AUX_Programmers_Reference_Ch03-113
	AUX_Programmers_Reference_Ch03-114
	AUX_Programmers_Reference_Ch03-115
	AUX_Programmers_Reference_Ch03-116
	AUX_Programmers_Reference_Ch03-117
	AUX_Programmers_Reference_Ch03-118
	AUX_Programmers_Reference_Ch03-119
	AUX_Programmers_Reference_Ch03-120
	AUX_Programmers_Reference_Ch03-121
	AUX_Programmers_Reference_Ch03-122
	AUX_Programmers_Reference_Ch03-123
	AUX_Programmers_Reference_Ch03-124
	AUX_Programmers_Reference_Ch03-125
	AUX_Programmers_Reference_Ch03-126
	AUX_Programmers_Reference_Ch03-127
	AUX_Programmers_Reference_Ch03-128
	AUX_Programmers_Reference_Ch03-129
	AUX_Programmers_Reference_Ch03-130
	AUX_Programmers_Reference_Ch03-131
	AUX_Programmers_Reference_Ch03-132
	AUX_Programmers_Reference_Ch03-133
	AUX_Programmers_Reference_Ch03-134
	AUX_Programmers_Reference_Ch03-135
	AUX_Programmers_Reference_Ch03-136
	AUX_Programmers_Reference_Ch03-137
	AUX_Programmers_Reference_Ch03-138
	AUX_Programmers_Reference_Ch03-139
	AUX_Programmers_Reference_Ch03-140
	AUX_Programmers_Reference_Ch03-141
	AUX_Programmers_Reference_Ch03-142
	AUX_Programmers_Reference_Ch03-143
	AUX_Programmers_Reference_Ch03-144
	AUX_Programmers_Reference_Ch03-145
	AUX_Programmers_Reference_Ch03-146
	AUX_Programmers_Reference_Ch03-147
	AUX_Programmers_Reference_Ch03-148
	AUX_Programmers_Reference_Ch03-149
	AUX_Programmers_Reference_Ch03-150
	AUX_Programmers_Reference_Ch03-151
	AUX_Programmers_Reference_Ch03-152
	AUX_Programmers_Reference_Ch03-153
	AUX_Programmers_Reference_Ch03-154
	AUX_Programmers_Reference_Ch03-155
	AUX_Programmers_Reference_Ch03-156
	AUX_Programmers_Reference_Ch03-157
	AUX_Programmers_Reference_Ch03-158
	AUX_Programmers_Reference_Ch03-159
	AUX_Programmers_Reference_Ch03-160
	AUX_Programmers_Reference_Ch03-161
	AUX_Programmers_Reference_Ch03-162
	AUX_Programmers_Reference_Ch03-163
	AUX_Programmers_Reference_Ch03-164
	AUX_Programmers_Reference_Ch03-165
	AUX_Programmers_Reference_Ch03-166
	AUX_Programmers_Reference_Ch03-167
	AUX_Programmers_Reference_Ch03-168
	AUX_Programmers_Reference_Ch03-169
	AUX_Programmers_Reference_Ch03-170
	AUX_Programmers_Reference_Ch03-171
	AUX_Programmers_Reference_Ch03-172
	AUX_Programmers_Reference_Ch03-173
	AUX_Programmers_Reference_Ch03-174
	AUX_Programmers_Reference_Ch03-175
	AUX_Programmers_Reference_Ch03-176
	AUX_Programmers_Reference_Ch03-177
	AUX_Programmers_Reference_Ch03-178
	AUX_Programmers_Reference_Ch03-179
	AUX_Programmers_Reference_Ch03-180
	AUX_Programmers_Reference_Ch03-181
	AUX_Programmers_Reference_Ch03-182
	AUX_Programmers_Reference_Ch03-183
	AUX_Programmers_Reference_Ch03-184
	AUX_Programmers_Reference_Ch03-185
	AUX_Programmers_Reference_Ch03-186
	AUX_Programmers_Reference_Ch03-187
	AUX_Programmers_Reference_Ch03-188
	AUX_Programmers_Reference_Ch03-189
	AUX_Programmers_Reference_Ch03-190
	AUX_Programmers_Reference_Ch03-191
	AUX_Programmers_Reference_Ch03-192
	AUX_Programmers_Reference_Ch03-193
	AUX_Programmers_Reference_Ch03-194
	AUX_Programmers_Reference_Ch03-195
	AUX_Programmers_Reference_Ch03-196
	AUX_Programmers_Reference_Ch03-197
	AUX_Programmers_Reference_Ch03-198
	AUX_Programmers_Reference_Ch03-199
	AUX_Programmers_Reference_Ch03-200
	AUX_Programmers_Reference_Ch03-201
	AUX_Programmers_Reference_Ch03-202
	AUX_Programmers_Reference_Ch03-203
	AUX_Programmers_Reference_Ch03-204
	AUX_Programmers_Reference_Ch03-205
	AUX_Programmers_Reference_Ch03-206
	AUX_Programmers_Reference_Ch03-207
	AUX_Programmers_Reference_Ch03-208
	AUX_Programmers_Reference_Ch03-209
	AUX_Programmers_Reference_Ch03-210
	AUX_Programmers_Reference_Ch03-211
	AUX_Programmers_Reference_Ch03-212
	AUX_Programmers_Reference_Ch03-213
	AUX_Programmers_Reference_Ch03-214
	AUX_Programmers_Reference_Ch03-215
	AUX_Programmers_Reference_Ch03-216
	AUX_Programmers_Reference_Ch03-217
	AUX_Programmers_Reference_Ch03-218
	AUX_Programmers_Reference_Ch03-219
	AUX_Programmers_Reference_Ch03-220
	AUX_Programmers_Reference_Ch03-221
	AUX_Programmers_Reference_Ch03-222
	AUX_Programmers_Reference_Ch03-223
	AUX_Programmers_Reference_Ch03-224
	AUX_Programmers_Reference_Ch03-225
	AUX_Programmers_Reference_Ch03-226
	AUX_Programmers_Reference_Ch03-227
	AUX_Programmers_Reference_Ch03-228
	AUX_Programmers_Reference_Ch03-229
	AUX_Programmers_Reference_Ch03-230
	AUX_Programmers_Reference_Ch03-231
	AUX_Programmers_Reference_Ch03-232
	AUX_Programmers_Reference_Ch03-233
	AUX_Programmers_Reference_Ch03-234
	AUX_Programmers_Reference_Ch03-235
	AUX_Programmers_Reference_Ch03-236
	AUX_Programmers_Reference_Ch03-237
	AUX_Programmers_Reference_Ch03-238
	AUX_Programmers_Reference_Ch03-239
	AUX_Programmers_Reference_Ch03-240
	AUX_Programmers_Reference_Ch03-241
	AUX_Programmers_Reference_Ch03-242
	AUX_Programmers_Reference_Ch03-243
	AUX_Programmers_Reference_Ch03-244
	AUX_Programmers_Reference_Ch03-245
	AUX_Programmers_Reference_Ch03-246
	AUX_Programmers_Reference_Ch03-247
	AUX_Programmers_Reference_Ch03-248
	AUX_Programmers_Reference_Ch03-249
	AUX_Programmers_Reference_Ch03-250
	AUX_Programmers_Reference_Ch03-251
	AUX_Programmers_Reference_Ch03-252
	AUX_Programmers_Reference_Ch03-253
	AUX_Programmers_Reference_Ch03-254
	AUX_Programmers_Reference_Ch03-255
	AUX_Programmers_Reference_Ch03-256
	AUX_Programmers_Reference_Ch03-257
	AUX_Programmers_Reference_Ch03-258
	AUX_Programmers_Reference_Ch03-259
	AUX_Programmers_Reference_Ch03-260
	AUX_Programmers_Reference_Ch03-261
	AUX_Programmers_Reference_Ch03-262
	AUX_Programmers_Reference_Ch03-263
	AUX_Programmers_Reference_Ch03-264
	AUX_Programmers_Reference_Ch03-265
	AUX_Programmers_Reference_Ch03-266
	AUX_Programmers_Reference_Ch03-267
	AUX_Programmers_Reference_Ch03-268
	AUX_Programmers_Reference_Ch03-269
	AUX_Programmers_Reference_Ch03-270
	AUX_Programmers_Reference_Ch03-271
	AUX_Programmers_Reference_Ch03-272
	AUX_Programmers_Reference_Ch03-273
	AUX_Programmers_Reference_Ch03-274
	AUX_Programmers_Reference_Ch03-275
	AUX_Programmers_Reference_Ch03-276
	AUX_Programmers_Reference_Ch03-277
	AUX_Programmers_Reference_Ch03-278
	AUX_Programmers_Reference_Ch03-279
	AUX_Programmers_Reference_Ch05-00-i
	AUX_Programmers_Reference_Ch05-00-ii
	AUX_Programmers_Reference_Ch05-01
	AUX_Programmers_Reference_Ch05-02
	AUX_Programmers_Reference_Ch05-03
	AUX_Programmers_Reference_Ch05-04
	AUX_Programmers_Reference_Ch05-05
	AUX_Programmers_Reference_Ch05-06
	AUX_Programmers_Reference_Ch05-07
	AUX_Programmers_Reference_Ch05-08
	AUX_Programmers_Reference_Ch05-09
	AUX_Programmers_Reference_Ch05-10
	AUX_Programmers_Reference_Ch05-11
	AUX_Programmers_Reference_Ch05-12
	AUX_Programmers_Reference_Ch05-13
	AUX_Programmers_Reference_Ch05-14
	AUX_Programmers_Reference_Ch05-15
	AUX_Programmers_Reference_Ch05-16
	AUX_Programmers_Reference_Ch05-17
	AUX_Programmers_Reference_Ch05-18
	AUX_Programmers_Reference_Ch05-19
	AUX_Programmers_Reference_Ch05-20
	AUX_Programmers_Reference_Ch05-21
	AUX_Programmers_Reference_Ch05-22
	AUX_Programmers_Reference_Ch05-23
	AUX_Programmers_Reference_Ch05-24
	AUX_Programmers_Reference_Ch05-25
	AUX_Programmers_Reference_Ch05-26
	AUX_Programmers_Reference_Ch05-27
	AUX_Programmers_Reference_Ch05-28
	AUX_Programmers_Reference_Ch05-29
	AUX_Programmers_Reference_Ch05-30
	AUX_Programmers_Reference_Ch05-31
	AUX_Programmers_Reference_Ch05-32
	AUX_Programmers_Reference_Ch05-33
	AUX_Programmers_Reference_Ch05-34
	AUX_Programmers_Reference_Ch05-35
	AUX_Programmers_Reference_Ch05-36
	AUX_Programmers_Reference_Ch05-37
	AUX_Programmers_Reference_Ch05-38
	AUX_Programmers_Reference_Ch05-39
	AUX_Programmers_Reference_Ch05-40
	AUX_Programmers_Reference_Ch05-41
	AUX_Programmers_Reference_Ch05-42
	AUX_Programmers_Reference_Ch05-43
	AUX_Programmers_Reference_Ch05-44
	AUX_Programmers_Reference_Ch05-45
	AUX_Programmers_Reference_Ch05-46
	AUX_Programmers_Reference_Ch05-47
	AUX_Programmers_Reference_Ch05-48
	AUX_Programmers_Reference_Ch05-49
	AUX_Programmers_Reference_Ch05-50
	AUX_Programmers_Reference_Ch05-51
	AUX_Programmers_Reference_Ch05-52
	AUX_Programmers_Reference_Ch05-53
	AUX_Programmers_Reference_Ch05-54
	AUX_Programmers_Reference_Ch05-55
	AUX_Programmers_Reference_Ch05-56
	AUX_Programmers_Reference_Ch05-57
	AUX_Programmers_Reference_Ch05-58
	AUX_Programmers_Reference_Ch05-59
	AUX_Programmers_Reference_Ch05-60
	AUX_Programmers_Reference_Ch05-61
	AUX_Programmers_Reference_Ch05-62
	AUX_Programmers_Reference_Ch05-63
	AUX_Programmers_Reference_Ch05-64
	AUX_Programmers_Reference_Ch05-65
	AUX_Programmers_Reference_Ch05-66
	AUX_Programmers_Reference_ChAppA-01
	AUX_Programmers_Reference_ChAppA-02
	AUX_Programmers_Reference_ChAppA-03
	AUX_Programmers_Reference_ChAppA-04
	AUX_Programmers_Reference_ChAppA-05
	AUX_Programmers_Reference_ChAppA-06
	AUX_Programmers_Reference_ChAppA-07
	AUX_Programmers_Reference_ChAppA-08
	AUX_Programmers_Reference_ChAppA-09
	AUX_Programmers_Reference_ChAppA-10
	AUX_Programmers_Reference_ChAppA-11
	AUX_Programmers_Reference_ChAppA-12
	AUX_Programmers_Reference_ChAppA-13
	AUX_Programmers_Reference_ChAppA-14
	AUX_Programmers_Reference_ChAppA-15
	AUX_Programmers_Reference_ChAppA-16
	AUX_Programmers_Reference_ChAppA-17
	AUX_Programmers_Reference_ChAppA-18
	AUX_Programmers_Reference_ChAppA-19
	AUX_Programmers_Reference_ChAppA-20
	AUX_Programmers_Reference_ChAppA-21
	AUX_Programmers_Reference_ChAppA-22
	AUX_Programmers_Reference_ChAppA-23
	AUX_Programmers_Reference_ChAppA-24
	AUX_Programmers_Reference_ChAppA-25
	AUX_Programmers_Reference_ChAppA-26
	AUX_Programmers_Reference_ChAppA-27
	AUX_Programmers_Reference_ChAppA-28
	AUX_Programmers_Reference_ChAppA-29
	AUX_Programmers_Reference_ChAppA-30
	AUX_Programmers_Reference_ChAppA-31
	AUX_Programmers_Reference_ChAppA-32
	AUX_Programmers_Reference_ChAppA-33
	AUX_Programmers_Reference_ChAppA-34
	AUX_Programmers_Reference_ChAppA-35
	AUX_Programmers_Reference_ChAppA-36
	AUX_Programmers_Reference_ChAppA-37
	AUX_Programmers_Reference_ChAppA-38
	AUX_Programmers_Reference_ChAppA-39
	AUX_Programmers_Reference_ChAppA-40
	AUX_Programmers_Reference_ChAppA-41
	AUX_Programmers_Reference_ChAppA-42
	AUX_Programmers_Reference_ChAppA-43
	AUX_Programmers_Reference_ChAppA-44
	AUX_Programmers_Reference_ChAppA-45
	AUX_Programmers_Reference_ChAppA-46
	AUX_Programmers_Reference_ChAppA-47
	AUX_Programmers_Reference_ChAppA-48
	AUX_Programmers_Reference_ChAppA-49
	AUX_Programmers_Reference_ChAppA-50
	AUX_Programmers_Reference_ChAppA-51
	AUX_Programmers_Reference_ChAppA-52
	AUX_Programmers_Reference_ChAppA-53
	AUX_Programmers_Reference_ChAppA-54
	AUX_Programmers_Reference_ChAppA-55
	AUX_Programmers_Reference_ChAppA-56
	AUX_Programmers_Reference_ChAppA-57
	AUX_Programmers_Reference_ChAppA-58
	AUX_Programmers_Reference_ChAppA-59
	AUX_Programmers_Reference_ChAppA-60
	AUX_Programmers_Reference_ChAppA-61
	AUX_Programmers_Reference_ChAppA-62
	AUX_Programmers_Reference_ChAppA-63
	AUX_Programmers_Reference_ChAppA-64
	AUX_Programmers_Reference_ChAppA-65
	AUX_Programmers_Reference_ChAppA-66
	AUX_Programmers_Reference_ChAppA-67
	AUX_Programmers_Reference_ChAppA-68
	AUX_Programmers_Reference_ChAppA-69
	AUX_Programmers_Reference_ChAppA-70
	AUX_Programmers_Reference_ChAppA-71
	AUX_Programmers_Reference_ChAppA-72
	AUX_Programmers_Reference_ChAppA-73
	AUX_Programmers_Reference_ChAppA-74
	AUX_Programmers_Reference_ChAppA-75
	AUX_Programmers_Reference_ChAppA-76
	AUX_Programmers_Reference_ChAppA-77
	AUX_Programmers_Reference_ChAppA-78
	AUX_Programmers_Reference_ChAppA-79
	AUX_Programmers_Reference_ChAppA-80
	AUX_Programmers_Reference_ChAppA-81
	AUX_Programmers_Reference_ChAppA-82
	AUX_Programmers_Reference_ChAppA-83
	AUX_Programmers_Reference_ChAppA-84

