
•
�.. A/UX Text-Editing Tools

Release 3.0

I..IMrrED WARRANTY ON MEDIA AND REPlACEMENT

If you discover physical defects in the manual or in the media on which a software product is distributed, Apple will replace
the media or manual at no charge to you provided you return the item to be replaced with proof of purchase to Apple or an
authorized Apple dealer during the 90-day period after you purchased the software. In addition, Apple will replace damaged
software media and manuals for as long as the software product is included in Apple's Media Exchange Program. While not
an upgrade or update method, this program offers additional protection for up to two years or more from the date of your
original purchase. See your authorized Apple dealer for program coverage and details. In some countries the replacement
period may be different; check with your authorized Apple dealer.

ALL IMPLIED WARRANTIES ON THIS MANUAL, INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, ARE IJMITED IN DURATION TO NINElY (90) DAYS FROM TilE DATE OF
TilE ORIGINAL RETAIL PURCHASE OF THIS PRODUCT.

Even though Apple has reviewed this manual, APPLE MAKES NO WARRANlY OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITII RESPECT TO TillS MANUAL, ITS QUALI1Y, ACCURACY, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS MANUAL IS SOLD "AS IS," AND YOU, TilE PURCHASER, ARE ASSUMING
TilE ENTIRE RISK AS TO ITS QUALI1Y AND ACCURACY.

IN NO EVENT WilL APPLE BE UABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR INACCURACY IN THIS MANUAL, even if advised of the possibility of
such damages.

TilE W ARRAN1Y AND REMEDIES SET FORTII ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTIIERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No Apple dealer, agent, or employee is authorized to make any modification, extension,
or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages,
so the above limitation or exclusion may not apply to you. This warranty gives you specific legal rights, and you may also have
other rights which vary from state to state.

Apple Computer, Inc.
This manual and the software described in it are copyrighted, with all rights reserved. Under the copyright
laws, this manual or the software may not be copied, in whole or part, without written consent of Apple,
except in the normal use of the software or to make a backup copy of the software. The same proprietary
and copyright notices must be affixed to any permitted copies as were affixed to the original. This
exception does not allow copies to be made for others, whether or not sold, but all of the material
purchased (with all backup copies) may be sold, given, or loaned to another person. Under the law,
copying includes translating into another language or format.

You may use the software on any computer owned by you, but extra copies cannot be made for this
purpose.

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the "keyboard" Apple logo
(Option-Shift-K) for commercial purposes without the prior written consent of Apple may constitute
trademark infringement and unfair competition in violation of federal and state laws.

©Apple Computer, Inc. , 1992
20525 Mariani Avenue
Cupertino, CA 95014
(408) 996-1010

Apple, the Apple logo, AppleTalk, A/UX, LaserWriter, and Macintosh are trademarks of Apple Computer,
Inc. , registered in the United States and other countries.

Finder is a trademark of Apple Computer, Inc.

Adobe Illustrator and PostScript are trademarks of Adobe Systems Incorporated, registered in the
United States.

Electrocomp 2000 is a trademark of Image Graphics, Inc.

Helvetica, Linotronic, and Times are registered trademarks of Linotype Company.

lTC Garamond and lTC Zapf Dingbats are registered trademarks of International Typeface Corporation.

Mac Write is a registered trademark of Claris Corporation.

Microsoft is a registered trademark of Microsoft Corporation.

QuarkXPress is a registered trademark of Quark, Inc.

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

Simultaneously published in the United States and Canada.

Mention of third-party products is for informational purposes only and constitutes neither an endorsement
nor a recommendation. Apple assumes no responsibility with regard to the performance or use of these
products.

.� ,

Contents

Tables I xiii

About This Guide I xv

Who should use this guide I xv
What you should already know I xvi
How to use this guide I xvi
Conventions used in this guide I xvi

Keys and key combinations I xvi
Terminology I xvii
The Courier font I xvii
Font styles I xviii
A/UX command syntax I xviii
Manual page reference notation I xix
For more information I xx

1 An Overview of A/UX Text Editors I 1-1
What is a text editor? I l-2
A/UX text editors I l-2

TextEditor I 1-2
The vi screen editor I l-3
The ex line editor I l-4
The ed line editor I l-4
The sed stream editor I l-4
Using commands with A/UX text-editing programs I 1-5
Entering text I l-5

Changing the default editor I 1-6
Changing the default editor for a user account I 1-6
Changing the default editor for the root account I 1-7

2 Using TextEditor I 2-1
What is TextEditor? I 2-2
Creating a new file I 2-3

Starting TextEditor I 2-3
Entering text I 2-3

vi Contents

Cutting and pasting text I 2-4
Using the Cut command I 2-5
Using the Copy command I 2-5
Using the Paste command I 2-5

Saving a TextEditor file I 2-6
Using additional commands to save a TextEditor file I 2-6

The Save As command I 2-6
The Save a Copy command I 2-6
The Revert to Saved command I 2-6

Editing an existing file I 2-7
Opening a text file I 2-7
Using TextEditor's search-and-replace commands I 2-8

Using the Find command I 2-8
Using the Find Same command I 2-9
Using the Find Selection command I 2-9

Replacing text I 2-10
Using the Replace command I 2-10
Using the Display Selection command I 2-1 1
Using the Replace Same command I 2-1 1

Formatting and other features I 2-12
Changing fonts I 2-12

Selecting tab settings I 2-13
Automatically aligning text I 2-13
Showing invisible characters I 2-14
Shifting text left I 2-14
Shifting text right I 2-14

Arranging multiple windows I 2-15
Tiling windows I 2-15
Stacking windows I 2-16

Marking a place in the file I 2-16
Removing markers from text I 2-17

Printing I 2-18
Printing an entire document I 2-18
Printing a portion of a document I 2-19

Quitting TextEditor I 2-19

3 Using the vi Screen Editor I 3-l
What is vi? I 3-2

The relationship between vi and ex I 3-2
Starting vi I 3-3

Starting vi and opening an existing file/ 3-3

Syntax and initialization I 3-6
Command syntax for the vi editor I 3-6
Initialization procedures of the vi editor I 3-7
Opening a file I 3-7
Read-only viewing I 3-7
Opening a file for editing I 3-8
The different modes of vi I 3-9
Switching to ex command mode I 3-9
Using special keys in vi I 3-10

Displaying text and moving within a file I 3-1 1
Using arrow keys to move within a file I 3-11
Using motion commands to move within a file I 3-11
Moving by text block I 3-14
Moving to a specific line in a file I 3-14
Marking text I 3-15
Scrolling and paging through a file I 3-15

Inserting text I 3-16
Correcting text as you insert I 3-17

Deleting text I 3-18
Changing text I 3-19

Combining operators and motions I 3-20
Undoing the last command I 3-21
Repeating the last command I 3-21
Storing text in named buffers I 3-22

Copying and moving text I 3-23
Recovering lost text I 3-24
Regular expressions and searching I 3-25
Working with multiple files I 3-26

Contents vll

Using shell commands in vi I 3-26
Setting options I 3-27
Mapping and abbreviations I 3-28

Preventing nonprinting characters from being interpreted as commands I 3-28
Using the map command to create macros I 3-28
Abbreviations I 3-31

Additional features I 3-32
Saving files and quitting vi I 3-32

Troubleshooting I 3-32
Redrawing the screen I 3-33
Speeding up a slow system I 3-33
Creating temporary file space I 3-34
Recovering lost files I 3-35

Command summary I 3-35

4 Using the ex Line Editor I 4-l
What is ex? I 4-2

viii Contents

Starting ex I 4-2
Syntax and initialization I 4-2

Command syntax for the ex line editor I 4-3
Initialization procedures of the ex editor I 4-4
Opening a file I 4-4
The different modes of ex I 4-5
Switching to vi I 4-5
Using special keys in ex I 4-6

Displaying text and selecting lines within a file I 4-6
Selecting lines within a file I 4-6
Using motion commands to move within a file I 4-8
Determining line appearance I 4-9
Determining the appearance of the current line on the screen I 4-10

Inserting text I 4-1 1
Deleting text I 4-1 1
Changing text I 4-12
Copying and moving text I 4-14

Regular expressions and searching I 4-16
Turning off metacharacters I 4-17

Working with multiple files I 4-18
Working with the current file I 4-18
Working with alternate files I 4-18
Opening multiple files at startup I 4-19

Displaying the argument list I 4-19
Editing the next file on the argument list I 4-19
Replacing the argument list I 4-20
Returning to the first file on the argument list I 4-20

Editing a new file I 4-21
Copying another file to the current buffer I 4-21

Examining the characteristics of the current file I 4-22
Changing the current file I 4-22

Using shell commands in ex I 4-23
Running another program from ex I 4-23
Directing command output to the buffer I 4-24
Sending the buffer to shell commands I 4-24
Writing shell scripts using ex commands I 4-24

Setting options I 4-26
Listing options I 4-27
When to set options I 4-28
Command option summary and descriptions I 4-28
Summary of ex options I 4-37

Mapping and abbreviations I 4-38
Additional ex commands I 4-38

Marking text I 4-39
Recovering lost text I 4-39
Editing programs I 4-40

Saving text and quitting ex I 4-41
Quitting ex I 4-42
Saving a file and quitting ex simultaneously I 4-42

Error conditions I 4-43
Limitations I 4-43
Recovering lost files I 4-43

Command summary I 4-44

'-----�---------------

Contents ix

5 Using the ed Line Editor I 5-l
What is ed? I 5-2
Starting ed I 5-2

Displaying a prompt I 5-3
Error messages I 5-3
Inserting text I 5-3
Saving text I 5-5
Quitting ed I 5-6

Editing an existing file I 5-6
Displaying the contents of the buffer I 5-7
Reading text into the buffer I 5-10
Deleting text I 5-11
Inserting text I 5-12
Changing text I 5-13
Substituting text I 5-13
Global commands I 5-16
Searching for a character string I 5-17
Moving text I 5-20

Using special characters in ed I 5-20
The period(.) character I 5-21
The caret (A) character I 5-21
The dollar sign($) character I 5-22
The asterisk(*) character I 5-22
The bracket ([]) characters I 5-23
The ampersand(&) character I 5-23
The backslash (\) character I 5-24

Command summary I 5-25

6 Using the sed Stream Editor I 6-l
What is sed? I 6-2

x Contents

Overall operation I 6-2
Command options I 6-3

Command syntax I 6-3

Using commands I 6-4
Editing command syntax I 6-6
Command application order I 6-7
Pattern space I 6-7

Addressing I 6-7
Line number addresses I 6-8
Context addresses I 6-8
Examples I 6-10

Command summary I 6-1 1
Line-oriented commands I 6-11
The substitute command I 6-14
Input/ output command summary I 6-17
Multiple input line commands I 6-18
Input commands I 6-19
Control-flow commands I 6-20
Additional commands I 6-21

Contents xi

Tables

Chapter 1 An Overview of A/UX Text Editors I 1-1
Table 1-1 AIUX text editors I 1-3

Chapter 2 Using TextEditor I 2-1
Table 2-1 Invisible characters I 2-14

Chapter 3 Using the vi Screen Editor I 3-1
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 3-10
Table 3-1 1

Motion commands i n vi I 3-12
Scrolling commands in vi I 3-16
Insert commands in vi I 3-17
Delete commands in vi I 3-18
Replace commands in vi I 3-19
Undo commands in vi I 3-21
Repeat commands in vi I 3-22
Yank and put commands in vi I 3-23
Summary of ex command options I 3-27
Summary of vi editing commands I 3-36
Summary of vi insert commands I 3-40

Chapter 4 Using the ex Line Editor I 4-1
Table 4-1
Table 4-2
Table 4-3

ex flag options I 4-3
ex motion commands I 4-9

Summary of ex options I 4-37

Chapter 6 Using the sed Stream Editor I 6-1

xiv Tables

Table 6-1
Table 6-2
Table 6-3

s ed command options I 6-4
sed line-oriented commands I 6-13
s ed input and output commands I 6-17

About This Guide

Welcome to A/UX Text-Editing Tools. This book presents detailed information on the five
text editors provided by A/UX. This guide describes how to use the various text editors
to create and edit text. The companion book, A/UX Text-Processing Tools, describes how
to use UNIX® tools to format text, tables, graphs, equations, and line drawings. The two
books together are the only books you'll need to design documents to suit your specific
needs.

This guide contains the following chapters:

• Chapter 1 , "An Overview of A/UX Text Editors"

• Chapter 2, "Using Text Editor"

• Chapter 3, "Using the vi Screen Editor"

• Chapter 4 , "Using the ex Line Editor"

• Chapter 5, "Using the ed Line Editor"

• Chapter 6, "Using the s ed Stream Editor"

Who should use this guide

This book is geared toward the person already familiar with a UNIX text editor and
needing further information on its use. It helps the person unfamiliar with UNIX text
editors by providing an overview of the editors. It also describes how to use the
Macintosh-style editor, TextEditor, which is the easiest editor to learn.

What you should already know

To use TextEditor, you need to know the basics of using a Macintosh, such as double
clicking the mouse to open a file and dragging with the mouse to choose a menu
command. To use the other editors, you need to know the basics of using CommandShell,
the application that provides the command-line interface. CommandShell is described in
AIUX Essentials.

How to use this guide

If you are new to UNIX text editors, first read Chapter 1, "An Overview of A/UX Text
Editors, " to learn which editor best fits your needs. Then go directly to the chapter
describing the editor you want to use. If you are unfamiliar with A/UX itself, first see
AIUX Essentials.

Conventions used in this guide

A/UX guides follow specific conventions. For example, words that require special
emphasis appear in specific fonts or font styles. The following sections describe the
conventions used in all A/UX guides.

Keys and key combinations

Certain keys on the keyboard have special names. These modifier and character keys,
often used in combination with other keys, perform various functions. In this guide, the
names of these keys are in Initial Capital letters followed by SMALL CAPITAL letters.

The key names are

CAPS LOCK

COMMAND(�)

CONTROL

DELETE

xvi About This Guide

DowN ARROW (J,)
ENTER

ESCAPE

LEFT ARROW (�)

OPTION SPACE BAR

RETURN TAB

RIGHT ARROW (�) UP ARROW (i)
SHIFT

-- ----...._

Sometimes you will see two or more names joined by hyphens. The hyphens
indicate that you use two or more keys together to perform a specific function. For
example,

Press COMMAND-K

means "Hold down the CoMMAND key and then press the K key."

Terminology

In A/UX guides, a certain term can represent a specific set of actions. For example, the
word enter indicates that you type a series of characters on the command line and press
the RETURN key. The instruction

Enter l s

means "Type l s and press the RETURN key."

Here is a list of common terms and the corresponding actions you take.

Term

Click

Drag

Choose

Select

Type

Enter

Action

Press and then immediately release the mouse button.

Position the mouse pointer, press and hold down the mouse button
while moving the mouse, and then release the mouse button.

Activate a command in a menu. To choose a command from a pull
down menu, position the pointer on the menu title and hold down the
mouse button. While holding down the mouse button, drag down
through the menu until the command you want is highlighted. Then
release the mouse button.

Highlight a selectable object by positioning the mouse pointer on the
object and clicking.

Type a series of characters without pressing the RETURN key.

Type the series of characters indicated and press the RETURN key.

The Courier font

Throughout A/UX guides, words that appear on the screen or that you must type exactly
as shown are in the Courier font.

About This Guide xvii

For example, suppose you see this instruction:

Type dat e on the command line and press RETURN.

The word dat e is in the Couri er font to indicate that you must type it.

Suppose you then read this explanation:

After you press Return, information such as this appears on the screen:

Tue s Oct 17 1 7 : 0 4 : 0 0 PDT 1989

In this case, courier is used to represent the text that appears on the screen.
All A/UX manual page names are also shown in the Couri er font. For example,

the entry 1 s(l) indicates that 1 s is the name of a manual page in an A/UX reference
manual . See "Manual Page Reference Notation," later in this preface, for more
information on the A/UX command reference manuals.

Font styles

Italics are used to indicate that a word or set of words is a placeholder for part of a
command. For example,

cat filename

tells you that filename is a placeholder for the name of a file you want to display. For
example, if you wanted to display the contents of a file named E 1 v i s , you would type
the word Elvi s in place of filename. In other words, you would enter

cat E lvi s

New terms appear in boldface where they are defined. Boldface is also used for
steps in a series of instructions.

A/UX command syntax

A/UX commands follow a specific command syntax. A typical A/UX command gives the
command name first, followed by options and arguments. For example, here is the
syntax for the we command: -�

we [-1] [-w] [- c] [filename] ...

:xviii About This Guide

-------- ------- -- ----------���������-������-·

/----

In this example, we is the command; - 1 , -w, and - c are options; and filename

is an argument. Brackets ([]) enclose elements that are not necessary for the command
to execute. The ellipsis (. . .) indicates that you can specify more than one argument.
Brackets and ellipses are not to be typed. Also, note that each command element is
separated from the next element by a space.

The following table gives more information about the elements of an A/UX
command.

Element

command

option

argument

[]

Description

The command name.

A character or group of characters that modifies the command. Most
options have the form - option) where option is a letter representing
an option. Most commands have one or more options.

A modification or specification of a command, usually a filename or
symbols representing one or more filenames.

Brackets used to enclose an optional item-that is, an item that is not
essential for execution of the command.

Ellipses are used to indicate that you can enter more than one
argument.

For example, the we command is used to count lines, words, and characters in a
file. Thus, you can enter

we -w Pri s c i l la

In this command line, -w is the option that instructs the command to count all of
the words in the file, and the argument Pr i sc i l la is the file to be searched.

Manual page reference notation

The AIVX Command Reference) the AIVX Programmer)s Reference) the AIVX System

Administrator
)
s Reference) the X11 Command Reference for AIUX, and the X11

Programmer's Reference for AIVX contain descriptions of commands, subroutines, and
other related information. Such descriptions are known as manual pages (often
shortened to man pages). Manual pages are organized within these references by section
numbers.

About This Guide xix

The standard A/UX cross-reference notation is

command (section)

where command is the name of the command, file, or other facility; and section is the
number of the section in which the item resides.

• Items followed by section numbers (1M) and (8) are described in the A!UX System �-

Administrator's Reference.

• Items followed by section numbers (1) and (6) are described in the A!UX Command

Reference.

• Items followed by section numbers (2), (3), (4), and (5) are described in
the A!UX Programmer's Reference.

• Items followed by section number (lX) are described in the X11 Command

Reference for A!UX.
• Items followed by section numbers (3X) and (3Xt) are described in the X11

Programmer's Reference for A!UX.

For example

cat (l)

refers to the command cat , which is described in Section 1 of the A!UX Command

Reference.

You can display manual pages on the screen by using the man command. For
example, you could enter the command

man cat

to display the manual page for the cat command, including its description, syntax,
options, and other pertinent information. To exit a manual page, press the SPACE BAR
until you see a command prompt, or type q at any time to return immediately to your
command prompt.

For more information

To find out where you need to go for more information about how to use A/UX, see
Road Map to A!UX. This guide contains descriptions of each A/UX guide and ordering
information for all the guides in the A/UX documentation suite.

xx About This Guide

1 An Overview of A/UX
Text Editors

What is a text editor? I l-2

A/UX text editors I l-2

Changing the default editor I l-6

This chapter provides a brief overview of each of the five text -editing programs available

with A/UX.

What is a text editor?

A text editor is a program that accepts text from the keyboard, stores it in a file, and
allows you to edit it. A text -editing program differs from a word-processing program in
one significant way: a text-editing program operates in distinct modes, whereas a word
processing program provides a seamless integration of text-entering, -editing, and
-formatting functions. With the exception of TextEditor, the editors provided with NUX
are strictly text-editing programs.

TextEditor combines features of both word-processing and text-editing programs. It
operates as a word processor by allowing you to enter, edit, and format text in a
seamless manner. However, it operates as a text editor by storing the formatting
information in a separate file . Storing the formatting information separately allows
application programs to access the file with or without the formatting information.

There are three types of text -editing programs: interactive, line, and stream. An
interactive editor allows you to enter text and text-editing commands while you are
viewing the text. A line editor limits you to working one line at a time on file contents.
A stream editor is a noninteractive editor that you use to edit an existing file . Using a
stream editor makes the editing process much faster, but you don't see your changes
until the editor has finished with the entire document. Stream-editing commands are
usually kept in a file. You call the commands from the file instead of entering them from
the keyboard.

A/UX text editors

Your A/UX system has five text-editing programs: TextEditor, vi , ex, ed, and s ed.

These are described briefly in the sections that follow. Each of these editors is discussed
in a separate chapter in this manual. Table 1-1 provides a brief overview of each editor.

TextEditor

TextEditor, the default screen editor for NUX, is the most intuitive and easy to use of all
the NUX editors. It resembles many of the basic word-processing applications currently

1-2 Chapter 1 An Overview of A/UX Text Editors

�-,

�-
/

available for the Macintosh computer. You open, close, save, quit, cut, paste, and
perform many other basic editing tasks by choosing commands from menus. If you are
new to A/UX or the UNIX® operating system, you are likely to use this editor for most of
your basic editing tasks. TextEditor is the only editor that supports the use of the mouse.

Table 1-1 A/UX text editors

Editor Main feature Primary use

TextEditor Mouse-based editor. Creates new text files and edits
This editor is the easiest to learn. existing ones.

vi UNIX-standard screen editor. Creates new text files and edits
This editor is the most versatile. existing ones.

ex Line editor. This editor includes Teams with vi to create a powerful
many search, replace, and A/UX text -editing system.
movement commands.

ed Line editor. This editor works in both Edits A/UX system files from the
Macintosh and A/UX environments. A/UX Startup application when

A/UX isn't running.

sed Stream editor. This editor allows Used for batch editing. Takes input
quick, one-pass editing with filters. from a file, not the keyboard.

The vi screen editor

The vi screen editor is the most widely used UNIX text -editing tool. The vi , or
visual, editor was derived from another popular UNIX text -editing tool, the ex line
editor program. Although the ex line editor is not a true visual editor, it has many
powerful commands. Since vi was built around ex, you can access most ex

commands directly from vi . Most users prefer to use vi as a front -end editor and
access ex commands from ex command mode. In essence, vi works best when it
is teamed with ex.

In addition to ex commands, vi has many cursor-movement commands. You
can move the cursor character, word, line, sentence, paragraph, or section. You can also
move the cursor to a particular character string. The vi editor does not support the use
of the mouse.

A/UX text editors 1-3

The ex line editor

The ex editor provides a single-line window into the text-editing buffer and has the
advantages of reduced system overhead and accessibility from a shell program. It is most
commonly used in conjunction with the vi editor, which is an offspring of ex itself.

The ex editor is a powerful editing tool for making substitutions and giving global
commands. The ex editor can search for a pattern and perform substitutions on any
string that matches that pattern. This greatly increases the power and flexibility of
substitution commands.

The ex editor has options that define the editing environment for the ex and vi

editors (such as the margin for word wraparound on your screen, automatic indent
following a line that starts with a tab character, the screen display of line numbers, a
special environment for editing programs, and so on). The ex editor also has macro
facilities that allow you to "map" complex editing sequences to a single key combination
or abbreviate a long string to a short one.

All these ex capabilities are accessible not only from vi but also from shell
programs using the ex editor alone. The ex line editor does not support the use of
the mouse.

The ed line editor

The ed line editor provides a single-line window into the text -editing buffer. This
editor devotes no time or system resources to redrawing the screen and can be an
efficient way to enter text when you are working at 1200 baud or lower. In A/UX, ed is
the only editor that allows you to work on A/UX startup files such as ini t tab, when
you cancel the startup application (formerly known as sash) . You may also use ed to
edit a shell program since ed does not operate on a full screen of text.

The sed stream editor

The s ed stream editor is useful for creating filters for batch editing. Batch editing
means running a file through a series of predetermined editing commands (filters) that
automatically edit the file without user supervision.

1-4 Chapter 1 An Overview of A/UX Text Editors

---- -----�·------- - -------- ------------------ -------

The s ed stream editor copies the input file(s) to the standard output, performing
various user-specified editing tasks (such as substituting or deleting words) on the file as
it "flows" by. These tasks may be specified on the command line or, more commonly,
stored in a file for repeated use.

Because of its batch nature, sed is extremely useful for building filters to edit or
modify text without user supervision. Thus, s ed may run in the background, allowing
you to perform other tasks while the editing takes place. The s ed stream editor is also
useful for editing very large files, since it doesn't use a buffer.

The changes specified in the sed script (or on the command line) affect only a
copy of the file, not the original file itself. The output of the s ed command is directed
to the standard output, usually your terminal screen. You may, however, redirect the
output to a file or to a pipeline for further filtering by other A/UX utilities.

Using commands with NUX text-editing programs

When you begin an editing session, everything you type is interpreted as a command.
Each A/UX editor has its own set of commands, but certain commands may be the same
in all of them.

A/UX editor commands are usually single characters that stand for a function. It may
be somewhat difficult to remember the abbreviation for each command, but for the most
part the command names are mnemonic. That is, the abbreviation for each command
corresponds to the function of the command. For example, d stands for de lete , w

stands for wri te , and q stands for qui t .

Entering text

When you open a file, the editor copies the file into the editing buffer. The editing
buffer is a temporary workspace similar to a blank sheet of paper. When you create a
file, you insert text into the buffer. When you modify a file, you make the changes to a
copy of the file in the buffer.

You can modify the text in the buffer, insert new text, delete text, move blocks of
text to new locations, substitute one string of text for a second at every occurrence of the
first, and so on. Remember that everything you do to the buffer contents is temporary
until you write the contents back to the file.

A/UX text editors 1-5

Changing the default editor

As shipped, TextEditor is the default editor for A/UX. This means that when you double
click the icon of a text-only file , TextEditor opens the file .

The default editor can be different for different accounts. For example, you can set
the text editor for the root account to vi , and leave TextEditor as the default editor for
user accounts.

Each time you log in to a user account or the root account, the system creates your
working environment by reading a set of environment variables. These environment
variables are stored in the . l ogin file if you use the C shell (the default shell for user
accounts) or in . prof i 1 e if you use the Korn or the Bourne shell. You change the
default editor by setting an environment variable in one of these files.

Changing the default editor for a user account

Follow these steps to change the default editor for a user account:

1 Log in to the root account.

You must be logged in to the root account to edit the . 1 og in or . pro f i 1 e files.

If you use the default shell for user accounts, your shell is the C shell; skip to step 3.

2 Find out which shell your account uses by looking in 1 etc 1 pas swd.

To open a CommandShell window, choose CommandShell from the Apple (tl) menu
and New from the File menu. Enter

cat l etc lpasswd

Find the line beginning with your account name. The last characters on this line specify
the shell in use by your account: c sh for the C shell, sh for the Bourne shell, and
ksh for the Korn shell.

1-6 Chapter 1 An Overview of A/UX Text Editors

�-

3 If your account uses the C shell, open the . l ogin ftle in your account's home

directory.

To make the Finder active, choose Finder from the Apple menu. Open your account's
home directory by double-clicking its folder. Open . l ogin by double-clicking it. Skip
to step 5 .

4 If your account uses the Bourne or Kom shell, open .pro f i le in your
account's home directory.

To make the Finder active, choose Finder from the Apple menu. Open your account's
home directory by double-clicking its folder. Open . pro f i 1 e by double-clicking it.

5 Under the line beginning with setenv TERM add a new line as follows:

set env F INDER_EDITOR editorpathname

Replace the word in italics with the full pathname of the editor you wish to make the
default editor. For example, to set vi as your default editor, type

set env F INDER_EDITOR /usr /bin/vi

Or to set TextEditor as your default editor, type

set env F INDER_EDITOR /rnac /bin / Text Edi tor

6 Save the change and close the ftle.

7 To effect the change, log out and log back in to the account.

1

Changing the default editor for the root account

Follow these steps to change the default editor for the root account:

Log in to the root account.

You must be logged in to the root account to edit the . l ogin or . pro f i l e files.

If you use the default shell for the root account, your shell is the Bourne shell; skip to
step 4.

Changing the default editor 1-7

2 Find out which shell the root account uses by looking in 1 e t c / pas swd.

To open a CommandShell window, choose CommandShell from the Apple menu and
choose New from the File menu. Enter

cat / et c / pa s swd

Find the line near the top of the file beginning with root . The last characters on this
line specify the shell in use by the root account: c sh for the C shell, sh for the
Bourne shell, and ksh for the Korn shell.

3 If the C shell is in use, open the . l ogin fde for the root directory.

Double-click the I disk to open it. Double-click . l ogin to open this file.

Skip to step 5 .

4 If the Bourne or Kom shell is in use, open . pro f i 1 e for the root directory.

Double-click the I disk to open it. Double-click . pro f i l e to open this file .

5 Under the line beginning with set env TERM add a new line as follows:

set env FINDER_EDITOR editorpathname

Type the line, and replace the word in italics with the full pathname of the editor you
wish to make the default editor. For example, to set vi as your default editor, type

set env F INDER_EDITOR /usr /bin /vi

Or to set TextEditor as your default editor, type

set env FINDER_EDITOR / mac /bin/Text Editor

6 Save the change and close the fde.

7 To effect the change, log out and log back in to the root account.

1-8 Chapter 1 An Overview of A/UX Text Editors

2 Using TextEditor

What is TextEditor? I 2-2

Creating a new file I 2-3

Saving a TextEditor file I 2-6

Editing an existing file I 2-7

Formatting and other features I 2-12

Printing I 2-18

Quitting TextEditor I 2-19

This chapter provides a detailed description of the features and capabilities of

TextEditor, the only mouse-based text-editing program included with A/UX. TextEditor

is the default A/UX editor and is compatible with all text-only files. In other words,

TextEditor can open and edit files created by vi , ed, ex, and s ed.

What is TextEditor?

2-2

TextEditor is the default editor for A/UX. It allows you to create and edit text files using
the mouse and menu commands in the traditional Macintosh manner. If you are just
learning to use A/UX and the different text-editing tools it provides, TextEditor is the best
place to start.

TextEditor creates a file that contains only the text characters that you type on your
keyboard (including tab and return characters) . This is called a text-only fde (or an
ASCD text fde). Any file you create with word-processing or desktop-publishing
software, unless you save it as "text only," contains many formatting commands.
Although these formatting commands are not visible on your screen, they confuse other
programs that try to use your file. Any text editor or word processor, including vi , ed,

ex, and sed, can read text-only files. Moreover, you can use the editor to write
programs or shell scripts, which cannot contain hidden formatting characters.

To preserve the text-only nature of TextEditor's text files and still allow you certain
formatting choices, TextEditor gives you the option of saving the file's formatting
information. It saves formatting information i11 a separate file called a resource fork and
saves the text characters in a text-only file. These formatting choices include adjusting
the tab settings and choosing fonts, among others. These features are described later in
this chapter.

Because TextEditor reads and writes text-only files, you can use it to work with files
created with any other text-only text editor. Thus, you can edit Mac Write® files saved
with the Text-Only option. When you choose the Open command, TextEditor's standard
File dialog box displays a list of all text files in the folder (or the "current directory, " in
UNIX parlance), regardless of what program was used to create the file.

The resource fork has the same filename as the text file, but it is preceded by a
percent sign (o/o).

Like most UNIX systems, A/UX 3.0 also comes with a commonly used UNIX text
editor called v i . See Chapter 3, "Using the vi Screen Editor," for more information. If
you are an experienced vi user, you can continue to use vi to read and write text
files from the CommandShell command line. Naturally, TextEditor can read and edit text
files created with vi , and vice versa.

Chapter 2 Using TextEditor

Creating a new file

The following sections teach you how to start TextEditor and create a new file .

Starting TextEditor

You start TextEditor from a CommandShell window by following these steps:

1 Choose CommandShell from the Apple menu.

The Apple menu is located at the far left of the menu bar.

2 Type TextEdi tor at the prompt.

This command is case-sensitive, so make sure you type the correct capital letters.

3 Press RE11JRN.
The TextEditor application starts, and an untitled window appears.

Entering text

Of all the interactive editors included with A/UX, TextEditor is the only one that takes
full advantage of the mouse. You can use the mouse to move the cursor anywhere on
the screen. You can highlight text for deletion and insertion, or place the cursor in a
specific location in a file .

In TextEditor, you insert text just as you do in most common word-processing
programs. Text you type at the keyboard appears on the screen at the location of the
blinking text-insertion point, or 1-beam. By default, the 1-beam appears at the very top
of the screen when you first open a new or existing file.

Try typing a few lines of text. Notice that the text does not automatically move to the
next line when you type past the right edge of the screen. Use the mouse to move the
cursor to the beginning of a word that is near the right edge of the screen; then press
RETURN. You may also move the insertion point to the left by pressing and holding the
LEFT-ARROW key.

Creating a new file 2-3

Cutting and pasting text

One of TextEditor's most useful features is the ability to cut, paste, and move text. To
select a specific range of text, you must highlight it. To highlight or select text, follow
these steps:

1 Place the 1-beam before the ft.rSt letter of the text you wish to select.

2 Hold down the mouse button and move the mouse so that the 1-beam moves to
the end of the desired text.

3 Release the mouse button.

The highlighted text appears as light letters on a dark background, rather than dark
on light.

Dear Phi I :

I rece i ved your I e t ter a bOLl t the purchase of I and for· a new
o f f i ce bu i I d i ng .

I t ' s true that the f i nancial repor-ts for the
I ast quarter Clt'e not it yet, but there is a gener··a l fee I in·�

that the number·s l ook good. This might be the per·fect time
to subm i t I an .

2-4 Chapter 2 Using TextEditor

You can perform various operations on a block of selected text. If you perform a Cut
or Copy operation, the selected text is sent to the Clipboard The Clipboard is a
temporary buffer in which TextEditor stores text. You can view the contents of the
Clipboard by choosing Show Clipboard from the Edit menu.

Using the Cut command

The Cut command copies any selected text to the Clipboard and removes the text from
the window. The text is stored in the Clipboard until it's replaced by text sent there as a
result of another Cut or Copy command. The Command-key equivalent is CoMMAND-X.
Since the text is removed from the screen, the Cut command is most commonly used to
move blocks of text within a file.

Using the Copy command

The Copy command copies any selected text to the Clipboard but does not remove
it from the window. The text is stored in the Clipboard until it's replaced by text sent
there as a result of another Cut or Copy command. The Command-key equivalent is
CoMMAND-C. Since the text isn't removed from the screen, the Copy command is most
commonly used to move blocks of text between different files .

Using the Paste command

The Paste command inserts the contents of the Clipboard into the window at the
insertion point. The Command-key equivalent is COMMAND-V. You may paste the
contents of the Clipboard as many times as you wish, but remember that the contents
of the Clipboard change the next time you give a Cut or Copy command.

Creating a new file 2-5

Saving a TextEditor file

Four commands allow you to save a TextEditor file. The first is Save. If the file is already
named, simply choose Save from the File menu or press COMMAND-S to save the current
document. If you haven't given the file a name, TextEditor displays a dialog box
prompting you to type a name for the new file.

Using additional commands to save a TextEditor file

In addition to Save, TextEditor offers three commands that allow you to save your
document. They are Save As, Save a Copy, and Revert to Saved.

The Save As command

The Save As command displays a dialog box that allows you to make a copy of the
currently active file, which you must then save under a different name. This action saves
the current contents of the window under the new filename and allows you to continue
editing the new file. The old file is closed without saving, under its original name. You
generally use this command when you are working on a file that already has a name.
This way, you can save the edited file under a new name, leaving the original intact.

The Save a Copy command

The Save a Copy command displays a dialog box that allows you to save the current
state of the active window to a new file with the name Copy Of Filename. You can then
continue editing the old file.

The Revert to Saved command

Choose the Revert to Saved command if you want to throw away any changes you have
made since you last saved the file in the active window. This command is dimmed if the ·�

file has not been modified since you last saved it.

2-6 Chapter 2 Using TextEditor

Editing an existing file

You can use TextEditor to open text files created with vi , ed, and ex. Later chapters
describe the functions of the different editors.

Opening a text file

Suppose you want to edit a text file that already exists. If TextEditor is running, you can
open the file for editing by choosing Open from the File menu. This command allows
you to open any text file, regardless of what application was used to create the file.

If you are using the Finder operating system software and if TextEditor is your
system's default text editor, you need only double-dick the icon of the file to be edited
(or click it once to select it, and then choose Open from the File menu). TextEditor starts
running, and the file you have clicked is opened for editing.

+ Note To open a file, you need to have read permission to it. If you open a file for
which you have read but not write permission, a pencil with a slash over it appears at
the bottom left of the window, as shown in the following figure. You can read the
document but you cannot change it. File access permissions are explained in A!UX
Essentials. •

-o /•cshrc
!'* . cshrc
samp I e of commands common I y found i n . cshrc
The . cshrc f i I e is run every t i me you invoke Csh
We have found the fo l l owing set tings to be use fu l
Fee l free to make modifications and add your own

se t the l ogin she l I prompt
i f ($?promp t) then # interactive shel I

se t prompt s tring
switch ("$prompt")

case '# ' :
case ·� ':

set prompt=" 'hos tname ' . $LOGNAME \ ! $prompt"
endsw

:�;�:
t

a 1 ; ase" use a persona I a I I as In p I ace of the coo�nd I t r<�
{\.

Write permission --'0.1¢ I kiii!iiiiiiiiiliiiiililiiiiiiiiiii!i::ii!iii!iii!iUi!i!i!i!i!i!i!i!i!i!m::::::i!i!i!i!i!i!iH!i!i!ii!ili!i!mi!Hi!i!i!Hi!iiliiiii!i!iii!i!immm:mJ ¢ QJ
denied

Editing an existing file 2-7

Using TextEditor's search-and-replace commands

One of the most important time-saving features of an interactive text-editing application
is its ability to search through a document for a specific word, phrase, or string of
characters and to change it automatically. With other interactive editors such as vi , you
must remember certain commands and options to perform these search-and-replace
tasks. TextEditor has built-in menu commands that make finding and changing text
quick and easy.

Using the Find command

This command displays the Find dialog box and searches for the string that you type in
the "Find what string?" text field. By default, the editor searches forward from the
currently selected text in the active window (and does not wrap around). The
Command-key equivalent is CoMMAND-F. The Find dialog box has five options.

Find what string?

I Goon

0 Literal
@ Entire Word

H Find B

IZl Case SensitiLJe
0 Search Backwards
0 Wrap-Rround Search

Cancel

LiteraL· Click the Literal button to search for a string of characters even when they are
embedded in another word. Thus, if you click Literal and search for the word it, the
system finds bit, split, flit, and so on.

2-8 Chapter 2 Using TextEditor

Entire Word· Click the Entire Word button to search for whole words only.

Case Sensitive: Click the Case Sensitive button if you want to find only words that
exactly match the case (capitalization and lowercase) of the word in the search string.

Search Backwards: Click Search Backwards to search backward from the current
selection to the beginning of the file. (Normally, the search moves forward and stops at
the end of the file.)

Wrap-Around Search: Click Wrap-Around Search to search forward from the location
of the cursor to the end of the file, then start again from the beginning to the starting
cursor position.

Cancel: Removes the dialog box. No further action is taken.

+ Hints on using Find You can reverse the direction of a current search operation by
pressing SHiff as you click the Find or OK buttons. For example, if you are in the middle
of a file and you want to find a string that occurs earlier in the document, hold down the
SHiff key as you click Find. The search then proceeds backward through the first part of
the file. The direction is changed for the current search only. •

Using the Find Same command

This command repeats the last Find operation on the active window. The Command-key
equivalent is CoMMAND-G.

Using the Find Selection command

This command finds the next occurrence of the search string in the active window. The
Command-key equivalent is CoMMAND-H.

Editing an existing file 2-9

Replacing text

After you have found a text string, you may want to replace it with another string of text.
For instance, you would use the Replace command if you wanted to replace a specific
occurrence of the word GOOD in a file with the word excellent.

Find what string?

I GOOD
Replace with what string?

l eHcellent

0 Literal r2J Case Sensitiue
@ Entire Word D Search Backwards

D Wrap-around Search

l(Replace]J (Replace All J (Find) (Cancel J

Using the Replace command

This command searches for a specified string throughout a file and replaces that string
with a different string. The Command-key equivalent is CoMMAND-R. To replace a text
string, follow these steps:

1 In the field labeled "Find what string?" type the text string that will take the
place of the search string.

In this example, the word to find is GOOD.

2 Type the text string you wish to replace it with in the field labeled "Replace

with what string?"

In this example, excellent replaces GOOD.

2-10 Chapter 2 Using TextEditor

3 Click Find.

TextEditor begins searching forward in the file from the location of the I-beam.
Remember, if Search Backwards has been clicked, the search occurs in reverse order.
Once TextEditor finds the search string you designated earlier, (the word GOOD), the
search stops, and the string is highlighted in the file.

4 Click Replace (or press REruRN).
In this example, the word excellent replaces the word GOOD, and the next occurrence
of GOOD is highlighted after a few moments, allowing you to repeat the operation.

If you want to skip this occurrence of the string without changing it, click the Find
button. TextEditor leaves the highlighted word unchanged and searches for the next
occurrence.

The Replace dialog box offers this additional option:

Replace AIL· Changes all occurrences of the specified string automatically.

_. Warning Before using this command be sure to click the Entire Word button to ensure
that you don't change embedded instances of the text string. •

Using the Display Selection command

This command causes the currently selected text in the active window to scroll
into view.

Using the Replace Same command

This command repeats the last Replace operation. The Command-key equivalent is
COMMAND-T.

Editing an existing file 2-11

Formatting and other features

2-12

If you use any formatting features, you can save the formatting information by selecting
Save Formatting Information in the Save As dialog box. This creates and saves an extra
file, called a resource fork, that contains the formatting information. This feature allows
you to retain a text-only copy of the file that is compatible with any A/UX editor.

Changing fonts

TextEditor comes with six fonts: Chicago, Courier, Geneva, Helvetica®, Monaco, and the
default font, Times®. You may use the Font D/ A Mover application to move fonts to your
A/UX system. To learn more about adding fonts, see "Customizing Your Work
Environment," in A/UX Essentials.

You may change the font of a character, a word, or an entire file. To change fonts,
follow these directions:

1 Choose Format from the Edit menu.

The Format dialog box appears.

Font Size
Chicago Q IP I Courier
Geneua LW •Helu!l!letic .. a _6 1 2 1

I o I

Times

2 Select the desired font and size.

3 Click OK.

Chapter 2 Using TextEditor

IZl Ruto I ndent
D Show l nu isibles

Tabs: �
((OK J)
(Cancel

---------------- - - -------

Selecting tab settings

Tabs are automatic stops used to set margins in a file . You insert tabs by pressing the
TAB key. Tabs are primarily used for formatting tables. To change tab settings, follow
these directions:

1 Choose Format from the Edit menu.

The Format dialog box appears.

2 To change the tab setting, type the desired number of spaces in the Tabs field.

3 Click OK.

You may need to experiment with different settings until you find one that fits
your needs.

Automatically aligning text

The Auto Indent option aligns a selected block of text or a line with the previous line. To
tum Auto Indent on, follow these steps:

1 Choose Format in the Edit menu.

The Format dialog box appears.

2 Click Auto Indent.

An X shows in the checkbox. You can click it again to remove the X, thus turning Auto
Indent off.

3 Click OK.

Formatting and other features 2-13

Showing invisible characters

Space, tab, return, and control characters don't appear on your screen unless you click
Show Invisibles. Table 2-1 shows the corresponding screen symbol for each of the
invisible characters.

Table 2-1 Invisible characters

Character

tab

space

return

all other control characters

Screen symbol

�
0

To make the invisible characters appear on the screen, follow these steps:

1 Choose Format from the Edit menu.

The Format dialog box appears.

2 Click Show Invisibles.

An X shows in the checkbox. You can click it again to remove the X, thus hiding the
invisible characters.

3 Click OK.

Shifting text left

The Shift Left command moves any selected text in a TextEditor window one tab stop to
the left. The Command-key equivalent is CoMMAND-[.

Shifting text right

The Shift Right command moves any selected text in a TextEditor window one tab stop
to the right. The Command-key equivalent is CoMMAND-] .

2-14 Chapter 2 Using TextEditor

+ Note If you hold down the SHIFT key while choosing Shift Left or Shift Right, the
selected text shifts by one space rather than by one tab stop. •

Arranging multiple windows

If you are editing several documents at once, you have a choice of stacking or tiling the
windows. The commands discussed in this section are found in the Window menu.

Tiling windows

When you choose Tile Windows from the Window menu, TextEditor displays any
windows on the desktop.

D

A I pha Pub I i sh i n•;J
Ra I ph J•::ones, D i t··ec: tot··
P\Jrc:has i ng Depar trroen t
1 343 Grove A�•enue
Brook I yn, N . Y . 1 12 1 8

Dear M r . Jones :

/users/ start/letterl

c.lcmtlar•:J 1 1 , 1 990

E I I en Gran t , our Produc: t Support manager, to I d rroe th i s rroor·n i ng
about the pr· i n ters tha t arr i ved damaged . We i ns t i tu ted an
i nves t i ga t.i on i rrorroed i a te I y . ��e d i sc:o�•ered that an unusua I ear I y
thaw caused f I ood i ng ot a rroaj or wareho1.1se i n the rro i d•nes t . We
have es tab I i shed tha t the f I ood damaged some I oad i ng equ i prroen t

¢ r T::m:::::::nm:::::::m::m::m:::n::n::::::::::::m:::m::m::::m::mm:::m:::::::::::::::::::m::u::um::n:::: ::m::::::::::::::n::::um::::m:::::m:::m::n:::::::::::::::::::::m:l ¢ �
/users/start/memo 1

1 2 /20/89

TO : Sa I es Represen tat i ves
Cus tomer· Support Represen tat i ves

FROM : A . Green i ng

RE : Cus torroer c:orrop I a i n ts

There are two r·easons for 01.1r arroaz i ng gr·ow th i n the pas t f e1.1.• years :
GOOD PRODUCTS and GOOD SUPPORT . E<Jery sa I esperson who ' s been w i th
th i s c:orropany for rroor·e than a few weeks knows tha t a he a I thy por t i on
of the i r c:orro i ss i ons are em-ned ft'orro t··epea t bus i ness and tha t our
reputa t i on has made ge t t i ng roe1.1.o C:llstorroers re I ot i ve I y easy .

Formatting and other features 2-15

Stacking windows

When you choose Stack Windows from the Window menu, TextEditor stacks any
windows on the desktop, as shown the figure below.

/users/ start/memo 1
· 1 2 /20/89 I I
TO : �D�����[ZI�us�e�r�sZ/s�t�a�r�t/�le!t�t�e�r�l ���ii��0�

Q
FROM :

RE :

There
GOOD
th i s
o f u
reput

Somet

A I pha Pub I i sh i ng
Ra l ph Jones, D i rec: tor·
Purc:has i ng Department
1 343 Gro<..'e Avenue

Brook I yn , N . Y . 1 1 2 1 8

.Januar·y 1 1 , 1990

:��:n

11

�o�:-: Produe t Support """'•r, to I d •• lh Is m !!!!!
about the pr· i n ter·s tha t arr i ved damaged . We i ns t i tu ted HH
i nves t i got i on i mmed i o te I y . We d i sc:overed t.ha t. an unusua]:!!]:
thaw caused f I ood i ng at. a maj or warehouse i n the m i dwest. i!!!H
have es tab I i shed t.ha t. the f I ood damaged some I oad i ng equ @!
tha t was be i ng used to s tac:k c:ar tons s tored i n t.ha t. 0

VI 10 �

1\ Important When a window becomes too small, the text in the window disappears and
is lost. You have to reopen the file in a larger window. 1

Marking a place in the file

If you need to return periodically to specific locations in a long or complex document,
you can place invisible named markers at those points. You can then jump instantly to
any of the marked places in the document. This saves you the time and trouble of having
to scroll through the document to find those places.

1 Highlight the word or words you wish to mark.

2 Choose Mark from the Mark menu.

The dialog box appears.

2-16 Chapter 2 Using TextEditor

Mark the selection with what name?

([OK D Cancel

You can use the highlighted word or words already in the text box as the name of the
marker. If you want to give the marker a different name, type it in the text box.

3 Click OK.

You have named the first marker We.

The named marker appears in the Mark menu. Each time you choose the marker, you
return to that location in the file .

Removing markers from text

To remove markers, follow these steps:

1 Choose Unmark in the Mark menu.

The dialog box appears.

Delete which markers?

fi Delete B Cancel

2 Highlight the name of the marker you wish to remove.

3 Click Delete.

The marker is removed from the Mark menu.

Formatting and other features 2-17

Printing

TextEditor allows you to print either an entire document or a selection from a document.
Your computer needs to be properly connected to a printer or to a network with a
printer. You also need to have a printer selected in the Chooser (in the Apple menu). For
information on using the Chooser to select a printer, see A!UX Essentials. For information
on connecting to a network to use its printer, see A!UX Networking Essentials.

Printing an entire document

To print an entire document, follow these steps:

1 Open the document in TextEditor.

2 Choose Print Window from the File menu.

You see the Print dialog box.

LaserWri ter "Cedar Point" 7 .0b 1 9 n Print »
Copies :EJ Pages : @ All 0 From: D To: D (Cancel)
Couer Page: @:1 No 0 First Page 0 Last Page

Paper Source: @ Paper Cassette 0 Manual Feed
Print : @ Black & White 0 Color/Grayscale
Dest inat ion : @ Printer

0 Print Bark to Front

3 Click OK to begin printing.

0 PostScript® Fi le

Help

2-18 Chapter 2 Using TextEditor

-------------- --- - ----- -

Printing a portion of a document

To print a portion of a document, do the following:

1 Highlight the text block you want to print.

2 Choose Print Selection in the File menu.

The Print dialog box appears.

3 Click OK to start printing.

Quitting TextEditor

You may want to quit TextEditor to perform other tasks or to take a break. To quit
TextEditor, simply choose Quit from the File menu or type COMMAND-Q.

If you have made changes to a file, you see a Save Before Quitting dialog box, which
asks whether you want to save those changes.

Saue changes to /users/start/letterl

(Don't Saue) n Saue D Cancel

Click Yes to save, click No to quit without saving, or click Cancel to cancel the Quit
command.

To save the document as a text-only file, click Save Text Only. To save a resource
fork with formatting information (in addition to the text file), click Save Format
Information. Remember, since TextEditor automatically saves all formatting information
in a resource fork file, you don't need to save the file as text only to make the file
compatible with the other editors discussed in this book.

Quitting TextEditor 2-19

3 Using the I

V l Screen Editor

What is vi? I 3-2

Syntax and initialization I 3-6

Displaying text and moving within a file I 3-1 1

Inserting text I 3-16

Deleting text I 3-18

Changing text I 3-19

Copying and moving text I 3-23

Recovering lost text I 3-24

Regular expressions and searching I 3-25

Working with multiple files I 3-26

Using shell commands in vi I 3-26

Setting options I 3-27

Mapping and abbreviations I 3-28

Additional features I 3-32

Troubleshooting I 3-32

Command summary I 3-35

This chapter provides a detailed description of the features and capabilities of the UNIX

standard screen editor vi .

What is vi?

Of all the text-editing programs A/UX has to offer, v i is perhaps the most powerful. If
you are new to A/UX and the UNIX operating system, vi may appear somewhat
difficult to understand. Veteran UNIX users can attest to the fact that once you get used
to vi , you'll find that its many options make it a useful and powerful tool for all your
editing needs.

The name vi (pronounced vee-eye) is derived from the word visual. It is a visual
editor in the sense that it uses the full screen as a window into the file you edit. When
you make a change, vi immediately displays the change on your screen.

In addition to vi two other commands, view and vedi t , use the same
interactive visual style as vi .

• view is similar to vi but protects you from making unintended changes by
setting read-only permission on the file.

• vedi t is identical to vi except that you see an INPUT MODE message when
you are entering text, and vedi t reports the number of changes you make with
global substitutions (when the number of changes is greater than one). The vedi t

command is intended for beginning users, but most users prefer to use vi and
view exclusively.

The relationship between vi and ex

Although vi and ex can be used as separate text -editing programs, they are actually
two aspects of one program. To understand their relationship, think of vi as a visual
interface that works by displaying the contents of a file as you edit. Next, think of ex as
a set of commands that vi accesses to accomplish certain tasks that it otherwise could
not accomplish on its own. In most cases, vi and ex work best as a team.

• vi is a screen editor. You type commands to add or change text anywhere on the
screen, and the screen changes immediately to show the changes. Most of the time,
you don't need to know the line numbers of the lines you wish to work on. In this
book, the terms "vi " and "visual mode" both refer to the vi screen editor.
TextEditor is another example of a screen editor.

3-2 Chapter 3 Using the vi Screen Editor

• ex is a line editor. A line editor works by specifying a set of lines on which to
operate (for example, add text after this line, or change these ten lines). You issue
commands to add or change text in response to a command prompt, and you cannot
always see the results of changes right away. In most cases, you'll need to know the
line numbers of the lines you wish to modify or otherwise operate on. In this book,
the terms "ex" and "line mode" (which is usually accessed within vi) both refer to
the ex line editor. Another example of a line editor is ed.

Starting vi

There are two methods for starting vi. The standard method is to open a
CommandShell window, type vi filename, and then press RETURN. This is the
quickest way to start vi , but vi cannot find the file you wish to open unless
you know the filename. If you type the wrong filename or make a typing error, vi

creates a new file with that name. For example, if you want to open an existing file
named bernard and you accidentally type bernardo, vi opens an empty
file named bernardo . To avoid this problem, you can use Commando to start vi

and open a new or existing file. Commando allows you to choose the file you wish to
open directly from a search box.

Starting vi and opening an existing ftle

If you want to open an existing file, follow these steps:

1 Log in to A/UX.

2 Choose CommandShell from the Apple menu.

The Apple menu is located at the far right of the menu bar.

What is vi? 3-3

3 Type vi at the shell prompt and press CoMMAND-K.

The vi Commando dialog box appears.

rUi Options --.
, ... Ope..-ation , H!P to r P UW(�r <md (�(HL I @ c..-eate new file to edit ' 1 ! ! 0 Edit eHisting fi le '························· .. ,

! 0 Recoue..- and edit lost file .:.�.�-��-�-�-�.1:.�J.. . . � .. <l�J: ,

�...� .. �-�-�-� ... �.�-�-�- -�-�-�-�-�-�-�-�-�-� ... :.�: -�-�-� , , .. ,
0 L isp mode Ente..- n ame of new file 0 Read only mode
0 Enc..-yption mode

(Mo..-e options) (output & El'"..-ol'")

lv�i=�screen-oriented (visual) display text editor. I e(��
C
!!!
an
!!!
c
!!!
e
!!!
l
��)

I € ui D
L---------------------------------------�

4 Click "Edit existing ftle."

You will need to choose the file you wish to open.

5 Click the "Choose ftle(s) to edit" button.

A standard Macintosh search box, like the one shown on the next page, appears.

3-4 Chapter 3 Using the vi Screen Editor

le coop l
0 • c s h rc �
D •desk
Cl •kshrc
Cl •login
Cl •logout
Cl •profile
Cl RERDME

Select files :

c::J I

Driue

Done

Cancel

€ Rdd B
fkH!O!}H]

6 Double-click the ftle you wish to open.

To open more than one file, for each file select the file and click the Add button.

You return to the main vi Commando dialog box.

7 Click "Done."

8 Click the "vi" button.

You return to the CommandShell window.

9 Press RETuRN.

The vi application starts, and the file or files you have selected are opened and ready
for editing.

You can also use Commando to create a new file. To do this, open the vi

Commando dialog box, click the "Enter name of new file" button, type the name of the
file, then click OK. Click the "vi " button and press RETURN to open the new file.

What is vi? 3-5

Syntax and initialization

The following sections describe the command syntax and initialization procedures for
the vi editor.

Command syntax for the vi editor

The command syntax for vi is as follows:

vi [+ command] [- 1] [- r [filename] J [-R J [- t [tag] J [-wn] [-x J

[filename . . . J

You can also use the vi ew and vedi t commands with the same flag options.

The options are as follows:

+command Move to the line specified by command, where command is either a
regular expression (see "Regular Expressions and Searching, " later in
this chapter) or a line number (for example, + 1 o o starts editing at line
100). If you omit command, vi moves the cursor to the last line of
the first file .

- 1 Set the showrnatch and l i sp options for editing LISP programs.
These are described in "Setting Options," later in this chapter.

- r [filename] Recover a file after an editor or system crash. If you omit filename,
vi lists the saved files.

-R Set the readonly option, making it impossible to write the file with
the wri t e command.

- t [tagJ Start editing the file at tag (usually a spot marked with the c tags
program). Equivalent to an initial tag command. This is described
in Chapter 4, "Using the ex Line Editor. "

-wn Set the window size to n lines.

-x Prompt for a key to encrypt and decrypt the file (see c rypt(l) in
A!UX Command Reference) . The file should already be encrypted
using the same key.

filename The file(s) to edit.

3-6 Chapter 3 Using the vi Screen Editor

Initialization procedures of the vi editor

Upon startup vi sets up your editing environment by taking the following steps:

• reads the TERM variable to find out what terminal you're using

• sets any options you've specified in the EXINIT environment variable, usually set
in the . pro f i le (or . l ogin) file in your home directory

• sets any options you've specified in the . exrc file in the current directory or your
home directory

You can set the same options with either the EXINIT environment variable or
. exrc files. The options are described in "Setting Options, " later in this chapter.

Opening a file

You can display a file for read-only viewing, or for editing and making changes. Read
only viewing means that you can read the file but cannot make any changes to it. File
permissions are discussed in A/UX Essentials and in A!UX Networking Essentials.

Read-only viewing

If you want to look at a file while protecting it from unintended changes, start the
viewing program from the shell by typing

view filename

instead of vi filename. The view command protects the file from accidental
changes. When you enter a file using vi ew, you can use all of vi 's commands, but
you can make changes to the file only by typing the colon character (:) to move to line
mode and using the command

: w !

You can then exit the file by typing the colon character (:) to move to ex line mode
and typing

q

Syntax and initialization 3-7

If you exit v i ew using the v1 command

z z

you exit the file without making any permanent changes. I f you try to exit view using
commands that write changes to a file before exiting vi (for example, : wq) , you get
the following error message:

F i l e i s read only

Type

q !

to quit the application.

Opening a file for editing

To create and open a new file (or open an existing file) in vi , type

vi filename

where filename is the name of the file you're creating (or opening).
When you use vi to create a new file , vi opens a temporary storage file called

a buffer.
When you edit an existing file, vi places a copy of that file in the buffer. Changes

are made only in this temporary copy in the buffer. The editor does not change the
actual contents of the file until you save your changes. See "Saving Files and Quitting, "
later in this chapter, for more information.

Important You should periodically save your changes to the file to prevent losing
material if the system crashes or an error occurs.

3-8 Chapter 3 Using the vi Screen Editor

The different modes of Vl

The vi editor has three modes.

• When you first open a file, you are in vi command mode. You use vi command
mode to perform basic editing tasks such as deleting and moving text, as well as file
maintenance tasks such as saving and quitting. In vi command mode, the screen
does not display the commands you type on the keyboard. In this mode, v i

assumes anything you type i s a command and tries t o run it. For example, suppose
you've created and opened a new, empty file and you type the letter j . Because j

is a cursor-movement command (discussed later in this chapter), vi tries to move
the cursor accordingly. Because there is no text in the file, there is no place to move,
and vi signals that it cannot comply with the command.

• To insert text, you must enter insert mode. This is the mode you use to do most of
your basic text input. In insert mode, vi assumes anything you type is text (rather
than commands). To enter insert mode, type i . After that, anything you type
appears on the screen. The vi editor places what you type in the buffer. Your text
is not written to the file until you return to command mode and save the file (see
"Saving Files and Quitting vi ") . Other vi commands for inserting text include a

(append), o , and o (open line). There are also several commands, such as c

(change) and s (substitute), that insert text. For a complete list of vi 's insertion
commands, see "Inserting Text," later in this chapter. You always leave insert mode
by pressing the EsCAPE key.

• You can use the ex editor commands by entering ex command mode,
sometimes known as line mode. See "Switching to ex Command Mode," next.

Switching to ex command mode

You use ex command mode to issue ex commands from within vi . To use ex

commands from within vi , first press the EscAPE key (if necessary) to enter vi

command mode, then type the colon character (:) . The e x command line appears at
the bottom of the screen, ready to accept any ex command. You use ex commands
from within vi to perform global changes, searches, and other operations that involve
more than one line in the file.

Syntax and initialization 3-9

You can also switch to line mode for a series of ex commands (or a multiple-line
ex command) by typing

Q

in vi command mode. To return to vi when you have entered line mode this way,
type

vi

at the colon prompt on the bottom line of your screen.

+ Note You can also switch to the ex command line to run ex search and global
commands by typing the slash character (1) or the question mark (?) . •

For complete information on using ex commands, see Chapter 4, "Using the ex

Line Editor. "

Using special keys in vl

The following keys have special meaning in A/UX.

ESCAPE

RETURN

The EscAPE key ends all text insertion in vi and returns you to
command mode.

The RETURN key ends all commands given on the ex command
line. See "Switching to ex Command Mode," earlier in this
chapter.

The interrupt
key sequence

The interrupt key sequence (CoNTROL-C in A/UX) sends an
interrupt signal to the editor. It gives you a forceful way of stopping
vi from executing a command it has already started.

The vi editor occasionally shows your commands on the last line of the screen. If
the cursor is on the first position of this last line, vi is working on something (such as
finding a new position in the file after a search or reformatting the buffer). When this
happens, you can stop vi by sending an interrupt.

3-10 Chapter 3 Using the vi Screen Editor

----- ---

Displaying text and moving within a file

To move the cursor within vi , you use either arrow keys or their equivalents, or motion
commands. Users who have come to rely on the mouse to move the cursor might want
to take a few minutes to practice using the keyboard and motion commands .

.A. Warning Using the mouse to resize a window may result in lost data. .&

Using arrow keys to move within a file

The arrow keys on your keyboard move the cursor in vi . The h, j , k, and 1

commands also move the cursor.

h Of f-

1 or ---t

k or l

j or J..

Move the cursor left a space. (The system erase key, usually DELETE,
also works.)

Move the cursor right one space. (Space bar also works.)

Move the cursor up a line (in the same column).

Move the cursor down a line (in the same column).

You use these keys in command mode, and you can precede them with a number
indicating how many spaces you want to move in the direction you want. For example,
Sh moves the cursor left five spaces.

Using motion commands to move within a file

Motion commands are either mnemonic, single-character commands or symbols that
move the cursor in a file without affecting the file's contents in any way. With the
exception of the G command, motion commands operate relative to the current cursor
position. You can combine motion commands with a number (to indicate how many
times the command runs) or with an operator, such as d for delete (to indicate how far
the operation extends).

Displaying text and moving within a file 3-11

If preceded by a number n, a motion command moves n motions (for example, n
spaces or n lines) in that direction. The syntax is then

[n] motion

For example, to move the cursor three words forward, type

3w

Preceding these commands with an operator, such a s d (delete) o r c (change) ,
indicates how far the operation of deleting or changing text extends. In this case, the
syntax is

[n J [oprJ motion

For example, to replace two words of text, type 2 cw. See "Combining Operators
and Motions," later in this chapter, for more details.

Table 3-1 Motion commands in v l

Command

[n]

[n]+

[n]$

0

[n] i

[n]w

[n]W

[n]b

[n]B

[n]e

[n]E

fx

Fx

Description

Move the cursor to the beginning of the preceding line. Scroll if necessary.

Move the cursor to the beginning of the next line. Scroll if necessary.

Move the cursor to the end of the current line. Preceded by a number it means
"move to the end of the line n lines forward in the file."

(Caret.) Move the cursor to the beginning of the first word on the line.

(Zero.) Move the cursor to the left margin of the current line.

(Vertical bar.) Move the cursor to the beginning of the first column or to the column
specified by n.

Move the cursor to the beginning of the next word (or the nth word).

Move the cursor to the beginning of the next word (or the nth word), ignoring
punctuation.

Move the cursor to the beginning of the preceding word (or the nth word).

Move the cursor to the beginning of the preceding word (or the nth word), ignoring
punctuation.

Move the cursor to the end of the current word (or the nth word).

Move the cursor to the end of the current word (or the nth word), ignoring
punctuation.

Move the cursor forward to the next instance of x, where x is a character.

Move the cursor backward to the preceding instance of x, where x is a character.

3-12 Chapter 3 Using the vi Screen Editor

Table 3-1 Motion commands in vi (continued)

Command

tx

Tx

[n]G

]]

[[

%

[n]H

[n]L

M

Description

Move the cursor forward to one character position before the next instance of x,
where x is a character.

Move the cursor backward to one character position after the preceding instance of
x, where x is a character.

Move the cursor to the specified line number (as in Go to line number). Use G
alone to move the cursor to the end of the file; use 1 G to move the cursor to the
beginning of the file.

Move the cursor to the beginning of the next sentence (defined as . , ! , or ?
followed by two spaces or a newline character).

Move the cursor to the beginning of the current sentence.

Move the cursor to the beginning of the next paragraph. See "Moving by Text Block"
for information on how a paragraph is defined.

Move the cursor backward to the beginning of a paragraph. See "Moving by Text
Block" for information on how a paragraph is defined.

(Right bracket, typed twice.) Move the cursor to the beginning of a new section. See
"Moving by Text Block" for information on how a section is defined.

(Left bracket, typed twice.) Move the cursor backward to the beginning of a section.
See "Moving by Text Block" for information on how a section is defined.

Move the cursor to the matching parenthesis or brace. If you type % when the cursor
is not on a parenthesis or brace, vi searches forward until it finds one on the
current line and then jumps to the matching one.

Move the cursor to the top-left position on the screen (Home) or the nth line from
the top of the screen.

Move the cursor to the bottom-left of the screen (Last) or the nth line from the
bottom of the screen.

Move the cursor to the beginning of the middle line on the screen (Middle).

(Back quote key typed twice.) Move the cursor back to where it was before the last
absolute motion command. Absolute motion commands are those that move to a
precise place (such as a line number or the word you searched for), not a place
relative to the cursor position (such as CoNTROL-0 or 1 2 j).

Displaying text and moving within a file 3-13

Your file may have tab (CONTROL-I) characters in it. These characters are represented
as several spaces expanding to a tab stop, where the default tab stop is eight spaces.
When at a tab, the cursor is on the last of the spaces representing that tab. Try moving
the cursor back and forth over tabs to understand how this works.

On rare occasions, your file may contain nonprinting characters. These characters
appear as a two-character code, with A as the first character; these two characters are
treated as a single character.

Moving by text block

The parentheses, (and) , move the cursor to the beginning of the previous and next
sentences, respectively. A sentence ends with a period, question mark, or exclamation
mark, followed by either the end of the line or two spaces.

The braces, { and } , move the cursor over paragraphs. A paragraph begins after
each empty line, at the t ro f f request . bp, or at a paragraph macro. By default , this
option uses mrn's paragraph macros (that is, the . P and . LI macros). You can
change this default with the set paragraphs command; see Chapter 4, "Using the
ex Line Editor. " Each paragraph boundary is also a sentence boundary. You can
precede the sentence and paragraph commands with a number to operate over groups
of sentences and paragraphs.

Use [[and J J (left and right brackets, typed twice) to move forward and
backward over sections, respectively. Sections begin after each macro set in the
sect i ons option (usually . H and . HU) and each line with a form feed (CONTROL-1)
in the first column. Section boundaries are always line and paragraph boundaries.

Moving to a specific line in a file

Type G to move the cursor to the end of your file. The vi editor displays a tilde
character (-) on each line past the last line of your text.

Type CONTROL-G to find out the current line number. In response, vi prints, on the /�

last line of your screen, a message telling the name of the file you are editing, the current
line number, the total number of lines in the buffer, and a percentage indicating how far

3-14 Chapter 3 Using the vi Screen Editor

through the buffer you are (in lines). You can also find your current line number by
typing the colon character (:) to move to the ex command line and typing

To return to the previous position in the file, type a back quote twice (II) . See
"Selecting Lines Within a File" in Chapter 4, "Using the ex Line Editor. "

You can also move to a specific word or phrase in a file. To search for a particular
string in your file, type the slash character (;) to move to the ex command line. You
will see the slash character on the bottom line of your screen, waiting for you to specify
the string you want to find.

Type

1 string

For more information about searching, see "Regular Expressions and Searching" in
Chapter 4, "Using the ex Line Editor. "

Marking text

To set up a special address use the mx command (where x is a letter between a and z)
and then use this address anywhere you would use a vi address. After you have
marked a line, you can refer to it by typing

' x

where x is the name you gave it.

Scrolling and paging through a file

The vi editor has several commands that allow you to scroll up or down through the
text of a file . You cannot combine these commands with other commands such as d

(delete) or c (change). You can precede them with a number, n, indicating how many
lines you want to move. The syntax for this is

[n J scroll-command

for example,

3 CONTROL-B

Displaying text and moving within a file 3-15

You run these commands by holding down the key labeled CoNTROL while pressing
the indicated letter. Table 3-2 illustrates each keyboard command and its resulting action.

Table 3-2 Scrolling commands in v i

Command Description

[n] CoNTROL-D Move the cursor down half a screen (or by n lines).

[n] CoNTROL-U Move the cursor up half a screen (or by n lines).

[n] CoNTROL-F Move the cursor to the next full screen (or n full screens forward).

[n] CoNTROL-B Move the cursor to the previous full screen (or n full screens backward).

[n J CoNTROL-E Display another line at the bottom of the screen (or n lines).

[n] CoNTROL-Y Display another line at the top of the screen (or n lines).

[n] CONTROL-P Move the cursor to the previous line (or n lines backward, same column).

[n] RETuRN Move the cursor to the next line (or n lines forward, same column).

[n] z RETURN Display the current full screen (or the full screen starting with n).

Inserting text

The commands listed in Table 3-3 are used to insert text. Note that you must press EscAPE

to stop inserting text. Pressing EscAPE returns you to command mode. You can always
undo your last change by typing u in command mode.

+ Note Inserted text may contain newline characters. •

3-16 Chapter 3 Using the vi Screen Editor

- -- --------- -------·

Table 3-3 Insert commands in vi

Command

a [text] ESCAPE
A [text] ESCAPE
i [text] ESCAPE
I [text] ESCAPE
o [text] EscAPE
0 [text] ESCAPE

Description

Insert text immediately after the cursor (append).

Insert text at the end of the current line.

Insert text immediately before the cursor (insert).

Insert text at the beginning of the current line.

Open a new line after the current line and insert text there (open).

Open a new line before the current line and insert text there.

The i command places text to the left of the cursor; the a command places text
to the right. The I command inserts text at the beginning of the line, and the A

command inserts text at the end of the line. Insert and append a few times to make sure
you understand how these commands work. Press EscAPE to make sure you are in insert
mode.

You will often want to add new lines. Type o , which creates (opens) a new line
after the line containing the cursor. The o command creates a new line before the line
containing the cursor. After you create a new line, everything you type is inserted on the
new line. Press EscAPE to stop inserting.

To type more than one line of text, press RETURN to end a line. This creates a new line
and you continue typing. You can also set the wraprnargin option, which
automatically moves your cursor to the following line once you have moved to a certain
column. See Chapter 4, "Using the ex Line Editor," for more information.

Correcting text as you insert

The following characters correct text as you insert it (that is, while you're still in insert
mode):

erase The system erase character (often the ASCII backspace sequence
CoNTROL-H, DELETE, or #) . Deletes the last input character.

Inserting text 3-17

end

CONTROL-W

The system end character (often CONTROL-U, CONTROL-X, or @). Deletes
the current input line.

Deletes the last word entered.

Your system delete character erases all the input on the current line.
Pressing CoNTROL-H or your own erase character erases the last character you typed.

Pressing CoNTROL-W erases a whole word and leaves the cursor after the preceding
word.

Deleting text

The commands listed in Table 3-4 are used to delete text. You can precede most of these
commands with a number indicating the extent of the command. For example,

3x

deletes three characters. Undo the last change by typing u , and repeat the last command
by typing . (dot) .

Table 3-4 Delete commands in vi

Command

[n] x

[n] X

D

[n] dmotion

[n] dd

Description

Delete the character (or n characters), starting at the cursor.

Delete the character (or n characters), backward from the character before the
cursor.

Delete from the cursor to the end of the line.

Delete one (or n) occurrences of the specified motion. You can use any of the true
motion commands here. (See "Using Motion Commands to Move Within a File,"
earlier in this chapter, for more information.) For example, 3 dw deletes three
words.

(d typed twice.) Delete current line (or n lines including the current line).

You can transpose characters by x'ing the first character that is transposed and then
typing p. For example, to correct the word charatcers , move the cursor to the
transposed t , type x and then p. This deletes the t and then puts it in the proper

place: charact e r s .

3-18 Chapter 3 Using the vi Screen Editor

---�-- - --- ---

You can also delete text by specifying the line numbers you want to delete; see
"Deleting Text" in Chapter 4, "Using the ex Line Editor. "

See "Recovering Lost Text, " later in this chapter, if you have deleted some text and
want to get it back.

Changing text

The following commands replace text by simultaneously deleting the existing text and
inserting new text. You can also precede these commands with a number, n! to indicate
the extent of the command. For example, 4 :r:- lets you replace four characters. Type u

to undo these commands . Table 3-5 summarizes vi 's replace commands.

Table 3-5 Replace commands in vi

Command

rx

R [text] ESCAPE

[n J s [text] EscAPE

[n] S [text] ESCAPE

[n J c motion [text J EscAPE

[n] C C [text] ESCAPE

C [text] ESCAPE

Description

Replace the character at the cursor with x. This is a one-character
replacement. You don't need to press the EscAPE key to end the
command.

Overwrite the characters on the screen with text. After you type R,
whatever you type overwrites the existing text until you press EscAPE.
Substitute character (or n characters) beginning at the cursor. $ appears
at the nth position in the text, so you know how much you are
changing. Press the EscAPE key to enter the proper mode.

Substitute the entire current line (or n lines). $ appears at end of the
current line, or n lines are deleted before insertion begins. Press the
EscAPE key to enter the proper mode.

Change motion to text where motion is a motion command, for
example, w for word(s), } for paragraph(s),) for sentence(s), and so
on. You can also precede the commands with a number, n, to indicate
the extent of the command. For example, 4 cwtext lets you change four
words and replace them with text. Press the EsCAPE key to enter the
proper mode.

(c typed twice.) Change entire line (or n lines). Press EscAPE to enter
the proper mode.

Change from the cursor to the end of the line.

Changing text 3-19

The vi editor prints a message on the last line of the screen telling you how many
lines you changed. It also tells you when a change affects text you cannot see.

You can also change text by specifying line numbers on the ex command line; see
"Changing Text" in Chapter 4, "Using the ex Line Editor. "

Combining operators and motions

You make larger changes by combining operators (d for delete, c for change, s for
substitute, and so on) with the motion commands introduced earlier: w for word(s),)
for sentence(s), } for paragraph(s), 1 pattern for context search(es), and so on. The
syntax for the general case is

operator motion-command

Move to the beginning of a word and type dw to delete a word. Now try db; this
deletes the word to the left of the cursor. The command

d }

deletes the text from your current cursor position to the next paragraph delimiter, blank
line, or nro f f 1 t ro f f command for list or paragraph.

The command

d)

deletes the rest of the current sentence. Similarly, d (deletes the line to the left of the
cursor. The d (command deletes the preceding sentence if you are at the beginning of
the current sentence, or the current sentence up to the cursor position if you are not at
the beginning of the sentence.

You can also use these operators with the 1 (or ?) search command to change
similar phrases in a document. For more information, see "Regular Expressions and
Searching," later in this chapter.

Another useful operator is c (for change). Use cw to change a single word to the
text you insert. Press EscAPE to end. Move to the beginning of a word and type

cwnew-word

(followed by EscAPE) . Notice that the end of the text to change was marked with the
dollar sign character ($) .

3-20 Chapter 3 Using the vi Screen Editor

The f and t commands are useful with operators such as c (change) and
d (delete) when you want to change a section of text that is not recognized as a
delimited word.

Undoing the last command

If you make an incorrect change (whether large or small), use the u (undo) command
to undo it. Notice that u also undoes the previous u. Table 3-6 summarizes vi 's undo
commands.

Table 3-6 Undo commands in vi

Command Description

u

u
Undo the last command, including a preceding undo command.

Undo changes to the current line.

The undo command reverses only a single change. After you make several changes
to a line, you may decide that you would rather have the original line back. You can use
u to restore the current line to its state before you started changing it, but only if you
have not moved the cursor to another line before pressing u.

If you have made several changes deleting text, you can use u to undo only your
last change. You can still recover deleted text, however, even if it is too late to use the u

command. See "Recovering Lost Text," later in this chapter.

Repeating the last command

Use these commands to repeat the last command given. Table 3-7 summarizes vi 's
repeat commands.

----- --- --� - -- - -

Changing text 3-21

Table 3-7 Repeat commands in vi

Command

n

N

[n] ;

[n] ,

&

Description

Repeat the last command that changed the buffer.

Repeat the last I or ? search command (next).

Repeat the last I or ? search command in the opposite direction.

Repeat the last f, F, t , or T command (once or n times).

Repeat the last f, F, t , or T command in the opposite direction (once
or n times).

Repeat the last single substitution.

For more information, see "Changing Text" in Chapter 4, "Using the ex Line
Editor. "

Storing text in named buffers

The editor has a set of buffers named a through z . If you precede any delete or
replacement command with

" a

(where the double quote character indicates "buffer name" and a is any single lowercase
character), that named buffer will contain the text deleted by the command. For
example,

" a3 dd

deletes three lines, starting at the current line, and puts them in register a .

To put them back, move the cursor to where you want the lines and type

" ap

or

" aP

that is, "put contents of register a. "

3-22 Chapter 3 Using the vi Screen Editor

Copying and moving text

The following commands "yank" text (duplicate it in a buffer) and "put" it at another
location in the text. These commands are equivalent to what Macintosh users think of as
Copy, Cut, and Paste commands.

+ Note You can use the mouse to copy text but not to paste it. To copy text, highlight
it with the mouse and press COMMAND-C; the text is copied to the Clipboard. To paste the
text, select the new location with the cursor by using the arrow keys or their equivalents,
then press COMMAND-V. +

Table 3-8 summarizes vi 's yank and put commands. In this table, bufspec is the
" a buffer notation, as specified in "Storing Text in Named Buffers, " earlier in this
chapter.

Table 3-8 Yank and put commands in vi

Command

[n J [buf-spec J y motion

[n] [bufspec] yy

[n] [bufspec] Y

[bufspec] p

[buf-spec J P

Description

Yank the specified object (word, paragraph, and so on) or n objects
into a buffer.

Yank the current line (or n lines) into a buffer.

Equivalent to yy.
Put the contents of the buffer in the text after the cursor. Lines you
yank are placed on new lines following the current line. Other
objects, such as words or paragraphs, are inserted immediately
following the cursor.

Put the contents of the buffer in the text before the cursor. Lines you
yank are placed on new lines preceding the current line. Other
objects, such as words or paragraphs, are inserted immediately
preceding the cursor.

The vi editor has a single unnamed buffer in which it saves the last text you
deleted or changed, and a set of named buffers (a through z) where you can save
copies of text so that you can move text in your file and between files. For more
information on these named buffers, see "Storing Text in Named Buffers, " earlier

in this chapter.

Copying and moving text 3-23

Use the y command to place a copy of the specified text into the unnamed buffer.
For example, y3w puts three words in the buffer.

You can then use the p and P commands to put the text back in the file. The p

command puts the text after or below the cursor, while the P command puts the text
before or above the cursor.

If the text you yank is part of a line or partially spans more than one line, the text is
put back after the cursor (or before it, if you use P). If the yanked text is whole lines,
they are put back as whole lines, without changing the current line. This acts much like
an o or o command.

Try YP. This makes a copy of the current line and places it before the current line.
The Y command is a convenient abbreviation for yy. Use Yp to copy the current
line and place it after the current line. You can give Y a count of lines to yank and
duplicate several lines. Try typing 3 YP.

You can also copy and move text by specifying line numbers on the ex command
line. See "Copying and Moving Text" in Chapter 4, "Using the ex Line Editor. "

Recovering lost text

In addition to the named buffers (a - z) and the unnamed buffer (the "undo" buffer),
there are nine numbered buffers where the editor places each piece of text you delete
(or yank).

The most recent deletion (or yank) is in the undo buffer and also in buffer 1 . The
next most recent deletion or yank is in buffer 2, and so on. Each new deletion pushes
down all older deletions; those older than 9 disappear. If you delete lines and then regret
it, you can get the nth previous deleted text back in your file using the command

" rtp
where n is register 1 through 9. The double quote character (") here means "buffer
number," n is the number of the buffer (use the number 1 for now), and p is the put
command, which puts text in the buffer after the cursor. If this doesn't bring back the

3-24 Chapter 3 Using the vi Screen Editor

text you wanted, type u to undo this, and then a period (.) to repeat the put
command. In general, the period (.) repeats the last change you made. When the last
command refers to a numbered text buffer, . increments the number of the buffer
before repeating the command. For example, typing

" lpu . u . u . u . u . u . u . u .

shows you all the deleted text that has been saved (nine deletions). You can omit the u

commands here to gather all this text in the buffer, or you can stop after any command
to keep only the text recovered so far. You can use P instead of p to put the
recovered text before rather than after the cursor.

You can use the ex commands co and rn to copy and move text, respectively.
For more information, see Chapter 4, "Using the ex Line Editor. "

Regular expressions and searching

--- - ---------- ---

You can search for words or phrases in files by typing a slash (;) , followed by the word
or phrase you want to find, followed by RETURN. For example, type

I emp i re RETURN

to find the next instance of emp i re in the file. This is an ex command. When you
type the slash, the cursor moves to the ex command line.

Regular expressions use special characters and notation to specify a set of
character strings. For example, the regular expression . (dot) matches any single
character. Therefore, the search command

/ c . t

takes you to the next occurrence of all words containing a c followed by any character
followed by a t (cat , cbt , cct , and so on).

Regular expressions can be extremely useful when you're editing a file. For more
information about them, see "Regular Expressions and Searching" in Chapter 4, "Using
the ex Line Editor. "

Regular expressions and searching 3-25

Working with multiple files

You can edit more than one file at the same timl . To open more than one file at once,
enter vi with the command

vi file 1 file2

filel is opened first. When you write the file, you can move to the second file by typing
the colon character (:) to move to the ex command line and typing

n

You must write the first file before trying to get into the second file, or vi won't let you
move.

To return to the first file, press

CONTROL- "'

(On many terminals you must press CoNTROL-SHIFT-6 to get this sequence.)
You can also read the contents of another file into the buffer by typing the colon

character (:) to move to the ex command line and typing

r filename

A copy of }Uename is inserted after the current line. See "Copying Another File to the
Current Buffer" in Chapter 4, "Using the ex Line Editor," for more information.

For more information about editing several files at the same time, see "Working With
Multiple Files" in Chapter 4, "Using the ex Line Editor. "

Using shell commands in v l

There are several ways of interacting with the shell from within vi . All these require
that you type the colon character (:) to move to the ex command line and then type
the appropriate ex command. See "Using Shell Commands in ex" in Chapter 4,
"Using the ex Line Editor. "

3-26 Chapter 3 Using the vi Screen Editor

Setting options

You can customize your vi environment by setting various ex options. To set an
option in vi type the colon character (:) to move to the ex command line and then
type the appropriate set command. Table 3-9 summarizes some ex command
options that are particularly useful in v i .

Table 3-9 Summary of e x command options

Option

set wi [ndow] = n

s e t scr [o l l] = n

s et para [graphs] = macro-strings

set s ec t [i ons J = macro-strings

set redraw

set w [rap] m [argin] = n

set nomesg

Description

Change the number of lines in your editing window.

Change the number of lines you scroll through with the
CoNTROL-D command.

Change the strings vi searches for when you press
or } . Valid strings are the paragraph and list macros
from the mm and ms macro packages.

Change the strings vi searches for when you press
[[or]] . Valid strings are the section macros from

the mm and ms macro packages.

Force a dumb terminal to redraw the characters to the
right of the cursor as you enter text in vi .

Set the column where the cursor automatically returns to
the left margin.

Prevent messages from other people while in vi .

For more information about setting options and a list of all the available options, see
"Setting Options" in Chapter 4, "Using the ex Line Editor. "

Setting options 3-27

Mapping and abbreviations

Mapping and abbreviations are available as a joint facility of ex and vi . The mapping
or abbreviation must be defined on the ex command line, but it is useful only in visual
mode. Since vi is required for these to work, the examples are structured to work
within vi . These commands require that you type the colon character (:) to move to
the ex command line before typing the appropriate command.

Preventing nonprinting characters from being
interpreted as commands

If you need to enter a control character, such as the system erase or end character, as
part of your file, you need to precede it with an escape character so that vi will not
interpret it as a command. You can do this as follows:

\

CONTROL-V

If the character or sequence prints on your screen, for example $, but
has a special meaning you want to override, precede the character
with a backslash.

If the character or sequence is invisible on your screen (for example,
CONTROL-1), precede it with CONTROL-V.

For example, to type an escape character in your file, type CoNTRol-V before you press
the EscAPE key. The CoNTROl-V prints a caret ('"') at the current cursor position, indicating
that the editor expects you to type a control character. When you press the EscAPE key,
you see '"' [in your file. After pressing CoNTRol-V, you can type any non printing
character except the null (@) character or the line-feed (CoNTRol-]) character. Using
CONTROl-V is the only way to insert CONTROl-S or CONTROl-Q.

Using the map command to create macros

In vi you can use the ex command map to create a macro. A macro sets a string
(usually a single key) equal to a command or sequence of commands.

The general format of the map command in vi is

: map string definition

3-28 Chapter 3 Using the vi Screen Editor

(followed by RETURN), where string is usually a single keystroke or function key, and
definition is the map definition representing a command or sequence of commands.

After you enter a map command, type string to perform the specified command;
string can't be more than 10 characters and definition can't be more than 100 characters.
If it takes longer than a second to type string, however, vi times you out before
recognizing the string (you can prevent this by setting the option not imeout ; see
"Setting Options" in Chapter 4, "Using the ex Line Editor").

When you set up a map from within vi , it lasts only as long as your current
editing session. If you're editing several files in one session (by entering several names
on the command line) and you use the : n command to edit them, however, the map

definitions hold for all files until you quit the editor. To make a more permanent
definition, insert it in the EXINIT variable in your . pro f i l e (or . l ogin) file or
in $HOME / . exrc (see "Setting Options," in Chapter 4, "Using the ex Line Editor") .

CoNTROL-V allows you to insert nonprinting characters (RETURN, blanks, tabs, control
sequences) in your map definition. Pressing RETURN ends the map command, so to
include RETuRN, EscAPE, or any other nonprinting character in definition, you must
precede it with a CoNTROL-V escape character.

Suppose you want to create a macro to assign a single keystroke to perform a
compound write and quit (wq) command. To map the q key, for example, to perform
this compound command, type

: map q : wq CoNTROL-V RETURN

This maps the sequence

: wq RETURN
to the character q. When you type q in vi command mode, the command : wq

RETURN runs. Without CoNTROL-V, the first RETURN ends the map command, rather than
becoming part of the map definition. If you use CoNTROL-V, however, the first RETURN
becomes part of definition, and the second ends the map command.

You can use # in the map command to represent function keys. Some terminals
don't have function keys, but most terminals do. If string is # o through # 9 , you map
to the corresponding function key, not the two-character sequence # n. (Note that on
the Apple Extended Keyboard, # n refers to the corresponding key on the numeric
key pad.)

Mapping and abbreviations 3-29

-- -- -----

You can also use the map command so that one key calls a second key, which calls
the first one again. This is useful to repeat an editing action throughout an entire file .
When you're writing these double maps that call each other, however, make sure the
pattern you are searching for changes as each command runs.

When you map a key to the function, choose a key that is not already associated
with a function you need to use . For example , suppose you have a file containing names
and telephone numbers in one format, and you want to change it globally as follows:

Initial format

Lemonwedge , Ned

5 5 5 - 1 2 3 4

Spear s , Ray

5 5 5 - 4 5 6 7

New format

Lemonwedge , Ned 5 5 5 - 1 2 3 4

Spears , Ray 5 5 5 - 4 5 6 7

To do this, map the keys g and h as follows:

: map g I A [0 - 9 J /CONTROL-V RETURN kJh

: map h / A [0 - 9] /CONTROL-V RETURN kJg

Then, in vi's command mode, typing g runs the command

I A [0 - 9] I CONTROL-v RETURN kJh

That is, the search command looks for a line beginning with a number 0 through 9.
You must press RETURN after this command to run it, and you must precede the RETURN in
this definition with a CoNTROL-V escape character. When the cursor is positioned on a
line beginning with a number 0 through 9, the command

kJh

indicates "go up one line" (k), "join this line and the next line" (J), and "call h," which
repeats this sequence of commands and calls g.

These commands finish when there are no lines left in the file that begin with a
number 0 through 9. The number of lines beginning with a number is reduced by one
each time the J command runs. Otherwise, these commands can go into an infinite
loop, calling each other indefinitely. If this happens, send an interrupt.

3-30 Chapter 3 Using the vi Screen Editor

You can unmap keys with

: unrnap string

The undo command reverses the function of the entire macro.

Abbreviations

You can define a short string that expands to a longer string in the text. The syntax
of the commands to perform abbreviate and unabbreviate (ab

and una) is

: abbreviation-command wd [word]

(followed by RETURN), where abbreviation-command is ab [brevi at e] or
una [bbreviate J , wd is the abbreviation you're defining, and word (only applicable
for abbreviate) is the string it represents. Note that the order of the arguments is the
reverse of what you might expect.

The wd argument can't be more than 10 characters long and the word argument can't
be more than 100 characters long. If it takes longer than a second to type wd, however,
vi times you out before recognizing the string. (You can prevent this by setting the ex

option not irneout ; see "Setting Options" in Chapter 4, "Using the ex Line Editor. ")
After you enter an abbreviate command, and type wd, it is immediately translated

into word. For example, suppose you type this command

: ab dtp Deve l oper Techn i c a l Pub l i cat i ons

Now suppose you enter (in insert mode) the string dtp (followed by spaces, a
newline character, or punctuation marks) . This string is immediately expanded to the
phrase "Developer Technical Publications," which is entered as part of your vi buffer.
If you type dtp as part of a larger word, however, it is left alone. The abbreviation
echoes as you type it, and when you type a delimiter that sets it apart as a single word, it
immediately expands into the longer string.

Avoid using abbreviations that are words in themselves, for example a or is.

Mapping and abbreviations 3-31

Additional features

The following sections describe some additional features of the vi screen editor.

Saving files and quitting vl

You should periodically save the text you have entered in the buffer so that you don't
accidentally lose any changes you have made. To save the file, use the ex command

: w

This command saves (or writes) the text into a permanent file, overwriting any
previous version of the file. See "Saving Text and Quitting ex" in Chapter 4, "Using the
ex Line Editor. "

You can quit vi by making sure you are in command mode (press the EscAPE key)
and giving the command

z z

This command writes the changes you made to the buffer back into the file you were
editing and quits vi . However, if you did not change to the buffer, this command does �

not force a write operation.
If you want to force a write operation (this is especially recommended when

recovering a file using vi - r) , use the ex command

: wq

There are several ex commands for exiting vi in different ways. To use them
type the colon character (:) to move to the ex command line and then type the
appropriate ex command. For more information see "Saving Text and Quitting ex" in
Chapter 4, "Using the ex Line Editor. "

Troubleshooting

The following sections describe solutions to some common problems you may
experience during a vi session.

3-32 Chapter 3 Using the vi Screen Editor

Redrawing the screen

Occasionally, you may need to redraw (or refresh) the screen. (For example, a program
can write to the screen, or line noise can jumble up the screen.)

Press CoNTROL-L to redraw the screen. On certain terminals, CoNTROL-R works instead.
You can redraw the screen so that a specified line shows at the top, middle, or

bottom. To do this, move the cursor to that line and type

z

Pressing RETURN after the z command redraws the screen with the line at the top; a
period (.) after the z places the line at the center; a minus sign (-) after the z places
it at the bottom.

Speeding up a slow system

You can reduce the overhead of refreshing the screen for each change, scroll, and so on
by limiting the window size. Use this command to start vi with a specific window size

vi -wn filename

where n is a number less than 23. For example,

vi -w3 filename

This sets the initial size of the window to three lines, and allows the window to expand
as you add lines.

You can control the size of the window that vi redraws when the screen clears by
specifying a window size as an argument to any of the following commands:

: I ? [[J J , ,

If you search for a string in a file, preceding the first search command with a small
number (for instance, 3) draws three-line windows around each instance of the string.

---- -- -----

Troubleshooting 3-33

You can make the window larger or smaller by giving a number after the z

command and before the following RETuRN, period (.) , or minus (-) . For example,
the command

z S .

redraws the screen with the current line in the center of a five-line window. The
command s z . has an entirely different effect, placing line 5 in the center of a
new window.

If vi is updating large portions of the display, you can interrupt it by sending an
interrupt signal (usually DELETE or CoNTROL-C) . This may partially confuse vi about
what is displayed on the screen. You can clear up the confusion by typing CoNTROL-1 or
by moving or searching again, ignoring the current state of the display.

Creating temporary file space

The vi editor prints the message

Out o f t emp f i l e space

when it doesn't have enough buffer space (in 1 trnp) to hold the file . I t might refuse to
open the file when it prints this, or it might open it and load only part of the file into the
buffer. The latter is dangerous because if you write the file when only half of it is in the
buffer, you can lose the other half.

The best thing to do in response to that message is to quit vi . Type the colon
character (:) to move to the ex command line and then type

q !

Then go up to 1 trnp and delete any files that aren't necessary. After you've deleted
some files, go back and try opening your document again.

If your file is very large, you may have to use the A/UX s p 1 i t command to break
it into smaller text files before you can use vi to edit it. See spl i t(l) in A/UX
Command Reference for more information.

3-34 Chapter 3 Using the v l Screen Editor

Recovering lost files

If the system crashes or you receive a hang-up signal on a dial-in line, you can recover
your work even if you did not write the changes to the file. Move to the directory you
were in when the system crashed, and give the command

vi - r filename

(the - r flag option for recover) where filename is the file you were editing when the
system went down. This command tells you if there are any files to be recovered.

In some cases, a few lines of the file may be lost. These lines are almost always the
last few you changed.

+ Note It is not advisable to exit a file that you have just recovered using the z z
command, since z z does not guarantee that the file will be written. After you have
checked the recovered file, you should save the file using the : w command. +

Command summary

Tables 3-10 and 3-1 1 give brief descriptions of editing and inserting commands in vi .

Command summary 3-35

Table 3-10 Summary of vi editing commands

Command

[n] CONTROL-B

[n J CoNTROL-D

[n] CONTROL-E

[n] CONTROL-F

CONTROL-G

CONTROL-H

[n] CONTROL-]

CONTROL-L

[n] CONTROL-M

[n] CONTROL-P

CONTROL-R

[n] CONTROL-U

[n] CONTROL-Y

CONTROL-A

a [text] ESCAPE
A [text] ESCAPE
[n] b

[n] B

[n] c motion [text J EscAPE
C C [text] ESCAPE
C [text J EscAPE
[n] dmotion

[n] dd

Description

Move the cursor to the previous screen (or n screens backward).

Move the cursor down half a screen (or by n lines).

Display another line at the bottom of the screen (or n lines).

Move the cursor to the next screen (or n screens forward).

Give current line number and filename and the percentage along in
the file.

Move the cursor back one space.

Move down one line in the same column (or n lines).

Redraw screen (certain terminals only--Dthers use CoNTROL-R).

Same as pressing the RETURN key.

Move the cursor to the previous line (or n lines backward, same column).

Redraw screen (most terminalS--Dthers use CoNTROL-1).

Move the cursor up half a screen (or by n lines).

Display another line at the top of the screen (or n lines).

Edit the alternate file. See "Working With Multiple Files, " earlier in this
chapter, for more information.

Insert text immediately after the cursor (append).

Insert text at the end of the current line.

Move the cursor to the beginning of the preceding word (or nth word).

Move the cursor to the beginning of the preceding word (or nth word),
ignoring punctuation.

Change motion to text, where motion is a motion command.

(c typed twice.) Change entire line (or n lines).

Change from the cursor to the end of the line.

Delete one (or n) occurrences of the specified motion. You can use any of
the true motion commands here. (See "Using Motion Commands to Move
Within a File," earlier in this chapter, for more information.) For example,
3 dw deletes three words.

(d typed twice.) Delete current line (or n lines including current line).

3-36 Chapter 3 Using the vi Screen Editor

Table 3-10 Summary of vi editing commands (continued)

Command

D

[n] e

[n] E

[n] fx

[n] Fx

[n] G

h or �

[n] H

i [text J EscAPE
I [text] ESCAPE
[n] j or [n] J,
[n] J

[n J k or [n J 1'
[n] 1 or [n] �
[n] L

m

M

n

N

Description

Delete from the cursor to the end of the line.

Move the cursor to the end of the current word (or nth word).

Move the cursor to the end of the current word (or nth word), ignoring
punctuation.

Move the cursor forward to the first instance of x (n specifies the nth
instance).

Move the cursor backward to the first instance found of x (n specifies the
nth instance).

Move the cursor to the specified line number (Go to line number). G
alone moves the cursor to the end of the file. 1 G moves to the
beginning of the file.

Move the cursor left a space. (BACKSPACE also works.)

Move the cursor to the top-left position on the screen (Home) or the nth
line from the top of the screen.

Insert text immediately before the cursor (insert).

Insert text at the beginning of the current line.

Move the cursor down a line (in the same column) or down n lines.

Join current line with next line or the next n lines.

Move the cursor up a line (in the same column) or up n lines.

Move the cursor right a space or n spaces. (Space bar also works).

Move the cursor to the bottom-left of the screen (Last) or the nth line from
bottom of the screen.

Mark the current position of the cursor in the register specified by the
following letter (a through z) . Return to this position with ' and the
register letter.

Move the cursor to the beginning of the middle line on the
screen (Middle).

Repeat the last I or ? search command (next).

Repeat the last I or ? search command in the opposite direction.

(continued)•

Command summary 3-37

Table 3-10 Summary of vi editing commands (continued)

Command

0 [text] ESCAPE
0 [text] ESCAPE
[buf-spec] p

[bufspec] P

Q

[n] RETURN

[n] rx

R [text] EscAPE

[n] s [text] EscAPE

[n] S [text] EscAPE

[n] tx

[n] Tx

u

u
[n] w

[n] W

[n] x

[n] X

Description

Open a new line after the current line and insert text there (open).

Open a new line before the current line and insert text there.

Put the contents of the buffer in the text after the cursor. Lines you yank
are placed on new lines following the current line. Other objects, such as
words or paragraphs, are inserted immediately following the cursor. The
bufspec argument specifies a buffer 11 a through 11 z .

Put the contents of the buffer in the text before the cursor. The bufspec
argument specifies a buffer 11 a through 11 z .

Quit visual mode and go to the ex command line.

Move the cursor to the next line (or n lines forward, first column).

Replace the character (or n characters) at the cursor with x. This is a one
character replacement. You don't need to press EscAPE to cancel the
command.

Overwrite the characters on the screen with text. After you type R,
whatever you type overwrites the existing text until you press EscAPE.
Substitute the character (or n characters) beginning at the cursor. The $
character appears at the nth position in the text, so you know how many
you are changing.

Substitute the entire current line (or n lines). The $ character appears at
the end of the current line, or n lines are deleted before insertion begins.

Move the cursor forward to just before the first instance of x (or the nth
instance).

Move the cursor backward to just before the first instance of x (or the nth
instance).

Undo the last command, including a preceding undo command.

Undo changes to the current line.

Move the cursor to the beginning of the next word (or nth word).

Move the cursor to the beginning of the next word (or nth word),
ignoring punctuation.

Delete the character (or n characters), starting at the cursor.

Delete the character (or n characters), backward from the character
before the cursor.

3-38 Chapter 3 Using the vi Screen Editor

Table 3-10 Summary of vi editing commands (continued)

Command

[n J [bufspec J y motion

[n J [buf-spec J yy

[n] [buf-spec] Y

[n] z

z z

+

[n] $

0

[n] I

(

}

Description

Yank the specified object (word, paragraph, and so on) or n objects into
a buffer. The buf-spec argument specifies a buffer 11 a through 11 z .

Yank the current line (or n lines) into a buffer. The bufspec argument
specifies a buffer 11 a through 11 z .

Equivalent to yy. The buf spec argument specifies a buffer 11 a through
li z .

Display the current full screen (or the full screen starting with n). Change
the placement of the current line by following z with one of these
characters:

RETURN Place current line at the top of the screen.

Place current line at the center of the screen.

Place current line at the bottom of the screen

Quit vi , performing a write operation first if changes were made to the
file.

Move the cursor to the beginning of the preceding line. Scroll if
necessary.

Move the cursor to the beginning of the next line. Scroll if necessary.

Move the cursor to the end of the current line, or to the end of the line n
lines forward in the file.

Move the cursor to the beginning of the first word on the line.

(Zero.) Move the cursor to the left margin of the current line.

(Pipe or vertical bar.) Move the cursor to the beginning of the first column
or to the column specified by n.

Move the cursor to the beginning of the next sentence (defined as
! , or ?) followed by two spaces or a newline character.

Move the cursor to the beginning of the current sentence.

Move the cursor to the beginning of the next paragraph (the default
definition of a new paragraph is . P, . L I , or . bp) or to the next
blank line.

Move the cursor backward to the beginning of a paragraph (the default
definition of a new paragraph is . P, . L I , or . bp) or to the last
blank line.

(continued)•

Command summary 3-39

Table 3-10 Summary of vi editing commands (continued)
Command

]]

[[

%

[n] ;

[n] ,

&

Description

(Right bracket, typed twice.) Move the cursor to the beginning of a new
section (default definition is by . H or . HU).
(Left bracket, typed twice.) Move the cursor backward to the beginning of
a section (default definition is by . H or . HU).
Move the cursor to the matching parenthesis or brace. If you type % when
the cursor is not on a parenthesis or brace, vi searches forward until it
finds one on the current line and then jumps to the matching one.

(Back quote key typed twice.) Move the cursor back to where it was
before you used the last absolute motion command. Absolute motion
commands are those that move to a precise place.

Repeat the last command that changed the buffer.

Repeat the last f , F, t , or T command (once or n times).

Repeat the last f, F, t , or T command in the opposite direction
(once or n times).

Repeat the last single substitution.

Table 3-1 1 summarizes the commands used in vi's insert mode.

Table 3-11 Summary of vi insert commands

Command

CONTROL-D

CONTROL-I

CONTROL-Q

CONTROL-T

CONTROL-V

CoNTROL-W

erase

delete

Description

During an insert, tab backward over autoindent white space at the
beginning of a line.

Input a tab.

Precede a single character or control sequence with the escape character CONTROL-Q.

Insert a shift-width wide white space if pressed at the beginning of a line with
aut oindent set.

Precede a single character or control sequence with the escape character CoNTROL-V.

Delete the last word entered.

The system erase character (often DELETE, CoNTROL-H, or #). Delete the last input
character.

The system end character (often CoNTROL-U, CONTROL-X, or @). Delete the current
input line.

3-40 Chapter 3 Using the vi Screen Editor

---�· - ---

4 Using the ex Line Editor

What is ex? I 4-2

Syntax and initialization I 4-2

Displaying text and selecting lines within a file I 4-6

Inserting text I 4-1 1

Deleting text I 4-1 1

Changing text I 4-12

Copying and moving text I 4-14

Regular expressions and searching I 4-16

Working with multiple files I 4-18

Using shell commands in ex I 4-23

Setting options I 4-26

Mapping and abbreviations I 4-38

Additional ex commands I 4-38

Saving text and quitting ex I 4-41

Error conditions I 4-43

Command summary I 4-44

This chapter provides a detailed description of the commands and capabilities of the ex

line editor.

---- ----

What is ex?
The ex editor is an advanced version of the ed line editor. Although ex is
equipped with many powerful commands, most UNIX users prefer to use vi because
ex doesn't maintain an updated text display on the screen. Even if you never use ex
on its own, it is important to learn about ex commands and their functions because
most ex commands are readily accessible from vi . For more information, see
Chapter 3, "Using the vi Screen Editor. "

Once you have started ex, you enter commands at the ex prompt, the colon (:) .

In the ex editor, commands are words (such as wr i t e or edi t), which you can
abbreviate. A complete list of commands and their abbreviations appears at the end of
this chapter.

Starting ex

There are two ways to start ex. The first is to start ex from a CommandShell window.
To start ex in this manner, type

ex filename . . .

where filename is the name of the file to edit. This is the fastest way to start ex.
You can also use the Commando command line interface to open a new file. To do

this, open the ex Commando dialog box, click the "Enter name of new file" button,
type the name of the file, and then click OK. Click the "ex" button to open the new file.

The ex application starts. You return to the CommandShell window, and the empty
file you created is opened. See A!UX Essentials for more information about Commando.

Syntax and initialization

The following sections describe the command syntax and initialization for
the ex editor.

4-2 Chapter 4 Using the ex Line Editor

�- -

Command syntax for the ex line editor

The command syntax for ex is as follows:

ex [- J [-v J [- t [tag] J [- r [filename] J [- 1] [-wnJ [-x J [-R J [+ Command]

[filename . . . J

Table 4-1 summarizes the flag options for the ex line editor.

Table 4-1 ex flag options

Option

-v

-t [tag]

- r [filename J

- 1

-wn

- x

-R

+ [command]

filename

Description

(Minus sign.) Suppress interactive feedback. This is useful when you write shell
scripts that use the ex editor.

Equivalent to using vi .

Start editing the file a t tag (usually a spot marked with the c t ags program).
Equivalent to an initial t ag command. See "Editing Programs," later in this
chapter.

Recover a file after an editor or system crash; if you don't specify file, - r lists the
saved files.

Set the showma t ch and 1 i sp options for editing LISP programs. See
"Setting Options," later in this chapter.

Set the window size to n lines.

Prompt for a key to encrypt and decrypt the file (see crypt(l) in AIUX
Command Reference) . The file should already be encrypted using the same key.

Set the readon1y option, making it impossible to write the file with the
wri t e command.

Move to the line specified by command where command is either a regular
expression (see "Regular Expressions and Searching") or a line number (for
example, + 1 0 0 starts editing at line 100). If you omit command, ex moves the
cursor to the last line of the first file.

The file(s) to edit.

---·- - · -- ----

Syntax and initialization 4-3

Initialization procedures of the ex editor

When you start ex, it sets up your editing environment with the following steps:

• reads the TERM variable to find out what terminal you're using

• sets any options you've specified in the EX INIT environment variable (usually set
in the . pro f i l e (or . l ogin) file in your home directory)

• sets any options you've specified in the . exrc file in the current directory or your
home directory

You can set the same options with either the EX INIT environment variable or
. exrc files. The options are described in "Setting Options," later in this chapter.

Opening a file

To create and open a new file (or open an existing file) in ex, type

ex filename

where filename is the name of the file you're creating (or opening). For example, to
open the file 1 on don, type

ex l ondon

When you use ex to create a new file, ex opens some temporary storage space
that is called the buffer.

When you edit an existing file, ex places a copy of that file in the buffer. Changes
you make to the text in the buffer (for example, to a copy of 1 on don) are made only to
this temporary copy. The contents of the file are not changed until you save the file . See
"Saving Text and Quitting ex," later in this chapter.

• Warning You should periodically save your changes to the file to prevent losing
material if the system crashes or is interrupted . .A.

4-4 Chapter 4 Using the ex Line Editor

,.� - -

The different modes of ex

The ex editor has a number of modes:

• Command mode is ex's primary mode; that is, when you invoke ex you are
initially in command mode and everything you type is interpreted as a command. In
command mode, you enter commands at the colon (:) prompt and end them by
pressing RETURN.

• In input mode, ex assumes that what you type is text (rather than commands),
and it doesn't display a prompt. Invoking the append, insert , or change

commands in command mode places you in input mode. Resume command mode
by typing a period (.) at the beginning of a line and pressing RETURN.

• You can also enter open mode from ex using the o command. Open mode
allows you to use vi commands, but limits your movement to within one line
at a time. (It is like visual mode with a screen one line long.) This is convenient if
you want to use vi commands on a dumb terminal. (A smart, or addressable
cursor, terminal is required for you to use vi itself.) Type Q to return to ex.

• When you invoke ex with the command -v you enter vi . Visual mode
allows movement and editing throughout the displayed screen of text. See
"Switching to vi . "

Switching to v l

When you invoke ex you can switch to vi by giving the command

vi

at the ex colon prompt on the bottom line of your screen. This invokes visual mode
and places the current line as the first line on the screen. To return to ex from visual
mode, type

Q

Syntax and initialization 4-5

Using special keys in ex

The following keys have special meaning in A/UX.

RETURN

The interrupt
key sequence

The RETURN (carriage return) key cancels all ex commands.

The examples in this chapter assume that you press RETURN after all
commands unless shown otherwise.

The interrupt key sequence (set to CONTROL-C in A/UX) sends an
interrupt signal to the editor. It is a forceful way of canceling a
command after you have pressed RETURN.

Displaying text and selecting lines
within a file

In ex you can display text on the screen by specifying a line number or range of line
numbers followed by the print command. The next section describes how to specify
which lines you want to select.

Selecting lines within a file

You can prefix most commands with addresses. These addresses tell ex which lines to
perform the command on. For example, 1 Opr in t prints the tenth line in the buffer.

Here are a few basic rules to follow when using line addresses in ex:
• Commands that don't require an address (such as the qui t command to leave

ex) regard an address as an error. "Command Summary," at the end of this chapter,
specifies which commands need addresses and which don't.

• For ex commands that require an address, ex assumes a default address if you
don't supply one . If you give more addresses than a command requires, ex uses
the last one or two, depending on the command being attempted.

4-6 Chapter 4 Using the ex Line Editor

----------- ---- -� - ---------

��- --- - ---�

• For ex commands requiring two addresses, the second address must follow the
first address. If you use two addresses, you can separate them with a comma (I) or a
semicolon (;). Using I calculates both addresses relative to the current line. For
example, if you are on line 1 ,

+ 2 � + 4pr int

prints lines 3 through 5 . Using ; calculates the second address using the first
address as the current line. For example, if you are on line 1 ,

+ 2 ; + 4print

prints lines 3 through 7 .

Throughout the rest of this chapter, the term lineno (line number) denotes an expression
that identifies a single line in a file, numbered with lineno. This includes a search for a
pattern (see 1 pattern [1 J , below).

Throughout the rest of this chapter, the term line-spec (line specifier) denotes an
expression that identifies zero or more lines in a file. A valid line-spec can be a single line
number lineno; a range of line numbers line 1 I line2; a context search resulting in zero or
more lines (see "Regular Expressions and Searching"); or a regular expression resulting
in zero or more lines (see "Regular Expressions and Searching"). Commonly used
abbreviations include $ (the last line of a file) and . (the current line). In the following
commands, line-spec defaults to the current line unless stated otherwise.

A line-spec may consist of any one of the following expressions:

line1 I line2

lineno

$

%

+ [n J

- [nJ

Dot (.) indicates the current line. This is the default address for most
commands. Most commands leave the current line as the last line they
affect.

A range of line numbers beginning with line 1 and ending with line2.

Move to lineno. You can find out the current line number by typing a
. = sequence.

The last line in the buffer.

An abbreviation for 1 I $; the entire buffer.

Forward n lines from the current line. + 3 and + + + are equivalent;
if the current line is line 100, they address line 103.

Backward n lines from the current line. - 3 and - - - are
equivalent; if the current line is line 103, they address line 100.

Displaying text and selecting lines within a file 4-7

1 pattern [1 J

? pattern [? J

II

' x

Forward to a line containing the regular expression pattern (see
"Regular Expressions and Searching," later in this chapter). ex
searches forward until it reaches the end of the file, then it searches
from the first line of the file to where you began your search. If you
want to print the next line containing pattern, you don't have to
include the trailing 1 . 1 is shorthand for "search forward for the last
pattern you scanned for. "

Backward to a line containing the regular expression pattern
(described under "Regular Expressions and Searching"). ex searches
backward until it reaches the beginning of the file, then it searches
from the last line of the file to where you began your search. If you
want to print the next line containing pattern, you don't have to
include the trailing ? . ? is shorthand for "search backward for the
last regular expression you scanned for. "

(Back quote typed twice.) Refers to your position before the last
absolute motion (an absolute motion specifies the line to move to,
while a relative motion specifies the distance to move from the
current line.)

(Where x is a letter from a to z .) Refers to a location you marked
with the mark command. This is described in "Marking Text," later
in this chapter.

You can also add a number to the end of a command to specify the number of lines
involved. For example, d5 deletes five lines, starting with the current line. If the
number specified is larger than the number of lines between the current line and the end
of the file, ex performs the operation to the end of the file.

Using motion commands to move within a file

ex provides a number of ways to move through your file, and these are collectively
referred to as motion commands. Table 4-2 summarizes ex's motion commands.

4-8 Chapter 4 Using the ex Line Editor

Table 4-2 ex motion commands

Command

lineno

$

+ [n]

- [n]

I pattern [I J

I

I I

? pattern [? J

?

? ?

' X

CONTROL-0

RETURN

Description

Move to lineno.

Move to the last line in the buffer.

Move forward from the current line. If followed by n, it means to move to the start of
the line n lines forward in the buffer.

Move backward from the current line. If followed by n, it means to move to the start
of the line n lines backward in the buffer.

Move forward to a line containing the regular expression pattern (described under
"Regular Expressions and Searching").

Move forward using the last regular expression scanned for.

Move forward using the last regular expression used in a substitution (described
under "Changing Text").

Move backward to a line containing the regular expression pattern (described under
"Regular Expressions and Searching").

Move backward using the last regular expression scanned for.

Move backward using the last regular expression used in a substitution (described
under "Changing Text").

(Back quote typed twice.) Move to the location before the last absolute motion.

(A single back quote followed by a lowercase letter a through z .) Move to a
location you marked with the mark command (described in "Marking Text").

Move forward half a screen. You can change this with the set s c ro 1 1 option,
described under "Setting Options. "

Move to the next line.

Determining line appearance

Three commands control how text displays on the screen: print , l i s t , and
number.

The print command sets the default printing style. I t displays nonprinting
characters as Ax and delete (octal 177) as " ? . The format of the print command is

[/inespec] p [ri nt J [n J

Displaying text and selecting lines within a file 4-9

It prints the current line, the lines specified by linespec, or the next n lines. You can
also add a p to the end of many commands to print the current line after the command
completes.

The 1 i s t command displays the specified lines with tabs indicated with "' r and
the ends of lines indicated with a $. The format of the 1 i s t command is

[linespecJ 1 [i s t J [n J

I t displays the current line, the lines specified by linespec, or the next n lines. You
can also add an 1 to the end of many commands to list the current line after the
command completes.

The number command prints the line number before each specified line. The
format of the number command is

[/inespec] nu [mber J [n J

or

[linespecJ # [nJ

I t prints the current line, the lines specified by linespec, or the next n lines. You can
also add a # to the end of many commands to number the current line after the
command completes.

See "Setting Options" for more information.

Determining the appearance of the current line
on the screen

The z command determines where the current line appears on the screen. (If you
prefix the command with a line number lineno, that line number becomes the current
line.) There are several different forms of this command.

[lineno J z Print the next full screen of lines with the current line at the top
of the screen.

[linenoJ Z+

r linenoJ z-

Print the next full screen of lines with the current line at the top of
the screen.

Print the screen with the current line at the bottom.

4-10 Chapter 4 Using the ex Line Editor

[linenoJ z .

[linenoJ Z=

[/inenoJ z"'

Inserting text

Print the screen with the current line at the center.

Print the screen with the current line in the center, surrounded with
lines of - characters.

Print the screen two windows before the current line.

The two basic ex commands for adding text to your file are the append and
insert commands.

The append command adds text after the specified line. The command syntax is

[lineno] a [ppend] RETURN [text RETURN] . RETURN

where lineno is the line number, text is the text you enter. To append text to the start of
the buffer, use the command O a (this appends to line 0). A variant form, the
append ! command, changes the setting of the autoindent option while
appending (described under "Setting Options").

The ins ert command adds text before the specified line. The command format is

[/ineno] i [nsert] RETURN [text RETURN] . RETURN

where lineno is the line number, text is the text you enter. A variant form, the insert !

command, changes the setting of the aut o indent option during an insert (described
under "Setting Options").

Deleting text

The de l e t e command removes the specified lines. You delete a specified range of
line numbers using the format

[/inespec] d [e l e t e J [n J

For example, you can delete lines 5 through 20 of your file with the command

5 , 2 0d

Deleting text 4-11

-----··---- ·- --

You can delete line 5 with the command

S d

or you can specify the line you want to delete using a regular expression. For example, if
the line you want to delete ends in the word finish, use the command

l f in i sh$ 1 d

You can also delete n lines with the command

d [e l et e] n

For example,

d3

Changing text

The change command replaces existing text with new text. The command format is

[linel [I line2] J c [hange] [n] RETURN text RETURN

This changes either linel, the range linel through line2 inclusive, or, when n is
specified, the next n lines. A variant form, the change ! command, changes the setting
of the auto i ndent option during the change. (This option is described under
"Setting Options. ") The command format is

[linel [I line2] J c [hange J ! [n] RETURN text RETURN .

You can also change a string with the subs t i tut e command. The simplest
format of this command is

s 1 pattern 1 replacement [1 J RETURN

This replaces the first instance of pattern with the replacement on the current line.
Regular expressions are used commonly in substitutions. For example, if you had the
following line in your file

Mai l The C l eaning B i l l To My Get tysburg Address

4-12 Chapter 4 Using the ex Line Editor

and you typed

s iMa i l i Sendl

it would change your line to

S end The C l eaning B i l l To My Getty sburg Addres s

Substitutions are also commonly used when you want to change a word throughout your
file. The common format for this is

1 , $ s 1 pattern 1 replacement 1 g

This tells ex to make the replacement on every line of the file (1 , $ means from
the first line to the last line); g tells it to make the replacement every time it appears in
a line. If you didn't add the g, it would make the replacement only once per line, at the
first appearance of pattern.

A variation of this format is useful when you want to repeat the same change several
times within one line. Instead of giving 1 , $ for the range of the command, you may
specify a single line. For example, if the above sample line were the current line (or dot)
in your file, you could type

s l e l a l g

to change your line to

Sand Tha C l aaning B i l l To My Gat tysburg Addras s

In general, subst i tute replaces the first instance of pattern with replacement on
each specified line. The suffixes are

g (global .) Substitute pattern with replacement every time it appears on the
specified lines. To make the substitution everywhere in the file, use the
format

1 , $ s 1 pattern 1 replacement 1 g

You can also use % instead of 1 , $.

c (confirm.) Print the line before making each substitution, marking the string
to substitute with A characters. Type y to confirm the substitution, and
type any other character if you don't want to make the substitution.

r (replace.) Replace the previous replacement pattern from a substitution with
the most recent search string.

Changing text 4-13

You can split lines by substituting newline characters into them. You must escape the
newline in replacement by preceding it with a backslash (\) . See "Regular Expressions
and Searching" for other metacharacters available in pattern and replacement.

Omitting pattern and replacement repeats the last substitution. For example, if you
substitute the word t e s t 2 for the word t e s t on one line using the command

s / t e s t / t e s t 2 /

you can repeat this substitution on another line by typing

s

This is a synonym for the & command, which is described later in this chapter.
Using the r suffix (sr) replaces the previous pattern with the previous regular

expression. For example, if you make the substitution

s / t e s t / t e s t 2

then search for a pattern such as my . t e s t ,

/my . t e s t /

then the command

sr

changes my . t e s t to t e s t 2 . I f you omit the r suffix, the s command replaces
my . t e s t with my . t e s t 2 . This is a synonym for the � command, which is
described later in this chapter. See "Command Summary" and "Repeating the Last
Command" in Chapter 3, "Using the vi Screen Editor, " for more information on
repeating substitutions.

Copying and moving text

You can use several commands to copy and move text.
The copy command places a copy of one section of your text after the specified

line. The most common format of this command is

linel , line2co [py J lineno

This copies the lines between line 1 and line2 and places them after lineno.

4-14 Chapter 4 Using the ex Line Editor

The move command moves a section of your text to a new location in your file. The
format of this command is

[linel [I line2] J m [ove J lineno

This moves the text either from linel or between linel and line2 after lineno.
You can also move text by moving it into ex's buffer and then placing it in the text

with the put command.
There are two general forms of commands used for moving text in this way. The first

is to use the yank or de l e t e commands to place the text in ex's unnamed buffer.
This happens automatically when you use the de l e t e command to delete the text
(described under "Deleting Text"), or the yank command to copy the text. The
general forms for the yank command are

[linel [I line2] J ya [nk J

to place a copy of the text either from linel or between linel and line2 in ex's

unnamed buffer, or

ya [nk] n

to place a copy of the next n lines in ex's unnamed buffer. You can then place ex's

buffer somewhere else in the file with the put command (either by moving to where
you want the text to appear, or by specifying an address before the put command) . If
you use ex's unnamed buffer, you can't make any modifications to your text between
placing the text in your buffer and putting it in its new location.

The other way to move or copy text is to use one of ex's named buffers. ex has 26
buffers named a through z . Use the same general format as before, but specify a
buffer name with each command. For example,

1 � 4 d a

deletes lines 1 through 4 and places them in buffer a .

10 pu a

puts the contents of buffer a after line 10.
You can also specify the buffers as A through z if you want the text you are

currently deleting or yanking to be appended to the end of the buffer rather than
overwriting it.

You can use ex's named buffers to move information from one file to another if you
have specified both files when you started ex.

Copying and moving text 4-15

Regular expressions and searching

A regular expression uses metacharacters (special characters that stand for other
characters) to stand for a set of strings. The regular expression is said to match each
element in this set of strings. For example, if . is a special character standing for any ��,

letter and A is an ordinary character standing for A, then A . would find all of the
following words: At , About , Another .

Regular expressions in ex always appear between the characters 1 1 or the
characters ? ? .

char

$

[pattern]

\ <

Any character other than the metacharacters listed below matches itself.
The characters listed below are metacharacters. You have to precede
them with a backslash (\) to have ex treat them as ordinary characters.

At the beginning of a pattern, the caret specifies that the pattern is at the
beginning of a line. For example, A A specifies a line beginning with A.
This character has a different meaning within square brackets.

At the end of a pattern, the dollar sign specifies that the pattern is at the
end of a line . For example, a$ specifies a line ending with a .

The period matches any single character except the newline character.
For example, A . matches A followed by any character.

A pattern enclosed in square brackets sequentially matches a set of single
characters defined by pattern.

Ordinary characters in pattern match themselves. For example, [ab J
specifies either a or b.

A pair of ordinary characters separated by - in pattern defines a range
of characters. For example [a - z J matches any lowercase letter.

If A is the first character within square brackets, it specifies characters
that are not in the pattern. For example, [A a- z J matches anything but
a lowercase letter.

This matches a pattern at the start of a word (ex defines the start of a
word as the beginning of a line, or a letter, digit, or underline that follows
any character other than a letter, digit, or underline) .

This matches a pattern at the end of a word (ex defines the end of a
word as the end of a line, or a letter, digit, or underline followed by any
character other than a letter, digit, or underline) .

4-16 Chapter 4 Using the ex Line Editor

You can use the preceding regular expressions to construct larger regular expressions
using the following rules:

• If you use two regular expressions (for example, [a - z J [A- z J), the editor matches
the first string it encounters that matches both regular expressions in the order they
appear.

• Following a regular expression with an asterisk (*) matches zero or more

occurrences of the preceding character. Generally, you should use this within a
longer regular expression, since it matches for zero occurrences first. That is ,
searching for a * finds zero occurrences and matches the characters following the
cursor. This is convenient, however, for longer regular expressions. For example,
ba *b matches bb, bab, baab, baaab, and so on. Within a longer regular
expression, if there is any choice, it matches the longest leftmost string. In the
preceding example, it would choose baaab.

• Enclosing a regular expression in \ (and \) defines the regular expression as a
numbered "field," so that you can refer to it later. For example,

\ ([a - z] \) \ ([A- Z] \)

defines two fields, numbered sequentially. Use \f (where fis the number of the
field) to refer to any of the fields in the regular expression. In the previous example
\ 1 refers to the field matched by the regular expression [a - z J and \ 2 refers to
the field matched by the regular expression [A- z J .

• The null regular expression (; 1 or ? ?) is shorthand for the last regular expression.

Turning off metacharacters

There are two ways to use ex's metacharacters as ordinary characters (if, for example,
you want to search for the period [.] character) .

1 . You can precede the meta character with a backs lash (\) .

2 . You can set the nornagi c option (see "Setting Options"). This strips all but the
following three metacharacters of their special meaning: /\ at the beginning of a
regular expression (indicating the beginning of a line), $ at the end of a regular
expression (indicating the end of a line), and the backslash character (\) . You can
restore the special meaning to the other metacharacters by preceding them with a

backslash (\) .

Regular expressions and searching 4-17

Working with multiple files

You can work with several files during one editing session. Before describing the
commands for this, we define the terms that refer to these files.

Working with the current file

The file you are editing is the current ftle. This means that the buffer contains the
edited version of this file. ex overwrites this file with the updated version in the buffer
without protest. When ex's current file is not the file being modified in the buffer (for
example, if you use the f i l e command to change the name of the current file without
changing the buffer).

f filename

ex does not overwrite a file with the buffer's contents. See "Changing the Current File ."
If the file in the buffer is not the current file, the f i 1 e command displays

[Not Edi t ed]

You can use % to refer to the current file anywhere you would use the filename.

Working with alternate files

ex also has an alternate ftle, which is usually the previous file you edited.
If you haven't previously edited another file, but have read a file into the buffer with

the read command, this becomes the alternate file .
You can use # to refer to the alternate file anywhere you would use the filename.

This makes it easy to alternate between two files. For example, if you are in the current
file and want to edit the alternate file, type

e #

This reads the alternate file into the buffer, making it the current file. (If you had
modified the buffer since you last wrote it to file, ex would warn you and would not
edit the alternate file.)

4-18 Chapter 4 Using the ex Line Editor

Opening multiple files at startup

You can specify more than one file when you start ex. The format is

ex filename . . .

ex reads the first file into the buffer and creates an argument list, which is a list
containing the names of all the files you specified at startup.

Displaying the argument list

The args command displays the current argument list with the current file delimited
by brackets ([J) .

Editing the next ftle on the argument list

The next command edits the next file in the argument list. The format for this
command is

n [ext]

You must save any changes you have made before editing a new file or you'll get
the message

No wr i t e s ince last change (: next ! overrides)

To edit the next file in the argument list and overwrite the current buffer with this
file, type

n !

The buffer is overwritten with the next file, whether you've saved the current buffer
or not.

Typing

n+cmd

runs cmd after opening the first file on the argument list.

Working with multiple files 4-19

4-20

Replacing the argument list

You can replace the list of files in the argument list with another list of files by typing

n filename . . .

ex replaces the list of files in the argument list and edits the first file on the new list.
If you made changes to one or more files on the original argument list and you

haven't saved the current buffer, you'll get the message

No wri t e s ince last change (: n ! overr i de s)

If you haven't saved the buffer, you can force ex to replace the argument list with
the new list by typing

n ! filename . . .

The new list of files replaces the original one even if you have not saved the current
buffer.

Returning to the ft.rst ftle on the argument list

The rewind command edits the files on the argument list beginning with the first file.
The format of the command is

rew

If you made changes to one or more files on the original argument list and you
haven't saved the current buffer, you'll get the message

No wr i te s ince l a s t change (: rewind ! overr i des)

Typing

rew !

forces ex to edit the files on the argument list beginning with the first file and
discarding any changes you made to the current buffer.

Chapter 4 Using the ex Line Editor

----- -- - -- - ----

Editing a new file

The edi t command reads a new file into the buffer. If you haven't saved the cur
rent buffer, ex warns you and doesn't edit the new file. If you have saved the current
buffer, ex deletes the buffer contents, makes the specified file the current file, and
prints the new filename and the number of lines and characters read.

ex sets the current line to the last line in the new file (in line mode) or the first line
in the new file (in open or visual mode).

ex strips the high-order bit from any non-ASCII characters and discards any nul l
characters.

If the file is a special device (block, character, or TIY), ex tells you and allows you
to edit the file. If it is a directory, you'll get the message Di rect ory. If it is a binary
file , you'll get the message L ine t oo l ong or Incomp l e t e las t l i ne .
Generally, you shouldn't edit these kinds of files.

The edi t ! command edits the specified file and overwrites the current buffer,
whether you've written it or not. The form of this command is

e ! filename

Typing

e+ lineno filename

or

e + I pattern filename

begins editing filename at line lineno or at pattern 1 pattern (pattern can't contain
spaces) .

Copying another file to the current buffer

The read command copies the text of filename to the current buffer after the specified
line. The format is

[/ineno] r [ead] [jilenamel

where lineno is a line number, or an expression resulting in one. If you don't specify a
filename, it uses the current filename. If there is no current filename, fUename becomes
the current name. If the file buffer is empty and there is no current file, ex treats this as
an edi t command.

Working with multiple files 4-21

read then tells you the filename read in and the number of lines and characters
read. After a read command, the current line is the last line read (in ex) or the first
line read (in open or visual mode).

Typing

D read

reads the file at the beginning of the buffer.

Examining the characteristics of the current ftle

The f i 1 e command tells about the file you are editing. Its syntax is

f [i 1 e]

It prints the following information:

• the current filename

• whether you have modified the current file since the last wr i t e

• whether the current file is in read-only mode
• the current line

• the number of lines in the buffer

• the current line's position in the buffer, given as a percentage from the beginning of
the buffer

It also notes when the current file is "not edited" (the current file is not the file in the
buffer). In this case, you have to use w ! to write to the file, since ex does not know if
wri t e will destroy a file unrelated to the current buffer contents.

Changing the current ftle

The f i 1 e command changes the current filename to filename without changing the
buffer contents. The format of the command is

f [i 1 e J filename

The current file is then considered "not edited. "

4-22 Chapter 4 Using the ex Line Editor

Using shell commands in e x

There are several ways of interacting with the shell from within ex.

Running another program from ex

The ! character invokes a shell to run a single command using the syntax ! command.

This runs command in the shell and returns you to the editor when the command
completes.

The command you invoke from the editor using the ! syntax may be a simple
command such as 1 s , or it may be an interactive program such as de or a shell script.

If you enter a simple shell command from the editor, it runs immediately and prints
! on the screen when it ends. You are then back in the editor at the same position in
the file. For example,

! l s

lists the files in your current directory. If you haven't written the buffer contents since the
last change, ex prints a warning message before executing the command. Before
returning you to the editor, it prints " ! " .

If you enter an interactive program from the editor, it runs until you exit that
program. For example,

! de

invokes the de calculator program. You can then use de as long as you wish. When
you end de , you are back in the editor at the same position in the file .

The command

sh

invokes your login shell. You may then give as many commands in the shell as you wish.
When you finish with the shell, type an eo/character (CoNTROL-D in the A/UX standard
distribution) or

exi t

to return to the editor.

Using shell commands in ex 4-23

You may escape to a shell different from your login shell. The general form for this
command is

! shell

where shell is the name of the shell you wish to invoke. For instance, if your login shell is
the Bourne shell (sh(l)) , you may invoke the c sh instead with the following:

! c sh

This invokes a copy of the C shell, temporarily suspending ex. You may then give
as many commands in the new shell as you wish. When you finish with the shell, type an
eo/character (CoNTROL-D in A/UX) or

exi t
t o return to the editor.

Remember that after you use the sh (or ! shell) escape from ex, you have invoked
a new shell, not the shell from which you initiated ex. If you use sh to escape ex
and forget that you have suspended your editing job, you might invoke a new copy of
ex from your new shell instead of exiting that shell and going back to the original ex
session. This can cause problems with inconsistent versions of a file if you finally quit
ex, and is something to be aware of when using sh or ! shell from ex.

Directing command output to the buffer

You can read the output of a command into your file with the read command. The

usual format of this command is r [ead J ! command

(you must type a space or a tab before the !). For example,

read ! l s

places the directory listing after the current line.

+ Note The shell prompts are also written to the file. •

4-24 Chapter 4 Using the ex Line Editor

Sending the buffer to shell commands

You can send part of your buffer to a command with the wri t e ! command (you
must precede the ! with a space or a tab). The format of this command is

line2 [, line2] J w [r i t e J ! command

For example, to format the first 20 lines of your file without leaving the editor, use
the command

1 , 2 0 w ! nro f f > new . f i le

When you precede this command with a range of line numbers, ex sends the
specified line(s) to command and replaces the line(s) with the output of the command.

Writing shell scripts using ex commands

You can write shell scripts that use ex commands. You add comments to these scripts
by starting a line with a double quote (") or by adding a double quote and a comment to
the end of a command (except when they could be read as part of the command-as in
shell escapes and the subs t i tute and map commands) .

You can place more than one command on a line by separating each pair of
commands with a 1 (pipe) character. If you use a global command, comment, or shell
escape (!) , however, it must be the last command on the line.

You can use the - flag option to ex within shell scripts to suppress interactive
feedback. This permits the script to run without pausing for information to be typed in
from the terminal.

The following is an example of a shell script:

for i i n $ *

do

ex - $ i <<EOF

g / f l / s / / fR / g

g / f 2 / s / / f i / g

g / f 3 / s / / fB / g

wq

EOF

done

" change

" change

" change

\ f l t o \ fR

\ f2 t o \ f i

\ f 3 t o \ fB

Using shell commands in ex 4-25

To run this shell script (named s c r ipt . ex) on a text file, make the script file
executable with the command

chmod +x s c r ipt . ex

Then type

scr ipt . ex filename

where filename is a text file. When the script has finished running, all instances of " \ f 1 "

in your file are changed to " \ fR, " and so on. See also Chapter 6, "Using the s ed

Stream Editor, " for information on making global changes to a file using scripts.

Setting options

You control many of the ways ex behaves by setting options.
ex has three kinds of options: numeric, string, and toggle. Each of these options is

set in its own way. Numeric options are options that take a numeric value and string

options are options that take a string value. You set numeric and string options with the
following command format: �,

set opt= val

For example, you set the number of lines to scroll through (a numeric option) with
the following command:

set scro l l = 4

You set the default shell (a string option), with the following command:

set sh= /bin/ sh

A toggle option is an option that is either on or off. You set a toggle option with
one of the following formats:

set opt

turns the option on and

set noopt

4-26 Chapter 4 Using the ex Line Editor

turns the option off. For example,

set number

turns on line numbering and

set nonumber

turns off line numbering.

To set options, use the following syntax:

Option type Syntax Sets opt to

numeric s e t opt=number number

string set opt= string string

toggle set opt on
set no opt off

You can place multiple options on one line with the format

set opt opt opt

Most options can be abbreviated; see "Summary of Command Options," later in this
chapter, for a list of options and their abbreviations.

Listing options

To see option settings, use the following syntax:

Options listed Syntax

all set a l l

changed ones set

an opt set opt?

Setting options 4-27

- ----- ---

When to set options

You can set these options anytime while editing a file, or you can set them as part of
your default editing environment by including them in the EXINIT variable in your
. pro f i le file or by creating a . exrc file in the current or home directory. If
you set them in your . pro f i l e file, they should all be on one line, separated by
vertical bar (1) characters. For example, in your . pro f i l e file, you could have the
following entry:

EXINIT= " set nurnber l set scro l l = 2 0 1 s e t t erse "

Command option summary and descriptions

This section provides a brief description of the function of each of the command options
for the ex line editor.

autoindent

Abbreviation: ai

Default : noautoinden t

Begin new lines of text at the indent level of the previous line. This is useful in structured
program text.

When inserting text, CoNTROL-D moves the cursor back to the previous tab stop .

Entering a blank line or typing oCoNTROL-D erases the autoindent. You can type one
line at the margin by beginning it with "'CONTROL-D; the next line returns to the previous
indent.

aut o i ndent does not work with global commands or when the input device is not a
terminal .

autoprint

Abbreviation: a p
D�fault : au topr int

Print the current line after each de l et e , copy (or t) , j o in, move, s
(substitute), undo, < , or > command (if it is the last command on the line). This is
suppressed during global commands.

4-28 Chapter 4 Using the ex Line Editor

---------- ---

autowrite

Abbreviation: aw

Default : noautowr i t e

Write the modified buffer contents to the current file when you use the following ex
commands

n [ext]
rew [ind]
t a [g]

Edit next file in series
Reedit the list of files from the start
Move to a tag location
Escape to the shell

or the following vi commands:

CONTROL-"' Switch files
CoNTROL-] Move to a tag location

You can override the aut owr i t e option, destroying the current buffer contents, with
the following ex commands

e [di t J Instead of n [ext J
rew [ind] ! Instead of rew [ind]
t a [g J ! Instead of ta [g J
s h [e l l J Instead of !

and the following vi commands:

: e # Instead of CoNTROL-"'
: ta ! Instead of CONTROL-]

beaut i fy

Abbreviation: b f

Default : nobeaut i fy

Discard all control characters (except tab, newline, and form feed) from your input, and
print a message the first time it discards a backspace character. This option applies only
to text input and not to command input.

directory=dir

Abbreviation: di r

Default: di rectory= / trnp

Specify the directory where ex places its buffer file. This directory must have write
privileges, or the ex application will quit.

Setting options 4-29

edcompat ible

Abbreviation: none

Default: noedcompat ible

Use the suffixes g and c to toggle globally and confirm settings of the s (substitute)
command.

errorbel l s

Abbreviation: eb

Default: noerrorbe l l s

Sound a bell when displaying error messages (you cannot suppress this bell in open or
visual mode). If possible, ex highlights the error message on the screen instead of
ringing the bell.

flash

Abbreviation: f 1

Default : f l ash

Flash the screen when an error occurs.

hardtabs=n

Abbreviation: h t

Default : hardtabs = 8

Set the length of terminal hardware tabs (or where the system expands tabs).

ignorecase

Abbreviation: i c

Default : no ignorecas e

Set regular expressions to match both uppercase and lowercase patterns, except when
you specify a range of uppercase characters (for example, [A- z J) .

insert arrows

Abbreviation: i a

Default : i ns ert arrows

4-30 Chapter 4 Using the ex Line Editor

Allow use of arrow keys in insert mode as well as command mode.

l i sp

Abbreviation: none

Default : no 1 i sp

Set aut o indent and modify the vi motion commands () , { } , [[, and J J to
have meaning for LISP.

l i st

Abbreviation: 1 i s t

Default: no 1 i s t

Print lines showing tabs as A r and the end of the line as $, as in the 1 i s t command.

magic

Abbreviation: none

Default : magi c

With magi c set, e x recognizes all the metacharacters used in regular expressions.
Setting no magi c uses only the following regular -expression metacharacters: \ , A ,
and $. I t treats all other characters (including � and & used in substitutions) as
normal characters. You can use any of these as metacharacters by preceding them
with \ .

mesg

Abbreviation: none

Default : me s g

By default, vi allows other users to send you messages while you are editing a file .
nomesg turns off this permission.

number

Abbreviation: nu

Default : nonumber

Print lines preceded by their line number and (after RETURN) prompt with line numbers
for input lines.

Setting options 4-31

open

Abbreviation: none

Default : open .

By default, you can enter open and vi sual mode from ex. Setting noopen
means you can't use these modes.

opt imi ze

Abbreviation: opt

Default : opt irni z e

Suppress carriage returns on more than one (logical) line of output. This optimizes
output on terminals without addressable cursors when printing text with leading white
space.

paragraphs =XYZ

Abbreviation: para

Default : paragraphs = PL ibp

Specify the paragraph macro searched for in vl and open mode when you type {
or } . By default, it searches for the rnrn macros . P, . Lr , and the nro f f / tro f f
request . bp.

prompt

Abbreviation: none

Default : prompt

By default, ex prints the prompt (:) when it is in command mode. Setting noprornpt
turns off this prompt.

readonly

Abbreviation: none

Default : noreadonly

Make the file read only (just as if you had started ex with the -r flag option). You
can override this option and save the file by using the wr i t e ! command.

4-32 Chapter 4 Using the ex Line Editor

redraw

Abbreviation: none

Default : noredraw

Force a dumb terminal to redraw the characters to the right of the cursor as you type
input in vi . This is useful only at baud rates of 1200 or higher.

remap

Abbreviation: none

Default : remap

Repeatedly translate maps until they are unchanged. For example, if you map o to 0,
and 0 to I , setting remap maps o to I , while setting noremap maps o to 0.

report =n

Abbreviation: none

Default : report = S

Print a message when a command modifies more than n lines. For example, e x prints
1 2 l ines de leted after a deletion. For the following commands, ex reports after
completing the entire command: globa l , open, undo, and vi sua l .

scrol l =n

Abbreviation: none

Default : s c ro l l =half the value of the window option

Set how many lines scroll when you press CoNTROL-D in vi 's command mode. By
default, it uses half the number of lines set with the window option.

sections =XYZ

Abbreviation: none

Default: sect i ons =HHU

Specify the section macro searched for in vi sual and open mode when you type
[[or J J . By default, it searches for mm's, . H, and . HU macros.

Setting options 4-33

she 1 1 =Pathname

Abbreviation: sh

Default : she l l = $ SHELL

Set the pathname of the shell used by the shell escape command ! and the she l l
command. $ SHELL is the value in the SHELL variable, as set in the . l ogin or
. pro f i l e file.

shi ftwidth=n

Abbreviation: sw

Default : shi f twidth= 8

Set the software tab stop width used when you press CoNTROL-D in aut oindent , and
when you use the > and < commands.

showmatch

Abbreviation: sm

Default : noshowmatch

Move the cursor to the matching (or { on the screen for one second when you type
(or { in vi . Extremely useful with LISP.

s1owopen

Abbreviation: s 1 ow

Default : no s l ow

Don't update the display when you enter text in vi . Useful on a very slow line.

tabstop=n

Abbreviation: t s

Default : tabstop= 8

Set tabstops to n.

4-34 Chapter 4 Using the ex Line Editor

taglength=n

Abbreviation: t 1

Default : taglength=O

Tags are not significant beyond n characters. Zero (the default) means that all characters
are significant.

tags=pathname

Abbreviation: none

Default : tags = / us r / l ib / t ags

Search for the requested files sequentially in the specified path when using the t ag
command. You must escape any spaces with a backslash (\) . By default, it searches in
the current directory and in /usr 1 1 ib (a master file for the entire system).

term=terminal

Abbreviation: none

Default : $TERM

Set your terminal type. The value you specify must exist in a file in the appropriate
subdirectory of /us r / l ib / t erminfo . $TERM is the value of the TERM variable,
as set in the . l ogi n or . pro f i le file.

terse

Abbreviation: none

Default : not erse

Produce shorter error messages.

warn

Abbreviation: none

Default: warn

Print [No wri t e s ince l a s t change] if you use a ! command escape before
you have saved the current buffer.

Setting options 4-35

4-36

window=n

Abbreviation: none

Default: speed dependent

Set the number of lines in vi 's text window. By default, this is determined by your baud
rate. The default settings are

8 for 600 baud or lower
1 6 for 1200 baud
2 3 (or full screen) at higher speeds

The settings w300, w1200, w9600 set window only if the speed is slow (300), medium
(1200), or high (9600), respectively. They are suitable for an EX I N I T variable.

wrapmargin=n

Abbreviation: wm

Default: wraprnargin= O

Set the column number where the cursor automatically returns when you enter text in
visual and open modes. This is determined by setting the wraparound point n columns
from the right side of the screen. Since there are 80 columns on a typical terminal screen,
setting wraprnargin= l O would break a long line 10 columns to the right of this, in
the 70th column. wraprnargin= O means that a long line wraps at column 80, but is
not broken (that is, wraprnargin is ofO.

wrap scan

Abbreviation: ws

Default: wrapscan

Search the entire file for a regular expression by moving from the current line, wrapping
around the end or beginning of the file (depending on the direction you're searching in),
and returning to the current line.

writeany

Abbreviation: wa

Default : nowr i t eany

By default, ex warns you if you try to save your buffer to any file other than the current
file. Setting nowr i t eany allows you to write to any file with write permission.

Chapter 4 Using the ex Line Editor

Summary of ex options

Table 4-3 is a complete list of ex editor command options.

Table 4-3 Summary of ex options

Option Abbreviation Default

aut o indent a i noa i

aut oprint ap ap

aut owr i t e aw noaw

beaut i fy b f nobf

direct ory dir dir= / tmp

edcompat ible noedcompat ibl e

errorbe l l s eb noeb

hard tabs ht ht = B

ignorecase ic no i c

l i sp no l i sp

l i s t no l i s t

magi c magic

me sg mesg

number nu nonu

open open

opt imi z e opt opt

paragraphs para para=PLibp

prompt prompt

readonly noreadonly

redraw noredraw

remap remap

report report = 5

scro l l s c ro l l = l / 2 window

sect i ons s ec t i ons =HHU

she l l sh sh= $ SHELL

(continued)•

Setting options 4-37

Table 4-3 Summary of ex options (continued)

Option Abbreviation Default

shi f twidth sw sw= B

showmatch srn nosrn

s l owopen s l ow (terminal dependent)

tabs t op t s t s = B

t ag l ength t l t l = O

tags tags = /usr / l ib / t ags

term t errn= $TERM

terse noterse

warn warn

window window= (speed dependent)

wraprnargi n wm wm= O

wraps can ws ws

wri t eany wa now a

Mapping and abbreviations

Mapping and abbreviations are available as a joint facility of ex and vi . The mapping
or abbreviation must be defined on the ex command line, but is useful only in visual
mode. See "Mapping and Abbreviations" in Chapter 3, "Using the vi Screen Editor, "
for further information.

Additional e x commands

This section describes several other ex commands. See "Command Summary" for a
complete list of ex commands and their usage.

4-38 Chapter 4 Using the ex Line Editor

�-,

Marking text

You can set up a special address with the mark command and then use this address
anywhere you would use an ex address. The syntax for this command is

[lineno] rna [rk] x

where lineno is the line (number) in the file to mark and x is a lowercase letter to mark
this line. You must precede this letter with a blank or a tab. After you have marked a
line, you can refer to it by typing

' X

where x is the name you gave it.

You can also use the k command to mark a line. The syntax for this command is

[/ineno] kx

where lineno is the line (number) in the file to mark and x is a lowercase letter to mark
this line. This is the same as the mark command, except you don't have to precede the
letter with a space.

Recovering lost text

There are several ways to recover information in ex.

The undo command changes the buffer back to the way it was before the last
editing command.

If you have deleted several large sections and want to recover them, the easiest
method is to exit ex without saving your changes by using the qui t ! command.
The format for this command is

q [ui t] !

This restores the buffer you had when you last wrote the file.
The preserve command is a more drastic way to save your file. You should use

it only if you can't save your file with a wri t e command. It saves your file as though
your system had just crashed. You can recover this file with the recover command.

Additional ex commands 4-39

Editing programs

ex has several commands for editing programs.
< shifts text right to the next tabstop and > shifts text left. This is useful for

changing the indentation of a section of program.
Using the t ag command helps you locate functions that may be spread over many

files. The tag command starts editing the file at tag, moving to another file if
necessary. Since the current file edit may be canceled abruptly, you must write the
current file, if you modified it, before giving a tag command. If you give the tag

command without specifying a tag, ex uses the previous tag. The syntax is

ta [g J tag

Normally, you use this command after using the c tags command to create a tag
file (see ctags(l) in A!UX Command Reference). A tag file consists of several lines
with three fields separated by blanks or tabs. The first field is the name of the tag, the
second is the name of the file where the tag resides, and the third is an addressing form
used to find the tag. Usually, this is a contextual scan in the form 1 pattern; , performed
as if nornagi c were set.

Names in the tag file must be sorted alphabetically.
For instance, if you wish to have ready access to the functions in a file called

func t ions . c of the following form,

ma in ()

f l () i

{

f 2 () i
{

f l () i

f 2 () i

f 2 () i

4-40 Chapter 4 Using the ex Line Editor

you could run the c tags program on it, as follows:

ctags funct ions . c

This creates a tag file called tags .

I f you then edit func t i ons . c or even another file with ex , and give
the command

ta f l

you will find yourself in the editor buffer of func t i ons . c at the line

f l ()

ready to edit that function. However, you must be in the same directory as
the t ags file.

Saving text and quitting e x

The wr i t e command saves the changes you've made to the buffer in the specified file
and prints the number of lines and characters written. The format of this command is

[line 1 [I line2] J w [r i t e J [filename]

By default, ex writes the entire buffer to filename. Including a starting and ending
address saves only the lines between line1 and line2. Including just a starting address
saves only linel. If you don't include filename, ex writes to the current file . If there is
no current file, ex creates the file filename and writes the buffer to it. The wr i t e

command also writes to 1 dev / t ty and 1 dev / nu l l .

The wr i t e ! command forces ex to write the buffer. The file must already exist. The
format of this command is

[line 1 [I line2] J w [r i t e ! J [filename]

The wr i t e>> filename command appends the buffer to the end of a file (which must
already exist). The format of this command is

[line1 [I line2] J w [ri t e J > > filename

Additional ex commands 4-41

Quitting ex

The qui t command cancels ex using the syntax.

q [u i t] RETURN

If you haven't written all your changes to a file, ex warns you and does not quit. It -------.,
also tells you if there are additional files in the argument list.

The qui t ! command allows you to leave ex without saving the changes you've
made, using the syntax

q [u i t] ! RETURN

See "Saving Files and Quitting ex, " earlier in this chapter, for information on saving
a file.

Saving a file and quitting ex simultaneously

The following commands save your changes and quit the ex application.
The wri t e and qui t commands can be used together to save your changes in

the current file or in a specified file and then quit ex.

wq

This is simply a shorthand form of using wri t e followed by qu i t ; you may also
use the long form of these commands as shown in the sections above.

Followed by an exclamation point,

wq ! filename

forces ex to save your changes in filename and then exits ex. This is a shorthand
form of using wri t e! followed by qui t . You may also use the long form of these
commands as shown in the sections above.

The xi t command saves your buffer only if you have made changes since last
saving it and then exits ex. You can use this command by typing

X

The long format of this command is

x [i t J [filename]

where filename is the name of the file in which to save your buffer.

4-42 Chapter 4 Using the ex Line Editor

------- ---

Error conditions

When there is an error, the system beeps. If ex receives an interrupt signal, it prints
Inter rupt and returns to command mode. If the primary input is from a file, ex

quits.

Limitations

The ex line editor cannot exceed the following parameters:

• 1024 characters per line

• 256 characters per global command list

• 128 characters per filename

• 128 characters in the previous inserted and deleted text in open or visual mode

• 100 characters in a shell escape command

• 63 characters in a string option

• 30 characters in a tag name

A limit of 250,000 lines in the file is silently enforced.
The number of macros defined with map in vi is limited to 32, and the total

number of characters in macros is limited to fewer than 512 .

Recovering lost files

If the system crashes or you accidentally hang up before saving your file, ex sends
you a message informing you that it has saved your file . The - r flag option recovers
your buffer.

Error conditions 4-43

The format of this command is

ex - r

to list the files that ex saved, and

ex - r filename

to recover filename (after first moving to the directory you were in). You should check
the recovered file before overwriting the existing file with it. Note that you must use the
write command to explicitly write the recovered file. The x i t command is a safe way
to exit a recovered file because it does not guarantee that a write operation will occur.

Command summary

In the following commands, the last line you enter, copy, change, or print becomes the
current line. If you use an input command, but don't enter a new line, the next line
becomes the current line. If you delete text, the following line become the current line;
deleting text at the end of the file makes the new last line the current line.

The following is the standard ex command format:

[line-spec] command [! J [parameters] [nJ [flags]

Only pressing RETURN prints the next line. The ex editor ignores a period character
(.) preceding any command.

In these commands,

line-spec (for "line-specifier") indicates the command address (see "Line
Selection" for the definition of line-spec). In the following commands,
line-spec defaults to the current line, unless stated otherwise.

lineno (for "line number") indicates the single-line command address
(defaulting to the current line).

flags

command n

indicates invoking the printing command # (number), 1 (l i s t),
or p (print) after the command.

performs command on the n lines involved, starting at the current
line.

4-44 Chapter 4 Using the ex Line Editor

ab [breviate] wd word

(Must be defined in ex, but works in vi only.) Abbreviate word to wd in input mode.
Typing wd in input mode, delimited by spaces or punctuation, displays word.

[lineno] a [ppend] RETIJRN text RETIJRN.

Append text after lineno. Specify lineno zero (0) to insert text at the beginning of the
buffer. Default address: current line .

[lineno] a [ppend] ! RETIJRN text RETIJRN .

Same as append, but changes the setting for aut o indent while appending (see
"Setting Options") . Default address: current line.

ar [gs]

Print the list of files to edit, with the current file delimited by brackets ([]) .

[linel [, line2]] c [hange] [n] RETIJRN text RETIJRN.

Replace linel, or the lines between line1 and line2, or n lines, with text. Default address:
current line.

[linel [, line2]] c [hange] ! [n] RETIJRN text RETIJRN .

Changes the setting of the aut o indent option while changing the text (see "Setting
Options") . Default address: current line.

[linel [, line2]] co [py] lineno (flags]

Copy the text on linel, or between linel and line2, after lineno (if lineno is zero (o), the
text is copied to the start of the file). Including a .flag after the command (either p for
pr int , 1 for l i s t , or # for number) changes the display to the specified format.
t is a synonym for copy. Default address: current line.

[linel [, line2]] d [elete] [buffer] [n] (flags]

Delete the specified lines (either line 1, those lines between line 1 and line2, or the
number of lines specified with n). Specifying buffer with a lowercase letter (a through
z) , overwrites that buffer with the deleted text, while specifying an uppercase letter (A

through z) appends the deleted text to that buffer. Including a flag after the command
(either p for print , 1 for l i st , or # for number) changes the display to the
specified format. Default address: current line.

Command summary 4-45

e [di t] file

Edit file. ex warns you if you haven't written your current buffer, and doesn't allow
you to edit file. Otherwise, ex reads file into the buffer, making it the current file, and
prints the new filename and the number of lines and characters read. ex strips the
high-order bit from any non-ASCII characters and discards any null characters.

The current line is the last line (in ex) , or the first line (in open or vi sua l

mode) .
If file is a special device (block, character, or TTY), ex mentions this, but allows

you to edit the me. If it is not a text me, it prints the error message L ine too l ong

(or Direct ory, if appropriate) .

e [di t] ! file

Same as edi t , but ex doesn't warn you if you haven't saved the current buffer.

e [di t l +lineno file

Begin editing file at line lineno, where lineno may be a line number or a pattern
1 pattern (pattern can't contain spaces).

f [i le]

Print the following information: current filename; whether you have saved the current
buffer; whether the current file is in read-only mode; the current line; the number of
lines in the buffer; the percentage of the way through the buffer of the current line. It
also notes when the current file is not the file in the buffer, by printing not edi t ed.

This happens if you changed the current file by entering f i 1 e file. In this case, you
have to use w ! to write to the current file.

f [i le] file

Change the current filename to file, without changing the buffer. file is considered "not
edited. "

[line I [, line2]] g [lobal] /pat [/cmds I]

g 1 oba 1 1 pat prints lines containing the regular expression pat and
globa l 1 pat; cmds; performs cmds at lines containing the regular expression pat. -----._,

cmds can span several lines if you end all but the last line with a backslash (\) . cmds
can include append, insert , or change. If one of these is the last command, you
can omit the period that cancels these commands. cmds can also include the open or

4-46 Chapter 4 Using the ex Line Editor

/

vi s ua 1 commands, which take input from the terminal. cmds cannot include
global or undo, since undo would reverse the entire global command.

global turns off the aut oprint and autoindent options and sets the
report option to infinity until executing the entire command. ex sets the context
mark (") to the current line, and changes it only if you enter open or vi sual mode
within the globa l command. Default address: 1 , $.

[linel [, line2]] g [lobal] ! /pat /cmds or [linel [, line2]] v /pat /cmds

Run cmds globally on each line not matching pat.

[lineno] i [nsert] RETIJRN [text RETIJRN] •

Insert text before lineno. This command differs from append only in its placement of
text. Default address: current line.

[lineno] i [ns ert] ! RETIJRN [text RETIJRN] •

Same as insert , but changes the auto indent option while inserting (see "Setting
Options") . Default address: current line.

[linel [, line2]] j [oin] [n] (flags]

Join the specified lines (either the lines between linel and line2 or n lines). ex ensures
that there is at least one blank character where the lines joined, two if there was a period
at the end of the line, or none if the first following character is a) . If there is already
white space at the end of the line, it discards the white space at the start of the next line.
Including aflag after the command (either p for print , l for l i s t , or # for
number) changes the display to the specified format. Default address: current line.

[linel [, line2]] j [oin] ! [n] (flags]

Same as j o in, but doesn't add or delete white space. Default address: current line.

kx

A synonym for mark (described below), which does not require a blank or tab before
the letter. Default address: current line.

[linel [, line2]] 1 [i s t] [n] (flags]

Print the specified line(s), displaying tabs as "' r and the end of line(s) as $. Including a
flag after the command (either p for print or # for number) changes the display
to the specified format. Default address: current line.

Command summary 4-47

map string definition

(Must be set via an ex command, but works in vi only.) Make typing string
equivalent to typing definition when executing commands in visual mode (vi) . String
can be up to 10 characters long, and definition can be up to 100 characters long. Default
address: none.

[lineno] ma [rk] x

Mark the specified line with x, a lowercase letter. You must precede xwith a blank or a
tab. After marking a line, you can refer to it with ' x. This command does not change
the current line. Default address: current line.

[linel [, line2]] m [ove] lineno

Move the specified line(s) after lineno. The first moved line becomes the current line.
Default address: current line.

n [ext]

Edit the next file in the argument list specified at startup. Default address: none.

n [ext] !

Move to the next file and overwrite the current buffer whether you've saved it or not.
Default address: none.

n [ext] file-list

Replace the current list of files to edit with the specified file-list and edit the first file on
new list. Default address: none.

n [ext] ! file-list

Allow editing of new file-list even if you have not saved the current buffer. Default
address: none.

n [ext] +cmd file-list

Execute cmd (which must not have spaces in it) after opening the first file in file-list.

Default address: none.

4-48 Chapter 4 Using the ex Line Editor

Print the specified line(s) (linel, or the lines between linel and line2, or the next n

lines) preceded by its line number. Including a flag after the command (either p for
print or 1 for l i s t) changes the display to the specified format. Default address:
current line.

[line-spec] o [pen] [/pat] Vfags]

Use vi commands at each addressed line. Specifying pat moves the cursor to the
beginning of the string matched by the pattern. Including a flag after the command
(either p for print , l for l i s t , or # for number) changes the display to the
specified format. Type Q to exit this mode. Default address: current line.

pre [serve]

Save the current editor buffer as though the system had just crashed. Use this command
only in emergencies when a wri t e command results in an error and you do not know
how to save your work. Use the recover command or ex - r to recover after a
preserve. Default address: none.

[linel [, line2]] p [rint] [n]

Print the specified line(s) (linel, or the lines between linel and line2, or the next n

lines) displaying non printing characters as Ax and delete (octal 177) as A ? .

[linel [, line2]] P [rint] [n]

Print the specified line(s) (linel, or the lines between linel and line2, or the next n
lines) displaying nonprinting characters as Ax and delete (octal 177) as A ? .

[lineno] pu [t] [buffer]

Put previously deleted or yanked lines after lineno. This moves lines with de l e t e or
copies lines with yank. Specifying buffer (a lowercase letter between a and z)
retrieves text placed in that buffer with a de lete or yank command. Default
address: current line.

q [uit]

Leave ex. If you haven't saved all your changes, ex warns you and doesn't allow you
to leave ex. ex also tells you if there are more files in the argument list. Normally, you
should wri t e your changes before doing a qu i t . Default address: none.

Command summary 4-49

q [uit] !

Same as qui t , but ex doesn't warn you if you haven't saved the current buffer.
Default address: none.

[lineno] r [ead] r.file]

Copy the text of file after lineno in the current buffer. If you don't supply file, it uses the
current filename. If there is no current filename, file becomes the current name. It will
not allow you to read in devices, but it will allow you to read in binary files.

If the file buffer is empty and there is no current file, ex treats this as an edi t

command. Oread reads the file at the beginning of the buffer. It gives the same
statistics as the edi t command when it reads the file in. After a read command, the
current line is the last line read (in ex) or the first line read (in open or visual mode).
Default address: current line.

[lineno] r [ead] ! command

Read the output of command into the buffer after lineno. There must be a blank or tab
before the ! . Default address: current line.

rec [over] file

Recover file after accidentally hanging up the phone, a system crash, or a pres erve

command. Default address: none.

rew [ind]

Start editing the files in the argument list, beginning with the first file you supplied when
you started ex. Default address: none.

rew [ind] !

Same as rewind, but doesn't save the current buffer. Default address: none.

se [t]

The forms of this command are set . Print those options you've changed from their
default settings .

set a l l Print all the option values.

set opt= val Give the value val (either a number or a string) to the option opt.

set opt List the current setting of a string or numeric option.

4-50 Chapter 4 Using the ex Line Editor

set opt

set noopt

set opP.

Turn on an option that can be either off or on.

Turn off an option that can be either off or on.

List the current setting of an option that can be either off or on.

You can give more than one parameter to set ; parameters are interpreted left-to-right.
See "Command Option Summary and Descriptions" for the complete list. Default
address: none.

sh [e l l]

Create a new shell. Editing resumes when you cancel the new shell (using exi t) .

Default address: none.

so [urce] file

Read file and run the (text-manipulation) commands in it. You can nest this command.
Default address: none.

[linel [, line2]] s [ubst itut e] /pat /repl [/suffix]

s Replaces the first instance of pattern pat with replacement pattern repl on each
specified line. The suffixes are

g (global .) Substitute pat with repl every time it appears on the specified lines. To
make the substitution everywhere in the file, use the format 1 , $ s 1 pat/ repl; g.
You can also use % instead of 1 , $.

c (confirm.) Print the line before making each substitution, marking the string to
substitute with A characters. Type y to confirm the substitution, and type any
other character if you don't want to make the substitution.

r (replace.) Replace the previous replacement pattern from a substitution with the
most recently mentioned regular expression; for example, from a search command.

You can split lines by substituting newline characters into them. You must escape the
newline in repl by preceding it with a backslash (\) . See "Regular Expressions and
Searching" for other metacharacters available in pat and repl. Default address: current
line.

Command summary 4-51

[linel [, Une2]] s [ubst itute] suffix

Omitting pat and rep! repeats the last substitution. This is a synonym for the &
command, which is described later in this section. Using the r suffix (s r) replaces the
previous pat with the previous regular expression. This is a synonym for the �

command, which is described later in this section. Default address: current line.

[linel [, line2]] t lineno flags

t is a synonym for copy.

ta [g] tag

Start editing the file at tag, moving to another file if necessary. You must write the
current file, if you modified it, before giving a t ag command. If you give the t ag

command without specifying a tag, it uses the previous tag.
Normally you use this command after using the ctags(l) command to create a tag

file. (See c tags(l) in A!UX Command Reference.) Default address: none.

una [bbreviate] wd

Delete wd from the list of abbreviations. When you type wd, it is not expanded.

u [ndo]

undo reverses the changes made by the last editing command, except wri t e

or edi t .

undo marks the previous current line with I I
• If you restored a line, this becomes

the current line. If you didn't restore a line, the line before the last deleted line becomes
the current line.

urun [ap] string

Reverse the effect of a previous map command, removing the definition associated
with string. (Note that the map command only affects visual mode.) Default address:
none.

[linel [, line2]] v I pat I cmds

A synonym for the variant form of a global command: runs cmds at each line not

matching pat. Default address: none.

4-52 Chapter 4 Using the ex Line Editor

ver [sion]

Give the current version of the editor and the last date the editor was changed. Default
address: none.

[line-spec] vi [type] [n] VJags]

Enter visual mode at the specified line. The optional type argument (- " or .)
specifies where the line is placed on the screen. If you omit type, the specified line is the
first line on the screen. n specifies an initial window size; default is the value of the
option window. Type Q to exit this mode. Default address: current line.

[linel [, line2]] w [rite] r.file]

wri t e writes changes back to file, printing the number of lines and characters written.
Normally, you omit file and the text goes back where it came from. If you specify file,

text is written to that file. By default, it writes the entire file.
The editor writes to a file only if it is the current file, if it is creating the file, or if the

file is actually a device (/ dev/ t ty, / dev/ nu l l) . Otherwise, you must give the
variant form w ! to force the write.

If the file does not exist, ex creates it. This command does not change the current
line. If there is an error while writing the current and edited file, the editor considers that
there has been no write since the last change, even if the buffer had not previously been
modified. Default address: current line.

[linel [, line2]] w [rite] >> file

Append buffer contents to file. Default address: current line.

w [rite] ! file

Force a write to a file. This is helpful when you want to write to a file that already exists.
Default address: none.

[linel [, line2]] w [rite] ! command

Write the specified line(s) into command. Note that this is different from w ! because a
blank or tab must separate the w from the ! . Default address: current line.

wq r.file]

wri t e followed by qui t . Default address: none.

Command summary 4-53

wq ! r.Jile]

The variant overrides checking on the wri t e command, as w ! does.

x [it] r.file]

Write the buffer if there have been any changes, then quit the file . Default address: none.

[linel [, line2]] ya [nk] buffer n

yank places a copy of the specified line(s) in the named buffer. You can retrieve them
with put . If you don't specify a buffer name, the lines go to a more volatile place (see
the put command description). Default address: current address.

[lineno+l] z n

z prints the next n lines (default window).

[lineno] ztype n

The z command determines where the current line appears on the screen. type is the
character following the command and determines the positioning of the display on the
screen. There are several different forms of this command:

[lineno J z or
[n] z +

[lineno] z

[/ineno] z .

[lineno] z =

[linenoJ z "'

! command

Print the next full screen of lines with the current (or specified)
line at the top of the screen.

Print the screen with the current (or specified) line at the bottom.

Print the screen with the current (or specified) line at the center.

Print the screen with the current (or specified) line in the center,
surrounded by lines of - characters .

Print the screen two windows before the current (or specified)
line. Default address: current line.

Send command to the shell to run. Within command, % and # are expanded as in
filenames; ! is replaced with the text of the previous command. Thus, ! ! repeats the
last shell escape. If there is any such expansion, the expanded line is echoed. This
command does not change the current line.

If you haven't written the buffer contents since the last change, ex prints a warning
message before executing the command. A single ! prints when the command
completes. Default address: current line.

4-54 Chapter 4 Using the ex Line Editor

[linel [, line2]] ! command

Supply the specified address (or address range) as standard input to command. The
output then replaces the input line(s). Default address: current line.

[line-spec] =

Print the line number of the specified line. "Dot equals" (. =) gives the current line
number. If no line is specified, the line number of the last line in the file is given. Does
not change the current line. Default address: last line in file.

[linel [, line2]] < n flags or [linel [, line2]] > n flags

The less-than and/or greater-than signs (< and >) shift left or right a distance specified
by the shi f twidth option. They shift only blanks and tabs and do not discard
nonwhite characters in a left shift. The current line is the last line that changed due to the
shifting. Default address: current line.

[line-spec] CONTROL-D

CoNTROL-D scrolls through the file. You can specify the size of the scroll with the
scro l l option. The default is a half screen of text. Default address: current line.

[line 1 [, line2]] or RETURN

Print the addressed line(s). Pressing RETURN prints the next line. Default address: none.

[line-spec] & suffix n flags

The ampersand (&) repeats the previous substitute command on the current (or
specified) line. If you set the edcornpat ible option, it retains the suffix; that is , if the
previous substitute command was global, the ampersand repeats the substitution
globally on the current line. Default address: current line.

[- [line-spec]] -suffix n flags

The tilde (-) replaces the previous replacement pattern from a substitution with the
previous regular expression. Default address: current line.

[linel [, line2]] # [n] r.Jlags]

Print the specified lines(s) (linel, or the lines between linel and line2, or the next n
lines) preceded by its line number. Including a .flag after the command (either p for
print or 1 for l i s t) changes the display to the specified format. Default address:
current line.

Command summary 4-55

5 Using the ed Line Editor

What is ed? I 5-2

Starting ed I 5-2

Editing an existing file I 5-6

Using special characters in ed I 5-20

Command summary I 5-25

This chapter provides a detailed description of the commands and capabilities of the ed

line editor.

What is e d?
The ed line editor is an interactive line-oriented text editor that uses your instructions
to create and modify text files. A line editor moves through your file one line at a time
and allows you to modify that line or to change another line or range of lines (indicated
by line number). The red editor is a restricted version of ed. It is identical to ed

except you can only edit files in the current directory and you cannot access shell
commands.

The ed line editor is the only editor available in the A/UX Startup application
(formerly known as s ash) . From the Startup application you can look at the A/UX file
system while A/UX isn't running. With ed you can edit those files. This is very useful,
for example, to edit the A/UX initialization file ini t tab before starting up A/UX. For
more information on the Startup application, see Aim'" Local System Administration.

+ Note Except for the command you use to invoke the editor program, all commands
discussed in this chapter are commands to ed. Do not confuse them with A/UX shell
commands. •

Starting e d
There are two ways to start ed. The first and fastest way to start ed is from a
CommandShell window. To start ed in this manner, type

ed filename

where filename may or may not already exist.
If a file by that name does not exist, you see the message

?filename

If a file by that name does exist, ed displays the character count on the screen.
You can also use the Commando command line interface to start the ed program

and open a new or existing file. See Chapter 4, "Using Commando, " in A!U¥ Essentials
for more information about the Commando command line interface.

5-2 Chapter 5 Using the ed Line Editor

Displaying a prompt

You can use the P command to display a prompt on your screen. Type

p

The following appears on the left side of your screen:
*

You type ed commands next to the asterisk (*) in the same way that you type shell
commands next to the A/UX system prompt. To turn off the prompt, type the P

command again.

Error messages

If ed doesn't understand something you type, it prints a question mark (?) on
the screen.

For assistance in interpreting this error message, type

H

The H (help) command explains the current error message and all subsequent
ones. Typing the H command again turns off this feature.

Alternatively, you can use the h command. This form of the help command
explains only the current error message.

Inserting text

When you start ed, you open the editing buffer. The buffer corresponds to an empty
file . It is a temporary work space, similar to a blank piece of paper. When you create a
file, you must insert text into the buffer or read it in from another file and then save the
new or modified data.

Starting ed 5-3

For example, when you give the command

ed filename

where filename is an existing file, ed makes a copy of this file and places it in the
editing buffer. Any modifications or additions you make to this file are made on the
copy, not on the original file.

The following example begins with inserting text in an empty buffer (editing existing
files is discussed later).

To begin creating text, type

a

on a line by itself, and press RETURN. (The a command means append or add text lines
to the buffer as they are typed in.)

Type the following text:

A j ourney o f a

thousand mi l e s

begins wi th a

s ingl e s t ep .

As shown in the last line of this example, appending is stopped by typing a period
(.) followed by RETURN. The period must be the first and only character on the line. This
tells ed that you have finished adding text and are ready to give a command. Even
experienced users sometimes forget to type the period when they have finished adding
text. If ed seems to be ignoring your commands, type a period, and then press RETURN.

You may find that some command lines in your text have to be removed.

After you finish appending, the buffer contains these four lines:

A j ourney o f a

thousand mi l e s

begins wi th a

s ingl e s t ep .

To add more text, type

a

(RETURN), and continue typing.

5-4 Chapter 5 Using the ed Line Editor

Saving text

After you have added text to the buffer, you will want to save it. The w (write)
command writes the contents of the buffer into a file. For example, if you type

w my f i l e

the buffer's contents are copied into a file named my f i l e .

I f you named your file when you began your editing session, o r if you are editing an
existing file, you don't have to repeat that filename when you write the file. ed

remembers the original filename you designated and automatically reuses it. For
example, an editing session might look like this:

ed my f i l e

(editing session)

w

The file you edited is saved in a file named my f i 1 e when you type w.

You can also use the w command to save part of a file. The w command writes the
lines you specify from the buffer to the permanent file. If no lines are specified, the w

command writes the entire file . For example, the command

1 , 1 0w

saves the first ten lines of your file.
In another example, if you are editing your file my f i 1 e , and you give the

command

1 , 1 0 w another . f i l e

e d writes the first ten lines of your file my f i l e to the file another . f i l e .

Note that when you assign a name to a file from within ed you must make sure that
you do not have an existing file by that name. The write command replaces that file with
the current buffer's contents without giving you a warning.

After writing the file, ed responds as follows:

5 7

This represents the number of characters (including blank spaces and end-of-line
characters) that were written into the file.

+ Note It's a good idea to write your text to a file every 10 or 15 minutes. •

Starting ed 5-5

Quitting ed

To quit ed after saving your text with the w (write) command, type

q

(followed by RETuRN). For example, in the editing session described above, the following
appears on the screen:

ed

a

A j ourney o f a

thousand mi l e s

begins w i t h a

s ingl e s t ep .

w t ext

5 7

q

(start the editor program)

(append)

(text)

(text)

(text)

(text)

(end append)

(write to a file named text)

(character-count system response)

(quit)

When you leave ed, the buffer is destroyed, and the system responds with its usual
shell prompt character. ---- ,

I f you try to quit the editor without writing the buffer contents to a file, ed prints

?
on your screen.

If you don't want to save the changes to your file, typing q a second time (followed
by RETURN) gets you out of ed and back to the shell without saving the changes you
made since the last w command. If you want to save the changes to your file, type w

and press RETURN.

Editing an existing file

After you have created and saved a file, you may want to edit it. Open the file using one
of the methods described earlier, or type

e filename

5-6 Chapter 5 Using the ed Line Editor

When you use the e command to edit a file, ed replaces the contents of the
buffer with the new file. If you were already working on a file in the buffer and you
haven't written it yet, the e command destroys it without warning you.

If you forget the name of the file you have in the buffer, you can find out using the
f (file) command. From within the editor, type

f

and the name of the file appears on the screen.

Displaying the contents of the buffer

To display all or part of the buffer on your screen, use the p (print) command. You
must specify the line numbers where you want printing to begin and end. Separate these
numbers with a comma in this format:

line 1, line2p

Through this chapter, such line addressing is represented with the following:

line 1, line2command

where command is p in this case. line1, line2 indicates a range of addresses from line1

to line2.

For example, to print the first ten lines of the buffer (lines 1 through 10) , type:

l , l Op

You can also tell ed to display the line numbers of the lines you specify with the p

command. For example,

2 , 4pn

prints the following lines:

2 text of line 2

3 text of line 3
4 text of line 4

Editing an existing file 5-7

Suppose you want to print all the lines in the buffer. If you know the exact number
of lines in the buffer, such as 30, you could type 1 , 3 Op . However, if you don't know
how many lines there are in your file, use the dollar sign ($) . (The dollar sign refers to
the last line of the file; see the section "Using Special Characters in ed. ") To print all the
lines in the buffer, type

1 , $p

To stop printing, press the interrupt key (usually CoNTROL-C). ed responds with

?
and waits for the next command.

To print the last line of the buffer, type

$p

You can print any single line by typing the line number. For example, typing

1

prints

A j ourney o f a

which is the first line of the buffer.
In ed, the current line is the most recent line processed (in this case, the line last

printed). If you type p again, ed prints line 1 again. The period character (or dot)
always refers to the current line. It is a line number in the same way that $ is. You can
use dot in several ways-one possibility is to enter

. ' $p

This prints everything from the current line to the last line of the buffer. In the
example file my f i l e, these are lines 1 through 4.

Some commands move the current line to a new place in the file (that is, they change
the value of dot); others do not. The p command resets dot to the number of the last
line printed. For example

. ' $p

sets dot to the last line in the buffer Cline 4) .

5-8 Chapter 5 Using the ed Line Editor

Dot is most useful in combinations such as

. + 1 (this is equivalent to . + 1p)

This means "print the next line" and is a handy way to step slowly through a buffer.
You can also type

. - 1 (or . - 1 p)

which means "print the line before the current line . " This allows you to move backward
through the buffer. Another useful example is

. - 3 , . - 1p

which prints the previous three lines.
Don't forget that all of these commands change the value of dot. You can find out

what dot is by typing

. =

This will print the line number of the current line. Pressing REruRN once prints the
next line. It is equivalent to

. + 1 p

To summarize, you can precede p with zero, one, or two line numbers. I f you don't
specify a line number, p prints the current line (the line that dot refers to) . If you
specify one line number with or without the letter p, ed prints that line and makes it
the current line. If you specify two line numbers separated by a comma and followed by
p, ed prints everything from the first number to the last number, and sets dot to the last
line printed. (The first number must be smaller than the second number-ed won't
print backward.)

Typing the caret (A) or the minus sign (-) moves the current line back one line.
These characters can be used in multiples; typing A A A or - - - moves the current line
back three lines. The minus (-) and caret (A) are the same as - 1p .

You can use line numbers with most ed commands, as you will see in the sections
that follow.

Editing an existing file 5-9

Reading text into the buffer

If you want to add an existing file to the buffer without overwriting what is already there,
use the r (read) command. The command

r new . f i l e

adds the contents of the file new . f i 1 e to the end of the file already in the buffer. If
you type

e my f i le

5 7 (system response)

r my f i le

5 7 (system response)

the buffer now contains two copies of the same file:

A j ourney o f a

thousand mi l e s

begi ns with a

s ingl e s t ep .

A j ourney o f a

thousand mi l e s

begins w i t h a

s ingl e s t ep .

Like the w and e commands, r prints the number of characters that it read into
the buffer.

If you precede the r command with a line number or a dot (.) , it reads a file and
puts it after the specified place in the current buffer.

. r filename

reads the contents of filename into the buffer immediately after the current line. (In this
context, dot is equal to the current line. This is different from the period character on a
line by itself, which means that the text insertion is over.)

3 r filename

reads the contents of filename into the buffer following line number 3.

5-10 Chapter 5 Using the ed Line Editor

The file in the buffer is not destroyed-it continues after the last line of the file you
read in. For example, using the original file my f i le

ed my f i l e

5 7

1

A j ourney o f a

. r my f i l e

5 7

w

1 1 4

q

places this in your file:

A j ourney o f a

A j ourney o f a

thousand mi l e s

begins w i t h a

s ingl e s t ep .

thousand mi l e s

begins w i t h a

s ingl e s t ep .

Deleting text

(system response)

(go to line 1)

(system response)

(system response)

(system response)

The d (delete) command removes lines of text from the buffer. The d command uses
the same format as the p command

linel, line2 d

For example, the command

4 , $d

deletes everything from line 4 to the end of the buffer. In the preceding example, this
deletion leaves us with three lines. We can check these lines by typing

1 , $p

Editing an existing file 5-11

The last line, $, is now line 3. If you delete the last line (as in the preceding
example), dot is set to $.

You can use the d (delete) command and the p (print) command together. For
example, typing

dp

deletes the current line, prints the next line, and sets dot to the line printed.

Inserting text

The i (insert) command inserts one or more lines into the buffer. It is similar to the a

command except that it places the text before rather than after the current or specified
line-for example, typing

2 i

one or more lines of text

inserts the text before the second line. If you don't specify a line number, the text is
inserted before the current line. Dot is set to the last line inserted.

Experiment with the i and a commands to see how they operate. Verify that

line-speca

text

appends after the given line, while

line-speci

text

inserts before it, where line-spec indicates a single line number or a scanning command
(such as a context search or regular expression) resulting in zero or more lines. If a line
number isn't specified, the current line is assumed.

5-12 Chapter 5 Using the ed Line Editor

-�����������������������- --�� ��--------�

Changing text

The c (change) command changes the current line, replacing it with one or more lines.
For example, to replace everything between the current line and the last line, type

. + l , $ c

one or more lines of text

The text you type between the c command and the . command will overwrite
the original text from the . + 1 line to the last line. This command is useful when you
want to replace one line or several lines.

If you specify only one line, only that line is replaced. (You can type as many
replacement lines as you like.) Notice that you end your changes by typing a
period (.) at the beginning of a line-this is the same way you stopped adding text
with the a command.

The c command can also be thought of as a combination of the d command
followed by the i command. Experiment to verify that

linel, line2 d

i

text

i s the same as

linel, line2 c

text

If you don't specify a line number, c replaces the current line. When you finish
making changes, dot is set to the last line you inserted.

Substituting text

One of the most important ed commands is the s (substitute) command.
This command changes words or characters and can be used to correct spelling

mistakes and typing errors.

Editing an existing file 5-13

Suppose that line 1 is

A j ourny o f a

You can change j ourny to j ourney by typing

l s / ny / ney /

This says: in line 1 , change ny to ney. Since ed doesn't print the change
automatically, type

p

to make sure the substitution worked. You should see

A j ourney o f a

When you include the p command on the same line as the substitute command

s / j ourny / j ourney /p

ed prints the line that just changed.

The general format of the substitute command is

linel I line2 s 1 change this! to this!

The characters between the first and second slashes (change this) are replaced by the
characters between the second and third slashes (to this). This substitution takes place
on all lines between linel and line2. However, only the first occurrence on each line is
changed. To change every occurrence, on each line, add g (global) (see "Global
Commands") to the s command, like this:

linel I line2 s 1 buckwheat/ farina/ g

The rules for line numbers are the same as those you learned for the p (print)
command. However, if the s command can't find the characters you asked it to
change, the cursor stays in the current position. The ed line editor alerts you when this
happens by printing ? on the screen.

As an example of a substitution, you could type

1 1 $ s / spe l i ng / spe l l ing /

to correct the first instance of spel ing on each line. (This is useful for people who
make the same mistake consistently.)

If you don't specify a line number, s assumes you want to make the substitution on
the current line. For example, you could type

s / buckwheat/ farina/p

5-14 Chapter 5 Using the ed Line Editor

This corrects a mistake on the current line and then prints it to verify that the
substitution worked.

You may have noticed that the s command resets the current line. You can
also type

s 1 buckwheat 1 1

This replaces buckwheat with nothing-in other words, it removes buckwheat. This
is useful for deleting extra words in a line or removing extra letters from words.

For example,

Thi sxx i s an examp l e o f subs t i tut i on

can be corrected by typing

s lxxl l

The line now reads

Thi s i s an examp l e o f subs t i tut i on

The 1 1 (two adjacent slashes) mean "no characters," not a blank.
Experiment with the s command. For example, type

a

the other s i de o f midnight

s l the lmeet me on the lp

This produces the following:

meet me on the other s i de o f midnight

Remember that the s command changes.only the first occurrence. You can change
all occurrences on a line by adding g.

Try using characters (except blanks and tabs) other than slashes to set off the two
sets of characters in the s command. For example, try typing

s ' the ' meet me on the ' p

This works exactly the same as using a slash.
However, strange results are produced by using the backslash (\) character. See

"Using Special Characters in ed, " later in this chapter, for more information.

Editing an existing file 5-15

Global commands

The g (global) command performs an operation on all lines that match a specified
string or regular expression. See Chapter 4, "Using the ex Line Editor," for information
on regular expressions; in this chapter we use the word string to mean a string of
characters or a regular expression. For example,

g / spel ing / p

prints all lines that contain spel i ng. The command

g / spe l ing / s / / spe l l ing / gp

replaces spe l ing with spe l l ing each time it occurs (even if it occurs more than
once in a line), then prints each corrected line.

Compare this to

1 , $ s / spe l ing / spe l l ing / gp

This prints only the last line substituted.
You can use several commands at a time with g. Just remember to end every line

but the last with a backslash (\) . For example,

g / xxx/ - l s / abc / de f / \

. +2 s / ghi / j kl / \

. - 2 , . p

makes changes in the lines before and after each line containing xxx, then prints all
three lines.

The G (interactive global) command finds a line that matches a specified string,
prints the line, and waits to accept a command. After executing the command, it searches
for the next line that matches the specified string, and so on. For example,

G/ spe l ing /

prints the first line that contains the string spel ing. If you wish to change the string at
that point, you can enter the command

s / spe l ing / spe l l ing/p

which replaces spel i ng with spe l l ing and prints the corrected line. After
printing the corrected line, ed searches for the next instance of spe 1 ing. If found, it
prints the line that contains this string, and waits for you to enter a command. The

5-16 Chapter 5 Using the ed Line Editor

command you enter does not have to be the same command you entered last time; for
example, if ed finds another instance of spel i ng, you could enter the command

s / spel ing /rni s spel l i ng/p

or any single ed command other than the a, c , i , g , G , v , or v commands.
The v command is the same as g except that it runs the commands on lines that

don't match the string or regular expression. For example,

v/ / d

deletes every line that does not contain a blank. Similarly, the v command is the same
as G, but finds and prints lines that don't match the specified string or regular
expression.

Searching for a character string

When you master the substitute command, you may want to try another important
feature of ed-context searching. Context searching looks for a string of characters and,
when it finds it, makes that line the current line.

Suppose you have these three lines in your buffer:

L i t t l e Mi s s Mu f f et

s at on a tuf fet

eat i ng her kurds and whey .

If you want to locate the misspelled word kurds, you could type 3 . However, if the
buffer contained several hundred lines and you had been deleting and rearranging lines,
you might have a difficult time locating the line you wanted. Context searching lets you
find a line by specifying some context (unique text) in it.

To search for a line that contains a particular string of characters, type

1 string of characters/

For example,

/ kurds /

locates the next occurrence of kurds. It also makes that line the current line and prints it
for verification.

Editing an existing file 5-17

Next occurrence means ed starts looking for the string at the line following the
current line (. + 1) and searches to the end of the buffer. Then it searches from line 1 to
the line it started searching at (dot). That is, the search wraps around from $ to 1 . It
scans all the lines in the buffer until it either finds the desired string or gets back to dot
again. If ed can't find the characters, it types the error message

?
Otherwise, it prints the line it found.
You can search for the desired line and make a substitution to it in the same

command, like this:

/ eat i ng / s / kurds / curds /p

This tells ed to search for the line with the word eat i ng, substitute curds for
kurds, and then print the new line. When it has finished, ed prints this:

eat i ng her curds and whey .

You can repeat a context search. For example,

1 string;

finds the next occurrence of string. If this is not the line you want, you can search for the
next occurrence by typing

I I or I

This stands for the previous context search expression and differs from the use of 1 1

as a null argument in the s command.
This abbreviation can also be used as the first string of the s command. For

example,

/ s t r ingl / s / / s t r ing2 /

finds the next occurrence of s t r ing l and replaces it with s t r ing2 . Similarly,

? ? or ?
scans backward for the previous expression.

5-18 Chapter 5 Using the ed Line Editor

You can use context searches instead of line numbers to find a desired line or to
specify a range of lines to be affected by some other command, such as s .

For example, suppose the buffer contains these four familiar lines:

A j ourney o f a

thousand mi l e s

begins wi th a

s ingl e s t ep .

The following context search expressions all refer to the same line (line 2) :

/ j ourney / + 1

/ thousand/

/ st ep / - 2

To make a change in line 2 , you can type

/ j ourney / + l s / thousand/ hundred/

or

/ thousand/ s / thousand/ hundred/

or

/ s t ep / - 2 s / thous and/ hundred/

You could print all four lines by typing either

/ j ourney / , / s ingl e / p

or

/ j ourney / , / j ourney / + 3 p

The first of these might be better if you don't know how many lines there are. A
context search expression is the same as a line number, so it can be used wherever you
would use a line number.

--- --- ---- - --- ----

Editing an existing file 5-19

Moving text

The m (move) command moves lines from one place to another. For example, to move
the first four lines of the buffer to the end, type

1 , 4m$

The general case is

linel , line2 m lineno

The text is moved after the specified line number (lineno) . You can use context
searches instead of line numbers. For example, if you have the following text in your
buffer,

First paragraph

end of first paragraph

Second paragraph

end of second paragraph.

you could reverse the two paragraphs by typing

1 Second; , I end of second!m! First/ - 1

The - 1 was used because the text is moved after the line specified. Dot is set to the
last line moved.

Using special characters in e d

You may have noticed that some characters (such as . , * , $) change the meaning of
context searches and the s command. This is because these characters have special
meanings for ed.

The following is a complete list of these special characters:
A $ * [J & \

These are described in the sections that follow.

5-20 Chapter 5 Using the ed Line Editor

The period (.) character

In a context search or the first string of the substitute command, the period character (.)
signifies any character.

Although this is the same character as "dot," its meaning is different in this context.
To avoid confusion, we call it dot when it means "current line" or "line most recently
changed" and period when it means "any character. "

/x . y /

means

xany-character y 1

This command will find all instances of x followed by any character followed by y,

including the following:

X+Y
x-y

X y

x . y

xAy

The caret (") character

The caret character ("') signifies the beginning of a line. For example,

/ "'bunny /

finds bunny only if it is at the beginning of a line. That is, it will find

bunny

but not

bugs bunny

Using special characters in ed 5-21

The dollar sign ($) character

The dollar sign character ($) is the opposite of the caret; it means the end of a line.

The expression

/bunny $ /

finds bunny only at the end of a line.

/bunny $ /

finds a line containing only bunny and

/ A . $ /

finds a line containing one character.

The asterisk (*) character

The asterisk character (*) is the repetition character. For example, a * means "zero or
more a's . " . * means "any character repeated zero or more times. "

For example,

s / . * / s tuf f /

changes an entire line to stuff , and

s / . * , / /

deletes all the characters in the specified line up to, and including, the last comma. Note
that * finds the longest possible match, so this example matches the last comma rather
than the first.

5-22 Chapter 5 Using the ed Line Editor

The bracket ([]) characters

The left bracket character ([) is used with the right bracket character (J) to enclose
"character classes. " For example,

/ [0 1 2 3 4 5 6 7 8 9] /

searches for any single digit. This can be abbreviated as

[0 - 9]

Brackets can also be used to contain a character class that represents the alphabet;
for example,

[A- Z]

searches for any uppercase character, and

[a- z]

searches for any lowercase character.

The ampersand (&) character

The ampersand character (&) means "whatever was matched on the left-hand side ." (The
ampersand only has this meaning on the right-hand part of a substitute command.)

Suppose the current line contains

Drop the gun

and you want to put parentheses around it. You can accomplish this using the command

s / . * / (&) /

This tells ed to match the whole line (. *) and replace it by itself (&) surrounded by
parentheses so that it appears as follows

(Drop the gun)

Using special characters in ed 5-23

The ampersand can be used several times in a line. Using the preceding sample text,

s / . * / & ? & ! ! /

produces

Drop the gun ? Drop the gun ! !

You don't have to match the whole line. For example, if the buffer contains

i t ' s s tart i ng t o hit me

you could type

/me / s / / & l ike a two t on heavy thing/

to produce

i t ' s s tart i ng t o hit me l ike a two t on heavy thing

The sequence 1 me 1 found the desired line; the sequence 1 1 found the same word
in the line; and the & saved you from typing me & again.

The & is a special character only in the replacement text of a substitute command.

The backs lash (\) character

If you have to use one of the special characters listed above without its special meaning
in a substitute command, precede it with a backslash (\) . For example,

s / \ . T / /

replaces the first occurrence of a . T with nothing (1 1) on the current line (in other
words, it deletes it). If the period (.) were not preceded by the \ , the result would have
been that the first instance of H preceded by any other character would have been
deleted on the current line.

5-24 Chapter 5 Using the ed Line Editor

Command summary

In the following summary, line-spec indicates a single line number or a search command
(such as a context search or regular expression) resulting in zero or more lines;
linel , line2 indicates a range of addresses from linel to line2. If you don't specify an
address, the current line is the default (unless otherwise noted). Portions of a command
enclosed in brackets ([J) are optional.

[line-spec] a RETIJRN [text] RETIJRN.

Append text after the current line or after the line number specified. To stop adding
text, type a period (.) at the beginning of a line, and press RETuRN. Dot is set to the last
line appended.

[line-spec] c RETIJRN [text] RETIJRN.

Change the specified lines to the new text that follows. To stop replacing text, type a
period (.) at the beginning of a line, and press . RETURN. If you don't specify a line, the
current line is replaced. Dot is set to the last line changed.

[linel , line2 1 d

Delete the specified lines. If you don't specify a line, the current line is deleted. Dot is set
to the line after the last deleted line. If you delete the last line in the buffer, dot is set to
the new last line.

e file

Edit a new file from within ed. The previous contents of the buffer are destroyed, so
save your work before you edit a new file with e .

f Vile]

Print the current filename. This is the file ed assumes you mean if you don't specify a
file. To change the current filename, type f file.

[linel , line2 1 g I string I command

Execute commands globally, on the entire file (by default). The . g 1 XI . command runs
on lines containing the string x.

Command summary 5-25

[linel , line2] G/string [I]

Interactive global command. ed first marks evety line that matches the given regular
expression or string. Then, for evety such line, that line is printed, dot is changed to that
line, and any one command (other than one of the a, c , i , g, G, v, and v
commands) may be input and is run. After the execution of that command, the next
marked line is printed, and so on; a RETURN acts as a null command (no action is
performed); an & causes the reexecution of the most recent command runs within the
current invocation of G. Note that the commands input as part of the execution of the G

command may address and affect any lines in the buffer. The G command can be
canceled by an interrupt. A command that causes an error cancels the G command.

h

The h (help) command gives a short error message that explains the reason for the
most recent ? .

H

The H (Help) command prints error messages for all subsequent ? diagnostics. This
command toggles error message printing on and off.

[line-spec] i RETURN [text] RETuRN .

Insert text before the specified line or the current line. To stop inserting text, type a
period (.) at the beginning of a line, and press RETURN. Dot is set to the last line inserted.

[linel , line2] j

Join contiguous lines by removing appropriate newline characters.

[line-spec] kx

Mark addressed line with name x, which must be a lowercase letter. The address x then
refers to this line; dot is unchanged.

[linel , line2] mlineno

Move the text originating between linel and line2 to follow lineno. Dot is set to the last
line moved.

[linel , line2] n

For the current line or for each line in the range specified by " linel , line2," print the line
number, followed by a tab, followed by the text of the line(s).

5-26 Chapter 5 Using the ed Line Editor

[linel , line2] p

Print the specified lines. If you don't specify any line number, p prints the current line.
Pressing RETURN prints the next line.

p

Turns prompting on and off. The P command alternately turns this mode on and off;
initially it is off.

q

Quit ed. No automatic write of a file is done. If changes have been made in the buffer
since the last w command, ed responds with ? . If you don't want to save your
changes, type q RETURN again.

Q

Quit without checking to see if changes have been made in the buffer since the last w
command.

[line-spec] r file

Read a copy of file in at the specified location. If no line number is specified, it reads the
file in at the end of the buffer. Dot is set to the last line read.

[linel , line2] s I string 1 I string2 [I]

Substitute one string for another string at a specified location. 1 , $ s 1 string 11 string2 1 g
substitutes string2 for every instance of stringl in the file. The s command changes
only the first occurrence of stringl on a line. To change all occurrences, type g at the
end of the command. Dot is set to the last line in which a substitution took place; if no
substitution took place, dot is not changed.

[linel , line2] tlineno

Put a copy of the addressed lines after address lineno (which may be 0) ; dot is left at the
last line copied.

u

Undo last command; nullifies the effect of the most recent command that modified
anything in the buffer.

Command summary 5-27

linel , line2 1 vI string I command

Execute command only on lines not containing string. By default the v command
operates on the entire file.

linel , line2] VI string [I 1

Interactive global command marks each line not containing string and then allows you
to perform commands on each of these lines. By default the v command operates on
the entire file .

linel , line2] w file

Write the buffer into the specified file . Dot is not changed. By default the w command
writes the entire file.

X

Request an encrypted key string from the standard input. Subsequent e, r , and w
commands encrypt and decrypt the text with this key by the algorithm of c rypt(l). An
explicitly empty key turns off the encrypt function.

[.] =

"Dot equals" prints the current line number.
last line in the file.

! sheU-command

by itself prints the line number of the

Temporarily escape to the A/UX shell to run the specified command. ! shell-command

runs shell-command in the shell and then returns you to the editor.

/string [I 1

Search through the file for string and print the line containing it. The search starts at the
line after the current line, reads to the end of the buffer, then wraps around to line 1 and
searches to the original line. If string is located, dot is set to the line where the string is
found.

?string [? 1

Search backward through the file for string and print the line containing it. The search
begins at the line before the current line, reads backward to the start of the file, then
wraps around to the end of the file and searches backward to the original line. If string is
located, dot is set to the line where the string is found.

5-28 Chapter 5 Using the ed Line Editor

6 Using the s ed Stream Editor

What is sed? I 6-2

Overall operation I 6-2

Addressing I 6-7

Command summary I 6-1 1

This chapter provides a detailed description of the commands and capabilities of

the sed stream editor.

What is s ed?
The s ed stream editor is useful for creating filters for batch editing. Batch editing
means that you run a file through a series of predetermined editing commands (filters)
that automatically edit the file with no supervision required. You can also use sed for:

• Editing large files that cannot be contained in a buffer. The size of a file to be edited
with s ed is limited only by the amount of secondary storage. Only a few lines of
the current input file are in physical (volatile) memory at one time, and no temporary
files (buffers) are used.

• Performing complicated editing sequences on any size file . The s ed editor is most
commonly used in shell scripts, where complicated editing requests can be stored,
edited, and applied to the input file(s) as a command.

• Efficiently performing multiple global editing commands in one pass. The s ed

program running from a command file is faster and more efficient than an interactive
editor like ex, even when ex is also running from a command file .

• Performing transformations on a data stream as part of a pipe or a shell script.

Note that s ed does not recognize certain commands provided by an interactive
editor. For example, sed does not provide relative addressing. Because it operates on
one line at a time, s ed cannot move backward or forward relative to the current line in
a file. In addition, s ed does not inform you about the effects of your commands, or
allow you to undo them immediately.

Overall operation

By default, sed copies standard input to standard output, performing zero or more
editing actions on each line before writing it to the output. Editing actions are specified
by sed editing commands, described in the next section. You specify the lines to be
affected by these commands by addresses, either context addresses or line numbers.

You never modify an input file directly; instead, changes are written to the standard
output. If this output is redirected to a file, then the new file contains the modifications
created by your editing actions. Then you may, if you wish, replace the original file with
this new file.

6-2 Chapter 6 Using the sed Stream Editor

Command options

The following sections describe the function and syntax of the command options for the
s ed stream editor.

Command syntax

The command syntax for the s ed editor is

s ed [-n J - e ' command-line-script · [- e ' command-line-script · J . . .

[- f sfileJ . . . [file . . . J

or

s ed [-n J - f sfile . . . [-f sfileJ . . . [-e 'command-line-script · J . . . [file . . . J

s ed [- n J • command-line-script · [file . . . J

+ Note s ed must be invoked with at least one - e or - f option; however, if only
"- e ' command-line-script · " is used, the - e may be omitted. +

s ed can be invoked in any of the following ways:

s ed • command-line-script ' file

s ed - e • command-line-script · file

s ed -n - e ' command-line-script · file

s ed - f sfile file

ed -n - f sfile file

s ed - e • command-line-script · - f sfile file

Overall operation 6-3

Table 6-1 provides a summary of all s ed command options.

Table 6-1 sed command options

Option

- n

- e

- f

Description

(no-copy.) Copy only those lines explicitly specified either by p (print), i
(insert), or a (append) commands or p arguments after s (substitute)
commands.

(expression.) The command-line-script argument is an "expression" (inline s ed
command(s) using the syntax of regular expressions and enclosed in single or
double quotes) to be run on the input stream. There may be more than one - e
(with its corresponding expression) on a command line. If the newline characters are
preceded by an EscAPE character, there may be more than one line in an expression.
The - e itself may be omitted if there is only one expression and no - f option
is present.

(source file.) The sfile argument is a file containing s ed commands, one to a line.
There may be more than one - f option specified on the command line. If
multiple - f command file arguments are given, the commands they contain are
run in the order specified.

The input files may be omitted; in that case, s ed takes its input from the standard
input. Note that s ed does not accept the " - " construct used in other programs (for
example, awk) to indicate the standard input. If you must apply a sequence of s ed

commands to some files and then to the standard input, you can use the following
command:

cat files - I s ed - f sfile

Using commands

Editing commands are specified on the s ed command line. They can either be
embedded inline (with the - e option) or enclosed in a file and provided as an
argument to the - f option. The following are examples of s ed usage:

s ort chap . l

s ed - e ' s / \ . dc \ . / . dec . / ' - e ' s / \ . 3 b\ . / . u3 b . / '

6-4 Chapter 6 Using the sed Stream Editor

This sorts the contents of chap . 1 and perfonns substitutions on the first instance
of . de . and . 3 b. in each line; the results are written to standard output.

Note that

s ed - e ' s / \ . dc \ . / . dec . / ' - e ' s / \ . 3b\ . / . u3 b . / '

is equivalent to

s ed '

s / \ . dc \ . / . dec . /

s / \ . 3 b\ . / . u3 b . /

In this chapter, we use the first form, which employs the - e option. These may be
replaced with the second form if you prefer.

With - e, you may also separate editing commands with a semicolon. For example,

s ed - e ' s / \ . dc \ . / . dec . / ; s / \ . 3b\ . / . u3b . / '

is equivalent to the above examples.

The command form

s ed - e ' s / \ . dc \ . / . dec . /

s / \ . 3b\ . / . u3 b . / ' chap . 1

performs the same substitutions as the preceding command on a file named chap . 1 ;

the results are written to standard output.

+ Note When using s ed in the C shell, newline characters must be preceded by an
escape character (backslash) even when enclosed in single quotes. •

The command

s ed - e ' s / , / / g ' chap . 1 > temp

replaces every comma (,) in chap . 1 with a space; the modified file is contained
in t emp.

Overall operation 6-5

If you put the following s ed commands into a file named cmd . f i 1 e

s l \ . dc l . dec . l g

s l \ . 3b\ . l . u3b . l

s l � l l g

then you can use the following command:

s ed - f cmd . f i l e chap . l > t emp

This performs substitutions on chap . 1 ; the modified file is contained in t emp .

You can also use the command

s ed -n - f cmd . f i l e chap . 1

to perform substitutions on chap . 1 and write the modified chap . 1 to standard
output.

Before any input file is opened, all editing commands are compiled in the order
encountered (also the order in which they are attempted at execution time) into a form
that will be moderately efficient during the execution phase. In the execution phase the
commands are actually applied to lines of the input file.

Editing command syntax

The general editing command syntax is

[line-spec] command [arguments]

The line-spec (line specification) and the arguments are optional, although either of
these may be required according to the command given. line-specs may be line
number(s) or context addresses in the form

[linel [I line2J J

or

[1 pattern [I J [I 1 pattern [I J J

In the first case, if one line number is specified, s ed performs the editing command
on that line; if two line numbers are specified, s ed performs the editing command on
the range of lines between linel and line2, inclusive. In the second case, if one context
address is specified, s ed performs the editing command only on lines containing that
pattern; if two context addresses are specified, s ed performs the editing command on

6-6 Chapter 6 Using the s ed Stream Editor

all lines between the first pattern and the second pattern, inclusive. After it recognizes
the second pattern, s ed searches for the first pattern again. If found, it begins
performing the editing command again until it recognizes the second pattern, and so on.
Any number of blanks or tabs may separate line-specs from the command; blanks and
tab characters at the beginning of lines are ignored.

Command application order

Commands are applied one at a time, in the order encountered; the input to each
command is the output of all previous commands.

This default linear ordering can be changed by the t (test substitution) and b

(branch) control-flow commands. When the order of application is changed by these
commands, it is still true that the input line to any command is the output of any
previously applied commands.

Pattern space

The pattern space is the buffer the s ed commands operate on. Ordinarily, pattern
space is one line of the input text, but more than one line can be read into the pattern
space by using the N command or the G command.

Addressing

Input file lines to be affected by your editing commands are specified by line-specs.

These line-specs can be either line numbers or context addresses. If no line-spec is
present, the command is applied to every line in the input file .

Multiple commands can be applied to a single line-spec by grouping commands with
braces in the following format:

line-spec

command-list

Addressing 6-7

Line number addresses

A line number is a positive decimal integer that is measured in increments (by an internal
counter) as each line is read from the input. A line number address corresponds to the
value of the internal line counter. As a special case, the $ character matches the last
line of the last input file.

+ Note The line counter runs cumulatively through multiple input files. It is not reset
when a new consecutive input file is opened. •

Commands can be preceded by zero, one, or two addresses. It is an error when a
command has more addresses than allowed.

If a command has zero addresses, it is applied to every line in the input.
If a command has one address, it is applied to all lines that match that address.
If a command has two addresses separated by a comma, it is applied to the first line

that matches the first address and to all subsequent lines up to, and including, the first
line that matches the second address. An attempt is made on subsequent lines to match
the first address again, and the process is repeated. -,

Context addresses

A context address is a regular expression enclosed by matching delimiters. Any
character may be selected as the expression delimiter (for example, 1 pattern/ or
%pattern%) . sed recognizes regular expressions that have the following construction:

• An ordinary character is a regular expression and matches that character.

• A caret (A) at the beginning of a regular expression matches the beginning of a line.

• A dollar sign ($) at the end of a regular expression matches the end of a line.

• The (\ n) character matches an embedded newline character in the pattern space but
not the newline character at the end of the pattern space. Newline characters may be
embedded by using the N command or the G command.

• A period (.) matches any character except the terminal newline character of the
pattern space.

6-8 Chapter 6 Using the s ed Stream Editor

• A regular expression followed by an asterisk (*) matches any number (including
zero) of adjacent occurrences of the regular expression it follows.

• A string of characters in square brackets ([J) matches any character in the string and
no others. For example, [abc J matches the single-character strings a, b, and c .

The characters may also be specified as a range using the format

[a - z]

which will match any lowercase character. If, however, the first character of the
string is a caret ("') , the regular expression matches any character except the
characters in the string and the terminal newline character of the pattern space. The
caret is the only metacharacter recognized within the square brackets. If (J) needs to
be in the string enclosed in square brackets, it should be the first non-metacharacter.
Thus, for example,

[J • • • J includes J

["' J • • • J does not include

In both cases, a range may be specified by using a hyphen (for example, [A- z J or
[0 - 9]).

• A concatenation of regular expressions is a regular expression that matches the
concatenation of strings matched by the components of the regular expression.

• A regular expression between the sequences \ (and \) is identical in effect to
the unadorned regular expression, but has side effects, which are described under
the substitute command (s) later in this section.

• The expression \ d (where d is a digit, 0 through 9) refers to the string of characters
found earlier in the same pattern by an expression using the \ (and \)

construction. The \ (and \) sequences act just like those in the other A/UX
editors, and are used to establish "fields" or sections in a line of text (or all lines of
text) in a file. For example, suppose a file contained the following list of names:

D i ck Powe l l

Wi l l i am Powe l l

Hosken Powe l l

Jane Powe l l

The following expression reverses the order of the names, while placing a comma
and a space between each first name and last name:

s / \ ([A- Z] . * \) \ ([A- Z] . * \) / \ 2 , \ 1 /

Addressing 6-9

This command writes a new list:

Powe l l , Di ck

Powe l l , Wi l l i am

Powe l l , Hosken

Powe l l , Jane

For another example, the following expression matches a line beginning with two
repeated occurrences of the same string separated by a space:

1 "' \ (. * \) \ 1 1

• A null regular expression standing alone (for example, 1 1) is equivalent to the
previous regular expression.

• Special characters "' , $, * , \ , and 1 , when used as literal characters, must be
preceded by a backslash (\) .

• For a context address to match, the whole pattern within the input address must
match some portion of the pattern space.

Examples

Let us consider more examples of using s ed. First, create a text file named poem that
contains the following lines:

In Xanadu did Kubl a Khan

A s t at e ly p l easure dome decree :

Where Alph , the sacred r iver , ran

Through caverns measure l e s s to man

Down to a sun l e s s s ea .

6-10 Chapter 6 Using the s ed Stream Editor

Examples in this chapter use this text except where noted. The following example
shows the output of a s ed command using line number addressing. The command

s ed - e ' 2 q ' poem

copies the first two lines of the input and quits. The output on your screen will be

In Xanadu did Kubla Khan

A s t a t e ly p l easure dome decree :

On the same input text, the following lists the matches resulting from several s ed

commands using context addressing:

/ an / matches lines 1 , 3 , and 4

/ an . * an / matches line 1

/ A an / matches no lines

I . I matches all lines

/ \ . / matches line 5

/ r * an / matches lines 3 and 4

I \ (an \) . * \ 1 I matches line 1

Command summary

In the following summary, line-spec indicates a single line number or a context address.
linel , line2 indicates a range of addresses from linel to line2. If you don't specify an
address, the commands are applied to all lines in the file (unless otherwise noted).

Line-oriented commands

Table 6-2 summarizes all of s ed's line-oriented commands. The commands in this
section apply to the entire line (or lines) currently stored in the pattern space.

Command summary 6-11

Table 6-2 s ed line-oriented commands

Command

[linel [I line2]] d

[linel [I line2] J n

[line-spec J a \ RETURN text

6-12 Chapter 6 Using the s ed Stream Editor

Description

(delete.) The d command deletes from the file (does not
write to the output) those lines matched by its addresses. It
also has the side effect that no further commands are
attempted on the remains of a deleted line. As soon as the d
command is run, a new line is read from the input, and the list
of editing commands is restarted from the beginning on the
new line.

(next.) The n command reads the next line from the input,
replacing the current line. The current line is written to
standard output. The list of editing commands continues
following the n command.

(append.) The a command causes the text argument to be
written to the output after the line matched by its address. The
a command is inherently works on multiple lines; a must
appear at the end of a line, and text may contain any number
of lines. To preserve the one-command-to-a-line fiction,
interior newline characters must be hidden by a backslash
character (\) immediately preceding the newline character.

The text is deleted by the first newline character not
immediately preceded by a backslash. Once an a command
is successfully run, text will be written to the output regardless
of what later commands do to the line that triggered it. Even if
that line is deleted, text will still be written to the output. The
text is not scanned for address matches, and no editing
commands are attempted on it. The a command does not
cause a change in the line number counter.

Table 6-2 s ed line-oriented commands (continued)

Command

[line-spec J i \ RETURN text

[line 1 [, line2] J c \ RETURN text

Description

(insert.) The i command causes the text argument to be
written to the output before the line matched by its address.
The i command inherently works on multiple lines; i
must appear at the end of a line, and text may contain any
number of lines. To preserve the one-command-to-a-line
fiction, interior newline characters must be hidden by a
backslash character (\) immediately preceding the newline
character. The text is deleted by the first newline character not
immediately preceded by a backslash. Once an i command
is successfully run, text will be written to the output regardless
of what later commands do to the line that triggered it. Even if
that line is deleted, text will still be written to the output. The
text is not scanned for address matches, and no editing
commands are attempted on it. The i command does not
cause a change in the line number counter.

(change.) The c command deletes lines selected by its
addresses and replaces them with the lines in the text
argument. Like a and i , c must be followed by a
newline character hidden by a backslash; interior newline
characters in text must be hidden by backslashes. The c
command may have two addresses and therefore select a
range of lines. If it does, all lines in the range are deleted, but
only one copy of text is written to the output, not one copy
per line deleted.

As with a and i , text is not scanned for address matches,
and no editing commands are attempted on it. It does not
change the line number counter. After a line has been deleted
by a c command, no further commands are attempted on
the corpse. If text is appended after a line by a or r
commands and the line is subsequently changed, the text
inserted by the c command will be placed before the text of
the a or r commands. (The r command is described
later.)

Leading blanks and tabs disappear from text inserted in the
output by the a, i , and c commands. To get leading
blanks and tabs into the output, precede the first desired blank
or tab with a backslash. The backslash will not appear in the
output.

Command summary 6-13

The following example shows line-oriented s ed commands used on the standard
input file poem.

If the file script contains the lines

n

a \

xxxx

d

the command

s ed - f s c r ipt poem > outputfile

produces an output file that contains the following lines:

In Xanadu did Kubla Khan

xxxx
Where Alph , the sacred river , ran

xxxx

Down t o a sunl e s s s ea .

The substitute command

The substitute command uses the following syntax:

[line 1 [, line2J J s pattern replacement flags

The s command replaces the part of a line selected by pattern with replacement. It
can be read "substitute for pattern, replacement. " The command arguments are
described as follows:

pattern

replacement

The pattern argument is a regular expression, like the patterns in
context addresses. The only difference between pattern and a context
address is that the context address must be delimited by slash (1)
characters; pattern may be delimited by any character other than
space or newline. By default, only the first string matched by pattern is
replaced unless the g flag (below) is invoked.

The replacement argument begins immediately after the second
delimiting character of pattern and must be followed immediately by
another instance of the delimiting character. Thus, there are exactly

6-14 Chapter 6 Using the s ed Stream Editor

flags

three instances of the delimiting character. The replacement is not a
pattern, and the characters that are special in patterns do not have
special meaning in replacement. Instead, the following other
characters are special:

& is replaced by the string matched by pattern.

\ d is replaced by the substring d (d is a single digit), matched by
parts of pattern, and enclosed in \ (and \) . If more
than one substring occurs in pattern, the substring d is
determined by counting opening delimiters (\ () . As in
pattern, special characters may be made literal characters by
preceding them with a backs lash (\) .

The flags argument may contain the following:

g (global .) Substitute replacement for all instances of pattern that
do not overlap in the line. After a successful substitution, the
scan for the next instance of pattern begins just after the end of
the inserted characters . Characters put into the line from
replacement are not rechecked.

p (print.) Print the line if a successful replacement was done. The
p flag causes the line to be written to the output if a
substitution was actually made by the s command. If several
s commands, each followed by a p flag, successfully
substitute in the same input line, multiple copies of the line
will be written to the output, one for each successful
substitution. Note that unless the -n flag option is used, each
line will be echoed automatically to standard output. In
addition, each line affected by the p flag will be echoed as
well, causing multiple copies to be written to standard output.

w file (write to file .) Write the line to a file if a successful replacement
was done. A single space must separate w and file. The w
flag causes lines that are actually substituted by the s
command to be written to a file named by file. If file exists
before s ed is run, it is overwritten; if not, it is created. The
possibilities of multiple, somewhat different copies of one
input line being written are the same as for p. A maximum of
ten different filenames may be mentioned after w flags and w
commands.

Command summary 6-15

The command

cat poem I s ed - e ' s l t o lby lw change s '

produces an output file named changes that contains only these lines that were changed:

Through caverns measure l e s s by man

Down by a sunl e s s s ea .

If the no-copy option is in effect (using the -n option on the s ed command line),
then the same effect can be achieved with the command

s ed - n - e ' s l t o l by l p ' poem > change s

I f your command file s c r ipt contains the line

s I [\ . I ; ? :] I * p & * I gp

then the command

s ed - n - f s c r ipt poem

produces the output

A s t at e ly p l easure dome decree * P : *

Where Alph* P , * the sacred r iver * P , * ran

Down to a sunl e s s s ea * P . *

If the g flag is not used, the substitution takes effect only on the first instance of the
pattern in a given line. For example, the command

s ed - n - e ' I XI s l aniANip ' poem

causes the substitution to occur only on the first instance of an

In XANadu did Kubla Khan

6-16 Chapter 6 Using the s ed Stream Editor

Input/output command summary

Table 6-3 provides a summary of input and output commands for the sed stream editor.

Table 6-3 s ed input and output commands

Command

[linel [I line2] J p

[linel [I line2] J w file

[line-spec J r file

Description

(print.) The p command writes addressed lines to the
standard output file. They are written at the time the p
command is encountered, regardless of what succeeding
editing commands may do to the lines.

(write to file.) The w command writes addressed lines to the
file named by file. Exactly one space must separate the w
and file. If the file previously existed, it is overwritten; if not, it
is created.

The lines are written exactly as they exist when the write
command is encountered for each line, regardless of what
subsequent editing commands may do to them. A maximum
of ten different files may be mentioned in write commands
and w flags after s commands combined.

(read from file.) The r command reads the contents of file
and appends them after the line matched by the address.
Exactly one space must separate the r and file. The file is
read and appended regardless of what subsequent editing
commands may do to the line that matched its address.

If r and a commands are run on the same line, the text
from a commands and r commands is written to the
output in the order that the commands are run. If a file
mentioned by an r command cannot be opened, it is
considered a null file, not an error, and no diagnostic is given.

+ Note Since there is a limit to the number of files that can be opened simultaneously,
care should be taken that no more than ten files be mentioned in w commands or flags.
That number is reduced by one if any r commands are present (only one read file may
be opened at a time). •

Command summary 6-17

If the file not e 1 has the following contents,

Not e : Kubla Khan (more properly Kublai Khan ;

1 2 1 6 - 1 2 9 4) was the grandson and mos t eminent

succes sor of Gengh i z (Chingi z) Khan and founder

of the Mongo l dyna sty in China .

then the command

s ed - e ' / Kubla / r not e 1 ' poem

produces

In Xanadu did Kubla Khan

Not e : Kubla Khan (more properly Kublai Khan ;

1 2 1 6 - 1 2 9 4) was the grandson and mos t eminent

suc c e s sor of Gengh i z (Chingi z) Khan and founder

of the Mongo l dynasty in China .

A s tately pl easure dome decree :

Where Alph , the sacred r iver , ran

Through caverns measure l e s s to man

Down to a sun l e s s sea .

Multiple input line commands

The following three commands, all in uppercase letters, deal with pattern spaces
containing embedded newline characters. They are intended principally to provide
pattern matches across lines in the input. The P and D commands are equivalent
to their lowercase counterparts if there are no embedded newline characters in the
pattern space.

[linel [, line2] J N Append the next input line to the current line in the pattern
space. The two input lines are separated by an embedded
newline character. Pattern matches may extend across
embedded newline characters.

6-18 Chapter 6 Using the s ed Stream Editor

[linel [I line2J J D

[linel [I line2J J P

Input commands

[line I [, line2]] h

Delete first part of the pattern space. Delete up to, and
including, the first newline character in the current pattern
space. If the pattern space becomes empty (the only newline
character was the terminal newline character), read another
line from the input. In any case, begin the list of editing
commands again from the beginning.

Print the first part of the pattern space. Print up to, and
including, the first newline character in the pattern space.

Hold pattern space. The h command copies the contents of the pattern space into a
hold area, destroying the previous contents of the hold area.

[linel [, line2]] H

Hold pattern space. The H command appends contents of the pattern space to contents
of the hold area. Former and new contents are separated by a newline character.

[line I [, line2]] g

Get contents of hold area. The g command copies contents of the hold area into the
pattern space, destroying previous contents.

[line I [, line2]] G

Get contents of hold area. The G command appends contents of the hold area to
contents of the pattern space.

[linel [, line2]] x

Exchange. The x command interchanges contents of the pattern space and the
hold area.

Command summary 6-19

For example, if your sed command file contains the commands

lh

l s / did . * / /

lx

G

s / \n / : /

when applied to the file poem, this produces

In Xanadu did Kubla Khan : In Xanadu

A s t at e ly p l easure dome decree : : In Xanadu

Where Alph , the sacred river , ran : In Xanadu

Through caverns measure l e s s t o man : In Xanadu

Down to a sun l e s s s ea . : In Xanadu

Control-flow commands

These commands do no editing on the input lines but control the application of
commands to the lines selected by the address part.

[linel [, line2]] !

(don't.) The exclamation point (!) command causes the next command (written on the
same line) to be applied to those input lines not selected by the address part.

[linel [, line2]] {

(grouping.) The { command causes the next set of commands to be applied (or not
applied) as a block to the input lines selected by the addresses of the grouping
command. The first of the commands under control of the grouping may appear on the
same line as the { or on the next line. The group of commands is ended by a matching
} standing on a line by itself. Groups can be nested.

: label

(place label.) The colon (:) command marks a place in the list of editing commands that
may be referred to by b and t commands. The label argument may be any sequence

6-20 Chapter 6 Using the s ed Stream Editor

of eight or fewer characters. If two different colon commands have identical labels, a
compile time diagnostic will be generated and no execution attempted.

[linel [, line2]] b label

(branch to label.) The b command causes the sequence of editing commands being
applied to the current input line to be restarted immediately after the place where a
colon command with the same label was encountered. The space between the b

command and the label is optional. If no colon command with the same label can be
found after all editing commands have been compiled, a compile time diagnostic is
produced and no execution is attempted. A b command with no label is a branch to
the end of the list of editing commands. Whatever should be done with the current input
line is done, and another input line is read. The list of editing commands is restarted
from the beginning on the new line.

[linel [, line2]] tlabel

(test substitutions.) The t command tests whether any successful substitutions have
been made on the current input line; if so, it branches to label; if not, it does nothing.
The flag which indicates that a successful substitution has been run is reset by reading a
new input line or by executing a t command.

Additional commands

The following s ed commands are important for working with single lines:

[line-spec] =

The equal sign (=) command writes the line number of the line matched by its address to
the standard output.

[line-spec] q

The q command causes the current line to be written to the output (if it should be), any
appended or read text to be written, and operation to be ended.

Command summary 6-21

Index

& (ampersand)
in ed 5-23 to 5-24
in ex 4-14, 4-55

* (asterisk)
in ed 5-22
in ex 4-17
in sed 6-9

\ (backslash)
in ed 5-15 , 5-24
in ex 4-17
in sed 6-10
in v i 3-28

' ' (back quotes), in ex 4-8
{ } (braces)

in sed 6-20
in vi 3-14

[J (brackets)
in ed 5-23
in sed 6-9

[[]] (double brackets), in vi 3-14
A (caret)

in ed 5-9, 5-21
in ex 4-16, 4-17
in sed 6-8, 6-9

AD, in ex 4-55
AH, in vi 3-19
Av, in vi 3-28, 3-29
Aw, in vi 3-18
: (colon), in sed 6-20 to 6-21

$ (dollar sign) 3-20
in ed 5-8, 5-22
in ex 4-7, 4-16, 4-17
in sed 6-8

" (double quotes) 3-22, 3-24
= (equal sign)

in ex 4-55
in sed 6-21

! (exclamation point)
in ex 4-23, 4-54 to 4-55
in sed 6-20

> (greater-than sign), in ex 4-55
- (hyphen) flag option, in ex 4-25
< (less-than sign), in ex 4-55
- (minus sign)

in ed 5-9
in ex 4-7

() (parentheses), in vi 3-14
% (percent sign)

in ex 4-7, 4-18
in resource fork filename 2-2

. (period)
in ed 5-4, 5-8 to 5-9, 5-10, 5-13, 5-21 ,

5-28
in ex 4-5, 4-7, 4-16, 4-44
in sed 6-8
in vi 3-25

I (pipe) character, in ex 4-25

+ (plus sign)
in ex 4-7
in vi options 3-6

(pound sign), in ex 4-18, 4-55
? (question mark) 3-10

in ed 5-28
I (slash) 3-10

in ed 5-18, 5-28
I I (slashes), in ed 5-1 5
- (tilde) command, i n ex 4-14, 4-55

A
a command

in ed 5-4, 5-12, 5-25
in sed 6-12, 6-17
in vi 3-9, 3-17

abbreviate command
in ex 4-45
in vi 3-31

abbreviations
in ex 4-38
in vi 3-31

absolute motion, in ex 4-8
access permission, in TextEditor 2-7
addressing. See also line addresses

in sed 6-7 to 6-1 1
in ex 4-6 to 4-8

aligning text, in TextEditor 2-13 to 2-14

IN-1

alternate file, in ex 4-18
ampersand (&)

in ed 5-23 to 5-24
in ex 4-14, 4-55

append command, in ex 4-1 1 , 4-45
args command, in ex 4-19, 4-45
argument list, in ex 4-19 to 4-20
arrow keys

in ex 4-30 to 4-31
in vi 3-1 1

ASCII text files 2-2
asterisk (*)

in ed 5-22
in ex 4-17
in sed 6-9

Auto Indent options, in TextEditor 2-13
autoindent option, in ex 4-1 1 , 4-28
autoprint option, in ex 4-28
autowri te option, in ex 4-29
A/UX Startup application, editor for 5-2

B
b command, in sed 6-7, 6-21
background, running in, sed and 1-5
backquotes (' ') in, ex 4-8
backslash (\)

in ed 5-1 5, 5-24
in ex 4-17
in sed 6-10
in vi 3-28

batch editing 6-2. See also sed editor
baud rate, and lines in screen 4-36
beaut i fy option, in ex 4-29
bell, in ex, for error messages 4-30
binary files, in ex 4-21
blocking text. See highlighting in

TextEditor
Bourne shell 1-6
braces ({ })

in sed 6-20
in vi 3-14

brackets ([])
in ed 5-23
in sed 6-9

IN-2 Index

buffers 1-5. See also hold area, in sed;

pattern spaces, in sed

c

in ed 5-3 to 5-4
displaying contents 5-7 to 5-9
reading text into 5-10 to 5-1 1

i n ex 4-4
directing command output to 4-24
naming 4-15
sending to shell commands 4-25

in vi 3-8, 3-22, 3-23
creating extra space 3-34
recovering text in 3-24 to 3-25

c command
in ed 5-25
in sed 6-13
in vi 3-9, 3-19

cc command
in vi 3-19

C shell 1-6
using sed in 6-5

c suffix, in ex 4-13, 4-51
Cancel button 2-9
caret ("')

in ed 5-9, 5-21
in ex 4-16, 4-17
in sed 6-8, 6-9

"'D, in ex 4-55
"'H, in vi 3-19
"'V, in vi 3-28, 3-29
"'W, in vi 3-18
carriage returns, in ex 4-32
Case Sensitive button 2-9
case setting, in ex, options for 4-30
change command, in ex 4-12, 4-45
changing text. See editing text
Chooser, selecting printer 2-18
Clipboard, in TextEditor 2-5
colon (:), in sed 6-20 to 6-21
Command-key equivalents

copy text 2-5
cut 2-5
find next occurrence 2-9

find same 2-9
find text 2-8
paste 2-5
quit TextEditor 2-19
replace 2-10
replace same 2-1 1
save a file 2-6
shift left 2-14
shift right 2-14

command mode, in ex and vi 3-9 to
3-10, 4-5

Commando
dialog box 3-4 to 3-5 (figure)
starting ed from 5-2

command options
in ex 4-28 to 4-36
in vi 3-27

commands. See also control-flow
commands; shell commands

for A/UX text editors 1-5
in ed, summary of 5-25 to 5-28
in ex 4-44 to 4-55 (table)

options 4-37 to 4-38 (table)
repeating 3-21 to 3-22 (table)
in sed 6-1 1 to 6-19

addresses and 6-8
multiple 6-7
specifying 6-4 to 6-6

syntax for
in ex 4-2 to 4-3
in sed 6-3, 6-6 to 6-7
in vi 3-6

undoing 3-21 , 4-39, 4-52
in vi , stopping 3-10

context addresses, in sed 6-8
context searching, in ed 5-17 to 5-19
control characters

in ex, discarding 4-29
in vi 3-28

control-flow commands, in sed 6-20 to
6-21

copy command, in ex 4-14, 4-45
Copy command, in TextEditor 2-5
copying a file, in ex 4-21 to 4-22

copying text. See also yank and put
commands, in vi

in ex 4-14 to 4-15
correcting text, in v i insert mode 3-17

to 3-18
creating a file

in ed 5-4
in ex 4-4
in TextEditor 2-3 to 2-5
in vi 3-5

ctags command 4-40 to 4-41
ctags program 3-6
current file, in ex 4-18

examining 4-22
writing buffer contents to 4-29

current line 4-46
in ed 5-8
in ex 4-7, 4-44

printing 4-28
on screen 4-10 to 4-1 1

cursor
in ex, moving 4-34
in vi , moving 3-1 1 to 3-16

customizing vi 3-27
Cut command, in TextEditor 2-5
cutting and pasting

D

in TextEditor 2-4 to 2-5
in ex and vi

d command
in ed 5-1 1 to 5-12, 5-25
in sed 6-12, 6-19

de calculator program, running
from ex 4-23

default editor
changing for root account 1-7 to 1-8
changing for user account 1-6 to 1-7

delete command, in ex 4-1 1 to
4-12, 4-15 , 4-45

deleting text
in ed 5-1 1 to 5-12, 5-1 5
i n ex 4-1 1 t o 4-12

recovering deleted text 4-39

in sed 6-12, 6-13
in vi 3-12 , 3-17 to 3-19 (table)

recovering deleted text 3-2 1 , 3-24 to
3-25

directory option, in ex 4-29
displaying text, in ex 4-6, 4-9 to 4-10
Display Selection command, in

TextEditor 2-1 1
dollar sign ($) 3-20

in ed 5-8, 5-22
in ex 4-7, 4-16, 4-17
in sed 6-8

double quotes ("), in vi 3-22, 3-24
duplicating text, in ed 5-9

E
e command, in ed 5-6 to 5-7, 5-25
e option, in sed 6-4, 6-5
edcompat ible option, in ex 4-30,

4-55
ed editor 1-4

commands 5-25 to 5-28
deleting text 5-1 1 to 5-12
editing text 5-6 to 5-20, 5-13
ex and 4-2
features 5-2 to 5-6
global commands 5-16 to 5-17
inserting text 5-3 to 5-4
moving text 5-20
quitting 5-6
saving files 5-5
special characters 5-20 to 5-24
starting 5-2
substituting text 5-13 to 5-15

edit command, in ex 4-20, 4-46, 4-50
editing buffer. See buffers
editing text

in ed 5-6 to 5-20, 5-13
in ex 4-12 to 4-14, 4-40 to 4-41

special devices 4-21
global editing. See sed editor
in sed 6-2, 6-7 to 6-8
in TextEditor 2-7 to 2-1 1

in vi 3-8, 3-12 , 3-19 (table), 3-19 to
3-22

commands 3-35 to 3-40 (table)
multiple files 3-26

encrypting files
in ed 5-28
in vi 3-6

end character, in vi 3-18
entering text. See inserting text
Entire Word button 2-9
environment setting. See initialization

procedures
environment variables, for A/UX shells

1-6
equal sign (=)

in ex 4-55
in sed 6-21

erase character, in vi 3-17
errorbe l l s option, in ex 4-30
error conditions, in ex 4-43 to 4-44
error messages

in ed 5-3
in ex 4-35

bell with 4-30
escape character

in sed 6-5
in vi 3-28

ESCAPE key, in vi 3-10
exclamation point (!)

in ex 4-23, 4-54 to 4-55
in sed 6-20

ex editor 1-4
abbreviations, defining 4-38
changing current file 4-22
changing text 4-12 to 4-14
characteristics 4-2
command options 3-27 (table)
command summary 4-44 to 4-55
copying a file 4-21 to 4-22
copying text 4-14 to 4-1 5
deleting text 4-1 1 t o 4-12
displaying lines 4-6 to 4-8
editing text 4-21 , 4-40 to 4-41
error conditions 4-43 to 4-44

Index IN-3

ex editor (continued)
examining file characteristics 4-22
flag options 4-3 (table)
initialization process 4-4
inserting text 4-1 1
interrupt key sequence 4-6
limitations 4-43
marking text 4-39
metacharacters, turning them off 4-17
modes 4-5
moving text 4-14 to 4-1 5
moving within a file 4-8 t o 4-9
multiple files, opening 4-18 to 4-20
opening a file 4-4, 4-21

multipel files 4-18 to 4-20
options, summary of 4-37 to

4-38 (table)
printing style on screen 4-9 to 4-10

placement of current line 4-10 to
4-1 1

program, editing a 4-39
quitting 4-41 to 4-42
recovering text 4-39
recovering files 4-43
regular expressions in 4-16 to 4-17
replacing text 4-12 to 4-14
saving files 4-41 to 4-42
searching for text 4-16 to 4-17
setting options 4-26 to 4-38
shell commands in 4-23 to 4-26
starting 4-2
substituting text 4-13 to 4-14
summary of commands 4-44 to 4-55
switching to vi 4-5
syntax 4-2 to 4-3
undo command 4-39
using from vi 3-9 to 3-10
vi and 1-3, 3-2 to 3-3
vi commands in 4-5
working with multiple files 4-18 to 4-20
writing shell scripts 4-25 to 4-26

EX INIT environment variable 3-7, 3-29,
4-4, 4-28

IN-4 Index

exiting. See also quitting
recovered files 3-35
with view command 3-8

. exrc file 3-7, 4-4, 4-28

F
f command, in ed 5-7, 5-25
f option, in sed 6-4
f i l e command, in ex 4-18, 4-22, 4-46
filenames

in ed 5-5, 5-7
in ex, changing 4-18, 4-22
in TextEditor for resource fork 2-2

Find command, in TextEditor 2-8 to 2-9
Find dialog box 2-8 to 2-9 (figure)
Find Same command, in TextEditor 2-9
Find Selection command, in TextEditor

2-9
flag options

for ex commands 4-3 (table)
for vi commands 3-6

f lash option, in ex 4-30
Font D/ A mover application 2-12
fonts, changing, in TextEditor 2-12
Format dialog box 2-12 (figure)
formatting commands, saving in

TextEditor 2-2, 2-12 to 2-14
function keys, in vi map command

3-29

G
g command

in ed 5-16, 5-26
in sed 6-19

g option, in sed 6-15
g suffix, in ex 4-13, 4-51
global command, in ex 4-46
global commands

in ed 5-14, 5-16 to 5-17
in ex 1-4, 3-9, 3-10

global search and replace. See also
substitute command, in ex

in ex 4-13, 4-26

greater-than sign (>) in ex 4-55

H
h command

in ed 5-3, 5-26
in sed 6-19
in vi 3-1 1

hardtabs option, in ex 4-30
hidden codes. See invisible characters;

nonprinting characters, in vi

highlighting text in TextEditor 2-4
hold area, in sed 6-19
hyphen (-) option, in ex 4-25

I
i command

in ed 5-12 , 5-26
in sed 6-13
in vi 3-9, 3-17, 3-17

I-beam 2-3
ignorecase option, in ex 4-30
indent. See also tabs

setting in ex 4-28
initialization procedures

in ex 4-4
in vi 3-7

inittab initialization file, editing 5-2
input mode, in ex 4-5
insertarrows option, in ex 4-30 to

4-31
insert command, in ex 4-1 1 , 4-47
inserting text

in ed 5-3 to 5-4, 5-12 to 5-13
in ex 4-1 1
in sed 6-12 to 6-13
in TextEditor 2-3
in vi 3-9, 3-16 to 3-17

commands 3-17 (table), 3-40 (table)
insert mode, in vi 3-9

correcting text 3-17 to 3-18
interactive editor 1-2
interrupt key sequence

in ex 4-6
in vi 3-10

invisible characters. See also nonprinting
characters, in vi

showing 2-14 (table)

J
j command

in ed 5-26
in vi 3-1 1

j oin command, in ex 4-47

K
k command

in ed 5-26
in ex 4-39
in vi 3-1 1

keys
special meanings

in ex 4-6
in vi 3-10

Korn shell 1-6
kx command, in ex 4-47

L
1 command, in vi 3-1 1
less-than sign (<), in ex 4-55
I option, in vi commands 3-6
line

beginning-of-line character. See
caret (A)

end-of-line character. See dollar
sign ($)

in ex
selecting 4-6 to 4-8
splitting 4-14

in vi

inserting 3-17
moving to 3-14 to 3-15

line addresses
in ex 4-6 to 4-7
in sed 6-7 to 6-1 1

line editors 1-2, 3-3, 5-2 . See also ed
editor; ex editor

lineno, in ex 4-7, 4-44
line number

in ed, print command and 5-7
in ex, printing 4-31
in sed 6-8
in vi 3-14 to 3-1 5

linespec, i n ex 4-7, 4-44
1 i sp option, in ex 4-31
LISP programs 3-6, 4-31
l i s t command, in ex 4-10, 4-47
l i st option, in ex 4-31
Literal button 2-8
lock icon 2-7

M
m command, in ed 5-20, 5-26
macros 1-4

creating in vi 3-28 to 3-31
in ex, limitations on 4-43
looping 3-30
undoing 3-31

magic option, in ex 4-31
map command

in ex 4-43, 4-48
in vi 3-28 to 3-31

mapping
in ex 4-33, 4-38
in vi 3-28 to 3-31

margin, in ex, specifying 4-36
mark command, in ex 4-39, 4-48
marking text. See also addressing

in ex 4-8, 4-39
in TextEditor 2-16 to 2-17
in vi 3-6, 3-15

mesg option, in ex 4-31
messages, in ex 4-31 , 4-33
metacharacters, in ex 4-16, 4-31

turning off 4-17

- (minus sign)
in ed 5-91
in ex 4-7

motion commands
in ex 4-8 to 4-9 (table)
in vi 3-1 1 to 3-13 (table)

combining with operators 3-20 to
3-21

LISP and 4-31
mouse

not supported in ex 1 -4
supported in TextEditor 2-3
support in vi 1-3, 3-1 1 , 3-23

move command, in ex 4-15 , 4-48
moving text

in ed 5-20
in ex 4-14 to 4-15

moving within a file
in ex 4-8 to 4-9
in vi 3-1 1 to 3-16

multiple files

N

in ex 4-18 to 4-22
in sed 6-17
in vi 3-26

n command
in ed 5-26
in sed 6-12, 6-7, 6-8, 6-18

n option, in sed 6-4, 6-15
newline characters, in sed 6-8, 6-12 ,

6-13, 6-19 to 6-20
next command, in ex 4-19, 4-48
next occurrence, in ed 5-18
nomagic option, in ex 4-17
nonprinting characters, in vi 3-14, 3-28
not imeout option 3-29, 3-31
number command, in ex 4-10, 4-49
number option, in ex 4-31
numeric options, in ex 4-26

Index IN-5

0
o command, in vi 3-9, 3-17
open command, in ex 4-49
opening a file

in ex 4-4
multiple files 4-19 to 4-20

in TextEditor 2-7
in vi 3-3 to 3-5, 3-8

multiple files 3-26
open mode, in ex 4-5, 4-32
open option, in ex 4-32
operators, combining with motion

commands in vi 3-20 to 3-21
opt imi ze option, in ex 4-32
options. See also flag options

in ex 4-26 to 4-38
listing 4-27

for sed commands 6-4 (table)

p
p command

in ed 5-7 to 5-8, 5-12 , 5-27
in sed 6-17, 6-19
in vi 3-24

p option, in sed 6-15
paragraph, defined in v i 3-14
paragraph macro 4-32
paragraphs option, in ex 4-32
parentheses (()) , in vi 3-14
Paste command, in TextEditor 2-5
patterns, in ex, defining 4-16
pattern spaces, in sed 6-7

commands for 6-18 to 6-19
percent sign (%)

in ex 4-7, 4-18
in resource fork of a TextEditor

filename 2-2
period (.)

in ed 5-4, 5-8 to 5-9, 5-10, 5-13,
5-21 , 5-28

in ex 4-5, 4-7, 4-16, 4-44
in sed 6-8
in vi 3-25

IN-6 Index

plus sign (+)
in ex 4-7
in vi options 3-6

pound sign (#), in ex 4-18, 4-55
preserve command, in ex 4-39, 4-49
print command, in ex 4-6, 4-9 to

4-10, 4-49
Print dialog box 2-18 (figure)
printer, selecting 2-18
printing

entire document, in TextEditor 2-18
in ex , current line 4-28
partial document, in TextEditor 2-19

prompt, in ed 5-3
prompt option, in ex 4-32
put command, in ex 4-15, 4-49

Q
q command

in ed 5-27
in sed 6-21

question mark (?) 3-10
in ed 5-28

quit command, in ex 4-42, 4-49 to
4-50

quit ! command, in ex 4-39
quitting

ed 5-6
ex 4-41 to 4-42
TextEditor 2-19
vi 3-32

quotation marks 3-22, 3-24

R
r command

in ed 5-10, 5-27
in sed 6-17
in vi 3-19, 3-19

r option 3-35
in ex 4-32, 4-43 to 4-44
in vi commands 3-6, 3-6

r suffix, in ex 4-13, 4-14, 4-51

read command, in ex 4-21 to 4-22,
4-50

read ! command, in ex 4-24
readonly option 4-32

in vi commands 3-6
read-only viewing

in ex 4-32
in vi 3-7 to 3-8
with view 3-2

read permission, in TextEditor 2-7
recover command, in ex 4-39, 4-50
recovering files

in ex 4-43 to 4-44
in vi 3-6, 3-25, 3-35

recovering text, in ex 4-39
redraw option, in ex 4-33
regular expressions

in ed 5-16
in ex 4-16 to 4-17

case settings 4-30
searching 4-8, 4-36
substitutions 4-12 to 4-13

in sed 6-8 to 6-10, 6-14 to 6-15
in v i 3-6, 3-25

relative motion, in ex 4-8
remap option, in ex 4-33
repeating commands 3-21 to 3-22 (table)
Replace command, in TextEditor 2-10 to

2-1 1
replace commands, in v i 3-19 (table)
Replace Same command, in

TextEditor 2-1 1
Replace Text dialog box 2-10 (figure)
replacing text. See editing text; search

and-replace; substitutions
report option, in ex 4-33
resource fork, of TexEditor files 2-2, 2-12

saving 2-19
RETURN key

in ex 4-6
in vi 3-10

Revert to Saved command, in
TextEditor 2-6

rewind command, in ex 4-20, 4-50

s
s command

in ed 5-13 to 5-14, 5-27
in ex 4-30
in sed 6-14 to 6-16
in v i 3-9, 3-19

Save As command, in TextEditor 2-6
Save Before Quitting dialog box, in

TextEditor 2-19 (figure)
Save command, in TextEditor 2-6
Save a Copy command, in TextEditor 2-6
saving

files
in ed 5-5
in ex 4-36, 4-41 to 4-42
no write messages 4-35
in TextEditor 2-6
in vi 3-32

formatting commands in TextEditor.
See resource fork

partial files, in ed 5-5
screen

in ex
flash for error 4-30
setting parameters 4-36

updating options 4-34
in vi , redrawing 3-33

screen editors 3-2. See also vi editor
screen symbols, for invisible characters

2-14 (table)
scrolling, in vi 3-15 to 3-16 (table), 4-33
scro l l option, in ex 4-33
search-and-replace. See also global

commands; substitutions
in sed 6-5 to 6-6
in TextEditor 2-8 to 2-1 1

Search Backwards button 2-9
searching

in ed 5-17, 5-28. See also context
searching in ed

in ex
for files 4-35
for regular expressions 4-36
using regular expressions 4-16 to 4-17

in TextEditor, reversing direction 2-9
in vi 3-15

using e x commands 3-9, 3-10
using regular expressions 3-25

section macro 4-33
sec t ions option, in ex 4-33
sed editor 1 -4 to 1-5

background, running in 1-5
characteristics 6-2
command summary 6-1 1 to 6-19
command syntax 6-3, 6-6 to 6-7
control-flow commands 6-20 to 6-21
e option 6-4, 6-5
input and output commands 6-17

(table)
line-oriented commands 6-1 1 to 6-14

6-12 to 6-13 (table)
'

multiple commands 6-18 to 6-19
using commands 6-4 to 6-7

sentence, defined in vi 3-14
set command, in ex 4-50 to 4-51
set paragraphs command, in vi

3-14
sh command, in ex 4-23 to 4-24
shell

accessing from ed 5-28
accessing from ex 4-23 to 4-24
setting pathname in ex 4-34

she l l command, in ex 4-51
shell commands

using in ex 4-23 to 4-26
using in vi 3-26

shell programs, ed and 1-4
shell scripts 6-2

writing in ex 4-25 to 4-26
Shift Left command, in TextEditor 2-14
Shift Right command, in TextEditor 2-14
shi ftwidth option, in ex 4-34, 4-55
showmatch option, in ex 4-34
slash (!) 3-10

in ed 5-10, 5-28
slashes (/ /) , in ed 5-15
s l owopen option, in ex 4-34
source command, in ex 4-51

special characters
in ed 5-20 to 5-24
in sed, used as literal characters 6-10

special devices, in ex 4-46
speeding up system, in vi 3-33 to 3-34
spl i t command, in vi 3-34
splitting large files, in vi 3-34
splitting lines, in ex 4-14, 4-51
starting

ed 5-2
ex 4-2
TextEditor 2-3
vi 3-3 to 3-5

startup files, editing with ed 1-4
stream editor 1 -2. See also sed editor
string, in ed 5-16
string options, in ex 4-26
subst i tute command, in ex 4-12

to 4-14, 4-51 to 4-2
substitutions. See also search-and-replace

in ed 5-13 to 5-1 5
i n ex 1-4, 4-12 to 4-13
in sed 6-14 to 6-16, 6-21

suffixes, for subs t i tute command in
ex 4-13

syntax
for ex commands 4-2 to 4-3
for sed commands 6-3, 6-6 to 6-7
for vi commands 3-6

system crashes. See recovering files

T
t command

in ed 5-27
in ex 4-52
in sed 6-7, 6-21

-t option, in vi commands 3-6
tabs

in ex, setting 4-30, 4-34
in TextEditor, selecting 2-13
in vi , cursor movement and 3-14

tag command, in ex 4-40, 4-52
tag file, creating 4-40 to 4-41
taglength option 4-35

Index IN-7

tags option, in ex 4-35
temporary files. See buffers
terminal type, setting in ex 4-35
t em option, in ex 4-35
terse option, in ex 4-35
TextEditor 1 -2 to 1 -3, 1-6

characteristics 2-2
creating a new file 2-3 to 2-5
editing a file 2-7 to 2-1 1
formatting commands 2-12 to 2-14
marking a file 2-16 to 2-17
printing a file 2-18 to 2-19
quitting 2-19
saving a file 2-6
windows in 2-15 to 2-16

text editors
for A/UX 1-3 (table)
changing default for A/UX 1-6 to 1-8
types 1-2

text-only files 2-2
saving document as, in TextEditor

2-19
tilde (-) command, in ex 4-14, 4-55
toggle options, in ex 4-26 to 4-27
transposing characters, in vi 3-18

u
u command

in ed 5-27
in vi 3-21 (table)

unabbreviate command
in ex 4-52
in vi 3-31

undo command, in ex 4-39, 4-52
undoing commands, in vi 3-21 (table)
unmap command, in ex 4-52
user account, changing default editor

1-6 to 1-7

v
v command

in ed 5-17, 5-28
in ex 4-52

IN-8 Index

vedit command 3-2
version command, in ex 4-53
vi command, in ex 4-53
vi editor 1-3, 2-2

abbreviation, assigning a string an 3-31
adding text 3-17
abbreviations in 3-31
arrow keys to move cursor 3-1 1
and the buffer 3-8

named buffers 3-22
changing text 3-19 to 3-20
characteristics 3-2
combining operators and motions

3-20 to 3-21
command mode 3-9
command summary 3-35 to 3-40

(table)
command syntax 3-6
CoNTROL-C interrupt key sequence

3-10
control characters, printing 3-28
copying and moving text 3-23 to 3-24
creating a new file

using command-line interface 3-8
using Commando dialog box 3-5

deleting text 3-18 (table), 3-20
differences between vi and ex,

3-2 to 3-3
ESCAPE key 3-10
and ex

about 3-2 to 3-3
ex command mode 3-9
switching to ex command mode

3-9 to 3-10
finding and replacing text 4-12 to 4-14
global substitution 4-12 to 4-14
increasing speed 3-33 to 3-34
initialization procedures of 3-7
insert mode 3-9, 3-16 to 3-17
inserting text 3-16 to 3-17 (table)
macros, creating with map command

3-28 to 3-31
mapping in 3-28 to 3-31
marking text 3-15

modes of 3-9
motion commands 3-12 to 3-13 (table)
moving the cursor in 3-1 1 to 3-16
multiple files, opening 3-26
nonprinting characters, printing 3-28
opening a line 3-17
opening a file

for read-only 3-7
using command-line interface 3-8
using Commando dialog box 3-3 to

3-5
opening multiple files 3-26
options, setting 3-27 (table)
parameters 3-27 (table)
put command (table) 3-23
quitting 3-32
recovering text 3-24 to 3-25
recovering lost files 3-35
redrawing the screen 3-33
regular expressions 3-25
repeating the last command 3-21 to

3-22 (table)
replacing text 3-19 (table), 3-20
RETURN key 3-10
saving files and quitting 3-32
screen, redrawing 3-33
scrolling 3-15 to 3-16
searching 3-15, 3-25
setting options in 3-27 (table)
shell commands from within 3-26
special keys in 3-10
splitting large files 3-34
starting 3-3 to 3-5
summary of commands 3-35 to 3-40

(table)
switching from ex 4-5
syntax 3-6
troubleshooting 3-32 to 3-35
undoing the last command

3-21 (table)
undoing a text deletion 3-24 to 3-25
yank command 3-23 (table)

view command 3-2, 3-7 to 3-8
visual mode, in ex 4-5, 4-32

/

w
w command

X

in ed 5-5, 5-28
in sed 6-17
in vi 3-32

x command
in sed 6-19
in ed 5-28

-x option, in vi commands 3-6
xit command, in ex 4-42, 4-44, 4-54

y
y command, in vi 3-24, 3-24
yank command, in ex 4-15, 4-54
yank and put commands, in vi 3-23 to

3-24 (table)

z
z command, in ex 4-10 to 4-1 1 , 4-54
zz command, in vi 3-32, 3-35

Index IN-9

The Apple Publishing System
A!UX Text-Editing Tools was written, edited, and
composed on a desktop publishing system using Apple
Macintosh computers, an AppleTalk network system,
Microsoft Word, and QuarkXPress. Line art was created
with Adobe Illustrator. Proof pages were printed on
Apple LaserWriter printers. Final pages were output
directly to 70-mm film on an Electrocomp 2000 Electron
Beam Recorder. PostScript®, the LaserWriter page
description language, was developed by Adobe Systems
Incorporated.

Text type and display type are Apple's corporate font, a
condensed version of lTC Garamond®. Bullets are lTC
Zapf Dingbats®. Some elements, such as program
listings, are set in Apple Courier, a fixed-width font.

.--�

	AUX_3_Text_Editing_Tools_Afront-01-i
	AUX_3_Text_Editing_Tools_Afront-02-ii
	AUX_3_Text_Editing_Tools_Afront-03-iii
	AUX_3_Text_Editing_Tools_Afront-05-v
	AUX_3_Text_Editing_Tools_Afront-06-vi
	AUX_3_Text_Editing_Tools_Afront-07-vii
	AUX_3_Text_Editing_Tools_Afront-08-viii
	AUX_3_Text_Editing_Tools_Afront-09-ix
	AUX_3_Text_Editing_Tools_Afront-10-x
	AUX_3_Text_Editing_Tools_Afront-11-xi
	AUX_3_Text_Editing_Tools_Afront-13-xiii
	AUX_3_Text_Editing_Tools_Afront-14-xiv
	AUX_3_Text_Editing_Tools_Afront-15-xv
	AUX_3_Text_Editing_Tools_Afront-16-xvi
	AUX_3_Text_Editing_Tools_Afront-17-xvii
	AUX_3_Text_Editing_Tools_Afront-18-xviii
	AUX_3_Text_Editing_Tools_Afront-19-xix
	AUX_3_Text_Editing_Tools_Afront-20-xx
	AUX_3_Text_Editing_Tools_Ch01-01
	AUX_3_Text_Editing_Tools_Ch01-02
	AUX_3_Text_Editing_Tools_Ch01-03
	AUX_3_Text_Editing_Tools_Ch01-04
	AUX_3_Text_Editing_Tools_Ch01-05
	AUX_3_Text_Editing_Tools_Ch01-06
	AUX_3_Text_Editing_Tools_Ch01-07
	AUX_3_Text_Editing_Tools_Ch01-08
	AUX_3_Text_Editing_Tools_Ch02-01
	AUX_3_Text_Editing_Tools_Ch02-02
	AUX_3_Text_Editing_Tools_Ch02-03
	AUX_3_Text_Editing_Tools_Ch02-04
	AUX_3_Text_Editing_Tools_Ch02-05
	AUX_3_Text_Editing_Tools_Ch02-06
	AUX_3_Text_Editing_Tools_Ch02-07
	AUX_3_Text_Editing_Tools_Ch02-08
	AUX_3_Text_Editing_Tools_Ch02-09
	AUX_3_Text_Editing_Tools_Ch02-10
	AUX_3_Text_Editing_Tools_Ch02-11
	AUX_3_Text_Editing_Tools_Ch02-12
	AUX_3_Text_Editing_Tools_Ch02-13
	AUX_3_Text_Editing_Tools_Ch02-14
	AUX_3_Text_Editing_Tools_Ch02-15
	AUX_3_Text_Editing_Tools_Ch02-16
	AUX_3_Text_Editing_Tools_Ch02-17
	AUX_3_Text_Editing_Tools_Ch02-18
	AUX_3_Text_Editing_Tools_Ch02-19
	AUX_3_Text_Editing_Tools_Ch03-01
	AUX_3_Text_Editing_Tools_Ch03-02
	AUX_3_Text_Editing_Tools_Ch03-03
	AUX_3_Text_Editing_Tools_Ch03-04
	AUX_3_Text_Editing_Tools_Ch03-05
	AUX_3_Text_Editing_Tools_Ch03-06
	AUX_3_Text_Editing_Tools_Ch03-07
	AUX_3_Text_Editing_Tools_Ch03-08
	AUX_3_Text_Editing_Tools_Ch03-09
	AUX_3_Text_Editing_Tools_Ch03-10
	AUX_3_Text_Editing_Tools_Ch03-11
	AUX_3_Text_Editing_Tools_Ch03-12
	AUX_3_Text_Editing_Tools_Ch03-13
	AUX_3_Text_Editing_Tools_Ch03-14
	AUX_3_Text_Editing_Tools_Ch03-15
	AUX_3_Text_Editing_Tools_Ch03-16
	AUX_3_Text_Editing_Tools_Ch03-17
	AUX_3_Text_Editing_Tools_Ch03-18
	AUX_3_Text_Editing_Tools_Ch03-19
	AUX_3_Text_Editing_Tools_Ch03-20
	AUX_3_Text_Editing_Tools_Ch03-21
	AUX_3_Text_Editing_Tools_Ch03-22
	AUX_3_Text_Editing_Tools_Ch03-23
	AUX_3_Text_Editing_Tools_Ch03-24
	AUX_3_Text_Editing_Tools_Ch03-25
	AUX_3_Text_Editing_Tools_Ch03-26
	AUX_3_Text_Editing_Tools_Ch03-27
	AUX_3_Text_Editing_Tools_Ch03-28
	AUX_3_Text_Editing_Tools_Ch03-29
	AUX_3_Text_Editing_Tools_Ch03-30
	AUX_3_Text_Editing_Tools_Ch03-31
	AUX_3_Text_Editing_Tools_Ch03-32
	AUX_3_Text_Editing_Tools_Ch03-33
	AUX_3_Text_Editing_Tools_Ch03-34
	AUX_3_Text_Editing_Tools_Ch03-35
	AUX_3_Text_Editing_Tools_Ch03-36
	AUX_3_Text_Editing_Tools_Ch03-37
	AUX_3_Text_Editing_Tools_Ch03-38
	AUX_3_Text_Editing_Tools_Ch03-39
	AUX_3_Text_Editing_Tools_Ch03-40
	AUX_3_Text_Editing_Tools_Ch04-01
	AUX_3_Text_Editing_Tools_Ch04-02
	AUX_3_Text_Editing_Tools_Ch04-03
	AUX_3_Text_Editing_Tools_Ch04-04
	AUX_3_Text_Editing_Tools_Ch04-05
	AUX_3_Text_Editing_Tools_Ch04-06
	AUX_3_Text_Editing_Tools_Ch04-07
	AUX_3_Text_Editing_Tools_Ch04-08
	AUX_3_Text_Editing_Tools_Ch04-09
	AUX_3_Text_Editing_Tools_Ch04-10
	AUX_3_Text_Editing_Tools_Ch04-11
	AUX_3_Text_Editing_Tools_Ch04-12
	AUX_3_Text_Editing_Tools_Ch04-13
	AUX_3_Text_Editing_Tools_Ch04-14
	AUX_3_Text_Editing_Tools_Ch04-15
	AUX_3_Text_Editing_Tools_Ch04-16
	AUX_3_Text_Editing_Tools_Ch04-17
	AUX_3_Text_Editing_Tools_Ch04-18
	AUX_3_Text_Editing_Tools_Ch04-19
	AUX_3_Text_Editing_Tools_Ch04-20
	AUX_3_Text_Editing_Tools_Ch04-21
	AUX_3_Text_Editing_Tools_Ch04-22
	AUX_3_Text_Editing_Tools_Ch04-23
	AUX_3_Text_Editing_Tools_Ch04-24
	AUX_3_Text_Editing_Tools_Ch04-25
	AUX_3_Text_Editing_Tools_Ch04-26
	AUX_3_Text_Editing_Tools_Ch04-27
	AUX_3_Text_Editing_Tools_Ch04-28
	AUX_3_Text_Editing_Tools_Ch04-29
	AUX_3_Text_Editing_Tools_Ch04-30
	AUX_3_Text_Editing_Tools_Ch04-31
	AUX_3_Text_Editing_Tools_Ch04-32
	AUX_3_Text_Editing_Tools_Ch04-33
	AUX_3_Text_Editing_Tools_Ch04-34
	AUX_3_Text_Editing_Tools_Ch04-35
	AUX_3_Text_Editing_Tools_Ch04-36
	AUX_3_Text_Editing_Tools_Ch04-37
	AUX_3_Text_Editing_Tools_Ch04-38
	AUX_3_Text_Editing_Tools_Ch04-39
	AUX_3_Text_Editing_Tools_Ch04-40
	AUX_3_Text_Editing_Tools_Ch04-41
	AUX_3_Text_Editing_Tools_Ch04-42
	AUX_3_Text_Editing_Tools_Ch04-43
	AUX_3_Text_Editing_Tools_Ch04-44
	AUX_3_Text_Editing_Tools_Ch04-45
	AUX_3_Text_Editing_Tools_Ch04-46
	AUX_3_Text_Editing_Tools_Ch04-47
	AUX_3_Text_Editing_Tools_Ch04-48
	AUX_3_Text_Editing_Tools_Ch04-49
	AUX_3_Text_Editing_Tools_Ch04-50
	AUX_3_Text_Editing_Tools_Ch04-51
	AUX_3_Text_Editing_Tools_Ch04-52
	AUX_3_Text_Editing_Tools_Ch04-53
	AUX_3_Text_Editing_Tools_Ch04-54
	AUX_3_Text_Editing_Tools_Ch04-55
	AUX_3_Text_Editing_Tools_Ch05-01
	AUX_3_Text_Editing_Tools_Ch05-02
	AUX_3_Text_Editing_Tools_Ch05-03
	AUX_3_Text_Editing_Tools_Ch05-04
	AUX_3_Text_Editing_Tools_Ch05-05
	AUX_3_Text_Editing_Tools_Ch05-06
	AUX_3_Text_Editing_Tools_Ch05-07
	AUX_3_Text_Editing_Tools_Ch05-08
	AUX_3_Text_Editing_Tools_Ch05-09
	AUX_3_Text_Editing_Tools_Ch05-10
	AUX_3_Text_Editing_Tools_Ch05-11
	AUX_3_Text_Editing_Tools_Ch05-12
	AUX_3_Text_Editing_Tools_Ch05-13
	AUX_3_Text_Editing_Tools_Ch05-14
	AUX_3_Text_Editing_Tools_Ch05-15
	AUX_3_Text_Editing_Tools_Ch05-16
	AUX_3_Text_Editing_Tools_Ch05-17
	AUX_3_Text_Editing_Tools_Ch05-18
	AUX_3_Text_Editing_Tools_Ch05-19
	AUX_3_Text_Editing_Tools_Ch05-20
	AUX_3_Text_Editing_Tools_Ch05-21
	AUX_3_Text_Editing_Tools_Ch05-22
	AUX_3_Text_Editing_Tools_Ch05-23
	AUX_3_Text_Editing_Tools_Ch05-24
	AUX_3_Text_Editing_Tools_Ch05-25
	AUX_3_Text_Editing_Tools_Ch05-26
	AUX_3_Text_Editing_Tools_Ch05-27
	AUX_3_Text_Editing_Tools_Ch05-28
	AUX_3_Text_Editing_Tools_Ch06-01
	AUX_3_Text_Editing_Tools_Ch06-02
	AUX_3_Text_Editing_Tools_Ch06-03
	AUX_3_Text_Editing_Tools_Ch06-04
	AUX_3_Text_Editing_Tools_Ch06-05
	AUX_3_Text_Editing_Tools_Ch06-06
	AUX_3_Text_Editing_Tools_Ch06-07
	AUX_3_Text_Editing_Tools_Ch06-08
	AUX_3_Text_Editing_Tools_Ch06-09
	AUX_3_Text_Editing_Tools_Ch06-10
	AUX_3_Text_Editing_Tools_Ch06-11
	AUX_3_Text_Editing_Tools_Ch06-12
	AUX_3_Text_Editing_Tools_Ch06-13
	AUX_3_Text_Editing_Tools_Ch06-14
	AUX_3_Text_Editing_Tools_Ch06-15
	AUX_3_Text_Editing_Tools_Ch06-16
	AUX_3_Text_Editing_Tools_Ch06-17
	AUX_3_Text_Editing_Tools_Ch06-18
	AUX_3_Text_Editing_Tools_Ch06-19
	AUX_3_Text_Editing_Tools_Ch06-20
	AUX_3_Text_Editing_Tools_Ch06-21
	AUX_3_Text_Editing_Tools_Index-01
	AUX_3_Text_Editing_Tools_Index-02
	AUX_3_Text_Editing_Tools_Index-03
	AUX_3_Text_Editing_Tools_Index-04
	AUX_3_Text_Editing_Tools_Index-05
	AUX_3_Text_Editing_Tools_Index-06
	AUX_3_Text_Editing_Tools_Index-07
	AUX_3_Text_Editing_Tools_Index-08
	AUX_3_Text_Editing_Tools_Index-09
	AUX_3_Text_Editing_Tools_Index-10

