
�·. I l
)

A/UX Text-Processing Tools

Release 3.0

UMITED WARRANTY ON MEDIA AND REPLACEMENT

If you discover physical defects in the manuals distributed with an Apple product or in the media on
which a software product is distributed, Apple will replace the media or manuals at no charge to you,
provided you return the item to be replaced with proof of purchase to Apple or an authorized Apple
dealer during the 90-day period after you purchased the software. In addition, Apple will replace
damaged software media and manuals for as long as the software product is included in Apple's Media
Exchange Program. While not an upgrade or update method, this program offers additional ./\ ·
protection for up to two years or more from the date of your original purchase. See your authorized
Apple dealer for program coverage and details. In some countries the replacement period may be
different; check with your authorized Apple dealer.

All IMPUED W ARRANTIFS ON THE MEDIA AND MANUALS, INCLUDING IMPUED
WARRANTIES OF MERCHANTABll.ITY AND FITNESS FOR A PARTICUlAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY (90) DAYS FROM THE DATE OF THE ORIGINAL RETAIL
PURCHASE OF TillS PRODUCT.

Even though Apple has tested the software and reviewed the documentation, APPLE MAKES NO
WARRANTY OR REPRESENTATION, EITHER EXPRESS, OR IMPUED, WITH RESPECT TO
SOFI'W ARE, ITS QUALITY, PERFORMANCE, MERCHANTABWTY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, TillS SOFI'WARE IS SOID "AS IS," AND YOU, THE
PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUAUI'Y AND PERFORMANCE.

IN NO EVENT WILL APPLE BE UABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN mE SOFI'W ARE OR ITS
DOCUMENTATION, even if advised of the possibility of such damages. In particular, Apple shall have
no liability for any programs or data stored in or used with Apple products, including the costs of
recovering such programs or data.

THE WARRANTY AND REMEDIES SET FORm ABOVE ARE EXCLUSIVE AND IN UEU OF AU
OmERS, ORAL OR WRITTEN, EXPRESS, OR IMPUED. No Apple dealer, agent, or employee is
authorized to make any modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other rights which vary from state to state.

Apple Computer, Inc.
This manual and the software described in it are copyrighted, with all rights reserved. Under the
copyright laws, this manual or the software may not be copied, in whole or part, without written
consent of Apple, except in the normal use of the software or to make a backup copy of the software.
The same proprietary and copyright notices must be affixed to any permitted copies as were affixed to
the original. This exception does not allow copies to be made for others, whether or not sold, but all of
the material purchased (with all backup copies) may be sold, given, or loaned to another person.
Under the law, copying includes translating into another language or format.

You may use the software on any computer owned by you, but extra copies cannot be made for this
purpose.

The Apple logo is a registered trademark of Apple Computer, Inc. Use of the "keyboard" Apple logo
(Option-Shift -k) for commercial purposes without the prior written consent of Apple may constitute
trademark infringement and unfair competition in violation of federal and state laws.

©Apple Computer, Inc., 1992
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, A/UX, Image Writer, LaserWriter, and Macintosh are trademarks of Apple
Computer, Inc., registered in the United States and other countries.

Adobe Illustrator, PostScript, and TranScript are trademarks of Adobe Systems Incorporated, registered
in the United States.

APS-5 is a trademark of Autologic.

Hewlett-Packard 2631 is a trademark of Hewlett-Packard.

lTC Zapf Dingbats is a registered trademark of International Typeface Corporation.

Linotronic is a registered trademark of Linotype Co.

Microsoft is a trademark of Microsoft Corporation.

Teletype is a registered trademark of AT&T.

TermiNet is a trademark of General Electric.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Varityper is a registered trademark, and VT600 is a trademark, of AM International, Inc.

Versatec is a registered trademark of Versatec.

Simultaneously published in the United States and Canada.

Mention of third-party products is for informational purposes only and constitutes neither an
endorsement nor a recommendation. Apple assumes no responsibility with regard to the performance
or use of these products.

Contents

Figures and Tables I xxiii

About This Guide I xxxi

What are text-processing tools? I xxxi

Who should use this book I xxxi

How to use this book I xxxii

Conventions used in this guide I xxxiii

Keys and key combinations I xxxiii

Terminology I xxxiii

The Courier font I xxxiv

Font styles I xxxv

A/UX command syntax I xxxv

Manual page reference notation I xxxvi

For more information I xxxvii

1 Introduction to A/UX Text Processing I 1-1

What are the A/UX text-processing tools? I l-2

troff and nroff for text I 1-2

The mm macro package for text I 1-4

tbl for tables I 1-4

eqn for formatting equations I 1-6

pic for pictures I 1-6

grap for graphs I 1-8

Other macro packages I 1-10

Page layout concepts I 1-11
Principal units of measurement I 1-12

Line length I 1-13

Page length I 1-14

Paragraph types I 1-14

Margins I 1-15

Adjusted and filled text I 1-15

Indentation I 1-16

Headers and footers I 1-17

Centered text I 1-18

Footnotes I 1-19

Heading levels I 1-19

Font descriptions I 1-20
Type families: Changing to bold and italic I 1-20

Point size I 1-22

Vertical spacing I 1-23

Character set I 1-24

Accents I 1-25

Overstriking I 1-26

Other formatting features I 1-26
Displays I 1-26

Lists I 1-27

Tables of contents I 1-28

Multicolumn output I 1-28

Strings I 1-29

Number registers I 1-29

Defming and using macros I 1-30

Horizontal and vertical line spacing I 1-31

Line drawing 1-32

Document printing I 1-32
Output devices I 1-32

vi Contents

The TranScript package I 1-33

2 trofflmm Tutorial I 2-l

Lesson 1: Producing a formatted letter I 2-2
Using mm displays I 2-2
Creating spaces between paragraphs I 2-3

Creating a list with bullets I 2-4

Changing fonts I 2-5

Indenting text I 2-5

Formatting and printing your file I 2-6

Lesson 2: Producing letterhead I 2-8
Setting top-of-page instructions I 2-9

Changing the size of your text I 2-9

Changing the size of your page I 2-10

Designing your letterhead I 2-10

Printing your letter on letterhead I 2-12

Lesson 3: Modifying the appearance of a page I 2-14
Producing a footnote I 2-14

Producing graphics I 2-16

3 nroffltroff Formatters I 3-l

What is nrofflt roff formatting? I 3-2

Options when invoking nroff and t roff formatters I 3-3

Principles of nroff and t roff formatters I 3-6
Form of input I 3-6

Formatter and device resolution I 3-7

Numeric parameter input I 3-7

Numeric expressions I 3-8

Notation I 3-9

troff character set I 3-10

Definitions of terms I 3-10

Working with text I 3-12
Choosing a font I 3-12

Contents vii

Setting character size I 3-12

Overstriking characters I 3-14

Setting zero-width characters I 3-14

Creating large brackets I 3-14

Underlining I 3-15
Setting vertical spacing I 3-17

Adding an extra line space I 3-18

Creating a block of vertical space I 3-18

Structuring the page I 3-20
Filling, adjusting, and centering text I 3-22

Controlling line and word breaks I 3-22

Hyphenating text I 3-24

Indenting lines I 3-25

Setting tabs I 3-26
Setting field delimiters I 3-27

Advanced features I 3-28
Creating macros and strings I 3-28

Interpreting copy mode input I 3-28

Defining arguments I 3-29

Creating diversions: Storing and redirecting text I 3-30

Using traps I 3-31

Storing values: Creating number registers I 3-33

Creating three-part titles I 3-34

Spacing characters on a line: Setting horizontal and vertical motion and width I 3-35

Moving characters within a line: Setting local motion I 3-35

Spacing characters within a line: Setting width I 3-36

Overprinting text: Marking horizontal place I 3-36

Numbering output lines I 3-37

Using conditionals I 3-39

Switching environments I 3-41

Inserting from standard input I 3-41

Switching input/output flles I 3-42

Reading output and error messages I 3-43

Miscellaneous requests I 3-44

Input/ output conventions and character translations I 3-45

viii Contents

Input character translations I 3-45

Ligatures I 3-45

Control characters I 3-46

Output translation I 3-46

Transparent throughput I 3-47

Comments and concealed newline characters I 3-47

Reference tables I 3-48

4 mm Macros I 4-1

What are mm macros, and why should you use them? I 4-3

Required structure for a document I 4-4

Restricted use of the BEL character I 4-5

Options and commands for accessing mm I 4-5

The mrn command I 4-5

The -mrn flag I 4-7

Typical command lines I 4-7

Parameters set from the command line I 4-10

Omission of -mrn flag I 4-12

sees release identification I 4-13

Working with text I 4-13
Understanding formatting I 4-14

Using arguments and double quotation marks I 4-14

Specifying unpaddable spaces I 4-15

Hyphenating text I 4-15

Setting tabs I 4-16

Justifying the right margin I 4-17

Spacing lines of text I 4-17

Setting point size and vertical spacing I 4-18

Reducing point size of a string I 4-19

Creating bullets I 4-20

Using dashes, minus signs, and hyphens I 4-20

Using bold, italic, and roman fonts I 4-21

Creating a trademark string I 4-22

Contents ix

Producing accents I 4-22

Inserting text interactively I 4-23

Using formatter requests I 4-24

Structuring the page I 4-25
Creating paragraphs I 4-25

Indenting paragraphs I 4-25

Numbering paragraphs I 4-26

Setting spacing between paragraphs I 4-27

Creating numbered headings I 4-27

Using default headings I 4-27

Changing the appearance of headings I 4-28

Working with unnumbered headings I 4-32

Using headings in the table of contents I 4-32

Using headings in page numbering I 4-33

Creating user exit macros I 4-33

Creating page headers and footers I 4-35

Using default headers and footers I 4-36

Using header and footer macros I 4-36

Header and footer example I 4-39

Skipping pages I 4-39

Forcing an odd page I 4-39

Specifying top and bottom margins I 4-40

Using the word "PRIVATE" in the header I 4-40

Defining a macro for top-of-page processing I 4-40

Defming a macro for bottom-of-page processing I 4-41

Creating a disclaimer using a proprietary marking macro I 4-42

Creating two-column output I 4-43

Creating headings for two-column output I 4-44

Hints for large documents I 4-44

Creating lists I 4-45

x Contents

Using list-initialization macros I 4-45

Using list-item macros I 4-46

Using list-end macros I 4-47

Setting spacing in a list I 4-48

Numbering or alphabetizing a list I 4-48

Creating a bulleted list I 4-49

Creating a dashed list I 4-49

Creating a marked list I 4-50
Creating a reference list I 4-50
Creating a variable-item list I 4-51

Example of nested lists I 4-52

Using list-begin macros I 4-54

Defining other list structures I 4-56

Creating memorandum and released-paper style documents I 4-59

Understanding the sequence of beginning macros I 4-59

Generating a title I 4-60

Describing the author I 4-61

Specifying the TM numbers I 4-62

Identifying the abstract I 4-62

Using other keywords I 4-63

Understanding memorandum types I 4-64

Changing the date I 4-65

Using an alternate first -page format I 4-66

Example of input text I 4-66

Creating end-of-memorandum macros I 4-67

Using the signature block I 4-67

Using "copy to" and other notations I 4-68

Generating the approval signature line I 4-70

Forcing a one-page letter I 4-70

Using define ftle information I 4-70

Using business letter style I 4-71

Using the letter-type macro I 4-71

Using writer's address macros I 4-73

Using inside address macros I 4-74

Using the letter-options macro I 4-75

Generating multipage letters I 4-77

Understanding the sequence of beginning letter macros I 4-77

Creating displays I 4-78
Starting static displays I 4-79

Starting floating displays I 4-81

Contents xi

Using displays in tables I 4-83

Using displays in equations I 4-84

Using displays in figure, table, equation, and exhibit titles I 4-85

Listing figures, tables, equations, and exhibits I 4-86

Creating footnotes I 4-87
Num�ring footnotes I 4-87

Delimiting footnote text I 4-87

Controlling format style of footnote text I 4-88

Setting spacing between footnote entries I 4-90

Generating a table of contents and cover sheet I 4-90
Generating a table of contents I 4-91

Generating a cover sheet I 4-93

Using references I 4-93
Numbering references I 4-94

Delimiting reference text I 4-94

Creating subsequent references I 4-94

Generating a reference page I 4-95

Troubleshooting I 4-96
What happens when a macro detects an error? I 4-96

Why does output disappear? I 4-96

Extending and modifying memorandum macros I 4-97
Naming conventions I 4-97

Names used by formatters I 4-98

Names used by memorandum macros I 4-98

Names used by cw, eqn/neqn, and tbl I 4-98

Names defined by user I 4-99

Sample appendix headings I 4-99

Hanging indents with tabs I 4-100

rnrn examples I 4-101

rnrn reference tables I 4-106

Error messages I 4-116

xii Contents

mm error messages I 4-1 16

Formatter error messages I 4-119

5 ms Macros I 5-1

What are rns macros? I 5-3

How input is read I 5-3
Understanding arguments and double quotation marks I 5-5

Sequence of beginning macros I 5-5

Using basic document formats I 5-5

Cover sheets I 5-5

Titles I 5-6

Authors I 5-6

Abstracts I 5-7

Paper styles I 5-8

Chapter titles I 5-8

UNIX trademark I 5-9

Changing the look of the document I 5-9

Creating multicolumn output I 5-10

Setting point size and vertical spacing I 5-10

Changing top and bottom margins I 5-11

Changing line length I 5-12

Changing page offset I 5-12

Changing tab setting I 5-13

Changing fonts I 5-13

Changing the string point size I 5-14

Changing and removing the date I 5-15

Structuring the page I 5-16

Creating paragraphs I 5-16

Creating the standard paragraph I 5-16

Creating a left-block paragraph I 5-16

Indenting paragraphs I 5-17

Creating a hanging paragraph I 5-18

Creating a quote paragraph I 5-19

Changing the spacing between paragraphs I 5-19

Creating headings I 5-20

Creating numbered headings I 5-20

Working with unnumbered headings I 5-21

Contents

Creating page headers and footers I 5-21

Using standard headers I 5-22

Using standard footers I 5-22

Customizing headers and footers I 5-23

Printing a header and/or footer on the first page I 5-24

Creating multiline headers and footers I 5-24

Setting tide length I 5-25

Keeping text together on a page I 5-25

Forcing a page with static keeps I 5-25

Using floating keeps I 5-26

Indenting blocks of text I 5-26

Creating displays I 5-27
Using ms displays I 5-27

Standard display format I 5-27

Indented display I 5-28

Left-adjusted display I 5-28

Centered display I 5-28

Block display I 5-29

Display distance I 5-29

Producing tables and equations I 5-29
Creating tables I 5-30

Creating equations I 5-31

Creating footnotes I 5-32
Changing footnote style I 5-32

Changing footnote indent I 5-33

Changing footnote length I 5-33

Using references I 5-34

Creating an index or a table of contents I 5-34
Understanding index format I 5-35

Printing the index I 5-36

Printing the table of contents I 5-36

Drawing boxes I 5-37
Boxing a word I 5-37

Boxing a block of text I 5-37

Contents

Troubleshooting I 8-28
Error conditions I 8-28
The checkeq program I 8-29

9 pic Line Drawings I 9-l

What is pic? I 9-2

Using pic I 9-2
Understanding pic command syntax I 9-2

Understanding the troff interface I 9-2

Defining the picture format I 9-3

Drawing pictures I 9-5
Drawing primitive objects I 9-5

Setting object attributes I 9-7

Setting object variables I 9-10

Changing the sizes of objects I 9-1 1

Adding text to pictures I 9-12

Positioning objects I 9-14

Using coordinates I 9-14

Using corners I 9-16

Positioning with move I 9-18

Positioning with variables I 9-18

Labeling objects I 9-19

Grouping objects I 9-20
Using blocks I 9-24

Using the chop facility I 9-27

Creating macros I 9-28

Understanding mathematical functions I 9-29

Understanding loops and conditional statements I 9-30

Understanding expressions I 9-32

Examples of pic specifications I 9-32

Contents

10 grap Graphs I 10-1

What is grap? I 10-3

Using grap I 10-4

Defining the graph format I 10-5

Specifying charts: Default actions I 10-5

Adjusting the frame I 10-8

Adding text to a chart I 10-9

Adding grid lines to a chart I 10-10

Using the shell I 10-11

Creating macros I 10-12

Using the copy thru construction I 10-13

Using loops and conditionals I 10-13

Plotting curves I 10-16
Using polar coordinates I 10-19

Using equally scaled axes I 10-23

Plotting curves from data points I 10-26

Summary of grap syntax I 10-28

11 Related Tools I 11-1

What are the other text preprocessors? I 11-2
Preparing constant-width text I 1 1-2

Numbering lines I 11-2

Translating characters I 1 1-3

Single-spacing a document I 1 1-4

Changing the format of a text file I 1 1-4

Printing Greek characters I 1 1-4
-�

Creating underlines for your terminal I 11-5

Stripping out reverse line feeds I 1 1-5

Using a macro package to typeset viewgraphs and slides I 1 1-6

Contents

/------

Using special tools for the manual pages I 11-6

Creating a manual page I 1 1-7

Reading online manual entries I 11-7

Creating a permuted index I 11-7

Checking your work before you format it I 11-8

Checking your spelling I 1 1-8

Checking your writing style I 1 1-8

Checking your document's clarity I 1 1-9

Checking your eqn commands I ll-9

Checking your mm commands I 11-10

Checking your ms commands I 11-10

Checking your cw commands I 11-11

Glossary I G-1

Index I 1-1

Contents

�-

Chapter 1

Chapter 2

Figures and Tables

Introduction to A/UX Text Processing I 1-1
Figure 1-1

Figure 1-2

Figure 1-3

Figure 1-4

Figure 1-5

Figure 1-6

Figure 1-7

Figure 1-8

Table 1-1

Table 1-2

Table 1-3

Table 1-4

Table 1-5

trofflmm
Figure 2-1

Figure 2-2

Figure 2-3

Figure 2-4

Producing a printed document I 1-2

Example of tbl output I 1-5

A simple picture I 1-7

A more complicated picture I 1-7

An even more complicated picture I 1-8

A graph I 1-9

A more complicated graph I 1-10

Parts of a page I 1-12

Principal units of measurement I 1-13

Argument n defaults I 1-15

Using mm macros to change fonts to bold and italic I 1-21

Using numbers to specify fonts I 1-22

Accessing a few special font characters I 1-25

Tutorial I 2-1
Contents of your file with text and t rofflmm code I 2-7

File printed on a LaserWriter I 2-8

A sample letterhead I 2-12

A sample letter I 2-13

Figure 2-5

Figure 2-6

A sample letter with a footnote I 2-15

A sample line graphic I 2-16

Chapter 3 nroff/troff Formatters I 3-1
Table 3-1 Options for invoking nrofflt roff I 3-4

Table 3-2 Numeric input and appended scale indicators for

nrofflt roff I 3-7

Table 3-3 ASCII character exceptions to t roff I 3-10

Table 3-4 Character size request forms I 3-13

Table 3-5 Line-drawing requests I 3-17

Table 3-6 Vertical space requests I 3-19

Table 3-7 Page control requests I 3-20

Table 3-8 Interrupted text requests I 3-23

Table 3-9 Hyphenation requests I 3-24

Table 3-10 Line length and indent requests I 3-25

Table 3-11 Three types of internal tab stops I 3-26

Table 3-12 Field requests I 3-27

Table 3-13 Trap requests I 3-31

Table 3-14 Number register access sequences I 3-33

Table 3-15 Number register requests I 3-34

Table 3-16 Three-part title requests I 3-35

Table 3-17 Output line numbering requests I 3-37

Table 3-18 Summary and explanation of conditional acceptance requests I 3-39

Table 3-19 Built-in condition names I 3-40

Table 3-20 Environment switching request I 3-41

Table 3-21 Standard input insertion requests I 3-42

Table 3-22 Input/ output switching requests I 3-42

Table 3-23 Output printing request I 3-43

Table 3-24 Miscellaneous requests I 3-44

Table 3-25 Output translation requests I 3-46

Table 3-26 Escape sequences for characters, indicators, and functions I 3-48

Figures and Tables

�

--�

Checking your work I 5-38

Using nrofflt roff commands in ms I 5-38

Creating your own macros I 5-39
Conventions used in this reference I 5-39

Format of names used by ms I 5-40
Names used by eqn/ neqn and tbl I 5-40

Reference tables I 5-40

6 me Macros I 6-1
What are me macros? I 6-2

How input is read I 6-2

Understanding arguments and double quotation marks I 6-2

Sequence of beginning macros I 6-3

Using basic document formats I 6-3
Title pages I 6-3

Chapter titles I 6-3

Thesis format I 6-4

Changing the look of the document I 6-5
Creating multicolumn output I 6-5

Setting point size and vertical spacing I 6-6

Changing top and bottom margins I 6-6

Changing line length I 6-6

Changing page offset I 6-7

Changing fonts I 6-7

Changing the string point size I 6-8

Structuring the page I 6-8
Creating paragraphs I 6-8

Creating the standard paragraph I 6-9

Creating a left-block paragraph I 6-9

Indenting paragraphs I 6-9

Creating headings I 6-1 1

Creating numbered headings I 6-11

Working with unnumbered headings I 6-12

Contents XV

Table 3-27

Table 3-28
Table 3-29

Table 3-30

Table 3-31

Naming conventions for special characters on the standard

fonts I 3-50

Naming conventions for Greek characters on the special font I 3-51

Naming conventions for special characters on the special font I 3-52

Predefmed general number registers I 3-53

Predefined read-only number registers I 3-54

Chapter 4 rnm Macros I 4-l

Figure 4-1

Figure 4-2

Figure 4-3

Table 4-1

Table 4-2

Table 4-3

Table 4-4
Table 4-5

Table 4-6

Table 4-7

Table 4-8

Table 4-9

Table 4-10

Table 4-11

Table 4-12

Table 4-13

Table 4-14

Table 4-15

Table 4-16

Table 4-17

Table 4-18

Table 4-19

Example of input fde for a simple letter I 4-102

Example of a simple letter: nroff output I 4-104

Example of a simple letter: troff output I 4-105

mm command options I 4-6

Number registers to hold parameter values I 4-10

Formatter requests useful with mm I 4-24

Arguments for marking numeral styles I 4-31

Arguments for the width control macro I 4-43

List-initialization macros I 4-46

"Copy to" notations I 4-68

Letter-type arguments and formats I 4-71

Letter formatting components and macros I 4-72

Format argument in static displays I 4-79

Fill argument in static displays I 4-80

De number register code settings in floating displays I 4-82

of number register code settings in floating displays I 4-82

Hyphenating footnote text I 4-89

Memorandum macro names I 4-106

String names I 4-112

Number register names I 4-113

mm error messages I 4-117

Formatter error messages I 4-119

Figures and Tables

Creating page headers and footers I 6-12

Keeping text together on a page I 6-13

Forcing a page with static keeps I 6-13

Using floating keeps I 6-13

Indenting blocks of text I 6-14

Centering blocks of text I 6-14

Creating displays I 6-14
Using me displays I 6-14

Major quotes I 6-15

Standard lists I 6-15

Custom lists I 6-15

Creating footnotes I 6-16

Creating an index or a table of contents I 6-16
Understanding index format I 6-17

Printing the index I 6-17

Drawing boxes I 6-18
Boxing a word I 6-18

Boxing a block of text I 6-18

Checking your work I 6-18

Creating your own macros I 6-19
Conventions used in this reference I 6-19

Defining a macro in me I 6-19

Reference tables I 6-20

7 tbl Tables I 7-l

What is tbl? I 7-2

Using tbl I 7-2
Understanding command-line syntax I 7-2

Defining table formats I 7-3

Using global format options I 7-3
Setting table width and positioning I 7-4

xvi Contents

--...._,

Chapter 5 ms Macros I 5-1
Table 5-1

Table 5-2

Table 5-3

Table 5-4

Table 5-5

Table 5-6

Table 5-7

Table 5-8

Table 5-9

Table 5-10

Table 5-11

Table 5-12

Table 5-13

Table 5-14

Table 5-15

Table 5-16

Table 5-17

Table 5-18

Table 5-19

Table 5-20

Table 5-21

Table 5-22

Table 5-23

Table 5-24

Table 5-25

Table 5-26

Table 5-27

Table 5-28

Table 5-29

Table 5-30

Figures and Tables

ms macros that cause a break I 5-4

Title macro I 5-6

Author macros I 5-7

Abstract macros I 5-7

Paper styles macros· I 5-8

Chapter title macro I 5-9

UNIX trademark macro I 5-9

Multicolumn macros I 5-10

Point size and vertical spacing registers I 5-11

Top and bottom margin registers I 5-11

Line length register I 5-12

Page offset register I 5-12

Tab setting macro I 5-13

Font changing macros I 5-14

String point size changing macros I 5-15

Date changing macro I 5-15

Date removal macro I 5-15

Standard paragraph macros I 5-16

Left-block paragraph macros I 5-17

Indented paragraph macros I 5-18

Indented paragraph registers I 5-18

Hanging paragraph macro I 5-19

Quote paragraph macro I 5-19

Paragraph spacing register I 5-19

Numbered headings macros I 5-20

Unnumbered headings macros I 5-21

Standard header macros I 5-22

Standard footer macros I 5-22

Customized header and footer macros I 5-23

Printing header/footer on first page macro I 5-24

·-- - ·--------------

�

Drawing boxes I 7-4
Changing line thickness I 7-5

Setting a new tab character I 7-5

Using mathematical equations in tables I 7-5

Using tbl with other AIUX preprocessors I 7-6

Aligning columns: Keyletters I 7-6
Understanding numeric columns I 7-7

How tbl reads keyletter instructions I 7-8
Fine-tuning keyletter specifications I 7-9

Drawing horizontal lines I 7-9

Drawing vertical lines I 7-10

Setting column spacing I 7-10

Setting vertical spacing I 7-10

Setting vertical spanning I 7-1 1

Setting column width I 7-11

Setting equal-width columns I 7-11

Setting staggered columns I 7-1 1

Changing fonts I 7-12

Changing point sizes I 7-12

Using zero-width items I 7-12

Using default column spacing I 7-12

Refining formats I 7-13
Inserting troff commands in tables I 7-13

Setting up text blocks for multiline entries I 7-13

Drawing lines I 7-14

Drawing full-width horizontal lines I 7-14

Drawing single-column-width lines I 7-15

Repeating characters I 7-15

Using vertical spanning I 7-15

Producing multipage tables with repeated headings I 7-16

Adding new tbl format instructions in the text I 7-17

tbl restrictions I 7-18

Examples of tbl input and output I 7-19

Contents xvii

Table 5-31 Setting title length register I 5-25

Table 5-32 Static-keeps macros I 5-25

Table 5-33 Floating-keeps macros I 5-26

Table 5-34 Right -shift macros I 5-26

Table 5-35 Standard display macro I 5-27

Table 5-36 Indented display macro I 5-28

Table 5-37 Left-adjusted display macro I 5-28

Table 5-38 Centered display macro I 5-28

Table 5-39 Block display macro I 5-29

Table 5-40 Display distance macro I 5-29

Table 5-41 Table macros I 5-30

Table 5-42 Equations macros I 5-31

Table 5-43 Begin and end footnote macros I 5-32

Table 5-44 Footnote format register I 5-33

Table 5-45 Footnote indent register I 5-33

Table 5-46 Footnote length register I 5-33

Table 5-47 Reference macros I 5-34

Table 5-48 Index format macros I 5-36

Table 5-49 Index print macros I 5-36

Table 5-50 Table of contents print macro I 5-36

Table 5-51 Boxed word macros I 5-37

Table 5-52 Boxed block of text macros I 5-37

Table 5-53 ms macro summary I 5-40

Table 5-54 Number register summary I 5-43

Table 5-55 ms string summary I 5-45

Chapter 6 me Macros I 6-1
Table 6-1

Table 6-2

Table 6-3

Table 6-4

Title pages macro I 6-3

me chapter titles macros I 6-4
Thesis format macro I 6-4
Multiple column macros I 6-5

Figures and Tables

8 eqn Equations I 8-1
What is eqn? I 8-2

Using eqn I 8-2
Understanding command-line syntax I 8-2

Using eqn with other A/UX preprocessors I 8-3

Using Greek letters and mathematical symbols I 8-3
Using additional symbols I 8-7

Using /usr/pub/eqnchar I 8-8
Using command delimiters I 8-8

Using displayed equations I 8-8

Using inline equations I 8-10
Defming equations I 8-11

Specifying equations I 8-12
How spaces are interpreted during input I 8-13

Using special characters to force output spacing I 8-13

Using quotation marks I 8-14

Combining items with braces I 8-15

Using equation labels I 8-15

Entering equations I 8-16
Subscripts and superscripts I 8-16

Fractions I 8-17

Square roots I 8-18

Items with limits I 8-18

Diacritical marks I 8-19

Oversized brackets I 8-20

Piling objects I 8-21

Matrixes I 8-22

Aligning equations I 8-23
Controlling local motions I 8-24

Changing the size and shape of fonts I 8-24
Making local changes I 8-25

Making global changes I 8-26

Understanding precedence rules I 8-27

xviii Contents

Table 6-5 Point size and vertical spacing registers I 6-6

Table 6-6 Font changing macros I 6-8

Table 6-7 String point size changing macro I 6-8

Table 6-8 Standard paragraph macro I 6-9

Table 6-9 Left-block paragraph macro I 6-9

Table 6-10 Indented paragraph macros I 6-10

Table 6-11 Indented paragraph register I 6-10

Table 6-12 Numbered headings macros I 6-12

Table 6-13 Unnumbered headings macro I 6-12

Table 6-14 Static keeps macros I 6-13

Table 6-15 Floating keeps macros I 6-13

Table 6-16 Centering macros I 6-14

Table 6-17 Major quotes macros I 6-15

Table 6-18 Standard lists macros I 6-15

Table 6-19 Custom lists macros I 6-16

Table 6-20 Begin and end footnote macros I 6-16

Table 6-21 Index format macros I 6-17 -----------

Table 6-22 Index print macro I 6-17

Table 6-23 Boxed word macro I 6-18

Table 6-24 me macro summary I 6-20

Table 6-25 Number register summary I 6-22

Table 6-26 String summary I 6-22

Chapter 7 tbl Tables I 7-l

Figure 7-1 Table using the expand option I 7-19

Figure 7-2 Table using the allbox and center options I 7-20

Figure 7-3 Table using the vertical bar keyletter feature I 7-21

Figure 7-4 Table using horizontal lines in place of keyletters I 7-22 -----------

Figure 7-5 Table using additional command lines I 7-23

Figure 7-6 Table using text blocks I 7-24
Figure 7-7 Table using eqn delimiters I 7-25

:xxviii Figures and Tables

Figure 7-8

Figure 7-9

Figure 7-10

Table 7-1

Table 7-2

Table 7-3

Table using horizontal lines in place of data I 7-26

Table showing the versatility of the tbl program I 7-27

Table showing font changes I 7-28

Allowable global options I 7-4

Keyletter descriptions I 7-7

Numeric column alignment I 7-7

Chapter 8 eqn Equations I 8-1
Table 8-1

Table 8-2

Table 8-3

Standard mathematical characters I 8-5

Greek alphabet I 8-6

Additional character set I 8-7

Chapter 9 pic Line Drawings I 9-1
Figure 9-1

Figure 9-2

Figure 9-3

Figure 9-4

Figure 9-5

Figure 9-6

Figure 9-7

Figure 9-8

Figure 9-9

Table 9-1

Table 9-2

Table 9-3

pic primitive objects I 9-6

Space pig I 9-32

Source code for "space pig" I 9-33

Sine and cosine curves I 9-34

Source code for "sine and cosine curves" I 9-34

File-system diagram I 9-35

Source code for "ftle-system diagram" I 9-35

Geometric shape I 9-37

Source code for "geometric shape" I 9-37

Primitive object attributes I 9-8

Primitive object variables I 9-10

Mathematical functions I 9-29

Figures and Tables

Chapter 10 grap Graphs I 10-1

Figure 10-1 A simple graph I 10-3

Figure 10-2 A more complicated graph I 10-4

Figure 10-3 The default graph I 10-7

Figure 10-4 A better graph I 10-7 -�

Figure 10-5 A dotted frame I 10-9

Figure 10-6 Adding grid lines I 10-11

Figure 10-7 Plotting a simple curve I 10-15

Figure 10-8 Shading part of a curve I 10-16

Figure 10-9 Logarithmic and exponential functions I 10-18

Figure 10-10 Plotting a polar equation I 10-20

Figure 10-11 A second polar equation I 10-21

Figure 10-12 A grap circle I 10-22

Figure 10-13 Equally scaled axes I 10-24

Figure 10-14 Equally scaled axes without coord I 10-25

Figure 10-15 Sample C program to generate data I 10-26

Figure 10-16 Plotting a curve from data points I 10-27

Figures and Tables

About This Guide

Welcome to A!UX Text-Processing Tools. This book describes the commands you need to
format text, tables, equations, and graphics. You can also use the tutorial in Chapter 2 if
you need a quick brush-up on t ro f f text processing. The companion book, A!UX Text
Editing Tools, presents detailed information on the five text editors provided by A/UX,
and describes how to use the editors to create and edit text.

What are text-processing tools?

In A/UX you can use the UNIX® text-processing tools you're already familiar with: the
formatters t roff and nroff; the macro packages, mm, me, and rns; and a variety of
preprocessors such as pic, eqn, grap, and tbl. Using these text-processing tools, you
can design documents to suit your specific needs.

Who should use this book

This document is not geared toward the beginner but toward someone who is already
familiar with using macro packages and is interested in altering or writing macros in
A/UX. It is also a useful reference for nroff and t roff commands that are not
available in existing macro packages.

How to use this book

This manual is meant to be used as a reference guide, but it also includes a tutorial. If
your text-processing skills are rusty, you can work through the lessons in Chapter 2. You
can use the table of contents to fmd the section that covers your general need and can
use the index when you know exactly what command or process you want to refer to. �

For example, if you're formatting a paragraph using ms macros and you want to know
what options are available, you could look in the table of contents for Chapter 5, "ms

Macros," and fmd the section "Creating Paragraphs." However, if you know you want to
create an indented paragraph, but you don't know what command to use, you would
refer to "paragraphs, indenting" in the index.

A/UX Text-Processing Tools contains the following chapters:

• Chapter 1, "Introduction to A/UX Text Processing," gives a brief overview of the A/UX
text-processing tools, explains page layout concepts, describes fonts, and introduces
you to other formatting features.

• Chapter 2, "troff/mm Tutorial," guides you through three lessons: You'll produce a
formatted letter, produce a letterhead, and modify the appearance of a page.

• Chapter 3, "nroff/t roff Formatters," tells you how to use the powerful capabilities
of nroff and t roff formatters in A/UX.

• Chapter 4, "mm Macros," is a guide and reference for users of the memorandum
macros.

• Chapter 5, "ms Macros," is a guide and reference for users of the ms macros, designed
for writing general-purpose documents.

• Chapter 6, "me Macros," is a guide and reference for users of the me macros, designed
for writing thesis papers at the University of California at Berkeley.

• Chapter 7, "tbl Tables," explains how tbl works and how you can use it to create
tables that meet your specific needs.

• Chapter 8, "eqn Equations," explains how to use eqn to create typeset-quality
mathematical text.

• Chapter 9, "pic Line Drawings," shows you how to create simple line drawings using
the pic preprocessor.

• Chapter 10, "grap Graphics," is a guide to a graph-drawing program you can use to
create charts and graphs.

Preface

• Chapter 11, "Related Tools," is a brief guide to additional text-processing tools.

• The glossary contains definitions of useful text-processing terms.

Conventions used in this guide

A/UX guides follow speciftc conventions. For example, words that require special
emphasis appear in speciftc fonts or font styles. The following sections describe the
conventions used in all A/UX guides.

Keys and key combinations

Certain keys on the keyboard have special names. These modifter and character keys,
often used in combination with other keys, perform various functions. In this guide, the
names of these keys are in Initial Capital letters followed by SMALL CAPITAL letters.

The key names are

CAPS LOCK DOWN ARROW (J,)
COMMAND (88) ENTER

CONTROL

DELETE

ESCAPE

LEFT ARROW (�)

OPTION SPACE BAR

RETURN TAB

RIGHT ARROW (�) UP ARROW (i)
SHIFT

Sometimes you will see two or more names joined by hyphens. The hyphens indicate
that you use two or more keys together to perform a speciftc function. For example,

Press COMMAND-K

means "Hold down the COMMAND key and then press the K key."

Terminology

In A/UX guides, a certain term can represent a speciftc set of actions. For example, the
word enter indicates that you type a series of characters on the command line and press
the RETURN key. The instruction

Enter l s

means "Type l s and press the RiruRN key."

Preface

Here is a list of common terms and the corresponding actions you take.

Term

Click

Drag

Choose

Select

Type

Enter

Action

Press and then immediately release the mouse button.

Position the mouse pointer, press and hold down the mouse button
while moving the mouse, and then release the mouse button.

Activate a command in a menu. To choose a command from a pull
down menu, position the pointer on the menu title and hold down the
mouse button. While holding down the mouse button, drag down
through the menu until the command you want is highlighted. Then
release the mouse button.

Highlight a selectable object by positioning the mouse pointer on the
object and clicking.

Type a series of characters without pressing the RE11JRN key.

Type the series of characters indicated and press the RE11JRN key.

The courier font

Throughout A/UX guides, words that appear on the screen or that you must type exactly
as shown are in the Courier font.

For example, suppose you see this instruction:

Type date on the command line and press RETIJRN.

The word date is in the courier font to indicate that you must type it.

Suppose you then read this explanation:

After you press RETIJRN, information such as this appears on the screen:

Tues Oct 1 7 1 7 : 0 4 : 0 0 PDT 1 9 8 9

In this case, courier is used to represent the text that appears on the screen.
All A/UX manual page names are also shown in the courier font. For example, the

entry l s(l) indicates that ls is the name of a manual page in an A/UX reference manual.
See "Manual Page Reference Notation" later in this preface for more information on the
A/UX command reference manuals.

Preface

Font styles

Italics are used to indicate that a word or set of words is a placeholder for part of a
command. For example,

cat filename

tells you that filename is a placeholder for the name of a ftle you want to display. For
example, if you wanted to display the contents of a file named E 1 vi s, you would type
the word Elvis in place of filename. In other words, you would enter

cat Elvi s

New terms appear in boldface where they are defmed. Boldface is also used for steps
in a series of instructions.

A!UX command syntax

A/UX commands follow a specific command syntax. A typical A/UX command gives the
command name first, followed by options and arguments. For example, here is the syntax
for the we command:

we [-1] [-w] [-c] [filename] ...

In this example, we is the command, - 1 , -w, and-care options and filename is an
argument. Brackets ([]) enclose elements that are not necessary for the command to
execute. The ellipsis (...) indicates that you can specify more than one argument. Brackets
and ellipses are not to be typed. Also, note that each command element is separated
from the next element by a space.

The following table gives more information about the elements of an A/UX
command.

Preface

Element

command

option

argument

[1

Description

The command name.

A character or group of characters that modifies the command. Most
options have the form -option, where option is a letter representing an
option. Most commands have one or more options.

A modification or specification of a command, usually a filename or
symbols representing one or more filenames.

Brackets used to enclose an optional item-that is, an item that .is not
essential for execution of the command.

Ellipses are used to indicate that you can enter more than one
argument.

For example, the we command is used to count lines, words, and characters in a file.
Thus, you can enter

we -w P riscilla

In this command line, -w is the option that instructs the command to count all o f the
words in the file, and the argument P ri scilla is the file to be searched.

Manual page reference notation

The AIUX Command Reference, the AIUX Programmer's Reference, the AIUX System
Administrator's Reference, the X11 Command Reference for AIUX, and the X11
Programmer's Reference for AIUX contain descriptions of commands, subroutines, and
other related information. Such descriptions are known as manual pages (often
shortened to man pages). Manual pages are organized within these references by section
numbers. The standard A/UX cross-reference notation is

command (section)

where command is the name of the command, file, or other facility; and section is the
number of the section in which the item resides.

• Items followed by section numbers (1M) and (8) are described in the AIUX System
Administrator's Reference. -"

• Items followed by section numbers (1) and (6) are described in the AIUX Command
Reference.

Preface

• Items followed by section numbers (2), (3), (4), and (5) are described in
the AIUX Programmer's Reference.

• Items followed by section number (lX) are described in the X11 Command Reference
forA!UX.

• Items followed by section numbers (3X) and (3Xt) are described in the X11
Programmer's Reference for AIUX.

For example

cat (1)

refers to the command cat , which is described in Section 1 of the A!UX Command
Reference.

You can display manual pages on the screen by using the man command. For
example, you could enter the command

man cat

to display the manual page for the cat command, including its description, syntax,
options, and other pertinent information. To exit a manual page, press the SPACE BAR
until you see a command prompt, or type q at any time to return immediately to your
command prompt.

For more infonnation

To fmd out where you need to go for more information about how to use A/UX, see
Road Map to A!UX. This guide contains descriptions of each A/UX guide and ordering
information for all the guides in the A/UX documentation suite.

Preface xxxvii

1 Introduction to A/UX Text Processing

What are the NUX text-processing tools? I 1-2

Page layout concepts I 1-11

Font descriptions I 1-20

Other formatting features I 1-26

Document printing I 1-32

The NUX operating system provides a large number of tools for editing, formatting, and

printing text and graphics. You can use these tools to prepare almost any kind or size of

document, from newsletters to books. This chapter provides a conceptual overview of

NUX text processing. It describes what NUX text-processing tools are, explains layout

and font concepts, and gives a brief introduction to other formatting features that you

might find useful. It also contains a short section on the printing process.

What are the A/UX text-processing tools?

To understand the A/UX text-processing tools, it is helpful to understand the process

involved in producing a final printed document. The sequence typically looks something
like that in Figure 1-1.

format
text file

Figure 1-1 Producing a printed document

It is a basic assumption of the A/UX text -processing system that these tasks are

separable from one another and ought to be handled by different programs. First, you

use one of the standard A/UX editors to enter and edit your text. The editor doesn't

format or print the file; it merely stores your text, exactly as you enter it. To arrange the

text into pages and paragraphs, you use a formatting program (usually t roff or nroff �

in conjunction with a macro package). These programs use instructions you have entered

in the text file, which indicate how you want the final output to look. Once the text is

edited and formatted, you may print the document by directing the formatted output to a

printer.

troff and nroff for text

The A/UX text-processing system is based on a pair of programs called t roff and
nroff. t roff formats its input for printing on any high-resolution typesetter or laser

printer that is capable of printing multiple fonts and type sizes. nroff formats its input

for printing on less-capable devices such as daisy wheel and dot matrix printers or your

terminal screen. t roff and nroff are for the most part compatible with each other, so

that a single input file may be processed with either formatting program. nroff simply

ignores any t roff commands that the intended output device cannot support. From
now on in this chapter, any reference to t roff means either nroff or t roff.

1-2 Chapter 1 Introduction to A/UX Text Processing

As mentioned above, t roff searches through your file for commands. Input consists

of text, which will print, and commands, which set parameters or call out special

characters. These are troff commands. There are two ways to call out a command:

• By beginning a line with a control character (period or single quotation) optionally

followed by a space or tab, followed by a one- or two-character command name, and

then followed by a space or a new line. These are sometimes called dot commands.
The single quotation suppresses the break function (the forced output of a partially

filled line) caused by certain requests. Unrecognized command names are ignored.

• By typing an escape character(\), followed by a command name anywhere in a

line. These are sometimes called "escape sequences."

The following are examples of troff dot commands:

. sp 4

. ft B

These instruct t roff to leave four blank lines and switch into the bold font.

The following is an example of a troff escape sequence:

The last word on this line is \ s20big.\ s10

This command causes t roff to produce the following output:

The last word on this line is big.
The sequence \ s20 instructs t roff to switch to point size 20. The same effect could be

achieved using troff dot commands, as follows:

The last word on this l ine is
. ps 20
big .
. ps 10

What are the A/UX text -processing tools? 1-3

The mm macro package for text

t roff and nroff provide facilities for controlling virtually all features affecting the

appearance of the final printed page. These programs do so, however, at a relatively low

level; for instance, neither program provides automatic margins, page headers and

footers, or page numbering. To obtain these features, as well as countless others you will
probably need, you must use a macro package in conjunction with t roff. A macro is a
collection of t roff commands grouped into a useful unit, and a macro package is a
collection of macros grouped into a useful unit.

The standard A/UX macro package is called mm . (For a brief discussion of other

macro packages, see "Other Macro Packages" later in this chapter.) The mm package
provides two kinds of additions to basic t roff capabilities:

• a large number of dot commands that are not included in the t roff command set

but are necessary for most document processing

• default parameter settings governing margins, page length, paragraph indent levels,

and so forth

The mm dot commands are almost universally uppercase, to distinguish them from
t roff dot commands, which are all lowercase. For example, you can use

. P

to indicate the beginning of a paragraph. You use these additional dot commands exactly

like t roff dot commands. However, when you run the file through the formatting

program, t roff won't understand these macros unless you get it to read their

definitions first. You can do this by invoking t roff with the -mm argument:

t roff -mm file

Thus, the argument to troff gives you access to the mm macro package. You can get

access to other macro packages in the same way.

tbl for tables

It's easy to produce tables in a document by using the program tbl. Figure 1-2 shows an

example of tbl output.

1-4 Chapter 1 Introduction to A/UX Text Processing

Text processing programs
Program Function
eqn format equations
grap format graphs
lp printer spooler
nroff low-quality output
pic format pictures
tbl format tables
troff high-quality output
vi enter/edit text

Figure 1-2 Example of tbl output

The tbl program, unlike the mm package, operates as a preprocessor to t ro f f.
tbl processes the input file containing table specifications before the file is processed by
t roff, as follows:

tbl fi l e I t roff -mm

This is because tbl translates the table specifications into t roff commands. tbl recog
nizes these specifications when they occur between lines beginning with one of the commands
. TS and . TE. For instance, the input for the table in Figure 1-2 looks like this in the text file:

.TS
box center tab (:) ;
c s
c c
lf7 1 .

\ f 6Text P roce ssing P rograms \ fR .
sp . 5

eqn : format equat ions
grap : format graphs
lp : printer spooler
nroff : low-quality output
pic : format pictures
tbl : format tables
t roff : high-quality output
vi : ente r/edit text
.TE

For a complete discussion of the tbl program, see Chapter 7, "tbl Tables. "

What are the A!UX text -processing tools? 1-5

eqn for formatting equations

The A/UX text-processing system includes another t roff preprocessor, eqn, that
allows you to include mathematical equations and formulas in documents. eqn searches
for equation specifications contained within . EQ and .EN pairs. For example, the input

. EQ �

x + y = 4 sup 2
. EN

yields the output
x+-y=42
And the input

. EQ

x = { -b +- sqrt { b sup 2 -4ac } } ove r 2a
. EN

yields the output

x= -b�
2a

Like tbl, eqn is a preprocessor to t roff . Its general command line looks like

eqn file I t roff -mm

See Chapter 8, "eqn Equations," for further details.

p i c for pictures
You may also produce simple line drawings in a document by using the pic program,
another t ro f f preprocessor. You specify pictures by including their descriptions within
.P s and . P E pairs. For example, if you include the following description in the input file

. P S
box ; arrow ; e l lipse
. PE

and run t roff with the pic preprocessor

pic file I t roff -mm . . .

you get the picture shown in Figure 1-3.

1-6 Chapter 1 Introduction to A/UX Text Processing

Figure 1-3 A simple picture

You can draw more complicated (and useful) drawings as well, such as those in
Figures 1-4 and 1-5. The descriptions of these pictures are much more complicated than
the simple description of Figure 1-3, but a mildly experienced pic user should have no
trouble producing such diagrams. See Chapter 9, "pic Line Drawings," for a complete
discussion of the pic language.

(:;\
�

(:;\
�

(:;\
�

Figure 1-4 A more complicated picture

What are the A/UX text -processing tools? . 1-7

Ethernet

Figure 1-5 An even more complicated picture

grap for graphs

In addition to tables, equations, and simple line drawings, it is also possible to include
graphs in a document formatted with t roff. This is accomplished by using the grap
preprocessor. Figure 1-6 is an example of grap output.

1-8 Chapter 1 Introduction to A/UX Text Processing

Text
processing
programs

Figure 1-6 A graph

sed

vi

grap

[pic

tbl

e_g_n

negn

troff

nroff

psdit

I
0

l_E_

I

J

I

I

I

I

I
50000

I
I

I

I
100000

Program size (bytes)

J

I

Like the other preprocessors, grap looks for a specification of how the graph should
look and for the data to be graphed. These are enclosed within . Gl and . G2 pairs, as
follows:

. G l

specification of graph

. G2

grap, however, is a preprocessor for pic; this means that grap translates the
specification of the graph into pic code, not directly into t roff code. So, to get
graphical output, your command line must look something like this one:

grap fik I pic I troff -mm

Figure 1-7 shows another example of grap's capabilities. It charts San Francisco 49er
wide receiver Jerry Rice's total receiving yardage per game for each of the sixteen regular
season NFL football games in 1986. The height of the little football indicates the yardage,
and the number inside the football indicates how many catches Rice made that day.
Finally, the number of little goal posts under the football indicates how many
touchdowns Rice scored in the game.

What are the A/UX text -processing tools? 1-9

0 2 3 4 5 6 7 8 9 10 1 1 12 13 14 1 5 1 6

Jerry Rice's 1 986 Season
Figure 1-7 A more complicated graph

For further information, see Chapter 10, "grap Graphs."

Other macro packages

In addition to the rnm macro package, there are other macro packages that you may
encounter on A/UX systems. Of particular note is the ms macro package (see Chapter 5,
"ms Macros"). The ms program provides most of the same functions provided by the rnm
package, but with different syntax. For instance, a left -adjusted paragraph is indicated in
ms with the macro

. LP

and in rnm it is indicated with the macro

. P

For the most part, the page- and font-description concepts underlying the rnm macros
(described in the following two sections, "Page Layout Concepts" and "Font

1-10 Chapter 1 Introduction to A/UX Text Processing

Descriptions") will carry over into any other common macro package. Some mrn macros,
however, have no simple equivalent in other packages.

Another very common macro package is the man macro package. This collection of
macros is intended for the special purpose of formatting manual pages as presented in
A!UX Command Reference, A!UX Programmer's Reference, and AIUX System
Administrator's Reference. See man(5) in A!UX Programmer's Reference for further
details.

Page layout concepts

To get the most out of the A/UX text-processing programs, you must have some grasp of
the terms used to describe page layout. This section introduces you to the most important
of these.

If you use the mrn macro package in conjunction with t roff, the page is divided into
a number of separate regions, some of which you can print on and some of which you
cannot. The parts of a page are illustrated in Figure 1-8.

Generally, you cannot print on the entire physical page (typically a sheet of paper);
the mm macros automatically generate margins on all four margins of the paper. You can,
however, increase or reduce any of these margins independently of the others. In
addition, the mrn package automatically provides headers and footers Clines of text that
are printed on the top and bottom, respectively, of every page). For more detailed
discussion of these points, see "Margins" and "Headers and Footers" later in this chapter.

Page layout concepts 1-11

Entire physical page
�

Top margin

r--r-----:Left margin

--L Right margin

!4----Maximum line length

Bottom margin

Printable portion of page
Figure 1-8 Parts of a page

Principal units of measurement

Many t roff and mrn commands require a unit of measure as part of the command. For
instance, you must specify the line length as some number of inches or centimeters, and
so on. t roff and mrn understand both inches and centimeters, as well as a number of
other units that are more familiar to printers. (See Table 1-1 .)

1-12 Chapter 1 Introduction to A/UX Text Processing

Table 1-1 Principal units of measurement

Unit Abbreviation Equivalence

Inch None

Centimeter c 2.54c = 1i

Pica p 6P = 1i

Point p 72p = li

Em m Width of "m" in current font

En n Width of "n" in current font

Of these units, only picas and points are likely to be unfamiliar to you. Points are
used mostly to specify sizes of type (also called "point sizes"), and picas are often used
for specifying line lengths and page lengths. For the most part, you can avoid using picas,
but it is difficult to specify type sizes in any unit other than points.

Line length

The default line length using troff (with or without the rnm macro package) is 6 inches.
The maximum length of a line of text (or graphics) is the widest printable portion of the
page, which is dependent on the capabilities of the printer you are using. You may
specify the output line length with the t roff command . 11 followed by some
measurement; for example,

. 1 1 7 i

gives you a line length of 7 inches. There is no single rnm command to accomplish the
same thing. There is a number register that controls the length of the line and the page
header and footer. You can set this register as follows:

. nr W 7 i

For more information, see "Number Registers" later in this chapter.

Page layout concepts 1-13

Page length

The length of the physical page depends on the printer you are using; usually you will be
working with one of the standard page sizes (for example, 8.5 by 11 inches, or A4). By
default, the rom package assumes an 11-inch page, but you can alter the page length by
setting the L number register: �

. nr L 9 i

The equivalent t roff command is

. pl 9 i

Note that this page length includes the top and bottom (vertical) margins. You can
increase the amount of space taken by these margins with the . VM macro:

. VM 2 5

This adds two vertical spaces to the top margin and five vertical spaces to the bottom
margin.

Paragraph types

You can specify more than one type of paragraph in a document. The rom macro package
provides one macro, .P , for specifying the beginning of a paragraph (there is usually no
need to specify the end of a paragraph). The argument you add to this macro determines
the type of the paragraph. For instance, the command

. P 0

provides a left-adjusted paragraph, and the command

. P 1

provides a paragraph with the first line indented from the margin.

If there is no argument to the . P command, rom provides whatever you have selected
as the default paragraph type. You select the default type with the command

. nr Pt n

where the argument n is as shown in Table 1-2.

1-14 Chapter 1 Introduction to A/UX Text Processing

Table 1-2 Argument n defaults

Argument

0

1

2

Margins

Resulting default

Left -adjusted

Indented

Indented except after headings, lists, or displays

There are two horizontal margins, one left and one right, on every page. The left margin
is also known as the page offset, and you can change it using the t roff command .po.
The default is about 1 inch, but you can increase or decrease it.

The following command would be appropriate to center a 6-inch line of text on a
piece of paper 8.5 inches wide:

. po 1 . 2 5 i

You can change the right margin by changing the line length or the page offset.

Adjusted and filled text

By default, t roff both fills and adjusts the text it formats. To fill text is to place as much
text on a line as will fit, regardless of how the text occurs in the input file. One nice
feature of t roff is that it fills automatically. This means you can type your text into a file
in whatever way is easiest for you to edit subsequently (for instance, beginning all
sentences on a new line). troff may have to break a word in the middle to achieve a
nice fit, but it will usually do this hyphenation in an intelligent manner.

Page layout concepts 1-15

You can control whether or not filling occurs with the troff commands . nf and
• f i . For instance, the input

. nf
This text should not be fil led .
So the output
wil l be arranged just like
the input .

produces the following output:

This text should not be filled.
So the output
will be arranged just like
the input.

You can tum filling back on with the . f i command.
To adjust text is to place small amounts of space between words in a filled line so

that the line of output text is exactly the current line length. troff automatically adjusts
text, but you can tum adjustment off with the . na command. You can tum adjustment
back on with the . na command.

Indentation

Occasionally you need to indent some text to set it off from the surrounding text. You
can do so with the t roff command . in. For instance, the input

. P

This line is not indented at all .
. in . S i
This line is indented • 5 inch .
. in l i
This line is indented 1 inch .
. in 0
This l ine is not indented .

1-16 Chapter 1 Introduction to AIUX Text Processing

produces the following output:

This line is not indented at all.
This line is indented .S inch.

This line is indented 1 inch.
This line is not indented.

Notice that you can supply both absolute and relative arguments here, and that an
argument of zero (0) returns to the current left margin. The indent persists until you reset
it, or until it is reset automatically.

Headers and footers

A header is a line of text that is printed on the top of every page. Similarly, a footer is a
line of text that is printed on the bottom of every page. (See Figure 1-8 for the locations of
these lines.) Each of these lines is further divided into a left part, a center part, and a right
part. You can specify any of these six items independently of the others. Further, you can
specify different headers and footers for odd and even pages.

There are six mm macros affecting headers and footers:

.PH page header (all pages)

odd header .i . .OH macro

even header .i . . EH macro (mm)

.OH

.EH

.PF

.OF

.EF

page footer (all pages) .i .. PF macro (mm)

odd footer .i. .OF macro (mm)

even footer .i . . EF macro (mm)

Each of these macros takes the same kind of argument, a string surrounded by double
quotation marks ("), with each of the three parts of the header or footer. For instance, we
might specify a page header as follows:

. PH " ' Chapter 8 ' % ' The Bill of Right s ' "

This header will appear on all pages. The left header will read "Chapter 8," the center
header will be the page number, and the right header will read "The Bill of Rights. "

Page layout concepts 1-17

Note that rnm interprets the percent symbol specially in a header or footer
specification; each time the header or footer is printed, the percent symbol is replaced by
the current page number.

If you want one of the three parts of the header or footer to be empty, just leave the
appropriate field in the argument string empty. For instance, the following command will
cause the page number to be printed at the top of each page:

. PH " ' ' % ' ' "

If you need an apostrophe in the header or footer, you can change the delimiting
character to anything you like, and rnm will detect the change automatically. For instance,
you might want the following header specification:

. PH " @ Chapter 7 @ %@Bill ' s Alibi@ "

You may specify a separate header or footer for odd and even pages. The following
pair represents a very common way to handle headers:

. OH " @Chapter 7 @ %@Bill ' s Alibi@ "

. EH " @Bill ' s Alibi@ % @Chapter 7 @ "

Centered text

You can center a line of text on the page by using the troff dot command . ce. For
example,

. ce
Thi s l ine is centered .

produces

This line is centered.

If you provide a numeric argument, the corresponding number of lines will be
centered. For example,

. ce 3

This is the first centered l ine .
This is the second centered line .
Thi s is the third and last cente red line .

produces

1-18 Chapter 1 Introduction to A/UX Text Processing

- - - - --------�- ---

This is the first centered line.
This is the second centered line.

This is the third and last centered line.

Note that filling and adjusting are turned off for lines that are centered.

Footnotes

You can include footnotes in a document by enclosing the text to be included in the
footnote between . F s and . FE pairs. l For example, the input

. FS

Thi s is the text of a footnote .
It is smaller than the main text
and placed at the bottom of the page .
. FE

produces the footnote that appears at the bottom of this page. If you need consecutively
numbered footnotes, you should include the string \ *F at the appropriate spot in the
text. For further details about footnotes and footnote formats, see Chapter 4, "mm Macros. "

Heading levels

In addition to the grouping provided by the paragraph macros, mm provides several
macros for grouping paragraphs into sections and for generating a table of contents
listing sections and subsections.

The primary macro for grouping paragraphs into sections is . H, for "heading level. " A
typical use of this macro might look like this:

. H 1 " The Clues to the Murder"
There was a broken window,
and the maid heard a loud scream
short ly before midnight .
In addit ion ,

1This is the text of a footnote. It is smaller than the main text and placed at the bottom of the

page.

Page layout concepts 1-19

The 1 indicates that a first-level heading is to be generated; mm automatically numbers
these headings. If this is the fourth such macro in our text file, the output looks like this:

4. The Clues to the Murder
There was a broken window, and the maid heard a loud
scream shortly before midnight. In addition,

There may also be subsections within first-level sections. These are indicated with a
second-level heading:

. H 2 "An Invest igat ion of the Glass Shards "

The mm package allows for up to seven levels of headings (rarely are this many
needed, however). In addition, there is a macro, . HU, for generating unnumbered
headings:

. HU "Appendix A : Summary of Clue s "

Many features of these heading-level macros, such as the point size and font for each
heading level and the amount of spacing from surrounding text, can be adjusted to taste.
See Chapter 4, "mm Macros," for a complete list of memorandum macros.

Font descriptions

t roff is able to print in any font that is supported by the printer being used. nroff can
generally print in only one font, but, depending upon the capabilities of the printer you
are using, nroff may be able to simulate boldface by overstriking and italics by
underlining.

Type families: Changing to bold and italic

You can achieve a great deal of clarity in a document by selecting fonts that are
appropriate for your purposes. A font is a collection of letters and characters unified by a �

distinctive pattern or "look." What fonts are available to you is dependent on how t roff
has been configured, but typically at least the following three fonts are available:

1-20 Chapter 1 Introduction to A/UX Text Processing

Times Roman

Times Roman italic

Times Roman bold

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHUKLMNOPQRSTUVWXYZ

By default, text is printed in "plain" Times Roman, unless you change fonts. You may
change fonts with either a dot command (. ft) or an inline escape sequence (\ f),
followed by the name of the font desired. The following two lines give identical output:

Thi s is in Times Roman ,
. ft B
and this is Time s Roman· bold .

This is in Times Roman ,
\ fBand this is Time s Roman bold .

The output in either case is

This is in Times Roman, and this is Times Roman bold.

You can also use mm macros (see Table 1-3).

Table 1-3 Using mm macros to change fonts to bold and italic

mm macro Effect

. B Bold

. I Italics

. R Roman

Thus, the example above could be further rewritten as

This is in Time s Roman ,
. B
and this i s Times Roman bold .

Font descriptions 1-21

You can also replace font names with numbers. For example, instead of \ fB, you
may write \ f 3 . Many people prefer the numbers because it is easier to pick out the
escape sequence. Which numbers correspond to which fonts depends on how your
printer and software have been configured. For example, systems using the TranScript
t ro ff-to-PostScript® translator driving the Apple LaserWriter printer have the
correspondence shown in Table 1-4.

Table 1-4 Using numbers to specify fonts

Number Font

1 Times Roman

2 Times Italic

3 Times Bold
4 Times Bold Italic
5 Helvetica
6 Helvetica Bold
7 Courier

8 Courier Bold

Point size

t ro f f can work with virtually any text size that the printer supports. The program is
usually configured to allow you access to only a portion of those actually printable. Point
sizes normally range approximately from 2 point to 80 point. (Point size 2 is so small that
it's unreadable.) The following shows point size 80:

80

1-22 Chapter 1 Introduction to A/UX Text Processing

The default type size is 10 point. You may change point sizes in a variety of ways.
Usually this is done with the .ps command:

. ps 1 4
Thi s text i s now i n 1 4 point .

This produces

This text is now in 14 point.
You may also use the inline escape sequence \s. The input

Thi s is in 1 0 point , \ s 1 4 and thi s is in 1 4 \ s O .

produces

This is in 10 point, and this is in 14.
Notice that \ s o returns to the previous type size, not size 0.
Type size changes may also be specified relatively. For instance, you may rewrite the

previous example as follows:

Thi s is in 1 0 point , \ s+4and thi s is in 1 4 \ s O .

Vertical spacing

The vertical spacing between two lines of text is the distance from the base of the
characters on one line of text to the base of the characters on the next line. Normally, the
vertical spacing is set to 12 points, which is enough to accommodate a 10-point character
plus a small amount of white space between lines. If you change point sizes, you must
increase or decrease the vertical spacing accordingly. You can change the vertical
spacing with the . vs command:

. ps 2 0

. vs 2 2

A common mistake is to increase the point size without increasing the vertical
spacing. In such a case you usually end up with garbage, for example,

T.�s is 2�1Eoiut. text t a e no a1 TZ-po1n ve 1ca1 spacing.

Font descriptions 1-23

You can set both the point size and the vertical spacing at once with the mm macro
. s . For instance,

. s 2 4 2 6

sets the point size to 24 points and the vertical spacing to 26 points.

Character set

The set of characters that you can print using t ro f f depends on the abilities of the
printer you are using. Generally, a character is accessible to t roff if it is a member of
some font that t roff knows about. A t roff font typically includes the following
characters:

A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
1 2 3 4 5 6 7 8 9 0
& . , : ; " - ! @ # $ o/o "* () - + = { } [] \ I > <

In addition, there may be other fonts known as "special" fonts. Originally these fonts
were used for mathematical symbols not available on the standard Times Roman font, but
a special font can contain any sort of characters or glyphs. A typical mathematical special
font provides the following characters, which include a full Greek alphabet:

A B 8 d E � r 8 I K A M N O IT � P � T Y Q X H Z a � � o e � y 8 t K A � v o n w p cr � u ro x � �
:;t: � C '" V - oo � ¢:::> :J J (A <= V E .. X -, a
+ - oc) � 0 _ C " :J D ..J 3 \f - ::::::

There are two standard ways to get one of these characters to print in a document.
First, you can use a feature of the preprocessor eqn that allows inline equations. In that
case, you would use the eqn name of these symbols. For instance, we have seen that
eqn translates the word into the symbol J (appropriately scaled, of course).

A second way to get access to special font characters is to use their t roff name (see
Table 1-6).

For a complete list, see Chapter 3, "nroff/troff Formatters. "

1-24 Chapter 1 Introduction to A/UX Text Processing

Table 1-5 Accessing a few special font characters

Input Output Name

\(pi + Plus

\(mi Minus

\(mu ¥ Multiplication

\(sr ...,.. Square root + (square root sign) 1-

\(br Box rule

\(ua :;C Up arrow

\(da 0 Down arrow

\(ci 0 Circle

\(!= TJ Not equal

\(is f Integral

Accents

The mm macro package provides the ability to print accent marks over certain characters.
To do this, you need to put the mm name of the accent mark after the letter you want
accented. For example, the input

re \ * ' sume \ * '

produces the word "resume. " The following accents are available:

Input

\ * '

\ * '

\ * ""

\ * -

\ * ,

\ * :

\ * ;

Output

A

Name

grave accent

acute accent

circumflex

tilde

cedilla

umlaut (lowercase)

umlaut (uppercase)

Font descriptions 1-25

Overstriking

The t roff formatter provides one additional way of generating characters that are not
in its basic character set: by overstriking two or more characters. The inline escape
sequence \ o will overstrike whatever characters (up to nine) are enclosed within single
quotation marks. �

The \o sequence centers each character as it overstrikes it. If instead you want the char
acters lined up on their left sides, you could use the \ z escape sequence. This instructs
t ro f f to print the character that follows but not to move to the right after printing it.

Other formatting features

t roff and the mm macro package provide several additional features that are very useful
in document production: displays, automatic list and table of contents generation,
multicolumn output, strings, and number registers.

Displays

Occasionally a certain stretch of text should be kept together on one page. For instance, it
is generally preferred that the information in a table not be split across page breaks. tbl
does not provide the service of preventing bad text breaks, but mm provides a way of
doing it with displays. A display is a block of text that is to be kept on one page.

You can indicate a display by enclosing the relevant text within the pair of macros
. DS and . DE, as follows:

. DS

Thi s text wil l be kept all together .
No heading macros are allowed in a display,
but paragraph macros and lists are al lowed .
By default the text of a di splay is not
filled or adjusted, but you can override
this by providing an argument
to the . DS macro .

• DE

1-26 Chapter 1 Introduction to A/UX Text Processing

If there is not enough space remaining on the page to fit this entire block, t ro f f will
begin a new page so that the block remains together.

Lists

Occasionally you want to provide a list of items. The mrn package provides a number of
macros designed to facilitate printing lists of various kinds. For instance,

. P

The remaining suspect s are
. sp . 5

. BL

. LI
Tim
. L I
Joe
. L I
the but ler
. LI
the maid
. LE

. sp

produces

The remaining suspect s are
• Tim

• Joe

• the butler

• the maid

The macro . BL is a list-initialization macro; it instructs mrn that a bulleted list
follows. The macro . LI indicates the beginning of each list item, and the macro . LE
indicates the end of the list.

Other formatting features 1-27

There are a number of other list-initialization macros:

.AL

.BL

.DL

.ML

.RL

.VL

Numbered or lettered list

Bulleted list

Dashed list

Marked list

Reference list

Variable-item list

As you would expect, the format of the list can be adjusted as needed; see Chapter 4,
"mm Macros," for details.

Tables of contents

mm is able to generate a table of contents for your document by remembering all section
headings and the pages where they occur as it formats the document. To get the table of
contents printed, you must include the following macro at the end of your input file:

. TC

This macro causes mm to print out the accumulated section headings and page
numbers. You may control the appearance of the table by adding arguments to the macro
(see Chapter 4, "mm Macros").

Multicolumn output

By default, t roff outputs the text in one column. You can instruct it to print two
columns with the . 2 c macro.

To return to one column, use the . 1c macro.

1-28 Chapter 1 Introduction to A/UX Text Processing

��- - - ------------ - �-

Strings

A string is a sequence of characters grouped together under a name. The rnrn macro
package provides several predefined strings that you can use. For instance, the string
\ * < DT will be replaced by the current date, as follows:

Today is \ * (DT .

This results in

Today i s September 7 , 1 9 9 0 .

You get access to a string by preceding its name with the sequence \ * < (or, as we
saw above, with the sequence \ * if the name of the string is only one character). In
addition, you may define your own strings with the t roff command . ds. Defining
your own strings might be useful for abbreviating an often-used but lengthy phrase. For
example,

. ds CU P ig Farmers of Ame rica Credit Union

. P
The annual board meet ing of the \ * (CU
was cal led to order at 2 : 1 1 p . m .
Chai rman Curley reported
an unexpected rise

produces

The annual board meeting of the Pig Farmers of
America Credit Union was called to order at 2 :11 p.m.
Chairman Curley reported an unexpected rise

Number registers

t ro f f keeps track of many of the parameters governing the page layout by storing them
in number registers. You may think of a number register as a slot having both a label
(the name of the register) and something inside it (the value of the number register).
Some of these registers are created and manipulated by troff and rnrn themselves, but
you may also define your own number registers.

You can create a number register with the command . nr:

Other formatting features 1-29

. nr YR 8 6
The profit in year 1 9 \n (YR was $ 2 5 0 , 0 0 0 .

In the text, you must precede the number register (here, YR) with \n. The value you
define in the number register then appears in the output:

The profit in year 1986 was $250,000.

A more typical use of the . nr command is to change built-in parameters. For
instance, you can use the command

. nr P i 1 0

to change the paragraph indent to 1 0 ens. See Chapter 4, "rnm Macros," for a complete list
of number registers.

Defining and using macros

If you find yourself repeating the same sequence of troff commands, or almost the
same sequence, you may find it useful to define a macro encapsulating that sequence of
commands. You define a macro with the . de macro, for instance,

. de QP

. in +Sn

. 1 1 - 1 0n

. ps -2

The line consisting of two dots indicates the end of the macro. Here we have defined
a rudimentary quote paragraph macro: it indents the text from both sides and reduces the
point size by 2.

You can also define macros with arguments, like many of the rnm macros. The
arguments are indicated in the definition with the sequences \ \ $ 1 , \ \ $ 2 , and so on.
For example,

1-30 Chapter 1 Introduction to A/UX Text Processing

. de XX
Today i s \ \ $ 1 the \ \ $2 .

. XX Friday 6th

yields

Today is Friday the 6th.

Macro names should be chosen carefully to avoid conflicts with predefined mrn macro
names. To be safe, user-defined macros should be two characters with the first lowercase
and the second uppercase. For example,

. de mN

Horizontal and vertical line spacing

t roff includes commands for making arbitrary motions in a horizontal (\h) or vertical
(\ v) direction. For example,

There is a gap \h' O . S i ' in this sentence .

yields

There is a gap in this sentence.

Both \ h and \ v require a distance specification within single quotation marks; the
two escape sequences \ u and \ d, however, move up and down a fixed distance and so
require no argument. For example,

Thi s sentence cont ains a superscript \ul \d .

yields

This sentence contains a superscript 1 .

Other formatting features 1-31

The TranScript package

As indicated earlier in this chapter, a printer interface program is needed to translate the
output of t ro f f into a form that is understood by your printer. If you wish to produce
output on an Apple LaserWriter, you must pipe the output of t roff through a program
that translates it into PostScript, the page-description language used by the LaserWriter.
For this purpose, the A/UX system contains a package of programs called TranScript.

The most important program in this package is psdit, which translates t roff
output into PostScript. For instance, the command line used in producing this chapter
was

grap chap . l I pic I tbl I eqn I troff -Tpsc -mm I psdit I lp

The only thing new here, aside from the postprocessor p s di t , is the -Tp s c option
to t roff. This tells troff which type of printer it should format its output for; t roff
needs this information so that i t can know which point sizes are legal for that printer and
which fonts are available on the printer (among other things). The psc stands for
"PostScript device" and is the appropriate option for the Laser Writer.

For more information on the TranScript package, consult t ranscript(lM) in
A!UX System Administrator's Reference.

Document printing 1-33

Line drawing

There are two t ro f f commands for drawing horizontal and vertical lines, \ 1 and
\ L. For example,

\ l ' O . S i ' \ L ' O . S i '

prints

Document printing

t roff produces output that is device independent. This means that you will need to
process the output of t roff with a program (usually called an inteiface program) that
translates this output into a form that the printer understands. This step of the printing
process may be done automatically, or you may need to invoke this program yourself.
Check with local administrators to see what is appropriate for your installation. On the
A/UX system, an interface program is provided to allow t roff output to be printed on
the LaserWriter; this program is called psdi t and is discussed later in this chapter in
"The TranScript Package."

Output devices

The A/UX family of text-processing tools is designed to be as independent of any
particular type of output device as possible, thereby allowing the user to get output on
any of a wide number of printers or display devices. On the high end of the spectrum,
t roff is capable of producing output on modern digital typesetters and
phototypesetters, and on laser-driven printers, whose quality approaches that of much
more expensive typesetters. troff can also send output to certain high-resolution video
display terminals. On the low end of the spectrum, nroff can format its input for output
on virtually any terminal screen, dot-matrix printer, or daisy-wheel printer.

1-32 Chapter 1 Introduction to A/UX Text Processing

When you print the letter, the name and address print out as follows:

Ms. Pandora S. Bach

Comparative Surveys, Inc.

79 Downing Street
San Jose, California 95 128

Creating spaces between paragraphs

You can leave a space and a half on the printed page between the address and the
salutation by using . P , the paragraph macro. Type

. P

on the line below . DE, and follow it with

Dear Ms . Bach :

on the next line, followed with another . P on the line after that. The file now looks like

. DS

Ms . Pandora S . Bach

Comparat ive Surveys , Inc .

7 9 Downing St reet

San Jos e , Cal i fornia 9 5 12 8
. DE

. P

Dear Ms . Bach :

. P

where . P s�nds for "paragraph." Use the paragraph macro wherever you want to leave
extra space or start a paragraph.

Lesson 1: Producing a formatted letter 2-3

Creating a list with bullets

The body of this letter lists three items. To print them out in a bulleted list, with each item
preceded by a bullet and indented five spaces, use the bulleted list macro. Starting at the
line below the second . P , type

. P

Enclosed please find the following items :

. BL 5

. LI

A copy o f a mes sage from Ms . Gail Smith

dated March 6 .
. L I

A copy o f the worksheet you requested .

. LI

A \ f (BIComparat ive Surveys \ fR records

form and relevant informat ion .

. LE

. P

Thank you for your attent ion to this account .

. P

Printing the file produces the following output:

Enclosed please fmd the following items:

• A copy of a message from Ms. Gail Smith dated March 6.

• A copy of the worksheet you requested.

• A Comparative Surveys records form and relevant information.

Thank you for your attention to this account.

2-4 Chapter 2 troff/mrn Tutorial

Changing fonts

Note that in the text above, the phrase "Comparative Surveys" prints out in bold italic

and the words after in roman. This is caused by the t ro f f commands \ f { B I and \ fR.

The ftrst command

\ f { B I

instructs the printer to print the following text in bold italic Times Roman font.

The second command

\ fR

instructs the printer to print the following text in Times Roman font.

Indenting text

To fmish off your letter, you can use the indent command (. in) to print text indented on
the page. Type

. in +2 i

S incerely yours ,

. sp 3
John C . Doe
. in -2 i
. sp
Enclosures

Printing the ftle produces the following output:

Enclosures

Sincerely yours,

John C. Doe

Lesson 1: Producing a formatted letter 2-5

2-6

Formatting and printing your file

When you have entered all the above text and commands in your file letter, save the
file on disk and exit vi. When you see the shell prompt on your screen again, you are
ready to format your file and send it to the printer. (See Setting Up Accounts and
Peripherals for A!UX for information about setting up a printer.)

At the shell prompt, type

t roff -Tpsc -rom letter I psdit I lp

This command line sends your file through the troff program and rom macros, then
sends it to a postprocessor, psdi t , that prepares it for the LaserWriter, and fmally sends
it to the printer. See Chapter 1, "Introduction to A/UX Text Processing," and the reference
chapters that follow for more information.

When the printer has received your file, you will see a message on your screen.
Figures 2-1 and 2-2 show your file letter as it appears on your screen and on the
printed page that is produced.

Chapter 2 troff/nun Tutorial

. DS

Ms . P andora S . Bach

Comparat ive Surveys , Inc .

7 9 Downing St reet

San Jose , California 9 5 1 2 8

. DE

. P

Dear Ms . Bach :

. P

. P

Enclosed please find the following items :

. BL 5

. LI

A copy of a mes sage from Ms . Gai l Smith dated March 6 .
. L I

A copy of the worksheet you requested .

. LI

A \ f (BIComparat ive Surveys \ fR

records form and relevant informat ion .

. LE

. P

Thank you for your attent ion to this account .

. P

. in + 2 i

S incere ly yours ,

. sp 3
John C . Doe

. in -2i

. sp

Enclosures

Figure 2-1 Contents of your file with text and t ro f f/rnrn code

Lesson 1: Producing a formatted letter 2-7

Ms. Pandora S. Bach
Comparative Surveys, Inc.
79 Downing Street
San Jose, California 95 128

Dear Ms. Bach:

Enclosed please fmd the following items:

• A copy of a message from Ms. Gail Smith dated March 6.

• A copy of the worksheet you requested.

• A Comparative Surveys records form and relevant information.

Thank you for your attention to this account.

Sincerely yours,

John C. Doe

Enclosures
Figure 2-2 File printed on a LaserWriter

Lesson 2: Producing letterhead

To create letterhead stationery, you may first create a new file by invoking one of the
A/UX text editors such as vi. Create the new ftle, letterhead, by entering

vi letterhead

Once you have opened the new ftle, you can use vi commands to enter text and
t ro f f and rnm commands to format it.

This simple letterhead will consist of John Doe's name and address at the top of a
page. Because of the physical size of this manual, the stationery will print out smaller
than standard 8.5-by-11-inch paper. In "Changing the Size of Your Page" later in this
chapter you will see how to change the code to print out a larger version of this
letterhead.

2-8 Chapter 2 t roff/mm Tutorial

- -- - ---��-- - ----- --�----

Setting top-of-page instructions

The t ro f f program uses several internal defaults to define how text will print out. You
can change these defaults to fme-tune the format of your printed page.

For example, t roff prints a page number at the top of each page. To prevent this,
you can change the "page header" macro's definition. The page header macro accepts
three fields: the left side of the page, the center, and the right side. In the defmition, the
three fields are separated by single quotation marks.

At the top of the ftle, enter

. PH " ' ' ' ' "

This defmes all three fields as empty.
You may define how many spaces are left at the top of the page, using the definition

. de TP

. sp 2

This tells the printer to start printing text two spaces below the default of 1 inch. Enter
this definition in the ftle below the page header macro.

Changing the size of your text

The t roff program uses point size 10 by default. This is the point size used in this
manual. If you want the text of your letter (and any text in your letterhead) to appear in
point size 10, you don't need to specify this to t ro f f. However, if you want the text to
appear slightly larger, for example, point size 11 , you can use the mrn command

. s 1 1 1 3

This changes the default point size to 1 1 and the vertical spacing to 13.

Lesson 2: Producing letterhead 2-9

Changing the size of your page

Because of the physical size of this manual, the stationery in this tutorial will print out
smaller than standard 8.5-by-11-inch paper. The length of a line of text, the width of the
margin, and the length of the page itself are defined using number registers. Number
registers are assigned values as follows:

. nr W 4 i

. nr 0 2 i

. nr L l l i

specifies a 4-inch line

specifies 2-inch margins

specifies an 1 1-inch page

The w number register stands for the width of the text, and the o register stands of the
offset from the physical width of the page.

To print out a standard-size page, change these definitions as follows:

. nr W 6 i

. nr 0 l i

. nr L l li

Specifies a 6-inch line

Specifies l-inch margins

Specifies an 11-inch page

Designing your letterhead

Enter the following commands in your ftle:

. sp
\ 1 ' 4 i '
. sp
\ s 1 4 John C . Doe \ s O
. br
\ 1 ' 4 i '

. sp 1 . 7 5m
\ 1 ' 4 i '
. sp . 2 5
. t l ' ' ' \ s 9 \ &P . O . Box 1 4 , Carter , CA 9 4 5 3 0 \ sO '
. sp
. t l ' ' ' \ * (DT '
. sp 2

2-10 Chapter 2 troff/mm Tutorial

These commands are listed below with comment lines that describe what each one tells
the printer to do.

. sp

\ 1 ' 4 i '

. sp

\ s 1 4 John C . Doe \ s O

. b r

\ 1 ' 4 i '

. s p -1 . 7 5m

\ 1 ' 4 i '

. sp . 2 5

Leave one blank line .

Draw a line 4 inches long.

Leave one blank line .

Print this text in point size 14.

Break line here (go to next line) .

Draw a line 4 inches long.

Go back up 1. 75 em units .

Draw a line 4 inches long.

Leave 1/4 vertical space .

. t l ' ' ' \ s 9 \ &P . O . Box 1 4 , Carter , CA 9 4 5 3 0 \ s O '
Print this text in point size 9,
on the right side of the line.

. sp

. t l ' ' ' \ * (DT '

. sp 2

Leave one blank line .

Print the current date on the

right side of the line.

Leave two blank lines .

Note that the string \ * < DT will print the current date (the date on which you format
your letter). The "title" request:

. t l , , , ,

is similar to the page header macro described above in that it defines three separate
fields, enclosed in single quotation marks. The three fields are the left side of the page,
the center, and the right side. In the letterhead definition above, the title request is used
to justify a string of text on the right side of the page.

If you format your lette rhead file using the t roff command line shown under
"Formatting and Printing Your File" earlier in this chapter, your letterhead looks like the
output in Figure 2-3.

Lesson 2: Producing letterhead 2-11

2-12

John C. Doe

Figure 2-3 A sample letterhead

P.O. Box 14, Carter, CA 94530

August 28, 1987

Printing your letter on letterhead

Now that you have created a file containing the t roff and mrn codes to produce
letterhead stationery, save the file on disk and exit vi. You can now use this letterhead
with any letters you write by formatting it on the same command line as your letter.
Because the letterhead must print before the text of your letter, the command line should
look like this:

t roff -Tpsc -mrn letterhead letter I psdit I lp

This command line sends both files through the t ro f f program and mrn macros. The
letter this produces looks like the one in Figure 2-4. �

Chapter 2 troff/mm Tutorial

John C. Doe
P.O. Box 14, Carter, CA 94530

August 28, 1987

Ms. Pandora S. Bach
Comparative Surveys, Inc.
79 Downing Street
San Jose, California 95 128

Dear Ms. Bach:

Enclosed please find the following items:

• A copy of a message from Ms. Gail Smith dated March 6.

• A copy of the worksheet you requested.

• A Comparative Surveys records form and relevant information.

Thank you for your attention to this account.

Enclosures
Figure 2-4 A sample letter

Sincerely yours,

John C. Doe

Lesson 2: Producing letterhead 2-13

Lesson 3: Modifying the appearance
of a page

Now that you have created a simple letter and printed it out on letterhead stationery, you
may want to modify the letter to include more information. In this lesson, you will learn
how to produce a footnote and line graphics in your letter.

Producing a footnote

To include a footnote in your file named letter, first open the file using an editor such
as vi:

vi letter

Move your cursor to the place in the me where you want the footnote to be
referenced. This example uses a "dagger" symbol rather than a number. For example,
move to the line in your me that reads

A copy of the worksheet you reque sted .

and place the dagger symbol at the end of the line:

A copy of the worksheet you reque sted . \ (dg

When you include a footnote in your text, use the mm footnote macros. . F s stands
for "footnote start" and . FE for "footnote end." These should be placed as close as

possible to the footnote reference (in this case, \ (dg) . On the next line in your me, type

. FS \ (dg
Note that the worksheet is dated March 2 0 .

• FE

Your letter will look like the one in Figure 2-5.

2-14 Chapter 2 t roff/mm Tutorial

John C. Doe

Ms. Pandora S. Bach
Comparative Surveys, Inc.
79 Downing Street
San Jose, California 95 1 28

Dear Ms. Bach:

P.O. Box 1 4, Carter, CA 94530
August 28, 1 987

Enclosed please find the following items:

• A copy of a message from Ms. Gail Smith dated March 6.

• A copy of the worksheet you requested. t
• A Comparative Surveys records form and relevant information.

Thank you for your attention to this account.

Sincerely yours,

John C. Doe

Enclosures

t Please note that the worksheet is dated March 20.

Figure 2-5 A sample letter with a footnote

Lesson 3: Modifying the appearance of a page 2-15

Producing graphics

You can include simple line drawings in a document by using the preprocessor pic after
you've entered appropriate picture specifications in your file.

Graphics can be useful in documents. For example, you might want to order some
printed envelopes to go along with your custom stationery. A good way to let the printer �

know how you want it to look is to enclose a picture of the printed envelope. You can
specify such a picture by including the following input in your file:

. P S

A : box ht 2 i wid 4 i
l ine from A . nw to A . c
line from A . ne to A . c
box invis ht . 7 5 i " John C . Doe " "P . O . Box 1 4 " \
" Carter , CA" " 9 4 3 5 0 " with . n at A . n
. PE

You can then process this with the command line

pic letter I troff -Tpsc -mm I psdit I lp

The output, in part, will look like Figure 2-6.

John C. Doe
P.O. Box 14
Carter, CA

94350

Figure 2-6 A sample line graphic

2-16 Chapter 2 troff/mm Tutorial

- - - - - -- - - - - - -- ------ ---------- ---- ---- ----- - -

3 n r o t t!t ro t t Formatters

What is nrofflt roff formatting? I 3-2

Options when invoking nroff and t roff formatters I 3-3

Principles of nroff and t roff formatters I 3-6

Definitions of terms I 3-l 0

Working with text I 3-12

Structuring the page I 3-20

Advanced features I 3-28

Input/ output conventions and character translations I 3-45

Reference tables I 3-48

This chapter introduces you to the capabilities of the n rot t 1 t ro f t formatters.

What is nro f f/t ro f f formatting?

3-2

The nroff text formatter formats text for typewriter-like terminals.
The t roff formatter formats text destined to be printed on a phototypesetter but

intended to be converted by a postprocessor into codes that will drive a particular
phototypesetter.

Both nroff and t roff processors accept lines of text interspersed with lines of
format control information. They format the text into a printable, paginated document
having a user-designed style. The nroff and t roff formatters offer unusual freedom
in document styling, including

• versatile paragraph and section control

• flexible-style headers and footers

• generation of footnotes

• automatic sequence numbering for paragraphs and sections

• multiple-column output

• font and point-size control (t roff only)

• arbitrary horizontal and vertical local motions at any point

• overstriking, bracket construction, and line-drawing functions

Because nroff and t roff formatters are reasonably compatible, it is usually
possible to prepare input acceptable to both. Conditional input is provided that enables
you to embed input expressly destined for either program (see "Conditional Acceptance
of Input"), for example,

. i f n . sp \ " if nroff, then go one space

. if t . sp . 5 \ " if t roff, then go one-hal f space

The major dissimilarity between the two formatters is spacing. nroff does not have
fractional space capabilities. For example, nroff will ignore the t roff vertical space
request . sp . 5 and will treat . sp 1 . 3 as one space. Keep in mind that nroff output
devices use constant-width characters, whereas in troff, character widths vary. This is
important when determining distances for setting tabs. Local-motion escape characters -"'
also have different effects in nroff and t roff (see "Moving Characters Within a Line:
Setting Local Motion" later in this chapter).

Chapter 3 nroff/troff Formatters

The nroff fonnatter can prepare output directly for a variety of tenninal types and is
capable of utilizing the full resolution of each tenninal.

The t roff text formatter is a program that can drive virtually any phototypesetter
because its output is an ASCII code describing the position, font, size, and so on of
characters to be typeset on a page. This output must be converted by another program,
called a postprocessor, into codes a particular phototypesetter will understand.
Parameters such as fonts, character sizes, and special characters depend on the
phototypesetter being driven.

Full user control over fonts, sizes, and character positions, as well as the usual
features of a fonnatter (right-margin justification, automatic hyphenation, page titling and
numbering, and so on) are provided by the t ro f f processor. It also provides macros,
arithmetic variables and operations, and conditional testing for complicated fonnatting
tasks.

Options when invoking nro f f and
t r 0 f f formatters

The general fonn of invoking an nroff or troff fonnatter at the A/UX operating
system command level is

nroff [options] (files]

or

t roff [options] (files]

where options represents any of a number of flag options and files represents the list of
ftles containing the document to be fonnatted. An argument consisting of a single minus
sign (-) is taken to be a ftlename corresponding to the standard input. Input is taken
from the standard input if no ftlenames are given. Options may appear in any order but
must appear before the ftles. (See Table 3-1 .)

Options when invoking nroff and troff formatters 3-3

Table 3-1 Options for invoking nroff/t roff

Option Effect

-a (t r off only.) Send a printable approximation in American Standard Code for Infonnation Interchange (ASCII)
character set of the results to the standard output. This approximates a display of the document.

-e (nroff only.) Produce equally spaced words in adjusted lines using full terminal resolution.

-F dir Get access to font information from the directory di rIde vname, where name is the default output device. The
default font infonnation directory is Ius r I 1 ib I f ont I devname.

-h (nroff only.) Use output tabs during horizontal spacing to speed output and to reduce output byte count. Device
tab settings are assumed to be every eight nominal character widths. The default settings of logical input tabs are also
every eight nominal character widths.

- i Read standard input after the input flles are exhausted.

-mname Preftx the lusr I l ibltmacltmac .namemacro flle to the input flles. Multiple -m macro package requests
on a command line are accepted and are processed in sequence.

-n n Number the ftrst generated page n.
-olist Print only pages whose page numbers appear in list, which can consist of comma-separated numbers, number

ranges, or both:

• A list of comma-separated numbers such as n, m means pages n and m.
• A number range has the form n-m and means pages n through m.
• An initial -n means from the beginning to page n.
• A fmal n-means from page n to the end.

-q Invoke the simultaneous input/output mode of the • rd request.

-r xn Set register x (one character) to n.
-s n Stop every n pages. The n r off fonnatter will halt after every n pages (default n = 1) to allow paper loading or

changing and will resume upon receipt of a new line. When using t roff, it is probably preferable to use the
-s option on the postprocessor if one exists.

Chapter 3 nroff/troff Fonnatters

Table 3-1 Options for invoking nroff/t roff (continued)

Option Effect

-T name Specify the name of the output terminal type. Currently defmed names are lp for generic printers that can
underline and tab, 2 6 3 1 for the Hewlett-Packard 2631 printer in regular mode, 2 6 3 1 -c for the Hewlett
Packard 2631 printer in compressed mode, 2 6 3 1 -e for the Hewlett -Packard 2631 printer in expanded mode,
3 0 0 for the DASI 300, 3 0 0 -12 for DASI 300 terminal set to 12 pitch, 3 0 0 s for the DASI 300s, 3 0 0 s - 1 2
for DASI 300s terminal set to 1 2 pitch, 3 7 for the Teletype Model 37 (nroff default), 3 8 2 for the DCT-382
terminal, 4 0 0 0 a for the Trendata 4000A terminal, 4 5 0 for the DASI 450, 4 5 0 -12 for the DASI 450 set to
12 pitch, 8 3 2 for the Anderson jacobson 832 terminal, 8 5 1 0 for the C.ITOH printer, t n 3 0 0 for the GE
TermiNet 300 (or any terminal without half-line capabilities), and X for the EBCDIC TX train printer.

In t roff, the -T option may be used to specify the output device. The psc argument ("t roff -Tpsc")
is required for PostScript output on a LaserWriter. (This is the A/UX t roff default.)

-u [n] (nroff only.) Set the emboldening factor (number of character overstrikes) in the formatter for the third font
position (bold) to be n (0 if n is missing). It is not possible to turn off the emboldening in n ro f f if the overstriking
is controlled locally by the printing device.

- z Suppress formatted output. Only message output will occur (from • tm requests and diagnostics).

Each option is invoked as a separate argument. For example,

nroff -o4 , 8 - 1 0 -T3 0 0 s -mabc chapterl chapter2

requests formatting of pages 4, 8, 9 , and 10 of a document contained in the files named
chapterl and chapter2, specifies the output terminal as a DASI 300s, and invokes
the macro package abc.

Various preprocessors and postprocessors are available for use with the nroff and
t roff formatters:

• The equation preprocessors are neqn and eqn (for nroff and t roff formatters,
respectively).

• The table-construction preprocessor is tbl .

• The picture-drawing preprocessor for the t roff formatter is pic.

• A reverse-line postprocessor for multiple-column nroff formatter output on
terminals without reverse-line ability is col. The Teletype Model 37 escape
sequences that the nroff formatter produces by default are expected by col.

Options when invoking nroff and troff formatters 3-5

t roff output can be viewed on the Teletype Model 5620. No special filter is
required to postprocess t roff's output for the 5620. The finished version of a document
typeset with t ro f f is most frequently sent to a phototypesetter:

tbl file 1 eqn 1 t roff [optioru1 1 typesetter

The first pipe (1) indicates the piping of tbl output to eqn input; the second pipe �

indicates the piping of eqn output to the t roff formatter input. Finally, the
accumulated output from these processes is piped to a postprocessor that interprets
t roff's output language for the output device.

t c is a phototypesetter-simulator postprocessor, which enables you to view t roff
output on a Tektronix 4014 terminal. The syntax for its usage is as follows:

pic file I tbl I eqn I t roff [optioru1 I tc

The t roff formatter depends on a postprocessor to convert its output into codes for
a particular phototypesetter.

Principles of nro f f and t ro f f formatters

This section describes some general principles of the nroff and t roff formatters.

Form of input

Input data consists of text lines, which are destined to be printed, interspersed with
control lines, which set parameters or otherwise control subsequent processing. Control
lines begin with a control character, normally a period or an acute accent ('), followed by
a one- or two- character name that specifies a basic request or the substitution of a user
defin�d macro in place of the control line. The acute accent control character suppresses
the break function (the forced output of a partially filled line) caused by certain requests.
Control characters may be separated from request/ macro names by white space (spaces,
tabs, or both) for aesthetic reasons. Names must be followed by either a space or a
newline character. Control lines with unrecognized request/macro names are ignored.
The tables throughout this chapter contain explanations of the request/macro names.

Various special functions may be introduced anywhere in the input by means of an
escape character (\). For example, the function \nrcauses the interpolation of the

3-6 Chapter 3 nroff/troff Formatters

- ---�---- �---�--------

contents of the number register r in place of the function. Number register r is either x for a
single-letter register name or xx for a two-character register name. The escape sequences
for characters, indicators, and functions are summarized at the end of this chapter.

Formatter and device resolution

The nroff processor internally uses 240 units/inch, corresponding to the least common
multiple of the horizontal and vertical resolutions of various typewriter-like output
devices. Units in t roff are device-dependent. t roff rounds horizontal/vertical
numeric parameter input to its internal horizontaVvertical resolution. nroff similarly
rounds numeric input to the actual resolution of the output device indicated by the -T
option (default Teletype Model 37).

Numeric parameter input

Both nroff and t roff formatters accept numeric input with the appended scale
indicators shown in Table 3-2, where S is the current type size in points, Vis the current
vertical line spacing in basic units, and Cis a nominal character width in basic units. The
number of basic units is device-dependent in t roff.

Table 3-2 Numeric input and appended scale indicators for nroff/t roff

Scale indicator

i
c
p
m

n
p
u

v

None

Meaning Number of basic units in nroff

Inch 240

Centimeter 240x50/127

Pica = 1/6 inch 240/6

Em = Spoints c
En = em/2 C; same as em

Point = 1/72 inch 240n2

Basic unit 1

Vertical line space v
Default None

Principles of nroff and t roff formatters 3-7

In nroff processors, both em and en are taken to be equal to C, which is output
device dependent; common values are 1/10 and 1/12 inch. Actual character widths in the
nroff formatter need not be all the same. Constructed characters (such as ->) are often
extra wide. Default scaling is

• em for horizontally oriented requests (. ll , . in, . t i, .ta, . lt , . po, . me) and
functions (\h, \ 1)

• Vfor vertically oriented requests (. pl, . wh, • ch, . dt , . sp, . sv, . ne, . rt) and
functions (\ v, \x, \ L)

• p for requests .VS and . vs and functions \H and \ s

• u for . n r, . i f, and . ie requests

All other requests ignore scale indicators. When a number register containing an
already appropriately scaled number is interpolated to provide numeric input, the basic
unit scale indicator (u) may need to be appended to prevent an additional inappropriate
default scaling. The number, n, may be specified in decimal-fraction form, but the
parameter finally stored is rounded to an integer number of basic units.

The absolute position indicator (1) may be prefixed to a number n to generate the
distance to the vertical or horizontal place n:

• For vertically oriented requests and functions, 1 n becomes the distance in basic units
from the current vertical place on the page or in a diversion to the vertical place n
(see "Creating Diversions: Storing and Redirecting Text" and "Using Traps" later in
this chapter) .

• For all other requests and functions, 1 n becomes the distance from the current
horizontal place on the input line to the horizontal place n. For example,

. sp 1 3 . 2c

will space in the required direction to 3.2 centimeters from the top of the page.

Numeric expressions

Wherever numeric input is expected, the following may be used:

• an expression involving parentheses

• the arithmetic operators +, -, /, •, and % (mod)

• the logical operators <, >, <=, >=, =, ==, & (and), and : (or)

3-8 Chapter 3 nroff/troff Formatters

Except where controlled by parentheses, evaluation of expressions is left to right;
there is no operator precedence. In the case of certain requests, an initial + or - is
stripped and interpreted as an increment or decrement indicator. In the presence of
default scaling, the desired scale indicator must be attached to every number in an
expression for which the desired and default scalings differ. For example, if the number
register x contains 2 and the current point size is 10, then

. 11 (4 . 2 5 i+ \nxP+3m) /2u

sets the line length to 1/2 the sum of 4.25 inches + 2 picas + 3 ems (30 points because the
point size is 10).

+ Note The use of white space in arithmetic expressions is not permitted. There is no
precedence among arithmetic and logical operators. nroff/troff expressions do not
recognize decimal multipliers or divisors; a high level of precision may be achieved by
mixing scales within expressions. •

Notation

Numeric parameters are indicated in this chapter in two ways. A ±n means that the
argument may take one of the forms n, +n, and -n and that the corresponding effect is to
set the affected parameter to n, to increment it by n, or to decrement it by n, respectively.
Plain n means that an initial algebraic sign is not an increment indicator but merely the
sign of n. Generally, numeric input is either ignored or truncated to a reasonable value.
For example, most requests expect to set parameters to non-negative values; exceptions
are . sp, . wh, . ch, . nr, and . if. If no argument is specified, then the . ps , . ft , . po,

. vs, . 1s , . 11 , . in, and . 1t requests restore the previous value.
Single-character arguments are indicated by single lowercase letters, and one- or two

character arguments are indicated by a pair of lowercase letters. Character string
arguments are indicated by multicharacter mnemonics.

Principles of nroff and t roff fonnatters 3-9

t ro f f character set

The t ro f f character set consists of the so-called Commercial II character set plus the
Special Mathematical font character set. The ASQI characters are entered as themselves
(with three exceptions); non-ASCII characters are entered in the form \ (XX, where xx is a
two-character name. The three ASCII character exceptions are mapped in Table 3-3. �

Table 3-3 ASCII character exceptions to t ro f f

ASCII input
character Name

Acute accent

Grave accent

Minus

Printed by troff
character Name

Close quotation mark

Open quotation mark
Hyphen

The characters ... , ', and - may be entered by typing \ , , \ · , and \ -, respectively, or
by typing their names (\ (aa, \ (ga, and \ (mi). The ASCII characters @, #, ", "', ', <, >, \ ,
{, } , -, A, and _ exist in the Special Mathematical font and are printed as a one-em space if
that font is not mounted.

The nroff processor understands the entire troff character set but can print only

• ASCII characters

• additional characters that are available on the output device

• characters that can be constructed by overstriking or by other combinations

• characters that can be mapped into other printable characters

Each printer's capability is determined by a driving table prepared for that device. The
characters ... , ', and - print as themselves.

Definitions of terms

Formatter refers to the nroff and t roff text formatting programs. nroff and
troff behave similarly, except where noted.

3-10 Chapter 3 nroff/troff Fonnatters

------ ----- - - -- ---·------- ----

Requests are built-in commands recognized by the fonnatters. Although you seldom
need to use these requests directly, this chapter refers to some of them. These requests
have lowercase names. mm and ms macros have uppercase names, and me macros have
lowercase names (for example, • sp is a formatter request, • lp is an me macro, and

• PP is an ms macro).
Macros are named collections of requests. The macro name is used as an

abbreviation for a collection of commands that you would otherwise have to enter
explicitly each time they were used. mm, ms, and me supply many macros, and you can
defme additional ones. Macros and requests share the same set of names and are used in
the same way. Table 5-53 at the end of Chapter 5 lists the ms macros alphabetically, and
Table 6-24 at the end of Chapter 6 lists the me macros alphabetically.

Strings provide character variables, each of which names a string of characters.
Strings are often used in page headers, page footers, and lists. These registers share the
pool of names used by requests and macros. You can define a string with the • ds
(define string) command, and call it out in the form \ * x(for one-character names) or
\ * (xx (for two-character names). For instance, the string DY in ms contains the current
date. The input line

Today is \ * (DY .

prints

Today is October 17, 1989.

You can replace the current date with the command

. ds DY 0 2 / 2 1 / 9 0

Table 5-55 at the end of Chapter 5 lists the ms string names alphabetically.
Number registers are integer variables. These registers are used for flags and for

arithmetic and automatic numbering. You can give a register a value with the • nr
command. For example, the following sets the value of the line length register, LL:

. n r LL 4 i

This instructs the formatter to generate all text lines at 4 inches. To reset this value to
the default, enter the following:

. nr LL 0

See the section "Extending and Modifying Memorandum Macros" in Chapter 4 for
naming conventions for requests, macros, strings, and number registers.

Definitions of terms 3-11

Working with text
The t roff and nroff formatters allow you to choose the font and size you want,
overstrike or underline characters, create brackets, and set vertical spacing to meet very
specific requirements.

Choosing a font

Default fonts may differ from device to device. Typically, the fonts will include at least the
following: Times Roman (R), Times Italic (r), Times Bold (B), and Special Mathematical
(s). The current font may be changed by use of the . ft request or by embedding at any
desired point either \ f x, \ f < xx, or \ f n, where x and xx are the names of mounted
fonts, and n is a numeric font position. It is not necessary to change to the Special
Mathematical font; characters on that font are automatically handled. They are invoked
by their four-character input names (see "troff Character Set" earlier in this chapter).

A request for a named but not mounted font is translated into a request to mount the
font at position 0. This position is reserved for such dynamic requests and is otherwise
inaccessible. The troff processor can be informed that any particular font is mounted
by use of the . fp request. The list of known fonts is device-dependent. In the
subsequent discussion of font -related requests, f represents either a one- or two-character
font name or the numeric font position. The current font is available as a numeric
position in the read-only number register . f.

Font control is understood by the nrc f f formatter, which normally underlines italic
characters and overstrikes bold characters. Other font changes are usually ignored.

Setting character size

The available character point sizes depend on the individual printing device. The . ps
request is used to change or to restore the default point size. Alternatively, the point size
may be changed between any two characters by embedding a \ s n at the desired point to
set the size to n or a \ s±n (1��9) to increase or decrease the size by n; \ s o restores
the previous size. Requested point size values that are between two valid sizes yield the
closer legal size. The current size is available in the . s number register.

3-12 Chapter 3 nroff/troff Formatters

In t roff the escape sequence \H ' n' sets the height of a character without affecting
its width. n can be expressed in absolute values or in relative values of the form ±n.

Note that the nroff formatter ignores type size control.

Table 3-4 Character size request forms

Request form

. bd f [n]

. bd sfn

. cs f [n] [m]

. fp n f [file]

. ft fj]

• ps [±n]

. s s n

Off

Off

Off

If no
argument

R,I ,B,S Ignored

Roman Previous

10 point Previous

12/36 em Ignored

Explanation

Boldface font fby rr-1 units. Characters in font .fwill be artificially
boldfaced by printing each one twice, separated by rr-1 basic units. A
reasonable value for n is 3 when the character size is in the vicinity of 10
points. If n is missing, the boldface mode is turned off. The mode must still
(or again) be in effect when the characters are physically printed.

Boldface special font when current font is f. The characters in the special
font will be emboldened whenever the current font is f. The mode must still
(or again) be in effect when the characters are physically printed.

Set constant character space (width) mode on for font j{if mounted). The
width of every character is assumed to be n/36 ems. If m is absent, the em is
that of the character point size; if m is given, the em is m-points. All affected
characters are centered in this space, including those with an actual width
larger than this space. Special font characters occurring while the current
font is ftre also so treated. If n is absent, the mode is turned off. The mode
must still (or again) be in effect when the characters are printed. There is no
effect in the nrof f formatter.

Position font. A font named fis mounted on position n. It is a fatal error if
fis not known. • f p accepts a third optional argument, file, which is an
alternate version of the font f.

Change to font Nis x, .xx, n, or P). Font P means the previous font. For
font changes within a line of text, sequences \ f x, \ f (� and \ f n can
be used. Relevant parameters are a part of the current environment.

Set point size to ± n. Any valid positive size value may be requested; if
invalid, the nearest valid size will result, with a maximum size to be
determined by the individual printing device. A paired sequence +n, -n will
work beqmse the previous requested value is remembered. For point size
changes within a line of text, sequence \ s n or \ s±n can be used. Relevant
parameters are a part of the current environment. There is no effect in the
nroff formatter.

Set space character size to n/36 ems. This size is the minimum word spacing
in adjusted text. Relevant parameters are a part of the current environment.
There is no effect in the nroff formatter.

Working with text 3-13

• bd can be used to boldface characters, effectively increasing the number of
available fonts. This capability of modifying existing fonts to make new ones is enhanced
with the t roff escape sequence, \ S, used to slant output characters by a number of
specified degrees. This escape sequence is stated as \ s 'n', where n may be any integer,
negative or positive. o turns slanting off.

Overstriking characters

Automatically centered overstriking of up to nine characters is provided by the overstrike
function \ o ' string' . Characters in string are overprinted with centers aligned; the total
width is that of the widest character. String should not contain local vertical motion.

Setting zero-width characters

The function \ zc will generate cwithout spacing over it and can be used to produce left
aligned overstruck combinations.

Creating large brackets

The Special Mathematical font contains a number of bracket construction pieces that can
be combined into .various bracket styles. The function \b ' string' can be used to pile up
vertically the characters in string (the first character on top and the last at the bottom); the
characters are vertically separated by one em space, and the total pile is centered one
half em above the current base line (one-half line in the nroff formatter). For example,

\b' \ (lc\ (lf ' \ I E \ I \b ' \ (rc\ (rf ' \x' -0 . 5m' \x' 0 . 5m'

produces

3-14 Chapter 3 nroff/troff Formatters

Underlining

The nroff processor underlines characters automatically in the underline font,
specifiable with the . uf request. The underline font is normally on font position 2
(Times Italic). In addition to the . ft request and \ tfescape sequence, the underline
font may be selected by . ul and . cu requests. Underlining is restricted to an output
device dependent subset of reasonable characters.

The \ 1 ' nc' function will draw a string of repeated c's toward the right for a distance
n (l is lowercase L).

• If c looks like a continuation of an expression for n, it can be insulated from n with a
\ & .

• If c is not specified, the base-line rule (_) (underline character in nroff) is used .

• If n is negative, a backward horizontal motion of size n is made before drawing the
string.

Any space resulting from n!(size of c) having a remainder is put at the beginning Oeft
end) of the string. In the case of characters that are designed to be connected, such as
base-line rule (_), underrule (\ (ul), and root en (\ (ru), the remainder space is
covered by overlapping. If n is less than the width of c, a single c is centered on a
distance n. As an example, a macro to underscore a string can be written

. de us
\ \ $ 1 \ 1 ' 1 0 \ (ul '

or a macro can draw a box around a string

. de bx
\ (br\ I \ \ $ 1 \ I \ (br \ 1 ' I 0 \ (rn ' \ 1 ' I 0\ (ul '

such that

. us "underlined words "

and

. bx "words in a box"

Working with text 3-t;

yield

underlined words

and

I words in a box I
The function \ L ' nc' will draw a vertical line consisting of the optional character c

stacked vertically apart one em (one line in nroff), with the ftrst two characters
overlapped, if necessary, to form a continuous line. The default character is box rule
(\ (br); the other suitable character is ·bold vertical (\ (bv). The line is begun without
any initial motion relative to the current base line. A positive n speciftes a line drawn
downward, and a negative n speciftes a line drawn upward. After the line is drawn, no
compensating motions are made; the instantaneous base line is at the end of the line.

The horizontal and vertical line-drawing functions may be used in combination to
produce large boxes. The zero-width box rule and the one-half-em underrule were
designed to form corners when using one-em vertical spacings. For example, the macro

. de eb

. sp - l i \ " compensate f o r automat ic base-line spacing

. nf \ " avoid pos s ibly overflowing word buffer
\h' - . Sn ' \ L ' 1 \ \ nau- 1 ' \ 1 ' \ \ n (. lu+ ln\ (ul' \L ' - 1 \ \nau+ l ' \
\ 1 ' I Ou- . Sn \ (ul ' \ "draw box
. fi

will draw a box around some text whose beginning vertical place is saved in number
register a (for example, using . mk a).

In addition, t roff provides drawing functions capable of drawing arcs and splines;
these functions are listed in Table 3-5.

3-16 Chapter 3 nroff/troff Fonnatters

Table 3-5 Line-drawing requests

Request form Explanation

\ D ' 1 dh dv' Draw a line for the current position by dh, dv.
\ D ' c d' Draw a circle of diameter d with its left side at the current position.

\ D ' e dl d2' Draw an ellipse of diameters dl and d2with its left side at the
current position.

\D ' na dhl dvl dh2 dv2' Draw a counterclockwise arc from the current position to
dhl+dh2, dvl+dv2, with its center at dhl, dvl from the current
position.

\ D ' - dhl dvl dh2 dv2 • • • ' Draw a B-spline from the current position by dhl, dvl, then by
dh2, dv2, then • • •

The current position after using these drawing functions is at the end of the drawn
line, which for circles and ellipses is at the right side.

Setting vertical spacing

Vertical spacing size (v) between base lines of successive output lines can be set using
the . vs request with a device-dependent resolution. Spacing size must be large enough
to accommodate character sizes on affected output lines. For the common type sizes (9
through 12 points), usual typesetting practice is to set v to two points greater than the
point size; t roff default is 10-point type on a 12-point spacing. The current v is
available in the . v register. Multiple v-line separation (for example, double-spacing) may
be obtained with a . 1 s (line spacing) request.

Working with text 3-17

Adding an extra Hne space

If a word contains a vertically tall construct requiring the output line containing it to have
extra vertical space before or after it or in both places, the extra line space function \ x' n'

can be embedded in or attached to that word. In this and in other functions having a pair
of delimiters around their parameters, the delimiter choice is arbitrary except that it
cannot look like the continuation of a number expression for n.

• If n is negative, the output line containing the word will be preceded by n extra
vertical spaces.

• If n is positive, the output line containing the word will be followed by n extra
vertical spaces.

• If successive requests for extra space apply to the same line, the maximum value is
used.

The most recently used postline extra line space is available in the . a register.

Creating a block of vertical space

A block of vertical space is ordinarily requested using . sp, which honors the no-space
mode and does not space past a trap. A contiguous block of vertical space may be
reserved using the . sv request. Forms that may be used to request vertical space are
listed in Table 3-6.

+ Note Values separated by a semicolon (;) in the "Initial value" field in Table 3-6 are
for the nroff and t roff formatters, respectively. •

3-18 Chapter 3 nroff/troff Formatters

Table 3-6 Vertical space requests

Request form

. ls [n]

. ns

. os

. rs

• sp [n]

• sv [n]

. vs [n]

Blank line

Initial
w1ue

n = l

Space

If no
argument

Previous

n = lv

n= lv

1/6 in. 12pt. Previous

Explanation

Set line spacing to ±n. Output n-1 blank lines (�) after each output text line.
If the text or previous appended blank line reached a trap position,
appended blank lines are omitted. Relevant parameters are a part of the
current environment.

Set no-space mode, which inhibits . sp and . bp requests without a next
page number. It is turned off when a line of output occurs or with the . r s

request. Mode or relevant parameters are associated with current diversion
level.

Save output vertical space. The request is used to output a block of vertical
space requested by an earlier . sv request. The no-space mode (. ns) has
no effect.

Restore spacing. The no-space mode (. ns) is turned off. Mode or relevant
parameters are associated with current diversion level.

Space vertically. The request provides spaces in either direction. If n is
negative, the motion is backward (upward) and is limited to the distance to
the top of the page. Forward (downward) motion is truncated to the
distance of the nearest trap. If the no-space mode (. ns) is on, no spacing
occurs. The scale indicator is ignored if not specified in the request. The
request causes a break .

Save a contiguous vertical block of size n. If the distance to the next trap is
greater than n, n vertical spaces are produced. If the distance to the next
trap is less than n, no vertical space is immediately produced, but n is
remembered for later output (. os). Subsequent . sv requests overwrite any
still remembered n. The no-space mode (. ns) has no effect. The scale
indicator is ignored if not specified in the request.

Set vertical base-line spacing size v. Transient extra vertical spaces are
available with \x'n 'The scale indicator is ignored if not specified in the
request. Relevant parameters are a part of the current environment.

Cause a break and output of a blank line (just as does . sp 1).

Working with text 3-19

Structuring the page
Top and bottom margins are not automatically provided. They may be defined by two
macros that set traps at vertical positions 0 (top) and -n (n from the bottom) (see "Using
Traps" later in this chapter). A pseudo-page transition onto the first page occurs either
when the first break occurs or when the first nondiverted text processing occurs.
Arrangements for a trap to occur at the top of the first page must be completed before
this transition. References to the current diversion mean that the mechanism being
described works during both ordinary and diverted output (the fonner is considered as
the top diversion level). Page control request forms are listed in Table 3-7.

Physical limitations on the nroff and t roff processor output are output-device
dependent.

+ Note Values separated by a semicolon (;) in the "Initial value" field in Table 3-7 are
for the nroff and t roff fonnatters, respectively. •

Table 3-7 Page control requests

Request form

. bp [±n]

.mk [ti

InWal
value

n = l

None

If no
argument

Internal

Explanation

Begin page. The current page is ejected and a new page is begun. If ±n is

given, the new page number will be ±n. The scale indicator is ignored if not
specified in the request. The request causes a break. The use of ' as the
control character (instead of •) suppresses the break function. The request
with no n is inhibited by the • ns request.

Mark current vertical place in an internal register (associated with the current
diversion level) or in register r, if given. The request is used in conjunction
with "return to marked vertical place in current diversion" request (. rt).

Mode or relevant parameters are associated with current diversion level.

3-20 Chapter 3 nroff/troff Formatters

Table 3-7 Page control requests (continued)

Request form

. ne [n]

. pl [±n]

. pn ±n

• po [±n]

. rt [±n]

Initial
value

11 in.

n = I

0; I in.

None

If no
argument

n = Iv

1 1 in.

Ignored

Previous

Internal

Explanation

Need n vertical spaces. The scale indicator is ignored if not specified in the
request.

If the distance to the next trap position (d) is less than n, a forward vertical
space of size d occurs, which will spring the trap.

If there are no remaining traps on the page, d is the distance to the bottom
of the page.

If d is less than vertical spacing (v), another line could still be output and
spring the trap.

In a diversion, d is the distance to the diversion trap (if any) or is very large.
Mode or relevant parameters are associated with current diversion level.

Set page length to ±n. The internal limitation is about 75 inches in the
t ro f f formatter and 136 inches in the n ro f f formatter. Current page
length is available in the • p register. The scale indicator is ignored if not
specified in the request.

Set page number. The next page (when it occurs) will have the page number
±n. The request must occur before the initial pseudopage transition to affect
the page number of the first page. The current page number is in the %
register .

Set page offset. The current left margin is set to ±n. The scale indicator is
ignored if not specified in the request. The t ro f f formatter initial value
provides about I inch of paper margin. The current page offset is available
in the . o register.

Return (upward only) to marked vertical place in current diversion. If ±n
(with respect to place) is given, the vertical place is ±n from the top of the
page or diversion. If n is absent, the vertical place is marked by a previous

• mk. The . sp request may be used in all cases instead of • rt by spacing to
the absolute place stored in an explicit register, for example, using the
sequence

.
. mk r sp 1 \ \nru. Mode or relevant parameters are

associated with current diversion level. The scale indicator is ignored if not
specified in the request.

Structuring the page 3-21

Filling, adjusting, and centering text

Normally, words are collected from input text lines and assembled into an output text
line until some word does not fit. An attempt may be made to hyphenate the word in an
effort to assemble a part of it into the output line. The spaces between the words on the
output line are increased to spread out the line to the current line length minus any
current indent. A word is any string of characters delimited by the space character or the
beginning or the end of the input line. Any adjacent pair of words that must be kept
together (neither split across output lines nor spread apart in the adjustment process) can
be tied together using a backslash-space character (\SPACE); this separates the words
with an unpaddable space. The adjusted word spacings are uniform in the t roff

formatter, and the minimum interword spacing can be controlled with the . s s request.
In the nroff formatter, they are normally nonuniform because of quantization to
character-size spaces; however, the flag option -e causes uniform spacing with full
output device resolution.

Filling, adjustment, and hyphenation can all be prevented or controlled. The text
length on the last line output is available in the . n number register, and text base-line
position on the page for this line is in the nl number register. The text base-line high
water mark (lowest place) on the current page is in the . h register.

An input text line ending with a period (.), a question mark (?), or an exclamation
mark (!) is taken to be the end of a sentence, and an additional space character is
automatically provided during filling. Multiple interword space characters found in the
input are retained, except for trailing spaces; initial spaces also cause a break.

To obtain a specific break in a line when filling is in effect, a \p sequence may be
embedded in or attached to a word to cause a break at the end of that word and have the
resulting output of the line containing that word spread out to fill the current line length.

A text input line that happens to begin with a control character (such as a period) can
be made to be interpreted as the actual character itself by prefacing it with the
nonprinting, zero-width filler character (\ &). Another way is to specify output

translation of some convenient character into the control character using the . t r

request.

Controlling line and word breaks

Copying an input line in no-fill mode can be interrupted by terminating the partial line
with a \ c escape sequence. The next encountered input text line will be considered to

3-22 Chapter 3 nroff/troff Fonnatters

be a continuation of the same line of input text. Similarly, a word within filled text may be
interrupted by terminating the word, and line, with \ c; the next encountered text will be
taken as a continuation of the interrupted word. If the intervening control lines cause a
break, any partial line or partial word will be forced out. (See Table 3-8.)

Table 3-8 Interrupted text requests

Initial If no
Request form value argument Explanation

• ad [n] Adjust Adjust Adjust. Output lines are adjusted with mode n. If the type indicator (n) is present, the
adjustment type is as follows:

. br

• ce [n]

. fi

. na

. nf

Off n = l

Fill

Adjust

Fill

Indicator Adjust type

1 Adjust left margin only

r Adjust right margin only

c Center

b or n Adjust both margins

absent Unchanged

The adjustment type indicator n may also be a number obtained from the . j register.
If fill mode is not on, adjustment will be deferred. Relevant parameters are a part of the
current environment.

Break. Filling of the line currently being collected is stopped, and the line is output
without adjustment. Text lines beginning with space characters and empty text lines
(blank lines) also cause a break .

Center. The next n input text lines are centered within the current line length (minus
indent). If n = 0, any residual count is cleared. A break occurs after each of the n input
lines. If the input line is too long, it will be left-adjusted. The request normally causes a
break. Relevant parameters are a part of the current environment.

Set fill mode. The request causes a break. Subsequent output lines are filled to provide
an even right margin. Relevant parameters are a part of the current environment.

Set no adjust. Output line adjusting is not done. Since adjustment is turned off, the right
margin will be ragged. Adjustment type for the . ad request is not changed. Output
line filling still occurs if fill mode is on. Relevant parameters are a part of the current
environment.

Set no-ftll mode. Subsequent output lines are neither filled nor adjusted. The request
normally causes a break. Input text lines are copied directly to output lines without
regard for the current line length. Relevant parameters are a part of the current
environment.

Structuring the page 3-23

Hyphenating text

The automatic hyphenation may be switched off and on. When switched on with . hy,

several variants may be set. A hyphenation indicator character may be embedded in a
word to specify desired hyphenation points or may precede a word to suppress
hyphenation. In addition, the user may specify a small exception word list. The default
condition of hyphenation is off.

Only words that consist of a central alphabetic string surrounded by nonalphabetic
strings (usually null) are considered candidates for automatic hyphenation. Words that
were entered containing hyphens (minus), em-dashes (\ (em), or hyphenation indicator
characters (such as mother-in-law) are always subject to splitting after those characters
whether or not automatic hyphenation is on or off. (See Table 3-9.)

Table 3-9 Hyphenation requests

Initial
Request form value

. he [c] \ %

. hw wordl • • •

• hy [n] Off, n = O

. nh No hyphen

If no
argument Explanation

\ % Hyphenation character. Hyphenation indicator character is set to c or to the
default \ %. The indicator does not appear in the output. Relevant
parameters are a part of the current environment.

Ignored Exception words. Hyphenation points in words are specified with
embedded minus signs. Versions of a word with terminal s are implied; that
is, dig-it implies dig-its. This list is examined initially and after each suffix
stripping. Space available is small-about 128 characters .

on, n = 1 Hyphenate. Automatic hyphenation is turned on for n :2: 1 or off for n = 0. If
n = 2, last lines (ones that will cause a trap) are not hyphenated. For n • 4
the last two characters of a word are not divided. For n • 8 the first two
characters of a word are not divided These values are additive; that is, n •
14 invokes all three restrictions. Relevant parameters are a part of the current
environment.

No hyphenation. Automatic hyphenation is turned off. Relevant parameters
are a part of the current environment.

3-24 Chapter 3 nroff/troff Formatters

- - - - - ------ ---- - -- - - - - - -- --------- -- ---

Indenting lines

The maximum line length for fill mode may be set with a • 11 request. The indent may
be set with a . in request; an indent applicable to only the next output line may be set
with the . t i (temporary indent) request. (See Table 3-10.)

The line length includes indent space but not page offset space. The line length
minus the indent is the basis for centering with the . ce request. If a partially collected
line exists, the effect of . 11, . in, or . t i is delayed until after that line is produced. In
fill mode, the length of text on an output line is less than or equal to the line length minus
the indent.

The current line length and indent are available in registers . 1 and . i, respectively.
The length of three-part titles produced by . t 1 is independently set by . 1 t (see
"Creating Three-Part Titles" later in this chapter).

Table 3-10 Line length and indent requests

Request form

. in [±n]

. 11 [±n]

. t i ±n

Initial
value

n = O

6.5 in.

If no
argument

Previous

Previous

Ignored

ExpJanation

Indent. The indent is set to ±n and preflxed to each output line. The scale
indicator is ignored if not specified in the request. Relevant parameters are a
part of the current environment. The request causes a break.

line length. The line length is set to ±n. The scale indicator is ignored if not
specified in the request. Relevant parameters are a part of the current
environment.

Temporary indent. The next output text line will be indented a distance ±n
with respect to the current indent. The resulting total indent may not be
negative. The current indent is not changed. The value of the current indent
(stored in the . i register) is unchanged. The scale indicator is ignored if not
specified in the request. Relevant parameters are a part of the current
environment. The request causes a break.

Structuring the page 3-2S

Setting tabs

Both the ASCII horizontal tab character and the ASCII SOH character (the leader) can be
used to generate either horizontal motion or a string of repeated characters. The length of
the generated entity is governed by internal tab stops specified with a . t a request. The
default difference is that tabs generate motion and leaders generate a string of periods;
. t c and . 1 c offer the choice of repeated character or motion.

There are three types of internal tab stops: left justified, right justified, and centered.
In Table 3-11

• next-string consists of the input characters following the tab (or leader) up to the next
tab (or leader) or end of line

• dis the distance from the current position on the input line (where a tab or leader
was found) to the next tab stop

• w is the width of next -string

Table 3-11 Three types of internal tab stops

Length of motion or
Tab type repeated characters

Left d

Right d-w
Centered (d-w)/2

Location of next-string

Following d

Right justified within d

Centered on right end of d

The length of generated motion is allowed to be negative, but that of a repeated
character string cannot be. Repeated character strings contain an integer number of
characters, and any residual distance is prefixed as motion. Tabs or leaders found after
the last tab stop are ignored, but they may be used as next-string terminators.

Tabs and leaders are not interpreted in copy mode. The \ t and \a always generate
an uninterpreted tab and leader, respectively, and are equivalent to actual tabs and
leaders in copy mode.

3-26 Chapter 3 nroff/troff Formatters

Setting field dellmiters

A field is contained between a pair of field delimiter characters. It consists of substrings
separated by padding indicator characters. The field length is the distance on the input
line from the position where the field begins to the next tab stop. The difference between
the total length of all the substrings and the field length is incorporated as horizontal
padding space that is divided among the indicated padding places. The incorporated
padding is allowed to be negative. For example, if the field delimiter is # and the padding
indicator is " , then

"xxx"right #

specifies a right-justified string with the string xxx centered in the remaining space.

+ Note Values separated by a semicolon (;) in the "Initial value" field in Table 3-12 are
for the nroff and t roff formatters, respectively. •

Table 3-12 Field requests

Initial
Request form value

fc [a] [b] Off

. lc [c)

. ta nt • • • 8n; 0.5 in.

t c [c] None

If no
argument

Off

None

None

None

ExpJanati.on

Field delimiter is set to a. The padding indicator is set to the space character or to b,
if given. In the absence of arguments, the field mechanism is turned off.

Leader repetition character becomes c or is removed specifying motion. Relevant
parameters are a part of the current environment.

Set tab stops and types. The adjustment within the tab is as follows:

Type Result

R Right

C Centering

Absent Left
Tab stops for the troff fonnatter are preset every 0.5 inch; tab stops for the
nroff formatter are preset every eight nominal character widths. Stop values are
separated by spaces, and a value preceded by + is treated as an increment to the
previous stop value. Relevant parameters are a part of the current environment. The
scale indicator is ignored if not specified in the request.

Tab repetition character becomes c or is removed specifying motion. Relevant
parameters are a part of the current environment.

Structuring the page 3-27

Advanced features

3-28

The following section describes the various advanced features you can use with
nroff/t roff formatters.

Creating macros and strings

A macro is a named set of arbitrary lines that can be invoked by name or with a trap. A
string is a named string of characters, not including a newline character, that can be
interpolated by name at any point. Request, macro, and string names share the same
name list. Macro and string names may be one- or two-characters long and may usutp
previously defmed request, macro, or string names. Any of these entities may be renamed
with o rn or removed with o rm.

• Macros are created by o de and 0 di and appended by 0 am and o da (o di and o da
cause normal output to be stored in a macro).

• Strings are created by 0 ds and appended by o as.

A macro is invoked in the same way as a request; a control line beginning .xx will
interpolate the contents of macro xx. The remainder of the line can contain up to nine
arguments. The strings x and xx are intetpolated at any desired point with \ * x and
\ * < � respectively. String references and macro invocations can be nested within text.

Interpreting copy mode input

During the defmition and extension of strings and macros in the current environment, the
input is read in copy mode. The input is copied without interpretation except that

• contents of number registers indicated by \ n are intetpolated

• strings indicated by \ * are intetpolated (see "Macros and Strings" earlier in this
chapter)

• arguments indicated by \ $ are intetpolated

• concealed newline characters indicated by \RE'ruRN are eliminated

• comments indicated by \ " are eliminated (see "Comments and Concealed Newline
Characters")

Chapter 3 nroff/troff Formatters

• \ t and \a are interpreted as ASCII horizontal tab and start of heading (SOH),
respectively (see "Setting Tabs" later in this chapter)

• \ \ is interpreted as " \ "

• \ . is interpreted as " . "

These interpretations can be suppressed by preftxing a \ . For example, because \ \
maps into a \ , \ \n will copy as \n, which will be interpreted as a number register
indicator when the macro or string is reread.

Defining arguments

When a macro is invoked by name, the remainder of the line can contain up to nine
arguments. The argument separator is the space character, and arguments may be
surrounded by double quotation marks to permit embedded space characters. Pairs of
double quotation marks may be embedded in double-quoted arguments to represent a
single double-quote. If the desired arguments will not ftt on a line, a concealed newline
character may be used to continue on the next line.

When a macro is invoked, the input level is pushed down, and any arguments
available at the previous level become unavailable until the macro is completely read and
the previous level is restored. A macro's own arguments can be interpolated at any point

within the macro with \ $ n, which interpolates the nth argument (1 � n � 9). If an
invoked argument does not exist, a null string results. For example, the macro xx may be
defmed by

. de XX \ " begin definition
Today is \ \ $ 1 the \ \ $ 2 .

\ " end definit ion

and called by

. xx Monday 1 4th

to produce the text

Today is Monday the 14th.

The \ $ was concealed in the deftnition with a preceding backslash. The number of
currently available arguments is in the . $ register.

Advanced features 3-29

No arguments are available

• at the top (nonmacro) level in this implementation

• from within a string because string referencing is implemented as an input -level
pushdown

• within a trap-invoked macro

Arguments are copied in copy mode onto a stack, where they are available for
reference. The mechanism does not allow an argument to contain a direct reference to a
long string (interpolated at copy time), and it is advisable to conceal string references
(with an extra \) to delay interpolation until argument reference time.

Creating diversions: Storing and redirecting text

Processed output may be diverted into a macro for purposes such as footnote processing
or determining the horizontal and vertical sizes of some text for conditional changing of
pages or columns. A single diversion trap can be set at a specified vertical position. The
number registers . dn and . dl, respectively, contain the vertical and horizontal sizes of
the most recently ended diversion. Processed text that is diverted into a macro retains the
vertical size of each of its lines when reread in no-fill mode regardless of the current v.
Constant-spaced (. cs) or emboldened (. bd) text that is diverted can be reread correctly
only if these modes are again or still in effect at reread time. One way to do this is to
embed in the diversion the appropriate . c s or . bd request with the transparent
mechanism (described in "Transparent Throughput" later in this chapter). #

Diversions may be nested, and certain parameters and registers are associated with
the current diversion level (the top nondiversion level may be thought of as diversion
level 0). These parameters and registers are

• diversion trap and associated macro

• no-space mode

• internally saved marked place (see . mk and . rt)

• current vertical place (. d register)

• current high-water text base line (. h register)

• current diversion name (. z register)

3-30 Chapter 3 nroff/troff Formatters

Using traps

Three types of trap mechanisms are available:

• page trap

• diversion trap

• input -line-count trap

Macro-invocation traps can be planted using . wh requests at any page position,
including the top. This trap position can be changed using the . ch request. Trap
positions at or below the bottom of the page have no effect unless or until moved to
within the page or rendered effective by an increase in page length. Two traps may be
planted at the same position only by first planting them at different positions and then
moving one of the traps; the first planted trap will conceal the second unless and until the
first one is moved. If the first planted trap is moved back, it again conceals the second
trap. The macro associated with a page trap is automatically invoked when a line of text
whose vertical size reaches or sweeps past the trap position is generated. Reaching the
bottom of a page springs the top-of-page trap, if any, provided there is a next page. The
distance to the next trap position is available in the . t register; if there are no traps
between the current position and the bottom of the page, the distance returned is the
distance to the page bottom.

Macro-invocation traps, effective in the current diversion, can be planted using . dt
requests. The . t register works in a diversion. If there is no subsequent trap, a large
distance is returned. (See Table 3-13.)

Table 3-13 Trap requests

Request form

. am xx [�

• as xx string

. ch xx [n]

. da [xxi

Initial
value

If no
argument

Jry� = . .
Ignored

End

ExpJanation

Append to macro xx(append version of . de).

Append string to string xx(append version of . ds).

Change trap location. Change the trap position for macro xx to be n. In the
absence of n, the trap, if it exists, is removed. The scale indicator is ignored
if not specified in the request.

Divert and append to macro xx (append version of the . di request).
Mode or relevant parameters are associated with current diversion level.

(continued)•

Advanced features 3-31

Table 3-13 Trap requests (continued)

Initial If no
Request form value argument Explaoadon

. de xx [� ·.Y.Y = .. Defme or redefme macro xx. The contents of the macro begin on the next
input line. Input lines are copied in copy mode until the defmition is
terminated by a line beginning with ·.Y.Y· The macro .Y.Y is then called. In the
absence of .Y.)', the defmition is terminated by a line beginning with • • • A
macro may contain • de requests provided the terminating macros differ or
the contained defmition terminator is concealed; • • can be concealed as
\ \ • • , which will copy as \ • • and be reread as • • •

. di [xx] End Divert output to macro xx. Normal text processing occurs during diversion
except that page offsetting is not done. The diversion ends when the request
. di or • da is encountered without an argument; extraneous requests of
this type should not appear when nested diversions are being used. Mode or
relevant parameters are associated with current diversion level.

. ds xx string Ignored Defme a string xx containing string. Any initial double quotation marks in
string is stripped to permit initial blanks.

. dt [n] [xti Off Install a diversion trap at position n in the current diversion to invoke macro
xx. Another . dt will redefme the diversion trap. If no arguments are
given, the diversion trap is removed. Mode or relevant parameters are
associated with current diversion level. The scale indicator is ignored if not
specified in the request.

. em xx None None End macro. Macro xxwill be invoked when all input has ended. The effect is

the same as if the contents of xx had been at the end of the last file
processed .

. it [n] [xti Off Input-line-count trap. An input-line-count trap is set to invoke the macro xx
after n lines of text input have been read (control or request lines do not
count). Text may be in line or interpolated by in line or trap-invoked
macros. Relevant parameters are a part of the current environment.

. rm xx Ignored Remove. A request, macro, or string is removed. The name xx is removed
from the name list, and any related storage space is freed. Subsequent
references have no effect.

. rn XX.Y.Y Ignored Rename. Rename request, macro, or string from xxto .Y.Y· If ,Y.Yexists, it is

first removed .

. wh n [X\i When. A location trap is set to invoke macro xx at page position n; a
negative n is interpreted with respect to the page bottom. Any macro
previously planted at n is replaced by xx. A zero n refers to the top of a
page. In the absence of xx, the ftrst found trap at n, if any, is removed. The
scale indicator is ignored if not specified in the request.

3-32 Chapter 3 nroff/t roff Fonnatters

�

-�

-�

Storing values: Creating number registers

A variety of predefmed number registers are available to the user. In addition, the user
may define his or her own named registers. Register names are one- or two-characters
long and do not conflict with request, macro, or string names. Except for certain
predefined read-only number registers, a number register can be read, written,
automatically incremented or decremented, and interpolated into the input in a variety of
formats. One common use of user-defined registers is to automatically number sections,
paragraphs, lines, and so on. A number register can be used any time numeric input is
expected or desired and can be used in numeric expressions.

Number registers are created and modified using the . nr request, which specifies
name, numeric value, and automatic increment size. Registers are also modified if
invoked with an automatic incrementing sequence. If the registers x and xx both contain
n and have the automatic increment size m, the access sequences have the effects shown
in Table 3-14.

Table 3-14 Number register access sequences

Sequence Effect on reguster Value interpolated

nx None n

n(.u None n

n + x x incremented by m n + m

n-x x decremented by m �m

n + (xx xx incremented by m n + m

n-{.u xx decremented by m �m

According to the format specified by the . a f request, a number register is converted
(when interpolated) to one of the following:

• decimal (default)

• decimal with leading zeros

• lowercase Roman

• uppercase Roman

• lowercase sequential alphabetic

• uppercase sequential alphabetic

Advanced features 3-33

The escape sequence "\gi' or " \g <xi' gives the format used by register x or xx. This
escape sequence will return a value only if the stated register has been set or used;
otherwise, it returns 0. The value can also be saved and used as the second argument of

. af to restore ·a previous format. (See Table 3-15.)

Table 3-15 Number register requests

Request form

. af r c

. nr r ±n m

. rr r

Initial
value

Arabic

If no
argument Explanation

Assign format. Format c is assigned to register r. Available formats are

1 0,1 ,2, ...
0 0 1 000,001,002, . . .
i O,i,ii, . . .

I 0,1,11, .. .
a O,a,b, ... ,z,aa,ab, . . . ,zz, aaa, . . .
A O,A,B, . . . ,Z,AA,AB, ... ,ZZ, AAA, ...
An Arabic format having n digits specifies a field width of n digits. Read-only
registers and width function are always Arabic.

Number register. The number register ris assigned the value ±n with respect -�
to the previous value, if any. The automatic incrementing value is set to m.
The number register value (n) is ignored if not specified in the request.

Remove register. The number register ris removed. If many registers are
being created dynamically, it may be necessary to remove registers that are
no longer used in order to recapture internal storage space for newer
registers.

Creating three-part titles

The titling function • t 1 provides for automatic placement of three fields at the left,
center, and right of a line with a title length specifiable with . lt . The . t l may be used
anywhere and is independent of the normal text-collecting process. A common use is in
header and footer macros. (See Table 3-16.)

3-34 Chapter 3 nroff/troff Formatters

Table 3-16 Three-part title requests

Request form

. lt [±n]

. pc [c)

Initial
value

6.5 in.

%

If no
argument

Previous

Off

Explanation

Length of title set to ±n. Line length and title length are independent. Indents
do not apply to titles; page offsets do. Relevant parameters are a part of the
current environment. The scale indicator is ignored if not specified in the
request.

Page number character set to c or removed. The page number register
remains %.

. t 1 ' /eft' center' right' Three-part title. The strings left, center, and right are respectively left
adjusted, centered, and right -adjusted in the current title length. Any of the
strings may be empty, and overlapping is permitted. If the page number
character (initially %) is found within any of the fields, it is replaced by the
current page number having the format assigned to register % . Any character
may be used as the string delimiter.

Spacing characters on a line: Setting horizontal and
vertical motion and width

This section explains how t roff creates superscripts and subscripts and how you can
space characters horizontally on a line by adding or reducing space.

Moving characters within a line: Setting local motion

The functions \ v' n' and \h' n' can be used for local vertical and horizontal motion,
respectively. The distance n may be negative; the positive directions are rightward and
downward. A local motion is one contained within a line. To avoid unexpected vertical
dislocations, it is necessary that the net vertical local motion (within a word in ftlled text
and otherwise within a line) balance to 0.

As an example, E2 is generated by the sequence

E \v' - . 5 ' \ s-4 \ & 2 \ s O \v' . s�

Advanced features 3-3;

Spacing characters within a line: Setting width

The width function \ w' string' generates the numeric width of string in basic units.
Size and font changes may be embedded in string and will not affect the current
environment. For example,

. ti - \w' l . ' u

could be used to temporarily indent leftward a distance equal to the size of the string "1 ." .
The width function also sets three number registers. The registers st and sb are sets,

respectively, to the highest and lowest extents of string relative to the base line; then, for
example, the total height of the string is \n (stu- \n (shu. In the t roff formatter, the
number register ct is set to a value between 0 and 3:

• o means that all characters in string are short lowercase characters without
descenders Oike the character e).

• 1 means that at least one character has a descender Oike the character y) .

• 2 means that at least one character is tall Oike the character H).

• 3 means that both tall characters and characters with descenders are present.

Overprinting text: Marking horizontal place

The escape sequence \kxwill cause the current horizontal position in the input line to
be stored in register x. As an example, the construction:

\kx\fiword\ fR\h ' l \nxu+2u ' \ f iword\ fR

will boldface word by backing up and overprinting it, resulting in

word

3-36 Chapter 3 nroff/t roff Formatters

Nu�bering output lines

Automatic sequence numbering of output lines can be requested with . nm. When it is in
effect, a three-digit Arabic number and a digit space are preftxed to output text lines. Text
lines are offset by four digit -spaces and otherwise retain their line length. A reduction in
line length may be desired to keep the right margin aligned with an earlier margin. Blank
lines, other vertical spaces, and lines generated by . t 1 are not numbered. Numbering
can be temporarily suspended with . nn or with a • nm followed by a later . nm + o . In
addition, a line number indent i and the number-text separation s can be specifted in digit
spaces. Further, it can be specifted that only those line numbers that are multiples of
some number m are to be printed (the others will appear as blank number ftelds). (See
Table 3-17.)

Table 3-17 Output line numbering requests

Request form

• nm [±n] [m] [� [t]

• nn [n]

Initial
value

If no
argument

off

n = 1

Explanation

Line number mode. If ±n is given, line numbering is turned on, and the next
output line is numbered ±n. Default values are m = 1 , s = 1 , and i = 0.
Parameters corresponding to missing arguments are unaffected; a non
numeric argument is considered missing. In the absence of all arguments,
numbering is turned off, and the next line number is preserved for possible
further use in number register ln. Relevant parameters are a part of the
current environment.

Next n lines are not numbered. Relevant parameters are a part of the current
environment.

Advanced features 3-37

3-38

The following example illustrates output line numbering. Paragraph portions are
numbered with m = 2.

Automatic sequence numbering of output lines may be

2 requested with . run. When in effect, a three-digit Arabic number and a digit

space areeee prefixed to output text four lines. Text lines are offset by four

4 digit spaces and otherwise retain their line length. A reduction in line

length (such as . 11 -\w ' oooo ' u in this example) may be desired to keep the

right margin aligned with an earlier margin.

6 Blank lines, other vertical spaces, and lines generated 10 by . t 1 are
8 not numbered. Numbering can be temporarily suspended with . nn or with a

• run followed by a later . nm 12 +0.

10 In addition, a line number indent i and the number-text separation s may be

specified in digit spaces. Further, it can be specified that

1 2 only those line numbers that are multiples of some number m are to be

printed (the others will appear as blank number fields). This example uses

the multiple of 2.

• . 11 - \ w' o o o o ' u was placed at the beginning to keep the right margin aligned.

• • nrn 1 2 was placed at the beginning.

• • nrn + o was placed in front of the second and third paragraphs.

• • nrn was placed at the end.

• . 11 + \ w' o o o o ' u was placed at the end to return to the original line length.

Another example is

. nrn +5 5 x 3

which turns on numbering with the line number of the next line to be five greater than
the last numbered line, with m = 5, spacing s untouched, and the indent i set to 3.

Chapter 3 nroff/troff Formatters

Using conditionals

In Table 3-18, which is a summary and explanation of conditional acceptance requests,

• c is a one-character, built -in condition name

• � signifies not

• n is a numeric expression

• string 1 and string2 are strings delimited by any nonblank, non-numeric character not
in the strings

• anything represents what is conditionally accepted

Table 3-18 Summary and explanation of conditional acceptance requests

Request form

. e l anything

. ie c anything

. if c anything

. i f ! c anything

. if n anything

. if ! n anything

. i f 'string1 'string2'anything

. i f ! 'string1 'string2'anything

Explanation

The "else" portion of "if-else."

The "if' portion of "if -else." The c can be any of the fonns
acceptable with the • i f request.

If condition cis true, accept anything as input; for multiline case,
use \ { anything\ } . The scale indicator is ignored if not
specified in the request.

If condition cis false, accept anything .

If expression n > 0, accept anything. The scale indicator is
ignored if not specified in the request.

If expression n � 0, accept anything. The scale indicator is
ignored if not specified in the request.

If stringl is identical to string2, accept anything .

If string 1 is not identical to string2, accept anything .

Table 3-19 lists built-in condition names.

Advanced features 3-39

3-40

Table 3-19 Built-in condition names

Condition name True if

o Current page number is odd.

e Current page number is even.

t Formatter is t roff.
n Formatter is nroff.

If condition c is true, if number n is greater than 0, or if strings compare identically
(including motions and character size and font), anything is accepted as input. If a !
precedes the condition, number, or string comparison, the sense of the acceptance is
reversed.

Any spaces between the condition and the beginning of anything are skipped over.
The anything can be either a single input line (text, macro, or whatever) or a number of
input lines. In the multiline case, the frrst line must begin with a left delimiter \ { and the
last line must end with a right delimiter \ } .

The request . ie (if-else) is identical to . i f except that the acceptance state is
remembered. A subsequent and matching . el (else) request then uses the reverse sense
of that state. The . ie - . el pairs may be nested. For example,

. if e . t l ' Even Page % ' ' '

generates a title if the page number is even, and

. ie \n%>1 \ { \

' sp O . S i

. t l ' Page % ' ' '

' sp l 1 . 2i \ }

. el . sp l 2 . 5i

treats page 1 differently from other pages.

Chapter 3 nroff/troff Formatters

Switching environments

A number of parameters that control text processing are gathered together into an
environment, which can be switched by the user. Environment parameters are those
associated with some requests. The request tables in this chapter indicate in the
"Explanation" column those requests so affected. In addition, partially collected lines and
words are in the environment. Everything else is global; examples are page-oriented
parameters, diversion-oriented parameters, number registers, and macro and string
definitions. All environments are initialized with default parameter values. (See Table
3-20.)

Table 3-20 Environment switching request

Request form

. ev [n]

Initial
value

n = O

If no
argument

Previous

Explanadon

Environment switched to 0, 1, or 2. Switching is done in pushdown fashion
so that restoring a previous environment must be done with • e v rather
than specific reference.

Inserting from standard input

The input can be switched temporarily to the system standard input with . rd and
switched back when two newline characters in a row are found (the extra blank line is
not used). This mechanism is intended for insertions in form-letter-like documentation.
On the A/UX operating system, the standard input can be the user keyboard, a pipe, or a
ftle.

If insertions are to be taken from the terminal keyboard while output is being printed
on the terminal, the flag option -q will turn off the echoing of keyboard input and
prompt only with BEL. The regular input and insertion input cannot simultaneously come
from the standard input. As an example, multiple copies of a form letter can be prepared
by entering insertions for all copies in one file to be used as the standard input and
causing the file containing the letter to reinvoke itself by using the . nx request. The
process would be ended by a . ex request in the insertion ftle. (See Table 3-21 .)

Advanced features 3-41

Table 3-21 Standard input insertion requests

Request form

. ex

. rd [promp4

lnidal
value

If no
argument Explanation

Exit from the nroff/troff formatter. Text processing is terminated
exactly as if all input had ended.

prompt .. BEL Read insertion from the standard input until two newline characters in a row
are found. If standard input is the user keyboard, a prompt(or a BEL) is
written onto the user tenninal. The request behaves like a macro; arguments
may be placed after prompt.

Switching input/ output files

Table 3-22 lists requests for switching input/output files.

Table 3-22 Input/output switching requests

Request form

. c f filename

. l f nfile

• nx (filena�

. pi program

• so filename

lnidal
value

If no
argument

End-of-me

Explanation

Copy the contents of file, unintetpreted into t ro f f output ftle at this point.
Havoc ensues unless the motions in the ftle restore the current horizontal
and vertical positions .

Correct troff's idea of the current line number, n, and the current me, file,
for use in error messages .

Next ftle is filename. The current ftle is considered ended, and the input is
immediately switched to filename.

Pipe output to program. This request must occur before any printing occurs .
No arguments are transmitted to program .

Switch source ftle (pushdown). The top input level (ftle reading) is switched
to filename. Contents are interpolated at the point the request is
encountered. When the new ftle ends, input is again taken from the original
ftle. The . so requests may be nested.

3-42 Chapter 3 nroff/troff Formatters

Reading output and error messages

Output from . tm and . pm, prompt from . rd, and various error messages are written
onto the A/UX operating-system standard message output. The latter is different from the
standard output, when compared to the nroff formatted output. By default, both are
written onto the user's terminal, but they can be independently redirected. (See Table
3-23.)

Various error conditions can occur during the operation of the nroff and t roff
formatters. Certain less serious errors having only local impact do not cause processing to
terminate. Two examples are

• word overflow: caused by a word that is too large to fit into the word buffer (in
fill mode)

• line overflow : caused by an output line that grew too large to fit in the line
buffer

In both cases, a message is printed, the offending excess is discarded, and the
affected word or line is marked at the point of truncation with a * (in nroff) or a => (in
t roff). The usual procedure is to continue processing, if possible, on the grounds that
output useful for debugging may be produced. If a serious error occurs, processing
terminates, and an appropriate message is printed. Error conditions that can cause this
include the inability to create, read, or write files, and the exceeding of certain internal
limits that make future output unlikely to be useful.

Table 3-23 Output printing request

Request form

• ab [text]

Initial
value

If no
argument ExpJanation

Print text on the message output and terminate without further processing. If
text is missing, user Abort • is printed. This request does not cause a
break. The output buffer is flushed.

Advanced features 3-43

Miscellaneous requests

Table 3-24 lists those requests that are not found in other tables, such as requests that
flush the output buffer, ignore input lines, set margin character, print macro, execute cmd
without capturing output, and print string on a terminal.

Table 3-24 Miscellaneous requests

Initial If no
Request form value argument Explanation

. fl Flush output buffer. Used in interactive debugging to force output. The
request causes a break.

. ig [� ·.Y.Y= .. Ignore input lines until call of .Y.Y· This request behaves like the • de request
except that the input is discarded. The input is read in copy mode, and any
automatically incremented registers will be affected .

• me c [n] Off Set margin character c and separation n. Specify that a margin character c
appear a distance n to the right of the right margin after each nonempty text
line (except those produced by . t l). If the output line is too long (as can
happen in no-fill mode), the character will be appended to the line. If n is
not given, the previous n is used; the initial n is 0.2 inches in the nroff

formatter and 1 em in t ro f f. Relevant parameters are a part of the current
environment. The scale indicator is ignored if not specified in the request.

. pm [d All Print macros. The names and sizes of all defmed macros and strings are
printed on the user terminal. If tis given, only the total of the sizes is
printed. Sizes are given in blocks of 128 characters.

• sy cmd atgs cmd is executed but its output is not captured at this point. The standard
input for cmd is closed. Output for processing must be explicitly saved in an
output file.

• tm [string] Newline Print string on terminal (A/UX operating system standard message output) .
After skipping initial blanks, string (rest of the line) is read in copy mode and
written on the user terminal.

Chapter 3 nroff/troff Formatters

�

Input/ output conventions and
character translations

The following sections explain input/ output characters and conventions found in
nroff/t roff formatters.

Input character translations

The newline character delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are
accepted and can be used as delimiters or translated into a graphic with a . t r request.
All others are ignored.

The escape character (\) introduces sequences that indicate some function such as a
font change or the printing of a special character. The escape character

• should not be confused with the ASCII control character ESC of the same name

• can be input with the sequence \ \

• can be changed with . ec, and all that has been said about the default \ becomes
true for the new escape character

A \ e sequence can be used to print the current escape character. If necessary or
convenient, the escape mechanism can be turned off with . eo and restored with . ec.

Ligatures

Two ligatures are available in the t roff character set: fi and fl. They may be entered
(even in the nro f f formatter) by \ (fi and \ (fl, respectively. Note that ligature mode
is normally on in the t ro f f formatter; that is, ligatures are automatically produced.
Constant-width fonts normally do not use ligatures.

Input/ output conventions and character translations 3-45

Control characters

Both the break control character (.) and the no-break control character (I) may be
changed, if desired. Such a change must be compatible with the design of any macros
used in the span of the change and particularly with any trap-invoked macros.

Output translation

One character can be made a stand-in for another character using the . t r request. All
text processing (for example, character comparisons) takes place with the input (stand
in) character, which appears to have the width of the fmal character. Graphic translation
occurs at the moment of output (including diversion).

+ Note Values separated by a semicolon (;) in the "Initial value" field in Table 3-25 are
for the nroff and t roff formatters, respectively. •

Table 3-25 Output translation requests

Request form

• cc [c)

. cu [n]

• c2 [c)

.ec [c)
. eo
. lg [n]

Initial
value

Off

\
On

If no
argument

n = 1

\

Off; on On

ExpJanation

Set control character to cor reset to • . Relevant parameters are a part of the
current environment.

Continuous underline in the nroff fonnatter. A variant of . ul that causes
every character to be underlined. Identical to • ul in the t ro f f fQnnatter.
Relevant parameters are a part of the current environment.

Set no-break control character to cor reset to 1 • Relevant parameters are a
part of the current environment.

Set escape character to \ or to c if given.

Turn escape character mechanism off.

Ligature mode is turned on if n is absent or nonzero and turned off if
n = 0. If n = 2, only the two-character ligatures are automatically invoked.
Ligature mode is inhibited for requests, macros, strings, registers, filenames,
and copy mode. There is no effect in the nroff fonnatter.

Chapter 3 nroff/troff Fonnatters

Table 3-25 Output translation requests (continued)

Initial
Request form value

. t r abed. • • None

. uf f Italic

. ul [n] Off

If no
argument

Italic

n = 1

ExpJanation

Translate a into b, c into d, and so forth on output. If an odd number of
characters is given, the last one will be mapped into the space character. To
be consistent, a particular translation must stay in effect from input to output
time. Initially there are no translate values.

lJnderline font set tof(to be switched to by . ul). In the nroff formatter/
may not be on position 1 (initially Times Roman).

Underline in the nroff formatter (italicize in t roff) the next n input text
lines. Switch to underline font, saving the current font for later restoration;
other font changes within the span of a . ul will take effect, but the
restoration will undo the last change. Output generated by • t 1 is affected
by the font change but does not decrement n. If n is greater than 1, there is
the risk that a trap-interpolated macro may provide text lines within the
span, which environment switching can prevent. Relevant parameters are a
part of the current environment.

Transparent throughput

An input line beginning with a \ ! is read in copy mode and transparently output (without
the initial \ !); the text processor is otherwise unaware of the line's presence. This is
known as transparent throughput This mechanism may be used to pass control
information to a postprocessor or to embed control lines in a macro created by a diversion.

Comments and concealed newline characters

An unusually long input line that must stay one line (for example, a string defmition or
no-filled text) can be split into many physical lines by ending all but the last one with the
escape character (\). The sequence \RETURN is ignored except in a comment.

Comments can be embedded at the end of any line by prefacing them with \ " . The
newline character at the end of a comment cannot be concealed. A line beginning with
\ " will appear as a blank line and behave like . sp 1; a comment can be on a line by
itself by beginning the line with . \ " .

Input/output conventions and character translations 3-47

Reference tables

The following tables are your guides to escape sequences, naming conventions, and
predefined number registers.

Table 3-26 Escape sequences for characters, indicators, and functions

EsCape sequence

\ \
\e
\ ,
\ '
\ -
\ .
\SPACE BAR
\ 0
\ I
\ "'
\ &
\ !
\ "
\ $ n
\ %
\ (XX
\ *x, \ * (xx

\ {
\ }
\RETURN
\a
\b' abc • • • '

\ c
\ d
\ D

Meaning

\ (to prevent or delay the interpretation of \)
Printable version of current escape character.

Acute accent (equivalent to \ (a a).

Grave accent (equivalent to \ (ga).

- (minus sign in the current font).

Period (dot).

Unpaddable space-size space character.

Unpaddable digit-width space.

1/6-em narrow space character (zero width in nroff).

1/12-em half-narrow space character (zero width in nroff).

Nonprinting zero-width character.

Transparent line indicator.

Beginning of comment •
Interpolate argument (1 � n � 9).

Default optional hyphenation character.

Character named xx.
Interpolate string x or xx.

Begin conditional input.

End conditional input.

Concealed (ignored) newline character.

Uninterpreted leader character.

Bracket building function.

Continuation of interrupted text.

Forward (down) 1/2-em vertical motion (1/2 line in nroff).

Line-drawing functions.

3-48 Chapter 3 nroff/troff Formatters

------- ---- ----� ------ --

Table 3-26 Escape sequences for characters, indicators, and functions (continued)

Escape sequence
\ fx, \ f (xx, \ fn
\gx,\g (XX
\h' n'
\H' n'
\kx
\ 1 ' nc'
\L ' nc'
\ nx,\n (XX
\o' abc • • • '
\p
\r
\ s n, \ s±n
\t
\u
\v' n'
\ w ' string'
\x ' n'
\ zc
\X

Meaning

Change to font named xor xxor position n.
Return the . af-type format of the register xor xx.

Local horizontal motion, move right n (negative left).

Height control of characters (does not affect width).

Mark horizontal input place in register x.

Horizontal line drawing function (optionally with c).

Vertical line drawing function (optionally with c).

Interpolate number register x or xx.

Overstrike characters a, b, c. • •

Break and spread output line.

Reverse 1-em vertical motion (reverse line in nroff).

Point -size change function.

Uninterpreted horizontal tab.

Reverse (up) 1/2-em vertical motion (1!2 line in nroff).

Local vertical motion, move down n (negative up).

Interpolate width of string.
Extra line-space function (negative before, positive after).

Print cwith zero width (without spacing).

Any character not listed above.

+ Note Escape sequences \\ , \ . , \ " , \$, * , \a, \n, \t, and \RETuRN are
interpreted in copy mode. •

Reference tables 3-49

Table 3-27 Naming conventions for special characters on the standard fonts

Chat Input name Character name

Close quotation mark

Open quotation mark

\ (em 3/4-em dash

Hyphen

\ (hy Hyphen

\ - Current font minus

• \ (bu Bullet

0 \ (sq Square

\ (ru Rule

1/4 \ (1 4 One-fourth

3-50 Chapter 3 nroff/t roff Formatters

Chat Input name

1/2 \ (1 2
3/4 \ (3 4
fi \ (fi
tl \ (fl

\ (de

t \ (dg
¢ \ (fm
¢ \ (ct
® \ (rg
© \ (co

Character name

One-half

Three-fourths

fi

tl
Degree

Dagger

Foot mark

Cent sign

Registered

Copyright

Table 3-28 Naming conventions for Greek characters on the special font

Char Input name Character name Char Input name Character name

A \(*A Alpha* a. \(*a alpha

B \(*B Beta* � \(*b beta

r I (*G Gamma 'Y \(*g gamma

L1 \(*D Delta 0 \(*d delta

E \(*E Epsilon* £ \(*e epsilon

z \(*Z Zeta* � \(*z zeta

H \(*Y Eta* 11 \(*y eta

e \(*H Theta e \(*h theta

I \(*1 Iota* t \(*i iota

K \(*K Kappa* K \(*k kappa

A \(*L Lambda A. \(*1 lambda

M \(*M Mu* fl \(*m mu

N \(*N Nu* u \(*n nu
... \(*C Xi � \(*c xi
0 \(*0 Omicron* 0 \(*o omicron

n \(*P Pi 1t \(*p pi

p I (*R Rho* p \(*r rho

l: \(*S Sigma 0' \(*s sigma

� \(ts terminal sigma

T \(*T Tau* 't \(*t tau

'I' \(*U Upsilon 0 \(*u upsilon

<I> \(*F Phi <I> \(*f phi

X \(*X Chi* 0 \(*x chi

'I' \(*Q Psi 'I' \(*q psi

n \(*W Omega co \(*w omega

* Mapped into uppercase English letters in the font mounted on font position one.

Reference tables 3-51

Table 3-29 Naming conventions for special characters on the special font

Char Input Character
. name name

+ \ (pl Math plus

\ (mi Math minus

± \ (+- Plus-minus

X \ (mu Multiply

+ \ (di Divide

\ (eq Math equals

� \ (>= Greater than or equal

s \ (<= Less than or equal

- \ (== Identically equal

= \ (= Approximately equal

\ (ap Approximates

'¢ \ (! = Not equal

� \ (sr Square route

\ (rn Root en extender

u \ (cu Cup (union)

(1 \ (ca Cap (intersection)

c \ (sb Subset of

::::> \ (sp Superset of

c \ (ib Improper subset

::::> \ (ip Improper superset

E \ (mo Member of

0 \ (es Empty set

00 \ (if Infinity

a \ (pd Partial derivative

v \ (gr Gradient

I \ (is Integral sign

oc \ (pt Proportional to

..., \ (no Not

3-52 Chapter 3 nroff/troff Formatters

Char Input
name

* \ (* *

I \ (or

I \ (s l
§ \ (s c

\ (aa
\ (ga
\ (ul

-+ \ (->
-+ \ (<-
i \ (ua
J, \ (da

* \ (dd
• \ (bs
� \ (lh
:::) \ (rh

\ (br
0 \ (ci

I \ (bv

r \ (lc

1 \ (rc
L \ (lf
J \ (rf

(\ (lt

l \ (rt

L \ (lb

J \ (rb

� \ (lk
� \ (rk

Character
name

"Math star"

Or
Slash

Section

Acute accent

Grave accent

Underrule

Right arrow

Left arrow

Up arron

Down arrow

Double dagger

"Bell System logo"

"Left hand"
�-------

"Right hand"

Box vertical rule

Circle

Bold vertical

Left ceiling (bracket)

Right ceiling

Left floor

Right floor

Left top (brace)

Right top

Left bottom

Right bottom

Left center

Right center

Table 3-30 Predefmed general number registers

Register name

%
. b
. c

. R
ct
dl
dn
dw
dy
ln
mo

nl
sb
st
yr

Description

Current page number.

Boldfacing factor of the current font.

Provides general register access to the input line number in the current input me .
Contains the same value as the read-only • c register.

Number of number registers that remain available for use .

Character type (set by width function).

Width (maximum) of last completed diversion.

Height (vertical size) of last completed diversion.

Current day of the week (1 through 7).

Current day of the month (1 through 31).

Output line number.

Current month (1 through 12)'.

Vertical position of last printed text base line.

Depth of string below base line (generated by width function).

Height of string above base line (generated by width function).

Last two digits of current year.

Reference tables 3-53

Table 3-31 Predefmed read-only number registers

Register name

. $
$ $
. A
• F
• H
. L

. P

. T

. v

. a

. c

• d
. f
. h
. i
. j

. k

. 1

. n

. o

. p

. s

. t

. u

. v

. w

. x

• y
. z

Desaiption

Number of arguments available at the current macro level.

Identification number (process ID) for nroff or troff processes.

Set to 1 in the troff formatter if -a option used; always 1 in the nroff formatter. �

Value is a string that is the name of the current input file .

Available horizontal resolution in basic units .

Contains the current line spacing parameter (the value of the most recent . 1 s
request).

Contains the value 1 if the current page is being printed and is 0 otherwise, that is, if
the current page did not appear in the -o option list.

Set to 1 in the nroff formatter if -T flag option used; always 0 in the t roff
formatter.

Available vertical resolution in basic units .

Post-line extra line space most recently utilized using •
Number of lines read from current input file .

Current vertical place in current diversion: equal to nl if no diversion .

Current font as physical quadrant (1 through 4) .

Text base-line high-water mark on current page or diversion .

Current indent.

Indicates the current adjustment mode and type. Can be saved and later given to the
• ad request to restore a previous mode.

Contains the horizontal size of the text portion (without indent) of the current
partially collected output line, if any, in the current environment.

Current line length .

Length of text portion on previous output line .

Current page offset.

Current page length .

Current point size .

Distance to the next trap .

Equal to 1 in fill mode and 0 in no-fill mode .

Current vertical line spacing .

Width of previous character .

Reserved version-dependent register .

Reserved version-dependent register .

Name of current diversion .

3-54 Chapter 3 nroff/t roff Formatters

4 mrn Macros

What are mm macros, and why should you use them? I 4-3

Options and commands for accessing mm macros I 4-5

Working with text I 4-13

Structuring the page I 4-25

Creating lists I 4-45

Creating memorandum and released-paper style documents I 4-59

Creating displays I 4-78

Creating footnotes I 4-87

Generating a table of contents and cover sheet I 4-90

Using references I 4-93

Troubleshooting I 4-96

Extending and modifying memorandum macros I 4-97

mm examples I 4-101

mm reference tables I 4-106

Error messages I 4-116

This chapter is a guide and reference for users of the memorandum macros. These

macros provide a general-purpose package of text-formatting macros for use with the

A/UX text formatters n ro f f and t ro f f. For more details, see the previous chapter or

refer to nroff(l) and t roff(l) in A!UX Command Reference.

4-2 Chapter 4 mm Macros

What are rnm macros, and why should you
use them?

The following qualities of rnrn have been emphasized in its design in approximate order
of importance:

• Robustness in the face of error-A user need not be an nroff /troff expert to use
the memorandum macros. When the input is incorrect, either the macros attempt to
make a reasonable interpretation of the error or an error message describing the error
is produced. An effort has been made to minimize the possibility that a user will get
cryptic system messages or strange output as a result of simple errors.

• Ease of use for simple documents-It is not necessary to write complex sequences of
commands to produce documents. Reasonable macro argument default values are
provided where possible.

• Setting para met� There are many different preferences in the area of document
styling. Many parameters are provided so that users can adapt input text ftles to
produce documents that meet their respective needs with a wide range of styles.

• Extension by moderately expert us�A strong effort has been made to use
mnemonic naming conventions and consistent techniques in construction of macros.
Naming conventions are given so that a user can add new macros or redefine existing
ones if necessary.

• Device independence-A common use of rnrn is to produce documents on hard copy
via teletypewriter terminals using the nroff formatter. Macros can be used
conveniently with both 10- and 12-pitch terminals. In addition, output can be
displayed on an appropriate CRT terminal. Macros have been constructed to allow
compatibility with the t ro f f(l) formatter so that output can be produced on both a
phototypesetter and a teletypewriter/CRT terminal.

• Minimization of input-The design of macros attempts to minimize repetitive typing.
For example, if a user wants to have a blank line after all first- or second-level
headings, the user need only set a specific parameter once at the beginning of a
document rather than type a blank line after each such heading.

What are mm macros, and why should you use them? 4-3

• Uncoupling of input format from output style-There is but one way to prepare the
input text, although the user may obtain a number of output styles by setting a few
global flags. For example, the . H macro is used for all numbered headings, yet the
actual output style of these headings can be made to vary from document to
document or within a single document.

Required structure for a document

Input for a document to be formatted with the rnm text -formatting macro package has four
major segments, any of which may be omitted. If present, the segments must occur in the
following order:

• The parameter-setting segment sets the general style and appearance of a document.
The user can control page width, margin justification, numbering styles for headings
and lists, page headers and footers, and many other properties of the document. Also,
the user can add macros or redefine existing ones. This segment can be omitted
entirely if the user is satisfied with default values; it produces no actual output, but
performs only the formatter setup for the rest of the document.

• The beginning segment includes those items that occur only once, at the beginning of
a document, for example, title, author's name, and date.

• The body segment is the actual text of the document. It may be as small as a single
paragraph or as large as hundreds of pages. It may have a hierarchy of headings up to
seven levels deep (see "Creating Numbered Headings" later in this chapter). Headings
are automatically numbered (if desired) and can be saved to generate the table of
contents. Five additional levels of subordination are provided by a set of list macros
for automatic numbering, alphabetic sequencing, and "marking" of list items (see
"Creating Lists" later in this chapter). The body may also contain various types of
displays, tables, figures, footnotes, and references (see "Creating Displays," "Creating
Footnotes," and "Using References" later in this chapter).

• The ending segment contains those items that occur only once at the end of a
document. Included are signatures and lists of notations (for example, "Copy to" lists)
(see "Creating End-of-Memorandum Macros" later in this chapter). Certain macros
may be invoked here to print information that is wholly or partially derived from the
rest of the document, such as the table of contents or the cover sheet for a document
(see "Generating a Table of Contents and Cover Sheet" later in this chapter).

4-4 Chapter 4 mm Macros

Existence and size of these four segments vary widely among different document
types. Although a specific item (such as date, tide, author names) of a segment may differ
depending on the document, there is a uniform way of typing it into an input text file.

To make it easy to edit or revise input file text at a later time:

• Input lines should be kept short.

• Lines should be broken at the end of clauses.

• Each new sentence should begin on a new line.

Restricted use of the BEL character
The nonprinting character BEL is used as a delimiter in many macros to compute the
width of an argument or to delimit arbitrary text, for example, in page headers and
footers, headings, and lists. Users who include BEL characters in their input text ftle
(especially in arguments to macros) will receive mangled output. See "Creating Page
Headers and Footers," "Creating Paragraphs," "Creating Numbered Headings," and
"Creating Lists" later in this chapter.

Options and commands for accessing
rnm macros

This part describes how to access rom, illustrates A/UX operating system command lines
appropriate for various output devices, and describes command-line flags for the rom text
formatting macro package.

The mm command

The rom(l) command can be used to prepare documents using the nroff formatter and
the memorandum macros. The rom command has options to specify preprocessing by
tbl or naqn, or both, and for postprocessing by various output filters.

Options and commands for accessing mm macros 4-S

• Note Options can occur in any order but must appear before the fdenames. •

Any arguments or flag options that are not recognized by the mm command (for
example, -rc3) are passed to the nr�ff formatter or to mm, as appropriate. Options are
shown in Table 4-1.

Table 4-1 mm command options

Option

-e

-t
- c
-E
- 1 2

-T2 6 3 1

-T3 0 0
-T3 0 0 s
-T3 7
-T3 8 2
-T4 0 0 0a
-T4 5 0

-T8 3 2
-T8 5 1 0
-Tlp

-Ttn3 0 0
-TX

Meaning

The neqn preprocessor is to be invoked; also causes neqn to read
/usr/pub/eqnchar (see eqnchar(7)).

The tbl(1) preprocessor is to be invoked.

The col(l) postprocessor is to be invoked.

The -e option of the nroff fonnatter is to be invoked.

The 12-pitch mode is to be used. The pitch switch on the terminal should be set to 12
if necessary.

Output is prepared for an HP2631 printer, where -T2 63 1 -e and -T2 63 1-c may
be used for expanded and compressed modes, respectively (implies -c).

Output is to a DASI 300 terminal.

Output is to a DASI 300S.

Output is to a Teletype Model 37.

Output is to a DTC-382.

Output is to a Trendata 4000A.

Output is to a DASI 450. This is the default terminal type (unless $TERM is set; see
sh(l)). It is also equivalent to -T1 6 2 0 .
Output is to an Anderson Jacobson 832 terminal.

Output is to a C.ITOH printer.

Output is to a device with no reverse or partial line motions or other special features
(implies -c).
Output is to a GE TermiNet 300 terminal.

Output is prepared for an EBCDIC line printer.

Any other -T option given does not produce an error; it is equivalent to -Tlp.
A similar command is available for use with the t roff formatter (see mmt(l)).

4-6 Chapter 4 mm Macros

The -mm flag

The rnm package can also be invoked by including the -rnm flag as an argument to the
formatter. The -rnm flag causes the file /usr I lib/tmac/tmac . m to be read and
processed before any other files. This action

• defines the memorandum macros

• sets default values for various parameters

• initializes the formatter to be ready to process input text ftles

Typical command lines

The prototype command lines are as follows (various options are explained in
"Parameters Set From the Command Line" later in this chapter):

• Text without tables or equations:

rnm [optio� filename . . .

or

nroff [optio� -rnm filename
rnmt [optio� filename . . .

or

t roff [optio� -rnm filename

• Text with tables:

mm -t [optio� filename . . .

or

tbl filename . . . 1 nroff loptio� -rnm
rnmt -t [optio� filename . . .

or

tbl filename . . . 1 t roff [optio� -rnm

Options and commands for accessing nun macros 4-7

• Text with equations:

rnm -e [optiomi filename

or

neqn /usr/pub/eqnchar filename . . . I nroff [optiomi -rnm
rnmt -e [options] filename • • .

or

eqn /usr/pub/eqnchar filename . . . I troff [options] -rnm
• Text with both tables and equations:

rnm -t -e [options] filename . . .

or

tbl filename . . . I neqn /usr/pub/eqnchar\
1 nroff [options] -rnm

rnmt -t -e [options] filename . . .

or

tbl filename . . . I eqn /usr/pub/eqnchar\
1 t roff [options] -rnm

When formatting a document with the nroff processor, the output should normally
be processed for a specific type of terminal because the output may require some

features that are specific to a given terminal (for example, reverse paper motion or half
line paper motion in both directions). Some commonly used terminal types and the
command lines appropriate for them are given below. For more information, see

"Parameters Set From the Command Line" later in this chapter and 3 o o(l), 4 s o(l),
4 0 1 4(1), hp(l), col(l), termio(4), and term(5).

• DASI 450 in 10-pitch, 6 lines/inch mode, with 0.75-inch offset, and a line length of 6
inches (60 characters) where this is the default terminal type so no -T option is
needed (unless $TERM is set to another value):

rnm filename • . .

or

nroff -T4 5 0 -h -rnm filename . . .

4-8 Chapter 4 mm Macros

- - ----- --·--- ----- - - - � ---- ----�---�--------- ---- -- - ---- -- - - - - � - - --

• DASI 450 in 12-pitch, 6 1ines/inch mode, with 0.75-inch offset, and a line length of 6
inches (72 characters):

rnrn - 1 2 filename . . .

or

nroff -T4 5 0 - 1 2 -h -rnrn filename • . .

or to increase the line length to 80 characters and decrease the offset to 3 characters:

rnrn -12 -rws o -r03 filename . . .

or

nroff -T4 5 0 - 1 2 -rW8 0 -r03 -h -rnrn filename . . •

• Hewlett-Packard HP264x CRT family:

rnrn -Thp filename . . .

or

nroff -rnrn filename . . . I col I hp

• Any terminal incapable of reverse paper motion and also lacking hardware tab stops
(Texas Instruments 700 series, and so on):

rnrn -T 7 4 5 filename . . .

or

nroff -rnrn filename . . . I col - x

The tbl(l) and eqn/neqn(l) formatters must be invoked as shown in the command
lines illustrated earlier.

If two-column processing is used with the nroff formatter, either the -c option
must be specified to rnrn (rnrn uses the col program automatically for many terminal
types), or the nroff formatter output must be postprocessed by col. See col(l) in
AIUX Command Reference and "Creating Two-Column Output" and "The rnrn Command"
in this chapter. In the latter case, the -T37 terminal type must be specified to the nroff
formatter, the -h option must not be specified, and the output of col(l) must be
processed by the appropriate terminal filter (for example, 4 5 o(l)); rnrn(l) with the -c
option handles all this automatically.

Options and commands for accessing mm macros 4-9

Parameters set from the command line

Number registers are commonly used within mm to hold parameter values that control
various aspects of output style. Many of these values can be changed within the text ftles
with . nr requests. In addition, some of these registers can be set from the command
line. This is a useful feature for those parameters that should not be permanently �

embedded within the input text. If used, the number registers (with the exception of the
P register) must be set on the command line or before the mm macro definitions are
processed. The number register meanings are shown in Table 4-2.

Table 4-2 Number registers to hold parameter values

Register name

-rAn

- rc n

-rDl

- rEn

-rLk

Description

n = 1, has the effect of invoking the • AF macro without an argument (see "Using an Alternate First-Page
Fonnat" later in this chapter).

Sets type of copy (for example, DRAFf) to be printed at the bottom of each page (see "Page Footers" later
in this chapter):

n = 1, OFFICIAL FILE COPY.

n = 2, DATE FILE COPY.

n = 3, DRAFf with single spacing and default paragraph style.

n = 4, DRAFf with double spacing and 10-space paragraph indent.

Sets debug mode. This flag requests the fonnatter to continue processing even if mm detects errors that
would otherwise cause termination. It also includes some debugging infonnation in the default page
header (see "Page Headers" and "SCCS Release Identification" later in this chapter).

Controls the font of Subject/Date/From fields:

n = 0, fields are bold (default for the t roff fonnatter).

n = 1, fields are roman font (regular text default for the nroff fonnatter).

Sets length of physical page to k lines.

For the nro f f fonnatter, k is an unsealed number representing lines.

For the t ro f f fonnatter, k must be scaled (i for inches, v for vertical spaces).

Default value is 66 lines per page.

4-10 Chapter 4 mm Macros

Hanging indents with tabs

The following example illustrates the use of the hanging indent feature of variable-item
lists (see "Creating a Variable-Item List" earlier in this chapter). A user- defmed macro is
defmed to accept four arguments that make up the mark. In the output, each argument is
to be separated from the previous one by a tab; tab settings are defined later. Since the
first argument may begin with a period or apostrophe, the \ & is used so that the
fonnatter will not interpret such a line as a fonnatter request or macro call.

• Note The two-character sequence \ & is understood by fonnatters to be a "zero
width" space. It causes no output characters to appear, but it removes the special
meaning of a leading period or apostrophe. •

The \ t is translated by the fonnatter into a tab. The \ c is used to concatenate the
input text that follows the macro call to the line built by the macro. The user-defined
macro and an example of its use are

. de ax

. LI

\ & \ \ $ 1 \t \ \ $2 \t \ \ $ 3 \t \ \ $ 4 \t \ c

. ta . S i l i l . Si 2 i

. VL 2 9

. ax . nh off \ - no
No hyphenat ion .
Automat ic hyphenation i s turned off .
Words containing hyphens
(for example , mother-in-law) can st ill be
split across lines •
. ax . hy on \ - no
Hyphenate .

4-100 Chapter 4 mm Macros

Automat ic hyphenation i s turned on .
. ax . he\ c none none no
Hyphenat ion indicator character is set to ' ' c ' '
or removed .
During text processing, the indicator is
suppres sed and will not appear in the output .
P refixing the indicator to a word has the
effect of preventing hyphenat ion of that word .
. LE

Note that the space following " . he\" is required.

The resulting output is

. nh off no

. hy on

. he c

rnrn examples

no

none none

No hyphenation. Automatic hyphenation is turned
off. Words containing hyphens (for example, mother
in-law) may still be split across lines.

Hyphenate. Automatic hyphenation is turned on .

Hyphenation indicator character is set to "c" or
removed. During text processing, the indicator is
suppressed and will not appear in the output.
Prefixing the indicator to a word has the effect of
preventing hyphenation of that word.

This section contains an example of an input ftle of a simple letter (Figure 4-1) that is also
shown formatted by both nroff (in Figure 4-2) and t roff (in Figure 4-3) using the
memorandum macros. This example illustrates how the formatters work and what to
expect from your input ftle.

mm examples 4-101

4-102

Figure 4-1 Example of input ftle for a simple letter

Input:

. nr N 2 \ " specifies header to be omitted from page 1

. ta 3 i
September 5 , 1 9 8 7
. SP 2
Mr . Steven J . Jones
. br
3 8 6 Broderick St reet
. br
San F rancisco, CA 9 4 1 1 1
. SP
Dear Mr . Jones :
. P
Enclosed please find a copy of
. I
A/UX \ *F Text-P rocessing Tools .

• R

. FS
A/UX i s a registered t rademark of Apple Computer , Inc .
. FE
. P
This manual covers using the
\ s- 1UNIX\ s+1 \ *F
. FS
\ s- 1UNIX\ s+1 is a registered t rademark o f UNIX System
. Laboratories , Inc .

• FE
operat ing system for preparing documentat ion , and include s
topics such as :
. VL 1 7
. LI Formatters :

Chapter 4 mm Macros

the \ fBnroff/t roff \ fR formatters ,
with tables list ing default s and explanat ions o f all request s
. LI Tables :
the \ fBtbl\ fR : program,
with examples of code at the end of the chapter
. LI Equat ions :
the . fBeqn \ fR program, for print ing mathemat ical expressions
. LI "Macro Package : "
the \ fBrnrn\ fR macro package chapter gives a complete out line
of
all the capabilities of this powerful document-proces sing
tool
. LE
. P

I hope you wil l find this guide useful i n preparing your
report .
. SP
. nf
S incerely,
. SP 2
Rosemary Clooney
Documentat ion Specialist
RC/dcb
Enc .
• fi

mm examples 4-103

4-104

Figure 4-2 Example of a simple letter: nroff output

September 5 , 1 9 8 7

Mr . Steven J . Jones
3 8 6 Broderick St reet
San Francisco , CA 9 4 1 1 1

Dear Mr . Jones :

Enclosed please find a copy of ALllX1 Text-P rocessing Tools .

Thi s manual covers using the UNrx2 operat ing system for
preparing documentat ion , and includes topics such as :

Formatters :

Tables :

Equat ions :

the nroff/troff formatters , with tables
list ing default s and explanat ions o f all
request s

the tb1 program, with examples of code at the
end of the chapter

the e qn program, for printing mathemat ical
expressions

Macro Package : the mm macro package chapter gives
a complete out line of all the capabilit ies of
this powerful document -proces sing tool

I hope you will find this guide useful in preparing your
report .

Specialist

RC/ dcb
Enc .

S incerely ,

Rosemary Clooney
Documentat ion

1 A/UX is a registered t rademark of Apple Computer, Inc .

2 UNIX is a registered t rademark of UNIX System Laboratories , Inc .

Chapter 4 mm Macros

Figure 4-3 Example of a simple letter: t ro f f output

Mr. Steven J. Jones
386 Broderick Street
San Francisco, CA 941 1 1

Dear Mr. Jones:

September 5, 1987

Enclosed please find a copy of A/UXJ Text-Processing Tools.

This manual covers using the UNIX2 operating system for preparing documentation, and
includes topics such as:

Formatters:

Tables:

Equations:

Macro Package:

the nrotT/trotT formatters, with tables listing defaults and
explanations of all requests

the tbl program, with examples of code at the end of the chapter

the eqn program, for printing mathematical expressions

the mm macro package chapter gives a complete outline of all the
capabilities of this powerful document-processing tool

I hope you will find this guide useful in preparing your report.

RC/dcb
En c.

Sincerely,

Rosemary Clooney
Documentation Specialist

1 A/UX is a registered trademark of Apple Computer, Inc.

2 UNIX is a registered trademark of UNIX System Laboratories, Inc.

nun examples 4-105

rnm reference tables

Tables 4-15 through 4-19 are useful reference tools when using the memorandum
macros. Table 4-15 is an alphabetic summary of all the memorandum macro names
available for producing a document. Table 4-16 is a summary of all the predefined string
names in the memorandum macro package. Table 4-17 is a summary of all the predefmed
number register names in the memorandum macro package. Tables 4-18 and 4-19 list
error messages that you may encounter when formatting a document. memorandum
macro error messages as well as nroff /troff error messages are explained.

Table 4-lS Memorandum macro names

Macro

l C

2C

AE

AF

AL

AS

AT

AU

AV

B

4-106 Chapter 4 mm Macros

Description

One-column processing
. lC

Two-column processing
. 2C

Abstract end
. AE

Alternate format of " Subject/Date/From" block
• AF [company-name]

Automatically incremented list start
• AL [MJe] [text-indenij [1]

Abstract start
• AS [a'8] [indena

Author's title
• AT [title] • • •

Author information
• AU name [initials] [lod [depij
[ext] [room] [a'8] [a'8] [a'8]

Approval signature
. AV [name]

Bold
• B [bold-a'8] fprevfont-argJ
[boldJ [� [boldJ [pmA

- -----.....,_

Table 4-lS Memorandum macro names (continued)

Macro Description

BE Bottom block end
. BE

BI Bold/italic
. BI [bold-a181 [italic-a181
[boldl [italic] [boldl [italic]

BL Bulleted list start
. BL [text-indend [1]

BR Bold/roman
. BR [bold-a181 [roman-a181
[bolal [roman] [boldl [roman]

BS Bottom block start
. BS

cs Cover sheet
.cs [pages] [othen [totan (figsl [tb£51 [rofsl

DE Display end
. DE

DF Display floating start
. DF (fonnan (filn [right-indend

DL Dashed list start
. DL [text-indend [1]

DS Display static start
. D s (fonnan (filn [right-indend

EC Equation caption
. EC [title] [override] (/1agl

EF Even-page footer
. EF [a'81

EH Even-page header
. EH [a'81

EN End equation display
. EN

EQ Equation display start
. EQ [laben

(continued)•

mm reference tables 4-107

4-108

Table 4-15 Memorandum macro names (continued)

Macro

EX

FC

FD

FE

FG

FS

H

HC

HM

HU

HX*

HY*

HZ*

I

IA

IB

Chapter 4 nun Macros

Desaiption

Exhibit caption
• EX [title] [ovemde] (flag]
Formal closing

• FC [closing]
Footnote default fonnat

• FD [a'8) [1]
Footnote end
. FE
Figure title

• FG [title] [ovemde] (/lag]
Footnote start
. Fs llaben
Heading-numbered

• H level [heading-text] [heading-su�
Hyphenation character

• H C [hyphenation-indicatoti
Heading mark style
(Arabic or Roman numerals, or letters)

• HM [a181] • • • [a18i1
Heading-unnumbered

• HU heading-text
Heading user exit X (before printing heading)

• HX dlevel rlevel heading-text
Heading user exit Y (before printing heading)

• HY dlevel rlevel heading-text
Heading user exit Z (after printing heading)

• Hz dlevel rlevel heading-text
Italic (underline in the nroff fonnatter)

. I [italic-a'8) [prevfont-a'8]
[italic] [prem [italic] [prev1
Inside address start

• IA [addressee-name] [title]
Italic/bold

• IB [italic-a'8) [bold-a'8) [italic]
[bo/a1 [italic] [boldJ

Table 4-t; Memorandum macro names (continued)

IE

IR

LB

LC

LE

LI

LO

LT

ML

MT

ND

NE

nP

NS

OF

Description

Inside address end
. IE

Italic/roman
• IR [italic-a'8] [roman-a'8] [italicl
[roman] [italicl [roman]
List begin
LB text-indent mark-indent pad type [mark]
[U-¥Jace] [LB-¥Jacel
List -status clear

• LC [list-/even
List end
.LE [1]
List item

• LI [mark] [1]
Letter options

• LO type [a'8)
Letter type

• LT [atg]
Marked list start

• ML mark [te.xt-indend [1)
Memorandum type

• MT [�).Pel [addn?SSee] or • MT 4 1
New date

• ND new-date
Notation end
. NE

Double-line indented paragraphs
. nP
Notation start

• NS [atg]
Odd-page footer

• OF [atg]

(continued)•

mm reference tables 4-109

Table 4-2 Number registers to hold parameter values (continued)

-rNn

-rok*

-rP n

-rsn

Description

Specifies page numbering style:

n = 0 (default), all pages get the prevailing header.

n ... 1 , page header replaces footer on page 1 only.

n • 2, page header is omitted from page 1.

n • 3, "section-page" numbering occurs (. FD and • RP define footnote and reference numbering in
sections). (See "Page Headers," "Using Headings in Page Numbering," "Controlling Format Style of
Footnote Text," and "Generating a Reference Page" later in this chapter.)

n = 4, default page header is suppressed; however, a user-specified header is not affected.

n = 5, "section-page" and "section-figure" numbering occurs.

" Page l Pages 2ff.
0 Header Header

1 Header replaces footer Header

2 No header Header

3 "Section page" as footer Same as page 1

4 No header No header unless • PH defined

5 "Section page" as footer and "section figure" Same as page 1

Contents of the prevailing header and footer do not depend on number register N value; N controls only
whether the header (N = 3) or the footer

(N = 5) is printed, as well as the page numbering style. If header and footer are null (see "Page Headers"
and "Page Footers" later in this chapter), the value of N is irrelevant.

Offsets output k spaces to the right.

For the nroff formatter, kis an unsealed number representing character positions. For the t roff
formatter, k must be scaled.

This flag is helpful for adjusting output positioning on some terminals. If this register is not set on the
command line, the default offset is 0.75 inch in nroff and 0.5 inch in t roff.

Specifies that pages of the document are to be numbered starting with n.
This register may also be set via a . nr request in the input text.

Sets point size and vertical spacing for the document. The default n is 10, that is, 10-point type on 12-point
vertical spacing, giving 6 lines per inch (see "Setting Point Size and Vertical Spacing" later in this chapter).

This flag applies to the t ro f f formatter only.

(continued)•

Options and commands for accessing mm macros 4-11

Table 4-15 Memorandum macro names (continued)

Macro Description

OH Odd-page header
. OH [af8]

OK Other keywords for technical memo cover sheet
. OK [keywora1 • • •

OP Odd page
. OP

p Paragraph
• p [t)pe]

PF Page footer
. PF [af8]

PH Page header
. PH [af8]

PM Proprietary marking
. PM [code]

PX* Page-header user exit
. PX

R Return to regular (roman) font -�
. R

RB Roman/bold
. RB [roman-af8] [bold-af8] [roman] [bo/a1
[roman] [bola1

RD Read insertion from terminal
. RD (promp4 [divernon] [string]

RF Reference end
. RF

RI Roman/italic
. RI [roman-af8] [italic-af8]
[roman] [italic] [roman] [italic]

RL Reference list start
• RL [text-inden4 [1]

RP Produce reference page
• RP [af8] [af8]

RS Reference start
• RS [string-namcl

4-110 Chapter 4 mni Macros

Table 4-lS Memorandum macro names (continued)

s

SA

SG

SK

SM

SP

TB

TC

TE

TH

TL

TM

TP*

TS

TX*

Description

Set t ro f f fonnatter point size and vertical spacing
. s [size] [�cing)

Set adjustment (right -margin justification) default
• SA [a'8)

Signature line
• SG [a'8) [1]

Skip pages
• SK fpages]

Make a string smaller
• SM stringl [string2J [string3]

Space vertically
• SP [lines]

Table title
• TB [title] [override] (flag]

Table of contents
• TC [sleven [�cingl Weven
[tab] [headl] [head2] [head3] [head4J [head5]

Table end
. TE

Table header
. TH (N]

Title of memorandum
• TL [charging-case] (filing-case]

Technical memorandum number(s)
• TM [numberl • • •

Top-of-page macro
. TP

Table start
. TS [H)

Table of contents user exit
. TX

(continued)•

mm reference tables 4-111

4-112

Table 4-lS Memorandum macro names (continued)

TY*

VL

VM

WA

we

Descrlptio.n

Table of contents user exit (suppress CONTENTS)
. TY

Variable-item list start
• VL text-indent [mark-indend [1]

Vertical margins
• VM [top] [bottom]

Writer's address start
• WA writer-name [tit/cl

Footnote and display width control
• we (formad

• Macros marked with an asterisk are not, in general, called directly by the user. They are "user
exits" defined by the user and called by mm. from inside header, footer, or other macros.

Table 4-16 String names

String

BU
ei
DT

EM

F

HF

HP

Le
L f
Lt
Lx

Chapter 4 mm. Macros

Descrlptio.n

Bullet (nroff overstrikes a 0 with a plus sign; t roff types a filled bullet).

Table of contents indent list; up to seven scaled arguments for heading levels.

Date (current date, unless overridden); month, day, year (for example, May 1,
1988).
Em-dash string; produces an em dash in the t ro f f formatter and a double
hyphen in nroff.
Footnote number generator.
nroff: \u\ \n+(:p\d
troff: \v'-.4m'\s-3\ \n+(:p\s0\v'.4m'

Heading font list; up to seven codes for heading levels 1 through 7
3 3 2 2 2 2 2 Gevels 1 and 2 bold, 3 through 7 underlined by nroff and
italicized by troff).
Heading point size list; up to seven codes for heading levels 1 through 7.

Title for list of equations.

Title for list of figures.

Title for list of tables.

Title for list of exhibits.

Table 4-16 String names (continued)

RE

Rf

Rp

Trn

Description

sees release and level of memorandum macros release level (for example,
15.129).

Reference number generator.

Title for references .

Trademark string; places "TM" 1/2 line above text that it follows; seven accent
strings are also available.

+ Note If the released-paper style is used, then, in addition to the above strings, certain
BTI location codes are deftned as strings and are needed only until the . MT macro is
called. The following codes are recognized: AK, AL, ALF, CB, CH, CP, DR, FJ, HL, HO,

HOH, HP , IH, IN, INH, IW, MH, MV, PY, RD, RR, WB, WH, and WV. +

Table 4-17 Number register names

Register Description

A* Handles preprinted forms and Bell System logo
0, [0:2]

Au Inhibits printing of author information
1, [0:1]

C * Copy type (original, draft, etc.)
0 (original), [0:41

Cl Level of headings saved for table of contents
2, [0:7]

Cp Placement of list of figures, etc.
1 (on separate pages), [0:1]

D* Debug flag
0, [0:1]

De Display eject register for floating displays
0, [0:1]

D f Display format register for floating displays
5, [0:5]

(continued)•

mrn reference tables 4-113

4-114

Table 4-17 Number register names (continued)

Register

Ds

E*

Ec

Ej

Eq

Ex

Fg

Fs

Hl -H7

Hb

He

Hi

Hs

Ht

Hu

Chapter 4 mm Macros

Description

Static display pre and postspace
1, [0:11
Controls font of the Subject/Date/From fields
1 (nroff), O (t roff), [0:11
Equation counter, used by • EC macro
0, [0:?1, incremented by 1 for each • EC call
Page-ejection flag for headings
0 (no eject), [0:71
Equation label placement
0 (right-adjusted), [0:11
Exhibit counter, used by • EX macro
0, [0:?], incremented by 1 for each • EX call
Figure counter, used by • FG macro
0, [0:?1, incremented by 1 for each • FG call

Footnote space (i.e., spacing between footnotes)
1, [0:?1
Heading counters for levels 1 through 7
0, [0:?1, incremented by the • H macro of corresponding level or the • HU macro
if at level given by the Hu register. The H2 through H7 registers are reset to 0 by
any • H (. HU) macro at a lower-numbered level.

Heading break level (after • H and • HU)
2, [0:71
Heading centering level for • H and • HU
0 (no centered headings), [0:7]
Heading temporary indent (after • H and • HU)
1 (indent as paragraph), [0:21
Heading space level (after • H and • HU)
2 (space only after • H 1 and • H 2), [0:71
Heading type (for • H : single or concatenated numbers)
0 (concatenated numbers: 1 .1 .1 , etc.), [0:11
Heading level for unnumbered heading (. HU)
2 (. HU at the same level as • H 2), [0:71

�

Table 4-17 Number register names (continued)

Register

Hy

L*

Le

Lf

Li

Ls

Lt

LX

N*

Np

o•

Oc

Of

P-

P i

Description

Hyphenation control for body of document
0 (automatic hyphenation ofO, [0: 1]

Length of page
66, [20:?] (lli, [2i:?] in t ro f f formatter)

List of equations
0 Gist not produced), [0: 1]

List of figures
1 (list produced), [0: 1]

List indent
6 (nroff), 5 (t roff), [0:?]

List spacing between items by level
6 (spacing between all levels), [0:6]

List of tables
1 (list produced), [0:1]

List of exhibits
1 (list produced), [0:1]

Numbering style
0, [0:5]

Numbering style for paragraphs
0 (unnumbered), [0:1]

Offset of page
.75i, [0:?] (0.5i, [Oi:?] in t roff formatter)
For nroff formatter, these values are unsealed numbers representing lines or
character positions.
For t r off formatter, these values must be scaled.

Table of contents page numbering style
0 (lowercase Roman), [0: 1]

Figure caption style
0 (period separator), [0:1]

Page number managed by memorandum macros
0, [0:?]

Paragraph indent
5 (nroff), 3 (t ro ff), [0:?]

(continued)•

mm reference tables 4-llS

Table 4-17 Number register names (continued)

Register Description

P s Paragraph spacing
1 (one blank space between paragraphs), [0:?]

Pt Paragraph type
0 (paragraphs always left justified), [0:2]

Pv "PRIVATE" header
0 (not printed), [0:2]

Rf Reference counter, used by • RS macro
0, [0:?], incremented by 1 for each • RS call

s• t ro f f formatter default point size
10, [6:361

S i Standard indent for displays
5 (nroff), 3 (t roff), [0:?]

T* Type of nroff output device
0, [0:2]

Tb Table counter, used by • TB macro
0, [0:?1, incremented by 1 for each • TB call

u• Underlining style (nroff) for • H and • HU
0 (continuous underline when possible), [0:1]

W* Width of page (line and title length)
6i, [10:13651 (6i, [2i:7.54i] in the troff formatter)

• Register names marked with an asterisk can be set only from the command line or before the

macro definitions are read by the formatter.

Error messages

The following sections list mm error messages and formatter error messages.

mm error messages

An mm error message has a standard part followed by a variable part. The standard part
has the form

ERROR : <filename> input l ine n:

4-116 Chapter 4 nun Macros

��

Variable part n consists of a descriptive message, usually beginning with a macro
name. The error messages are listed in Table 4-18 in alphabetical order by macro name,
each with a more complete explanation.

Table 4-18 mm error messages

Error message

Check TL, AU , AS ,
sequence

Check TL, AU, AS ,
AE , NS , NE , MT
sequence

Check WA, WE, IA,
IE , LT sequence
CS : cover sheet too
long

DE : no DS or DF
act ive
DF : illegal inside
TL or AS
DF : mi s s ing DE

DF : missing FE

DF : too many
di splays
DS : illegal inside
TL or AS
DS : mi s sing DE

DS : mi s s ing FE

Description

Something has disturbed the correct order of macros at the AE , MT
start of a memorandum . See "Understanding the Sequence of
Beginning Letter Macros" earlier in this chapter.

Occurs if the . AS 2 macro was used. Something has
disturbed the correct order of macros at the start of a
memorandum . See "Understanding the Sequence of Beginning
Macros" earlier in this chapter.

Something has disturbed the correct order of these macros.

Text of the cover sheet is too long to fit on one page. The
abstract should be reduced or the indent of the abstract
should be decreased.

A . DE macro has been encountered, but there has not been a
previous • DS or . DF macro to match it.

Displays are not allowed in the title or abstract.

A . DF macro occurs within a display; that is, a • DE macro has
been omitted or mistyped.

A display starts inside a footnote. The likely cause is the
omission (or misspelling) of a . FE macro to end a previous
footnote.

More than 26 floating displays are active at once; that is, have
been accumulated but not yet output.

Displays are not allowed in the title or abstract.

A • DS macro occurs within a display, that is, a • DE has been
omitted or mistyped.

A display starts inside a footnote. The likely cause is the
omission (or misspelling) of a • FE to end a previous footnote.

(continued)•

Error messages 4-117

4-118

Table 4-18 mm error messages (continued)

Error message

FE : no FS act ive

FS : mi s sing DE

FS : mi s sing FE

H : bad arg : value

H : mi s sing arg
H : mi s s ing DE
H : mi s s ing FE
HU : mi s s ing arg
LB : mi s s ing arg (s)
LB : too many nested
list s .
LE : mi smatched

LI : no list s act ive

LO : LO argument not
recogni zed
LT : LT argument not
recogni zed
ML : mi s s ing arg
ND : missing arg
RF : no RS active

RP : mi s sing RF
S : bad arg : value

Chapter 4 mm Macros

Description

A • FE macro has been encountered with no previous • F s to
match it.

A footnote starts inside a display; that is, a • ns or • DF occurs
without a matching • DE.

A previous • F s macro was not matched by a closing • FE; that
is, an attempt is being made to begin a footnote inside
another one.

The ftrSt argument to the • H macro must be a single digit from
1 to 7, but value has been supplied instead.

The • H macro needs at least one argument.

A heading macro (. H or . HU) occurs inside a display.

A heading macro (. H or • HU) occurs inside a footnote.

The . HU macro needs one argument.

The • LB macro requires at least four arguments.

Another list was started when there were already six active
lists.

The • LE macro has occurred without a previous • LB or other
list-initialization macro. This is not a fatal error. The message
is issued because some problem exists in the preceding
text.

The • LI macro occurred without a preceding list-initialization
macro. The latter probably has been omitted or entered
incorrectly.

You have provided an argument to • LO that it does not
recognize.

You have provided an argument to . LT that it does not
recognize.

The . ML macro requires at least one argument.

The • ND macro requires one argument.

The • RF macro has been encountered with no previous . RF to
match it.

A previous . RS macro was not matched by a closing • RF.
The incorrect argument value has been given for the . s macro.

Table 4-18 mm error messages (continued)

Error message

SA : bad arg : value

SG : mi s sing DE
SG : mi s sing FE
SG : no authors
VL : mi s s ing arg
) W : WA macro
mis sing

Description

The argument to the • SA macro (if any) must be either 0 or 1.
The incorrect argument is shown as value.

The . SG macro occurred inside a display.

The • SG macro occurred inside a footnote.

The . SG macro occurred without any previous . AU macro(s).

The • VL macro requires at least one argument.

If you use • LT, you must specify at least one • WA/ . WE pair.

) W : WA or WE macro
mi s sing

If you use . WA or . WE, you must specify the other member of
the missing macro pair.

) W : WA, WE , or IE
macro mis sing

You have omitted either or both of the • IA and • IE macros.

WC : unknown opt ion An incorrect argument has been given to the • we macro.

Formatter error messages

Most messages issued by the formatter are self-explanatory. Those error messages over

which the user has some control are listed in Table 4-19. Any other error messages

should be reported to the local system support group.

Table 4-19 Formatter error messages

Error message

Cannot do ev

Description

Can be caused by

• setting a page width that is negative or extremely short
• setting a page length that is negative or extremely short
• reprocessing a macro package (for example, performing a . s o

request on a macro package that was already requested on the
command line)

• requesting the t ro f f formatter - s 1 option on a document that is
longer than ten pages

(continued)•

Error messages 4-119

Table 4-2 Number registers to hold parameter values (continued)

Register name

-rTn

-rUl

-rwk

Desaiptlon

Provides register settings for certain devices:

n = 1 , line length and page offset are set to 80 and 3, respectively.

n • 2, changes the page length to 84 lines per page and inhibits underlining; it is meant for output sent to
the Versatec printer.

·

The default value for n is 0.

This flag applies to the nroff formatter only.

Controls underlining of section headings.

This flag causes only letters and digits to be underlined. Otherwise, all characters (including spaces) are
underlined (see "Emphasizing Headings with Bold, Italics, and Underlining" later in this chapter).

This flag applies to the nroff formatter only.

Sets page width (line length and title length) to k.
For the nro f f formatter, k is an unsealed number representing character positions.

For the t ro f f formatter, k must be scaled.

This flag can be used to change page width from the default value of 6 inches (6o characters in 10 pitch or
72 characters in 12 pitch).

Omission of -mm flag

If a large number of arguments is required on the command line, it may be convenient to

set up the ftrst (or only) input ftle of a document as follows:

zero or more initializations of registers listed in "Parameters Set From Command Line"
. so /usr/lib/tmac/tmac . m
remainder of text

In this case, the user must not use the -mm flag (or the mm(l) or mmt{l) command);
the . so request has the equivalent effect, but registers shown in "Parameters Set From

the Command Line" earlier in this chapter must be initialized before the . so request

because their values are meaningful only if set before macro deftnitions are processed.
When using this method, it is best to lock into the input ftle only those parameters that
are seldom changed. For example,

4-12 Chapter 4 mm Macros

4-120

Table 4-19 Formatter error messages (continued)

Error message

Cannot execute
filename;
Cannot open
filename; ·
Exception word
list full ;
Line overflow

Nonexi stent
type ;
Nonexistent
macro file ;
Nonexi stent
type ;
Out of temp
file space ;

Too many number
registers ;
Too many page
numbers ;
Too many
st rings /macros ;
Word overflow

Chapter 4 mm Macros

Description

Given by the . ! request if the filename is not found.

Indicates one of the files in the list of files to be processed
cannot be opened.

Indicates too many words have been specified in the
hyphenation exception list (via . hw requests).

Indicates output line being generated was too long for the
formatter line buffer capacity. The excess was discarded. Likely
causes for this message are very long lines or words generated
through the misuse of \ c of the . cu request, or very long
equations produced by eqn/neqn (1) .
Indicates a request has been made to mount an unknown font font

Indicates the requested macro package does not exist.

Indicates the tenninal options refer to an unknown tenninal terminal

type.

Indicates additional temporary space for macro definitions,
diversions, and so on cannot be allocated. This message often
occurs because of unclosed diversions (missing . FE or . DE),

unclosed macro defmitions (for example, missing " • • "), or a
huge table of contents.

Indicates the pool of number register names is full. Unneeded
registers can be deleted by using the . r r request.

Indicates the list of pages specified to the -o formatter option
is too long.

Indicates the pool of string and macro names is full. Unneeded
strings and names macros can be deleted using the . rm request.

Indicates a word being generated exceeded the formatter word
buffer capacity. Excess characters were discarded. Likely causes
for this message are very long lines, words generated through the
misuse of \ c of the . cu request, or very long equations
produced by eqn/neqn (1) .

. nr W 8 0

. nr 0 1 0

. nr N 3

. so /usr / lib /tmac/tmac . m

. H 1 " INTRODUCTION"

specifies, for the nroff fonnatter, a line length (w) of 80, a page offset (o) of 10, and
section-page (N) numbering.

sees release identification

The RE string contains the sees release and the memorandum macros text formatting
package current version level. For example,

This i s version \ * (RE of the macros .

produces

This is version 10. 129 of the macros.

This information is useful in analyzing suspected bugs in mm. The easiest way to have the
release identification number appear in the output is to specify -rD 1 (see "Parameters Set

From the Command Line" earlier in this chapter) on the command line. This causes the RE
string to be generated as part of the page header (see "Page Headers" later in this chapter).

Working with text

Normal action of the formatters is to fill output lines from one or more input lines. Output
lines may be justified so that both the left and right margins are aligned. As lines are

being filled, words may also be hyphenated as necessary (see "Hyphenating Text"). It is
possible to tum any of these modes on and off by using . SA (see "Justifying the Right
Margin"), Hy (see "Hyphenating Text"), and the . nf and . fi fonnatter requests.
Turning off fill mode also turns off justification and hyphenation.

Working with text 4-13

4-14

Understanding formatting

Certain formatting commands (requests and macros) cause filling of the current output
line to cease, the line (of whatever length) to be printed, and subsequent text to begin a
new output line. This printing of a partially filled output line is known as a break. A few
formatter requests and most of the rnm macros cause a break.

Formatter requests can be used with rnm (see "Using Formatter Requests" later in this
chapter); however, there are consequences and side effects that each such request might
have. A good rule is to use formatter requests only when absolutely necessary. The rnm
macros described herein should be used in most cases because

• it is much easier to control (and change at any later point in time) the overall style of
the document

• complicated features such as footnotes or tables of contents can be obtained with
ease

• the user is insulated from the complexities of the formatter language

Using arguments and double quotation marks

For any macro call, a null argument is an argument whose width is 0. Such an argument
often has a special meaning; the preferred form for a null argument is " " . Omitting an
argument is not the same as supplying a null argument (for example, the . MT macro; see
"Understanding Memorandum Types" later in this chapter). Omitted arguments can occur
only at the end of an argument list; null arguments can occur anywhere in the list.

Any macro argument containing ordinary (paddable) spaces must be enclosed iil
double quotation marks. A double quotation mark (") is a single character that should
not be confused with two close quotation marks (' ') or open quotation marks (' ').
Unless you enclose an argument containing spaces in double quotation marks, it will be
treated as several separate arguments.

Double quotation marks are not permitted as part of the value of a macro argument or
of a string that is to be used as a macro argument. If it is necessary to have a macro

argument value, two close quotation marks (' ') or open quotation marks (' ') or a
combination of the two may be used instead. This restriction is necessary because many �

macro arguments are processed (interpreted) a variable number of times. For example,
headings are frrst printed in the text and may be reprinted in the table of contents.

Chapter 4 nun Macros

- - -- -------- -------

Specifying unpaddable spaces

When output lines are justified to give an even right margin, existing spaces in a line may
have additional spaces appended to them. This may distort the desired alignment of text.
To avoid this distortion, it is necessary to specify a space that cannot be expanded during
justification, that is, an unpaddable space. There are several ways to accomplish this:

• Type a backslash followed by a space. This pair of characters directly generates an
unpaddable space.

• Sacrifice some seldom-used character to be translated into a space when output is
generated.

Because this translation occurs after justification, the chosen character may be used
anywhere an unpaddable space is desired. The tilde (-) is often used with the translation
macro for this purpose. To use the tilde in this way, the following statement is inserted at
the beginning of the document:

. t r -

If a tilde must actually appear in the output, it can be temporarily "recovered" by inserting

. t r - -

before the place where needed. Its previous usage is restored by repeating the . t r -
after a break or after the line containing the tilde has been forced out.

+ Note Use of the tilde in this fashion is not recommended for documents in which the
tilde is used within equations. •

Hyphenating text

Formatters do not perform hyphenation unless it is requested. Hyphenation can be
turned on in the body of the text by specifying

. nr Hy 1

once at the beginning of the document input ftle. "Controlling Format Style of Footnote
Text" later in this chapter describes hyphenation within footnotes and across pages.

If hyphenation is requested, formatters will automatically hyphenate words if need
be. However, the user may specify hyphenation points for a specific occurrence of any

Working with text 4-15

word with a special character known as a hyphenation indicator or may specify
hyphenation points for a small list of words (about 128 characters).

If the hyphenation indicator (initially, the two-character sequence \ %) appears at the
beginning of a word, the word is not hyphenated. Alternatively, this sequence can be
used to indicate legal hyphenation points inside a word. All occurrences of the
hyphenation indicator disappear when output is generated.

The user may specify a different hyphenation indicator .

. HC [hyphenation-indicator)

The circumflex (A) is often used for this purpose by inserting the following at the
beginning of a document input text ftle:

. HC A

• Note Any word or phrase containing hyphens or dashes (also known as em dashes)
will be hyphenated immediately after a hyphen or dash if it is necessary to hyphenate,
even if the formatter hyphenation function is turned off. •

The user may supply, via the exception word . hw request, a small list of words with
the proper hyphenation points indicated. For example, to indicate the proper
hyphenation of the word printout, the user may specify

. hw print-out

Setting tabs

Macros . MT (see "Understanding Memorandum Types" later in this chapter), . TC, and
. cs (see "Generating a Table of Contents and Cover Sheet" later in this chapter) use the
formatter . ta (tab) request to set tab stops and then restore the default values of tab
settings (every eight characters in the nroff formatter; every 1/2 inch in the t roff
formatter). Setting tabs to other than the default values is the user's responsibility.

Default tab setting values for nroff are 9, 17, 25, . • • , and 161, for a total of 20
tab stops. Values may be separated by commas, spaces, or any other non-numeric
character. A user may set tab stops at any value desired, for example,

4-16 Chapter 4 mm Macros

. ta 1 . 5 i 3 i 4 . 5i

A tab character is interpreted with respect to its position on the input line rather than

its position on the output line. In general, tab characters should appear only on lines
processed in no-ftll (. nf) mode (see "Understanding Formatting" earlier in this chapter).

The tbl(l) program (see "Using Displays in Tables" later in this chapter) changes tab
stops but does not restore default tab settings.

Justifying the right margin

The . SA macro is used to set right-margin justification for the main body of text .

• SA [atg)

Two justification flags are used-current and default. Initially, both flags are set for
no justification in the nroff formatter and for justification in the t roff formatter. The
argument causes the following action:

o Sets both flags to no justification, the same as the . na request.

1 Sets both flags to cause both right and left justillcation, the same as the . ad
request.

Omitted Causes the current flag to be copied from the default flag, thus performing
either a . na or . ad depending on the default condition.

In general, the no-adjust request (. na) can be used to ensure that justification is
turned off, but . SA should be used to restore justification, rather than the . ad request. In
this way, justification or no justification for the remainder of the text is specified by
inserting . SA o or . SA 1 once at the beginning of the document.

Spacing lines of text

. SP [/in�

There are several ways of obtaining vertical spacing, all with different effects. The . sp
request spaces the number of lines specified unless the no-space (. ns) mode is on, in
which case the . sp request is ignored. The no-space mode is set at the end of a page
header to eliminate spacing by a . sp or . bp request that happens to occur at the top of
a page. This mode can be turned off by the . r s (restore spacing) request. ·

Working with text 4-17

The . SP macro is used to avoid the accumulation of vertical space by successive
macro calls. Several . SP calls in a row will not produce the sum of the arguments but
only the maximum argument. For example, the following produces only three blank
lines:

. SP 2

. SP 3

. SP

Many memorandum macros use . SP for spacing. For example, . LE 1 (see "Using
List-Item Macros" later in this chapter) immediately followed by . P (see "Creating
Paragraphs") produces only a single blank line (nroff) or one-half a vertical space
(t roff) between the end of the list and the following paragraph. An omitted argument
defaults to one blank line (nroff) or one vertical space (t roff). Negative arguments
are not permitted. The argument must be unsealed, but fractional amounts are permitted.
The . SP macro (as well as . sp) is also inhibited by the . ns (no-space) request.

Setting point size and vertical spacing

The prevailing point size and vertical spacing can be changed by invoking the . s macro:

. s r.point sizt1 [vertical spacingJ

In the t roff formatter, the default point size obtained from the rnm register s is 10
points; the vertical spacing is 12 points, six lines per inch. The mnemonics o (default
value), c (current value), and P (previous value) can be used for both arguments. See
"Parameters Set From the Command Line" earlier in this chapter for an alternative way to
set these parameters.

In the t roff formatter, these guidelines apply:

• If an argument is negative, current value is decremented by the specified amount.

• If an argument is positive, current value is incremented by the specified amount.

• If an argument is unsigned, it is used as the new value.

• If there are no arguments, the . s macro defaults to P .

• If the first argument is specified but the second is not, then o, the default, is used for -�

the vertical spacing.

4-18 Chapter 4 mm Macros

- ----- -�-·-- --·-------- -- - -
- - --�----

Default value for vertical spacing is always two points greater than the current point
size. Footnotes are two points smaller than the body with an additional 3-point space
between footnotes. A null (" ") value for either argument defaults to c, the current value.
Thus, if n is a numeric value:

. s . s p p

. s " " n . s c n

. s n " " . s n C

. s n . s n D

. s " " . s c D

. s " " " " . s c c

. s n n . s n n

If the ftrst argument is greater than 99, the default point size, 10 points, is restored. If
the second argument is greater than 99, the default vertical spacing (current point size
plus two points) is used, for example,

. s 1 0 0
. s 1 4 1 1 1

Reducing point size of a string

. s 1 0 1 2

. s 1 4 1 6

The . SM macro allows the user to reduce by one point the size of a string .

• SM string 1 [string.2J [string3l

If the third argument (string3) is omitted, the ftrst argument (stringl) is made smaller
and is concatenated with the second argument (string2) if specifted. If all three
arguments are present (even if any is null), the second argument is made smaller, and all
three arguments are concatenated. For example,

. SM X

produces

X
. SM Y XYX " "

produces

YXYX

and

. SM (YXYX

produces

(YXYX)

Working with text 4-19

Creating bullets

A bullet (•) is often obtained on a typewriter terminal by using an "o" overstruck by a
"+". For compatibility with the t roff formatter, a bullet string is provided by mm with
the following sequence:

\ * (BU

The bullet list (0 BL) macro uses this string to generate automatically the bullets for
bullet-listed items (see "Creating a Bulleted List" later in this chapter).

Using dashes, minus signs, and hyphens

The t ro f f formatter has distinct graphics for a dash, a minus sign, and a hyphen; the
nroff formatter does not.

• Users who intend to use the nroff formatter only may use the minus sign (-) for
the minus, hyphen, and dash.

• Users who plan to use the t roff formatter primarily should follow t roff
escape conventions (that is, \ (mi for minus, \ (em for dash, and \ (hy for
hyphen).

• Users who plan to use both formatters must take care during input text file
preparation. Unfortunately, these graphic characters cannot be represented in a way
that is both compatible and convenient for both formatters. The following approach is
suggested:

Dash Type \ * (EM for each text dash for both nroff and t roff
formatters. This string generates an em dash (-) in the t ro f f
formatter and two hyphens (--) in the nroff formatter. Dash list
(0 DL) macros (see "Creating a Dashed List" later in this chapter)
automatically generate the em dash for each list item.

Hyphen

Minus

4-20 Chapter 4 mm Macros

Type - and use as is for both formatters. The nroff formatter will
print it as is. The t roff formatter will print a true hyphen.

Type \- for a true minus sign regardless of formatter. The nroff
formatter will ignore the \ . The t ro f f formatter will print a true
minus sign (-).

Using bold, italic, and roman fonts

When called without arguments, the . B macro changes the font to bold and the . I
macro changes to underlining (nroff) or italic (t roff). This condition continues until
the occurrence of the . R macro, which causes the roman font to be restored .

• B l bold-arg1 [jJrevious-font-arg1 • • •
. I · [italic-arg1 [jJrevious-font-arg1 • • •
. R

Thus,

. I
here i s some text .
. R

yields underlined text via nroff(l) and italic text via t roff(l).
If the . B or . I macro is called with one argument, that argument is printed in the

appropriate font (underlined in the nroff formatter for . I). Then the previous font is
restored; underlining is turned off in the nroff formatter. If two or more arguments

(maximum six) are given with a . B or . I macro call, the second argument is
concatenated to thefrrst with no intervening space (1/12 space if the frrst font is italic) but
is printed in the previous font. Remaining pairs of arguments are similarly alternated. For
example,

. I one " two " three -four

produces

one two thre£Lfour

The . B and . I macros alternate with the prevailing font at the time the macros are
invoked. To alternate specific pairs of fonts, the following macros are available:

• IB italic bold

• B I bold italic

• IR italic roman

• RI roman italic

• RB roman bold

• BR bold roman

Each macro takes a maximum of six arguments and alternates arguments between
specified fonts.

Working with text 4-21

When you are using a terminal that cannot underline, the following can be inserted at
the beginning of the document to eliminate all underlining:

. rm ul

. rm cu

+ Note Font changes in headings are handled separately. •

Creating a trademark string

A trademark string \ * (Tm is available with mm. This places the letters "TM" one-half line
above the text that it follows. For example,

The
A/UX\ * (Tm manual
i s avai lable from the library .

yields

The A/UX™ manual

is available from the library.

Producing accents

Strings can be used to produce accents for letters as shown in the following examples:

Grave accent

Acute accent

Circumflex

Tilde

Cedilla

Lowercase umlaut

Uppercase umlaut

4-22 Chapter 4 mm Macros

Input Output

e*' e
e* e
o* 0
n* ft
c* �
u*" i.i
U*; D

Inserting text interactively

• RD rprompn [diversion] [string]

The . RD (read insertion) macro allows a user to stop the standard output of a document
and to read text from the standard input until two consecutive newline characters are
found. When newline characters are encountered, normal output is resumed.

• The prompt argument will be printed at the terminal. If not given, . RD signals the
user with a BEL on terminal output.

• The diversion argument allows the user to save all text typed in after the prompt in a

macro whose name is that of the diversion.

• The string argument allows the user to save for later reference the ftrst line following

the prompt in the named string.

The . RD macro follows the formatting conventions in effect. Thus, the following
examples assume that the . RD is invoked in no-fill mode (. nf):

. RD Name aA bB

produces

Name: S. Jones (user types name)

16 Elm Rd.,
Piscataway

The diverted macro . aA will contain

S. Jones

16 Elm Rd.,
Piscataway

The string bB < \ * (bB) contains "S. jones".

A newline character followed by an eo/(user-specifiable end-of-file character) also

allows the user to resume normal output. See st t y(l) in A!UX Command Reference for

information about the user-specifiable sequences.

Working with text 4-23

Using formatter requests

Most formatter requests should not be used with mm because mm provides the
corresponding formatting functions in a much more user-oriented and surprise-free
fashion than do the basic formatter requests. However, some formatter requests are
useful with mm, namely, those listed in Table 4-3.

Table 4-3 Fonnatter requests useful with mm

Request

. af

. br

. ce

. de

. ds

. fi

. hw

. l s

. n f

. nr

. nx

. rm

. rr

. rs

. so

. sp

. ta

. t i

. t l

. t r

. !

4-24 Chapter 4 mrn Macros

Description

Assign fonnat.

Break .

Center .

Define macro .

Define string .

Fill output lines .

Hyphen word exceptions .

line spacing .

No filling of output lines .

Number register defme and set.

Next me (does not return) .

Remove macro .

Remove register .

Restore spacing .

Source me and return .

Space .

Tab stop settings .

Temporary indent.

Title .

Translate .

Escape.

-�,

The . fp (font position), . lg Oigature mode), and . s s (space-character size)
requests are also sometimes useful for the t roff formatter. Use of other requests

without fully understanding their implications very often leads to disaster.

Structuring the page

Using mm macros you can create indented and numbered paragraphs, establish headings
and change their appearance, create customized headers and footers, change the text

flow to two-column output, and use a variety of other macros to create the layout that
best suits your purposes.

Creating paragraphs

. P [�
one or more ltnes of text

The . P macro is used to control paragraph style.

Indenting paragraphs

An indented or an unindented paragraph is defined with the type argument

o Left justified
1 Indented

In a left-justified paragraph, the ftrSt line begins at the left margin. In an indented

paragraph, the paragraph is indented the amount specified in the P i register (default

value is 5 ens). For example, to indent paragraphs by ten spaces in nroff the following

is entered at the beginning of the document input flle:

. nr P i 1 0

A document input flle possesses a default paragraph type obtained by specifying . P
before each paragraph that does not follow a heading (see "Creating Numbered

Headings" later in this chapter). Default paragraph type is controlled by the Pt number
register.

Structuring the page 4-25

• The initial value of Pt is 0, which provides left-justified paragraphs.

• All paragraphs can be forced to be indented by inserting the following at the
beginning of the document input fde:

. nr Pt 1

• All paragraphs can be indented (except when they occur after headings, lists, and
displays) by entering the following at the beginning of the document input fde:

. nr Pt 2

Both the P i and Pt register values must be greater than 0 for any paragraphs to be
indented.

+ Note Values that specify indentation must be unsealed and are treated as character
positions, that is, as a number of ens. In the nroff formatter, an en is equal to the width
of a character. In the t roff formatter, an en is the number of points (1 point = 1n2 of
an inch) equal to half the current point size. •

Regardless of the value of Pt, an individual paragraph can be forced to be left
justified or indented. The . P o macro request forces left justification; . P 1 causes
indentation by the amount specified by the register Pi .

If • P occurs inside a list, the indent (if any) of the paragraph is added to the current
list indent (see "Creating Lists" later in this chapter).

Numbering paragraphs

Numbered paragraphs may be produced by setting the Np register to 1 . This produces
paragraphs numbered within frrst-level headings, for example, 1 .01, 1 .02, 1.03, 2.01 , and
so forth ..

A different style of numbered paragraphs is obtained by using the . nP macro rather
than the . P macro for paragraphs. This produces paragraphs that are numbered within
second-level headings .

. H 1 "FIRST HEAD ING"

. H 2 " Second Heading"

. nP
one or more lines of text

4-26 Chapter 4 mm Macros

The paragraphs contain a double line indent in which the text of the second line is
indented to be aligned with the text of the first line so that the number stands out.

Setting spacing between paragraphs

The P s number register controls the amount of spacing between paragraphs. By default,

P s is set to 1, yielding one blank space in nroff, one-half a vertical space in t roff.

Creating numbered headings

• H level [heading-text) [heading-suffiX]
zero or more lines of text

The level argument provides the numbered heading level. There are seven heading

levels; Ievel l is the highest; level 7 is the lowest.

The heading-text argument is the text of the heading. If the heading contains more

than one word or contains spaces, the entire argument must be enclosed in double

quotation marks.
The heading-suff'tX argument may be used for footnote marks, which should not

appear with heading text in the table of contents.

There is no need for a . P macro immediately after a . H or . HU (see "Working With

Unnumbered Headings" later in this chapter) because the . H macro also performs the

function of the . P macro. Any . P macro immediately following a . H macro is ignored. It

is, however, good practice to start every paragraph with a . P macro, thereby ensuring

that all paragraphs begin with a . P throughout a document.

Using default headings

The effect of the . H macro varies according to the level argument. First -level headings are

preceded by two blank lines in nroff and one vertical space in t roff; all other levels

are preceded by one blank line in nro ff and one-half a vertical space in t roff. The

following describes the default effect of the level argument.

Structuring the page 4-27

• H 1 heading-text

• H n heading-text

Produces an underlined (italicized) font heading, followed by a
single blank line. The text that follows begins on a new line and
is indented according to the current paragraph type. Full capital
letters can be used to make the heading stand out.

Produces an underlined (italicized) font heading followed by
two spaces (3 :5: n :5: 7). The following text begins on the same
line; that is, these are run-in headings.

Appropriate numbering and spacing (horizontal and vertical) occur even if the
heading-text argument is omitted from a . H macro call.

+ Note Users satisfied with the default appearance of headings may skip to "Working
With Unnumbered Headings" later in this chpater. •

Changing the appearance of headings

The user can modify the appearance of headings quite easily by setting certain registers
and strings at the beginning of the document input text ftle. This permits quick alteration
of a document's style because this style-control information is concentrated in a few lines
rather than being distributed throughout the document.

Prespacing headings and forcing a page break A ftrst-level heading (. H 1)
normally has two blank lines (one vertical space) preceding it, and all other headings are
preceded by one blank line (nroff) or one-half a vertical space (troff). If a multiline
heading is to be split across pages, it is automatically moved to the top of the next page.

Every frrst -level heading may be forced to the top of a new page by inserting

. nr E j 1

at the beginning of the document input text ftle. Long documents may be made more
manageable if each section starts on a new page. Setting the E j (eject) register to a
higher value causes the same effect for headings up to that level; that is, a page eject
occurs if the heading level is less than or equal to the E j value.

Setting spacing after headings Three registers control the appearance of text
immediately following a . H call. The registers are Hb (heading break level), Hs (heading
space level), and Hi (postheading indent).

4-28 Chapter 4 mm Macros

If the heading level is less than or equal to the value of Hb, a break (see
"Understanding Formatting" earlier in this chapter) occurs after the heading.

If the heading level is less than or equal to the value of Hs, a blank line (nroff) or
one-half a vertical space (t roff) is inserted after the heading.

If a heading level is greater than the value of Hb and also greater than the value of
Hs, then the heading (if any) is run into the following text. These registers permit
headings to be separated from the text in a consistent way throughout a document while
allowing easy alteration of white space and heading emphasis. The default value for Hb
and Hs is 2.

For any stand-alone heading, that is, a heading not run into the following text,
alignment of the next line of output is controlled by the Hi number register:

• If Hi is 0, text is left justified.

• If Hi is 1 (the default value), text is indented according to the paragraph type as
specified by the Pt register (see "Indenting Paragraphs" earlier in this chapter).

• If Hi is 2, text is indented to line up with the frrst word of the heading itself so that
the heading number stands out more clearly.

To cause a blank line (nroff) or one-half a vertical space (troff) to appear after
the first three heading levels, to have no run-in headings, and to force the text following
all headings to be left justified (regardless of the value of Pt), the following should
appear at the beginning of the document input text ftle:

. nr Hs 3

. nr Hb 7

. nr Hi 0

Centering headings The He register can be used to obtain centered headings. A
heading is centered if its level argument is less than or equal to He and if it is also a stand
alone heading. The He register is 0 initially (no centered headings).

Emphasizing headings with bold, italics, and underUning Any heading that is
underlined by the nroff formatter is italicized by the t roff formatter. The string HF
(heading font) contains seven codes that specify fonts for heading levels 1 through 7. You
can use any font number defmed on your output device, for example:

Structuring the page 4-29

Formatter 1

nroff No underline

t roff Roman

HF code
2

Underline

Italic

3
Bold

Bold

Default
HF code

2 2 2 2 2 2 2

2 2 2 2 2 2 2

Thus, levels 1 through 7 are underlined by the nroff formatter and italicized by the
t roff formatter. The user may reset HF as desired. Any value omitted from the right end
of the list is assumed to be a 1. The following request would result in levels 1 through 5
in bold font and levels 6 and 7 in roman font:

. ds HF 3 3 3 3 3

The nroff formatter underlines in either of two styles:

• The normal style (. ul request) is used to underline only letters and digits.

• The continuous style (. cu request) underlines all characters including spaces.

By default, mm attempts to use the continuous style on any heading that is to be
underlined and is short enough to fit on a single line. If a heading is to be underlined but
is longer than a single line, the heading is underlined in the normal style (only letters and
digits).

All underlining of headings can be forced to the normal style by using the -rU1 flag
option when invoking the nroff formatter (see "Parameters Set From the Command
Line" earlier in this chapter).

Setting point sizes for headings The user can specify the desired point size for each
heading level with the HP string (for use with the t roff formatter only) .

• ds HP {Psl] {Ps2J [}Js3J [ps4J [jJs5J [ps6j {Ps7J

By default, the text of headings (. H and . au) is printed in the same point size as the
body except that bold stand-alone headings are printed in a size one point smaller than
the body. The string HP, similar to the string HF, can be specified to contain up to seven
values, corresponding to the seven levels of headings. For example,

. ds HP 12 12 1 0 1 0 1 0 1 0 1 0

specifies that the first- and second-level headings are to be printed in 12-point type with
the remainder printed in 10-point. Specified values may also be relative point-size
changes, for example,

. ds HP +2 +2 -1 -1

4-30 Chapter 4 mm Macros

If absolute point sizes are specified, then absolute sizes will be used regardless of the
point size of the body of the document. If relative point sizes are specified, then point
sizes for headings will be relative to the point size of the body even if the latter is
changed.

Null or 0 values imply that default size will be used for the corresponding heading
level.

+ Note Only the point size of the headings is affected. Specifying a large point size
without providing increased vertical spacing (via . HX or . HZ) may cause overprinting. •

Marking styles: Numerals and concatenation The registers named H1 through H7
are used as counters for the seven levels of headings. Register values are normally printed
using Arabic numerals. The . HM macro (heading mark style) allows this choice to be
overridden, thus providing outline and other document styles .

• HM [atg11 ... [atgi'J

This macro can have up to seven arguments; each argument is a string indicating the
type of marking to be used. Legal arguments and their meanings are described in
Table 4-4.

Table 4-4 Arguments for marking numeral styles

1
0 0 0 1
A
a
I
i
Omitted

Illegal

Meaning

Arabic (default for all levels)

Arabic with enough leading zeros to get the specified number of digits

Uppercase alphabetic

Lowercase alphabetic

Uppercase Roman

Lowercase Roman

Interpreted as 1 (Arabic)

No effect

Structuring the page 4-31

By default, the complete heading mark for a given level is built by concatenating the
mark for that level to the right of all marks for all levels of higher value. To inhibit the
concatenation of heading level marks, that is, to obtain just the current level mark
followed by a period, the heading mark type register (Ht) is set to 1 . For example, input
for a commonly used outline style is

. HM I A 1 a i

. nr Ht 1

Working with unnumbered headings

The . au macro is a special case of . H; it is handled in the same way as . H except that no
heading mark is printed .

• HU heading-text

In order to preserve the hierarchical structure of headings when . H and . au calls are
intermixed, each . au heading is considered to exist at the level given by register Hu,
whose initial value is 2. Thus, in the normal case, the only difference between

. au heading-text

and

• H 2 heading-text

is the printing of the heading mark for the latter. Both macros have the effect of
incrementing the numbering counter for level 2 and resetting to 0 the counters for levels
3 through 7. Typically, the value of Hu should be set to make unnumbered headings (if
any) be the lowest-level headings in a document.

The • au macro can be especially helpful in setting up appendixes and other sections
that may not fit well into the numbering scheme of the main body of a document (see
"Sample Appendix Headings" later in this chapter).

Using headinp in the table of contents

The text of headings and their corresponding page numbers can be collected
automatically for a table of contents. This is accomplished by doing the following:

• specifying in the contents level register, c1, what level headings are to be saved

• invoking the . TC macro (see "Generating a Table of Contents and Cover Sheet" later
in this chapter) at the end of the document

4-32 Chapter 4 mm Macros

Any heading whose level is less than or equal to the value of the c1 register is saved
and later displayed in the table of contents. The default value for the Cl register is 2; that
is, the frrst two levels of headings are saved.

Due to the way headings are saved, it is possible to exceed the formatter's storage
capacity, particularly when saving many levels of many headings, while also processing
displays and footnotes (see "Creating Displays" and "Creating Footnotes" later in this
chapter). If this happens, the "Out of temp file space" formatter error message will be
issued; the only remedy is to save fewer levels, to have fewer words in the heading text,
or do both.

Using headings in page numbering

By default, pages are numbered sequentially at the top of the page. For large documents,
it may be desirable to use page numbering of the section-page form, where section is the
number of the current first-level heading. This page numbering style can be achieved by
specifying the - rN 3 or - rN 5 flag option on the command line (see "Using Default
Headers and Footers With Section-Page Numbering" later in this chapter). This also has
the effect of setting E j to 1, which causes each frrst-level section to begin on a new page.
In this style, the page number is printed at the bottom of the page so that the correct
section number is printed.

Creating user exit macros

This section is intended primarily for users who are accustomed to writing formatter
macros .

• HX dlevel rlevel heading-text
• HY dlevel rlevel heading-text
• HZ dlevel rlevel heading-text

The . HX, • HY, and . HZ macros are the means by which the user obtains a final level
of control over the previously described heading mechanism. These macros are not
defined by rnm; they are intended to be defined by the user. The . H macro call invokes

• HX shortly before the actual heading text is printed; it calls . HZ as its last action. After
• HX is invoked, the size of the heading is calculated. This processing causes certain
features that may have been included in . HX, such as . t i for temporary indent, to be
lost. After the size calculation, . HY is invoked so that the user may specify these features

Structuring the page 4-33

again. All default actions occur if these macros are not defined. If • ax, . HY, or . HZ is
defmed by the user, user-supplied defmition is interpreted at the appropriate point.
These macros can influence handling of all headings because the . au macro is actually a
special case of the . H macro.

If the user first invokes the . H macro, then the derived level argument (dlevel) and
the real level argument (rleve/) both are equal to the level given in the . H invocation. If
the user first invokes the . au macro (see "Working With Unnumbered Headings" earlier
in this chapter), dlevel is equal to the contents of register Hu, and rlevel is 0. In both cases,
heading-text is the text of the original invocation.

By the time . H calls • HX, it has already incremented the heading counter of the
specified level, produced blank lines (vertical spaces) to precede the heading (see
"Prespacing Headings and Forcing a Page Break" earlier in this chapter), and
accumulated the "heading mark," that is, the string of digits, letters, and periods needed
for a numbered heading. When . HX is called, all user-accessible registers and strings can
be referenced, as well as the following:

string } o

register ; o

string } 2

register ; 3

4-34 Chapter 4 mm Macros

If rlevel is nonzero, this string contains the heading mark. Two
unpaddable spaces (to separate the mark from the heading) have been
appended to this string. If rlevel is 0, this string is null.

This register indicates the type of spacing that is to follow the heading
(see "Setting Spacing After Headings" earlier in this chapter).

A value of 0 means that the heading is run-in.

A value of 1 means a break (but no blank line) is to follow the heading.

A value of 2 means that a blank line (nroff) or one-half a vertical
space (t roff) is to follow the heading.

If register ; o is 0, this string contains two unpaddable spaces that will
be used to separate the (run-in) heading from the following text.

If register ; o is nonzero, this string is null.

This register contains an adjustment factor for a . ne request issued
before the heading is actually printed. On entry to . ax, it has the value
3 if dlevel equals 1 , and a value of 1 otherwise. The . ne request is for
the following number of lines: the contents of the register ; o taken as
blank lines (nroff) or halves of vertical space (t roff) plus the
contents of register ; 3 as blank lines (nroff) or halves of vertical
space (t roff) plus the number of lines of the heading.

The user may alter the values of } o , } 2 , and ; 3 within . HX. The following are
examples of actions that might be performed by defining . HX to include the lines shown:

• Change frrst-level heading mark from format n. to n.O:

i f \ \ $ 1=1 . ds } 0 \ \n (H1 . 0 \<Sp>\<Sp>

where <sp> stands for a space.

• Separate run-in heading from the text with a period and two unpaddable spaces:

i f \ \n (; 0=0 . ds } 2 . \<Sp>\<Sp>

• Ensure that at least 15 lines are left on the page before printing a frrst-level heading:

i f \ \ $ 1=1 . nr ; 3 (1 5-\ \n (; O) v

• Add three additional blank lines before each frrst-level heading:

i f \ \ $ 1=1 . sp 3

• Indent level-3 run-in headings by five spaces:

i f \ \ $ 1=3 . ti 5n

If temporary strings or macros are used within . HX, their names should be chosen
with care (see "Naming Conventions" later in this chapter).

When the . HY macro is called after the . ne is issued, certain features requested in
. HX must be repeated, for example,

. de HY

. if \ \ $ 1=3 . t i 5n

The . HZ macro is called at the end of . H to permit user-controlled actions after the
heading is produced. In a large document, sections may correspond to chapters of a
book; and the user may want to change a page header or footer, for example,

. de HZ

. if \ \ $ 1=1 . PF " Sect ion \ \ $ 3 "

Creating page headers and footers

Text printed at the top of each page is called a page header. Text printed at the bottom
of each page is called a page footer. There can be up to three lines of text associated
with the header-every page, even page only, and odd page only. Thus the page header

Structuring the page 4-3S

may have up to two lines of text-the line that occurs at the top of every page and the
line for the even- or odd-numbered page. The same is true for the page footer.

This part describes the default appearance of page headers and page footers and
ways of changing them. The term header (not qualified by even or odd) is used to mean
the page header line that occurs on every page, and similarly for the term fqoter.

Using default headers and footers

By default, each page has a centered page number as the header. There is no default
footer and no even or odd default headers or footers except as specified in the next
section, "Using Default Headers and Footers With Section-Page Numbering."

In a memorandum or a released-paper style document, the page header on the ftrst
page is automatically suppressed provided a break does not occur before the . MT macro
is called. Macros and text in the following categories do not cause a break and are
permitted before the memorandum type (. MT) macro:

• memorandum and released-paper style document macros (. TL, . Au, . AT, . TM,
. AS, . AE, . OK, . ND, . AF, . NS, and . NE)

• page header and footer macros (. PH, . EH, . oH, . PF, . EF, and . oF)

• the . nr and . ds requests

Using default headers atul footers with section-page numbering Pages can be
numbered sequentially within sections by section number and page number (see "Using
Headings in Page Numbering" earlier in this chapter). To obtain this numbering style,
-rN3 or -rNS is specified on the command line. In this case, the default footer is a
centered section- page number, for example, 7-2-and the default page header is blank.

Using header and footer macros

For header and footer macros (. PH, . EH, . oa, . PF, . EF, and . OF) the argument [atg]
is of the form

" ' left-part' center-part' right-part' "

If it is inconvenient to use an apostrophe (') as the delimiter because it occurs within
one of the parts, it may be replaced uniformly by any other character. The . f c request
redefmes the delimiter. In formatted output, the parts are left justified, centered, and right
justified, respectively.

4-36 Chapter 4 mm Macros

- -- --- - - - - �----------- - ------- ---

Page headers The . PH macro specifies the header that is to appear at the top of every
page .

• PH [argl

The initial value is the default centered page number enclosed by hyphens. The page
number contained in the P register is an Arabic number. The format of the number may
be changed by the . a f macro request.

If debug mode is set using the flag option -rD l on the command line, additional
information printed at the top left of each page is included in the default header. This
consists of the Source Code Control System (SCCS) release and level of memorandum
macros (thus identifying the current version followed by the current line number within
the current input ftle). (See "Parameters Set From Command Line" and "SCCS Release
Identification.")

Even-page headers The . EH macro supplies a line to be printed at the top of each
even-numbered page immediately following the header .

• EH [alg)

Initial value is a blank line.

Odd-page header The . OH macro is the same as . EH except that it applies to odd
numbered pages .

• OH [alg)

Page footers The . P F macro specifies a line that is to appear at the bottom of each
page .

• PF [alg)

Its initial value is a blank line. If the - rc n flag option is specified on the command
line, the type of copy follows the footer on a separate line. In particular, if -rc3 or -rc4

(DRAFf) is specified, the footer is initialized to contain the date instead of being a blank
line.

Even-page footers The . EF macro supplies a line to be printed at the bottom of each
even-numbered page immediately preceding the footer .

• EF [alg)

Initial value is a blank line.

Structuring the page 4-37

Odd-page footers The . OF macro supplies a line to be printed at the bottom of each
odd-numbered page immediately preceding the footer .

• OF [a'8)

Initial value is a blank line.

First-page footers By default, the ftrst-page footer is a blank line. If, in the input text
file, the user specifies . PF, • OF, or both, before the end of the ftrst page of the

document, these lines will appear at the bottom of the first page.
The header, whatever its contents, replaces the footer on the first page only if the -

rNl flag option is specified on the command line (see "Parameters Set From the
Command Line" earlier in this chapter).

Strings and registers in header and footer macros String and register names can

be placed in arguments to header and footer macros. If the value of the string or register
is to be computed when the respective header or footer is printed, invocation must be
escaped by four backslashes. This is because string or register invocation will be
processed three times:

1 . As the argument to the header or footer macro

2. In a formatting request within the header or footer macro

3. In a . t l request during header or footer processing

For example, page number register P must be escaped with four backslashes in order
to specify a header in which the page number is to be printed at the right margin:

. PH " ' ' ' Page \ \ \ \nP ' "

creates a right-justified header containing the word "Page" followed by the page number.
Similarly, to specify a footer with the section-page style, the user specifies

. PF " ' ' ' - \ \ \ \n (Hl- \ \ \ \nP - ' "

If the user arranges for the string a] to contain the current section heading that is to be
printed at the bottom of each page, the . PF macro call would be

. PF " ' ' \ \ \ \ * (� ' ' "

If only one or two backslashes were used, the footer would print a constant value for
a], namely, its value when . PF appeared in the input text.

4-38 Chapter 4 mm Macros

Header and footer example

The following sequence specifies blank lines for header and footer lines, page numbers
on the outside margin of each page (that is, top left margin of even pages and top right
margin of odd pages), and "Revision 3" on the top inside margin of each page. Nothing is
specified for the center .

. PH " "

. PF " "

. EH " ' \ \ \ \ nP "Revis ion 3 ' "

. OH " ' Revision 3 " \ \ \ \nP ' "

Skipping pages

The . SK macro skips pages but retains the usual header and footer processing .

• sK rpageSJ

If the pages argument is omitted, null, or 0, . SK skips to the top of the next page
unless it is currently at the top of a page (in which case it does nothing). A • SK n
command skips n pages. A • SK positions text that follows it at the top of a page, while
.sK 1 leaves one page blank except for the header and footer.

Forcing an odd page

The . OP macro is used to ensure that formatted output text following the macro begins
at the top of an odd-numbered page .

• OP

• If currently at the top of an odd-numbered page, text output begins on that page (no
motion takes place).

• If currently on an even-numbered page, text resumes printing at the top of the next
page.

• If currently on an odd-numbered page (but not at the top of the page), one blank
page is produced, and printing resumes on the next odd-numbered page after that.

Structuring the page 4-39

Specifying top and bottom margins

The . VM (vertical margin) macro allows the user to specify additional space at the top
and bottom of the page .

• VM [top] [bottom]

This space precedes the page header and follows the page footer. The . VM macro
takes two unsealed arguments that are treated as vertical spaces (v). For example,

. VM 1 0 1 5

adds 1 0 vertical spaces to the default top-of-page margin and 1 5 vertical spaces to the
default bottom-of-page margin. Both arguments must be positive (default spacing at the
top of the page may be decreased by redefining . TP).

Using the word "PRIVATE" in the header

. nr Pv value

The word "PRIVATE" may be printed, centered, and underlined on the second line of
a document (preceding the page header). This is done by setting the Pv register value:

o Do not print PRIVATE (default)

1 PRIVATE on first page only

2 PRIVATE on all pages

If value is 2, the user-defmable . TP macro may not be used because the . TP macro
is used by mm to print "PRIVATE" on all pages except the first page of a memorandum on
which . TP is not invoked.

Defining a macro for top-of-page processing

This part is intended only for users accustomed to writing formatter macros.
During header processing, mm invokes two user-defmable macros:

• The . TP (top-of-page) macro is invoked in the environment (refer to . ev request) of
the header.

• The . PX is a page header user-exit macro that is invoked (without arguments) when
the normal environment has been restored and with the no-space mode already in
effect.

4-40 Chapter 4 mm Macros

The effective initial definition of . TP (after the first page of a document) is

. de TP

. sp 3

. t l \ \ * (} t

. if e ' t l \ \ * (} e

. i f o ' t l \ \ * (} o

. sp 2

The string } t contains the header, the string } e contains the even-page header, and
the string } o contains the odd-page header as defined by the . PH, • EH, and . OH
macros, respectively. To obtain more specialized page titles, the user may redefine the
. TP macro to cause the desired header processing (see "Creating Headings for Two
Column Output" later in this chapter). Formatting done within the . TP macro is
processed in an environment different from that of the body. For example, to obtain a
page header that includes three centered lines of data, that is, document number, issue
date, and revision date, the user could define the . TP macro as follows:

. de TP

. sp

. ce 3
7 7 7 - 8 8 8 - 9 9 9
I s s . 2 , AUG 1 97 7
Rev . 7 , SEP 1 97 7
. sp

The . PX macro can be used to provide text that is to appear at the top of each page
after the normal header and that can have tab stops to align it with columns of text in the
body of the document.

Defining a macro for bottom-of-page processing

Lines of text that are specified between the . BS (bottom-block start) and . BE (bottom
block end) macros will be printed at the bottom of each page after the footnotes (if any)
but before the page footer.

Structuring the page 4-41

4-42

. BS
zero or more lines of text
. BE

This block of text is removed by specifying an empty block, that is,

. BS

. BE

The bottom block will appear on the table of contents, pages, and cover sheet for
memorandum for ftle, but not on the technical memorandum or released-paper cover
sheets.

Creating a disclaimer using a proprietary marking macro

The . PM (proprietary marking) macro appends a proprietary disclaimer to the page
footer. The proprietary disclaimers are constructed from strings deftned in the ftle
/usr/lib /rnacros / st rings . mm .

. PM [codeJ

The argument is selected from among the following:

PMl
PM2 or CA
PM3 or CP
PM4
PMS
PM6

Use . PM at the beginning of your document, before you use footnotes or macros that
deftne the memorandum style. Otherwise, an interaction between this macro and another
that redeftnes the appearance of the bottom of the page may cause you problems.

The default disclaimers are in a form approved for use by AT&T. Markings are
underlined. (They are italicized in t ro f f.)

System administrators can change the contents of the st ring . mm ftle to match your
needs. This ftle is described in "Using Deftne File Information" later in this chapter. In
cases where the disclaimer message for a code argument has been removed, the
argument issues a currently approved disclaimer message. Because the code argument
may produce a shorter or longer disclaimer message, the page formatting of the
document may be affected.

Chapter 4 mm Macros

Creating two-column output

The . 2e macro begins two-column processing, which continues until a . 1e macro (one
column processing) is encountered .

• 2e
text and formatting requests (except another . 2e)
. le

In two-column processing, each physical page is thought of as containing two-columnar
"pages" of equal (but smaller) "page" width. Page headers and footers are not affected by
two-column processing. The . 2 e macro does not balance two-column output.

It is possible to have full-page-width footnotes and displays when in two-column
mode, although default action is for footnotes and displays to be narrow in two-column
mode and wide in one-column mode. Footnote and display width is controlled by the
. we (width control) macro, which takes the arguments listed in Table 4-5.

Table 4-5 Arguments for the width control macro

Argument

N

WF
-WF

FF

-FF
WD

-WD
FB

-FB

MeanJng

Default mode (-WF, -FF, -WD, FB).

Wide footnotes (even in two-column mode).

Default: Tum off WF. Footnotes follow column mode; wide in one-column mode
(le), narrow in two-column mode (2e), unless FF is set.

First footnote. All footnotes have same width as ftrst footnote encountered for that
page.

Default: Tum off FF. Footnote style follows settings of WF or -WF.
Wide displays (even in two-column mode).

Default: Displays follow the column mode in effect when display is encountered.

Default: Floating displays cause a break when output on the current page.

Floating displays on current page do not cause a break.

+ Note The . we wo FF command will cause all displays to be wide and all footnotes
on a page to be the same width, while . we N will reinstate default actions. If conflicting
settings are given to . we, the last one is used. A • we WF -WF command has the effect
of a . we -WF. •

Structuring the page 4-43

Creating headings for two-column output

This section is intended only for users accustomed to writing formatter macros.
In two-column processing output, it is sometimes necessary to have headers over

each column as well as headers over the entire page. This is accomplished by redefining
the . TP macro to provide header lines both for the entire page and for each of the
columns, for example,

. de TP

. sp 2

. t l ' Page \ \nP ' OVERALL' '

. t l ' ' TITLE ' '

. sp

. nf

. ta 1 6C 3 1R 3 4 S OC 6 5R
le ft A i centerA i right A i left A icenterA iright
A i fi rst colurnnA I A I A i second column
. fi
. sp 2

where A I stat:lds for the tab character.
The above example will produce two lines of page header text plus two lines of

headers over each column. Tab stops are for a 65-en overall line length. See "Defining a
Macro for Top-of-Page Processing" earlier in this chapter for more information on headers.

Hints for large documents

A large document is often organized for convenience into one input text file per section.
If the flies are numbered, it is wise to use enough digits in the names of these flies for the
maximum number of sections; that is, use sufftx numbers 01 through 20 rather than 1
through 9 and 10 through 20.

Users often want to format individual sections of long documents. To do this with the
correct section numbers, it is necessary to set register H 1 to one less than the number of
the section just before the corresponding . H 1 call. For example, at the beginning of
Part 5, insert

4-44 Chapter 4 mm Macros

��- � - - - - - --�-- - - ---�--------- -
-�---·

. nr Hl 4

It will also be necessary to set the correct page number by using the • pn request or
the -rP n flag option.

+ Note This is not good practice. It defeats the automatic (re)numbering of sections
when sections are added or deleted. Such lines should be removed as soon as possible. •

Creating lists

In order to avoid repetitive typing of arguments to describe the style or appearance of
items in a list, mm provides a convenient way to specify lists. All lists share the same
overall structure and are composed of the following basic parts:

• A list-initialization macro (. AL, • BL, • DL, • ML, • RL, or . VL) determines the style of
the list: line spacing, indentation, marking with special symbols, and numbering or
alphabetizing of list items.

• One or more list-item macros (. LI) identify unique items to the system. They are
followed by the actual text of the corresponding list items.

• The list-end macro (. LE) identifies the end of the list. It terminates the list and
restores the previous indentation.

Lists may be nested up to six levels. The list -initialization macro saves the previous list
status (indentation, marking, style, and so forth); the • LE macro restores it.

With this approach, the format of a list is specified only once at the beginning of the
list. In addition, by building onto the existing structure, users may create their own
customized sets of list macros with relatively little effort (see "Using List-Begin Macros"
and "Defining Other List Structures" later in this chapter).

Using list -initialization macros

List-initialization macros are implemented as calls to the more basic . LB macro (see
"Using List-Begin Macros" later in this chapter). The list-initialization macros are listed in
Table 4-6.

Creating lists 4-45

Table 4-6 List-initialization macros

Macro Desaiption

• AL Automatically numbered or alphabetized list

. BL Bulleted list
• D L Dashed list

• ML Marked list

• RL Reference list

• VL Variable-item list

Using list -item macros

The . L r macro is used with all lists and for each list item .

• LI [mark] [1)
one or more lines of text that make up the list item

It normally causes output of a single blank line (nroff) or one-half a vertical space
(t roff) before its list item, although this may be suppressed.

• If no arguments are given, . LI labels the item with the current mark (except in . VL
lists), which is specified by the most recent list-initialization macro.

• If a single argument is given, that argument is output instead of the current mark.

• If two arguments are given, the frrst argument becomes a preftx to the current mark,
thus allowing the user to emphasize one or more items in a list. One unpaddable
space is inserted between the prefix and the mark.

For example,

. BL 5

. LI
This i s a s imple bullet item .

• LI +
Thi s replaces the bullet with a �plus . "
. LI + 1

4-46 Chapter 4 mm Macros

This uses a �plus" as prefix to the bullet .
• LE

when fonnatted yields
• This is a simple bullet item.

+ This replaces the bullet with a "plus."

+• This uses a ''plus" as prefix to the bullet

+ Note The mark must not contain ordinary (paddable) spaces because alignment of
items will be lost if the right margin is justified (see "Specifying Unpaddable Spaces"
earlier in this chapter).

If the current mark (in the current list) is a null string and the ftrSt argument of . L I is
omitted or null, the result is that of a "hanging indent"; that is, the ftrSt line of the
following text is moved to the left starting at the same place where mark would have
started (see "Creating a Variable-Item List" later in this chapter). •

Using list -end macros

The • LE macro restores the state of the list to that existing just before the most recent list
initialization macro call .

. LE [1]

If the optional argument is given, the . LE generates a blank line (nroff) or one-half
a vertical space (t roff) . This option should generally be used only when the • LE is
followed by running text but not when followed by a macro that produces blank lines of
its own, such as the • P or . H macro.

The . H and . HU macros automatically clear all list information. The user may omit
the . LE macros that would normally occur just before either of these macros and not
receive the "LE : mismatched" error message. Such a practice is not recommended
because errors will occur if the list text is separated from the heading at some later time
(for example, by insertion of text).

Creating lists 4-47

Setting spacing in a list

Spacing at the beginning of the list and between items can be suppressed by setting the
list space register (Ls). The Ls register is set to the innermost list level for which spacing
is done. For example,

. nr Ls 0

specifies that no spacing will occur around any list items. The default value for Ls is 6
(which is the maximum list-nesting level).

Numbering or alphabetizing a list

The . AL macro is used to begin sequentially numbered or alphabetized lists .

• AL lt� ltext-indenn [11

if there are no arguments, the list is numbered, and text is indented by Li (default is
6) spaces from the indent in force when the . AL is called. This leaves room for a space,
two digits, a period, and two spaces before the text. Values that specify indentation must
be unsealed and are treated as character positions, that is, number of ens. The string . AL
A s is used to initialize the following list:

A. The type argument may be given to obtain a different type of sequencing. Its value
indicates the first element in the sequence desired. If the type argument is omitted or
null, the value 1 is assumed. Listed below are the arguments and interpretations:

Argument Interpretation

1 Arabic (default for all levels)

A Uppercase alphabetic

a Lowercase alphabetic

I Uppercase Roman

i Lowercase Roman

B. If the text-indent argument is non-null, it is used as the number of spaces from the
current indent to the text; that is, it is used instead of the Li register for this list only.
If the text-indent argument is null, the value of Li will be used.

4-48 Chapter 4 mm Macros

C. If the third argument is given, a blank line (nroff) or one-half a vertical space
(t roff) will not separate items in the list. However, a blank line will occur before
the ftrst item.

Creating a bulleted list

The . BL macro begins a bulleted list.

• BL [text-indenn [11

Each list item is marked by a bullet (•) followed by one space. The string . BL 5 is used
to initialize the following list:

• If the text-indent argument is specifted (non-null), it overrides the default indentation,
which is the amount of paragraph indentation as given in the P i register (see
"Creating Paragraphs" earlier in this chapter). In the default case, the text of a bulleted
list lines up with the first line of indented paragraphs.

• If the second argument is specified, no blank lines will separate items in the list.

Creating a dashed list

The . D L macro begins a .dashed list.

• nL [text-indenn [11

Each list item is marked by a dash (-) followed by one space. The string . o L 5 is used
to initialize the following list:

- If the text-indent argument is specifted (non-null), it overrides the default indentation,
which is the amount of paragraph indentation as given in the P i register (see
"Creating Paragraphs" earlier in this chapter). In the default case, the text of a dashed
list lines up with the first line of indented paragraphs.

- If the second argument is specifted, no blank lines will separate items in the list.

Creating lists 4-49

Creating a marked list

The • ML macro is much like . BL and . DL macros but expects the user to specify an
arbitrary mark, which may consist of more than a single character .

• ML mark [text-indenn [11

The string . ML \ (sq 5 is used to initialize the following list:

• Text is indented text-indent spaces if the second argument is specified (non-null);
otherwise, the text is indented one more space than the width of mark.

• If the third argument is specified, no blank lines will separate items in the list.

• Note The mark must not contain ordinary (paddable) spaces because alignment of
items will be lost if the right margin is justified (see "Specifying Unpaddable Spaces"
earlier in this chapter). •

Creating a reference list

A . RL macro call begins an automatically numbered list in which the numbers are
enclosed by square brackets ([]) .

• RL rtext-indenn [11

The string . RL 5 is used to initialize the following list:

[1] If the text-indent argument is specified (non-null), it is used as the number of spaces
from the current indent to the text; that is, it is used instead of Li for this list only. If
the text-indent argument is omitted or null, the value of Li is used.

[2] If the second argument is specified, no blank lines will separate the items in the list.

4-50 Chapter 4 mm Macros

---- --- --- --- ---- - --- ---- -----------�-� --�----------- -� -- - --- - -- -- - - ------- ---- --- ----- ---- - -- -

Creating a variable-item list

When a list begins with a . VL macro, there is effectively no current mark; it is expected
that each . L I will provide its own mark.

• VL text-indent lmark-indenn [11

This form is typically used to display definitions of terms or phrases.

• text-indent provides the distance from current indent to beginning of the text.

• mark-indent produces the number of spaces from current indent to beginning of the
mark, and it defaults to 0 if omitted or null.

• If the third argument is specified, no blank lines will separate items in the list.
An example of . VL macro usage is shown below:

. VL 2 0 5

. LI "First \ Mark "
This is the first mark specified for this list .
. LI " Second\ Mark "
. br
This is the second mark speci fied for this list .
The . br request causes a break so that this
text will appear one line below the mark .
. LI " Third\ Mark\ Longe r\ Than\ Indent : "
This item shows the effect of a long mark ;
one space separates the mark from the text •
. LI " \ "
This item has a nonprint ing mark and effect ively
produces a list item that is indented .

• LI
This item has an omitted mark
and produces a ' ' hanging indent . ' '
The first line of text is at the le ft margin and
the second is indented .
. LE

Creating lists 4-51

When formatted, it yields

First Mark

Second Mark

This is the first mark specified for this list.

This is the second mark specified for this list. The .br
request causes a break so that this text appears one line
below the mark.

Third Mark Longer Than Indent: This item shows the effect of a long mark;
one space separates the mark from the text.

This item has a nonprinting mark (an unpaddable space) and
effectively produces a list item that is indented.

This item has an omitted mark and produces a "hanging indent." The first
line of text is at the left margin and the second is indented.

+ Note The mark must not contain ordinary (paddable) spaces because alignment of
items will be lost if the right margin is justified (see "Specifying Unpaddable Spaces"
earlier in this chapter). If you do not escape the spaces within the double quotation
marks containing the list item, the ftrst line of the text will be slightly adjusted for the
paddable spaces and will not line up with the rest of the text blocks in your list. •

Example of nested lists

An example of input for the several lists and the corresponding output is shown below.
The . AL and . DL macro calls (see "Numbering or Alphabetizing a List," and "Creating a
Dashed List" earlier in this chapter) contained therein are examples of list-initialization
macros. Input text is

. AL A 5

. LI
This is automat ically alphabet i zed list item A .
This list item has an indentat ion of 5 ens .

• AL
. LI
Thi s i s automat ically numbered list item 1 .

4-52 Chapter 4 mm Macros

This list item also has an indentat ion of 5 ens .
. DL
. LI This is a dashed list item .
. LI + 1
This is another dashed item in the same list
as the above item with a �plus" as prefix .
Thi s is the last item in the dashed list .
. LE
. LI
This i s item 2 in the automat ically numbered list .
Thi s i s the last item in the automat ically numbered list .
. LE
. LI
This i s item B in the automat ical ly alphabet ized list .
This is the last item in the automat ically
alphabet i zed list .
. LE

The output is

A. This is automatically alphabetized list item A. This list item has an indentation of 5
ens.

1 . This is automatically numbered list item 1 . This list item also has an
indentation of 5 ens.

This is a dashed list item.
+ - This is another dashed item in the same list as the above item with a "plus" as

preftx.

This is the last item in the dashed list.

2. This is item 2 in the automatically numbered list. This is the last item in the
automatically numbered list.

B. This is item B in the automatically alphabetized list. This is the last item in the
automatically alphabetized list.

Creating lists 4-53

Using list-begin macros

List-initialization macros described above suffice for almost all cases. However, if
necessary, the user may obtain more control over the layout of lists by using the basic list
begin macro (0 LB).

0 LB text-indent mark-indent pad type [mark] [11-spacl!J [lB-spacl!J �

The 0 LB macro is used by the other list-initialization macros. Its arguments are as
follows:

• The text-indent argument provides the number of spaces that text is to be indented
from the current indent. Normally, this value is taken from the Li register (for
automatic lists) or from the P i register (for bulleted and dashed lists).

• The combination of mark-indent and pad arguments determines the placement of the
mark. The mark is placed within an area (called mark area) that starts mark-indent
spaces to the right of the current indent and ends where the text begins (that is, ends
text-indent spaces to the right of the current indent). The mark-indent argument is
typically 0.

• Within the mark area, the mark is left-justified if the pad argument is 0. If pad is a
number n (greater than 0) then n blanks are appended to the mark; the mark-indent
value is ignored. The resulting string immediately precedes the text. The mark is
effectively right -justified pad spaces immediately to the left of the text.

• Arguments type and mark interact to control the type of marking used. If type is 0,
simple marking is performed using the mark character or characters found in the
mark argument. If type is greater than 0, automatic numbering or alphabetizing is
done. Then, mark is interpreted as the first item in the sequence to be used for
numbering or alphabetizing and is chosen from the set (1 , A, a, I, i), as in "Numbering
or Alphabetizing a List" earlier in this chapter. This is summarized in the following
list:

Type Argument mark

0 Omitted

0 String

> 0 Omitted

> 0 One of 1 , A, a , I , or i

4-54 Chapter 4 mrn Macros

Result

Hanging indent

String is the mark

. Arabic numbering

Automatic numbering or alphabetic sequencing

Each nonzero value of type from 1 to 6 selects a different way of displaying the marks.
The following table shows the output appearance for each value of type,

Value Appearance

1 X.

2 X)

3 (X)

4 [xi
5 <X>

6 { X}

where x is the generated number or letter.

+ Note mark must not contain ordinary (paddable) spaces because alignment of items
will be lost if the right margin is justified (see "Specifying Unpaddable Spaces" earlier in
this chapter). •

• The Il-space argument gives the number of blank lines (nrc f f) or half vertical spaces

(t roff) that should be generated by each . LI macro in the list. If omitted, Il-space

defaults to 1 ; the value 0 can be used to obtain compact lists. If Il-space is greater than
0, the . LI macro issues a . ne request for two lines just before printing the mark.

• The LB-space argument is the number of blank lines (nroff) or half vertical spaces

(t roff) to be generated by . LB itself. If omitted, LB-space defaults to 0.
There are three combinations of Il-space and LB-space:

• The normal case is to set Il-space to 1 and LB-spaceto 0, yielding one blank line
(nroff) or one-half a vertical space (t roff) before each item in the list; such a list
is usually terminated with a . LE 1 macro to end the list with a blank line (nroff)
or one-half a vertical space (t roff).

• For a more compact list, Il-spaceis set to 0, LB-space is set to 1, and the • LE 1
macro is used at the end of the list. The result is a list with one blank line (nroff) or
one-half a vertical space (t roff) before and after it.

• If both U-space and LB-space are set to 0 and the . LE macro is used to end the list, a
list without any blank lines will result.

Creating lists 4-55

The following section, "Defining Other List Structures," shows how to build upon the
supplied list of macros to obtain other kinds of lists.

Defining other list structures

This section is intended for users accustomed to writing formatter macros.
If a large document requires complex list structures, it is useful to defme the

appearance for each list level only once instead of having to define the appearance at the
beginning of each list. This permits consistency of style in a large document. A
generalized list-initialization macro might be defined in such a way that what the macro
does depends on the list -nesting level in effect at the time the macro is called. Levels 1
through 5 of the lists to be formatted may have the following appearance:

A .
[1]

•

a)
+

The following code defines a macro (. aL) that always begins a new list and
determines the type of list according to the current list level. To understand it, the user
should know that the number register : g is used by the mm list macros to determine the
current list level; it is 0 if there is no currently active list. Each call to a list-initialization
macro increments : g, and each . LE call decrements it.

. \ " register g is used as a local

. \ " temporary to save : g before

. \ " it i s changed below

. de aL

. nr g \ \n (: g

. if \ \ng=O

. if \ \ng=1

. if \ \ng=2

. if \ \ng=3

. i f \ \ng=4

4-56 Chapter 4 mm Macros

. AL A

. LB \ \n (Li

. BL

. LB \ \n (Li

. ML +

\ " produces
0 1 4

\ " produces
0 2 2 a

\ " produces

an A .
\ " produces a [1]

a bullet
\ " produces an a)

a +

This macro can be used (in conjunction with . L I and . LE) instead of . AL, . RL, . BL,
. LB, and . ML. For example, the following input

. AL

. LI
First line .
. aL
. LI
Second line .
. LE
. LI
Third line .
. LE

when formatted yields

1 . First line.

[1] Second line.

2. Third line.

There is another approach to lists that is similar to the . H mechanism. List
initialization macros, as well as the . L I and the . LE macros, are all included in a single
macro. That macro, defined as . bL below, requires an argument to tell it what level of
item is required; it adjusts the list level by either beginning a new list or setting the list
level back to a previous value, and then issues a . L I macro call to produce the item:
. de bL
. ie \ \n (. $. nr g \ \ $ 1

\ " if there i s an argument , that i s the level
. el . nr g \ \n (: g

\ " if no argument , use current level
. if \ \ng-\ \ n (: g> 1 .) D

\ " * * ILLEGAL SKIPP ING OF LEVEL
\ " increas ing level by more than 1

. i f \ \ng>\ \n (: g \ { . aL \ \ng- 1
\ " if g > : g , begin new list

. nr g \ \n (: g\ }
\ " and reset g to current level

Creating lists 4-S7

\ " (. aL changes g)
. if \ \ n (: g>\ \ng . LC \ \ng

\ " if : g > g, prune back to correct level
\ " if : g = g, stay within current list

. LI
\ " in all cases , get out an item

For . bL to work, the previous definition of the . aL macro must be changed to
obtain the value of g from its argument rather than from : g. Invoking . bL without

arguments causes it to stay at the current list level. The . LC (list clear) macro removes list
descriptions until the level is less than or equal to that of its argument. For example, the

• H macro includes the call . LC o . If text is to be resumed at the end of a list, insert the
call .Lc o to clear out the lists completely. The example below illustrates the relatively
small amount of input needed by this approach. The input text

The quick brown fox jumped over the lazy dog ' s back .
. bL 1
First line .
. bL 2
Second line .
. bL 1
Third line .
. bL
Fourth line .
. LC 0
Fifth line .

when formatted yields

The quick brown fox jumped over the lazy dog's back.

A. First line.

[1] Second line.

B. Third line.

C. Fourth line.

Fifth line.

4-58 Chapter 4 mm Macros

--- ---------- - - ---------�-- -----

Creating memorandum and
released-paper style documents

Some of the information in this section is applicable to Bell Laboratories documents only.
However, most of the features discussed here can be tailored to specific needs.

One use of the memorandum macros is the preparation of memoranda and released
paper documents that have special requirements for the ftrst page and for the cover
sheet. Data needed (title, author, date, case numbers, and so forth) is entered in the same
way for both styles; an argument to the • MT macro indicates which style is being used.

Understanding the sequence of beginning macros

If the following macros are present, they must be given in the following order:

• ND new-date

• TL [charging-cas� rjiling-cas�
one or more lines of title text

• AF [company-nam�

• AU name [initia/51 [loci [deptJ [exn [room] [argl [argl

. AT [tit/� . . .
• TM [numben . . .

• As [argl [indenn
one or more lines of abstract text

. AE

. NS [argl

one or more lines of copy to notation
. NE
• OK [keywora1 . . .

• MT [ryj)� [addresse�

The only required macros for a memorandum for ftle or a released-paper document
are . TL, • AU, and . MT; all other macros (and their associated input lines) may be
omitted if the features are not needed. Once . MT has been invoked, none of the above

Creating memorandum and released-paper style documents 4-59

macros (except . NS and . NE) can be reinvoked because they are removed from the
table of defmed macros to save memory space.

If neither the memorandum nor the released-paper style is desired, the . TL, . AU,
• TM, • AE, • OK, • MT, • ND, and . AF macros should be omitted from the input text. If
these macros are omitted, the ftrst page will have only the page header followed by the
body of the document.

Generating a title

The . TL macro generates a centered title .

. TL [charging-cas� ifiling-cas�
one or more lines of title text

Arguments to the . TL macro are the charging-case number(s) and ftling-case
number(s).

• The charging-case argument is the case number to which time wa� charged for the
development of the project described in the memorandum. Multiple charging-case
numbers are entered as subarguments by separating each from the previous with a
comma and a space and enclosing the entire argument within double quotation
marks.

• The filing-case argument is a number under which the memorandum is to be flled.
Multiple ftling-case numbers are entered similarly, for example,

n . TL " 12 3 4 5 , 67 8 9 0 " 9 8 7 6 5 4 3 2 1
Const ruction of a Table of Even P rime Numbers

The title of the memorandum or released-paper document follows the . TL macro
and is processed in ftll mode. The . b r request may be used to break the title into several
lines as follows:

. TL 1 2 3 4 5
First Tit le Line
. br
\ ! . br ·
Second Tit le Line

4-6o Chapter 4 mm Macros

· · - - -- -- -- - -- · - ----

On output, the title appears after the word "Subject" in the memorandum style and is
centered and bold in the released-paper document style.

If only a charging-case number or only a filing-case number is given, it will be
separated from the title in the memorandum style by a dash and will appear on the same
line as the title. If both case numbers are given and are the same, then "Charging and
Filing case" followed by the number will appear on a line following the title. If the two
case numbers are different, separate lines for "Charging Case" and "Filing Case" will
appear after the title.

Describing the author

The . AU and . AT macros take arguments that describe an author .

• Au name linitia� [/oC] ldepn [extJ [room] [a18] larg/
. AT [titk!J • • •

If any argument contains blanks, that argument must be enclosed within double
quotation marks. The first six arguments must appear in the order given. A separate . AU
macro is required for each author.

The . AT macro is used to specify the author's title. Up to nine arguments may be
given. Each will appear in the signature block for memorandum style (see "Creating End
of-memorandum macros" later in this chapter) on a separate line following the signer's
name. The . AT must immediately follow the . AU for the given author, for example,

. AU " S . J . Jones " SJJ PY 9 8 7 6 5 4 3 2 lZ-234

. AT Director "Materials Research Laboratory"

In the "From" portion in the memorandum style, the author's name is followed by
location and department number on one line and by room number and extension
number on the next line. The "x" for the extension is added automatically. Printing of the
location, department number, extension number, and room number can be suppressed
on the frrst page of a memorandum by setting the Au register to 0; the default value for
Au is 1 . The seventh through ninth rguments of the . AU macro, if present, will follow this
normal author information in the "From" portion, each on a separate line. These last three
arguments can be used for organizational numbering schemes, and so on, for example,

. AU " S . P . Lename " SPL IH 9 9 8 7 7 6 6 SH-4 4 6 5 4 -3 2 1 0 . 0 1MF

Creating memorandum and released-paper style documents 4-61

The name, initials, location, and department are also used in the signature block.
Author information in the "From" portion, as well as names and initials in the signature
block, will appear in the same order as in the . AU macros.

• Note Names of authors in the released-paper style are centered below the title.
Following the name of the last author, "Bell Laboratories" and the location are centered.
The paragraph on memorandum types contains information regarding authors from
different locations (see "Understanding Memorandum Types" later in this chapter). •

Specifying the TM numbers

If the memorandum is a technical memorandum, the TM numbers are supplied via the
. TM macro .

. TM [numben . . •

Up to nine numbers may be specified, for example,

. TM 7 65 4 3 2 1 7 7 7 7 7 7 7 7

This macro call is ignored in the released-paper and external-letter styles (see
"Understanding Memorandum Types" later in this chapter).

Identifying the abstract

If a memorandum has an abstract, the input is identified with the . AS (abstract start) and
• AE (abstract end) delimiters .

• As [a18) [indenn

one or more lines of abstract text
. AE

Abstracts are printed on page one of a document, on its cover sheet, or on both. There
are three styles of cover sheet:

• released paper

• technical memorandum

• memorandum for fde (also used for engineer's note, memorandum for record, and so on)

4-62 Chapter 4 nun Macros

Cover sheets for released papers and technical memoranda are obtained by invoking
the . cs macro (see "Generating a Table of Contents and Cover Sheet" later in this
chapter).

In released-paper style (ftrst argument of the . MT macro is 4) and in technical
memorandum style, if the ftrst argument of . AS is

0 Abstract will be printed on page one and on the cover sheet (if any).

1 Abstract will appear only on the cover sheet (if any).

(See "Understanding Memorandum Types" later in this chapter.)
In memoranda for ftle style and in all other documents (other than external letters), if

the ftrst argument of . AS is

0 Abstract will appear on page one, and no cover sheet will be printed.

2 Abstract will appear only on the cover sheet, which will be produced automatically
(that is, without invoking the . cs macro).

It is not possible to get either an abstract or a cover sheet with an external letter (ftrst
argument of the . MT macro is 5).

Notations such as a "Copy to" list are allowed on memoranda for ftle cover sheets; the
• N s and . NE macros must appear after the . AS 2 and . AE macros. Headings and
displays are not permitted within an abstract. (See "Creating Numbered Headings" and
"Working with Unnumbered Headings" earlier in this chapter and "Using Copy To and
Other Notations" and "Creating Displays" later in this chapter.)

The abstract is printed with ordinary text margins; an indentation to be used for both
margins can be specifted as the second argument of . AS. Values that specify indentation
must be unsealed and are treated as "character positions," that is, as the number of ens.

Using other keywords

Topical keywords may be specifted on a technical memorandum cover sheet using the
. OK macro .

• OK [keywora] • • •

Up to nine such keywords or keyword phrases can be specifted as arguments to the
• OK macro; if any keyword contains spaces, it must be enclosed within double quotation
marks.

Creating memorandum and released-paper style documents 4-63

Understanding memorandum types

The . MT macro controls the format of the top part of the frrst page of a memorandum or
of a released-paper document and the format of the cover sheets .

• MT [t� [addresseeJ

The type arguments and corresponding values are

" " No memorandum type printed

0 No memorandum type printed

None MEMORANDUM FOR FILE is printed

1 MEMORANDUM FOR F ILE is printed

2 PROGRAMMER' S NOTES is printed

3 ENGINEER' S NOTES is printed

4 Released-paper style

5 External-letter style .

"String" string is printed

If the type argument indicates a memorandum style document, the corresponding
statement indicated under Value will be printed after the last line of author information. If
type is longer than one character, then the string itself will be printed, for example,

. MT " Technical Note i S "

A simple letter is produced by calling . MT with a null (but not omitted) or 0
argument.

The second argument to . MT is the name of the addressee of a letter. If present, that
name and the page number replace the normal page header on the second and following
pages of a letter. For example,

. MT 1 " Steve Jones "

produces

Steve Jones - 2

The addressee argument cannot be used if the frrst argument is 4 (released-paper style �

document).
The released-paper style is obtained by specifying

. MT 4 [1]

Chapter 4 mm Macros

This results in a centered, bold title followed by centered names of authors. The
location of the last author is used as the location following "Bell Laboratories" (unless the
. AF macro specifies a different company). If the optional second argument to . MT 4 is
given, the name of each author is followed by the respective company name and

location. Information necessary for the memorandum style document but not for the

released-paper style document is ignored.
If the released-paper style document is used, most Bell Telephone Laboratories

location codes are defined as strings that are the addresses of the corresponding BTL
locations. These codes are needed only until the . MT macro is invoked. Thus, following
the . MT macro, the user may reuse these string names. In addition, the macros for the

end of a memorandum (see "Creating End-of-memorandum macros" later in this chapter)
and their associated lines of input are ignored when the released-paper style is specified.

Authors from non-BTL locations may include their affiliations in the released-paper

style by specifying the appropriate . AF macro (see "Using an Alternate First-Page

Format" later in this chapter) and defining a string (with a two-character name such as

z z) for the address before each . AU, for example,

. TL
A Learned Treat ise
. AF "Getern Inc . "
. ds ZZ " 2 2 Maple Avenue , Sornetown 0 9 9 9 9 "
. AU " F . Swatter" " " ZZ

. AF "Bell Laboratorie s "

. AU " Sam P . Lenarne " " " CB

. MT 4 1

In the external-letter style document, only the title without the word "Subject:" and
the date are printed in the upper left and right comers, respectively, on the first page. It is

expected that preprinted stationery with the company logo and address of the author will

be used.

Changing the date

The . ND macro alters the value of the string DT, which is initially set to produce the

current date.

Creating memorandum and released-paper style documents 4-65

• ND new-date

If the argument contains spaces, it must be enclosed within double quotation marks.

Using an alternate first -page format

An alternate first-page format can be specified with the . AF macro .

• AF [company-namf!J

The words "Subject," "Date," and "From" (in the memorandum style) are omitted, and
an alternate company name is used.

If an argument is given, it replaces "Bell Laboratories" without affecting other
headings. If the argument is null, "Bell Laboratories" is suppressed, and extra blank lines
are inserted to allow room for stamping the document with a Bell System logo or a Bell
Laboratories stamp.

The . AF with no argument suppresses "Bell Laboratories" and the
"Subject/Date/From" headings, allowing output on preprinted stationery. The use of . AF
with no arguments is equivalent to the use of -rAl except that the latter must be used if
it is necessary to change the line length, page offset, or both (these default to 5.8i and li,
respectively, for preprinted forms). The flag options -rok and -rwk are not effective
with . AF. The only . AF use appropriate for the t ro f f formatter is to specify a
replacement for "Bell Laboratories." The flag option -rE n controls the font of the
"Subject/Date/From" block. (See "Parameters Set From the Command Line" earlier in this
chapter).

Example of input text

Input text for a document may begin as follows:

. TL
MM\ * (EMmemorandum macros
. AU "D . W . Smith" DWS PY
. AU " J . R. Mashey " JRM PY
. AU "E . C . Pariser (January 1 9 8 0 Rev .) " ECP PY

4-66 Chapter 4 mm Macros

. AU "N . W . Smith (June 1 9 8 0 Rev .) " NWS PY

. MT 4

Figures 4-1 , 4-2, and 4-3 later in this chapter show the input text file for a simple letter
as well as the formatted output from both the nroff and t roff formatters.

Creating end-of-memorandum macros

At the end of a memorandum document, signatures of authors and a list of notations can
be requested. The following macros and their input are ignored if the released-paper
style document is selected.

Using the signature block

The . FC and . SG macros print a formal closing and signature block.

• FC [closing)

• SG [arg/ [1]

The . FC macro prints "Yours very truly," as a formal closing, if no closing argument
is used. It must be given before the . SG macro. A different closing may be specified as an
argument to . Fe.

The . SG macro prints the author's name after the formal closing, if any. Each name
begins at the center of the page. Three blank lines are left above each name for the actual
signature.

• If no arguments are given, the line of reference data (location code, department
number, author's initials, and typist's initials all separated by hyphens) will not
appear.

• A non-null ftrst argument is treated as the typist's initials and is appended to the
reference data.

• A null ftrst argument prints reference data without the typist's initials or the preceding
hyphen.

• If there are several authors and if the second argument is given, reference data is
placed on the line of the ftrst author.

Creating memorandum and released-paper style documents 4-67

Reference data contains only the location and department number of the ftrst author.
Thus, if there are authors from different departments or from different locations, the
reference data should be supplied manually after the invocation (without arguments) of
the . SG macro, for example,

. SG

. rs

. sp -lv
PY/MH- 9 8 7 6 / 5 4 3 2 -JJJ/ SPL-cen

Using "copy to" and other notations

Many types of notations (such as a list of attachments or "Copy to" lists) may follow
signature and reference data. Various notations are obtained through the . NS macro,
which provides for proper spacing and for breaking notations across pages, if necessary .

• NS [arg/
zero or more lines of the notation
. NE

Codes for arg and the corresponding notations are listed in Table 4-7.

Table 4-7 "Copy to" notations

Argument Notation

None Copy to

" " Copy to

0 Copy to

1 Copy (with att.) to

2 Copy (without att.) to

3 Att.

4 Atts.

5 Enc.

6 Encs.

7 Under Separate Cover

8 Letter to

9 Memorandum to

"string" Copy (string) to

Chapter 4 mm Macros

If arg consists of more than one character, it is placed within parentheses between the
words "Copy" and "to." For example,

. NS "with att . 1 only "

will generate

Copy (with att. 1 only) to

as the notation. More than one notation may be specified before the . NE macro because
a . N s macro terminates the preceding notation, if one exists. For example,

. NS 4
Attachment 1-List of register names
Attachment 2 -List of string and macro name s
. NS 1
S . J . Jone s
. NS 2
S . P . Lename
G . H . Hurt z
. NE

would be formatted as

Atts.
Attachment 1-List of register names
Attachment 2-List of string and macro names

Copy (with att.) to
S. J. Jones

Copy (without att.) to
S. P. Lename
G. H. Hurtz

The . N s and . NE macros can also be used following . AS 2 and . AE to place the
notation list on the memorandum for file cover sheet (see "Identifying the Abstract"
earlier in this chapter). If notations are given at the beginning without . AS 2 , they will
be saved and generated at the end of the document.

Creating memorandum and released-paper style documents

Generating the approval signature line

The . AV macro can be used after the last notation block to automatically generate a line
with spaces for the approval signature and date .

. AV approver's-name

For example,

. AV " Jane Doe "

produces

APPROVED:

Jane Doe

Forcing a one-page letter

Date

To increase the page length temporarily, for example, to force space for a signature at the
bottom of a letter, you can use the -rLn flag option. For example, using -rL 9 0 has the
effect of making the formatter believe that the page is 90 lines long and therefore
providing more space than usual to place the signature or the notations.

+ Note This will work only for a single-page letter or memo. •

Using define file information

The /usr I lib/macros/ strings . mm file contains predefined strings for the . MT
and . PM macros. These strings are proprietary disclaimers for AT&T Bell Laboratories
and may be redefined by system administrators to contain different string and font
information. Only system administrators have write permissions to change the define file.

4-70 Chapter 4 nun Macros

Using business letter style

An alternative to the fonnat memorandum style is the business letter style, which
produces four types of business letters: blocked, semiblocked, full-blocked, and
simplified.

Using the letter-type macro

The letter-type macro . LT formats a letter in one of four business styles:

. LT [a18) .

. LT accepts one optional argument. Arguments and corresponding formats are listed
in Table 4-8.

Table 4-8 Letter-type arguments and formats

Argument Format

None Blocked

BL Blocked

FB Full-blocked

SB Semiblocked

SP Simplified

• LT controls the placement on the page of the output of the subordinate macro . LO and
the subordinate macro pairs (. IA and . IE, • WA and . wE), which differs according to
each of the four business letter formats.

Business letter and formal memorandum macros (. LT and . MT) are mutually
exclusive. If you specify both . LT-specific and . MT-specific macros in a single
document, nroff /t roff attempts to process the file according to the first formatting
specific macro it encounters. mm ignores • MT-specific macros and . MT-specific
command-line parameters if you use them with . LT; conversely, if you use • LT-specific
macros with . MT, mm ignores them.

If you use these business letter macros, the macro pairs . wA! . WE, and . rAJ . IE and
the page formatting macros . LT are required; all other business letter macros are
optional.

Creating memorandum and released-paper style documents 4-71

The 0 LT macro arguments control paragraph indentation for each of the four letter
types. If you redefme the Pt and P i registers, the user-specified indentations will override.
Specification of the Pt and P i registers must occur after specification of the o LT macros.

• In the block format all lines of text begin at the left margin except the dateline, return
address, closing, and writer's identification. These begin at the center of the line. (The
center of the line is not a fixed point; it is calculated for the current line length.)

• The semiblocked format is the same as the blocked format, except the first line of
each paragraph is indented five spaces.

• In full-blocked format all lines begin at the left margin. There are no exceptions.

• The simplified format is the same as the full-blocked format, except the salutation is
replaced by an all-capital subject line and is followed by an additional blank line, the
closing is omitted, and the writer's identification is in capital letters on one line.

Table 4-9 presents a synopsis of the placement of business letter components for the
four 0 LT letter formats and lists the macros (which are explained in detail below) that
you use to format those components.

There are two possible error conditions for the 0 LT macro:

• If you omit the 0 LT macro, file processing aborts and an appropriate error message prints!-_

• If rnrn does not recognize an argument to 0 LT, the ftle processing aborts and an
appropriate error message prints.

Table 4-9 Letter formatting components and macros

Macro

o WA/ o WE
o LO CN [a®
o LO RN[a181
o IA/ o IE
o LO AT [a'8)
o LO SA [a'8)
o LO SJ [a'8]
o P
o FC
o SG
o NS/ o NE

4-72 Chapter 4 mm Macros

Function BL

Writer's address Center

Confidential notation Left

Reference notation Center

Inside address Left

Attention Left

Salutation Left

Subject line Left

Paragraphs Left

Closing Center

Signature Center

Copy notation Left

SB FB SP

Center Left Left

Left Left Left

Center Left Left

Left Left Left

Left Left Left

Left Left None

Indented Left Left

Indented Left Left

Center Left Left

Center Left Left

Left Left Left

Using writer's address macros.

Use this macro pair to specify the writer of the letter and the writer's return address .

. WA writer-name [titl�
return address
. WE

For example,

. WA " James Lorrin, Ph . D . " Director
Summit Re search Company
38 River Road
Summit , New Jersey 0 7 9 0 1
. WE

If a complete return address is not necessary for the letter (for example, if you use
printed letterhead stationary), you can specify the writer information alone:

. WA " Jame s Lorrin , Ph . D . " Director

. WE

The return address cannot exceed 14 lines. Lines in the return address that follow line
14 do not appear on the letter.

The two arguments specified for the . WA and . WE macro pair, the writer-name and
the title, provide information used by the . SG macro. If you do not specify the . SG
macro, the writer's name does not appear on the letter.

For the case of multiple writers on a single letter, you may specify only one writer
return address. The specified writer return address must appear with the first writer-name
as the first invocation of the . wA/ . WE macro pair. Later return address specifications do
not appear on the letter, although any number of additional writer names may be
specified, for example,

. WA " Jame s Lorrin , Ph . D . " Director
Summit Research Company
38 River Road
Summit , New Jersey 0 7 9 0 1
. WE
. WA " John Smith" Supervisor
. WE
. WA "Diane Kane " " Technical Support "
. WE

Creating memorandum and released-paper style documents 4-73

For blocked and semiblocked letter styles, the writer return address begins on line 12
of the first page and each line begins at the center of the line. For the full-blocked and
simplified letter styles, the writer return address begins on line 12 of the page and each
line begins at the left margin.

+ Note Top-of-page processing can be controlled directly through nroff. The
beginning of the printed page is user-defined. See the requests . wh and . ch in Chapter
3, "nroff/t roff Formatters." •

If you omit either or both of the . WA and . WE macros, the file processing aborts and
an appropriate error message prints.

Using inside address macros

. IA and . IE are a macro pair that you use to specify the addressee and the addressee's
address. There are two ways that you can use this macro pair:

. IA
text

. IE

or

. IA [addressee-name) [titleJ
text
. IE

For example,

. IA F red Smith , Ph . D .
Columbia University
1 1 6th St reet
New York , New York 1 0 0 1 9
. IE

or

. IA "Fred Smith , Ph . D . "

. IE

4-74 Chapter 4 mm Macros

For all four styles of . LT, the inside address prints on the fifth line below the date (if
a reference notation or confidential notation appears after the date, the inside address
prints three lines below the notation), and each line begins at the left margin.

If you omit either or both of the . IA and . IE macros, the ftle processing aborts and
an appropriate error message prints.

Using the letter-options macro

The letter-options macro provides the capability for specifying five common business
letter components:

. LO type [atgl

The . LO macro takes care of placement and spacing of these letter components for
each . LT letter format. . LO requires one argument to specify a letter component type
and accepts one optional string argument to refme its action . . Lo's arguments and their
corresponding components are

AT Attention

CN Confidential notation

RN Reference notation

SA Salutation

SJ Subject line

Confidential notation The confidential notation shows that a business letter should be
read only by the person to whom it is addressed. The confidential notation appears on
the second line below the date line of the letter and begins at the left margin for all letter
formats.

If the optional string argument is present the specified string replaces the default, for
example,

. LO CN " RESTRICTED "

The default of CN prints CONFIDENTIAL.

Reference notation The reference notation supplies specific information to be used by
the addressee, for example,

. LO RN "meet ing of 1 / 2 5 "

Creating memorandum and released-paper style documents 4-75

The reference note appears two lines below the dateline of the letter or on the second

line below any notation that follows the date and is left aligned with the dateline for all
four letter formats.

RN provides a common fonnat for including a reference note by printing the string
"In reference to : " preceding the optional string argument to • LO. The fonnat
string "In reference to : " cannot be redefined. There is no default value for the
optional argument.

Attention line The attention line directs the letter to the attention of a specific person or
department, for example,

. LO AT "Dr . Smith"

The attention information appears on the second line below the inside address of the
letter and begins at the left margin.

AT provides a common fonnat for directing a letter to the attention of a specific
person by printing the string "ATTENTION : " preceding the optional string argument to

• LO. The fonnat string "ATTENTION =. " cannot be redefmed. There is no default value
for the optional argument.

Salutation The salutation specifies the letter's opening greeting. For the blocked,
semiblocked, and full-blocked fonnats the salutation appears on the second line below
the inside address (or on the second line below the attention line, if used). In the
simplified letter format, the salutation is ignored.

The default of SA prints "To Whom It May Concern : " for the salutation. If the
optional string argument is present, the specified string will replace the default, for
example,

. LO SA " Dear Dr . Smith"

Subject line The subject line shows what the letter is about. In the blocked and full
blocked letter fonnats, the subject line infonnation appears on the second line below the
salutation and begins at the left margin. For the semiblocked format the subject line
appears on the second line below the salutation and is indented five spaces. In the
simplified letter format the subject line infonnation appears in place of the salutation
three lines below the inside address of the attention line; the salutation, if you use it, is
ignored.

4-76 Chapter 4 mm Macros

For the blocked, semiblocked, and full-blocked formats, s J provides a common
format for indicating what the letter is about by printing the string "suBJECT : "
preceding the optional string argument to . LO .

• LO SJ " Staff Meet ing"

The format string "suBJECT : " cannot be redefined. There is no default value for the
optional argument.

For the simplified letter, the subject line string argument prints on the third line below
the inside address or the attention line (a salutation is ignored if used).

If you specify the . LO macro without an argument or the argument you specify is
unrecognized, the ftle processing aborts and an appropriate error message prints.

Generating multipage letters

The . LT macro controls the format for the first page of the letter. The letter macros will
not alter the default nroff /troff page processing following the first page of the letter.

Understanding the sequence of beginning letter macros

Macros . WA, • WE, • IA, • IE, and . LT must be given in the order listed below . . LO can
be specified multiple times with different argument types. The . LO argument types do not
have to be in any specific order. All . LO requests must be specified before . LT .

• ND new date

• WA writer's name [tit�
Return address
Street City, State Zip Code
Text
. WE
. IA
Addressee name
Title

Company

Street City, State Zip Code
Text
. IE

Creating memorandum and released-paper style documents 4-77

• LO type [a18)
• LT [a'8)

. P
Text
. FC
• SG [aJ8 [1]]
. NS [aJ8 [1]]

Text
. NE

If you put nroff /t roff requests and lines of text before . LT, you change how
• LT works. For example, if the frrst line of a file is a line of text, rnm processes the file as if

you had not specified . LT.

Creating displays

Displays are blocks of text that are to be kept together on a page and not split across
pages. They are processed in an environment that is different from the body of the text
(see the . ev request in Chapter 3, "nroff /troff Formatters"). The memorandum
macros package provides two styles of displays-a static (. D s) style and a floating (. DF)
style.

• In the static style, the display appears in the same relative position in the output text
as it does in the input text. This may result in extra white space at the bottom of the
page if the display is too long to fit in the remaining page space.

• In the floating style, the display "floats" through the input text to the top of the next
page if there is not enough space on the current page. Thus input text that follows a
floating display may precede it in the output text. A queue of floating displays is
maintained so that their relative order of appearance in the text is not disturbed.

By default, a display is processed in no-fill mode with single spacing and is not
indented from the existing margins. The user can specify indentation or centering as well
as fill-mode processing.

4-78 Chapter 4 mm Macros

• Note Displays and footnotes can never be nested in any combination. Although lists
and paragraphs are permitted, no headings (. H or . HU) can occur within displays or
footnotes. •

Starting static displays

A static display is started by the . DS macro and terminated by the . DE macro .

• D s ifonnan rjil� lrindenn
one or more lines of text
. DE

With no arguments, . DS accepts lines of text exactly as typed (no-ftll mode) and will
not indent lines from the prevailing left margin indentation or from the right margin.

• The fonnat argument is an integer or letter used to control the left margin indentation
and centering with the meanings shown in Table 4-10.

• The fill argument is an integer or letter and can have the meanings shown in
Table 4-11 .

• The rindent argument is the number of characters that the line length should be
decreased, that is, an indentation from the right margin. This number must be
unsealed in the nroff formatter and is treated as ens. It may be scaled in the t roff
formatter or else it defaults to ems.

Table 4-10 Format argument in static displays

Format Meaning

" " No indent

Omitted No indent

0 or L No indent

1 or I Indent by standard amount

2 or c Center each line

3 or CB Center as a block

Creating displays 4-79

Table 4-11 Fill argument in static displays

Fill

" "

Omitted

0 or N
1 or F

Meaning

No-fill mode

No-fill mode

No-fill mode

Fill mode

The standard amount of static display indentation is taken from the s i register, a default
value of five spaces. Thus, text of an indented display aligns with the first line of indented
paragraphs, whose indent is contained in the P i register (see "Creating Paragraphs"
earlier in this chapter). Even though their initial values are the same default values, these
two registers are independent.

The display fonnatargument value 3 (or cs) horizontally centers the entire display as
a block, as opposed to . os 2 and . DF 2 , which center each line individually. All col
lected lines are left-justified, and the display is centered based on the width of the longest
line. This fonnat must be used in order for the eqn/ neqn mark and lineup feature to
work with centered equations (see "Using Displays in Equations" later in this chapter).

By default, a blank line (nroff) or one-half a vertical space (t roff) is placed
before and after static and floating displays. These blank lines before and after static
displays can be inhibited by setting the register Ds to 0.

The following example shows usage of all three arguments for static displays. This block
of text will be indented five spaces (ems in t roff) from the left margin, filled, and indent
ed five spaces (ems in t roff) from the right margin (that is, centered). The input text

. DS I F 5
"We the people of the United States ,
in order to form a more perfect union ,
establish just ice , ensure domestic t ranquillity,
provide for the common defense ,
and secure the bles sings of liberty to
ourselves and our posterity,
do ordain and establish this Const itut ion to the
United States of America . "
. DE

4-80 Chapter 4 mm Macros

produces the output

"We the people of the United States, in order to form a more

perfect union, establish justice, ensure domestic tranquillity,

provide for the common defense, and secure the blessings of

liberty to ourselves and our posterity, do ordain and establish

this Constitution to the United States of America."

Starting floating displays

A floating display is started by the . DF macro and terminated by the . DE macro .

• DF (fonnan rfll� [rindenn .

one or more lines of text

. DE

Arguments have the same meanings as static displays described above, except indent,
no indent, and centering are calculated with respect to the initial left margin. This is
because prevailing indent may change between when the formatter first reads the floating
display and when the display is printed. One blank line (nroff) or one-half a vertical
space (t roff) occurs before and after a floating display.

The user may exercise precise control over the output positioning of floating displays
through the use of two number registers, De and Df (see Tables 4-12 and 4-13 below).
When a floating display is encountered by the nroff or t roff formatter, it is processed
and placed onto a queue of displays waiting to be generated. Displays are removed from
the queue and printed in the order entered, which is the order they appeared in the input
ftle. If a new floating display is encountered and the queue of displays is empty, the new
display is a candidate for immediate output on the current page. Immediate output is
governed by size of display and the setting of the D f register code. The De register code
controls whether text will appear on the current page after a floating display has been
produced.

As long as the display queue contains one or more displays, new displays will be
automatically entered there rather than being generated. When a new page is started, or
the top of the second column in two-column mode, the next display from the queue
becomes a candidate for output if the D f register code has specified top-of-page output.
When a display is generated, it is also removed from the queue.

Creating displays 4-81

4-82

When the end of a section (using section-page numbering) or the end of a document
is reached, all displays are automatically removed from the queue and are generated. This
occurs before a . sG, • cs, or . TC macro is processed.

A display will fit on the current page if there is enough room to contain the entire
display or if the display is longer than one page in length and less than half of the current
page has been used. A wide (full-page width) display will not fit in the second column of
a two-column document.

Table 4-12 De number register code settings in floating displays

Code Action

0 No special action occurs (also the default condition).

1 A page eject will always follow the output of each floating display, so only one floating display
will appear on a page and no text will follow it.

Note: For any other code, the action perfonned is the same as for code 1.

Table 4-13 D f number register code settings in floating displays

Code Action

0 Floating displays will not be generated until end of section (when section-page numbering) or
end of document.

If the De register is set to 1, each display will be followed by a page eject, causing a new top of
page to be reached where at least one more display will be generated (this also applies to code 5).

1 Generate new floating display on current page if there is space; otherwise, hold it until end of
section or document.

2 Generate exactly one floating display from queue to the top of a new page or column (when in
two-column mode).

3

4

5

Generate one floating display on current page if there is space; otherwise, output to the top of a
new page or column.

Generate as many displays as will fit (but at least one) starting at the top of a new page or column.

Generate a new floating display on the current page if there is room (default condition). Generate
as many displays (but at least one) as will fit on the page starting at the top of a new page or
column.

Note: For any code greater than 5, the action perfonned is the same as for code 5. If the De
register is set to 1, each display will be followed by a page eject, causing a new top of page to be

reached where at least one more display will be generated.

Chapter 4 rmn Macros

The . we macro (see "Creating Two-Column Output" earlier in this chapter) can also
be used to control handling of displays in double-column mode and to control the break
in text before floating displays.

Using displays in tables

The mrn macros interact with the tbl macros and provide some extra functionality (see
Chapter 7, "tbl Tables," for a description of the tbl program) .

. TS [H)
global options;
column descriptors.

title lines
[. TH [N))
data within the table .

. TE

The . TS (table start) and . TE (table end) macros make possible the use of the
tbl(l) program. These macros are used to delimit text to be examined by tbl and to set
proper spacing around the table. .

The display function and the tbl delimiting function are independent. In order to·
permit the user to keep together blocks that contain any mixture of tables, equations,
ftlled text, unftlled text, and caption lines, the . T s 1 . TE block should be enclosed within
a display (. D s I . DE). Floating tables may be enclosed inside floating displays
(. DF I . DE).

Macros . T s and . TE permit processing of tables that extend over several pages. If a
table heading is needed for each page of a multipage table, the H argument should be
specifted to the . T s macro as above. Following the options and format information, the
table title is typed on as many lines as required and is followed by the . TH macro. The
. TH macro must occur when . TS H is used for a multipage table. This is not a feature of
tbl but of the definitions provided by the memorandum macros package.

The . TH (table header) macro may take as an argument the letter N. This argument
causes the table header to be printed only if it is the ftrst table header on the page. This
option is used when it is necessary to build long tables from smaller . T s HI . TE
segments. For example,

Creating displays 4-83

. TS H
global options;
column descriptors.
title lines
. TH
data
. TE
. TS H
global options;
column descriptors.

title lines

. TH N
data
. TE

causes the table heading to appear at the top of the ftrst table segment and no heading to
appear at the top of the second segment when both appear on the same page. However,
the heading will still appear at the top of each page that contains the table. This feature is
used when a single table must be broken into segments because of table complexity (for
example, too many blocks of ftlled text). If each segment had its own . T s HI . TH
sequence, it would have its own header. However, if each table segment after the first
uses . T s HI . TH N, the table header will appear only at the beginning of the table and
the top of each new page or column that contains the table.

For the nroff formatter, the -e flag option (-E for mm(l)) can be used for terminals,
for instance, the 450, that are capable of fmer printing resolution. This will cause better
alignment of features such as the lines forming the corner of a box. The -e flag option is
not effective with col(l). (See "The mm Command" earlier in this chapter.)

Using displays in equations

Mathematical typesetting programs eqn/neqn(l) expect to use the . EQ (equation start)
and . EN (equation end) macros as delimiters in the same way that tbl(l) uses . TS and

• TE; however, when processed with the mm macros, . EQ and . EN must occur inside a
. os/ . DE pair. There is an exception to this rule-if . EQ and . EN are used to specify

4-84 Chapter 4 mm Macros

only the delimiters for inline equations or to specify eqn/neqn defmes, the . DS and
. DE macros must not be used; otherwise, extra blank lines will appear in the output.

. DS

. EQ [/abe4
equation(s)

. EN

. DE

The . EQ macro takes an argument that will be used as a label for the equation. By
default, the label will appear at the right margin in the vertical center of the general
equation. The Eq register can be set to 1 to change labeling to the left margin.

The equation will be centered. for centered displays; otherwise, the equation will be
adjusted to the opposite margin from the label.

Using displays in figure, table, equation,
and exhibit titles

The • FG (figure title), • TB (table title), • EC (equation caption), and • EX (exhibit
caption) macros are normally used inside . D s/ . DE pairs to automatically number and
print captions for figures, tables, and equations .

• FG ltitk1 [overrideJ rjlagJ

• TB [titk1 [OverrideJ rjlagJ
• EC [titk1 [overrideJ rjlagJ
• EX [tit� [Overricl£i rjlagJ

These macros use registers Fg, Tb, Ec, and Ex, respectively. (See "Parameters Set
From the Command Line" earlier in this chapter on - rN s to reset counters in sections.)
For example,

. FG " This is a F igure Tit le "

yields

Figure 1. This is a Figure Title

The • TB macro replaces "Figure" with "TABLE," the • EC macro replaces "Figure"
with "Equation," and the . EX macro replaces "Figure" with "Exhibit." The output title is
centered if it can fit on a single line; otherwise, all lines but the first are indented to line

Creating displays 4-85

up with the first character of the title. The format of the numbers can be changed using
the • af request of the formatter. By setting the Of register to 1, the format of the caption
may be changed from

Figure 1. title

to

Figure 1 - title

The override argument is used to modify normal numbering. If the flag argument is
omitted or 0, override is used as a prefix to the number; if the .flag argument is 1 , override
is used as a suffix; and if the .flag argument is 2, override replaces the number. If - rN5 is
given, "section-figure" numbering is set automatically, and the user-specified override
argument is ignored. (See "Parameters Set From the Command Line" earlier in this
chapter.)

As a matter of formatting style, table headings are usually placed above the text of
tables, while figure, equation, and exhibit titles are usually placed below corresponding
figures and equations.

Listing figures, tables, equations, and exhibits

Lists of figures, tables, exhibits, and equations are printed following the table of contents
if the number registers Lf, Lt, Lx, and Le (respectively) are set to 1 . The Lf, Lt , and
Lx registers are 1 by default; Le is 0 by default.

Titles of these lists can be changed by redefining the following strings, which are
shown here with their default values:

. ds Lf LIST OF F IGURES

. ds Lt LIST OF TABLES

. ds Lx LIST OF EXHIBITS

. ds Le LIST OF EQUATIONS

4-86 Chapter 4 mrn Macros

Creating footnotes

There are two macros (. F s and . FE) that delimit text of footnotes, a string (F) that
automatically numbers footnotes, and a macro (. FD) that specifies the style of footnote
text. Footnotes are processed in an environment different from that of the body of text
(refer to . ev request in Chapter 3, "nrof f/t roff Formatters").

Numbering footnotes

Footnotes may be automatically numbered by typing the three characters \ *F (that is,
invoking the string F) immediately after the text to be footnoted without any intervening
spaces. This will place the next sequential footnote number (in a smaller point size) a half
line above the text to be footnoted.

Delimiting footnote text

. FS [/abeA

one or more lines of footnote text
. FE

There are two macros that delimit the text of each footnote. The . F s (footnote start)
macro marks the beginning of footnote text, and the . FE (footnote end) macro marks the
end. The label on the . F s macro, if present, will be used to mark footnote text.
Otherwise, the number retrieved from the string F will be used. Automatically numbered
and user-labeled footnotes can be intermixed. If a footnote is labeled (. F s label), the
text to be footnoted must be followed by label, rather than by \ *F. Text between . F s

and . FE is processed in fill mode. Another . FS, a . D S, or a . DF is not permitted
between . F s and . FE macros. If footnotes are required in the title, abstract, or table (see
"Using Displays in Tables" earlier in this chapter), only labeled footnotes will appear
properly. Everywhere else automatically numbered footnotes work correctly. For
example, the input for an automatically numbered footnote is
This i s the line containing the word\ *F

. FS

Creating footnotes 4-87

This i s the text o f the footnote .

. FE

to be footnoted and automat ically numbered .

and the input for labeled footnote is

Thi s i s a labeled*

. FS *

The footnote i s labeled with an asterisk .

. FE

footnote .

Text of the footnote (enclosed within the . F s 1 . FE pair) should immediately follow
the word to be footnoted in the input text, so that \ *F or label occurs at the end of a line
of input and the next line is the . F s macro call. It is also good practice to append an
unpaddable space (see "Specifying Unpaddable Spaces" earlier in this chapter) to \ *F or
label when they follow an end-of-sentence punctuation mark (a period, question mark,
or exclamation point).

Controlling format style of footnote text

Within footnote text, the user can control formatting style by specifying text hyphenation,
right margin justification, and text indentation, as well as left or right justification of the
label when text indenting is used. The . FD macro is invoked to select the appropriate
style .

• FD [a18} [1]

The ftrst argument (arg) is a number from the left column of Table 4-14. Formatting
style for each number is indicated in the remaining four columns. Further explanation of
the ftrst two of these columns is given in the defmitions of the . ad, • na, . h y, and . nh

(adjust, no adjust, hyphenation, and no hyphenation, respectively) requests in Chapter 3,
"nroff / t roff Formatters."

4-88 Chapter 4 mm Macros

Table 4-14 Hyphenating footnote text

Argument Hyphenatton Adjust Text: Jndcnt label justHkation

0 .nh .ad Yes Left

1 .hy .ad Yes Left

2 .nh .na Yes Left

3 .hy .na Yes Left

4 .nh .ad No Left

5 .hy .ad No Left

6 .nh .na No Left

7 .hy .na No Left

8 .nh .ad Yes Right

9 .hy .ad Yes Right

10 .nh .na Yes Right

11 .hy .na Yes Right

If the ftrSt argument to . FD is greater than 11 , the effect is as if . FD o were specified.
If the first argument is omitted or null, the effect is equivalent to . FD 1 o in the nrof f

formatter and to . F D o in the t r o f f formatter; these are also the respective initial
default values.

If the second argument is specified, then when a first -level heading is encountered,
automatically numbered footnotes begin again with 1 . This is most useful with the
section- page numbering scheme. As an example, the input line

. FD " " 1

maintains the default formatting style and causes footnotes to be numbered afresh after
each ftrSt-level heading in a document.

Hyphenation across pages is inhibited by mm except for long footnotes that continue
to the following page. If hyphenation is permitted, it is possible for the last word on the
last line on the current page footnote to be hyphenated. The user has control over this
situation by specifying an even . FD argument.

Footnotes are separated from the body of the text by a short line rule. Those that
continue to the next page are separated from the body of the text by a full-width rule. In
the t roff formatter, footnotes are set in type two points smaller than the point size used
in the body of text.

Creating footnotes 4-89

Setting spacing between footnote entries

Normally, one blank line (nrof f) or a 3-point vertical space (t roff) separates
footnotes when more than one occurs on a page. To change this spacing, the F s number
register is set to the desired value. For example,

. nr Fs 2

will cause two blank lines (nroff) or a 6-point vertical space (t roff) to occur between
footnotes.

Generating a table of contents and
cover sheet

The table of contents and the cover sheet for a document are produced by invoking the
• TC and . cs macros, respectively.

+ Note This section refers to cover sheets for technical memoranda and released
papers only. The mechanism for producing a memorandum for ftle cover sheet was
discussed earlier (see "Identifying the Abstract" earlier in this chapter). •

These macros normally appear once at the end of the document, after the signature
block and notations macros, and may occur in either order. (See "Using the Signature
Block" and "Using Copy to and Other Notations" earlier in this chapter.)

The table of contents is produced at the end of the document because the entire
document must be processed before the table of contents can be generated. Similarly, the
cover sheet may not be desired by a user and is therefore produced at the end.

4-90 Chapter 4 mm Macros

Generating a table of contents

The . TC macro generates a table of contents containing heading levels that were saved
for the table of contents as determined by the value of the c 1 register (see "Using
Headings in the Table of Contents" earlier in this chapter) .

• TC rsleven rspacing1 rtleven [tab] rhead11 rhead2J rhead3l rhead4J rhead5l

Arguments to . TC control spacing before each entry, placement of associated page
numbers, and additional text on the first page of the table of contents before the word
"CONTENTS."

Spacing before each entry is controlled by the frrst and second arguments (slevel and
spacing). Headings whose level is less than or equal to slevel will have spacing blank
lines (nroff) or half-vertical spaces (t rof f) before them. Both sleveland spacing
default to 1 . This means that first-level headings are preceded by one blank line (nroff)

or one-half a vertical space (t roff). The slevel argument does not control what levels of
heading have been saved; saving of headings is the function of the c1 register.

The third and fourth arguments (tlevel and tab) control placement of the associated
page number for each heading. Page numbers can be justified at the right margin with
either blanks or dots, called leaders, separating the heading text from the page number,
or the page numbers can follow the heading text.

For headings whose level is less than or equal to tlevel (default 2), page numbers are
justified at the right margin. In this case, the value of tab determines the character used to
separate heading text from page number. If tab is 0 (default value), dots (leaders) are
used. If tab is greater than 0, spaces are used.

For headings whose level is greater than tlevel, page numbers are separated from
heading text by two spaces (that is, page numbers are ragged right, not right-justified).

Additional arguments (head1 . • • head5) are horizontally centered on the page and
precede the table of contents.

If the . TC macro is invoked with at most four arguments, the user-exit macro . TX is
invoked (without arguments) before the word "CONTENTS" is printed, or the user-exit
macro . TY is invoked and the word "CONTENTS" is not printed.

By defining . TX or . TY and invoking . TC with at most four arguments, the user can
specify what needs to be done at the top of the frrst page of the table of contents. For
example,

Generating a table of contents and cover sheet 4-91

. de TX

. ce 2

Special Applicat ion

Mes s age Transmis sion

. sp

. in + l On

Approved : \ 1 ' 3 i '

. in 0

. sp

. TC

yields the following output when the ftle is formatted:
Special Application

Message Transmission

Approvoo: __ __
CONTENTS

If the . TX macro is defined as . TY, the word "CONTENTS" is suppressed. Defming
. TY as an empty macro will suppress "CONTENTS" with no replacement:

. de TY

By default, the first-level headings will appear in the table of contents left-justified.
Subsequent levels will be aligned with the text of headings at the preceding level. These
indentations can be changed by defining the c i string, which takes a maximum of seven
arguments corresponding to the heading levels. It must be given at least as many
arguments as are set by the Cl register. Arguments must be scaled. For example, with Cl

= 5

. ds Ci . 2 5 i . S i . 7 5 i l i l i \ "t roff

or

. ds Ci 0 2n 4n 6n 8n \ "nroff

4-92 Chapter 4 mm Macros

Two other registers are available to modify the fonnat of the table of contents--oc
and cp.

By default, table of contents pages will have lowercase roman numeral page
numbering. If the oc register is set to 1, the . TC macro will not print any page number
but will instead reset the P register to 1 . It is the user's responsibility to give an
appropriate page footer to specify the placement of the page number. Ordinarily, the
same . PF macro (page footer) used in the body of the document will be adequate.

The list of figures, tables, exhibits, and equations will be produced as separate pages
unless Cp is set to 1, which causes these lists to appear on the same page as the table of
contents.

Generating a cover sheet

The . c s macro generates a cover sheet in either the released-paper or technical
memorandum style (see "Identifying the Abstract" earlier in this chapter for details of the
memorandum for file cover sheet) .

. cs (pageSJ [othen [tota4 (figSJ [tblSJ [rejSJ

All other infonnation for the cover sheet is obtained from data given before the . MT
macro call (see "Understanding the Sequence of Beginning Letter Macros" earlier in this

chapter). If the technical memorandum style is used, the . cs macro generates the "Cover
Sheet for Technical Memorandum." The data that appears in the lower left corner of the
technical memorandum cover sheet (counts of pages of text, other pages, total pages,
figures, tables, and references) is generated automatically (0 is used for other pages).

These values can be changed by supplying the corresponding arguments to the . cs
macro. If the released-paper style is used, all arguments to . cs are ignored.

Using references

There are two macros (. RS and . RF) that delimit the text of references, a string that
automatically numbers the subsequent references, and an optional macro (. RP) that
produces reference pages within the document.

Using references 4-93

Numbering references

Automatically numbered references can be obtained by typing \ * (Rf (invoking the
string Rf) immediately after the text to be referenced. This places the next sequential
reference number (in a smaller point size) enclosed in brackets one-half line above the
text to be referenced. Reference count is kept in the Rf number register.

Delimiting reference text

The . RS and . RF macros are used to delimit text of each reference .

. RS [string-namet

. RF

For example,

A l ine o f text to be referenced . \ * (Rf

. RS

reference text

. RF

Creating subsequent references

The . RS macro takes one argument, a string-name, for example,

. RS aA

reference text
. RF

The string aA is assigned the current reference number. This string may be used later
in the document as the string call, \ * (aA, to reference text that must be labeled with a
prior reference number. The reference is output enclosed in brackets one-half line above
the text to be referenced. No . RS 1 . RF pair is needed for subsequent references.

4-94 Chapter 4 mm Macros

Generating a reference page

The . RP macro causes a reference page, entitled by default "References," to be generated
automatically at the end of the document (before table of contents and cover sheet) and
to be listed in the table of contents .

• RP [arg11 [arg2

This page contains the reference items enclosed within . RS 1 . RF pairs. Reference
items will be separated by a space (nroff) or one-half a vertical space (t roff) unless
the Ls register is set to 0 to suppress this spacing. The user may change the reference
page title by defining the Rp string:

. ds Rp "New Title "

The . RP (reference page) macro may be used to produce reference pages anywhere
else within a document (that is, after each major section). It is not needed to produce a
separate reference page with default spacings at the end of the document.

Two . RP macro arguments allow the user to control resetting of reference numbering
and page skipping:

argl Meaning

0 Reset reference counter (default)

1 Do not reset reference counter

arg2 Meaning

0 Put on separate page (default)

1 Do not cause a following • S K
2 Do not cause a preceding . s K
3 No • SK before or after

If no . SK macro is issued by the . RP macro, a single blank line will separate the
references from the following and preceding text. The user may wish to adjust spacing.
For example, to produce references at the end of each major section:

. sp 3

. RP 1 2

. H 1 "Next Sect ion "

Using references 4-95

Troubleshooting

4-96

This section explains what happens when a macro finds an error. This section also helps
you find output that doesn't appear.

What happens when a macro detects an error?

When a macro detects an error, the following actions occur:

• A break occurs.

• The formatter output buffer (which may contain some text) is printed to avoid
confusion regarding location of the error.

• A short message is printed giving the name of the macro that detected the error, type
of error, and approximate line number in the current input file of the last processed
input line. Error messages are explained in "Error Messages" later in this chapter.

• Processing terminates unless register D has a positive value. In the latter case,
processing continues even though the output is guaranteed to be deranged from that
point on. (See "Parameters Set From the Command Line" earlier in this chapter.)

The error message is printed by generating the message directly to the user terminal.
If an output filter, such as 3 o o(l), 4 s o(l), or hp(l), is being used to postprocess the
nroff formatter output, the message may be garbled by being mixed with text held in
that filter's output buffer.

• Note If any cw(l), eqn /neqn(l), and tbl(l) programs are being used and if the
-olist option of the formatter causes the last page of the document not to be printed, a
harmless "broken pipe" message may result. •

Why does output disappear?

Disappearance of output usually occurs because of an unclosed diversion (for example, a
missing . DE or . FE macro). Fortunately, macros that use diversions are careful about it,
and these macros check to make sure that illegal nestings do not occur. If any error

Chapter 4 nun Macros

message is issued concerning a missing . DE or . FE, the appropriate action is to search
backward from the termination point looking for the corresponding associated . DF,

• DS, or . FS (because these macros are used in pairs).
The following command:

grep -n ' "' \ . [EDFRTUEFNQS] ' filenamel fllename2

prints all the . DF, • DS, • DE, • EQ, • EN, • FS, • FE, • RS, • RF, • TS, and . TE macros
found infllenamel andfllename2. Each is preceded by its filename and the line number
in that file. This listing can be used to check for illegal nesting, omission of these macros,
or both.

Extending and modifying
memorandum macros

The naming conventions listed in this section allow you to extend and modify
memorandum macros. Request, macro, and string names are kept by the formatters in a
single internal table; therefore, there must be no duplication among such names. Number
register names are kept in a separate table.

Narrrlng conventions

In this part, the following conventions are used to describe names:

a Lowercase letter

A Uppercase letter

n Digit

s Any nonalphanumeric character (special character)

x Any alphanumeric character (n, a, or A, that is, letter or digit)

All other characters are literals; that is, they are characters that stand for themselves.

Extending and modifying memorandum macros 4-97

Names used by formatters

Requests: aa (most common)

an (only one, currently c2)

Registers: aa (normal)

.x (normal)

.s (only one, currently .)

a. (only one, currently c .)

% (page number)

Names used by memorandum macros

Macros and strings: A, AA, Aa (accessible to users, for example, macros P and HU;
strings F, BU, and Lt)

Registers:

nA (accessible to users; only two, currently 1c and 2c)

aA (accessible to users; only one, currently nP)

s (accessible to users; currently only the seven accents (see
"Reducing Point Size of a String" earlier in this chapter)

) x, } x,]x, > x, ? x (internal)

An, Aa (accessible to users, for example, Hl , Fg)

A (accessible to users; meant to be set on the command line, for
example, c)

: x, ; x, #X, ? x, ! x (internal)

Names used by cw, eqn/neqn, and tbl.
The cw(l) program is the constant-width font preprocessor for the t roff formatter. It
uses the following five macro names:

. CD . CN . CP . CW . PC

This preprocessor also uses the number register names cE and cw. The mathematical
equation preprocessors, eqn(l) and neqn(l), use registers and string names of the form
nn. The table preprocessor, tbl(l), uses T& , T#, and TW, and names of the form

a- a+ a 1 nn na �a #a #s

4-98 Chapter 4 mm Macros

Names defined by user

Names that consist of either a single lowercase letter or a lowercase letter followed by a
character other than a lowercase letter (names . c2 and . nP are already used) should be
used to avoid duplication with already used names. The following is a possible naming
convention:

Macros: aA (for example, bG, kW)

Strings: as (for example, c) , f], p })

Registers: a (for example, f, t)

Sample appendix headings

The following is a way of generating and numbering appendix headings:

. nr Hu 1

. nr a 0

. de aH

. nr a + 1

. nr P 0

. PH " ' ' ' Appendix \ \na- \ \ \ \ \ \ \ \nP ' "

. SK

. HU " \ \ 1 "

After the above initialization and defmition, each call of the form

. aH " title"

begins a new page, with the page header changed to "Appendix a-n", and generates an
unnumbered heading of title, which can be saved for the table of contents. To center
appendix titles, the He register must be set to 1 (see "Centering Headings" earlier in this
chapter).

Extending and modifying memorandum macros 4-99

-----/

5 ms Macros

What are ms macros? I 5-3

Using basic document formats I 5-5

Changing the look of the document I 5-9

Structuring the page I 5-16

Creating displays I 5-27

Producing tables and equations I 5-29

Creating footnotes I 5-32

Using references I 5-34

Creating an index or a table of contents I 5-34

Drawing boxes I 5-37

Checking your work I 5-38

Using nrof flt roff commands in ms I 5-38

Creating your own macros I 5-39

Reference tables I 5-40

This chapter is a reference for the ms macro package. It's a good idea to skim this

chapter for a general understanding of the ms macro package and then read specific

sections in detail as needed.

S-2 Chapter 5 ms Macros

What are ms macros?

ms is a collection of text-formatting macros for the A/UX text formatters nroff and
t roff. ms was designed for writing general-purpose documents. ms and me perform
many of the same functions, but some features of me are not available in ms, so A/UX
Release 3.0 supports both packages. You can use only one of these packages at a time,
however, so you may wish to read this chapter and the chapter on me and make a
decision about which package to use before you actually begin formatting a document.

For a complete discussion of text-formatting concepts and principles, refer to
Chapter 1, "Introduction to A/UX Text Processing."

How input is read

Formatters fill output lines from one or more input lines. You can justify output lines so
that both the left and right margins are aligned. As lines are being filled, words may also
be hyphenated as necessary. You can tum any of these modes on and off (with the . na,

• ad, . hy, . nf, and . fi formatter requests; turning off fill mode also turns off
justification and hyphenation). Certain formatting commands (requests and macros) stop
filling the current output line, print the line (of whatever length), and begin subsequent
text on a new output line. This printing of a partially filled output line is called a break. A
few formatter requests and most of the ms macros cause a break. (See Table 5-1 .)

What are ms macros? 5-3

Table 5-1 ms macros that cause a break

Name

. AB

. AI

. AU

. BD

. Bl

. B2

. CD

. CT

. DE

. DS

. EN

. EQ

. ID

. IP

. KE

. KS

. LD

. LP

. MC

. NH

. PP

. QP

. RE

. RS

. SH

. TC

. TE

. TL

. TS

. XA

. xs

. lC

. 2C

5-4 Chapter 5 ms Macros

Desaiption

Begin abstract.

Author's institution .

Author's name .

Block display (no keep) .

Begin boxed text .

End boxed text .

Centered display (no keep) .

Chapter title .

End display .

Start standard display .

End equation .

Start equation .

Indented display (no keep) .

Indented paragraph .

End keep .

Start keep .

Left-adjusted display (no keep) .

Left-block paragraph .

Begin multcolumn text .

Numbered heading .

Standard paragraph .

Quotation mark paragraph .

End right shift .

Begin right shift .

Unnumbered section heading .

Print table of contents .

End table .

Print centered title in boldface .

Start table .

Additional index entry .

Begin index entry .

Resume one-column printing .

Begin two-column printing .

-�

-�,

Understanding arguments and double quotation marks

In ms , you can use an argument to modify a macro. For example, the macro .os begins a
standard display. When you add a c to the macro

. DS C

the material in the display is centered.
Any macro argument containing ordinary (paddable) spaces must be enclosed in

double quotation marks. A double quotation mark is a single character that must not be
confused with two apostrophes, acute accents, or grave accents. If an argument
containing such spaces is not enclosed in double quotation marks, it will be treated as
several separate arguments.

Sequence of beginning macros

Any text file processed by the ms macros must begin with one of the following macros:
• TL, • SH, • NH, • PP, and . LP .

These macros initialize the file and must precede a break caused by blank lines,
leading spaces, or . sp, . br, and . ce t roff requests.

Using basic document formats

The ms macro packages has facilities for formatting the basic elements of a document,
such as the cover page, margins, and spacing.

Cover sheets

You can generate a separate cover sheet containing any of the following: title (. TL),

author (. AU), author's institution (. AI), and abstract (. AB). Precede these macros with
• RP and enter them in the order indicated. The current date is printed on the cover sheet
(unless you suppress this feature with the � ND macro; see "Changing and Removing the
Date" later in this chapter).

Using basic document formats 5-5

You can also include this information without producing a cover sheet. Title, author,
abstract, and so on are then printed on the first page of the document.

Titles

The title macro (. TL) creates a centered title (as opposed to the three-part title format of
the t roff request . tl). In t roff the title is printed two points larger than the
remaining text and is in boldface. In nroff the title is underlined. When used with the

• RP macro, the title is centered on the cover sheet. (See Table 5-2.)

Table 5-2 Title macro

Type Form

Macro . TL

Authors

Explanation

Print centered title in boldface two points larger than
current font.

The macros . AU and . AI print the author's name and institution centered and in italic.
(See Table S-3.) For example,

. AU

author's-name

. AI

author's-institution

produces

5-6 Chapter 5 ms Macros

author's-name

author's-institution

Multiple authors (and institutions) can also be used. Precede each additional entry
with . AU or . AI, as appropriate, for example,

. AU

authorl

. AU

author2

Table 5-3 Author macros

Type
Macro

Macro

Abstracts

Form

. AI

. AU

Explanation

Print centered information about the author's institution.

Print centered author's name, in current point size and in
italic. Multiple names are printed on separate lines if entered
on separate input lines.

An abstract is a brief summary of the text it precedes. The . AB macro prints this summary
after the author's institution, if used, with an optional centered heading. (See Table S-4.)

Table 5-4 Abstract macros

Type Form

Macro . AB [no]

Macro . AE

Explanation

Begin abstract. The abstract text is preceded by a centered
heading titled "ABSTRACI'." Argument no suppresses the
heading. The abstract text is filled and adjusted on a line 5/6
the normal text line length.

End abstract.

Using basic document formats 5-7

Paper styles

You can produce cover sheets in two basic formats: standard released-paper or thesis
mode. (See Table 5-5.)

Released paper format (. RP) provides a separate cover sheet containing title, author,
institution, and abstract. (See "Cover Sheets" earlier in this chapter.)

Thesis mode (. TM) formats your document according to university specifications for
doctoral dissertations. The page number is printed on each page, text is double-spaced,
the current date is removed from the center footer, and the chapter title macro (. CT) is
defined and activated.

Table ;.; Paper styles macros

Type Form

Macro . RP [no]

Macro . TM

Chapter titles

Explanation

Released-paper format. Provides a separate cover sheet for
title, author, author's institution, and abstract. This
information is repeated on the first page of the document
unless the argument no is specified.

Thesis mode. Automatically numbers each page; double
spaces all text except displays, quotation marks, and keeps;
suppresses the printing of the date in the center footer; and
defmes the chapter title macro (. CT).

The chapter title macro is defined only when you have invoked thesis mode. It begins a
new page, moves the page number from the right header to the center footer, centers the
lines that follow until a paragraph macro is reached, and, in the case of t roff, prints
these lines in boldface. (See Table 5-6.)

5-8 Chapter 5 ms Macros

Table 5-6 Chapter title macro

Type Form

Macro . CT

UNIX trademark

Explanation

Move the page number from right header to the center
footer, generate a page break, and center and boldface the
lines following the request (thesis mode only).

You can insert the UNIX trademark in the text or in a footnote. (See Table 5-7.)

Table 5-7 UNIX trademark macro

Type Form

Macro . ux

Explanation

Prints "UNIXt" in the text plus a footnote that reads "UNIX is
a trademark of UNIX System Laboratories, Inc."

Changing the look of the document

A document formatted with the ms macros is produced in a standard page layout. By
default, text is generated in a single column, and a line of text is 6 inches from margin to
margin. The left margin is 1 inch (in troff) from the edge of the paper, point size is set
to 10 points, vertical space is set to 12 points, and tab stops are set every 5 spaces. The
following macros and number registers permit you to change these default features and
customize your page layout. You can also change fonts and remove the date.

Changing the look of the document 5-9

Creating multicolumn output

Output from t roff is normally a single column of text. Placing the ms command .2c in
your file· causes the output to be printed in two-column format. Each column is printed
with a width of 7/15 of the current line length, and the gap between the two columns is
1/15 of the full line length. �

To print text in more than two columns, use the.Mc macro:

MC column-width gutter-width

The number of columns is computed automatically, based on the maximum number
of columns of the specified width that can fit within the current line length. The column
width argument must be numeric, and unless indicated otherwise, the unit of
measurement is assumed to be in ens.

The gutter-width argument permits you to control the distance between columns.
To return to single-column output, use the . 1 c command.
Any change in the number of columns specified (except from one to two or greater)

causes a page break. (See Table 5-8.)

Table 5-8 Multicolumn macros

Type Form Explanation

Macro . 2C Print text in two equal columns.

Macro .MC xy Print text in multiple columns. xis the column width,
and y is the gutter width.

Macro . lC Restore one-column printing.

Setting point size and vertical spacing

Number registers are used to set default point size and vertical spacing. In ms the
registers are called PS and vs. (To change relative point size using macros, see
"Changing the String Point Size" later in this chapter). The defaults for point size and
vertical spacing in the ms macro package are 10 and 12 points, respectively. The two
point difference allows for adequate spacing between lines.

5-10 Chapter 5 ms Macros

. --......

When using ms, remember to change the vertical spacing register when changing the
point size. Otherwise, the output will be either too widely or too closely spaced. (See
Table 5-9.)

Table 5-9 Point size and vertical spacing registers

Type Form Explanation

Register . P S Point size
Initial value: 10

Register . vs Vertical spacing
Initial value: 12v

Changing top and bottom margins

By default, the distance between the header and footer text and the top and bottom
edges of the paper is one inch. In ms, you can change these values by resetting registers
HM and FM. (See Table 5-10.)

Table 5-10 Top and bottom margin registers

Type Form

Register . HM

Register .FM

Explanation

Vertical distance of the header margin

Initial value: 1 inch

Vertical distance of the footer margin
Initial value: 1 inch

Changing the look of the document S-11

Changing line length

The default length of a line of text is six inches from left to right margin. In ms , you can
change this by resetting the number register LL. (See Table 5-11 .)

Table 5-11 Line length register

Type Form Explanation

Register . LL Line length

Initial value: 6 inches

Changing page offset

The position of the left margin is determined by two dimensions: page offset and
indentation. Indentation controls the current left margin, whereas page offset controls the
absolute left margin.

Page offset is the distance betweeen the left margin and the left edge of the paper.
Indentation is expressed as a distance to the right of page offset. You can change
indentation within your document (see "Indenting Paragraphs" later in this chapter), but
page offset is defined at the beginning of your document and usually remains constant
throughout.

The default page offset is 1 in t roff and 0 in nroff. In ms , you can change this by
resetting number register PO. The value of number register PO multiplied by 2 plus the
line length (register LL) must always equal S, for example,
1 x 2 + 6 = 8
where 1 is the default page offset and 6 is the default line length in t roff. (See
Table 5-12.)

Table 5-12 Page offset register

Type
Register

5-12 Chapter 5 ms Macros

Form

. PO

Explanation

Absolute limit of the left margin

Initial value: 1 inch in t roff, 0 in nroff

Changing tab setting

In ms, you can set tabs with the .TA command. The default settings are in increments of
5 ens, but you may substitute any value needed. (See Table 5-13.)

Table 5-13 Tab setting macro

Type Form

Macro . TA X

Changing fonts

Explanation

Set tabs to x, where x is the number of ens.

Initial settings: increments of 5 ens

You can use the following macros to emphasize words or groups of words. (See
Table 5-14.) Typewritten or line-printed material is usually emphasized with underlining.
Typeset and typeset-quality material is emphasized with boldface or italics.

In rns, the . B and . I macros produce boldface and italic, respectively, with t roff
and underlining with nroff.

· . B or . I can be followed by RETURN, and all subsequent text will be printed in
boldface or italic. This usage must be terminated by a . R command, indicating that
printing should return to roman, as follows:

. B

This text will be printed in boldface .

. R

.B or . I can be followed by a single word on the same line.
The macros for boldfacing and italicizing can be followed by a group of words on the

same line. These must be enclosed in double quotation marks. Again, only those words
are emphasized, and no . R is needed. For example, you could use

• B "group-of words"

Changing the look of the document S-13

The underline macros, . UL (ms) apply only to text processed with t roff. They
underline one word at a time. If multiple word underlining is desired, you must enter
individual underlining commands for each word. Enclosing multiple words in quotation
marks does not work. For example, in ms you could use

text

• UL wordl

• UL word2

• UL word3

Table 5-14 Font changing macros

Type Form Explanation

Macro . B [.%i Print x in boldface (t r off only). If xis not present, print all
subsequent text in boldface.

Macro . I [.%i Print x in italic. If xis not present, print all subsequent text in
italic.

Macro . R Return to roman font.

Macro . UL X Underline x (t roff only).

Changing the string point size

In ms, three macros are provided to control the relative size of troff type. (See
Table 5-15.) . SM and . LG decrease and increase point size by two points, respectively,
and both can be repeated to increase the effect. The . NL command restores point size to
the default. These macros are used for temporary size changes for a single word or a
small group of words. (See "Setting Point Size and Vertical Spacing" earlier in this chapter
to change absolute point size.)

5-14 Chapter 5 ms Macros

Table 5-15 String point size changing macros

Type Form Explanation

Macro . LG Increase point size by 2.

Macro . NL Set point size back to normal.

Initial value: 10

Macro . SM Decrease point size by 2.

Changing and removing the date

When you use nroff with the rns macros, the current date is printed at the bottom
center of every page. With both nroff and t roff, when you use . RP format (see "rns

Paper Styles" earlier in this chapter), the current date is printed on the cover sheet of the
document. The following macros are provided to change these default features. Use the

• ND macro to suppress printing of the date. If you add a date as an argument, that date is
printed on the cover sheet in released paper format. (See Tables 5-16 and 5-17.)

Table 5-16 Date changing macro

Type Form

Macro . DA [xi

Table 5-17 Date removal macro

Type Form

Macro • ND [xi

Explanation

In t r off print the current date at the bottom of each page
(in nroff this is the default). Argument xreplaces the
current date with a different value. The current date is kept
in string register \ * (D Y.

Explanation

Suppress printing of the date. If a date is given as an
argument, it is printed on the cover sheet in • RP format.

Changing the look of the document 5-15

Structuring the page

Using ms macros, you can create indented and labeled paragraphs, establish headings
and change their appearance, create customized headers and footers, and control page
breaks to create the layout that best suits your purposes.

Creating paragraphs

The ms macro package provides several commands that determine the style of your
paragraph. In all cases, the formatter skips one vertical space before generating the text
of the paragraph.

Creating the standard paragraph

The first line of a standard paragraph is indented. All other lines are generated at the left
margin. The default indentation is 5 ens, but can be changed by setting the number
register P I (see "Indenting Paragraphs" later in this chapter and Table 5-18).

Table 5-18 Standard paragraph macro

Type Form

Macro . PP

Creating a left-block paragraph

Explanation

Standard paragraph. The ftrst line is indented the value of
register P I (5 ens). The paragraph is preceded and followed
by a vertical space equal to the value set in register P D (1 v).

The text of a left-block paragraph is generated as a left-adjusted block. (See
Table 5-19.)

5-16 Chapter 5 ms Macros

Table 5-19 Left-block paragraph macro

Type Form Explanation

Macro . LP Left-block paragraph. The paragraph is offset vertically by the
value of register PD (lv).

Indenting paragraphs

All lines of an indented paragraph are indented a ctrtain value. (See Table 5-20.) In ms,
the . IP command can be used in three ways:

. IP

. IP label

• I P label value

The first example produces a basic indented paragraph. Text is generated as a block
five spaces from the left margin.

The other two forms of the indented paragraph command permit you to label your
paragraph with some alphanumeric character. These can be used to produce numbered
or bulleted lists. For example,

. IP (1)

This i s a labeled indented paragraph .

produces

(1) This is a labeled indented paragraph.

You can substitute any character for the number. For example,

. IP *

Thi s is a labeled indented paragraph .

produces

• This is a labeled indented paragraph.

You can also assign a value for the indentation level:

. IP (1) 1 0

Instead of the default indentation (5 ens), the formatter now indents the text 10 ens.

Structuring the page S-17

Table 5-20 Indented paragraph macro

Type Form

Macro . IP [�

ExpJanation

Indented paragraph, where xis the label, and y is the
indentation. Default indentation is 5 ens, as set in the register
P I . The paragraph is offset vertically by the value of register
PD (lv).

In ms, the registers P I and QI determine the amount of indentation for paragraphs.
Values for each must be unsealed and are always read as ens. For example,

nr P I l i

will not work. The value li (1 inch) will not be understood by t ro ff; it must be given
in ens.

P I sets the indentation level for all paragraphs except quotation mark paragraphs.
For quotation mark paragraphs, use the QI form. (See Table 5-21.)

Table 5-21 Indented paragraph registers

Type Form

Register . P I

Register . QI

Creating a hanging paragraph

ExpJanation

Paragraph indentation. The values must be unsealed and are
read as ens.
Initial value: 5 ens

Quotation mark paragraph indent. The values must be
unsealed and are read as ens.
Initial value: 5 ens

The first line of text in an exdented paragraph (hanging indent) is flush with the left
margin; all subsequent lines are indented the default 5 ens. This ms macro is often used
to format bibliographic references. (See Table 5-22.)

5-18 Chapter 5 ms Macros

Table 5-22 Hanging paragraph macro

Type Form

Macro . XP

Creating a quote paragraph

Explanation

Paragraph with the ftrst line exdented by the value of register
P I (5 ens). The paragraph is offset vertically by value of
register PD (lv).

In ms, a quote paragraph is indented 5 ens from both the left and right margins.
Subsequent text is centered and generated as an offset block. (See Table 5-23.)

Table 5-23 Quote paragraph macro

Type Form

Macro . QP

Explanation

Quote paragraph. The paragraph is centered and indented
left and right by the value of Register Q I (5 ens) and offset
vertically by the value of register PD (lv).

Changing the spacing between paragraphs

The default distance between paragraphs is one vertical space. To change this value in
ms, reset register PD. (See Table 5-24.)

Table 5-24 Paragraph spacing register

Type Form

Register . PD

Explanation

Paragraph distance
Initial value: lv in nroff, 0.3v in t roff

Structuring the page S-19

Creating headings

Two types of section headings are available with these macro packages: unnumbered
and numbered. In both cases, the heading is on the left margin and is preceded by one
blank line, and the text of the section is immediately following the heading (without a
blank line). In t roff the heading is printed in boldface; in nroff it is underlined. A
paragraph macro must follow the heading macro if a vertical space or indentation is
desired.

Creating numbered headings

In ms , the .NH macro produces automatically numbered section headings. (See
Table 5-25.) An optional level number indicates a subsection from 1 to 5. For example,

. NH 1

First-level heading
. LP
text

. NH 2

Second-level heading
. LP
text

produces

1. First-level heading

text
1.1 Second-level heading
text

Table 5-25 Numbered headings macro

Type

Macro

S-20 Chapter 5 ms Macros

Form

. NH [x]

Explanation

Begin automatically numbered heading, where x is the
heading level number (1 through 5). If x = 0, numbering is
reset to 0.

Working with unnumbered headings

The ms macro . SH produces section headings that are not numbered. (See
Table 5-26.)

Table 5-26 Unnumbered headings macro

Type Form Explanation

Macro . SH Begin left-adjusted section heading, separated from the
preceding text by one vertical space.

Creating page headers and footers

Text printed at the top of each page is called a page header. Text printed at the bottom of
each page is called a page footer. You can specify three separate headers and footers
(left, right, and center) using either string registers or macros.

In ms, six string registers set up the standard layout of headers and footers. Those
registers that do not have predetermined default values are set with the following
command:

. ds register-name text

For example, to print the word "DRAFT" in the lower right comer of every page of a
document, define register RF (right footer) as follows:

. ds RF DRAFT

To clear the register, use this command:

. rm RF

You can use these macros to create custom headers and footers that appear on even
or odd pages. Arguments to these macros must be enclosed within a set of four
apostrophes indicating placement on the line within three fields (left, right, and center),
for example,

• OH 'left'center'right'

The ms macro package has many other ways of dealing with headers and footers. The
next sections explain these macros.

Structuring the page 5-21

Using standard headers

Use the following string registers to store text put in the left, center, and right headers.
Only the center header (register ca) contains a default string. In both nroff and
t ro f f, unless specified otherwise, register CH contains the current page number
surrounded by hyphens. If you don't want a centered page number, you can easily
remove it or move it to another position. The remaining fields must be set manually. (See
Table 5-27.)

Table 5-27 Standard header macros

Type
Register

Register

Register

Form

.LH

.CH

.RH

Using standard footers

Explanation

Left header

Center header

Initial value: current page number surrounded by hyphens

Right header

Use the following string registers to store text put in the left, center, and right footers. In
nroff, the center footer (cF) contains the current date as the default string. In t roff
this field is empty. (See Table 5-28.)

Table 5-28 Standard footer macros

Type
Register

Register

Register

5-22 Chapter 5 ms Macros

Form

.LF

.CF

.RF

Explanation

Left footer

Center footer

Initial value: current date (nroff only)

Right footer

Customizing headers and footers

You can specify headers and footers on even- and odd-numbered pages by defining
macros . EH, • OH, • EF, and . OF. (See Table 5-29.)

For example, if you want the title of your document to be in the left footer on even
numbered pages and in the right footer on odd-numbered pages, use the following
commands:

• EF I titl' I I

• OF ' ' ' title'

Table 5-29 Customized header and footer macros

Type Form

Macro • EF[' /' c' n

Macro • EH[' /' c' r']

Macro • OF[' /' c' n

Macro • OH[' /' c' n

Explanation

Print page footer only on even pages. The three strings
specified between the four apostrophes indicate left, center,
and right. When used without arguments, cancel previously
specified even footer.

Print page header only on even pages. The three strings
specified between the four apostrophes indicate left, center,
and right. When used without arguments, cancel previously
specified even header.

Print page footer only on odd pages. The three strings
specified between the four apostrophes indicate left, center,
and right. When used without arguments, cancel previously
specified odd footer .

Print page header only on odd pages. The three strings
specified between the four apostrophes indicate left, center,
and right. When used without arguments, cancel previously
specified odd header.

Structuring the page 5-23

Printing a header and/or footer on the first page

By default, the printing of headers and footers begins on page two of your document. To
print a header, a footer, or both on page one of your document, use the ms macro . P 1 ;
this will print whatever is defmed as your header or footer in the registers or in the
macros. It must be used before the beginning of the text. (See Table 5-30.)

Table 5-30 Printing header/footer on first page macro

Type Form

Macro . P 1

Explanation

Print header and/ or footer on the flrst page of the document.
Must be placed at the beginning of the text

Creating multiline headers and footers

The . PT (page title) and . BT (bottom title) commands are used to define macros for
multiline page headers and footers. Define this macro at the beginning of your file, for
example,

. de PT (or . BT)

. t 1 ' left' center' right'

. t 1 ' left' center' right'

If you need a three-line header or footer, add the formatting instruction

' sp-1

before the first . t 1 instruction so the header lines will begin one line higher on the page.
Make sure you use an apostrophe (') and not a period (.) with the ' sp- 1 instruction.
(See Chapter 3, "nroff/t roff Formatters," for a full explanation of the difference
between the apostrophe and the period in t ro f f requests.)

After you have defined these macros, the system automatically uses the new
definition when a page is begun.

5-24 Chapter 5 ms Macros

Setting tide length

Register LT determines horizontal distance available for headers and footers. By default,
it is equal to the line length (LL). (See Table 5-31 .)

Table 5-31 Setting title length register

Type Form Explanation

Register .LT Total length of headers and footers
Initial value: 6 inches (or the same as register LL)

Keeping text together on a page

The ms macro package provides commands to keep a block of text together on one
page. There are two ways to do this: the standard (or static) keep and the floating keep.

Forcing a page with static keeps

In ms, the static keep begins with . KS and ends with . KE. If the number of lines
within these two macros exceeds the remaining lines on the page, a page break is forced,
and the material in the block is printed on the next page. (See Table 5-32.)

Table 5-32 Static-keeps macros

Type

Macro

Macro

Form

. KS

. KE

Explanation

Begin static keep.

End static or floating keep.

Structuring the page 5-25

5-26

Using floating keeps

In ms, the floating keep begins with . KF and ends with . KE. If the number of lines in
a block of text exceeds the remaining lines on the page and it is necessary to force a page
break, the regular text material continues to print until it reaches the end of the page, and
the block of text is printed. It differs from a static keep in that it waits for a natural page
break rather than forcing one. (See Table 5-33.)

Table 5-33 Floating-keeps macros

Type

Macro

Macro

Form

. KF

. KE

Indenting blocks of text

Explanation

Begin floating keep.

End static or floating keep.

ms has facilities for indenting blocks of text to the right. The . RS macro shifts the text to
the right. The default value for the shift is 5 ens, but this can be changed by resetting
number register P I .

You can use more than one . RS to increase the amount of indentation. The only limit
is the right margin. For each . RS entered, you must enter a . RE to cancel it. For
example, if you enter five . RS macros, you must enter five . RE macros. (See
Table 5-34.)

Table 5-34 Right-shift macros

Type Form

Macro . RS

Macro . RE

Chapter 5 ms Macros

Explanation

Right shift. Move indentation to the right by the value of
register P I (5 ens). • RS can be nested.

End right shift. Move indentation to the left by the amount that
the corresponding • RS is moved to the right.

Creating displays

Displays format text without filling or adjusting. Several types of displays are available
with ms, both those with keep and those without. ms displays keep text on a single
page. If you don't want the text to be kept on a single page, use the ms displays without
keep (. ID, • LD, • CD, • BD).

Using ms displays

If you want text to be kept on a single page, use the standard ms display (. DS [XJ), where
x can designate left, right, centered, or block.

Standard display format

A standard display is automatically put into a keep (see "Keeping Text Together on a
Page" earlier in this chapter). A standard display can be indented, left-adjusted, centered,
or in block format, depending on the argument you use. (See Table 5-35.)

Table 5·35 Standard display macros

Type Form

Macro . DS [�

Macro . DE

Explanation

Start displayed text. The text is formatted without filling or
adjusting. x detellllines the follllat of the display:

x = I Indented

x = L Left -adjusted

x = c Each line centered

x = B Lines centered as a group

y sets the amount (in ens) of indentation (the default is the
value of register P I , or 5 ens).

End display.

Creating displays S-27

Indented display

The indented display is the same as . DS I except that it does not invoke a keep.
Displayed material is formatted 5 ens to the right of the left margin (or the value of
register P I) . (See Table 5-36.)

Table 5-36 Indented display macro

Type Form Explanation

Macro . ID Indented display (no keep)
Initial value: amount of register P I (5 ens)

Left-adjusted display

The left-adjusted display is the same as . DS L except that it does not invoke a keep.
Displayed text is formatted in a block at the left margin. (See Table 5-37.)

Table 5-37 Left -adjusted display macro

Type Form Explanation

Macro . LD Left-adjusted display (no keep)

Centered display

The centered display is the same as . DS c except that it does not invoke a keep. Each
line of text is centered individually. (See Table 5-38.)

Table 5-38 Centered display macro

Type

Macro

5-28 Chapter 5 ms Macros

Form

. CD

Explanation

Centered display (no keep). Lines are centered individually.

Block display

The block display is the same as . o s B except that it does not invoke a keep. Displayed
text is centered and left adjusted as a group. (See Table 5-39.)

Table 5-39 Block display macro

Type Form Explanation

Macro . BD Left-adjusted then centered display (no keep)

Display distance

Display distance is the amount of vertical space surrounding a display. The default
settings are one vertical space (nroff) or one-half vertical space (t roff). It is set with
register DD. (See Table 5-40.)

Table 5-40 Display distance macro

Type Form

Register .DD

Producing tables and equations

Explanation

Vertical distance surrounding displays
Initial value: one vertical space in nroff; one-half vertical
space in troff

The following ms macros are used with the system preprocessors tbl and eqn to
produce tables and equations. For complete instructions on using these programs, refer
to Chapter 7, "tbl Tables," and Chapter 8, "eqn Equations."

Producing tables and equations 5-29

Creating tables

Text placed between the delimiters . TS and . TE (table start and table end) are
processed by the table formatting program tbl. If you are producing a multipage table
and you want a standard heading to be printed on each page of the table, you should use
the . TS H form of the command. Type . TH at the end of the heading material. For �

example,

. TS H

center tab (:)

c c .

. TH

heading: data

table: data

table: data

. TE

repeats the heading

heading data

on every page. (This is a feature not of tbl but of ms.) (See Table 5-41 .)

Table 5-41 Table macros

Type

Macro

Macro

Macro

S-30 Chapter 5 ms Macros

Form

. TS [H]

. TE

. TH

Explanation

Table start. Supplies one-half vertical space between
preceding text and table. Argument H indicates that the
material that follows (until a • TH) is heading text to be
repeated for multipage tables.

Table end.

End table heading. Used only with the • T S H macro.

Creating equations

Text placed between the delimiters . EQ and . EN (equation start and equation end) are
processed by the equation formatting program eqn. (See Table 5-42.)

You must use displays with keep (. DS/ . DE) around displayed equation
specifications. (See Chapter 8, "eqn Equations," for a discussion of the difference
between displayed and inline equations.)

By default, displayed equations are centered. You can specify the placement
(centered, left adjusted, or indented) by supplying the appropriate argument to the . EQ
command. Following this argument, you can also specify an equation number to label
the equation. The label is generated at the right margin. For example,

. DS
• EQ (1)

sum from i=O t o { i
. EN
. DE

produces

i=oo 4 Lxtn
i=O

Table 5-42 Equations macros

Type Form

Macro . EQ [�

Macro . EN

inf } x sup i 4 over pi

Explanation

Begin equation. Output preceded by one vertical space and
automatically centered. x controls the placement of the
equation:
x = L Left -adjusted
x = I Indented
x = c Centered
Argument y supplies an equation number and prints it at the
right margin.

End equation.

Producing tables and equations 5-31

Creating footnotes

You can produce footnotes with ms by placing text between footnote start and end
macros, . F s and . FE. The material is collected, saved, and printed at the bottom of the
current page. The footnote is printed two points smaller than the text and is separated
from the main body of text by a horizontal line. (See Table 5-43.)

You can produce footnotes that are numbered automatically by placing the string
\ * * immediately following the text to be footnoted. ms also permits you to define your
own footnote label. For example, if you want your footnotes to be labeled alphabetically,
you can enter the following text:

. LP

This is the sentence I am referencing [A] .
. FS

[A] This is the text of the footnote .
. FE

Table 5-43 Begin and end footnote macros

Type

Macro

Macro

Form

. FS

. FE

Changing footnote style

Explanation

Begin footnote.

End footnote.

In a standard footnote, a label is printed as a superscript, and the first line is indented.
You can suppress both these features with ms, as well as produce the footnote text as an
indented paragraph. Use the number register FF to modify the default format of a
footnote. (See Table 5-44.)

5-32 Chapter 5 ms Macros

Table 5-44 Footnote fonnat register

Type Form

Register FF X

Changing footnote indent

Explanation

Footnote format

x = 1 Suppress superscripting of footnote label.

x = 2 Suppress indentation of first line of footnote text.

x = 3 Footnote as indented paragraph.

In m s , the footnote indent register is used to change a footnote's distance from the left
margin. The default is two ens. (See Table 5-45.)

Table 5-45 Footnote indent register

Type Form

Register .F I

Changing footnote length

Explanation

Footnote indent. Controls the amount of indentation from
the left margin.

Initial value: 2 ens

By default, the length of a footnote is 5.5 inches, just slightly shorter than the default line
length. You can change this value with m s by resetting register FL. (See Table 5-46.)

Table 5-46 Footnote length register

Type Form

Register .FL

Explanation

Footnote line length

Initial value: 5.5 inches

Creating footnotes S-33

Using references

You can classify books, journal articles, book chapters, and reports with the rns macros
.] - , . [o , and . [n. (See Table 5-47.) They must be used in conjunction with the
t ro f f preprocessor refer. See re f e r(l) in A!UX Command Reference.

Table 5-47 Reference macros

Type

Macro

Macro

Macro

Form

.] -

• [0

• [n

Explanation

Begin refer reference.

End of unclassiftable reference .

Classifiable reference:
n = 1 journal article
n = 2 book
n = 3 book article
n = 4 report

Creating an index or a table of contents

You should enclose all entries you want placed in an index in the rns begin and end
delimiters . XA and . XE. Additional entries are preceded by the macro . XA.

These macros can be used throughout the body of text in combination with section
heading macros to automatically generate a table of contents with page numbers, for
example,

. SH
heading-text

. xs 1

heading-text

. XE

If you are using numbered headings and you want these numbers included in the
table of contents, use this format:

5-34 Chapter 5 rns Macros

. NH

heading-text

. xs 1

\ * < SN heading-text

. XE

The \ * < SN string will be replaced with the number of the heading when the table of
contents or index is printed.

The fmal output of the index or table of contents is produced with either the . PX or
the . TC macro. The difference between these macros is that . TC prints a centered
"CONTENTS" heading at the top of the page and page numbering is reset to Roman
numerals (as in this document).

Understanding index format

Material to be printed in an index or table of contents should be placed between the . xs

and . XE macros. Use the . XA macro for additional ms entries:

. xs

index-entry

. XA
additional-index-entry

. XA
additional-index-entry

. XE

You can designate the page number of the indexed material as an argument to . x s

or . (x:

. xs page-number

• < x page-number

You can change the indentation level by assigning a value to the argument following
the page number:

. xs 1 5

(See Table 5-48.)

Creating an index or a table of contents 5-35

Table 5-48 Index format macros

Type Form Explanation

Macro . xs [xyi Begin index entry, where x is the page number of the entry
andy is the amount of indentation (in ens).

Macro . XA [x� Additional index entry, where xis the page number of the
entry and y is the amount of indentation (in ens).

Macro . XE End index entry.

Printing the index

The . PX macro is used to print a formatted list of the text items designated by the index
macros. (See Table 5-49.)

Table 5-49 Index print macro

Type Form Explanation

Macro . PX Print index.

Printing the table of contents

The . TC macro prints a list of the text items designated by the index macros. (See
Table 5-50.) It differs from the . PX macro described above in two ways:
• It provides a centered heading ("CONTENTS") at the top of the page.
• It resets page numbering to lowercase Roman numerals.

Table 5-50 Table of contents print macro

Type

Macro

5-36 Chapter 5 ms Macros

Form

. TC

Explanation

Print table of contents. Preceded by page break, and the
page numbering is reset to lowercase Roman numerals.

Drawing boxes

You can draw a box around a single word or a group of words with the box macros.

Boxing a word

Use the . BX command to draw a box around a single word. (See Table 5-51 .) The
word to be boxed is entered as an argument to the macro, for example,

. Bx word

Table 5-51 Boxed word macro

Type Form

Macro . BX X

Boxing a block of text

Explanation

Draw a rectangular box around a word, where x is any
word.

You can draw a box around a group of words with the . Bl and . B2 macros. Text to be
boxed is entered on the line following the . Bl . (See Table 5-52.)

Table 5-52 Boxed block of text macros

Type

Macro

Macro

Form

. Bl

. B2

Explanation

Begin boxed text.

End boxed text.

Drawing boxes S-37

Checking your work

You can check your file for formatting errors with the checknr program. checknr
examines your file and reports any unrecognized macros or unbalanced macro
constructions. For example, it will find any . D s commands that are not terminated with

• DE, and it will verify that each . RS command has a corresponding . RE command.
To run checknr, enter the command

checknr file

Any discrepancies are written to the standard output. Or, if you prefer, you can direct
the output from checknr to a file so you can examine it later:

checknr file > output-file

For more detailed instructions on using this program, refer to checknr(l) in AIUX
Command Reference.

Using nrott!trott commands in m s

The ms macro package was designed to meet most text-processing needs, making it
unnecessary for users to learn the details of the complicated nroff /troff formatting
language. However, you can use nroff/troff commands in conjunction with the ms

macros without losing the benefits and simplicity of using a macro package.
In addition to the . nr and . ds commands used to define number and string

registers, you can use the following nroff /troff commands in a file processed with
the ms macros:

5-38 Chapter 5 ms Macros

. ce n

. sp n

. br

• bp

. pl n

. ls n

. na

. ad

Center n lines of text. If n is omitted, only the line following
is centered.

Print n blank lines. If n is omitted, one blank line is printed .

Start a new output line .

Begin a new page .

Set the page length to n .

Set the line spacing to n .

No adjust. Turns off right-margin justification .

Adjust both margins .

Note that you can use . ls , . na, and . ad anywhere in your document; the
remaining requests, however, must not appear until after the initializing macro (see
"Sequence of Beginning Macros" earlier in this chapter).

Creating your own macros

You can create your own macro out of a sequence of nroff /troff commands and
other defined macros. The basic procedure is to set up a definition string and then name
the macro. Because ms uses uppercase macro names, it is probably a good idea to use
ms custom macro names that are either a single lowercase letter or an uppercase letter
followed by a lowercase letter.

Conventions used in this reference

The following conventions are used to describe macro names:

n Digit

X Alphanumeric character

All other characters are literals (characters that stand for themselves).
Macro and string names are kept in a single internal table. Therefore, there must be

no duplication among such names. Number register names are kept in a separate table.

Creating your own macros 5-39

Format of names used by ms
Macros are in the form x, xx, or xn (for example, macros . I , • P P, and . P 1), and
registers are in the form xx(for example, PO).

Names used by eqn/neqn and tbl
The mathematical equation preprocessors, eqn and neqn, use registers and string names
of the form nn. The table preprocessor, tbl(l), uses T& , T# , and TW, and names of the
form

X- X+ X I A X A X #X

Reference tables

Tables 5-53 through 5-55 provide summaries of the macros, number registers, and strings
used in m s .

Table 5-53 ms macro summary

Name

. AB

. AE

. AI

. AU

. B [.ti

. B l

. B2

. BD

. BT

. BX [.ti

. CD

5-40 Chapter 5 ms Macros

Description

Begin abstract.

End abstract.

Author's institution .

Author's name .

Print x in boldface. If x is not present, print all subsequent text in boldface.

Begin boxed text .

End boxed text.

Block display; center entire block .

Bottom title, printed at foot of page .

Print x in a box .

Centered display (no keep) .

Table 5-53 ms macro summary (continued)

Name Description

. CT Chapter title. Page number is moved to register CF (thesis mode only) .

• DA [xi Print current date at the bottom of each page. With a date as an argument, uses
that date in place of the current date.

. DE

. DS [x�

End display .

Begin display with keep:

x = I Indented

x= L
X = C
x= B

Left -adjusted

Centered

Block

y = amount of indentation

. EF [' /' c' r'] Even footer .

• EH [' /' c' r'] Even header .

• EN End equation .

• EQ [x � Begin equation:

. FE

. FS [.xi

. I [.xi

. ID

. IP [x�

. KE

. KF

. KS

. LD

. LG

. LP

x = I Indented

x= L
x= c
y= E

End footnote .

Left -adjusted

Centered

Equation label

Start footnote, where x is a user-defmed label.

Print x in italic. If x is not present, print all subsequent text in italic.

Indented display (no keep) .

Indented paragraph, where x is a label and y is the indentation .

End keep (static or floating) .

Begin floating keep. Name description

Begin static keep .

Left-adjusted display (no keep) .

Increase point size by 2 .

Left-block paragraph .

(continued)•

Reference tables 5-41

Table 5-53 ms macro summary (continued)

Name

. MC [x�

. ND [.ti

. NH [.ti

. NL

. OF [' /' c' r']

. OH [' /' c' r']

. P l

. PP

. PT

. PX [no]

. QP

. R

. RE

. RP [no]

. RS

. SH

. SM

. TA X

. TC [no]

. TE

. TH

. TL

. TM

. TS [H)

. UL X

. ux

. XA [x�

5-42 Chapter 5 ms Macros

Description

Print text in multiple columns, where xis the column width andy is the gutter
width.

Suppress printing of date in page footer, where x is the date on the cover sheet
(released paper format).

Begin numbered heading, where xis the heading level. If x = 0, level is reset to 0 .

Return point size to normal.
Initial value: 10

Odd footer .

Odd header .

Print header (including page number) on the ftrst page .

Standard paragraph with the ftrst line indented .

Page title, printed at the head of each page .

Print index. no suppresses the title .

Quotation mark paragraph, centered and indented 5 ens from both margins .

Return to roman font.

End right shift .

Begin released-paper format. no suppresses the title on the ftrst page .

Begin right shift; start relative indentation .

Begin unnumbered section heading, left-adjusted and boldfaced .

Decrease point size by 2 .

Set tabs to x, where x is the number of ens. Initial value: increments of 5 ens .

Print table of contents. no suppresses the title .

End table .

End running table heading .

Print centered title in boldface 2 points larger .

Thesis mode .

Begin table. H indicates a multipage header .

Underline x .

UNIX trademark message .

Additional index entry. xis the page number of the entry and y is the amount of
indentation (in ens).

Table 5·53 ms macro summary (continued)

Name

. XE

. XP

. xs [x�

. 1C

. 2C

.] -
• [0

. [n

Description

End index entry .

Exdented paragraph .

Begin index entry. x is the page number of the entry and y is the amount of
indentation (in ens).

Resume one-column printing .

Begin two-column printing .

Begin reference .

End unclassifiable reference .

Classiftable reference .

n = 1 Journal article

n = 2 Book

n = 3 Book article

n = 4 Report

Table 5-54 Number register summary

Name

CF

CH

DD

FF [x]

Description

Center footer.

Initial value: current date (nroff only)

Center header.

Initial value: current page number surrounded by hyphens

Display distance.

Initial value: lv in nroff, .5v in troff

Footnote format.

x = 1 Suppress superscripting of footnote label.

x = 2 Suppress indentation of ftrst line of footnote text.

x = 3 Footnote as indented paragraph.

Initial value: 0

(continued)•

Reference tables 5-43

Table 5-54 Number register summary (continued)

Name

F I

FL

FM

HM

LF
LH
LL

LT

PD

P I

PO

PS

RH
QI

vs

5-44 Chapter 5 ms Macros

------ ------ -- -- ���

Description

Footnote indent.

Initial value: 2 ens

Footnote length.

Initial value: 55i

Footer margin.

Initial value: 1i

Header margin.

Initial value: 1i

Left footer.

Left header.

Line length.

Initial value: 6i

Title length.

Initial value: same as LL (6i)

Paragraph distance.

Initial value: lv in nroff, 03v in t roff

Paragraph indent.

Initial value: 5 ens

Page offset.

Initial value: 0 in nroff), -li in t roff

Point size.

Initial value: 10

Right header.

Quotation mark paragraph indent.

Initial value: 5 ens

Vertical spacing.

Initial value: 12v 21

Table 5-55 ms string summary

Name Description

\ * ' Acute accent (before letter)

\ * * Automatically numbered footnote

\ * ' Cedilla (before letter)

\ * A Circumflex (before letter)

\ * Dash (-- in nroff, - in t roff) -
\ * (DY Day (current date)

\ * ' Grave accent (before letter)

\ * (MO Month

\ *Q Quotation mark (" in nroff, " in t roff)

\ * - Tilde (before letter)

\ * : Umlaut (before letter)

\ *U Unquotation mark (" in nroff, " in t roff)

Reference tables 5-45

/

6 me Macros

What are me macros? I 6-2

Using basic document formats I 6-3

Changing the look of the document I 6-5

Structuring the page I 6-8

Creating displays I 6-14

Creating footnotes I 6-16

Creating an index or a table of contents I 6-16

Drawing boxes I 6-18

Checking your work I 6-18

Creating your own macros I 6-19

Reference tables I 6-20

This chapter is a reference for the me macro package. It's a good idea to skim this

chapter for a general understanding of the me macro package and then read specific

sections in detail as needed.

What are me macros?

me is a collection of text-fonnatting macros for the A/UX text fonnatters nroff and
t ro f f. It was designed for writing thesis papers at the University of California at
Berkeley. Some features of me are not available in ms, so A/UX Release 3.0 supports both
packages. You can use only one of these packages at a time, however, so you may wish
to read this chapter and make a decision about which package to use before you actually
begin fonnatting a document.

For a complete discussion of text fonnatting concepts and principles, refer to
Chapter 1 , "Introduction to A/UX Text Processing."

How input is read

Fonnatters fill output lines from one or more input lines. You can justify output lines so
that both the left and right margins are aligned. As lines are being filled, words may also
be hyphenated as necessary. You can turn any of these modes on and off (with the . na,
. ad, . hy, . nf, and . fi fonnatter requests; turning off fill mode also turns off
justification and hyphenation). Certain fonnatting commands (requests and macros) stop
filling the current output line, print the line (of whatever length), and begin subsequent
text on a new output line. This printing of a partially filled output line is called a break. A
few formatter requests cause a break.

Understanding arguments and double quotation marks

In me, you can use an argument to modify a macro. For example, the me macro . pp

begins a standard paragraph.
Any macro argument containing ordinary (paddable) spaces must be enclosed in

double quotes. A double quotation mark is a single character that must not be confused
with two apostrophes, acute accents, or grave accents. If an argument containing such
spaces is not enclosed in double quotation marks, it will be treated as several separate
arguments.

6-2 Chapter 6 me Macros

r -

Sequence of beginning macros

Text files processed by the me macros must begin with one of the following macros:
. pp, . lp, . ip, . np, . sh, and . uh.

These macros initialize the file and must precede a break caused by blank lines,
leading spaces, or . sp, . br, and . ce t roff requests.

Using basic document formats

The me macro package has facilities for formatting the basic elements of a document,
such as the cover page, margins, and spacing.

Title pages

There are no headers or footers on a title page, and unlike other pages, you are allowed
to leave blank space by spacing down from the top. The . t p macro produces a title
page. (See Table 6-1 .)

Table 6-1 Title pages macro

Type Form Explanation

Macro . tp Print title page.

Chapter titles

The . +c Tmacro can be used to start chapters in me. Each chapter is automatically
numbered from one, and a heading is printed at the top of each chapter with the chapter
number and the name T. This information is moved to the footer of the first page of the
chapter. If the name Tis not specified, the output is a chapter with no heading. (See
Table 6-2.)

Using basic document formats 6-3

Although a document's preliminary sections-the abstract, table of contents, and so
on-are normally placed at the beginning, you should format and print them last when
using me. This is so that index entries can be collected and then printed for the table of
contents. At the end of the document's main text, you can use the . ++P macro, which
begins the preliminary sections. After issuing this request, you can use the . +c macro to
begin one preliminary section of the document and print the page numbers in lowercase
roman numerals.

You can use the . +c macro repeatedly to begin different preliminary sections, such
as the abstract, table of contents, and acknowledgments. Then you can use the . ++B
macro to begin the bibliography at the end of the document. You will have to rearrange
the document physically after printing to place the preliminary sections at the beginning.

Table 6-2 me chapter titles macros

Type Form

Macro . +c [1]

Macro . ++P

Macro . ++B

Thesis format

Explanation

Print chapter heading, where Tis the name of the chapter. If T
is omitted, the chapter page is printed with no heading.

Print preliminary section of paper with lowercase roman
numeral page numbers.

Print the bibliographic section of the paper.

The . t h macro sets up the headers, footers, margins, and spacing of the formatter to
format a thesis according to the rules established at the University of California at
Berkeley. The correct headers, footers, margins and spacing are set up. (See Table 6-3.)

Table 6-3 Thesis format macro

Type
Macro

6-4 Chapter 6 me Macros

Form

. th

Explanation

Set up Berkeley thesis format.

Changing the look of the document

A document formatted with the me macros is produced in a standard page layout. By
default, text is generated in a single column, and a line of text is 6 inches from margin to
margin. The left margin is 1 inch (in troff) from the edge of the paper, point size is set
to 10 points, vertical space is set to 12 points, and tab stops are set every 5 spaces. The
following macros and number registers permit you to change these default features and
customize your page layout. You can also change fonts and remove the date.

Creating multicolumn output

Output from t roff is normally a single column of text. Placing the me command . 2 e in
your file causes the output to be printed in two-column format. Each column is printed
with a width of 7/15 of the current line length and the gap between the two columns is
1/15 of the full line length.

To print text in more than two columns, you can request a new column with . be. To
revert back to single column output, use . 1 e .

The number of columns is computed automatically, based on the maximum number
of columns of the specified width that can fit within the current line length. The column
width argument must be numeric, and unless indicated otherwise, the unit of
measurement is assumed to be in ens.

The gutter-width argument permits you to control the distance between columns.
Any change in the number of columns specified (except from one to two or greater)

causes a page break. (See Table 6-4.)

Table 6-4 Multiple column macros

Type

Macro

Macro

Macro

Form

. 2 e

. be

. le

Explanation

Print text in two equal columns.

Begin new column.

Restore single-column output.

Changing the look of the document 6-5

Setting point size and vertical spacing

Number registers are used to set default point size and vertical spacing. In me there is a
register for paragraph point size, • nr pp, a register for section header point size, .nr

sp, and a register for title point size called • nr tp. (To change relative point size using
macros, see "Changing the String Point Size" later in this chapter). The default point size
for regular text is 10 points, and the default point size for footnotes is 8 points. The two
point difference allows for adequate spacing between lines.

The vertical spacing is set to be proportional to the type size. (See Table 6-5.)

Table 6-5 Point size and vertical spacing registers

Type Form Explanation

Register .nr pp Paragraph point size

Initial value: 10

Register .nr sp Section heading point size

Initial value: 10

Register .nr tp Title point size

Initial value: 10

Changing top and bottom margins

By default, the distance between the header and footer text and the top and bottom
edges of the paper is one inch.

Changing line length

The default length of a line of text is six inches from left to right margin.

6-6 Chapter 6 me Macros

Changing page offset

The position of the left margin is determined by two dimensions: page offset and
indentation. Indentation controls the current left margin, whereas page offset controls the
absolute left margin.

Page offset is the distance betweeen the left margin and the left edge of the paper.
Indentation is expressed as a distance to the right of page offset. You can change
indentation within your document (see "Indenting Paragraphs" later in this chapter), but
page offset is defined at the beginning of your document and usually remains constant
throughout.

The default page offset is 1 in troff and 0 in nroff.

Changing fonts

You can use the following macros to emphasize words or groups of words. (See
Table 6-6.) Typewritten or line-printed material is usually emphasized with underlining.
Typeset and typeset -quality material is emphasized with boldface or italics.

In me, use . b for bold and . i for italics. There are several ways of using these
macros in your text.

In me, • b or . i can be followed by a single word. In that case, only that word is
emphasized. The macros for boldfacing and italicizing can be followed by a group of
words on the same line. These must be enclosed in double quotation marks.

The underline macro applies only to text processed with t ro f f. It underlines one

word at a time. If multiple word underlining is desired, you must enter individual
underlining commands for each word. Enclosing multiple words in quotes does not
work. For example, in me you could use

text

• u wordl

. u word2

. u word3

Changing the look of the document 6-7

Table 6-6 Font changing macros

Type Form Explanation

Macro . b [xi Print xin boldface (t roff only).

Macro . i [XJ Print x in italics .

Macro . u X Underline x (t roff only).

Changing the string point size

In me there is only one . srn macro to set a word or phrase in a smaller point size (see
Table 6-7). This macro is used for temporary size changes for a single word or a small
group of words. (See "Setting Point Size and Vertical Spacing" earlier in this chapter to
change absolute point size.)

Table 6-7 String point size changing macro

Type Form Explanation

Macro • sm Decrease point size by 2.

Structuring the page

Using me macros, you can create indented and labeled paragraphs, establish headings
and change their appearance, create customized headers and footers, and control page
breaks to create the layout that best suits your purposes.

Creating paragraphs

The me macro package provides several commands that determine the style of your
paragraph. In all cases, the formatter skips one vertical space before generating the text
of the paragraph.

6-8 Chapter 6 me Macros

Creating the standard paragraph

The first line of a standard paragraph is indented. All other lines are generated at the left
margin. The default indentation is 5 ens, but can be changed by setting the number
register P I (see "Indenting Paragraphs" later in this chapter.) (See Table 6-8.)

Table 6-8 Standard paragraph macro

Type Form Explanation

Macro o PP Standard paragraph

Creating a left-block paragraph

The text of a left-block paragraph is generated as a left-adjusted block. (See Table 6-9.)

Table 6-9 Left-block paragraph macro

Type Form Explanation

Macro o lp Left-block paragraph

Indenting paragraphs

All lines of an indented paragraph are indented a certain value. (See Table 6-10.)
In me, the command . ip can be used in three ways:

o ip
0 ip label 0
o ip label value

The first example produces a basic indented paragraph. Text is generated as a block
five spaces from the left margin.

Structuring the page 6-9

The other two forms of the indented paragraph command permit you to label your
paragraph with some alphanumeric character. These can be used to produce numbered
or bulleted lists. For example,

. ip (1)

Thi s i s a labeled indented paragraph .

produces

(1) This is a labeled indented paragraph.

You can substitute any character for the number. For example,

. ip *

This is a labeled indented paragraph .

produces

• This is a labeled indented paragraph.

You can also assign a value for the indentation level:

. ip (1) 1 0

Instead of the default indentation (5 ens), the formatter now indents the text 1 0 ens.

Table 6-10 Indented paragraph macros

Type Form

Macro . ip [�

Macro .np

Explanation

Indented paragraph, where xis the label, and y is the
indentation. Default indentation is 5 ens. The number register
for setting paragraphg indentation is i i.
Numbered indented paragraph. The numbering is reset at the
next .pp, .lp, or .sh.

Table 6-11 Indented paragraph register

Type

Register

6-10 Chapter 6 me Macros

Form

. i

Explanation

Paragraph indentation. The values are unsealed and are read
as ens.

Creating headings

Two types of section headings are available with the me macro package: unnumbered
and numbered. In both cases, the heading is on the left margin and is preceded by one
blank line, and the text of the section is immediately following the heading (without a
blank line). In t roff the heading is printed in boldface; in nroff it is underlined. A
paragraph macro must follow the heading macro if a vertical space or indentation is
desired.

Creating numbered headings .

In me, the .sh macro produces automatically numbered section headings. (See
Table 6-12.) An optional level number indicates a subsection from 1 to 5. For example,

sh 1 First-leve l heading
. lp
text

. sh 2
Second-level heading
. lp
text

produces the output

1. First-level heading

text
1.1 Second-level heading

text
me also has the ability to indent sections proportionally to the depth of the section.

The command

. nr si Nx
will cause each section to be indented by N. N must have a scaling factor of the form x,
where x is the unit Nis measured in. The most common units are i for inches, c for
centimeters, and n for ens (the width of a single character).

Structuring the page 6-11

Table 6-12 Numbered headings macros

Type Form

Macro . sh [.xi

Macro . s i [N.xi

Explanation

Begin automatically numbered heading, where x is the
heading level. Numbering is reset at new paragraph request.
(The argument number can also be placed after the title of the
section, as in . sh "title" 1 .)
Indented section heading. Indents each section by N in x units
in the section number.

Working with unnumbered headings

The me macro . uh produces section headings that are not numbered. (See
Table 6-13.)

Table 6-13 Unnumbered headings macro

Type

Macro

Form

.uh

Explanation

Begin left -adjusted section heading, separated from the
preceding text by one vertical space.

Creating page headers and footers

Text printed at the top of each page is called a page header. Text printed at the bottom of
each page is called a page footer. You can specify three separate headers and footers
(left, right, and center) using either string registers or macros.

In me, simple requests handle headers and footers. They are three-part titles, as in ms,

and a percent sign is used for the current page number:

. he " % "

. fo " Succe s s ful Author " "My Story "

This will produce output with the current page number centered at the top of each
page, "Successful Author" in the lower left corner, and "My Story" right justified in the
lower right comer.

6-12 Chapter 6 me Macros

Keeping text together on a page

The me macro package provides commands to keep a block of text together on one
page. There are two ways to do this: the standard (or static) keep and the floating keep.

Forcing a page with static keeps

In me, the static keep is accomplished with the block macros . (b and .) b. If the
number of lines within these two macros exceeds the remaining lines on the page, a page
break is forced, and the material in the block is printed on the next page. (See
Table 6-14.)

Table 6-14 Static keeps macros

Type

Macro

Macro

Form

• (b
•) b

Using floating keeps

Explanation

Begin static keep.

End static keep.

In me, the floating keep is accomplished with the . < z and .) z macros. If the number
of lines in a block of text exceeds the remaining lines on the page and it is necessary to
force a page break, the regular text material continues to print until it reaches the end of
the page, and the block of text is printed. It differs from a static keep in that it waits for a
natural page break rather than forcing one. (See Table 6-15.)

Table 6-15 Floating keeps macros

Type

Macro

Macro

Form

• (z

.) z

Explanation

Begin floating keep.

End floating keep.

Structuring the page 6-13

Indenting blocks of text

me has facilities for indenting and centering blocks of text.

Centering blocks of text

Sometimes you may want to center several lines of text as a group, rather than centering
each line separately. This can be accomplished with the . < c and . > c macros. All the
lines between these macros will be centered as a unit, with the longest line centered on
the page and the rest of the lines centered around it. Centered blocks are not keeps, but
you may use them inside keeps. (See Table 6-16.)

Table 6-16 Centering macros

Type

Macro

Macro

Creating displays

Form

• (c

.) c

Explanation

Begin centered block.

End centered block.

Displays format text without filling or adjusting. Several types of displays are available
with me, both those with keep and those without. me displays allow text to cross page
boundaries.

Using me displays

If you don't want the text to be kept on a single page, use the ms displays without keep
(. ID, • LD, • CD, • BD).

6-14 Chapter 6 me Macros

Major quotes

Major quotes are more than one line long and need to be set apart from the rest of the
text without quotation marks around them. This can be accomplished with the . < q and

• > q macros. (See Table 6-17.)

Table 6-17 Major quotes macros

Type

Macro

Macro

Standard lists

Form

• (q

.) q

Explanation

Begin major quote display.

End major quote display.

Lists are indented, single-spaced, unftlled displays. They're used when the text should
stand out from the normal text, as with columns of figures or examples. The macros . < 1

and . > 1 are used to display lists. (See Table 6-18.)

Table 6-18 Standard lists macros

Type

Macro

Macro

Custom lists

Form

. (1

.) 1

Explanation

Begin list display.

End list display.

You can use fancier lists in me by utilizing the fill mode. By default lists are normally
collected in nofill mode, but the addition of a capital F as an argument to the list macro
will cause the list to be indented from both margins.

If you wish to center a list, the c argument can be used, and the L argument will left
justify your list. (See Table 6-19.)

Creating displays 6-15

Table 6-19 Custom lists macros

Type Form Explanation

Macro . (1 F Begin list in fill mode.

Macro .) 1 End list in ftll mode.

Macro . (1 c Begin centered list display.

Macro .) 1 End list display.

Macro . (1 L Begin left-adjusted list display.

Macro .) 1 End list display.

Creating footnotes

You can produce footnotes with me with . (f and . > f. The material is collected, saved,
and printed at the bottom of the current page. The footnote is printed two points smaller
than the text and is separated from the main body of text by a horizontal line. (See
Table 6-20.)

You can produce footnotes that are numbered automatically by placing the string
\ * * immediately following the text to be footnoted.

Table 6-20 Begin and end footnote macros

Type

Macro

Macro

Form

. (f

.) f

Explanation

Begin footnote.

End footnote.

Creating an index or a table of contents

You should enclose all entries you want placed in an index in the me begin and end
delimiters .) x and .) x.

6-16 Chapter 6 me Macros

Understanding index format

Material to be printed in an index or table of contents should be placed between the . < x
and . > f . (See Table 6-21 .)

Table 6-21 Index format macros

Type Form

Macro • (x [n]

Macro •) X

Printing the index

Explanation

Begin index entry, where n is the page number of the entry. If
n = _, no page number or line of dots will be printed. If
n = " " , a line of dots will appear with no page number. If n
is any other character, it will be understood as the name of the
index, thus allowing several indexes to be run simultaneously.

End index entry.

The . xp macro is used in me to print a formatted list of the text items designated by the
index macros. In me, the index must be printed at the end of the paper, rather than at the
beginning. You will have to rearrange the paper physically after printing if you wish to
use the me index as a table of contents. (See Table 6-22.)

Table 6-22 Index print macro

Type Form

Macro . xp

Explanation

Print index.

Creating an index or a table of contents 6-17

Drawing boxes

You can draw a box around a single word or a group of words with the box macros.

Boxing a word

Use the . bx command in me to draw a box around a single word (see Table 6-23). The
word to be boxed is entered as an argument to the macro.

Table 6-23 Boxed word macro

Type Form

Macro . bx

Boxing a block of text

Explanation

Draw a rectangular box around a word, where xis any
word.

You can box a phrase in me by grouping the arguments to the . bx command in double
quotation marks, but you cannot box more than one line at a time.

Checking your work

You can check your file for formatting errors with the checknr program. checknr

examines your file and reports any unrecognized macros or unbalanced macro
constructions.

To run checknr, enter the command

checknr file

6-18 Chapter 6 me Macros

Any discrepancies are written to the standard output. Or, if you prefer, you can direct
the output from checknr to a file so you can examine it later:

checknr file > outputfile

For more detailed instructions on using this program, refer to checknr(l) in A!UX
Command Reference.

Creating your own macros

You can create your own macro out of a sequence of n ro f fIt ro f f commands and
other defined macros. The basic procedure is to set up a definition string and then name
the macro with uppercase letters. In me, avoid using TS, TH, TE, EQ, and EN.

Conventions used in this reference

The following conventions are used to describe macro names:

n Digit

x Alphanumeric character

All other characters are literals (characters that stand for themselves).
Macro and string names are kept in a single internal table. Therefore, there must be

no duplication among such names. Number register names are kept in a separate table.

Defining a macro in me
To define a macro in me, start the definition with . de XX, where XX is the name you
wish to call the macro. List any requests, or other macro commands that will be included,
then end the macro with . . on a separate line. Your macro will now be named XX

Creating your own macros 6-19

Reference tables

Table 6-24 me macro summary

Name

. b [�

. be

. bi [�

. bp

. bx

. (b

.) b
++B
. ce [�
. (c

.) c

. +c T

. en

. eq [x�

. fo

. (f

.) f

. in [+n]

. he

. i [�

. ip [xy)

6-20 Chapter 6 me Macros

Description

Print xin boldface. If x is not present, print all subsequent text in boldface .

Begin new column .

Print x in bold italics. If xis not present, print all subsequent text in bold italics.

Begin new page .

Print inside a box .

Begin block text .

End block text .

Print bibliography.

Center x lines. x defaults to 1 .

Begin centered block.

End centered block .

Print chapter with title T.
End equation .

Begin equation .

x= I Indented

x = L Left-adjusted

x = c Centered

y = E Equation label

Print footer .

Begin footnote .

End footnote .

Indent n spaces. n can be a negative number for left indent.

Print header .

Print x in italics. If xis not present, print all subsequent text in italics .

Indented paragraph, where xis a lable, and y is the indentation .

--'

Table 6-24 me macro summary (continued)

Name

. 1p

. (1

.) 1

. np

. nr
. pp
. ++P

. (q

.) q

. r [xi

. sh

. sm

. sp [n]

. te

.th

. th

.t i[+ n]

. t s [HJ

. uh

. u1 [xi

. xp

. (X [x�

.) X

. (z

0) z

. l c

. 2 c

Description

Left-adjusted paragraph .

Begin list.

End list.

Numbered paragraph .

Numbered register .

Standard paragraph .

Print preliminary part of paper .

Begin major quote .

End major quote .

Print x in roman. If x is not present, print all subsequent text in roman .

Print section heading .

Decrease point size by 2 .

Space down n. n defaults to 1 .

End table .

Set up Berkeley thesis environment.

End running table heading .

Temporarily indent n spaces .n can be a negative number for left indent.

Begin table. Hindicates multipage header .

Unnumbered section heading .

Underline x .

Print index .

Begin index entry. xis the page number andy is the amount of indentation in ens.

End index entry .

Begin floating keep .

End floating keep.

Resume one-column printing .

Begin two-column printing .

Reference tables 6-21

Table 6-25 Number register summary

Name

pp

sp

tp

Description

Standard paragraph point size

Initial value: 10

Section header point size

Initial value: 10

Title page point size

Initial value: 10

Table 6-26 String summary

Name

\ * #

6-22 Chapter 6 me Macros

Description

Delayed text

7 t b l Tables

What is tbl? I 7-2

Using tbl I 7-2

Using global format options I 7-3

Aligning columns: Keyletters I 7 �6

Refining formats I 7-13

Producing multipage tables with repeated hedings I 7-16

Adding new tbl format instructions I 7-17

tbl restrictions I 7-18

Examples of tbl input and output I 7-19

This chapter explains tbl and how you can use it to obtain the output you desire.

However, the best way to learn tbl is by studying the examples in "Examples of tbl

Input and Output" and by creating your own practice exercises based on the samples

provided.

What is tbl?

Using tbl

The t b l program is a document-formatting preprocessor for t roff and nroff. Tables
consist of columns that can be independently centered, right adjusted, left adjusted, or
aligned by decimal points. Headings can be placed over single columns or groups of
columns. A table entry can contain equations or consist of several rows of text. Horizontal
or vertical lines can be drawn within the table, and any table or element can be enclosed
in a box.

The tbl program converts table-formatting instructions into nroff/t roff

commands, and these processors do the actual formatting of the text.

You can use tbl commands with both nroff and t roff, with the restrictions noted in
the next section. Three components are required to use tbl: .Ts and .TE commands,
the data that fills the columns, and instructions on organizing the rows and columns.

Understanding command-line syntax

tbl can be run on a simple table with the command

tbl file I t roff

For more complicated use, where there are several input files and macro package
commands (such as rnm) as well as tables, the command would be

tbl file1file2file3 I t roff -rnm

The files are processed in sequence, and then this data is passed on to the remaining
processors.

If a filename is not specified on the command line or if the filename given is a minus
sign (-), tbl reads the standard input.

Using tbl with the nroff formatter is similar to using it with t roff, but only
certain hard-copy terminals can print vertical lines or boxed tables.

7-2 Chapter 7 tbl . Tables

For the convenience of those using line printers without adequate driving tables or
post-filters, there is a special -Tx command-line option to tblthat produces output
without fractional-line motions (see tbl(l) in A!UX Command Reference).

The only other command-line options recognized by tbl are the ms and the mm

macros. These arguments are accepted by tbl, but it is usually more convenient to place
them on the nroff /t roff formatter portion of the command line.

Defining table formats

The general format of tbl input in a document is

preceding text

. TS

global options;

column fonnatting instructions .

table data

. TE

more text

The global format line defines the overall format of the table. The column formatting
line defines the column alignment of the table entries. These specifications are preceded
and followed by a table start (. T s) and table end (. TE) command. The . T s and . TE
lines are then used by t roff as command delimiters.

If there isn't enough space on the page for a table, it is continued on the next page;
however, boxes and vertical lines aren't drawn properly if a table is split between two
pages. Enclosing your table in display macros keeps your table on one page (see
Chapter 4, "mm Macros," and Chapter 5, "ms Macros," for a discussion of the display
macros).

Using global format options

The global format line affects the format of the whole table. It consists of a single line of
instructions and must immediately follow the . T s command. Option names must be

Using global format options 7-3

separated by spaces, tabs, or commas, and the line must be terminated by a semicolon.
Allowable global options are listed in Table 7-1 .

Table 7-1 Allowable global options

Global option Description

al lbox Enclose each table entry in a box.

box Enclose the table in a box.

center Center the entire table.

de lim xx Specify that characters xxwill be used as eqn delimiters.

doublebox Enclose the table in a double-ruled box.

expand Expand the table to the width of the current line length.

line s i ze n Increase line thickness (for example, box and allbox) to n point size.

t ab(x) Separate data items with character x instead of tab.

Global options are discussed in the following sections.

Setting table width and positioning

The default positioning for a table produced by tbl is left adjusted. The center option
places the table in the center of the page. The expand option spreads the table across
the full width of the current line length of the page (see Figure 7-1).

Drawing boxes

There are three ways to globally specify boxed tables: box encloses the table in a single
box, al lbox encloses each item of the table in a box, and doublebox encloses the
table in a double-lined box. Each is illustrated in "Examples of tbl Input and Output"
later in this chapter.

The tbl program tries to keep a boxed table on one page by issuing the appropriate
. ne (need) t ro f f command. This command is calculated from the number of lines in
the table. If there are spacing commands embedded in the input, however, the . ne

7-4 Chapter 7 tbl Tables

commands may be inaccurate. In that case, you can use t roff keep-release macros or
can manually specify the . ne n command. If a multipage table is required, use the
. TS H and . TH macros designed for this purpose (see "Producing Multipage Tables
With Repeated Headings" later in this chapter).

Changing line thickness

The line s i ze n (where n is a point size) option permits you to specify a heavier line in
your table than the default 10-point.

Setting a new tab character

tbl uses the tab character to separate items of data. Because tabs are invisible, it is
useful to reset the tab character to some other character that can be seen. You do this
with the tab (x) option, where x is a character you will not need in your table. For
example, to change the tab character to a colon (:), use the following command:

t ab (:)

Using mathematical equations in tables

When tbl processes columns of numbers, it looks for a decimal point and attempts to

split numeric format items into two parts (see "Understanding Numeric Columns" later in
this chapter). This feature interferes with the way eqn processes equations. The de lim

xx global option enables you to define eqn delimiters within your table, preventing this
interference.

+ Note It is still better to avoid putting equations in numeric (n-style) columns. •

Using global format options 7-5

Using tbl with other A/UX preprocessors

When pic, tbl, and eqn operate on the same file, pic is always called first:

pic file I tbl I eqn I t roff

I f only eqn and tbl are present, tbl should be called first. eqn produces a larger
expansion of the input, and it is faster and more efficient to execute it after tbl. If there
are no equations within tables, either sequence works. However, if there are equations
within tables, tbl must be called first, or the output will be scrambled.

When there are several input files containing tables, equations, and mrn macros, the
correct command sequence is

tbl file1file2file3 I eqn I t roff -mm

If you also use the extended mathematical character set in /usr /pub/eqnchar

(see Chapter 8, "eqn Equations"), the command reads

tbl /usr /pub/eqnchar flk I eqn I t roff -mrn

Aligning columns: Keyletters

The format line(s) specifies column layout. It contains a "keyletter" for each column of
the table that represents a particular column format instruction.

Keyletter instructions may be entered in either uppercase or lowercase, and the last
entry in the format section is always followed by a period. Keyletters are listed in
Table 7-2.

7-6 Chapter 7 tbl Tables

Table 7-2 Keyletter descriptions

Key letter

a

c

1

n

r
s

Description

Alphabetic column entry; entries are left-adjusted and positioned so the widest entry
is centered within the column.

Centered column entry.

Left-adjusted column entry.

Numeric column entry; entries are aligned so the numbers line up at a decimal point.

Right-adjusted column entry.

Spanned heading; the entry from the previous column continues across this column.

Vertically spanned heading; the entry from the previous row continues down through
this row.

Understanding numeric columns

When numeric column alignment (n-style) is specified, the rightmost dot (.) adjacent to a
digit is used as a decimal point. If there is no dot adjoining a digit, the rightmost digit is
used. If an alignment or alignment character isn't specified, the item is centered.
However, the special nonprinting character string (\ &) can be used to override dots and
digits or to align alphabetic data. This string lines up where a dot normally would (the \ &
disappears from the final output).

In Table 7-3, items shown in the "Input" column will be aligned in a numeric column
as shown in the "Output" column.

Table 7-3 Numeric column alignment

Input Output

4 . 2 4.2

1 3 13

2 6 . 4 . 1 2 26.4.12

7 4 9 . 1 2 749.12

abcde fg abcdefg

abcde fg\ & abcdefg

Comments

Aligned by decimal point

No alignment character

Aligned by decimal point

Aligned by decimal point

Centered

\ & as alignment character

Aligning columns: Keylett�rs 7-7

If numeric data is used in the same column with wider 1- or r-type table entries, the
widest number is centered relative to the widest nonnumeric item; for example,

. TS

center tab (:) ;

1 1

n n .

shortest : 1onge st ent ry

1 3 : 1 3

4 2 , 3 4 7 . 9 9 : 4 2 , 3 4 7 . 9 9

0 . 5 : 0 . 5

. TE

will send the output

shortest

13
42,347.99

0.5

longest entry

13
42,347.99

0.5

This is similar to alphabetic subcolumns (a-style), which are always slightly indented
relative to left adjusted items. If necessary, the column width is increased to force this.

How tbl reads keyletter instructions

The layout of keyletters in the format section represents the layout of the actual data in
the table. For example, a simple three.:column format might appear as

c s s

1 n n .

The first line of this table contains a centered heading spanned across all three
columns (c s s) . Each remaining line contains a left-adjusted item in the first column
followed by two columns of numeric data (1 n n) . These specifications produce the
following:

7-8 Chapter 7 tbl Tables

Spanned Heading

Item-1 34.22 9.1

Item-2 12.65 .02

Item-3 23 5.8

Total 69.87 14.92

Successive line formats separated by commas can also be given on the same line. For
example, the format for the preceding example could be written

c s s , 1 n n .

Spaces between the keyletters are not required, but they can be helpful visually when
setting up or changing a table format. Each line in the format section corresponds to a
single line of data. However, if there are more lines of data than there are format lines,
the last format line corresponds to all following data lines up to the table end (. TE)

command or a table continue (. T&) command (see "Adding New tb1 Format
Instructions in the Text" later in this chapter).

Fine-tuning keyletter specifications

To permit further refinement of your table formatting instructions, keyletters can be
followed by qualifiers that change the format and placement of the column entries, or
change the size and shape of the columns.

These qualifiers can be in any order, they can be uppercase or lowercase, and they
need not be separated by spaces (except as indicated). For example,

np 1 2w (2 . 5 i) f i 6

specifies a numeric column entry in 12-point type with a maximum width of 2.5 inches,
in italic font and separated by 6 ens from the next column entry.

Drawing horizontal lines

A keyletter can be replaced by an underscore character (_) or equal sign (=) to specify a
single or double horizontal line in place of the column entry:

1 1

Aligning columns: Keyletters 7-9

If an adjacent column contains a horizontal line or if there are vertical lines adjoining
this column, the horizontal line is extended to meet nearby lines. If any data entry is
provided for this column, it is ignored and a warning message is printed. (See Figure 7-7.)

Drawing vertical lines

A vertical bar (I) may be placed between keyletters to cause a vertical line between the
corresponding columns of the table (see Figure 7-1). A vertical bar to the left of the first
keyletter or to the right of the last one produces a line at the edge of the table. If two
vertical bars appear between keyletters, a double vertical line is drawn, for example,

I 1 I I 1 I

Setting column spacing

A number may follow the keyletter to indicate the amount of separation between this
column and the next column, for example,

n6 n

The number specifies the separation in ens. One en is about the width of the letter
"n." More precisely, an en is the number of points equal to half the current type size. If
the expand option is used, these numbers are multiplied by a constant, making the table
as wide as the current line length. The default column separation number is 3. If the
separation is changed, the largest space commanded is assumed.

Setting vertical spacing

A keyletter followed by v and a number indicates the vertical line spacing within a

multiline table entry. The number may be plus or minus (+ or -) , in which case it is taken
as an increment or decrement from the current vertical spacing, for example,

cv+2

A column separation space value must be separated by blanks or some other
specification from a vertical spacing command. This command has no effect unless the
corresponding table entry is a block of text (see "Setting Up Text Blocks for Multiline
Entries" later in this chapter).

7-10 Chapter 7 tbl Tables

Setting vertical spanning

Vertically spanned items extending over several rows of the table are normally centered
in their vertical range. If a keyletter is followed by t , any corresponding vertically
spanned item will begin at the top line of its range, for example,

lt ct at

Setting column width

A keyletter followed by w and a value in parentheses specifies maximum column width;
for example,

lw (2 i)

specifies a 2-inch column.
If the largest element in the column is not as wide as the width value given after the

w, the column is assumed to be that wide. If the largest element in the column is wider
than the specified value, its width is used. The width is also used as a default line length
for text blocks (see "Setting Up Text Blocks for Multiline Entries" later in this chapter).

Normal t ro f f formatter units can be used to scale the width value. The default value
is ens, but inches also may be used. If the width specification is a unitless integer, the
parentheses may be omitted. If another width value is given in a column, the last one
controls the width.

Setting equal-width columns

A keyletter followed by e indicates equal-width columns. All columns whose keyletters
are followed by e or E are made the same width, for example,

le ne

Setting staggered columns

A keyletter followed by u indicates that the corresponding entry is to be moved up one
half line. This makes it easy to have a column of differences between numbers in an
adjoining column.

+ Note Staggered columns do not work with the allbox option. •

Aligning columns: Keyletters 7-11

Changing fonts

A keyletter followed by f and a string containing a font name (such as R, I , or B) or font
number (such as 1 , 2 , or 3) indicates that the corresponding column should be in a
different font from the default font. For example,

lf2 l fB

specifies one column of italics and one column of boldface.
All font names are one or two letters. A one-letter font name should be separated

from whatever follows by a space or tab.

+ Note t roff font change commands given within the table data override these
specifications. •

Changing point sizes

A keyletter followed by p and a number indicates the point size of the corresponding
table entries. If the number is preceded by a plus (+) or minus (-) sign, the value is
incremented or decremented from the current point size, for example,

lp8

If both a point size and a column separation value are given, one or more blanks
must separate them.

Using zero-width items

A keyletter followed by a data item is ignored in calculating column widths. This may be
useful in allowing a long heading to run across adjacent columns where a spanned
heading would be inappropriate.

Using default column spacing

Column descriptors missing from the end of a format line are assumed to be left adjusted.
The longest line in the format section, however, defines the number of columns in the
table. Extra columns in the data are ignored.

7-12 Chapter 7 tbl Tables

Refining formats

Table data is entered immediately following the format line. Each line of the table is
entered as one line of data. Very long input lines can be broken up, however, by ending
the first part of the input line with a backslash (\) or by using text blocks (see "Setting Up
Text Blocks for Multiline Entries" later in this chapter). When using the backslash, the line
following it is combined with the preceding line (the backslash vanishes).

Data for each column is separated by a tab or by whatever character has been
specified in the tab(x) global option.

Inserting t ro f f commands in tables

t roff commands can be interspersed with table data to provide further refinement and
definition of the table output.

An input line beginning with a dot and followed by anything but a number is
assumed to be a command to t roff and is passed through unchanged, retaining its
position in the table. For example, an . sp command can be used within a table to
change the spacing between rows.

Point size and font changes may also be made within the table data. t roff

commands (such as \ f I, \ s + 2 , and so forth) entered within the table override tb 1

column-formatting instructions.

Setting up text blocks for multiline entries

In order to include a block of text as a table entry, precede it by tab and T { . Enter text on
a new line, and terminate it with "T { " -for example,

previous textA IT {
block of

text
T }

where A I is a tab character or other character defined as a tab character in the global
specification of the table. The begin delimiter (T {) must be followed by a new line, and
the end delimiter (T }) must begin a new line; however, additional columns of data may

Refining formats 7-13

follow after a tab on the same line. Text is pulled out from the table, processed separately
by the formatter, and replaced in the table as a solid block.

+ Note Limits in the t roff program will be exceeded if 30 or more text blocks are
used in a table. This produces diagnostic messages such as "too many

st ring/macro name s" or "too many numbe r registers . " +

If no line length is specified in the block of text or in the table format, the default is
used:

l ¥ c/ (n + l)

where l is the current line length, c is the number of table columns spanned by the text,
and n is the total number of columns in the table.

Other parameters such as point size or font used in formatting the text block are

• those defined for your whole document (including the effect of the . TS macro)

• any table format specifications of size, spacing, font, and column keyletters

• t roff commands within the text block itself (commands within the table data but
not within the text block do not affect that block)

Drawing lines

In addition to specifying lines using the keyletter system, tbl also permits line
specification within the data section.

Drawing full-width horizontal lines

If an input line contains only an underscore character (_) or equal sign (=) on a line by
itself, a single or double line is drawn that extends the full width of the table, for
example,

7-14 Chapter 7 tbl Tables

. TS

global options

column fomzatting instructions .

data

data

. TE

Drawing single-column-width lines

If an individual table entry contains an underscore character U or equal sign (=), a

single or double line is drawn that extends the full width of the column. Such lines are

extended to meet horizontal or vertical lines adjoining this column.

To obtain these characters (_ and =) explicitly in a column, they should be preceded

by a \ & or followed by a space before the usual tab or newline character.

An input table entry that contains only the string _ is assumed to be a single line as
wide as the text in the column. It differs from the above single-column line in that it is not

extended to meet adjoining lines.

Repeating characters

An input table entry containing only the string \RX, where x is any character, is replaced

by repetitions of that character as wide as the data in the column. This sequence of

characters is not extended to meet adjoining columns.

Using vertical spanning

An input table entry containing only the character string \ A indicates that the table entry

immediately above spans downward over this row. It is equivalent to the keyletter ' A ' .

Refining fonnats 7-15

Producing multipage tables with
repeated headings

You can print tables on more than one page with tb 1, and if you use the rnrn and rns macros,

you can produce multi page tables with repeated headings. Begin your table with this macro:

. TS H

After you enter your heading text, input the macro . TH. Text that precedes the . TH is
placed at the top of each page of the table. The remaining lines of the table are placed on
additional pages as required, for example,

. TS H

global options ;
column formatting instructions .
heading text
. TH

data
. TE

If you use the rnrn macro package, the . TH macro can take the argument N. This

causes the table header to be printed only on the first line on a page. This option is used

when it is necessary to build long tables from smaller . T s H 1 . TE segments, for

example,

. TS H

global options
column formatting instructions .
heading text
. TH

data
. TE

. TS H

global options
column formatting instructions .
heading text
. TH N

data
. TE

7-16 Chapter 7 tbl Tables

+ Note This is not a feature of tb1 but of mm and can be used only with the mm macro

package. •

Although any number of lines may be present in a table, only the first 200 lines are

used in setting up the table. A multipage table may be arranged as several single-page
tables if this proves to be a problem.

Adding new tbl format instructions in the text

The table continue command (. T &) resets column parameters. It is used to specify tables
with groups of rows containing identical formats. Each group is different, but within a

group the format is the same.
Table specifications are split into groups (separated by . T &), and each set of

instructions specifies the format of each group. (See Figure 7-5.)
The . T & command is recognized only within the first 200 lines of a table and does

not change global options, the number of columns, the spacing between columns, or the

selection of equal-width columns.

An example of such table input is

. TS

box expand;

c s s

1 1 1 .

data

. T&

1 s s

c c c .

data

. T&

1 1 1 .

data

. TE

Adding new tbl format instructions in the text 7-17

Using this procedure, each data line can be located close to its corresponding format
line.

tbl restrictions

Input to tbl is subject to the following restrictions:

• The tbl program accepts up to 35 columns; the actual number that can be processed

may be smaller depending on the availability of t roff number registers.

• The keyletters n and a may not be used in the same column.

• Computation of column width is restricted to the first 200 lines of data.

• Table continue commands (. T &) apply to only the first 200 lines of a table.

• Staggered column entries and multipage tables do not work with the global option

allbox.

• When calculating column widths, all entries are assumed to be in the font and point

size in use when the . TS request was encountered. However, font and point size

specifications can be changed within the data section (as in the entry \s+3data\ s 0).

• When processing a file that contains tables and equations, tbl should always be

called before eqn.

• Number register names used by tbl must not be used within tables. These include

two-digit numbers from 31 to 99 and strings of the form 4X, sx, #X, X+, x 1 , Ax, and

x-, where x is any lowercase letter. The names :If:# , #-, and * A should also be

avoided. (When assigning eqn delimiters in a table, the symbols * * must never be
used.)

• Multipage tables should not be boxed.

• No more than 30 text blocks can be used in a table. This number may be smaller if the
individual text blocks are long.

• Table width is defined in number register TW before the . TE macro is invoked and

may be used to expand that macro.

7-18 Chapter 7 tbl Tables

Examples of tbl input and output

Figures 7-1 through 7-10 are included to show tbl input and output information and to

illustrate the basic concepts of the tbl program. Although each figure has a title naming

certain options or features, other uses of tbl can be learned from them as well. For

instance, Figure 7-5 shows the use of additional command lines and also specifies bold

type print in the format area. Studying these examples will help you learn how to use the

tbl program much more easily than by simply reading the written explanations.

Input:

. TS

expand box center tab (:)

c s

1 I 1 .
Menu

Monday : F ish

Tue sday : Tostada

Wednesday : Tuna salad

Thursday : Spaghett i

Friday : Chicken

. TE

Output:

Monday
Tuesday
Wednesday
Thursday
Friday

Menu

Figure 7-1 Table using the expand option

Fish
Tostada
Tuna Salad
Spaghetti
Chicken

Examples of tbl input and output 7-19

Input:

. TS

allbox center tab (:)

c s s

c c c

n n n .

P aradox common stock

Year : P rice : Dividend

1 9 7 1 : 4 1 - 5 4 : $2 . 6 0

2 : 4 1- 5 4 : 2 . 7 0

3 : 4 7 -5 5 : 2 . 8 7

4 : 4 0 -53 : 3 . 2 4

5 : 4 5-5 2 : 3 . 4 0

6 : 5 1- 5 9 : . 9 5 *

. TE

. ce

* (first quarter only)

Output:

Paradox common stock
Year Price Dividend

1 97 1 41-54 $2.60

2 41-54 2.70
3 46-55 2.87

4 40-53 3.24

5 45-52 3.40

6 5 1 -59 .95*
* (first quarter only)

Figure 7-2 Table using the allbox and center options

7-20 Chapter 7 tbl Tables

Input:
. TS

center box t ab (:) ;

cB s s

c i c i ci

l I l I n .

Ma j o r New York bridges

Bridge : De s igner : Length

Brooklyn : J . A . Roebl ing : 1 5 9 5

Williarnsburg : L . L . Buck : 1 6 0 0

: : 1 3 8 0

Triborough : O . H . Ammann :

: : 3 8 3

Bronx White stone : O . H . Arnrnann : 2 3 0 0

Throgs Neck : O . H . Arnrnann : 1 8 0 0

. TE

Output:

Major New York bridges
Bridge Designer Length

Brooklyn J .A. Roebling 1 595
Williamsburg L.L. Buck 1 600

1 380
Triborough O.H. Ammann

383
Bronx Whitestone O.H. Ammann 2300
Throgs Neck O.H. Ammann 1 800

Figure 7-3 Table using the vertical bar keyletter feature

Examples of tbl input and output 7-21

Input:
. TS

center doublebox tab (:)

L L L

L L

L L I LB

L L

L L L .
January : February : March

Apri l : May

June : July : MONTHS

August : September

October : Novernber : December

. TE

Output:

January
April
June
August
October

February March
May
July I MONTHS
September �------t
November December

Figure 7-4 Table using horizontal lines in place of keyletters

7-22 Chapter 7 tbl Tables

Input:

o TS

center box tab (:) ;

c fB s s s o

Compos it ion of foods

o T&

c I c s s

c I c s s

c I c I c I c o

Food : Percent by weight

\ " :

\ " : P rote in : Fat : Carbo

\ " : \ " : \ " : hydrate

o T &

1 i n I n I n o

Hal ibut : l 8 o 4 : 5 o 2 : o o o

Lima beans : 7 o 5 : o 8 : 2 2 o 0

Mushrooms : 3 o 5 : o 4 : 6 o 0

o TE

Output:

Composition of foods

Percent by weight

Food
Protein Fat

Carbo-
hydrate

Halibut 1 8.4 5.2 . . .
Lima beans 7.5 .8 22.0

Mushrooms 3.5 .4 6.0

Figure 7-5 Table using additional command lines

Examples of tbl input and output 7-23

Input:

. TS

center allbox tab (:)

cfi s s

c lw (l i) c lw (1 . 3 i) c lw (1 . 3 i)

1 1 1 .

New York area rocks

Era : Format ion : Age (years)

P recambrian : Reading : >l billion

P aleoz oic : Manhattan : 4 0 0 million

Mesozoic : T {

Newark Bas in, incl . Lockatong

T } : 2 0 0 mil lion

Cenozoic : Coastal P lain : T {

On Long I s land 3 0 , 0 0 0 years ;

cretaceous sediment s redeposited

by recent glaciat ion

T }

. TE

Output:

New York area rocks
Era Formation Age (years)

Precambrian Reading > 1 bil l ion
Paleozoic Manhattan
Mesozoic Newark Basin, incl .

Lockatong

Cenozoic Coastal Plain

Figure 7�6 Table using text blocks

7-24 Chapter 7 tbl Tables

400 millior

200 mill ion

On Long Island 30,000
years; cretacious
sediments redeposited
by recent glaciation

Input:

. TS

center delim $ $ tab (:) box

cp1 2b I c I c

1 I c I c .

1 : $ rho $: $ s igma $

$ omega sub 1 $: $ i over 2 $: $ x sub i $

$ pi sub 2 $: $ i over -2 $: 0

$ theta sup 1 = omega sub 3 $: $ i over 2 $: $ rho $

$ lambda sub 2 : 0 : $ x + y ove r 2 $

. TE

Output:

1 p cr
ro. i X; 2

1t2 i 0 =2
91=001 i p 2

/J 0 X�

Figure 7-7 Table using eqn delimiters

Examples of tbl input and output 7-25

Input:

. TS

center tab (#) delirn $ $

c c c I c .

$P $ # Q # R # $P - cap - wig Q - cup - R) $

T#T#T#T

T#T#F#F

T#F#T#T

T#F#F#T

F#T#T#F

. TE

Output:

p Q

T T

T T

T F

T F

F T

R P fl (-Q u R)

T T

F F

T T

F T

T F

Figure 7-8 Table using horizontal lines in place of data

7-26 Chapter 7 tbl Tables

Input:

. TS

center tab (:)
1 c c c 1
1 c c c 1
1 c I c I c I 1
1 c c c 1
1 c c c 1
1 c c c 1
1 c I c I c I 1
1 c c c 1
: \ (da : : \ (da

.

: lex : : yacc :

.
: \ (da : : \ (da

.

Input \ (-> : yylex : \ (->yyparse : \ (-> Output

.

. TE

Output:

lex yacc

Input ---7 1 yylex ---7 yyparse I ---7 Output

Figure 7-9 Table showing the versatility of the tbl program

Examples of tbl input and output 7-27

Input:

. TS

cent e r box tab (:)
cB cB

cfl cf3

Roman : Bo ld : Italic

a a a

b b b

c c c

d d d

e e e

. TE

Output:

Roman Bold Italic

a a a

b b b
c c c

d d d

e e e
Figure 7-10 Table showing font changes

7-28 Chapter 7 tbl Tables

cB

cf2 .

8 eqn Equations

What is eqn? I 8-2

Using eqn I 8-2

Specifying equations I 8-12

Entering equations I 8-16

Aligning equations I 8-23

Changing the size and shape of fonts I 8-24

Understanding precedence rules I 8-27

Troubleshooting I 8-28

This chapter shows you how to use eqn. Examples are provided to illustrate its syntax

and rules of grammar. Study these examples, and in a very short time you should be able

to produce typeset-quality mathematical text.

What is eqn?

Using eqn

The eqn program is a mathematical equation-formatting preprocessor for t roff and
nroff. It was designed to be easy to learn and use. Its language has few rules, and even
fewer exceptions, and can be learned very quickly. It interfaces directly with t roff, so
mathematical expressions can be embedded in the running text of a manuscript, and the
entire document can be produced in one process.

Typical mathematical expressions require point size and font changes, positioning,

line drawing, and other functions to print according to mathematical conventions. In the

eqn program these are done automatically; eqn converts mathematical input into

t roff commands, and the resulting output is passed directly to the formatter for further
processing.

eqn needs no special keys to enter even the most complicated equations. Subscripts and

superscripts are printed automatically in the appropriate size and font. Fraction bars are

made the right length and positioned at the correct height. Output may be produced on
either a typesetter, a laser printer, or a terminal with forward and reverse half-line

motions.

Understanding command-line syntax

To produce typeset-quality mathematical text, use the following command:

eqn file I t roff

Any t roff options (such as mm) are located following the t roff formatter part of

the command:

eqn file I t roff -mm

An nroff-compatible version of eqn (neqn(l)) can be used with hard-copy

terminals that have half-line forward and reverse capabilities. The input language is
identical, but some things will not look as good because these terminals do not provide

8-2 Chapter 8 eqn Equations

the same variety of characters, sizes, and fonts. However, the output is usually adequate

for proofreading.

To print equations on one of these devices, use the command

neqn file I nroff

or

neqn fik I nroff -TX

where x is the terminal type being used.

Using eqn with other A/UX preprocessors

When eqn operates on the same file as the other A/UX preprocessors, tbl and pic

(see Chapter 7, "tbl Tables," and Chapter 9, "pic Line Drawings"), pic should be
called first:

pic fik I tbl I eqn I troff

If only eqn and tbl are present, tbl precedes eqn:

tbl file I eqn I t roff

eqn produces a larger expansion of output than tbl, and it is faster and more

efficient to produce the table first and the equation last. The order is optional, however,
unless there are equations within tables, in which case tbl must be called before eqn or

the output will be unreadable.

Using Greek letters and
mathematical symbols

eqn knows the Greek alphabet and most mathematical symbols and mathematical

names. For example, the input

. EQ

s i z e +2

{e sup { i delta t } }

. EN

Using eqn 8-3

produces the output

ef5t

Braces can also occur within braces if necessary. For example, the statement

. EQ

s i z e + 4

{ e sup { i p i sup { rho + 1 } } }

. EN

generates

etnP+l

Each string of characters (delimited by spaces, tildes, carets, or tabs) is compared with
a symbol table. If eqn finds the string contained there, it substitutes the t roff

translation of that string. Digits, parentheses, brackets, punctuation marks, and the

following mathematical words are converted to roman font:

and

arc

cos

det

exp

for

if

Im

l im

ln

log

max

min tan

Re

s in

Other strings are converted to italic font. In the previous example, pi and rho

become their Greek equivalents (1t and r). Parentheses, digits, and operators are also

produced in roman font.
A common error is to type f {pi > without leaving spaces on both sides of the pi.

Without spaces, eqn does not recognize pi as a special word, and it appears as f(pi) in

the output instead of f(1t).

The only way eqn can deduce that some sequence of letters is special is if that

sequence is separated from the letters on either side of it. This can be done by

surrounding a special word by ordinary space, tab, or newline characters. Special words

can also be emphasized by surrounding them with tildes or carets. The following:

. EQ

x-=-2 -pi - int - s in- (-omega-t -)

. EN

8-4 Chapter 8 eqn Equations

is much the same as the previous example, except tildes separate words like s in,

omega, and so forth, and also add an extra space in the output per tilde. The output of
this example is

X = 2 7t J sin (W t)
Tables 8-1 and 8-2 provide a complete list of the mathematical characters recognized

by eqn.

Table 8-1 Standard mathematical characters

>=
<=

! =
+-
->
<-
<<
>>

Input

inf

part ial
hal f
prime
approx
nothing

cdot
t ime s
del

grad

dol lar

I • • • I
sum
int

prod
union
inter

Output

((
))
00

a
lJz

X
A
v
$

, . . . ,

r
n
u
n

Using eqn 8-5

Table 8-2 Greek alphabet

Input Output Input Output

alpha a. ALPHA ALPHA

beta 13 BETA BETA

gamma 'Y GAMMA r
delta 5 DELTA !l .
eps ilon E EP S I LON E

zeta � ZETA ZETA
eta , ETA ETA
theta e THETA e
iot a t IOTA IOTA
kappa K KAPPA KAPPA
lambda A. LAMBDA A
mu J.L MU MU
nu v NO NU
xi � XI
omicron 0 OMICRON OMICRON
pi 7t P I n
rho p RHO RHO
s igma a S I GMA .'E
tau 't TAU TAU
ups i lon u UP S I LON y
phi q, PHI <I>
chi X CHI CHI
psi "' P S I '¥
omega (l) OMEGA n

As shown in Table 8-2, several uppercase Greek letters are not provided in the eqn

package. These uppercase Greek letters may be produced using t ro f f codes. See the

reference tables in Chapter 3, "nroff / t roff Formatters."

8-6 Chapter 8 eqn Equations

-�

Using additional symbols

Four-character t roff names can also be used to specify any characters eqn does not
recognize, for example, \ (pl for the + sign and \ (mi for the - sign. (See Chapter 3,
"nrof f /troff Formatters," for a complete list of t roff character codes.)

Additionally, the ftle /usr /pub/ eqnchar contains nroff and t roff definitions
of several more mathematical symbols. (See Table 8-3.) These definitions must be

enclosed within eqn delimiters in order to be processed correctly.

Table 8-3 Additional character set

Input Output

c ircle 0

ciplus ffi
cit imes ®
3quarter 3f4
quarte r 1/4
<-> H
<=> (::::)
=del =

hbar 1i
ppd �
prop oc

ang

angst rom A
square D
blot •
bullet •

empty 0
thf . .
-wig :::
>wig > "'

Input

3dot

incl

langle

rangle

member

nomen

oppA

oppE

cup

cap

subset

! subset

sup set

! supset

bigstar

star

degree

wig

=wig

<wig

Output

t:
(
)
E
e
'\/
3

*
*
0

< "'

Using eqn 8-7

For users who are experienced with t roff motion commands and string definitions,

almost any mathematical character can be defined. Studying the definitions contained in

usr /pub/eqnchar will give you a good idea of how this is done (see eqnchar(5) in

A!UX Programmer's Reference).

+ Note When you are making your own character definitions, it is easier if you use a

line gauge from a graphics supply store to gauge the appropriate size changes and
vertical and horizontal t roff motions.

Usmg /usr/pub/eqnchar

To process a document containing the extended mathematical set
(/usr /pub/ eqnchar), you must include this file in your command:

eqn /usr/pub /eqnchar fik I t roff

Or, if you have also included tables in your text, you must include this file:

tbl /usr/pub /eqnchar fik I eqn I t roff

You may substitute neqn and/ or n ro f f in both of these commands if your output

device requires it.

Using command delimiters

Mathematical expressions are entered by beginning and ending each equation with the
delimiters . EQ and . EN as follows:

. EQ

equation-specifications

. EN

Using displayed equations

A displayed equation is printed as a block, preceded and followed by half a vertical space

(one blank line). It is specified with the mm display macro

8-8 Chapter 8 eqn Equations

. DS

. EQ

equation-specifications

. EN

. DE

By default, a displayed equation using mrn is left-adjusted. However, placement
options (centered, indented, or right) that override these defaults are provided. (See
Chapter 4, "mrn Macros," for a full discussion of the display macros.)

For example, when using mm, the input

. DS I

. EQ

x = f (y ove r 2) + y over 2

. EN

. DE

produces an indented equation

x=fCr)+r 2 2

A centered equation can be produced with the following input:

. D S C

. EQ

x sub i

. EN

. DE

y sub i

The resulting equation will be centered on the page:

Xi = Yi

If you are not using a macro package to format your document, you can still

manipulate the placement of equations within text. To obtain a centered equation in a

document without using ms or mrn, enter the following:

. ce

. EQ

x sub i

. EN

y sub i

Using eqn 8-9

Using inline equations

An inline equation is printed within the text of your document. Like a displayed equation,
it must be enclosed in delimiters, but instead of the . EQ 1 . EN sequence, you define a

character to be the delimiter.

The most common character chosen to delimit inline equations is the dollar sign ($), �

which is defined at the beginning of the text file by entering the following:

. EQ

del im $ $

. EN

These characters are then recognized by eqn in the subsequent text as delimiters and
any text between them will be treated as an equation. For example, the input

Thi s is an example of an inline equat ion

$ x sub x + y = z $ us ing del imiters .

would send this as output:

This is an example of an inline

equation x +y=z using delimiters.

Producing something like\- ray is easy using the inline equation

$ gamma $ - ray

eqn will try to keep the text between the delimiters on one line, but if the equation is
very long, t roff will break it based on the spacing of characters, not mathematical

logic. This can produce awkward and inaccurate spacing, but you can prevent this by

dividing the inline equation into sections:

$ x + y = $ $ (c sub d) $ $ + pi $

To tum off the delimiters so the selected character can be used as text, enter the

following into your file:

. EQ

del im off

. EN

Thereafter, eqn will no longer recognize the delimiter symbol.

8-10 Chapter 8 eqn Equations

The following should be observed when using the inline equation format:

• Do not use braces, tildes, carets, or double quotation marks as delimiters, as these
have special significance to the . EQ and . EN macros.

• t roff font changes must be closed before inline equations are encountered.

Defining equations

The eqn definition facility permits a user to define an equation or part of an equation:
define name ' . . . '

Henceforth, any occurrence of name within an eqn expression will be expanded into

whatever is inside the quotation marks.

Keywords like sup, sub, or over, or any eqn construction, may be included in a

definition. For example, if the sequence

. EQ

x sub i sub 1 + y sub i sub 1

. EN

appears repeatedly throughout a document, you can save typing time by defining it:

. EQ

de fine xy ' x sub i sub 1 + y sub i sub 1 '

. EN

This definition makes xy a shorthand for whatever characters occur between the

single quotation marks in the definition. (Any character can be used instead of the

quotation mark to mark the beginning and end of the definition, as long as it does not
appear inside the definition.) After defining xy, the input

. EQ

" The de finit ion xy now expands to read" - xy

. EN

produces

The definition xy now expands to read x; 1 + y; 1

Using eqn 8-11

Although definitions can use previous definitions, as in

. EQ

define xi 1 x sub i 1
de fine xil 1 xi sub 1 1
. EN

an item cannot be defined in terms of itself, for instance,

de fine X 1 roman X 1

Since x is now defined in terms of itself, problems will result. However, if this

expression is used, the quotation marks protect the second x:

define X 1 roman "X" 1
eqn keywords can be redefined with define. For example, you can specify "!" to

mean ove r with the following statement:

. EQ

de fine I 1 over 1
. EN

Symbols can be defined differently in neqn and eqn with the operators nde fine

and tdefine. A definition made with nde fine takes effect only when running neqn;

when t de fine is used, the definition applies only to eqn. (Names defined with the

de fine facility apply .to both eqn and neqn.)

Specifying equations

An equation is specified by numeric items and mathematical operators. Each of these

components must be separated from the others according to specific item separation

conventions. For example, in the expression

{52
which was produced with the notation

sqrt 5 sup 2

sqrt and sup serve as operators, and the spaces between these keywords and the

arguments are item separators.

8-12 Chapter S eqn Equations

How spaces are interpreted during input

Spaces and newline characters are used by eqn to separate pieces of input; they do not

create space in the output. For example, the input

. EQ

X

. EN

y

+ z + 1

produces the output

X=y+Z+l

Each distinct entity within eqn must be delimited by blank spaces. If items are not

separated properly, eqn will interpret the expression incorrectly.

Using special characters to force output spacing

Varying amounts of blank space can be forced into the output by several characters:

• A tilde (-) gives a space equal to the normal word spacing in text

• A caret (A) gives a half-space.

• A tab character spaces to the next tab stop (tab stops must be set by t roff

commands).

Tildes, carets, and tabs also serve to delimit pieces of input. In these cases, blank

spaces are optional. For example, the input

. EQ

X "' = "' y "' + "' Z

. EN

produces the output

X = y + Z

Specifying equations 8-13

Using quotation marks

Enclosing a string of characters in double quotation marks (" . . . ") prevents eqn
from interpreting any special meaning the string might ordinarily have.

For example, to produce the expression

25 sq"it
enter the following:

. EQ

" sqrt " 2 5 ove r pi

. EN

Omitting the quotation marks results in

{25
1t

Quotation marks are used to force the printing of braces and certain eqn keywords

that wouldn't normally be printed. For example, the input

. EQ

" { alpha is the name for " -alpha " } "

. EN

prints

{ alpha is the name for a,}
The " " construction is often used as a placeholder (or null item) when eqn requires

something to satisfy its rules of grammar but when nothing is actually wanted in the

output. For instance, eqn does not accept unmatched brackets, braces, or parentheses.

However, the input

. EQ

left " "

x ove r y

right }

. EN

permits you to obtain only a right brace:

�}

8-14 ChapterS eqn Equations

Combining items with braces

Braces ({ }) are used to keep multiple objects together in unambiguous groups. eqn

interprets the items within a set of braces before applying the next mathematical function.

The end of a subscript or superscript is marked by a space, tilde, caret, or tab. If the

subscript or superscript specification requires spaces within it, braces are used to mark
the beginning and end. For example, the input

. EQ

s i ze +2

{ e sup { i de lta t } }

. EN

produces the output

ef8t

Braces can also occur within braces if necessary. For example, the statement

. EQ

s i ze + 4

{ e sup { i pi sup { rho + 1 } } }

. EN

generates
etnf>+l

A general rule is that a complicated string enclosed in braces can be used in place of

a single character (such as x). The eqn program administers the appropriate formatting

commands. In all cases, complete pairs of braces must be used (unless the null item
specification is employed). Omitting one or adding an extra one produces an error.

Using equation labels

An equation label is specified as an argument to the equation start delimiter (. EQ):

. EQ l . Sc

a + b + c over abc = sqrt 2 5

. EN

Specifying equations 8-15

The equation label is printed in the right margin:

a+ b+ _£_b =-fiS a c

Entering equations

The eqn program uses operators to adjust the equations as you specify, thus creating
subscripts and superscripts, fractions, square roots, and diacritical marks, for example.

Subscripts and superscripts

Subscripts and superscripts are specified with the operators sub and sup. The words

sub and sup must be surrounded by spaces. For example, specification

. EQ

x sup 2 + y sub k

. EN

produces the following expression:

x 2 +Yk

The eqn program makes the necessary point size changes and vertical motion

adjustments and automatically returns to the original base line. Either a space or tilde

marks the end of a subscript or superscript.

Multiple levels of subscripts or superscripts are permitted, such as subscripted

subscripts and superscripted superscripts. If the subscript follows the superscript, the

items are grouped to the right, as in the expression

xY z

produced with the input

. EQ

s i ze +2

{ x sup y sub z }

. EN

8-16 ChapterS eqn - Equations

However, if the subscript precedes the superscript

. EQ

x sub z sup y

. EN

the items are printed one above the other.

x;

Fractions

Fractions are specified with the operator over. For example, the input

. EQ

a+b over c+d+e = 1

. EN

produces

a+b
c+d+e =l

The division line is positioned and made the correct length automatically.

When both a fraction and a superscript are in the same expression, eqn produces the

superscript first. For example, the specification

. EQ

-b sup 2 over pi

. EN

produces

-b2
1t

Specifying equations 8-17

Square roots

The square root symbol is produced by the operator sqrt. For example, the input

. EQ

sqrt 2 5

. EN

draws the simple expression

With the more complicated

. EQ

x = { -b +- sqrt { b sup 2 -4ac } } ove r 2a

. EN

eqn produces

-b� x= 2a

Items with limits

Summations, integrals, and similar constructions are specified with the operators from

and to.

Either from or t o can be omitted, but if both are present, they must occur in that

order. For example, the input

. EQ

sum from i=O to { i = inf } x sup i

. EN

produces
(=co

Lxt
f=O

The second item (i = in f) is enclosed in braces because it contains spaces. Braces
are not necessary for the lower part (i=O), however, because it contains no spaces.

Other useful keywords that can replace the sum in the above example are

8-18 Chapter B eqn Equations

int

inter

lim

max

min

prod

union

Because characters before the from can be anything, the from-t o construction can

often be used in unexpected ways. The input

. EQ

lim from { n -> inf } x sub n =0

. EN

produces the output

lim �=0

Diacritical marks

Diacritical marks are produced with the following keywords:

x dot x
x dotdot x
x hat 1\ X
X t i lde x
x vee x
x dyad Xt
x bar i
x under �

An example of an expression using diacritical marks is

. EQ

x dot unde r + x hat + y dotdot

+ X hat + Y dotdot = z + Z bar

. EN

which will send as output

:!+x+y+X+Y=z+Z

Specifying equations 8-19

Oversized brackets

To produce large brackets, braces, parentheses, vertical bars, floors, and ceilings that
surround information that spans more than one line, use the keywords left and
right :

. EQ

left { a over b + 1 right

left

+ left

. EN

c over d right

e right

This produces

and the input

. EQ

left floor x over y - - right floor

<= le ft ce i ling a ove r b - - right ce i ling

. EN

produces

The resulting brackets are made large enough to cover whatever they enclose.

A right keyword cannot exist without a corresponding 1 e ft . If the expression

requires that the left be omitted, use the paired double quotation mark null construction:

. EQ

left " " . . . right)

. EN

The left " " means a le ft "nothing," which satisfies the rules without hurting the
output.

8-20 Chapter B eqn Equations

Piling objects

Large braces, brackets, parentheses, and vertical bars are often used with another facility

that makes vertical piles of objects. It is specified by the operator pi 1 e . Elements of the

pile (there can be any number) are centered one above another, at the right height for

most purposes. The keyword above is used to separate the components; braces must

surround the entire list. Elements of a pile can be as complicated as needed, even

containing nested piles.

Three other forms of pile exist:

• lpi le makes a left-adjusted pile.

• rpi le makes a right-adjusted pile.

• cpile makes a centered pile, just like pile.

Vertical spacing between pieces is somewhat larger for lpile, rpile, and cpile than

it is for ordinary piles. For example, to get { 1 if X>O
sign(x)= 0 if x=O

-1 if x<O

enter

. EQ

s ign (x } -==- left " { "

rpi le { 1 above 0 above - 1 } -

lpile { i f above i f above i f } -

lpile { x>O above x=O above x< O }

. EN

The left " { " construction makes a left brace large enough to enclose the rpi le

{ . . . } , which is a right-adjusted pile. The lpile specifications left-adjust the remaining

components.

Specifying equations 8-21

Matrixes

Matrixes are produced easily with eqn. For example, to specify an array such as

Xi x2
Yi r
the following statement is entered:

. EQ

mat rix

ccol x sub i above y sub i

ccol x sup 2 above y sup 2

. EN

This produces a matrix with two centered columns. Elements of the columns are then

listed as they are for a pile: each element is separated by the word above. The lcol or

reel keyword also can be used to left-adjust or right-adjust columns. Each column can
be separately adjusted, and there can be as many columns as desired.

The reason for using a matrix instead of two adjacent piles is if the elements of the

piles are not all the same height they will not line up properly. A matrix forces them to

line up because it looks at the entire structure before deciding what spacing to use.

Each column must have the same number of elements. To force each column to have

the same number of elements, use the keyword nothing, which will give the

construction the proper number of elements:

. EQ

mat rix {

ccol x above y sub 1 above z sup 2

ccol { z above nothing above z sub 1

. EN

produces

x z

Yl
z2 ZJ

8-22 ChapterS eqn Equations

Aligning equations

You can align a series of equations at some vertical position (such as an equal sign) with
the operators mark and l ineup.

The word mark can appear only once in an equation. This designates the horizontal
position for all subsequent input containing the keyword lineup. Any number of
equations may be lined up following a single occurrence of mark. The place where
l ineup appears is aligned with the position of the previous mark. For example, the

input

. EQ

x+y mark = z

. EN

. EQ

x l ineup 1

. EN

produces

x+y=z

X=l

mark does not look ahead and anticipate the requirements of the subsequent

lineup:

. EQ

x mark 1

. EN

. EQ

x+y lineup = z

. EN

Aligning equations 8-23

This specification will not work because there isn't enough room for the x+y part
after the mark remembers where the x is. In order to correctly align the equations, the
following input is necessary:

EQ

x = mark 1

. EN

. EQ

x + y = l ineup z

. EN

This produces

.x=l
X+)l=Z

+ Note The mark and l ineup operations do not work with centered equations. •

Controlling local motions

Although the eqn formatter tries to position things correctly on the paper, it occasionally
needs fine-tuning.

The operators back n and fwd n are used to make small horizontal moves, where n
is how far to move in hundreths of an em (about the width of the letter "m"). For
example, back s o moves output back about half the width of an "m."

Similarly, output can be moved up or down with the up n and down n operators.

Changing the size and shape of fonts

By default, equations are set in 10-point type with standard mathematical font
conventions, but there are times when default assumptions are not desired. Thus, point
size and font change commands are provided.

8-24 Chapter 8 eqn Equations

Making local changes

Local point size changes are made with s i ze n, and local font changes are made with
the roman, italic, bold, and fat operators. These changes affect only the string that
immediately follows; then font or point size reverts automatically to its previous settings.
For example, the input

. EQ

bold x y

. EN

produces

xy

Braces are used if something more complicated than a single character is to be
affected. The input

. EQ

bold { x y } z

. EN

produces

xyz

If fonts other than roman, italic, and bold are desired, use the font x statement
(where x is a one-character t roff font name or number).

+ Note Since eqn is programmed for roman, italic, and bold fonts, other fonts may not
give as good an appearance. •

The fat operation takes the current font and widens it by overstriking; for instance,

. EQ

A = fat { pi r sup 2 }

. EN .

produces

A=1tr2

Changing the size and shape of fonts 8-25

Legal point size numbers that may follow s i ze are

6 7 8 9 1 0 1 1 1 2 1 4

1 6 1 8 2 0 2 2 2 4 2 8 3 6

The size can also be changed by a given amount:

s i z e +2

This makes the size two points larger. (See the example in "Combining Items With
Braces" earlier in this chapter.)

Making global changes

If an entire document is to be in a nonstandard point size or font, it is a nuisance to write
out a point size and font change for each equation. Accordingly, you can globally set
point size or font changes, which thereafter affect all equations. The following statements
would appear at the beginning of any equation to set the size to 16 and the font to
roman:

. EQ

gs i ze 1 6

gfont R

. EN

Any of the t roff font names may be used in place of R. The value of gs i ze can
also be made a relative change with + or - .

Generally, gsize and gfont appear at the beginning of a document, but they can
also appear within a document and may be changed as often as needed.

For example, in a footnote in which the size of an equation should match the size of
the footnote text (footnote text is usually two points smaller than the main text), global
size should be reset at the end of the footnote.

8-26 Chapter8 eqn Equations

Understanding precedence rules

Each eqn operator is associated with a precedence; operations with higher precedence
are performed before those with a lower precedence. For example, a superscript is
defined as having a higher precedence than a fraction:

. EQ

x sup y ove r z

. EN

In the following example, the eqn operators are listed in order of increasing
precedence. Operators on the same line have equal precedence.

from to

over sqrt

sup sub

s i ze font roman italic

bold fat

up down back fwd

left right

dot dotdot hat t ilde bar under vee dyad

If an expression contains operators of equal precedence, the order in which these
operators associate decides which operation is performed first. If the operators associate
to the left, the leftmost operation precedes the rightmost operation. For example, sqrt

and ove r have equal precedence. In the expression

{25
1t

the sqrt is performed before the ove r.

The following operations associate to the left:

ove r sqrt left right

All others group to the right.

Understanding precedence rules 8-27

You can force a particular analysis by placing braces around expressions;
for example,

. EQ

x sub 2 ove r y sub 3 + z sub 4

. EN

produces

X2 y;+z4

Changing the precedence with braces

. EQ

x sub 2 over { y sub 3 + z sub 4 }

. EN

results in a different equation:

x2
J3+Z4

Troubleshooting

You can detect missing delimiters and other equation errors with program aids. Using the
troubleshooting devices described here should be considered the initial step in formatting
a document.

Error conditions

An internal buffer in the t ro f f formatter limits the size of inline equations. If a word

ove rflow message is received, the limit has been exceeded. One solution is to break
the equation into smaller units with the inline delimiters. Printing the equation in a
display can also solve the problem. The "line overflow" message indicates that an even
larger buffer has been exceeded. In this case, the equation must be broken into two
separate pieces, marking each with . EQ/ . EN delimiters.

8-28 ChapterB eqn Equations

+ Note eqn does not warn you about equations that are too long for one line. •

If a mistake is made in an equation, such as omitting a brace, having one too many
braces, or having an operator with a missing argument, eqn produces the following
message:

syntax e rror between l ine s X and y, file Z

where x and yare approximately the lines between which the trouble occurred, and z is
the name of the file in question. There are also self-explanatory messages that arise when
you have omitted a quotation mark or you run eqn on a nonexistent file. To check a
document before printing, use the command

eqn fiks > / dev/ null

This discards the output but prints the appropriate messages on your terminal screen.

The checkeq program
The checkeq program checks for misplaced or missing delimiters. You run it with the
following command:

checkeq fik

Output from checkeq is written to the standard output or can be redirected to a file
as follows:

checkeq file > output file

Troubleshooting 8-29

9 p i c Line Drawings

What is pic? I 9-2

Using pic I 9-2

Drawing pictures I 9-5

Grouping objects I 9-20

Creating macros I 9-28

Understanding mathematical functions I 9-29

Understanding loops and conditional statements I 9-30

Understanding expressions I 9-32

Examples of pic specifications I 9-32

This chapter explains how to use the pic preprocessor to produce simple line drawings.

What is pic?

Using pic

pic is a language for including pictures and diagrams in documents produced with
t ro f f. It is usually used to draw relatively simple pictures, but the language can be used
to describe even very complicated graphics objects.

pic operates as a t roff preprocessor, in the same style as eqn and tbl. Pictures are
marked in the text by enclosing their descriptions between . PS and . PE pairs. The pic

preprocessor translates these descriptions into the language understood by t roff.

Understanding p i c command syntax

pic is usually run with the command line

pic fik I t roff -rnrn

If equations and tables also are present, you should run pic before eqn and tbl:

pic fik I tbl I eqn I t roff -rnrn

Understanding the t ro f f interface

Within pic specifications (. PS and . PE pairs), an input line that begins with a period is
assumed to be a t roff command and is copied to the output for further processing.
Point size and font changes can be made within a pic specification:

. P S

. ps 2 4

ci rcle radius . 4 i at 0 , 0

. ps 1 2

circle radius . 2 i at 0 , 0

. ps 8

9-2 Chapter 9 pic Line Drawings

circle radius . l i at 0 , 0

. ps 6

circle radius . 0 5 i at 0 , 0

. ps 1 0

. PE

This produces the diagram

But trying to add blank lines or changing the vertical spacing within a picture interferes
with the way pic draws objects.

Point sizes, fonts, and local motions can be manipulated within quoted strings (" . . . ")
provided that whatever changes are made are reversed before exiting from the string. For
example, to print text in italic font, point size 12, use

ellipse " \ s 1 2 \ f2Hello ! \ fl \ s 0 "

This produces

Defining the picture format

A picture specification begins with a picture start command (. P s) and concludes with a
picture end command (. PE). The . P S and . PE are used by t roff as command
delimiters. The general format of pic input is

• P s optional-width

picture-specifications

. PE

Using pic 9-3

If optional-width is present, the picture is made that many inches wide, regardless of
any dimensions used internally. The height is scaled in the same proportion.

If the . P s line is written

• PS < file

the contents of file are inserted in place of the picture start command (whether or not the
file contains . PS or . PE).

pic copies the . PS and . PE lines from input to output intact, except that it adds two
arguments to . P s:

. P S h W

h and w are the picture height and width in units.
The definitions of the . P s and . P E macros do not automatically center pictures.

However, if you include the following t ro f f instructions at the beginning of your
document, your picture will be centered and offset from surrounding text .

. de P S

. i f t . sp . 3

. in (\ \ n (. lu- \ \ $2u) / 2u

. ne \ \ $ 1u

. de PE

. in

. i f t . sp • 6

If . PF is used instead of the picture end command (. PE), the position after printing
the picture is restored to what it was before the picture started (F is for "flyback"). Text
can be overprinted on pictures, or several pictures can be superimposed.

Specifications must be separated by newlines or semicolons; a long element may be
continued by ending the line with a backslash (\). Comments are introduced by a * and
terminated by a newline.

9-4 Chapter 9 pic Line Drawings

If an error is made in the picture specification, pic generates an error message. For
example, the invalid input

box arrow box

will print the message

pic : syntax e rror near line 5 , file -

context i s

box arrow A box

The caret (A) marks the place where the error is encountered; it typically follows the
word in error.

Drawing pictures

Using primitive objects in pic, you can draw simple as well as complex pictures, change
their sizes, move them in a variety of ways, add text, and group them. This section tells
you how.

Drawing primitive objects

The primitive objects provided by pic are boxes, lines, arrows, circles, ellipses, arcs,
splines (arbitrary smooth curves), and text. Most of these are shown graphically in their
default sizes in Figure 9-1 (splines are shown later in this chapter).

Drawing pictures 9-5

line arrow
...

Figure 9-1 pic primitive objects

A move (see "Setting Object Attributes" later in this chapter) also is considered an object;
it goes from one point to another without drawing anything, so it is an invisible object.
The following keywords specify primitive objects:

arc

arrow

box

circle

ellipse

l ine

The specification

o P S

box "BOX "

o PE

produces this simple box:

move

spl ine

Boxes and lines may be dotted or dashed:

. 0 0
.

0 0 · · · · · · · · · · · · · · · · · · -

This picture was produced by

r - - - - - �
I I
1 r - - - ·
I I

box dotted; l ine dotted; move ; box dashed; \

line dashed

9-6 Chapter 9 pic Line Drawings

If there is a number after dotted, the dots will be that far apart. You can also control
the size of the dashes. If there is a length after the word dashed, the dashes will be that
long, and the intervening spaces will be as close as possible to that size. So, for instance,

comes from this specification:

l ine right 3 i dashed

l ine right 3i dashed 0 . 2 5 i

Circles and arcs cannot be dotted or dashed.
A spline is a smooth curve guided by a set of straight lines; it begins and ends at the

same place relative to the straight lines and in between is tangent to the midpoint of each
guiding line. The syntax for a spline is identical to a line drawn along a path (see
"Grouping Objects" later in this chapter):

spline right l i then down . S i left l i \

then right l i

produces

Setting object attributes

Attributes describe the positioning, size, and orientation of the object. When set, they
operate on a single occurrence of an object. The attributes associated with each primitive
object are shown in Table 9-1 .

Drawing pictures 9-7

Table 9-1 Primitive object attributes

Object

arc

Attribute

up, down, left, right ,
height, width, from, to, at,
radius, invis, same, cw, <-,
->, <->, text

box height , width, at, dotted,
dashed, invis, same, text

circle /ellipse radius, diameter, height ,

l ine /arrow

move

spline

width, at , invis, same, text

up, down, left , right ,
height, width, from, to, by ,
then, dotted, dashed, invi s ,
same, <-, ->, <->, t�t

up, down, left, right , to,
by, same, text

up, down, left, right,
height, width, from, to, by,
then, invi s, same, <-, ->,
<->, text

The keyword at places the geometrical center of an object in a specified place.
An object can be made invisible with the keyword invi s ible (or invis) . This is

particularly useful for positioning objects correctly near text.
For lines, splines, and arcs, height and width refer to arrowhead size. The width

of an arrowhead is the distance across its tail; the height is the distance along the shaft.
The arrowheads in this picture are default size:

9-8 Chapter 9 pic Line Drawings

This was produced with the following code:

. P S

box invi s height 3 i wid 4 i

A : circle at 0 , 1 " \ f7 / \f 1 "

B : c ircle at - 1 . 5 , 0 " \ f7bin\ f 1 "

C : circle at - 0 . 5 , 0 " \ f7etc \ f1 "

D : circle at 0 . 5 , 0 " \ f7tmp\ f1 "

E : circle at 1 . 5 , 0 " \ f7usr\ f1 "

F : circle at - 1 , - 1 " \ f7 f 1 \ f 1 "

G : circle at 0 , - 1 " \ f 7 f2 \ f 1 "

arrow from A . s to B . n

arrow from A . s to C . n

arrow from A . s to D . n

arrow from A . s to E . n

arrow from C . s to F . n

arrow from C . s to G . n

. PE

See "Using Blocks" later in this chapter for an explanation of the letters capitalized in
this code.

Drawing pictures 9-9

Dimensions are divided by scale during output. pic works internally in what it
thinks are inches. Setting the variable scale to some value causes all dimensions to be
scaled down by that value; for example,

scale = 2 . 5 4

causes dimensions to be interpreted as centimeters.

Setting object variables

A variable consists of a keyword, which may or may not be followed by a value.
Keywords are used to redefine object dimensions globally.

Missing variables and values are filled in from defaults. Not all variables apply to all
primitives; those that don't are ignored. Primitive object variables are listed in Table 9-2.

Table 9-2 Primitive object variables

Object

arc

arrowhead

box

circle

dash

ellipse

line or
arrow

move

Variable

arcrad

arrowht
arrowwid
arrowhead

boxwid
boxht

circlerad

dash wid

ellipsewid
ellipseht

linewid
lineht

move wid

moveht

Default Description

0.25 in. Arc radius

0.10 in. Arrowhead height
0.05 in. Arrowhead width
2.00 in. Arrowhead style (filled)

0.75 in. Box width
0.50 in. Box height

0.25 in. Circle radius

0.10 in. Width of dashes or dots

0.75 in. Ellipse width
0.50 in. Ellipse height

0.50 in. Line or arrow width
0.50 in. Line or arrow height

0.50 in. Width of horizontal move

0.50 in. Height of vertical move

These may be changed at any time, and the new values will remain in force until
changed again (see the next section, "Changing the Sizes of Objects").

9-10 Chapter 9 pic Line Drawings

Changing the sizes of objects

Figures are normally drawn at a ftxed scale with objects of a standard size. It is possible,
however, to expand a ftgure to ftt a particular width. If the . P s line contains a number,
the drawing is forced to be that many inches wide, with the height scaled
proportionately. For example,

. P S 3 . 5 i

causes the picture to be 3.5 inches wide.
The number given as a width in the . P s line overrides the dimensions given in the

picture; this can be used to force a picture to a particular size even when coordinates
have been given in inches. Experience indicates that the easiest way to get a picture of
the right size is to enter its dimensions in inches, then if necessary add a width to the . P s

line.
You can make any object any size you want. For example, using object attributes for

width and height, the input

box width 3 i height O . l i

draws a long, flat box 3 inches wide and 1/10 inch high:

+ Note This specification changes the width and height of only that particular
occurrence of the object. •

All positions and dimensions are assumed to be in inches; specifying the "i" is
optional. However, if the "i" is present, there should be no spaces between it and the
number it follows.

The default size of an object can be changed by assigning values to the object
variables. So if you want all your boxes to be long and skinny, and relatively close
together, enter

boxwid = O . l i ; boxht = l i

movewid = 0 . 2 i

box ; move ; box ; move ; box

Drawing pictures 9-11

This produces

In all cases, unless an explicit dimension for some object is specified, you will get the
default size. If you want an object to have the same size as the previous one of that kind,
use the keyword s arne. In the set of boxes produced by the specification

down ; box ht 0 . 2 i wid l . S i ; move down 0 . 1 5 i ;

box same ; move same ; box same

the dimensions set by the first box are used several times. Similarly, the amount of
motion for the second move is the same as for the first one.

Adding text to pictures

Text is normally an attribute of some primitive; by default it is placed at the geometric
center of an object. Each line of text is entered as a separate quoted string. Quotation
marks are mandatory, even if the text contains no blanks. Each line is printed in the
current point size and font, centered horizontally, and separated vertically by the current
t roff line spacing value.

9-12 Chapter 9 pic Line Drawings

If there are multiple text items for some primitive, they are centered vertically except
as qualified. Positioning requests apply to each item independently; for example,

. P S

box "this i s " " a box "

. PE

creates a standard box and centers the two pieces of text in it:

this is
a box

Text items can contain t roff commands for size and font changes, local
motions, and so on, but make sure that these are balanced so that the entering state is
restored before exiting from the string.

A text item is a quoted string optionally followed by a positioning request:

" text" center

" text" l j ust

" text" r j ust

" text'' above

" text" be low

The attribute l just positions the left end at the specified point, and r j ust

positions the right end at that position. above and below center the text one half-line
space in the given direction.

Text is most often an attribute -of some other object, but self-standing text can also be
specified:

"this is some text " at 1 , 2 l just

Text is centered on lines and arrows; if there is more than one line of text, the lines
are centered above and below:

Drawing pictures 9-13

...
above

-----1·� OR tepef
below

above below
above f OR tape below

These were produced with the following specifications:

. P S

arrow "below" below; move

arrow " above " above ; move

arrow " on top of" ; move

arrow " above " "below" ; move

arrow " above " " on top of" "below"

. PE

Positioning objects

A position is ultimately an x,y coordinate pair, and you may specify a position in this
way. But a position can be specified in other ways: you may position an object in relation
to a part of some other object with the move and move to commands, or by using a
label embedded in a grouped object. These are discussed in the next section, "Using
Coordinates."

Using coordinates

pic uses a standard Cartesian coordinate system, so any point or object has an x and a y
position. The first object is placed with its start at position 0,0 by default. The x,y position
of a box, circle, or ellipse is its geometrical center; the position of a line or motion is its
beginning; the position of an arc is the center of the corresponding circle.

Position modifiers such as from, to, by, and at are followed by an x,ypair and can
be attached to boxes, circles, lines, motions, and so forth, to specify or modify a position;
for example,

9-14 Chapter 9 pic . Line Drawings

is produced by the input

. P S

box dotted

line dashed to 2 , 0

. PE

You can also use up, down, right , and left with line and move

. P S

box ht 0 . 2 wid 0 . 2 at 0 , 0 " 1 "

move t o 0 . 5 , 0

box " 2 " same

move same

box " 3 " same

. PE

to draw three boxes, like this:

Note the use of same to repeat the previous dimensions instead of reverting to the
default values.

Attributes such as ht and wid and positions like at can be written in any order:

box ht 0 . 2 wid 0 . 2 at 0 , 0

box at 0 , 0 wid 0 . 2 ht 0 . 2

box ht 0 . 2 at 0 , 0 wid 0 . 2

These are equivalent, although the last is harder to read and therefore less desirable.

Drawing pictures 9-15

The from and to attributes are particularly useful with arcs, to specify the endpoints.
For example, these arcs

were produced with the following specifications (respectively):

arc from O . S i , O to O , O . S i

arc from O , O . S i to O . S i , O

If the from attribute is omitted, the arc starts at the current position and goes to the
point indicated by to. The radius can be made large to provide flat arcs:

arc -> cw from 0 , 0 to 2 i , O rad l S i

This produces

Notice that to put an arrowhead on an arc, you can use <-, ->, or <-> as an attribute.

Using comers

To cut down the need for explicit coordinates, most objects have "comers" named by
compass points:

B.n
B.nw---------, B.ne

B.w B.c B.e

B.sw'-----------' B.se
B.s

9-16 Chapter 9 pic Line Drawings

The primary compass points may also be written as . r, . b, . 1 , and . t , for right,

bottom, left, and top. The previous box was produced with these specifications:

. P S 1 . 5

B : box " B . c "

" B . e " at B . e l just

" B . ne " at B . ne l j ust

" B . se " at B . se l j ust

"B . s " at B . s below

"B . n " at B . n above

"B . sw" at B . sw r j u st

"B . w" at B . w r just

"B . nw" at B . nw r just

. PE

Note the use of 1 j ust, r just, above, and below to alter the default positioning
of text, and of a blank with some strings to help space them away from a vertical line.

Lines and arrows have a start, an end, and a center in addition to comers. (Arcs have
only a start, an end, and a center.) There are many ways to indicate the comers of an
object. Besides the compass points, almost any sensible combination of left , right ,

top, bottom, upper, and lower will work. Furthermore, if you don't like the "."
notation, as in

last box . ne

you can instead say

upper right of last box

It is sometimes easiest to position objects by positioning some part of one at some
part of another, for example, the northwest comer of one at the southeast comer of
another. The with attribute in pic permits this kind of positioning; for example,

box ht 0 . 7 5 i wid 0 . 7 5 i

box ht O . S i wid O . S i with . sw a t last box . se

produces

Drawing pictures 9-17

Notice that the corner after with is written . sw.

As another example, consider

ellipse ; el lipse with . nw at last e llipse . se

which produces

Positioning with move
If you want to leave a space at some designated place, use move:

box ; move ; box ; move ; box

This produces

D O D
Positioning with variables

It's generally a bad idea to write everything in absolute coordinates if you are likely to
change things. pic variables let you set parameters for your picture:

a = 0 . 5 ; b = 1

box wid a ht b

ellipse wid a/2 ht 1 . 5 *b

move to Boxl - (a / 2 , b/ 2)

9-18 Chapter 9 pic Line Drawings

Expressions use the standard operators +, - , * , I , and %; pic uses parentheses, < > ,

for grouping.
Probably the most important variables are those that are predefined for controlling

the default sizes of objects. These may be set at any time in any picture and retain their
values until reset.

You can use the height, width, radius, and x and y coordinates of any object or comer
in an expression:

Boxl . x

Boxl . ne . y

Boxl . wid

Boxl . ht

2nd last circle . rad

The x coordinate of Boxl

The y coordinate of the
Northeast corner of Boxl

The width of Boxl

The height of Boxl

The radius of the second-last circle

Any pair of expressions enclosed in parentheses defines a position; furthermore, such
positions can be added or subtracted to yield new positions. If (p b p2) are positions,
then (p1 .x , p2 .y) refers to the point.

Labeling objects

Objects can be labeled or named for future reference, for example,

. P S

Boxl :

box

. . . other stuff ..
. PE

Place names have to begin with uppercase letters to distinguish them from variables,
which begin with lowercase letters. The name refers to the "center" of the object, which is
the geometric center for most objects. For lines and motions, it refers to the beginning
point.

Drawing pictures 9-19

Other combinations also work:

line from Boxl to Box2

move to Boxl up 0 . 1 right 0 . 2

move t o Boxl + 0 . 2 , 0 . 1

l ine to Boxl - 0 . 5 , 0

The reserved name Here may be used to record the current position of some object,
for example,

Boxl : Here

Labels are variables; they can be reset several times in a single picture, so a line of the
form

Boxl : Boxl + l i , l i

is perfectly legal.
You can also refer to previously drawn objects of each type, using the word last.

For example, given the input

box "A" ; circle "B" ; box " C "

last box refers to box C , last circle refers to circle B , and 2nd last box refers to
box A. Numbering of objects can also be done from the beginning, so boxes A and C are
1 st box and 2nd box, respectively.

Grouping objects

Objects are connected in the direction specified by the most recent up, down, left, or
right (either alone or as part of some object), with the entry point of the second object
attached to the exit point of the first. For example,

arrow left ; box ; arrow ; circle ; arrow

produces

9-20 Chapter 9 pic Line Drawings

left indicates connection toward the left. This could also be written as

left ; arrow; box ; arrow; circle ; arrow

Entry and exit points for boxes, circles, and ellipses are on opposite sides and at the
start and end of lines, motions, and arcs.

By default, arcs are drawn 90 degrees counterclockwise from the current position. To
change the direction to clockwise, use this command:

arc cw

For example, the specification

l ine ; arc ; arc cw ; arrow

produces

_j
Lines and arrows are easily drawn by specifying amount of motion and direction.

Accordingly, the words up, down, le ft , and right and an optional distance can be
attached to line , arrow, and move. For example,

. P S

line up l i right 2 i

arrow left 2 i

move left O . l i

line <-> ddown li "he ight "

. PE

draws

Grouping objects 9-21

The notation <-> indicates a two-headed arrow; use -> for a head on the end and
<- for one on the start. Lines and arrows are really the same thing; in fact, arrow is a
synonym for " line -> " .

If you don't put any distance after up, down, and so on, p i c uses the standard
distance:

line up right

l ine down

line down left

l ine up

draws a parallelogram:

If a set of commands is enclosed in braces { . . . } , the current position and direction of
motion when the group is finished will be exactly where they were when entered.
Nothing else is restored.

+ Note There is also a more general way to group objects, using brackets (see "Using
Blocks" later in this chapter). •

Although objects are normally connected left to right, this can be changed. If you
specify a direction as a separate object, subsequent objects will be joined in that
direction. Thus,

down ; ellipse ; arrow ; circle

produces

9-22 Chapter 9 pic Line Drawings

and

left ; box ; arrow ; ellips e ; arrow ; circle

produces

A line may actually be a path; that is, it may consist of segments connected in a
direction like this:

This line was produced by

l ine right l i then down . 5 i left l i \

then right l i

Grouping objects 9-23

The elements of a path, whether for line or spline, are specified as a series of points,
either in absolute terms or by up, down, and so forth. If necessary to disambiguate, the
word then can be used to separate components, as in

l ine right then up then left then up

This produces

and is not the same as

l ine right up left up

which produces

Using blocks

Any sequence of pic statements may be enclosed in brackets [. . .] to form a block, which
is then treated as a single object and manipulated like an ordinary box. For example, the
code

box " 1 "

[box " 2 " ; arrow " 3 " above ; box " 4 "] \

with . n at last box . s - (0 , 0 . 1)

"thing" at last [] . s

produces the following picture:

9-24 Chapter 9 pic Line Drawings

D
2 l th:j 4

Notice that last-type constructs treat blocks as a unit and don't look inside for
objects: last box . s refers to box 1 , not box 2 or 4. You can use last [] , and so
on, just like last box.

Blocks have the same compass comers as boxes (determined by the bounding box).
You can position a block by placing either an absolute coordinate (like 0,0) or an internal
label (like A) at some external point, as in

[• • • ; A : • • • ; • • •] with . A at . . .

Blocks join with other objects at the center of the appropriate side.
Names of variables and places within a block are local to that block, and thus do not

affect variables and places of the same name outside. You can get at the internal place
names with constructs like this:

last [] . A

or

B . A

where B is a name attached to a block like so:

B : [• • • ; A : • • • ;]

When combined with de fine statements, blocks provide a reasonable simulation of
a procedure mechanism. See "Creating Macros" later in this chapter.

Even though blocks may occur inside of other blocks, you can look only one level
deep with qualifiers such as B • A. The block A may be further qualified so that
specifications such as B . A . sw refer to the southwest comer of the block named A,

which is inside block B.

Grouping objects 9-25

For example, the object

r - - - - - - - - - - - - - -,
I I
I
I
I
I
I
I
I
I I
L.:: _ _ _ _ _ _ _ _ _ _ _ _ _ :.J

is produced with these specifications:

lh . S i
dh . 0 2 i
dw . l i

Ptr :
boxht =
A : box
B : box
C : box

h ; boxwid

box wid 2 *boxwid
D : box

Block :

"

boxht = 2 *dw ; boxwid
movewid = 2 *dh
A : box ; move
B : box ; move
C : box ; move

dw

"

2 *dw

box in vis " " wid 2 *boxwid; . . .
D : box
with . t at Pt r . s - (O , h/ 2)

move

arrow from Pt r . A to Block . A . nw
arrow from Pt r . B to Block . B . nw
arrow from Pt r . C to Block . C . nw
arrow from Ptr . D to Block . D . nw

box dashed ht last [] . ht+dw wid last \
[] . wid+dw at last []

9-26 Chapter 9 pic Line Drawings

Using the chop facility

Sometimes it is desirable to have a line intersect a circle at a point that is not one of the
eight compass points pic knows about. In such cases, the proper visual effect can be

obtained by using the attribute chop to chop off part of the line:

ci rcle " a "

ci rcle " b " a t 1 st circle - (0 . 7 5 i , 1 i)

ci rcle " c " a t 1 st circle + (0 . 7 5 i , - 1 i)

l ine from 1 st circle to 2nd circle chop

l ine from 1 st circle to 3 rd circle chop

This produces

By default, the line is chopped by circlerad at each end. This can be changed

with the command

l ine . . . chop r

which chops both ends by r, and this specification

l ine . . . chop rl chop r2

chops the beginning by rl and the end by r2.
Another form of positioning refers to a point as a fraction of the way between two

other points:

fraction of the way between positionl and position2

fraction is any expression, and positionl and position2 are any positions. You can

abbreviate this

fraction < positionl, position2 >

Grouping objects 9-27

For example,

box

arrow right from 1 / 3 of the way\

between last box . ne and last box . se

arrow right from 2 / 3 <last box . ne , \

last box . se>

produces

D ... -----�·�

The distance given by fraction can be greater than 1 or less than 0.

Creating macros

pic provides a rudimentary macro facility, the simple form of which is identical to that in
eqn:

de fine name x replacement-text x

This defines name to be the replacement-text; x is any character that does not appear
in the replacement. Any subsequent occurrence of name will be replaced by
replacement-text. Macros with arguments are also available. The replacement text of a
macro definition may contain occurrences of $ 1 through $ 9; these will be replaced by
the corresponding actual arguments when the macro is invoked. The invocation for a
macro with arguments is

name (argl, arg2, . . .)

Nonexistent arguments are replaced by null strings.
As an example, one might define a square:

de fine square X box ht $1 wid $1 $2 X

Then

square (1 i , " one " " inch")

9-28 Chapter 9 pic Line Drawings

calls for a one-inch square with the obvious label, and

square (O . S i)

calls for a square with no label:

1
inch

Coordinates like x,ymay be enclosed in parentheses, as in (X,J) , so they can be
included in a macro argument.

Understanding mathematical functions

pic provides a number of built-in arithmetic, trigonometric, and random number
functions. These are listed in Table 9-3.

Table 9-3 Mathematical functions

Function

atan2 (e1 , e2)

cos (e)

int (e)

log (e)

max (e1 , e2)

min (e1 , e2)

rand (e)

sin (e)

sqrt (e)

Description

Arctangent of e1/e2
Cosine of e

Integral part of e

Natural logarithm of expression e

Maximum of e1 and e2
Minimum of e1 and e2
Random number from 1 to e

Sine of e

Square root of e

Understanding mathematical functions 9-29

The arguments to the trigonometric functions (s in, cos, atan2) are assumed to be
in radians. All other dimensions are assumed to be in inches. Examples using these
functions can be found in "Examples of pic Specifications" later in this chapter.

Understanding loops and conditional
statements

Newer versions of pic provide two very useful features: for loops and conditionals
with if. An example of the for loop is as follows:

. P S

for len=O to 2 by 0 . 1 do

X

X

. PE

line right len ; line up len

move left len ; move down len

move down 0 . 1

This will produce

9-30 Chapter 9 pic Line Drawings

The character x can be replaced by any other unique character; it serves merely to
delimit the statements that pic will loop through. Also, the increment specifier by o . 1

may be omitted; if so, the increment specifier defaults to 1 .
You may execute pic commands conditionally by using the i f construction. The

following example draws 15 boxes at random locations; in addition, all boxes whose
length exceeds the height are dashed, while the rest are dotted:

. . . � - -r · · · · · · · · · · · · · · · · · 1
. : : - - - - : - ·: : : ·:· :

. r: .r:;l. F: • • • • • • • • • • • • . • • • . .., J. ...1 .., I I t.: - -1 - - - - - - - - - � - I I
I 1 1L r - "1...-_-_-_-_-_-_-_-_-J...-_;_-,_ - L - - _...J
I I 1 - - - - - - - - - - - T _, I I . r - -L;.:-.t-:':1. - - - - - - - - ...J I ...J

I - c - T - - - - - - - - - - - J -
L - - - - - = J - - - - - - - - - - -

This was specified as

. P S
f o r nurn = 1 to 1 5 do

w
. PE

w
x = rand (5 0) / 2 5

y = rand (S O) / 2 5

i f (x > y) then

y

box dashed wid x ht y at x , y

Y else Z

box dotted wid x ht y at x , y

z

Understanding loops and conditional statements 9-31

Understanding expressions

Expressions in pic are evaluated in floating point. All numbers representing dimensions
are taken to be in inches.

expression:
e + e
e - e
e * e
e I e
e % e (modulus)
- e
< e >
variable
number
place . x

place . y

place . ht
place . wid

Examples of pic specifications

Figures 9-2 through 9-9 contain examples of complicated pic specifications.

Figure 9-2 Space pig

9-32 Chapter 9 pic Line Drawings

. P S

. ps 1 0 0

A : circle radius 1 at 0 , 0

B : ellipse wid (0 . 7 5) height (0 . 5 0) \

with . n at (0 , 0 . 1)

C : circle radius (. 0 7 5) \

with . e at B . c - (0 . 0 5 , 0)

D : c ircle radius (. 0 7 5) \

with . w at B . c + (0 . 0 5 , 0)

l ine from (- . 9 7 , 0 . 2 5) to (- . 7 5 , 1 . 4)

l ine from (0 . 9 7 , 0 . 2 5) to (0 . 7 5 , 1 . 4)

l ine from (- . 7 5 , 1 . 4) to

l ine from (0 . 7 5 , 1 . 4) to

de fine goggle s \

@ [up arc cw rad

arc cw rad $ 1 ; \

arc cw rad $ 1 ; \

l ine left $2 ; \

arc cw rad $ 1] @

. ps 8 0

(- . 2 5 , 0 . 9 7)

(0 . 2 5 , 0 . 9 7)

$ 1 ; l ine right

E : goggles (0 . 3 3 , 0 . 9 3) with . s at B . n

. ps 4 0

F : goggles (0 . 2 6 , 0 . 9 0) with . c at E . c

. ps 4 0

move t o (- 0 . 2 5 , - 0 . 6 7 5)

l ine right 0 . 5

. ps 1 0

. PE

Figure 9-3 Source code for "space pig"

$2 ; \

Examples of pic specifications 9-33

Figure 9-4 Sine and cosine curves

. P S

. ps -2

pi = atan2 (0 , - 1)

for i = 0 to pi by 0 . 0 1 do

X

X

" "

" "

at i , s in (i)

at i , cos (i)

line from (0 , - 1) t o (0 , 1)

line from (0 , 0) t o (pi , O)

for i

y

y

. ps +2

. PE

0 to pi by 0 . 0 5 do

line from (i , O) to (i , s in (i)) - (0 , . 0 3)

Figure 9·5 Source code for "sine and cosine curves"

9-34 Chapter 9 pic Line Drawings

hashtab :

Figure 9-6 File-system diagram

. P S

boxht = . 2 i ; boxwid = . 3 i

down ; box ; box ; box ; box ht 3 *boxht " " " " " " . . .

L : box ; box ; box invis wid 2 *boxwid "hashtab : " \

with . e at 1 st box . w

right

Start : box wid . S i \

with . sw at 1 st box . ne + (. 4 i , . 2 i)

Nl : box wid . 2 i " n l " ; D l : box wid . 3 i "dl "

N3 : box wid . 4 i " n3 " ; D3 : box wid . 3 i " d3 "

box wid . 4 i " "

N2 : box wid . S i " n2 " ; D2 : box wid . 2 i " d2 "

Figure 9-7 Source code for "file-system diagram"

" "

(continued)•

Examples of pic specifications 9-35

Figure 9-7 (continued)

arrow right from 2nd box

ndblock

spl ine -> right . 2 i from 3 rd last box\

then to Nl . sw + (0 . 0 5 i , O)

spl ine - > right . 3 i from 2nd last box\

then to D l . sw + (0 . 0 5 i , O)

arrow right from last box

ndblock

spl ine -> right . 2 i \

from 3 rd last box\

to N2 . sw- (0 . 0 5 i , . 2 i) \

to N2 . sw+ (0 . 0 5 i , O)

spl ine - > right . 3 i from 2nd last box\

to D2 . sw- (0 . 0 5 i , . 2 i)

t o D2 . sw+ (0 . 0 5 i , O)

arrow right 2 * linewid from L

ndblock

spl ine -> right . 2 i from 3 rd last box\

to N3 . sw + (0 . 0 5 i , O)

spline - > right . 3 i from 2nd last box\

to D3 . sw + (0 . 0 5 i , O)

. PE

9-36 Chapter 9 pic · Line Drawings

Figure 9-8 Geometric shape

. P S

pi = 3 . 1 4 1 5 9 ; n = 2 0 ; r 1

s = 2 *p i / n

f o r i = 1 to n-1 do

X

for j

y

1 + 1 to n do

l ine from r*cos (s * i) , r * s i n (s * i) \

to r*cos (s * j) , r* sin (s * j)

X

. PE

y

Figure 9-9 Source code for "geometric shape"

Examples of pic specifications 9-37

10 grap Graphs

What is grap? I 10-3

Using grap I 10-4

Defining the graph format I 10-5

Specifying charts: Default actions I 10-5

Adjusting the frame I 10-8

Adding text to a chart I 10-9

Adding grid lines to a chart I 10-10

Using the shell I 10-11

Creating macros I 10-12

Using the copy thru construction I 10-13

Using loops and conditionals I 10-13

Plotting curves I 10-16

Summary of grap syntax I 10-28

This chapter is a guide to grap, a graph-drawing program that allows you to create

charts and graphs in your t roff documents. grap operates as a pic preprocessor,

which means that it reads the description of the graph you specify and produces it as a

pic drawing.

10-2 Chapter 10 grap Graphs

What is grap?
grap is a language for describing graphs and charts that are included in documents
produced with t roff. Figures 10-1 and 10-2 are simple examples of the kind of output
that you are able to produce using grap.

Text
processing
programs

sed

vi

grap

I pic

tbl

eg_n

negn

troff

nroff

l psdit

I
0

lp

Figure 10-1 A simple graph

I

I

I

I

I
J

I
50000

I

I

I

I
100000

Program size (bytes)

I

I

Figure 10-1 is a typical bar chart, depicting the relative sizes of some of the A/UX text
processing tools. Figure 10-2, in contrast, is quite a different kind of graph; it gives us a
graph of the sine curve over one cycle.

What is grap? 10-3

0 2 4 6

Figure 10-2 A more complicated graph

grap operates as a pic preprocessor, in the same way that pic operates as a t roff
preprocessor. Graphs are marked in the text by enclosing their descriptions between . G 1

and . G2 pairs. The grap preprocessor translates these descriptions into the language
understood by pic, which must then be called to translate the grap output into pure
t roff commands.

This chapter is designed to acquaint you with grap. The grap keywords and
commands are introduced largely through examples. A complete reference list of grap

syntax is given in the last section of this chapter, "Summary of grap Syntax."

Using grap

grap is usually run with the command line

grap file I pic I t roff -mrn

If equations and tables are also present, you should run grap and pic before eqn

and tbl:

grap fik I pic I tbl I eqn I t roff -mrn

There are two command-line arguments understood by grap:

10-4 Chapter 10 grap Graphs

- - --�-- ------�---- - - -- - - ----- - - ----- - - - -- - -- --

- 1

-Ttype

Do not include the file containing macro definitions,
/usr I lib/ dwb/ grap o de fines . By default, this file is included
whenever grap is called.

Set the output device to type. Currently supported devices are aps for the
Autologic APS-5, and di 1 o for the Imagen Imprint 10. The default device is
aps . In general, however, this argument can be omitted with no ill effects.

Defining the graph format

A graph specification begins with a graph start command (o G 1) and concludes with a
graph end command (0 G2). The 0 G 1 and 0 G2 commands are used by t ro f f as
command delimiters. The general format of grap input is

o G1

chart-specifications

o G2

Individual commands must be separated by newlines or semicolons; a long element
may be continued by ending the line with a backslash (\). Comments are introduced by a
41= and terminated by a newline.

In addition to grap commands, the chart specification can also include t roff and
pic commands. t roff dot commands may be included if they begin a new line; such
commands are most useful for changing point sizes in order to get thicker or thinner
lines. Included pic commands must be preceded by the keyword pic; this instructs
grap to ignore the rest of the line, passing it on to pic.

Specifying charts: Default actions

The following table lists real and projected UNIX operating system-based hardware
shipments for the years 1984 to 1990; as the table heading indicates, amounts are in
billions of U.S. dollars, and units shipped are in thousands.

Specifying charts: Default actions 10-5

The UNIX market
Year Revenues (bllllons) Units shipped (thousands)

1984 5.3 127.1

1985 6.5 161.3

1986 7.9 205.0

1987 9.5 265.0

1988 11 .3 340.0

1989 13.9 414.0

1990 16.8 485.0

The same data can be entered as a list of numbers using the simplest grap

specifications. For instance, the following input

. G1

1 9 8 4 5 . 3 1 2 7 . 1

1 9 8 5 6 . 5 1 6 1 . 3

1 9 8 6 7 . 9 2 0 5 . 0

1 9 8 7 9 . 5 2 6 5 . 0

1 9 8 8 1 1 . 3 3 4 0 . 0

1 9 8 9 1 3 . 9 4 1 4 . 0

1 9 9 0 1 6 . 8 4 8 5 . 0

. G2

produces the graph in Figure 10-3.
This chart illustrates many of grap's default actions. First of all, unless instructed

otherwise, grap will plot the data in a frame that is three inches wide and two inches
tall. Also, grap automatically supplies ticks indicating the ranges of the data points,
drawing them along the left and bottom sides. The ticks are arranged to leave a margin of
7 percent on all sides of the graph. The default plotting tool is the bullet. Finally, grap

interprets the data in both the second and third columns as belonging to the data in the
first column, and (unless told differently) interprets them in the same scale. So grap has
plotted the yearly system revenues in the same coordinate system as it used to plot the
number of units shipped.

Obviously, this chart could stand some improvement. One major failing is the lack of
text labeling the various axes and the data points.

10-6 Chapter 10 grap Graphs

�'

500 -

400 -

300 -

200 -

1 00 -

0 -
I

1984

I
1986

I
1988

I
1990

Figure 10-3 The default graph

Also, the bullets look rather lonely plotting the data points. It would be nice to do
better, and grap provides numerous facilities to override and supplement its default
actions. The chart in Figure 10-4 represents the original information more effectively.

Units Sold
(X 1000)

485.0
500 A!UX introduced :
400

300

200

18
16
14
12 Revenues
10 (billion $)
8 •

6
100 4

2
0 0

84 85 86 87 88 89 90
The UNIX Marketplace

Figure 10-4 A better graph

The following sections provide the information necessary to tum grap's default chart
into this more elaborate chart.

Specifying charts: Default actions 10-7

Adjusting the frame

Every graph is surrounded by a frame (which may be invisible); this determines the size
of the graph. You can adjust the size of the frame with the grap command frame. For
instance, the command

frame ht 3 wid 4

will set the height to three inches and the width to four inches. Because grap ultimately
translates its input into pic commands, the largest graph is the largest possible pic

drawing.
By default, the frame is drawn solid; this can be changed by adding an. attribute

specifier to the frame command. For the moment, disregard the second column of data.
So you might have

. G1

frame dashed ht 2 . 5 wid 3 . 5

1 9 8 4 1 2 7 . 1

1 9 8 5 1 6 1 . 3

1 9 8 6 2 0 5 . 0

1 9 8 7 2 65 . 0

1 9 8 8 3 4 0 . 0

1 9 8 9 4 1 4 . 0

1 9 9 0 4 8 5 . 0

. G2

This code produces the graph shown in Figure 10-5.
In addition to dashed, other available drawing attributes are dotted, invi s , and

solid.

You may also specify that only parts of the frame be drawn with a specific attribute.
For example, the following is very common:

frame ht 3 wid 4 top invi s right invis

This will draw only the bottom and left sides.

10-8 Chapter 10 grap Graphs

r - .
500 -t

I
I
I
I

400 _J I
I
I
I
I

300 --,

I
I

200 �
I
I
I
I
L - r - - - - - - - - r - - - - - - - - 1 - - - - - - - - l - �

1984 1986 1988 1990

Figure 10-5 A dotted frame

Adding text to a chart

gr ap contains several ways to put text of various sorts into a chart. You have already
seen that grap automatically supplies ticks on the bottom and left sides indicating the
ranges of the data points. More generally, text items can be placed in a chart with the
plot command. For example, the command

plot "A/UX int roduced" r just at 1 9 8 7 . 5 , 3 0 0

will print the indicated text at the indicated point, right justified. The default action is to
center the text item at the specified point. Other positional modifiers are 1 j ust, above,
and below. Strings in grap are enclosed within double quotation marks, as illustrated.
Also, the word plot is optional.

Labels can be added to any ofthe four sides of a chart using the label command,
for example,

label bottom " The 4 9ers ' Season"

Adding text to a chart 10-9

Multiple text strings are centered one above the others, as with pic. If the default
placement of the labels is not acceptable, the labels may be shifted in any direction by
adding a position modifier:

label bottom " The 4 9ers ' Season " down . 1

This will print the specified text, centered along the bottom of the chart, bumped
down one-tenth of an inch. Instead of down, the text can also be shifted up, left, or
right .

Text items can contain t roff commands for size and font changes, local motions,
and so on, but you should make sure that these are balanced so that the entering state is
restored before exiting from the string. So, for example, you might have the following
input:

plot " \ s 12The \ fB4 9ers ' \ fP Season\ s O "

Adding grid lines to a chart

10-10

It is sometimes useful to add grid lines to a chart-to indicate that a certain level has been
achieved, to signal important events, or perhaps just to make the chart easier to read.
Grid lines are specified with the command grid. For example,

. G1

frame ht 2 . 5 wid 3 . 5 t op solid left solid

grid bottom dotted at 1 9 8 7 . 5

plot "A/UX int roduced" r just at 1 9 8 7 . 5 , 3 0 0

1 9 8 4 1 2 7 . 1

1 9 8 5 1 6 1 . 3

1 9 8 6 2 0 5 . 0

1 9 8 7 2 6 5 . 0

1 9 8 8 3 4 0 . 0

1 9 8 9 4 1 4 . 0

1 9 9 0 4 8 5 . 0

. G2

will produce the graph in Figure 10-6.

Chapter 10 grap Graphs

500 -

400 -

300 -
A!UX introduced :

200 -

Figure 10-6 Adding grid lines

Using the shell

There are three important ways in which grap can interact directly with the A/UX
system. It can take input from files located in an A/UX file system, send output to the

standard error file, and run arbitrary A/UX commands by passing instructions to the shell.

Instead of presenting your data to grap by including it in the chart specification, you
can tell grap to get some data from a file. This is done with the copy command. For

example, if the data is stored in a file named unix . data, you could simply write the

following command:

. Gl

copy " unix . data"

. G2

The result of this graph specification is to produce the default chart given in Figure

10-3. Notice that you had to enclose the name of the file in double quotation marks.

grap is also able to send information to the operating system. One way to do this is
by using the print command. The print command sends its argument, either the

value of an expression or a string, to the standard error output file. Usually this is the
user's terminal screen. For instance, the command sequence

Using the shell 10-11

. G1

X = 5

print x * 7

. G2

will result in the value 35 being written on the user's screen. The print command is
most useful for debugging purposes.

By far the most powerful form of interaction between grap and the A/UX system is
the sh command. The sh command passes its arguments (presumably commands) to th.e
A/UX shell; these commands are executed, and control is then passed back to grap.

A typical use of the sh command is to produce the data that will subsequently be
plotted by grap using the copy command, for example,

. G1

sh @ awk - f /trnp / awkscript chap . 1 > out @

copy " out "

. G2

In this example, grap will run the awk program using the specified script and
redirect the output into a ftle; this ftle, out, is then copied in and grap continues
processing the data it has just created. Presumably, the awk script generates columns of
numbers that grap can understand. Note also that there is no reason that this grap

input could not occur in the ftle chap . 1 itself.

Creating macros

grap provides a rudimentary macro facility, the simple form of which is identical to that
in pic:

define name x replacement-text x

This defmes name to be the replacement-text; x may be any character that does not
appear in the replacement. Any subsequent occurrence of name will be replaced by
replacement-text.

Macros with arguments are also available. The replacement text of a macro definition
may contain occurrences of the indicators $ 1 through $ 9 ; these will be replaced by the

10-12 Chapter 10 grap Graphs

corresponding actual arguments when the macro is invoked. The invocation for a macro
with arguments is

name (argl, arg2, . . .)

Nonexistent arguments are replaced by null strings.

Using the copy t hru construction

grap contains a copy thru construction, identical to the one in pic, that allows the
graph data to be interpreted according to the instructions defined earlier in a macro. A
typical use of copy thru is

. Gl

define cprint @ circle rad $ 1 at $2 , $ 3 @

copy "term . data " thru cprint

. G2

This will cause grap to open the file term . data in the current directory and plot a
circle of radius determined by the first field at a location determined by the second and
third fields.

The data provided to copy thru does not need to be taken from a file, nor does the
macro need to be predefmed. See the entry for copy in the "Summary of grap Syntax"
later in this chapter for a complete list of the possible forms that a copy thru

construction can take.

Using loops and conditionals

Like pic, the grap program provides looping and conditional constructions. Looping
through a sequence of statements can be achieved with the for command. The general
form of a grap loop is

for var = start to end [by stejiJ do

@ cmds @

Using loops and conditionals 10-13

If the optional step specification is omitted, the loop proceeds in increments of 1; also,
the character ' @ ' may be replaced by any other character that does not occur in the series
of commands cmds. In fact, the following form will also work, where the character ' @ ' has
been replaced by matching braces:

for var = start to end [by stej}J do

{ cmds }

For instance, the curve corresponding to the equation

y = x2

can be obtained very easily using the following grap instructions:

. Gl
frame ht 3 wid 3

draw solid

for i = -2 to 2 by 0 . 1 do

next at i , i * i

. G2

The resulting graph looks like the one in Figure 10-7.

The general form of the grap conditional statement is

i f cond then @ cmdsl @ [else @ cmds2 @]

If the condition cond is true, then the sequence of commands cmdsl is executed. If
the optional e 1 se clause is present and if the condition evaluates false, then the
sequence of commands cmds2 is executed; otherwise it is ignored.

10-14 Chapter 10 grap Graphs

4

3

2

1

0

-2 - 1 0 1 2

Figure 10-7 Plotting a simple curve

You can add a simple if statement to the previous example to shade in the positive
side of the curve:

. Gl

frame ht 3 wid 3

draw solid

for i = -2 to 2 by 0 . 1 do

next at i , i * i

i f (i > = 0) then

@ l ine from O , i * i to i , i * i @

. G2

The resulting graph looks like the one in Figure 10-8.

Using loops and conditionals 10-15

4

3

2

1

0

-2 - 1 0 1 2

Figure 10-8 Shading part of a curve

Plotting curves

You saw in "Using Loops and Conditionals" earlier in this chapter that the grap language
can be used to plot curves from equations as well as from discrete data points. In general,
you can use this method to graph any function y = j(x), where j(x) can be expressed
using the operators and functions built into grap. The built-in operators are

+ Addition

*

I

Subtraction
Multiplication
Division
Equality

The built-in functions are

10-16 Chapter 10 grap Graphs

atan2 (expr1,expr;J

cos < expr)

exp < expr)

Arctangent of expr jexpr2

Cosine of expression expr

Ten to the power expr

int < expr)

log < expr)

max (expr1,expr2)

min < expr1,expr�

rand < expr)

sin < expr)

Integral part of expression expr

Logarithm base 10 of expression expr

Maximum of exp� and exp�

Minimum of expr1 and expr2

A random number between 1 and expr

Sine of expression expr

sqrt (expr1) Square root of expression expr

Consider, for example, the built-in logarithm function log. This provides only the
base-10 logarithm, but you can define the natural (base-e) logarithm if you recall the
following simple fact:

loge (x) = loge (10) x log10 (x)
Because loge (10) is an easily determinable constant, you can reconstruct the

following grap macro:

define ln @ 2 . 3 0 2 5 8 * log ($ 1) @

Furthermore, the function y = eX is the inverse function of y = ln(x), so you can graph it
by reflecting the graph of the natural logarithm across the diagonal line y = x. So you have

. G1

define ln @ 2 . 3 0 2 5 8 * log ($ 1) @

frame ht 4 wid 4

draw Nat solid

draw Ten dotted

draw Exp solid

for i = 0 . 5 to 5 by 0 . 1 do

next Nat at i , ln (i)

next Ten at i , log (i)

next Exp at ln (i) , i

Plotting curves 10-17

10-18

l ine dashed from 0 , 0 to 4 , 4

" $y-=-e sup x $ " at 0 . 0 , 2 . 0 0

" $y-=-ln (x) $ " at 2 . 0 , 1 . 0

" $y-=- log (x) $ " at 3 . 0 , 0 . 6 5

" $y-=-x $ " at 4 . 5 , 4 . 5

. G2

This yields the graph shown in Figure 10-9.

4

0

/ /

/ /

y = l n(x)

0 2

/ /

y = log(x! . .

Figure 10-9 Logarithmic and exponential functions

Chapter 10 grap Graphs

y = x

4

Using polar coordinates

Some curves are more easily described using polar coordinate equations than using
Cartesian rectangular coordinates. For example, the polar equation of a circle with its
center located at the origin is simply r = a, for some constant a, whereas the rectangular
equation is the somewhat more complicated x2.+ y2 = a2. Even though grap does not
contain primitives for handling polar equations, it is relatively straightforward to graph
some equations expressed in polar form, r= /(9).

To see this, consider the following simple relationship between the sides of a right
triangle:

(x, y)

r

r cos(8)

You notice the following two facts:

x = rcos(9)
y = rcos(9)

r sin(8)

You can therefore graph the curve r = /9) by plotting the sets of point x,y that satisfy
the equations

x = /(9) x cos(9)
y = /(9) x cos(9)

For example, suppose that you want to graph the Spiral of Archimedes, r = 9 The
following grap input will do nicely:

Plotting curves 10-19

10-20

. G1

frame ht 3 . 5 wid 2

label bot " Spiral o f Archimedes " " $ r-=-theta$ "

pi = 3 . 1 4 1 5 9

for i = 0 t o 3 *pi / 2 by 0 . 1 do

next at i * cos (i) , i * s in (i)

. G2

This yields the graph in Figure 10-10.

2

0

-2

-4

-3 -2 - 1 0
Spiral of Archimedes

r = e

Figure 10-10 Plotting a polar equation

Chapter 10 grap Graphs

Similarly, you can give the following code to generate the graph of the cardioid:

. G1

frame invis ht 3 . 0 wid 3 . 5

grid bottom dotted at 0

grid left dotted at 0

t icks off

labe l bottom " Cardioid" " $ r-=- 1 - - - cos (theta) $ "

"X" at 1 , 0 . 2 5

" Y " at 0 . 2 5 , 1 . 5

pi = 3 . 1 4 1 5 9

for i = 0 t o 2 *pi by 0 . 0 7 do

next at (1 -cos (i)) *cos (i) , (1 -cos (i)) * s in (i)

. G2

This code yields the graph in Figure 10-11 .

Cardioid
r = 1 - cos(9)

Figure 10-11 A second polar equation

y

Plotting curves 10-21

As a fmal example of the power of this method, consider how easy it is to graph a
circle using polar coordinates. You noted that the polar equation of a circle centered at
the origin is just r = a. The necessary transformations into x,y pairs are therefore

x = a x cos(8)
y = a x sin(8)

So, the following code produces the circle of radius 1 shown in Figure 10-12 .

. G1

frame invi s ht 3 wid 3

pi = 3 . 1 4 1 5 9

for i = 0 to 2 *pi by 0 . 0 5 do

next at cos (i) , sin (i)

next at 1 , 0 # close up graph

. G2

The interested reader should attempt to recreate this graph without using polar
coordinates. (No fair using the pic built-in circle!)

1 -

0.5 -

0 -

-0.5 -

-1 -

- 1

I

-0.5

Figure 10-12 A grap circle

10-22 Chapter 10 grap Graphs

I

0

I

0.5 1

Using equally scaled axes

You will notice that grap automatically calculates the bounds of the curve being
graphed and scales the coordinate axes in such a way as to fit the graph into the space
available (either the size requested using the frame command or the default size). This
means that the axes are almost never drawn according to the same scale. For graphs of
discrete data this is not generally a problem, but graphs of curves and functions are often
misleading unless drawn with axes scaled identically.

There is an easy way to get grap to produce equally scaled axes. The frame and
coord statements can be used to specify that the size and coordinate ranges for both
axes be identical. For instance, the following grap instructions will ensure that the curve
looks the way you expect:

. G1

frame ht 3 wid 3

coord x 0 , 1 0 y 0 , 1 0

draw solid

for i from 0 . 1 to 1 0 by 0 . 0 5

next at i , 1 / i

. G2

This yields the graph in Figure 10-13.

do

Plotting curves 10-23

10 �------------------------------�

8 -

6 -

4 -

2 -

0 �----_;�====��====�,======r=l==�
0 2 4 6 8

Figure 10-13 Equally scaled axes
10

You will notice that obtaining equally scaled axes via the coord command demands
that you have some previous idea of what the bounds of the function are likely to be. If
you genuinely have no firm idea what the resulting graph is going to look like, you can
still ensure equally scaled axes in the following way: while plotting the set of points x,y
over some interval, also plot the set of points y,x invisibly. This has the effect of plotting
the inverse function y = j-1(x), thereby guaranteeing that the largest xvalue is the same
as the largest y value.

10-24 Chapter 10 grap Graphs

To illustrate this second method of producing equal axes, suppose that you want to
graph the curve y = >P. You can give the following code, which does not use the coord

command:

. Gl

frame ht 3 wid 3

draw Real solid

draw Hack invi s

for i from 0 to 3 by 0 . 1 do

next Real at i , i * i * i

n ext Hack at i * i * i , i

. G2

This will produce the graph shown in Figure 10-14.

20 -

10 -

0 -

I

0

I

10

I

20

Figure 10-14 Equally scaled axes without coord

Plotting curves 10-25

Plotting curves from data points

Sometimes it is not possible to reduce an equation to the rectangular form y = j(x) or to
the polar form r = /(9). In such a case, it is still possible to obtain a graph of the function
using grap. For example, to find a graph of the equation

x8 = (x2 + y2)3 •

you could write a simple program to generate a set of data points on the curve between 0
and 4, as shown in Figure 10-15.

point s

include <stdio . h>

#de fine STEP 0 . 0 1 / * step s i z e between point s * /

#de fine MARG 0 . 0 1 / * margin o f closene s s * /

#define approx (a , b) ((a>= (1 . 0 -MARG) *b) & & (a<= (1 . O +MARG) *b))

main ()

float x , y ;

for (X = 0 . 0 ; X < = 4 . 0 ; X + = STEP)

for (y = 0 . 0 ; y <= 4 . 0 ; y += STEP
if (on_curve (x , y))

print f (" % 4 . 3 f % 4 . 3 f \n " , x , y) ;

exit (O) ;

on_curve (fx , fy)

float fx , fy ;

if (approx (fx* fx * fx* fx* fx* fx* fx* fx ,

((fx* fx) + (fy * fy))

* ((fx * fx) + (fy * fy))

* ((fx * fx) + (fy * fy))))

return (1) ;

e l se

return (O) ;

Figure 10-15 Sample C program to generate data

10-26 Chapter 10 grap Graphs

When this program is compiled and run, it will generate a list of data points. If the
output of the command is redirected into the file curve . data, the following grap

commands will give you the graph you want:

. G1

frame ht 3 wid 3

coord x 0 , 8 y -4 , 4

draw P o s solid

draw Neg solid

copy " curve . data" thru @ next Pos at $ 1 , $2

next Neg at $ 1 , - $ 2 @

. G2

This yields the graph shown in Figure 10-16.

0 2 4 6

Figure 10-16 Plotting a curve from data points
8

Plotting curves 10-27

Summary of grap syntax

grap is a pic preprocessor designed for drawing charts and graphs and including them
in documents formatted with t roff. The general command line is

grap fu� 1 pic I . . . 1 t roff . . .

Graph specifications are included between . Gl and . G2 pairs and may include the
following commands:

.anything (at beginning of line)
Copy this line untouched. Hence, t roff commands may be interspersed among grap

commands.

anything

The symbol # is a comment indicator; anything following this symbol on a line will be
ignored by grap. You can also use the t roff comment indicator .\" at the beginning of
a line to include comments in a graph specification.

coord [dataserl x min,max y min, max[log xHlog y]

Set the range of the x and y coordinate axes to run from min to max. This command
overrides the default axis scaling and may result in the loss of data points that do not fit
into the specified range. Addition of the optional log indicator will result in logarithmic
scaling of the specified axis. The default dataset is the one currently active.

copy "file"

Include the file file at this point.

copy "flle" thru name unt i l "str"

Copy the data from file file through macro name until the first occurrence of the string str

is encountered.

copy thru name

Pass the rest of the input for this graph (that is, until the next • G2) through the macro
name, breaking the line into fields that are passed as arguments to the macro. Fields are
delimited by white space, except for white space enclosed by string delimiters, " .. . ". The
macro name can be replaced by an in-place macro.

10-28 Chapter 10 grap Graphs

copy thru nameunt i l "str"
As above, except that the copying ends when the first occurrence of the string str is found
at the beginning of an input line.

de fine name x anything x
Define a grap macro: replace all subsequent occurrences of name by anything. If the
string anything contains any of the sequences Sl, S2, . . . , S9, they are replaced by the first,

second, . . . , ninth arguments enclosed in parentheses following name. The file

/usr 1 l ib / dwb / grap . de fine s contains several macro definitions, and it is included
in all files processed by grap if it exists (unless the -1 command line option is
specified).

draw [datasen attrib ["str'l
Set the attribute to be used in drawing the graph of data set dataset to attrib. If the

optional string str is added, this string will appear at each point plotted.

for var= start to end[by step] do @ cmds @
Run the specified list of commands cmds for all the values between start and end, taken
in steps of step. If the by clause is omitted, steps of 1 are taken. The assignment operator
= can be replaced by the keyword from.

frame [attrib] ht h wid w[side attrib]
Set the frame surrounding the graph to the specified height h and width w. The default

size is 2 inches high and 3 inches wide. You may set the drawing mode attrib for the

entire frame or for each of the sides (top, bot , left, and right) to any one of the

attributes dotted, dashed, invis, and solid. The default attribute is sol id.

graph Name pos
Begin a new frame Name for subsequent plotting, placing the frame at the specified pos.
The position pos must be in a form recognizable by pic, for instance,

graph New with . s at Old . n

The name of the graph Name must be capitalized, in accordance with the input syntax for

pic.

Summary of grap syntax 10-29

grid side attrib at [datase� expr
Draw grid lines perpendicular to the specified side side at the value of expression expr.
The line is drawn with attribute attrib, which is by default sol id. There may be more
than one expression, and grid lines and labels of incremental steps are available as with
the t icks command.

i f condthen @ cmdsl @ [else @ cmds2 @]
Run the commands cmdsl if the specified condition cond is true. If the condition
evaluates false, and if the optional e l se clause is present, then run commands cmds2.

label side "str' ["str'1 [pos expn
Use string str as a label on the specified side side. The default side is the bottom. There
may be any number of strings, which are centered one above the others. In addition, a
label specification may include an optional position pos to shift the default position of the
label. The specifier pos may be up, down, le ft , or right and must be followed by an
expression indicating the amount of position shift in the specified direction.

line from ptto pt [attrib]
Draw a line, using the specified attribute attrib, from the first point pt to the second. The -�

default attribute is solid. Also, the keyword line may be replaced by arrow.

next [datase� at pt [attrib]
Plot the next data point for data set dataset at point pt, connecting that point with
previous points by a line of attribute attrib.

new [datase� attrib ["str'1
Set the attribute to be used in drawing the graph of the data set dataset to attrib, and
disconnect the subsequent data points from any preceding ones. If the optional string str
is added, this string will appear at each point plotted.

10-30 Chapter 10 grap Graphs

number-list
Unless copied through a macro (see "Using the copy thru Construction" earlier in this
chapter), treat a list of numbers as follows. A single column of numbers (one number per
line) is interpreted as a list of ordinates (y values) for the abscissae (x values) 1, 2, 3, . . .
Multicolumn lists are treated as a single words; a line of the form

xyl y2y3 . . .

will result in plotting the points (x,yl), (x,y2), (x,y3), and so on.

pic anything Pass the remainder of the input line to pic, removing any leading
white space. The input anything cannot contain newlines.

plot '1str" [loc] at pt
Place string str at point pt. The optional location loc can be any one of the modifiers
r j ust, l j ust , above, and be low. Also, the keyword plot may be omitted
altogether.

point [datasen expr,expr
Map the point determined by the values of the two listed expressions to the specified
dataset. The default data set is the current.

print expror print 11Str"
Print the value of expression expr or the string str on the standard error file. This is most
useful as a debugging tool.

sh @ anything @
Pass everything between the enclosing @ characters to the A/UX shell. The character @
can be replaced by any other character. Also, newlines may be included in the string
anything.

Summary of grap syntax 10-31

t icks side dirat [datase� expr['�tr'1 [, expr '�tr'1
Draw ticks on the specified side side at expr, using the optional string str as a label. More
than one expression and label can be listed, separated from the preceding ones by a
comma. Direction dirmay be either in or out , indicating the direction the ticks are
drawn (the default direction is out). The strings specified as labels may contain format
specifiers of the form % f n. m, which are interpreted as with the C-language function �

print f. See print f(3) in the A!UX Programmer's Reference for details.

t icks side dir from m to n [by step] ['�tr']
Draw ticks on the specified side side beginning at value m and continuing to value n in
steps of size step, using the optional string stras a label. The step size step may be
preceded by an optional + or - to obtain additive increments or decrements, or by an
optional • or I to obtain multiplicative increments or decrements. If the step specifier is
omitted, steps of size 1 are used. If no ticks are requested, they will be supplied
automatically, although this can be suppressed with the command t icks o ff. A
margin of 7 percent is left on each side of a graph; the margin can be adjusted with the
command

margin = expr

var= expr
Set variable varto the value of expression expr.

10-32 Chapter 10 grap Graphs

1 1 Related Tools

What are the other text preprocessors? I 11-2

Using a macro package to typeset viewgraphs and slides I 11-6

Using special tools for the manual pages I 11-6

Checking your work before you format it I 11-8

The tools described in this chapter supplement the text-processing programs described

elsewhere in this book. This chapter is intended as a short reference to these additional

tools. For complete information on each command, refer to the A!UX Command

Reference.

What are the other text preprocessors?

Preprocessors operate with text formatters to produce specialized forms of output, such
as tables, equations, and line drawings. Preprocessor data is converted to t roff (or
nroff) commands, and then this output is passed on to the formatter for further
processing.

tbl, eqn, and pic are the most commonly used A/UX preprocessors. The following
is a brief description of some lesser-known A/UX tools.

Preparing constant-width text

Text typeset in constant-width (CW) font resembles the output of terminals and line
printers. All characters are the same width. CW font is used most often to show examples
of computer output.

CW font contains a nonstandard set of characters with character and interword
spacing different from that of standard t roff fonts, such as Times Roman. Documents
using the CW font must be preprocessed.

See cw(l) in the A!UX Command Reference for more information.

Numbering lines

The nl program is a line-numbering filter. It reads lines from a named file (or from
standard input if no file is named) and reproduces the lines on the standard output. Lines
are numbered on the left side of the page.

nl processes your text in "logical pages." Line numbering is reset at the start of each
logical page. A logical page consists of a header, a body, and a footer section. Different
line-numbering options are available independently for each of these sections. For
example, you may specify that you do not want header or footer lines numbered. (The
default is not to number either header or footer lines.)

To specify the start of each logical page section, use the following default delimiters,
which appear at the line preceding the start of the section:

11-2 Chapter 11 Related Tools

\ : \ : \ :

\ : \ :

Header
Body

\ : Footer

Thus, for general purposes \ and : are considered to be the delimiter characters, as
they are repeated and joined to form the actual delimiters.

You may specify new delimiter characters by use of the -d flag option. For example,
in the command

nl -vS -iS -d ! + test . file

the delimiter characters are changed to ! +. The entire command instructs n 1 to number
test . file starting at line number 5 (-vs), with an increment of 5 (- i s). (The default
is to begin numbering at line 1 and to use an increment of 1 .)

For a complete description of the available options, see nl(l) .

Translating characters

The t r program translates characters in a file. It takes two string arguments. Any
characters found in the first string are replaced by the equivalent characters in the second
string.

For example, suppose you want to convert all uppercase characters in a file to
lowercase. You can do this with the command

t r " [A-Z] " " [a- z] " < uppe r . file > lowe r . file

where " [A- z] " is the first string, " [a- z] " is the second string, uppe r . file is the
original file, and lower . file is the translated file. The double quotation marks and
brackets are necessary to distinguish ranges from regular strings. If they are omitted, only
the characters A, - , and z will be translated to lowercase.

You can also use t r to delete character strings. For example, if you want to remove
all numeric characters from a file, you may use the command

t r -d 0 - 9 < num . file > unnum . file

With the -d option, you specify only one string, and t r deletes members of it
wherever they occur. Ranges do not need special treatment with this option.

See t r(l) for more information.

What are the other text preprocessors? 11-3

Single-spacing a document

s sp removes extra blank lines from a file and causes all output to be single-spaced. You
may use it either directly on a file:

s sp file > out . fi le

or as a filter following text formatting:

t roff -mm file I s sp > out . file

See s sp(l) for more information.

Changing the format of a text file

The newform program allows you to change the format of a text file. You may change
tab characters to spaces or spaces to tabs. You may define a standard line length, and if
your input exceeds that length, you may designate that n characters be removed, from
either the beginning or the end of each line. If your input lines are shorter than the
designated line length, you may choose the number of characters to append or prefix to
each line. For example, given test . file-a file with lines consisting of leading digits,
one or more tabs, and then text-the command

newform - s -i -e -a test . file > out . file

converts it to a file (output . fi le) with lines beginning with text (-s), all tabs
expanded to spaces (- i), each line padded (or truncated) with spaces to fit 72-column
format (-e), and the leading digits (which were stripped away with the - s option)
appended after column 73 (-a).

See newform(l) for more information.

Printing Greek characters

greek is an n roff filter that permits you to produce an approximation of the Greek
alphabet on output devices not normally able to print nonstandard characters.

The file /usr /pub/ greek contains the default Greek characters produced by
nroff. The greek filter reinterprets this character set (as well as the default reverse and
half-line motions) to permit use on a variety of terminals. The special characters are
simulated by overstriking.

11-4 Chapter 11 Related Tools

Your own terminal type may be specified after the -T flag option. Thus the command

nroff -mrn test o file I greek -Trenn

(where tenn specifies the output device) formats test 0 file and filters the output
through greek. (If no -T argument is given, greek attempts to use the environment
variable $ TERM.)

greek recognizes only certain terminal types. To view the list of recognized terminal
types, see greek(l).

Creating underlines for your terminal

The u 1 program translates underscore characters to a sequence that simulates
underlining. The actual sequence depends on the options supported by your terminal.
Some terminals produce reverse video to indicate underlining; others do actual
underlining. If your terminal cannot interpret underscores, ul behaves like cat(l) and
simply displays the file on your screen.

You may specify the terminal type after a -t . This is the most reliable way to obtain
underlining as such, if your terminal can do it. If no type is specified, ul will try to
determine it from the environment and may consult I et c/termcap to learn how to
underline.

Thus the command

nroff -mrn test o file I ul -t renn

(where tenn is the terminal type) will format test 0 file and filter the result through ul

to produce underlining wherever test o file had lines preceded by

o ul

or had t roff requests for italics.
See ul(l) for more information.

Stripping out reverse line feeds

The col program allows you to print files that contain reverse line feeds and forward
and reverse half-line feeds on output devices that cannot handle reverse movements.

What are the other text preprocessors? 11-5

col filters out the reverse line feeds generated by the . rt (return) nroff request,
some eqn output, tbl output, and other multicolumn output. In addition to removing
reverse line feeds, the col program filters out other nonprinting characters. You can then
print your formatted file on simple printing devices.

To run col on a multicolumn nroff document, use the command

nroff -mm test . file I col > output . file

See col(l) for a complete description of the use of this command.

Using a macro package to typeset
viewgraphs and slides

You may use the mv macros to prepare typeset-quality viewgraphs and slides.
Viewgraphs can be prepared in a variety of dimensions, as well as 35-mm slides and 2-
by-2-inch "super slides." A few macros perform most of the formatting tasks needed in
making transparencies, and you may use all of the facilities of nroff, t roff, eqn,

tbl, and cw for the more difficult tasks. See mv(5) for a complete list of the available
macros.

To run your text files prepared with mv, use the mvt command

mvt file > out . file

Options are provided to call tbl and eqn , and the proper pipelines and required
arguments for t roff are generated automatically.

See mmt(l) and mvt(l) in A!UX Command Reference and mv(5) in A!UX
Programmer's Reference for more information.

Using special tools for the manual pages

The A/UX manual pages found in the A!UX Command Reference, A!UX Programmer's
Reference, and A!UX System Administrator's Reference contain descriptions of all
commands and maintenance procedures contained in the A/UX system. The manual
pages are produced according to strict formatting conventions with the man macros.

11-6 Chapter 11 Related Tools

Creating a manual page

The man macros produce standardized manual entries. You use the man macro package
to create manual pages in the same way that you use the mm macro package to produce
text.

To produce your own manual pages, follow the instructions in man(5).

Reading online manual entries

The man command locates and prints a requested manual entry. The manual page can be
viewed on your terminal screen (the default) or can be printed on your printer.

For example, to produce the manual page grep(l) for terminal viewing, enter the

following:

man 1 grep

The 1 is the section number of the manual. It alerts the system to search through

section 1 . If the section number is not specified, the entire manual set (sections 1 through

8) is searched.

See man(l) for more information.

Creating a permuted index

The permuted index in the A!UX Command Reference, A!UX System Administrator's
Reference, and A!UX Programmer's Reference is produced with the pt x command. The

permuted index presents a sorted.alphabetic listing of keywords contained in the

command descriptions.

It works in three stages:

1 . It generates one line for each keyword in an input line and then rotates the keyword
to the front of the line.

2. It alphabetically sorts the permuted file.

3. It rotates the sorted lines and places the keyword in the middle of the line.

You can then scan the center column of the permuted index for the keywords.

For flag options and formatting information, see pt x(l) and mptx(5).

Using special tools for the manual pages 11-7

Checking your work before you format it

The following tools check your work before you process it. With each command, output
can be either written to standard output (the default) or redirected to a file.

Checking your spelling

The spe 11 program checks the words in your document against an online dictionary
and then reports those words not found. You can instruct spell to verify either
American or British spelling. You can also stipulate a file (with the + local . file flag
option) of words not in the online dictionary for spe 11 to use as well. In this case,
+local . file must be sorted, with one word per line.

To run spell , enter

spell test . file > spell . li st

This checks the spelling of words in test . file and puts dubious ones in
spell . l i st .

+ Note Proper names and technical terms appear in the spe ll output (unless you
include them in your +local . fi le). Often, you will have to edit these out of your
spe ll . li st before using it to correct your files. •

For complete instructions on using the spell program, see spell(l).

Checking your writing style

You can check certain aspects of your writing style with the style program. It gives the
use (by percentage) of various grammatical forms, and it reports on readability, sentence
length and structure, word length and usage, and types of verbs used.

Although such statistics may seem superficial, they can still be of use. sty 1 e is
particularly useful for comparing two documents or seeing if you are overusing a
particular grammatical form.

To run style, enter the following:

style file

11-8 Chapter 11 Related Tools

Checking your document's clarity

The dict ion program finds sentences in a document that are overused or poorly
constructed. It compares what is in your document against a database of bad phrases and
reports any matches.

To run dict ion, enter the following:

diet ion < file

See dict ion(l) for additional information.

Checking your eqn commands

checkeq looks for missing or unbalanced eqn delimiters (usually $ $) or . EQ and . EN

pairs. It especially looks for mixtures of these, which would confuse eqn; thus the output

$ $ within . EQ . . . EN , line n

indicates that inline delimiters were used within a displayed equation.
To run checkeq, enter

checkeq file

Not all output lines flag errors directly. The diagnostic

$ $ de lims , line n

does not report an error. It states that inline delimiters ($ $) were turned on at line n. If
the delimiters change, this will also be reported. Then, if they are changed to another
symbol or if they are left off for a long time, this will be apparent from the output.

+ Note Do not set delimiters to ** and then use eqn within tables. tbl uses #
characters internally and may not be able to function if eqn uses them as well. •

If you need to use the dollar sign itself, you can use the following eqn definition at
the top of your file:

. EQ

define dol ' roman " $ " '

delim $ $

. EN

Checking your work before you format it 11-9

Because the single dollar sign appears in the file before the delimiters were turned
on, this usage will not cause an error to be reported by checkeq. Then, to use this
defined term, enter

$do l $

to produce $. The dollar signs match, and no error is flagged.

+ Note If you use the mm macros, you should use checkmm instead of checkeq. The
checkmm program incorporates all the features of checkeq. •

Checking your rrun commands

checkmm checks for inconsistent use of the mm macros. It finds unmatched pairs of
macros, unmatched size and font changes, and unbalanced . EQ • 1 . EN pairs. If you use
checkmm, you do not have to use checkeq as well.

To run checkmm, enter the following:

checkmm file

For more information on options and syntax, see mm(l).

Checking your ms commands

You can check your ms documents for formatting errors with the checknr program.
checknr examines your file and reports any unrecognized macros or unbalanced macro
constructions. For example, it will find any . D s commands that are not terminated with

• DE, or it will verify that each . RS command has a corresponding . RE command.
To run checknr, enter the following:

checknr file

Any discrepancies are written to the standard output. Or, if you prefer, you can direct
the output from checknr to a file so you can examine it later:

checknr file > output-file

For more detailed instructions on using this program, refer to checknr(l) in A!UX
Command Reference.

11-10 Chapter 11 Related Tools

Checking your cw commands

You can use checkcw on files to be processed with cw. checkcw finds unbalanced left
and right delimiters, as well as . cw 1 . eN pairs.

See cw(l) in A/UX Command Reference for more information.

Checking your work before you format it 11-11

Glossary

adjust To add small amounts of space between
words in a filled text line so that the line of output
text is the desired line length.

argument Used in a command line and placed after
the command to specify what the command should
act upon.

break Printing of a partially filled output line.

command Sets parameters or calls out special
characters.

comment An informative remark embedded in text
but not intended for printing. You can include a
comment at the end of a line by prefacing it with
\ .You can include a comment in a file as a line by itself
by beginning the line with • \ .

control character A period or single quotation mark
that calls out a command.

control lines Sometimes called "dot commands,"
they are interspersed with text lines and set
parameters or otherwise control subsequent
processing. They begin with a period or an acute
accent, followed by a one- or two-character name that
specifies a basic request or the substitution of a user
defmed macro in place of the control line.

display A block of text that is to be kept on one
page. The relevant text is enclosed within the . D s and
, o J::: macros. By default, the text lines are not filled or

adjusted, but you can override this by providing an
argument to the . D s macro.

diversion A mechanism provided by the t ro f f

formatter to store a block of input text for a period of
time in order to determine its size and whether it will
fit on the current page before actually printing it, for
example, footnotes or text between the macros • KS
and . KE that is not to be split across a page boundary
(as for a figure or table).

em Used to specify a width approximately equal to
the size of the letter m in the current font and point
size.

en Half of an em.

eqn A mathematical equation-formatting
preprocessor for t r o f f that produces typeset
quality mathematical text. e qn converts
mathematical input into t roff commands, and the
resulting output is passed directly to the formatter
for further processing. Mathematical expressions are
entered by beginning and ending each with the
delimiters . EQ and . EN. Inline equations may be
included in text if they are enclosed in delimiters,
which are defined at the beginning of the text ftle.

G-1

escape cha:racter (\), followed by a command name
anywhere in a line. The escape character introduces
sequences that cause the following character to mean
another character or signals the formatter to treat the
sequence as a command and not text. It should not be
confused with the control character Esc of the same
name.

field A string of characters separated from other
strings by blanks, tabs, or other specific delimiters.

fill To place as much text on a line as will fit,
regardless of how the text occurs in the input file.

floating keep Begins with o KF and ends with 0 KE.
If the number of lines in a block of text exceeds the
remaining lines on the page and it is necessary to force
a page break, the regular text material continues to
print until it reaches the end of the page, and the block
of text is printed. It differs from a static keep in that
it waits for a natural page break rather than forcing
one.

font A collection of letters and characters unified by a
distinctive pattern or "look." Times Roman, for
example, is the default font for t ro f f.

footer A line of text that is printed on the bottom of
every page.

formatter A utility that processes text for output to
a device. The nrof f and t roff utilities, for example,
are formatters that justify the margins, center the
titles, number the pages, and perform other
enhancements that improve the printed appearance of
text files.

grap A preprocessor for p i c that permits inclusion
of graphs in a document formatted with t ro f f.

Specifications for the graph are enclosed within o G 1
and o G 2 pairs and are translated by gr ap into pic

code.

header A line of text that is printed on the top of
every page.

leader A single character, repeated as necessary, to
visually tie one item to another in a text line. For

G-2 Glossary

example, a heading and page number in a table of
contents are often connected with a line of dots. The
leader character is a period by default and may be set
using the o 1 c t ro f f request.

ligature Two or more characters or letters linked
together. Two ligatures are available in the t ro f f

character set: (f i and (f 1 . They may be input (even
in the nro f f formatter) by \ (fi and \ (f1 ,
respectively. Note that ligature mode is normally on in
the t r o f f formatter; that is, ligatures are
automatically produced.

list-end macro Identifies the end of a list. It
terminates the list and restores the previous
indentation.

list-initialization macro Determines the style of
the list: line spacing, indentation, marking with special
symbols, and numbering or alphabetizing of list items.

list-item macro Identifies unique items to the
system. It is followed by the actual text of the
corresponding list items.

local motion Vertical and horizontal motion
contained within a line. The function \ v ' n ' is used
for vertical motion, and the function \ h ' n ' is used
for horizontal motion. The distance n may be
negative; the positive directions are rightward and
downward. To avoid unexpected vertical dislocations,
it is necessary that the net vertical local motion
(within a word in filled text and otherwise within a
line) balance to 0.

macro A collection of instructions or requests
invoked by a single, simplified command. Text
processing macros, for example, are embedded in a file
and usually take the form .XX, where X is generally a
capital letter. Each macro is an abbreviation for a
collection of requests that would otherwise require
repetition.

macro package A collection of macros grouped into
a useful unit.

mm General purpose text-formatting macros for use with
nroff and troff.

neqn An n r o f f preprocessor that formats
mathematical symbols and equations using standard
keyboard symbols to approximate the mathematical
symbols requested as closely as possible.

nroff A formatter that produces typewriter
quality output.

number register Where t ro f f keeps track of many
of the parameters governing the page layout. You can
create a number register with the command . n r or
change existing parameters, such as . n r s i 8 ,
which changes the standard indent for displays.

output device Typically, a printer or display device,
such as a digital typesetter or phototypesetter, laser
driven printer, high-resolution video display terminal,
terminal screen, dot matrix printer, or daisy wheel
printer.

output translation A process by which one
character can be made a stand-in for another character
using the . t r request.

page footer Text printed at the bottom of each
page.

page header Text printed at the top of each page.

page offset The distance between the left margin
and the left edge of the paper. The default page offset
for nroff /troff is one inch.

pic A t ro f f preprocessor that produces simple
line drawings in a document. The basic figures are
arrow, box, circle, line, arc, ellipse, and text.
Descriptions are included between . P s and . P E pairs.

pica A measurement (1/6 inch or 6 points) used for
specifying line lengths and page lengths.

point Used to specify size of type using printer's
measurement of a point equal to 1n2 of an inch. The
default point size for t ro f f is 10-point type.

preprocessor A utility such as tbl or eqn used to
translate your input into commands that t r o f f can

understand before piping the output to that process.
Also the part of a compiler that provides file inclusion
and macro substitution.

request Built-in command recognized by the
formatters.

static keep A mechanism for preserving the integrity
of a block of text. Begins with . KS and ends with

• KE . If the number of lines within these two macros
exceeds the remaining lines on the page, a page break is
forced, and the material in the block is printed on the
next page.

string A named group of characters, not including a
newline character, that may be interpolated by name
at any point.

tab leader A string of repeated characters between a
tab stop and the next tab or end of line. A column
entry followed by \ a will repeat the leader character
to the next entry. The default leader character is a
period. A different character can be specified with the
. 1 c instruction.

tbl A text preprocessor to t r o f f that formats
tables. Table specifications and text are placed
between the commands . TS and . TE. Columns can
be centered, right adjusted, left adjusted, or aligned by
decimal points. Headings may be placed over single
columns or groups of columns. Any table or element
can be enclosed in a box, and vertical and horizontal
lines can be placed at will.

text line A line destined to be printed or displayed.

transparent throughput An input line beginning
with a \ ! that is read in copy mode and transparently
output (without the initial \ !); the text processor is
otherwise unaware of the line's presence. This
mechanism may be used to pass control information
to a postprocessor or to embed control lines in a macro
created by a diversion.

Glossary G-3

trap A mechanism used in writing macros to
interrupt processing in order to divert to another
routine appropriate for the situation. Three types of
trap mechanisms are available: page traps, diversion
traps, and input-line-count traps.

t roff A formatter that produces high-quality
output on a high-resolution typesetter or laser printer.

unpaddable space A space that cannot be expanded
during justification.

vertical spacing The vertical distance from the base
line of one line of text to the base line of the next.

width function The width function \ w r string r

generates the numeric width of string (in basic units).
Size and font changes may be embedded in string and
will not affect the current environment.

word A string of characters bounded at each end by
one or more of the following: the space character, the
tab character, the beginning of the input line, or the
end of the input line.

G-4 Glossary

Index

$ (dollar sign) 11-9 to 1 1-10 . (x macro (me) 6-17, 6-21 . af request (mm) 4-24
+ (plus sign) 1-25 . (z macro (me) 6-13, 6-21 . af request (nroff/troff) 3-34
-a option (troff) 3-4 .) 1 macro (me) 6-16 . AI macro (ms) 5-4, 5-7, 5-40
-em flag 4-7 .) b macro (me) 6-13, 6-20 . AL macro (mm) 1-28, 4-46, 4-106
-e option (nroff) 3-4 .) e macro (me) 6-14, 6-20 . am command (nroff/troff) 3-28,
-F option (troff/nroff) 3-4 .) f macro (me) 6-16, 6-20 3-31
-h option (nroff) 3-4 .) 1 macro (me) 6-15, 6-21 . as command (nroff/troff) 3-28,
-i option (troff/nroff) 3-4 .) q macro (me) 6-15, 6-21 3-31
-m option (troff/nroff) 3-4 .) x macro (me) 6-17, 6-21 . AS macro (mm) 4-106
-mm flag 4-7 .) z macro (me) 6-13, 6-21 . AT macro (mm) 4-106

omission of 4-12 to 4-13 . ++B macro (me) 6-4, 6-20 . AU macro (mm) 4-106
-n option (troff/nroff) 3-4 . ++P macro (me) 6-4, 6-21 . Au macro (ms) 5-4, 5-7, 5-40
-o option (troff/nroff) 3-4 . +e macro (me) 6-4, 6-20 . AV macro (mm) 4-106
-q option (troff/nroff) 3-4 . 1 c macro (mm) 4-106 . B macro (mm) 1-21, 4-21, 4-106
-s option (troff/nroff) 3-4 . 1C macro (ms) 5-4, 5-10 . b macro (me) 6-8, 6-20
-T option (troff/nroff) 3-5 . 1e macro (ms) 6-21 . B macro (ms) 5-14, 5-40
-u option (nroff) 3-5 . 2e macro (me) · 6-5, 6-21 . B1 macro (ms) 5-4, 5-37, 5-40
- z option (troff/nroff) 3-5 . 2C macro (mm) 4-43, 4-106 . B2 macro (ms) 5-4, 5-37, 5-40
. sequence (nroff/troff) 3-48 . 2C macro (ms) 5-4, 5-10 . be macro (me) 6-5, 6-20
. ! request (mm) 4-24 • [0 macro (ms) 5-34 . BD macro (ms) 5-4, 5-29, 5-40
• $ register (nroff/troff) 3-54 .] - macro (ms) 5-34 . bd request (nroff/troff) 3-13
• $ $ register (nroff/troff) 3-54 . A register (nroff/troff) 3-54 . BE macro (mm) 4-41, 4-107
. (1 c macro (me) 6-16 . a register (nroff/troff) 3-54 . BI macro (mm) 4-41, 4-107
. (1 F macro (me) 6-16 . AB macro (ms) 5-4, 5-7, 5-40 . bi macro (me) 6-20
. (1 macro (me) 6-16 . ab request (nroff/troff) 3-43 . BL macro (mm) 1-28, 4-20, 4-46, 4-49,
. (b macro (me) 6-13, 6-20 . ad command (ms) 5-39 4-107
. (e macro (me) 6-14, 6-20 . ad request (nroff/troff) 3-23 . bp command (ms) 5-39
• < f macro (me) 6-16, 6-20 . AE macro (mm) 4-106 . bp macro (me) 6-20
. (1 macro (me) 6-15, 6-21 . AE macro (m s) 5-7, 5-40 . bp request (nroff/troff) 3-20
. (q macro (me) 6-15, 6-21 . AF macro (mm) 4-106 . br command (ms) 5-39

1-1

• BR macro (mm) 4-21, 4-107
. br request (me) 4-24
. br request (nroff/troff) 3-23
• BS macro (mm) 4-41, 4-107
• BT macro (ms) 5-40
. bx macro (me) 6-18, 6-20
• BX macro (ms) 5-37, 5-40
. c register (nroff/troff) 3-54
. c2 request (nroff/troff) 3-46
. cc request (nroff/troff) 3-46
. co macro (ms) 5-4, 5-28, 5-40
. ce command (ms) 5-39
. ce macro (me) 6-20
. ce request (mm) 4-24
. ce request (nroff/troff) 3-23,

3-25
• CF macro (ms) 5-22
. cf request (nroff/troff) 3-42
• CH macro 5-22
. ch request (nroff/troff) 3-31
. cs macro (mm) 4-93, 4-107
. cs request (nroff/troff) 3-13
• CT macro (ms) 5-4, 5-9, 5-41
. cu request (nroff/troff) 3-46
. d register (nroff/troff) 3-54
. da command (nroff/troff) 3-28,

3-31
• DA macro (ms) 5-15, 5-41
. oo macro (ms) 5-29
. de macro (troff) 1-30 to 1-31
. de command (nroff/troff) 3-28
• DE macro (mm) 1-26, 4-107
• DE macro (ms) 5-4, 5-27, 5-41
. de request (mm) 4-24
. de request (nroff/troff) 3-32
• DF macro (mm) 4-107
. di command (nroff/troff) 3-28,

3-32
• DL macro (mm) 1-28, 4-46, 4-49,

4-107
. dl request (nroff/troff) 3-30
. dn request (nroff/troff) 3-30
. ds command (nroff/troff) 3-28,

3-32
. os macro (mm) 1-26, 4-107

1-2 Index

. os macro (ms) 5-4, 5-27, 5-41

. ds request (mm) 4-24

. dt request (nroffltroff) 3-32
• EC macro (mm) 4-85, 4-107
. ec request (nroff/troff) 3-46
• EF macro (mm) 1-17, 4-37, 4-107
• EF macro (ms) 5-23, 5-41
• EH macro (mm) 1-17, 4-107
• EH macro (ms) 5-23, 5-41
. em request (nroff/troff) 3-32
• EN command (eqn) 1-6, 8-8
• EN macro (mm) 4-84, 4-107
• EN macro (ms) 5-4, 5-31, 5-41
. en macro (me) 6-20
. eo request (nroff/troff) 3-46

. EQ command
(eqn) 1-6, 8-8

• EQ macro (mm) 4-84, 4-107
• EQ macro (ms) 5-4, 5-31, 5-41
. eq macro (me) 6-20
. ev request (nroff/troff) 3-41
• EX macro (mm) 4-85, 4-108
. ex request (nroff/troff) 3-42
• F register (nroff/troff) 3-54
. f register (nroff/troff) 3-54
• FC macro (mm) 4-108
. fc request (nroff/troff) 3-27
• FD macro (mm) 4-108
. FE macro (mm) 1-19, 4-48, 4-108
• FE macro (ms) 5-32, 5-41
• FG macro (mm) 4-85, 4-108
. f i request (mm) 4-24
. fi request (nroff/troff) 1-16,

3-23
. fl request (nroff/troff) 3-44
• FM macro (ms) 5-11
. fo macro (me) 6-20
. fp request (nroff/troff) 3-13
• FS macro (mm) 1-19, 4-87, 4-108
• FS macro (ms) 5-32, 5-41
. ft command (nroff/troff) 1-21,

3-13
. Gl command (grap) 10-5, 10-9,

10-23
. G2 command (grap) 10-5, 10-9

. H register (nroff/troff) 3-54

. h register (nroff/troff) 3-54
• H macro (mm) 1-20, 4-27, 4-108
• HC macro (mm) 4-108
. he request (nroff/troff) 3-24
. he macro (me) 6-20
• HM macro (mm) 4-108
• HM macro (ms) 5-11
• HU macro (mm) 1-21, 4-32, 4-108
. hw request (mm) 4-24
. hw request (nroff/troff) 3-24
• HX macro (mm) 4-108
• HY macro (mm) 4-108
. hy request (nroff/troff) 3-24
• Hz macro (mm) 4-108
. I register (mm) 1-21
. i register (nroff/troff) 3-54
. I macro (mm) 4-21, 108
. I macro (ms) 5-14, 5-41
. i macro (me) 6-8, 6-10, 6-20
• IA macro (mm) 4-108
. IB macro (mm) 4-21 , 4-108
• ID macro (ms) 5-4, 5-28, 5-41
. IE macro (mm) 4-109
. ig request (nroff/troff) 3-44
. in request (nroff/troff) 3-25
. in macro (me) 6-20
. IP macro (ms) 5-4, 5-17, 5-41
. ip macro (me) 6-10, 6-20
. IR macro (mm) 4-21, 4-109
. it request (nroff/troff) 3-32
. j register (nroff/troff) 3-54
• k register (nroff/troff) 3-54
• KE macro (ms) 5-4, 5-26, 5-41
• KF macro (ms) 5-26, 5-41
• KS macro (ms) 5-4, 5-25, 5-41
• L register (nroff/troff) 3-54
. 1 register (nroff/troff) 3-54
• LB macro (mm) 4-54, 4-109
• LC macro (mm) 4-109
. lc request (nroff/troff) 3-26,

3-37
• LD macro (ms) 5-4, 5-28, 5-41
• LE macro (mm) 1-27, 4-109
. LF macro (ms) 5-22

. 1f request (nroff/troff) 3-42 • NS macro (mm) 4-109 • R macro (rnrn) 1-21, 4-21, 4-110

. LG macro (ms) 5-15, 5-41 . ns request (nroff/troff) 3-19 . R macro (ms) 5-14, 5-42

. 1g request (nroff/troff) 3-46 . nx request (rnrn) 4-24 . r macro 6-21
• LH macro (ms) 5-22 . nx request (nroff/troff) 3-42 . RB macro (rnrn) 4-21, 4-110
. LI macro (mm) 1-27, 4-46, 4-109 . o register (nroff/troff) 3-54 . RD macro (mm) 4-23, 4-1 10
. LL macro (ms) 5-12 . OF macro (mm) 1-17, 4-38, 4-109 . rd request (nroff/troff) 3-42
. 11 request (nroff/troff) 1-13, . OF macro (ms) 5-23, 5-42 . RE macro (ms) 5-4, 5-26, 5-42

3-25 . OH macro (rnrn) 1-17, 4-37, 4-110 . RF macro (rnrn) 4-94, 4-110
. LO macro (mm) 4-109 . OH macro (ms) 5-23, 5-42 . RF macro (ms) 5-22
. 1p macro (me) 6-9 . OK macro (mm) 4-110 . RH macro (ms) 5-22
. LP macro (ms) 1-10, 5-4, 5-17, 5-41 . OP macro (mm) 4-39, 4-110 . RI macro (mm) 4-21, 4-110
. 1p macro 6-21 . os request (nroff/troff) 3-19 . RL macro (mm) 1-28, 4-46, 4-50,
. 1s request (rnrn) 4-24 . P o macro (mm) 1-14 4-110
. 1s command (ms) 5-39 . P 1 macro (mm) 1-14 . rm request (rnrn) 4-24
. 1s request (nroff/troff) 3-19 . P register (nroff/troff) 3-54 . rm request (nroff/troff) 3-32
. LT macro (mm) 4-71, 4-109 . P macro (mm) 1-10, 4-25, 4-110 . rn request (nroff/troff) 3-28,
. LT macro 5-25 . P l macro (ms) 5-24, 5-42 3-32
. 1 t request (nroff/troff) 3-35 . pc request (nroff/troff) 3-35 . RP macro (mm) 4-95, 4-1 10
. Me macro (ms) 5-4, 5-10, 5-42 . PD macro (ms) 5-19 . RP macro (ms) 5-8, 5-42
. me request (nroff/troff) 3-44 . PE command (pic) 1-5, 9-2, 9-6 . rr request (rnrn) 4-24
. mk request (nroff/troff) 3-20 . PF command (pi c) 9-4 . rr request (nroff/troff) 3-34
. ML macro (mm) 1-28, 4-46, 4-50, . PF macro (mm) 1-17, 4-38, 4-1 10 . rs request (rnrn) 4-24

4-109 . PH macro (mm) 1-17, 4-37, 4-110 . RS macro (mm) 4-94, 4-110
. MT macro (mm) 4-109 . P I macro (ms) 5-18 . RS macro (ms) 5-4, 5-26, 5-42
. n register (nroff/troff) 3-54 . pi request (nroff/troff) 3-42 . rs request (nroff/troff) 3-19
. na command (ms) 5-39 . p1 command (ms) 5-39 . rt request (nroff/troff) 3-21
. na request (nroff/troff) 3-23 . p1 macro (troff) 1-14 . s register (nroff/troff) 3-54
. ND macro (mm) 4-109 . p1 request (nroff/troff) 3-21 . s macro (rnrn) 1-24, 4-11 1
. ND macro (ms) 5-15, 5-42 . PM macro (mm) 4-42, 4-110 . SA macro (mm) 4-111
. NE macro (mm) 4-109 . pm request (nroff/troff) 3-44 . SG macro (mm) 4-11 1
. ne request (nroff/troff) 3-21 . pn request (nroff/troff) 3-21 . SH macro (ms) 5-4, 5-21, 5-42
. nf request (rnrn) 4-24 . po command (troff) 1-15 . sh macro (me) 6-12, 6-21
. nf command 1-16 . PO macro (ms) 5-12 . s i macro (me) 6-12
. nf request (nroff/troff) 3-23 . po request (nroff/troff) 3-21 . SK macro (rnrn) 4-39, 4-111
. NH macro (ms) 5-4, 5-20, 5-42 . PP macro (ms) 5-4, 5-16, 5-42 . sm macro (me) 6-8, 6-21
. nh request (nroff/troff) 3-24 . pp macro (me) 6-9, 6-21 . SM macro (rnrn) 4-11 1
. NL macro (ms) 5-15, 5-42 . PS command (pic) 1-6, 9-2, 9-6 . SM macro (ms) 5-15, 5-42
. nm request (nroff/troff) 3-37 . ps command (troff) 1-23 . so request (rnrn) 4-24
. nn request (nroff/troff) 3-37 . PS macro (ms) 5-11 . so request (nroff/troff) 3-42
. np macro (me) 6-10, 6-21 . ps request (nroff/troff) 3-13 . sp command (ms) 5-39
. nP macro (mm) 4-109 . PT macro (ms) 5-42 . SP macro (mm) 4-17, 4-111
• nr request (rnrn) 4-24 . PX macro (mm) 4-40, 4-110 . sp macro 6-21
• nr request (nroff/troff) 1-29 to . PX macro (ms) · 5-36, 42 . sp request (rnrn) 4-24

1-30, 3-33, 3-34 . QI macro (ms) 5-18 . sp request (nroff/troff) 3-18,
. nr macro 6-21 . QP macro (ms) 5-4, 5-19, 5-42 3-19

Index 1-3

. ss request (nroff/troff) 3-13 . u register (nroff/troff) 3-54 \c sequence (nroff/troff) 3-22 to

. sv request (nroff/troff) 3-18, 19 . u macro (me) 6-8 3-23, 3-48

. sy request (nroff/troff) 3-44 . uf request (nroff) 3-15, 3-47 \d sequence (nroff/troff) 1-31,

. T register (nroff/troff) 3-54 • uh macro (me) 6-12, 6-21 3-48

. t register (nroff/troff) 3-54 . UL macro (ms) 5-14 \e sequence (nroff/troff) 3-48

. T& command (tbl) 7-17 . ul macro (me) 6-21 \f sequence (nroff/troff) 3-49

. TA macro (ms) 5-13, 5-42 . ul request (nroff/troff) 3-47 \g sequence (nroff/troff) 3-49 �"

. ta request (mm) 4-24 . . v register (nroff/troff) 3-54 \h sequence (nroff/troff) 1-31,

. ta request (nroff/troff) 3-26, . v register (nroff/troff) 3-54 3-49
3-27 . VL macro (mm) 1-28, 4-46, 4-51, \H sequence (nroff/troff) 3-49

. TB macro (mm) 4-86, 4-11 1 4-112 \k sequence (nroff/troff) 3-49

. TC macro (mm) 1-28, 4-91, 4-11 1 . VM macro (mm) 1-14, 4-40, 4-112 \1 sequence (nroff/troff) 1-32,

. TC macro (ms) 5-4, 5-36, 5-42 . vs command (troff) 1-23 3-49

. tc request (nroff/troff) 3-26, . vs macro (ms) 5-11 \L sequence (nroff/troff) 3-49
3-27 . w register (nroff/troff) 3-54 \n sequence (nroff/troff) 3-49

. TE command (tbl) 1-5 . WA macro (mm) 4-112 \o function (nroff/troff) 3-14,

. TE macro (mm) 4-83 to 4-84, 4-11 1 . we macro (mm) 4-1 12 3-49

. TE macro (ms) 5-4, 5-30, 5-42 . wh request (nroff/troff) 3-32 \p sequence (nroff/troff) 3-22,

. TE macro (tbl) 7-3 . x register (nroff/troff) 3-54 3-49

. te macro 6-21 . XA macro (ms) 5-4, 5-36 \r sequence (nroff/troff) 3-49

. th macro (me) 6-4, 6-21 . XE macro (ms) 5-36 \RETURN sequence

. TH macro (mm) 4-115 . xp macro (me) 6-17, 6-21 (nroff/troff) 3-28, 3-48

. TH macro (ms) 5-30 . XP macro (ms) 5-19 \s sequence (nroff/troff) 3-49

. ti macro (me) 6-21 . xs macro (ms) 5-4, 5-36 \SPACE BAR sequence

. ti request (mm) 4-24 . y register (nroff/troff) 3-54 (nroff/troff) 3-48

. ti request (nroff/troff) 3-25 . z register (nroff/troff) 3-54 \t sequence (nroff/troff) 3-49

. TL macro (mm) 4-11 1 \ sequence (nroff/troff) 3-48 \u sequence (nroff/troff) 1-31,

. TL macro (ms) 5-4 \ ! sequence (nroff/troff) 3-47, 3-49

. tl request (mm) 4-24 3-48 \v sequence (nroff/troff) 1-31,

. tl request (nroff/troff) 3-35 \$n sequence (nroff/troff) 3-48 3-49

. TM macro (mm) 4-1 11 \% sequence (nroff/troff) 3-48 \w sequence (nroff/troff) 3-49

. TM macro (ms) 5-8 \& character filler \x sequence (nroff/troff) 3-49

. tm request (nroff/troff) 3-44 (nroff/troff) 3-33 \ z sequence (nroff/troff) 3-49

. tp macro (me) 6-3 \& sequence (nroff/troff) 3-48 \ { sequence (nroff/troff) 3-48

. TP macro (mm) 4-40, 4-11 1 \ ' sequence (nroff/troff) 3-48 \ I sequence (nroff/troff) 3-48

. tr request (mm) 4-24 \ *x , \ * (xx sequence \ } sequence (nroff/troff) 3-48

. tr request (nroff/troff) 3-22, (nroff/troff) 3-48
3-47 \- sequence (nroff/troff) 3-48 A

. TS command (tbl) 1-5 \ . sequence (nroff/troff) 3-48

. TS macro (mm) 4-83, 4-111 \0 sequence (nroff/troff) 3-48 abstracts
in mm 4-62 to 4-63

·�
. TS macro (ms) 5-4, 5-30 \ \ sequence (nroff/troff) 3-48
. TS macro (tbl) 7-3 \ ' sequence (nroff/troff) 3-48 in ms 5-7

. t s macro (me) 6-21 \a sequence (nroff/troff) 3-48 accents (mm) 1-25, 4-23

. TX macro (mm) 4-111 \b sequence (nroff/troff) 3-48 acute accent (mm) 1-25, 4-22

. TY macro (mm) 4-1 12 address macros 4-7 4 to 4-75

I-4 Index

adjusting and ftlling text
in troff 1-15 to 1-16
in troff/nroff 3-22

adjusting margins request
(nroff/troff) 3-23

alphabetizing lists (mm) 4-48 to 4-49
appendix headings (mm) 4-99
arcs, drawing (pi c) 9-5 to 9-6

arguments
defining (nroff/troff) 3-29
using (mm) 4-14, 5-5
using (ms) 5-5

arrows, drawing (pic) 9-20 to 9-23
ASCII characters, exceptions to troff

3-10
attention line 4-76

authors
in mm 4-61 to 4-62
in ms 5-6 to 5-7

axes, scaling (grap) 10-23

B
beginning letter macros 4-77 to 4-78
BEL character (mm) 4-5
blank line request

(nroff/troff) 3-19
blocks (pic) 9-24
boldface

headings (mm) 4-29 to 4-30
in mm 1-21, 4-21
in troff 1-20 to 1-22
request (nroff/troff) 3-13
tutorial example 2-5

bottom-of-page processing (mm) 4-41
to 4-42

box rule sign 1-25
boxes

around a block of text (me) 6-18
around a block of text (ms) 5-37
around a word (me) 6-18
around a word (ms) 5-37
drawing (me) 6-18
drawing (ms) 5-37
drawing (pic) 9-6 to 9-7

braces (eqn) 8-15
brackets

creating large (nroff/troff) 3-14
oversized (eqn) 8-20

break request (nroff/troff) 3-23
breaks, defmed 4-14
bulleted lists

in mm 1-28, 4-46 to 4-47, 4-49
tutorial example 2-4

bullets (mm) 4-20
business letter style 4-71

c
cedilla (mm) 1-25, 4-22
centering

blocks of text (me) 6-14
headings (mm) 4-29
in nroff/troff 3-22
in troff 1-18 to 1-19
lists (me) 6-15 to 6-16

objects (pic) 9-8
pictures (pic) 9-4
request for (nroff/troff) 3-23

change trap location request
(nroff/troff) 3-13

chapter titles
in me 6-3 to 6-4
in ms 5-8 to 5-9

character sets
in eqn 8-7
ligatures (troff) 3-45
in troff 1-24, 3-10

character size request forms 3-13
character translations, input 3-45
characters

moving within a line (local motion)
3-37

repeating in tables 7-15
charts

adding grid lines (grap) 10-10
adding text (grap) 10-9 to 10-10

checkeq program 11-9 to 11-10
checkmm program 11-10
checknr program 5-38, 6-18, 1 1-10

chop facility (pic) 9-27 to 9-28
circle sign 1-25
circles, drawing (pic) 9-6
circumflex (mm) 1-25, 4-22
columns

aligning (tbl) 7-6 to 7-7
creating headings for (mm) 1-25,

4-44
default spacing in tables 7-12
double (mm) 4-43
equal-width in tables 7-1 1
multiple (me) 6-5
multiple (ms) 5-10
multiple (troff) 1-28
numeric (tbl) 7-7 to 7-8
returning to single (ms) 5-10
spacing in tables 7-10
staggered, in tables 7-11
width in tables 7-11

command delimiters (eqn) 8-8
command lines

example (mm) 4-7
parameters set from 4-10
syntax (eqn) 8-2
syntax (grap) 10-4 to 10-5
syntax (pic) 9-2
syntax (tbl) 7-2

command options (mm) 4-6

commands 1-3
comments (nroff/troff) 3-47
concealed newline characters

(nroff/troff) 3-47
conditionals

acceptance requests
(nroff/troff) 3-39

built -in condition names 3-40
in grap 10-13 to 10-15
in nroff/troff 3-39 to 3-40

confidential notation 4-75
constant character space request

(nroff/troff) 3-13
constant-width text, preparing 11-2
control characters

(nroff/troff) 1-3, 3-46

control lines, defmed 3-6

Index 1-5

coordinates, using to position (pic)
9-14 to 9-16

copy mode input, interpreting
(nroff/troff) 3-28 to 3-29

copy thru construction (grap) 10-

13
"copy to" notations (mm) 4-68 to 4-69
cover sheets

in mm 4-93

in ms 5-5 to 5-6
curves, plotting (grap) 10-16 to 10-18,

10-26 to 10-27
cw commands, checking 1 1-11

D
dashed lists (mm) 1-26, 4-46, 4-49
dashes (mm) 4-20
date

changing (mm) 4-65 to 4-66

changing and removing (ms) 5-15
defme me information 4-70

diacritical marks (eqn) 8-19
diction program 1 1-9
disclaimer (mm) 4-42

displayed equations (eqn) 8-8 to 8-9
displays

block (ms) 5-29

creating (ms) 5-27 to 5-29
creating (mm) 4-78 to 4-86
defmed 1-26

floating (mm) 4-81 to 4-83
in equations (mm) 4-84 to 4-85
in figure, table, equation, and

exhibit titles (mm) 4-85 to 4-86

in me 6-14 to 6-16
in tables (mm) 4-83 to 4-84

indented (ms) 5-28
left-adjusted (ms) 5-28

major quotes (me) 6-15

standard lists (me) 6-15
static (mm) 4-79 to 4-81

tutorial example 2-2

diversions, creating
(nroff/troff) 3-30

I-6 Index

document structure (mm) 4-4
dollar sign ($) 1 1-10
dot commands 1-3
double quotation marks

in me 6-2
in mm 4-14
in ms 5-5

down arrow sign 1-25

E
ellipses, drawing (pic) 9-6

end-of-memorandum macros 4-67 to
4-68

environment switching requests
(nroff/troff) 3-41

eqn

command delimiters 8-8
command line syntax 8-2

defmed 8-2

displayed equations 8-8 to 8-9
entering equations 8-16

Greek letters and math symbols 8-3

interpreting equations 8-13
overview of formatting

equations 1-6
using 8-2 to 8-12

equally scaled axes (grap) 10-23 to
10-25

equations
additional character set 8-7

aligning 8-23 to 8-24
braces in 8-15
captions (mm) 4-85

changing sizes and shapes of fonts
8-24

checking 11-9 to 11-10
checkreq program 8-29
creating (eqn) 8-11 to 8-12

creating (ms) 5-31

defming 8-11

diacritical marks 8-19

displays (mm) 4-84 to 8-29

entering 8-16

error messages 8-28 to 8-29

fractions 8-17
Greek alphabet 8-6
Greek characters and math symbols

8-3
in tables 7-5
in troff 1-24
inline 8-10 to 8-11
labels 8-15 to 8-16
limits 8-18 to 8-19
lists of (mm) 4-86
local motions 8-24

making global changes 8-26
making local changes 8-25
matrixes 8-22
oversized brackets 8-20
overview of formatting 1-6
piling objects 8-21
precedence rules 8-27 to 8-28
quotation marks 8-14

specifying 8-12
square roots 8-18

standard mathematical characters
8-5

subscripts and superscripts 8-16 to
8-17

troubleshooting 8-28 to 8-29
using symbols 8-7

error messages
in eqn 8-28 to 8-29

in mm 4-116 to 4-120
reading 3-43

errors, detecting (mm) 4-98
escape characters, defmed 1-3

escape sequences (nroff/troff)
3-48 to 3-49

exdented paragraphs (ms) 5-18 to 5-19
exhibits

captions (mm) 4-85 to 4-86
lists of (mm) 4-86

exit macros (mm) 4-33 to 4-35

expressions (pic) 9-32

F
field delimiters, tabs (nroff/troff)

3-27
figures (mm)

lists 4-86
title 4-85 to 4-86

fill mode request (nroff/troff) 3-23
filling. See adjusting and filling text
first-page format, alternate 4-66
floating displays (mm) 4-81 to 4-83

defmed 4-78
floating keeps

in me 6-13

in ms 5-26

flush output buffer 3-44

fonts
bold 3-13
bold (me) 6-7
bold (mm) 1-21
bold (ms) 5-13 to 5-14
bold (troff) 1-20 to 1-22
changing point size 1-22 to 1-23,

3-12

changing size and shape
(eqn) 8-24 to 8-26

choosing (nroff/troff) 3-12

Greek alphabet 1-24

in tables 7-12

italic (me) 6-7
italic (mm) 1-21
italic (ms) 5-13 to 5-14
italic (troff) 1-20 to 1-22
overview 1-20

specifying with numbers 1-22

tutorial example 2-5

footers
customizing (ms) 5-23
defmed (me) 6-12

even (mm) 1-17
multiline (ms) 5-24
odd (mm) 1-17
strings and registers (mm) 4-38
using (mm) 1-17 to 1-18,

4-36 to 4-45

using (ms) 5-21 to 5-25
footers first page (ms) 5-24
footnotes

creating (mm) 4-87 to 4-90
creating (ms) 5-32

delimiting text (mm) 4-87 to 4-88
format (mm) 4-88 to 4-89
format (ms) 5-32 to 5-33
hyphenating text (mm) 4-89
indenting (ms) 5-33
length (ms) 5-33
in me 6-16

numbered (mm) 4-88

numbered (ms) 5-32 to 5-33

overview 1-19
producing (tutorial) 2-14
spacing between entries (mm) 4-90

format, changing with newform
program 11-4

formatter 3-10
formatter and device resolution

(troff/nroff) 3-5 to 3-6

formatter requests (mm) 4-14,

4-24 to 4-25
fractions (eqn) 8-17

G
global changes (eqn) 8-26

grap
adding grid lines to a chart 10-10

command line 10-4 to 10-5
copy thru 10-13

creating macros 10-12 to 10-13

default actions 10-5 to 10-7

defmed 10-3

defining the graph format 10-5
equally scaled axes 10-23 to 10-25

frame adjusting 10-8
labels 10-9 to 10-10
loops and conditionals 10-13 to

10-16
overview of formatting graphs 1-8
plotting curves 10-16 to 10-18
polar coordinates 10-22

print command 10-11 to 10-12

sh command 10-12
shell 10-11
syntax 10-28 to 10-32
text, adding to a chart 10-9 to 10-10

graphics, producing (tutorial example)
2-16

graphs
formatting 1-9
frame adjusting (grap) 10-8 to 10-9

graphs, formatting 1-10
grave accent (mm) 1-25, 4-22

Greek alphabet 8-6

Greek characters 1-24

in eqn 8-3

naming conventions on special
fonts 3-50

printing (nroff) 11-4 to 11-5
grids, creating in charts (grap) 10-10
grouping objects (pic) 9-20, 9-27

H, I, J, K
hanging indents (mm) 4-100 to 4-101

hanging paragraphs (ms) 5-18 to 5-19

headers
customizing (ms) 5-23

defmed 1-17
even (mm) 1-17

ftrst page (ms) 5-24

multiline (ms) 5-24
odd (mm) 1-17
strings and registers (mm) 4-38
using (me) 6-12

using (mm) 1-17 to 1-18,

4-36 to 4-45

using (ms) 5-21 to 5-25
using "PRIVATE" in (mm) 4-40

headings
centered (mm) 4-29
changing appearance of (mm) 4-28
creating (me) 6-11
creating (ms) 5-20
creating for two columns (mm) 4-44
forcing page break (mm) 4-28

Index 1-7

headings (Continued)
in page numbering (mm) 4-33
in table of contents (mm) 4-32 to

4-33
numbered (me) 6-11
numbered (mm) 4-27
numbered (ms) 5-20
overview 1-19

prespacing (mm) 4-28

setting point size (mm) 4-30 to 4-31

spacing after (mm) 4-28 to 4-29

unnumbered (me) 6-12
unnumbered (mm) 1-20, 4-32
unnumbered (ms) 5-21
with bold, italic, underline (mm)

4-29 to 4-30
horizontal lines, in tables 7-9 to 7-10,

7-14 to 7-15
hyphenation

in mm 4-15 to 4-16

in nroff/troff 3-24

of footnote text (mm) 4-89

requests (nroff/troff) 3-24

hyphens (mm) 4-20

L
labels

in charts (grap) 10-9 to 10-10

in equations (eqn) 8-15 to 8-16
of objects (pic) 9-19 to 9-20

left -block paragraphs
in me 6-9
in ms 5-16 to 5-17

letter-options macro 4-75
letter-type arguments and formats 4-71
letter-type macro 4-71
letters

beginning letter macros (mm) 4-77

to 4-78

business style (mm) 4-71

forcing one page (mm) 4-70

multipage (mm) 4-77
limits in equations 8-18 to 8-19

line length

1'!8 Index

changing (ms) 5-12

. in me 6-7
lines

adding to a chart (grap) 10-10
changing thickness (tbl) 7-5
drawing (pic) 9-6 to 9-7
drawing (tbl) 7-9 to 7-10
in tables 7-14 to 7-15

single-column width in tables 7-15

list-begin macros (mm) 4-54 to 4-56

list -end macros (mm) 4-47

list-item macros (mm) 4-46 to 4-47
lists

bulleted (mm) 4-46 to 4-47, 4-49
centering (me) 6-15 to 6-16
creating (mm) 4-45 to 4-57
custom (me) 6-15 to 6-16
dashed (mm) 4-46, 4-49
initialization macros (mm) 4-45 to

4-46
list-begin macros (mm) 4-54

list-end macros (mm) 4-45, 4-47

list-item macros (mm) 4-45, 4-46

marked (mm) 4-46, 4-50
nested (mm) 4-52 to 4-53
numbered or alphabetized (mm)

4-48 to 4-49

of figures, tables, equations, and
exhibits (mm) 4-86

reference (mm) 4-46, 4-50

spacing (mm) 4-48
standard (me) 6-15

variable-item (mm) 4-46, 4-51 to 4-52
local changes (eqn) 8-25 to 8-26
local motion (eqn) 8-24
loops (grap) 10-13 to 10-16
loops and conditional statements (pic)

9-30 to 9-31

M
macros

address (mm) 4-74 to 4-75
beginning sequence (me) 6-3

beginning sequence (mm) 4-59 to
4-60

beginning sequence (ms) 5-5
creating (grap) 10-12 to 10-13
creating (me) 6-19
creating (ms) 5-39
defming (me) 6-19

footer 4-36

header 4-36
inside address (mm) 4-74
letter-options (mm) 4-75

summary table (me) 6-20 to 6-21
summary table (ms) 5-40 to 5-43
user exit (mm) 4-33

major quotes (me) 6-15
manual pages

creating with man macros 11-6,
1 1-7

reading online 11-7
margins

changing page offsets (me) 6-7

changing page offsets (ms) 5-12

changing top and bottom (mm) 4-40

changing top and bottom (ms) 5-1 1

in me 6-6
justifying (mm) 4-17

marked lists (mm) 4-46, 4-50
mathematical equations (tbl) 7-5

mathematical functions (pi c) 9-29 to
9-30

mathematical symbols (eqn) 8-3, 8-5

matrixes (eqn) 8-22
me

boldface 6-7
boxed block of text 6-18
boxed words 6-18
boxes, drawing 6-18

centering blocks of text 6-14

chapter titles 6-3
columns 6-5

defmed 6-2

defming macros 6-19
displays 6-14 to 6-16
double quotation marks 6-2

floating keeps 6-13

fonts 6-7
footers 6-12
footnotes 6-16

formatting 6-3-4
headers 6-12
headings 6-11 to 6-12
indenting 6-14
index 6-17
italics 6-7
keeps 6-13
lists 6-15 to 16

macro summary table 6-20 to 6-21
major quotes 6-15
margins 6-6

multicolumns 6-5
paragraphs 6-8 to 6-10
point size 6-6

printing indexes 6-17
static keeps 6-13
string summary table 6-22
table of contents 6-16

thesis format 6-4
titles 6-3
vertical spacing 6-6

memoranda
abstract, identifying 4-62 to 4-63
alternate flrst page 4-66

approved signature line 4-70
attention line 4-76
author, describing 4-61 to 4-62
business letter style 4-71
confidential notation 4-75
"copy to" notations 4-68 to 4-69
date, changing 4-65 to 4-66

defme me information 4-70
end-of-memorandum

macros 4-67
input text example 4-66 to 4-67
inside address macros 4-74 to 4-75
keywords 4-63
letter-options macro 4-75
letter-type arguments and formats

4-71
letter-type macro 4-71
multipage letters 4-77

salutations 4-76

sequence of beginning letter macros
4-77 to 4-78

signature block 4-67 to 4-68
subject lines 4-76 to 4-77
title, generating 4-60 to 4-61
TM numbers, specifying 4-62
types of 4-64
writer's address macros 4-73

memorandum macros,
modifying 4-97

minus sign (tbl) 7-2
minus sign (rnrn) 4-20
rnrn

accents 4-22
arguments 4-14
boldface 4-21
bullets, creating 4-20
centering headings 4-29
command options 4-6

command, described 4-5
cover sheets 4-90 to 4-93
creating displays 4-78 to 4-86

creating user exit macros 4-33
dashes 4-20
defmed 4-3
document structure 4-4
double quotation marks 4-14
error messages 4-116 to 4-120
footnotes, creating 4-87
formatter requests 4-14, 4-24 to 4-25
headings, numbered 4-27
hyphenation 4-15 to 4-16

hyphens 4-20
italics 4-21
large documents 4-44 to 4-45
lists 4-45
macros 4-106

marking styles 4-31 to 4-32
minus signs 4-20
number registers 4-10 to 4-12,

4-113 to 4-116

options and commands for
accessing 4-5 to 4-13

paragraphs 4-25

point size, setting 4-18 to 4-19
reference tables 4-106 to 4-120
references 4-93 to 4-95
roman font 4-21
simple letters, examples 4-102 to

4-105
spacing lines of text 4-17 to 4-18
strings 4-112 to 4-113
table of contents 4-91 to 4-93
tabs, setting 4-16 to 4-17
trademark string 4-22
troubleshooting 4-96 to 4-97
unnumbered headings 4-32
vertical spacing, setting 4-18 to 4-19

rnrn commands, checking 11-10
move (pic) 9-18
rns

abstracts 5-7
authors 5-7
block displays 5-29
boxes, drawing 5-37
centered displays 5-28
changing and removing date 5-15
chapter titles 5-8 to 5-9
cover sheets 5-5
defmed 5-3
displays 5-27 to 5-29
equations, creating 5-31
floating keeps 5-26
footers 5-21 to 5-25
footnotes 5-32 to 5-33
format of names 5-40
formatting 5-9 to 5-15
headers 5-21 to 5-25
headings 5-20 to 5-21
indented displays 5-28
indenting text 5-26

index 5-34 to 5-36

keeps 5-25 to 5-26

left-adjusted displays 5-28
macro summary 5-40 to 5-43
macros, creating 5-39 to 5-40
nroff/troff commands

5-38 to 5-39

Index 1-9

ms (Continued)
number register summary table

5-43 to 5-44
numbered headings 5-20
paper styles 5-8
paragraphs 5-16 to 5-19
references 5-34
right shift 5-26
static keeps 5-25
string summary table 5-45
table of contents 5-34 to 5-36

tables, creating 5-30
titles 5-6

ms commands, checking 1 1-10
multicolumn macros (ms) 5-10
multicolumn output

in me 6-5
in ms 5-10

multiline entries in tables 7-13 to 7-14
multiline headers/footers (ms) 5-24
multipage letters 4-77
multipage tables 7-16 to 7-17

N
naming conventions (mm) 4-97 to 4-99

number registers 1-29 to 1-30

names (mm) 4-113 to 4-116

summary table (me) 6-22
summary table (ms) 5-43 to 5-44
to hold parameter values 4-10 to

4-12

numbered footnotes (ms) 5-32 to 5-33
numbered headings

in me 6-11
in mm 4-27
in ms 5-20

numbering
of footnotes (mm) 4-87
of lines 11-2 to 1 1-3

of lists (mm) 4-48 to 4-49
of paragraphs (mm) 4-26 to 4-27

1-10 Index

0
object attributes, setting (pic) 9-7 to

9-8
object variables, setting (pic) 9-10
objects (pic)

centering 9-8
changing size 9-1 1 to 9-12
grouping 9-20 to 9-28
invisible 9-8
labeling 9-19 to 9-20

positioning with move 9-18
positioning with variables 9-18 to

9-19
primitive 9-8

odd pages, forcing (mm) 4-39

online manual pages, reading 1 1-7
output, disappearing (mm) 4-96 to 4-97
output spacing, forcing (eqn) 8-13

P, Q
page break, forcing at headings (mm)

4-28
page numbering, headings (mm) 4-33

page offset
changing (me) 6-7
changing (ms) 5-12
defmed 6-7

pages
forcing odd (mm) 4-39
skipping (mm) 4-39

paper styles (ms) 5-8
paragraphs

changing spacing between (ms)
5-19

hanging (ms) 5-18 to 5-19

indenting (me) 6-9

indenting (mm) 4-25 to 4-26
indenting (ms) 5-17 to 5-18
left-block (me) 6-9
left-block (ms) 5-16 to 5-17
in me 6-10
in mm 4-25
numbering (mm) 4-26 to 4-27

quotes (ms) 5-19

space between (mm) 4-27
standard (ms) 5-16

parameters set from command
line 4-10

permuted index 1 1-7
pic

adding text to a picture 9-12 to 9-14
blocks 9-24 to 9-26

centering objects 9-8
centering pictures 9-4
changing size of objects 9-11 to 9-12
chop facility 9-27 to 9-28
command syntax 9-2

creating invisible objects 9-8
defmed 9-2
defming picture format 9-3 to 9-5

examples 9-32 to 9-37
expressions 9-32
grouping objects 9-20 to 9-28
labeling objects 9-19 to 9-20

loops and conditional statements
9-30 to 9-31

mathematical functions 9-29 to 9-30

object variables 9-10

positioning objects with move 9-18

positioning objects with variables
9-18 to 9-19

troff interface 9-2 to 9-3

picture end command 9-3
picture start command 9-3
piling objects (eqn) 8-21

point size
changing in a string (me) 6-8

changing in a string (ms) 5-14 to
5-15

changing in tables 7-12
headings (mm) 4-30 to 4-31

reducing in a string (mm) 4-19

setting (me) 6-6
setting (mm) 4-18 to 4-19
setting (ms) 5-10 to 5-1 1

polar coordinates (grap) 10-22
positioning objects (pi c) 9-18, 9-19
precedence rules (eqn) 8-27 to 8-28
preprocessors 11-2

primitive object attributes 9-8
print command (grap) 10-11 to

10-12
printing

indexes (me) 6-17

indexes (ms) 5-36
table of contents (ms) 5-36

"PRIVATE," using in header (mm) 4-40
proprietary marking macro (mm) 4-42

R
reverse line feeds, stripping out 11-5 to

11-6

s
spacing, single 11-4
spell progam 11-8
style program 11-8

T
tilde (mm) 1-25, 4-22
translating characters 11-3

u
umlaut (mm) 1-25, 4-22
underlining, with ul program 11-5

v
viewgraphs and slides, typesetting 11-6

W, X, Y, Z
writing style, checking 1 1-8

Index 1-11

The Apple Publishing System
AIUX Text-Processing Tools was written, edited, and
composed on a desktop publishing system using Apple
Macintosh computers and Microsoft Word software.
Proof pages were created on Apple LaserWriter printers.
Final pages were created on the Varityper Vf600. Line
art was created using Adobe Illustrator. PostScript®,
the page-description language for the LaserWriter, was
developed by Adobe Systems Incorporated.

Text type and display type are Apple's corporate font, a
condensed version of lTC Garamond. Bullets are lTC
Zapf Dingbats®. Some elements, such as program
listings, are set in Apple Courier.

	AUX_3_Text_Processing_Tools_Afront-01-i
	AUX_3_Text_Processing_Tools_Afront-02-ii
	AUX_3_Text_Processing_Tools_Afront-03-iii
	AUX_3_Text_Processing_Tools_Afront-05-v
	AUX_3_Text_Processing_Tools_Afront-06-vi
	AUX_3_Text_Processing_Tools_Afront-07-vii
	AUX_3_Text_Processing_Tools_Afront-08-viii
	AUX_3_Text_Processing_Tools_Afront-09-ix
	AUX_3_Text_Processing_Tools_Afront-10-x
	AUX_3_Text_Processing_Tools_Afront-11-xi
	AUX_3_Text_Processing_Tools_Afront-12-xii
	AUX_3_Text_Processing_Tools_Afront-13-xiii
	AUX_3_Text_Processing_Tools_Afront-14-xiv
	AUX_3_Text_Processing_Tools_Afront-19-xix
	AUX_3_Text_Processing_Tools_Afront-20-xx
	AUX_3_Text_Processing_Tools_Afront-21-xxi
	AUX_3_Text_Processing_Tools_Afront-23-xxiii
	AUX_3_Text_Processing_Tools_Afront-24-xxiv
	AUX_3_Text_Processing_Tools_Afront-25-xv
	AUX_3_Text_Processing_Tools_Afront-25-xxv
	AUX_3_Text_Processing_Tools_Afront-26-xvi
	AUX_3_Text_Processing_Tools_Afront-26-xxvi
	AUX_3_Text_Processing_Tools_Afront-27-xvii
	AUX_3_Text_Processing_Tools_Afront-27-xxvii
	AUX_3_Text_Processing_Tools_Afront-28-xviii
	AUX_3_Text_Processing_Tools_Afront-28-xxviii
	AUX_3_Text_Processing_Tools_Afront-29-xxix
	AUX_3_Text_Processing_Tools_Afront-30-xxx
	AUX_3_Text_Processing_Tools_Afront-31-xxxi
	AUX_3_Text_Processing_Tools_Afront-32-xxxii
	AUX_3_Text_Processing_Tools_Afront-33-xxxiii
	AUX_3_Text_Processing_Tools_Afront-34-xxxiv
	AUX_3_Text_Processing_Tools_Afront-35-xxxv
	AUX_3_Text_Processing_Tools_Afront-36-xxxvi
	AUX_3_Text_Processing_Tools_Afront-37-xxxvii
	AUX_3_Text_Processing_Tools_Ch01-01
	AUX_3_Text_Processing_Tools_Ch01-02
	AUX_3_Text_Processing_Tools_Ch01-03
	AUX_3_Text_Processing_Tools_Ch01-04
	AUX_3_Text_Processing_Tools_Ch01-05
	AUX_3_Text_Processing_Tools_Ch01-06
	AUX_3_Text_Processing_Tools_Ch01-07
	AUX_3_Text_Processing_Tools_Ch01-08
	AUX_3_Text_Processing_Tools_Ch01-09
	AUX_3_Text_Processing_Tools_Ch01-10
	AUX_3_Text_Processing_Tools_Ch01-11
	AUX_3_Text_Processing_Tools_Ch01-12
	AUX_3_Text_Processing_Tools_Ch01-13
	AUX_3_Text_Processing_Tools_Ch01-14
	AUX_3_Text_Processing_Tools_Ch01-15
	AUX_3_Text_Processing_Tools_Ch01-16
	AUX_3_Text_Processing_Tools_Ch01-17
	AUX_3_Text_Processing_Tools_Ch01-18
	AUX_3_Text_Processing_Tools_Ch01-19
	AUX_3_Text_Processing_Tools_Ch01-20
	AUX_3_Text_Processing_Tools_Ch01-21
	AUX_3_Text_Processing_Tools_Ch01-22
	AUX_3_Text_Processing_Tools_Ch01-23
	AUX_3_Text_Processing_Tools_Ch01-24
	AUX_3_Text_Processing_Tools_Ch01-25
	AUX_3_Text_Processing_Tools_Ch01-26
	AUX_3_Text_Processing_Tools_Ch01-27
	AUX_3_Text_Processing_Tools_Ch01-28
	AUX_3_Text_Processing_Tools_Ch01-29
	AUX_3_Text_Processing_Tools_Ch01-30
	AUX_3_Text_Processing_Tools_Ch01-31
	AUX_3_Text_Processing_Tools_Ch01-33
	AUX_3_Text_Processing_Tools_Ch02-02
	AUX_3_Text_Processing_Tools_Ch02-03
	AUX_3_Text_Processing_Tools_Ch02-04
	AUX_3_Text_Processing_Tools_Ch02-05
	AUX_3_Text_Processing_Tools_Ch02-06
	AUX_3_Text_Processing_Tools_Ch02-07
	AUX_3_Text_Processing_Tools_Ch02-08
	AUX_3_Text_Processing_Tools_Ch02-09
	AUX_3_Text_Processing_Tools_Ch02-10
	AUX_3_Text_Processing_Tools_Ch02-11
	AUX_3_Text_Processing_Tools_Ch02-12
	AUX_3_Text_Processing_Tools_Ch02-13
	AUX_3_Text_Processing_Tools_Ch02-14
	AUX_3_Text_Processing_Tools_Ch02-15
	AUX_3_Text_Processing_Tools_Ch02-16
	AUX_3_Text_Processing_Tools_Ch03-01
	AUX_3_Text_Processing_Tools_Ch03-02
	AUX_3_Text_Processing_Tools_Ch03-03
	AUX_3_Text_Processing_Tools_Ch03-04
	AUX_3_Text_Processing_Tools_Ch03-05
	AUX_3_Text_Processing_Tools_Ch03-06
	AUX_3_Text_Processing_Tools_Ch03-07
	AUX_3_Text_Processing_Tools_Ch03-08
	AUX_3_Text_Processing_Tools_Ch03-09
	AUX_3_Text_Processing_Tools_Ch03-10
	AUX_3_Text_Processing_Tools_Ch03-11
	AUX_3_Text_Processing_Tools_Ch03-12
	AUX_3_Text_Processing_Tools_Ch03-13
	AUX_3_Text_Processing_Tools_Ch03-14
	AUX_3_Text_Processing_Tools_Ch03-15
	AUX_3_Text_Processing_Tools_Ch03-16
	AUX_3_Text_Processing_Tools_Ch03-17
	AUX_3_Text_Processing_Tools_Ch03-18
	AUX_3_Text_Processing_Tools_Ch03-19
	AUX_3_Text_Processing_Tools_Ch03-20
	AUX_3_Text_Processing_Tools_Ch03-21
	AUX_3_Text_Processing_Tools_Ch03-22
	AUX_3_Text_Processing_Tools_Ch03-23
	AUX_3_Text_Processing_Tools_Ch03-24
	AUX_3_Text_Processing_Tools_Ch03-25
	AUX_3_Text_Processing_Tools_Ch03-26
	AUX_3_Text_Processing_Tools_Ch03-27
	AUX_3_Text_Processing_Tools_Ch03-28
	AUX_3_Text_Processing_Tools_Ch03-29
	AUX_3_Text_Processing_Tools_Ch03-30
	AUX_3_Text_Processing_Tools_Ch03-31
	AUX_3_Text_Processing_Tools_Ch03-32
	AUX_3_Text_Processing_Tools_Ch03-33
	AUX_3_Text_Processing_Tools_Ch03-34
	AUX_3_Text_Processing_Tools_Ch03-35
	AUX_3_Text_Processing_Tools_Ch03-36
	AUX_3_Text_Processing_Tools_Ch03-37
	AUX_3_Text_Processing_Tools_Ch03-38
	AUX_3_Text_Processing_Tools_Ch03-39
	AUX_3_Text_Processing_Tools_Ch03-40
	AUX_3_Text_Processing_Tools_Ch03-41
	AUX_3_Text_Processing_Tools_Ch03-42
	AUX_3_Text_Processing_Tools_Ch03-43
	AUX_3_Text_Processing_Tools_Ch03-44
	AUX_3_Text_Processing_Tools_Ch03-45
	AUX_3_Text_Processing_Tools_Ch03-46
	AUX_3_Text_Processing_Tools_Ch03-47
	AUX_3_Text_Processing_Tools_Ch03-48
	AUX_3_Text_Processing_Tools_Ch03-49
	AUX_3_Text_Processing_Tools_Ch03-50
	AUX_3_Text_Processing_Tools_Ch03-51
	AUX_3_Text_Processing_Tools_Ch03-52
	AUX_3_Text_Processing_Tools_Ch03-53
	AUX_3_Text_Processing_Tools_Ch03-54
	AUX_3_Text_Processing_Tools_Ch04-01
	AUX_3_Text_Processing_Tools_Ch04-02
	AUX_3_Text_Processing_Tools_Ch04-03
	AUX_3_Text_Processing_Tools_Ch04-04
	AUX_3_Text_Processing_Tools_Ch04-05
	AUX_3_Text_Processing_Tools_Ch04-06
	AUX_3_Text_Processing_Tools_Ch04-07
	AUX_3_Text_Processing_Tools_Ch04-08
	AUX_3_Text_Processing_Tools_Ch04-09
	AUX_3_Text_Processing_Tools_Ch04-10
	AUX_3_Text_Processing_Tools_Ch04-100
	AUX_3_Text_Processing_Tools_Ch04-101
	AUX_3_Text_Processing_Tools_Ch04-102
	AUX_3_Text_Processing_Tools_Ch04-103
	AUX_3_Text_Processing_Tools_Ch04-104
	AUX_3_Text_Processing_Tools_Ch04-105
	AUX_3_Text_Processing_Tools_Ch04-106
	AUX_3_Text_Processing_Tools_Ch04-107
	AUX_3_Text_Processing_Tools_Ch04-108
	AUX_3_Text_Processing_Tools_Ch04-109
	AUX_3_Text_Processing_Tools_Ch04-11
	AUX_3_Text_Processing_Tools_Ch04-110
	AUX_3_Text_Processing_Tools_Ch04-111
	AUX_3_Text_Processing_Tools_Ch04-112
	AUX_3_Text_Processing_Tools_Ch04-113
	AUX_3_Text_Processing_Tools_Ch04-114
	AUX_3_Text_Processing_Tools_Ch04-115
	AUX_3_Text_Processing_Tools_Ch04-116
	AUX_3_Text_Processing_Tools_Ch04-117
	AUX_3_Text_Processing_Tools_Ch04-118
	AUX_3_Text_Processing_Tools_Ch04-119
	AUX_3_Text_Processing_Tools_Ch04-12
	AUX_3_Text_Processing_Tools_Ch04-120
	AUX_3_Text_Processing_Tools_Ch04-13
	AUX_3_Text_Processing_Tools_Ch04-14
	AUX_3_Text_Processing_Tools_Ch04-15
	AUX_3_Text_Processing_Tools_Ch04-16
	AUX_3_Text_Processing_Tools_Ch04-17
	AUX_3_Text_Processing_Tools_Ch04-18
	AUX_3_Text_Processing_Tools_Ch04-19
	AUX_3_Text_Processing_Tools_Ch04-20
	AUX_3_Text_Processing_Tools_Ch04-21
	AUX_3_Text_Processing_Tools_Ch04-22
	AUX_3_Text_Processing_Tools_Ch04-23
	AUX_3_Text_Processing_Tools_Ch04-24
	AUX_3_Text_Processing_Tools_Ch04-25
	AUX_3_Text_Processing_Tools_Ch04-26
	AUX_3_Text_Processing_Tools_Ch04-27
	AUX_3_Text_Processing_Tools_Ch04-28
	AUX_3_Text_Processing_Tools_Ch04-29
	AUX_3_Text_Processing_Tools_Ch04-30
	AUX_3_Text_Processing_Tools_Ch04-31
	AUX_3_Text_Processing_Tools_Ch04-32
	AUX_3_Text_Processing_Tools_Ch04-33
	AUX_3_Text_Processing_Tools_Ch04-34
	AUX_3_Text_Processing_Tools_Ch04-35
	AUX_3_Text_Processing_Tools_Ch04-36
	AUX_3_Text_Processing_Tools_Ch04-37
	AUX_3_Text_Processing_Tools_Ch04-38
	AUX_3_Text_Processing_Tools_Ch04-39
	AUX_3_Text_Processing_Tools_Ch04-40
	AUX_3_Text_Processing_Tools_Ch04-41
	AUX_3_Text_Processing_Tools_Ch04-42
	AUX_3_Text_Processing_Tools_Ch04-43
	AUX_3_Text_Processing_Tools_Ch04-44
	AUX_3_Text_Processing_Tools_Ch04-45
	AUX_3_Text_Processing_Tools_Ch04-46
	AUX_3_Text_Processing_Tools_Ch04-47
	AUX_3_Text_Processing_Tools_Ch04-48
	AUX_3_Text_Processing_Tools_Ch04-49
	AUX_3_Text_Processing_Tools_Ch04-50
	AUX_3_Text_Processing_Tools_Ch04-51
	AUX_3_Text_Processing_Tools_Ch04-52
	AUX_3_Text_Processing_Tools_Ch04-53
	AUX_3_Text_Processing_Tools_Ch04-54
	AUX_3_Text_Processing_Tools_Ch04-55
	AUX_3_Text_Processing_Tools_Ch04-56
	AUX_3_Text_Processing_Tools_Ch04-57
	AUX_3_Text_Processing_Tools_Ch04-58
	AUX_3_Text_Processing_Tools_Ch04-59
	AUX_3_Text_Processing_Tools_Ch04-60
	AUX_3_Text_Processing_Tools_Ch04-61
	AUX_3_Text_Processing_Tools_Ch04-62
	AUX_3_Text_Processing_Tools_Ch04-63
	AUX_3_Text_Processing_Tools_Ch04-64
	AUX_3_Text_Processing_Tools_Ch04-65
	AUX_3_Text_Processing_Tools_Ch04-66
	AUX_3_Text_Processing_Tools_Ch04-67
	AUX_3_Text_Processing_Tools_Ch04-68
	AUX_3_Text_Processing_Tools_Ch04-69
	AUX_3_Text_Processing_Tools_Ch04-70
	AUX_3_Text_Processing_Tools_Ch04-71
	AUX_3_Text_Processing_Tools_Ch04-72
	AUX_3_Text_Processing_Tools_Ch04-73
	AUX_3_Text_Processing_Tools_Ch04-74
	AUX_3_Text_Processing_Tools_Ch04-75
	AUX_3_Text_Processing_Tools_Ch04-76
	AUX_3_Text_Processing_Tools_Ch04-77
	AUX_3_Text_Processing_Tools_Ch04-78
	AUX_3_Text_Processing_Tools_Ch04-79
	AUX_3_Text_Processing_Tools_Ch04-80
	AUX_3_Text_Processing_Tools_Ch04-81
	AUX_3_Text_Processing_Tools_Ch04-82
	AUX_3_Text_Processing_Tools_Ch04-83
	AUX_3_Text_Processing_Tools_Ch04-84
	AUX_3_Text_Processing_Tools_Ch04-85
	AUX_3_Text_Processing_Tools_Ch04-86
	AUX_3_Text_Processing_Tools_Ch04-87
	AUX_3_Text_Processing_Tools_Ch04-88
	AUX_3_Text_Processing_Tools_Ch04-89
	AUX_3_Text_Processing_Tools_Ch04-90
	AUX_3_Text_Processing_Tools_Ch04-91
	AUX_3_Text_Processing_Tools_Ch04-92
	AUX_3_Text_Processing_Tools_Ch04-93
	AUX_3_Text_Processing_Tools_Ch04-94
	AUX_3_Text_Processing_Tools_Ch04-95
	AUX_3_Text_Processing_Tools_Ch04-96
	AUX_3_Text_Processing_Tools_Ch04-97
	AUX_3_Text_Processing_Tools_Ch04-98
	AUX_3_Text_Processing_Tools_Ch04-99
	AUX_3_Text_Processing_Tools_Ch05-01
	AUX_3_Text_Processing_Tools_Ch05-02
	AUX_3_Text_Processing_Tools_Ch05-03
	AUX_3_Text_Processing_Tools_Ch05-04
	AUX_3_Text_Processing_Tools_Ch05-05
	AUX_3_Text_Processing_Tools_Ch05-06
	AUX_3_Text_Processing_Tools_Ch05-07
	AUX_3_Text_Processing_Tools_Ch05-08
	AUX_3_Text_Processing_Tools_Ch05-09
	AUX_3_Text_Processing_Tools_Ch05-10
	AUX_3_Text_Processing_Tools_Ch05-11
	AUX_3_Text_Processing_Tools_Ch05-12
	AUX_3_Text_Processing_Tools_Ch05-13
	AUX_3_Text_Processing_Tools_Ch05-14
	AUX_3_Text_Processing_Tools_Ch05-15
	AUX_3_Text_Processing_Tools_Ch05-16
	AUX_3_Text_Processing_Tools_Ch05-17
	AUX_3_Text_Processing_Tools_Ch05-18
	AUX_3_Text_Processing_Tools_Ch05-19
	AUX_3_Text_Processing_Tools_Ch05-20
	AUX_3_Text_Processing_Tools_Ch05-21
	AUX_3_Text_Processing_Tools_Ch05-22
	AUX_3_Text_Processing_Tools_Ch05-23
	AUX_3_Text_Processing_Tools_Ch05-24
	AUX_3_Text_Processing_Tools_Ch05-25
	AUX_3_Text_Processing_Tools_Ch05-26
	AUX_3_Text_Processing_Tools_Ch05-27
	AUX_3_Text_Processing_Tools_Ch05-28
	AUX_3_Text_Processing_Tools_Ch05-29
	AUX_3_Text_Processing_Tools_Ch05-30
	AUX_3_Text_Processing_Tools_Ch05-31
	AUX_3_Text_Processing_Tools_Ch05-32
	AUX_3_Text_Processing_Tools_Ch05-33
	AUX_3_Text_Processing_Tools_Ch05-34
	AUX_3_Text_Processing_Tools_Ch05-35
	AUX_3_Text_Processing_Tools_Ch05-36
	AUX_3_Text_Processing_Tools_Ch05-37
	AUX_3_Text_Processing_Tools_Ch05-38
	AUX_3_Text_Processing_Tools_Ch05-39
	AUX_3_Text_Processing_Tools_Ch05-40
	AUX_3_Text_Processing_Tools_Ch05-41
	AUX_3_Text_Processing_Tools_Ch05-42
	AUX_3_Text_Processing_Tools_Ch05-43
	AUX_3_Text_Processing_Tools_Ch05-44
	AUX_3_Text_Processing_Tools_Ch05-45
	AUX_3_Text_Processing_Tools_Ch06-01
	AUX_3_Text_Processing_Tools_Ch06-02
	AUX_3_Text_Processing_Tools_Ch06-03
	AUX_3_Text_Processing_Tools_Ch06-04
	AUX_3_Text_Processing_Tools_Ch06-05
	AUX_3_Text_Processing_Tools_Ch06-06
	AUX_3_Text_Processing_Tools_Ch06-07
	AUX_3_Text_Processing_Tools_Ch06-08
	AUX_3_Text_Processing_Tools_Ch06-09
	AUX_3_Text_Processing_Tools_Ch06-10
	AUX_3_Text_Processing_Tools_Ch06-11
	AUX_3_Text_Processing_Tools_Ch06-12
	AUX_3_Text_Processing_Tools_Ch06-13
	AUX_3_Text_Processing_Tools_Ch06-14
	AUX_3_Text_Processing_Tools_Ch06-15
	AUX_3_Text_Processing_Tools_Ch06-16
	AUX_3_Text_Processing_Tools_Ch06-17
	AUX_3_Text_Processing_Tools_Ch06-18
	AUX_3_Text_Processing_Tools_Ch06-19
	AUX_3_Text_Processing_Tools_Ch06-20
	AUX_3_Text_Processing_Tools_Ch06-21
	AUX_3_Text_Processing_Tools_Ch06-22
	AUX_3_Text_Processing_Tools_Ch07-01
	AUX_3_Text_Processing_Tools_Ch07-02
	AUX_3_Text_Processing_Tools_Ch07-03
	AUX_3_Text_Processing_Tools_Ch07-04
	AUX_3_Text_Processing_Tools_Ch07-05
	AUX_3_Text_Processing_Tools_Ch07-06
	AUX_3_Text_Processing_Tools_Ch07-07
	AUX_3_Text_Processing_Tools_Ch07-08
	AUX_3_Text_Processing_Tools_Ch07-09
	AUX_3_Text_Processing_Tools_Ch07-10
	AUX_3_Text_Processing_Tools_Ch07-11
	AUX_3_Text_Processing_Tools_Ch07-12
	AUX_3_Text_Processing_Tools_Ch07-13
	AUX_3_Text_Processing_Tools_Ch07-14
	AUX_3_Text_Processing_Tools_Ch07-15
	AUX_3_Text_Processing_Tools_Ch07-16
	AUX_3_Text_Processing_Tools_Ch07-17
	AUX_3_Text_Processing_Tools_Ch07-18
	AUX_3_Text_Processing_Tools_Ch07-19
	AUX_3_Text_Processing_Tools_Ch07-20
	AUX_3_Text_Processing_Tools_Ch07-21
	AUX_3_Text_Processing_Tools_Ch07-22
	AUX_3_Text_Processing_Tools_Ch07-23
	AUX_3_Text_Processing_Tools_Ch07-24
	AUX_3_Text_Processing_Tools_Ch07-25
	AUX_3_Text_Processing_Tools_Ch07-26
	AUX_3_Text_Processing_Tools_Ch07-27
	AUX_3_Text_Processing_Tools_Ch07-28
	AUX_3_Text_Processing_Tools_Ch08-01
	AUX_3_Text_Processing_Tools_Ch08-02
	AUX_3_Text_Processing_Tools_Ch08-03
	AUX_3_Text_Processing_Tools_Ch08-04
	AUX_3_Text_Processing_Tools_Ch08-05
	AUX_3_Text_Processing_Tools_Ch08-06
	AUX_3_Text_Processing_Tools_Ch08-07
	AUX_3_Text_Processing_Tools_Ch08-08
	AUX_3_Text_Processing_Tools_Ch08-09
	AUX_3_Text_Processing_Tools_Ch08-10
	AUX_3_Text_Processing_Tools_Ch08-11
	AUX_3_Text_Processing_Tools_Ch08-12
	AUX_3_Text_Processing_Tools_Ch08-13
	AUX_3_Text_Processing_Tools_Ch08-14
	AUX_3_Text_Processing_Tools_Ch08-15
	AUX_3_Text_Processing_Tools_Ch08-16
	AUX_3_Text_Processing_Tools_Ch08-17
	AUX_3_Text_Processing_Tools_Ch08-18
	AUX_3_Text_Processing_Tools_Ch08-19
	AUX_3_Text_Processing_Tools_Ch08-20
	AUX_3_Text_Processing_Tools_Ch08-21
	AUX_3_Text_Processing_Tools_Ch08-22
	AUX_3_Text_Processing_Tools_Ch08-23
	AUX_3_Text_Processing_Tools_Ch08-24
	AUX_3_Text_Processing_Tools_Ch08-25
	AUX_3_Text_Processing_Tools_Ch08-26
	AUX_3_Text_Processing_Tools_Ch08-27
	AUX_3_Text_Processing_Tools_Ch08-28
	AUX_3_Text_Processing_Tools_Ch08-29
	AUX_3_Text_Processing_Tools_Ch09-01
	AUX_3_Text_Processing_Tools_Ch09-02
	AUX_3_Text_Processing_Tools_Ch09-03
	AUX_3_Text_Processing_Tools_Ch09-04
	AUX_3_Text_Processing_Tools_Ch09-05
	AUX_3_Text_Processing_Tools_Ch09-06
	AUX_3_Text_Processing_Tools_Ch09-07
	AUX_3_Text_Processing_Tools_Ch09-08
	AUX_3_Text_Processing_Tools_Ch09-09
	AUX_3_Text_Processing_Tools_Ch09-10
	AUX_3_Text_Processing_Tools_Ch09-11
	AUX_3_Text_Processing_Tools_Ch09-12
	AUX_3_Text_Processing_Tools_Ch09-13
	AUX_3_Text_Processing_Tools_Ch09-14
	AUX_3_Text_Processing_Tools_Ch09-15
	AUX_3_Text_Processing_Tools_Ch09-16
	AUX_3_Text_Processing_Tools_Ch09-17
	AUX_3_Text_Processing_Tools_Ch09-18
	AUX_3_Text_Processing_Tools_Ch09-19
	AUX_3_Text_Processing_Tools_Ch09-20
	AUX_3_Text_Processing_Tools_Ch09-21
	AUX_3_Text_Processing_Tools_Ch09-22
	AUX_3_Text_Processing_Tools_Ch09-23
	AUX_3_Text_Processing_Tools_Ch09-24
	AUX_3_Text_Processing_Tools_Ch09-25
	AUX_3_Text_Processing_Tools_Ch09-26
	AUX_3_Text_Processing_Tools_Ch09-27
	AUX_3_Text_Processing_Tools_Ch09-28
	AUX_3_Text_Processing_Tools_Ch09-29
	AUX_3_Text_Processing_Tools_Ch09-30
	AUX_3_Text_Processing_Tools_Ch09-31
	AUX_3_Text_Processing_Tools_Ch09-32
	AUX_3_Text_Processing_Tools_Ch09-33
	AUX_3_Text_Processing_Tools_Ch09-34
	AUX_3_Text_Processing_Tools_Ch09-35
	AUX_3_Text_Processing_Tools_Ch09-36
	AUX_3_Text_Processing_Tools_Ch09-37
	AUX_3_Text_Processing_Tools_Ch10-01
	AUX_3_Text_Processing_Tools_Ch10-02
	AUX_3_Text_Processing_Tools_Ch10-03
	AUX_3_Text_Processing_Tools_Ch10-04
	AUX_3_Text_Processing_Tools_Ch10-05
	AUX_3_Text_Processing_Tools_Ch10-06
	AUX_3_Text_Processing_Tools_Ch10-07
	AUX_3_Text_Processing_Tools_Ch10-08
	AUX_3_Text_Processing_Tools_Ch10-09
	AUX_3_Text_Processing_Tools_Ch10-10
	AUX_3_Text_Processing_Tools_Ch10-11
	AUX_3_Text_Processing_Tools_Ch10-12
	AUX_3_Text_Processing_Tools_Ch10-13
	AUX_3_Text_Processing_Tools_Ch10-14
	AUX_3_Text_Processing_Tools_Ch10-15
	AUX_3_Text_Processing_Tools_Ch10-16
	AUX_3_Text_Processing_Tools_Ch10-17
	AUX_3_Text_Processing_Tools_Ch10-18
	AUX_3_Text_Processing_Tools_Ch10-19
	AUX_3_Text_Processing_Tools_Ch10-20
	AUX_3_Text_Processing_Tools_Ch10-21
	AUX_3_Text_Processing_Tools_Ch10-22
	AUX_3_Text_Processing_Tools_Ch10-23
	AUX_3_Text_Processing_Tools_Ch10-24
	AUX_3_Text_Processing_Tools_Ch10-25
	AUX_3_Text_Processing_Tools_Ch10-26
	AUX_3_Text_Processing_Tools_Ch10-27
	AUX_3_Text_Processing_Tools_Ch10-28
	AUX_3_Text_Processing_Tools_Ch10-29
	AUX_3_Text_Processing_Tools_Ch10-30
	AUX_3_Text_Processing_Tools_Ch10-31
	AUX_3_Text_Processing_Tools_Ch10-32
	AUX_3_Text_Processing_Tools_Ch11-01
	AUX_3_Text_Processing_Tools_Ch11-02
	AUX_3_Text_Processing_Tools_Ch11-03
	AUX_3_Text_Processing_Tools_Ch11-04
	AUX_3_Text_Processing_Tools_Ch11-05
	AUX_3_Text_Processing_Tools_Ch11-06
	AUX_3_Text_Processing_Tools_Ch11-07
	AUX_3_Text_Processing_Tools_Ch11-08
	AUX_3_Text_Processing_Tools_Ch11-09
	AUX_3_Text_Processing_Tools_Ch11-10
	AUX_3_Text_Processing_Tools_Ch11-11
	AUX_3_Text_Processing_Tools_Glossary-01
	AUX_3_Text_Processing_Tools_Glossary-02
	AUX_3_Text_Processing_Tools_Glossary-03
	AUX_3_Text_Processing_Tools_Glossary-04
	AUX_3_Text_Processing_Tools_Index-01
	AUX_3_Text_Processing_Tools_Index-02
	AUX_3_Text_Processing_Tools_Index-03
	AUX_3_Text_Processing_Tools_Index-04
	AUX_3_Text_Processing_Tools_Index-05
	AUX_3_Text_Processing_Tools_Index-06
	AUX_3_Text_Processing_Tools_Index-07
	AUX_3_Text_Processing_Tools_Index-08
	AUX_3_Text_Processing_Tools_Index-09
	AUX_3_Text_Processing_Tools_Index-10
	AUX_3_Text_Processing_Tools_Index-11
	AUX_3_Text_Processing_Tools_Index-12

