
IBM VisualAge C++ Professional for AIX

Getting Started
tors ion 4D

Before using this information and the product it supports, be sure to read the generai information under “Notices” on
p a g e v .

First Edition (June 1998)

This edition applies to Version 4.0 of the VisuaiAge C++ product, and to all subsequent releases and modifications
until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office sen/ing your locality. Publications are not
stocked at the address given below.

Aform for readers’ comments is provided at the back of this publication. If the form has been removed, address your
c o m m e n t s t o :

IBM Canada Ltd. Laboratory
Information Development
2 G / 3 4 5 / 11 5 0 / T O R
1150 Eglinton Avenue East
North York, Ontario, Canada, M3C 1H7

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments
electronically to IBM. See "Communicating Your Comments to IBM" for adescription of the methods. This page
immediately precedes the Readers’ Comment Form at the back of this publication.

When you send information to IBM, you grant IBM anonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

®Copyright International Business Machines Corporation 1998. All rights reserved.
Note to U.S. Government Users —Documentation related to restricted rights —Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

C o n t e n t s

Notices	

Programming interface Information
Trademarks and Senrice Marks ..
Industry Standards	

V

V

v i
v i

i xAbout This Book	
W h o S h o u l d U s e T h i s G u i d e
C o n v e n t i o n s U s e d i n t h i s G u i d e . . .

Mouse Button Naming Conventions

X

X

X

1Chapter 1. What’s Cool!	
Easy-to-Use Environment	

Code Development	
Tightly Integrated and Object-Oriented
Program Understanding Made Easy ..
Highly Customizable	
SmartGuides	

Help System	
New Compiler Technologies	

Fast Incremental Builds	

Database of Program Information ...
Early Error Feedback	
Freedom from Dependencies	
Reduced Drudgery	
Eliminate Makefiles	
Automatic Instantiations of Templates ..

Open Technology	
Class Libraries	

Cross-Platform Development	
Support for Latest C++ Standard ...

Visual Programming	
Creating Interfaces and Programs Visually
Accessing Relational Databases Visually.

What’s Cooll Wrap-Up	
The Tutorial	

1

1

2

3

3

4

4

5

5

5

5

6

6

7

9

9

1 0

1 0

1 0

. 1 1

1 1
11

1 2

1 2

1 5Chapter 2. Tour of VIsualAge	
Tour the Integrated Development Environment

Workbook (IDE)	
ACloser Look at Panes	
What’s in aProject?	
Creating aProject	
Looking at Your Project	
Add ing Con ten t t o aSource F i l e . . .
Building Your Project	
Addressing Compilation Errors

1 5

1 7

1 8

2 0

2 0

2 2

2 3

2 4

2 5

i l l®Copyright IBM Corp. 1998

Running Your Program	
More on the IDE	

About Incremental Compilation	
About Editing Source Files	
Searching aProject	
Using the Search Page	
Object-based Searching with the Find Uses Page
Configuration Files	
ACloser Look at the Configuration Section ..
Setting Build Options	
Symbols used in the IDE	
Linking between Panes	
Some Useful Shortcut Keys	
Toolbar Buttons	
Menu Descriptions	

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 1

3 2

3 4

3 4
3 5

3 6

. 3 7

3 9

Chapter 3. Try VisualAge C-t-f	
Develop aWeb-Based Review Tool	

Background Information	
Part 1. Configuring aNew Application	
Part 2. Modifying Configuration Options	
Part 3. Declaring and Implementing aClass	
Part 4. Developing Classes in the IDE	
Part 5. Debugging and Revising Your Application	
Part 6. Managing Configuration Files	
Part 7. Optimizing Your Configuration	
Part 8. Defining the View Function for Reviewers	
Part 9. Defining the Remaining User Functions	

Develop aGraphical User Interface from aVisual Part
Part 1. Creating aProject for aVisual Part	
Part 2. Creating Parts In the Visual Builder	
Par t 3 . Connec t the Ma in Par t to the User In te r face Par t . .

Part 4. Adding User Interface Controls to aVisual Part ...
Part 5. Manipulating the Appearance of User Interface Controls
Part 6. Making Simple Connections	
Part 7. Adding Help Text to User interface Controls
Part 8. Making Connections to User-Defined Functions ...
Part 9. Defining Functions for Custom Connections

4 1

4 1

4 3

4 6

5 0

5 1

. 5 9

6 8

8 1

. 8 6

8 7

. 9 7

1 0 3

1 0 4

1 0 5

. 1 0 7

1 0 8
1 1 4

1 1 7

. 1 1 9

1 2 0

1 2 2

iv VisualAge C++ Getting Started

N o t i c e s

Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM’s licensed program may be used. Any functionally equivalent
product, program, or sen/ice that does not infringe any of IBM’s intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to IBM Director of Licensing, IBM
Corporation, 500 Columbus Avenue, Thomwood, NY, USA 10594.

IBM may change this publication, the product described herein, or both.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact IBM Canada Ltd., Department 071,1150 Eglinton
Avenue East, North York, Ontario M3C 1H7, Canada. Such information may be
available, subject to appropriate terms and conditions, including in some cases payment
o f a f e e .

This publication may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include the
names of individuals, companies, brands, and products. All of these names are fictitious
and any similarity to the names and addresses used by an actual business enterprise is
entirely coincidental.

Programming Interface Information

Programming interface information is intended to help you create application software
using this program.

General-use programming interfaces allow the customer to write application software
that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification and tuning information is provided to help you
debug your application software.

Do not use this diagnosis, modification, and tuning information as aprogramming
interface because it is subject to change.

©Copyright IBM Corp. 1998 V

T r a d e m a r k s a n d S e r v i c e M a r k s

The following terms are trademarks of the International Business Machines Corporation
in the United States or other countries or both:

A I X
A S / 4 0 0
D ATA B A S E 2
D B 2
I B M

Object Connection
Operating System/2
O S / 2
O S / 4 0 0

Presentation Manager
S A A

Systems Application Architecture
Te a m C o n n e c t i o n

VisualAge
Workplace Shell

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or registered
trademarks of Microsoft Corporation.

C-bus is aregistered trademark of Corollary, Inc.

Java and all Java-based trademarks and logos are trademarks or registered trademarks
of Sun Microsystems, Inc. in the U.S. and other countries.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks or registered
trademarks of Intel Corporation in the U.S. and other countries.

PC Direct is aregistered trademark of Ziff Communications Company and is used by
IBM Corporation under license.

UNIX is aregistered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by adouble
asterisk(**), may be trademarks or service marks of others.

Industry Standards

VisualAge C++ supports the following standards:

vi VisualAge C++ Getting Started

●The Clanguage is consistent with the International Standard C(ANSI/ISO-IEC
9899-1990 [1992]). This standard has officially replaced American National Standard
for Information Systems-Programming Language C(X3.159-1989) and is technically
equivalent to the ANSI** Cstandard. VisualAge C++ supports the changes adopted
into the CStandard by ISO/IEC 9899:1990/Amendment 1:1994.

●The IBM Systems Application Architecture (SAA) CLevel 2language definition.
●The C++ language is consistent with the International Standard for Information

Systems-Programming Language C++ -ISO/IEC 14882:1998.
●The ISO/ IEC 9945 -1 :1990 / IEEE POSIX 1003 .1 -1990 s tanda rd .

●The X/Open Common Applications Environment Specifications, System Interfaces
and Headers, Issue 4.

N o t i c e s v i i

A b o u t T h i s B o o k

Welcome to the VisualAge C++ getting started. VisualAge C++ has been completely
revamped for this release, to make your job of developing C++ applications easier.
Before you jump right in, you may want some background information on the product’s
new features, or you might want to be guided through creating your first programs with
the product. Whether you are new to VisualAge C++, or are aseasoned veteran of
previous releases, you’ll find the getting started useful.

VisualAge C++ is acomplete, integrated environment for creating C++ applications.

VisualAge C++ gives you interactive, visual programming tools and an extensive library
of classes. See the online help on the IBM Open Classes for more details on the
c lasses .

Reference to VisualAge C++ in this book should be interpreted as VisualAge C++,
Version 4.0.

This manual is divided into three sections:

● W h a t ’ s C o o l

This portion lets you know about some of the new features in VisualAge C++. It will
take you 20 to 30 minutes to read all of the sections. Reading Whafs Cool will help
you understand the changes in this release and how they will affect you.

●Tour VisualAge C++
Tour VisualAge C++ gets you working with the new integrated development
environment (IDE). In 20 to 30 minutes, the tour will guide you step-by-step through
some basic tasks to create and run asmall program. This is agood way to prepare
for the more in-depth exercise, or learn to navigate before starting your own projects.

●Try VisualAge C++
Try VisualAge C++ will help you master the IDE quickly. It is an in-depth tutorial that
covers developing two types of applications: aweb-based application, and a
graphical user interface application created with the Visual Builder. Try VisualAge
C++ will take you anywhere from four to eight hours to complete, or you can try out
only selected parts. Whatever time you spend on Try VisualAge C++, it will help you
become more productive at coding in the new environment.

D a t a A c c e s s Tu t o r i a l

There is aseparate tutorial for learning how to create avisual data access application.
It takes you through the steps of creating an application that uses nonvisual, visual, and
data access parts to work with aDB2 or ODBC database. The instructions are in
Creating aVisual Data Access Application in the online documentation.

i x©Copyright IBM Corp. 1998

Who Should Use Th is Guide

This document is intended for application developers who are interested in developing
applications in the new integrated development environment of VisualAge C-H-as well
those programmers who want to learn about incremental compilation with VisualAge
C++ .

In addition, this manual introduces the concepts of programming with VisualAge C++
and explains the general process of editing, compiling, and debugging the new
interface. You should have ageneral knowledge and experience in programming C++.

Convent ions Used in th is Gu ide

Commands appear Like this.

Coding examples and text that you enter appear LI ke thi s.

User interface controls appear Like this.

New terms appear like this.

Note: This book does not contain aglossary. Terms are defined when they first appear.

Window titles, folder names, notebooks, notebook tabs, or keys (for example, the Enter
key) have no special appearance.

Mouse Button Naming Conventions

The following mouse-button naming conventions are used in this guide:
●Button 1is used to select an object, open afile, or start an application. It is the left

button unless this button has been customized to do something else.
●Button 2is used to move or manipulate an object. It is the right button unless this

button has been customized to do something else.

You can define the function of each mouse button from the Style Manager. If you are
not sure how your mouse is configured, check the properties of the mouse item in your
Style Manager.

XVisualAge C++ Getting Started

Chapter 1. What’s Cool!
Welcome to VisualAge C++, the innovative way to create C++ applications. What’s
Cooil will give you an overview of how these innovations can benefit you:
●Revolutionize your programming by using the powerful integrated development

env i r onmen t .

●Increase your productivity with the exciting, new compiler technologies unveiled in
this version of VisualAge C++:
-Incremental compilation
-Reduced d rudgery
- E l i m i n a t i o n o f m a k e fi l e s

-Automatic instantiation of templates

●Make your work easier and reduce errors through visual programming for rapid
application development with reusable parts.

●Diminish your learning curve with the help of an all-new HTML information system
and SmartGuides that lead you through common tasks.

●Use the open technologies of VisualAge C++ to develop cross-platform applications.
●Write C++ code that adheres to the latest C++ standard.

Easy-to-Use Environment

The new integrated Development Environment (IDE) will drastically improve the way
you program. The design of the IDE allows you to focus on the programming task,
rather than on trying to get around the development environment.

The IDE is tightly integrated and customized to your needs. The IDE, organized in a
workbook style with tabs, will make it easy for you to:
●Navigate through your code
●Find all the uses of any declaration
●See how C++ resolves overloading

●Debug at the source or at the annotated assembly level
●Set breakpoints on classes

For setting up abuild, connecting to adatabase, or performing anumber of other
routine tasks, VisualAge provides SmartGuides to lead you through the process.
SmartGuides help you to create projects and targets, and specify parts for your
p r o g r a m s .

Code Development

Now, with the new Integrated Development Environment (IDE), you can develop and
maintain code much more easily than ever before.

1®Copyright IBM Corp. 1998

This version of VisualAge C++ supports orderiess programming: Orderless
programming means that you do not need to declare functions before they can be
called, or define classes before they are used. In fact, even the concept that one
declaration appears "before" or "after" another declaration is meaningless. You can
organize source code into files in any order.

For example, if you want to add anew class called "Animal", you can create an
Animal.cpp file, and then enter everything relevant about animal into the file. Then, you
can search through your existing application source using the quick browsing abilities of
the IDE to locate the places where you want to use "Animal". You can then enter your
changes, and rebuild.

Orderless programming also means that there is no need to include header files.

In the IDE, you can navigate through your program structure looking for type definitions,
function locations, calling relationships, declaration usage, and other program elements.
The IDE displays your program from any viewpoint you choose. Using the quick-search
and filtering capabilities of the panes, you can quickly narrow in on the information you
n e e d .

When you want to add amember to aclass or add code to afunction, you do not have
to search adirectory of your file system to find the file containing the class declaration
or function, instead, you can select the appropriate class or function object to see the
source code in alinked pane. You can choose to work with files or objects, or both.

When you build, the views of the IDE are updated to reflect the structure and
relationships of your program.

You can debug multiple processes concurrently in the IDE. In other words, you can
have two processes running at the same time, and debug the way they interact with
each other.

In the IDE, you can fix errors quickly. When you click on an error message, the IDE
displays aview of the source code causing the error. You can correct the error
immediately, and then rebuild your application.

Tightly Integrated and Object-Oriented

Now, with the editor and debugger integrated, you can set breakpoints as you edit your
code, and you can modify your source as you debug. In the tightly integrated IDE,
access to files on your system is simply aclick away.

The IDE’s object-based environment allows you to view and manipulate objects, such
as classes, source files, and functions, while you work on your application. As an
object-based environment, the IDE forces information to be grouped in auseful,
meaningful manner, and hides information that is not immediately important; the visual
setup of the IDE allows you to access information, and interact with data quickly.

2VisualAge C++ Getting Started

The IDE treats program entities as objects, and keeps information about them, so that
when you select asource file, function, class, method, object, or variable, information
specific to that object is available. The IDE will also display other objects related to that
object, along with information specific to them.

Program Understanding Made Easy

The views of the IDE are updated to reflect the structure and relationships of your
program, as you build. Do you need to know how atype is defined, or how afunction is
implemented? You will discover that the answers are only aclick or two away.

You can easily navigate through your program structure to look for type definitions,
function locations, calling relationships, declaration usage, and other program elements.

For example, you can navigate to the source for aparticular method, by selecting the
Classes page of the Project section of the workbook, selecting the class code, and
selecting the method from the view that is displayed for that class. The source code for
the selected method is displayed in the Source view.

The IDE displays your program from any viewpoint you choose. Using the quick-search
and filtering capabilities of the panes, you can quickly narrow in on the information you
need.

Highly Customizable

After extensive testing with C++ programmers, we designed the IDE based on the
programmers’ feedback. You will find the new IDE an extremely powerful environment
to work in. And you can modify the IDE to make it work according to your personal
preferences.

When you open the IDE, you will see four major sections:
W o r k b o o k

This section lets you examine and set options that control the IDE itself.

This section lets you browse through files on your system.

Project This section lets you work with your C++ code.

H o s t

Configuration
This section is where you set options for compatibility, optimization, and other
operations.

Each section of the project workbook has anumber of pages associated with it. When
you click on asection tab, you will see apage showing a"snapshot" of your system, of
aproject, or of acomponent of that project (such as asource file or aprocess running
under debug control).

Each page in the project workbook is divided into panes. You can divide apage into
any number of panes, add or remove panes, change which objects are viewed in a

Chapter 1. What’s Cooil 3

pane, link the panes together so that objects flow the way you want them to flow, and
select among the views for any kind of object. You can also add your own pages.

S m a r t G u i d e s

SmartGuides make complicated tasks easy. They take you through aseries of
questions about the taste you want to perform. The SmartGuide then uses your input to
perform the task according to your specifications.

What can the VisualAge C++ SmartGuides help you do?

Project SmartGuide
Helps you set up your project.

Target SmartGuide
Helps you add abuild target for your project.

Help System

Our new online, HTML-based help is organized to help you quickly find the information
you need. The navigation pane lets you see where you are in the information stmcture,
and lets you move easily from topic to topic.

The interface for the main online help uses three frames for fast and easy navigation:
1. The upper frame contains anavigation bar that you can click to go from one type of

information to another. You can get to the VisualAge C++ Web site by clicking on
the VisualAge C++ icon (if you have aconnection to the internet).

2. The left frame contains an expandable index of topics available within the current
type of information.

3. The right frame displays the information for the topic you have selected.

If you know exactly what you are looking for, use the full-text search engine. You can
use text processing, wildcards, and logical modifiers to find the information you need.
You can also specify what types of information -concepts, taste, reference, interface
help and examples -you want to search.

You can browse the online help outside the tools, or from within the tools’ windows. F1
always gives you contextual help. Ail of the product’s information is available from the
Help menus located within the tools’ windows.

Navigation through our samples has never been easier or better organized. We have
provided information with each sample to help you determine which sample will best
suit your needs. You can navigate to the samples with two or three quick clicks of your
mouse button. From your browser, you can even launch an IDE session on the sample
project, or copy that project to aworking directory, where you then can modify it to meet
your needs.

4VisualAge C++ Getting Started

Code-sensitive help provides descriptions of akeyword, class or function in acode
source. To access code-sensitive help, just select akeyword or class or function in the
s o u r c e .

New Compiler Technologies

With VisualAge C++, Version 4.0, you will no longer have to wait along time to
complete abuild, or to start up tools.

Fas t Inc rementa l Bu i l ds

Every time you build, VisualAge C++ rebuilds only what it needs to rebuild. With
traditional compilers, header files are recompiled every time asource file that includes
them is recompiled. With VisualAge C++, changes to asource file do not require
recompilation of the header files that the source file includes.

In some situations, after asimple source code change. Version 4.0 can rebuild a
program more than 10 times faster than previous versions of VisualAge C++.

In general, the more C++ files you have, the faster VisualAge C++, Version 4.0 builds
compared to conventional compilers.

Database of Program Information

Databases, or codestores of information about your program, make up the core of
VisualAge C++.

When you first build your program, acodestore is created. Acodestore contains
information consisting of, for example, the signatures and contents of functions, and the
names and types of variables.

Builds using VisualAge C++, Version 4.0 can be extremely fast. If you add one line of
code to afunction, the update will happen almost instantaneously. While atraditional
makefile-based system will rebuild all source files that have changed, along with all
object files that depend on those source files, the VisualAge C++ codestore records
exactly which functions need rebuilding, and will rebuild only those particular functions.

Early Error Feedback

Because of incremental compilation, the VisualAge C++ compiler can provide rapid
feedback. The compiler checks all interfaces before compiling function bodies and
variable definitions. The result is amuch faster error-reporting process than that of
conventional compilers.

Chapter 1. What’s Cool! 5

Freedom from Dependencies

All compilation dependencies are maintained automaticaily in the codestore. You will no
longer have to worry about maintaining complex header files and makefiles.

Reduced Drudgery

With VisuaiAge C++, Version 4.0, you can avoid mundane programming tasks such as;
●Typing and maintaining multiple copies of essentially the same declarations in

multiple places
●Organizing header fiies
●Having to avoid circularities in header file inclusions, especially when using inline

f u n c t i o n s

●Organizing header files to minimize recompiling when header files are changed

With VisuaiAge C++, Version 4.0, you can organize source code into files in any order.
VisuaiAge C++ has orderless parsing, which means that the computer (not youl) sorts
the deciarations. VisuaiAge C++ also takes care of header files. Typically, header files
require you to use various mechanisms to sort declarations for the compiler. (For more
information on orderiess programming, see “Code Developmenf on page 1.)

To realize how much productivity you will gain by letting VisuaiAge C++ do the work for
you, take alook at asimple example that has amain() function and two classes, Aand
B, organized into files in this manner:

File main.cppR I e B . hR l e A . h

#ifndef B_H
#define B_H
#1nc1ude "A.h

#ifndef A_H
#define A_H
i n c 1 u d e " B . h

i n c l u d e " B . h "

int mainOc l a s s Bc l a s s A : p u b l i c B
{{ {
pub l i c :
A* g{) {return new A;}

p u b l i c :
B* f() {return new B;

B b ;
r e t u r n 0 ;
}

} ;} ;

e n d i f# e n d i f

The above code follows the standard method for organizing header files. Even this
simple code will not compile when organized in this way. (Trace by hand the macro
processing to see why.) To fix the code, you have to add fonward declarations (for
example, class Ain B.h), and move the inline function definitions into separate files. But
this is atedious process, even for this simple example, and becomes acoding
nightmare in alarge project.

6VisuaiAge C++ Getting Started

With VisualAge C++, you can organize your code in this way:

File main.cppF i l e B . hF i l e A . h

int mainOc l a s s A : p u b l i c B c l a s s B

{
B b ;
return 0;

p u b l i c :
A* g() {return new A;}

p u b l i c :
B* f() {return new B;}

}} ;} ;

Or, if you prefer, you can put ail of the code in asingle file in whatever order makes
sense to you:

File main.cpp

c l a s s A : p u b l i c B
{
p u b l i c :
B* f() {return new B;}
} ;
c l a s s B
{
p u b l i c :
A* g() {return new A;}
} ;

int mainO
{
B b ;
r e t u r n 0 ;

Notice that there are no forward declarations, macro guards, or #include statements.
VisualAge C++ eliminates the need for such tedious programming practices by
maintaining acodestore database for your program, and by replacing makefiles with a
configuration file that defines, among other things, the source and header files needed
to compile your project.

E l i m i n a t e M a k e fi l e s

Makefiles are another source of drudgery for C++ programmers. On large projects,
makefiles are difficult to manage and frequently become out-of-date, so you often need
to resort to automatic dependency generators.

The VisualAge philosophy is that the computer should serve the programmer, not the
other way around. When you tell VisualAge C++ what to build, the compiler figures out
how to build it.

Chapter 1. What*s Cool! 7

Aproject consists of one or more related C++ object files, libraries, and executables,
together with the corresponding source files, processing rules, and processing options.
The output object files, libraries, and executables are called targets, and the source files
are called sources. Aproject will often contain different configurations, which are
different versions of the same project, but with different sets of options.

Aconfiguration file defines aproject’s configurations. The configuration file is different
from amakefile in that you do not need to specify processing and inter-file
dependencies for C++ files. You only need to specify source-to-target dependencies.
Therefore, where amakefile says:

"Call the C++ compiler with this source, these options, producing this target,
when these header files change"

aconfiguration file says:

"This is aC++ source and here are its options; this is is aC++ target and here
are its options; here is the list of which sources map to which targets."

Here is asimple example of aconfiguration file annotated with comments:
opt ion
link(linkwithmultithreadlib), // Use multi-threaded library
link(linkwithsharedlib) // Use shared library

{
target "carlot.exe" // Produce an executable

{
opt ion
lang(offsetofnonpodclasses), // Backward compatibility for old code
lang(digraphs, no),
incl(searchpath, "."),
lang(nokeyword, "true"),
1ang(nokeyword, "false")

{
"carlot.cpp" // List of C++ sources
"car.hpp"
"car.cpp"
" t ruck .hpp"
" t ruck .cpp"
"vehic le.hpp"
"vehic le.cpp"
" v l i s t . h p p "
" v l i s t . c p p "

type(cpp)
type(cpp)
type(cpp)
type(cpp)
type(cpp)
type(cpp)
type(cpp)
type(cpp)
type(cpp)

s o u r c e

s o u r c e

s o u r c e

s o u r c e

s o u r c e

s o u r c e

s o u r c e

s o u r c e

s o u r c e

}
}

}

This configuration file specifies that abatch of C++ source is to be compiled and linked
to produce an executable file. Some options are specified for compatibility with pre-C++
standard (for example, true and false are not treated as keywords). However, the

8VisualAge C++ Getting Started

configuration file does not indicate that vehicle.obj depends on vehicle.cpp, vehicle.hpp,
and so forth, in fact, because the target is an executable file, no object files are even
produced.

You can build aproject by using different configuration files, or by processing
configuration files conditionally.

The IDE provides asimple checkbox-based method to create and maintain
configuration files, so that you do not have to write or edit the files yourself. The IDE
can handle any configuration file, whether it is coded by hand or generated by the IDE.

Automatic Instantiations of Templates

VisualAge C++ automatically instantiates templates, without creating the excessive code
character ist ic of current automat ic schemes.

The VisualAge C++ method of instantiating templates has the following advantages:
●It stores the program in the codestore, which contains both templates and their

instantiations, and holds them accessible to the compiler.

●It instantiates only the templates that are needed.
●You can browse the templates and their instantiations as acompiler would browse

regular declarations, because the codestore is available to the user interface.

Many compilers support explicit instantiation under programmer control and automatic
schemes. However, because of their effect on build times, code size, and dependency
management with makefiles, these automatic schemes are not practical for
programming projects that rely heavily on templates. You can make the manual scheme
work, but the process is inconvenient. If you have tried to browse through the C++
standard template library with any development system, you probably discovered that
the systems you were using could not handle the uninstantiated templates that make up
most of the library. VisualAge C++, however, can.

Open Technology

Open technologies enable you to produce applications built from reusable parts (the
parts are not bound to any particular operating system or set of standards).

You can reuse code only if you have robust class libraries. When developing
applications, it is common to store the fundamental components as reusable, extensible
classes for future development. The IBM Open Class Library contains the building
blocks you need to develop robust and complex C++ programs.

VisualAge C++ generated code works across platforms. The source generated by our
builders contains no operating-system-specific language constructs, enabling you to
develop on one platform, copy the code to another platform, and then rebuild on that
platform.

Chapter 1. WhafsCooll 9

VisualAge C++, in conforming to the latest C++ standards, allows you to develop
cross-platform applications effectively.

C l a s s L i b r a r i e s

Whether you are anovice programmer or an experienced developer, the IBM Open
Class Library can help reduce your programming effort. The IBM Open Class Library
offers you acomprehensive set of classes, ranging from basic input/output operations
and string handling to user interface support.

VisualAge C++ offers awide variety of reusable classes across Windows NT 4.0, OS/2
4.0, and AIX 4.1.5. When you combine these classes together, you can create powerful
applications;

Improved for Speed and Portability: N e w C l a s s e s :

Classes to create user interface (User
Interface Classes)
C lasses to access re la t i ona l da tabases

(Data Access Classes)
Classes to simplify abstract data types
(Collection Classes)
Classes to simplify string manipulations
(Data Type and Exceptions Classes)
Classes for input and output (I/O Stream
Classes)

●N e w C + + s t a n d a r d c l a s s e s

●F r a m e w o r k s o f c l a s s e s t o c o d e f o r t h e

following:
- i n t e r n a t i o n a l i z a t i o n

-file systems
-new portable 2D graphics
- t es t i ng

Cross-Platform Development

The IBM Open Class Library is portable from platform to platform. With VisualAge C++,
you can directly port interface designs from the Visual Builder, and database designs
from the Data Access Builder, to all the platforms that VisualAge products support.

You do not have to worry about how your interface designs will look on other platforms.
Because the IBM Open Class Library is portable, your interface designs will have the
native look and feel of the "originar operating system, without you having to code the
differences yourself.

As well, you will find it easy to port your code because the tools are similar from
platform to platform.

Support for Latest C++ Standard

After having evolved rapidly over the last decade, C++ is now becoming more stable as
standards gain approval. Many new language features have appeared (namespaces,
run-time type identification, exceptions, and arich library), along with major changes in

10 VisualAge C++ Getting Started

templates and overloading. VisualAge C++ supports the language and library specified
in the ISO committee draft of November 1997, except for the changes needed to
support VisualAge’s orderless programming.

While adhering to the new C++ standard, VisualAge C++ allows you to specify how
much of that standard you want to follow when coding. As aresult, you can easily move
your applications to the new standards.

Visual Programming

By using the Visual Builder, you can visually create object-oriented programs using
C++, often without having to write asingle line of source code. You simply drag and
drop, and connect the visual parts. Visual Builder creates the code for you.

Through easy-to-use drag and drop interfaces, visual programming reduces your
programming time and improves your code quality.

With the Data Access Builder, you can create database access classes customized for
your existing relational database tables. You use the drag and drop interface to create
your database mappings, and the Data Access Builder creates the source code for you.

Creating Interfaces and Programs Visually

Visual Builder provides an extensive library of prefabricated GUI parts that you can use
to build your applications. However, you are not limited to these parts; you can extend
the Visual Builder by creating and adding your own reusable parts to the parts palette.
You can even import or export parts from other applications. Visual Builder parts
represent actual classes. When you generate code through the Visual Builder, the parts
are created as classes. You can then add your own class definitions or import them
from other applications.

Visual Builder works well not only for creating interfaces, but for prototyping designs.
Whether prototyping or creating an interface for your application, the process is the
same: you arrange the parts, make the necessary connections, and let the Visual
Builder generate the C++ code for you.

With alibrary of reusable components, the Visual Builder helps you to reduce
programming time and improve code quality.

Accessing Relational Databases Visually

You can visually create mappings of database tables to C++ classes, and then let the
Data Access Builder generate the C++ code for you. Aquickmap feature allows you to
do acolumn-to-attribute direct mapping. You can customize your classes to suit your
n e e d s .

Chapter 1. Whafs Cool!	1 1

You can use the classes, generated by the Data Access Builder, directly in your C++
programs. Besides generating the C++ source for your mappings, you can generate
parts for your mappings, and use the mapping parts in the Visual Builder. The Visual
Builder allows you to wire together database appiications quickly, and efficiently.

The Data Access Builder also provides the following:
●Separate services for connecting and disconnecting from your databases
●Commit and rollback operations to handle transaction services
●Selection and retrieval of agroup of objects from adatastore, which you can

manipuiate using the IBM Open Class Library collection classes
●Classes that support multiple connections to the datastores
●Direct support for DB2 using embedded SQL or the DB2 Call Level Interface
●Open Database Connectivity support for access to many database products using

the ODBC CLI and appropriate database driver.

Because the Data Access Builder generates classes customized to your data, you can
perform common database tasks, such as adding, retrieving, updating, and deleting
data .

What’S Cool! Wrap-Up

As you read through Whafs Cooll, you discovered the many innovative features of
VisualAge C++.

You d iscovered :

●The ease of working on the VisualAge C++ environment, because of the Integrated
Development Environment, the new help system, and SmartGuides.

●The new compiler technologies incorporated into VisualAge C++, resulting in fast
incremental builds and efficient code development.

●The open technologies incorporated into the VisualAge product, allowing you to
produce applications buiit from reusable parts.

●The visual programming environment of VisualAge C++, which allows you to create
interfaces and programs, and access relational databases, visually.

The new Integrated Development Environment will help you develop and maintain code
much more efficiently.

If you take time to walk through the tour, you will learn, at amuch faster rate, how
VisualAge C++ can benefit you.

T h e T u t o r i a l

No matter how much experience you have had working on previous versions of the
IDE, or how experienced you are as aprogrammer, please take time to do the exercise.

12 VisualAge C++ Getting Started

With this release of VisualAge C+-I-, much has changed in the IDE. When you spend
time to do the exercise, you will discover how you can benefit from the changes. The
result will be greater comfort and productivity when working with the new IDE Interface.

Chapter 1. Whafs Cooil	 13

Chapter 2. Tour of VisualAge
This tour is designed to give you an introduction to the development environment.

In the first half of the tour, we suggest you read the pages in sequence to learn how to
perform aseries of basic tasks:
●Open and close projects
●Crea te and ed i t source fi les

●Run your program

●Respond to error messages

This portion of the tour should take about 20 minutes.

The second half of the tour, “More on the IDE" on page 26, invites you to explore further
some of the concepts introduced in the first half, in any order, and suggests some
references in the online help for more detailed information.

Tour the Integrated Development Environment

This tour uses asample program to introduce you to the VisualAge C++ Integrated
Development Environment (called the IDE).

Start the IDE by double-clicking on the VisualAge IDE icon in the VisualAge1 .

folder.

The first screen offers you achoice of creating anew project or working on an
existing one. Select Open an Existing Project, and the Sample radio button. From

2 .

1 5©Copyright IBM Corp. 1998

the list of samples, select ABasic C+-f Application:

y i s u i - j j A v i S S i 0 ?

1

^f:\cppbet4w\idet^M)^oI'4)^99-^
j t i i a j s a a u s i } I M

Open Wirxiowed AppScation ■MUt. ,
Open CJawConwIeAopicaUon-Even/C lil) i1
Olhei Samptes

m m iliil
£●

M

;fj\h\i :.'H

^j|j

3 . C l i c k O K .

4. You are asked if you want to build the project. Click Yes.

if you already have the IDE open, follow these steps:
1. Click the Open Project button

i

2. Browse through the Directories and FoldersFiles fields to find the
idesamp/payroll directory in the main folder where VisualAge C++ is installed.

3. Select payrolUcc and click Open.
4. You are asked if you want to build the project. Click Yes.

16 VisualAge C++ Getting Started

The payroll project is displayed as aworkbook with four sections. Each section is
represented as atab. Your screen should look like this;

li	 . , ,» ! i M t a K 3 S 3 L E 3 n
SlHhKi S S v K fl li

t e iLi

SSScXM ●mpt<»yi|*.
0fii«1 itMlnO.
0@ elate mana;ct.
QG«9<4 p»yeoi(«gti«
0Gwid payoiil(4M6(* iej.nnp_p:i;, devMe
Q0«sid payaul(<l9ufc(e tnsMhiir.ealary, daubl* cmmti:sr>. doubla enee).
0@ elate tegulai.etnp.
aS)fl»»»

>0@elate eatoe.potson,
;0G«><! HHnO:

5t™<ltDeb«la<»groVSrCTEKltCE
IF VcppbclaWVeamplacJpaytslÎ ayelaet Itpp
|F,iepp»«aVA«ampiM\pai(i*iPpay<int ftpp
IF Vpp&«tW»ampl«lpa]tMlf<>.jiefl epp

C t e S s K * .
t 9 l v m } I n s e r t

— t — . . ● i e —- 5 - — ●O 't 8 -

'p/ ftbetract bate claec OPFinitloii
^Metass iaplosft a]H P r c l a r r a v i r t i t a l b a t e

/ / c l a t t n a a r d r n p l o y r r i
M
j^atreted-;

,E* i3 iSc i sa i t 5£ i=aa*

1

m

Workbook (IDE)

The workbook consists of four major sections:
8 M a a ^ 4 : i i J i r » g a w i ’

IfJM c s [tensimEiEram

W o r k b o o k
For examining and setting development environment options that control the
IDE itself.

For browsing through files on your system.

Project For working with your C++ code. This tab only appears once you have opened
aproject.

H o s t

Configuration
For setting options, or for adding and removing files from your project. This tab
only appears once you have opened aproject.

Click each tab to look at the different sections.

Chapter 2. Tour of VIsualAge 17

There is arow of buttons below each tab:

For each tab, you will see adifferent selection of buttons. Each button displays a
different page.

Each page is further divided into mini-windows, or panes:

§@cUu employee;
QQuit nieinO.
|«|@Cli5t inenogei,
0Qiretd peyout(double
0Q«oid payoutCdouble ;
SQvoid payout(doubIe "
0@clm reiiuler einp.

ealns_niiji,
0@cIm« iielee...pefseii;
00void title ().

t f f t l f . ' 'Cnab<UMETf . \SYSTEM ICE
Ficppbot3Wts«fnplosipayicII\p»icUss. hpp
F'\cppb«!eyAsemsl»t'i|)*yio!bp3yunc hpp
F.'fppbetaWYsefnpItiVayioiriperisll epp

■J ' -) .
,doub le req fi - rn

. d o u b l e s 11:. double ,r!t>).

Sifc3 i i l i i l l i
F:\cppbetQ^^8mple8\p8yrotl\payclatt8.hpp *Definition

frob B C o l l i w i 7 I n s e r t

— H I - , ●3- ●5- ■ 6 - ■7 -●2- ■ 9 - «	 10			 1

g; / / Mbti t iMCt Boie cl .r. ' . iH' i tnl t ton
!■ ' n
^ I d s s M p l o j i c e > > P i ’ c U r e i u i r l i i . l l

, ' ! < : l o ^ o n . i n f . l e n p l e u e e I d

When you are finished looking through the different tabs and pages, click the Project
tab again, and make sure the Overview page button is selected.

A C l o s e r L o o k a t P a n e s

When you first open the IDE, you will see the Overview page in the Project section by
default, if you are not there now, dick the Project tab and the Overview button to get
there .

On the Overview page there are three panes.

You use panes to look at objects. You can look at objects in different ways. Each
different way of looking at an object is referred to as aview. For example, the object in
the upper left pane is the Payroll project. The view in the upper left pane is a
Declarat ions v iew.

You can change the focus to different panes with the mouse or by pressing F6. Change
the focus to the upper right pane now.

18 VisualAge C++ Getting Started

Explore the Panes

There are three down-arrows (

focus in the upper right pane. Click on the left-most arrow with the mouse pointer.

)across the top of each pane. You now have the

The menu that appears when you click this arrow controls the pane. You can move or
resize the pane, or change the way in which it is connected (linked) to other panes.

The middle arrow displays the object menu. With this menu you can select the object
you want to view. For example, the object being viewed in the upper right pane is the
Payroll project.

The right-most arrow allows you to select aview. There are different sets of views
available for the different objects you select in the object menu. For example, in the
upper right pane you are seeing aSource Files view of the Payroll project object.

Changing the views in the panes will not affect the contents of your project. Views are
simply tools to help you browse through the project.

Pressing FI takes you to the Help for more detailed information about the view for the
pane in focus.

See How the Panes Work Together

The linking between the panes allows for powerful browsing and easy editing.

Change the focus back to the upper left pane, which shows aDeclarations view of the
Payroll project object. This view shows alist of all the declarations in the project. In this
view the main function will be highlighted (selected) by default, if there is amain
function. Otherwise, the first declaration is selected.

With your mouse, select the manager class. Notice that the source view at the bottom
changes as you do this.

When you select aclass in the declarations view with your mouse, two things happen:
1. If you had any other pane selected before doing this, the upper left pane now

becomes the pane in focus (the border is darker).
2. The lower pane now displays the source code for the class object you selected.

Now, try the same action in the upper right pane. If you select any of the source file
objects listed, the source view in the lower pane will update to show the file object
selected. The immediate updating is made possible by links between the panes.

When you are more familiar with the IDE, you can customize the way the panes are
linked to select the objects, views, and linking patterns that are most useful to you. The
linking between panes is explained in greater detail later in this tour.

Chapter 2. Tour of VisualAge 19

What’s in aProject?

Each application you create in VisualAge C++ must be set up as aproject.

Every project consists of the following files;

one or more source files (*.cpp, *.hpp, *.c, *.h, etc.)
These are the files you provide or create. Source files can contain more than
C++ ,

one or more configuration fiies (*.icc)
.icc stands for Incremental C++ Configuration. Aconfiguration file contains all
the information about how the source fiies are processed. It is like an
encapsulation of the project it holds all options, lists all input libraries and
other source files, and defines your targets. The compiler uses the
configuration file to generate the codestore. If asource file is not listed in the
configuration file or #included in another source file, then it is not part of the
project.You do not have to create the configuration file, but you can edit it.

acodestore (*.ics)
The codestore is adatabase that contains the full information about aproject.
It is created the first time you build your project. You do not have to write this
file; it is created for you, and updated automatically every time you build.

The tabs, pages, and panes you see in the workbook offer various ways to view and
work with all of these components.

Creating aProject

SmartQuides will step you through the process of creating aproject.

To create aproject:
First, close the sample project. Pull down the Project Workbook menu and select
Close Project.
From the Project Workbook menu, select Create Project. The Project
SmartGuide opens.
Click Next until the Project Configuration page is displayed. First, you are
prompted to create the configuration file. This is aplan for the new project. You do
not need to decide all of the details yet. You can always modify the configuration
file later.

Type aname, such as helloworld, to name your configuration file. The default
suffix is .icc. It will be added by the SmartGuide if you do not type it.
Choose adirectory where this file and the codestore (.ics) will be located for this
project. This is not necessarily where your source files (.cpp, .hpp, .c, .h, etc.) will
be located. If you choose adirectory that does not currently exist, the SmartGuide
will create it for you.You can type aspecific path, or click the Browse button to
select adirectory.

Click Next. The Target Type page is displayed.

1 .

2 .

3 .

4 .

20 VisualAge C++ Getting Started

From the pull-down list on this page, choose the type of target you want to create.
Select Executable, and click Add Target (rather than Next). The Target
SmartGuide opens.
Ciick Next until the Target Name page is displayed.
On the Target Name page, type he! 1oworl dto name your target file and select a
directory where it will be stored. (The program type, in the lower part of the
window, will remain "Default").
Click Next to get to the Source Files page.
On the Source Files page, you can specify new or existing source files to include
in your project in the field Files to add or create:

5 .

6 .

7 .

8 .

9 .

Target SmartGuide: Add an executable target
m

m ircS
s m

mm m I

»

t |
H i

swt
m

IF:\cppbetaVWmywork\F:

m

Source files can come from any directory.

Type asource file name, such as hell oworl d. At the bottom of the window, pull
down the Type menu and select cpp as your source type.
Click Add to add it to the project, it doesn’t matter if the file already exists or not:
you will be prompted to confirm the name, and the SmartGuide will create the file
for you. The file name appears in the Source files added list, on the right side of
the window.

1 0 .

1 1 .

Chapter 2. Tour of VisualAge 21

For now, we are only creating one source file, so click OK. The dialog closes, and
you are taken back to the Target Type SmartGuide. Now the target you defined is
listed in the Current targets list.
Click Finish. The Open Project window appears, and asks if you want to open
your project in the IDE. Click Yes.
Finally, you are asked whether you would like to build the new project. Since you
haven’t added any code yet, click No. The IDE display has now added two new
tabs: aProject tab and aConfiguration tab. The panes are mostly blank because
no code has been entered and compiled yet.

1 2 .

1 3 .

1 4 .

You have created aproject, and you are ready to add content to your source file. Now,
we will look at what you just created.

Looking at Your Project

As you went through the steps to create your project, you set no options, and you
included no header files. You supplied only two file names (the target and the source),
but that information was enough to create the basic outline for aproject.

Before you add any content to your source files, look at what you have so far.

Look at the Project Overview

Make sure that you are in the Project section, with the Overview page selected. Click In
the whitespace in the upper left pane. The project is identified by name, and the pane
shows the Declarations view. There are no declarations yet.

In the upper right pane, your configuration file (hellowoiid.icc) is listed. This is the
configuration file you named when you created the project using the SmartGuides. Your
source file is not listed, because you have not yet built the project. Select the
configuration file by clicking it.

In the lower pane, you can see the contents of the configuration file. The source view
shows that you have defined atarget and asource of type cpp. In this case, the type
listed matches the suffix you have added to your source file name, but you could also
have assigned asource file name, but you could also have assigned asource file type
of cpp to your file even if you named It helloworld.c, for example, or helloworld
without any suffix. The file type can even be one you define yourself.

Click the Configuration tab to see more detailed information about helloworid.icc.

In the Configuration section, click the Options button. In the left pane of this page, you
c a n s e e :

atarget directive, or astatement to specify the file that will be produced when● ®
you build, and

22 VisualAge C++ Getting Started

asource specification, or astatement to direct the IDE to use helloworld.cpp

as input to abuild. With your cursor, select the helloworld.cpp source specifier
I

The right pane shows alist of options. You did not set any particular options when you
created the project, and you used the default program type, so only the option defaults
apply. You can look at them here.

Click the plus sign (+) to expand Optimization Options, then expand Common C/C-m>
Optimization Options. Alist of options appears, and you can see that they are in the
default state. For example, optimization is turned off (the ’no’ radio button is greyed)
and the code you generate from this source file will be compiled for the most generic
level of the PowerPC processor.

All the settings you see in this pane on the Options page are options applied only to the
source or target file you have highlighted in the left pane on this page.

Now, go to the Project Options page by clicking the Project Options page button (also
in the Configuration section).

The Project Options page looks very similar to the Options page, but the options here
will be applied to a//files in the project.

As you click through the other pages, you will see that each one presents adifferent
emphasis on the configuration file.

Now that you have an oven/iew of the framework of your project, you can add some
c o n t e n t .

Adding Content to aSource File

VisualAge C++ has abuilt-in editor that you can use from any page in the workbook.

You can work on the same file simultaneously on one or more pages. You do not need
to worry about your file relationships becoming outdated: changes made in source code
on one page will immediately be reflected in every other page displaying the same
section of code.

You have just finished creating anew project, but you have no content in your source
files to edit yet.

To open and edit asource file:
1. From any tab, pull down the Project Workbook menu, and select Open or Create

F i l e .

Chapter 2. Tour of VisualAge 23

In the Open File dialog box, the file you specified when you created the project
(helloworld.cpp) is selected in the File name field. (If it is not, browse through the
Drives and Folders fields to find it, and select it.)
Click Open to open helloworld.cpp. Asource view of your empty file is opened.
Click anywhere inside the editor pane, and type this short sample:

i n c l u d e < i o s t r e a m . h >
int mainO
{
c o u t « " H e l l o W o r l d " « e n d l ;
return 0;

2 .

3 .

4 .

}

You have just edited asource file. You do not have to explicitly save this file because
all project files are saved when you build your project.

Building Your Project

In atypical development environment, some actions, such as changes to global header
files, result in acomplete rebuild. VisualAge C++ changes only what has been updated.

Usually, your first build will be the longest and every subsequent refresh will be shorter.
Build time can be affected by the options you set, the number and complexity of your
source files, and the type of linking you have chosen.

The first build is called the initial build. Every build after the initial build is an
incremental build. The initial build for your sample will be very quick, because you have
only one source file, and it is very small.

Cl ick the Bui ld but ton
'fV'

Eji

If there were no errors in your Helioworld program, you should see the build result
displayed in the messages field at the bottom of your screen:
Last Compile completed successfully on [date] in [time]

If you see this message, congratulations! You have successfully created, edited, and
compiled your project. Click the Overview button on the Project tab again. The
Declarations view in the upper left pane now shows the main function.

and the Source view below shows the source code for this object, with int mai n
highlighted.

24 VisualAge C++ Getting Started

If your compilation was not successful, the IDE can make the process of correcting your
errors simple and fast.

Addressing Compilation Errors

If your Helloworld program was error-free, you saw how the IDE informed you of the
status of your successful compilation: amessage appeared in the status bar at the
bottom of the screen.

Let’s introduce an error to see how the IDE will handle it:

Place the cursor in your editor, or Source pane and click into this line:
c o u t « " H e l l o W o r l d " « e n d l ;

Change the semicolon (;) at the end of the line to acolon (:).

Now try rebuilding. Click the Build button

This time, two things happen:
1. The status line at the bottom of the screen displays amessage:

Last Compile terminated with errors on [date] in [time]
2. The page displayed has changed.

You now have the Messages page displayed.

On this page, the top pane lists the errors that were encountered during the rebuild,
with ashort description of each. The bottom pane shows your source code and has
highlighted the point where the error occurred:

□ i n t n a i n O
□ <

cout «"Hel lo Wor ld" «endl | :
r e t u r n 0 ;□

D >
□

Place the cursor into this line and replace the semicolon.

Rebuild by clicking the build button again. It’s that simple!

Running Your Program

Once you have successfully compiled your program, running it is simple.

Chapter 2. Tour of VisualAge 25

You do not need to go to any particular page, tab, or view. You do not need to save the
results of your build.

From any page, pull down the Project Workbook menu. Select Run.

Acommand-line window appears, displaying your output ("Hello World", or whatever
words you used in the sample).

You have completed the tour of the IDE.

By now, you already know how to perform several important tasks in the IDE:
●Open or close aproject
●Create aproject
●View and set options for your project
●Edit and compile code
●Run your program

You can return to any part of the tour and try the tasks again if you’re unsure about any
of the steps.

If you’re ready to learn more, you can continue to explore the IDE in alittle more detail.
The next portion of the tour offers more detail on some of the concepts you have
already learned. You can explore them in any order.

M o r e o n t h e I D E

This portion of the tour does not introduce any new tasks in the IDE, but contains more
details on the following topics. For some of these topics, you’ll need to have the payroll
sample open. If you’re not sure how to open it, read Tour the Integrated Development
Environmenf on page 15.

●“About Incremental Compilation” on page 27

●“About Editing Source Files” on page 28

●“Searching aProjecT on page 29

●“Using the Search Page” on page 30 (more advanced searches)

●“Object-based Searching with the Find Uses Page” on page 31

●“Configuration Files" on page 31

●“A Closer Look at the Configuration Section” on page 32

●“Setting Build Options” on page 34

●“Symbols used in the IDE” on page 34

●“Linking between Panes” on page 35

26 VisualAge C++ Getting Started

●“Some Useful Shortcut Keys” on page 36

●Toolbar Buttons” on page 37

●“Menu Descriptions” on page 39

More detailed information is also available in the online documentation. Some
suggested references you can search for in the online help:
●How Configuration Files are Processed
● C o d e s t o r e

●Build Options
● L i n k s B e t w e e n P a n e s

About Incremental Compilation

With VisualAge C++, the method of separate compilation managed through makefiles is
no longer necessary.

When you make achange anywhere, only the affected functions are recompiled and
linked, nof the included header files, nofthe entire file where the functions are located.
Build time is significantly reduced, and you are free from managing dependencies. You
no longer have to maintain and sort complex header files and makefiles.

With the codestore, the IDE can provide information about your objects that other
compilers cannot, and it provides the information to the various views of an object
quickly. It also can give you early error feedback by checking all interfaces before
compiling function bodies and variable definitions. If an error is found, you will be
notified immediately.

How does Incremental Compilation Impact Build Times?

In general, the more files you have, the greater the improvement you notice over
conventional compilers, within certain guidelines:
●Build time should be proportional to the changes made in the source code since the

last build.

-Changing acomment requires no recompiling
-Changing the body of anon-inlined function only requires recompiling that function
-Changing the body of an inline function requires recompiling all of the function’s

ca l l e r s

-Changing adeclaration in aheader file only requires recompilation of affected
functions (instead of all functions in all source files that include the header file).
This is amajor advantage in moderate and large projects, where all source files
tend to include most header files.

●Linking should take time proportional to the size of functions recompiled, not
proportional to the program’s size. For moderate-sized programs (a few

Chapter 2. Tour of VisualAge 27

tens-of-thousands of lines of code), VisualAge C++ takes afew seconds to do
incremental builds that involve recompiling afew functions.

Compiling from the VisualAge C++ Command Line

VisualAge C++ is incremental all the time; no options to set, no trade-offs to make, if
you use the command-line interface to VisualAge C++, you still get full incrementality,
but you must perform debugging through the IDE.

About Editing Source Files

The IDE maintains asingle codestore for every project.

This means that no matter where or when you choose to edit your source file, or how
many views you use, there will always be only one version of that code.

E r r o r s i n Yo u r S o u r c e

The live parsing editor is active in all source views, whenever you are working on afile
with a.c, .cpp, .h, or .hpp extension. Syntax errors will be detected before you have to
rebuild your source.

The Messages page displays any errors that occur. By default, there are two panes: a
Messages view and aSource view, if an error occurs during abuild, you will
automatically be taken to the Messages page. Each time you select an error message
in the Messages view, the Source view will be updated with the location where the error
occurred. You can edit the file here, and then build again.

lypes of Source You Can Use

Source files can consist of more than C++. VisualAge C++ supports the following types
of files:

c p p

c x x

c

r c

lib

v b f

v b e

d a x

m a k

ipf
l o c

m s g

s q c

28 VisualAge C++ Getting Started

s q x

hpj^ I N |

I m eIWINl
mkmsgf

msgbind0̂>S/2|
r e sO S / 2

Searching aProject

There are three ways to search aproject:
Live Find is adynamic search available in most views. It can be accessed with
shortcut keys, and works like most other dynamic searches by finding text strings to
match your criteria in the body of your code. It is also useful for locating strings that
are not necessarily in your source code, for example, to search for an option in the
Options page, you can type apart of the option name or category in the Live Find
entry field and avoid scrolling many long lists of options.
The Search page searches within any object, from asingle class to the entire
project
You can search semantically using the Find Uses page. Searching semantically
means searching for an object, such as aclass, rather than atext string.

1 .

2 .

3 .

Try performing aLive Find using the payroll project
Select the Project tab.
Select the Classes page button.
Click the Live Find toolbar button

1 .

2 .

or click mouse button 2on any part of3 .

PjpPjgi

the background (white space) in the view. Select Find (Live) from the pop-up menu.
Atext entry field appears at the bottom of the view.
Select the next to the employee class to start the search at the top of the4 .

v iew’s contents .

In the text entry box, slowly type pa:
●As you type p, the employee class is highlighted. The Source view also updates

with the corresponding code.
●As you type a’, the virtual function pay() is highlighted, and the function definition

is displayed in the Source view,
in the text entry box, remove the ’a’. The results are updated again, but there is
now apull-down key

previous searches without retyping your search string.

5 .

6 .

to the right of the text entry box that will take you back to

Chapter 2. Tour of VisualAge 29

7. You can move through the list of strings that contain the letter pby pressing Enter
or Ctri+N to move fonvard to the next match and Ctrl+P to move backwards to the
previous match.

8. Press Esc, or click the small flashlight icon next to the entry field and select Close
from the pop-up menu.

Using the Search Page

The Search page button is in the Project section of the workbook.

By default, there are two panes: aSearch view and aSource view. You can search all
or part of your project for apattern that you specify.

To s e a r c h :

1. We will search for the string ’class’. Type cl ass in the entry field:
2. Start the search by clicking the flashlight icon at the end of the entry field () or

by hitting Enter. The icon then turns into astop sign, which you can use to stop the
search. Within one or two seconds, all lines containing amatch for your pattern are
l is ted.

Each numbered line returned in the top pane is afile location. The number in brackets
is the line number in the source file.

The bottom pane is aSource view, which automatically displays the line selected in the
top pane. As you can see, the search has returned all 92 occurrences of the string
’class’. Including occurrences where class is only part of alarger term, such as
payclass, and all the different classes that have been defined in the project.

Clearly, this is not the most efficient way to find the class itself, but it is an exhaustive
search that is useful if you want to include comments and variations on astring in your
search. To find out how to search for the object, without including variations and
comments, see “Object-based Searching with the Find Uses Page” on page 31.

Search options can be set by clicking the plus symbol next to the flashlight icon.

●The Case-Sensitive option restricts your search to exact case matches.
●The Show Match option shows matches only, instead of all lines.
●When the Find Aii option is selected, every match in each line is highlighted instead

of only the first match in aline.

To repeat aprevious search:
1. Click the drop-down arrow next to the flashlight icon. The drop-down menu contains

previous patterns that you have searched.
2. Select apattern to rerun aprevious search.

30 YisualAge C++ Getting Started

Object-based Searching with the Find Uses Page
The Find Uses page is an even more compact and powerful method of searching than
the Live Find and the Search page. Find Uses allows you to search by object, not just
by text string.

Try aFind Uses Search

With the payroll sample project open, click the Find Uses button in the Project section.

The Find Uses page shows three panes:
●aDeclarations view of the project (a list of all declarations in the project) in the upper

left pane
●the Find Uses view of the declaration object selected in the left-hand pane
●the Source view, in the bottom pane.

In the Declarations view, select the first object (class employee). Two things happen:
1. The right-hand pane is updated with areport on the uses of the employee class

(number and location). The number of uses found (4) includes the definition of
employee class.

2. The bottom pane updates the source view to the first location in the source where
class employee appears. If you select another occurrence from the reported list, the
source view updates again.

Configuration Fiies

AVisualAge C++ project must have aconfiguration file.

When you build aproject, VisualAge C++ uses the configuration file to figure out how to
do the build. Aconfiguration file is similar to amakefile, but with some important
d i f f e rences :

●Configuration files are easier to create and maintain than makefiles. VisualAge C++
creates the configuration file for you

●Configuration files do not require any C++ file dependency information or processing
c o m m a n d s

Using the SmartGuides and views in the Configuration section, you can create and edit
configuration files in the IDE without necessarily learning any syntax.

AVisualAge C++ project can have more than one configuration file. You must have
multiple configurations to build the following targets:
●More than one executable from the same set of source files

●Ashared library and astatic library from the same set of source files
●Different versions of the same executable, built with different options

Chapter 2. Tour of VisualAge 31

For example, aproject might have adebug configuration with debug options, as well as
aproduction configuration with optimization options. (There will still be only one
codestore).

The default extension for aconfiguration file is .icc, but any extension can be used. The
configuration file can reside in any directory.

ACloser Look at the Configuration Section

The Configuration section appears only once you have opened aproject.

To see the configuration file, click the Configuration tab:

There are many different ways you can look at the configuration. All of these can be
customized to display the views you use most often. The pages already provided are:

There are two panes on the Options page: the Source and Targets view and
the Change Options view. In the Change Options view you can set options for
the files listed in the Source and Targets view.

The Source and Groups page shows three panes. In the Source Groups view,
the components of your project are grouped together by file type. You can
change the groupings of your files in the Change Source Group view, and you
can edit the source files in the Source view.

The Targets page shows three panes: the Targets view, the Change Targets
view, and the Source view.

32 VIsualAge C++ Getting Started

In the Targets view, your project's source files are grouped according to the
target or targets they build. You can move source files to different targets in
the Targets view. To change the name or type of atarget, use the Change
Targets view.

The Project Options page allows you to choose options that will apply to the
entire project, for example, whether optimization is on or off, and which type of
processor you intend to run your application on.

The Options Groups page shows two panes: the Options Groups view and a
Change Options Group view.

The Options Groups view shows the options you have assigned to groups. The
options can be changed in the Change Options Group view.

M M

The Advanced page offers two unique and powerful views of the configuration
file: the Details view and the Interpreted view. The Details view presents the
entire configuration file as structure. In Source view of the configuration file,
you can only edit at the line level. The Details view allows you to perform
many more object-level actions on the file. The interpreted view shows you
how the configuration file has been processed, for example, what path was
taken through the source, and what values have been assigned to variables as
aresult. This is especially helpful when you need to debug your program.

The Source page is afull-screen Source view of the configuration file, in which
you can edit the configuration file directly.

Chapter 2. Tour of VisualAge 33

Together, the information in the pages in the Configuration section forms acomplete
description of the project. Everything you want to know about aproject can be found by
looking at the configuration file through one or another of these pages.

Setting Build Options

Build options are apart of the configuration file (.icc). You can set build options through
the views in the Configuration section of the workbook. You do not need to know
configuration file syntax to edit these views.

Options can be set globally for your entire project, or applied only to alist of files.

To set options for an entire project:
1. Go to the Configuration section.
2. Click the Project Options page button.
3. Set the options for the project. Click the Apply button.

Project options apply to all files that are part of the project when the options are set.

To set build options on afile or group of files:
1. Go to the Configuration tab.
2. Click the Options page button. There are two panes on this page: aSources and

Targets view and aChange Options view.
3. Select asource file or target from the Sources and Targets view.
4. Set the options for that source file or target in the Change Options view.

Some options are set automatically when you define your application type on the Target
Name page of the Target SmartGuide.

Symbols used in the IDE

Some views in the IDE contain colored circles with letters. These are some of the
symbols used to represent the various objects displayed in the IDE.

If you look at the tabs in the workbook, you will see four of the symbols:
W o r k b o o km

H o s t[HostI

IBroiectl

Confiflurat ion l Configuration

There are many other symbols also used. Some common examples are:

34 YisualAge C++ Getting Started

Breakpoint

^ C l a s s

F u n c t i o n

Va r i a b l e

To see the various types of symbols and the relationships among the objects they
represent:
1 . Se lec t t he Workbook t ab .

2. Select the Schema Overview page button. Three panes are displayed:
●ADescriptors view, which lists all the descriptors that can be used in the IDE.

Expand the descriptor to see how the selected descriptor relates to others.
●AView Types view, which lists the types of views available. Expand the views to

see which descriptors are allowed in each type of view.
●APage Types view, which lists the types of pages available. Expand the page

types to see the types of descriptors available on apage.

Linking between Panes

One of the most powerful features of the VisualAge IDE is the linking between the
p a n e s .

To see how the panes on apage are linked:

Pull down the Page menu, and select Show Link Diagram. AHelp Tips window may
appear: click OK to continue to the linking diagram.

Chapter 2. Tour of VisualAge 35

An example of alinking diagram:
Class employe!m

<: s r ■imbiic virtual employ
):public virtual err
public manager, pi
1:public virtual err

public;
|employei

Iemployei
_virtu^̂ LHjltuSic
@virtual voir

0b protected:
...

a i
r w

£S\PAYROLL\payclass.hpp -Defii
n n 7 I n s e r t

, o .. 7 ., o ,● O ,

(automatic link)You can see there are two types of symbols on the link diagram: ||

(manual link).a n d

●If apane has an automatic link, the input varies with the pane that has focus. In
other words, in the example above, the bottom pane will take input from whichever
pane in the top row is active.

●With amanual link, the input comes from the same pane regardless of which pane
has focus. For example, the centre pane in the top row in the example above will not
change when adifferent pane becomes active.

You can customize linking by clicking on the link symbol to change the link type. The
online help includes more information on the links and how you can work with them.

You do not need to change the linking diagram in order to work with the IDE, but
understanding it will help you to customize your work environment.

While the linking diagram is displayed, all other functions within the IDE are suspended.

To go back to the IDE, select Hide Link Diagram from the Page menu.

Some Useful Shortcut Keys

This section lists keys used to perform and manage Source view and the Editor window
operations. Where two key names are joined by aplus sign (-i-), hold down the first key
and press the second, or hold down the first two and press the third.

For acomplete list of key commands you can use in the IDE, see IDE Shortcut Keys
in the online help.

36 VisualAge C4+ Getting Started

Navigating in the IDE
F 6Move between panes
E s cExi t L ive Find

C o m m a n d s

C t r i + S h i f t + BBegin abuild

Editor Shortcut Keys

Switch to the Command shell window; which
gives you access to the command line prompt.
(Note: the cursor must be located within the
working area of the Source view.)

F 9

Moves the cursor to the command l ine .E s c

Move cursor to start of next word.an+Right
Move cursor to beginning of word or previous
w o r d .

C r t l + L e f t

Copy selected text to clipboard.C t r l + C

Cut seiected text to the clipboard.C t r l +X

Paste text from the clipboard.a n + v

S e l e c t w o r d / t o k e n .a r l + T

Delete to end of l ine.C t r l + D e l e t e

Delete ent i re l ine.Ctrl-t-Backspace

To o l b a r B u t t o n s

The IDE toolbar contains icons for frequently used actions. The default selection of
icons is:

m

The first two buttons are for saving and building the currently loaded project.

The third button is for loading anew project, and closing the existing project.

Chapter 2. Tour of VisualAge 37

a

ist i

The next two buttons are for adding and removing bookmarks on the pages in
the IDE.

The next two buttons are pane-specific. The pane with the current focus is the
recipient of these two actions. Use the first icon to choose the next object in
the pane history, and the second icon to choose the previous object In the
pane history.

The last button starts aLive Find. It will open the Live Find window for the
pane currently in focus.

Other buttons that appear are view-specific. For example, when asource view is active,
buttons for recording macro keystrokes or printing will also appear on the toolbar.

To find out what any button does, place your cursor over it without clicking. Aflyover
label will appear.

To customize your toolbar:
Se lec t the Workbook tab .

Select the Settings page.
Select the Toolbar Configuration push button in the Settings view. The Toolbar
Configuration window opens (shown below).

1.

2 .

3 .

38 VisualAge C-h- Getting Started

To add and remove buttons from the toolbar, select them from the scrolling lists and
cl ick on the Add or Remove buttons.

Menu Descriptions
Project Workbook

Use this menu to perform actions on the project as awhole, such as starling a
build, removing sections, and opening new projects and files.

Use this menu to perform actions on apage, such as adding and removing
pages, viewing alinking diagram, saving and removing page descriptions, and
quickly accessing other pages in the workbook.

Use this menu to perform actions on aselected pane, such as changing the
object displayed, changing the view of the object in the pane, adding and
removing panes, maximizing apane, changing settings, and setting filters.

Page

P a n e

S e l e c t e d

Use this menu to perform actions on the selected object in aview.

Debug Use this menu to initiate debug actions, such as debugging, running, stopping,
stepping and terminating.

B o o k m a r k s
Use this menu to set abookmark on any page in the IDE when you want to be
able to quickly flip between commonly used pages.
Use this menu to access the online documentation provided for VisualAge
C++ .

Help

Chapter 2. Tour of VisualAge 39

Dynamic Menus
These menus are associated with aparticular tab and aparticular view. As you
change the pane focus, the fourth menu changes to reflect your selection. Use
these menus to perform actions relating to the view and object selected.

40 VisualAge C++ Getting Started

Chapter 3. Try VisualAge C++
Try VisualAge C++ contains exercises you can use to gain athorough understanding of
the VisualAge C++ Integrated Development Environment (IDE).

Try VisualAge C++ is divided into two independent sections. In one, you will develop a
web-based review tool. This web-based tool allows agroup of reviewers to add
comments to aset of HTML documents. This part covers the VisualAge C++ IDE In
depth, and takes four to eight hours to complete, depending on which sections you
complete, and how much experimenting you do with the IDE. It is structured so you can
start or stop at the beginning of any part. If you start in the middle or skip apart, you
may need to complete some simple prerequisites. The prerequisites are described at
the beginning of each part.

In the other, you will develop agraphical user interface, using the Visual Builder, for
administering the users of the review tool. The interface lets you administer user
information for the web-based review tool. This section should take you three to six
hours to complete. It does not explore IDE actions such as debugging, viewing class
hierarchies, or navigating, although it does involve some use of the IDE. If you choose
to complete this section of the exercise without doing the IDE section, you should at
least do the Tour of the IDE.

Although the sections are related, neither is dependent on the other, so you can try just
one, or both. However, if you are interested in having auseful web-based HTML review
tool, you may want to complete both parts, then enhance the code to your liking to
provide additional capabil'rties.

You can now proceed to either of the two main sections:
●“Develop aWeb-Based Review Tool”

●“Develop aGraphical User Interface from aVisual Part” on page 103

Develop aWeb-Based Review Tool

In this section, you will implement aweb-based application that uses the Common
Gateway Interface (CGI). The application interacts with users through the users’ web
bit)wsers, although it runs on your own machine. This application allows reviewers to
add comments to aset o f HTML documents .

Here is an overview of this section:

Background Information
Before you start developing the review tool, you may be interested in some
background information on how the tool will work, and on how CGI applications
communicate with aweb browser. Only read this information if you intend to do
one of the following tasks:

4 1®Copyright IBM Corp. 1998

●Develop other CGI applications.
●Add your own enhancements to the review tool.
●Use the tool in aproduction environment.

Part 1. Configuring aNew Application
This section shows you how to create asimple web-based Hello-world
application. You will use aseries of SmartGuides to provide the VisualAge C++
IDE with information it uses to create aconfiguration file for your project. Then
you will add amain function to your project. Finally, you will run the executable
file that VisualAge C++ generated for your project.

Part 2. Modifying Configuration Options
This section shows you how to make simple changes in the options for your
project’s configuration. You will change the target CPU architecture to match
that of CPU you are using.

Part 3. Declaring and Implementing aClass
In this section, you will create aRequest class, which is autility class for
holding information about an incoming CGI request. You will learn how to
create new source files in aproject, add source code to them, and perform
incremental builds of your project.

Part 4. Developing Classes in the IDE
In this section you will Implement ahierarchy of user classes in which the base
class. User, defines virtual methods for all available operations. You will learn
how to use the Classes and Class Hierarchy pages of the Project section of
the IDE, and you will verify that the classes and their members are properly
organized so that access to restricted functions is limited to authorized users.

Part 5. Debugging and Revising Your Application
In this section you will add amethod to your application, then use debugging
features of the IDE to locate and correct abug in the new method. You will
learn how to set breakpoints, view variable contents, step through code, and
perform other debugging tasks.

Part 6. Managing Configuration Files
In this section, you will add user variables to your project’s configuration to
customize how your project is built, and you will use the IDE to manage the
settings and effects of those variables. You will learn how flexible and
extensible the VisualAge C++ configuration language is.

Part 7. Optimizing Your Configuration
In this section, you will use the Configuration Optimizer, which analyzes your
configuration and optimizes it to improve build performance.

Part 8. Defining the View Function for Reviewers
In this section you will flush out another member function. The section contains
mainly source code. It offers you little additional guidance. Complete this and
the following section if you want more practice in the IDE before you move on
to your own development work, or if you intend to put the web-based review
tool to use.

42 VisualAge Oh- Getting Started

Part 9. Defining the Remaining User Functions
This section contains the source code you will need to complete the review
tool. It advances the same learning objectives as Part 8.

Background Information

This section provides some background information about the exercise application and
CGIs in general. It is divided into the following topics:
●How the Rev iew Too l Wi l l Work

●How CGI Applications Communicate with aWeb Browser
●Running the CGI with aWeb Server Other Than the VisualAge Help Server
●Determining Which Library Files Are Needed for aCGI

These topics may be helpful, but you do not need to read them to do the exercise. If
you do not want to read them, proceed to “Part 1. Configuring aNew Application” on
page 46.

How the Review Tool Wil l Work

The review tool reads HTML documents stored on your computer, and displays them in
the Web browsers of users accessing the tool. Users access the tool using aunique
key value that identifies them. The tool implements different levels of authority for
different users based on their keys:
●Auser with user authority cannot view your documents. If akey is unrecognized, the

user’s access defaults to this level and the user is prevented from viewing
d o c u m e n t s .

●Auser with reader authority can view the HTML documents and navigate within
t h e m .

●Auser with reviewer authority can do everything areader can do, and can add
c o m m e n t s t o a d o c u m e n t .

●Auser with author authority can do everything areviewer can do, and can mark
comments as completed.

This organization lends itself well to an inheritance structure in which auser class with
more authority inherits from one with less authority, and overrides certain member
functions of its base classes. When adocument is requested, the tool generates aview
of the document based on the user’s authority level:
●Auser sees an error message stating that they are not authorized to view the

d o c u m e n t .

●Areader sees adocument that looks identical to the original HTML document. The
only difference is that hypertext links in the document are changed into calls to the
CGI, so that when alink is followed the CGI still maintains control of the user’s
a c c e s s .

●Areviewer sees adocument with numbered markers inserted at each paragraph,
preformatted text block, or list item. These numbered markers are hypertext links that

Chapter 3. Try VisualAge Oh- 43

allow the reviewer to create comments at these locations. Areviewer also sees all
comments already added to adocument. Each existing comment also has a
hypertext link that allows the reviewer to append another comment to it.

●An author sees adocument similar to what areviewer sees, with an additional
hypertext link on each comment. This link allows the author to mark acomment as
completed, meaning that the comment has been answered in some way.

The files being reviewed do not need to be stored in apublicly accessible location.
Normally, HTML documents need to be stored in aweb sen/er directory for users to
view them. The tool acts as an intermediary between your documents and web users. If
you want, you can modify the tool later to provide access control to sensitive
documents on your system.

You will need aweb server on your workstation to use the tool. The VisualAge Help
Server provided with VisualAge C-h- Is sufficient for the purpose of trying out the
exercise, but should not be used for deploying aproduction-level web application. If you
are using Windows NT, you can use Microsoft Peer Web Services instead, although
additional setup may be required.

How CGI Applications Communicate with aWeb Browser

CGI applications are short-lived: each time auser accesses the application from a
browser, the application is loaded as aseparate process, reads input, provides output,
and terminates .

ACGI application receives requests from auser's browser in one of two ways: through
an environment variable, or through the standard input device. Requests from an
environment variable are called GET requests; requests through standard input are
called POST requests. Normally, all requests are GET requests except for those
submitted through an HTML form (such as the form for adding reviewers’ comments).

When arequest is sent to the server, the REQUEST_METHOD environment variable is
set. Each time the CGI is invoked, it reads the REQUEST_METHOD environment
variable to find out how the request was made. If the request method was GET, the CGI
then reads the QUERY_STRING environment variable for the text of the request. If the
request method was POST, the CGI determines the number of characters to read by
reading the CONTENT_LENGTH environment variable, then reads that number of bytes
of input from the standard input device.

The CGI sends output back to the user’s browser by writing to standard output. Rrst,
the CGI writes aheader to indicate what type of content is being returned (for example,
plain text, HTML text, or aJPEG image), then the actual output is written.

Running the CGI with aWeb Server Other Than the VisuaiAge Help
S e r v e r

This manual assumes that you are using the VisualAge Help Server as your web
server. If you choose to use adifferent web server, you will need to change your project

44 VisualAge C++ Getting Started

configuration to reflect the path the web senrer uses to run CGIs; wherever the
VisualAge Help Server directory is referred to, change this directory to your web
server’s CGI directory. You will also need to do some additional setup work to get the
CGI working properly with dynamic link libraries (Windows NT, OS/2) or shared libraries
(AIX) as explained below.

Normally, aCGI does not have access to environment variables other than those set by
the web senrer. This means that any dynamic link libraries (OS/2 or Windows) or
shared libraries (AIX) that are normally located through an environment variable, such
as PATH or LIBPATH, are not accessible to the CGI. To make the CGI run under most
web servers you must therefore either link the run-time libraries statically to the CGI, or
else copy the necessary library flies into the same directory as the CGI.

Static linking during development of aCGI increases build times significantly, because
VisualAge C++ must locate the necessary code in the run-time libraries and link it
statically to your application every time you build. You should use dynamic linking as
you develop the CGI, and ensure that the CGI has access to the necessary run-time
library files, either by copying them Into the CGI directory, or by using the VisualAge
Help Server as your web server during development. This help server preserves
environment variables such as the PATH environment variable within the CGI
e n v i r o n m e n t .

If you are running Windows NT and you want to use Microsoft Peer Web Services
instead of the VisualAge Help Server, copy the following dynamic link libraries from the
VisualAge directories into the directory your CGI will run from. The CGI usually runs
from X: \inetpub\scripts ,where X: is awritable drive on your system. The DLLs to copy
are in either the run-time or bin directories under the main VisualAge C++ directory.
They should be copied into the CGI directory, rather than into abin or run-time directory
under the CGI directory:
●runtime\cppobi36.dll
●bin\cppzm40i.dll
●b i n \ c p p n n i 4 0 . d l l

●bin\cpprbi40.dl l
●runtime\cppoui36.dll
●runtime\cppogi36.dll

Determining Which Library Fiies Are Needed for Any CGi

On any platform, for any CGI, you can determine what library files need to be copied to
the CGI directory by following these steps:
1. Link the run-time libraries to the CGI dynamically, and place the target in the CGI

directory.
2. For OS/2 only, make abackup of your CONFIG.SYS file, then comment out any

setting of the LIBPATH environment variable in that file. Save CONFIG.SYS and
reboot.

3. Open acommand prompt or shell session and change to the CGI directory.

Chapter 3. Try VisualAge C++	 45

Change the PATH environment variable to On OS/2, Windows, or C-Shell on
AIX, type:
S E T PAT H = .

4 .

On AIX Bourne-Shell or Kom-Shell, type:
EXPORT PATH=.

Type the CGI executable file name. As the CGI tries to load, the system will look for
the necessary library files in the current directory only, because you have overridden
the search paths normally used to find DLLs or shared libraries. At the first DLL or
shared library the system cannot find, it displays an error message showing the
name of that DLL.

Locate this DLL or shared library on your system and copy it to the CGI directory.
Repeat steps 5and 6until you do not get any error message about missing library
fi les .

For OS/2, restore the backup copy of CONFIG.SYS and reboot.

You can now proceed to “Part 1. Configuring aNew Application".

5 .

6.

7 .

Part 1. Configuring aNew Appiication

Before you begin writing code, you need to provide some information so that VisualAge
C++ can configure your program’s build environment properly. In this section, you will
use the VisualAge C++ Integrated Development Environment (IDE) to do the following:
●Create aproject lor your program. AVisualAge C++ project groups together the

source files and actions needed to produce an application or part of an application.
To work with your application in the IDE, it must be defined as aproject.

●Add atarget file, source files, and class library files to your project.
●Create asource file with asimple main function.
●Build and run your program.

This section should take you approximately 30 minutes to complete. You will learn to
perform the following IDE tasks:
●Use the SmartGuides that lead you through creating the configuration for your

project.
●Perform an initial build of your project.
●Find error in format ion af ter an unsuccessfu l bui ld .

●Open aview of an existing source file.
●Add amain function to your project.
●Rebuild your project.

If you are interested only in learning the IDE, and do not need to understand the details
of the CGI application, you can skip passages titled Implementation Details.

46 VisualAge C++ Getting Started

Preparation for this Tutoriai

To run the web-based portion of the tutorial, you will need to follow these steps for your
application to work through aweb browser. If you do not have root access to the
machine, ask your system administrator to perform step 1for you:

Create asymbolic link from rev1ew.exe in the directory from which your web server
runs CGIs (/var/docsearch/cgi-bin if you are using the web server that is installed
with VisualAge C++) to rev1ew.exe in adirectory you have write access to. The file
linked to does not have to exist; it will be created as you go through the exercise.

1 .

Note: If you are one of several users on the system and another user has already
created asymbolic link from /var/docsearch/cgi-bin/review.exe, you should
replace review.exe with some other name (e.g. review.cgi, or
myrev1ew.exe) in the CGI directory. If you do this however, you will not be
able to use some of the links in this exercise to test your code, because the
links will point to the wrong file name.

Store review.exe in the directory you have write access to, rather than in
/var/docsearch/cgi-bin/.
Change the permissions on the directory where you will be storing review.exe to be
readable by all, so that the server process can read that directory and its contents.
(Use chmod 755 dirname to do this.) Subdirectories you create in the exercise that
are used for storing data (e.g. user information comments), should be writable by
all, so that the server process running the CGI can write the necessary data. (Use
chmod 777 dirname to make the directory dirname writable by all.)
After the first successful build, change the permissions on review.exe to be
readable and executable by all, so that the server process can read it. (Use chmod
755 review.exe to do this.)

2 .

3 .

4 .

Create aProject and Add Files to It

Follow these steps to create your project:
1. Start the VisualAge C++ IDE.
2. Choose to create anew project in one of the following two ways:

●From the VisualAge C++ startup screen, select the Create anew project radio
button and cl ick OK.

●If no startup screen appears, or if you cancelled the startup screen, select
Project Workbook -Create Project from the menu bar.

3. The Project SmartGuide will guide you through creating the project.
4. In the Project Configuration screen of the SmartGuide, specify review, icc as the

project name. If you do not enter the file-name extension .icc, the SmartGuide will
add it for you.

5. Specify adirectory in which to store the project files. For example, if you are
running OS/2 or Windows NT and you want to store the project files on drive F:,
you might enter F:\vatutor as the directory. On AIX, you might enter
/u/myuserid/vatutor. If the directory you specify does not exist, it will be created
for you.

Chapter 3. Try VisualAge C++	 47

For the remainder of this exercise, wherever you see the path F:\vatutor, you can
substitute the path you specify in this step.
Click Next. The Target Type screen appears. On this screen you add targets to
your project. Make sure Executable (EXE) file is the current selection in the New
target field, and click Add target.
The Target SmartGuide appears. The Target SmartGuide guides you through
defining your target. Click the Next button until you get to the Target Name screen.
On the Target Name screen, enter the name and destination directory for your
target. For the CGI example, name your target review .exe and specify the target
directory as the directory from which CGIs run on your web server.
●If you are using the VisualAge Help Server to try out the exercise, this directoiy

is on the same drive where VisualAge was installed:
\IMNNQ_NT

: \ N E T Q O S 2

6 .

7 .

8.

m m

iQS/2|
the writable directory you specified in preparation for this Tutorial.A I X

●If you are using Peer Web Services on Windows NT, this directory is normally
\inetpub\scripts.

You can also select aprogram type for your application, which predefines certain
compiler and linker options. In the Program Type column, select WIN IOC, OS^
IOC, or AIX IOC depending on your operating system. These two choices set
project options so that your project can use IBM Open Class Library classes and
member f unc t i ons .

Click Next to go to the Source Files screen.
Enter the source file name main.cpp in the Files to Add or Create text entry field
(remove any current path information from that field). Then click Add.
The SmartGuide asks if you want the file to be created. Click Yes. An empty
main.cpp file is created.
Click OK to close the Target SmartGuide and return to the Project SmartGuide.
You will see the target you just defined in the list at the bottom of the Target Type
screen. The last Project SmartGuide screen lets you specify help files. Since you
will not add help files for this exercise you can close the Project SmartGuide by
clicking the Finish button.
When the IDE asks if you want to open the project, click Yes.
When the IDE asks if you want to build the project, click Yes.

9 .

10.

11 .

1 2 .

1 3 .

1 4 .

15 .

16 .

You will encounter abuild error, because you have not yet coded amain function for
your program. AHelp Tips error dialog will appear if you have not encountered abuild
error before. If the dialog appears, click OK to go to the Messages pane. Building the
empty project now simply adds the sources and targets you specified to the codestore,
so that you can work with them through the IDE.

48 VisualAge C++ Getting Started

Add aSimple main Function to main.cpp
1. Make sure that the Project section of the workbook is selected.
2. Select the Source Files page.
3. Select the main.cpp object for the main.cpp source file in the Source Files view

in the upper left pane. Notice that when you select this file, the source view
underneath changes to display the content of main.cpp, which is currently empty.
Click anywhere inside the Source view. Enter the following code for main.cpp into it.
If you are viewing this information online, copy the code from your browser window
and paste it into the Source view.
Note that all comments shown in this and other source code in this manual are for

your information; you do not have to type them in.
#include <fstream.h> // for use of cout statement (and file i/o later)
int mainO {

cout «"Content-Type: text/plain\n\nHello world!" «endl;
return 0;

4 .

}

Implementation Details: The output begins with aheader (Content-Type: text/pi ain\n\n),
which is the CGI header that instructs auser’s browser to dispiay the subsequent text as piain
unformatted text. This header wiii dispiay when you run the program from acommand sheli, but
will not display when you start the program from abrowser.

Your project is now ready to build.

Build and Run Your Program

Now that you have added content to your source file, you can build and mn the project.
)on the toolbar or pressTo start the build, click the Build button (1 .

Ctrl-i^hift+B. The IDE automatically saves any files you have opened and added to
the project, then starts building the project.
If any errors occurred during the build, the Messages page appears. (If it does not
appear, but the status area indicates build errors, go to the Messages page in the
Project section.) Select the error in the Messages pane; the view below this pane
shows the source code for the object containing the error, with the cursor on the line
containing the error. Correct any source code errors, then build again.
You can run your project from acommand shell or from aweb browser on your
works ta t ion :

●in the command shell, change to the directory you specified as the target
directory (the directory from which your CGIs run) and type the executable file
name, review.exe.

●From abrowser, assuming you are using the VisualAge Help Server as your web
server, enter the following location:
http://localhost:49213/cgi-bin/review.exe

2 .

3 .

Chapter 3. Try VisualAge C++	 49

If there is no response, the help server may not be running. Select any of the
choices from the Help menu in the IDE to start the VisualAge Help Server. Once
the help senrer is running you can try the appropriate link above.

4. If you ran the program from the command shell, you will see:
Content-Type; text/plain
H e l l o w o r l d !

If you ran the program from aweb browser, the browser interprets the Content-Type
header, and displays only the text Hello world!

You can now proceed to “Part 2. Modifying Configuration Options”.

Part 2. Modifying Configuration Options

In “Part 1. Configuring aNew Application” on page 46, you used the SmartGuides to
create asimple project. You now have aconfiguration file for your project and one
source file, main.cpp. In this part you will learn how to set or modify options for your
project.

Because the SmartGuides did such agood job of helping you create your project, all
the necessary options were set for you. The option you will change in this part will not
have agreat impact on this project. However, changing it will illustrate how easily you
can change options for your project, target, or source files from within the VisualAge
C++ IDE.

This section should take you approximately 15 minutes to complete. In it, you will learn
to perform the following IDE tasks:

●View the options for your project’s target and navigate the options hierarchy
●Use the Live Find feature to locate text

●Determine whether an option is the default or has been overridden
●Change the setting of an option
●View the source for your configuration file

Change Your Target CPU Architecture Option

By default, the target CPU architecture is ageneric PowerPC processor. In all likelihood
you know which specific processor you will be using, such as aPower PC or Power 2
processor. By changing the target CPU option, you allow VisualAge C++to generate an
executable file containing instructions that are targeted to your processor. In areal
application, making this change might improve performance, although in this exercise
you will not notice any difference.

You can add, modify, or delete configuration options for your project in the Configuration
section of the workbook. Follow these steps to specify your processor:
1. Select the Configuration section of the workbook.
2. Select the Options page of the Configuration section.

50 VisualAge C++ Getting Started

The left-hand pane shows aSource and Targets view of the configuration, while the
right-hand pane shows aChange Options view. Any options you change in the
Change Options view are applied to the object selected in the Source and Targets
view. Select the Target object in the Source and Targets view.
Press F6 to move to the Change Options view.
There are two ways you can locate the option you want to change.
●You could expand various entries in this view until you find the Target CPU

architecture for instruction set selection option.

3 .

4 .

5 .

●You can open aLive Find field by pressing Ctrl+F. in the Change Options view,
the Live Find field is already displayed at the bottom of the pane, with the Live
Find icon Ito its left. Click the entry field, and slowly type Pow .Notice that as

you typed, the view changes to display the Target CPU architecture... option,
and ̂ e first choice is displayed. You may also see that the light turns yellow on
the flashlight icon as soon as your entry has amatch. For more information on
using this feature, see Search aView Using Live Find in the online help.

Notice that the current choice, Common Power/Power PC/Power 2processors, is
selected with agrayed radio button. This indicates that the grayed choice is the
default and that the default is being used; no information for this option appears in
your configuration. If you click this choice, the radio button changes to black, to
indicate that this option is now explicitly set to the default choice.
Select the processor you are using. The text of the option you chose turns green.
An option’s text is displayed in green when its value, for the currently selected
source or target, is set by your configuration. In other words, you have explicitly
chosen asetting for this option, whether or not that setting is the default.
Click Apply at the bottom of the view. This saves any option changes you have
made. The next time you build your project, these changes will take effect.
Select the Source page of your configuration file in the Configuration section (the
rightmost button along the top of the Configuration section). You will see that
gen(arch,"ppc") or (another processor type you choose) is now one of the target
options for your project.

You can now proceed to “Part 3. Declaring and Implementing aClass”.

6 .

7 .

8 .

9 .

Part 3. Declaring and Implementing aClass

In this section, you will create aRequest class, which is autility class for holding
information about an incoming CGI request. You will modify the main function by
replacing its current contents with adeclaration of aRequest object, and an output
statement that prints asimple response to the request back to standard output.

In later sections, the Request object will determine the class of user accessing the tool
(for example, Reviewer or Author), and will create an object of the appropriate user
class, so that the object can perform actions based on the authorities assigned to that
c lass .

Chapter 3. Try Visual Age C++	 51

This section should take you approximately 90 minutes to complete, in it you will learn
to perform the following IDE tasks:
●Create anew file and associate it with your project
● C r e a t e a c l a s s

●U s e t h e C l a s s e s v i e w

●Make macros globally visible to your project
●Change aproject option using the change options view
●Obtain various editable views of your source
●Use va r i ous ed i t o r f ea tu res

*Locate afunction in your project source using different techniques
●Maximize one view within apage to take up the entire page

You can cut sections of code from the online tutorial and paste them into the
appropriate source views; this will let you concentrate on the concepts, and will save
you time and potential typing errors.

Implementation Details

At the heart of the Request class is its constructor. The Request constructor does the following:
●Determines the type of request (GET or POST) for this and other CGI-specific information, see

“How CGI Applications Communicate with aWeb Browser” on page 44)

●Reads the request from the appropriate source
●Parses out certain fields in the request that will be common to most requests. For example,

each CGI request should contain akey attribute (for example, key=abcde) which Is used to
uniquely identify each user by key. Each request should also contain afile attribute to identify
which file to display.

Prerequisites if You Are Starting Here

You should have the following source files in adirectory on your system:
●review.lcc -The configuration file for your project
●main.cpp ●The source code for your main function

Start the VisualAge C++ IDE. Open the project identified by review.icc, then build the
project when prompted.

Add the Request Ciass Deciaration to the Project

You need to add the declaration for the Request class to the project. Follow these
steps:

1. Create afile to contain the declaration. From the Project Workbook menu, select
Open or Create File, or just press Ctrl+0.

2. In the Open File dialog, type the file name request.hpp in the File name entry
field. Change the current directory in this dialog to the directory you defined earlier

52 VisualAge C++ Getting Started

as the directory in which to store the .icc file. The main.cpp file should already be
listed in the directory along with other files of the form review.*.
Under the File Open Location group box make sure that Open as aWorkbook
Section is selected. This will add aseparate workbook section for this source file,
to make it easy to access.
You also want this source file to be included in the current project and to be
associated with the source directive containing main.cpp. In the Project Options
box, select the Add to Project check box and select Add Source to Source
Directive. This will add the new file to the main.cpp source directive.
Click Open.
An Add to source dialog appears. This lets you specify the source directive to
which the source file will be added. Because your project currently has only one
source directive (for main.cpp), you can simply click Apply.
The IDE creates anew workbook section that contains asource view of
request.hpp, which is currently empty because you have not entered any code.
Declare the Request class in the new file as shown in the following example. Type
the code into the Source view of request.hpp.
#inc lude <is t r ing.hpp>
/ / C lass Defin i t ion
class Request {

IStr ing ReqStr ing,
IReqStr ing,
ReqMethod,

F i l ename,
F i lepath ,

3 .

4 .

5 .

6 .

7 .

8.

//Required for use of IString class

//Request string from cgi call
//Lowercase version for searches
//How request was obtained
//Operation requested
//File requested
/ /F i le , wi th s lashes corrected
//User's key value
//Length of request str ing

Op,

Key;
int ReqLen;

pub l i c :
//Constructor and get methods
Request 0;
IString GetReqStringO {return ReqString; }
IString 6et0p()
IString 6etFilename() {return Filename;}
IString GetFilepath() {return Filepath;}
IString GetKeyO
int GetReqLenO
//Get the value of an attr ibute=value pair from request string
IString GetYalue^String Attribute);

{return Op;}

{return Key;}
{return ReqLen;};

} ;
Build the application to ensure that you did not make any typing errors.
If you encounter an error, go to the Messages page in the Project section to read
the message. Check that you entered the code exactly as shown above and
correct any errors.

If you encounter awarning but the status line at the bottom of the IDE window
indicates the build completed successfully, you do not have to make any changes.

9 .

1 0 .

Chapter 3. Try VisualAge Ch- 53

To see the result of the build, select the Classes page in the Project section. The
Request class should appear in the upper left pane (a Classes view of the Project
object), with its members in the right pane (a Members view of the selected Class
object). Class members are grouped by access method and sorted alphabetically by
name. As you select different class members in the right pane, the Source view
underneath shows ayellow arrow beside the declaration of the member you select. For
example, select the Request class constructor, its declaration appears in the Source
view. Later, when you add definitions for some of the undefined functions, the Source
view will change to show these definitions.

Add the Constructor for the Request Class

Because the Request class constructor does more than simply initialize its data
members with default values, it is not defined inline in the class declaration. Instead, it
is defined in afunction definitions file, request.cpp.

To create request.cpp, follow the first four steps of the previous section (Add the
Request Class Declaration to the Project). Add request.cpp to the Source directive and
open it as aworkbook section, just as you did for request.hpp. Then, in the Source view
that opens for request.cpp, enter the following code:
Request:;Request{) {

ReqStr ing=“";
ReqMethod=getenv("REQUEST METHOD");
if (ReqMethod=="GET") {

ReqString=getenv("QUERY_STRING");
ReqLen=ReqStr1ng.1engthI);

}
else if (ReqMethod==''POST”) {

ReqLen=atoi(getenv(“CONTENT_LENGTH")); //of characters from standard input,
for (int c=l;c<=ReqLen;c++)

ReqString+=char(cin.get());
ReqString.change("&"," ");

/ / I n i t i a l i z e s t r i n g
//Determine how input provided
//GET means it comes from
//QUERYJTRING variable

//POST means read the right number

/ / I n P O S T c a l l s , a n s e p a r a t e s fi e l d s
}

) ; / / In both types, a"+" rep laces aspaceReqString.change("+",
//Special characters are escaped with %and two hex digits.
//Convert these to their actual character values
int p=ReqString.indexOf("%“);
while (p>0) {

if (ReqString.subString(p+l,2).isHexDigits()) // If it's ahex pair after %
ReqString.change(

ReqString.subString(p,3), // Change %and hex pair
ReqString.subString(p+l,2).x2c(),p,I); // to char value using IString:;x2(

p=ReqString.indexOf("%“,p+l); // Search for next %
}
lReqString=IString::lowerCase(ReqString); // Create lowercase version for searches
//Get the file attribute's value, then set Filepath to the value of
//the WebRoot macro plus aslash plus the file name. WebRoot and slash will be
/ / d e fi n e d s h o r t l y.
Fi1ename=GetValue("fi1e");
Fi 1epath=Fi 1ename;
Fi1epath.change(slash,"/");

54 VisualAge C++ Getting Started

i f (Fi lepath.subString(l, l)!=slash)
Fi 1epath=sl ash+Fi1epath;

Fi1epath=WebRoot+Fi1epath;
Key=GetValue(‘'key“); //Get user's key}

Build the project again. There should be two errors, stating that declarations for
WebRoot and slash could not be found. You will define these next.

Define Macros for the Request Class

Create amacros file, macros.hpp, and add it to the Source directive in the same way
you added request.cpp and request.hpp above, then add the following macros to it. Be
sure to change the string literal in the WebRoot macro to point to the path where HTML
documents wil l be stored for review.

#define WebRoot IString("f:\\vatutor\\htnildocs“)
// Note -change above path to the correct path on your system
#define s lash IS t r ing (" / ")

If you were to rebuild the project now, the same errors would occur, because VisualAge
C++does not grant macros global scope by default. This differs from class, member,
variable, and function definitions, which are 0++ constructs and are accessible to any
part of aVisualAge C++ program as long as the source files containing their
declarations are part of aproject’s configuration.

Give Macros Global Scope
In the Configuration section, select the Options page.
In the Source and Targets view at the upper left, select the macros.hpp source file
object.
In the Change Options view to the right, use the Live Find field to search for
global.
The option Set global scope for macros should be visible.
The option shows ahatched check box, which indicates that the option’s default
value is being used. In this case the default value is off. When you click the check
box it changes to unchecked with no hatching, which sets the option to be off
explicitly. This will cause the option to appear in the configuration file. Clicking the
checkbox again will select it, which enables the option.
Click the Set Global Scope for Macros option by clicking the checkbox until it is
c h e c k e d .

Save the change by clicking Apply at the bottom of the view. The macros contained
in macros.hpp now have global scope, and so are accessible to other source files in
your project.

1 .

2 .

3 .

4 .

5 .

Build the application again. You may see ahelp tips window advising you that you can
optimize your configuration. If so, click OK. Go back to the Classes page in the Project
section, and try selecting the Request class constructor from the Members view of the
class. Notice that as you do so, the source view underneath changes to show the
constructor’s definition, rather than its declaration within the class declaration.

Chapter 3. Try VisualAge C++	 55

Define the Request::GetValue Function
Implementation Details: The GetValue function searches through the request string for the
specified name foiiowed by an equals sign (=), and, if the name is found, returns the value that
Immediately follows the equals sign, up to but excluding the first whitespace character or the end
of the string.

You do not need to add anew source file to your project to define this function; instead,
you can add it to request.cpp. There are two ways you can access the source file:
●Because you already have aworkbook section open for this source file, you can go

to the request.cpp section and enter the source code shown below.
●Follow these four steps:

1. Select the Oven/iew page of the Project section.
2. In the Source Files view at the upper right, select the request.cpp source object.
3. The Source view for this source file is displayed underneath.
4. Click anywhere in the Source view to give it focus, then press Ctrl+End to scroll

to the bottom of the source file.

Enter the following source code for the GetValue function at the bottom of
request.cpp:

IString Request:;6etValue(IString Search) {
Search. lowerCaseO;
Search+="=*“;
for (int i=l; i<=ReqString.numWords();i++)

if (1ReqString.word(i).isLike(Search))
return ReqString.word(1).subString(Search.1ength());

I I I I .r e t u r n

}

This function folds the search string to lowercase, appends "=*" to the search string,
and uses the IString::isLike member function, which allows wildcard comparisons to a
string, to compare the search string to each whitespace-delimited word in the lowercase
version of the request. If amatch is found, the value of the attribute is returned;
otherwise the function returns ablank string.

Revise Your main Function to Use the Request Class

Build your application again. If you have typed everything correctly, the project should
build successfully. However, your main function still has not changed, so the Request
class is not actually used in your program. You will now modify the main function to
declare an object of the Request class, which will cause the Request constructor to
read in the CGI request information and set certain class variables (such as Filename
and Filepath); main will then do some simple processing of the request to determine
the output to write back to the user’s browser.

You can open aSource view for the main function in any of the following ways. Try
them all so you will better understand how the VisualAge C-f+ IDE gives you flexibility

56 YisualAge C++ Getting Started

in how you view your program. In the first two methods, the Source view takes up the
entire workbook section; in the others, the Source view is displayed below the other
v i e w s .

●Select the main.cpp file section of the workbook, if it is still available.
●If the main.cpp file section is nof still available, select the Overview page or the

Source Files page In the Project section of the workbook, and click mouse button 2
over main.cpp in the Source Files view. From the pop-up menu, select Open as a
Workbook Sec t ion .

●Open the Overview page or the Source Files page of the Project section of the
workbook, and select main.cpp in the Source RIes view. The Source view below
displays the contents of main.cpp.

●Open the Declarations page in the Project section, and select int main() In the
Declarations view. The source view underneath shows the source for the main
function (not the entire contents of main.cpp -in any source view, by default only the
code for object selected is shown).

If the Source view you are using is one of several views on the current page, you can
enlarge it, by doing one of the following:
●Click the maximize square at the top right of the view. The view will fill the

screen space for this workbook section.
●Move the mouse until your pointer rests over the border between the Source view

and an adjacent view. The arrow changes to atwo-ended arrow. Press and hold the
left mouse button and drag the border up until the Source view is as large as you
want it.

●Place the cursor over the main object anywhere you see it on the current page

and click mouse button 2. Select Open as aWorkbook Section from the pop-up
m e n u .

Change the source code for the meun function to the following:
int main (int argc, char* argy^) {

// Declare aRequest object; this reads the request into fields of object
Request Req;
// Output is plain text unless later shown otherwise
Boolean HtmlOut=false;
/ / In i t ia l ize the Resul t s t r ing to conta in output
ISt r ing Resu l t=" " ;
// For now, require that key value be "secret"
if (Req.GetKeyO!="secret")

Result="Sorry, you aren't authorized";
else {

/ / Hand le request fo r fi le . D isp lay i f found,
if (Req.GetFilename()=="")

Resu l t= "Sor ry, you d idn ' t spec i f y afi le " ;
else {

ifstream InFile(Req.GetFilepathO);
if (IlnFile) Result="Sorry, file not found";

Chapter 3. Try Visual Age C++	 57

else {
// IString::lineFrom(ifstream,EOF) reads entire file
Result=IString::lineFrom(InFile,EOF);
// If the file contains "<html>" or "<HTML>“ set HtmlOut to true
if (Result.indexOf("<html>")>0 || Result.indexOf("<HTML>")>0)

H t m l O u t = t r u e ;
else if (Result»="‘') Result°"Sorry, file was empty";

}

}
// Write the Content-Type header of the appropriate type (html/plain)
cout «"Content-Type; text/";
if (HtmlOut) cout «"html";

c o u t « " p l a i n " ;
// Write the result. The two \n's are arequired part of the header,
c o u t « " \ n \ n " « R e s u l t « fl u s h ;
r e t u r n 0 ;

e l s e

}

Rebuild the project. If there are typing errors, go to the Messages page and correct
them, then rebuild. If you get an error saying that the text "InFile" is unexpected, add
the preprocessor directive #include <fstream. h> to the top of the main.cpp file. (This
directive was in the file before; you may have accidentally deleted it when you replaced
the main function.)

Run and Test the Program

You can now test this version of the CGI in your browser. Make sure the VisualAge
Help Server is running:
●If you started this exercise from the Help menu of the VisualAge C++ IDE, or if your

browser currently shows the host name as localhost;49213, the VisualAge Help
Senrer is already running.

●Otherwise, select Help from the IDE titlebar menu and select any help topic to start
the VisualAge Help Server.

Enter the following URLs in your browser to see how the CGI behaves. In both cases
the CGI returns an error message; the first message states that the requested file was
not found, because you have not yet created the index.html file; the second states that
you are not authorized, because the key "unauthorized" is not arecognized key.
●http://localhost:49213/cgi-bin/review.exe?file=index.html+key=secret
●http://locaihost;49213/cgi-bin/review.exe?file=index.html+key=unauthorized

Copy any existing HTML file to index.html in the directory you specified as WebRoot in
macros.hpp, then try the two URLs again. The second URL’s result is the same as
before; the first URL should display the file you requested, as an HTML file. If it does
not, check the following:
●Ensure that the path you specified for WebRoot points to avalid directory on your

machine (check the contents of macros.hpp from the Macros page in the Project
section).

58 VisualAge C++ Getting Started

●Ensure that the file index.html is stored in that directory.

●Ensure that any permission settings for the directory and file do not prevent the file
from being read.

Now that you have defined the Request class and modified main to use it, you can
proceed to the next part, “Part 4. Developing Classes In the IDE”.

Part 4. Developing Classes in the IDE

In this web-based review tool, four classes of users will have access to different
combinations of operations. For example, authors can mark comments as complete, but
reviewers can only add comments. In this section, you will implement ahierarchy of
user classes, in which the base class. User, defines virtual functions for all available
operations. You will use the coding of these user classes to learn many new techniques
for developing object-oriented programs within the IDE.

This section should take you approximately one to two hours to complete. In it you will
learn about the following IDE tasks:
●Eliminate #include preprocessor directives by including header files in your project’s

configuration
●Control information flow between panes in the IDE
●Develop code in the orderless environment of VisualAge C++, in which any class,

function, variable, or other declared construct is visible to all parts of the project as
long as it is declared somewhere in the project

●Use the Search page to locate text in your project
●Use the Macros page to locate and change project macros

If you are interested only in learning the IDE, and do not need to understand the details
of the CGI application, you can skip passages titled Implementation Details.

You should have the following source files in adirectory on your system:
●review.icc -The configuration file for your project
●main.cpp -The source code for your main function
●request.hpp -The class declaration for the Request class
●request.cpp -The function implementations for the Request class
●macros.hpp -Macros defined for your program

Chapter 3. Try VisualAge C+4-	 59

Implementation Details

User class member functions are defined to produce an 'Unauthorized access” error message, in
derived classes, these functions are overridden to perform appropriate work for the method and
the c lass .

One advantage of ahierarchical implementation of user classes is that authority levels are
managed automatically by the hierarchy, instead of requiring you to perform authority checks
throughout your code to determine if the current user is allowed to perform the current operation.

The User class and its subclasses implement the following functions: View, ShowAdd, Add, and
Close. For the User class, the functions return an error message. Three subclasses of User are
defined, which override selected User class member functions. These subclasses are Reader,
Reviewer, and Author.

Create the Source Files for the User Class

To begin, you need to create three files and add them to your configuration.
●u s e r. h p p
● u s e r . c p p

●funcs.cpp

For each file, follow these steps, which you have already followed for other files in Part
3 :

To open the file, select Project Workbook -Open or Create File from the title bar
menu, or press Ctri-i-0. (Note that if you current have asource view selected, you
can also select Open or Create File from the Source title bar menu.)
Enter the source file name.

Select Open as aWorkbook Section so that anew section for the file opens in the
w o r k b o o k .

To have the source added to your configuration, select Add Source to Project, and
turn on the Add Source to Source Direct ive check box. Cl ick OK.

Select the source directive: in the Add to source dialog, select the source directive
containing main.cpp, then press Apply.
Enter the source code for that file, as shown below.

Rebuild the application after adding the source code, to ensure that you entered the
source code correctly.

1 .

2 .

3 .

4 .

5 .

6 .

7 .

If you create all three source files before adding any code, put aspace in each source
file in its workbook section, so that the first time you rebuild, all three files are saved
and recognized as source files. If you do not add anything to the files before you build,
the build will fail because the files do not exist.

Source Code for Auxiliary Functions in funcs.cpp

The auxiliary functions you will need for this section both return an IString value. The
first, Unauthorized, returns an error message stating that the user does not have

60 VisualAge &h- Getting Started

authority to perform the requested function. The second, Error, is used to wrap its two
arguments, atitle and amessage, in appropriate HTML markup so that it returns avalid
H T M L d o c u m e n t

Create the file funcs.cpp, add it to your project, and add the following two function
definitions to it:

IString Unauthorized(IString Function) {
return Error("Unauthorized Access",

"You do not have sufficient authority to access the "
+ F u n c t i o n

+ " f u n c t i o n . ") ;

IString Error(IString Title, IString Text) {
r e t u r n " < h t m l x h e a d x t i t 1 e > "

+ T i t l e

+"</ti tl ex/headxbody bgcol or=\ "#FFFFFF\"xpxh3>
+ T i t l e

+"</h3xp>"
+ T e x t

+"</px/bodyx/html>";

}

Rebuild your project. Notice that the project built successfully even though you did not
include istring.hpp as aheader file for this source file. The IDE processes the
istring.hpp header file because it is included by request.hpp; its class and members can
therefore be accessed by any source file In the project, it is still agood practice,
however, to include the necessary header files at the top of each source file that uses
them, in case you later try to compile the code using aproduct other than VisualAge
C++, Version 4.0. You can add the following directive to the top of this file if you like:
#include <istr ing.hpp>

You may also be interested to know that you could have reversed the order of definition
above, and defined Error before Unauthorized, even though Unauthorized makes use of
Error; VisualAge C++, Version 4does not enforce the C++ requirement for forward
declarat ions before first uses.

For more information on orderless programming, see "Reduced Drudgery” on page 6.

Source Code for the User Class in user.hpp and user.cpp

The source code to be added to user.hpp and user.cpp is given in this and the next
three sections. Watch for comments indicating which file should contain each portion of
code. The project will build successfully and produce the same program behavior,
regardless of where you place agiven declaration or definition. However, it is probably
agood idea not to stray too much from the usual practice of placing class interfaces in
.hpp files, and non-inline function definitions in .cpp files, in case you later want to build
your program using adifferent compiler.

Chapter 3. Try VisualAge C++	 61

Implementation Details: The User class defines the functions View, ShowAdd, Add, and
Complete, to return an error message, because none of these actions can be performed by a
user who is not aReader, Reviewer, or Author. These functions will be overridden in the Reader,
Reviewer, and Author classes, to allow actions appropriate to the user’s authority level to be
dispatched.

To locate aview of asource file, select its workbook section, or select the file name in
the Source Files view of the Source Files page In the Project section. If no section tabs
are currently visible, click the Restore icon at the extreme right end of the Title

B a r .

// In user.hpp;
class User {

Request* Req;
IStr ing User id;
virtual IString View()
virtual IString ShowAdd() {return Unauthorized("ShowAdd");}
v i r tua l IS t r ing Add()
virtual IString Complete() {return UnauthorizedC'Ccmplete");}
p u b l i c :

User(Request* req) :Req(req),UserId("") {}
User(): Req(0), UserldC") {}
IS t r i ng Ac t i onQ;

{return Unauthorized("View");}

{return Unauthorized("Add");}

} ;
// In user.cpp:
IString User::Action() {

IString Action=IString;:1owerCase(Req->GetValue("op”));
if (Action=="") return Error("No Action Specified", "The CGI call did not specify an op= argument.")
swi tch (Ac t ion [1]) {

c a s e ' a ' :
i f (Act ion—"add") re turn Add() ;
break;

c a s e ' c ' :
if (Action=="complete") return Complete();
break;

c a s e ' s ' :

if (Action—"showadd") return ShowAdd();
break;

c a s e ' v ' :
if (Action=="view") return View();

1
return Error("Unknown Action Specified","The CGI call requested an unknown action, "+Action);

}

Source Code for the Reader Class in user.hpp and user.cpp
Implementation Details: The Reader class only ovem'des one member function of the User
class, the View function. For now, this function, and all other methods overridden by derived
classes of User, will simply display amessage saying the function is not yet implemented. This
will allow you to test whether the program is correctly dispatching based on the authority level of
the user and the type of action requested, before you actually add the code for each action.

62 VisualAge C++ Getting Started

/ / In user.hpp:
class Reader :public User {

virtual IString View{);
p u b l i c :

Reader(Request* req) :User(req) {}
} ;
/ / In user.cpp:
IString Reader;;VIew() {

return Error("Unimplemented","Reader:;View is not yet implemented");
}

Source Code for the Reviewer Class in user.hpp and user.cpp
Implementation Details: The Reviewer class inherits directly from User, rather than through
Reader, because the Reviewer:View function is different from the Reader::View function, and
therefore Reviewer has nothing to inherit from Reader.

/ / In user.hpp:
class Reviewer: public User {

virtual IString Add(),
ShowAddO,
ViewO;

p u b l i c :
Reviewer(Request* req) :User(req) {}

} ;
/ / In user.cpp:
IString Reviewer::Add() {

return Error("Unimplemented","Reviewer;:Add is not yet implemented");

IString Reviewer::ShowAddO {
return Error("Unimplemented","Reviewer;;ShowAdd is not yet implemented");

IString Reviewer;:View() {
return Error("Unimplemented","Reviewer::View is not yet implemented");

}

}

}

Rebuild the project now, and correct any typing errors. Once the project builds
successfully, you can look at the Classes page in the Project section to see the classes
you have defined so far.

Four classes should be displayed in the Classes view of the project (the top left pane
on the Classes page). Try selecting different classes; then, for each class, select
different members in the Details view to the right. Whereas in Part 3, the Source view
for each member function only showed its In-class declaration, the Source view now
shows the full function definition for any member function you have implemented.

Chapter 3. Try Visual Age C++	 63

Source Code for the Author Class in user.hpp and user.cpp
Implementation Details: The Author class inherits from Reviewer because the Add and
ShowAdd functions are the same. However, the View function is implemented differently, because
for an author, each comment must be displayed with aComplete link so that the author can mark
the comment as completed. As well, the Complete function must be implemented to allow the
author to complete the comment.

/ / In user.hpp:
class Author :public Reviewer {

virtual IString View{),
CompleteO;

p u b l i c :
Author(Request* req) :Reviewer (req) {}

/ »

/ / In user.cpp:
IString Author::View() {

return Error("Unimplemented“,"Author::View is not implemented");y e t
}
IString Author::CompleteO {

return Error("Unimplemented","Author::Complete is not yet implemented");

Rebuild the project to ensure that you have entered the above code correctly, and make
any required corrections.

Update the Main Function to Dispatch the Appropriate Action
Implementation Details

The last piece of coding work for this part is to change the contents of the main function to do
the following:
●Create aRequest object, as before, to read the request
●Determine what user type the user's key represents, based on alist of keys stored in afile
●Declare apointer to User and assign the appropriate type of user to it
●Call User.iAction for that pointer to User, and write out the result of this function, as plain or

HTML text depending on whether the result contains HTML markup or not

Locate aSource view of the main function. You can select the workbook section for
maln.cpp, or use one of the methods described in “Part 3. Declaring and Implementing
aClass” on page 51. For anew way of locating afunction, try the following steps from
the Search page of the Project section:
1. In the Live Find entry field at the top of the Search view, type ma1 nand press

Enter. Alist of matches is displayed in the view.
2. Select the match that shows the function declaration for main. Its source code is

displayed in the bottom pane of the Search page.

Change the contents of the main function to the following (do not remove the #include
directive for fstream.h):

64 VisualAge C++ Getting Started

int main (int argc, char* argv[]) {
// Create arequest object to parse out the input
Request Req;
// Define four user types;
enum {tUser=0. tReader=l, tReviewer=2, tAuthor=3 };
// Determine the user's type, based on the user's key
int uType=tUser;
ifStream UFile(UserFilepath);
IStr ing UserLine="" ;
Boolean KeyFound=false;
while (UFile && uType==tUser) {

UserLine=IString::1ineFrom(UFi1e);
if (UserLine.word(1)==Req.GetKey())

uType=UserLine.word(2).as!nt();
}
Use r * U ;
switch (uType) {

c a s e t R e a d e r :

U=new Reader(&Req);
break;

c a s e t R e v i e w e r ;

U=new Reviewer(aReq);
break;

c a s e t A u t h o r :
U=new Author(&Req);
break;

d e f a u l t ;

U=new User(&Req);

IString Result=U->Action();
if (Result=="") Result=Error("No Output","The CGI did not return any output.");
cout «"Content-Type; text/";
if (Result.indexOf("<html>")>0 || Result.indexOf("<HTML>")>0)

c o u t « " h t m l " ;
e l s e

c o u t « " p l a i n " ;
c o u t « " \ n \ n " « R e s u l t « fl u s h ;
re turn 0 ;

}

If you rebuild now, you will find that UserRIepath is not defined. You can define this
string in your macros file (macros.hpp) to the path and filename of the file that will
contain user information. There are two ways you can find macros.hpp:
●Selec t i t s sec t ion in the workbook

●Go to the Macros page in the Project section. In the Macros view on this page, the
first is selected by default. Because macros.hpp is the first object in the Macros view
in this case, the contents of macros.hpp are shown in the Source view below.

Add adefinition of UserFilePath to macros.hpp. Change the text shown in the example
to apath that is valid on your computer
#define UserFilepath IString("F;\\vatutor\\users.dat")

Chapter 3. Try Visual Age C++	 65

For testing purposes, create this file in the directory you chose and add the following
l ines:

r e a d e r 1
r e v i e w e r 2
a u t h o r 3

If you create the file within the IDE, note the following points:
●When you open the file, do not select Add Source to Project.
●You must explicitly save the file by pressing Ctrl+S, selecting the p t o o l b a r

tSS.1; m
I mu

button, or selecting Source -Save File. Files that are not part of your project are not
automatically saved when you rebuild.

Once UserFllepath is defined, rebuild the project. You can use the links in the following
section to test out your code.

Test the CGI User Creation and Action Dispatching

Ensure that the VisualAge Help Server is running on your machine, then try some of
the commands in the table below to test out the CGI and see how it performs for users
of different authority levels making different requests.

Add the instruction under Command to Try at the end of the URL for the executable.
For example, to try the first command, type the following in the URL field:
http;//local host:49213/cgi-bin/review.exe?op=Add+key=unknown

Command to Try Message lype ReturnedUser Type Request

op=Add+key=unknownA d d

op=Complete+key=unknownComplete
U n a u t h o r i z e d a c c e s s

op=ShowAdd+key=unknownS h o w A d d
U s e r

V i e w op=View +key=unknown

op=Anything
+key=unknovim

Unknown request Unknown action specified

A d d op=Add+key=reader
op=Complete+key=readerComplete U n a u t h o r i z e d a c c e s s

R e a d e r S h o w A d d op=ShowAdd+key=reader
V i e w op=View+key=reader Reader::View unimplemented

op=Anything+key= reader Unknown action specifiedUnknown request

66 VisualAge C++ Getting Started

R e v i e w e r : : A d d

unimplementedop=Add-(-key=reviewerA d d

U n a u t h o r i z e d a c c e s sop=Complete+key=reviewerComplete
R e v i e w e r : : S h o w A d d

unimplementedop=ShowAdd-fkeysreviewerS h o w A d dR e v i e w e r

R e v i e w e r : V i e w

unimplementedop=View+key=reviewerV i e w

Unknown action specifiedop=Anything+key=reviewerUnknown request
R e v i e w e r : A d d

unimplementedop=Add+key=authorA d d

Author:Complete
unimplementedop=Complete+key=authorComplete

A u t h o r
R e v i e w e r : : S h o w A d d

unimplementedop=ShowAdd+key=authorS h o w A d d

Author:View unimplementedop=View+key=authorV i e w

Unknown action specifiedop=Anything+key=authorUnknown request

If the output you see in your browser after trying these links does not reflect what is
indicated under "Message Type Returned" In the table, you may have entered some of
the code incorrectly. See below for possible causes and corrective actions. If the links
worked as expected, you can proceed to “Part 5. Debugging and Revising Your
Application" on page 68.

Correct Output Errors

The following are some errors that may occur as you try out the links in the table
above. Possible causes and corrective actions are given.
●Message indicating that the server is not responding

You have not started the VisualAge Help Server. Start the IDE and select one of the
items under the Help menu. This should start the VisualAge Help Server. If no help
displays in abrowser, you may need to reinstall the product and ensure that the Help
components are installed.

●Message indicating that the object could not be found or the script request is
n o t v a l i d

Check for the following possible problems:
-Ensure that you have set the read/write permissions correctly for the HTML file

you created
-if permissions are set correctly, or if you have changed them, make sure you have

cleared your browser’s chached memory by reloading or refreshing the view.
-The VisualAge Help Server is running, but the CGI application could not be found

in the directory where the help sen/er expects to find CGIs. Your executable files
must be in the correct directory, in addition to your executables, the directory

Chapter 3. Try VisualAge C++	 67

should also contain other files that are not part of your project. If it does not, you
may have accidentally created anew directory instead of choosing the existing
o n e .

-If only your executable file is stored in that directory, you have installed the
VisualAge Help Sen/er in adifferent directory. Locate that directory by searching
for the file vacwebx on your file system. When you have found the directory where
this file is stored, do the following:
1. Select the Targets page in the Configuration section.
2. Select the target object In the Targets view at left.

3. Click the Change Target entry field in the Change Targets view at the right.
4. Correct the path of the executable file to include the appropriate directory.
5. Click Apply.
6. Rebuild the application.

If other files are in the directory but your executable file is not, follow the six steps
shown above, but for step 4use the directory where the VisualAge Help Server is
installed. Make sure the file name is spelled correctly (for example, you may have
accidentally specified reveiw.exe as the target when you set up your project, instead
ofreview.exe).

●Dialog asking where you want to save the file
The VisualAge Help Server is not configured properly, or the CGI is stored in a
document directory instead of aCGI directory, or the CGI executable terminated
abnormally.
-If the Help Senrer is incorrectly configured, it treats the executable file as a

downloadable file rather than aCGI (for example, the directory the file is stored in
may not be the directory where the Help Server expects to find CGIs). You may
need to reinstall VisualAge C++ to solve this problem.

-If the executable terminated abnormally, you should try invoking it from a
command line in the directory to which the target was written, to ensure that it
built successfully. If it fails when invoked from the command line, rebuild the
application and try again.

●CGI appeared to work, but not all actions yielded the expected results
You may not have entered the source code correctly. Go to the online version of this
exercise (the Tutorial) and replace the source code in your project with the source
files provided at the start of Part 5. Debugging and Revising Your Application, by
copying and pasting from your web browser into the IDE. Rebuild the application and
try again.

Once you have corrected any problems, proceed to “Part 5. Debugging and Revising
Your Application”.

Part 5. Debugging and Revising Your Application

Your CGI now handles GET and POST requests, the two types of requests that would
be received from auser’s browser calling the CGI. In this section, you will add athird

68 VisualAge C+t- Getting Started

request method that uses command line parameters as the source of the CGI
arguments, so that you can start adebug session for the project within the IDE, and
supply the request you want to debug as the program’s command line parameters. This
change will allow you to debug new methods as you implement them later, using the
debugging features of the IDE.

You will also implement the Reader::View function and an auxiliary function, ReadFile.
The Reader::View function will have abug in it that you will try to find and fix.

This section should take you approximately 45 minutes to complete. In it you will learn
to perform the following IDE tasks:
●Remove multiple workbook sections from the Workbook section
●Mark and copy text in asource view using the line-marking and copying macros of

the source edi tor

●Set breakpoints in your code, and disable default breakpoints, before you start a
debug session

●Start adebug session from the Debug page of the Project section
●Step through your code, run to abreakpoint, and run to aselected statement in a

debug session
●View the threads, call stack, stack frames, and local variables for aprocess running

under debugger control (a debug process)
●Add anew pane in the IDE
●Resize apane in the IDE
●Change or set the object type for apane
●Change the view type for apane
●Create and save afile that is not part of the project
●View aregion of storage used by adebug process
●Correct abug in your code while debugging

If you are interested only in learning the IDE, and do not need to understand the details
of the CGI application, you can skip paragraphs or sections titled Implementation
Deta i ls .

You should have the following source files in adirectory on your system.
●review.icc -The configuration file for your project
●main.cpp -The source code for your main function
●request.hpp -The class declaration for the Request class
●request.cpp -The function implementations for the Request class
●macros.hpp -Macros defined for your program
●funcs.cpp -Auxiliary functions used by user classes
●user.hpp -The class declarations for the user classes
●user.cpp -The function implementations for the user classes

Chapter 3. Try VisualAge C++	 69

R e m o v e U n n e e d e d W o r k b o o k S e c t i o n s

If you have not yet exited the IDE. started it up again, and reloaded your project, the
workbook sections may appear very crowded, because you have aworkbook section
for each of your source files.

Once your project has built successfully, the contents of all the source files will be
represented in the codestore. You no longer need to have separate workbook sections
for each file. You may find it easier to navigate the source files, functions, classes,
declarations etc. through the Project section of the workbook You can remove each
source file workbook section by clicking mouse button 2over the section’s tab and
choosing Remove This Object’s Workbook Section. However, if you want to remove
alarge number in one action, you can foliow these steps instead:

Select the Workbook section. Overview page. This page shows aTable of Contents
view, which is alist of the current sections and pages of the workbook.
Scroll down the view to the first File section.

Select that section by clicking mouse button 1on the section entry.
Hold down the Ctrl key, and click mouse button 1on each other workbook section
you want to remove.
Click mouse button 2while over one of the selected entries, and select Remove
This Object’s Workbook Section.

1 .

2 .

3.

4 .

5 .

You can open aseries of workbook sections for different files by selecting each desired
file in aSource Files view (for example, on the Oven/iew page of the Project), clicking
mouse button 2, and choosing Open as aWorkbook Section.

Change the main Function to Accept Command Line Arguments
Implementation Details: ACGI is never invoked with command line arguments from auser’s
web browser, but for debugging purposes it is useful to allow the arguments to be specified by
the command line instead of environment variables. The lines you add below set the necessary
environment variables so that the arguments provided at the command line can be treated as a
regular GET request coming from aweb browser.

Add the following lines to the start of the main function, right after the opening brace:
i f (a r g o l) {

ISt r ing Args="" ;
for (int i=l;i<argc;1++) Args+=IString(argv[i])+"+“;
Args.s t r ipTra i l ing('+ ') ;
putenv("REQUEST METHOD=GET");
char*TArgs=strdup("QUERY_STRIN6="+Args);
putenv (TArgs);
}

Define the ReadFiie Function in funcs.cpp

The ReadFiie function returns the contents of aspecified file. This is an auxiliary
function, so you should add it to the source file funcs.cpp. You also need to include the

70 VisualAge C++ Getting Started

fstream.ii header file at the top of funcs.cpp. Although the file already has access to the
fstream class (because fstream.h is included elsewhere in the program), it does not
have access to the EOF macro that is defined when fstream.h is included, because
macros do not have global scope by default.

To the top of funcs.cpp, add:
i n c l u d e < f s t r e a m . h >

At the bottom of funcs.cpp, type the following:
I I . . . P rev ious ly defined func t ions
IString ReadFile(IString Path) {

i fs t ream In(Path) ;
i f (! In) return
return IString::lineFrom(In,EOF);

}

Redefine the Reader : :V iew Func t ion

Implementation Details

Currently, this function displays amessage indicating that it is stiii unimpiemented. You wiii
change it to afunction that does the foilowing:
●Retrieves the contents of the requested file, using the ReadFiie function you just defined.
●Changes ali links in the document to cails to the CGI with the correct op=. file=,

and key= values. When the link is followed, the CGI is invoked to display the new file.

Before you start, you should first define the macro EXE in macros.hpp, so that it
contains the full filename (but not the path) of the CGI executable file:
#define EXE IStringC'review.exe")

Next, redefine Reader::View by selecting the current contents of the function in one of
the source views that display it, and typing the code below.

Implementation Details: Note that achar* array is used to store the modified version of the
requested file's contents; although the IString class supports aconcatenation operator (+=}, it
reallocates storage for the target string after each allocation, which is less efficient than
anticipating the total length required, and declaring achar* array sufficiently large to hold the final
output string.

I I In user.cpp
IString Reader:;View() {

II Call ReadFiie to read the file pointed to by Request::FilePath
IString Result=ReadFile(Req->GetFilepath());
i f (Resu l t=="")

return Error("Could Not Read File",
"The file you requested, "
+Req->GetFi1ename()
+", was empty, or could not be read.");

/ / F i n d t h e fi r s t " h r e f = " a t t r i b u t e ,
in t h re f=Resu l t . indexOf ("h re f=") ;
// Return if there are no href“ tags to fix

Chapter 3. Try Visual Age C++	 71

i f (href==0) return Resul t ;
// Substitute the executable name and necessary arguments
11 in all href= calls. EXE must be defined in macros.hpp
IString LinkInsert=EXE+'‘?Op=View+Key="+Req->GetKey()+"+file=";
// Allocate anew IString large enough to contain the new string,
// by determining the number of inserts to do.
int NewLength=Result.occurrencesOf(“href=")

*Linklnsert.1ength()
+Resu l t . length()+1;

char* NewResult=new char[NewLength];
NewResult[0]='\0';
i n t l a s t = 0 ;
whi le (href>0) {

// Write from last position written up to past the href=,
// and add the l ink insert ion text
strcat(NewResult ,

Result.subString(1ast+1,href+5-1ast)+
L i n k l n s e r t) ;

l a s t = h r e f + 5 ;
href=Result.indexOf(“href=“.last);

}
return NewResult; // Automatically converted to an IString

Rebuild the project. You should see three identical errors, stating that the private
member User::Req cannot be accessed. Because the Reader, Reviewer, and Author
classes will often need to access information from the Request object, this member
should be declared protected.
1. Obtain aSource view for the declaration for the User class.

2. Select the line in the Source view containing Request* Req;.

3. Press Alt+L. This keystroke shortcut highlights aline for moving, copying, or
deleting.

4. Move the cursor down to the line before the public access specifier.
5. Press Ait+M. This keystroke shortcut moves the currentiy selected text below the

current l ine.

6. insert the protected access specifier above the Request declaration. The class
declaration should now look l ike this:

class User (
ISt r ing User id ;
virtual IString View() {return Unauthorized("View");)
virtual IString ShowAdd() {return Unauthorized("ShowAdd");}
virtual IString Add()
virtual IString CompleteO {return Unauthorized (“Complete");}
protected:

Request* Req;
p u b l i c :

User(Request* req) ;Req(req).Userid("“) {}
User(): Req(0), Userld(“”) {)
IString Action();

{return Unauthorized(“Add");}

} ;

72 VisualAge C++ Getting Started

Rebuild the project. Before you try the Reader::View function, create afile with some
links in it and save it as index.html in the directory to which the WebRoot macro points.
(Use the file contents shown below even if you already copied afile to index.html in a
previous part of the exercise.)

You can create afile in the IDE that is not associated with the project by following these
steps:
1. Select Project Workbook -Open File from the titlebar menu or press Ctrl-fO.
2. Enter the new file name, 1ndex. html.

3. Select Open as aWorkbook Section
4. Make sure that the Add to Project check box is not checked. Click Open.
5. After you enter the text, remember to save the file. (Files that are not part of your

project are not automatically saved when you build.) Press Ctrl+S, click the Save
Fi le bu t tcn from the toolbar, or select Source -Save File from the titlebar

m e n u .

The index.html file should contain the following:
<h tm lxheadx t i t l e>Prob lems w i th L inks< / t i t l ex /head>
<bodyxp>Here are some common problems:</p>
< u l >

Some links are offsite
<lixa href=“ not here. htm''>Some links are to nonexistent files</ax/ii>
<lixa href=‘'here.htm'' target="elsewhere">Some links are to different frames
Some links have uppercase attributes
<lixa href=” there.htm">Some links are syntactically invalid</ax/ii>
Some l inks are fine but fai l in the CGI</l i>

< /u l>
</bodyx/html>

Save this file, then try out the following link to see how the Reader::View function
works .

http://localhost:49213/cgi-bin/review.exe?op=View+key=reader+file=index.html

If you get an "unauthorised" error message, you did not create the user file defining
access levels for Reader, which the UserFilepath macro in macros.hpp will point to.
This is described in Source for macros.hpp .Once you have done this, try the link
again.

Chapter 3. Try VisualAge C++	 73

When the index.html file is displayed, it should look something like the following:

Here are some common problems:
●S o m e l i n k s a r e o f f s i t e

●Some links are to nonexistent files

●Some links are to different frames

●Some links have uppercase attributes

●Some links are syntactically Invalid
●<a href="review.exe?Op=View+Key=reader+file=

The last link got messed up by the CGI. You will correct this problem by debugging your
program. If another browser window opened when you tried the third link, close the
extra browser window now.

Implementation Details

None of the other links actually work, because:
●The first link, to an offsite location (one starting with http://) should not have been modified by

t h e C G I .

●The second and third links point to files not found in the WebRoot directory. These two
problems are easily solved by creating the necessary files. The second link points to aframe
that does not exist, so anew browser window opens to display the error message.

●The fourth link has its href= attribute in uppercase (HREF=) and so this was not found by the
CGI. However, because the browser considers the referring document (your CGI) to be stored
in the cgi-bin directory, it adds "cgi-bin* to the path of the link.

●The fifth link was syntactically invalid (the href= attribute began with aspace).

If you intend to use this exercise to create aworking review tool, you can fix problems with these
links yourself later, by adding additional code to the View function to anticipate offsite locations,
href attributes in uppercase, and syntactically invalid links.		

Set and Disable Some Breakpoints before You Start Debugging

The VisualAge IDE allows you to set breakpoints before you start adebugging session,
and supports awide range of breakpoints, including these breakpoint types:
●Statement breakpoint -Execution stops immediately before executing the statement
●Function breakpoint -Execution stops at the first statement in the function when it is

ca l l ed

●Class breakpoint -Sets afunction breakpoint in every function of the class
●File breakpoint -Sets abreakpoint in every function defined in the source file
●Virtual function breakpoint -Sets afunction breakpoint on the selected function, and

on all overrides of that function in derived classes

Before you start debugging. It would be useful to set afunction breakpoint in
Reader:View, so that execution stops at the first statement in the Reader:View
func t i on .

74 VisualAge Oh- Getting Started

1. Locate the Reader::View function in any view that displays the function and shows
object to its left, for example the Class Details view of the Reader classa n m

(from the Classes page).
2. Position the mouse pointer over this symbol, and click the right mouse button. From

the pop>up menu, select Set function breakpoint or Set virtual function
breakpoint (since the Reader class is the class whose View function you want to
debug, either breakpoint type will do).

Next, select the Debug page of the Project section. This page, which you will use to
start adebugging session, is divided into the following panes:
●ARun Specifications pane, which you will use to start debugging and specify

command-line arguments.
●Two panes for viewing and managing breakpoints. Notice that the breakpoint you set

for the View function is shown in the first of these views, as well as abreakpoint for
the entry point of the main function, which will cause execution to stop on entry to
ma in .

●Aprocess log, in which the IDE tracks debugging-related events, such as signals and
process termination.

●Alist of debuggable processes (currently empty, because you have not yet started
debugging within the IDE).

●Alist of monitored expressions, also currently empty.

Before you start the debug session, you need to provide the request to the CGI. Enter
the following string in the Arguments field of the run specification:
Op=View+Key=reader+Fi1e=index.html

If you were to start debugging now, execution would stop on entry to main, because of
the entry point breakpoint. You have already set afunction breakpoint for the function
you want to start debugging in, so you should disable the entry point breakpoint. Click

red octagon beside the Entry Point main of *breakpoint; the red octagon

turns green, indicating that the breakpoint is disabled.

t h e

If you try expanding different entries in the Breakpoints view of the project, you will see
that all but the All Breakpoints breakpoint are childless. Each time you start a
debugging session for the project, achild breakpoint specific to the new debugging
process is added to each existing breakpoint, and that child breakpoint’s state (enabled
or disabled) is inherited from its parent. The IDE allows you to debug several copies of
the project executable file as separate processes at the same time; you can disable or
enable individual breakpoints at aproject level by clicking the octagon beside aparent
breakpoint, or at aprocess level by expanding the parent breakpoint and clicking the
octagon beside the appropriate child. If you want to disable or enable all breakpoints,
you can click the octagon beside All Breakpoints, until the breakpoint’s state has
overridden all child breakpoint states.

You are now ready to start the debugging session.

Chapter 3. Try Visual Age Oh- 75

start the Debug Session

From the Debug page of the Project section, click the Debug button to start the
debugging session.

When you start debugging aprogram, the IDE creates aprocess for that program, and
opens aProcess section in the workbook corresponding to that process. It also adds
buttons to the toolbar; these buttons allow you to step through the process and perform
other debugging actions. If the program is aconsole (non-windowed) program, such as
this CGI, aconsole window opens so that console input can be obtained and output
can be displayed. The IDE automatically regains focus after the console window is
opened.

Normally you do your debugging from pages within aProcess section. You can debug
several versions of the same program by starting debug processes several times for the
same executable file, using the same or different sets of arguments. To switch from
debugging one process to another, select the Process section for the process you want
to debug next.

The program should run until the first executable statement of Reader::View. (If
execution stops at the start of the main function you did not disable the entry point
breakpoint; press Ctrl-fShift+U to run to the next breakpoint.) The current page of the
Process section is the Source page, which is divided into four panes;
●The Threads pane displays an expandable object for each thread in your program.

The program has only one thread, so this view may not seem useful here, but in fact
it illustrates an important IDE concept. Expand the thread entry; you will see alist of
five subentries. Each of these subentries can also be expanded to reveal details
about the process being debugged. If you expand the stack entry, for example, you
will see something that looks very much like the Stack view in the pane below the
Threads view, if you then expand any Stack Frame within that stack entry, you will
see alist of the local variables for that stack frame, very much like the Local
Variables view in the right-hand pane.

●The Stack view displays entries for each allocated stack frame, with the topmost
frame corresponding to the current function. As you select different stack frames, the
remaining two views are updated.

●The Source view displays the source code for the function currently selected in the
Stack view. As you step through this code, the blue arrow to the left of the current
line, and the blue rectangle shading the start of the next statement to be executed,
move through the source code to indicate the current execution point.

●The Local Variables view displays all variables that are local to the function or a
block within it. You can expand avariable to see its contents or subparts.

In the Local Variables view, expand the Result variable, then the pBuffer member of
Result. The data member pBuffer points to Istring’s storage. The value of pBuffer may
be null, or the string may contain random data, indicating that no buffer has been
allocated. Step over the call to ReadFile by clicking the

76 VisualAge C+4- Getting Started

toolbar button or by pressing Ctrl+Shift+0. The contents of the buffer should

change to show the start of an HTML file. Expand NewResult to show its contents; this
char array also appears to contain random data, as it has not yet had storage allocated
to it.

Debug the String Concatenation

Since you are trying to debug the eventual contents of NewResult, you should run the
program up to the point where NewResult has afirst substring concatenated to it.
1. Find the statement 1ast=href+5 (use theLive Find entry field, or scroll down the

Source view until you find it).
2. Position the mouse pointer over this statement in the source view and click the right

mouse but ton.

3 . S e l e c t t h e object, and from the cascading menu select Run to ThisS t m t
s t a t e m e n t

You can also click the gray square in the left margin beside the statement to set a
breakpoint on the first statement of the line, then click the run button | in the

toolbar to run to the first breakpoint.

It would be easier to debug the concatenations of source string parts to the target string
if the target string were displayed in aflowed view, so that you did not have to keep
scrolling to the right. Follow these steps to obtain aStorage view of the target string;
this will help you learn to use the Storage view of the debugger portion of the IDE.

Select the Storage page of the Process section.
Increase the height of the Threads view by moving the mouse over the line dividing
the threads pane from the panes below it, then dragging the line down until you can
view at least five lines of the Threads view.

Expand the Thread object, and the Stack object of the thread. The current stack
frame for the thread is displayed in an expanded state. Select this stack frame; it
should be the stack frame for Reader.rView.

Scroll down through the local variables of the stack frame to the Result variable.
Expand this variable as you did earlier, and expand its pBuffer member to display
the contents of the Result string. Select the contents; notice that the Storage view at
bottom right updates to show the start of storage for that string.
Scroll down further to the NewResult variable and expand it, then click the text
contents shown for it; the Storage view now shows the contents for that string.

1 .

2 .

3 .

4 .

5 .

The default storage view is not suitable for viewing the contents of long text strings. To
change this view to something more suitable, follow these steps:

Chapter 3. Try VisualAge C++	 77

Click the arrow to the right of the int column header, then select Destroy from the
pop-up menu. This removes the column from the Storage view.
Remove the Single byte character column as well. You now see only the void*
column and the Addresses co lumn.

Click the arrow to the right of the void* column, and expand the Choose abuilt-in
type choice. Change the built-in type to Single byte character. When you have
made this change, click the arrow to the right of the void* column again to minimize
the pop-up list.

Expand the Storage Options entry at the top of the storage view.
Expand the Number of bytes per line entry beneath this, and change the number
of bytes to 32.
if you want, you can also increase the number of lines of storage displayed.
Collapse the storage options. If you cannot see all 32 characters of each line of
text, drag the left edge of the pane farther to the left, or change the number of bytes
per line to asmaller number.

1 .

2 .

3 .

4 .

5 .

6 .

7 .

It would also be useful if the start of the string were at the top of the Storage view. You
can move it up by clicking the single down-arrow () to the left of the Addresses
c o l u m n .

The Source view of the process is not visible on the Storage page, but this is the view
you need, so you can step through your code while watching how each statement
affects the contents of the NewResult character array. Follow these steps to add a
Source v iew:

Hold down the Ctrl key and position the mouse pointer over the right edge of the
Threads v iew.

When the pointer icon changes to an arrow

1 .

drag the new pane left until it2 .

takes up half the top portion of the window.
Click the arrow to the right of the Thread object shown on the title bar of the
D e t a i l s v i e w.

3 .

Select Opened Objects from the menu.
Select the

4 .

object for the current process from the menu below that to set the5 .

object type of the new pane to the process object for this process.
AHelp Tip appears warning you that changing the object type of the pane will
detach the pane from other panes that link to it. Click OK.

6 .

78 VisualAge Oh- Getting Started

7. Change the View type to aSource view, by clicking the arrow to the right of the
Details entry in the view’s title bar, and choosing Source.
m

i>.

sSiS!3sSi!3 r̂j=

i l

m -

iii G:\iMNNO.
Arguments: Op=View+l<

I d : 1 3 7

Host: [HostI

m

C o n t e

void *^
) 0 0 0 0 0 0 0 0 0 0 0
) 0 0 0 5 0 5 1 5 2 8 c

/ S A ^ r S 4 , . . - > 0

8. Another Help Tip appears; click OK again.
9. If you cannot see enough of the Source view (at least four or five lines of source

code), slide the bottom edge of the Source view’s frame down. This also resizes the
adjacent view. You can obtain even more screen space for the views with the
M a x i m i z e b u t t o n above the project toolbar, on the far right. This hides the

workbook sections. To display them again, click the restore button that has replaced
the maximize but ton.

You can now step through the source code and watch the NewResult string grow. The
debugger provides several types of step commands. The Step Over command (

IcSs’-J

or Ctri+Shift-fO) lets you step over source code statements without stepping through
any code that may be called by them. Other step commands include Step Debug, Step
Into, and Step Return. If you are interested in the types of breakpoints available, see
Types of Breakpoints In the online Concepts help.

Step over the statements in the while block one by one. Notice, each time the
NewResult string is concatenated to, that the storage view updates to show the changed
contents in red. On the next step command, the red changes to black. Continue
stepping until the while loop ends. Suddenly the bug becomes clean you have not
concatenated the remainder of the file after the last reference you processed.

Chapter 3. Try VisualAge C++	 79

Add the following code in the current source view, before the return statement:
if (last>0) strcat(NewResult,Result.subString(last+l));

Before you rebuild the project, click the Run toolbar button to run to the end of the
program. If you do not run to the end of the program, when you rebuild you will be
warned that all currently running processes will be terminated. The IDE prompts you for
this because you cannot change the object code in an executable file while that
executable is running, and you may need to run your executable to the end if you have
any writable files open, otherwise their data may be lost. Since you are not accessing
any files in write mode, click OK. Once the program is rebuilt, try running it again from
your web browser, at;

http://localhost:49213/cgi-bin/review.exe?op=View+key=reader+file=index.html

The last link in the HTML document should display correctly:

Here are some common problems:
●S o m e l i n k s a r e o f f s i t e

●S o m e l i n k s a r e t o n o n e x i s t e n t fi l e s

●Some links are to different frames

●Some links have uppercase attributes

●Some links are syntactically invaiid
●Some l inks are fine but fa i l in the CGI

Notice that you have just made asource code correction in the middle of adebugging
session. The source code change does not affect the current process being debugged;
you could have continued stepping through the old version of your executable file, and
the source code change would be remembered. Even if you terminate adebuggee
process after changing code in aSource view from the Process section, your changes
are remembered .

You can now go straight to “Part 8. Defining the View Function for Reviewers” on
page 87 ,if you want to continue coding the CGI without making configuration changes.
This and the following section will yield afunctional web-based review tool, and will take
about two hours. Or you can work through “Part 6. Managing Configuration Files” on
page 81 ,if you want to learn more about project configuration and customizing your
configuration file (45 minutes), and “Part 7. Optimizing Your Configuration” on page 86,
if you want to use the IDE’s built-in configuration optimizer, which can improve build
performance (15 minutes).

if you feel you have already learned enough about the VisualAge IDE to start doing
your own coding, and you do not plan to use the web-based review tool, you can stop
doing the CGI exercise new, and proceed to the next section on creating aGUI.

The visual component “Develop aGraphical User Interface from aVisual Part” on
page 103 ,shows you how to quickly build windowing interfaces and integrate them
with your own source code in aVisualAge C++project.

80 VisualAge C++ Getting Started

Part 6. Managing Configuration Fiies

By now, you have probably worked enough with your project to understand that it is
controlled by aconfiguration file, and that you can edit that file to modify the source
files, targets, and options for your project. You may also have noticed that the
configuration file, or .icc file, is coded in astructured language similar to Cor C++.

in this section, you will add two user variables to the configuration, one for aworking
version of your target and one for aproduction version. You will apply options to each
version. You will then create athird user variable and add an if-block to your code, so
that, depending on that third variable’s setting, either the working version or the
production version will be generated when you build.

This section should take you approximately 45 minutes to complete. In working through
it, you will learn to perform the following IDE tasks:
●Obtain different views of options

●Modify your project configuration
●Create your own options groups
●Create your own configuration variables
●Associate options with specific objects in your project, such as source directives and

targets
●Apply options to atarget

You should have the following source files in adirectory on your system.
●review.icc -The configuration file for your project
●main.cpp -The source code for your main function
●request.hpp -The class declaration for the Request class
●request.cpp -The function implementations for the Request class
●macros.hpp -Macros defined for your program
●funcs.cpp -Auxiliary functions used by user classes
●user.hpp -The class declarations for the user classes
●user.cpp -The function implementations for the user classes.

Review of Configuration Pages and Views

There are two principal purposes for your project configuration:
●To specify the source files and target that make up your project
●To specify what options apply to the target or to source files

Select the Configuration section, then the Options page. You can use the Options page
to set options for specific target or source objects in your project. To do this, select a
source or target object in the Source and Targets view on the left, then apply options
specifically to the selected source or target by changing options in the Change Options
view to the right. See “Setting Build Options” on page 34.

Chapter 3. Try VisualAge C++	 81

Next, select the Source and Groups page. The Source and Groups view shows that
your source files are grouped into two source directives, the second group containing
only macros.hpp, the first group containing ali other source files mentioned in the
configuration file, macros.hpp is in its own group because earlier in this exercise, you
applied the global macros option to that file only. If you select the source directive
object f for macros.hpp. the current line of the source view underneath changes to

show the source specifier for this file, and you can see the global macros option
enclosing the source directive.

If you wanted to add more source files whose macros should be treated as having
global scope, you could select this source directive in the Source and Groups view,
enter the new file names in the Source entry fieid of the Change Source and Groups
view to the right, and click Add, then Apply. Note that this action does not create the
source file for you; if you want to create asource file and add it to an existing project,
the best way is to use the Open File dialog, and check the box to add the file to a
source directive. Asubsequent dialog asks you which source directive to add the new
file to, and asource view then lets you create the contents of the new file.

You can apply actions to most objects in the configuration views by clicking mouse
button 2over the object. Apop-up menu appears, showing which actions you can
perform on the object. You can select multiple objects and click mouse button 2over
any one of them. Any actions that apply to all the objects selected are displayed in a
pop-up menu. For example, you can select several source files in aSource and Targets
view, click mouse button 2, and select Remove from the pop-up menu to remove all the
files from your configuration, or you can change the paths of all selected files to relative
paths (relative to the project working directory), or to full paths.

The next page is the Targets page, where you will see alist of the targets for your
project in the Targets view, with alist of the associated source directives for each target
in the view beneath. If you select the Target object in the Targets view on this page, you
can then modify the target path in the Change Targets view to the right by editing the
entry and clicking Apply.

The Project Options page is useful for setting options that apply to the entire project.
When you first set options from this page, the IDE creates anamed option group called
ProjectOptions that sets the options you choose, and encloses the entire configuration
(source directives, target directives, other options) within its braces. By enclosing the
rest of the configuration within the ProjectOptions group, the IDE enables future options
applied to this group to apply to the entire project. Note, however, that if you edit your
configuration file later, and add configuration information outside the ProjectOptions
group, options you set from the Project Options page will not affect these additions.

The Options Groups page shows groups of options for your project. By default, options
that all apply to the same part of your configuration (for example, asource directive) are
gathered into an unnamed group. This page is agood starting point If you are trying to
locate an option you know you have set, when you can’t remember what files the option
applies to in your configuration. Option check boxes and radio buttons appear shaded

82 VisualAge C++ Getting Started

or hashed if the default value is currently being used. Descriptions are shown in green
for those options you have explicitly changed.

In the Options Groups view at the left you should see two unnamed groups, one for
global macros and the other for all other options. You can select any of these groups of
options and modify the options settings in the Change Options Groups view to the right.
The options you add are added to the group, while the options whose default values
you restore are removed from the group. From the Change Options Groups view you
can not only change option settings, you can also give an option directive aname or
r e m o v e a n a m e .

You will use the Options Groups page to make the first changes to your configuration.
The two remaining pages are Advanced and Source.

The Source page shows an editable Source view of the configuration file.

The Advanced page shows two views of the configuration, aDetails view and an
interpreted view. Both views are hierarchically organized, collapsible views of the
contents of your configuration. The Details view includes any changes you have made
to the configuration since the last build, other than direct editing changes. (For example,
changes you made by adding source files through adialog or pop-up menu are
displayed in this view). The Interpreted view reflects the configuration file as currently
interpreted by VisualAge C++. Where avariable is used in an expression, it displays the
current value of the variable rather than its name; it displays in grey text those sections
of the configuration that were not interpreted (for example, those contained in if blocks
whose conditions evaluated to false), llie Interpreted view does not reflect changes you
make in the Details view until you do one of the following:

●Rebuild the project
●Refresh the Configuration views, which causes the configuration to be reinterpreted,

and all configuration views to be updated, without starting abuild. Select Project
Workbook -Refresh Configuration Views from the menu bar

●Press the interpret button at the bottom of the Interpreted view, which changes the
Interpreted view to match the current contents of the configuration, without changing
other configuration views

The Advanced page is very useful for ensuring that the changes you make have the
intended effect while modifying your configuration.

Add Options Groups to the Configuration

You will start changing the configuration by creating two simple, named options groups,
one for the working version of the program, one for the production version. The working
version uses the shared versions of the run-time libraries; the production version is
statically linked to the run-time libraries, and is also optimized. Follow these steps to
create these two groups:
1. In the Configuration workbook section, select the Options Groups page.

Chapter 3. Try VisualAge C++	 83

In the Options Groups view of the Options Groups page, move the mouse pointer
over ablank area of the view and raise apop-up menu (click the right mouse
button). Select Add Option-
In the Add Option dialog, enter the name Work1ngVers1on in the Group entry field at
the top of the dialog, and click Apply. If you wanted to you could set the applicable
options within this dialog; however, because the dialog does not support Live Find, it
is easier to save the options group as is, then apply the changes from within the
Options Group page.
Repeat steps 1and 2for another new option, and name this one
P r o d u c t i o n Ve r s i o n .

Select UorkingVerslon in the left view, and in the Change Option Groups view to
the right, turn on the option to link with the shared libraries (use Live Find and type
shared to locate this option). Click Apply to save this change.
Select ProductlonVerslon in the left view, and turn offVne option to link with the
shared libraries. (You may need to click this box twice; it is athree-state checkbox,
whose values are on, off, and default. Turn the option off.). As well, turn on
optimization by using Live Find to locate 0pt1m, and pressing Enter or Ctrl+N until
the current option selected is "Optimization", with two choices below It, "Yes" and
"No". Change the choice to "Yes". Click Apply to save these changes.
Go to the Advanced page. Notice that these options groups appear with no source
or targets within them. You will not add any source or targets to them; instead, you
will assign one or the other option to athird variable, depending on whether you are
still developing the program or are ready to ship it.

2 .

3 .

4 .

5 .

6 .

Create aVariable in the Configuration

Configuration files support untyped user variables (variables in which the type is
determined by the assignment, not by atype declaration). You can add the definition
abc="def' to your configuration file, and abc will be treated as astring containing the
characters def. You can then use comparison operators to compare variables of
compatible types, or to compare avariable to aconstant.

For this configuration file, you need to define avariable ReadyToShip, with avalue of
either true or fal se, and avariable LinkOptions, whose value is determined by the
value of ReadyToShip. You need to make these changes in asource view of the
configuration.

Select apage of the Configuration section that has asource view, for example the
Source page.
In the source view, you can, if you like, delete the empty braces after
ProductlonVerslon and WorkingVersion, although the braces do not affect the
syntax. You can highlight and delete arange of lines by moving the cursor, pressing
Alt-fL on the first and last lines you want to select, then pressing Alt-fD.
At the top of the configuration file, insert the following:
ReadyToShip="false"
Below the ProductionVersion and WorkingVersion options you recently defined, add
the following configuration code:

1 .

2 .

3 .

4 .

84 VisualAge C4+ Getting Started

if (ReadyToSh1p=="true")
option LinkOptions=ProductionVersion

e l s e
option LinkOptions=WorkingVersion

When you make changes to your configuration, you need to either rebuild your project,
or refresh the configuration views, to see how your changes affect the configuration.
Rebuilding the project is time-consuming, because when you change your configuration
even slightly, the entire codestore may need to be recompiled. This differs from source
code changes, where small changes usually result in short rebuild times.

The IDE lets you view configuration file changes without rebuilding. Select Refresh
Configuration Views either from the Project Workbook menu, or from the pop-up
menu that appears when you click mouse button 2over the tab for the Configuration
section. Then go to the Advanced page. Notice that, in the Interpreted Configuration
view, the statement option Li nkOpti ons =ProductionVersion is grayed out, because
the if-block containing this statement did not get evaluated. Also notice that the veilue of
the variable ReadyToShip is shown in the if statement, instead of the variable name.

Add the LinkOptions Option to the Target Statement

Now you will make use of the LinkOptions variable you defined above in determining
which link options are applied to the target executable.
1. If you are not already on the Advanced page of the Configuration section, switch to

that page.
2. In the Details view, position the mouse pointer over the shared library option that

currently precedes the target object.
3. Click mouse button 2, and select Remove. This removes the shared library option

from the target specifier.
4. Select the Options page of the Configuration section.
5. Select the target object in the Source and Targets view.
6. In the Change Options view, look for the Option Variables entry field near the

bottom. In this field, enter LinkOptions, the variable you previously defined. Click
Add below this field, then on Apply at the bottom of the view.

Rebuild the project once again. Now, whenever you want to switch between a
shared-library development version, and anonshared-library production version, you
can go to asource view of your configuration, change the value of ReadyToShi pfrom
fal se to true or from true to fal se, and rebuild.

This part of the exercise described ways to customize your configuration file. If you use
the SmartGuides to build your project, you will probably not need to do this kind of
customization for simple projects such as the one in this exercise. Simply changing the
appropriate link option in aChange Options view of the target object would accomplish
the same result. However, for larger projects, the ability to customize your configuration
is important. See the Configuration Files section in the online Concepts help for further
deta i l s .

Chapter 3. Try Visual Age C++	 85

You can proceed to:
●“Part 7. Optimizing Your Configuration”, if you want to use the Configuration

Optimizer to improve the organization of your configuration
or“Part 8. Defining the View Function for Reviewers” on page 87, if you want to finish
coding the CGI portion.

●“Develop aGraphical User Interface from aVisual Part” on page 103, if you want to
try developing an application using the Visual Builder and the IDE.

Part 7. Optimizing Your Configuration

You can use the VisualAge C++ configuration optimizer to analyze your configuration
and modify it so that build performance is improved.

When VisualAge C++ optimizes your configuration, it scans the entire configuration and
the codestore database, so that it can add included files directly into your configuration,
when this action would not modify the meaning of your program. It can also change or
add options for particular files. Although it may make your configuration file seem larger
and more complex, optimization should speed later rebuilds by better managing
dependencies between files.

This section should take you approximately 10 minutes to complete. In it, you will learn
to use the Configuration Optimizer.

You should have the following source files in adirectory on your system.
●review.icc -The configuration file for your project
●main.cpp -The source code for your main function
●request, hpp ●The class declaration for the Request class
●requestcpp -The function implementations for the Request class
●macros.hpp -Macros defined for your program
●funcs.cpp -Auxiliary functions used by user classes
●user.hpp -The class declarations for the user classes
●user.cpp -The function implementations for the user classes.

Optimize Your Configuration

To optimize, select Tools -Optimize Configuration from the title bar menu.

The IDE inserts the statement tool"config_opt" in your .icc file, then rebuilds your
project (because the configuration has changed). This statement causes the
configuration optimizer extensions to be loaded and added to the work queue for the
rebuild operation. The configuration optimizer gets control only if the build completes
successfully. After the project has rebuilt, the configuration optimizer analyzes the
codestore for the following information:

86 VisualAge C++ Getting Started

●Source files that are included in your project but that are not mentioned in the .icc file
(for example, files included using the #include preprocessor directive within asource
file)

●.ini files that define inline member functions outside their class declaration

●Options that were applied to ail files in an include hierarchy, but need not be

The configuration optimizer adds the required files to your configuration, removes files
that are not needed, and changes the scope of certain options. If the optimization
results in changes to the configuration, the optimizer initiates asecond rebuild
operation.

For asmall project, optimizing your configuration may not have anoticeable impact on
build performance. However, for aproduction application, particularly one using IBM
Open Class Library classes extensively, build times may be reduced if you optimize
your configuration periodically.

The configuration file shown in the Prerequisites sections of the following parts has not
been optimized, for simplicity. You can, however, optimize your configuration at any time
later in this exercise.

You can proceed to:
●"Part 8. Defining the View Function for Reviewers”, if you want to finish coding the

CGI portion
o r

●“Develop aGraphical User Interface from aVisual Part” on page 103, if you want to
try developing an application using the Visual Builder and the IDE.

Part 8. Defining the View Function for Reviewers

In this part, you will build on your existing knowledge of the VisualAge C++ IDE by
repeating many of the editing, building, and navigation tasks you already learned in
previous parts. You will add anew member function to the Reviewer class to support
viewing documents that contain comments. You will also create two classes to support
adding comments to documents. Finally, you will modify the Reviewer::View function
definition so that it shows aversion of an HTML file containing reviewers’ comments.

This section should take you between 30 minutes and 2hours to complete. If you are
simply interested in using the review tool, the section will take little time. If you want to
understand CGI programming, and in particular the design of the review tool, the
section will take longer.

Because you already have considerable experience adding code to functions, rebuilding
your project, and recovering from build errors, this section contains less guidance than
prior sections have done.

Chapter 3. Try VisualAge C++	 87

Remember, where necessary, to change any path or executable file names to the
names required for your system.

You should have the following source files in adirectory on your system.
●review.icc -The configuration file for your project
●main.cpp -The source code for your main function
●requesthpp -The class declaration for the Request class
●requestcpp -The function implementations for the Request class
●macros.hpp -Macros defined for your program
●funcs.cpp -Auxiliary functions used by user classes
●user.hpp -The class declarations for the user classes
●user.cpp -The function implementations for the user classes

R e d e fi n e F u n c t i o n s

The next few sections provide code that you can add to your project. Under the heading
for each class or member function to be added or changed in this section, you will find
abrief description, followed by the required code. To replace afunction definition in
your source code with anew one from this part, follow these steps:

In the online version of this section, select the replacement text for the function in
your browser and copy it to the system clipboard.
In asource view in the IDE, select the original function definition {not its in-class
declaration), and paste the clipboard contents so that they overwrite the prior
definition. (If the original function is defined inline within its class, change the
definition to adeclaration, and add the new definition.)
After several operations, rebuild your project to ensure that you copied and pasted
correctly.

1 .

2 .

3.

Move Common Code f rom Reader : :V iew

Implementation Details

Currently, the Reader::View member function only adds the necessary CGI call information to all
href links in aviewed document. This code is useful not only for allowing readers to view afile,
but for allowing reviewers and authors to view or add comments to afile. Therefore it would be a
good idea to move this code into aseparate function.You will move the code from Reader:View
into anew User class member function, UnkFix, and call that function from Reader::View.

In aSource view, add apublic declaration for LinkFix to the User class declaration in
user.hpp:
IS t r i ng L inkF i x () ;

Also, in user.cpp, change the function name of Reader:View to Usen:LinkFix. Do this
by deleting the old function signature and typing in the new one. Then add the following
new defin i t ion for Reader :View:

88 VlsualAge C++ Getting Started

IString Reader::View{) {
re tu rn L inkF ix () ;

CommentType and CommentSection Classes
Implementation Details

The first user function you wili implement is UseriView. However, before you begin, you need to
implement some support classes for viewing, because areviewer’s view of adocument is more
complex than areader’s view. Unlike areader, areviewer can view comments, and can add new
comments at specific points. The CommentSection class is used to hold sections of the
document in which comments can be added, while the CommentType class is used to hold the
comments. In this exercise, you will add support for comments only at the start of each
paragraph and list item. If you want, you can later add code of your own to handle other insertion
points.

Once these classes are defined, you will declare an array of CommentSection elements in
Reviewer::View. Element zero will contain all text up to the first paragraph or list item tag, and
each subsequent element will contain text following the tag of the prior element, up to and
including the next paragraph or list item tag. The CommentSection class will define aPrint()
operator that returns an IString consisting of the text up to the tag, the numbered hypertext link
that allows comment entry, any comments that may exist for that entry, and the text up to the
next tag.

Create the files comment.hpp and comment.cpp and add them to the part of your
configuration that contains other source files that you have defined. Then add the
following code to them:

Class declarations and inline members (comment.hpp):
class CommentType {

ISt r ing User id ,
D a t e ,
Time,
Te x t ;

i n t L i n e N u m ,
CcmmentNum;

Request* Req;
Boolean Completed;
p u b l i c :

/ / S e t m e t h o d s
void SetUser(IString U) {UserId=U;}
void SetDate(IString D) {Date=D;}
void SetTime(IString U) {Time=U;}
void SetText(IString U) {Text=U;}
void SetReq(Request* R) {Req=R;j
void SetLineNum(int L) {LineNum=L;}
void SetConmentNum(int L) {ConmentNum=L;}
void SetCompleted(Boolean T) {Completed=T;}
/ / Constructors and pr int funct ion
CommentTypeO :LineNum(0), CommentNum(0), Req(0) {}
CommentType(int Ln, int Ct, Request* R) :

LineNum(Ln), CommentNum(Ct), Req(R) {}

// ID of comment creator
// Date comment was created
// Time comment was created
// Text of comment
// Line to which comment applies
/ / C o m m e n t n u m b e r f o r t h i s l i n e
// Pointer to the current request
// Whether the author has completed the comment

Chapter 3. Try VIsualAge C++	 89

IString Print (Boolean CompleteLink);
} ;

class ConmentSectlon {
protected:

IStr ing Tag;
IS t r i ng Tex t ;
Boolean Showinsert;
Boolean CompleteLink;
CommentType* Comment;
i n t C o u n t ;
Request* Req;
in t Number ;

p u b l i c :
/ / Const ruc tor
CommentSection(); Tag(""),

// Tag for this section (eg. <p>,)
// HTML Text following tag
// Whether to show the numbered link for adding comments
// Whether to show the "Complete" link (used for authors)
// Each section can have up to 16 comments
// Count of comments
// Pointer to the request
// Number of this comment section (ie. array index)

Conment(new CommentType[16]),
Text("") ,
Count(-1),
Number(6),
Req(0),
CompleteLink(false),
Showinsert (fa lse) { }

// Set methods
void SetTag(IString Tg) {Tag=Tg; }
void SetComment(IString Text, IString User,

IStr ing Date, IStr ing Time,
Boolean Completed);

void SetText(IString Tx) {Text=Tx; }
void SetReq(Request* Rq) {Req°Rq;}
void SetNumber(int Num) {Number°Num;}
void SetCompleteLink(Boolean tf) {CompleteLink=tf;}
void SetShowInsertO {ShowInsert=true;}
Boolean IncrementCount() (

if (Count<16) {Count++; return true; }
r e t u r n f a l s e ;

}
I S t r i n g P r i n t () ;

} ;

Non-lnline Function Definitions (comment.cpp):
// Print this coirenent. Each comment is contained in aone-cell
// table (so that aborder is shown). If the comment is completed,
// show that it is completed. Otherwise, if CompleteLink is true
// (and this is set only in the Author override of View), show
// alink allowing the comment to be completed.
IString CommentType::Print(Boolean CompleteLink) {

/ / Pr in t the s tar t o f the tab le
IStr ing Resul t=

"<brx tab l eborder= l><t r><td>" ;
// Print the User ID of the user who created the comment
// Underscores in User ID should become spaces
Result+="Created by: "

+Userld.change("_"," ")

90 VisualAge Gh- Getting Started

+"</ font>“ ;
// Print the Date and time of comment creation
Result+=" on: "

+ D a t e

+" at "
+ T i m e

+ " < / f o n t x / t d > < / t r > " ;
// On anew row, print the comnent text
R e s u l t + = " < t r > < t d > "

+ T e x t

+ " < / t d x / t r > \ n ' ' ;
// Indicate that comment is complete

if (Completed)
Resul t+="<trxtdxfont col or=\"#FF0033\">Compl eted</fontx/tdx/tr>“;

// Otherwise, add link to complete it if requested by caller
else if (CompleteLink)

Result+="<trxtdxa href=\"review.exe?Op=Complete+key="
+Req->GetKey{)
+"+fi1e="+Req->GetFi1ename()
+“+line=“+IString(LineNum)
+"+cmt="+IString(CommentNum)
+“\">Mark as Completed</ax/tdx/tr>";

Resul t+="</ tab le>\n" ;
r e t u r n R e s u l t ;

)
// Set method for creating acomment within this comment section
// Only creates the comment if it is one of the first 16 comments
// as only 16 comments are allowed per paragraph or list item,
void CommentSection::SetComment(

IStr ing Text , ISt r ing User,
IStr ing Date, IStr ing Time,
Boolean Completed) {

if (Count>=0 && Count<16) {
Conment[Count].SetText(Text);
Coiment [Count] .SetUser(User);
Comnent[Count].SetDate(Date);
Comment[Count].SetTime(Time);
Conment[Count].SetReq(Req);
Comment[Count].SetCompleted(Completed);
Comnent[Count].SetLineNum(Number);
Comnent[Count].SetCommentNum(Count+l);

}
}
// CommentSection::Print0 prints the tag for the section;
/ / i f the sect ion is not sect ion 0(everyth ing up to the firs t
// paragraph or list item tag) it prints ahyperlinked number
/ / t h a t a l l o w s c o m m e n t i n s e r t i o n ;
// i f there are any comments for this section, i t calls
// CommentType;:Print() for each of them;
/ / fina l l y, i t p r in ts i t s tex t , tha t i s , the o r ig ina l HTML up
// to the next paragraph or l ist item tag.
IString CommentSection::Print() {

IString SNumber=Number;
IString Result=Tag;

Chapter 3. Try Visual Age C++	 91

if (Number>0)
Result+="6etKey()

+"+fi1e="+Req->6etFilename()
+"+line="+SNumber+"#Ct"+SNumber+"\">"+SNumber+" ";

for (int cxc=0;cxc<=Count;cxc++)
Result+=Comment[cxc].Print(CompleteLink);

Result+="";
Result+=Text;
return Result ;

R e v i e w e r : i C r e a t e S e c t i o n s

Implementation Details

The CommentSection and CommentType classes do almost all of the work of handling the
sections of each HTML file for you. The View function only needs to read the HTML file
requested, break it up into sections, and print the sections.

Comments are stored in afile with the same name as the HTML file but in aseparate directory,
defined by the macro CommentRoot.

Each comment in acomment file starts with the line ''<cmt>”, followed by five words;

MeaningW o r d Example

Line comment applies to1

Completed or not2 "u" or "c '

User ID of creator " R G R E E N " o r " S B E H M "3

Date o f c rea t ion " 1 2 / 0 4 / 1 9 9 7 "4

Time o f c rea t ion " 1 2 : 2 3 "5

Subsequent lines are text of the comment. The comment ends with the line "<cmt>".

Place adeclaration for this macro in your macros.hpp source file. Change the path
shown below to the path where you want to store comment files on your system.
Idefine CommentRoot IString(''g:\\vatutor\\comments")

Remember, you can edit macros from the Macros page of the Project.

The code you used here for creating sections will be used later by the Author version of
View and by other member functions of the Reviewer and Author classes. To allow
common access to this code, you should define aseparate member function of
Reviewer, which breaks up the HTML file into these sections. Place the function
declaration in user.hpp and the implementation in user.cpp. As well, in user.hpp add a
declaration for an array of comment sections, and acounter, CurCs, to keep track of
the count of these sections, as shown below.

Declaration (user.hpp)
// Place these declarations inside the Reviewer class declaration,
// with protected access:
protected:

92 VisualAge C++ Getting Started

void CreateSections(IString& Content, Boolean CompleteLink=false);
// Declare an array of comnent sections
C o n m e n t S e c t i o n * S e c t i o n ;
i n t C u r C s ;

Definition (user.cpp)
void Reviewer::CreateSect1ons(IString& Result, Boolean CompleteLink) {

// Result contains the HTML file with href l inks already fixed
// The CompleteLink argument tells CreateSections whether to show
// alink authorizing completion of the comment (Author::View sets
// CompleteLink, while Reviewer::View does not)
// Create alowercase copy for tag searching
IString result=IString::lowerCase(Result);
// Create atarget array of 256 ConmentSection objects.
// Track total used so array can be expanded later if more than
// 256 sections are found in document.
// CurCs is declared in class.
CurCs=0;
in t MaxCs=256;
// Section is apointer to an array of ConmentSection elements;
/ / i n i t i a l i z e i t n o w.
Section=new CommentSection[MaxCs];
// Search for next paragraph or list item
// MinNonZeroO will be defined in func.cpp
int Next=MinNonZero(

NextTag(result,“<p''),
NextT ag(result,“<1i"));

// If no such tag is found, set next to the end of the file,
/ / so that the first sect ion becomes the ent i re file.
// Return when done, as no more sections need be created,
if (Next==0) {

Section[CurCs].SetTag(Result);
Section[CurCs].SetReq(Req);
CurCs++;
r e t u r n ;

}e lse {
// Otherwise, set tag and comment number, and continue

Section[CurCs].SetTag(Result.subString(l,Next-l));
Section[CurCs].SetReq(Req);
Section[CurCs].SetNumber(CurCs);
CurCs++;

}
// Keep adding more sections
while (Next>0) {

// Find the end of the tag and set Tag to it
int eTag=result.indexOf(">",Next);
IString Tag=Result.subString(Next,eTag-Next+1);
// Look for next paragraph or l ist item
int NextNext=MinNonZero(

NextTag(result,"<p",Next+l),
NextTag(result,"<1i“,Next+1));

ISt r ing Text= ' " ' ;
// Set section to rest of text if no next tag found.

Chapter 3. Try Visual Age C-h- 93

/ / otherwise set text to rest of th is sect ion
if (NextNext==0)

Text=Result.subString(eTag+l);

Text=Result.subString(eTag+1,NextNext-eTag-1);
// Expand the Section array if it is too small
if (CurCs>=MaxCs) {

MaxCs+=l;
MaxCs*=1.25;
CommentSection* NewCs=new CommentSection[MaxCs];
for (int cs=0;cs<=CurCs;cs++)

NewCs[cs]=Section[cs];
de le te [] Sect ion ;
Sect ion=NewCs;

e l s e

// Create the CommentSection
Section[CurCs].SetNumber(CurCs);
Section[CurCs].SetTag(Tag);
Section[CurCs].SetReq(Req);
Section[CurCs].SetText(Text);
Section[CurCs].SetCompleteLink(CompleteLink);
CurCs++;
N e x t = N e x t N e x t ;

} / / End of Whi le
// 0pen the comment file and read in any comments
// Comments are delimited by <cmt> and </cmt>
ifstream CommentFi1e(Req->GetCommentFn());
while (CoirmentFile) {

IString CommentLine=IString;:1ineFrom(CommentFi1e);
Boolean Completed=false;
if (CommentLine.isLike("<cmt>*")) {

int CmtNum=CommentLine.word(2).asIntO;
if (CommentLine.word(3)==“c“) Completed=true;
IString User=CommentLine.word(4);
IString Date=ConmentLine.word(5);
IString Time=CommentLine.word(6);
IString Text=IString;;1ineFrom(CommentFi1e);
IString NextLine=IString;;1ineFrom(CommentFi1e);
while (ComnentFile && NextLine!="</cmt>") {

Text+=NextLine+"\n";
NextLine=IString;;1ineFrom(CommentFi1e);

}
// Add acomment type to this conment section if the comment is valid
if (Text!="" && CmtNum>0 && CmtNunKCur

Cs && Secti on [CmtNum] .IncrementCountO)
Section[CmtNum].SetCcmment(Text,User,Date,Time,Completed);

} / / e n d o u t e r i f
} / / e n d w h i l e

} / / e n d f u n c t i o n

94 VisualAge Oh- Getting Started

R e v i e w e r : : V i e w

The View function contains very little code of its own; most of this code has been
moved out to the CommentType and CommentSection function and to the
Reviewer::CreateSections function. Change the definition of Reviewer::View to the
following:
IString Reviewer;;View() {

/ / 1. Get the fi le contents
IString Result=LinkFix();
if (Result=="")

return ErrorC'Could Not Read File",
"The file you requested, "+Req->GetFilenanie()

+", could not be read, or was empty.");
// 2. Init ial ize the CommentSection Array.
CreateSections(Result, false);
// 3. Print the CommentSections
Resu l t=" " ;
for (int cs=0;cs<CurCs;cs++) Result+=Section[cs].Print();
return Resul t ;

NextTag and MinNonZero (funcs.cpp)
Implementation Details: The NextTag function searches for the next occurrence of atag in a
string. Because atag can have attributes, NextTag looks for the first match that contains the
opening brace and name of the tag followed by adosing brace, space, or new line. The
MinNonZero function, which is overloaded for two and three arguments, returns the lowest
nonzero value of aset of nonnegative values.

Add the following definition for these two functions to funcs.cpp:
int NextTag(IString String, IString Tag, int StartPos=l) {

return MinNonZero(
String.indexOf(Tag+">",StartPos),
String.indexOf(Tag+" ",StartPos),
String.indexOf(Tag+"\n",StartPos));

}
int MinNonZero(int a, int b, int c=0) {

if (c>0) return MinNonZero(a,MinNonZero(b,c));
if (a==0) return b;
i f (b==0) return a;
if (a>b) return b;
r e t u r n a ;

Request: :GetCommentFn

This function returns the name of the comment file, which is determined from the main
HTML file name and the comment directory. Add the function’s declaration as apublic
member of Request, in request.hpp; add its definition in request.cpp.

Chapter 3. Try VisualAge C-h- 95

// In request.hpp, within public part of Request class declaration:
IStrIng GetCommentFn();
// In request.cpp
IStrIng Request::GetConinentFn() {

IStrIng CoiranentFn=F11ename;
Comment Fn. change ("/''.slash);
If (CommentFn.subStr1ng(l,l)!=slash)

CommentFn=slash+CommentFn;
// Add path to start of file.
// CommentRoot Is defined In macros.hpp
CommentFn=CommentRoot+CommentFn;
return CommentFn;

/ / Add aleading slash

}

Test the New Implementation of Reviewer::View

You have not yet implemented the ShowAdd or Add functions, so you cannot add
comments to test whether the View function is working properly. You can, however, test
View by copying the following text and placing it in afile in your comment root directory.
Give that file the same name as an HTML file in your web root directory, for example,
index .h tm l :

<cmt> 1cPeterjchmidt 11/14/1997 10:06
Please add the phrase "notwithstanding the turbulence of clouds,"
</cmt>
<cmt> 3uRobertaJerdi 11/14/1997 11:17
Ibelieve you need more Information on aardvarks here.
</cmt>
<cmt> 1uThe_Author 11/14/1997 12:38
Ihave made the change Peter requested. Time for lunch I
</cmt>

Try viewing the HTML file using your CGI. Enter this URL In your browser

http://localhost:49213/cgi-bin/review.exe?op=View+key=reviewer+file=index.html

96 VisualAge C-h- Getting Started

The text should look something like the following:

1

jCreatedby: Peter Schmidt on: 11/14/1997 at 10:06
jPlease add the phrase “notwithstanding the turbulence of clouds,'
jCompleted

jCreated by: Tl'ie Audior on: 11/14/1997 at 12:38
|I have made the change Peter requested. Time for lunch!

Here are some common problems:

2Some links are offsite
3

Created by: Roberta Verdi on: 11/14/1997 at 11:17
Pbelieve you need more information on aardvarks here. |

Some links are to nonexistent frames

4Some links are to different frames
5Some links have uppercase attributes
6Some links are syntactically invalid

Now that you have implemented Reviewer:View, the remaining functions are relatively
simple.

You can proceed to “Part 9. Defining the Remaining User Functions”, if you want to
finish coding the CGI portion. Or “Develop aGraphical User Interface from aVisual
Part” on page 103, if you want to try developing an application using the Visual Builder
and the IDE.

Part 9. Defining the Remaining User Functions

In this section you will implement the ShowAdd and Add functions of the Reviewer
class, which respectively display aform for adding acomment, and add that comment.
You will also implement the Complete function of the Author class, which marks a
comment as completed.

Chapter 3. Try VisualAge C++	 97

This section should take you approximately 30 minutes to complete. It does not
introduce any new IDE concepts or tasks. You can use it to strengthen your
understanding of the IDE, and you can complete it if you want to have aworking
web-based review tool which you can later refine and enhance to suit your needs. If
you do not need such atool, you can proceed directly to Develop aGraphical User
Inter face f rom aVisual Par t .

You should have the following source files in adirectory on your system.
●review.icc -The configuration file for your project
●main.cpp -The source code for your main function
●requesthpp -The class declaration for the Request class

●request.cpp -The function implementations for the Request class
●macros.hpp -Macros defined for your program
●funcs.cpp -Auxiliary functions used by user classes
●user.hpp -The class declarations for the user classes
●user.cpp -The function implementations for the user classes
●commentcpp -The class declarations and incline members

●commenthpp -Non-inline function definitions
●users.dat -Aplain text file listing three levels of users.

Complete the Function Implementations
Implementation Details: The Reviewer:View function already does most of what you need for
the ShowAdd function. You will begin by copying code from that function into
Reviewer::ShowAdd. The only change you will make will be to insert the comment forni at the
appropriate location in the file. The Author::Complete function is also very similar to
Reviewen:View; it finds the incomplete comment in the comment file, changes its status to
completed, then shows anew view of the requested file with its comments.

Follow these steps to complete the function implementations, ali within user.cpp:
1. Type the body of the Reviewen:View function into ReviewenrShowAdd. The

Reviewer: :ShowAdd funct ion should now read as fo l lows:

IString Reviewer::ShowAdd{) {
/ / 1. Get the file contents
IString Result=LinkFix();
i f (Resu l t==“ ")

return Error("Could Not Read File",
"The file you requested, "+Req->GetFilename()

+", could not be read, or was empty.");
// 2. Init ial ize the CommentSection Array.
CreateSect ions(Resul t , fa lse) ;
// 3. Print the CommentSections
Resul t="“ ;
for (int cs=0;cs<CurCs;cs++) Result+=Section[cs].Print();
return Result ;

}

98 VisualAge C-h- Getting Started

Add astatement before the call to LinkFix to determine the line number where the
user wants to add acomment. Use the Request::GetValue function to determine
this value;

int LineNum=Req->GetValue("1ine").asInt();
Add the following after the call to CreateSections:
if (CurCs<LineNum)

return Error("Cannot Insert Comment",
"A section for inserting comment "
+IString(LineNum)
+" cannot be found.");

Section[LineNum].SetShowInsert();
To insert the Add Comment form, add the following to CommentSection::Print()
immediately before "Result+=Text;"

if (Showinsert) {
Result+="<table border=lxtrxtd>Add aComment
\n";
Result+="<form method=post action=\""+EXE+"\">\n";
Result+="<input type=hidden name=key value="+Req->GetKey()+">\n";
Result+="<input type=hidden name=file value="+Req->GetFilename()+">\n";
Result+="<input type=hidden name=op value=add>\n";
Result+="<input type=hidden name=line value="+SNumber+">\n";
Result+="<textarea name=text rows=10 cols=60>\n</textareaxbr>\n";
Result+="<input type=submit name=Submit value=Submitx/formx/tdx/trx/table>";

2 .

3 .

4 .

}
Rebuild your project. Access the HTML file by entering the following text in your
browser ’s URL field:

http://localhost:49213/cgi-bin/review.exe?op=View+key=reviewer+file=lndex.html
Try adding acomment in this file, by clicking on anumbered hypertext link. Aform
for adding your comment should appear. Enter some text in the comment form and
click Submit. You should get an error message saying that the Reviewer version
of the Add function is not yet implemented.
Next, redefine the Add function by deleting the existing definition from user.cpp
and entering the definition below.

5 .

6 .

Implementation Details: The Add function first tries to open the comment file in append mode. It
tries up to 50 times to do so, waiting 50 milliseconds after each try, in case another process is
also trying to modify the comment file at the same time (for example, two users adding
comments at once), if the comment file still cannot be opened, an error is returned. If it can be
opened, the required markup and information for the comment are appended. Including the
current date (created from the IDate static member function todayO) and time (created from
ITime::now).

IString Reviewer;:Add() {
// Open file in append mode
ofstream CmtFile(Req->GetCoirmentFn(),ios::app);
i n t t r i e s = 5 0 ;
while (ICmtFile && tries>0) {// Try up to 50 times

CmtF i le .c loseO;
IThread:;current().sieep(50);
t r i e s — ;
CmtFile.open(Req->GetComnentFn(),ios::app);

Chapter 3. Try VisualAge C++	 99

}
if (ICmtFile)

return Error ("Comment File Locked",
"The comment could not be added. The comment file may be locked by another process,");
// Write out the markup and comment information
C m t F i l e « " < c m t > "

Req->GetValue("1ine")«

« " u "

« G e t U s e r l d O « " "
«IDate:;today().asString("%m/%d/%Y ") «""
«ITime;:now().asString("%H:%M\n");

// Read the entire request string, then cut it down to contain only the text
// of the comment, which spans from "text=" to "Submit=Submit"
// Submit=Submit comes from the user pressing the Submit button.
IString Text=Req->GetReqString();
int texteq=Text.indexOf("text=");
// Exclude up to and including "text="
Text=Text.subString(texteq+5);
int sub=Text. indexOf("Submit=Submit");
// Exclude from Submit=Submit to end
if (sub>0) Text=Text.subString(l,sub-l);
i f (Te x t
C m t F i l e « T e x t «
CmtFile.closeO;
/ / F i na l l y, ca l l V i ew,
return View();

)Text="No text in comment";
\ n " « " < / c m t > " « e n d l ;

I I I I
s s s

}

7. Add the following three header files, either to asource directive in your
configuration, or using #include <iheader .hpp> directives at the top of user.cpp:
● i th read.hpp
● i t ime .hpp
● i da te .hpp

8. Rebuild the project. You will probably encounter one error areference to an
undefined function, GetUserldQ- Add the following as apublic function inside the
declarat ion for the Reviewer class:

IStri ng GetUserldO {return Userid; }

Currently, Userid is aprivate member of the User class, so if you rebuilt now you
would get an access error. Move the declaration for Userid from the private to the
protected section of the User class declaration (right after the Request* object).

You also need to set the value of Userid, which is currently not set anywhere. Add
aSetUserldO function to the public section of the User class:
void SetUserId(IString u) {Userld=u;}

Then set the user ID by adding the following in your main function (in main.cpp),
after the switch block;

U->SetUserId(UserLine.word(3));

100 VisualAge C++Getting Started

The GetUserld function is defined in Reviewer, because it is only called from
Reviewer::Add (a default user does not have auser ID). The SetUserld function is
defined in User, because it is called by the polymorphic User* object in main.
Rebuild the project. Before you try out the CGI, you need to modify the users.dat
file by adding auser ID or name after each user’s key and authority level. Edit the
file and change it, for example, to the following. The file is located in the path
specified by the UserFilepath macro,
reader 1Arthur_6reen
reviewer 2Roland_Burgess
author 3Kay_Smith
Try adding acomment again. This time, you should see the text of your comment
along with auser name, the date, and time, imbedded in the text of the document.
The URL to view your file is:
http://localhost:49213/cgi-bln/revlew.exe?op=Vlew+key=reviewer+file=index.html
Implement the Author::View function. It is almost identical to ReviewenrView. The
only difference is that the second argument to the call to CreateSections is set to
true instead of false. This argument to CreateSections is then passed on to each
CommentSection and CommentType object, so that the CommentType::Print
function prints alink to allow the author to complete the comment. Mark the body
of the Reviewer:View function (use Alt+L at the top and bottom lines of the body)
and copy it into Author::View (use Alt+C); change the call to CreateSections as
n o t e d .

The final function to Implement is Author::Complete.

9 .

1 0 .

11 .

1 2 .

Implementation Details: Arequest to complete acomment should contain the file, line, and
comment number of the comment to complete, These arguments can be parsed out by the
Request::GetValue function. The Complete function then opens the file in binary mode, reads in
characters until it finds the byte whose value of ’u’ (for "Unhandled") needs to be changed to ’c’
(for "Completed"), writes out only that byte, and closes the file. This approach minimizes file I/O
by reading only the bytes than required to locate the comment to complete, and by writing only a
single byte of output.

Change the definition of Author:Complete in user.cpp to the following:
IString Author::Complete() {
/ / Open the file in binary read-wri te mode. I f the file doesn't exist ,
/ / t he re a re no comments .

FILE* stream=fopen(Req->GetCommentFn(),"rb+");
i f (! s t ream)

return Error("Could Not Complete Comment",
"The comment could not be completed because the comnent file,
+Req->GetCommentFn 0
+", could not be found.");

char* Buffer=new char[256];
IString CommentFile="";
int CommentNum=Req->GetValue("cmt").aslnt();
int LineNum=Req->GetValue(“1ine").asInt();
IString ThisCmt="<cmt> "+IString(LineNum)+" ";
in t by tesread=f read(Buffer,s izeof (char) ,256,s t ream);
CommentFi1e+=Buffer;

Chapter 3. Try VisualAge C++	 101

/ / Read in the file 256 bytes at atime.
// Continue reading until the number of comments for this line
// is at least equal to the comment number the Complete applies to
while (bytesread>0 && CommentFile.occurrencesOf(ThisCmt)<CcmmentNum) {

bytesread=fread(Buffer,sizeof(char),256,stream);
CommentFi1e+=Buffer;

}
// Find the comment position of the nth comment for this line
in t las tpos=0;
int thispos=CommentFile.indexOf(ThisCmt);
for (int i=l;i<ComnentNum;i++) {

lastpos=thispos;
thispos=Conment Fi1e.indexOf(ThisCmt,thispos+1);

}
// If that conment's completion code is 'u' change it to 'c
if (CommentFile[thispos+ThisCmt.length()]=='u') {

fseek(stream, thispos+ThisCmt.1ength()-1,SEEK_SET);
fputci'c',stream);
fclose(stream);

}
// If you like, add an error return here that returns a
// message stating that the conment was already completed,
return View() ;

}

13. Rebuild the application. You may find that SEEK_SET is undefined. If so, add the
directive #include <stdio.h> at the top of user.cpp and rebuild again.

14. Try completing acomment. You will need to use an author user ID to do so; try
accessing the file by entering the following text in your browser’s URL field;
http://localhost:49213/cgi-bin/review.exe?op=View+key=author+file=index.html

The CGI portion of your program is now complete. You can now review your own web
documents by adding the documents to your WebRoot directory tree; you can let others
review them by adding their user IDs, passwords, and authority levels to your users file.
This program is still only aprototype. You may want to enhance the error handling and
the types of HTML markup to which it allows comments to be added, and you may want
to enable it to work with first and last names.

If you wanted to ship this program to customers now, you would first need to change
the configuration so that the version produced used the static version of the run-time
libraries. If you completed Part 6. Managing Configuration Files, you have an easy way
of doing so -change the value of ReadyToShip to "true" and rebuild. However, there is
still some work to do before you have aprogram you can present to users who will be
installing the CGI to run from their web senrers. Your users probably do not want to edit
auser management file directly; you need to create agraphical user interface (GUI)
program that runs locally, not through abrowser, so that the administrator of the
machine running the CGI can create and manage user IDs. In the next sections, you
will learn to use the Visual Builder component of VisualAge C++, along with the IDE, to
create the GUI interface and the user management code.

You have now completed the CGI portion of the VisualAge C++ tutorial.

102 VisualAge C++ Getting Started

You can proceed from here to the the integrated Visual Builder component of VisualAge
C++, in which you will create agraphical user interface to administer the users for your
review tool, or browse the online help from the VisualAge C++ Help Home Page, or the
VisualAge C++ Samples home page. If you want to browse the samples, copy asample
directory to your own working directory, or try launching asample in the IDE.

Develop aGraphical User Interface from aVisual Part

In this section of the tutorial, you will use VisualAge C++ to create auser interface and
the underlying code to administer alist of users. This will give you practice with the
Integrated Development Environment and its Visual Builder component. If you already
implemented the review tool in the previous sections, you can use this user interface to
administer the users for that web. If not, this section at the least will help you learn how
to create visual parts and integrate them with your own code within the IDE.

Here is an overview of this section:

Part 1. Creating aProject for aVisual Part
Starting from the VisualAge C++ IDE, you will create anew project.

Part 2. Creating Parts in the Visual Builder
Without writing any code, you will create two parts: anonvisual Main part,
used for implementing your main function, and avisual part for the user
interface for your program.

Part S.Connecting the Main Part to the User Interface Part
You will make aconnection in the Visual Builder from the Main part to the User
Interface part, so that the frame window of your user interface is loaded and
displayed when your main function runs, and add both parts to the
configuration of your project in the IDE.

Part 4. Adding User Interface Controls to aVisual Part
You will improve the appearance of your user interface by aligning and resizing
the various controls.

Part 5. Manipulating the Appearance of User Interface Controls
You will improve the appearance of your user interface by aligning and resizing
the various controls, using the Visual Builder’s alignment features.

Part 6. Making Simple Connections
You will make your first connection of avisual part to an action, so that
selecting the part causes the action to be performed. With afew clicks of your
mouse and without typing in any code, you will cause the Exit button to close
your p rogram.

Part 7. Adding Help Text to User Interface Controls
In this section you will add hover and status-line help for your controls.

Part 8. Making Connections to User-Defined Functions
Some of your push buttons perform actions too complex to implement through
aconnection to apredefined action. You will connect these buttons to
user -defined func t ions .

Chapter 3. Try VisualAge C++	 103

Part 9. Defining Functions for Custom Connections
Finally, you will add the necessary code to the user-defined functions you
created in Part 8, so that your user interface is fully functional.

Part 1. Creating aProject for aVisual Part

You will create the initial versions of your user interface without writing asingle line of
code .

Before working with parts in the Visual Builder, we will create an empty project in the
IDE. After creating the parts, we will return to the IDE and import the parts.

Create aProject in the iDE
Start the IDE. Select the Create anew project radio button from the Welcome
screen, or pull down the Project Workbook menu and select Create project...
The Project SmarlGuide opens.
Click Next to move to the Project Configuration screen, if this is not the first
displayed screen,
in the Project Configuration screen, enter the project’s name as gui .icc.
Specify adirectory in which to store the project files. For example, you might enter
/u/myuserid/vatutor.
For the remainder of this exercise, wherever you see the path
/u/myuserl d/vatutor, you can substitute the path you specify in this step.
Cl ick Next ,

in the Target Type screen, the default selection is Executable(EXE) file. Click Add
Target to accept this selection.
The Target SmartGuide opens. In this SmartGuide you will add atarget to your
configuration. Click Next to get past the opening screen.
In the Target Name screen enter gui as the target name, and select AIX IOC from
the Program lype column below the entry fields. We will not be entering any
source files yet, so click OK (rather than Next). You are returned to the Target
Type screen, and gui now appears in the Current targets list.
Click Finish to finish creating the configuration for the new project.
Amessage window will appear and you are asked if you want to open the project
in the IDE. Click Yes.

When you are prompted to build the project, click No.

1 .

2 .

3 .

4 .

5 .

6 .

7 .

8 .

9 .

1 0 .

11 .

You now have aproject in the IDE and you are ready to begin creating parts in the
Visual Builder. You can proceed to “Part 2. Creating Parts in the Visual Builder" on
page 105 .

104 VisualAge Ch- Getting Started

Part 2. Creating Parts in the Visual Builder

You have set up an empty project in the IDE which will make use of visual and
non-visual parts. You will create the parts in the Visual Builder: one non-visual part will
implement your main function, and one visual part will implement the frame window in
which users interact with your program.

Create myGui, aVisual Part
1. Start the Visual Builder. If you are using the Common Desktop Environment desktop

manager, you can start the Visual Builder by double-clicking on the Visual Builder
icon in the VisualAge C++ Application group. You can also type ivb on the
command line if you have modified your path to include the VisualAge C++directory
/usr/vacpp/bin.The main Visual Builder window opens.

2. From the Part pull-down menu, select New and Visual Part.
3. In the Part -New dialog, type myGui in the Class name field. You do not have to

enter afile name or adescription. Make sure the default base class, IFrameWIndow,
is selected in the Base class field.

4. Click Open. The Composition Editor opens, and an empty frame window is shown.
5. To produce the source file for this part:

●c l i c k t h e G e n e r a t e P a r t S o u r c e i c o n o r

●press Ctrl+G or
●pull down the File menu and select Save and generate and Part source.
Amessage window entitled Generation results -myGui opens, and three files are
l is ted:

●myGui.h
●myGui.hpp
●myGui.cpp
Close this dialog by pulling down the dialog File menu and selecting Exit. (You can
also press Ctrl+F3 to close both this window and the Visual Composition Editor
window.)

6 .

7 .

Change the Canvas Style

There is one modification to make to the myGui part you just created. By default, the
empty frame window has a’canvas’, or working area inside the window, that is a
multi-cell canvas. For the purposes of this simple application, it will be easier to work
with an ordinary canvas. To make sure you have the right style of canvas, follow these
steps:
1. Click inside the frame window. Four square handles appear inside the frame

w i n d o w.

2. Click and hold mouse button 2and select Open settings from the pop-up window.

Chapter 3. Try VisualAge C++	 105

Check the title bar of the Properties dialog: it should say Canvas 1(Canvas)
Properties. If it says Canvasl (Multicell canvas) Properties, you have a
multi-cel l canvas in the frame window.

C l i ck Cance l .

●If you did not have amulti-cell canvas, you can go to “Part 2. Creating Parts in
the Visual Builder” on page 105.

●If you have amulti-cell canvas, press the Delete key now, while the canvas is still
se lec ted .

The inside area of the frame window should now show the message No Cl ient
Currently Assigned in the whitespace.
Click the Composers button	 in the left column of the Parts Palette.

3 .

4 .

5 .

6.

7. Click the ICanvas* part type button pi in the column on the right.

Click anywhere in the whitespace inside the frame window to place the canvas.8 .

Create Non-visual Part, myMaIn
In the Visual Builder main window, pull down the Part menu again, and select New
and NonVIsua l Par t o r C lass .

In the Class name field, type myMai n. You do not have to enter afile name or
description, but in the Base class field, make sure IVBmain is selected.
Click Open. The Visual Composition Editor opens again, this time showing apart
called VBMain. Save and generate the source for this part as you did in Step 5
(Ctrl+G). Again, amessage window will list the files that were created.
Close only the Generation results message window, leaving the Composition Editor
window, with the myMain part open. Now you will open the myGui part into the
same workspace.
In the Composition Editor, pull down the Options menu and select Add Part (or
press Ctrl+P).
In the Add part dialog, click on the List... button to see alist of all the available
parts.
The List parts dialog appears. Type an’m’ in the Search String field to jump to the
parts starting with m. Two parts appear: myGui and myMain.
Select myGui and click Ok.
In the Add part dialog, with myGui* now selected in the Class name field, click
OK again.
You are back at the Visual Composition Editor window, and the mouse pointer has
become a’+’ sign. Click anywhere in the free-form surface (the white space) to
place the myGui part. An empty frame window appears on the canvas. The mouse
pointer becomes an arrow again.

1 .

2 .

3 .

4 .

5 .

6 .

7 .

8 .

9 .

1 0 .

106 VisualAge C++ Getting Started

Now you are ready to connect the interface part (myGui) to the main part (myMain). Go
to Tart 2. Creating Parts in the Visual Builder” on page 105.

Part 3. Connect the Main Part to the User Interface Part

You have just finished creating two new parts in the Visual Composition Editor.
However, the main part still needs to be connected to the visual part so that the frame
window displays when you load the program.

C o n n e c t t h e P a r t s

Now you will associate the myGui part with the nonvisual main part IVBMainI, so that
your user interface is launched when main is called.

Select the myGui object, by clicking once on it, then click and hold down mouse
button 2.

From the pop-up menu select Connect.
From the cascading menu select show. This action will cause the myGui object to
be shown when main is called.

Adotted line appears; move the mouse until the "star" end of the line is over the
free-form surface, outside the myGui framewindow. Click mouse button 1, then
select ready from the pop-up menu.
Agreen arrow appears, indicating that aconnection has been made. To see what
the arrow connects, click over it with mouse button 2and select Open settings. A
dialog with the title Event-to-action connection -Settings appears. In the Event
list, ready is selected, and under the Action list, show is selected. If your connection
does not have these properties, you can change the settings here. Otherwise, click
Cancel to close the dialog.
Now you can generate the source code. Press Ctrl-f G(or use one of the other
methods for generating source code, listed in “Part 2. Creating Parts in the Visual
Builder” on page 105).

Amessage window appears, entitled Generation results for myMain. Close the
message window.

1 .

2 .

3 .

4 .

5 .

6 .

7 .

Add New Parts to your VisualAge C++ Project

Before you can test the parts you have just created in the Visual Builder, you will have
to add them to the configuration of your project in the IDE.

Switch to the IDE, if you have it open, or open the IDE and open the project you
created in “Part 1. Creating aProject for aVisual Part” on page 104, gui .icc. Do not
build the project yet, as there are no source files. To add the parts:

1. Click on the Host tab to browse the files on your system.
2. On the File System page, the upper left pane, aFile Tree view, shows aview of

the directory tree. Find the directory you selected as your working directory in the

Chapter 3. Try VisualAge C++	 107

Visual Builder. In the right pane, the File view, you should see aset of files with the
names you assigned your parts: myMain.*and myGuL*.
Of this group of files, which includes files of type .cpp, .vbf, .hpp, and .h, you only
need to select the .cpp files. All the necessary header files are #included in the .cpp
files, and do not need to be explicitly added here.
Hold down the Ctrl button and select myMaln.cpp and myGul .cpp.
With both of these files highlighted, place the pointer over either file and click on
mouse button 2. Apop-up menu appears.
From the pop-up menu, select Add Source to Target Directive.
The Add to Target dialog appears, showing that you will be adding these two
source files to the instructions for building the target you defined in Part 1, gui.
Make sure the Use Relative Path box is checked, and click Apply.
To see the change made to your configuration file, switch to the Configuration
section by clicking on the Configuration tab. Select the Source page to see the
contents of gui .1cc.

Under the target portion of the configuration file, you should now see asection of
code l ike this:

t a r g e t " g u i "
{
source "myMain.cpp",
"myGui.cpp"

3 .

4 .

5 .

6 .

7 .

8 .

9.

This means that the source files myMain.cpp and myGul .cpp will be used to build the
target gui. (A number of other files are also listed; these were automatically added
by the Targer SmartGuide when you specified the program type AIX IOC for your
project.) You have added the two parts to your project.

Te s t t h e P a r t s

To test the parts in the IDE, build the project (click the Build button). When the build
completes, go to the Debug page of the Project section. In the Run Specifications
view in the upper left pane, click the Run button. An empty frame window appears in
the foreground. Close the frame window.

Now that you have successfully created asimple visual project, it’s time to start adding
user interface components to it. Proceed to “Part 4. Adding User Interface Controls to a
Visual Part" .

Part 4. Adding User Interface Controls to aVisual Part

Your visual part so far displays only aframe window with the title FrameWindow. In this
section you will:

●change the title displayed for the visual part
●add the required user interface controls to the frame window:

- l i s t b o x

108 VisualAge C++ Getting Started

- b u t t o n s

- t e x t fi e l d s

-entry fields
- s p i n b u t t o n s

When you are finished with this section, your application will look similar to this:

ISs l i lS

U s e r N a m e

i
* msii U s e r K e y

Authority Level

S?iij

Open the myGui Part in the Visual Composition Editor

You may still have aComposition Editor window open for myMain. You can close it if
you wish; it is not needed for this section. From the Visual Builder main window,
double-click on myGui in the Visual Parts list. AComposition Editor window opens.

Change the Title of the Frame Window

To change the title that appears in the frame window to something more meaningful
than FrameWIndow;

In the Composition Editor, hold down mouse button 2on the title bar of the frame
window. From the pop-up menu, select Open settings. Alist of properties you can
edit apppears. At the bottom of the list, click in the entry field next to Title, delete
Frame window, and type in aname, for example. User Administration.
To finish the input, press Shift-Enter. Click OK. You have changed the title of your
frame window. Now we wil l add some user interface controls.

1 .

2 .

Chapter 3. Try VisualAge C-h- 109

A d d P a r t s

Part are added to your workspace with the parts palette. The parts palette looks like
th is :

The Sticky checkbox is used whenever you want to drop several types of the same type
onto the canvas in succession. This saves you from having to repeatedly click the part
type. To turn off sticky parts, deselect the Sticky check box.

Generally, you add parts to acanvas in three steps:

1. Select the parts category from the left column of the parts palette.
2. Select the type of part you want from the right column of the parts palette.
3. Click anywhere on the canvas to place the selected part.

Note that if you accidentally add apart you did not want, you can remove it by selecting
the part and pressing the Delete key.

(These steps will be listed again). If you accidentally add apart you did not want, you
can remove it by selecting the part and pressing the Delete key.

110 VisualAge C-h- Getting Started

A d d a L i s t B o x

Now you will add alist box to the left side of your window to display the names of
existing users.

Click the Lists category	, then c l i ck the IL is tBox* par t type1 .

B
s

Move the mouse pointer just Inside the top left comer of the canvas inside the
frame window. Click mouse button 1. Alist box is added to the canvas.

The Composition Editor gives each new object adefault name of ObjectType plus a
number. Because you will be writing code that uses this object, you should rename
it from ListBoxl to UserList. Click mouse button 2to raise apop-up menu over
the list box, and select Open settings. In the entry field, change the name to
U s e r L i s t .

Click OK to close the Properties dialog.

2 .

3 .

4 .

A d d B u t t o n s

Next, you’ll add five buttons:

.Click the IPushButton* part typeClick the Buttons category1 .

,then click the Sticky checkbox at the bottom left.
Click four times in avertical line down the center of the canvas to drop four buttons.
These will be the buttons used to edit, delete, add, and save user entries.

Click afifth time just inside the bottom right comer of the canvas. This will be your
Exit button.

Turn off the Sticky check box.

2 .

3 .

4 .

Now change the displayed text for the five buttons to indicate their intended functions.

Now change the displayed text for the five buttons to indicate their intended functions.
Double-click on the button, or hold down mouse button 2and select Open settings
from the pop-up menu. If anew part is added when you click the mouse button, the
Sticky check box needs to be deselected

Change the button text in the text entry field as follows, from top to bottom:
● E d i t »

● D e l e t e

● « A d d

● « S a v e

Chapter 3. Try VisualAge C++	 111

● E x i t

The last controls you need are two text input fields for the user’s name and key, aspin
button field for the user’s authority level, and three static text fields describing those
input fields.

A d d Te x t F i e l d s

,and click theBegin with the text fields. Click the Data Entry parts category

D Z]

IStaticText* part type	● Turn on the Sticky check box if it is turned off. Add

three static text objects to the right of each of the top three push buttons. Do not worry
about exact placement yet.

Turn off Sticky parts to stop adding static text objects.

Select each of the static text objects you just created, by double-clicking on each
object, or by clicking and holding mouse button 2, and selecting Open settings. Edit
the text field in the StaticText Properties dialog.

Change the text for the three static text objects as follows:
● U s e r N a m e

●User Key
●Authority Level

Add Entry Fields

Next, add atext entry field under User Name and User Key. Click the lEntryField* part
(also in the Data Entry parts category), turn on the Sticky check box.type

and click in the space underneath each of these text objects. Turn off the Sticky parts
check box.

Rename the two entry field parts to UserName and UserKey by clicking mouse button 2
on each object, selecting Change Name, and entering the new part name in the Name
Change Request dialog that appears (you can also do this by editing the Part name
field from the Properties dialog.

112 VisualAge Cm-Getting Started

Add Spin Buttons

Add one last part, atext spin button for the authority level. Click the Buttons category
,and the ITextSpinButton* type	 ■ Drop an ITextSpinButton object

[I "bell
under the Authority Level text. Rename the spin button to Authon tyLevel.

You need to add aset of three text choices to the spin button, and change some
settings on it to make the spin button display properly:
1. Click mouse button 2over the spin button and select Open settings.
2. In the Properties dialog, scroll down to the initialContents field. Select the entry

field beside this field, and apa button appears. Click this button.

3. Enter the following text on separate lines in the Array of strings prompter dialog:
Reader
R e v i e w e r
A u t h o r

4. Click OK twice to close the Properties dialog.

Try Your Program

The layout of your user interface is abit messy, but it would still be nice to try out the
inter face.

Press Ctri+G to generate part source for the part. The Generation results message
window appears, showing the myGui.* files that were updated. Close the message
w i n d o w.

Switch to the VisualAge C++ IDE. Open the gui.icc project if you do not already have it
open .

If you had the IDE open already, you may see amessage window advising you that
some files have been changed outside the IDE, and prompting you to reload the files.
Click OK to reload the files.

You do not need to make any changes because no new files have been created. The
list of source files in the configuration should be the same as it was after “Part 3.
Connect the Main Part to the User Interface Part” on page 107. Simply click the Build
button. Once the build has completed, switch to the Debug page in the Project section,
and click the Run button, or press Shift+Ctrl+R.

If you try clicking abutton in the application, nothing happens, because you have not
yet made connections between the buttons and actions. An example of an action

Chapter 3. Try VisualAge C++	 113

related to abutton would be the closing of the window when the Exit button is pressed.
You will start making these connections in “Part 6. Making Simple Connections” on
page 117.

You can proceed to “Part 5. Manipulating the Appearance of User Interface Controls” if
you want to improve the user interface by properly aligning, sizing, and distributing the
objects in It, using the Composition Editor's tools. Or you can proceed to “Part 6.
Making Simple Connections" on page 117 if you are already familiar with the
Composition Editor’s alignment and sizing tools from aprevious VisualAge product.

Part 5. Manipulating the Appearance of User Interface Controls

in your program’s current interface, the Ul controls may be sized, aligned and
distributed unevenly, because you dropped them into the canvas by hand, and the push
buttons were sized according to their text content rather than acommon width.

In this section, you will use some of the Composition Editor’s toolbar buttons to make
the following changes;
●align objects
●change the width of aset object to match each other
●spread the objects so that they are evenly distributed
●move and res i ze con t ro l s

Resize the UserList L ist Box

The list box for user names is not currently large enough to display any names. We will
make it wider and deeper so that you can view available user names later. There are
two ways you can resize any object:
●you can select the object, then drag any comer of it with the mouse
●you can open the settings for the object and enter new dimensions for it.

Select the UserList box, and click on the handle on the bottom right comer. Drag it
down until it fills most of the left side of the canvas. You can drag other comers if you
like, until you are satisfied with the shape and size of the list box.

Grab the bottom right comer of the UserList list box and drag it down until it fills most of
the left side of the canvas. You can drag other comers as well if you like, until you are
satisfied with the size and shape of the list box.

Align the Main Push Buttons

You can align several objects so that the left, right, top, or bottom edges of all the
objects are aligned. The last selected object stays put, and the others are aligned to it.
Before you align the four push buttons, drag the last one («Save) until it is positioned
just to the right of the list box. Do not worry about its vertical placement yet.

114 VisualAge &M-Getting Started

Select the first object by clicking mouse button 1. You can use the Ctrl key and click
moust button 1the remaining three buttons, ending with the «Save button.

from the toolbar. This aligns the left edges of theClick the Align Left button

selected objects to match the left edge of the last selected object, «Save. Do not
deselect the buttons yet. You will need to have them all selected in the same order for
the next step.

R e s i z e P u s h B u t t o n W i d t h s

Since these four push buttons are all fairly close in width, it would be nice if they were
ail exactly the same width. Click the Match Width button while the objects are

st i l l selected. This makes the other three buttons the same width as «Save. Like

aligning, size-matching actions also use the last selected object as the reference point,
or anchor. Do not deselect the buttons yet.

D i s t r i b u t e P u s h B u t t o n s

The push buttons might look better if the spaces between them were equal. They are
already selected in top-to-bottom order; click the Distribute Vertically button

to make the spaces between them the same. If you changed the selection order when
resizing the button widths, the vertical order of the buttons would change to match the
order in which you selected them.

The distribution made the gaps between the push buttons equal, but the gaps between
them may be abit wide. This is because distribution spaces the selected objects evenly
across the entire height of the canvas (or its width, when you distribute horizontally).
You can decrease this vertical spacing by selecting the Exit button as well as the
others, and distributing vertically again. Notice that when you redistribute the buttons
vertically, their horizontal placement does not change.

Distribute the Right-hand Section of the Canvas

Next, you can distribute the GUI elements on the right-hand section of the canvas.
Starting at the top of the canvas (with User Name), select the three static text fields, the
two entry fields, the spin button field, and the Exit push button. Then click Distribute
Vertically.

Now, align the left edges of all these items except the Exit push button. Deselect that
push button by holding down Ctrl and clicking mouse button 1; then click Align Left

Chapter 3. Try VisualAge C++	 115

Resize Entry Fields and Spin Button

These controls may run off the right edge of the screen. To resize them, select only one
of them, for example the top one, drag its top right comer to the left until it fits within
the canvas. Then, select all three controls, ending with the one you just resized, and
click Match Width	 .

Align Exit Button with the Other Fields on the Right

Finally, align the right edge of the Exit button to the right edge of another right-hand
entry field. Select the Exit button, then the entry field, then click Align Right B1'

116 VisualAge C++ Getting Started

Your user interface should now look something like the following:

Press Ctrl+G to regenerate the source code for the parts and save your changes.

You can now proceed to “Part 6. Making Simple Connections”, in which you will
implement some of the connections that will determine the behavior of the user
interface.

Part 6. Making Simple Connections

Aconnection in the Visual Builder is used to associate an event with an action. For

example, you can connect the buttonClick event for apush button to abuilt-in action
such as closing the window, or to amember function you define for the visual part. In
this section, you will create asimple connection to close the program when the user
c l icks Ex i t .

1. Select the Exit push button and click mouse button 1.

Chapter 3. Try VisualAge C++	 117

From the pop-up menu, select Connect.
From the cascading menu, select buttonCIickEvent.
Adashed line appears, with one end attached to the Exit push button, and astar at
the other end:

2 .

3 .

4 .

I

f

\
N

V
\

V

\

This line indicates that you are making aconnection associated with the user
clicking the Exit button. The kind of connection you can create depends on where
you drop the star end of the line. Move the star up to the title bar of the frame
window and cl ick mouse button 1.

Amenu appears with the choices available when the buttonCIickEvent action for a
button is associated with the FrameWindow object. Select close so that when the
button is clicked, the program closes.
Agreen arrow appears, pointing from the Exit button to the titlebar. This means the
connect ion has been made.

Try running the project: switch to the IDE, (you will again see amessage window
prompting you to reload the files: click OK) rebuild, and click the Run button in the
Run Specifications view of the project’s Debug page. The window for your user
interface should open, and when you click Exit, it should close. The other buttons
still do not have any effect because you have not yet associated any actions with
t h e m .

5 .

6 .

7 .

You can proceed to:
●“Part 7. Adding Help Text to User Interface Controls” on page 119 if you want to learn

how to add hover and info area help to your push buttons and list boxes
o r

“Part 8. Making Connections to User-Defined Functions" on page 120 if you don’t
want to add help text to your controls, or already know how.

118 Visual Age C++ Getting Started

Part 7. Adding Help Text to User Interface Controls

You can easily add two kinds of help text to auser interface control that supports such
help, by entering that text in appropriate fields of the control’s Settings dialog. Both
kinds of help are displayed when the user passes the mouse pointer over the control for
which the help is provided. The two kinds of help are:
●short fly-over help, or hover help, which appears directly over the control
●long fly-over help, or hover help, which appears in the frame window’s lInfoArea

object (if one is provided).

If you want, you can enable only one or the other, or both.

This section is optional, and will probably take you 10 minutes.

Enabling the Fly-Over Help

Before you add the text of this help, you need to enable the two types of help. The
remaining tasks you need to complete to enable hover help are to add an IVBRyText
object, and to connect the lInfoArea object to the IVBFIyText object. Once these objects
are properly set up, you will add the help text to each control.

Click the Other parts category from the left column of the Parts palette.1.

from the right column of the Parts palette.Click the IVBFIyText* part |2 .

Click an area of the composition editor workspace outside the FrameWindow object.
An IVBFIyText* object appears on the workspace. Hover help for short text help is
now enab led .

Click the InfoAreal object at the bottom of the frame window.
Click mouse button 1.

S e l e c t C o n n e c t .

From the cascading menu select this.

3 .

4 .

5 .

6 .

7 .

Note: This appears at the bottom of the cascading menu. Do not select *this,
which appears at the top) to the IVBFIyText* object’s longTextControl
attr ibute.

Move the star-shaped icon over the IVBFIyText object and click mouse button 1.
From the menu select longTextControl.

8 .

9 .

Both long and short hover help are now enabled.

Chapter 3. Try VisualAge C++	 119

Add Help to Each Push Button

This section describes the steps for adding short and long hover help text to the Edit
push button. The long version appears in the info area at the bottom of the window,
while the short version appears over the object itself. Follow these steps to add help
text to the Edit push button:

In the Composition Editor, select the Edit button, click mouse button 2over it, and
select Open settings from the pop-up menu.
In the list of properties look for Fly-over long text.
Enter the following text in the entry field to the right of Fly-over long text:
Copy the entry selected in the l ist to the editable fields

Enter the following text in the entry field to the right of Fly-over short text:
Copy entry to edit fields
Press Enter or click OK to close the Properties dialog.

1 .

2 .

3 .

4 .

5 .

You can follow these same steps to add hover help to the other buttons, if you like.
Here is the text to add:

B u t t o n Long Text Sho r t Tex t

De le te t he use r whose name

i s s e l e c t e d i n t h e l i s t

D e l e t e s e l e c t e d u s e r f r o m

l i s t
D e l e t e

A d d t h e u s e r i n f o r m a t i o n a t

r i g h t t o t h e l i s t
« A d d A d d t o l i s t o f u s e r s

Save the changed user's
i n f o r m a t i o n t o t h e l i s t

« S a v e S a v e e d i t e d u s e r

if you want, you can save the part (press Ctrl+G), then switch to the IDE, rebuild the
project, and try running the application. When you move the mouse over one of these
push buttons, you should see ashort bubble of hover help text near the button, and a
longer text string in the information area at the bottom of the window.

You can proceed to “Part 8. Making Connections to User-Defined Functions” so that the
push buttons in your user interface perform some useful work.

Part 8. Making Connections to User-Defined Functions

Switch to the myGui part in the Composition Editor.

In the Composition Editor, you can make connections from controls to predefined
functions, such as removing the selected entry from alist or adding the value of an
entry field to alist. For the Review Tool User Administration program, these simple
connections are not sufficient, because additional processing needs to take place (for
example, the user you delete needs to be deleted from the file containing the list of
users).

120 VisualAge C++ Getting Started

In this section you will make connections in the Composition Editor from the Add,
Delete, Edit and Save buttons to member functions of the myGui class. You will then
code these functions in the Visual Age C++ IDE.

Create Multiple Connections for the Delete Push Button

The Delete push button will remove the selected entry from the list of users, and should
remove that user’s information from the user information file. You could implement this
as asingle connection to asingle member function. This would make the connections
in the Composition Editor simpler, but would involve more user-written code. Instead,
you will make two connections for this button. The first will call amember function you
will code, to remove the entry from the user file. The second will use abuilt-in action,
the Remove action, to remove the entry from the displayed list.

Because both connections involve the selected item in alist of items, the order in which
the connections are called is important. If the Remove action occurs before your
member function is called, the selected entry in the list will no longer exist, so you will
not be able to determine which element to remove from your array of users. If you
create the custom connection first, it will be called first in the executable file, so you will
avoid this problem. (You can re-order connections later if you need to; see Reordering
Connections in the VisualAge C++ online Tasks help.)

Follow these steps to create the user-defined member function connection;
1. Click mouse button 2over the Delete push button and select Connect from the

pop-up menu.

2. Select the buttonClickEvent action from the cascading menu.
3. Move the mouse until the star end of the connection line is outside the area for the

FrameWindow, over the free-form surface (the white space outside the canvas
area).

4. Select the Member Function... action from the pop-up menu.

5. In the Member Function Connection dialog, enter void DeleteUserO as the
member function signature (the return type is optional). Notice that the OK button is
grayed out until you have added the braces to identify the text as afunction. Click
OK to finish the connection.

Follow these steps to create the Remove action that will delete the entry from the
displayed list:
1. Click mouse button 2over the Delete push button and select Connect.
2 . S e l e c t t h e b u t t o n C l i c k E v e n t a c t i o n .

3. Move the star over the list box and click mouse button 1.
4 . Se lec t the remove ac t ion .

You should now see two green arrows, both starting at the Delete button.

Select the second connection line (pointing to the list box) so that it shows three small
squares at the start, midpoint, and end of the line. Select the middle square and drag it

Chapter 3. Try VisualAge C++	 121

away from the other two squares, to make the two parts of the line longer. You will
notice that this connection line, unlike the others created so far, appears dashed. The
Composition Editor displays adashed line for any connection that is incomplete. The
connection is incomplete because you have not indicated what to remove from the list.
The Remove action requires an index parameter to tell it what to remove; you need to
set this index parameter to the item selected in the listbox.

Follow these steps to complete the connection:
Select the incomplete connection line.
Cl ick mouse but ton 2over i t and se lect Connect .

S e l e c t i n d e x .

Move the mouse until the star is over the list box.

Cl ick mouse button 1.

S e l e c t s e l e c t i o n .

1 .

2 .

3 .

4 .

5 .

6 .

The connection is now complete. However, the work for the Delete button is not
finished. You still need to define the DeleteUser function so that the selected item is
removed from the user information file before it is removed from the list box. You also
need to make connections for the other buttons. You will do this work in “Part 9.

Defining Functions for Custom Connections”.

Part 9. Defining Functions for Custom Connections

To define the DeleteUser member function, you need to instruct the Visual Builder to
include user files for the myGui class in the project configuration, so that you can
declare and define the function. These files have the extensions .hpv and .cpv. Then,
within the IDE, you can create these files and add the declaration and definition to
t h e m .

Follow these steps to define the DeleteUser function:
Switch from the Composition Editor view of the myGui part to the Class Editor view.
You can do this in two ways:
●Selec t the C lass Ed i to r i con

1 .

at the bottom right of the Composition Editor

w i n d o w.

●Se lec t V iew -C lass Ed i t o r f r om the t i t l eba r menu .

Select the Generation options section of the Class Editor notebook.
The lower left portion of this notebook section shows agroup box entitled User files
included in generation. In this group box, turn on the first two check boxes, for
C++ header file (.hpv) and C++ code file (.cpv).
Press Ctrl+G to generate part source again.

2 .

3 .

4 .

122	 VisualAge C++ Getting Started

When you do this, #include directives for myGui.hpv and myGui.cpv are added to the
corresponding myGui.hpp and myGul.cpp files that the Visual Builder generates. You
can then declare and define your own member functions of the myGui class in these
files from within the IDE.

Define Member Functions for myGui
1. Switch to the IDE and reload the part files when prompted.
2. Press Ctrl+0 or select Open or Create File from the Project Workbook menu.
3. Enter anew file name, myGui .hpv, in the Selection entry field at the bottom of the

dialog. Check the Open as aWorkbook Section radio button. Make sure you have
not checked the Add to Project option, because the generated myGui.hpp file
already includes this file with an #include directive. Click Open to open the file.

4. Add the declaration void DeleteUserO; to myGui.hpv. Notice that you do not need
to scope the declaration with its class name, because the generated source
includes this file from within the body of the class declaration in myGui.hpp.

5. Open another new file, myGui.cpv, as you did for myGui.hpv. For now, define the
DeleteUser function with an empty body:
void myGui::DeleteUserO {

}

Rebuild the project. The build should complete successfully, and you can run the
executable file, however, if you try the Remove action you will not see any change,
b e c a u s e :

●The list is empty, so there is nothing to remove from it.
●The DeleteUserO function does not do anything as yet.
Open another new file, myGui .cpv, as you did fof myGui .hpv. for now, define the
DeleteUser function with an empty body:
void myGui:;DeleteUser() {

6 .

1
7. Save this file. (Ctrl+S).

Change the myGui Constructor

In order to have something to remove from the list, you first need to populate the list.
The sensible place to do this is during construction of the myGui object. From the Class
Editor you can add code to the start or end of the class constructor; when you generate
source code, this code gets inserted at the appropriate location.

You can either enter the complete code within the Class Editor, or you can code acall
to aseparate user-defined function so that you can then edit your custom code from
within the IDE. Since you have already set up your environment to use the .hpv and
.cpv files, it makes sense to add the code as aseparate member function in these files.
It also makes sense to add the code as aseparate member function because you may

Chapter 3. Try VisualAge C++	 123

want to populate the list at other times than when the user interface is first loaded. Here
are the steps to add acall to the new function:

In the Class Editor view, select the User Code tab.

Select Ending constructor code from the upper left pane.
In the bottom pane, enter PopulateListO;. This is asimple function call to the
member function, which you will code in the next section.
Press Ctrl+G to generate part source.
Switch to the IDE.

If you already have workbook sections for myGui.hpv and myGui.cpv, select the
myGui.hpv section. Otherwise, obtain asource view of this file in the Source Files
page of the project section by selecting the source file name in the Source Files
v i e w.

Enter the declaration for the constructor add-on code in the source view:

void PopulateListO;

1 .

2 .

3.

4 .

5 .

6 .

7 .

Define the PopulateList Function
1. Change to asource view of myGui.cpv as was described for myGui.hpv in Step 6

above, and add anew class definition for aUserinfo class. You will use this class in
the PopulateList function, as well as in other functions you define in myGui.cpv. Add
the following class declaration, which includes inline constructors and member
f u n c t i o n s :

class Userinfo {
p u b l i c :

IString Name, Key;
i n t A u t h o r i t y ;
UserInfoO :Name(""),Key(‘"'),Authority(0) {}
User in fo(ISt r ing L ine) {

Key=Line.word(l);
Authority=Line.word(2).asint();
Name=Line.word(3).change(,) ;
}

ISt r ing Out() {
if (Name+Key!="")

return Key+" "
+IString(Authority)+" "
+IStr ing::change(Name," ",)
+ " \ n " ;

t l I I ●r e t u r n

}
} ;

2. Next, add some static variables used by several of the functions you will define. Add
these at the top of the myGui.cpv file:
Userinfo* UserData=0;
i n t U s e r C o u n t = 0 ;
in t UserMax=32 ;

124 VisualAge C++ Getting Started

3. Next, define the PopulateList function. This function reads lines from the file
containing alist of users, populates an array of user records with the users in the
file, and adds the name of each user record as the last line in the list box. Here is
the defini t ion:

vold myGu1::PopulateL1st() {
// 1. Define array for holding user information
if (UserCount==0) UserData=new UserInfo[UserMax];
/ / 2. Read in user file information. UserFi lepath
// will be picked up from the macros.hpp file defined
// for the CGI part. As each valid
// user is read, add their name to the UserList object,
ifStream UserFile(UserFilepath);
while (UserFile) (

IString UserLine=IString:: 1ineFrom(UserFi1e);
if (UserLine.numWords()>=3) {

// I f the array size is reached, double i ts size
if (UserCount==UserMax) {

UserMax*=2;
Userinfo* tUserData=new UserInfo[UserMax];
for (int i=0;i<UserCount;i++)

tUserData[i]=UserData[i];
delete[] UserData;
}

UserData[UserCount]=UserInfo(UserLine);
flmpl->iUserLiSt()->addAsLast(UserData[UserCount].Name);
UserCount++;

} / / e n d i f
} / / e n d w h i l e
UserFile.closeO;

} / / e n d f u n c t i o n
4. The function makes use of the fstream class, and of apreprocessor macro that you

defined in the CGI portion of the exercise in the file macros.hpp. You need to
include the fstream.h header file at the top of myGui.cpv. If you completed the CGI
portion, you can include macros.hpp there as well. Otherwise, add amacro
definition for UserFilepath. Add parts of the following excerpt to the top of
myGui.cpv depending on your setup. The comments indicate which parts to include
in your situation:
i n c l u d e < f s t r e a m . h >
//If you did not complete the CGI portion,
/ / o r i f i t i s s t o red i n ad i f f e ren t d i r ec to r y t han t h i s p ro j ec t ,
/ / add amacro defin i t ion l i ke the fo l lowing:
#define UserFilepath IString(“f:\\vatutor\\users.dat")
// Otherwise, include the macros.hpp file:
#include "macros.hpp"

Do not add atrailing semicolon to the UserFilepath macro definition.

You can now build your project again, and try out the user interface. Before you run the
program, however, try creating the file pointed to by the UserFilepath macro. If that file
does not already exist; create it with the following contents:

Chapter 3. Try Visual Age C++	 125

reader 1JohnBorge
author 3Ralph_Heinho
reviewer 2Rachel_Kruger
a b c d e f 2 J e n n i f e r S c e e l e s

If you create it within aSource view in the IDE, remember to save the file.

Run your program; you should see the names of these users displayed in the user list.
When you select aname and click Delete, the name is deleted from the list. However, if
you exit the program and start it again, all names are still there, because your
DeleteUser function does not yet do anything.

D e fi n e t h e D e l e t e U s e r F u n c t i o n

Replace the empty DeleteUser() body in myGui.cpv with the following code:
void myGui::DeleteUser() {

// Determine what item in l ist is selected
unsigned long Index=
fImpl->iUserLiSt 0->selection();

/ / I f an i tem was selected.. .
if (Index!=IBaseListBox:;notFound) {

/ / Overwr i te ex is t ing user fi le
ofstream UserFi1e(UserFi1epath);
// Write out information for all users except this one
for (int i=0;i<UserCount;i++)

if (i l=Index) UserFile «UserData[i].Out();
UserFile.close();
// Remove all items from list
fImpl->iUserList()->removeAl1();
// Set UserCount to 0to force reloading of users
UserCount=0 ;
// Repopulate list
PopulateListO;

)

This function determines which item in the UserList object is selected with the call:
fImpl ->iUserList()->selection();

The three parts of this call are:

fimpi Amember of the myGui class that points to an object of the
myGuilmpI class. myGuilmpI is an implementation class generated by
the Visual Builder, which you use to access the member functions of
the user interface controls for the visual part.

Amember function of the myGuilmpi class to access the pointer to
the UserList object. The Visual Builder creates member functions of
the implementation class to access each user interface part Each
function name consists of alowercase "i", followed by the name of
the part.

lUserListO

126 VisualAge C++ Getting Started

Amember of the IBaseListBox class, from which ILIstBox inherits.
This funciton returns the index value (0 to n) of the first selected entry
in the list. The IBaseListBox::notFound static value is returned if no
entry is selected.

seiectionQ

If an item is selected, DeleteUser opens the user data file for output, overwriting its
existing content, and writes all user records except the one selected for deletion to the
file. It then removes all entries from the UserList object, sets the UserCount variable to
zero, and calls PopulateList to repopulate the list with the remaining entries.

It may seem simpler to use the remove function to remove only the selected entry from
the list box. However, that entry would remain in the array of Userinfo objects.
Resetting the UserCount variable to zero causes PopulateList to overwrite existing array
elements when it loads all remaining entries from the user file.

Define Functions for Adding, Editing, and Saving Entries

You still need to add the following user functions;
●AddUser -This function adds the user whose information is shown in the right-hand

fi e l d s

●EditUser -This method retrieves the selected user’s information and places it in the
right-hand fields

●SaveUser -This function saves the information in the right-hand fields to the record
for the user whose information was most recently selected by EditUser.

For each of these functions, you should add asimple connection in the Composition
Editor, starting with the buttonClickEvent for the appropriate button, and ending with a
Member function connection to amember function whose name matches the
appropriate name above. Don’t forget to save and generate part source once you have
made these connect ions.

Add the following declarations to myGui.hpv for these functions:
void AddUser0,

EditUserO,
SaveUser();

Define the functions as shown in the sections below. Before you add them, you should
add the following to the top of myGui.cpv, just below the #include directives. The
LastEntryEdited variable is used to keep track of which item in the user list was most
recently moved to the edit fields, while the AuthLevel and AuthString functions are used
to translate either way between integer authority levels and their corresponding strings,
unsigned long LastEntryEdited=IBaseListBox:rnotFound;
int AuthLevel(IString Auth) {

if (Auth=="Reviewer") return 2;
else i f (Auth=="Author") return 3;
r e t u r n 1 ;

IString AuthString(int level) {
}

Chapter 3. Try VisualAge C++	 127

swi tch (leve l) {
case 1; return "Reader";
case 2: return "Reviewer";
case 3: return "Author";
}

IIII »r e t u r n

}

Define AddUser (myGui.cpv)

The AddUser function adds the information for the user identified by the two entry fields
and the text spin button, provided neither the user’s name nor their key has already
been added. It then resets the UserCount variable to zero, clears the list box of
displayed users, and updates the list. It also resets the LastEntryEdited variable, to
prevent you from accidentally ovenivriting the information for the user you most recently
asked to edit with the new user ’s information,

void myGui;:AddEntry() {
// Get the input information for the user

IString UserName=fImpl->iUserName()->text();
IString liserKey=fImpl->iUserKey()->text();
int Authority=AuthLevel(flmpl->iAuthorityLevel()->text());

/ / Check tha t th i s user i sn ' t a l ready in fi le ; re tu rn i f i t i s .
for (int i=0;i<UserCount;i++) {

if (UserData[i].Key==UserKey) return;
if (UserData[i].Name==UserName) return;

}
/ / Add to the fi le ,

ofstream UFile(UserFilepath,ios;;app);
U F i l e « U s e r K e y « " "

« A u t h o r i t y
«UserName.change("	 « e n d l ;

UFile.closeO;
// Clear l ist and force repopulat ion

UserCount=0;
LastEntryEdited=IBaseListBox;:notFound;
fImpl->iUserList()->removeAll0;
fImpl->iUserName()->setText("");
fImpl->iUserKey0->setText("");
PopulateListO;

I I I I
«

Define EditEntry (myGui.cpv)

The EditEntry function determines what user is selected in the user list, and copies the
information for that user to the name, key, and authority fields at the right. Because the
index of the selected user is stored in the LastEntryEdited variable, this variable is also
accessible to the SaveEntry function defined below,
void myGui::EditEntry() {

// Determine the item selected in the list, and save for SaveEntry
LastEntryEdited=
fImpl->iUserList()->selection();

128 VisualAge C-H-Getting Started

// Copy this user's information to the input fields at right
if (LastEntryEdited!=IBaseListBox:;notFound) {

Userinfo* up»&UserData[LastEntryEdited];
fImpl->1UserNameO->setText(up->Name);
fImpl->iUserKey 0->setText(up->Key);
fImpl->iAuthor!tyLevel()->setText(AuthString(up->Authori ty));

Define SaveEntry (myGui.cpv)

The SaveEntry function uses the value of the LastEntryEdited variable to ensure that
the information being saved was actually requested from acall to EditEntry, and to
determine which element of the UserData array should be changed. It writes all user
information out to the file, then forces the user list to be repopulated,
void myGuiSaveEntry0 {

// Make sure this is the last entry requested for editing
/ / and that i t 's wi th in the current array s ize
if (LastEntryEdited<UserCount &&

LastEntryEdited!=IBaseListBox:;notFound) {
// "up" is used as ashorthand for the element we want

Userinfo* up=&UserData[LastEntryEdited];
// Get the information from the input fields

up->Name=fImpl->iUserName()->text();
up->Key=fImpl->iUserKey{)->text();
up->Authority=AuthLevel(flmpl->iAuthorityLevel()->text());

/ / Wr i te the ent i re fi le out , replac ing o ld contents
ofstream UserFi1e(UserFi1epath);
for (int i=0;i<UserCount;i++)

U s e r F i l e « U s e r D a t a [i] . O u t () ;
Use rF i l e . c lose () ;

// Update the user list,
fImpl->iUserList()->removeAl1();
UserCount=0;
PopulateListO;

}

Once you have added this code to myGui.cpv, rebuild the project (make sure you have
done aSave and Generate in the Visual Builder, since the last Visual Builder changes
you made). Run the program; you should be able to do the following with the tool:
●Add new users, specifying aname, key value, and authority level
●Copy the information for existing users to the input fields so you can change their

i n fo rma t i on

●Edit auser’s information, and save the changes back to the file
●D e l e t e a u s e r f r o m t h e l i s t

●Exit the program

Chapter 3. Try VisualAge C++	 129

Congratulations!

You have now completed the Visual Builder portion. You learned most of what you will
need to know in order to create simple visual user interfaces and to implement C++
code for them. For more in-depth information see the online Tasks information in the
VisualAge C++ help system. Look under Develop an Application Using Parts for
common Visual Bui lder tasks.

If you have already done the other parts of this Getting Started guide, and you still feel
you need more practice, try loading one of the sample projects, either from the online
Samples navigation in the help system, or from the welcome screen of the IDE.

130 VisualAge C++ Getting Started

Communicating Your Comments to iBM
VisualAge C++ Professional for AIX
Getting Started
Vers ion 4 .0

P a r t N u m b e r 3 0 L 8 5 5 7

If there is something you like—or dislike—about this book, please let us know. You can
use one of the methods listed below to send your comments to IBM. if you want a
reply, include your name, address, and telephone number, if you are communicating
electronically, include the book title, publication number, page number, or topic you are
commenting on.

The comments you send should only pertain to the information in this book and its
presentation. To request additional publications or to ask questions or make comments
about the functions of IBM products or systems, you should talk to your IBM represen¬
tative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM anonexclusive right to use or dis¬
tribute your comments in any way it believes appropriate without incurring any obli¬
gation to you.

If you are mailing areaders’ comment form (RCF) from acountry other than the United
States, you can give it to the local IBM branch office or IBM representative for postage-
paid mailing.
●if you prefer to send comments by mail, use the RCF at the back of this book.
●If you prefer to send comments by FAX, use this number:

- U n i t e d S t a t e s a n d C a n a d a : 4 1 6 - 4 4 8 - 6 1 6 1

-Other countries: (+1)-416-448-6161
●If you prefer to send comments electronically, use the network ID listed below. Be

sure to include your entire network address if you wish areply.
- I n t e r n e t : t o r r c f @ c a . i b m . c o m
-IBMLink: toribm(torrcO
-IBM/PROFS: torolab4(torrcf)
-IBMMAIL: ibmmail(calbmwt9)

