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Preface 

This book provides information on concepts, tools, and techniques for assessing and 
tuning the performance of AIX on RISC System/6000. Topics covered include efficient 
system and application design and implementation, as well as post-implementation tuning 
of CPU use, memory use, disk 1/0, and communications I/O. Most of the tuning 
recommendations were developed or validated on AIX Version 3 .2.5.  Information that 
applies only to AIX Version 4. 1 is so identified in the text. 

This book is intended for programmers, system managers, and end users concerned 
with performance tuning of AIX systems. You should be familiar with the AIX operating 
environment. Introductory sections are included to assist the less experienced and to 
acquaint experienced users with AIX performance-tuning terminology. 

AIX Performance Management Structure 

There are appropriate tools for each phase of AIX system performance management. 
Some of the tools are available from IBM;  others are the products of third parties .  The 
figure illustrates the phases of performance management in a simple LAN environment 
and some of the tools packages that apply in each phase. 

t t I I 
Expand 

Plan Install Monitor Tune 

� 
er 
� 

0 ( Idle) (Unbalanced) (Balanced) (Overloaded) 

BEST/1 AIX SMIT AIX BOS AIX BOS BEST/1 
Predict Perf. Toolbox BEST/1 Acquire Predict 

AIX PDT 

BEST/1 Monitor 

Figure 1 .  Performance Phases and Corresponding Tools 
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Performance Tools Packages and Their Documentation 

The packaging of the performance tools lets the performance analyst install on any given 
system only those tools that are required to monitor and tune that system. This packaging 
changed for AIX Release 4. 1 .  The revised packaging is reflected in the following 
summary. 

BEST/1 

BEST/1 is a capacity-.planning tool that uses queuing models to pre�ict the performance 
of a given configuration when processing a specific workload. The prediction can be 
based on: 

• workload descriptions derived from an application design, or 
• workload data acquired by monitoring existing systems. 

BEST/1 has three main components: 

Collect Collects detailed information about the processing of a workload by an 
existing system. 

Analyze Transforms the detailed information into reports and a queuing model of 
the workload-processing activity. 

Predict Uses the queuing model to estimate the performance effects of changes 
in the workload or the configuration. 

BEST/1  for UNIX is a product of BGS Systems, Inc. BGS Systems can be reached 
at 1 -800-89 1 -0000 (in the US). 

AIX Performance Diagnostic Tool (PDT) 

The Performance Diagnostic Tool, which is an optionally installable component of AIX 
Version 4. 1 ,  assesses the configuration of the system and tracks trends in resource use. If 
PDT detects an actual or potential performance problem, it reports the situation to the 
system administrator. This book contains detailed documentation of the functions of PDT, 
beginning on page 229. 

AIX Base Operating System (BOS) 

The AIX Base Operating System contains a number of monitoring and tuning tools that 
have his torically been part of UNIX systems or that are required to manage the 
implementation-specific features of AIX. The BOS functions and commands most 
important to performance analysts are: 

iostat Reports CPU and 110 statistics. 

lsattr 

lslv 
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Displays the attributes of devices. 

Displays information about a logical volume or the logical volume 
allocations of a physical volume. 



netstat 

nfsstat 

nice 

no 

ps 

re nice 

reorgvg 

sar 

time 

Displays the contents of network-related data structures. 

Displays s tatistics about Network File System (NFS) and Remote 
Procedure Call (RPC) activity. 

Runs a command at higher- or lower-than-normal priority. 

Displays or sets network options. 

Displays the status of processes. 

Changes the priority of one or more processes. 

Reorganizes the physical-partition allocation within a volume group. 

Collects and reports or records system-activity information. 

Prints the elapsed execution time and the user and system processing 
time attributed to a command. 

trace Records and reports selected system events . 

vmstat Reports virtual-memory activity and other system statistics. 
The documentation of the AIX BOS commands is the AIX Commands Reference 

Manual, IBM form number GBOF- 1 802. 

Performance Toolbox (PTX) 

The Performance Toolbox for AIX (PTX) con tains tools for local and remo te 
system-activity monitoring and tuning. This licensed product consists of two main 
components: the PTX Manager and the PTX Agent. The PTX Agent is available as a 
separate licensed product called the Performance Aide for AIX. The figure shows a 
simplified LAN configuration in which the PTX Manager is being used to monitor the 
activity of several systems. 

xmperf 
Display Manager 

Agent 

Agent 

Figure 2. LAN Configuration Using Performance Toolbox 

Agent 

Agent 

The main purpose of the PTX Manager is to collect and display data from the 
various systems in the configuration. The primary program for this purpose is xmperf. 
The primary program used by the Agent to collect and transmit data to the Manager is 
xmservd. 
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In addition to the main PTX components, in AIX Version 4. 1 both the Performance 
Toolbox for AIX and the Performance Aide for AIX licensed products include a set of 
separate monitoring and tuning tools, most of which were part of the AIX Base Operating 
System in Version 3 .2.5 : 

fdpr Optimizes an executable program for a particular workload. 

filemon 

fileplace 

lockstat 

Iv edit 

netpmon 

rmss 

svmon 

syscalls 

tprof 

BigFoot 

Uses the trace facili ty to monitor and report the activity of the AIX file 
system. 

Displays the placement of a file's blocks within logical or physical 
volumes. 

Displays statistics about contention for kernel locks. 

Facilitates interactive placement of logical volumes within a volume 
group. 

Uses the trace facili ty to report on network 1/0 and network-related 
CPU usage. 

Simulates systems with various sizes of memory for performance 
testing. 

Captures and analyzes information about virtual-memory usage. 

Records and counts system calls. 

Uses the trace faci l i ty to report CPU usage at module and 
source-code-statement levels. 

Reports memory access patterns of processes (AIX Version 4. 1 only). 

stem Permits subrou tine-level entry/exit ins trumentation of exis ting 
executables (AIX Version 4. 1 only) . 

The primary documentation of the commands and functions of PTX is the AIX 

Performance Toolbox User 's Guide, IBM form number SC23-2625, although the syntax 
descriptions of the tools l i s ted above are documented in the A IX Version 4.  1 
Commands Reference. Use of the lis ted commands is incorporated in various diagnosis 
and tuning scenarios in this book. 

AIX Performance PMR Data Col lection Tool (Perf PMR) 

The AIX Performance PMR Data Collection Tool (PerfPMR) package is used to collect 
configuration and performance information to accompany a report of a suspected AIX 
performance defect. This book contains the primary, detailed documentation of the 
functions and use of PerfPMR. 

Overview of Contents 

This book contains the following chapters and appendixes :  

• Chapter 1 ,  "Performance Concepts ,"  gives an introduction to the basic 
considerations of performance analysis. For those who are already experienced 
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in performance tuning, this chapter will be of interest mainly as a guide to AIX 
terminology. 

• Chapter 2, "AIX Resource Management Overview," describes the structures and 
principal algorithms of the main resource-management components of AIX. 

• Chapter 3, "An Introduction to Multiprocessing," provides an overview of the 
performance aspects of multprocessor systems. 

• Chapter 4, "Performance-Conscious Planning, Design, and Implementation," 
describes the performance considerations that should be taken into account in 
preparation for an application. 

• Chapter 5, "System Monitoring and Initial Performance Diagnosis," explains 
how to prepare for the detection of performance problems and the preliminary 
steps to take when such a problem is encountered. 

• Chapter 6, "Monitoring and Tuning CPU Use," describes techniques for ensuring 
that the CPU resource is being used efficiently. 

• Chapter 7, "Monitoring and Tuning Memory Use," shows how to determine how 
much real and virtual storage is being used and how to avoid or detect some 
common inefficiencies. 

• Chapter 8, "Monitoring and Tuning Disk 1/0," explains the dynamics of disk 1/0 
in AIX and how those dynamics can be affected by user choices. 

• Chapter 9, "Monitoring and Tuning Communications 1/0," gives tuning 
techniques for various forms of communications 1/0. 

• Chapter 10, "DFS Performance Tuning," describes various parameters of DFS 
operation that can affect performance. 

• Chapter 1 1 ,  "Performance Analysis with the Trace Facility," gives an extended 
explanation of the use of the trace facility, which is a powerful tool for detailed 
performance tuning and also is the base of a number of other tools discussed in 
this book. 

• Chapter 12, "Performance Diagnostic Tool (PDT)," describes a new AIX Version 
4.1 tool that assesses configurations for balance and maintains historical 
performance data to identify performance trends. 

• Chapter 13 ,  "Handling a Possible AIX Performance Bug," explains the process 
of reporting, and providing data about, a possible performance bug in AIX. 

• Appendix A, "AIX Performance Monitoring and Tuning Commands," lists the 
AIX commands that are most helpful in carrying out performance monitoring 
and tuning tasks and provides detailed documentation of the syntax and functions 
of the schedtune, vmtune, pdt_conflg, and pdt_report commands. 

• Appendix B, "Performance-Related Subroutines," describes several subroutines 
with performance-related uses. 

• Appendix C, "Cache and Addressing Considerations," provides a conceptual 
discussion of the way caches operate and how they can affect the performance of 
programs. 

• Appendix D, "Efficient Use of the Id Command," describes techniques for using 
the AIX binder. 
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• Appendix E, "Perfonnance of the Perfonnance Tools," documents the resource 
consumption and response time of the perfonnance tools. 

• Appendix F, "Application Memory Management," describes the distinction 
between the original and the current versions of the malloc and realloc 
subroutines. 

• Appendix G,  "Performance Effects of Shared Libraries ,"  describes the 
perfonnance advantages and disadvantages of shared libraries versus nonshared 
libraries. 

• Appendix H, "Accessing the Processor Timer," describes methods of using the 
processor timer to compute elapsed-time values. 

• Appendix I, "National Language Support-Locale versus Speed," explains the 
effect that use of the AIX National Language Support facility can have on 
perfonnance. 

• Appendix J, "Summary of Tunable AIX Parameters," documents the AIX 
operational parameters that can be changed by the user and that have a direct or 
indirect effect on perfonnance. 

H ighlighti ng 

The following highlighting conventions are used in this book: 

Bold Identifies commands,  subroutines, keywords, files ,  structures ,  
directories, and other items whose names are predefined by  the system. 
Also identifies graphical objects such as buttons, labels, and icons that 
the user selects . 

Italics 

Mono space 
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Identifies parameters whose actual names or values are to be supplied 
by the user. 

Identifies examples of specific data values, examples of text similar to 
what you might see displayed, examples of portions of program code 
similar to what you might write, messages from the system, or 
infonnation you should actually type. 
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1 
Performance Concepts 

Everyone who uses a computer has an opinion about its performance. Unfortunately, those 
opinions are often based on oversimplified ideas about the dynamics of program 
execution. Uninformed intuition can lead to expensive wrong guesses about the capacity 
of a system and the solutions to the perceived performance problems. 

This chapter describes the dynamics of program execution and provides a 
conceptual framework for evaluating system performance. 

How Fast Is That Computer in  the Window? 

Using words like "speed" and "fast" to describe contemporary computers, while condoned 
by precedent, is extreme oversimplification. There was a time when one could read a 
program, calculate the sum of the instruction times, and confidently predict how long it 
would take the computer to run that program. Thousands of programmers and engineers 
have spent the last 30 years making such straightforward calculations impossible, or at 
least meaningless. 

Today's computers are more powerful than their ancestors, not just because they use 
integrated circuits instead of vacuum tubes and have far shorter cycle times, but because 
of innumerable hardware and software architectural inventions. Each advance in 
integrated-circuit density brings an advance in computer performance, not just because it 
allows the same logic to work in a smaller space with a faster system clock, but because it 
gives engineers more space in which to implement clever ideas. In short, computers have 
gained capacity by becoming more complex as well as quicker. 

The complexity of modem computers and their operating systems is matched by the 
complexity of the environment in which they operate. In addition to the execution of 
individual programs, today's computer has to deal with varying numbers of unpredictably 
timed interrupts from 1/0 and communications devices. To the extent that the engineers' 
clever ideas were based on an assumption of a single program running in a standalone 
machine, they may be partly defeated by the randomness of the real world. To the extent 
that those ideas were intended to deal with randomness, they may win back some of the 
loss. The wins and losses change from program to program and from moment to moment. 
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The net of all these hardware and software wins and losses is the performance of the 
system. The "speed" of the system is the rate at which it can handle a specific sequence of 
demands .  If the demands mesh well wi th the system' s  hardware and software 
architectures, we can say, "The system runs this workload fast." We can' t say, "The 
system is fast"-or at least we shouldn ' t. 

First, Understand the Workload 

As you can see, an accurate and complete definition of the system's workload is critical to 
predicting or understanding i ts performance. A difference in workload can cause far more 
variation in the measured performance of a system than differences in CPU clock speed or 
RAM size. The workload definition must include not only the type and rate of requests to 
the system but also the exact software packages and in-house application programs to be 
executed. 

Whenever possible, current users of existing applications should be observed to get 
authentic, real-world measurements of the rates at which users interact with their 
workstations or terminals. 

Make sure that you include the work that your system is doing "under the covers." 
For example, if your system contains file systems that are NFS-mounted and frequently 
accessed by other systems, handling those accesses is probably a significant fraction of the 
overall workload, even though your system is not officially a "server." 

A Risky Shortcut: Industry-Standard Benchmarks 

A benchmark is a workload that has been standardized to allow comparisons among 
dissimilar systems. Any benchmark that has been in existence long enough to become 
"industry-standard" has been studied exhaustively by systems developers. Operating 
systems, compilers, and in some cases hardware, have been tuned to run the benchmark 
with lightning speed. 

Unfortunately, few real workloads duplicate the exact algorithms and environment 
of a benchmark. Even those industry-standard benchmarks that were originally derived 
from real applications may have been simplified and homogenized to make them portable 
to a wide variety of hardware platforms. The environment in which they run has been 
constrained in the interests of reproducible measurements. 

Bluntly, reasoning of the form "System A is rated at 50% more MegaThings than 
System B,  so System A should run my program 50% faster than System B" may be a 
tempting shortcut, but i t  is wrong . There i s  no benchmark with such universal 
applicability. The only valid use for industry-standard benchmarks is to narrow the field of 
candidate systems that will be subjected to a serious evaluation. There is no substitute for 
developing a clear understanding of your workload and its performance in systems under 
consideration. 

Performance Objectives 

After defining the workload that the system will have to process, you can choose 
performance criteria and set performance objectives based on those criteria. The main 
overall performance cri teria of computer systems are response time and throughput. 
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Response time is the time from the initiation of an operation until the initiator has enough 
information to resume work, while throughput is the number of workload operations that 
can be accomplished per unit of time. The relationship between these metrics is complex. 
In some cases you may have to trade off one against the other. In other situations, a single 
change can improve both. 

In planning for or tuning any system, you should have clear objectives for both 
response time and throughput when processing the specified workload. Otherwise you 
risk spending analysis time and resource dollars improving an aspect of system 
performance that is of secondary importance. 

Program Execution Dynamics 

Normally, an application programmer thinks of the running program as an uninterrupted 
sequence of instructions that perform a specified function. Great amounts of inventiveness 
and effort have been expended on the operating system and hardware to ensure that 
programmers are not distracted from this idealized view by "irrelevant" space, speed, and 
multiprogramming/multiprocessing considerations. If the programmer is seduced by this 
comfortable illusion, the resulting program may be unnecessarily expensive to run-and 
may not meet its performance objectives. 

To think clearly about the performance characteristics of a workload, we need a 
dynamic, rather than a static, model of program execution, as shown in the figure 
"Program Execution Hierarchy." 

Hardware 

Processor Pipel ine 

Cache 

TLB 

Real Memory 

Disk 

Operating System 

Current Instruction 

Currently Dispatched Thread 

Dispatchable Threads 

Waiting Threads/ 
Interrupt Handlers 

Executable Programs 

Figure 3. Program Execution Hierarchy 

To run, a program must make its way up both the hardware and operating-system 
hierarchies, more or less in parallel. Each element in the hardware hierarchy is scarcer and 
more expensive than the element below it. Not only does the program have to contend 
with other programs for each resource, the transition from one level to the next takes time. 
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To understand the dynamics of program execution, we need to have a basic understanding 
of each of the levels. 

Hardware Hierarchy 

Usually, the time required to move from one hardware level to another consists primarily 
of the latency of the lower level-the time from the issuing of a request to the receipt of 
the first data. 

Fixed Disks 

By far the slowest operation for a running program (other than waiting on a human 
keystroke) is obtaining code or data from a disk: 

• The disk controller must be directed to access the specified blocks (queuing 
delay) . 

• The disk arm must seek to the correct cylinder (seek latency) .  

• The read/write heads must wait until the correct block rotates under them 
(rotational latency) .  

• The data must be transmitted to the controller (transmission time) and then 
conveyed to the application program (interrupt handling time) . 

Disk operations can have many causes besides explicit read or write requests in the 
program. System tuning activities frequently tum out to be hunts for unnecessary disk 1/0. 

Real Memory 

RAM is fast compared to disk, but much more expensive per byte. Operating systems try 
to keep in RAM the code and data that are currently in use, spilling any excess onto disk 
(or never bringing them into RAM in the first place). 

RAM is not necessarily fast compared to the processor. In the RISC System/6000, a 
RAM latency of several processor cycles occurs between the time the hardware 
recognizes the need for a RAM access and the time the data or instruction is available to 
the processor. 

If the access is to a page of virtual memory that has been spilled to disk (or has not 
been brought in yet), a page fault occurs, and the execution of the program is suspended 
until the page has been read in from disk. 

Translation Lookaside Buffers (TLBs) 

One of the ways programmers are insulated from the physical limitations of the system is 
the implementation of virtual memory. The programmer designs and codes the program as 
though the memory were very large, and the system takes responsibility for translating the 
program's virtual addresses for instructions and data into the real addresses that are 
needed to get the instructions and data from RAM. Since this address-translation process 
is time-consuming, the system keeps the real addresses  of recently accessed 
virtual-memory pages in a cache called the translation lookaside buffer (TLB). As long as 
the running program continues to access a small set of program and data pages, the full 
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virtual-to-real page-address translation does not need to be redone for each RAM access. 
When the program tries to access a virtual-memory page that does not have a TLB entry (a 
TLB miss), dozens of processor cycles (the TLB-miss latency) are usually required to 
perform the address translation. 

Caches 

To minimize the number of times the program has to experience the RAM latency, the 
RISC System/6000 incorporates caches for instructions and data. If the required 
instruction or data is already in the cache (a cache hit), it is available to the processor on 
the next cycle (that is, no delay occurs); otherwise (a cache miss), the RAM latency 
occurs. 

In some systems there are two levels of cache, usually called Ll and L2. If a 
particular storage reference results in an L1 miss, L2 is checked. If L2 generates a miss, 
then the reference goes to RAM . 

In the RISC System/6000, the cache sizes and structures vary by model, but the 
principles of using them efficiently are identical. Appendix C, "Cache and Addressing 
Considerations", contains a more detailed discussion of cache and TLB architectures for 
the benefit of the curious and those who envision very low-level program tuning. 

Pipeline and Registers 

The RISC System/6000's pipelined, superscalar architecture makes possible, under certain 
circumstances, the simultaneous processing of multiple instructions. Large sets of 
general-purpose registers and floating-point registers make it possible to keep 
considerable amounts of the program's data in registers, rather than continually storing 
and reloading. 

The RISC System/6000 optimizing compilers are designed to take maximum 
advantage of these capabilities. The compilers' optimization functions should always be 
used when generating production programs, however small. The Optimization and 
Tuning Guide for XL Fortran, XL C and XL C++ describes the ways in which programs 
can be tuned for maximum performance. 

Software Hierarchy 

To run, a program must also progress through a series of steps in the software hierarchy. 

Executable Programs 

When a user requests the execution of a program, AIX performs a number of operations to 
transform the executable program on disk to a running program. First, the directories in 
the user's current PATH environment variable must be scanned to find the correct copy of 
the program. Then, the system loader (not to be confused with Id, the binder) must resolve 
any external references from the program to shared libraries. 

To represent the user 's request, the operating system creates a process, which is a set 
of resources, such as a private virtual address segment, required by any running program. 

In AIX Version 4. 1 ,  the operating system also automatically creates a single thread 
within that process. A thread is the current execution state of a single instance of a 
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program. In AIX Version 4.1 , access to the processor and other resources is allocated on a 
thread basis, rather than a process basis. Multiple threads can be created within a process 
by the application program. Those threads share the resources owned by the process 
within which they are running. 

Finally, the system branches to the entry point of the program. If the program page 
that contains the entry point is not already in memory (as it might be if the program had 
been recently compiler, executed, or copied), the resulting page-fault interrupt causes the 
page to be read. 

Interrupt Handlers 

The mechanism for notifying the operating system that an external event has taken place 
is to interrupt the currently running thread and transfer control to an interrupt handler. 
Before the interrupt handler can run, enough of the hardware state must be saved to ensure 
that the system can restore the context of the thread after interrupt handling is complete. 
Newly invoked interrupt handlers experience all of the delays of moving up the hardware 
hierarchy (except page faults). Unless the interrupt handler was run very recently (or the 
intervening programs were very economical), it is unlikely that any of its code or data 
remains in the TLBs or the caches. 

When the interrupted thread is dispatched again, its execution context (such as 
register contents) is logically restored, so that it functions correctly. However, the contents 
of the TLBs and caches must be reconstructed on the basis of the program's subsequent 
demands. Thus, both the interrupt handler and the interrupted thread can experience 
significant cache-miss and TLB-miss delays as a result of the interrupt. 

Waiting Threads 

Whenever an executing program makes a request that cannot be satisfied immediately, 
such as an 1/0 operation (either explicit or as the result of a page fault), that thread is put 
in a Wait state until the request is complete. Normally, this results in another set of TLB 
and cache latencies, in addition to the time required for the request itself. 

Dispatchable Threads 

When a thread is dispatchable, but not actually running, it is accomplishing nothing 
useful. Worse, other threads that are running may cause the thread's cache lines (the areas 
of the cache that contain the instructions and/or data of this thread-see Appendix C) to 
be re-used and real memory pages to be reclaimed, resulting in even more delays when the 
thread is finally dispatched. 

Currently Dispatched Thread 

The scheduler chooses the thread that has the strongest claim to the use of the processor. 
(The considerations that affect that choice are discussed in "Performance Overview of the 
AIX CPU Scheduler" on page 14.) When the thread is dispatched, the logical state of the 
processor is restored to that in effect when the thread was interrupted. 

Current Instructions 

Most of the machine instructions in a RISC System/6000 are capable of executing in a 
single processor cycle, if no TLB or cache miss occurs. In contrast, if a program branches 
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rapidly to different areas of the executable and/or accesses data from a large number of 
different areas, causing high TLB and cache miss rates, the average number of processor 
cycles per instruction executed might be much greater than one. The program is said to 
exhibit poor "locality of reference."  It might be using the minimum number of 
instructions necessary to do its job, but consuming an unnecessarily large number of 
cycles. In part because of this poor correlation between number of instructions and 
number of cycles ,  sitting down with a program listing to calculate "path length" no longer 
yields a time value directly. While a shorter path is usually faster than a longer path, the 
speed ratio can be very different from the path-length ratio. 

The XL compilers rearrange code in very sophisticated ways to minimize the 
number of cycles required for the execution of the program. The programmer seeking 
maximum performance should be primarily concerned with ensuring that the compiler has 
all the information necessary to optimize effectively, rather than trying to second-guess 
the compiler's optimization techniques. (See "Effective Use of Preprocessors and the XL 
Compilers" on page 57. )  The real measure of optimization effectivenes s  is the 
performance of an authentic workload. 

System Dynamics 

It's not enough to create the most efficient possible individual programs.  In many cases, 
the actual programs being run were created outside of the control of the person who is 
responsible for meeting the organization's performance objectives. Further, most of the 
levels of the hierarchy we have just described are managed by one or more parts of AIX . 
In any case, once the application programs have been acquired, or implemented as 
efficiently as possible, further improvement in the overall performance of the system 
becomes a matter of system tuning. The main components that are subject to system-level 
tuning are: 

Fixed Disk The Logical Volume Manager (LVM) controls the placement of file 
systems and paging spaces on the disk, which can significantly affect 
the amount of seek latency the system experiences. 

The disk device drivers control the order in which 1/0 requests are acted 
on. 

Real Memory The Virtual Memory Manager (VMM) controls the pool of free 
real-memory frames and determines when and from whom to steal 
frames to replenish the pool. 

Running ThreadThe scheduler determines which dispatchable entity should receive 
control next. (In AIX Version 4. 1 the dispatchable entity changes from a 
process to a thread. See "AIX Version 4. 1 Thread Support" on page 14.) 

Communications 1/0 
Depending on the type of workload and the type of communications 
link, it may be necessary to tune one or more of the communications 
device drivers, TCP/IP, or NFS . 
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Classes of Workload 

Workloads tend to fall naturally into a small number of classes. The types that follow are 
sometimes used to categorize systems. However, since a single system often is called upon 
to process multiple classes, "workload" seems more apt in the context of performance. 

Workstation A workload that consists of a single user submitting work through the 
native keyboard and receiving results on the native display of the 
system. Typically, the highest-priority performance objective of such a 
workload is minimum response time to the user's requests. 

Multiuser A workload that consists of a number of users submitting ·work through 
individual terminals. Typically, the performance objectives of such a 
workload are either to maximize system throughput while preserving a 
specified worst-case response time or to obtain the best possible 
response time for a fairly constant workload. 

Server A workload that consists of requests from other systems. For example, a 
file-server workload is mostly disk read/write requests. In essence, it is 
the disk-1/0 component of a multiuser workload (plus NFS or DFS 
activity), so the same objective of maximum throughput within a given 
response-time limit applies . Other server workloads consist of 
compute-intensive programs, database transactions, print jobs, etc. 

When a single system is processing workloads of more than one type, there must be 
a clear understanding between the users and the performance analyst as to the relative 
priorities of the possibly conflicting performance objectives of the different workloads. 

An Introduction to the Performance-Tuning Process 

Performance tuning is primarily a matter of resource management and proper system 
parameter setting. Tuning the workload and the system for efficient resource use consists 
of the following steps: 

1. Identifying the workloads on the system 
2. Setting objectives: 

a. Determining how the results will be measured 
b. Quantifying and prioritizing the objectives 

3. Identifying the "critical resources" that limit the system's performance 
4. Minimizing the workload's critical-resource requirements : 

a. Using the most appropriate resource, if there is a choice 
b. Reducing the critical-resource requirements of individual programs or system 

functions 
c. Structuring for parallel resource use 

5. Modifying the allocation of resources to reflect priorities 
a. Changing the priority or resource limits of individual programs 
b. Changing the settings of system resource-management parameters 

6. Repeating steps 3-5 until objectives are met (or resources are saturated) 
7. Applying additional resources, if necessary 
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Identifying the Workloads 

It is essential that all of the work performed by the system be identified. Especially in 
LAN-connected systems, a complex set of cross-mounted file systems can easily develop 
with only informal agreement among the users of the systems. These must be identified 
and taken into account as part of any tuning activity. 

With multiuser workloads, the analyst must quantify both the typical and peak 
request rates. It's also important to be realistic about the proportion of the time that a user 
is actually interacting with the terminal. 

An important element of this stage is determining whether the measurement and 
tuning activity has to be done on the production system or can be accomplished on another 
system (or off-shift) with a simulated version of the actual workload. The analyst must 
weigh the greater authenticity of results from a production environment against the 
flexibility of the nonproduction environment, where the analyst can perform experiments 
that risk performance degradation or worse. 

Setting Objectives 

Objectives must be set in terms of measurable quantities, yet the actual desired result is 
often subjective, such as "satisfactory" response time. Further, the analyst must resist the 
temptation to tune what i s  measurable rather than what i s  important .  If no 
system-provided measurement corresponds to the desired improvement, one must be 
devised. 

The most valuable aspect of quantifying the objectives is not selecting numbers to 
be achieved, but making a public decision about the relative importance of (usually) 
multiple objectives. Unless these priorities are set in advance, and understood by all 
concerned, the analyst cannot make trade-off decisions without incessant consultation and 
is apt to be surprised by the reaction of users or management to aspects of performance 
that have been ignored. If the support and use of the system crosses organizational 
boundaries, a written service-level agreement between the providers and the users may be 
needed to ensure that there is a clear common understanding of the performance 
objectives and priorities. 

Identifying the Critical Resources 

In general, the performance of a given workload is determined by the availability and 
speed of one or two critical system resources . The analyst must identify those resources 
correctly or risk falling into an endless trial-and-error operation. 

Systems have both real and logical resources. Critical real resources are generally 
easier to identify, since more system performance tools are available to assess the 
utilization of real resources. The real resources that most often affect performance are: 

• CPU cycles 
• Memory 
• 1/0 bus 
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• Various adapters 
• Disk arms 
• Disk space 
• Network access 

Logical resources are less readily identified. Logical resources are generally 
programming abstractions that partition real resources. The partitioning is done to share 
and manage the real resource. 

Some examples of real resources and the logical resources built on them are: 

CPU 

• Processor time slice 

Memory 

• Page frames 
• Stacks 
• Buffers 
• Queues 
• Tables 
• Locks and semaphores 

Disk Space 

• Logical volumes 
• File systems 
• Files 
• Partitions 

Network Access 

• Packets 
• Channels 

It is important to be aware of logical resources as well as real resources. Threads can 
be blocked by lack of logical resources just as for lack of real resources, and expanding 
the underlying real resource does not necessarily ensure that additional logical resources 
will be created. For example, consider the NFS block 1/0 daemon (biod, see "NFS 
Tuning" on page 179). A biod on the client is required to handle each pending NFS 
remote I/O request. The number of biods therefore limits the number of NFS I/O 
operations that can be in progress simultaneously. When a shortage of biods exists, system 
instrumentation may indicate that the CPU and communications links are only slightly 
utilized. You may have the false impression that your system is underutilized (and slow), 
when in fact you have a shortage of biods that is constraining the rest of the resources. A 
biod uses processor cycles and memory, but you cannot fix this problem simply by adding 
real memory or converting to a faster CPU. The solution is to create more of the logical 
resource (biods). 
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Logical resources and bottlenecks can be created inadvertently during application 
development. A method of passing data or controlling a device may, in effect, create a 
logical resource. When such resources are created by accident, there are generally no tools 
to monitor their use and no interface to control their allocation. Their existence may not be 
appreciated until a specific performance problem highlights their importance. 

Minimizing Critical-Resource Requirements 

Using the Appropriate Resource 

The decision to use one resource over another should be done consciously and with 
specific goals in mind. An example of a resource choice during application development 
would be a trade-off of increased memory consumption for reduced CPU consumption. A 
common system configuration decision that demonstrates resource choice is whether to 
place files locally on an individual workstation or remotely on a server. 

Reducing the Requirement for the Critical Resource 

For locally developed applications, the programs can be reviewed for ways to perform the 
same function more efficiently or to remove unnecessary function .  At a 
system-management level, low-priority workloads that are contending for the critical 
resource can be moved to other systems or run at other times. 

Structuring for Parallel Use of Resources 

Since workloads require multiple system resources to run, take advantage of the fact that 
the resources are separate and can be consumed in parallel. For example, the AIX system 
read-ahead algorithm detects the fact that a program is accessing a file sequentially and 
schedules additional sequential reads to be done in parallel with the application's 
processing of the previous data. Parallelism applies to system management as well. For 
example, if an application accesses two or more files at the same time, adding a disk drive 
may improve the disk-IIO rate if the files that are accessed at the same time are placed on 
different drives. 

Reflecting Priorities in  Resource Allocation 

AIX provides a number of ways of prioritizing activities. Some, such as disk pacing, are 
set at the system level. Others, such as process priority, can be set by individual users to 
reflect the importance they attach to a specific task. 

Repeating the Tuning Steps 

A truism of performance analysis is that "there is always a next bottleneck." Reducing the 
use of one resource means that another resource limits throughput or response time. 
Suppose, for example, we have a system in which the utilization levels are: 

CPU: 90% Disk: 70% Memory 60% 
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This workload is CPU-bound. If we successfully tune the workload so that the CPU 
load is reduced from 90 to 45%, we might expect a two-fold improvement in performance. 
Unfortunately, the workload is now 1/0-limited, with utilizations of about: 

CPU: 45% Disk: 90% Memory 60% 
The improved CPU utilization allows the programs to submit disk requests sooner, 

but then we hit the ceiling imposed by the disk drive's capacity. The performance 
improvement is perhaps 30% instead of the 100% we had envisioned. 

There is always a new critical resource. The important question is whether we have 
met the performance objectives with the resources at hand. 

Applying Additional Resources 

If, after all of the preceding approaches have been exhausted, the performance of the 
system still does not meet its objectives, the critical resource must be enhanced or 
expanded. If the critical resource is logical and the underlying real resource is adequate, 
the logical resource can be expanded for no additional cost. If the critical resource is real, 
the analyst must investigate some additional questions: 

• How much must the critical resource be enhanced or expanded so that it ceases to 
be a bottleneck? 

• Will the performance of the system then meet its objectives, or will another 
resource become saturated first? 

• If there will be a succession of critical resources, is it more cost effective to 
enhance or expand all of them, or to divide the current workload with another 
system? 

Performance Benchmarking-the Inevitable Di rtiness 
of Performance Data 

When we attempt to compare the performance of a given piece of software in different 
environments, we are subject to a number of possible errors-some technical, some 
conceptual. The following section is mostly cautionary. Other sections of this book 
discuss the various ways in which elapsed and process-specific times can be measured. 

When we measure the elapsed ("wall-clock") time required to process a system call, 
we get a number that consists of: 

• The actual time during which the instructions to perform the service were 
executing 

• Varying amounts of time during which the processor was stalled while waiting 
for instructions or data from memory (i.e. , the cost of cache and/or TLB misses) 

• The time required to access the "clock" at the beginning and end of the call 
• Time consumed by periodic events such as system timer interrupts 
• Time consumed by more or less random events such as 1/0 interrupts 
To avoid reporting an inaccurate number, we normally measure the workload a 

number of times . Since all of the extraneous factors add to the actual processing time, the 
typical set of measurements has a curve of the form: 
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"Actual" value Mean of measured values 

Distribution of 
measured values 

The extreme low end may represent a low-probability optimum caching situation or 
may be a rounding effect. 

A regularly recurring extraneous event might give the curve a bimodal form (two 
maxima), such as : 

"Actual" value Mean 

One or two time-consuming interrupts might skew the curve even further: 

"Actual" value Mean 

The distribution of the measurements about the "actual" value is not random, and 
the classic tests of inferential statistics can be applied only with great caution (or 
chutspah). Also, depending on the purpose of the measurement, it may be that neither the 
mean nor the "actual" value is an appropriate characterization of performance. 
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2 
AIX Resource Management 
Overview 

This chapter describes the components of AIX that manage the resources that have the 
most effect on system performance, and the ways in which these components can be 
tuned. Specific tuning recommendations appear in the chapters on tuning individual 
resources. 

Performance Overview of the AIX CPU Scheduler 

The addition of thread support to AIX Version 4. 1 has resulted in extensive changes to the 
CPU scheduler. Conceptually, the scheduling algorithm and priority scheme are similar to 
those of AIX Version 3.2.5, but the addition of thread support required many detail-level 
changes. Although the net behavioral change for unchanged applications running on 
uniprocessors may be small ,  anyone concerned with performance tuning should 
understand the changes and the opportunities. 

AIX Version 4.1 Thread Support 

A thread can be thought of as a low-overhead process. It is a dispatchable entity that 
requires fewer resources to create than an AIX process. The fundamental dispatchable 
entity of the AIX Version 4. 1 scheduler is the thread. 

This does not mean that processes have ceased to exist. In fact, workloads migrated 
directly from earlier releases of AIX will create and manage processes as before. Each 
new process will be created with a single thread that has its parent process's priority and 
contends for the CPU with the threads of other processes. The process owns the resources 
used in execution; the thread owns only its current state. 

When new or modified applications take advantage of AIX thread support to create 
additional threads, those threads are created within the context of the process. They share 
the process's private segment and other resources. 
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A user thread within a process has specified contention scope. If the contention 
scope is global, the thread contends for CPU time with all other threads in the system. 
(The thread that is created when a process is created has global contention scope.)  If the 
contention scope is local, the thread contends with the other threads within the process to 
be the recipient of the process's share of CPU time. 

The algorithm for determining which thread should be run next is called a 
scheduling policy. 

Schedul ing Pol icy for Threads with Local or Global Contention 
Scope 

In AIX Version 4. 1 there are three possible values for thread scheduling policy: 

FIFO Once a thread with this policy is scheduled, it runs to completion unless 
it is blocked, it voluntarily  yields control of the CPU, or a 
higher-priority thread becomes dispatchable .  Only fixed-priority 
threads can have a FIFO scheduling policy. 

RR This is similar to the AIX Version 3 scheduler round-robin scheme 
based on toms time slices. When a RR thread has control at the end of 
the time slice, it moves to the tail of the queue of dispatchable threads of 
its priority. Only fixed-priority threads can have a RR scheduling policy. 

OTHER This policy is defined by POSIX1003 .4a as implementation-defined. In 
AIX version 4. 1 ,  this policy is defined to be equivalent to RR, except 
that it applies to threads with non-fixed priority. The recalculation of the 
running thread's priority value at each clock interrupt means that a 
thread may lose control because its priority value has risen above that of 
another dispatchable thread. This is the AIX Version 3 behavior. 

Threads are primarily of interest for applications that currently consist of several 
asynchronous processes. These applications might impose a lighter load on the system if 
converted to a multithread structure. 

Process and Thread Priority 

The priority management tools in AIX Version 3 .2.5 manipulate process priority. In AIX 
Version 4. 1 ,  process priority is simply a precursor to thread priority. When fork() is 
called, a process and a thread to run in it are created. The thread has the priority that would 
have been attributed to the process in Version 3.2.5.  The following general discussion 
applies to both versions .  

The kernel maintains a priority value (sometimes termed the scheduling priority) 
for each thread. The priority value is a positive integer and varies inversely with the 
importance of the associated thread. That is, a smaller priority value indicates a more 
important thread. When the scheduler is looking for a thread to dispatch, it chooses the 
dispatchable thread with the smallest priority value. 

A thread can be fixed-priority or nonfixed priority. The priority value of a 
fixed-priority thread is constant, while the priority value of a nonfixed priority thread is 
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the sum of the minimum priority level for user threads (a constant 40) , the thread's nice 

value (20 by default, optionally set by the nice or renice command), and its CPU-usage 
penalty. The figure "How the Priority Value is Determined" illustrates some of the ways in 
which the priority value can change. 

The nice value of a thread is set when the thread is created and is constant over the 
life of the thread, unless explicitly changed by the user via the renice command or the 
setpri , setpriority, or nice system calls. 

Priority 
Value 
(smaller 
value 
means 
higher 
priority} 

At Thread 
Initiation 

nice value de
faults to 20 

Base priority 
defaults to 40 

After Some 
Execution 

CPU penalty 

nice value 
remains 20 

Base priority 
remains 40 

After 
renice -5 

CPU penalty 

nice value now 

After 
setpri(} 
to 50 

1 5  Fixed priority 
value is 50. 
nice value and 

Base priority CPU usage are 
remains 40 now 

irrelevant. 

Figure 4. How the Priority Value is Determined 
The CPU penalty is an integer that is calculated from the recent CPU usage of a 

thread. The recent CPU usage increases by 1 each time the thread is in control of the CPU 
at the end of a !Oms clock tick, up to a maximum value of 120. Once per second, the 
recent CPU usage values for all threads are reduced. The result is that: 

• The priority of a nonfixed-priority thread decreases as its recent CPU usage 
increases and vice versa. This implies that, on average, the more time slices a 
thread has been allocated recently, the less likely it is that the thread will be 
allocated the next time slice. 

• The priority of a nonfixed-priority thread decreases as its nice value increases, 
and vice versa. 

The priority of a thread can be fixed at a certain value via the setpri subroutine. The 
priority value, nice value, and short-term CPU-usage values for a process can be displayed 
with the ps command. 

See "Controlling Contention for the CPU" on page 104 for a more detailed 
discussion of the use of the nice and renice commands. 

See "Tuning the Process-Priority-Value Calculation with schedtune" on page 107, 
for the details of the calculation of the CPU penalty and the decay of the recent CPU usage 
values. 

AIX Scheduler Run Queue 

The scheduler maintains a run queue of all of the threads that are ready to be 
dispatched. The figure labelled "Run Queue" depicts the run queue symbolically. 
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Priority Value n 

Priority Value n+ 1 

Priority Value n+2 

IThread aaa ,___. ,Thread bbb ,___. ,Thread ccc 

I 

---•• I Thread iii I___. , Thread jjj 

I 

--•• I Thread xxx I___. , Thread yyy 

Figure 5. Run Queue 
All the dispatchable threads of a given priority occupy consecutive positions in the 

run queue. 
When a thread is moved to the "end of the run queue" (for example, when the thread 

has control at the end of a time slice), it is moved to a position after the last thread in the 
queue that has the same priority value. 

Scheduler CPU Time Sl ice 

The CPU time slice is the period between recalculations of the priority value. Normally, 
recalculation is done at each tick of the system clock, that is, every 10 milliseconds. The 
-t option of the schedtune command (see page 252) can be used to increase the number of 
clock ticks between recalculations, increasing the length of the time slice by 1 0  
millisecond increments. Keep in mind that the time slice i s  not a guaranteed amount of 
processor time. It is the longest time that a thread can be in control before it faces the 
possibility of being replaced by another thread. There are many ways in which a thread 
can lose control of the CPU before it has had control for a full time slice. 

Performance Overview of the Virtual Memory Manager 
{VM M) 

The RISC System/6000 Virtual Address space is partitioned into segments (see Appendix 
C, "Cache and Addressing Considerations" for an extensive discussion of the 
virtual-addressing structure) .  A segment is  a 256MB , contiguous portion of the 
virtual-memory address space into which a data obj ect can be mapped. Process 
addressability to data is managed at the segment (or object) level so that a segment can be 
shared between processes or maintained as private. For example, processes can share code 
segments yet have separate and private data segments. 

Real-Memory Management 

Virtual-memory segments are partitioned into fixed-size units called pages. In AIX, the 
page size is 4096 bytes. Each page in a segment can be in real memory (RAM), or stored 
on disk until it is needed. Similarly, real memory is divided into 4096-byte page frames. 

The role of the VMM is to manage the allocation of real-memory page frames and to 
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resolve references by the program to virtual-memory pages that are not currently in real 
memory or do not yet exist (for example, when a process makes the first reference to a 
page of its data segment). 

Since the amount of virtual memory that is in use at any given instant may be larger 
than real memory, the VMM must store the surplus on disk. From the performance 
standpoint, the VMM has two, somewhat opposed, objectives : 

• Minimize the overall processor-time and disk-bandwidth cost of the use of 
virtual memory. 

• Minimize the response-time cost of page faults . 

In pursuit of these objectives, the VMM maintains a free list of page frames that are 
available to satisfy a page fault. The VMM uses a page-replacement algorithm to 
determine which virtual-memory pages currently in memory will have their page frames 
reassigned to the free list. The page-replacement algorithm uses several mechanisms: 

• Virtual-memory segments are classified into persistent segments or working 
segments. 

• Virtual-memory segments are classified as containing computational or file 
memory. 

• Virtual-memory pages whose access causes a page fault are tracked. 
• Page faults are classified as new-page faults or as repage faults. 
• Statistics are maintained on the rate of repage faults in each virtual-memory 

segment. 
• User-tunable thresholds influence the page-replacement algorithm's decisions. 

The following sections describe the free list and the page-replacement mechanisms 
in more detail. 

Free List 

The VMM maintains a list of free page frames that it uses to accommodate page faults. In 
most environments, the VMM must occasionally add to the free list by reassigning some 
page frames owned by running processes. The virtual-memory pages whose page frames 
are to be reassigned are selected by the VMM's page-replacement algorithm. The number 
of frames reassigned is determined by the VMM thresholds. 

In AIX Version 3 ,  the contents of page frames are not lost when the page frames are 
reassigned to the free list. If a virtual-memory page is referenced before the frame it 
occupies is actually used to satisfy a page fault, the frame is removed from the free list and 
reassigned to the faulting process. This is phenomenon is termed a reclaim. Reclaiming is 
not supported in AIX Version 4. 1 .  

Persistent vs Working Segments 

The pages of a persistent segment have permanent storage locations on disk. Files 
containing data or executable programs are mapped to persistent segments. Since each 
page of a persistent segment has a permanent disk storage location, the VMM writes the 
page back to that location when the page has been changed and can no longer be kept in 
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real memory. If the page has not changed, its frame is simply reassigned to the free list. If 
the page is referenced again later, a new copy is read in from its permanent disk-storage 
location. 

Working segments are transitory, exist only during their use by a process, and have 
no permanent disk-storage location. Process stack and data regions are mapped to working 
segments, as are the kernel text segment, the kernel-extension text segments and the 
shared-library text and data segments . Pages of working segments must also have 
disk-storage locations to occupy when they cannot be kept in real memory. The disk 
paging space is used for this purpose. 

The figure "Persistent and Working Storage Segments" illustrates the relationship 
beween some of the types of segment and the locations of their pages on disk. It also 
shows the actual (arbitrary) locations of the pages when they are in real memory. 

O . . . .  Addressing Range . . . . .  256MB 

.. 
P
_
r
_
o
_
c
_
es
_
s
_ 

... �i§ITI text segment (persistent) 

Thread(s) 
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Touched 

Real 
Memory 

ry segment (working) 

Figure 6. Persistent and Working Storage Segments 
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There are further classifications of the persistent-segment types. Client segments are 
used to map remote files (for example, files that are being accessed via NFS), including 
remote executables. Pages from client segments are saved and restored over the network 
to their permanent file location, not on the local-disk paging space. Journaled and deferred 
segments are persistent segments that must be atomically updated. If a page from a 
journaled or deferred segment is selected to be removed from real memory (paged out), it 
must be written to disk paging space unless it is in a state that allows it to be committed 
(written to its permanent file location) .  

Computational vs File Memory 

Computational memory consists of the pages that belong to working-storage segments or 
program text segments. (A segment is considered to be a program text segment if an 
instruction cache miss occurs on any of its pages.) File memory consists of the remaining 
pages.  
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Re paging 

A page fault is considered to be either a new page fault or a repagefault. A new page fault 
occurs when there is no record of the page having been referenced recently. A repage fault 
occurs when a page that is known to have been referenced recently is referenced again, 
and is not found in memory because the page has been replaced (and perhaps written to 
disk) since it was last accessed. A perfect (clairvoyant) page-replacement policy would 
eliminate repage faults entirely (assuming adequate real memory) by always stealing 
frames from pages that are not going to be referenced again. Thus, the number of repage 
faults is an inverse measure of the effectiveness of the page-replacement algorithm in 
keeping frequently reused pages in memory, thereby -reducing overall I/O demand and 
potentially improving system performance. 

In order to classify a page fault as new or repage, the VMM maintains a repage 
history buffer that contains the page IDs of the N most recent page faults, where N is the 
number of frames that the memory can hold. For example, a 1 6MB memory requires a 
4096-entry repage history buffer. At page in, if the page's ID is found in the repage history 
buffer, it is counted as a repage. Also, the VMM estimates the computational-memory 
repaging rate and the file-memory repaging rate separately by maintaining counts of 
repage faults for each type of memory. The repaging rates are multiplied by 0.9 each time 
the page-replacement algorithm runs, so that they reflect recent repaging activity more 
strongly than historical repaging activity. 

VMM Thresholds 

Several numerical thresholds define the objectives of the VMM. When one of these 
thresholds is breached, the VMM takes appropriate action to bring the state of memory 
back within bounds. This section discusses the thresholds that can be altered by the system 
administrator via the vmtune command. 

The number of page frames on the free list is controlled by: 

min free Minimum acceptable number of real-memory page frames in the free 
list. When the size of the free list falls below this number, the VMM 
begins stealing pages. It continues stealing pages until the size of the 
free list reaches maxfree. 

maxfree Maximum size to which the free list will grow by VMM page stealing. 
The size of the free list may exceed this number as a result of processes 
terminating and freeing their working-segment pages or the deletion of 
files that have pages in memory. 

The VMM attempts to keep the size of the free list greater than or equal to minfree. 
When page faults and/or system demands cause the free list size to fall below minfree, the 
page-replacement algorithm is run. The size of the free list must be kept above a certain 
level (the default value of minfree) for several reasons .  For example, the AIX 
sequential-prefetch algorithm requires several frames at a time for each process that is 
doing sequential reads. Also, the VMM must avoid deadlocks within the operating system 
itself, which could occur if there were not enough space to read in a page that was required 
in order to free a page frame. 
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The following thresholds are expressed as percentages. They represent the fraction 
of the total real memory of the machine that is occupied by file pages-pages of 
noncomputational segments. 

minperm If the percentage of real memory occupied by file pages falls below this 
level, the page-replacement algorithm steals both file and computational 
pages, regardless of repage rates. 

maxperm If the percentage of real memory occupied by file pages rises above this 
level, the page-replacement algorithm steals only file pages. 

When the percentage of real memory occupied by file pages is between minperm 
and maxperm, the VMM normally steals only file pages, but if the repaging rate for file 
pages is higher than the repaging rate for computational pages, computational pages are 
stolen as well. 

The main intent of the page-replacement algorithm is to ensure that computational 
pages are given fair treatment; for example, the sequential reading of a long data file into 
memory should not cause the loss of program text pages that are likely to be used again 
soon. The page-replacement algorithm's use of the thresholds and repaging rates ensures 
that both types of pages get treated fairly, with a slight bias in favor of computational 
pages. 

VMM Memory Load Control Faci l ity 

When a process references a virtual-memory page that is on disk, because it either has 
been paged out or has never been read, the referenced page must be paged in and, on 
average, one or more pages must be paged out, creating 1/0 traffic and delaying the 
progress of the process. 

AIX attempts to steal real memory from pages that are unlikely to be referenced in 
the near future, via the page-replacement algorithm. A successful page-replacement 
algorithm allows the operating system to keep enough processes active in memory to keep 
the CPU busy. But at some level of competition for memory-depending on the total 
amount of memory in the system, the number of processes, the time-varying memory 
requirements of each process, and the page-replacement algorithm-no pages are good 
candidates for paging out to disk because they will all be reused in the near future by the 
active set of processes. 

When this happens, continuous paging in and paging out occurs . This condition is 
called thrashing. Thrashing results in incessant 1/0 to the paging disk and causes each 
process to encounter a page fault almost as soon as it is dispatched, with the result that 
none of the processes make any significant progress. The most pernicious aspect of 
thrashing is that, although thrashing may have been triggered by a brief, random peak in 
workload (such as all of the users of a system happening to hit the Enter key in the same 
second), the system may continue thrashing for an indefinitely long time. 

AIX has a memory load control algorithm that detects when the system is starting to 
thrash and then suspends active processes and delays the initiation of new processes for a 
period of time. Five parameters set rates and bounds for the algorithm. The default values 
of these parameters have been chosen to "fail safe" across a wide range of workloads. For 
special situations, a mechanism for tuning (or disabling) load control is available (see 
"Tuning VMM Memory Load Control" on page 124). 
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Memory Load Control Algorithm 

The memory load control mechanism assesses, once a second, whether sufficient memory 
is available for the set of active processes. When a memory overcommitment condition is 
detected, some processes are suspended, decreasing the number of active processes and 
thereby decreasing the level of memory overcommitment. When a process is suspended, 
all of its threads are suspended when they reach a suspendable state. The pages of the 
suspended processes quickly become stale and are paged out via the page replacement 
algorithm, releasing enough page frames to allow the remaining active processes to 
progress. During the interval in which existing processes are suspended, newly created 
processes are also suspended, preventing new work from entering the system. Suspended 
processes are not reactivated until a subsequent interval passes during which no potential 
thrashing condition exists . Once this safe interval has passed, the threads of the suspended 
processes are gradually reactivated. 

Memory load control parameters specify: the system memory overcommitment 
threshold; the number of seconds required to make a safe interval; the individual process 's 
memory overcommitment threshold by which an individual process is qualified as a 
suspension candidate; the minimum number of active processes when processes are being 
suspended; and the minimum number of elapsed seconds of activity for a process after 
reactivation. 

These parameters and their default values (shown in parentheses) are : 

h High memory-overcommitment threshold (6) 

w Wait to reactivate suspended processes ( 1  second) 

p Process memory-overcommitment threshold (4) 

m Minimum degree of multiprogramming (2) 

e Elapsed time exempt from suspension (2 seconds) 

All parameters are positive integer values. 

The h Parameter 

The h parameter controls the threshold defining memory overcommitment. Memory load 
control attempts to suspend processes when this threshold is exceeded during any 
one-second period. The threshold is a relationship between two direct measures: the 
number of pages written to paging space in the last second, and the number of page steals 
occurring in the last second. The number of page writes is usually much less than the 
number of page steals. Memory is considered overcommitted when: 

number of page writes in  last second 1 
> --

number of page steals in last second h 

As this fraction increases, thrashing becomes more likely. The default value of 6 for 
h means that the system is considered to be likely to thrash when the fraction of page 
writes to page steals exceeds 17%. A lower value of h (which can be as low as zero-the 
test is made without an actual division) raises the thrashing detection threshold; that is, the 
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system is allowed to come closer to thrashing before processes are suspended. The above 
fraction was chosen as a thrashing threshold because it is comparatively 
configuration-independent. Regardless of the disk paging capacity and the number of 
megabytes of memory installed in the system, when the above fraction is low, thrashing is 
unlikely. For values near 1 .0, thrashing is certain. Any period of time in which memory is 
not overcommitted we define as a safe period. 

The w Parameter 

The w parameter controls the number of one-second intervals during which the above 
fraction must remain below Ilh before suspended processes are reactivated. The default 
value of one second is close to the minimum value allowed, zero. A value of one second 
aggressively attempts to reactivate processes as soon as a one-second safe period has 
occurred. Large values of w run the risk of unnecessarily poor response times for 
suspended processes, while the processor is idle for lack of active processes to run. 

The p Parameter 

The p parameter determines whether a process is eligible for suspension. Analogous to the 
h parameter, the p parameter is used to set a threshold for the ratio of two measures that 
are maintained for every process. The two measures are the number of repages (defined in 
the earlier section on page replacement) that the process has accumulated in the last 
second and the number of page faults that the process has accumulated in the last second. 
A high ratio of repages to page faults means the individual process is thrashing. A process 
is considered eligible for suspension (it is thrashing or contributing to overall thrashing) 
when: 

number of repages in last second 1 
> 

number of page faults in last second p 

The default value of p is 4, meaning that a process is considered to be thrashing (and 
a candidate for suspension) when the fraction of repages to page faults over the last 
second is greater than 25%. A low value of p (which can be as low as zero-the test is 
made without an actual division) results in a higher degree of individual process thrashing 
being allowed before a process is eligible for suspension. A value of zero means that no 
process can be suspended by memory load control. 

The m Parameter 

The m parameter determines a lower limit for the degree of multiprogramming. The 
degree of multiprogramming is defined as the number of active (not suspended) processes. 
(Each process is counted as one, regardless of the number of threads running in it.) 
Excluded from the count are the kernel process and processes with ( 1 )  fixed priorities with 
priority values less than 60, (2) pinned memory or (3) awaiting events, since no process in 
these categories is ever eligible for suspension. The default value of 2 ensures that at least 
two user processes are always able to be active. Lower values of m, while allowed, mean 
that at times as few as one user process may be active. High values of m effectively defeat 
the ability of memory load control to suspend processes. This parameter is very sensitive 
to configuration and workload. Too small a value of m in a large configuration results in 
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overly aggressive suspension; too large a value of m for a small-memory configuration 
does not allow memory load control to be aggressive enough. The default value of 2 is a 
fail-safe value for small-memory configurations; it is likely to be suboptimal for large 
configurations in which many tens of processes can and should be active to exploit 
available resources. 

For example, if one knows that for a particular configuration and a particular 
workload, approximately 25 concurrent processes can successfully progress, while more 
than 25 concurrent processes run the risk of thrashing, then setting m to 25 may be a 
worthwhile experiment. 

The e Parameter 

Each time a suspended process is reactivated, it is exempt from suspension for a period of 
e elapsed seconds . This is to ensure that the high cost (in disk 1/0) of paging in a 
suspended process's pages results in a reasonable opportunity for progress. The default 
value of e is 2 seconds. 

Once per second, the scheduler (process 0) examines the values of all the above 
measures that have been collected over the preceding one-second interval, and determines 
if processes are to be suspended or activated. If processes are to be suspended, every 
process eligible for suspension by the p and e parameter test is marked for suspension. 
When that process next receives the CPU in user mode, it is suspended (unless doing so 
would reduce the number of active processes below m). The user-mode criterion is applied 
so that a process is ineligible for suspension during critical system activities performed on 
its behalf. If, during subsequent one-second intervals, the thrashing criterion is still being 
met, additional process candidates meeting the criteria set by p and e are marked for 
suspension. When the scheduler subsequently determines that the safe-interval criterion 
has been met and processes are to be reactivated, some number of suspended processes are 
put on the run queue (made active) every second. 

Suspended processes are reactivated ( 1 )  by priority and (2) by the order in which 
they were suspended. The suspended processes are not all reactivated at once. A value for 
the number of processes reactivated is selected by a formula that recognizes the number of 
then-active processes and reactivates either one-fifth of the number of then-active 
processes or a monotonically increasing lower bound, whichever is greater. This cautious 
strategy results in increasing the degree of multiprogramming roughly 20% per second. 
The intent of this strategy is to make the rate of reactivation relatively slow during the first 
second after the safe interval has expired, while steadily increasing the reintroduction rate 
in subsequent seconds. If the memory-overcommitment condition recurs during the course 
of reactivating processes, reactivation is halted; the "marked to be reactivated" processes 
are again marked suspended; and additional processes are suspended in accordance with 
the above rules. 

The six parameters of the memory-load-control facility can be set by the system 
administrator via the schedtune command. Techniques for tuning the memory-load-con
trol facility are described in Chapter 6, "Monitoring and Tuning Memory Use." 
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Allocation and Reclamation of Paging Space Slots 

AIX supports two schemes for allocation of paging-space slots . Under the normal, 
late-allocation algorithm, a paging slot is allocated to a page of virtual memory only when 
that page is first read from or written into. That is the first time that the page's content is of 
interest to the executing program. 

Many programs exploit late allocation by allocating virtual-memory address ranges 
for maximum-sized structures and then only using as much of the structure as the situation 
requires. The pages of the virtual-memory address range that are never accessed never 
require real-memory frames or paging-space slots . 

This technique does involve some degree of risk. If all of the programs running in a 
machine happened to encounter maximum-size situations simultaneously, paging space 
might be exhausted. Some programs might not be able to continue to completion. 

The second AIX paging-space-slot-allocation scheme is intended for use in 
installations where this situation is likely, or where the cost of failure to complete is 
intolerably high. Aptly called early allocation, this algorithm causes the appropriate 
number of paging-space slots to be allocated at the time the virtual-memory address range 
is allocated, for example, with malloc. If there are not enough paging-space slots to 
support the malloc, an error code is set. The early-allocation algorithm is invoked with: 

export PSALLOC=early 

This causes all future programs execed in the environment to use early allocation. It 
does not affect the currently executing shell. 

Early allocation is of interest to the performance analyst mainly because of its 
paging-space size implications. Many existing programs make use of the "malloc a lot, 
use what you need" technique. If early allocation is turned on for those programs, 
paging-space requirements can increase many fold. Whereas the normal recommendation 
for paging-space size is at least twice the size of the system's  real memory, the 
recommendation for systems that use PSALLOC=early is at least four times real memory 
size. Actually, this is just a starting point. You really need to analyze the virtual storage 
requirements of your workload and allocate paging spaces to accomodate them. As an 
example, at one time the AIXwindows server required 250MB of paging space when run 
with early allocation. 

You should remember, too, that paging-space slots are only released by process (not 
thread) termination or by the disclaim system call. They are not released by free. 

See "Placement and Sizes of Paging Spaces" on page 69 for more information on 
paging space allocation and monitoring. 

Performance Overview of AIX Management 
of Fixed-Disk Storage 

The figure "Organization of Fixed-Disk Data (Unmirrored)" illustrates the hierarchy of 
structures used by AIX to manage fixed-disk storage. Each individual disk drive, called a 
physical volume (PV), has a name, such as I dev /hdi skO . If the physical volume is in 
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use, it belongs to a volume group (VG). All of the physical volumes in a volume group are 
divided into physical partitions or PPs of the same size (by default, 2MB in volume 
groups that include physical volumes smaller than 300MB ; 4MB otherwise) . For 
space-allocation purposes, each physical volume is divided into five regions (outer_edge, 
outer_middle, center, inner_middle, and inner_edge) . The number of physical partitions in 
each region varies, depending on the total capacity of the disk drive. 

Within each volume group, one or more logical volumes (LVs) are defined. Each 
logical volume consists of one or more logical partitions. Each logical partition 
corresponds to at least one physical partition. If mirroring is specified for the logical 
volume, additional physical partitions are allocated to store the additional copies of each 
logical partition. Although the logical partitions are numbered consecutively, the 
underlying physical partitions are not necessarily consecutive or contiguous. 

Logical volumes can serve a number of system purposes, such as paging, but each 
logical volume that holds ordinary system or user data or programs contains a single 
journaled file system (JFS). Each JFS consists of a pool of page-size (4096-byte) blocks. 
When data is to be written to a file, one or more additional blocks are allocated to that file. 
These blocks may or may not be contiguous with one another and/or with other blocks 
previously allocated to the file. 

In AIX Version 4. 1 ,  a given file system can be defined as having a fragment size of 
less than 4096 bytes. Fragment size can be 5 1 2, 1024, or 2048 bytes. This allows small 
files to be stored more efficiently. 

For purposes of illustration, the figure shows a bad (but not the worst possible) 
situation that might arise in a file system that had been in use for a long period without 
reorganization. The file /op/filename is physically recorded on a large number of blocks 
that are physically distant from one another. Reading the file sequentially would result in 
many time-consuming seek operations. 

While an AIX file is conceptually a sequential and contiguous string of bytes, the 
physical reality may be very different. Fragmentation may arise from multiple extensions 
to logical volumes as well as allocation/release/reallocation activity within a file system. 
We say a file system is fragmented when its available space consists of large numbers of 
small chunks of space, making it impossible to write out a new file in contiguous blocks. 

Access to files in a highly fragmented file system may result in a large number of 
seeks and longer 1/0 response times (seek latency dominates 1/0 response time) . For 
example, if the file is accessed sequentially, a file placement that consists of many, widely 
separated chunks requires more seeks than a placement that consists of one or a few large 
contiguous chunks. If the file is accessed randomly, a placement that is widely dispersed 
requires longer seeks than a placement in which the file's blocks are close together. 

The effect of a file's placement on 1/0 performance diminishes when the file is 
buffered in memory. When a file is opened in AIX, it is mapped to a persistent data 
segment in virtual memory. The segment represents a virtual buffer for the file; the file's 
blocks map directly to segment pages. The VMM manages the segment pages, reading file 
blocks into segment pages upon demand (as they are accessed) . There are several 
circumstances that cause the VMM to write a page back to its corresponding block in the 
file on disk; but, in general, the VMM keeps a page in memory if it has been accessed 
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Figure 7. Organization of Fixed-Disk Data (Unmirrored) 
recently. Thus, frequently accessed pages tend to stay in memory longer, and logical file 
accesses to the corresponding blocks can be satisfied without physical disk accesses. 

At some point, the user or system administrator may choose to reorganize the 
placement of files within logical volumes and the placement of logical volumes within 
physical volumes to reduce fragmentation and to more evenly distribute the total I/O load. 
"Monitoring and Tuning Disk I/O" on page 130 contains an extensive discussion of 
detecting and correcting disk placement and fragmentation problems. 

Sequential-Access Read Ahead 

The VMM tries to anticipate the future need for pages of a sequential file by observing the 
pattern in which a program is accessing the file. When the program accesses two 
successive pages of the file, the VMM assumes that the program will continue to access 
the file sequentially, and the VMM schedules additional sequential reads of the file. These 
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reads are overlapped with the program processing, and will make the data available to the 
program sooner than if the VMM had waited for the program to access the next page 
before initiating the 1/0. The number of pages to be read ahead is determined by two 
VMM thresholds : 

minpgahead 

maxpgahead 

Number of pages read ahead when the VMM first detects the sequential 
access pattern. If the program continues to access the file sequentially, 
the next read ahead will be for 2 times minpgahead, the next for 4 
times minpgahead, and so on until the number of pages reaches 
maxpgahead. 

Maximum number of pages the VMM will read ahead in a sequential 
file. 

If the program deviates from the sequential-access pattern and accesses a page of 
the file out of order, sequential read ahead is terminated. It will be resumed with 
minpgahead pages if the VMM detects a resumption of sequential access by the program. 
The values of minpgahead and maxpgahead can be set with the vmtune command. 
"Tuning Sequential Read Ahead" on page 141  contains a more extensive discussion of 
read ahead and the groundrules for changing the thresholds. 

Write Behind 

To increase write performance, limit the number of  dirty file pages in  memory, reduce 
system overhead, and minimize disk fragmentation, the file system divides each file into 
1 6KB partitions. The pages of a given partition are not written to disk until the program 
writes the first byte of the next 16KB partition. At that point, the file system forces the 
four dirty pages of the first partition to be written to disk. The pages of data remain in 
memory until their frames are re-used, at which point no additional I/O is required. If a 
program accesses any of the pages before their frames are re-used, no I/O is required. 

The size of the write-behind partitions can be changed with the vmtune command. 

Memory Mapped Fi les and Write Behind 

Normal AIX files are automatically mapped to segments to provide mapped files. This 
means that normal file access bypasses traditional kernel buffers and block I/O routines, 
allowing files to use more memory when the extra memory is available (file caching is not 
limited to the declared kernel buffer area). 

Files can be mapped explicitly with shmat or mmap, but this provides no additional 
memory space for their caching. Applications that shmat or mmap a file explicitly and 
access it by address rather than by read and write may avoid some path length of the 
system-call overhead, but they lose the benefit of the system write-behind feature. When 
applications do not use the write subroutine, modified pages tend to accumulate in 
memory and be written randomly when purged by the VMM page-replacement algorithm 
or the sync daemon. This results in many small writes to the disk that cause inefficiencies 
in CPU and disk utilization, as well as fragmentation that may slow future reads of the 
file. 
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Disk-1/0 Pacing 

Prior to Version 3 .2, users of AIX occasionally encountered long interactive-application 
response times when another application in the system was doing large writes to disk. 
Because most writes are asynchronous, FIFO 1/0 queues of several megabytes could build 
up, which could take several seconds to complete. The performance of an interactive 
process is severely impacted if every disk read spends several seconds working its way 
through the queue. In response to this problem, the VMM has an option called 110 pacing 

to control writes .  
1/0 pacing does not change the interface or processing logic of 1/0. It simply limits 

the number of I/Os that can be outstanding against a file. When a process tries to exceed 
that limit, it is suspended until enough outstanding requests have been processed to reach 
a lower threshold. "Use of Disk-1/0 Pacing" on page 142 describes 110 pacing in more 
detail. 

Disk Array 

A disk array is a set of disk drives that are managed as a group. Different management 
algorithms yield different levels of performance and/or data integrity. These management 
algorithms are identified by different RAID levels .  (RAID stands for redundant array of 
independent disks.)  The RAID levels that are architecturally defined are : :  

RAIDO Data is written on consecutive physical drives, with a fixed number of 
5 12-byte blocks per write. This is analogous to the technique known as 
striping. It has the same data-integrity characteristics as ordinary 
independent disk drives. That is, data integrity is entirely dependent on 
the frequency and validity of backups.  This level of function is 
analogous to the disk striping function described in "Performance 
Implications of Logical Volume Striping" on page 144. 

RAIDl Data is striped, as in RAIDO, but half of the drives are used to mirror the 
other drives. RAIDl resolves some of the data integrity and availability 
concerns with RAIDO if a single drive fails, but becomes equivalent to 
RAlDO when operating with one or more failed drives. Conscientious 
backup is still desirable. This level of function is analogous to the 
logical volume mirroring function of the logical volume manager 

RAID3 Data is striped on a byte-by-byte basis across a set of data drives, while 
a separate parity drive contains a parity byte for each corresponding 
byte position on the data drives. If any single drive fails, its contents can 
be inferred from the parity byte and the surviving data bytes. The parity 
drive becomes the performance bottleneck in this technique, since it 
must be written on each time a write occurs to any of the other disks. 

RAIDS Data is striped block by (5 12-byte) block, but portions of several (not 
necessarily all) of the drives are set aside to hold parity information. 
This spreads the load of writing parity information more evenly. 

RAID devices should be considered primarily a data-integrity and data-availability 
solution, rather than a performance solution. Large RAID configurations tend to be 

29 



limited by the fact that each RAID is attached to a single SCSI adapter. If performance is a 
concern, a given number of disk drives would be better supported by using multiple RAID 
devices attached to multiple SCSI adapters, rather than a single, maximum-sized RAID. 
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3 
An Introduction to 
Multiprocessing 

The old saying, "Many hands make light work," expresses the premise that leads to the 
development of multiple-processor systems. At any given time, there is a technological 
limit on the speed with which a single processor chip can operate. If a system's workload 
cannot be handled satisfactorily by a single processor, one response is to apply multiple 
processors to the problem. 

The success of this response depends not only on the skill of the system designers 
but also on whether the workload is amenable to multiprocessing. In terms of human 
tasks, adding "hands" may be a good idea if the task is answering calls to an "800" 
number, but is dubious if the task is driving a car. 

If improved performance is the objective of a proposed migration from a 
uniprocessor to a multiprocessor system, the following should all be true: 

1. The workload is processor-limited and has saturated its uniprocessor system. 
2. The workload contains multiple processor- intensive elements , such as 

transactions or complex calculations, that can be performed simultaneously and 
independently. 

3. The existing uniprocessor cannot be upgraded or replaced with another 
uniprocessor of adequate power. 

4. One or more considerations, such as a centralized database, preclude dividing the 
workload among multiple uniprocessor systems. 

In general, a uniprocessor solution is preferable when possible, because the 
presence of multiple processors gives rise to performance concerns that are minimal or 
nonexistent in uniprocessor systems. In particular, if point 2 is not true, the performance 
of a multiprocessor can sometimes actually be worse than that of a comparable 
uniprocessor. 

Although unchanged single-thread applications normally function correctly in a 
multiprocessor environment, their performance often changes in unexpected ways. 
Migration to a multiprocessor can improve the throughput of a system, and sometimes can 
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improve the execution time of complex, multithread applications, but seldom improves 
the response time of individual , single-thread commands. 

Getting the best possible performance from a multiprocessor system requires an 
understanding of the operating-system and hardware-execution dynamics that are unique 
to the multiprocessor environment. 

Symmetrical M ultiprocessor (SM P} Concepts 
and Architecture 

As with any change that increases the complexity of the system, the use of multiple 
processors generates design considerations that must be addressed for satisfactory 
operation and performance . The additional complexity gives more scope for 
hardware/software tradeoffs and requires closer hardware/software design coordination 
than in uniprocessor systems . The different combinations of design responses and 
tradeoffs give rise to a wide variety of multiprocessor system architectures. 

This section describes the main design considerations of multiprocessor systems and 
the responses of AIX and the RISC System/6000 to those considerations. 

Perhaps the most fundamental decision in designing a multiprocessor system is 
whether the system will be symmetrical or asymmetrical. 

Symmetrical vs Asymmetrical Multiprocessors 

In an asymmetrical multiprocessor system, the processors are assigned different roles .  
One processor may handle I/O, while others execute user programs, and so forth. Some of 
the advantages and disadvantages of this approach are: 

• By restricting certain operations to a single processor, some forms of data 
serialization and cache coherency problems (see below) can be reduced or 
avoided. Some parts of the software may be able to operate as though they were 
running in a uniprocessor. 

• In some situations, 1/0-operation or application-program processing may be 
faster because it does not have to contend with other parts of the operating 
system or the workload for access to a processor. 

• In other situations, 1/0-operation or application-program processing can be 
slowed because not all of the processors are available to handle peak loads. 

• The existence of a single processor handling specific work creates a unique point 
of failure for the system as a whole. 

In a symmetrical multiprocessor system, all of the processors are essentially 
identical and perform identical functions : 

• All of the processors work with the same virtual and real address spaces. 
• Any processor is capable of running any thread in the system. 
• Any processor can handle any external interrupt. (Each processor handles the 

internal interrupts generated by the instruction stream it is executing. )  
• Any processor can initiate an I/O operation. 

32 An Introduction to Multiprocessing 



This interchangeability means that all of the processors are potentially available to 
handle whatever needs to be done next. The cost of this flexibility is primarily borne by 
the hardware and software designers, although symmetry also makes the limits on the 
multiprocessability of the workload more noticeable, as we shall see. 

Processor 1 n-Chip 
L1 Cache 

Processor 2 
On-Chip 
L1 Cache 

Processor 3 
On-Chip 
L1 Cache 

Processor 4 On-Chip 
L1 Cache 

Figure 8. Symmetrical Multiprocessor System 
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The RISC System/6000 family contains, and AIX Version 4. 1 supports, only 
symmetrical multiprocessors, one form of which is shown in the figure "Symmetrical 
.Multiprocessor System." Different systems may have different cache configurations. 

Although RISC System/6000 multiprocessor systems are technically symmetrical, a 
minimal amount of asymmetry is introduced by the software. A single processor is 
initially in control during the boot process. This first processor to be started is designated 
as the "master processor." To ensure that user-written software continues to run correctly 
during the transition from uniprocessor to multiprocessor environments, device drivers 
and kernel extensions that do not explicitly describe themselves as able to run safely on 
multiple processors are forced to run only on the master processor. This constraint is 
called "funnelling." 

Data Serial ization 

Any storage element that can be read or written by more than one thread may change 
while the program is running. This is generally true of multiprogramming environments as 
well as multiprocessing environments, but the advent of multiprocessors adds to the scope 
and importance of this consideration in two ways: 

• Multiprocessors and thread support make it attractive and easier to write 
applications that share data among threads. 

• The kernel can no longer solve the serialization problem simply by disabling 
interrupts. 

To avoid disaster, programs that share data must arrange to access that data serially, 
rather than in parallel. Before a program touches a shared data item, it must ensure that no 
other program (including another copy of itself running on another thread) will change the 
item. 
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The primary mechanism that is used to keep programs from interfering with one 
another is the lock. A lock is an abstraction that represents permission to access one or 
more data items. Lock and unlock requests are atomic; that is, they are implemented in 
such a way that neither interrupts nor multiprocessor access affect the outcome. All 
programs that access a shared data item must obtain the lock that corresponds to that data 
item before manipulating it. If the lock is already held by another program (or another 
thread running the same program), the requesting program must defer its access until the 
lock becomes available. 

Besides the time spent waiting for the lock, serialization adds to the number of times 
a thread becomes nondispatchable. While the thread is nondispatchable, other threads are 
probably causing the nondispatchable thread's cache lines to be replaced, which will result 
in increased memory-latency costs when the thread finally gets the lock and is dispatched. 

The AIX kernel contains many shared data items, so it must perform serialization 
internally. This means that serialization delays can occur even in an application program 
that does not share data with other programs, because the kernel services used by the 
program have to serialize on shared kernel data. 

Lock Granularity 

A programmer working in a multiprocessor environment must decide how many separate 
locks should be created for shared data. If there is a single lock to serialize the entire set of 
shared data items, lock contention is comparatively likely. If each distinct data item has its 
own lock, the probability of two threads contending for that lock is comparatively low. 
Each additional lock and unlock call costs processor time, however, and the existence of 
multiple locks makes a deadlock possible. At its simplest, deadlock is the situation shown 
in the figure "Deadlock," in which Thread I owns Lock A and is waiting for Lock B,  
while Thread 2 owns Lock B and is waiting for Lock A.  Neither program will ever reach 
the unlock call that would break the deadlock. The usual preventive for deadlock is to 
establish a protocol by which all of the programs that use a given set of locks must always 
acquire them in exactly the same sequence. 

Thread 1 Kernel 

lock A • lock 
� grant 

lock .... 
grant 

lock B • lock 
wait 
lock .... 

unlock A wait 

Figure 9. Deadlock 
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Locking Overhead 

Requesting locks, waiting for locks, and releasing locks add processing overhead in 
several ways: 

• A program that supports multiprocessing always does the same lock and unlock 
processing, even though it is running in a uniprocessor or is the only user in a 
multiprocessor system of the locks in question. 

• When one thread requests a lock held by another thread, the requesting thread 
may spin for a while or be put to sleep and, if possible, another thread dispatched. 
This consumes processor time. 

• The existence of widely used locks places an upper bound on the throughput of 
the system. For example, if a given program spends 20% of its execution time 
holding a mutual-exclusion lock, at most 5 instances of that program can run 
simultaneously, regardless of the number of processors in the system. In fact, 
even 5 instances would probably never be so nicely synchronized as to avoid 
waiting on one another (see "Multiprocessor Throughput Scalability" on page 
38) .  

Cache Coherency 

In designing a multiprocessor, engineers give considerable attention to ensuring cache 
coherency. They succeed; but their success is not free. To understand why cache 
coherency has a performance cost, we need to understand the problem being attacked: 

If each processor has a cache (see the "Symmetrical Multiprocessor 
System" figure on page 33), which reflects the state of various parts of 
memory, it is possible that two or more caches may have copies of the 
same line. It is also possible that a given line may contain more than one 
lockable data item. If two threads make appropriately serialized changes to 
those data items, the result could be that both caches end up with different, 
incorrect versions of the line of memory; that is, the system's state is no 
longer coherent - the system contains two different versions of what is 
supposed to be the content of a specific area of memory. 

The solutions to the cache coherency problem usually include invalidating all but 
one of the duplicate lines. Although the invalidation is done by the hardware, without any 
software intervention, any processor whose cache line has been invalidated will have a 
cache miss, with its attendant delay, the next time that line is addressed. 

For a detailed background discussion of RISC System/6000 addressing architecture 
and cache operation, see Appendix C. "Cache and Addressing Considerations ." 

Processor Affinity 

If a thread is interrupted and later redispatched to the same processor, there may still be 
lines in that processor 's cache that belong to the thread. If the thread is dispatched to a 
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different processor, it will probably experience a series of cache misses until its cache 
working set has been retrieved from RAM . On the other hand, if a dispatchable thread has 
to wait until the processor it was previously running on is available, the thread may 
experience an even longer delay. 

Processor affinity is the dispatching of a thread to the processor that was previously 
executing it. The degree of emphasis on processor affinity should vary directly with the 
size of the thread's cache working set and inversely with the length of time since it was 
last dispatched. 

In AIX Version 4. 1 ,  processor affinity can be achieved by binding a thread to a 
processor. A thread that is bound to a processor can run only on that processor, regardless 
of the status of the other processors in the system. 

Memory and Bus Contention 

In a uniprocessor, contention for some internal resources, such as banks of memory and 
1/0 or memory buses, is usually a minor component processing time. In a multiprocessor 
these effects can become more significant, particularly if cache-coherency algorithms add 
to the number of accesses to RAM . 

SMP Performance Issues 

Workload Concurrency 

The primary performance issue that is unique to SMP systems is workload concurrency, 

which can be expressed as, "Now that we've got n processors, how do we keep them all 
usefully employed?" If only one processor in a four-way multiprocessor system is doing 
useful work at any given time, it is no better than a uniprocessor- possibly worse, 
because of the extra code to avoid interprocessor interference. 

Workload concurrency is the complement of serialization. To the extent that the 
system software or the application workload-or the interaction of the two-require 
serialization, workload concurrency suffers. 

Workload concurrency may also be decreased, more desirably, by increased 
processor affinity. The improved cache efficiency gained from processor affinity may 
result in quicker completion of the program. Workload concurrency is reduced (unless 
there are more dispatchable threads available), but response time is improved. 

A component of workload concurrency, process concurrency, is the degree to which 
a multithread process has multiple dispatchable threads at all times. 

Throughput 

The throughput of an SMP system is mainly dependent on: 

• A consistently high level of workload concurrency. More dispatchable threads 
than processors at some times cannot compensate for idle processors at other 
times. 

• The amount of lock contention. 
• The degree of processor affinity. 
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Response Time 

The response time of a particular program in an SMP system is dependent on: 

• The process-concurrency level of the program. If the program consistently has 
two or more dispatchable threads, its response time will probably improve in an 
SMP environment. If the program consists of a single thread, its response time 
will be, at best, comparable to that in a uniprocessor of the same speed. 

• The amount of lock contention of other instances of the program or with other 
programs that use the same locks . 

• The degree of processor affinity of the program. If each dispatch of the program 
is to a different processor that has none of the program's cache lines, the program 
may run more slowly than in a comparable uniprocessor. 

Adapting Programs to an SMP Environment 

The following terms are used to describe the extent to which an existing program has been 
modified, or a new program designed, to operate in an SMP environment: 

SMP safe Avoidance in a program of any action, such as unserialized access to 
shared data, that would cause functional problems in an SMP 
environment. This term, when used alone, usually refers to a program 
that has undergone only the minimum changes necessary for correct 
functioning in an SMP environment. 

SMP efficient Avoidance in a program of any action that would cause functional or 
performance problems in an SMP environment. A program that is 
described as SMP efficient is generally assumed to be SMP safe as well. 
An SMP-efficient program has usually undergone additional changes to 
minimize incipient bottlenecks . 

SMP exploiting Adding features to a program that are specifically intended to make 
effective use of an SMP environment, such as multithreading. A 
program that is described as SMP exploiting is generally assumed to be 
SMP safe and SMP efficient as well. 

SMP Workloads 

The effect of additional processors on performance is dominated by certain characteristics 
of the specific workload being handled. The following sections discuss those critical 
characteristics and their effects . 

Workload M u lt iprocessabi l ity 

Multiprogramming operating systems like AIX running heavy workloads on fast 
computers like the RISC System/6000 give our human senses the impression that several 
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things are happening simultaneously. In fact, many demanding workloads do not have 
large numbers of dispatchable threads at any given instant, even when running on a 
single-processor system where serialization is less of a problem. Unless there are always 
at least as many dispatchable threads as there are processors, one or more processors will 
be idle part of the time. 

The number of dispatchable threads is: 

The total number of threads in the system, 

thread, 

minus the number of threads that are waiting for 1/0, 
minus the number of threads that are waiting for a shared resource, 
minus the number of threads that are waiting for the results of another 

minus the number of threads that are sleeping at their own request. 
A workload can be said to be multiprocessable to the extent that it presents at all 

times as many dispatchable threads as there are processors in the system. Note that this 
does not mean simply an average number of dispatchable threads equal to the processor 
count. If the number of dispatchable threads is zero half the time and twice the processor 
count the rest of the time, the average number of dispatchable threads will equal the 
processor count, but any given processor in the system will be working only half the time. 

Increasing the multiprocessability of a workload involves one or both of: 
• Identifying and resolving any bottlenecks that cause threads to wait 
• Increasing the total number of threads in the system 
These solutions are not independent. If there is a single, major system bottleneck, 

increasing the number of threads of the existing workload that pass through the bottleneck 
will simply increase the proportion of threads waiting. If there is not currently a 
bottleneck, increasing the number of threads may create one. 

M u ltiprocessor T hroughput Scalabi l ity 

All of these factors contribute to what is called the scalability of a workload. Scalability is 
the degree to which workload throughput benefits from the availability of additional 
processors. It is usually expressed as the quotient of the throughput of the workload on a 
multiprocessor divided by the throughput on a comparable uniprocessor. For example, if a 
uniprocessor achieved 20 requests per second on a given workload and a four-processor 
system achieved 58 requests per second, the scaling factor would be 2.9. That workload is 
highly scalable. A workload that consisted exclusively of long-running, compute-inten
sive programs with negligible 1/0 or other kernel activity and no shared data might 
approach that level. Most real-world workloads would not. Scalability is very difficult to 
estimate. Whenever possible, scalability assumptions should be based on measurements of 
authentic workloads. 

The figure "Multiprocessor Scaling" illustrates the problems of scaling. The 
workload consists of a series of commands. Each command is about one-third normal 
processing, one-third 1/0 wait, and one-third processing with a lock held. On the 
uniprocessor, only one command can actually be processing at a time, regardless of 
whether or not the lock is held. In the time interval shown (five times the standalone 
execution time of the command), the uniprocessor handles 7.67 of the commands. 
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On the multiprocessor, there are two processors to handle program execution, but 
there is still only one lock. For simplicity, all of the lock contention is shown affecting 
processor B. In the period shown, the multiprocessor handles 14 commands. The scaling 
factor is thus 1 .83.  We stop at two processors because more would not change the 
situation. The lock is now in use 1 00% of the time. In a four-way multiprocessor, the 
scaling factor would be 1 . 83 or less. 

Real programs are seldom as symmetrical as the commands in the illustration. 
Remember, too,  that we have only taken into account one dimension of 
contention-locking. If we had included cache-coherency and processor-affinity effects, 
the scaling factor would almost certainly be lower yet. 
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2-Way � � fa � tl2J � m Multi-
processor e{ � � � � � � � 

fa � t?J l§1 V%I � 
121 Processing D Waiting for 1/0 � Holding Lock (or Lock on MP) 

Figure 1 0. Multiprocessor Scaling 
The point of this example is that workloads often cannot be made to run faster 

simply by adding processors. It is also necessary to identify and minimize the sources of 
contention among the threads. 

Some published benchmark results imply that high levels of scalability are easy to 
achieve. Most such benchmarks are constructed by running combinations of small, 
CPU-intensive programs that use almost no kernel services. These benchmark results 
represent an upper bound on scalability, not a realistic expectation. 
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M ulti processor Response T i me 

A multiprocessor can only improve the execution time of an individual program to the 
extent that the program can run multithreaded. There are several ways to achieve parallel 
execution of parts of a single program: 

• Making explicit calls to libpthreads subroutines (or, in older programs, to 
fork()) to create multiple threads that run simultaneously. 

• Processing the program with a parallelizing compiler or preprocessor that detects 
sequences of code that can be executed simultaneously and generates multiple 
threads to run them in parallel. 

• Making use of a software package that is itself multithreaded. 

Unless one or more of these techniques is used, the program will run no faster in a 
multiprocessor system than in a comparable uniprocessor. In fact, since it may experience 
more locking overhead and delays due to being dispatched to different processors at 
different times, it may be significantly slower. 

Even if all of the applicable techniques are exploited, the maximum improvement is 
limited by a rule that has been called Amdahl's Law: 

If a fraction x of a program's uniprocessor execution time, t, can only be 
processed sequentially, the improvement in execution time in an n-way 
multiprocessor over execution time in a comparable uniprocessor (the speed-up) 
is given by the equation: 

uniprocessor time t 
speed-up = = -----

seq time + mp time xt + (x- t )t 

Jim speed-up = _.!_ 
n-+oo x 

n 

= 
1 

x + x  

n 

As an example, if 50% of a program's processing must be done sequentially, and 
50% can be done in parallel, the maximum response-time improvement is less than a 
factor of 2 (in an otherwise-idle 4-way multiprocessor, at most 1 .6) 

SMP Scheduling 

Thread support, added to AIX in Version 4. 1 ,  divides program-execution control into two 
elements: 

• A process is a collection of physical resources required to run the program, such 
as memory and access to files. 

• A thread is the execution state of an instance of the program, such as the current 
contents of the instruction-address register and the general-purpose registers. 
Each thread runs within the context of a given process, and uses that process's 
resources. Multiple threads can run within a single process, sharing its resources. 
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In previous versions of AIX, the CPU scheduler dispatched processes. In AIX 
Version 4, the scheduler dispatches threads. 

In the SMP environment, the availability of thread support makes it easier and less 
expensive to implement SMP-exploiting applications. Forking multiple processes to 
create multiple flows of control is cumbersome and expensive, since each process has its 
own set of memory resources and requires considerable system processing to set up. 
Creating multiple threads within a single process requires less processing and uses less 
memory. 

Thread support exists at two levels :  libpthreads.a support in the application 
program environment and kernel thread support. In AIX Version 4. 1 ,  scheduling of 
threads is almost entirely a function of kernel thread support. 

Default Scheduler Processing of Migrated Workloads 

The new division between processes and threads is invisible to existing programs. In fact, 
workloads migrated directly from earlier releases of AIX create processes as before. Each 
new process is created with a single thread (the initial thread) that contends for the CPU 
with the threads of other processes. The default attributes of the initial thread, in 
conjunction with the new scheduler algorithms, minimize changes in system dynamics for 
unchanged workloads. 

Priorities can be manipulated with the nice and renice commands and the setpri 
system call, as before. The scheduler allows a given thread to run for at most one time 
slice (normally lOms) before forcing it to yield to the next dispatchable thread of the same 
or higher priority. 

Schedul ing Algorithm Variables 

Several variables affect the scheduling of threads. Some are unique to thread support; 
others are elaborations of process-scheduling considerations: 

• Priority. A thread's priority value is the basic indicator of its precedence in the 
contention for processor time. 

• Scheduler run queue position. A thread's position in the scheduler's queue of 
dispatchable threads reflects a number of preceding conditions. 

• Scheduling policy. This thread attribute determines what happens to a running 
thread at the end of the time slice. 

• Contention scope. A thread's contention scope determines whether it competes 
only with the other threads within its process or with all threads in the system. 

• Processor affinity. The degree to which affinity is enforced affects performance. 

The combinations of these considerations can seem complex, but there are 
essentially three distinct approaches from which to choose in managing a given process: 

• Default .  The process  has one thread, whose priority varies with CPU 
consumption and whose scheduling policy, SCHED_OTHER, is comparable to 
the AIX Version 3 algorithm. 

• Process-level control. The process can have one or more threads, but the 
scheduling policy of those threads is left as the default SCHED_OTHER, which 
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permits the use of the existing AIX Version 3 methods of controlling nice values 
and fixed priorities . All of these methods affect all of the threads in the process 
identically. If setpriO is used, the scheduling policy of all of the threads in the 
process is set to SCHED _RR. 

• Thread-level control. The process can have one or more threads. The scheduling 
policy of these threads is set to SCHED_RR or SCHED_FIFO, as appropriate. 
The priority of each thread is fixed, and is manipulated with thread-level 
subroutines. 

Processor Affi nity and Binding 

Other things being equal, i t  i s  desirable to dispatch a thread o n  the processor i t  last used. 
This dispatching criterion is called processor affinity. The level of emphasis on processor 
affinity can vary. 

The highest possible degree of processor affinity is to bind a thread to a specific 
processor. Binding means that the thread will be dispatched to that processor only, 
regardless of the availability of other processors. The bindprocessor command and 
subroutine bind the thread (or threads) of a specified process to a particular processor. 

This technique can be useful for CPU-intensive programs that experience few 
interrupts. It can sometimes be counterproductive for ordinary programs, because it may 
delay the redispatch of a thread after an 1/0 until the processor to which the thread is 
bound becomes available. If the thread has been blocked for the duration of an 1/0 
operation, it is unlikely that much of its processing context remains in the caches of the 
processor to which it is bound. It would probably be better served if it were dispatched to 
the next available processor. 
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4 
Performance-Conscious 
Planning, Design, and 
Implementation 

A program that does not perform acceptably is not functional. 
Every program has to satisfy a set of users-admittedly, sometimes a large and 

diverse set. If the performance of the program is truly unacceptable to a significant group 
of those users, it will not be used. A program that is not being used is not performing its 
intended function. 

This is true of licensed software packages as well as user-written applications, 
although most developers of software packages are aware of the effects of poor 
performance and take pains to make their programs run as fast as possible. Unfortunately, 
they can't anticipate all of the environments and uses that their programs will experience. 
Final responsibility for acceptable performance falls on the people who select or write, 
plan for, and install software packages. 

This chapter attempts to describe the stages by which a programmer or system 
administrator can ensure that a newly written or purchased program has acceptable 
performance. (Wherever the word programmer appears alone, the term includes system 
administrators and anyone else who is responsible for the ultimate success of a program.) 

The way to achieve acceptable performance in a program is to identify and quantify 
acceptability at the start of the project and never lose sight of the measures and resources 
needed to achieve it. This prescription borders on banal, but some programming projects 
consciously reject it. They adopt a policy that might be fairly described as "design, code, 
debug, maybe document, and if we have time, fix up the performance." 

The only way that programs can predictably be made to function in time, not just in 
logic, is by integrating performance considerations in the software planning and 
development process. Advance planning is perhaps more critical when existing software 
is being installed, because the installer has fewer degrees of freedom than the developer. 

Although the detail of this process may seem burdensome for a small program, 
remember that we have a second agenda. Not only must the new program have 
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satisfactory performance; we must also ensure that the addition of that program to an 
existing system does not cause the performance of other programs run on that system to 
become unsatisfactory. 

Identifying the Components of the Workload 

Whether the program is new or purchased, small or large, the developers, the installers, 
and the prospective users have assumptions about the use of the program, such as : 

• Who will be using the program 
• Situations in which the program will be run 
• How often those situations will arise and at what times of the hour, day, month, 

year 
• Whether those situations will also require additional uses of existing programs 
• Which systems the program will run on 
• How much data will be handled, and from where 
• Whether data created by or for the program will be used in other ways 

Unless these ideas are elicited as part of the design process, they will probably be 
vague, and the programmers will almost certainly have different assumptions than the 
prospective users . Even in the apparently trivial case in which the programmer is also the 
user, leaving the assumptions unarticulated makes it impossible to compare design to 
assumptions in any rigorous way. Worse, it is impossible to identify performance 
requirements without a complete understanding of the work being performed. 

Documenting Performance Requirements 

In identifying and quantifying performance requirements, it is important to identify the 
reasoning behind a particular requirement. Users may be basing their statements of 
requirements on assumptions about the logic of the program that do not match the 
programmer's assumptions. At a minimum, a set of performance requirements should 
document: 

• The maximum satisfactory response time that will be experienced most of the 
time for each distinct type of user-computer interaction, along with a definition 
of "most of the time." Remember that response time is measured from the time 
that the user performs the action that says "Go" until the user receives enough 
feedback from the computer to continue the task. It is the user's subjective wait 
time. It is not "from entry to my subroutine until the first write statement." 
If the user denies interest in response time and indicates that only the answer is of 
interest, you can ask whether (ten times your current estimate of stand-alone 
execution time) would be acceptable. If the answer is "yes," you can proceed to 
discuss throughput. Otherwise, you can continue the discussion of response time 
with the user's full attention. 

• The response time that is just barely tolerable the rest of the time. Anything 
longer and people start thinking the system is down--or at least blaming the 
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computer for a loss of productivity and becoming averse to using it. You also 
need to specify "rest of the time;" the peak minute of a day, 1 % of interactions, 
etc. This should also be in user-subjective terms at first. For example, response 
time degradations may be more costly or painful at a particular time of the day. 

• The typical throughput required and the times it will be taking place. Again, this 
should not be shrugged aside. For example, the requirement for one program 
might be: "This program only runs twice a day-at 1 0:00 a.m. and 3: 1 5  p.m." If 
this is a CPU-limited program that runs for 1 5  minutes and is planned to run on a 
multiuser system, some negotiation is in order. 

• The size and timing of maximum-throughput periods. 
• The mix of requests expected and how the mix varies with time. 
• The number of users per machine and total number of users, if this is a multiuser 

application. This description should include the times these users log on and off, 
as well as their assumed rates of keystrokes, completed requests, and think times. 
You may want to investigate whether think times vary systematically with the 
preceding and/or following request. 

• Any assumptions the user is making about the machines the workload will run 
on. If the user has a specific existing machine in mind, you should know that 
now. Similarly, if the user is assuming a particular type, size, cost, location, 
interconnection, or any other variable that will constrain your ability to satisfy 
the preceding requirements, that assumption becomes part of the requirements as 
well. Satisfaction will probably not be assessed on the system where the program 
is developed, tested, or first installed. 

Estimating the Resource Requirements of the Workload 

Unless you are purchasing a software package that comes with detailed 
resource-requirement documentation, resource estimation can be the most difficult task in 
the performance-planning process. The difficulty has several causes: 

• In AIX there are several ways to do anything. One can write a C (or other HLL) 
program, a shell script, an awk script, a sed script, an AIX windows dialog, etc. 
Some techniques that may seem particularly suitable for the algorithm and for 
programmer productivity are extraordinarily expensive from the performance 
perspective. 
A useful guideline is that, the higher the level of abstraction, the more caution is 
needed to ensure that one doesn't  receive a performance surprise. One must think 
very carefully about the data volumes and number of iterations implied by some 
apparently harmless constructs. 

• In AIX it is difficult to define the precise cost of a single process. This difficulty 
is not merely technical; it is philosophical. If multiple instances of a given 
program run by multiple users are sharing pages of program text, which process 
should be charged with those pages of memory? The operating system leaves 
recently used file pages in memory to provide a caching effect for programs that 
reaccess that data. Should programs that reaccess data be charged for the space 
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that was used to keep the data around? The granularity of some measurements 
such as the system clock can cause variations in the CPU time attributed to 
successive instances of the same program. 

There are two approaches to dealing with resource-report ambiguity and 
variability. The first is to ignore the ambiguity and to keep eliminating sources of 
variability until the measurements become acceptably consistent. The second 
approach is to try to make the measurements as realistic as possible and describe 
the results statistically. We prefer the latter, since it yields results that have some 
correlation with production situations. 

• AIX systems are rarely dedicated to the execution of a single instance of a single 
program. There are almost always daemons running, frequently communications 
activity, often workload from multiple users. These activities seldom combine 
additively. For example, increasing the number of instances of a given program 
may result in few new program text pages being used, because most of the 
program was already in memory. However, the additional process may result in 
more contention for the processor's  caches, so that not only do the other 
processes have to share processor time with the newcomer, but all processes may 
experience more cycles per instruction-in effect, a slowdown of the 
processor-as a result of more frequent cache misses. 

Our recommendation is to keep your estimate as close to reality as the specific 
situation allows:  
- If the program exists, measure the existing installation that most closely 

resembles your own requirements. 
- If no suitable installation is available, do a trial installation and measure a 

synthetic workload. 
- If it is impractical to generate a synthetic workload that matches the 

requirements, measure individual interactions and use the results as input to a 
simulation. 

- If the program doesn't exist yet, find a comparable program that uses the same 
language and general structure, and measure it. Again, the more abstract the 
language, the more care is needed in determining comparability. 

- If no comparable program exists, prototype the main algorithms in the 
planned language, measure the prototype, and model the workload. 

- If, and only if, measurement of any kind is impossible or infeasible should 
you make an educated guess .  If it is necessary to guess at resource 
requirements during the planning stage, it is even more important than usual 
that the actual program be measured at the earliest possible stage of its 
development. 

In resource estimation, we are primarily interested in four dimensions (in no 
particular order) : 

CPU time Processor cost of the workload 

Disk accesses Rate at which the workload generates disk reads or writes 

Real memory Amount of RAM the workload requires 
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LAN traffic Number of packets the workload generates and the number of bytes of 
data exchanged 

The following sections describe, or refer you to descriptions of, the techniques for 
determining these values in the various situations just described. 

Measuring Workload Resources 

If the real program, a comparable program, or a prototype is available for measurement, 
the choice of technique depends on: 

• Whether or not the system is processing other work in addition to the workload 
we want to measure. 

• Whether or not we have permission to use tools that may degrade performance 
(for example, is this system in production or is it dedicated to our use for the 
duration of the measurement?) . 

• The degree to which we can simulate or observe an authentic workload. 

Measuring a Complete Workload on a Dedicated System 

This is the ideal situation because it allows us to use measurements that include system 
overhead as well as the cost of individual processes. 

To measure CPU and disk activity, we can use iostat. The command 

$ iostat 5 >iostat . output 

gives us a picture of the state of the system every 5 seconds during the measurement 
run. Remember that the first set of iostat output contains the cumulative data from the last 
boot to the start of the iostat command. The remaining sets are the results for the 
preceding interval, in this case 5 seconds. A typical set of iostat output on a large system 
looks like this: 

tty :  t in tout cpu : % user % sys % idle % i owait 
1 . 2  1 .  6 60 . 2  10 . 8  2 3 . 4  5 . 6  

Disks : % tm_ac t  Kbps tps Kb_read Kb_wrtn 
hdi skl 0 . 0  0 . 0  0 . 0  0 0 
hdi sk2 0 . 0  0 . 0  0 . 0  0 0 
hdisk3 0 . 0  0 . 0  0 . 0  0 0 
hdisk4 0 . 0  0 . 0  0 . 0  0 0 
hdi skll 0 . 0  0 . 0  0 . 0  0 0 
hdi sk5 0 . 0  0 . 0  0 . 0  0 0 
hdi sk6 0 . 0  0 . 0  0 . 0  0 0 
hdisk7 3 . 0 1 1 . 2  0 . 8 8 4 8  
hdisk8 1 .  8 4 . 8  1 . 2  0 2 4  
hdi sk9 0 . 0  0 . 0  0 . 0  0 0 
hdi skO 2 . 0 4 . 8  1 . 2  2 4  0 
hdisklO 0 . 0  0 . 0  0 . 0  0 0 

To measure memory, we would use svmon. The command svmon -G gives a 
picture of overall memory use. The statistics are in terms of 4KB pages: 

$ svmon -G 
m e m o r y  i n u s e p i n p g s p a c e 

s i z e  inuse free pin work pers c lnt work pers c lnt s i z e  inuse 
2 4 5 7 6  2 4 3 6 6  2 10 2 209 1 5 6 5 9  6 8 6 3  1 8 4 4  2 2 0 9  0 0 40960 2 62 7 0  
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This machine's 96MB memory is fully used. About 64% of RAM is in use for 
working segments-the read/write memory of running programs .  If there are 
long-running processes that we are interested in ,  we can review their memory 
requirements in detail. The following example determines the memory used by one of user 
xxxxxx's processes. 

$ ps - fu xxxxxx 

USER PID PPID 
xxxxxx 2 803 1 5 1 4 4 5  
xxxxxx 5 1 4 4 5  5 4 7 7 2  
xxxxxx 5 4 7 7 2  6 8 6 4  

$ svmon -P 5 1 4 4 5  
Pid 

5 1 4 4 5  

Pid : 5 1 4 4 5  
Command : ksh 

c 
1 5  

1 
0 

Segid Type Des cription 

STIME TTY 
14 : 01 : 5 6 pts / 9  
07 : 5 7 : 4 7 pts / 9  
07 : 5 7 : 4 7 

Command 
ksh 

TIME CMD 

0 : 00 ps - fu xxxxxx 
0 : 00 -ksh 
0 : 02 rlogind 

Inuse 
1 6 6 8  

Pin 
2 

Inuse Pin Pgspace Addres s Range 
8 2 7 0  pers /dev/ f s lv00 : 8 607 9 1 0 0 0 . .  0 

Pg space 
4077 

4 809 work shared l ibrary 1 5 5 8  0 403 9 0 . .  4 6 7 3  : 6012 3  . .  6 5 5 3 5  
9 2 1 3  work private 3 7  2 3 8  0 . .  3 1  6 5 406 . .  6 5 5 3 5  

Bal pers code , / dev/ hd2 : 1 4 400 7 2  0 0 0 . .  9 1  

The working segment (92 1 3), with 3 7  pages i n  use, i s  the cost o f  this instance of 
ksh. The 1 558-page cost of the shared library and the 72-page cost of the ksh executable 
are spread across all of the running programs and all instances of ksh, respectively. 

If we believe that our 96MB system is larger than necessary, we can use the rmss 
command to reduce the effective size of the machine and remeasure the workload, If 
paging increases significantly or response time deteriorates, we have reduced memory too 
far. This technique can be continued until we find a size that just runs our workload 
without degradation. See "Assessing Memory Requirements via the rmss Command" 
beginning on page 1 15 for more information on this technique. 

The primary command for measuring network usage is netstat. The following 
example shows the activity of a specific Token-Ring interface: 

$ nets tat - I trO 5 
input { trO } output input { Total } output 

packet s  errs packets errs col ls packet s  errs packets errs col l s  
3 5 5 5 2 8 2 2  2 1 3 4 8 8  302 8 3 6 9 3  0 0 3 5 608011 2 1 3 4 8 8  303 3 8 8 8 2  0 0 

300 0 4 2 6  0 0 300 0 4 2 6  0 0 
2 7 2  2 1 9 0  0 0 2 7 2  2 1 90 0 0 
2 3 1  0 1 9 2  0 0 2 3 1  0 1 9 2  0 0 
1 4 3  0 1 1 3  0 0 1 4 3  0 1 1 3  0 0 
408 1 1 7 6  0 0 408 1 1 7 6  0 0 

The first line of the report shows the cumulative network traffic since the last boot. 
Each subsequent line shows the activity for the preceding 5-second interval. 
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Measuring a Complete Workload on a Production System 

The techniques of measurement on production systems are similar to those on dedicated 
systems, but we must take pains to avoid degrading system performance. For example, the 
svmon -G command is very expensive to run. The one shown earlier took about 5 
seconds of CPU time on a Model 950. Estimates of the resource costs of the most 
frequently used performance tools are shown in Appendix E, "Performance of the 
Performance Tools." 

Probably the most cost-effective tool is vmstat, which supplies data on memory, 
I/O, and CPU usage in a single report. If the vmstat intervals are kept reasonably long, say 
10 seconds, the average cost is low-about .01  CPU seconds per report on a model 950. 
See "Identifying the Performance-Limiting Resource" on page 80 for more information 
on the use of vmstat. 

Measuring a Partial Workload on a Production System 

By partial workload we mean measuring a part of the production system's workload for 
possible transfer to or duplication on a different system. Because this is a production 
system, we must be as unobtrusive as possible. At the same time, we have to analyze the 
workload in more detail to distinguish between the parts we are interested in and those we 
aren' t. To do a partial measurement we need to discover what the workload elements of 
interest have in common. Are they: 

• The same program or a small set of related programs? 
• Work performed by one or more specific users of the system? 
• Work that comes from one or more specific terminals? 
Depending on the commonality, we could use one of the following: 

ps -e f  I grep pgmname 
ps - fuusername, . . . 
ps - f t t tyname, . . . 

to identify the processes of interest and report the cumulative CPU time consumption of 
those processes. We can then use svmon Gudiciously !)  to assess the memory use of the 
processes. 

Measuring an Individual Program 

There are many tools for measuring the resource consumption of individual programs. 
Some of these programs are capable of more comprehensive workload measurements as 
well, but are too intrusive for use on production systems. Most of these tools are discussed 
in depth in the chapters that discuss tuning for minimum consumption of specific 
resources. Some of the more prominent are: 

time measures the elapsed execution time and CPU consumption of an 
individual program. Discussed in "Using the time Command to 
Measure CPU Use" on page 89. 

tprof measures the relative CPU consumption of programs, subroutine 
libraries, and the AIX kernel. Discussed in "Using tprof to Analyze 
Programs for CPU Use" on page 94. 
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svmon measures the real memory used by a process. Discussed in "How Much 
Memory Is Really Being Used" on page 1 1 1 .  

vmstat -s can be used to measure the UO load generated by a program. Discussed 
in "Measuring Overall Disk UO with vmstat" on page 1 37 .  

Estimating the Resources Required by a New Program 

It is impossible to make precise estimates of unwritten programs. The invention and 
redesign that take place during the coding phase defy prediction, but the following rules of 
thumb may help you to get a general sense of the requirements. As a starting point, a 
minimal program would need: 

• CPU time 
- About 50 milliseconds, mostly system time. 

• Real Memory 
- One page for program text 
- About 1 5  pages (of which 2 are pinned) for the working (data) segment 
- Access to Ube.a. Normally this is shared with all other programs and is 

considered part of the base cost of the operating system. 
• Disk UO 

- About 1 2  page-in operations, if the program has not been compiled, copied, or 
used recently; 0 otherwise. 

Add to that basic cost allowances for demands implied by the design (the CPU times 
given are for a Model 580) : 

· 

• CPU time 
- The CPU consumption of an ordinary program that does not contain high 

levels of iteration or costly subroutine calls is almost unmeasurably small. 
- If the proposed program contains a computationally expensive algorithm, the 

algorithm should be prototyped and measured. 
- If the proposed program uses computationally expensive library subroutines, 

such as X or Motif constructs or printf, measure their CPU consumption with 
otherwise trivial programs. 

• Real Memory 
- Allow (very approximately) 350 lines of code per page of program text. That 

is about 12 bytes per line. Keep in mind that coding style and compiler 
options can make a factor of two difference in either direction. This allowance 
is for pages that are touched in your typical scenario. If your design places 
infrequently executed subroutines at the end of the executable, those pages 
will not normally take up real memory. 

- References to shared libraries other than Ube.a will increase the memory 
requirement only to the extent that those libraries are not shared with other 
programs or instances of the program being estimated. To measure the size of 
these libraries, write a trivial, long-running program that references them and 
use svmon -P against the process. 

- Estimate the amount of storage that will be required by the data structures 
identified in the design. Round up to the nearest page. 
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- In the short run, each disk 1/0 operation will use one page of memory. 
Assume that the page has to be available already. Don't  assume that the 
program will wait for another program's page to be freed. 

• Disk l/O 
- For sequential 1/0, each 4096 bytes read or written causes one 1/0 operation, 

unless the file has been accessed recently enough that some of its pages are 
still in memory. 

- For random 1/0, each access, however small, to a different 4096-byte page 
causes one 1/0 operation, unless the file has been accessed recently enough 
that some of its pages are still in memory. 

- Under laboratory conditions, each sequential read or write of a 4KB page in a 
large file takes about 140+/-20 microseconds of CPU time. Each random read 
or write of a 4KB page takes about 350+/-40 microseconds of CPU time. 
Remember that real files are not necessarily stored sequentially on disk, even 
though they are written and read sequentially by the program. Consequently, 
the typical CPU cost of an actual disk access will  be closer to the 
random-access cost than to the sequential-access cost. 

• Communications 1/0 
- If disk 1/0 is actually to AFS or NFS remote-mounted file systems, the disk 

1/0 is performed on the server, but the client experiences higher CPU and 
memory demands. 

- RPCs of any kind contribute substantially to the CPU load. The proposed 
RPCs in the design should be minimized, batched, prototyped, and measured 
in advance. 

- Under laboratory conditions, each sequential NFS read or write of an 4KB 
page takes about 670+/-30 microseconds of client CPU time. Each random 
NFS read or write of a 4KB page takes about 1000+/-200 microseconds of 
client CPU time. 

Transforming Program-Level Estimates to Workload Estimates 

The best method for estimating peak and typical resource requirements is to use a queuing 
model such as BEST/ l .  Static models can be used, but you run the risk of overestimating 
or underestimating the peak resource. In either case, you need to understand how multiple 
programs in a workload interact from the standpoint of resource requirements. 

If you are building a static model , use a time interval that is the specified 
worst-acceptable response time for the most frequent or demanding program (usually they 
are the same). Determine, based on your projected number of users, their think time, their 
key entry rate, and the anticipated mix of operations, which programs will typically be 
running during each interval. 

• CPU time 
- Add together the CPU requirements for the all of the programs that are 

running during the interval. Include the CPU requirements of the disk and 
communications 1/0 the programs will be doing. 

- If this number is greater than 75% of the available CPU time during the 
interval, consider fewer users or more CPU. 
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• Real Memory 
- Start with 6 to 8MB for the operating system itself. The lower figure is for a 

standalone system. The latter for a system that is LAN-connected and uses 
TCP/IP and NFS . 

- Add together the working segment requirements of all of the instances of the 
programs that will be running during the interval , including the space 
estimated for the program's data structures. 

- Add to that total the memory requirement of the text segment of each distinct 
program that will be running (one copy of the program text serves all 
instances of that program). Remember that any (and only) subroutines that are 
from unshared libraries will be part of the executable-but the libraries 
themselves will not be in memory. 

- Add to the total the amount of space consumed by each of the shared libraries 
that will be used by any program in the workload. Again, one copy serves all .  

- To allow adequate space for some file caching and the free list, your total 
memory projection should not exceed 80% of the size of the machine to be 
used. 

• Disk 1/0 
- Add the number of I/Os implied by each instance of each program. Keep 

separate totals for I/Os to small files or randomly to large files versus purely 
sequential reading or writing of large files (more than 32KB) 

- Subtract those I/Os that you believe will be satisfied from memory. Any 
record that was read or written in the previous interval is probably still 
available in the current interval. Beyond that, you need to look at the size of 
the proposed machine versus the total RAM requirements of the machine's 
workload. Any space left over after the operating system's requirement and 
the workload's requirements probably contains the most recently read or 
written file pages. If your application's design is such that there is a high 
probability of reuse of recently accessed data, you can calculate an allowance 
for the caching effect. Remember that the reuse is at the page level, not at the 
record level. If the probability of reuse of a given record is low, but there are a 
lot of records per page, it is likely that some of the records needed in any 
given interval will fall in the same page as other, recently used, records. 

- Compare the net 1/0 requirements to the table on page 68 showing the 
approximate capabilities of current disk drives. If the random or sequential 
requirement is greater than 75% of the total corresponding capability of the 
disks that will hold application data, tuning and possibly expansion will be 
needed when the application is in production. 

• Communications 1/0 
- Calculate the bandwidth consumption of the workload. If the total bandwidth 

consumption of all of the nodes on the LAN is greater than 70% of nominal 
bandwidth (50% for Ethernet) there is cause for concern. 

- You should carry out a s imilar analys is  of CPU, memory, and 1/0 
requirements of the added load that will be placed on the server. 
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Remember that these guidelines for a "back of an envelope" estimate are intended 
for use only when no extensive measurement is possible. Any application-specific 
measurement that can be used in place of a guideline will improve the accuracy of the 
estimate considerably. 

Design and I mplementation of Efficient Programs 

If you are sure that you know which resource will limit the speed of  your program, you 
can go directly to the section that discusses appropriate techniques for minimizing the use 
of that resource. Otherwise, you should assume that the program will be balanced and that 
all of the recommendations in this chapter may apply. Once the program is implemented, 
you will want to proceed to "Identifying the Performance-Limiting Resource" on page 80. 

CPU-Limited Programs 

The maximum speed of a truly processor-limited program is determined by: 

• The algorithm used 
• The source code and data structures created by the programmer 

• The sequence of machine-language instructions generated by the compiler 
• The sizes and structures of the processor's caches 
• The architecture and clock rate of the processor itself 

If the program is CPU-limited simply because it consists almost entirely of 
numerical computation, obviously the algorithm that has been chosen will have a major 
effect on the performance of the program. A discussion of alternative algorithms is 
beyond the scope of this book. It is assumed that computational efficiency has been 
considered in choosing the algorithm. 

Given an algorithm, the only items in the preceding list that the programmer can 
affect are the source code, the compiler options used, and possibly the data structures. The 
following sections deal with techniques that can be used to improve the efficiency of an 
individual program for which the user has the source code. If the source code is not 
available, tuning or workload-management techniques should be tried. 

Design and Coding for Effective Use of Caches 

In "Performance Concepts , "  beginning on page 1 ,  we indicated that the RIS C  
System/6000 processors have a multi-level hierarchy of memory: 

1. The instruction pipeline and the CPU registers 

2. The instruction and data cache(s) and the corresponding translation lookaside 
buffers 

3. RAM 
4. Disk 
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As instructions and data move up the hierarchy, they move into storage that is faster 
than the level below it, but also smaller and more expensive. To obtain the maximum 
possible performance from a given machine, therefore, the programmer's objective must 
be to make the most effective use of the available storage at each level. 

Effective use of storage means keeping it full of instructions and data that are likely 
to be used. An obstacle to achieving this objective is the fact that storage is allocated in 
fixed-length blocks such as cache lines and real memory pages that usually do not 
correspond to boundaries within programs or data structures. Programs and data structures 
that are designed without regard to the storage hierarchy often make inefficient use of the 
storage allocated to them, with adverse performance effects in small or heavily loaded 
systems. 

Taking the storage hierarchy into account does not mean programming for a 
particular page or cache-line size. It means understanding and adapting to the general 
principles of efficient programming in a cached or virtual-memory environment. There 
are repackaging techniques that can yield significant improvements without recoding, and, 
of course, any new code should be designed with efficient storage use in mind. 

Two terms are essential to any discussion of the efficient use of hierarchical storage: 
"locality of reference" and "working set." The locality of reference of a program is the 
degree to which its instruction-execution addresses and data references are clustered in a 
small area of storage during a given time interval. The working set of a program during 
that same interval is the set of storage blocks that are in use, or, more precisely, the code or 
data that occupy those blocks. A program with good locality of reference will have a 
minimal working set, since the blocks that are in use are tightly packed with executing 
code or data. A functionally equivalent program with poor locality of reference will have a 
larger working set, since more blocks are needed to accommodate the wider range of 
addresses being accessed. 

Since each block takes a significant amount of time to load into a given level of the 
hierarchy, the objective of efficient programming for a hierarchical-storage system is to 
design and package code in such a way that the working set remains as small as practical. 

Poor Locality of Reference, Large Working Set 

Page 1 Page 2 Page 3 

PriSub1 SecSub1 ErrSub1 PriSub2 SecSub2 ErrSub2 PriSub3 

Good Local ity of Reference, Small Working Set 

Page 1 Page 2 Page 3 

PriSub1 PriSub2 PriSub3 SecSub1 SecSub2 ErrSub1 ErrSub2 

Figure 11 � Local ity of Reference 
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The figure "Locality of Reference" illustrates good and bad practice at a subroutine 
level. The first version of the program is packaged in the sequence in which it was 
probably written-a sort of programming "stream of consciousness." The first subroutine 
PriSubl contains the entry point of the program. It always uses primary subroutines 
PriSub2 and PriSub3. Some infrequently used functions of the program require 
secondary subroutines SecSubl and 2. On very rare occasions, the error subroutines 
ErrSubl and 2 are needed. This version of the program has poor locality of reference 
because it takes three pages of memory to run in the normal case. The secondary and error 
subroutines separate the main path of the program into three, physically distant sections. 

The improved version of the program moves the primary subroutines to be adjacent 
to one another, puts the low-frequency function next, and leaves the necessary but 
practically never-used error subroutines to the end of the executable. The most common 
functions of the program can now be handled with only one disk read and one page of 
memory instead of the three that were required before. 

Remember that locality of reference and working set are defined with respect to 
time. If a program works in stages, each of which takes a significant time and uses a 
different set of subroutines, one should try to minimize the working set of each stage. 

Registers and Pipel ine 

In general, the allocation and optimization of register space and keeping the pipeline full 
are the responsibilities of the compilers. The main obligation of the programmer is to 
avoid structures that defeat compiler-optimization techniques. For example, if you use one 
of your subroutines in one of the critical loops of your program, it may be appropriate for 
the compiler to inline that subroutine to minimize execution time. If the subroutine has 
been packaged in a different .c module, however, it cannot be inlined by the compiler. 

Cache and TLBs 

Depending on the architecture (POWER, POWER 2, or PowerPC) and model, RISC 
System/6000 processors have from one to several caches to hold: 

• Parts of executing programs. 
• Data used by executing programs. 
• Translation lookaside buffers (TLBs), which contain the mapping from virtual 

address to real address of recently used pages of instruction text or data. 

If a cache miss occurs, loading a complete cache line can take a dozen or more 
processor cycles.  If a TLB miss occurs, calculating the virtual-to-real mapping of a page 
can take several dozen cycles . The exact cost is implementation-dependent. See Appendix 
C for a more detailed discussion of cache architectures. 

Even if a program and its data fit in the caches, the more lines or TLB entries use.ct 
(that is, the lower the locality of reference), the more CPU cycles it takes to get everything 
loaded in. Unless the instructions and data are reused many times, the overhead of loading 
them is a significant fraction of total program execution time, resulting in degraded 
system performance. 
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In cached machines , a good style of programming is to keep the main-line, 
typical-case flow of the program as compact as possible. The main procedure and all of 
the subroutines it calls frequently should be contiguous. Low-probability conditions, such 
as obscure errors, should only be tested for in the main line. If the condition actually 
occurs, its processing should take place in a separate subroutine. All such subroutines 
should be grouped together at the end of the module. This reduces the probability that 
low-usage code will take up space in a high-usage cache line. In large modules it is even 
possible that some or all of the low-usage subroutines may occupy a page that almost 
never has to be read into memory. 

The analogous principle applies to data structures, although it is sometimes 
necessary to change the code to compensate for the compiler 's rules about data layout. An 
example of this kind of problem was detected during the development of AIX Version 3 .  
Some matrix operations, such as  matrix multiplication, involve algorithms that, if  coded 
simplistically, have very poor locality of reference. Matrix operations generally involve 
accessing the matrix data sequentially, such as row elements acting on column elements. 
Each compiler has specific rules about the storage layout of matrices. The XL FORTRAN 
compiler lays out matrices in column-major format (that is, all of the elements of column 
1 ,  followed by all the elements of column 2, and so forth) The XL C compiler lays out 
matrices in row-major format. If the matrices are small, the row and column elements can 
be contained in the data cache, and the processor and floating-point unit can run at full 
speed. However, as the size of the matrices increases, the locality of reference of such 
row/column operations deteriorates to a point where the data can no longer be maintained 
in the cache. In fact, the natural access pattern of the row/column operations generates a 
thrashing pattern for the cache where a string of elements accessed is larger than the 
cache, forcing the initially accessed elements out and then repeating the access pattern 
again for the same data. The general solution to such matrix access patterns is to partition 
the operation into blocks, so that multiple operations on the same elements can be 
performed while they remain in the cache. This general technique is given the name strip 
mining. A group experienced in numerical analysis was asked to code versions of the 
matrix-manipulation algorithms that made use of strip mining and other optimization 
techniques. The result was a 30-fold improvement in matrix-multiplication performance. 
The tuned routines are in the AIX Basic Linear Algebra Subroutines (BLAS) library, 
/usr/lib/libblas.a. A larger set of performance-tuned subroutines is the Engineering and 
Scientific Subroutine Library (ESSL) licensed program, which is documented in the IBM 

Engineering and Scientific Subroutine Library Guide and Reference, IBM form number 
SC23-01 84. 

The functions and interfaces of the B asic Linear Algebra Subroutines are 
documented in AIX Version 4. 1 Technical Reference, Volume 2: Base Operating System 
and Extensions. The FORTRAN run-time environment must be installed to use the library. 
Users should generally use this library for their matrix and vector operations because its 
subroutines are tuned to a degree that non-numerical-analyst users are unlikely to achieve 
by themselves. 

If the data structures are under the control of the programmer, other efficiencies are 
possible. The general principle is to pack frequently used data together whenever possible. 
If a structure contains frequently accessed control information and occasionally accessed 
detailed data, make sure that the control information is allocated in consecutive bytes. 
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This will increase the probability that the control information will all be loaded into the 
cache with a single, or at least with the minimum number of, cache misses. 

Effective Use of Preprocessors and the XL Compi lers 

The programmer who wants to obtain the highest possible performance from a given 
program running on a given machine must deal with several considerations: 

• There are preprocessors that can rearrange some source code structures to form a 
functionally equivalent source module that can be compiled into more efficient 
executable code. 

• Just as there are several variants of the POWER architecture, there are several 
compiler options to allow optimal compilation for a specific variant or set of 
variants. 

• The programmer can use the #pragma feature to inform the XL C compiler of 
certain aspects of the program that will allow the compiler to generate more 
efficient code by relaxing some of its worst-case assumptions. 

• There are several levels of optimization that give the compiler different degrees 
of freedom in instruction rearrangement. 

For programmers who lack the time or interest for experiment, there is a simple 
rule-always optimize . The difference in performance between optimized and 
unoptimized code is almost always so large that at least basic optimization (the -0 option 
of the cc or xlc or xlf command) should be used as a matter of course. The only exceptions 
are testing situations in which there is a specific need for straightforward code generation, 
such as statement-level performance analysis using the tprof tool. 

The other techniques yield additional performance improvement for some 
programs, but the determination of which combination yields the very best performance 
for a specific program may require considerable recompilation and measurement. 

The following sections summarize the techniques for efficient use of the compilers. 
A much more extensive discussion appears in Optimization and Tuning Guide for XL 

Fortran, XL C and XL C+ + ,  IBM form number SC09-1 705. 

Source Code Preprocessors 

There are several source-code preprocessors available for the RISC System/6000. Three 
with which there is some experience at this time are: 

• KAP/C and KAP/FORTRAN (from Kuck and Associates) 
• VAST (from PSR) 

Among the techniques used by these preprocessors is recognition of code that is 
mathematically equivalent to one of the subroutines in the ESSL or BLAS libraries, 
mentioned earlier. The preprocessor replaces the original computational code with a call 
to the corresponding performance-tuned subroutine. Preprocessors also attempt to modify 
data structures in ways that work more efficiently in RISC System/6000 machines. 
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Architecture-Specific Compilation 

The -qarch compiler option allows you to specify which of the three POWER 
architectures (POWER, POWER 2, PowerPC) the executable program will be run on. The 
possible values are: 

-qarch=COM 
Compile for the common subset of the three instruction sets . Programs 
compiled with this option will run correctly on all three architectures. 
This is the default. 

-qarch=PWR Compile for the POWER architecture of the original RISC 
System/6000. Programs compiled with this option will run correctly on 
all three architectures, but some instructions may be simulated on 
PowerPC systems, to the detriment of performance. 

-qarch=PWRX 

-qarch=PPC 

Compile specifically for the POWER2 architecture. Programs that use 
double-precision floating point or floating-point square root extensively 
may show performance improvement. The executable should be run 
only on POWER2 systems. 

Compile specifically for the PowerPC architecture. Programs that use 
single-precision floating point extensively may show performance 
improvement. The executable should be run only on PowerPC systems. 

The -qtune compiler option allows you to give the compiler a hint as to the 
architecture that should be favored by the compilation. Unlike the -qarch option, -qtune 
does not result in the generation of architecture-specific instructions. It simply tells the 
compiler, when there is a choice of techniques, to choose the technique most appropriate 
for the specified architecture. The possible values for -qtune are: 

-qtune=PWR Assume that the program will run predominantly on a POWER system. 

-qtune=PWRX Assume that the program will run predominantly on a POWER2 
system. 

-qtune=601 Assume that the program will run predominantly on a PowerPC 601 
system. 

The figure "Combinations of -qarch and -qtune" shows the valid combinations of 
values of these options and the default values of -qtune for specified values of -qarch. If 
neither option is specified, the default is -qarch=COM -qtune=PWR. 

-qtune=PWR -qtune=PWRX -qtune=601 -qtune default 
-qarch=COM Valid Valid Valid PWR 

-qarch=PWR Valid Valid Valid PWR 
-qarch=PWRX Valid Valid Invalid PWRX 

-qarch=PPC Valid Invalid Valid 601 

Figure 1 2: Combinations of -qarch and -qtune 
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Use of the #pragma Directive 

In some situations, the optimizer can be inhibited by the need to generate code that is 
correct in the worst-case situation. The #pragma directive can be used to indicate to the 
compiler that some constraints can be relaxed, thus permitting more efficient code to be 
generated. 

A pragma is an implementation-defined instruction to the compiler. Pragmas have 
the general form: 

#pragma character_sequence 

The following pragmas in XL C may have a significant effect on the performance of 
a program whose source code is otherwise unchanged: 

• dis j o int 

• i s o l at ed_cal l 

#pragma disjoint 

The #pragma di s j o int directive lists the identifiers that are not aliases to each other 
within the scope of their use. 

#pragma disj o int ( { i den t i fi er I * i den t i fi er } 
[ ,  { i den t i fi er I * i den t i fi er } J • • • ) 

The directive informs the compiler that none of the identifiers listed shares the same 
physical storage, which provides more opportunity for optimizations. If any of the 
identifiers listed do actually share physical storage, the program might produce incorrect 
results . 

The pragma can appear anywhere in the source program. An identifier in the 
directive must be visible at the point in the program where the pragma appears. The 
identifiers listed cannot refer to: 

• A member of a structure or union 

• A structure or union tag 

• An enumeration constant 
• A label 

The identifiers must be declared before they are used in the pragma. A pointer in the 
identifier list must not have been used as a function argument before appearing in the 
directive. 

The following example shows the use of the #pragma disjoint directive. Because 
external pointer ptr_a does not share storage with and never points to the external 
variable b, the compiler can assume that the assignment of 7 to the object that ptr_a 

points to will not change the value of b. Likewise, external pointer ptr_b does not share 
storage with and never points to the external variable a. The compiler can then assume 
that the argument to ano ther_func t i on has the value 6. 
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int a ,  b ,  *ptr_a , *ptr_b ; 

#pragma disj oint ( *ptr_a , b )  

#pragma di sj oint ( *ptr_b , a )  
one_func t i on ( )  

{ 
b = 6 ;  

/ *  ptr_a never points to b * /  
/ *  ptr_b never points to a * /  

*ptr_a = 7 ;  / *  As signment wi l l  not change the value o f  b * /  
ano ther_func t i on ( b ) ; / * Argument " b "  has the value 6 * /  

#pragma isolated_call 

The #pragma isolated_call directive lists functions that do not alter data objects visible at 
the time of the function call. 

#pragma isolated_call ( i den t i fi er [ , i den t i fi er J • • •  ) 

The pragma must appear before any calls to the functions in the identifier list. The 
identifiers listed must be declared before they are used in the pragma. Any functions in the 
identifier list that are called before the pragma is used are not treated as isolated calls. The 
identifiers must be of type function or a typedef of function. 

The pragma informs the compiler that none of the functions listed has side effects. 
For example, accessing a volatile object, modifying an external object, modifying a file, 
or calling a function that does any of these can be considered side effects. Essentially, any 
change in the state of the run-time environment is considered a side effect. Passing 
function arguments by reference is one side effect that is allowed, but in general, functions 
with side effects can give incorrect results when listed in #pragma isolated_call 
directives. 

Marking a function as isolated indicates to the optimizer that external and static 
variables cannot be changed by the called function and that references to storage can be 
deleted from the calling function where appropriate. Instructions can be reordered with 
more freedom, which results in fewer pipeline delays and faster execution. Note that 
instruction reordering might, however, result in code that requires more values of general 
purpose and/or floating-point registers to be maintained across the isolated call. When the 
isolated call is not located in a loop, the overhead of saving and restoring extra registers 
might not be worth the savings that result from deleting the storage references. 

Functions specified in the identifier list are permitted to examine external objects 
and return results that depend on the state of the run-time environment. The functions can 
also modify the storage pointed to by any pointer arguments passed to the function; that is ,  
calls by reference. Do not specify a function that calls itself or relies on local static 
storage . Listing such functions in the #pragma isolated_call directive can give 
unpredictable results. 

The following example shows the use of the #pragma isolated_call directive. 
Because the function thi s_func t i on does not have side effects, the compiler can 
assume that a call to it will not change the value of the external variable a. The compiler 
can then assume that the argument to other_func t i on has the value 6. 
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int a ,  this_func tion ( int ) ; / * Assumed to have no s ide e f fects * /  

#pragrna isolated_call ( thi s_func tion )  

that_function ( )  

{ 
a = 6 ;  
thi s_function ( 7 ) ; 
other_func tion ( a ) ; 

/ *  Call does not change the value of a * /  

/ *  Argument " a "  has the value 6 * /  

Levels of Optimization 

The levels of optimization in the XL compilers have changed from earlier versions. The 
new levels are: 

No Optimization 

In the absence of any version of the -0 flag, the compiler generates straightforward code 
with no instruction reordering or other attempt at performance improvement. 

-O or -02 

These (equivalent) flags cause the compiler to optimize on the basis of conservative 
assumptions about code reordering. Only explicit relaxations such as the #pragma 
directives just discussed are used. This level no longer performs software pipelining, loop 
unrolling, or simple predictive commoning. It also constrains the amount of memory the 
compiler can use. 

The result of these changes is that large or complex routines may have poorer 
performance when compiled with the -0 option than they achieved on earlier versions of 
the compilers. 

-03 

Directs the compiler to be aggressive about the optimization techniques used and to use as 
much memory as necessary for maximum optimization. 

This level of optimization may result in functional changes to the program if the 
program is sensitive to: 

• Floating-point exceptions 
• The sign of zero 
• Precision effects of reordering calculations 

These side-effects can be avoided, at some performance cost, by using the -qstrict 
option in combination with -03. 

The -qhot option, in combination with -03, enables predictive commoning and 
some unrolling. 

The result of these changes is that large or complex routines should have the same 
or better performance with the -03 option (possibly in conjunction with -qstrict or 
-qhot) that they had with the -0 option in earlier versions of the compiler. 
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XL C Options for string.h Subroutine Performance 

AIX provides the ability to embed the string subroutines in the application program rather 
than using them from Ube.a. This saves the Call/Return linkage time. To have the string 
subroutines embedded, the source code of the application must have the statement: 

# inc lude <s tring . h> 

prior to the use of the subroutine(s). In Version 3 . 1 ,  the only subroutines that would be 
embedded via this technique were: 

• strepy() 

• strcmp() 

Currently, the additional routines are: 

• strlen() 

• strehr() 

• strrehr() 

• streat() 

• strneat() 

• strnepy() 

• strnemp() 

• index() 

• rindex() 

• memehr() 

• memcpy() 

• memccpy() 

• memmove() , 

• memcmp() 

• memset() 

If you want to return to the Version 3 . 1  level of embedding, you should precede the 
# inc lude < s t r ing . h> statement with: 

#def ine �STR3 1� 

C and C++ Coding Style for Best Performance 

In many cases, the performance cost of a C construct is not obvious, and sometimes is 
even counter-intuitive. The following paragraphs document some of these situations. 

• Whenever possible, use int instead of char or short.  

In most cases, c h a r  and s h o r t  data items take more instructions to  
manipulate. The extra instructions cost time, and, except in  large arrays, any 
space that is saved by using the smaller data types is more than offset by the 
increased size of the executable. 
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• If you have to use a char, make it uns igned, if possible. 
A s i gned char takes another two instructions more than an uns i gned 

char each time the variable is loaded into a register. 
• Use local (automatic) variables rather than global variables whenever possible. 

Global variables take more instructions to access than local variables.  Also, in 
the absence of information to the contrary, the compiler assumes that any global 
variable may have been changed by a subroutine call. This has an adverse effect 
on optimization because the value of any global variable used after a subroutine 
call will have to be reloaded. 

• When it is necessary to access a global variable (that is not shared with other 
threads), copy the value into a local variable and use the copy. 
Unless the global variable is accessed only once, it is more efficient to use the 
local copy. 

• Use binary codes rather than strings to record and test for situations . 
Strings use up both data and instruction space. For example, the sequence: 

#de f ine s i tuation_l 1 
#de f ine s i tuat ion_2 2 
#de f ine s i tuat ion_3 3 
int s i tuation_val ; 

s i tuation_val = s i tuation_2 ; 

i f  ( s i tuation_val == si tuation_l ) 

is much more efficient than: 

char s i tuat ion_val [ 2 0 ] ; 

s trcpy ( s ituation_val , " s i tuation_2 " ) ; 

i f  ( ( s trcmp ( s i tuation_val ,  " s i tuation_l " ) ) ==0 ) 

• When strings are really necessary, use fixed-length strings rather than 
null-terminated variable-length strings wherever possible. 
The mem*() family of routines, such as memcpy(),  are faster than the 
corresponding str*() routines, such as strcpy(), because the str*() routines have 
to check each byte for null and the mem*() routines don't. 

Compiler Execution Time 

In ADC, the C compiler can be invoked by two different commands: cc and xlc. The cc 

command, which has historically been used to invoke the system's C compiler, causes the 
XL C compiler to run in langl eve l = extended mode. This allows the compilation of 
existing C programs that are not ANSI-compliant. It also consumes processor time. 

If the program being compiled is, in fact, ANSI-compliant, it is more efficient to 
invoke the XL C compiler via the xlc command. 
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Use of the -03 flag implicitly includes the -qmaxmem option. This allows the 
compiler to use as much memory as necessary for maximum optimization. This can have 
two effects : 

• On a multiuser system, a large -03 compilation may take up enough memory to 
have an adverse effect on the performance experienced by other users. 

• On a system with small real memory, a large -03 compilation may take up 
enough memory to cause high paging rates, making compilation very slow. 

Memory-Limited Programs 

To programmers accustomed to struggling with the addressing limitations of, for instance, 
the DOS environment, the 256MB virtual memory segments in the RISC System/6000 
environment seem effectively infinite. The programmer is tempted to ignore storage 
constraints and code for minimum path length and maximum simplicity. Unfortunately, 
there is a drawback to this attitude. Virtual memory is large, but it is variable-speed. The 
more memory used, the slower it becomes, and the relationship is not linear. As long as 
the total amount of virtual storage actually being touched by all programs (that is, the sum 
of the working sets) is slightly less than the amount of unpinned real memory in the 
machine, virtual memory performs at about the speed of real memory. As the sum of the 
working sets of all executing programs passes the number of available page frames, 
memory performance degrades very rapidly (if VMM memory load control is turned off) 
by up to two orders of magnitude. When the system reaches this point, it is said to be 
thrashing. It is spending almost all of its time paging, and no useful work is being done 
because each process is trying to steal back from other processes the storage necessary to 
accommodate its working set. If VMM memory load control is active, it can avoid this 
self-perpetuating thrashing, but at the cost of significantly increased response times. 

The degradation caused by inefficient use of memory is much greater than that from 
inefficient use of the caches because the difference in speed between memory and disk is 
so much higher than the difference between cache and memory. Where a cache miss can 
take a few dozen CPU cycles, a page fault typically takes 20 milliseconds or more, which 
is at least 400,000 CPU cycles. 

Although the presence of VMM memory load control in AIX ensures that incipient 
thrashing situations do not become self-perpetuating, unnecessary page faults still exact a 
cost in degraded response time and/or reduced throughput. 
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Structuring of Pageable Code 

To minimize the code working set of a program, the general objective is to pack code that 
is frequently executed into a small area, separating it from infrequently executed code. 
Specifically : 

• Do not put long blocks of error-handling code in line. Put them in separate 
subroutines, preferably in separate source-code modules. This applies not only to 
error paths, but to any functional option that is infrequently used. 

• Do not structure load modules arbitrarily. Try to ensure that frequently called 
object modules are located as close to their callers as possible. Object modules 
consisting (ideally) of infrequently called subroutines should be concentrated at 
the end of the load module. The pages they inhabit will seldom be read in. 

Structuring of Pageable Data 

To minimize the data working set, try to concentrate the frequently used data and avoid 
unnecessary references to virtual-storage pages. Specifically : 

• Only malloc or calloc as much space as you really need. Never malloc and then 
initialize a maximum-sized array when the typical real-world situation uses only 
a fraction of it. When you touch a new page to initialize the array elements, you 
effectively force the VMM to steal a page of real memory from someone. Later, 
this results in a page fault when the process that owned that page tries to access it 
again. Remember that the difference between malloc and calloc is not just in the 
interface. Because calloc zeroes the allocated storage, it touches every page that 
is allocated, whereas malloc touches only the first page. If you calloc a large area 
and then use only a small portion at the beginning, you put a large, unnecessary 
load on the system. Not only do the pages have to be initialized; if their 
real-memory frames are reclaimed, the initialized and never-to-be-used pages 
must be written out to paging space. This wastes both 1/0 and paging-space slots . 

• Linked lists of large structures (such as buffers) can result in similar problems. If 
your program does a lot of chain following looking for a particular key, consider 
maintaining the links and keys separately from the data or using a hash-table 
approach instead. 

• Locality of reference means locality in time, not just in address space. Data 
structures should be initialized just before they are used (if at all) .  In a heavily 
loaded system, data structures that are resident for a long time between 
initialization and use risk having their frames stolen. Your program would then 
experience an unnecessary page fault when it began to use the data structure. 

• Similarly, if a large structure is used early and then left untouched for the 
remainder of the program, it should be released. It is not sufficient to free the 
space that was malloced or calloced. free releases only the address range that the 
structure occupied. In order to release the real memory and paging space, you 
must disclaim the space as well . 
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Misuse of Pinned Storage 

To avoid circularities and time-outs, a small fraction of the system has to be pinned in real 
memory. For this code and data, the concept of working set is meaningless, since all of the 
pinned information is in real storage all the time, whether it is used or not. Any program 
(such as a user-written device driver) that pins code or data must be carefully designed (or 
scrutinized, if ported) to ensure that only minimal amounts of pinned storage are used. 
Some cautionary examples are: 

• Code is pinned on a load-module (executable file) basis. If a component has 
some object modules that must be pinned and others that can be pageable, the 
pinned object modules should be packaged in a separate load module. 

• Pinning a module or a data structure just in case there might be a problem is 
irresponsible. The designer should understand the conditions under which the 
information could be required and whether a page fault could be tolerated at that 
point. 

• Pinned structures whose required size is load-dependent, such as buffer pools, 
should be tunable by the system administrator. 

Performance-Related Instal lation Gu ideli nes 

This topic provides recommendations for actions you should take (or not take) before and 
during the installation process. 

AIX Pre-Instal lation Guidel ines 

Installing AIX on a New System 

Before you begin the installation process, be sure that you have made decisions about the 
size and location of disk file systems and paging spaces, and that you understand how to 
communicate those decisions to AIX. 

Installing a New Level of AIX on an Existing System 

If you are upgrading to a new level of AIX, you should: 

• Identify all uses in your present environment of the release-specific performance 
tools schedtune and vmtune. Since these tools can only be run by root,  their 
use should not be widespread. 

• If these programs are used during system boot, such as from /etc/inittab, they 
should be temporarily removed or bypassed until you are convinced by 
documentation or experiment that your use of these tools works correctly in the 
new release. 

CPU Pre-Instal lation Guidel ines 

We do not recommend any a priori changes from the default CPU scheduling parameters, 
such as the time-slice duration. Unless you have extensive monitoring and tuning 
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experience with the same workload on a nearly identical configuration, you should leave 
these parameters unchanged at installation time. 

See "Monitoring and Tuning CPU Use" on page 88 for post-installation 
recommendations. 

Memory Pre-Instal lation Guidel ines 

If the system you are installing is larger than 32MB and is expected to support more than 
five active users at one time, you may want to consider raising the minimum level of 
multiprogramming of the VMM memory-load-control mechanism. As an example, if your 
conservative estimate is that four of your most memory-intensive applications should be 
able to run simultaneously, leaving at least 16MB for the operating system and 25% of 
real memory for file pages, you could increase the minimum multiprogramming level 
from the default of 2 to 4 with the command: 

# s chedtune -m 4 

All other memory threshold changes should wait until you have had experience with 
the response of the system to the real workload. 

See "Monitoring and Tuning Memory Use" on page 1 1 1  for post-installation 
recommendations. 

Disk Pre-Instal lation Guidelines 

General Recommendations 

Although the mechanisms for defining and expanding logical volumes attempt to make 
the best possible default choices, satisfactory disk-1/0 performance is much more likely if 
the installer of the system tailors the size and placement of the logical volumes to the 
expected data storage and workload requirements. Our recommendations are: 

• If possible, the default volume group, rootvg, should consist only of the physical 
volume on which the system is initially installed. One or more other volume 
groups should be defined to control the other physical volumes in the system. 
This recommendation has system management as well as performance 
advantages. 

• If a volume group consists of more than one physical volume, you may gain 
performance by: 
- Initially defining the volume group with a single physical volume. 
- Defining a logical volume within the new volume group. This causes the 

allocation of the volume group's journal logical volume on the first physical 
volume. 

- Adding the remaining physical volumes to the volume group. 
- Defining the high-activity file systems on the newly added physical volumes. 
- Defining only very-low-activity file systems, if any, on the physical volume 

containing the journal logical volume. 
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This approach separates journaling 1/0 activity from the high-activity data 1/0, 
increasing the probability of overlap. This technique can have an especially 
significant effect on NFS server performance, because both data and journal 
writes must be complete before NFS signals 1/0 complete for a write operation, 

• At the earliest opportunity, define or expand the logical volumes to their 
maximum expected sizes. To maximize the probability that performance-critical 
logical volumes will be contiguous and in the desired location, define or expand 
them first. 

• High-usage logical volumes should occupy parts of multiple disk drives. If the 
"RANGE of physical volumes" option on smit's Add a Logical Volume screen 
(fast path smit mklv) is set to maximum, the new logical volume will be divided 
among the physical volumes of the volume group (or the set of physical volumes 
explicitly listed) . 

• If the system has drives of different types (or you are trying to decide which 
drives to order), consider the following guidelines: 

- Large files that are normally accessed sequentially should be on the fastest 
available disk drive. At this writing, the sequential and random performance 
ranking of the disk drives we have measured (from slowest to fastest) is :  

Drive 
Capacity 
200MB 
400MB 
857MB 
2.4GB 
l .37GB 
540MB 
1 .0GBt 
2.0GB 

SCSI Random Pages Sequential Pages 
Adapter per Second per Second 
Model 250 Integrated approx. 40 approx. 250 
SCSI II approx. 50 approx. 375 
SCSI II approx. 60 approx. 550 
SCSI II approx. 65* approx. 525 
SCSI II approx. 70 approx. 800 
SCSI II approx. 85 approx. 975 
SCSI II approx. 85 approx. 1 075 
SCSI II approx. 85 approx. 950 

* per accessor (there are two) 
t This l .OGB drive (part number 4509464) replaced an earlierl .OGB drive (part number 
55F5206) in late 1993. 

Note: These numbers are derived from the results oflaboratory measurements under ideal 
conditions. They represent a synthesis of a number of different measurements, not 
the results of a single benchmark. They are provided to give you a general sense of 
the relative speeds of the disk drives. They will change with time due to 
improvements in the drives, adapters, and software. 

- If you expect frequent sequential accesses to large files on the fastest disk 
drives, you should limit the number of disk drivers per disk adapter. Our 
recommendation for the 540MB, 1 .0GB, and 2.0GB drives described above 
is: 

Disk Adapter 
Original RISC System/6000 SCSI adapter 
SCSI-2 High Performance Controller 
SCSI-2 Fast Adapter (8-bit) 
SCSI-2 Fast/Wide Adapter ( 16-bit) 

Disk Drives 
per Adapter 
1 
2 
2 
3 
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- When possible, attach drives with critical, high-volume performance 
requirements to a SCSI-2 adapter. These adapters have features, such as 
back-to-back wri te capability, that are not available on other RISC 
System/6000 disk adapters. 

- On the 200MB, 540MB, and l .OGB disk drives, logical volumes that will hold 
large, frequently accessed sequential files should be allocated in the 
outer_edge of the physical volume. These disks have more blocks per track in 
their outer sections, which improves sequential performance. 

- On a SCSI bus, the highest-numbered drives (those with the numerically 
largest SCSI addresses, as set on the physical drives) have the highest priority. 
In most situations this effect is not noticeable, but large sequential file 
operations have been known to exclude low-numbered drives from access to 
the bus. You should probably configure the disk drives holding the most 
response-time-critical data at the highest addresses on each SCSI bus. The 
command lsdev -Cs scsi reports on the current address assignments on each 
SCSI bus. For the original SCSI adapter, the SCSI address is the first number 
in the fourth pair of numbers in the output. In the output example below, the 
400MB disk is at SCSI address 0, the 320MB disk at address 1 ,  and the 8mm 
tape drive at address 5 .  

hdi skO Ava i l able 0 0 - 0 1 - 0 0 - 0 0  4 0 0  MB SCSI Disk Drive 

hdi skl Ava i l able 0 0 - 0 1 - 0 0 - 1 0  3 2 0  MB SCSI Disk Drive 

rrnt O De f ined 0 0 - 0 1 - 0 0 - 5 0  2 . 3  GB 8mm Tape Drive 

- Large files that are heavily used and are normally accessed randomly, such as 
data bases, should be spread across two or more physical volumes. 

See "Monitoring and Tuning Disk 1/0" on page 1 30 for post-installation 
recommendations. 

Placement and Sizes of Paging Spaces 

The general recommendation is that the sum of the sizes of the paging spaces should be 
equal to at least twice the size of the real memory of the machine, up to a memory size of 
256MB (5 1 2MB of paging space). For memories larger than 256MB, we recommend: 

total paging space = 5 1 2MB + (memory size - 256MB) * 1 .25 
Ideally, there should be several paging spaces of roughly equal size, each on a 

different physical disk drive. If you decide to create additional paging spaces, create them 
on physical volumes that are more lightly loaded than the physical volume in rootvg. 
When allocating paging space blocks, the VMM allocates four blocks, in round-robin 
fashion, from each of the active paging spaces that has space available. While the system 
is booting, only the primary paging space (hd6) is active. Consequently, all paging-space 
blocks allocated during boot are on the primary paging space. This means that the primary 
paging space should be somewhat larger than the secondary paging spaces. The secondary 
paging spaces should all be of the same size to ensure that the round-robin algorithm can 
work effectively. 

The lsps -a command gives a snapshot of the current utilization level of all the 
paging spaces on a system. The psdanger() subroutine can also be used to determine how 
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closely paging-space utilization is approaching dangerous levels . As an example, the 
following program uses psdanger() to provide a warning message when a threshold is 
exceeded: 

/ *  psmonitor . c  

* /  

Monitors sys tem for paging space low conditions . When the condi t ion is  
detected,  wri tes a message to s tderr . 

Usage : psmonitor [ Interval [ Count ] ] 

Defaul t : psmoni tor 1 1 0 0 0 0 0 0  

# include < s tdio . h> 
# include <signal . h> 

main ( int argc , char * * argv) 
{ 

int interval = 1 ;  / *  seconds * ! 
int count = 1 0 0 0 0 0 0 ; / *  intervals * ! 
int current ; / *  interval * I 
int last ; / *  check * /  
int ki l l  _o f f s e t ; I * returned by psdanger ( )  * I  
int danger_o f f set ; I * returned by psdanger ( )  * I 

/ *  are there any parameters at a l l ?  * /  
i f  ( argc > 1 )  { 

i f  ( ( interval = atoi ( argv [ l ] ) )  < 1 ) 
fprint f ( s tderr , " Usage : psmonitor [ interval [ count ] ] \n " ) ; 
exi t ( l ) ; 

i f  ( argc > 2 ) { 
i f  ( ( count = atoi ( argv [ 2 ] ) )  < 1 ) 

fprint f ( s tderr , "Usage : psmonitor 
exi t ( l ) ; 

last = count -1 ;  

interval [ count ] ] \ n " ) ; 

for ( current = O ;  current < count ; current++ )  { 
kill_o f fset = psdanger ( SIGKILL ) ; / * check for out o f  paging space * /  
i f  ( ki l l_o f f s e t  < 0 )  

fprint f ( s tderr , 
" OUT OF PAGING S PACE ! %d blocks beyond S IGKILL threshold . \ n " , 
ki ll_o f f s e t * ( - 1 ) ) ;  

else { 
danger_o f f s e t  = psdanger ( SIGDANGER ) ; / * check for paging sp . low * /  
i f  ( danger_o f f s e t  < 0 )  { 

fprint f ( s tderr , 
"WARNING : paging space low . %d blocks beyond SIGDANGER threshold . \n " , 

danger_o f fset* ( - 1 ) ) ;  
fprint f ( s tderr , 

%d blocks below S IGKILL threshold . \ n " , 
ki l l_o f f s et ) ;  

i f  ( current < las t )  
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s leep ( interval ) ; 

Performance Implications of Disk Mirroring 

If mirroring is being used and Mirror Write Consistency is on (as it is by default), you may 
want to locate the copies in the outer region of the disk, since the Mirror Write 
Consistency information is always written in Cylinder 0. From a performance standpoint, 
mirroring is costly, mirroring with Write Verify is costlier still (extra disk rotation per 
write), and mirroring with both Write Verify and Mirror Write Consistency is costliest of 
all (disk rotation plus a seek to Cylinder 0). To avoid confusion, we should point out that 
although an lslv command will usually show Mirror Write Consistency to be on for 
non-mirrored logical volumes, no actual processing is incurred unless the COPIES value 
is greater than one. Write Verify, on the other hand, defaults to off, since it does have 
meaning (and cost) for nonmirrored logical volumes. 

Communications Pre-Instal lation Guidel ines 

See the summary of communications tuning recommendations in "UDP, TCP/IP, and 
mbuf Tuning Parameters Summary" on page 175 .  
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5 
System Monitoring and Initial 
Performance Diagnosis 

This chapter describes tools and techniques for monitoring performance-related system 
activity and diagnosing performance problems. 

T he Case for Conti n uous Performance Monitoring 

In some installations, monitoring of performance activity is done on a demand basis. 
When a performance problem is reported, the performance analyst runs one or more 
commands in an attempt to determine why the problem occurred. In some cases, explicit 
recreation of the problem is needed in order to collect analysis data. The result is that users 
experience every performance problem twice. 

It is usually more effective to monitor performance continuously, preferably with 
automatic collection of additional data if performance deteriorates .  The costs of 
continuous monitoring are outweighed by the advantages, such as : 

• Monitoring can sometimes detect incipient problems before they have an adverse 
effect. 

• Monitoring can detect problems that happen to users who are reluctant to 
complain and problems that are not quite severe enough to complain about-but 
are affecting productivity and morale. 

• Monitoring can collect data when a problem occurs for the first time. 

Successful monitoring involves five main activities: 

1. Periodically obtaining performance-related information from the operating 
system 

2. Storing the information for future use in problem diagnosis 
3. Displaying the information for the benefit of the system administrator 
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4. Detecting situations that require additional data collection or responding to 
directions from the system administrator to collect such data, or both 

5. Collecting and storing the necessary detail data 

The following sections discuss several approaches to continuous monitoring. These 
approaches are not mutually exclusive, but use of more than one may involve some 
redundancy. 

Performance Monitoring Using iostat, netstat, vmstat 

The iostat, netstat, and vmstat commands have functional characteristics that make them 
useful for continuous monitoring of system performance: 

• They can produce reports at a fixed interval indefinitely. 
• They report on activity that varies with different types of load. 
• They report on activity since the last previous report, so changes in activity are 

easy to detect. 

The following example shows samples of the periodic reports produced by these 
programs. 

$ ios tat 5 2 

tty :  tin tout cpu : % user % sys % idle % 
0 . 0  0 . 0  0 . 0  0 . 2  9 9 . 6  

Disks : % tm_ac t  Kbps tps Kb_read Kb_wrtn 

hdi skO 0 . 1  0 . 3  0 . 0  1 8 1 2 9  5 6 8 4 2  

cdO 0 . 0  0 . 0  0 . 0  0 0 

tty : tin tout cpu : % user % sys % idle % 
0 . 0  0 . 0  2 3 . 1  9 . 0  6 5 . 9  

Disks : % tm_ac t  Kbps tps Kb_read Kb_wrtn 

hdiskO 2 . 4  6 . 4  1 .  6 0 3 2  

cdO 0 . 0  0 . 0  0 . 0  0 0 

$ vrns tat 5 2 
pro cs memory page faults cpu 

------- ---- ---------- -------------- ------------ -----------

r b avrn fre re pi po fr sr cy in sy cs us sy id wa 

0 0 2 6 1 0  1 1 2 8  0 0 0 0 0 0 1 1 2  1 1 9  0 0 9 9  0 
0 0 2 5 0 5  1 2 4 7  0 0 0 0 0 0 1 2 5  1 0 5 6  3 7  2 2  9 6 7  2 

$ netstat -I trO 5 
input ( trO ) output input ( Total ) output 

packet s  errs packets errs col ls packets errs packets errs 
5 3 2 0 9 9  1 6 6 4  9 8 5  0 0 5 3 2 1 1 1  1 6 6 4  9 9 7  0 

4 5  0 6 0 0 4 5  0 6 0 
4 4  1 5 0 0 4 4  1 5 0 

iowa i t  
0 . 1  

iowait 
2 . 0  

col l s  
0 
0 
0 
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Remember that the first report from each of these programs is for cumulative 
activity since the last system boot. The second report shows activity for the first 5-second 
interval . Even this small sample shows that the activity in the first interval was 
significantly higher than the average. 

These commands are the basic foundation on which a performance-monitoring 
mechanism can be constructed. Shell scripts can be written to perform data reduction on 
*stat command output and warn of performance problems or record data on the status of 
the system when a problem is occurring. For example, a shell script could test the CPU 
idle percentage for zero and execute another shell script when that CPU-saturated 
condition occurred. A script such as: 

$ ps -e f  I egrep -v " ST IME l $LOGNAME " I sort +3 -r I head -n 1 5  

would record the 1 5  active processes that had consumed the most CPU time recently 
(other than the processes owned by the user of the script). 

Depending on the required level of sophistication, creating such a family of shell 
scripts can be a substantial project. Fortunately, there are packages available that require 
less development and setup and have considerably more function than the typical 
installation would want to implement locally. 

T he Performance Diagnostic Tool 

The Performance Diagnostic Tool (PDT) is a new tool in AIX Version 4. 1 .  PDT collects 
configuration and performance information and attempts to identify potential problems, 
both current and future. 

PDT is an optionally installable component of the AIX Base Operating System. Its 
name is bos.perf.diag_tool. After PDT has been installed, it must be activated with the 
pdt_config command. This causes appropriate entries to be made in the crontab file, 
which causes PDT to run periodically, recording data and looking for new trends. 

In asses sing the configuration and the historical record of performance 
measurements, PDT attempts to identify: 

• Resource imbalances-asymmetrical aspects of configuration or device 
utilization 

• Usage trends-changes in usage levels that will lead to saturation 
• New consumers of resources--expensive processes that haven't been observed 

before 
• Inappropriate system parameter values-settings that may cause problems 
• Errors-hardware or software problems that may lead to performance problems 

Extensive documentation on PDT is given in "Performance Diagnostic Tool (PDT)" 
beginning on page 229. 

T he AIX Performance Toolbox 

The Performance Toolbox for AIX (PTX) is a licensed product that allows graphic display 
of a variety of performance-related metrics. Among the advantages of PTX over ASCII 
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reporting programs is that it is much easier to check current performance with a glance at 
the graphic monitor than by looking at a screen full of numbers. PTX also facilitates the 
combination of information from multiple performance-related AIX commands. 

PTX is described in detail in the Performance Toolbox 1 .2 and 2. 1 for AIX: User 's 

Guide, IBM form number SC23-2625. 

Inference from the Kind of Performance Problem 
Reported 

When a performance problem is reported, the kind of performance problem will often help 
the performance analyst to narrow the list of possible culprits. 

A Particular Program Runs Slowly 

This may seem to be the trivial case, but there are still questions to be asked: 

• Has the program always run slowly? 

If the program has just started running slowly, a recent change may be the cause. 

• Has the source code been changed or a new version installed? 

If so, check with the programmer or vendor. 

• Has something in the environment changed? 

If a file used by the program (including its own executable) has been moved, it 
may now be experiencing LAN delays that weren't  there before; or files may be 
contending for a single disk accessor that were on different disks before. 

If the system administrator has changed system-tuning parameters, the program 
may be subject to constraints that it didn't experience before. For example, if the 
schedtune -r command has been used to change the way priority is calculated, 
programs that used to run rather quickly in the background may now be slowed 
down, while foreground programs have speeded up. 

• Is the program written in the awk, csh, or some other interpretive language? 

While they allow programs to be written quickly, interpretive languages have the 
problem that they are not optimized by a compiler. Also, it is easy in a language 
like awk to request an extremely compute- or 1/0-intensive operation with a few 
characters. It is often worthwhile to perform a desk check or informal peer 
review of such programs with the emphasis on the number of iterations implied 
by each operation. 

• Does the program always run at the same speed, or is it sometimes faster? 

The AIX file system uses some of system memory to hold pages of files for 
future reference. If a disk-limited program is run twice in quick succession, it 
will normally run faster the second time than the first. Similar phenomena may 
be observed with programs that use NFS and DPS. This can also occur with large 
programs, such as compilers. The program's algorithm may not be disk-limited, 
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but the time needed to load a large executable may make the first execution of the 
program much longer than subsequent ones. 

• If the program has always run slowly, or has slowed down without any obvious 
change in its environment, we need to look at its dependency on resources. 

"Identifying the Performance-Limiting Resource" on page 80 describes 
techniques for finding the bottleneck. 

Everything Runs Slowly at a Particular Time of Day 

Most people have experienced the rush-hour slowdown that occurs because a large 
number of people in the organization habitually use the system at one or more particular 
times each day. This phenomenon is not always simply due to a concentration of load. 
Sometimes it is an indication of an imbalance that is (at present) only a problem when the 
load is high. There are also other sources of periodicity in the system that should be 
considered. 

• If you run iostat and netstat for a period that spans the time of the slowdown (or 
have previously captured data from your monitoring mechanism), are some disks 
much more heavily used than others? Is the CPU Idle percentage consistently 
near zero? Is the number of packets sent or received unusually high? 

If the disks are unbalanced, look at "Monitoring and Tuning Disk 1/0" on page 
1 30. 

If the CPU is saturated, use ps to identify the programs being run during this 
period. The script given in "Performance Monitoring Using iostat, netstat, 
vmstat" simplifies the search for the CPU hogs. 

If the slowdown is counter-intuitive, such as paralysis during lunch time, look for 
a pathological program such as a graphic Xlock or game program. Some versions 
of Xlock are known to use huge amounts of CPU time to display graphic patterns 
on an idle display. It is also possible that someone is running a program that is a 
known CPU burner and is trying to run it at the least intrusive time. 

• Unless your /var/adm/cron/cron.allow file is null, you may want to check the 
contents of the /var/adm/cron/crontab directory for expensive operations . For 
example, users have been known to request an hourly copy of all of their home 
directory files to an NFS-mounted backup directory. 

If you find that the problem stems from conflict between foreground activity and 
long-running, CPU-intensive programs that are, or should be, run in the background, you 
should consider using schedtune -r -d to give the foreground higher priority. See 
"Tuning the Process-Priority-Value Calculation with schedtune" on page 107.  

Everything Runs Slowly at Unpredictable Times 

The best tool for this situation is an overload detector, such as xmperf' s filtd program (a 
component of PTX) . filtd can be set up to execute shell scripts or collect specific 
information when a particular condition is detected. You can construct a similar, but more 
specialized, mechanism using shell scripts containing vmstat, netstat, and ps. 
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If the problem is local to a single system in a distributed environment, there is 
probably a pathological program at work, or perhaps two that intersect randomly. 

Everything an Individual User Runs Is Slow 

Sometimes a system seems to "pick on" an individual. 

• Quantify the problem. Ask the user which commands are used frequently, and 
run them with the time command, as in the following example: 

$ t ime cp . prof i l e  testj unk 
real OmO . O B s  
user OmO . O O s  
sys OmO . O l s  

Then run them under a satisfactory userid. I s  there a difference in  the reported 
real time? 

• A program should not show much CPU time (us er+ sys) difference from run 
to run, but may show a real time difference because of more or slower UO. Are 
the user 's files on an NFS-mounted directory? On a disk that has high activity for 
other reasons? 

• Check the user 's . p r o f i 1 e file for strange $ PATH specifications . For 
example, if you always search a couple of NFS-mounted directories (fruitlessly) 
before searching /usr / bin, everything will take longer. 

A Number of LAN-Connected Systems Slow Down 
Simultaneously 

There are some common problems that arise in the transition from independent systems to 
distributed systems. They usually result from the need to get a new configuration running 
as soon as possible, or from a lack of awareness of the cost of certain functions. In 
addition to tuning the LAN configuration in terms of MTUs and mbufs (see the 
Monitoring and Tuning Communications UO chapter), we should look for LAN-specific 
pathologies or nonoptimal situations that may have evolved through a sequence of 
individually reasonable decisions. 

• Some types of software or firmware bugs can sporadically saturate the LAN with 
broadcast or other packets. 

When a broadcast storm occurs, even systems that are not actively using the 
network can be slowed by the incessant interrupts and by the CPU resource 
consumed in receiving and processing the packets. These bugs are better detected 
and localized with LAN analysis devices than with normal AIX performance 
tools. 

• Do you have two LANs connected via an AIX system? 

Using an AIX system as a router consumes large amounts of CPU time to process 
and copy packets. It is also subject to interference from other work being 
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processed by the AIX system. Dedicated hardware routers and bridges are 
usually a more cost-effective and robust solution to the need to connect LANs. 

• Is there a clearly defensible purpose for each NFS mount? 

At some stages in the development of distributed configurations, NFS mounts are 
used to give users on new systems access to their home directories on their 
original systems. This simplifies the initial transition, but imposes a continuing 
data communication cost. It is not unknown to have users on system A 
interacting primarily with data on system B and vice versa. 

Access to files via NFS imposes a considerable cost in LAN traffic, client and 
server CPU time, and end-user response time. The general principle should be 
that user and data should normally be on the same system. The exceptions are 
those situations in which there is an overriding concern that justifies the extra 
expense and time of remote data. Some examples are a need to centralize data for 
more reliable backup and control, or a need to ensure that all users are working 
with the most current version of a program. 

If these and other needs dictate a significant level of NFS client-server 
interchange, it is better to dedicate a system to the role of server than to have a 
number of systems that are part-server, part-client. 

• Have programs been ported correctly (and justifiably) to use remote procedure 
calls (RPCs)? 

The simplest method of porting a program into a distributed environment is to 
replace program calls with RPCs on a 1 : 1  basis. Unfortunately, the disparity in 
performance between local program calls and RPCs is even greater than the 
disparity between local disk 1/0 and NFS 1/0. Assuming that the RPCs are really 
necessary, they should be batched whenever possible. 

Everything That Uses a Particular Service or Device Slows 
Down at Times 

Make sure you have followed the configuration recommendations in the appropriate 
subsystem manual and/or the recommendations in the appropriate "Monitoring and 
Tuning" chapter of this book. 

Using Perf PM R for Performance Diagnosis 

The PerfPMR package was developed to ensure that reports of suspected performance 
problems in AIX were accompanied by enough data to permit problem diagnosis by IBM. 
This makes the shell scripts in  PerfPMR useful to  other performance analysts as  well. 
PerfPMR is an optionally installable part of the AIX Version 4. 1 Base Operating System. 
It is located in /usr/sbin/perf/pmr. See the discussion in "Installing AIX Version 4. 1 
PerfPMR" on page245 . A version of PerfPMR is also available for AIX Version 3.2.5.  
See "Obtaining and Installing AIX Version 3 .2.5 PerfPMR" on page 244. 

The script perfpmr is the highest-level script of the package, but it collects data, 
such as configuration information, that a local performance analyst probably knows 
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already. The lower-level script monitor collects a coordinated set of performance 
information for a specified number of seconds and summarizes the data. The syntax of 
monitor is :  

monitor seconds [-n] [-p] 

The seconds parameter must be at least 60. If seconds is 600 or less, the interval for 
the periodic reports is 10 seconds; otherwise, the interval is 60 seconds. The -n flag 
suppresses collection of netstat and nfsstat data. The -p flag suppresses collection of 
process-profile data (see below). The monitor script should not be run at the same time as 
any other operation that uses the system trace facility. 

A single monitor request creates: 

• A monitor.int file containing: 
- Combined output of ps -elk and ps gv commands run at the beginning and 

end of the monitoring period. 
- Output of a sar -A command with the appropriate interval. 
- Output of an iostat command with the appropriate interval. The initial, 

cumulative report is omitted. 
- Output of a vmstat command with the appropriate interval. The initial, 

cumulative report is omitted. 
• A monitor.sum file containing: 

- For those processes that were active at both the beginning and end of the 
monitor run, the differences between end and start values of various 
resource-use statistics. 

- The "Average" lines from the sar -A command output. 
- Averages of the iostat interval statistics. 
- Averages of the vmstat interval statistics. 
- The "after - before" differences of the statistics produced by the vmstat -s 

command. 
• If the -n option was not specified, a netstat.int file containing: 

- The output at the beginning of the monitor run of the following commands: 

netstat -v 
netstat -m 
netstat -rs 
netstat -s 

- The output of a netstat command with the appropriate interval. 
- The output at the end of the monitor run of the following commands: 

netstat -v 
netstat -m 
netstat -rs 
netstat -s 

• If the -n option was not specified, an nfsstat.int file containing: 
- The output at the beginning and end of the monitor run of a nfsstat -csnr 

command. 
• If the -p option was not specified, a pair of files named Pprof.stt and 

Pprof.flow. Pprof.stt contains the starting and ending times of the run. 
Pprof.flow contains process-profile data. The columns in the Pprof.flow file are: 
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Process name 

2 Process ID 

3 Time of first occurrence of the process within the measurement period 

4 Time of last occurrence of the process 

5 Total process execution time 

6 Begin/end flag (sum of Begin + End, below) . Describes the beginning and 
ending state of the process. 

Begin: 

End: 

execed: 0 
forked: 1 
Alive at Start: 2 

Alive at end: 0 
execed away: 4 
Exited: 8 

7 Parent process ID 

Check before You Change 

One particularly important use of the PerfPMR package is the creation of a configuration 
and performance baseline prior to a significant change in system hardware or software. 
Just as you probably back up critical files before such a change, you should make a record 
of the configurations and the performance they were providing. If a performance 
degradation should occur after the change, you will have detailed data that will let you 
perform a rigorous before-and-after analysis of the system. 

To get the most complete data possible, you should run: 

$ perfpmr 3 6 0 0  

during the busiest hour of the day. The output files from this measurement run will 
appear in directory /var/perf/tmp. (If you are running on a pre-Version 4 system, the 
output files will appear in the current working directory.) Be sure to move these files to a 
safe haven before beginning the configuration change. 

Identifying the Performance-Limiting Resource 

Starting with an Overview of System Performance 

Perhaps the best tool for an overall look at resource utilization while running a multiuser 
workload is the vmstat command. The vmstat command reports CPU and disk-I/O 
activity as well as memory utilization data. The command 

$ vms tat 5 
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causes the vmstat command to begin writing a one-line summary report of system activity 
every 5 seconds. Since no count was specified following the interval, reporting continues 
until the command is cancelled. 

The following vmstat report was made on a system running AIXwindows and 
several synthetic applications (some low-activity intervals have been removed): 

procs memory page f aul t s  cpu 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
r b avrn fre re pi po fr sr cy in sy cs us sy id wa 

0 0 8 7 9 3  8 1  0 0 0 1 7 0 1 2 5  4 2  3 0  1 2 9 5  2 

0 0 8 7 9 3  8 0  0 0 0 0 0 0 1 5 5  1 1 3  7 9  1 4  8 7 8  0 

0 0 8 7 9 3  5 7  0 3 0 0 0 0 1 7 8  2 8  6 9  1 12 8 1  6 

0 0 9 1 9 2  6 6  0 0 1 6  8 1  1 6 7  0 1 5 1  3 2  3 4  1 6 7 7  1 6  

0 0 9 1 9 3  6 5  0 0 0 0 0 0 1 1 7  2 9  2 6  1 3 9 6  0 

0 0 9 1 9 3  6 5  0 0 0 0 0 0 1 2 0 3 0  3 1  1 3 9 5  0 

0 0 9 6 9 3  6 9  0 0 5 3  1 0 0  2 1 6  0 1 6 8  2 7  5 7  1 4 6 3  3 3  

0 0 9 6 9 3  6 9  0 0 0 0 0 0 1 3 4  9 6  6 0  1 2  4 8 4  0 

0 0 1 0 1 9 3  5 7  0 0 0 0 0 0 1 2 4  2 9  3 2  1 3 9 4  2 

0 0 1 1 1 9 4  6 4  0 0 3 8  2 0 1  1 0 8 0  0 1 6 8  2 9  5 7  2 8 6 2  2 9  

0 0 1 1 1 9 4  6 3  0 0 0 0 0 0 1 4 1  1 1 1  6 5  1 2  7 8 1  0 

0 0 5 4 8 0  7 5 5  3 1 0 0 0 0 1 5 4  1 0 7  7 1  1 3  8 7 8  2 

0 0 5 4 6 7  5 7 4 7  0 3 0 0 0 0 1 6 7  3 9  6 8  1 1 6  7 9  5 

0 1 4 7 9 7  5 8 2 1  0 2 1  0 0 0 0 1 9 1  1 9 2  1 2 5  2 0  5 4 2  3 3  

0 1 3 7 7 8  6 1 1 9  0 2 4  0 0 0 0 1 8 8  1 7 0  9 8  5 8 4 1  4 6  

0 0 3 7 5 1  6 1 3 9  0 0 0 0 0 0 1 4 5  2 4  5 4  1 1 0  8 9  0 

The columns of interest for this initial assessment are pi and po in the page 

category and the four columns in the cpu category. 

• Entries pi and po are the paging-space page ins and page outs, respectively. If 
any paging-space 1/0 is taking place, the workload is approaching (or is beyond) 
the system's memory limits. 

• If the sum of us and sy (user and system) CPU-utilization percentages is greater 
than 80% in a given 5-second interval, the workload was approaching the CPU 
limits of the system during that interval. 

• If the wa (1/0 wait) percentage is nonzero (and p i  and po are zero), a significant 
amount of time is being spent waiting on nonoverlapped file 1/0, and some part 
of the workload is 1/0-limited. 

By "approaching its limits," we mean that some parts of the workload are already 
experiencing a slowdown due to the critical resource. The longer response times may not 
be subjectively significant yet, but an increase in that element of the workload will cause a 
rapid deterioration of performance. 

If vmstat indicates a significant amount of 1/0 wait time, an iostat will give more 
detailed information. The command 

$ iostat 5 3 
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causes iostat to begin writing summary reports of 1/0 activity and CPU utilization every 5 
seconds. Since a count of 3 was specified following the interval, reporting will stop after 
the third report. 

The following iostat report was made on a system running the same workload as the 
vmstat reports above, but at a different time. The first report is for the cumulative activity 
since the preceding boot, while subsequent reports are for activity during the preceding 
5-second interval : 

t ty : 

Disks : 

hdi skO 

hdi skl 

hdi sk2 

cdO 

t ty :  

Disks : 

hdi skO 

hdi skl 

hdi sk2 

cdO 

t ty :  

Disks : 

hdi skO 

hdi skl 

hdi sk2 

cdO 

tin 

0 . 0  

t in 

0 . 0  

tin 

0 . 0  

tout 

4 . 3  

% tm_ac t  

0 . 0  

0 . 0  

0 . 4  

0 . 0  

tout 

3 0 . 3  

% tm_ac t  

0 . 2  

0 . 0  

0 . 0  

0 . 0  

tout 

8 . 4  

% tm_ac t  

0 . 0  

0 . 0  

9 8 . 4  

0 . 0  

cpu : 

Kbps 

0 . 2  

0 . 0  

1 .  5 

0 . 0  

cpu : 

Kbps 

0 . 8  

0 . 0  

0 . 0  

0 . 0  

cpu : 

Kbps 

0 . 0  

0 . 0  

5 7 5 . 6  

0 . 0  

% user 

0 . 2  

tps 

0 . 0  

0 . 0  

0 . 3  

0 . 0  

% user 

8 . 8  

tps 

0 . 2  

0 . 0  

0 . 0  

0 . 0  

% user 

0 . 2  

tps 

0 . 0  

0 . 0  

6 1 . 9 

0 . 0  

% sys 

0 . 6  

msps 

% sys 

7 . 2  

msps 

% sys 

5 . 8  

msps 

% idle 

9 8 . 8  

Kb_read 

7 9 9 3  

2 1 7 9  

6 7 5 4 8  

0 

% i owai t  

0 . 4  

Kb_wrtn 

4 4 0 8  

1 6 9 2  

5 9 1 5 1  

0 

% idle % i owai t  

8 3 . 9  0 . 2  

Kb_read 

4 

0 

0 

0 

% idle 

0 . 0  

Kb_read 

0 

0 

3 9 6  

0 

Kb_wrtn 

0 

0 

0 

0 

% i owai t  

9 3 . 8  

Kb_wrtn 

0 

0 

2 4 8 8  

0 

The first report, which displays cumulative activity since the last boot, shows that 
the 1/0 on this system is unbalanced. Most of the 1/0 (86.9% of kilobytes read and 90.7% 
of kilobytes written) is to hdisk2 , which contains both the operating system and the 
paging space. The cumulative CPU utilization since boot statistic is usually meaningless, 
unless the system is used consistently 24 hours a day. 

The second report shows a small amount of disk activity reading from hdi skO,  

which contains a separate file system for the system's primary user. The CPU activity 
arises from two application programs and iostat itself. Although iostat's  output is 
redirected to a file, the output is not voluminous, and the system is not sufficiently 
memory-constrained to force any output during this interval. 

In the third report, we have artificially created a near-thrashing condition by running 
a program that allocates, and stores into, a large amount of memory (about 26MB in this 
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example). hdi sk2 is active 98.4% of the time, which results in 93.8% 1/0 wait. The fact 
that a single program that uses more than three-fourths of the system's memory (32MB) 
can cause the system to thrash reminds us of the limits of VMM memory load control (see 
page 124). Even with a more homogeneous workload, we need to understand the memory 
requirements of the components. 

If vmstat indicates that there is a significant amount of CPU idle time when the 
system seems subjectively to be running slowly, you may be experiencing delays due to 
kernel lock contention. In AIX Version 4. 1 ,  this possibility can be investigated with the 
lockstat command if the Performance Toolbox is installed on your system. 

Determining the Limiting Factor for a Single Program 

If you are the sole user of a system, you can get a general idea of whether a program is 1/0 
or CPU dependent by using the time command as follows:  

$ time c p  foo . in foe . out 

real Om0 . 13 s  
user OmO . O l s  
sys Om0 . 02 s  

Note: Examples of the time command here and elsewhere in this book use the version that 
is built into the Korn shell. The official time command (/usr/bin/time) reports with 
a lower precision and has other disadvantages. 

In this example, the fact that the real, elapsed time for the execution of the cp (. 1 3  
seconds) i s  significantly greater than the sum (.03 seconds) of the user and system CPU 
times indicates that the program is 1/0 bound. This occurs primarily because foo·. in 

has not been read recently. Running the same command a few seconds later against the 
same file gives: 

real Om0 . 0 6 s  
user OmO . O l s  
sys Om0 . 0 3 s  

Most or all o f  the pages of f oo . i n  are still i n  memory because there has been no 
intervening process to cause them to be reclaimed and because the file is small compared 
with the amount of RAM on the system. A small foo . out would also be buffered in 
memory, and a program using it as input would show little disk dependency. 

If you are trying to determine the disk dependency of a program, you have to be sure 
that its input is in an authentic state. That is, if the program will normally be run against a 
file that has not been accessed recently, you must make sure that the file used in measuring 
the program is not in memory. If, on the other hand, a program is usually run as part of a 
standard sequence in which it gets its input from the output of the preceding program, you 
should prime memory to ensure that the measurement is authentic. For example, 

$ cp foo . in /dev/ nu l l  

would have the effect of priming memory with the pages of f o o . in. 

The situation is more complex if the file is large compared to RAM. If the output of 
one program is the input of the next and the entire file won't fit in RAM, the second 
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program will end up reading pages at the head of the file, which displace pages at the end. 
Although this situation is very hard to simulate authentically, it is nearly equivalent to one 
in which no disk caching takes place. 

The case of a file that is (perhaps just slightly) larger than RAM is a special case of 
the RAM versus disk analysis discussed in the next section. 

Disk or Memory? 

Just as a large fraction of real memory is available for buffering files, the system's page 
space is available as temporary storage for program working data that has been forced out 
of RAM. Suppose that you have a program that reads little or no data and yet shows the 
symptoms of being 1/0 dependent. Worse, the ratio of real time to user + system time does 
not improve with successive runs. The program is probably memory-limited, and its 1/0 is 
to, and possibly from, the paging space. A way to check on this possibility is shown in the 
following vms tat i t  shell script. The vms tat i t  script summarizes the voluminous 
vmstat -s report, which gives cumulative counts for a number of system activities since 
the system was started: 

vms tat -s >temp . f i l e  
time $ 1  

# cumulative counts before the command 
# command under test 

vms tat -s >>temp . f i l e  # cumulative counts after execution 

grep "pagi . * ins " temp . f i l e  >>results # extract only the data 
grep " pagi . * outs "  temp . f i l e  >>results # o f  intere s t  

If the shell script is run as follows: 

$ vms tatit " cp filel f i l e 2 " 2 >resu l t s  

the result in resu l t s  is :  

real Om0 . 0 3 s  
user OmO . O l s  
sys Om0 . 0 2 s  

2 3 2 3  paging space page ins 

2 3 2 3  paging space page ins 

4 8 5 0  paging space page outs 

4 8 5 0  paging space page outs 

The fact that the before-and-after paging statistics are identical confirms our belief 
that the cp command is not paging bound. An extended variant of the vms tat i t  shell 
script can be used to show the true situation: 

vms tat -s > temp . f i l e  
t ime $ 1  
vms tat -s >>temp . f i l e  
echo " Ordinary Input : "  
grep " "' [ 0 - 9 ] *page ins " 
echo " Ordinary Output : "  
grep Il l\ [ 0 -9 ] *page out s "  
echo " True Paging Output : "  
grep "pagi . *out s "  
echo " True Paging Input : "  
grep " pagi . * ins " 

>>results 
temp . f i l e  >>results 

>>results 
temp . f i l e  >>results 

>>results 
t emp . f i l e  >>results 

>>results 
temp . f i l e  >>results 
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Because all ordinary I/O in the AIX operating system is processed via the VMM, the 
vmstat -s command reports ordinary program I/O as page ins and page outs. When the 
above version of the vrns tat i t  shell script was run against the cp command of a large 
file that had not been read recently, the result was : 

real Om2 . 0 9 s  
user Om0 . 0 3 s  
sys Om0 . 7 4 s  
Ordinary Input : 

4 6 4 1 6  page ins 
4 7 1 3 2  page ins 

Ordinary Output : 
1 4 6 4 8 3  page outs 
1 4 7 0 1 2  page outs 

True Paging Output : 
4 8 5 4  paging space page 
4 8 5 4  paging space page 

True Paging Input : 
2 5 2 7  paging space page 
2 5 2 7  paging space page 

outs 
outs 

ins 
ins 

The time command output confirms the existence of an 1/0 dependency. The 
increase in page ins shows the 1/0 necessary to satisfy the cp command. The increase in 
page outs indicates that the file is large enough to force the writing of dirty pages (not 
necessarily its own) from memory. The fact that there is no change in the cumulative 
paging-space-I/O counts confirms that the cp command does not build data structures 
large enough to overload the memory of the test machine. 

The order in which this version of the vrns tati t script reports 1/0 is intentional. 
Typical programs read file input and then write file output. Paging activity, on the other 
hand, typically begins with the writing out of a working-segment page that does not fit. 
The page is read back in only if the program tries to access it. The fact that the test system 
has experienced almost twice as many paging spac e  page outs as paging 

spac e  page ins since it was booted indicates that at least some of the programs that 
have been run on this system have stored data in memory that was not accessed again 
before the end of the program. "Memory-Limited Programs" on page 64 provides more 
information. See also "Monitoring and Tuning Memory Use" beginning on page 1 1 1 .  

To show the effects of memory limitation on these statistics, the following example 
observes a given command in an environment of adequate memory (32MB) and then 
artificially shrinks the system using the rmss command (see "Assessing Memory 
Requirements via the rmss Command" on page 1 15). The command sequence 

$ cc -c ed . c  

$ vrns tat i t  " cc -c ed . c " 2 >results 

first primes memory with the 7944-line source file and the executable file of the C 
compiler, then measures the 1/0 activity of the second execution: 
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real Om7 . 7 6 s  

user Om7 . 4 4 s  
sys Om0 . 1 5 s  

Ordinary Input : 
5 7 1 9 2  page ins 

5 7 1 9 2  page ins 
Ordinary Outpu t : 

1 6 5 5 1 6  page outs 
1 6 5 5 5 3  page outs 

True Paging Output : 
1 0 8 4 6  paging space page outs 
1 0 8 4 6  paging space page outs 

TrtJ.e Paging Input : 
6 4 0 9  paging space page ins 
6 4 0 9  paging space page ins 

Clearly, this is not UO limited. There is not even any UO necessary to read the 
source code. 

If we then issue the command 

# rmss -c 8 

to change the effective size of the machine to 8MB, and perform the same sequence of 
commands, we get: 

real Om9 . 8 7 s  

user Om7 . 7 0 s  
sys Om0 . 1 8 s  
Ordinary Input : 

5 7 6 2 5  page ins 
5 7 8 0 9  page ins 

Ordinary Output : 
1 6 5 8 1 1  page outs 
1 6 5 8 8 2  page outs 

True Paging Output : 
1 1 0 1 0  paging space page outs 
1 1 0 6 1  paging space page out s  

True Paging Input : 
6 6 2 3  paging space page ins 
6 7 0 1  paging space page ins 

The symptoms of UO dependency are present: 
• Elapsed time longer than total CPU time 

• Significant amounts of ordinary UO on the nth execution of the command 

The fact that the elapsed time is longer than in the memory-unconstrained situation, 
and the existence of significant amounts of paging-space UO, make it clear that the 
compiler is being hampered by insufficient memory. 

Note: This example illustrates the effects of memory constraint. No effort was made to 
minimize the use of memory by other processes, so the absolute size at which the 
compiler was forced to page in this environment does not constitute a meaningful 
measurement. 
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To avoid working with an artificially shrunken machine until the next restart, run 

# rms s -r 

to release back to the operating system the memory that the rmss command had 
sequestered, thus restoring the system to its normal capacity. 

Workload Management 

When you have exhausted the program performance-improvement and system-tuning 
possibilities, and performance is still unsatisfactory at times, you have three choices: 

• Live with the situation. 
• Upgrade the performance-limiting resource. 
• Adopt workload-management techniques. 

If you adopt the first approach, some of your less stoic users will experience 
increasing frustration and decreasing productivity. If you choose to upgrade, you have to 
justify the expenditure to someone. That someone will undoubtedly want to know if you 
have exhausted all possibilities with the current system, which means you need to 
investigate the possibilities of workload management. 

Workload management simply means assessing the components of the workload to 
determine whether they are all needed as soon as possible. Usually, there is work that can 
wait for a while; for example, a report that is needed first thing in the morning. That report 
is equally useful when run at 3 a.m. as at 4 p.m. on the preceding day. The difference is 
that at 3 a.m. it uses CPU cycles and other resources that would otherwise be idle. The at 
command or crontab command can be used to request the running of a program at a 
specific time or at regular intervals. 

Similarly, some programs that do have to be run during the day can be run at 
reduced priority. They will take longer to complete, but they will be less in competition 
with really time-critical processes. 

A related technique is moving work from one machine to another; for example, 
running a compilation on the machine where the source code resides . This kind of 
workload balancing requires more planning and monitoring, because reducing the load on 
the network and increasing the CPU load on a server may result in a net loss. 
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6 
Monitoring and Tuning 
CPU Use 

The processing unit in a RISC System/6000 is one of the fastest components of the 
system. It is comparatively rare for a single program to keep the CPU 100% busy for more 
than a few seconds at a time. Even in heavily loaded multiuser systems, there are 
occasional lOms periods that end with everything in a wait state. If a monitor shows the 
CPU 100% busy (that is, 0% idle and 0% wait) for an extended period, there is a good 
chance that some program is in an infinite loop. Even if the program is "merely" 
expensive, rather than broken, it needs to be identified and dealt with. 

This chapter deals with techniques for detecting runaway or CPU-intensive 
programs and minimizing their adverse effect on performance. 

Readers who are not familiar with AIX CPU scheduling may want to look at 
"Performance Overview of the AIX CPU Scheduler," beginning on page 14, before 
continuing. 

Using vmstat to Monitor CPU Use 

As a CPU monitor, vmstat is superior to iostat in that its one-line-per-report output is 
easier to scan as it scrolls. vmstat also gives you general information about memory use, 
paging, and ordinary disk 1/0 at a glance. The following example can help you identify 
situations in which a program has run away or is too CPU intensive to run in a multiuser 
environment. 

$ vms tat 2 
procs memory page 

r b avm f re re pi po fr 
1 0 2 2 4 7 8  1 6 7 7  0 0 0 0 
1 0 2 2 5 0 6  1 6 0 9  0 0 0 0 
0 0 2 2 4 9 8  1 5 8 2  0 0 0 0 
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fau l t s  cpu 

sr cy in sy cs us sy id wa 
0 0 1 8 8  1 3 8 0  1 5 7  57 3 2  0 1 0  
0 0 2 1 4  1 4 7 6 1 8 6  4 8  3 7  0 1 6  
0 0 2 4 8  1 4 7 0  2 2 6  55 3 6  0 9 



2 0 2 2 5 3 4  1 4 6 5  0 0 0 0 

2 0 2 2 5 3 4  1 4 4 5  0 0 0 0 
2 0 2 2 5 3 4  1 4 2 6  0 0 0 0 
3 0 2 2 5 3 4  1 4 1 0  0 0 0 0 
2 1 2 2 5 5 7  1 3 6 5  0 0 0 0 

2 0 2 2 5 4 1  1 3 5 6  0 0 0 0 
1 0 2 2 5 2 4  1 3 5 0  0 0 0 0 
1 0 2 2 5 4 6  1 2 9 3  0 0 0 0 

0 0 2 3 8  9 0 3  2 3 9  7 7  2 3  0 0 

0 0 2 0 9  1 1 4 2  2 0 5  7 2  2 8  0 0 
0 0 1 8 9  1 2 2 0  2 12 7 4  2 6  0 0 
0 0 2 5 5  1 7 0 4  2 6 8  7 0  3 0  0 0 
0 0 3 8 3  9 7 7  2 1 6  7 2  2 8  0 0 

0 0 2 3 7  1 4 1 8  2 0 9  6 3  3 3  0 4 
0 0 2 4 1  1 3 4 8  1 7 9  52 3 2  0 1 6  
0 0 2 1 7  1 4 7 3  1 8 0  5 1  3 5  0 1 4  

This output shows the effect of introducing a program in a tight loop to a busy 
multiuser system. The first three reports (the summary has been removed) show the 
system balanced at 50-55% user, 30-35% system, and 10-15% I/O wait. When the 
looping program begins, all available CPU cycles are consumed. Since the looping 
program does no 1/0, it can absorb all of the cycles previously unused because of 1/0 wait. 
Worse, it represents a process that is always ready to take over the CPU when a useful 
process relinquishes it. Since the looping program has a priority equal to that of all other 
foreground processes, it will not necessarily have to give up the CPU when another 
process becomes dispatchable. The program runs for about 10  seconds (five reports), and 
then the activity reported by vmstat returns to a more normal pattern. 

Using the time Command to Measure CPU Use 

The time command is a simple but useful tool for understanding the performance 
characteristics of a single program. time reports the elapsed time from beginning to end of 
the program, the real time. It also reports the amount of CPU time used by the program. 
The CPU time is divided into user and sys . The user value is the time used by the 
program itself and any library subroutines it calls .  The sys value is the time used by 
system calls invoked by the program (directly or indirectly). 

The sum of user + sys is total direct CPU cost of executing the program. This 
does not include the CPU costs of parts of the kernel that can be said to run on behalf of 
the program, but which do not actually run on its thread. For example, the cost of stealing 
page frames to replace the page frames taken from the free list when the program started is 
not reported as part of the program's CPU consumption. 

The difference between the real time and the total CPU time, that is: 

real - ( user + sys ) 

is the sum of all of the factors that can delay the program, plus the program's own 
unattributed costs. In roughly the order of diminishing size, these factors may be: 

• I/O required to bring in the program's text and data 
• I/O required to acquire real memory for the program's use 
• CPU time consumed by other programs 
• CPU time consumed by the operating system 

In the following example, the program used in the preceding section has been 
compiled with -03 to make it quicker. There is very little difference between the real 
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(wall-clock) time required to run the program and the sum of its user and system CPU 
times. The program is getting all the time it wants-probably at the expense of other 
programs in the system. 

$ time looper 
real Om3 . 5 8s 
user Om3 . 1 6 s  
sys Om0 . 04 s  

In  the next example, we run the program at a lower priority by adding 10  to its nice 
value. It takes almost twice as long to run, but other programs are getting a chance to do 
their work too: 

$ time nice - 1 0  looper 
real Om6 . 5 4s  
user Om3 . 17 s  
sys Om0 . 0 3 s  

Note that we placed the nice command within the time command, rather that the 
reverse. If we had entered 

$ nice - 1 0  time looper 

we would have gotten a different time command (/usr/bin/time) with a 
lower-precision report, rather than the version of time we have been using, which is built 
into ksh. If the time command comes first, you will get the built-in version, unless you 
specify the fully qualified name of /usr/bin/time. If time is invoked from another 
command, you will get /usr/bin/time. 

time and timex Cautions 

There are several considerations that you should take into account when using time or its 
variant timex: 

• The use of the /usr/bin/time and /usr/bin/timex commands is not recommended. 
When possible, use the time subcommand of the Korn or C shell. In AIX 3 .2.5, 
/usr/bin/time incorrectly reports the CPU time used by a shell script containing a 
sequence of commands connected by pipes (the CPU time of all but the last 
command in the sequence is lost) . This is because /usr/bin/time uses the system 
default shell . In AIX 3 .2.5, the system default is the Bourne shell, which execs 
the commands in the sequence in such a way that only the CPU consumption of 
the last can be measured. In AIX 4. 1 ,  the system default shell is the Korn shell, 
which does not exhibit this phenomenon. 

• The timex -s command uses sar to acquire additional statistics. Since sar is 
intrusive, timex -s is too. Especially for brief runs,  the data reported by timex -s 
may not precisely reflect the behavior of a program in an unmonitored system. 

• Because of the length of the system clock tick ( 1 0  milliseconds) and the rules 
used by the scheduler in attributing CPU time use to threads, the results of the 
time command are not completely deterministic. There is a certain amount of 
unavoidable variation between successive runs. This variation is in terms of 
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clock ticks. Obviously, the shorter the run time of the program, the larger the 
variation will loom as a percentage of the reported result. 

• Use of the time or timex command, whether from /usr/bin or via the built-in 
shell time function, to measure the user or system time of a sequence of 
commands connected by pipes ,  entered on the command l ine,  i s  not 
recommended. One potential problem is that syntax oversights can cause time to 
measure only one of the commands, without any indication of a user error. The 
syntax is technically correct; it just doesn't  produce the answer the user intended. 

Using xmperf to Monitor CPU Use 

Using xmperf to display CPU use in the system is even more attention-grabbing. If you 
display CPU as a moving skyline chart and display User CPU in bright red, a runaway 
program is immediately obvious from across a room. xmperf is described in detail in the 
Peiformance Toolbox 1 .2  and 2. 1 for AIX: User 's Guide, IBM form number SC23-2625 . 

Using ps to Identify CPU-Intensive Programs 

Three of the possible ps output columns report CPU use, each in a different way. 

Column Value Is: 

c Recently used CPU time for the process. 

TIME Total CPU time used by the process since it started. 

%CPU Total CPU time used by the process since it started divided by the 
elapsed time since the process started. This is a measure of the CPU 
dependence of the program. 

The shell script: 

$ps -e f  I egrep -v " STIME l $ LOGNAME " I sort +3 -r I head -n 1 5  

i s  a tool for  focusing on  the most CPU-intensive user processes in  the system. If we  had 
used that script in the situation described in "Using vmstat to Monitor CPU Use" on page 
88, its output would have appeared as follows (the header line has been reinserted for 
clarity): 

USER PID PPID c STIME TTY TIME CMD 
waters 4 5 7 42 5 4 7 0 1  1 2 0  1 5 : 1 9 : 0 5 pts / 2 9  0 : 0 2 . / looper 

root 5 2 1 2 1  1 11  1 5 : 3 2 : 3 3 pts / 3 1  5 8 : 3 9 xhogger 
root 4 2 5 0  1 3 1 5 : 3 2 : 3 3 pts / 3 1  2 6 : 0 3 xrnconsole a l l  con 
root 3 8 8 12 4 2 5 0  1 1 5 : 3 2 : 3 4 pts / 3 1  8 : 5 8 xrncons tats 0. 3 3 0  
root 2 7 0 3 6  6 8 6 4  1 1 5 : 1 8 : 3 5 - 0 : 0 0 rlogind 
root 4 7 4 1 8  2 5 9 2 5  0 1 7 : 0 4 : 2 6  0 : 0 0 coe login <d2 9dbms : O > 
bi ck 3 7 6 5 1  4 3 5 3 8  0 1 6 : 5 8 : 4 0 pts / 4  0 : 0 0 /bin/ ksh 
bi ck 4 3 5 3 8  1 0 1 6 : 5 8 : 3 8 0 : 0 7 a ix term 

luc 6 0 0 6 1  2 7 0 3 6  0 1 5 : 1 8 : 3 5 pts / 1 8  0 : 0 0 -ksh 
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Recent CPU use is the fourth column ("C") . The looping program's process easily 
heads the list. Observe that the C value may understate the looping process 's CPU usage, 
since the scheduler stops counting at 120. 

The ps command is a vety flexible tool for identifying the programs that are running 
in the system and the resources they are using. The individual options and columns are 
described in the formal documentation of ps in the A/X Version 4. 1 Commands Reference. 

Most of the flags of ps belong to one of two groups :  

1. Flags that specify which processes are to be included in the output 

2. Flags that specify what information is to be displayed about each process 

The following two tables are intended to simplify the task of choosing ps flags by 
summarizing the effects of the flags. In each table, the flags specified with a minus sign 
are on the left side of the table; the flags specified without a minus sign are on the right 
side. You cannot mix types. If the first flag is specified with a minus sign, all other flags in 
that ps command must be from the minus-sign group. 

Processes 
Listed Are: 
All processes 
Not process-

group leaders and 
not associated 
with a terminal 

Not process
group leaders 

Not kernel 
processes 

Members of 
specified process 
groups 

Kernel processes 
Those specified in 

process number list 
Those associated 

with TTY(s) in the 
list 

Specified user's 
processes 

Processes with 
terminals 

Not associated with 
a TTY 

Process-Specifying Flags: 
-G -U 

-A -a -d -e -g -k -p -t -u a g t 

y 
y 

y 

y 

y 

y 
y 

y 
(n TTYs) 

y 

y 

y 
( 1  TTY) 

y 

x 

y 

If the ps command is issued without a process-specifying flag, the processes owned 
by the user issuing the ps command are displayed. 
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Column: Defaultl 
PID y 
TTY y 
TIME y 
CMD y 
USER 
UID 
PPID 
c 
STIME 
F 
S/STAT 
PRI 
NI/NICE 
ADDR 
SZ/SIZE 
WCHAN 
RSS 
SSIZ 
% CPU 
%MEM 
PGIN 
LIM 
TSIZ 
TRS 

Column-Selecting Flags: 
-U 

-f -I -u Default2 
y y y y 
y y y y 
y y y y 
y y y y 
y 

y y 
y y 
y y 
y 

y 
y y 
y 
y 
y 
y 
y 

e 1 s u v 
y y y y y 
y y y y y 
y y y y y 
y y y y y 

y 
y 
y 
y 

y 

y y y y y 
y 
y 
y 
y y y 
y 
y y y 

y 
y y 
y y 

y 
y 
y 
y 

environment Y 
(following the command; 
has no column heading) 

If ps is given with no flags or with a process-specifying flag that begins with a 
minus sign, the columns displayed are those shown for Default I .  If the command is given 
with a process-specifying flag that does not begin with minus, Default2 columns are 
displayed. The -u or -U flag is both a process-specifying and column-selecting flag. 

The following are brief descriptions of the contents of the columns: 

PID 

TTY 

TIME 

CMD 

USER 

UID 

PPID 

c 
STIME 

Process ID 

Terminal or pseudo-terminal associated with the process 

Cumulative CPU time consumed, in minutes and seconds 

Command the process is running 

Login name of the user to whom the process belongs 

Numeric user ID of the user to whom the process belongs 

ID of this process 's parent process 

Recently used CPU time 

Time the process started, if today. Otherwise the date the process 
started. 
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F 

S/STAT 

PRI 

NI/NICE 

ADDR 

SZ/SIZE 

WCHAN 

RSS 

SSIZ 

% CPU 

%MEM 

PGIN 

LIM 

TSIZ 

TRS 

environment 

Eight-character hexadecimal value describing the flags associated with 
the process (see the detailed description of the ps command) 

Status of the process (see the detailed description of the ps command) 

Current priority value of the process 

Nice value for the process 

Segment number of the process stack 

Number of working-segment pages that have been touched, times 4. 

Event on which the process is waiting 

Sum of the numbers of working-segment and code-segment pages in 
memory, times 4 

Size of the kernel stack 

Percentage of time since the process started that it was using the CPU. 

RSS value divided by the machine size in KB, times 100, rounded to the 
nearest full percentage point. 

Number of page-ins caused by page faults. Since all AIX I/O is 
classified as page faults, this is basically a measure of 1/0 volume. 

Limit on RSS size. Displayed as "xx" if not set. 

Size of the text section of the executable file 

Number of code-segment pages, times 4 

Value of all the environment variables for the process 

Using tprof to Analyze Programs for CPU Use 

The typical program execution is a variable mixture of application code, library 
subroutines, and kernel services. Frequently, a program that has not yet been tuned is 
found to expend most of its CPU cycles in a few statements or subroutines . Quite often, 
these "hot spots" are a surprise to the implementor-they can be considered performance 
bugs . Our tool of choice for pinpointing the hot spots in a program is the trace-driven 
profiler-tprof. tprof can profile any program produced by one of the XL compilers: XL 
C, XL C++, and XL FORTRAN. 

In AIX Version 4. 1 ,  the tprof program is packaged as part of the Performance 
Toolbox for AIX . To determine whether tprof is available, use: 

l s lpp -l I  perfagent . tools 

If this package has been installed, tprof is available. 
The raw data for tprof is obtained via the Trace facility (see "Performance Analysis 

with the Trace Facility" on page 2 14) . When a program is profiled, the Trace facility is 
activated and instructed to collect data from the trace hook (hook ID 234) that records the 
contents of the Instruction Address Register when a system-clock interrupt occurs-100 
times a second. Several other trace hooks are also activated to allow tprof to track process 
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and dispatch activity. The trace records are not written to a disk file; they are written to a 
pipe that is read by a program that builds a table of the unique program addresses that 
have been encountered and the number of times each one occurred. When the workload 
being profiled is complete, the table of addresses and their occurrence counts is written to 
disk. The data-reduction component of tprof then correlates the instruction addresses that 
were encountered with the ranges of addresses occupied by the various programs and 
reports the distribution of address occurrences ("ticks") across the programs involved in 
the workload. 

The distribution of ticks is roughly proportional to the CPU time spent in each 
program ( 10  milliseconds per tick). Once the high-use programs have been identified, the 
programmer can take action to restructure their hot spots or minimize their use. 

A detailed description of the tprof command appears in the AIX Version 4. 1 
Commands Reference, Volume 4. 

A (Synthetic) Cautionary Example 

The following C program initializes each byte of a large array of integers to OxO 1 ,  
increments each int by a random constant, and prints out a randomly selected int. The 
program does nothing useful, but is representative of programs that process large arrays .  

/ *  Array Incrementer -- Vers ion 1 * /  
#include < s tdlib . h> 

#def ine As i z e  1 0 2 4  
#de f ine RowDim Innerindex 
#define ColDim Outerindex 

main ( )  

{ int Increment ; 
int Outerindex ; 
int Innerindex ; 
int big [As i z e ]  [As i ze ] ; 

/ *  ini t i al i z e  every byte o f  the array to OxO l * /  
for ( Outerindex= O ;  Outerindex<As i z e ; Outerindex++ )  

for ( Innerindex= O ;  Innerindex<As i z e ; Innerindex++ )  
big [ RowDim] [ ColDim] = Ox0 1 0 1 0 1 0 1 ;  

Increment = rand ( ) ; 
/ *  increment every element in the array * /  
for ( Outerindex= O ;  Outerindex<As i z e ; Outerindex+ + )  

for ( Innerindex= O ;  Innerindex<As i z e ;  Inner index++ )  

big [ RowDim ] [ Co lDim ] + =  Increment ; 
i f  ( big [ RowDim] [ColDim] < 0 )  

printf ( "Negative number .  %d\n" , big [ RowDim] [ ColDim] ) ;  

printf ( "Version 1 Check Num : %d\n" , 
big [ rand ( ) %As i z e ]  [ rand ( ) %As i z e ] ) ;  
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return ( O ) ; 

The program was compiled with the command: 

$ xlc -g vers i onl . c  -o versionl 

The -g parameter causes the XL C compiler to generate the object module with 
symbolic debugging information for use by tprof. Although tprof can profile optimized 
modules, we have omitted the -0 parameter to make the line numbers that tprof uses 
more precise. When the XL C compiler is optimizing, it often does enough rearrangement 
of code to make tprof's output harder to interpret. On the test system, this program runs in 
about 5.97 seconds of elapsed time, of which more than 5.9 seconds is user CPU time. 
Clearly the program meets its objective of being CPU-limited. 

If we tprof the program with the following command: 

$ tpro f -p vers ionl -x versionl 

we get a file called _ver s i onl . a l l  (shown below) that reports how many 
CPU ticks each of the programs involved in the execution consumed. 

Process PIO Total Kernel User Shared Other 
= = = = = = =  

versionl 3 3 5 7 0 4 8 0  7 9 3  3 0  7 6 3 0 0 
bsh 3 3 5 6 6 3 8 3  8 8 0 0 0 

/ e t c / ini t 1 6 0 6 0 0 
/ e t c / syncd 3 0 5 9  5 5 0 0 0 

tprof 5 0 3 8  4 2 2 0 0 

rlogind 1 1 3 4 5  2 2 0 0 0 
PIO . 7 7 1  7 7 1  1 1 0 0 0 

tprof 1 1 9 4 0  1 1 0 0 0 
tprof 1 1 9 5 1  1 1 0 0 0 

tprof 1 3 9 8 7  1 1 0 0 0 
bsh 1 6 0 4 8  1 1 0 0 0 

= = = = = = =  
Total 8 2 3  5 2  7 7 1  0 0 

Process FREQ Total Kernel User Shared Other 
= = = = = = = 

vers ionl 1 7 9 3  3 0  7 6 3 0 0 

bsh 2 9 9 0 0 0 

/ e tc / in i t  1 6 0 6 0 0 

/ etc / syncd 1 5 5 0 0 0 

tpro f 4 7 5 2 0 0 
rlogind 1 2 2 0 0 0 
PIO . 7 7 1  1 1 1 0 0 0 
= = = = = = =  

Total 11 8 2 3  5 2  7 7 1  0 0 

Total Ticks For vers ionl ( USER ) 7 6 3  

Subroutine Ticks % Source Address Bytes 
= = = = = = = = = = = = =  = = = = = = =  = = = = = = =  

. main 7 6 3  9 2 . 7  vers ionl . c  6 3 2  5 6 0  
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The first section of the report shows the number of ticks consumed by, or on behalf 
of, each process. ver s i onl used 763 ticks itself, and 30 ticks occurred in the kernel on 
behalf of vers ionl 's process. Two processes running the Bourne shell were involved in 
the execution of ver s i onl .  Four processes were running tprof-related code. The init 
process, the sync daemon, an rlogin process, and one other process accounted for 14 ticks. 

Remember that the program associated with a given numerical process ID changes 
with each exec call . If one application program execs another, both program names will 
appear in the tprof output associated with the same process ID. 

The second section of the report summarizes the results by program, regardless of 
process ID. It shows the number (FREQ) of different processes that ran each program at 
some point. 

The third section breaks down the user ticks associated with the executable program 
being profiled. It reports the number of ticks used by each function in the executable, and 
the percentage of the total run's CPU ticks ( 8 2 3 )  that each function's ticks represent. 

Up to this point, none of the tprof processing has required access to the specially 
compiled version of the program. We could have done the preceding analysis on a 
program for which we did not have access to the source code. 

It is clear from this report that the preponderance (92. 7%) of CPU consumption is in 
the program itself, not in the kernel nor in library subroutines that the program uses. We 
have to look at the program itself more closely. 

Since we compiled ver s i onl . c with the -g option, the object file contains 
information that relates offsets in the program text to lines of source code. Consequently, 
tprof created an annotated version of the source file  v e r s i o n 1 . c ,  called 
_t .  vers ionl . c ,  based on the offsets and line number information in the object 
module. The first column is simply the line number. The second column is the number of 
times the trace hook reported that the Timer interrupt occurred while the system was 
executing one of the instructions associated with that line. 

Ti cks Pro f i l e  for main in versionl . c  

Line Ticks Source 

1 4  3 4  for ( Outerindex= O ;  Outerindex<As i z e ;  Outerindex++ )  
1 5  
1 6  4 0  for ( Innerindex= O ;  Innerindex<As i z e ; Innerindex++ )  
1 7  2 6 1  big [ RowDim ]  [ ColDim] = Ox0 1 0 1 0 1 0 1 ; 
1 8  
1 9  
2 0  
2 1  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
2 8  

2 9  

7 0  

6 9  
5 0  

2 3 9  

Increment = rand ( ) ; 

/ *  increment every element in the array * /  
for ( Outerindex= O ;  Outerindex<As i z e ;  Outerindex++ )  

for ( Innerindex= O ;  Innerindex<As i z e ; Innerindex++ ) 

big [ RowDim] [ ColDim ]  += Increment ; 
i f  ( big [ RowDim] [ Co lDim] < 0 )  

print f ( "Negat ive number . %d\n" , 
big [ RowDim] [ ColDim ] ) ;  
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3 0  

3 1  
3 2  
3 3  

3 4  

printf ( "Vers ion 1 Check Num : %d\n• , 
big [ rand ( ) %As i z e ]  [ rand ( ) %As i ze ] ) ; 

return ( O ) ; 

7 6 3  Total Ticks for main in versionl . c  

This shows clearly that the largest numbers of ticks are associated with accessing 
elements of the array big, so we should be able to improve performance significantly by 
concentrating on the inner for loops. The first (initialization) for loop is a case of 
brute-force programming. It is very inefficient to initialize arrays one element at a time. If 
we were setting the array to 0, we should have used bzero. Since we are setting each byte 
to a specific character, we will use memset to replace the first for loop. (The very 
efficient bzero and memset functions, like the str functions, are written in assembler 
language and use hardware instructions that have no direct equivalent in the C language.) 

We have to access the array one element at a time to increment the values, but we 
should ensure that the pattern of memory reference is to consecutive addresses, to 
maximize cache use. In this case, we have the row dimension changing faster than the 
column dimension. Since C arrays are arranged in row-major order, we are skipping over 
a complete row with each successive memory reference. Since the rows are 1024 ints 
long ( 4096 bytes), we are changing pages on every reference. The size of the array greatly 
exceeds both the data cache and data TLB capacities, so we have written a program for 
maximum cache and TLB thrashing. To fix this problem, we simply transpose the 
#de f ines to reverse the values of RowDim and ColDim. 

The unoptimized form of the resulting program (vers i on2 . c) consumes about 
2.7 CPU seconds, compared with 7.9 CPU seconds for ver s i on l .  

The following file, _t .  vers i on2 . c ,  i s  the result of a tprof run against the 
unoptimized form: 

Ticks Pro f i l e  for main in vers ion2 . c  

Line Ti cks Source 

15 
1 6  
1 7  
1 8  

1 9  
2 0  
2 1  
2 2  
2 3  
2 4  

6 0  

6 7  
6 0  

memset (big , OxO l , s i zeof ( big ) ) ;  
Increment = rand ( ) ; 

/ *  increment in memory order * /  
for ( Outerindex= O ;  Outerindex<As i z e ;  Outerindex++ )  

{ 
for ( Innerindex= O ;  Innerindex<As i z e ;  Innerindex++ )  

big [ RowDim] [ ColDim ]  + =  Increment ; 

if ( big [ RowDim] [ ColDim] < 0 )  
2 5  4 3  print f ( "Negative number .  

%d\n" , big [ RowDim] [ ColDim] ) ;  
2 6  } 
2 7  
2 8  
2 9  
3 0  

printf ( "Version 2 Check Num : %d\n• , 
big [ rand ( ) %As i z e ]  [ rand ( ) %As i ze ] ) ;  

return ( O ) ; 
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3 1  

2 3 0  Total Ticks for main i n  vers ion2 . c  

By being aware of its CPU use pattern, we have improved the CPU speed of this 
program by a factor of almost three-for the unoptimized case. When we compile 
vers ionl . c and versi on2 . c with optimization and compare their performance, the 
"before and after" improvement due to our changes is a factor of 7 .  

In many cases, most of a program's CPU use will occur in the library subroutines it 
uses rather than in the program itself. If we take ve r s i on2 . c and remove the 
conditional test on line 24 and the print f entry on line 28, to create a vers i on3 . c 

that reads as follows:  

# include <string . h> 
# include < s tdlib . h> 
#de fine As i z e  2 5 6  
#de fine RowDim Outerindex 
#de fine ColDim Innerindex 

main ( )  

{ 
int Increment ; 
int Outerindex ; 
int Innerindex ; 
int big [As i z e ]  [ As i ze J ; 

/ *  Ini tial i z e  every byte to OxOl * /  
memset (big , OxO l , s i z eo f ( b i g ) ) ;  
Increment = rand ( ) ; 
/ *  increment in memory order * /  
for ( Outerindex= O ;  Outerindex<As i z e ; Outerindex++ )  

{ 
for ( Innerindex=O ;  Innerindex<As i z e ; Innerindex++ )  

{ 
big [ RowDim] [ColDim] += Increment ; 
printf ( • RowDim=%d , Co1Dim=%d,  Number=%d\n• , 
RowDim , ColDim , big [ RowDim ] [ Co lDim] ) ;  

return ( O ) ; 

the execution time becomes dominated by the printf statement. The command: 

$ tprof -v -s -k -p vers ion3 -x version3 > / dev/ nu l l  

produces a _vers i on3 . a l l  that includes profiling data for the kernel and the shared 
subroutine library l ibc . a (the only shared library this program uses) : 

Process PID Total Kernel User Shared Other 
======= 

vers ion3 3 3 5 6 8 3 7 3  8 1 8  3 0  1 9  7 6 9  0 
bsh 3 3 5 6 7 3 4 8  5 5 0 0 0 

tprof 1 5 9 8 7  3 1 2 0 0 
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tpro f 7 7 8 4  1 1 0 0 0 

tpro f 12 9 0 5  1 1 0 0 0 

bsh 1 3 9 4 1  1 1 0 0 0 
= = = = = = =  

Total 8 2 9  3 9  2 1  7 6 9  0 

Process FREQ Total Kernel User Shared Other 
= = = = = = =  

vers i on3 1 8 1 8  3 0  1 9  7 6 9  0 

bsh 2 6 6 0 0 0 

tpro f 3 5 3 2 0 0 
= = = = = = =  

Total 6 8 2 9  3 9  2 1  7 6 9  0 

Total Ticks For version3 ( USER) 1 9  

Subrout ine Ticks % Source Address Bytes 
= = = = = = = = = = = = =  = = = = = = =  = = = = = = =  

. main 1 1  1 . 3  version3 . c  6 3 2  3 2 0  

. printf 8 1 . 0  glink . s  1 1 1 2  3 6  

Total Ticks For version3 ( KERNEL ) 3 0  

Subrout ine Ticks % Source Address Bytes 
= = = = = = = = = = = = =  = = = = = = =  = = = = = = =  

. sc_ f l ih 7 0 . 8  low . s  1 3 8 3 2  1 2 4 4  

. i_enable 5 0 . 6  l ow . s  2 1 7 6 0  2 5 6  

. vmcopyin 3 0 . 4  vmmove . c  4 1 4 2 8 0  6 6 8  

. xix_setattr 2 0 . 2  xix_sat tr . c  8 1 9 3 6 8  6 7 2  

. isreadonly 2 0 . 2  disubs . c  6 8 9 0 1 6  6 0  

. lockl 2 0 . 2  lockl . s  2 9 3 0 0  2 0 8  

. v_pagein 1 0 . 1  v_getsubs l . c  3 7 2 2 8 8  1 0 4 4  

. curt ime 1 0 . 1  clock . a  2 7 6 5 6  7 6  

. trchook 1 0 . 1  no name 4 8 1 6 8  8 5 6  

. vmvcs 1 0 . 1  vmvcs . s  2 9 7 4 4  2 3 0 4  

. spec_rdwr 1 0 . 1  spec_vnops . c  6 2 9 5 9 6  2 4 0  

. rdwr 1 0 . 1  rdwr . c  6 5 8 4 6 0  4 9 2  

. imark 1 0 . 1  i subs . c  6 7 2 0 2 4  1 8 4  

. nodev 1 0 . 1  devsw_pin . c  1 3 5 8 6 4  3 2  

. ld_findfp 1 0 . 1  ld_libld . c  7 3 6 0 8 4  2 4 0  

Total Ticks For vers i on3 ( SH-LIBS ) 7 6 9  

Shared Obj ect Ticks % Source Address Bytes 
= = = = = = = = = = = = =  = = = = = = =  = = = = = = =  

l ibc . a / shr . o  7 6 9  9 2 . 0  /usr / l ib 7 9 4 6 2 4  7 2 4 7 7 2  

Prof i l e : /usr / l ib / l ibc . a  shr . o  

Total Ticks For vers i on3 ( /usr/ l ib/ l ibc . a ) 7 6 9  
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Subrout ine Ticks % Source Address Bytes 
= = = = = = = = = = = = =  = = = = = = = = = = = = = =  

. _doprnt 4 7 6  5 6 . 9  doprnt . c  3 6 6 1 6  7 0 52 

. fwrite 2 0 5  2 4 . 5  fwrite . c  5 0 7 4 8  7 4 4  

. s trchr 4 1  4 . 9  s trchr . s  3 1 8 9 6  1 9 6  

. print f 1 8  2 . 2  printf . c  3 13 7 9 6  1 4 4  

. _moveeq 1 6  1 . 9  memcmp . s  3 6 1 9 2  1 8 4  
. s trlen 1 0  1 . 2  s trerror . c  4 6 8 0 0  1 2 4  

. i satty 1 0 . 1  isatty . c  6 2 9 3 2  1 1 2  

. _xwri t e  1 0 . 1  f l sbuf . c 4 2 4 0  2 8 0  
_ioctl 1 0 . 1  ioctl . c  5 7 5 7 6  2 4 0  

This confirms that most o f  the ticks are being u s e d  by the shared 
libraries-l ibc . a, in this case. The profile of l ibc . a shows that most of those ticks 
are being consumed by the _doprnt subroutine. 

_doprnt is the processing module for printf, sprintf, etc. With a simple change, we 
have increased the run time from 2. 7 seconds to 8.6 seconds, and our formatted printing 
now consumes about 60% of the CPU time. This makes it clear why formatting should be 
used judiciously. _doprnt performance is also affected by the locale. See Appendix I, 
"National Language Support-Locale vs Speed". These tests were run in the C 
locale-the most efficient. 

Detailed Control Flow Analysis with stem 

The stem instrumentation package can trace the flow of control through a wide range of 
software. It is available on AIX Version 4. 1 systems as part of the Performance Toolbox 
for AIX. To determine whether stem is available on your system, use: 

l s lpp - l I  perfagent . tools 

If this package has been installed, stem is available. 
Some of the most significant advantages of stem are: 

• stem can instrument application programs that are: 
- stripped 
- optimized 
- running in multiple processes 
- in unstripped shared libraries 

• stem entry and exit instrumentation subroutines can be: 
- stem-provided 
- user-provided 

stem builds instrumented versions of the requested programs and libraries, and 
stores them in a directory called /tmp/EXE. When the user runs the instrumented 
program, stem creates a corresponding file called stem_out. 

Basic stem Analysis 

If we want to analyze the control flow of a simple application program, we would use: 

stem -p stem_tes t_pgm 
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The output of that command would be: 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Make . Stem does no t exi s t , is suing make for s tem_samples . o  

make s tem_samples . o  
Target stem_samples . o  i s  up to date . 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

The ins trumented s t em_tes t_pgm is at / tmp / EXE / stem_tes t_pgm 
Assuming AIX 3 . 2 . 5  or later , SVC_string= . sc_f l ih 

The instrumentation of s t em_t e s t_pgm was successful, even though the 
program had been stripped. The instrumented form of the program has been placed in the 
directory /tmp/EXE. We then enter: 

/ tmp/ EXE / s t em_tes t_pgm 

We get a file called stem_out in the current working directory. In this case, 
stem_out contains: 

Seconds . usecs TID Rout ine Names & Seconds . usecs s ince entering 
routine . 
7 6 7 5 4 9 5 3 9 . 8 4 7 7 0 4  1 ->main 
7 6 7 5 4 9 5 3 9 . 8 8 0 5 2 3  1 ->setPI 
7 6 7 5 4 9 5 3 9 . 8 8 0 9 5 8  1 <-setPI 0 . 0 0 0 4 3 5  
7 67 5 4 9 5 3 9 . 8 8 1 2 4 4  1 ->squarei t  
7 6 7 5 4 9 5 3 9 . 8 8 1 5 1 5  1 <-squareit 0 .  0 0 0 2 7 1  
7 6 7 5 4 9 5 3 9 . 8 8 17 9 3  1 ->print f 

7 67 5 4 9 5 3 9 . 8 8 3 3 1 6  1 < -printf 0 . 0 0 1 5 2 3  
7 6 7 5 4 9 5 3 9 . 8 8 3 6 7 1  1 ->setPI 

7 6 7 5 4 9 5 3 9 . 8 8 3 9 4 4  1 <-setPI 0 . 0 0 0 2 7 3  
7 6 7 5 4 9 5 3 9 . 8 8 4 2 2 1  1 ->squareit 

7 67 5 4 9 5 3 9 . 8 8 4 4 9 4  1 <-squarei t  0 . 0 0 0 2 7 3  
7 6 7 5 4 9 5 3 9 . 8 8 4 7 7 2  1 ->printf 
7 6 7 5 4 9 5 3 9 . 8 8 5 9 8 1  1 <-print f 0 . 0 0 1 2 0 9  
7 6 7 5 4 9 5 3 9 . 8 8 6 3 3 0  1 < -main 0 . 0 3 8 6 2 6  
7 67 5 4 9 5 3 9 . 8 8 6 6 4 7  1 ->exit 

The call graph captures both calls to functions within the module (setPI and 
squareit) and calls to the printf subroutine in Ube.a. The numbers to the right of the 
subroutine names represent the elapsed seconds and microseconds between the call and 
the return. 

If we perform the same process on the we command (/usr/bin/wc), the stem_out 
file (for a we of a two-word file) contains: 

Seconds . usecs TID Routine Names & Seconds . usecs s ince entering 
rout ine . 
7 6 7 5 4 8 8 1 2 . 9 6 2 0 3 1  1 ->main 
7 67 5 4 8 8 12 . 9 9 3 9 5 2  1 ->setlocale 
7 6 7 5 4 8 8 1 2 . 9 9 5 0 6 5  1 <-setlocale 0 .  0 0 1 1 1 3  
7 6 7 5 4 8 8 12 . 9 9 5 3 3 7  1 ->catopen 
7 67 5 4 8 8 12 . 9 9 5 5 5 4  1 < -catopen 0 . 0 0 0 2 17 
7 6 7 5 4 8 8 12 . 9 9 5 7 6 2 1 ->getopt 

7 6 7 5 4 8 8 1 2 . 9 9 6 1 0 1  1 <-getopt 0 . 0 0 0 3 3 9  
7 6 7 5 4 8 8 12 . 9 9 6 3 4 5  1 ->open 
7 67 5 4 8 8 12 . 9 9 6 7 0 9  1 <-open 0 . 0 0 0 3 6 4  
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7 6 7 5 4 8 8 12 . 9 9 6 9 5 3  1 ->read 

7 6 7 5 4 8 8 1 2 . 9 9 7 2 0 9  1 < -read 0 . 0 0 0 2 5 6  

7 6 7 54 8 8 12 . 9 9 7 4 1 7  1 ->read 
7 6 7 5 4 8 8 1 2 . 9 9 7 6 5 4  1 <-read 0 . 0 0 0 2 3 7  

7 6 7 5 4 8 8 1 2 . 9 9 7 8 5 9  1 ->wcp 
7 67 5 4 8 8 12 . 9 9 8 1 1 3  1 ->print f 

7 67 5 4 8 8 1 2 . 9 9 8 5 8 6  1 <-printf 0 . 0 0 04 7 3  

7 6 7 5 4 8 8 12 . 9 9 8 8 3 4  1 < -wcp 0 . 0 0 0 9 7 5  

7 6 7 5 4 8 8 12 . 9 9 9 0 4 1  1 ->printf 

7 6 7 54 8 8 13 . 0 0 0 4 3 9  1 <-printf 0 . 0 0 1 3 9 8  

7 6 7 5 4 8 8 1 3 . 0 0 0 7 2 0  1 ->close 
7 6 7 5 4 8 8 1 3 . 0 0 0 9 9 3  1 <-close 0 . 0 0 0 2 7 3  

7 6 7 5 4 8 8 1 3 . 0 0 1 2 8 4  1 ->exit 

This call graph, obtained almost effortlessly, shows the structure of an AIX 
command. The calls to setlocale and catopen ensure that the command process is running 
in the same National Language Support (NLS) locale and with the same message catalog 
as its parent process. 

Although stem-instrumented programs can run in multiple processes, the call graph 
shows only the flow of control within the primary process. 

Restructuring Executables with fdpr 

The fdpr (feedback-directed program restructuring) program optimizes executable 
modules for faster execution and more efficient use of real memory. It is available on AIX 
Version 4. 1 systems as part of the Performance Toolbox for AIX. To determine whether 
fdpr is available on your system, use: 

ls lpp -1! perfagent . tools 

If this package has been installed, fdpr is available. 
fdpr processing takes place in three stages: 

• The executable module to be optimized is instrumented to allow detailed 
performance-data collection. 

• The instrumented executable is run in a workload provided by the user, and 
performance data from that run is recorded. 

• The performance data is used to drive a performance-optimization process that 
results in a restructured executable module that should perform the workload that 
exercised the instrumented executable more efficiently. It is critically important 
that the workload used to drive fdpr closely match the actual use of the program. 
The performance of the restructured executable with workloads that differ 
substantially from that used to drive fdpr is unpredictable, but can be worse than 
that of the original executable. 

As an example, the command: 

fdpr -p ProgramName -R3 -x tes t . sh 

would use  the testcase t e s t  . s h  to run an instrumented form of program 
ProgramNarne. The output of that run would be used to perform the most aggressive 
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opt1m1zation (R3)  of the program to form a new module called,  by default ,  
PrograrnName . fdpr. The degree to which the optimized executable performed better 
in production than its unoptimized predecessor would depend largely on the degree to 
which test . sh successfully imitated the production workload. 

Warning: The fdpr program incorporates advanced optimization algorithms that 
sometimes result in optimized executables that do not function in the same way 
as the original executable module. It is absolutely essential that any optimized 
executable be exhaustively tested before being used in any production situation; 
that is, before its output is trusted. 

In summary, users of fdpr should: 

• Take pains to use a workload to drive fdpr that is representative of the intended 
use. 

• Exhaustively test the functioning of the resulting restructured executable. 
• Use the restructured executable only on the workload for which it has been 

tuned. 

Controlling Contention for the CPU 

Control l ing the Priority of User Processes 

User-process priorities can be manipulated using the nice or renice command or the 
setpri subroutine, and displayed with ps. An overview of priority is given in "Process and 
Thread Priority" on page 1 5 .  

Running a Command at a Nonstandard Priority with nice 

Any user can run a command at a lower than normal priority by using nice. Only root 

can use nice to run commands at  higher than normal priority. 
With nice, the user specifies a value to be added to or subtracted from the standard 

nice value. The modified nice value is used for the process that runs the specified 
command. The priority of the process is still non-fixed. That is, the priority value is still 
recalculated periodically based on the CPU usage,  nice value ,  and minimum 
user-process-priority value. 

The standard nice value of a foreground process is 20; the standard nice value of a 
background process is 24. The nice value is added to the minimum user-process-priority 
level (40) to obtain the initial priority value of the process. For example, the command: 

$ nice - 5 vmstat 1 0  3 >vms tat . out 

causes the vmstat command to be run with a nice value of 25 (instead of 20), resulting in a 
base priority value of 65 (before any additions for recent CPU use) 

If we were root,  we could have run the vmstat at a higher priority with: 

# nice -- 5 vmstat 1 0  3 >vms tat . out 

If we were not root and issued that nice, the vmstat command would still be run, 
but at the standard nice value of 20, and nice would not issue any error message. 
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Setting a Fixed Priority with the setpri Subroutine 

An application that runs under the root userid can use the setpri subroutine to set its 
own priority or that of another process. For example: 

retcode = setpri ( 0 , 5 9 ) ; 

would give the current process a fixed priority of 59. If setpri fails, it returns -1 . 

The following program accepts a priority value and a list of process IDs and sets the 
priority of all of the processes to the specified value. 

/ *  
fixprocpri . c  

Usage : fixprocpri priority PID . . .  
* /  

#include <sys / sched . h> 
#include <stdio . h> 
#include <sys / errno . h> 

main ( int argc , char * *argv ) 

pid_t ProcessID;  
int Priority , ReturnP ; 

i f  ( argc < 3 ) { 
printf ( "  usage - setpri priority pid ( s )  \n" ) ; 
exi t ( l ) ; 

argv++ ; 
Priority=atoi ( *argv++ ) ;  
i f  ( Priority < 5 0  ) { 

printf ( "  Priority must  be >= 5 0  \n" ) ; 
exit  ( 1 ) ; 

while ( *argv) { 
ProcessID=atoi ( *argv+ + ) ; 
ReturnP = setpri ( Process ID ,  Priority) ;  
i f  ( ReturnP > 0 ) 

else 

printf ( "pid=%d new pri=%d old pri=%d\n" , 
( int ) ProcessID , Priority , ReturnP ) ; 

perror ( "  setpri failed " )  ; 
exit ( l ) ; 
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Displaying Process Priority with ps 

The -1 (lower-case L) flag of the ps command displays the nice values and current priority 
values of the specified processes. For example, we can display the priorities of all of the 
processes owned by a given user with: 

# ps -lu waters 
F S UID PID PPID c PRI NI ADDR sz WC HAN TTY TIME CMD 

2 4 1 8 0 1  s 2 0 0  7 0 3 2  7 2 8 7  0 6 0  2 0  lb4c 1 0 8  pts / 2  0 : 0 0 ksh 

2 0 0 8 0 1  s 2 0 0  7 5 6 9  7 0 3 2  0 6 5  2 5  2 3 1 0  8 8  5 9 1 0a58  pts / 2  0 : 0 0 
vrnstat 

2 4 1 8 0 1  s 2 0 0  8 5 4 4  6 4 9 5  0 6 0  2 0  154b 1 0 8  pts / 0  0 : 0 0 ksh 

The output shows the result of the nice -5 command described earlier. Process 7 569 
has an effective priority of 65 . (The ps command was run by a separate session in 
superuser mode, hence the presence of two TTYs.) 

If one of the processes had used the setpri subroutine to give itself a fixed priority, 
the ps -I output format would be: 

F S UID PID PPID C PRI NI ADDR 
2 0 0 9 0 3 s 0 1 0 7 5 9  1 0 5 0 0  0 5 9  - - 3 4 3 8  

fixpri 

S Z  WCHAN TTY TIME CMD 
40 4 f 9 1 f 9 8  pts / 0  0 : 0 0 

Modifying the Priority of a Running Process with renice 

Note: In the following discussion, the AIX Version 3 renice syntax is used. The next 
section discusses AIX Version 3 and 4 nice and renice syntax. 

renice alters the nice value, and thus the priority, of one or more processes that are 
already running. The processes are identified either by process ID, process group ID, or 
the name of the user who owns the processes. renice cannot be used on fixed-priority 
processes. 

To continue our example, we will renice the vmstat process that we started with 
nice. 

# renice -5 7 5 6 9  
7 5 6 9 : old priority 5 ,  new priority -5 

# ps -lu waters 
F S UID PID PPID c PRI NI ADDR sz WC HAN TTY TIME CMD 

2 4 1 8 0 1  s 2 0 0  7 0 3 2  7 2 87 0 6 0  2 0  lb4c 1 0 8  pts / 2  0 : 0 0 ksh 

2 0 0 8 0 1  s 2 0 0  7 5 6 9  7 0 3 2  0 5 5  15  2 3 1 0  9 2  5 9 1 0a58  pts / 2  0 : 0 0 

vrns tat 
2 4 1 8 0 1  s 2 0 0  8544  6495  0 6 0  2 0  1 5 4b 1 0 8  pts / 0  0 : 0 0 ksh 

Now the process is running at a higher priority than the other foreground processes. 
Observe that renice does not add or subtract the specified amount from the old nice value. 
It replaces the old nice value with a new one. To undo the effects of all this playing 
around, we could issue: 
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# renice -0  7 5 6 9  
7 5 6 9 : old priority -5 , new priority 0 
# ps -lu waters 

F S UID PIO PPID c PRI NI ADDR sz WC HAN TTY TIME CMD 
2 4 1 8 0 1  s 2 0 0  7 0 3 2  7 2 8 7  0 6 0  2 0  lb4c 1 0 8  pts / 2  0 : 0 0 ksh 
2 0 0 8 0 1  s 2 0 0  7 5 6 9  7 0 3 2  1 6 0  2 0  2 3 1 0  9 2  5 9 10a58  pts / 2  0 : 0 0 

vrns tat 
2 4 1 8 0 1  S 2 0 0  8 5 4 4  6 4 9 5  0 60 20 1 5 4b 1 0 8  pts / 0  0 : 0 0 ksh 

In these examples, renice was run by root.  When run by an ordinary userid, there 
are two major limitations to the use of renice: 

• Only processes owned by that userid can be specified. 
• The priority of the process cannot be increased-not even to return the process to 

the default priority after lowering its priority with renice. 

Clarification of nice/ren ice Syntax 

AIX Version 3 

The nice and renice commands have different ways of specifying the amount that is to be 
added to the standard nice value of 20. 

With nice, the initial minus sign is required to identify the value, which is assumed 
to be positive. Specifying a negative value requires a second minus sign (with no 
intervening space) . 

With renice, the parameter following the command name is assumed to be the 
value, and it can be a signed or unsigned (positive) number. Thus the following pairs of 
commands are equivalent: 

nice -5 
nice -5 
nice - -5 

AIX Version 4 

renice 5 
renice +5 
renice -5 

Resulting 
nice Value 
25 
25 
1 5  

Resulting 
Priority Value 
65 
65 
55 

For AIX Version 4, the syntax of renice has been changed to complement the alternative 
syntax of nice, which uses the -n flag to identify the nice-value increment. The following 
table is the AIX Version 4 version of the table in the preceding section: 

nice -n 5 
nice -n +5 
nice -n -5 

renice -n 5 
renice -n +5 
renice -n -5 

Resulting Resulting 
nice Value Priority Value 
25 65 
25 65 
1 5  55 

Tuning the Process-Priority-Value Calculation with schedtune 

A recent enhancement of schedtune and the AIX CPU scheduler permits changes to the 
parameters used to calculate the priority value for each process. This enhancement is part 
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of AIX Version 4. 1 and is available in a PTF for AIX Version 3 .2.5 .  See "Process and 
Thread Priority" beginning on page 1 5  for background information on priority. 

Briefly, the formula for calculating the priority value is: 

priority value = base priority + nice value + 
(CPU penalty based on recent CPU usage) 

The recent CPU usage value of a given process is incremented by 1 each time that 
process is in control of the CPU when the timer interrupt occurs (every 10  milliseconds) .  
The recent CPU usage value is displayed as the "C" column in ps command output. The 
maximum value of recent CPU usage is 120. 

The current algorithm calculates the CPU penalty by dividing recent CPU usage by 
2. The CPU-penalty-to-recent-CPU-usage ratio is therefore .5 . We will call this value R. 

Once a second, the current algorithm divides the recent CPU usage value of every 
process by 2. The recent-CPU-usage-decay factor is therefore .5 .  We will call this value 
D. 

For some users, the existing algorithm does not allow enough distinction between 
foreground and background processes. For example-ignoring other activity-if a system 
were running two compute-intensive user processes, one foreground (nice value = 20), 
one background (nice value = 24) that started at the same time, the following sequence 
would occur: 

• The foreground process would be dispatched first. At the end of 8 time slices 
(80ms), its CPU penalty would be 4, which would make its priority value equal 
to that of the background process. The round-robin scheduling algorithm would 
cause the background process to be dispatched. 

• After 2 further time slices, the background process's CPU penalty would be 1 ,  
making its priority value one greater than that of the foreground process. The 
foreground process would be dispatched. 

• Another 2 time slices and the priority values of the processes would be equal 
again. The processes would continue to alternate every 2 time slices until the end 
of the second. 

• At the end of the second, the foreground process would have had 54 time slices 
and the background would have had 46. After the decay factor was applied, the 
recent CPU usage values would be 27 and 23. In the second second of their 
competition, the foreground process would get only 4 more time slices than the 
background process. 

Even if the background process had been started with nice -20, the distinction 
between foreground and background would be only slightly clearer. Although the 
scheduler stops counting time slices used after 120, this permits the CPU penalty to level 
off at 60---more than enough to offset the maximum nice value difference of 40. 

To allow greater flexibility in prioritizing processes, the new feature permits user 
tuning of the ratio of CPU penalty to recent CPU usage (R) and the 
recent-CPU-usage-decay rate (D). The tuning is accomplished through two new options of 
the schedtune command: -r and -d. Each option specifies a parameter that is an integer 
from 0 through 32. The parameters are applied by multiplying the recent CPU usage value 
by the parameter value and then dividing by 32 (shift right 5) .  The default r and d values 
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are 1 6, which yields the same behavior as the original algorithm (D=R= l6/32=.5). The 
new range of values permits a far wider spectrum of behaviors. For example: 

II schedtune -r 0 

(R=O, D=.5) would mean that the CPU penalty was always 0, making priority 
absolute. No background process would get any CPU time unless there were no 
dispatchable foreground processes at all .  The priority values of the processes would 
effectively be constant, although they would not technically be fixed-priority processes. 

II schedtune -r 5 

(R=. 15625, D=.5) would mean that a foreground process would never have to 
compete with a background process started with nice -20. The limit of 120 CPU time 
slices accumulated would mean that the maximum CPU penalty for the foreground 
process would be 1 8 .  

II schedtune -r 6 - d  1 6  

(R=. 1 875, D=.5) would mean that, i f  the background process were started with nice 
-20, it would be at least one second before the background process began to receive any 
CPU time. Foreground processes, however, would still be distinguishable on the basis of 
CPU usage. Long-running foreground processes that should probably be in the 
background would ultimately accumulate enough CPU usage to keep them from 
interfering with the true foreground. 

II schedtune -r 3 2  -d 32  

(R=l ,  D=l )  would mean that long-running processes would reach a C value of 120 
and stay there, contending on the basis of their nice values. New processes would have 
priority, regardless of their nice value, until they had accumulated enough time slices to 
bring them within the priority value range of the existing processes. 

If you conclude that one or both parameters need to be modified to accommodate 
your workload, you can enter the schedtune command while logged on as root.  The 
changed values will persist until the next schedtune that modifies them or until the next 
system boot. Values can be reset to their defaults with schedtune -D, but remember that 
all schedtune parameters are reset by that command, including VMM memory load 
control parameters. To make a change to the parameters that will persist across boots, you 
need to add an appropriate line at the end of the /etc/inittab file. 

Modifying the Schedu ler Time Sl ice 

The length of the scheduler time slice can be modified with the schedtune command (see 
page 252). The syntax for this function is: 

schedtune -t increase 

where increase is the number of lOms clock ticks by which the standard time slice (one 
lOms tick) is to be increased. Thus, schedtune -t 2 would set the time slice length to 
30ms. schedtune -t 0 would return the time slice length to the default. 

In an environment in which the length of the time slice has been increased, some 
applications may not need or should not have the full time slice. These applications can 
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give up the processor explicitly with the yield system call (as can programs in an 
unmodified environment). After a yield call, the calling thread is moved to the end of the 
dispatch queue for its priority level . 

CPU-Efficient User I D  Administration 

To improve login response time and conserve CPU time in systems with many users, AIX 
can use a hashed version of the /etc/passwd file to look up userids. When this facility is 
used, the /etc/passwd file still exists, but is not used in normal processing. The hashed 
versions of the file (/etc/passwd.dir and /etc/passwd.pag) are built by the mkpasswd 
command. If the hashed versions are not current, login processing reverts to a

· 
slow, 

CPU-intensive sequential search through /etc/passwd. 

Once the hashed password files have been built, if the passwd, mkuser, chuser, 
rmuser commands (or the smit equivalents, with fast paths of the same name) are used to 
administer user IDs, the hashed files are kept up to date automatically. If the /etc/passwd 
file is changed with an editor or with the pwdadm command, the hashed files must be 
rebuilt with the command: 

# mkpasswd / etc/passwd 
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7 
Monitoring and Tuning 
Memory Use 

The memory of a RISC System/6000 is almost always full of something. If the currently 
executing programs don't  take up all of memory, AIX retains in memory the text pages of 
programs that ran earlier and the files they used. It doesn't  cost anything, because the 
memory would be unused anyway. In many cases, the program or file pages will be used 
again, which reduces disk 1/0. 

This caching technique improves the efficiency of the system but can make it harder 
to determine the actual memory requirement of a workload. 

This chapter describes the ways in which memory use can be measured and 
modified. 

Readers who are not familiar with AIX virtual-memory management may want to 
look at "Performance Overview of the Virtual Memory Manager (VMM)," beginning on 
page 17,  before continuing. 

How Much Memory Is Really Being Used? 

Several performance tools provide reports of memory usage. The reports of most interest 
are from vmstat, ps, and svmon. 

vmstat 

vmstat summarizes the total "active" virtual memory used by all of the processes in the 
system, as well as the number of real-memory page frames on the free list. Active virtual 
memory is defined as the number of virtual-memory working-segment pages that have 
actually been touched. It is usually equal to the number of paging-space slots that have 
been assigned. This number can be larger than the number of real page frames in the 
machine, since some of the active virtual-memory pages may have been written out to 
paging space. 
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ps 

ps provides several different reports of memory use, depending on the flag used. The most 
comprehensive comes with ps v, which displays the following memory-related columns: 

SIZE Virtual size in kilobytes of the data section of the process. (Displayed as 
SZ by other flag s . )  This number is equal to the number of 
working-segment pages of the process that have been touched (that is, 
the number of paging-space slots that have been allocated) times 4. If 
some working-segment pages are currently paged out, this number is 
larger than the amount of real memory being used. 

RSS 

TSIZ 

TRS 

%MEM 

Real-memory (resident set) size in kilobytes of the process. This 
number is equal to the sum of the number of working-segment and 
code-segment pages in memory times 4. Remember that code-segment 
pages are shared among all of the currently running instances of the 
program. If 26 ksh processes are running, only one copy of any given 
page of the ksh executable would be in memory, but ps would report 
that code-segment size as part of the RSS of each instance of ksh. 

Size of text (shared-program) image. This is the size of the text section 
of the executable file. Pages of the text section of the executable are 
only brought into memory when they are touched, i .e. , branched to or 
loaded from. This number represents only an upper bound on the 
amount of text that could be loaded. 

Size of the resident set (real memory) of text. This is the number of 
code-segment pages times 4. As was noted earlier, this number 
exaggerates memory use for programs of which multiple instances are 
running. 

Calculated as the sum of the number of working-segment and 
code-segment pages in memory times 4 (that is, the RSS value), divided 
by the size of the real memory of the machine in KB, times 100, 
rounded to the nearest full percentage point. This value attempts to 
convey the percentage of real memory being used by the process. 
Unfortunately, like RSS, it tends the exaggerate the cost of a process 
that is sharing program text with other processes. Further, the rounding 
to the nearest percentage point causes all of the processes in the system 
that have RSS values under .005 times real memory size to have a 
%MEM of O.O. 

As you can see, reporting memory statistics in a format that was designed for earlier, 
simpler systems sometimes results in distorted data. 

svmon 

svmon provides both global, process-level, and segment-level reporting of memory use. 
For tuning purposes, the -G and -P options are most interesting. 

-G Summarizes the memory use for the entire system. 
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-P Shows the memory use for one or more processes. 
In AIX Version 4. 1 ,  the svmon command is packaged as part of the Performance 

Toolbox for AIX. To determine whether svmon is available, use: 

lslpp - l I  perfagent . tools  

If  this package has been installed, svmon i s  available. 

Example of vmstat, ps, and svmon Output 

The following example shows the output of these commands on a large system. vmstat 
was run in a separate window while ps and svmon were running consecutively. The 
vmstat summary (first) line has been removed: 

$ vmstat 5 
procs memory page faults cpu 

- - --- ---------- - - - - - - - - - ------- - --- ---- - - - ---- ------ --- - - - - - - - -
r b avm fre re pi po fr sr Cy in sy cs  us sy id wa 
0 0 2 5 2 7 0  2 6 9 1  0 0 0 0 0 0 142  2 0 12 4 1  4 11  86  0 
1 0 2 52 4 4  2 7 2 2  0 0 0 0 0 0 1 3 8  6 7 5 2  3 9  2 0  7 0  10  0 
0 0 2 5 2 4 4  2 7 2 2  0 0 0 0 0 0 128  6 1  3 4  0 1 9 9  0 
0 0 2 5 2 4 4  2 7 2 2  0 0 0 0 0 0 137  1 6 3  4 1  1 4 9 5  0 

The global svmon report below shows related numbers. The number that vmstat 
reports as Active Virtual Memory (avm) is reported by svmon as page-space slots in use 
(25270) . The number of page frames on the free list (269 1 )  is identical in both reports. 
The number of pages pinned (2 157) is a separate report, since the pinned pages are 
included in the pages in use. 

$ svmon -G 
m e m o r y  i n u s e p i n p g s p a c e 

s i ze inuse free pin work pers clnt work pers clnt size  inuse 
2 4 5 7 6  2 1 8 8 5  2 6 9 1  2 1 57 1 3 1 7 2  7 8 9 9  8 1 4  2 1 5 7  0 0 4 0 9 6 0  2 5 2 7 0  

Singling out a particular, long-running process on this machine, we can compare the 
ps v and svmon -P reports. The actual program has been renamed anon. 

$ ps v 3 5 8 5 1  
PID 

3 5 8 5 1  
TTY STAT TIME PGIN SIZE RSS LIM T S I Z  TRS %CPU %MEM COMMAND 

- S 0 : 03 4 9 4  1192  2 6 9 6  xx 1147  1 3 8 0  0 . 2  3 . 0  anon 

The SIZE value ( 1 192) is the svmon Pgspace number (298) times four. The RSS 
value (2696) is equal to the number of pages in the process private segment (329) plus the 
number of pages in the code segment (345) times four. The TSIZE number is not related 
to real-memory use. The TRS value ( 1380) is equal to the number of pages in use in the 
code segment (345) times four. The %MEM is the RSS value, divided by the size of real 
memory in KB, times 100, rounded to the nearest full percentage point. 
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$ svmon -P 3 5 8 5 1  
Pid Cormnand In use Pin Pg space 

3 5 8 5 1  anon 2 4 1 0  2 4 6 2 4  
Pid : 3 5 8 5 1  
Cormnand : anon 
Segid Type Description Inuse Pin Pg space Address Range 

18a3 pers / dev/hd2 : 5 1 5 0  1 0 0 0 . .  0 
9 8 7 3  pers / dev/hd2 : 6 62 5 6  1 0 0 0 . .  o 
4 8 0 9  work shared library 1734  0 4 3 2 6  0 . .  4 6 6 8  

6 0 1 2 3  . .  6 5 5 3 5 
748e  work private 3 2 9  2 2 9 8  0 . .  4 2 3  

6 5 4 0 2  . .  6 5 5 3 5  
2 1 0 5  pers code , / dev/hd2 : 44 9 2  3 4 5  0 0 0 . .  4 0 2  

As we  analyze various processes in the environment, we  observe that the shared 
library is indeed shared among almost all of the processes in the system, so its memory 
requirement is part of overall system overhead. Segment 9873 is also widely used, so we 
can include its memory in overhead. If one were estimating the memory requirement for 
program anon, the formula would be: 

The total memory requirement for anon is equal to 345*4KB for program text 
(shared among all users) plus the estimated number of simultaneous users of 
anon times the sum of the working-segment size (329*4KB) and 4KB for the 
mapped segment (segment ID 18a3 in this example). 

Memory-Leaking Programs 

A memory leak is a program bug that consists of repeatedly allocating memory, using it, 
and then neglecting to free it. A memory leak in a long-running program, such as an 
interactive application, is a serious problem, because it can result in memory 
fragmentation and the accumulation of large numbers of mostly garbage-filled pages in 
real memory and page space. Systems have been known to run out of page space because 
of a memory leak in a single program. 

A memory leak can be detected with svmon, by looking for processes whose 
working segment continually grows. Identifying the offending subroutine or line of code 
is more difficult, especially in AIXwindows applications, which generate large numbers 
of malloc and free calls .  Some third-party programs exist for analyzing memory leaks, 
but they require access to the program source code. 

Some uses of realloc, while not actually programming errors, can have the same 
effect as a memory leak. If a program frequently uses realloc to increase the size of a data 
area, the process's working segment can become increasingly fragmented if the storage 
released by realloc cannot be re-used for anything else. (Appendix F, "Application 
Memory Management" contains background information on malloc and realloc.) 

In general, memory that is no longer required should be released with free, if the 
memory will probably be re-used by the program. On the other hand, it is a waste of CPU 
time to free memory after the last malloc. When the program terminates, its working 
segment is destroyed and the real-memory page frames that contained working-segment 
data are added to the free list. 
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Analyzing Patterns of Memory Use with BigFoot 

Note: This section applies only to Version 4. 1 (and later) of AIX. 

The BigFoot tool is packaged as part of the Performance Toolbox for AIX . To 
determine whether BigFoot is available, use: 

lslpp -lI perfagent . tools 

If this package has been installed, BigFoot is available. 
The Bigfoot tool collects the memory footprint of a running program. It reports the 

virtual-memory pages touched by the process. Bigfoot consists of two commands: 

bf collects information about pages touched during the execution of a 
program. It generates the complete data from the run in a file named 
_bfrpt. 

bfrpt filters the _bfrpt file to extract the storage references made by a given 
process. 

The detailed descriptions of these commands appear in AIX Version 4. 1 Commands 

Reference. 

Assessing Memory Requirements via the rmss 
Command 

rmss is an acronym for Reduced-Memory System Simulator. rmss provides you with a 
means to simulate RISC System/6000s with different sizes of real memories that are 
smaller than your actual machine, without having to extract and replace memory boards. 
Moreover, rmss provides a facility to run an application over a range of memory sizes, 
displaying, for each memory size, performance statistics such as the response time of the 
application and the amount of paging. In short, rmss is designed to help you answer the 
question: "How many megabytes of real memory does a RISC System/6000 need to run 
AIX and a given application with an acceptable level of performance?"-or in the · 
multiuser context-"How many users can run this application simultaneously in a 
machine with X megabytes of real memory?" 

In AIX Version 4. 1 ,  the rmss command is packaged as part of the Performance 
Toolbox for AIX. To determine whether rmss is available, use: 

ls lpp -lI perfagent . tools 

If this package has been installed, rmss is available. 
It is important to keep in mind that the memory size simulated by rmss is the total 

size of the machine's real memory, including the memory used by AIX and any other 
programs that may be running. It is not the amount of memory used specifically by the 
application itself. Because of the performance degradation it can cause, rmss can be used 
only by root or a member of the system group. 

Two Styles of Using rmss 

rmss can be invoked in two ways: ( 1 )  to change the memory size and exit; or (2) as a 
driver program, which executes a specified application multiple times over a range of 
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memory sizes and displays important statistics that describe the application's performance 
at each memory size. The first invocation technique is useful when you want to get the 
look and feel of how your application performs at a given system memory size, when your 
application is too complex to be expressed as a single command, or when you want to run 
multiple instances of the application. The second invocation technique is appropriate 
when you have an application that can be invoked as an executable or shell script file. 

Note: Before using rmss, it is a good idea to use the command schedtune -h 0 (see page 
124) to turn off VMM memory-load control. Otherwise, VMM memory-load 
control may interfere with your measurements at small memory sizes. When your 
experiments are complete, reset the memory-load-control parameters to the values 
that are normally in effect on your system (if you normally use the default 
parameters, use schedtune -D) . 

Using rmss to Change the Memory Size and Exit 

To change the memory size and exit, use the -c flag: 

# rmss -c mems ize  

For example, to change the memory size to 12MB, use: 

# rmss -c 12 

mems i z e  is an integer or decimal fraction number of megabytes (for example, 
12.25) .  Additionally, mems i z e  must be between 4MB and the amount of physical real 
memory in your machine. Depending on the hardware and software configuration, rmss 
may not be able to change the memory size to less than 8MB, because of the size of 
inherent system structures such as the kernel. When rmss is unable to change to a given 
memory size, it displays an informative error message. 

rmss reduces the effective memory size of a RISC System/6000 by stealing free 
page frames from the list of free frames that is maintained by the VMM. The stolen frames 
are kept in a pool of unusable frames and are returned to the free frame list when the 
effective memory size is to be increased. Also, rmss dynamically adjusts certain system 
variables and data structures that must be kept proportional to the effective size of 
memory. 

It may take a short while (up to 15-20 seconds) to change the memory size. In 
general, the more you wish to reduce the memory size, the longer rmss takes to complete. 
When successful, rmss responds with the following message: 

Simulated memory size  changed to 12 . 0 0 Mb . 

To display the current memory size, use the -p flag: 

# rmss  -p 
To this, rmss responds: 

Simulated memory size  is 12 . 0 0 Mb .  

Finally, if you wish to reset the memory size to the actual memory size of the 
machine, use the -r flag: 

# rms s -r 
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No matter what the current simulated memory size, using the -r flag sets the 
memory size to be the physical real memory size of the machine. Since this example was 
run on was a 1 6MB machine, rmss responded: 

Simulated memory size  changed to 1 6 . 0 0 Mb .  

Using the -c, -p, and -r Flags 

The -c, -p and -r flags of rmss have an advantage over the other options in that they 
allow you to experiment with complex applications that cannot be expressed as a single 
executable or shell script file. On the other hand, the -c, -p, and -r options have a 
disadvantage in that they force you to do your own performance measurements . 
Fortunately, there is an easy way to do this. You can use vmstat -s to measure the 
paging-space activity that occurred while your application ran. 

By running vmstat -s, running your application, then running vmstat -s again, and 
subtracting the number of paging-space page ins before from the number of paging-space 
page ins after, you can determine the number of paging-space page ins that occurred while 
your program ran. Furthermore, by timing your program, and dividing the number of 
paging-space page ins by the program's elapsed run time, you can obtain the average 
paging-space page-in rate. 

It is also important to run the application multiple times at each memory size. There 
are two good reasons for doing so. First, when changing memory size, rmss often clears 
out a lot of memory. Thus, the first time you run your application after changing memory 
sizes it is possible that a substantial part of the run time may be due to your application 
reading files into real memory. But, since the files may remain in memory after your 
application terminates,  subsequent executions of your application may result in 
substantially shorter elapsed times. Another reason to run multiple executions at each 
memory size is to get a feel for the average performance of the application at that memory 
size. The RISC System/6000 and AIX are complex systems, and it is impossible to 
duplicate the system state each time your application runs .  Because of this ,  the 
performance of your application may vary significantly from run to run. 

To summarize, you might consider the following set of steps as a desirable way to 
use this style of rmss invocation: 

while  there are interesting memory s i zes to investigate : 

change to an interesting memory size  using rmss -c ; 
run the application once as a warm-up ; 
for a couple of  i terations : 

{ 
use vmstat -s to get the "before " value of paging-space page ins ; 
run the application ,  while  timing i t ;  
use vms tat - s  t o  get the " after" value o f  paging-space page ins ; 
subtract the "before " value from the " after" value to get the 

number of page ins that occurred whi le the appl ication ran ; 
divide the number of paging-space page ins by the response time 

to get the paging-space page-in rate ; 

run rmss -r to res tore the system to normal memory s i z e  ( or reboot ) 
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The calculation of the (after - before) paging 110 numbers can be automated by 
using the vmstat.sh script that is part of the PerfPMR package. 

Using rmss to Run a Command over a Range of Memory Sizes 

The -s, -f, -d, -n, and -o flags are used in combination to invoke rmss as a driver 
program. As a driver program, rmss executes a specified application over a range of 
memory sizes and displays statistics describing the application's performance at each 
memory size. The syntax for this invocation style of rmss is given below: 

rmss [ -s smemsize ) [ -f fmemsize ] [ -d memdelta ] 

[ -n numiterations ) [ -o outputfile ] command 

The -n flag is used to specify the number of times to run and measure the command 
at each memory size. The -o flag is used to specify the file into which to write the rmss 
report, while command is the application that you wish to run and measure at each 
memory size. Each of these flags is discussed in detail below. 

The -s, -f, and -d flags are used to specify the range of memory sizes. The -s flag 
specifies the starting size, the -f flag specifies the final size, and the -d flag specifies the 
difference between sizes. All values are in integer or decimal fractions of megabytes. For 
example, if you wanted to run and measure a command at sizes 24, 20, 16, 1 2  and 8MB, 
you would use the following combination: 

-s 2 4  -f 8 -d 4 

Likewise, if you wanted to run and measure a command at 1 6, 24, 32, 40, and 
48MB, you would use the following combination: 

-s 16 -f 48 -d 8 

If the -s flag is omitted, rmss starts at the actual memory size of the machine. If the 
-f flag is omitted, rmss finishes at 8MB. If the -d flag is omitted, there is a default of 
8MB between memory sizes. 

What values should you choose for the -s, -f, and -d flags? A simple choice would 
be to cover the memory sizes of RISC System/6000s that are being considered to run the 
application you are measuring. However, increments of less than 8MB can be useful, 
because you can get an idea of how much "breathing room" you' ll have when you settle 
on a given size. For instance, if a given application thrashes at 8MB but runs without page 
ins at 1 6MB, it would be useful to know where within the 8 to 16MB range the application 
starts thrashing. If it starts at 1 5MB, you may want to consider configuring the system 
with more than 16MB of memory, or you may want to try to modify the application so that 
there is more breathing room. On the other hand, if the thrashing starts at 9MB, you know 
that you have plenty of breathing room with a 1 6MB machine. 

The -n flag is used to specify how many times to run and measure the command at 
each memory size. After running and measuring the command the specified number of 
times, rmss displays statistics describing the average performance of the application at 
that memory size. To run the command 3 times at each memory size, you would use the 
following: 

-n 3 

If the -n flag is omitted, rmss determines during initialization how many times your 
application must be run in order to accumulate a total run time of 10 seconds. rmss does 
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this to ensure that the performance statistics for short-running programs will not be 
significantly skewed by transient outside influences, such as daemons. 

Note: If you are measuring a very brief program, the number of iterations required to 
accumulate I 0 seconds of CPU time can be very large. Since each execution of the 
program takes a minimum of about 2 elapsed seconds of rmss overhead, you should 
probably specify the -n parameter explicitly for short programs. 

What are good values to use for the -n flag? If you know that your application takes 
much more than IO seconds to run, then you can specify -n 1 so that the command is run 
and measured only once at each memory size. The advantage of using the -n flag is that 
rmss will finish sooner because it will not have to spend time during initialization to 
determine how many times to run your program. This can be particularly valuable when 
the command being measured is long-running and interactive. 

It is important to note that rmss always runs the command once at each memory 
size as a warm-up before running and measuring the command. The warm-up is needed to 
avoid the 1/0 that occurs when the application is not already in memory. Although such 
110 does affect performance, it is not necessarily due to a Jack of real memory. The 
warm-up run is not included in the number of iterations specified by the -n flag. 

The -o flag is used to specify a file into which to write the rmss report. If the -o flag 
is omitted, the report is written into the file rms s . out. 

Finally, command is used to specify the application to be measured. command can 
be an executable or shell script, with or without command-line arguments. There are some 
limitations on the form of the command however. First, it cannot contain the redirection of 
input or output (for example, foo > output, foo < input). This is because rmss 
treats everything to the right of the command name as an argument to the command. If 
you wish to redirect, you must place the command in a shell script file. 

Normally, if you want to store the rmss output in a specific file, you would use the 
-o option. If you want to redirect the s t d o u t  output of rmss (for example, to 
concatenate it to the end of an existing file) then, with the Korn shell, you need to enclose 
the rmss invocation in parentheses, as follows:  

# ( rmss -s 24  - f  8 foo ) >> output 

Interpreting rmss Results 

This section gives suggestions on how to interpret performance statistics produced by 
rmss. Let's start out with some typical results. 

The "Report Generated for the foo Program" example on page 120 was produced by 
running rmss on a real-life application program, although the name of the program has 
been changed to foo for anonymity. The specific command that would have been used to 
generate the report is :  

# rmss -s  1 6  -f  8 -d 1 -n 1 -o rmss . out foo 
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Report Generated for the Joo Program 

Hos tname : widgeon . austin . ibm . com 
Real memory size : 1 6 . 0 0 Mb 
Time of day : Thu Jan 8 1 9 : 0 4 : 0 4 1 9 9 0  

Command : foo 

Simulated memory size  initiali zed to 1 6 . 0 0  Mb .  

Number o f  i terations per memory size  = 1 warm-up + 1 measured = 2 .  

Memory size  Avg . Pageins Avg . Response Time 
(megabytes ) ( sec . )  

1 6 . 0 0 1 1 5 . 0  1 2 3 . 9  
1 5 . 0 0 1 1 2 . 0  1 2 5 . 1  
1 4 . 0 0 1 7 9 . 0  1 2 6 . 2  
13 . 0 0 8 1 .  0 1 2 5 . 7  
12 . 0 0 4 0 3 . 0  1 3 2 . 0  
11 . 0 0 8 5 5 . 0  1 4 1 . 5 
1 0 . 0 0 1 1 6 1 . 0 1 4 6 . 8 
9 . 0 0 1 5 2 9 . 0  1 6 1 . 3  
8 . 0 0 2 9 3 1 .  0 2 0 2 . 5  

Avg . Pagein Rate 
(pageins I sec . ) 

0 . 9  
0 . 9  
1 . 4  
0 . 6  
3 . 1  
6 . 0  
7 . 9  
9 . 5  
14 . 5  

The report consists of four columns. The leftmost column gives the memory size, 
while the Avg . Page ins column gives the average number of page ins that occurred 
when the application was run at that memory size. It is important to note that the Avg . 

Pageins column refers to all page in operations, including code, data, and file reads, 
from all programs, that completed while the application ran. The Avg . Respons e 

Time column gives the average amount of time it took the application to complete, while 
the Avg . Pagein Rate column gives the average rate of page ins. 

First, concentrate on the Avg . Pagein Rate column. From 16MB to 1 3MB, 
the page-in rate is relatively small (< 1 .5 page ins/sec). However, from 1 3MB to 8MB, the 
page-in rate grows gradually at first, and then rapidly as 8MB is reached. The Avg . 

Respons e Time column has a similar shape: relatively flat at first, then increasing 
gradually, and finally increasing rapidly as the memory size is decreased to 8MB. 

Here, the page-in rate actually decreases when the memory size changes from 
14MB ( l .4 page ins/sec.) to 1 3MB (0.6 page ins/sec.) . This should not be viewed with 
alarm. In a real-life system it is impossible to expect the results to be perfectly smooth. 
The important point is that the page-in rate is relatively low at both 14MB and 1 3MB. 

Finally, there are a couple of deductions that we can make from the report. First of 
all, if the performance of the application is deemed unacceptable at 8MB (as it probably 
would be), then adding memory would improve performance significantly. Note that the 
response time rises from approximately 124 seconds at 16MB to 202 seconds at 8MB, an 
increase of 63%. On the other hand, if the performance is deemed unacceptable at 1 6MB, 
adding memory will not improve performance much, because page ins do not slow the 
program appreciably at 16MB. 
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Examples of Using the -s, -f, -d, -n, and -o Flags 

To investigate the performance of a shell script named c c foo that contains the command 
cc -0 -c foo . c in memory sizes 1 6, 14, 12,  10, 8 and 6MB; mn and measure the 
command twice at each memory size; and write the report to the file c c . rms s . out, 

enter: 

# rmss  -s 16 -f 6 -d 2 -n 2 -o cc . rmss . out ccfoo 

Report for cc 

The output is: 

Hostname : terran 
Real memory s i ze : 3 2 . 0 0 Mb 
Time of  day : Mon Apr 2 0  1 6 : 2 3 : 0 3 1 9 9 2  
Command : ccfoo 

Simulated memory size initiali zed to 1 6 . 0 0 Mb .  

Number o f  iterations per memory size = 1 warm-up + 2 measured = 3 .  

Memory s i z e  Avg . Pageins 

(megabytes ) 

1 6 . 0 0 0 . 0  

14 . 0 0 0 . 0  
12 . 0 0 0 . 0  

1 0 . 0 0 0 . 0  

8 . 0 0 0 . 5  

6 . 0 0 7 8 6 . 0  

Simulated final memory s i z e . 

Avg . Response Time 
( sec . ) 

0 . 4  
0 . 4  
0 . 4  
0 . 4  
0 . 4  

1 3 . 5  

Avg . Pagein Rate 
(pageins I sec . ) 

0 . 0  

0 . 0  
0 . 0  

0 . 0  
1 . 2  

5 8 . 4  

This shows that we were too conservative. Clearly the performance degrades badly 
in a 6MB machine, but it is essentially unchanged for all of the larger sizes . We can redo 
the measurement with a narrower range of sizes and a smaller delta with: 

rmss -s 11 -f 5 -d 1 -n 2 ccfoo 

This gives us a clearer picture of the response-time curve of the compiler for this 
program: 

Hos tname : terran 
Real memory s i z e : 3 2 . 0 0 Mb 
Time of day : Mon Apr 2 0  1 6 : 1 1 : 3 8 1 9 9 2  
Command : ccfoo 

Simulated memory size  initiali zed to 1 1 . 0 0 Mb .  

Number o f  iterations per memory size  = 1 warm-up + 2 measured 3 .  
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Memory s i z e  Avg . Pageins 

(megabytes ) 

1 1 . 0 0  0 . 0  

1 0 . 0 0 0 . 0  
9 . 0 0 0 . 5  

8 . 0 0 0 . 0  
7 . 0 0 2 07 . 0  

6 . 0 0 8 9 8 . 0  

5 . 0 0 1 0 3 8 . 0  

Simulated f inal memory s i z e . 

Reportfor a 16MB Remote Copy 

Avg . Response Time 

( sec . ) 

0 . 4  

0 . 4  
0 . 4  
0 . 4  
3 . 7  

1 6 . 1  
1 9 . 5  

Avg . Pagein Rate 

( pageins I sec . ) 

0 . 0  

0 . 0  
1 . 1  

0 . 0  
5 6 . 1  

5 5 . 9  
5 3 . 1  

The following example illustrates a report that was generated (on a client machine) by 
running rmss on a command that copied a 16MB file from a remote (server) machine via 
NFS. 

Hostname : xray . austin . ibm . com 

Real memory s i z e : 4 8 . 0 0 Mb 
Time o f  day : Mon Aug 13 1 8 : 1 6 : 4 2 1 9 9 0  
Command : c p  /mnt / a l 6Mfile / dev/null 

S imulated memory size ini tial i z ed to 4 8 . 0 0 Mb .  

Number o f  i terations per memory s i z e  = 1 warm-up + 4 measured = 5 .  

Memory s i z e  Avg . Pageins 
(megabytes ) 

4 8 . 0 0 0 . 0  

4 0 . 0 0 0 . 0  
3 2 . 0 0 0 . 0  
2 4 . 0 0 1 5 2 0 . 8  
1 6 . 0 0 4 1 0 4 . 2  

8 . 0 0 4 1 0 6 . 8  

Avg . Response Time Avg . Pagein Rate 
( sec . )  ( pageins I s ec . ) 

2 . 7  0 . 0  
2 . 7  0 . 0  
2 . 7  0 . 0  

2 6 . 9  5 6 . 6  
6 7 . 5  6 0 . 8  
6 6 . 9  6 1 . 4 

Note that the response time and page-in rate in this report start relatively low, 
rapidly increase at a memory size of 24MB, and then reach a plateau at 16  and 8MB. This 
report shows the importance of choosing a wide range of memory sizes when you use 
rmss. If this user had only looked at memory sizes from 24MB to 8MB, he or she might 
have missed an opportunity to configure the system with enough memory to 
accommodate the application without page ins. 

Report for find I -ls >ldev/null 

The next example is a report that was generated by running rmss on the shell script file 
f indbench . sh, which contained the command f ind I - l s  > / dev / nu l l ,  

which does an ls of every file in the system. The command that produced the report was: 

# rmss - s 48 -d 8 -f 4 . 5  -n 1 -o find . out findbench . sh 
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A final memory size of 4.SMB was chosen because it happened to be the smallest 
memory size that was attainable by using rmss on this machine. 

Hostname : xray . austin . ibm . com 
Real memory s i z e : 4 8 . 0 0 Mb 
Time o f  day : Mon Aug 13 1 4 : 3 8 : 2 3 1 9 9 0  
Command : f indbench . sh 

Simulated memory s i z e  init i a l i zed to 4 8 . 0 0 Mb .  

Number o f  i terations per memory s i z e  = 1 warm-up + 1 measured = 2 .  

Memory s i z e  
(megabytes ) 

4 8 . 0 0 
4 0 . 0 0 
3 2 . 0 0 
2 4 . 0 0 
1 6 . 0 0 
8 . 0 0 
4 . 5 0 

Avg . Pageins 

3 7 3 . 0  
3 7 7 . 0  
3 7 6 . 0  
3 7 0 . 0  
3 7 6 . 0  
3 7 0 . 0  
1 3 2 9 . 0  

Avg . Response Time 
( sec . ) 

2 5 . 5  
2 7 . 3  
2 7 . 5  
2 7 . 6  
2 7 . 3  
2 7 . 1  
5 7 . 6  

Avg . Pagein Rate 
( pageins I sec . ) 

1 4 . 6  
1 3 . 8  
1 3 . 7  
1 3 . 4  
1 3 . 8  
1 3 . 6  
2 3 . 1  

As in the first example, the average response times and page-in rate values remain 
fairly stable as the memory size decreases until we approach 4.SMB, where both the 
response time and page-in rate increase dramatically. However, the page-in rate is 
relatively high (approximately 14 page ins/sec. )  from 48MB through 8MB. The lesson to 
be learned here is that with some applications, no practical amount of memory would be 
enough to eliminate page ins ,  because  the programs themselves are naturally  
1/0-intensive. Common examples of  1/0-intensive programs are programs that scan or 
randomly access many of the pages in very large files. 

Hints for Using the -s, -f, -d, -n, and -o Flags 

One helpful feature of rmss, when used in this way, is that it can be terminated (by the 
interrupt key, Ctrl-C by default) without destroying the report that has been written to 
the output file. In addition to writing the report to the output file, this causes rmss to reset 
the memory size to the physical memory size of the machine. 

You can run rmss in the background, even after you have logged out, by using the 
nohup command. To do this, precede the rmss command by nohup, and follow the entire 
command with an & (ampersand) : 

# nohup rmss - s 4 8  - f 8 -o foe . out foo & 

Important Rules to Consider When Running rmss 

No matter which rmss invocation style you are using, it is important to recreate the 
end-user environment as closely as possible. For instance, are you using the same model 
CPU? same model disks? same network? Will the users have application files mounted 
from a remote node via NFS or some other distributed file system? This last point is 
particularly important, as pages from remote files are treated differently by the VMM than 
pages from local files. 

1 23 



Likewise, it is best to eliminate any system activity that is not related to the desired 
system configuration or the application you are measuring. For instance, you don't want to 
have people working on the same machine as rmss unless they are running part of the 
workload you are measuring. 

Note: You cannot run multiple invocations of rmss simultaneously. 

When you have completed all runs of rmss, it is best to shutdown and reboot the 
system. This will remove all changes that rmss has made to the system and will restore the 
VMM memory-load-control parameters to their normal settings. 

Tuning VMM Memory Load Control 

The VMM memory-load-control facility, described on page 2 1 ,  protects an overloaded 
system from thrashing-a self-perpetuating paralysis in which the processes in the system 
are spending all their time stealing memory frames from one another and reading/writing 
pages on the paging device. 

Memory-Load-Control Tuning-Possible, but Usual ly 
Inadvisable 

Memory load control is intended to smooth out infrequent peaks in load that might 
otherwise cause the system to thrash. It is not intended to act continuously in a 
configuration that has too little RAM to handle its normal workload. It is a safety net, not 
a trampoline, The correct solution to a fundamental, persistent RAM shortage is to add 
RAM, not to experiment with memory load control in an attempt to trade off response 
time for memory. The situations in which the memory-load-control facility may really 
need to be tuned are those in which there is more RAM than the defaults were chosen for, 
not less--configurations in which the defaults are too conservative. 

You should not change the memory-load-control parameter settings unless your 
workload is consistent and you believe the default parameters are ill-suited to your 
workload. 

The default parameter settings shipped with the system are always in force unless 
changed ;  and changed parameters last  only until the next system boot .  Al l  
memory-load-control tuning activities must be done by root.  The system administrator 
may change the parameters to "tune" the algorithm to a particular workload or to disable it 
entirely. This is done by running the schedtune command. The source and object code of 
schedtune are in /usrnpp/bos/samples. 
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Warning: schedtune is in the samples directory because it is very VMM-implementation 
dependent. The schedtune code that accompanies each release of AIX was 
tailored specifically to the VMM in that release. Running the schedtune 
executable from one release on a different release might well result in an 
operating-system failure. It is also possible that the functions of schedtune may 
change from release to release. You should not propagate shell scripts or inittab 
entries that include schedtune to a new release without checking the schedtune 
documentation for the new release to make sure that the scripts will still have the 
desired effect. schedtune is not supported under SMIT, nor has it been tested 
with all possible combinations of parameters . 

schedtune -? obtains a terse description of the flags and options. schedtune with no 
flags displays the current parameter settings, as follows: 

THRASH 
-h -p -m 

SUSP 
-w -e 

FORK 
- f 

SCHED 
- t 

SYS PROC MULTI WAIT GRACE TICKS TIME_SLICE 

6 4 2 1 2 10 0 

(The -f and -t flags are not part of the memory-load-control mechanism. They are 
documented in the full syntax description of schedtune. The -t flag is also discussed in 
"Modifying the Scheduler Time Slice" on page 109.) After a tuning experiment, memory 
load control can be reset to its default characteristics by executing schedtune -D. 

Memory load control is disabled by setting a parameter value such that processes 
are never suspended. schedtune -h 0 effectively disables memory load control by setting 
to an impossibly high value the threshold that the algorithm uses to recognize thrashing. 

In some specialized situations, it may be appropriate to disable memory load control 
from the outset. For example, if you are using a terminal emulator with a time-out feature 
to simulate a multiuser workload, memory-load-control intervention may result in some 
responses being delayed long enough for the process to be killed by the time-out feature. 
If you are using rmss to investigate the effects of reduced memory sizes, you will want to 
disable memory load control to avoid interference with your measurement. 

If disabling memory load control results in more, rather than fewer, thrashing 
situations (with correspondingly poorer responsiveness), then memory load control is 
playing an active and supportive role in your system. Tuning the memory-load-control 
parameters then may result in improved performance-or you may need to add RAM . 

Setting the minimum multiprogramming level, m, effectively keeps m processes 
from being suspended. Suppose a system administrator knew that at least ten processes 
must always be resident and active in RAM for successful performance, and suspected 
that memory load control was too vigorously suspending processes . If schedtune -m 10 
were issued, the system would never suspend so many processes that fewer than ten were 
competing for memory. The parameter m does not count the kernel, processes that have 
been pinned in RAM with the plock system call, fixed-priority processes with priority 
values less than 60, and processes awaiting events . The system default of m=2 ensures that 
the kernel, all pinned processes, and two user processes will always be in the set of 
processes competing for RAM. 

1 25 



While m=2 is appropriate for a desktop, single-user configuration, it is frequently 
too small for larger, multiuser or server configurations with large amounts of RAM. On 
those systems, setting m to 4 or 6 may result in the best performance. 

When you have determined the number of processes that ought to be able to run in 
your system during periods of peak activity, you can add a schedtune at the end of the 
/etdinittab file, which ensures that it will be run each time the system is booted, 
overriding the defaults that would otherwise take effect with a reboot. For example, an 
appropriate /etc/inittab line for raising the minimum level of multiprogramming to 4 
would be: 

schedtune : 2 : wait : /usr/ lpp/bo s / samples / schedtune -m 4 

Remember, this line should not be propagated to a new release of AIX without a 
check of the documentation. 

While it is possible to vary other parameters that control the suspension rate of 
processes and the criteria by which individual processes are selected for suspension, it is 
impossible to predict with any confidence the effect of such changes on a particular 
configuration and workload. Deciding on the default parameters was a difficult task, 
requiring sophisticated measurement tools and patient observation of repeating 
workloads. Great caution should be exercised if memory-load-control parameter 
adjustments other than those just discussed are considered. 

Tuning VMM Page Replacement 

The memory-management algorithm, discussed on page 17, tries to keep the size of the 
free list and the percentage of real memory occupied by persistent-segment pages within 
specified bounds. These bounds can be altered with the vmtune command, which can 
only be run by root.  

Warning: vmtune is in the samples directory because it is very VMM-implementation 
dependent. The vmtune code that accompanies each release of AIX was 
tailored specifically to the VMM in that release. Running the vmtune 
executable from one release on a different release might well result in an 
operating-system failure. It is also possible that the functions of vmtune may 
change from release to release. You should not propagate shell scripts or inittab 
entries that include vmtune to a new release without checking the vmtune 
documentation for the new release to make sure that the scripts will still have the 
desired effect. 

Choosing minfree and maxfree Settings 

The purpose of the free list is to keep track of real-memory . .page frames released by 
terminating processes and to supply page frames to requestors immediately, without 
forcing them to wait for page steals and the accompanying 1/0 to complete. The minfree 
limit specifies the free-list size below which page stealing to replenish the free list is to be 
started. maxfree is the size above which stealing will end. 
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The objectives in tuning these limits are: 
• to ensure that any activity that has critical response-time objectives can always 

get the page frames it needs from the free list 
• to ensure that the system does not experience unnecessarily high levels of 1/0 

because of premature stealing of pages to expand the free list 

If you have a short list of the programs you want to run fast, you could investigate 
their memory requirements with svmon (see "Finding Out How Much Memory Is Really 
Being Used" on page 1 1 1  ), and set minfree to the size of the largest. This technique risks 
being too conservative because not all of the pages that a process uses are acquired in one 
burst. At the same time, you may be missing dynamic demands that come from programs 
not on your list that may lower the average size of the free list when your critical programs 
run. 

A less precise but more comprehensive tool for investigating an appropriate size for 
minfree is vmstat. The following is a portion of the vmstat 1 output obtained while 
running an XLC compilation on an otherwise idle system. The first line has not been 
removed--observe that the first line contains summary CPU and other activity measures, 
but current memory statistics. 

procs memory page fau l t s  cpu 
----------- ------------------------ ------------ -----------

r b avm fre re pi po fr sr cy in sy cs  us sy id wa 

0 0 3 0 8 5  1 1 8  0 0 0 0 0 0 1 1 5  2 1 9  0 0 9 9  0 

0 0 3 0 8 6  1 1 7  0 0 0 0 0 0 1 1 9  1 3 4  2 4  1 3 9 6  0 

2 0 3 14 1  5 5  2 0 6 2 4  9 8  0 17 5 2 2 3  6 0  3 9 5 4  3 4  

0 1 3 2 5 4 57  0 0 6 1 7 6  8 1 4  0 2 0 5  2 1 9  1 1 0  2 2  1 4  0 6 4  

0 1 3 3 4 2  5 9  0 0 4 2  1 0 4  2 4 9  0 1 6 3  3 1 4  5 7  4 3  1 6  0 4 2  

1 0 3 4 1 1  7 8  0 0 4 9  1 0 4  1 6 9  0 1 7 6  3 0 6  5 1  3 0  1 5  0 5 5  

1 0 3 5 2 8  1 6 0  1 0 1 0  2 1 6  4 8 7  0 143  3 8 7  5 4  5 0  2 2  0 2 7  

1 0 3 62 7  9 4  0 0 0 7 2  1 6 0  0 1 4 8  2 9 2  7 9  5 7  9 0 3 4  

1 0 3 4 4 4  3 2 7  0 0 0 6 4  1 0 2  0 1 3 2  1 5 0  4 1  8 2  8 0 1 1  

1 0 3 5 0 5  2 5 1  0 0 0 0 0 0 12 8 1 8 9  5 0  7 9  1 1  0 1 1  

1 0 3 5 5 0  2 0 6  0 0 0 0 0 0 1 2 4  1 5 0  2 2  9 4  6 0 0 

1 0 3 5 7 6  1 8 0  0 0 0 0 0 0 1 2 1  1 4 5  3 0  9 6  4 0 0 

0 1 3 6 5 4  1 0 0  0 0 0 0 0 0 1 2 4  1 4 5  2 8  9 1  8 0 1 

1 0 3 5 8 6  2 0 8  0 0 0 4 0  6 8  0 12 3 1 3 9  2 4  9 1  9 0 0 

Because the compiler has not been run recently, the code of the compiler itself has to 
be read in. All told, the compiler acquires about 2MB in about 6 seconds. On this 32MB 
system maxfree is 64 and minfree is 56. The compiler almost instantly drives the free list 
size below minfree, and several seconds of frantic page-stealing activity take place. Some 
of the steals require that dirty working-segment pages be written to paging space, which 
shows up in the po column. If the steals cause the writing of dirty permanent-segment 
pages, that 1/0 does not appear in the vmstat report (unless you have directed vmstat to 
report on the 1/0 activity of the physical volume(s) to which the permanent pages are 
being written). 

This example is not intended to suggest that you set minfree to 500 to accommodate 
large compiles. It points out how one can use vmstat to identify situations in which the 
free list has to be replenished while a program is waiting for space. In this case, about 2 
seconds were added to the compiler execution time because there weren' t  enough page 
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frames immediately available. If you observe the page frame consumption of your 
· program, either during initialization or during normal processing, you will soon have an 
idea of the number page frames that need to be in the free list to keep the program from 
waiting for memory. 

When you determine the appropriate size for the free list for your interactive 
workload, you can set minfree appropriately with vmtune. maxfree should be greater 
than minfree by at least 8 (or by maxpgahead, whichever is greater) . If we concluded 
from the example above that minfree needed to be 128, and we had set maxpgahead to 
1 6  to improve sequential performance, we would use the following vmtune command and 
receive the output shown: 

# /usr/ lpp/bos / samples /vmtune - f 1 2 8  -F 1 4 4  

minperm 
1 3 9 2  

maxperm minpgahead 
5 7 3 4  2 

number of memory f rames = 8 1 9 2  
maxperm= 7 0 . 0 % o f  real memory 
minperm= l 7 . 0 % of real memory 

maxpgahead 

1 6  
minf ree 

5 6  
maxf ree 

64 
numperm 

3 1 0 6  
number o f  bad memory pages = 0 

minperm 
1 3 9 2  

maxperm minpgahead maxpgahead minfree maxfree numperm 
3 1 0 6  5 7 3 4  2 1 6  1 2 8  1 4 4  

number of  memory frames = 8 1 9 2  number o f  bad memory pages = 0 
maxperm= 7 0 . 0 % of real memory 
minperm= 1 7 . 0 % of real memory 

Choosing minperm and maxperm Settings 

AIX takes advantage of the varying requirements for real memory by leaving in memory 
pages of files that have been read or written. If the file pages are requested again before 
their page frames are reassigned, this technique saves an 1/0 operation. (Even if a file 
page's page frame has been stolen and placed on the free list, if that file page is requested 
before the page frame is actually used for another purpose, it will be reclaimed from the 
free list.) These file pages may be from local or remote (for example, NFS) file systems. 

The ratio of page frames used for files versus those used for computational (working 
or program text) segments is loosely controlled by the minperm and maxperm values. 

In a particular workload, it may be worthwhile to emphasize the avoidance of file 
1/0. In another workload, keeping computational segment pages in memory may be more 
important. To understand what the ratio is in the untuned state, we use the vmtune 
command with no arguments. 

# vmtune 

minperm maxperm minpgahead 
1 4 3 3  5 7 3 4  2 

number of memory frames = 8 1 9 2  
maxperm= 7 0 . 0 % of  real memory 
minperm= 1 7 . 5 % of real memory 

maxpgahead minfree maxfree numperm 
1 6  1 2 8  1 4 4  3 4 9 7  

number o f  bad memory pages = 0 
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The default values are calculated by the following algorithm: 

minperm (in pages) = ((number of memory frames) - 1024) * .2 
maxperm (in pages) = ((number of memory frames) - 1024) * .8 
The numperm column gives the number of file pages in memory, 3497. This is  

42.7% of real memory. If we know that our workload makes little use of recently read or 
written files, we may want to constrain the amount of memory used for that purpose. The 
command: 

# vmtune -p 15 -P 4 0  

would set minperm to 1 5 %  and maxperm to 40% of real memory. This would ensure that 
the VMM would steal page frames only from file pages when the ratio of file pages to 
total memory pages exceeded 40%. On the other hand, if our application frequently 
references a small set of existing files (especially if those files are in an NFS-mounted file 
system), we might want to allow more space for local caching of the file pages with: 

# vmtune -p 3 0  -P 6 0  
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8 
Monitoring and Tuning Disk 110 

This chapter focuses on the performance of locally attached disk drives. 
If you are not familiar with AIX's concepts of volume groups, logical and physical 

volumes, and logical and physical partitions, you may want to read "Performance 
Overview of AIX Management of Fixed-Disk Storage," beginning on page 25 . 

Pre-Instal lation Planning 

File-system configuration has a large effect on  overall system performance and i s  
time-consuming to change after installation. Deciding on  the number and types of  hard 
disks, and the sizes and placements of paging spaces and logical volumes on those hard 
disks, is therefore a critical pre-installation process. 

An extensive discussion of the considerations for pre-installation disk configuration 
planning appears in "Disk Pre-Installation Guidelines" beginning on page 67. 

Bui ld ing a Pre-Tun ing Basel ine 

Before making significant changes in your disk configuration or tuning parameters, it is a 
good idea to build a baseline of measurements that record the current configuration and 
performance. In addition to your own measurements , you may want to create a 
comprehensive baseline with the PerfPMR package. See "Check Before You Change" on 
page 80. 

Assessing Disk Performance after Instal lation 

Begin the assessment by running iostat with an interval parameter during your system's 
peak workload period or while running a critical application for which you need to 
minimize 1/0 delays. The following shell script runs iostat in the background while a cp 
of a large file runs in the foreground so that there is some 1/0 to measure: 

$ ios tat 5 3 >io . out & 
$ cp bigl / dev/nu l l  
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This would leave the following three reports in i o . out:  

tty : 

Disks : 
hdiskO 
hdi skl 
hdi sk2 
cdO 

tty : 

Disks : 
hdiskO 
hdiskl 
hdisk2 
cdO 

tty : 

Disks : 
hdiskO 
hdiskl 
hdi sk2 

cdO 

tin 

0 . 0  

tout cpu : 

3 . 2 

% tm_ac t  
0 . 0  
0 . 1  
0 . 2  
0 . 0  

Kbps 
0 . 3  
0 . 1  
0 . 8  
0 . 0  

t in 
0 . 0  

tout cpu : 
0 . 4  

% tm_act 
4 7 . 0  

1 . 2  
4 . 0  
0 . 0  

Kbps 
6 7 4 . 6  

2 . 4  
7 . 9  
0 . 0  

t in 
0 . 6  

tout cpu : 
5 6 . 6  

% tm_act 

0 . 0  
0 . 0  
4 . 8  
0 . 0  

Kbps 
0 . 0  

0 . 0  
1 2 . 8  

0 . 0  

% user % sys 
0 . 2  0 . 6  

% idle % i owait 
9 8 . 9  0 . 3  

tps 
0 . 0  
0 . 0  
0 . 1  

0 . 0  

msps Kb_read Kb_wrtn 

% user % sys 
0 . 6  9 . 7  

tps msps 
2 1 .  8 

0 . 6  
1 .  8 
0 . 0  

% user % sys 

0 . 2  2 . 0  

tps 
0 . 0  
0 . 0  
3 . 2 

0 . 0  

msps 

2 9 7 5 3 4 8 0 7 6  
1 1 9 7 1  
9 1 2 0 0  

0 

2 6 4 6 0  
1 0 8 3 5 5  

0 

% idle % i owait 
5 0 . 2  3 9 . 5  

Kb_read Kb_wrtn 

3 3 7 6  2 4  
0 12  
8 
0 

3 2  
0 

% idle % i owait 

9 3 . 2  4 . 6  

Kb_read 
0 

0 
6 4  

0 

Kb_wrtn 
0 
0 
0 
0 

The first, summary, report shows the overall balance (or, in this case, imbalance) in 
the 1/0 to each of the hard disks. hdi skl is almost idle and hdi sk2 receives about 63% 
of the total 1/0. 

The second report shows the 5-second interval during which cp ran. The data must 
be viewed with care. The elapsed time for this cp was about 2.6 seconds. Thus, 2.5 
seconds of high 1/0 dependency are being averaged with 2.5 seconds of idle time to yield 
the 39.5% i owai t reported. A shorter interval would have given a more accurate 
characterization of the command itself, but this example demonstrates the considerations 
one must take into account in looking at reports that show average activity across 
intervals .  

Assessing Physical Placement of Data on Disk 

If the workload shows a significant degree of 1/0 dependency, you can investigate the 
physical placement of the files on the disk to determine if reorganization at some level 
would yield an improvement. To see the placement of the partitions of logical volume 
hdl l within physical volume hdi skO , use: 

$ l s lv -p hdiskO hdl l 
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lslv then reports: 

hdi skO : hdll : /home / op 
USED USED USED USED USED USED USED USED USED USED 1 - 1 0  

USED USED USED USED USED USED USED 1 1 - 1 7  

USED USED USED USED USED USED USED USED USED USED 1 8 - 2 7  
USED USED USED USED USED USED USED 2 8 -3 4  

USED USED USED USED USED USED USED USED USED USED 3 5 - 4 4  
USED USED USED USED USED USED 4 5 - 5 0  

USED USED USED USED USED USED USED USED USED USED 5 1- 6 0  
0 0 5 2  0 0 5 3  0 0 5 4  0 0 5 5  0 0 5 6  0 0 5 7  0 0 5 8  6 1 - 6 7  

0 0 5 9  0 0 6 0  0 0 6 1  0 0 6 2  0 0 6 3  0 0 6 4  0 0 6 5  0 0 6 6  0 0 6 7  0 0 6 8  6 8 - 7 7  
0 0 6 9  0 0 7 0  0 0 7 1  0 0 7 2  0 0 7 3  0 0 7 4  0 0 7 5  7 8- 8 4  

The word USED means that the physical partition i s  in  use by a logical volume other 
than hdl l .  The numbers indicate the logical partition of hdl l that is assigned to that 
physical partition. 

We look for the rest of hd11 on hdi skl with: 

$ l s lv -p hdiskl hdl l 

which produces: 

hdiskl : hdl l : /home / op 
0 0 3 5  0 0 3 6  0 0 3 7  0 0 3 8  0 0 3 9  0 0 4 0  0 0 4 1  0 0 4 2  0 0 4 3  0 0 4 4  1 - 1 0  
0 0 4 5  0 0 4 6  0 0 4 7  0 0 4 8  0 0 4 9  0 0 5 0  0 0 5 1  1 1-1 7  

USED USED USED USED USED USED USED USED USED USED 1 8 -2 7  
USED USED USED USED USED USED USED 2 8 -3 4  

USED USED USED USED USED USED USED USED USED USED 3 5- 4 4  
USED USED USED USED USED USED 4 5 -5 0  

0 0 0 1  0 0 0 2  0 0 0 3  0 0 0 4  0 0 0 5  0 0 0 6  0 0 0 7  0 0 0 8  0 0 0 9  0 0 1 0  5 1 - 6 0  
0 0 1 1  0 0 1 2  0 0 1 3  0 0 1 4  0 0 1 5  0 0 1 6  0 0 1 7  6 1- 6 7  

0 0 1 8  0 0 1 9  0 0 2 0  0 0 2 1  0 0 2 2  0 0 2 3  0 0 2 4  0 0 2 5  0 0 2 6  0 0 2 7  6 8 -7 7  
0 0 2 8  0 0 2 9  0 0 3 0 0 0 3 1  0 0 3 2  0 0 3 3  0 0 3 4  7 8 - 8 4  

We see that logical volume hdl l i s  fragmented within physical volume hdi skl,  

with its first logical partitions in the inner-middle and inner regions of hdi skl, while 
logical partitions 35-5 1 are in the outer region. A workload that accessed hdl l  randomly 
would experience unnecessary 1/0 wait time as the disk's accessor moved back and forth 
between the parts of hdl l .  These reports also show us that there are no free physical 
partitions in either hdi skO or hdi skl.  

If we look at hd2 (the logical volume containing the /usr file system) on hdi sk2 

with: 

$ l s lv -p hdisk2 hd2 

we find some physical partitions that are FREE: 
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hdi sk2 : hd2 : /usr 

USED USED USED USED FREE FREE FREE FREE FREE FREE 1 - 1 0  
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 1 1 -2 0  

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 2 1 - 3 0  

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 3 1- 4 0  

FREE 4 1-41 

USED USED USED USED USED USED USED USED USED USED 4 2 - 5 1  

USED USED USED USED USED USED FREE FREE FREE FREE 5 2 - 6 1  

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 6 2 - 7 1  

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 7 2 - 8 1  

FREE 8 2 - 8 2  

USED USED 0 0 0 1  0 0 0 2  0 0 0 3  0 0 0 4 0 0 0 5  0 0 0 6  0 0 0 7  0 0 0 8  8 3 -9 2  

0 0 0 9  0 0 1 0  0 0 1 1  0 0 1 2  0 0 1 3  0 0 1 4 0 0 1 5  USED USED USED 9 3 - 1 0 2  

USED 0 0 1 6  0 0 1 7  0 0 1 8  0 0 1 9  0 0 2 0  0 0 2 1  0 0 2 2  0 0 2 3  0 0 2 4  1 0 3 - 1 1 2  

0 0 2 5  0 0 2 6  0 0 2 7  0 0 2 8 0 0 2 9  0 0 3 0  0 0 3 1  0 0 3 2  0 0 3 3  0 0 3 4  1 1 3 - 1 2 2  

0 0 3 5  0 0 3 6  0 0 3 7  0 0 3 8  0 0 3 9  0 0 4 0  0 0 4 1  0 0 4 2  0 0 4 3  0 0 4 4  1 2 3 - 1 3 2  

0 0 4 5  0 0 4 6  0 0 4 7  0 0 4 8  0 0 4 9  0 0 5 0  0 0 5 1  0 0 5 2  0 0 5 3  0 0 5 4  1 3 3 - 1 4 2  

0 0 5 5  0 0 5 6  0 0 5 7  0 0 5 8  0 0 5 9  0 0 6 0  0 0 6 1  0 0 6 2  0 0 6 3  0 0 6 4  1 4 3 - 1 5 2  

0 0 6 5  0 0 6 6  0 0 6 7  0 0 6 8  0 0 6 9  0 0 7 0  0 0 7 1  0 0 7 2  0 0 7 3  0 0 7 4  1 5 3 -1 6 2  

0 0 7 5  1 6 3 -1 6 3  

0 0 7 6  0 0 7 7  0 0 7 8  0 0 7 9  0 0 8 0  0 0 8 1  0 0 8 2  0 0 8 3  0 0 8 4  0 0 8 5  1 6 4 - 1 7 3  

0 0 8 6  0 0 8 7  0 0 8 8  0 0 8 9  0 0 9 0  0 0 9 1  0 0 9 2  0 0 9 3  0 0 9 4  0 0 9 5  1 7 4 - 1 8 3  

0 0 9 6  0 0 9 7  0 0 9 8  0 0 9 9  0 1 0 0  FREE FREE FREE FREE FREE 1 8 4 - 1 9 3  

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 1 9 4 - 2 0 3  

FREE 2 0 4 - 2 0 4  

There are several interesting differences from the previous reports. The hd2 logical 
volume is contiguous, except for four physical partitions ( 100-103) .  Other lslvs (not 
shown) tell us that these partitions are used for hdl,  hd3 , and hd9var (/home, /tmp, 
and /var, respectively). 

If we want to see how the file copied earlier, bigl, is stored on the disk, we can use 
the tileplace command: 

$ f i l eplace -pv bigl 

The resulting report is: 

F i l e : bigl S i z e : 3 5 5 4 2 7 3  bytes Vol :  / dev/hdl O ( 4 0 9 6  byte blks ) 
Inode : 1 9  Mode : -rwxr-xr-x Owner : frankw Group : system 

Phys ical blocks ( mi rror copy 1 )  Logical bl ocks 
------------ ------------------- ------- - ------
0 1 5 8 4 - 0 1 5 9 1  hdiskO 8 blks , 3 2  KB , 0 . 9 % 0 1 0 4 0 - 0 1 0 4 7  
0 1 6 2 4 - 0 1 6 7 1  hdiskO 4 8  blks , 1 9 2  KB , 5 . 5 % 0 1 0 8 0 - 0 1 1 2 7  
0 1 7 2 8 - 0 2 5 3 9  hdiskO 8 1 2  blks , 3 2 4 8  KB , 9 3 . 5 % 0 1 1 8 4 - 0 1 9 9 5  

8 6 8  blocks over space of 9 5 6 : space e f f ic iency = 9 0 . 8 % 
3 fragments out o f  8 6 8  poss ibl e : sequential i ty = 9 9 . 8% 

This shows that there is very little fragmentation within the file, and those are small 
gaps. We can therefore infer that the disk arrangement of bigl is not affecting its 
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sequential read time significantly. Further, given that a (recently created) 3 .5MB file 
encounters this little fragmentation, it appears that the file system in general has not 
become particularly fragmented. 

Note: If a file has been created by seeking to various locations and writing widely 
dispersed records, only the pages that contain records will take up space on disk and 
appear on a fileplace report. The file system does not fill in the intervening pages 
automatically when the file is created. However, if such a file is read sequentially, 
by the cp or tar commands, for example, the space between records is read as binary 
zeroes. Thus, the output of such a cp command can be much larger than the input 
file, although the data is the same. 

In AIX Version 4. 1 ,  the fileplace command is packaged as part of the Performance 
Toolbox for AIX. To determine whether fileplace is available, use: 

l slpp - l I  perfagent . tools 

If this package has been installed, fileplace is available. 

Reorganizing a Logical Volume or Volume Group 

If we found that a volume was sufficiently fragmented to require reorganization, we could 
use smit to run the reorgvg command (smit -> Physical & Logical Storage -> Logical 
Volume Manager -> Volume Groups -> Set Characteristics of a Volume Group -> 
Reorganize a Volume Group). The fast path is: 

# smi t reorgvg 

Use of this command against rootvg on the test system, with no particular logical 
volumes specified, resulted in migration of all of the logical volumes on hdi sk2 . After 
the reorganization, the output of an 

$ l s lv -p hdisk2 hd2 

was: 

hdisk2 : hd2 : /usr 
USED USED USED USED USED USED USED USED FREE FREE 1 - 1 0  
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 11-2 0 
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 2 1 -3 0  
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 3 1-4 0  
FREE 4 1-4 1  

USED USED USED USED USED USED USED USED USED USED 4 2 - 5 1  
USED USED USED USED USED USED FREE FREE FREE FREE 5 2 - 6 1  
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 6 2 - 7 1  
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 7 2 - 8 1  
FREE 8 2 - 8 2  

USED USED 0 0 0 1  0 0 0 2  0 0 0 3  0 0 0 4 0 0 0 5  0 0 0 6  0 0 0 7  0 0 0 8  8 3 -9 2  
0 0 0 9  0 0 1 0  0 0 1 1  0 0 1 2  0 0 1 3  0 0 14 0 0 1 5  0 0 1 6  0 0 1 7  0 0 1 8  9 3 - 1 0 2  
0 0 1 9  0 0 2 0 0 0 2 1  0 0 2 2  0 0 2 3  0 0 2 4  0 0 2 5  0 0 2 6  0 0 2 7  0 0 2 8  1 0 3 -1 1 2  
0 0 2 9  0 0 3 0  0 0 3 1  0 0 3 2  0 0 3 3  0 0 3 4  0 0 3 5  0 0 3 6  0 0 3 7  0 0 3 8  1 1 3 - 1 2 2  
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0 0 3 9  0 0 4 0  0 0 4 1  0 0 4 2  0 0 4 3  0 0 4 4  0 0 4 5  0 0 4 6  0 0 4 7  0 0 4 8  1 2 3 - 1 3 2  

0 0 4 9  0 0 5 0  0 0 5 1  0 0 5 2  0 0 5 3  0 0 5 4  0 0 5 5  0 0 5 6  0 0 5 7  0 0 5 8  1 3 3 -1 4 2  

0 0 5 9  0 0 6 0  0 0 6 1  0 0 6 2  0 0 6 3  0 0 64 0 0 6 5  0 0 6 6  0 0 6 7  0 0 6 8  1 4 3 - 1 5 2  

0 0 6 9  0 0 7 0  0 0 7 1  0 0 7 2  0 0 7 3  0 0 7 4  0 0 7 5  0 0 7 6  0 0 7 7  0 0 7 8  1 5 3 - 1 6 2  

0 0 7 9  1 6 3 - 1 6 3  

0 0 8 0  0 0 8 1  0 0 8 2  0 0 8 3  0 0 8 4  0 0 8 5  0 0 8 6  0 0 8 7  0 0 8 8  0 0 8 9  1 6 4 -1 7 3  

0 0 9 0  0 0 9 1  0 0 9 2  0 0 9 3  0 0 9 4  0 0 9 5  0 0 9 6  0 0 9 7  0 0 9 8  0 0 9 9  1 7 4 - 1 8 3  

0 1 0 0  FREE FREE FREE FREE FREE FREE FREE FREE FREE 1 8 4 - 1 9 3  

FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 1 9 4 -2 0 3  
FREE 2 0 4 -2 0 4  

The physical-partition fragmentation within hd2 that was seen in the previous 
report has disappeared. However, we have not affected any fragmentation at the 
physical-block level that may exist within the /usr file system. Since most of the files in 
/usr are written once, during system installation, and are not updated thereafter, /usr is 
unlikely to experience much internal fragmentation. User data in the /home file system is 
another matter. 

Reorganizing a Fi le System 

The test system has a separate logical volume and file system hdl l (mount point: 
/ home I op) for potentially destructive testing. If we decide that hdl l needs to be 
reorganized, we start by backing up the data with: 

# cd /home / op 
# f ind . -print I pax -wf /home /waters / te s t_bucket / backuptes t f i l e  

which creates a backup file (in a different file system) containing all of  the files in  the file 
system to be reorganized. If the disk space on the system is limited, this backup could be 
done to tape. 

Before the file system can be rebuilt, you must run unmount, as follows: 

# unmount /home / op 

If any processes are using / home / op or any of its subdirectories, they must be 
killed before the unmount can succeed. 

To remake the file system on / home / op's logical volume, enter: 

# mkfs / dev/hdl l 

You are prompted for confirmation before the old file system is destroyed. The 
name of the file system does not change. To restore the original situation (except that 
/home / op is empty), enter: 

# mount / dev/hdl l /home/ op 
# cd /home / op 

Now put the data back with: 

# pax -r f / home / frankw/ tuning . io /backuptes t f i le > / dev/null 

Standard out is redirected to I dev I nul 1 to avoid displaying the name of each of 
the files restored, which can be very time-consuming. 

If we look again at the large file inspected earlier, with: 
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# f i l eplace -p iv bigl 

we see that it is now (nearly) contiguous :  

File : bigl S i z e : 3 5 5 4 2 7 3  bytes Vol : / dev/hdl l ( 4 0 9 6  byte blks ) 

!node : 8 2 9 0  Mode : -rwxr-xr-x Owner : frankw Group : system 

INDIRECT BLOCK : 6 0 3 0 7  

Phys ical blocks ( mirror copy 1 )  

6 0 2 9 9 - 6 0 3 0 6  hdiskl 
6 0 3 0 8 - 6 1 1 6 7  hdi skl 

8 blks , 
8 6 0  blks , 

3 2  KB , 
3 4 4 0  KB , 

0 . 9 % 
9 9 . 1 % 

Logical blocks 

0 8 5 5 5 - 0 8 5 6 2  
0 8 5 64 - 0 9 4 2 3  

8 6 8  blocks over space o f  8 6 9 : space e f f i c iency = 9 9 . 9 % 
2 fragments out o f  8 6 8  pos s ible : sequential i ty = 9 9 . 9 % 

The -i option that we added to the f°Ileplace command shows us that the one-block 
gap between the first eight blocks of the file and the remainder contains the indirect block, 
which is required to supplement the i-node information when the length of the file exceeds 
eight blocks. 

Performance Considerations of Paging Spaces 

1/0 to and from paging spaces is random, mostly one page at a time. vmstat reports 
indicate the amount of paging-space 1/0 taking place. Both of the following examples 
show the paging activity that occurs during a C compilation in a machine that has been 
artificially shrunk using rmss. The pi and po (paging-space page ins and paging-space 
page outs) columns show the amount of paging-space 1/0 (in terms of 4096-byte pages) 
during each 5-second interval. The first, summary, report has been removed. Notice that 
the paging activity occurs in bursts. 

$ vms tat 5 
procs memory 
----- - - - - - - - - - --

r b avm fre 
0 0 2 5 0 2  4 3 2  
0 0 2 9 0 4  2 0 1  
1 0 3 04 3  1 3 6 
1 0 3 0 1 9  9 0  
0 0 3 0 4 9  1 7 8  
1 0 3 0 5 7  2 1 6  
0 0 2 5 0 2  5 9 9  
0 0 2 5 0 2  5 9 6  

re 
0 
4 
0 
3 
2 
0 
2 
0 

page faults cpu 
- --------

p i  p o  fr sr  cy in sy cs us sy id wa 
0 0 0 0 0 1 3 4  2 6  2 0  0 1 9 9  0 
0 7 4 3  1 5 2 4  0 1 2 9  2 2 7  3 8  6 4  1 2  1 5  1 0  
0 0 1 7  1 3 6  0 1 1 7  4 6  2 4  9 2  6 0 2 
0 0 0 0 0 12 6 7 4  3 4  8 4  6 0 1 0  
0 1 5  2 8  8 7 6  0 1 4 8  3 2  3 2  8 5  6 0 9 
1 6 1 1  7 7  0 12 1 3 9  2 5  9 3  5 0 2 

1 5  0 0 0 0 1 4 2  ll 9 5  6 9  4 7  9 1 1  3 4  
0 0 0 0 0 1 3 5  3 0  2 2  1 1 9 8  1 

The following before and after vmstat -s reports show the accumulation of paging 
activity. Remember that it is the "paging space page ins" and " .  . outs" 

that represent true paging-space 1/0. The (unqualified) "p age i n s "  and "p age 

outs" report total 1/0-both paging-space 1/0 and the ordinary file 1/0 that is also 
performed by the paging mechanism. (The reports have been edited to remove lines that 
are irrelevant to this discussion.) 
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$ vms tat -s 

6 6 0 2  page ins 
3 9 4 8  page outs 

5 4 4  paging space page ins 
1 9 2 3  paging space page outs 

71 total reclaims 

$ vmstat - s 

7 0 2 2  page ins 
4 1 4 6  page outs 

� 6 8 9  paging space page ins 
2 0 3 2  paging space page outs 

84 total reclaims 

The fact that more paging-space page ins than page outs occurred during the 
compilation suggests that we had shrunk the system to the point of incipient thrashing. 
Some pages were being repaged because their frames were stolen before their use was 
complete (that is, before any change had been made). 

Measuring Overal l  Disk 1/0 with vmstat 

The technique just discussed can also be used to assess the disk 1/0 load generated by a 
program. If the system is otherwise idle, the sequence: 

$ vms tat -s >s tatout 

$ tes tpgm 

$ sync 

$ vms tat - s >> s tatout 

$ egrep " ins ] outs "  s tatout 

will yield a before and after picture of the cumulative disk activity counts, such as: 

5 6 9 8  page ins 
5 0 1 2  page outs 

0 paging space page ins 
3 2  paging space page outs 

6 6 7 1  page ins 

5 2 6 8  page outs 

8 paging space page ins 
2 2 5  paging space page outs 

During the period when this command (a large C compile) was running, the system 
read a total of 981  pages (8 from paging space) and wrote a total of 449 pages ( 1 93 to 
paging space) .  

Using fi lemon for Detai led 1/0 Analysis 

The filemon command uses the trace facility to obtain a detailed picture of 1/0 activity 
during a time interval. Since it uses the trace facility, filemon can be run only by root or 
by a member of the sys t em group. 

In AIX Version 4. 1 ,  the filemon command is packaged as part of the Performance 
Toolbox for AIX. To determine whether filemon is available, use: 

ls lpp - l I  perfagent . tools 

If this package has been installed, filemon is available. 
Tracing is started by the filemon command, optionally suspended with trcoff and 

resumed with trcon, and terminated with trcstop. As soon as tracing is terminated, 
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f"Ilemon writes its report to stdout. The following sequence of commands gives a simple 
example of tilemon use: 

# f i l emon -o fro . te s t . out ; cp smi t . log / dev/nu l l  ; trcs top 

The report produced by this sequence, in an otherwise-idle system, was : 

Wed Jan 12 1 1 : 2 8 : 2 5 1 9 9 4  
System : AIX alborz Node : 3 Machine : 0 0 0 2 4 9 5 7 3 1 0 0  

0 . 3 0 3  secs i n  measured interval 
Cpu u t i l i zat ion : 5 5 . 3 % 

Mos t  Ac t ive Segments 

#MBs # rpgs #wpgs segid segtype 

0 . 1  
0 . 0  

2 6  
1 

0 
0 

0 9 8 4  pers istent 
3 4ba . indirect 

Mos t  Ac t ive Logical Volumes 

u t i l  #rblk #wblk KB / s  volume 

0 . 6 6 2 1 6  O 3 5 7 . 0  / dev/hdl 

Mos t  Ac t ive Phys ical Vo lumes 

u t i l  #rblk #wblk KB / s  volume 

0 . 6 5 2 1 6  0 3 5 7 . 0  / dev/hdiskl 

Detai led VM Segment Stats ( 4 0 9 6  byte pages ) 

volume : inode 

/ dev/hdl : 2 5 
/ dev/hd1 : 4  

description 

/home 

description 

3 2 0  MB SCSI 

SEGMENT : 0 9 8 4  segtype : pers i s tent volume : / dev/hdl inode : 2 5  

segment flags : pers 

reads : 2 6  ( 0  errs ) 

read t imes (msec ) : avg 4 5 . 6 4 4  min 9 . 1 1 5  max 1 0 1 . 3 8 8  sdev 

read sequences : 3 

read seq . lengths : avg 8 . 7  min 1 max 2 2  sdev 

SEGMENT : 3 4ba segtype : . indirect vo lume : /dev/hdl inode : 4 

segment f l ags : pers j nld sys 

reads : 1 ( 0  errs ) 
read times (msec ) : avg 1 6 . 3 7 5  min 1 6 . 3 7 5  max 1 6 . 3 7 5  sdev 

read s equences : 1 

read seq . lengths : avg 1 . 0  min 1 max 1 sdev 

Detai l ed Logical Vo lume Stats ( 5 1 2  byte blocks ) 

VOLUME : / dev/hdl description : / home 
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reads : 2 7  ( 0  errs ) 
read s i zes ( blks ) : avg 8 . 0  min 8 max 8 sdev 0 . 0  
read t imes (mse c )  : avg 4 4 . 3 1 6  min 8 . 9 0 7  max 1 0 1 . 1 1 2  sdev 3 2 . 8 9 3  
read sequences : 1 2  
read seq . lengths : avg 1 8 . 0  min 8 max 6 4  sdev 1 5 . 4  

seeks : 1 2  ( 4 4 . 4 % )  
seek dis t  (blks ) : ini t 5 1 2  

avg 3 1 2 . 0  min 8 max 1 7 6 0  sdev 4 9 4 . 9  
time to next req (msec ) : avg 8 . 0 8 5  min 0 . 0 1 2  max 6 4 . 8 7 7  sdev 1 7 . 3 8 3  
throughput : 3 5 7 . 0  KB / sec 
ut i l i zation : 0 . 6 6 

Detail ed Phys ical Volume Stats ( 5 1 2  byte blocks ) 

VOLUME : / dev/hdi skl description : 3 2 0  MB SCSI 

reads : 1 4  ( 0  errs ) 
read s i zes (blks ) : avg 1 5 . 4  min 8 max 3 2  sdev 8 . 3  
read t imes (msec ) : avg 1 3 . 9 8 9  min 5 . 6 6 7  max 2 5 . 3 6 9  sdev 5 . 6 0 8  
read sequences : 1 2  
read seq . lengths : avg 1 8 . 0  min 8 max 6 4  sdev 1 5 . 4  

seeks : 1 2  ( 8 5 . 7 % )  
seek di s t  (blks ) : ini t 2 6 3 1 6 8 , 

avg 3 12 . 0  min 8 max 1 7 6 0  sdev 4 9 4 . 9  
seek di s t  ( cyls ) : ini t 3 9 9  

avg 0 . 5  min 0 max 2 sdev 0 . 8  
time to next req ( ms ec ) : avg 2 7 . 3 02 min 3 . 3 1 3  max 6 4 . 8 5 6  sdev 2 2 . 2 9 5  
throughput :  3 5 7 . 0  KB/ sec 
uti l i zation : 0 . 6 5 

The Mo st Ac t ive Segments report lists the most active files . To identify 
unknown files, you could translate the logical volume name, /dev/hdl, to the mount point 
of the file system, /home, and use the fmd command: 

# f ind / home - inum 2 5  -print 

which returns: 

/home /waters / smi t . log 

Using filemon in systems with real workloads would result in much larger reports 
and might require more trace buffer space. filemon's space and CPU time consumption 
can degrade system performance to some extent. You should experiment with filemon on 
a nonproduction system before starting it in a production environment. 

Note: Although filemon reports average, minimum, maximum, and standard deviation in 
its detailed-statistics sections, the results should not be used to develop confidence 
intervals or other formal statistical inferences. In general, the distribution of data 
points is neither random nor symmetrical. 
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Disk-Limited Programs 

Disk sensitivity can come in a number of forms, with different resolutions: 

• If large, 1/0-intensive background jobs are interfering with interactive response 
time, you may want to activate 1/0 pacing. 

• If it appears that a small number of files are being read over and over again, you 
should consider whether additional real memory would allow those files to be 
buffered more effectively. 

• If iostat indicates that your workload 1/0 activity is not evenly distributed among 
the system disk drives, and the utilization of one or more disk drives is often 
70-80% or more, consider reorganizing file systems. 

• If the workload's access pattern is predominantly random, you may want to 
consider adding disks and distributing the randomly accessed files across more 
drives. 

• If the workload's access pattern is predominantly sequential and involves 
multiple disk drives, you may want to consider adding one or more disk adapters. 
It may also be appropriate to consider building a striped logical volume to 
accommodate large, performance-critical sequential files. 

Expanding the Configuration 

Unfortunately, every performance-tuning effort ultimately does reach a point of 
diminishing returns. The question then becomes, "What hardware do I need, how much of 
it, and how do I make the best use of it?" That question is especially tricky with 
disk-limited workloads because of the large number of variables. Changes that might 
improve the performance of a disk-limited workload include: 

• Adding disk drives and spreading the existing data across them. This divides the 
1/0 load among more accessors 

• Acquiring faster disk drives to supplement or replace existing ones for 
high-usage data 

• Adding one or more disk SCSI adapters to attach the current and/or new disk 
drives 

• Adding RAM to the system and increasing the VMM's minperm and maxperm 
parameters to improve the in-memory caching of high-usage data 

Precisely because this question is complex and highly dependent on the workload 
and configuration, and because the absolute and relative speeds of disks, adapters, and 
processors are changing so rapidly, we can't give a prescription, only some "rules of 
thumb." 

• If you are seeking maximum sequential-access performance: 

- Attach no more than three l .OGB (new) drives to a given SCSI-2 disk adapter. 

The maximum sustained sequential performance per SCSI-2 disk adapter, under 
ideal conditions, is approximately 6.8MB/sec. 

1 40 Monitoring and Tuning Disk VO 



• If you are seeking maximum random-access performance: 

- Attach no more than six l .OGB (new) drives to a given SCSI-2 disk adapter. 

The maximum sustained random performance (on 4KB pages) per SCSI-2 disk 
adapter, under ideal conditions, is approximately 435 pages/sec. 

For more guidance more closely focused on your configuration and workload, you 
could use a measurement-driven simulator, such as BEST/I . 

Background Information 

The following other sections contain information that may help you understand 1/0 
performance: 

• "Performance Overview of the Virtual Memory Manager (VMM)" on page 17  
• "Memory-Limited Programs" on page 64 
• "Placement and Sizes of Paging Spaces" on page 69 

Tuning Sequential Read Ahead 

Data 

The VMM's sequential read-ahead feature, described in "Sequential-Access Read Ahead" 
on page 27, can improve the performance of programs that access large files sequentially. 

Occasions when tuning the sequential read-ahead feature (or turning it off) will 
improve performance are rare. Nevertheless, the performance analyst should understand 
how this feature interacts with the application and with other disk-1/0 tuning parameters. 
The figure "Sequential Read Ahead Example" illustrates a typical situation. 

Refs: A B C D E F 

t t t  t t t 
• . . . , i'" 

Page # 0 1 2 3 4 7 8 1 5  1 6  23 

Figure 1 3: Sequential Read Ahead Example 
In this example, minpgahead is 2 and maxpgahead is 8-the defaults. The 

program is processing the file sequentially. Only the data references that have significance 
to the read-ahead mechanism are shown, designated by A through F. The sequence of 
steps is: 

A 

B 

The first access to the file causes the first page (page 0) of the file to be 
read. At this point the VMM makes no assumptions about random or 
sequential access. 

When the program accesses the first byte of the next page (page 1) ,  with 
no intervening accesses to other pages of the file, the VMM concludes 
that the program is accessing sequentially. It schedules minpgahead (2) 
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c 

D 

E 

F 

additional pages (pages 2 and 3) to be read. Thus access B causes a total 
of 3 pages to be read. 

When the program accesses the first byte of the first page that has been 
read ahead (page 2), the VMM doubles the page-ahead value to 4 and 
schedules pages 4 through 7 to be read. 

When the program accesses the first byte of the first page that has been 
read ahead (page 4), the VMM doubles the page-ahead value to 8 and 
schedules pages 8 through 15  to be read. 

When the program accesses the first byte of the first page that has been 
read ahead (page 8), the VMM determines that the page-ahead value is 
equal to maxpgahead and schedules pages 16 through 23 to be read. 

The VMM continues reading maxpgahead pages when the program 
accesses the first byte of the previous group of read-ahead pages until 
the file ends. 

(If the program were to deviate from the sequential-access pattern and 
access a page of the file out of order, sequential read ahead would be 
terminated. It would be resumed with minpgahead pages if the VMM 
detected a resumption of sequential access by the program.) 

The minpgahead and maxpgahead values can be changed with the vmtune 
command. If you are contemplating changing these values, keep in mind: 

• The values should be from the set: 0, 1 ,  2, 4, 8, 16 .  The use of other values may 
have adverse performance or functional effects . 
- Values should be powers of 2 because of the doubling algorithm of the VMM. 
- Values of maxpgahead greater than 1 6  (reads ahead of more then 64KB) 

exceed the capabilities of some disk device drivers. 
- Higher values of maxpgahead can be used in systems where the sequential 

performance of striped logical volumes is of paramount importance. 
• A minpgahead value of 0 effectively defeats the mechanism. This may have 

serious adverse consequences for performance. 
• The default maxpgahead value of 8 yields the maximum possible sequential 1/0 

performance for currently supported disk drives. 
• The ramp-up of the read-ahead value from minpgahead to maxpgahead is 

quick enough that for most file sizes there would be no advantage to increasing 
minpgahead. 

Use Of Disk-1/0 Pacing 

Disk-1/0 pacing i s  intended to prevent programs that generate very large amounts of 
output from saturating the system's 1/0 facilities and causing the response times of 
less-demanding programs to deteriorate. Disk-1/0 pacing enforces per-segment (which 
effectively means per-file) high- and low-water marks on the sum of all pending I/Os. 
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When a process tries to write to a file that already has "high-water mark" pending writes, 
the process is put to sleep until enough I/Os have completed to make the number of 
pending writes less than or equal to "low-water mark." The logic of 1/0-request handling 
does not change. The output from high-volume processes is just slowed down somewhat. 
The high- and low-water marks are set with smit by selecting System Environments -> 
Change I Show Characteristics of Operating System and then entering the number of 
pages for the high- and low-water marks. The default value for the high- and low-water 
marks is 0, which disables pacing. New 1/0 pacing parameters normally take effect 
immediately and last until they are explicitly changed. 

Example 

The effect of pacing on performance can be demonstrated with an experiment that consists 
of starting a vi session on a new file while another process is cping a 64MB file. The file is 
copied from diskl to diskO and the vi executable is located on diskO . For the vi 
session to start, it must page itself in as well as perform a few other I/Os, which it does 
randomly one page at a time. This takes about 50 physical I/Os, which can be completed 
in .7 1 seconds when there is no contention for the disk. With the high-water mark set to 
the default of 0, the logical writes from cp run ahead of the physical writes, and a large 
queue builds up. Each 1/0 started by vi must wait its tum in the queue before the next 1/0 
can be issued, and thus vi is not able to complete its needed 1/0 until after cp finishes. The 
figure "1/0 Pacing Test Results" shows the the elapsed times for cp execution and vi 
initialization with different pacing parameters. This experiment was run on a Model 530 
with two 857MB disks and 32MB of RAM . 

High-Water Low-Water 
Mark Mark cp {sec) vi {sec) 

0 0 50.0 vi not done 
0 0 50.2 vi fin ished after cp 

had finished 
9 6 76.8 2.7 
1 7  1 2  57.9 3.6 
1 7  8 63.9 3.4 
33 24 52.0 9.0 
33 1 6  55. 1  4.9 

Figure 1 4: 1/0-Pacing-Test Results 

It is important to notice that the cp duration is always longer when pacing is set. 
Pacing sacrifices some throughput on 1/0-intensive programs to improve the response 
time of other programs. The challenge for a system administrator is to choose settings that 
result in a throughput/response-time trade-off that is consistent with the organization's 
priorities. 

The high- and low-water marks were chosen by trial and error, based on our 
knowledge of the 1/0 path. Choosing them is not straightforward because of the 
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combination of write-behind and asynchronous writes. High-water marks of 4x + I work 
particularly well, because of the following interaction: 

• The write-behind feature sends the previous four pages to disk when a logical 
write occurs to the first byte of the fifth page. 

• If the pacing high-water mark were a multiple of 4 (say, 8), a process would hit 
the high-water mark when it requested a write that extended into the 9th page. It 
would then be put to sleep-before the write-behind algorithm had a chance to 
detect that the fourth dirty page is complete and the four pages were ready to be 
written. 

• The process would then sleep with four full pages of output until its outstanding 
writes fell below the pacing low-water mark. 

• If, on the other hand, the high-water mark had been set to 9, write-behind would 
get to schedule the four pages for output before the process was suspended. 

One limitation of pacing is that it does not offer as much control when a process 
writes buffers larger than 4KB. If, when a write is sent to the VMM, the high-water mark 
has not been met, the VMM performs Start I/Os on all pages in the buffer, even if that 
results in exceeding the high-water mark. Pacing works well on cp because cp writes 4KB 
at a time; but if cp wrote larger buffers, the times in the figure "1/0 Pacing Test Results" 
for starting vi would increase. 

Disk-1/0 pacing is a tuning parameter that can improve interactive response time in 
some situations where foreground or background programs that write large volumes of 
data are interfering with foreground requests . If not used properly, however, it can reduce 
throughput excessively. The settings in the figure 1/0 Pacing Test Results are a good place 
to start, but some experimenting will be needed to find the best settings for your workload. 

Programs whose presence in a workload may make imposition of disk-1/0 pacing 
necessary include: 

• Programs that generate large amounts of output algorithmically, and thus are not 
constrained by the time required to read input. Some such programs may need 
pacing on comparatively fast processors and not need it on comparatively slow 
processors . 

• Programs that write large, possibly somewhat modified, files that have been read 
in their entirety shortly before writing begins-by a previous command, for 
example. 

• Filters, such as the tar command, that read a file and write it out again with little 
processing. The need for pacing can be exacerbated if the input is being read 
from a faster disk drive than the output is being written to. 

Logical Vol u me Striping 

Striping i s  a technique for spreading the data i n  a logical volume across several disk drives 
in such a way that the 1/0 capacity of the disk drives can be used in parallel to access data 
on the logical volume. (The ability to create striped logical volumes is not available on 

1 44 Monitoring and Tuning Disk VO 



AIX Version 3.2.5.) The primary objective of striping is very high-performance reading 
and writing of large sequential files. The figure "Striped Logical Volume" /dev/lvsO gives 
a simple example. 

Stripe Unit 1 

Stripe Unit 4 

Stripe Unit n 

Stripe Unit n+3 

First 
Physical 
Volume 

Disk Adapter 

Stripe Unit 2 

Stripe Unit 5 

Stripe Unit n+1 

Stripe Unit n+4 

Second 
Physical 
Volume 

Figure 1 5 :  Striped Logical Volume /dev/lvso 
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In an ordinary logical volume, the data addresses correspond to the sequence of 
blocks in the underlying physical partitions. In a striped logical volume, the data addresses 
follow the sequence of stripe units. A complete stripe consists of one stripe unit on each of 
the physical devices that contains part of the striped logical volume. The L VM determines 
which physical blocks on which physical drives correspond to a block being read or 
written. If more than one drive is involved, the necessary 1/0 operations are scheduled for 
all drives simultaneously. 

As an example, suppose that the hypothetical lvsO has a stripe-unit size of 64KB, 
consists of six 2MB partitions, and contains a journaled file system (JFS).  If an 
application is reading a large sequential file and read-ahead has reached a steady state, 
each read will result in two or three I/Os being scheduled to each of the disk drives to read 
a total of eight pages (assuming that the file is on consecutive blocks in the logical 
volume) . The read operations are performed in the order determined by the disk device 
driver. The requested data is assembled from the various pieces of input and returned to 
the application. 

Although each disk device will have a different initial latency, depending on where 
its accessor was at the beginning of the operation, once the process reaches a steady state, 
all three disks should be reading at close to their maximum speed. 
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Designing a Striped Logical Volume 

When a striped logical volume is defined, you specify: 

drives Obviously, at least two physical drives are required. The drives used 
should have little other activity when the performance-critical 
sequential 1/0 is taking place. 

Some combinations of disk adapter and disk drive will require dividing 
the workload of a striped logical volume between two or more adapters. 

stripe unit size Although this can be any power of 2 from 4KB through 128KB, you 
should take sequential read ahead into account, since that will be the 
mechanism that issues most of the reads. The objective is to have each 
read-ahead operation result in at least one 1/0, ideally an equal number, 
to each disk drive. 

size The number of physical partitions allocated to the logical volume must 
be an integral multiple of the number of disk drives used. 

attributes Cannot be mirrored; that is, copies = 1 .  

Tuning for Striped Logical Volume 1/0 

In benchmarking situations, the following techniques have yielded the highest levels of 
sequential 1/0 throughput: 

• Stripe unit size of 64KB. 

• max_coalesce of 64KB (the default) . Equal to the stripe unit size. 

• minpgahead of 2 

• maxpgahead of ( 1 6  times the number of disk drives). This causes page ahead to 
be done in units of the stripe unit size (64KB) times the number of disk drives, 
resulting in the reading of one stripe unit from each disk drive for each read 
ahead operation. 

• 1/0 requests for (64KB times the number of disk drives). This is equal to the 
maxpgahead value. 

• Modify maxfree to accommodate the change in maxpgahead. See "Choosing 
minfree and maxfree Settings", on page 126. 

• 64-byte aligned 1/0 buffers. If the logical volume will occupy physical drives 
that are connected to two or more disk adapters, the I/O buffers used should be 
allocated on 64-byte boundaries. This avoids having the LYM serialize the I/Os 
to the different disks. The following code would yield a 64-byte-aligned buffer 
pointer: 

char *bu f f er ;  
bu f fer = mal loc { MAXBLKS I Z E+ 6 4 ) ; 
buf fer = ( ( int ) buf f er + 6 4 ) & -Ox3 f ;  
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File-System Fragment Size 

The fragments feature (in AIX Version 4. 1 only) allows the space in a file system to be 
allocated in less than 4KB chunks. When a file system is created, the system administrator 
can specify the size of the fragments in the file system. The allowable sizes are 5 1 2, 1024, 
2048, and 4096 bytes (the default). Files smaller than a fragment are stored in a single 
fragment, conserving disk space, which is the primary objective. 

Files smaller than 4096 bytes are stored in the minimum necessary number of 
contiguous fragments. Files whose size is between 4096 bytes and 32KB (inclusive) are 
stored in one or more (4KB) full blocks and in as many fragments as are required to hold 
the remainder. Files that contain more than 32KB of data are stored entirely in full blocks . 

Whatever the fragment size, a full block is still considered to be 4096 bytes. In a file 
system with a fragment size less than 4096, however, a need for a full block can be 
satisfied by any contiguous sequence of fragments totalling 4096 bytes .  It doesn't have to 
begin on a multiple-of-4096-byte boundary. 

The file system tries to allocate space for files in contiguous fragments whenever 
possible. In pursuit of that objective, it spreads the files themselves across the logical 
volume to minimize inter-file allocation interference and fragmentation. 

The primary performance hazard for file systems with small fragment sizes is space 
fragmentation. The existence of small files scattered across the logical volume can make it 
impossible to allocate contiguous or closely spaced blocks for a large file .  The 
performance of accessing the large file suffers .  Carried to an extreme, space fragmentation 
can make it impossible to allocate space for a file, even though there are many individual 
free fragments. 

Part of a decision to create a small-fragment file system should be a policy for 
defragmenting the space in that file system with the defragfs command. This policy also 
has to take into account the performance cost of running defragfs. 

Compression 

When a file is  written into a file system for which compression is  specified, the 
compression algorithm compresses the data 4096 bytes (a page) at a time, and the 
compressed data is then written in the minimum necessary number of contiguous 
fragments. Obviously, if the fragment size of the file system is 4KB, there is no disk-space 
payback for the effort of compressing the data. (Compression and fragments smaller than 
4KB are new in AIX Version 4. 1 .) 

Although compression should result in conserving space overall, there are at least 
two reasons for leaving some space in the file system unused: 

• Since the degree to which each 4096-byte block of data will compress is not 
known in advance, the file system initially reserves a full block of space. The 
unneeded fragments are released after compression, but the conservative initial 
allocation policy may lead to premature "out of space" indications. 

• Some free space is necessary to allow the defragfs command to operate. 
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Asynchronous Disk 1/0 

Applications can use the aio_read and aio_write subroutines to perform asynchronous 
disk 1/0. Control returns to the application from the subroutine as soon as the request has 
been queued. The application can then continue processing while the disk operation is 
being performed. 

Although the application can continue processing, a kernel process (kproc) called a 
server is in charge of each request from the time it is taken off the queue until it 
completes. The number of servers limits the number of asynchronous disk 1/0 operations 
that can be in progress in the system simultaneously. The number of servers can be set 
with smit (smit->Devices->Asynchronous 1/0->Change/Show Characteristics of 
Asynchronous 1/0->{MINIMUMIMAXIMUM } number of servers or smit aio) or with 
chdev. The minimum number of servers is the number to be started at system boot. The 
maximum limits the number that can be started in response to large numbers of 
simultaneous requests. 

The default values are minservers=l and maxservers=lO. In systems that seldom 
run applications that use asynchronous 1/0, this is usually adequate. For environments 
with many disk drives and key applications that use asynchronous 1/0, the default is far 
too low. The result of a deficiency of servers is that disk 1/0 seems much slower than it 
should be. Not only do requests spend inordinate lengths of time in the queue, the low 
ratio of servers to disk drives means that the seek-optimization algorithms have too few 
requests to work with for each drive. 

For environments in which the performance of asynchronous disk 1/0 is critical and 
the volume of requests is high, we recommend that: 

• maxservers should be set to at least l O * (number of disks accessed 
asynchronous! y) 

• minservers should be set to maxservers/2. 

This could be achieved for a system with 3 asynchronously accessed disks with: 

# chdev -1 aioO -a minservers= ' l 5 '  -a maxservers= ' 3 0 '  

Using Raw Disk 1/0 

There are three ways in which a program might access disk in raw mode: 

1. Block raw-disk-device special files have names of the form /dev/hdiskn, and are 
used by some subsystems. These devices should not be used by application 
programs. 

2. Character raw-disk-device special files have names of the form /dev/rhdiskn. 

Use of these devices by application programs is not recommended. If you decide 
to use this technique, make sure that no AIX logical volumes occupy any part of 
the physical disk drive being accessed. The performance effect of interaction 

1 48 Monitoring and Tuning Disk 1/0 



between raw access and file-system access  to the same physical drive is  
unpredictable. 

3. A logical volume on which no file system has been created can be accessed in 
raw mode. All writes, reads, lseeks, etc. must be in multiples of 5 12 bytes. The 
least important consequence of violating this rule is serious performance 
degradation. 

Using sync/fsync 

Forced synchronization of the contents of real memory and disk takes place in several 

ways:  

• An application program makes an fsync() call for a specified file. This causes all 
of the pages that contain modified data for that file to be written to disk. The 
writing is complete when the fsync() call returns to the program. 

• An application program makes a sync() call . This causes all of the file pages in 
memory that contain modified data to be scheduled for writing to disk. The 
writing is not necessarily complete when the sync() call returns to the program. 

• A user can enter the sync command, which in tum issues a sync() call. Again, 
some of the writes may not be complete when the user is prompted for input (or 
the next command in a shell script is processed) . 

• The sync daemon, /usr/sbin/syncd , i s sues a sync() call  at regular 
intervals-usually every 60 seconds. This ensures that the system does not 
accumulate large amounts of data that exists only in volatile RAM. 

A sync operation has several effects, aside from its small CPU consumption: 

• It causes writes to be clumped, rather than spread out. 
• It causes at least 28KB of system data to be written, even if there has been no 1/0 

activity since the previous sync. 
• It accelerates the writing of data to disk, defeating the write-behind algorithm. 

This effect is significant mainly in programs that issue an fsync() after every 
write. 

Mod ifying the SCSI Device Driver max_coalesce 
Parameter 

When there are multiple disk-1/0 requests in the SCSI device driver's queue, it attempts to 
coalesce those requests into a smaller number of large requests . The largest request (in 
terms of data transmitted) that the SCSI device driver will build is limited by the 
max_coalesce parameter. Normally, max_coalesce has a value of 64KB. 

To make maximum use of striped logical volumes and disk arrays,  it may be 
desirable to increase the size of max_ coalesce. To do so, it is necessary to have a stanza in 
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the PdAt ODM database that specifies the new max_coalesce value. If you have already 
added such a stanza, you can obtain the current version with: 

# odmget -q \ 

0uniquetype=disk/ scs i / osdisk AND attribute=max_coal e s c e "  \ 
PdAt > foo 

If there is no such stanza already, use an editor to create the file foo with the 
following content: 

PdAt : 
uniquetype = " disk/ s c s i / osdisk"  
attribute = "max_coal e s c e "  
def l t  = " 0x2 0 0 0 0 "  
values = " 0x2 0 0 0 0 °  
width = n n  
type = " R 0  
generi c  = n n  
rep = " n "  
nls_index = 0 

Note that max_coalesce, in bytes, is expressed as a hexadecimal number. The 
de f l t  and values field values of Ox20000 will set max_coalesce to 1 28KB .  Then 
replace the old stanza in PdAt, if any, with foo,  using: 

# odmdelete -o PdAt \ 
-q " uniquetype= / disk/ scs i / osdisk AND attribute=max_coalesce " 
# odmadd < f oo 

To put the change into effect, you must rebuild the kernel and reboot, with: 

# bosboot -a -d hdi skO 
# shutdown -rF 

Setting SCSI-Adapter and Disk-Device Queue Limits 

AIX has the ability to enforce limits on the number of l/O requests that can be outstanding 
from the SCSI adapter to a given SCSI bus or disk drive. These limits are intended to 
exploit the hardware's  ability to handle multiple requests while ensuring that the 
seek-optimization algorithms in the device drivers are able to operate effectively. 

For non-IBM devices ,  it is sometimes appropriate to modify AIX default  
queue-limit values that have been chosen to handle the worst possible case. The following 
sections describe situations in which the defaults should be changed and the recommended 
new values. 

Non-IBM Disk Drive 

For IBM disk drives, the default number of requests that can be outstanding at any given 
time is 3. This value is based on corriplex performance considerations, and no direct 
interface is provided for changing it. The default hardware queue depth for non-IBM disk 
drives is 1 .  If a specific non-IBM disk drive does have the ability to buffer multiple 
requests, the system's description of that device should be changed accordingly. 
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As an example, the default characteristics of a non-IBM disk drive are displayed 
with the lsattr command: 

$ lsattr -D -c disk -s s c s i  -t osdisk 

pvid none Physical volume identi f ier 

clr_q no Device CLEARS its Queue on error 
q_err yes Use QERR bit 
q_type none Queuing TYPE 
queue_depth 1 Queue DEPTH 
reas s i gn_ to 1 2 0  

rw_timeout 3 0  

s tart_timeout 6 0  

REASS IGN t ime out value 
READ/WRITE time out value 
START uni t time out value 

Fal se 

The ability to change these parameters is  provided through smit (the fast path is 
chgdsk) and via the chdev command. For example, if your system contained a non-IBM 
SCSI disk drive hdisk5, the command: 

# chdev -1 hdi skS -a q_type=s imple -a queue_depth=3 

would enable queuing for that device and set its queue depth to 3 .  

Non-IBM Disk Array 

A disk array appears to AIX as a single, rather large, disk drive. A qon-IBM disk array, 
like a non-IBM disk drive, is of class disk, subclass scsi, type osdisk (which stands for 
"Other SCSI Disk Drive") .  Since a disk array actually contains a number of physical disk 
drives, each of which can handle multiple requests, the queue depth for the disk array 
device has to be set to a value high enough to allow efficient use of all of the physical 
devices .  For example, if hdisk7 were an eight-disk non-IBM disk array, an appropriate 
change would be: 

# chdev -1 hdi sk7 -a q_type=s imple -a queue_depth=2 4  

If the disk array is  attached via a SCSI-2 Fast/Wide SCSI adapter bus, i t  may also be 
necessary to change the outstanding-request limit for that bus. 

Disk Adapter Outstanding-Request Limits 

The SCSI-2 Fast/Wide Adapter supports two SCSI buses ; one for internal devices and one 
for external devices. A limit on the total number of outstanding requests is defined for 
each bus. The default value of that limit is 40 and the maximum is 1 28 .  If an IBM disk 
array is attached to a SCSI-2 Fast/Wide Adapter bus, the outstanding-request limit for the 
bus is increased to accommodate the queue depth of the disk array. For a non-IBM disk 
array, thi s  change must be performed manually. For example ,  to set  the 
outstanding-request limit of adapter scsi3 to 70, you would use: 

# chdev -1 s c s i 3  -a num_cmd_e lems=7 0 

In the SCSI-2 High Performance Controller, the maximum number of queued 
requests is 30. That limit cannot be changed. For that reason, you should ensure that the 
sum of the queue depths of the devices attached to a SCSI-2 High Performance Controller 
does not exceed 30. 
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The original RISC System/6000 SCSI adapter does not support queueing. It is 
inappropriate to attach a disk array device to such an adapter. 

Controll ing the N u mber of System pbufs 

The Logical Volume Manager (LYM) uses a construct called a "pbuf' to control a pending 
disk 1/0. In AIX Version 3, one pbuf is required for each page being read or written. In 
systems that do large amounts of sequential 1/0, this can result in depletion of the pool of 
pbufs. The vmtune command can be used to increase the number of pbufs to compensate 
for this effect. 

In AIX Version 4, a single pbuf is used for each sequential 1/0 request, regardless of 
the number of pages involved. This greatly decreases the probability of running out of 
pbufs. 
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Communications 110 

UDPffCP/I P Performance Overview 

To understand the performance characteristics of UDP and TCP/IP, you must first 
understand some of the underlying architecture. Figure 1 6, "UDPffCP/IP Data Flow," 
illustrates the structure that will be discussed in this chapter. 

Figure 16  shows the path of data from an application in one system to another 
application in a remote system. The processing at each of the layers will be discussed in 
detail later, but briefly (ignoring error handling and buffer limits): 

• The appl ication ' s  write request causes the data to be copied from the 
application's working segment to the socket send buffer. 

• The socket layer or subsystem gives the data to UDP or TCP. 
• If the size of the data is larger than the maximum transfer unit (MTU) of the 

LAN, 
- TCP breaks the output into segments that comply with the MTU limit. 
- UDP leaves the breaking up of the output to the IP layer. 

• If necessary, IP fragments the output into pieces that comply with the MTU. 
• The Interface layer ensures that no outgoing packet exceeds the MTU limit. 
• The packets are put on the device output queue and transmitted by the LAN 

adapter to the receiving system. 
• Arriving packets are placed on the device driver's receive queue, and pass 

through the Interface layer to IP. 
• If IP in the receiving system determines that IP in the sending system had 

fragmented a block of data, it coalesces the fragments into their original form and 
passes the data to TCP or UDP. 
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Figure 1 6: UDP/TCP/IP Data Flow 

- TCP reassembles the original segments and places the input in the socket 
receive buffer. 

- UDP simply passes the input on to the socket receive buffer. 
• When the application makes a read request, the appropriate data is copied from 

the socket receive buffer in kernel memory into the buffer in the application's 
working segment. 
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Communication Subsystem Memory (mbuf) Management 

To avoid fragmentation of kernel memory and the overhead of numerous calls to 
xmalloc(), common buffer pools are shared by the various layers of the communication 
subsystem. The mbuf management facility controls two pools of buffers : a pool of small 
buffers (256 bytes each), which are simply called mbufs, and a pool of large buffers (4096 
bytes each), which are usually called mbuf clusters or just clusters. These pools are 
usually referred to collectively as "mbufs." The pools consist of pinned pieces of kernel 
virtual memory; this means that they always reside in physical memory and are never 
paged out. The result is that the real memory available for paging in application programs 
and data has been decreased by the amount that the mbuf pools have been increased. 

In addition to avoiding duplication, sharing the mbuf and cluster pools allows the 
various layers to pass pointers to one another, reducing mbuf management calls and 
copying of data. 

Socket Layer 

Sockets provide the application program interface (API) to the communication subsystem. 
There are several types of sockets that provide various levels of service by using different 
communication protocols .  Sockets of type SOCK_DGRAM use the UDP protocol. 
Sockets of type SOCK_STREAM use the TCP protocol. 

The semantics of opening, reading, and writing to sockets are similar to those for 
manipulating files . 

The sizes of the buffers in system virtual memory (that is, the total number of bytes 
from the mbuf pools) that are used by the input and output sides of each socket are limited 
by system-wide default values (which can be overridden for a given socket by a call to the 
setsockopt() subroutine) : 

udp_sendspace and udp_recvspace 
The buffer sizes for datagram sockets. The defaults are 921 6  and 4 1600, 
respectively. 

tcp_sendspace and tcp_recvspace 
The buffer sizes for stream sockets. The defaults for both values are 
1 6384. 

These values can be displayed with 

$ no -a 

and set (by root) with, for example: 

# no -o udp_sendspace=NewValue 

The NewValue parameter must be less than or equal to the sb_max parameter, 
which controls the maximum amount of space that can be used by a socket's send or 
receive buffer. sb_max is displayed with no -a and set (before attempting to exceed its 
current value) with the no command: 

# no -o sb_max=NewLimi t 

Note: Socket send or receive buffer sizes are limited to no more than sb_max bytes, 
because sb_max is a ceiling on buffer space consumption. The two quantities are 
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not measured in the same way, however. The socket buffer size limits the amount of 
data that can be held in the socket buffers. sb_max limits the number of bytes of 
mbufs that can be in the socket buffer at any given time. In an Ethernet environment, 
for example, each 4096-byte mbuf cluster might hold just 1 500 bytes of data. In that 
case, sb_max would have to be 2.73 times larger than the specified socket buffer 
size to allow the buffer to reach its specified capacity. Our rule of thumb is that 
sb_max should be set to at least twice the size of the largest socket buffer. 

Send Flow 

As an application writes to a socket, the data is copied from user space into the socket 
send buffer in kernel space. Depending on the amount of data being copied into the socket 
send buffer, the socket puts the data into either mbufs or clusters. Once the data is copied 
into the socket send buffer, the socket layer calls the transport layer (either TCP or UDP), 
passing it a pointer to the linked list of mbufs (an mbuf chain). 

Receive Flow 

On the receive side, an application opens a socket and attempts to read data from it. If 
there is no data in the socket receive buffer, the socket layer causes the application thread 
to go to the sleep state (blocking) until data arrives. When data arrives, it is put on the 
receive socket buffer queue and the application thread is made dispatchable. The data is 
then copied into the application's buffer in user space, the mbuf chain is freed, and control 
is returned to the application. 

Relative Level of Function in UDP and TCP 

The following two sections contain descriptions of the function of UDP and TCP. To 
facilitate comparison of UDP and TCP, both descriptions are divided into subsections on: 
connection, error detection, error recovery, flow control, data size, and MTU handling. 

UDP Layer 

UDP provides a low-cost protocol for applications that have the facilities to deal with 
communication failures. UDP is most suitable for "request-response" applications. Since 
such an application has to handle a failure to respond anyway, it is little additional effort to 
handle communication error as one of the causes of failure to respond. For this reason, and 
because of its low overhead, subsystems such as NFS, ONC RPC, DCE RPC, and DFS 
use UDP. 

Connection None. UDP is essentially a stateless protocol. Each request received 
from the caller is handled independent of those that precede or follow it. 
(If the connect() subroutine is called for a datagram socket, the 
information about the destination is considered a hint to cache the 
resolved address for future use. It does not actually bind the socket to 
that address or affect UDP on the receiving system.) 

Error detection Checksum creation and verification. The sending UDP builds the 
checksum and the receiving UDP checks it. If the check fails, the packet 
is dropped. 
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Error recovery None. UDP does not acknowledge receipt of packets, nor does it detect 
their lo s s  in transmiss ion or through buffer-pool overflow. 
Consequently, UDP never retransmits a packet. Recovery must be 
performed by the application. 

Flow control None. When UDP is asked to send, it sends the packet to IP. When a 
packet arrives from IP, it is placed in the socket-receive buffer. If either 
the device driver/adapter buffer queue or the socket-receive buffer is 
full when the packet arrives there, the packet is dropped without an 
error indication. The application or subsystem that sent the packet must 
detect the failure by timeout and retry the transmission. 

Data size Must fit in one buffer. This means that the buffer pools on both sides of 
UDP must have buffer sizes that are adequate for the applications' 
requirements .  The maximum size of a UDP packet is 64KB. Of course, 
an application that builds large blocks can break them into multiple 
datagrams itself-DCE is an example-but it is simpler to use TCP. 

MTV handling None. Dealing with data larger than the maximum transfer unit (MTU) 
size for the interface is left to IP. If IP has to fragment the data to make it 
fit the MTU, loss of one of the fragments becomes an error that the 
application or subsystem must deal with. 

Send Flow 

If udp_sendspace is large enough to hold the datagram, the application's data is copied 
into mbufs in kernel memory. If the datagram is larger than udp_sendspace, an error is 
returned to the application. 

If the datagram is larger than or equal to 936 bytes, it is copied into one or more 
4KB clusters. The remainder (and any complete datagram) of less than 936 bytes is copied 
into 1-4 mbufs. For example, a write of 8704 bytes is copied into two clusters and the 
remainder into three mbufs. UDP adds the UDP header (in the same mbuf, if possible), 
checksums the data, and calls the IP ip_output routine. 

Receive Flow 

UDP verifies the checksum and queues the data onto the proper socket. If the 
udp_recvspace l imit is exceeded, the packet is  discarded. (A count of these discards is 
reported by netstat -s under "udp : "  as "socket buf fer over f l ows .") If the 
application is waiting on a receive or read on the socket, it is put on the run queue. This 
causes the receive to copy the datagram into the user's address space and release the 
mbufs, and the receive is complete. Normally, the receiver will respond to the sender to 
acknowledge the receipt and also return a response message. 

TCP Layer 

TCP provides a reliable-transmission protocol . TCP is most suitable for applications that, 
at least for periods of time, are mostly output or mostly input. With TCP ensuring that 
packets reach their destination, the application is freed from error detection and recovery 
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responsibilities. Applications that use TCP transport include ftp, rep, and telnet. DCE can 
use TCP if it is configured to use a connection-oriented protocol. 

Connection Explicit. The instance of TCP that receives the connection request from 
an application (we will call it the initiator) establishes a session with its 
counterpart on the other system, which we will call the listener. All 
exchanges of data and control packets are within the context of that 
session. 

Error detection Checksum creation and verification. The sending TCP builds the 
checksum and the receiving TCP checks it. If checksum verification 
fails, the receiver does not acknowledge receipt of the packet. 

Error recovery Full. TCP detects checksum failures and loss of a packet or fragment 
through timeout. In error situations TCP retransmits the data until it is 
received correctly (or notifies the application of an unrecoverable 
error) . 

Flow control Enforced. TCP uses a discipline called a sliding window to ensure 
delivery to the receiving application. The sliding window concept is 
illustrated in the figure called "TCP Sliding Window." (The records 
shown in the figure are for clarity only. TCP processes data as a stream 
of bytes and does not keep track of record boundaries, which are 
application-defined.) 
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._ Data 

Sender TCP 

Receiver TCP 

rec4 

Receiving Appl . 
(processing) 

Transmit Window 

Unacknowledged 
........ � Data 

c5 rec6 rec7 

c5 rec6 re 

Receive Window 

Figure 1 7: TCP Sliding Window 

Sending Appl .  
(sleeping) 

Data Stream 

Available space for 
the data that is in tran
sit 

In the figure , the sending application is sleeping because it has 
attempted to write data that would cause TCP to exceed the send socket 
buffer space (i.e. , tcp_sendspace). The sending TCP still has the last 
part of rec5 , all of rec6 and rec7, and the beginning of rec8. The 
receiving TCP has not yet received the last part of rec7 or any of rec8.  
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I nitiator 

Listener 

The receiving application got rec4 and the beginning of rec5 when it 
last read the socket, and it is now processing that data. When the 
receiving application next reads the socket, it will receive (assuming a 
large enough read), the rest of rec5 , rec6, and as much of rec7 and rec8 
as has arrived by that time. 

Once the next read occurs,  the receiving TCP wil l  be able to 
acknowledge that data, the sending TCP will be able to discard the data, 
the pending write will complete, and the sending application will wake 
up. (To avoid excessive LAN traffic when the application is reading in 
tiny amounts, TCP delays acknowledgement until the receiving 
application has read a total amount of data that is at least half the 
receive window size or twice the maximum segment size.) 

In the course of establishing a session, the initiator and the listener 
converse to determine their respective capacities for buffering input and 
output data. The smaller of the two sizes defines the size of the window. 
As data is written to the socket, it is moved into the sender's buffer. 
When the receiver indicates that it has space available, the sender 
transmits enough data to fill that space (assuming that it has that much 
data) . When the receiving application reads from the socket, the 
receiving TCP returns as much data as it has in its buffer. It then informs 
the sender that the data has been successfully delivered. Only then does 
the sender discard the data from its own buffer, effectively moving the 
window to the right by the amount of data delivered. If the window is 
full because the receiving application has fallen behind, the sending 
thread will be blocked (or receive a specific errno) when it tries to write 
to the socket. 

The figure "TCP Window Sizes" shows the relationship between the 
socket buffer sizes and the window size. 

tcp_sendspace Unuse� tcp_recvspace 

Maximum • 

�[ ______ y:.�ow tcp_recvspace 
Figure 1 8: TCP Window Sizes 

tcp_sendspace 

tcp_recvspace in both of these systems is smaller than tcp_sendspace 
to illustrate a point: since the moving-window technique requires that 
the two systems be able to buffer the same amount of data, the window 
size is set to the lesser value in both directions. The nominally available 
extra space for buffering output shown in the figure is never used. 
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If the rfc1323 parameter is 1 ,  the maximum TCP window size is 4GB 
(instead of 64KB). 

Data size Indefinite. TCP does not process records or blocks, it processes a stream 
of bytes. If a send buffer is larger than the receiver can handle, it is 
segmented into MTV-size packets. Because it handles shortages of 
buffer space under the covers, TCP does not guarantee that the number 
and size of data receives will be the same as the number and size of 
sends. It is the responsibility of the two sides of the application to 
identify record or block boundaries, if any, within the stream of data. 

Note: When using TCP to exchange request/response messages ,  the 
application must use setsockopt to turn on the TCP _NODELAY option. 
This causes TCP to send the message immediately (within the 
constraints of the sl iding window), even though it i s  less than 
MTV-size. Otherwise, TCP would wait for up to 200 milliseconds for 
more data to send before transmitting the message. The consequences 
for performance are obvious. 

MTV handling Handled by segmentation in TCP. When the connection is established, 
the initiator and the listener negotiate a maximum segment size (MSS) 
to be used. The MSS is normally smaller than the MTU (see "Tuning 
TCP Maximum Segment Size (MSS)" on page 165) .  If the output 
packet size exceeds the MSS, TCP does the segmentation, thus making 
fragmentation in IP unnecessary. The receiving TCP normally puts the 
segments on the socket receive queue as they arrive. If the receiving 
TCP detects the loss of a segment, it withholds acknowledgement and 
holds back the succeeding segments until the missing segment has been 
received successfully. 

There is, of course, no such thing as free function. The additional operations 
performed by TCP to ensure a reliable connection result in about 7 to 12% higher 
processor cost than in UDP. 

Send Flow 

When the TCP layer receives a write request from the socket layer, it allocates a 
new mbuf for its header information and copies the data in the socket-send buffer either 
into the TCP-header mbuf, if there is room, or into a newly allocated mbuf chain. If the 
data being copied is in clusters, the data is not actually copied into new clusters. Instead, a 
pointer field in the new mbuf header (this header is part of the mbuf structure and is 
unrelated to the TCP header) is set to point to the clusters containing the data, thereby 
avoiding the overhead of one or more 4KB copies. TCP then checksums the data, updates 
its various state variables, which are used for flow control and other services, and finally 
calls the IP layer with the header mbuf now linked to the new mbuf chain. 

Receive Flow 

When the TCP input routine receives input data from IP, it checksums the TCP 
header and data for corruption detection, determines which connection this data is for, 

1 60 Monitoring and Tuning Communications 1/0 



removes its header information, links the mbuf chain onto the socket-receive buffer 
associated with this connection, and uses a socket service to wake up the application (if it 
is sleeping as described earlier) . 

IP  Layer 

The Internet Protocol provides a basic datagram service to the higher layers. If it is given a 
packet larger than the MTU of the interface, it fragments the packet and sends the 
fragments to the receiving system, which reassembles them into the original packet. If one 
of the fragments is lost in transmission, the incomplete packet is ultimately discarded by 
the receiver. The length of time IP waits for a missing fragment is controlled by the 
ipfragttl parameter, which is set and displayed with no. 

The maximum size of IP's queue of packets received from the network interface is 
controlled by the ipqmaxlen parameter, which is set and displayed with no. If the size of 
the input queue reaches this number, subsequent packets are dropped. 

Send Flow 

When the IP output routine receives a packet from UDP or TCP, it identifies the interface 
to which the mbuf chain should be sent, updates and checksums the IP part of the header, 
and passes the packet to the interface (IF) layer. 

IP determines the proper device driver and adapter to use, based on the network 
number. The driver interface table defines the maximum MTU for this network. If the 
datagram is less than the MTU size, IP adds the IP header in the existing mbuf, checksums 
the IP header and calls the driver to send the frame. If the driver send queue is full, an 
EAGAIN error is returned to IP which simply returns it to UDP which returns it to the 
sending application. The sender should delay and try again. 

If the datagram is larger than the MTU size (which only happens in UDP) IP 
fragments the datagram into MTU-size fragments, appends a IP header (in an mbuf) to 
each, and calls the driver once for each fragment frame. If the driver's send queue is full, 
an EAGAIN error is returned to IP. IP discards all remaining unsent fragments associated 
with this datagram and returns EAGAIN to UDP. UDP returns EAGAIN the the sending 
application. Since IP and UDP do not queue messages, it is up to the application to delay 
and try the send again. 

Receive Flow 

In AIX Version 3 ,  when the IP input routine receives control as the result of an 
IF-scheduled off-level interrupt, it dequeues the mbuf chain, checks the IP header 
checksum to make sure the header was not corrupted, and determines if the packet is for 
this system. If so, and the frame is not a fragment, IP passes the mbuf chain to the TCP or 
UDP input routine. 

In AIX Version 4, the demux layer (called the IF layer in Version 3) calls IP on the 
interrupt thread. There is no longer any scheduling or queuing/dequeuing activity. IP 
checks the IP header checksum to make sure the header was not corrupted and determines 
if the packet is for this system. If so, and the frame is not a fragment, IP passes the mbuf 
chain to the TCP or UDP input routine. 
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If the received frame is a fragment of a larger datagram (which only happens in 
UDP), IP holds onto the frame. When the other fragments arrive, they are merged into a 
logical datagram and given to UDP when the datagram is complete. IP holds the 
fragments of an incomplete datagram until the ipfragttl time (as specified by no) expires. 
The default ipfragttl time is 60 seconds . If any fragments are lost due to problems such as 
network errors, lack of mbufs, or transmit queue overruns, IP never receives them. When 
ipfragttl expires, IP discards the fragments it did receive. This is reported by netstat -s 
under "ip : "  as "f ragments dropped after timeout." 

IF  Layer (Demux Layer in  AIX Version 4) 

Send Flow 

When the IF layer receives a packet from IP, it attaches the link-layer header information 
to the beginning of the packet, checks the format of the mbufs to make sure they conform 
to the device driver's input specifications, and then calls the device driver write routine. 

Receive Flow 

In AIX Version 3, when the IF layer receives a packet from the device driver, it removes 
the link header and enqueues the mbuf chain (done with pointers, not copying) on the IP 
input queue and schedules an off-level interrupt to do the IP input processing. 

In AIX Version 4, when the demux layer receives a packet from the device driver, it 
calls IP on the interrupt thread to perform IP input processing. 

LAN Adapters and Device Drivers 

Many different kinds of LAN adapters are supported in the AIX environment. These 
adapters differ, not only in the communications protocol and transmission medium they 
support, but also in their interface to the the I/O bus and the processor. Similarly, the 
device drivers vary in the technique used to convey the data between memory and the 
adapter. The following high-level description applies to most adapters and device drivers, 
but details vary. 

Send Flow 

At the device-driver layer, the mbuf chain containing the packet is enqueued on the 
transmit queue. The maximum total number of output buffers that can be queued is 
controlled by the system parameter xmt_que_size. In some cases, the data is copied into 
driver-owned DMA buffers. The adapter is then signaled to start DMA operations. 

At this point, control returns back up the path to the TCP or UDP output routine, 
which continues sending as long as it has more to send. When all data has been sent, 
control returns to the application, which then runs asynchronously while the adapter 
transmits data. When the adapter has completed transmission, it interrupts the system, and 
the device interrupt routines are called to adjust the transmit queues and free the mbufs 
that held the transmitted data. 
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Receive Flow 

When frames are received by an adapter, they are transferred from the adapter into a 
driver-managed receive queue. The receive queue may consist of mbufs or the device 
driver may manage a separate pool of buffers for the device; in either case, the data is in 
an mbuf chain when it is passed from the device driver to the IF layer. 

Some drivers receive frames via DMA into a pinned area of memory and then 
allocate mbufs and copy the data into them. Drivers/adapters that receive 
large-MTU frames may have the frames DMA'd directly into cluster mbufs. The driver 
hands off the frame to the proper network protocol (IP in this example) by calling a 
demultiplexing function that identifies the packet type and puts the mbuf containing the 
buffer on the input queue for that network protocol. If no mbufs are available or if the 
higher-level input queue is full, the incoming frames are discarded. 

TCP and U DP Performance Tuning 

The optimal settings of the tunable communications parameters vary with the type of 
LAN as well as with the communications-1/0 characteristics of the predominant system 
and application programs. The following sections describe the global principles of 
communications tuning, followed by specific recommendations for the different types of 
LAN. 

Overal l  Recommendations 

You can choose to tune primarily either for maximum throughput or for minimum 
memory use. Some recommendations apply to one or the other; some apply to both. 

Maximizing Throughput 

Request-Response Protocols 

• For maximum number of transactions per second, use the smallest feasible 
messages. 

• For maximum bytes per second, use messages that are at least 1000 bytes and 
equal to or just less than a multiple of 4096 bytes. 

• If the requests and responses are fixed-size and fit into one datagram, use UDP. 
- If possible, make the write sizes equal to (a multiple of the MTU size minus 

28 bytes to allow for standard IP and UDP headers) .  
- In general, it is more efficient for the application to write large messages and 

have them fragmented and reassembled by IP, than to have the application 
write multiple times. 

- Whenever possible, use the connect subroutine to associate an address with 
the UDP socket. This may not be possible on a server that is communicating 
with a number of clients via a single socket. 
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• If the requests or responses are variable-size, use TCP with the TCP _NO DELAY 
option. Our measurements indicate that the overhead of TCP compared with 
UDP is negligible, especially if optimum write sizes are used. 
- To avoid data copies in the kernel, make write sizes greater than 936 bytes. 
- Make writes equal to or slightly less than, a multiple of MTU size. This will 

avoid the sending of a segment (packet) with just a few bytes in it. 

Streaming 

• TCP provides higher throughput than UDP and ensures reliable delivery. 
• Writes should be in multiples of 4096 bytes. If possible, writes should be the size 

of the MSS (see "Tuning TCP Maximum Segment Size (MSS)", below). 

Minimizing Memory 

• If your traffic is predominantly local, use the largest MTU size that is supported 
by your LAN type. This minimizes the fragmentation of packets exchanged by 
local systems. The offsetting cost is fragmentation in gateways that connect your 
LAN to other LANS with smaller MTUs (see "Tuning TCP Maximum Segment 
Size (MSS)", below). 

• Whenever possible, application programs should read and write in quantities of 
either: 
- Less than or equal to 935 bytes, or 
- Slightly less than or equal to 4096 bytes (or multiples thereof) 

The former will be placed in one to four mbufs; the latter will make efficient use 
of the 4096-byte clusters that are used for writes larger than 935 bytes. Writing 
936 bytes would result in 3 1 60 bytes of wasted space per write. The application 
could hit the udp_recvspace default value of 65536 with just 16  writes totalling 
14976 bytes of data. 

If the application were using TCP, this would waste time as well as memory. TCP 
tries to form outbound data into MTV-sized packets. If the MTU of the LAN 
were larger than 14976 bytes, TCP would put the sending thread to sleep when 
the tcp_sendspace limit was reached. It would take a timeout ACK from the 
receiver to force the data to be written. 

Note: When the no command is used to change parameters, the change is in effect only 
until the next system boot. At that point all parameters are initially reset to their 
defaults. To make the change permanent, you should put the appropriate no .  
command in the /etdrc.net file. 

Regardless of Tuning Priorities 

• Always set xmt_que_size to the maximum-150. This  does not consume any 
additional space unless the memory is really needed for data. 
The appropriate command is :  
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# chdev -1 ffname -a xrnt_que_s i ze= l S O  

I f  the LAN adapter i s  already in  use, you must take i t  offline temporarily to 
change this parameter. For a Token-Ring adapter, for example, the appropriate 
sequence of commands would be: 

# i fconfig trO detach 
# chdev - 1  tokO -a xrnt_que_s i z e = l S O  

# i fconf ig trO hos tname up 

Tuning TCP Maximum Segment Size (MSS) 

The TCP protocol includes a mechanism for both ends of a connection to negotiate the 
maximum segment size (MSS) to be used over the connection. Each end uses the 
OPTIONS field in the TCP header to advertise a proposed MSS . The MSS that is chosen 
is the smaller of the values provided by the two ends. 

The purpose of this negotiation is to avoid the delays and throughput reductions 
caused by fragmentation of the packets when they pass through routers or gateways and 
reassembly at the destination host. 

The value of MSS advertised by the TCP software during connection setup depends 
on whether the other end is a local system on the same physical network (that is, the 
systems have the same network number) or whether it is on a different, remote, network. 

Local Network 

If the other end is local, the MSS advertised by TCP is based on the MTU (maximum 
transfer unit) of the local network interface: 

TCP MSS = MTU - TCP header size - IP header size. 
Since this is the largest possible MSS that can be accommodated without IP 

fragmentation, this value is inherently optimal, so no MSS tuning is required for local 
networks. 

Remote Network 

When the other end is on a remote network, TCP in AIX defaults to advertising an MSS of 
5 12 bytes. This conservative value is based on a requirement that all IP routers support an 
MTU of at least 576 bytes. 

The optimal MSS for remote networks is based on the smallest MTU of the 
intervening networks in the route between source and destination. In general, this is a 
dynamic quantity and could only be ascertained by some form of path MTU discovery. 
The TCP protocol does not provide any mechanism for doing this, which is why a 
conservative value is the default. 

While this default is appropriate in the general Internet, it can be unnecessarily 
restrictive for private intemets within an administrative domain. In such an environment, 
MTU sizes of the component physical networks are known and the minimum MTU and 
optimal MSS can be determined by the administrator. AIX provides several ways in which 
TCP can be persuaded to use this optimal MSS. Both source and destination hosts must 
support these features. In a heterogeneous, multi-vendor environment, the availability of 
the feature on both systems may determine the choice of solution. 
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Static Routes 

The default MSS of 5 1 2  can be overridden by specifying a static route to a specific 
remote network and using the -mtu option of the route command to specify the MTU to 
that network. In this case, you would specify the actual minimum MTU of the route, rather 
than calculating an MSS value. 

In a small, stable environment, this method allows precise control of MSS on a 
network-by-network basis. The disadvantages of this approach are: 

• It does not work with dynamic routing. 

• It becomes impractical when the number of remote networks increases. 
• Static routes must be set at both ends to ensure that both ends negotiate with a 

larger-than-default MSS. 

Use the tcp_mssdflt Option of the no Command 

The default value of 5 12  that TCP uses for remote networks can be changed via the 
no command by changing the tcp_mssdflt parameter. This change is a systemwide 
change. 

The value specified to override the MSS default should be the minimum MTU value 
less 40 to allow for the normal length of the TCP and IP headers. 

In an environment with a larger-than-default MTU, this method has the advantage 
that the MSS does not need to be set on a per-network basis. The disadvantages are: 

• Increasing the default can lead to IP router fragmentation if the destination is on 
a network that is truly remote and the MTUs of the intervening networks are not 
known. 

• The tcp_mssdflt parameter must be set to the same value on the destination host. 

Sub netting and the subnetsarelocal Option of the no Command 

Several physical networks can be made to share the same network number by 
subnetting. The no option subnetsarelocal specifies, on a system-wide basis, whether 
subnets are to be considered local or remote networks. With subnetsarelocal=l (the 
default), Host A on subnet 1 considers Host B on subnet 2 to be on the same physical 
network. 

The consequence of this is that when Host A and Host B establish a connection, they 
negotiate the MSS assuming they are on the same network. Each host advertises an MSS 
based on the MTU of its network interface. This usually leads to an optimal MSS being 
chosen. 

This approach has several advantages:  

• It does not require any static bindings ;  MSS is automatically negotiated. 

• It does not disable or override the TCP MSS negotiation, so that small 
differences in the MTU between adjacent subnets can be handled appropriately. 
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Host 
A 

The disadvantages are: 

• Potential IP router fragmentation when two high-MTU networks are linked 
through a lower-MTV network. The figure "Inter-Subnet Fragmentation" 
illustrates this problem. 

Router 1 

MTU=4352 MTU=1 500 
Figure 1 9: Inter-Subnet Fragmentation 

Router 2 

MTU=4352 

Host 
B 

In this scenario, Hosts A and B would establish a connection based on a common 
MTV of 4352. A packet going from A to B would fragmented by Router 1 and 
defragmented by Router 2, and the reverse would occur going from B to A. 

• Source and destination must both consider subnets to be local. 

IP Protocol Performance Tuning Recommendations 

At the IP layer, the only tunable parameter is ipqmaxlen, which controls the length of the 
IP input queue discussed earlier (which exists only in AIX Version 3). Packets may arrive 
very quickly and overrun the IP input queue. In the AIX operating system, there is no 
simple way to determine if this is happening. However an overflow counter can be viewed 
using the crash command. To check this value, start the crash command and when the 
prompt appears, type knl i s t  ipintrq. This command returns a hexadecimal value, 
which may vary from system to system. Next, add 1 0  (hex) to this value, and then use it 
as an argument for the od subcommand. For example: 

# crash 
> knl i s t  ipintrq 

ipintrq : Ox0 1 4 9ba 6 8  
> o d  0 1 4 9ba7 8 1 
0 1 4 9ba7 8 : 0 0 0 0 0 0 0 0  < -- Thi s is the value of the I P  input queue 

overflow counter 
>qu i t  

If the number returned is greater than 0, overflows have occurred. The maximum 
length of this queue is set using the no command. For example: 

no -o ipqmaxl en= l O O  

allows 100 packets to be  queued up. The exact value to use i s  determined by  the maximum 
burst rate received. If this cannot be determined, using the number of overflows can help 
determine what the increase should be. No additional memory is used by increasing the 
queue length. However, an increase may result in more time spent in the off-level interrupt 
handler, since IP will have more packets to process on its input queue. This could 
adversely affect processes needing CPU time. The tradeoff is reduced packet dropping 
versus CPU availability for other processing. It is best to increase ipqmaxlen by moderate 
increments if the tradeoff is a concern. 
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Ethernet Performance Tuning Recommendations 

Ethernet is one of the contributors to the "least common denominator" algorithm of MTU 
choice. If a configuration includes Ethernets and other LANs, and there is extensive traffic 
among them, the MTUs of all of the LANs may need to be set to 1 500 bytes to avoid 
fragmentation when data enters an Ethernet. 

• The default (and maximum) MTU of 1 500 bytes should not be changed. 

• Application block size should be in multiples of 4096 bytes. 

• Socket space settings can be left at the default values. 

• If the workload includes extensive use of services that use UDP, such as NFS or 
RPC, sb_max should be increased to allow for the fact that each 1500-byte MTU 
uses a 4096-byte buffer. 

Token Ring (4Mb) Performance Tuning Recommendations 

The default MTU of 1492 bytes is appropriate for Token Rings that interconnect to 
Ethernets or to heterogeneous networks in which the minimum MTU is not known. 

• Unless the LAN has extensive traffic to outside networks, the MTU should be 
raised to the maximum of 3900 bytes. 

• Application block size should be in multiples of 4096 bytes. 

• Socket space settings can be left at the default values. 

• If the workload includes extensive use of services that use UDP, such as NFS or 
RPC, sb_max should be increased to allow for the fact that each 1492-qyte MTU 
uses a 4096-byte buffer. 

Token Ring (1 6Mb) Performance Tuning Recommendations 

The default MTU of 1492 bytes is appropriate for Token Rings that interconnect to 
Ethernets or to heterogeneous networks in which the minimum MTU is not known. 

• Unless the LAN has extensive traffic to outside networks, the MTU should be 
increased to 8500 bytes. This allows NFS 8KB packets to fit in one MTU. 
Further increasing the MTU to the maximum of 17000 bytes seldom results in 
corresponding throughput improvement. 

• Application block size should be in multiples of 4096 bytes . 

• Socket space settings can be left at the default values. 

• If the workload includes extensive use of services that use UDP, such as NFS or 
RPC, and the MTU must be left at the default because of interconnections, 
sb_max should be increased to allow for the fact that each 1492-byte MTU uses 
a 4096-byte buffer. 
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FDDI Performance Tuning Recommendations 

Despite the comparatively low MTU, this high-speed medium benefits from substantial 
increases in socket buffer size. 

• Unless the LAN has extensive traffic to outside networks, the default MTU of 
4352 bytes should be retained. 

• Where possible, an application using TCP should write multiples of 4096 bytes 
at a time (preferably 8KB or 16KB) for maximum throughput. 

• Use no -o sb_max=(2 *NewSize) to raise the ceiling on socket buffer space. 
• Use no -o * _ *space=NewSize to set the TCP and UDP socket send and receive 

space defaults to NewSpace bytes. NewSpace should be at least 57344 bytes 
(56KB). 

• For RISC System/6000 Model *90 or faster, use no -o rfc1323=1 to allow 
socket buffer sizes to be set to more than 64KB . Then use the previous procedure 
with NewSize of at least 128KB. 

ATM Performance Tuning Recommendations 

• Unless the LAN has extensive traffic to outside networks, the default MTU of 
9 1 80 bytes should be retained. 

• Where possible, an application using TCP should write multiples of 4096 bytes 
at a time (preferably 8KB or 16KB) for maximum throughput. 

• Use no -o sb_max=(2 *NewSize) to raise the ceiling on socket buffer space. 
• Use no -o * _ *space=NewSize to set the TCP and UDP socket send and receive 

space defaults to NewSpace bytes. NewSpace should be at least 57344 bytes 
(56KB).  

• For RISC System/6000 Model *90 or faster, use no -o rfc1323=1 to allow 
socket buffer sizes to be set to more than 64KB. Then use the previous procedure 
with NewSize of at least 128KB.  

SOCC Performance Tuning Recommendations 

• The default MTU 61428 bytes should not be changed. 
• Where possible, an application using TCP should write 28672 bytes (28KB) at a 

time for maximum throughput. 
• TCP and UDP socket send and receive space defaults should be set to 57344 

bytes. 

HIPPI Performance Tuning Recommendations 

• The default MTU of 65536 bytes should not be changed. 
• Where possible, an application using TCP should write 65536 bytes at a time for 

maximum throughput. 
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• Set sb_max to a value greater than 2*655360. 
• TCP and UDP socket send and receive space defaults should be set to 655360 

bytes. Use no -o rfc1323=1 to allow socket buffer sizes to be set to more than 
64KB. 

AIX Version 3.2.5 mbuf Pool Performance Tuning 

Note: This section applies only to AIX Version 3.2.5 .  The mbuf allocation mechanism in 
AIX Version 4. 1 is substantially different. At this writing, there are no 
recommended tuning techniques for AIX Version 4. 1 mbuf management. 

The network subsystem uses a memory management facility that revolves around a 
data structure called an mbuf Mbufs are mostly used to store data for incoming and 
outbound network traffic. Having mbuf pools of the right size can have a very positive 
effect on network performance. If the mbuf pools are configured improperly, both 
network and system performance can suffer. The AIX operating system offers the 
capability for run-time mbuf pool configuration. With this convenience comes the 
responsibility for knowing when the pools need adjusting and how much they should be 
adjusted. 

Overview of the mbuf Management Faci l ity 

The mbuf management facility controls two pools of buffers : a pool of small buffers (256 
bytes each), which are simply called mbufs, and a pool of large buffers ( 4096 bytes each), 
which are usually called mbuf clusters or just clusters. The pools are created from system 
memory by making an allocation request to the Virtual Memory Manager (VMM). The 
pools consist of pinned pieces of virtual memory; this means that they always reside in 
physical memory and are never paged out. The result is that the real memory available for 
paging in application programs and data has been decreased by the amount that the mbuf 
pools have been increased. This is a nontrivial cost that must always be taken into account 
when considering an increase in the size of the mbuf pools .  

The initial size of the mbuf pools is system-dependent. There is a minimum number 
of (small) mbufs and clusters allocated for each system, but these minimums are increased 
by an amount that depends on the specific system configuration. One factor affecting how 
much they are increased is the number of communications adapters in the system. The 
default pool sizes are initially configured to handle small- to medium-size network loads 
(network traffic of 100-500 packets/second). The pool sizes dynamically increase as 
network loads increase. The cluster pool shrinks if network loads decrease (the mbuf pool 
is never reduced). To optimize network performance, the administrator should balance 
mbuf pool sizes with network loads (packets/second). If the network load is particularly 
oriented towards UDP traffic (as it would be on an NFS server, for example) the size of 
the mbuf pool should be two times the packet/second rate. This is due to UDP traffic 
consuming an extra small mbuf. 

To provide an efficient mbuf allocation service, an attempt is made to maintain a 
minimum number of free buffers in the pools at all times .  The lowmbuf and lowclust 
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network parameters (which can be manipulated using the no command) are used to define 
these lower limits . 

The lowmbuf parameter controls the minimum number of free buffers for the mbuf 
pool. The lowclust parameter controls the minimum number of free buffers for the cluster 
pool. When the number of buffers in the pools drops below the lowmbuf or lowclust 
thresholds the pools are expanded by some amount. The expansion of the mbuf pools is 
not done immediately, but is scheduled to be done by a kernel service named netm. When 
the netm kernel service is dispatched, the pools are expanded to meet the minimum 
requirements of lowclust and lowmbuf. Having a kernel process do this work is required 
by the structure of the VMM. 

An additional function that the netm kernel service provides is to limit the growth 
of the cluster pool. The mb_cl_hiwat network parameter defines this maximum value. 

The mb_cl_hiwat parameter controls the maximum number of free buffers the 
cluster pool can contain. When the number of free clusters in the pool exceeds 
mb_cl_hiwat, netm is scheduled to release some of the clusters back to the VMM. 

The netm kernel system runs at a very favored priority (fixed 37). Because of this, 
excessive netm kernel system dispatching can cause not only poor network performance 
but also poor system performance because of contention with other system and user 
processes. Improperly configured pools can result in netm "thrashing" due to conflicting 
network traffic needs and improperly tuned thresholds. The netm kernel system 
dispatching can be minimized by properly configuring the mbuf pools to match system 
and networking needs. 

The last network parameter that is used by the mbuf management facility is thewall. 

The thewall parameter controls the maximum amount of RAM (in kilobytes) that 
the mbuf management facility can allocate from the VMM. This parameter is used to 
prevent unbalanced VMM resources which result in poor system performance. 

When to Tune the mbuf Pools 

When and how much to tune the mbuf pools is directly related to the network load to 
which a given machine is being subjected. A server machine that is supporting many 
clients is a good candidate for having the mbuf pools tuned to optimize network 
performance. It is important for the system administrator to understand the networking 
load for a given system. 

By using the netstat command you can get a rough idea of the network load in 
packets/second. For example: 

nets tat - I trO 5 

reports the input and output traffic both for the t r O  adapter and for all LAN adapters on 
the system. The output below shows the activity caused by a large ftp command 
operation: 
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$ netstat - I trO 2 

input ( trO ) output input ( Total ) output 
packets errs packets errs c o l  ls packets errs packets errs col ls 

2 0 6 1 5  2 2 7  3 3 4 5  0 0 2 0 9 0 5  2 2 7  3 6 3 5  0 0 
17  0 1 0 0 17  0 1 0 0 

1 7 4  0 3 2 0  0 0 1 7 4  0 3 2 0  0 0 
2 4 8  0 4 4 3  0 0 2 4 8 0 4 4 3  0 0 
2 1 0  0 4 0 4  0 0 2 1 0  0 4 0 4  0 0 
2 3 9  0 4 6 1  0 0 2 3 9  0 4 6 1  0 0 
2 5 3  1 4 5 4  0 0 2 5 3  1 4 5 4  0 0 
2 4 6  0 4 6 7  0 0 2 4 6  0 4 6 7  0 0 

9 9  1 1 4 5  0 0 9 9  1 1 4 5  0 0 
1 3  0 1 0 0 1 3  0 1 0 0 

The netstat command also has a flag, -m, that gives detailed information about the 
use and availability of the mbufs and clusters: 

2 5 3  rnbuf s  in use : 

50 rnbufs al located to data 
1 rnbuf s  allocated to packet headers 
76 rnbuf s  allocated to socket structures 

100 rnbufs allocated to protocol control blocks 
10 rnbufs allocated to routing table entries 
14  rnbuf s allocated to socket names and addresses 
2 rnbuf s  a l l ocated to interface addresses 
1 6 / 6 4  mapped pages in use 

3 1 9  Kbytes allocated to network ( 3 9 %  in use ) 
0 requests for memory denied 
0 requests for memory delayed 

0 cal l s  to pro tocol drain routines 

The line 1 6 / 6 4 mapped pages in use indicates that there are 64 pinned 
clusters, of which 1 6  are currently in use. 

This report can be compared to the existing system parameters by issuing a no -a 
command. The following lines from the report are of interest: 

lowclust 2 9  
lowrnbuf 8 8  

thewa l l  2 0 4 8  
rnb_c l_hiwat 5 8  

It i s  clear that on the test system, the 3 1 9  Kbyt es a l l ocated to network 

is considerably short of thewall value of 2048KB and the (64 - 16  = 48) free clusters are 
short of the mb_cl_hiwat limit of 58 .  

The r eques t s  for memory denied counter is maintained by the mbuf 
management facility and is incremented each time a request for an mbuf allocation cannot 
be satisfied. Normally the reques ts for memory deni ed value will be 0. If a 
system experiences a high burst of network traffic, the default configured mbuf pools may 
not be sufficient to meet the demand of the incoming burst, causing the error counter to be 
incremented once for each mbuf allocation request that fails. Usually this is in the 
thousands due to the large number of packets arriving in a short interval. The requests 

for memory denied statistic will correspond to dropped packets on the network. 
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Dropped network packets mean retransm1ss10ns, resulting in degraded network 
performance. If the requests for memory denied value is greater than zero, it 
may be appropriate to tune the mbuf parameters-see "How to Tune the mbuf Pools", 
below. 

The Kbyt es a l l ocated to the network statistic is maintained by the 
mbuf management facility and represents the current amount of system memory that has 
been allocated to both mbuf pools. The upper bound of this statistic set by thewall is used 
to prevent the mbuf management facility from consuming too much of a system's physical 
memory. The default value for thewall limits the mbuf management facility to 2048KB 
(as shown in the report generated by the no -a command). If the Kbytes allocated 

to the network value approaches thewall, i t  may be appropriate to tune the mbuf 
parameters. See "How to Tune the mbuf Pools", below. 

There are cases where the above indicators suggest that the mbuf pools may need to 
be expanded, when in fact there is a system problem that should be corrected first. For 
example: 

• mbuf memory leak 
• Queued data not being read from socket or other internal queuing structure 

An mbuf memory leak is a situation in which some kernel or kernel-extension code 
has neglected to release an mbuf resource and has destroyed the pointer to its memory 
location, thereby losing the address of the mbuf forever. If this occurs repeatedly, 
eventually all the mbuf resources will be used up. If the netstat mbuf statistics show a 
gradual increase in usage that never decreases or high mbuf usage on a relatively idle 
system, there may be an mbuf memory leak. Developers of kernel extensions that use 
mbufs should always include checks for memory leaks in their testing. 

It is also possible to have a large number of mbufs queued at the socket layer 
because of an application defect. Normally an application program would read data from 
the socket, causing the mbufs to be returned to the mbuf management facility. An 
administrator can monitor the statistics generated by the netstat -m command and look 
for high mbuf usage while there is no expected network traffic. The administrator can also 
view the current list of running processes (by entering ps -ef)  and scan for those that 
use the network subsystem with large amounts of CPU time being used. If this behavior is 
observed, the suspected application defect should be isolated and fixed. 

How to Tune the mbuf Pools 

With an understanding of how the mbuf pools are organized and managed, tuning the 
mbuf pools is simple in the ADC operating system and can be done at run time. The no 
command can be used by the root user to modify the mbuf pool parameters. Some 
guidelines are: 

• When adjusting the lowclust and lowmbuf attributes, thewall may need to be 
increased first to prevent pool expansions from hitting thewall. 

• The value of the mb_cl_hiwat attribute should be at least two times greater than 
the lowclust attribute at all times. This will prevent the netm thrashing discussed 
earlier. 
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• When adjusting lowclust, lowmbuf should be adjusted by at least the same 
amount. For every cluster there will exist an mbuf that points to that cluster. 

• After expanding the pools, use the vmstat command to ensure that paging rates 
have not increased. If you cannot expand the pools to the necessary levels 
without adversely affecting the paging rates, additional memory may be required. 

The following is an example shell script that might be run at the end of /etc/re.net to 
tune the mbuf pools for an NFS server that experiences a network traffic load of 
approximately 1500 packets/sec. 

# ! /bin/ksh 
# echo " Tuning mbuf pool s  . . .  " 
# set maximum amount of memory to allow for allocation ( l OMB ) 

no -o thewal l= l 0 2 4 0  

# s e t  minimum number o f  sma l l  mbufs 

no -o lowmbuf = 3 0 0 0  

# generate network tra f f i c  t o  force sma l l  mbuf pool expans ion 

ping 1 2 7 . 0 . 0 . 1  1 0 0 0  1 > / dev/ nu l l  

# set minimum number o f  sma l l  mbufs back to defau l t  to prevent netm from 

# running unnecessar i ly 
no -d l owmbuf 

# set maximum number of free c lus ters before expanding pool 

# ( about 6MB ) 
no -o mb_c l_hiwat = l 5 0 0  

# gradually expand c luster pool 
N= l O  
whil e  [ $N - lt  1 5 0 0  
do 

no -o l owclus t=$N 
ping 1 2 7 . 0 . 0 . 1  1 0 0 0  1 > / dev/ nu l l  
let  N=N+ l O  

done 

# set minimum number of c lusters back to default to prevent netm 
# from running unneces sar i ly 

no -d l owc lust 

You can use net s  tat -m following the above script to verify the size of the pool 
of clusters (which the netstat command calls mapped pages). To verify the size of the 
pool of mbufs you can use the crash command to examine a kernel data structure, mbstat 
(see the /usr/include/sys/mbuf.h file) . The kernel address of mbstat can be displayed 
while in crash using the od mbstat command. You will then need to enter od <kernel 
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addres s >  to dump the first word in the mbstat structure, which contains the size of the 
mbuf pool. The dialog would be similar to the following: 

$ crash 
> od rnbstat 
0 0 0e2be 0 : 0 0 1 f 7 0 0 8  
> o d  l f 7 0 0 8  
0 0 1 f 7 0 0 8 < 0 0 0 0 0 1 8 0  
> quit 

The size of the mbuf pool is therefore 1 8016  (38410) .  

U DP, TCP/IP, and mbuf Tuning Parameters Summary 

The following paragraphs summarize the attributes and tuning techniques for each of the 
communications tuning parameters. 

thewal l  

Purpose: 

Values :  
Display: 
Change: 

Diagnosis: 
Tuning: 
Refer to: 

sb_max 

Purpose: 

Values: 
Display: 
Change: 

Diagnosis: 
Tuning: 

Refer to: 

Provide an absolute upper bound on the amount of real memory that can 
be used by the communication subsystem. 
Default: 25% of real memory. Range: up to 50% of real memory 
no -a or no -o thewall 

· 

no -o thewall=newvalue 
newvalue is in KB, not bytes 
Change takes effect immediately for new connections. 
Change is effective until the next system boot. 
None. 
Increase size, preferably to multiple of 4(KB). 
"AIX Version 3 .2.5 mbuf Pool Performance Tuning" on page 1 70. 

Provide an absolute upper bound on the size of TCP and UDP socket 
buffers . Limits setsockopt() , udp_sendspace, udp_recvspace, 
tcp_sendspace, and tcp_recvspace. 
Default: 65536 Range: NIA 
no -a or no -o sb_max 
no -o sb_max=newvalue 
Change takes effect immediately for new connections. 
Change is effective until the next system boot. 
None. 
Increase size, preferably to multiple of 4096. Should be about twice the 
largest socket buffer limit. 
"Socket Layer" on page 155 .  

1 75 



rfc1 323 

Purpose: 

Values : 
Display : 
Change: 

Diagnosis: 
Tuning: 

Refer to: 

Value of 1 indicates that tcp_sendspace and tcp_recvspace can exceed 
64KB. 
Default: 0 Range: 0 or 1 
no -a or no -o rfc1323 
no -o rfc1323=newvalue 
Change takes effect immediately. 
Change is effective until the next system boot. 
None. 
Change before attempting to set tcp_sendspace and tcp_recvspace to 
more than 64KB. 
"TCP Layer" on page 157. 

udp_sendspace 

Purpose: 
Values: 

Display: 
Change: 

Diagnosis : 
Tuning: 
Refer to : 

Provide the default value for the size of the UDP socket send buffer. 
Default: 92 16  Range: 0 to 65536 
Must be less than or equal to sb_max. 
no -a or no -o udp_sendspace 
no -o udp_sendspace=newvalue 
Change takes effect immediately for new connections. 
Change is effective until the next system boot. 
None. 
Increase size, preferably to multiple of 4096. 
"Socket Layer" on page 155 .  

udp_recvspace 

Purpose: 
Values: 

Display : 
Change: 

Diagnosis: 
Tuning: 
Refer to : 

Provide the default value of the size of the UDP socket receive buffer. 
Default: 4 1600 Range: N/A 
Must be less than or equal to sb_max. 
no -a or no -o udp_recvspace 
no -o udp_recvspace=newvalue 
Change takes effect immediately for new connections. 
Change is effective until the next system boot. 
Nonzero n in netstat -s report of udp: n socket buffer overflows 
Increase size, preferably to multiple of 4096. 
"Socket Layer" on page 155 .  
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tcp_sendspace 

Purpose: 
Values: 

Display: 
Change: 

Diagnosis: 
Tuning: 
Refer to: 

Provide the default value of the size of the TCP socket send buffer. 
Default: 16384 Range: 0 to 64KB if rfc1323=0, 
Range: 0 to 4GB if rfcl323=1. 
Must be less than or equal to sb_max. 
Should be equal to tcp_recvspace and uniform on all frequently 
accessed AIX systems. 
no -a or no -o tcp_sendspace 
no -o tcp_sendspace=newvalue 
Change takes effect immediately for new connections. 
Change is effective until the next system boot. 
Poor throughput. 
Increase size, preferably to multiple of 4096. 
"Socket Layer" on page 155 .  

tcp_recvspace 

Purpose: 
Values : 

Display: 
Change: 

Diagnosis: 
Tuning: 
Refer to: 

ipqmaxlen 

Purpose: 
Values : 
Display: 
Change: 

Diagnosis : 
Tuning: 
Refer to: 

Provide the default value of the size of the TCP socket receive buffer. 
Default: 16384 Range: 0 to 64KB if rfc1323=0, 
Range: 0 to 4GB if rfc1323=1. 
Must be less than or equal to sb_max. 
Should be equal to tcp_sendspace and uniform on all frequently 
accessed AIX systems. 
no -a or no -o tcp_recvspace 
no -o tcp_recvspace=newvalue 
Change takes effect immediately for new connections. 
Change is effective until the next system boot. 
Poor throughput. 
Increase size, preferably to multiple of 4096. 
"Socket Layer" on page 1 55 .  

Specify the maximum number of  entries on the IP input queue. 
Default: 50 Range: NIA 
no -a or no -o ipqmaxlen 
no -o ipqmaxlen=newvalue 
Change takes effect immediately. 
Change is effective until the next system boot. 
Use crash to access IP input queue overflow counter. 
Increase size. 
"IP Protocol Performance Tuning Recommendations" on page 1 67. 



xmt_que_size 

Purpose: 

Values : 
Display: 
Change: 

Diagnosis: 

Tuning: 

Refer to: 

Specifies the maximum number of send buffers that can be queued up 
for the device. 
Default: 30 Range: 20 to 1 50 
Isattr -E -I tokO -a xmt_que_size 
ifconfig trO detach 
chdev -I tokO -a xmt_que_size=newvalue 
ifconfig trO hostname up 
Change is effective across system boots . 
netstat -i 
Oerr > 0 
Increase size .  Should be set to 1 50 as a matter of course on 
network-oriented systems, especially servers. 
"LAN Adapters and Device Drivers" on page 162. 

rec_que_size 

Purpose: 

Values : 
Display: 
Change: 

Diagnosis: 
Tuning: 

Refer to : 

(Tunable only in AIX Version 3.)  Specifies the maximum number of 
receive buffers that can be queued up for the interface. 
Default: 30 Range: 20 to 150 
lsattr -E -1 tokn -a rec_que_size 
ifconfig trO detach 
chdev -I tokn -a rec_que_size=newvalue 
ifconfig trO hostname up 
Change is effective across system boots . 
None. 
Increase size.  Should be set to 1 5 0  as a matter of course on 
network-oriented systems, especially servers. 
"LAN Adapters and Device Drivers" on page 162. 
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MTU 

Purpose: 
Values : 

Display: 
Change: 

Diagnosis : 
Tuning: 

Refer to: 

NFS Tuning 

Limits the size of packets that are transmitted on the network. 
trn (4Mb): Default: 1492, Range: 60 to 3900 
trn ( 16Mb): Default: 1492, Range: 60 to 17960 
enn: Default: 1 500, Range: 60 to 1 500 
fin: Default: 4352, Range: 60 to 4352 
bin: Default: 65536, Range: 60 to 65536 
son: Default: 61428, Range: 60 to 61428 
Ion: Default: 1500 (3.2.5), 1 6896 (4. 1 ), Range: 60 to 65536 
lsattr -E -I trn 
chdev -1 trn -a mtu=NewValue 

Cannot be changed while the interface is in use. Because all systems on a 
LAN must have the same MTU, they must all change simultaneously. 
Change is effective across boots. 
Packet fragmentation stats 
Increase MTU size for the Token-Ring interfaces: 
trn (4Mb) : 4056 
trn ( 1 6Mb): 8500 
For the loopback interface Ion in Version 3.2.5,  increase to 1 6896 
For other interfaces, the default should be kept. 
"LAN Adapters and Device Drivers", on page 162. 

NFS allows programs on one system to access files on another system transparently by 
mounting the remote directory. Normally, when the server is booted, directories are made 
available by the exportfs command, and the daemons to handle remote access (nfsds) are 
started. Similarly, the mounts of the remote directories and the initiation of the 
appropriate numbers of biods to handle remote access are performed during client system 
boot. 

The figure "NFS Client-Server Interaction" illustrates the structure of the dialog 
between NFS clients and a server. When a thread in a client system attempts to read or 
write a file in an NFS-mounted directory, the request is redirected from the normal 1/0 
mechanism to one of the client's NFS block 1/0 daemons (biods) .  The biod sends the 
request to the appropriate server, where it is assigned to one of the server's NFS daemons 
(nfsds) . While that request is being processed, neither the biod nor the nfsd involved do 
any other work. 
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Figure 20: NFS Client-Server Interaction 

How Many biods and nfsds Are Needed for Good 
Performance? 

Because biods and nfsds handle one request at a time, and because NFS response time is 
often the largest component of overall response time, it is undesirable to have threads 
blocked for lack of a biod or nfsd. The general considerations for configuring NFS 
daemons are: 

• Increasing the number of daemons cannot compensate for inadequate client or 
server processor power or memory, or inadequate server disk bandwidth. Before 
changing the number of daemons ,  you should check server and client 
resource-utilization levels with iostat and vmstat. 

• NFS daemons are comparatively cheap. A biod costs 36KB of memory (9 pages 
total, 4 of them pinned), while an nfsd costs 28KB (7 pages total, 2 of them 
pinned) . Of course, the unpinned pages are only in real memory if the nfsd or 
biod has been active recently. Further, idle AIX nfsds do not consume CPU time. 

• All NFS requests go through an nfsd; only reads and writes go through a biod. 

Choosing Initial Numbers of nfsds and biods 

Determining the best numbers of nfsds and biods is an iterative process. Rules of thumb 
can give you no more than a reasonable starting point. 

By default there are six biods on a client and eight nfsds on a server. The defaults 
are a good starting point for small systems, but should probably be increased for client 
systems with more than two users or servers with more than 2 clients. A few guidelines 
are: 

• In each client, estimate the maximum number of files that will be written 
simultaneously. Configure at least two biods per file. If the files are large (more 
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than 32KB), you may want to start with four biods per file to support read-ahead 
or write-behind activity. It is common for up to five biods to be busy writing to a 
single large file. 

• In each server, start by configuring as many nfsds as the sum of the numbers of 
biods that you have configured on the clients to handle files from that server. 

Add 20% to allow for non-read/write NFS requests. 
• If you have fast client workstations connected to a slower server, you may have 

to constrain the rate at which the clients generate NFS requests. The best solution 
is to reduce the number of biods on the clients, with due attention to the relative 
importance of each client's workload and response time. 

Tuning the Numbers of nfsds and biods 

After you have arrived at an initial number of biods and nfsds, or have changed one or the 
other: 

• First, recheck the affected systems for CPU or 1/0 saturation with vmstat and 
iostat. If the server is now saturated, you need to reduce its load or increase its 
power, or both. 

• Use netstat -s to determine if any system is experiencing UDP socket buffer 
overflows. If so, use no -a to verify that the recommendations in "Tuning Other 
Layers to Improve NFS Performance" on page 1 83 have been implemented. If 
so, and the system is not saturated, you should increase the number of biods or 
nfsds. 

The numbers of nfsds and biods are changed with the chnfs command. To change 
the number of nfsds on a server to 10, both immediately and at each subsequent system 
boot, you would use: 

# chnfs -n 10 

To change the number of biods on a client to 8 temporarily, with no permanent 
change (that is, the change happens now but is lost at the next system boot) , you would 
use: 

# chnfs -N -b 8 

To change both the number of biods and the number of nfsds on a system to 9, with 
the change delayed until the next system boot (that is, the next IPL), you would use: 

# chnfs -I -b 9 -n 9 

In extreme cases of a client overrunning the server, it may be necessary to reduce 
the client to one biod. This can be done with: 

# s topsrc - s biod 

This leaves the client with the kproc biod still running. 

Performance Impl ications of Hard or Soft NFS Mounts 

One of the choices you make when configuring NFS-mounted directories is whether the 
mounts will be hard or soft. When, after a successful mount, an access to a soft-mounted 
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directory encounters an error (typically, a timeout), the error is immediately reported to 
the program that requested the remote access. When an access to a hard-mounted 
directory encounters an error, NFS retries the operation. 

A persistent error accessing a hard-mounted directory can escalate into a perceived 
performance problem because the default number of retries ( 1000) and the default timeout 
value ( .7 second), combined with an algorithm that increases the timeout value for 
successive retries, mean that NFS will try practically forever (subjectively) to complete 
the operation. 

It is technically possible to reduce the number of retries, or increase the timeout 
value, or both, using options of the mount command. Unfortunately, changing these 
values sufficiently to remove the perceived performance problem might lead to 
unnecessary reported hard errors. Instead, hard-mounted directories should be mounted 
with the intr option, which allows the user to interrupt from the keyboard a process that is 
in a retry loop. 

Although soft-mounting the directories would cause the error to be detected sooner, 
it runs a serious risk of data corruption. In general, read/write directories should be hard 
mounted. 

Tuning to Avoid Retransmits 

Related to the hard-versus-soft mount question is the question of the appropriate timeout 
duration for a given network configuration. If the server is heavily loaded, is separated 
from the client by one or more bridges or gateways, or is connected to the client by a 
WAN, the default timeout criterion may be unrealistic. If so, both server and client will be 
burdened with unnecessary retransmits. For example, if 

$ nfss tat -er 

reports a significant number (> 5% of the total) of both t imeouts and badxids, you 
could increase the timeo parameter with: 

# smi t chnfsmnt 

Identify the directory you want to change, and enter a new value on the line "NFS 
TIMEOUT. In tenths of a second." For LAN-to-LAN traffic via a bridge, try 50 (tenths of 
seconds) .  For WAN connections, try 200. Check the NFS statistics again after at least one 
day. If they still indicate excessive retransmits, increase timeo by 50% and try again. You 
will also want to look at the server workload and the loads on the intervening bridges and 
gateways to see if any element is being saturated by other traffic. 

Tuning the NFS File-Attribute Cache 

NFS maintains a cache on each client system of the attributes of recently accessed 
directories and files . Five parameters that can be set in the /etc/filesystems file control 
how long a given entry is kept in the cache. They are: 

actimeo Absolute time for which file and directory entries are kept in the 
file-attribute cache after an update. If specified, this value overrides the 
following *min and *max values, effectively setting them all to the 
actimeo value. 
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acregmin 

acregmax 

acdirmin 

acdirmax 

Minimum time after an update that file entries will be retained. The 
default is 3 seconds. 

Maximum time after an update that file entries will be retained. The 
default is 60 seconds. 

Minimum time after an update that directory entries will be retained. 
The default is 30 seconds. 

Maximum time after an update that directory entries will be retained. 
The default is 60 seconds. 

Each time the file or directory is updated, its removal is postponed for at least 
acregmin or acdirmin seconds. If this is the second or subsequent update, the entry is 
kept at least as long as the interval between the last two updates, but not more than 
acregmax or acdirmax seconds. 

Disabl ing Unused NFS ACL Support 

If your workload does not use the NFS ACL support on a mounted file system, you can 
reduce the workload on both client and server to some extent by specifying: 

options = noacl 

as part of the client's /etc/filesystems stanza for that file system. 

Tuning for Maximum Caching of NFS Data 

NFS does not have a data caching function, but the AIX Virtual Memory Manager caches 
pages of NFS data just as it caches pages of disk data. If a system is essentially a dedicated 
NFS server, it may be appropriate to permit the VMM to use as much memory as 
necessary for data caching. This is accomplished by setting the maxperm parameter, 
which controls the maximum percentage of memory occupied by file pages, to 1 00% 
with: 

# vrntune - P 1 0 0  

The same technique could be  used on NFS clients, but would only be  appropriate if 
the clients were running workloads that had very little need for working-segment pages. 

Tuning Other Layers to Improve NFS Performance 

NFS uses UDP to perform its network 1/0. You should be sure that the tuning techniques 
described in "TCP and UDP Performance Tuning" on page 1 63 and "AIX Version 3 .2.5 
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mbuf Pool Performance Tuning" on page 170 have been applied. In particular, you 
should: 

• Ensure that the LAN adapter transmit and receive queues are set to the maximum 
( 150). 

• Increase the maximum socket buffer size (sb_max) to at least 1 3 1072. If the 
MTU size is not 4096 bytes or larger, set sb_max to at least 262 144. Set the UDP 
socket buffer sizes (udp_sendspace and udp_recvspace) to 1 3 1072 also. 

• If possible, increase the MTU size on the LAN. On a 16Mb Token Ring, for 
example, an increase in MTU size from the default 1492 bytes to 8500 bytes 
allows a complete 8KB NFS read or write request to be transmitted without 
fragmentation. It also makes much more efficient use of mbuf space, reducing 
the probability of overruns. 

Increasing NFS Socket Buffer Size 

In the course of tuning UDP, you may find that the command: 

$ netstat -s 

shows a significant number of UDP socket buffer overflows. As with ordinary UDP 
tuning, you should increase the sb_max value. You also need to increase the value of 
nfs_chars, which specifies the size of the NFS socket buffer. The sequence: 

# no -o sb_max= 1 3 1 0 7 2  
# n f s o  -o nf s_chars = 1 3 0 0 0 0  

# s topsrc -s nfsd 

# s tartsrc -s nfsd 

sets sb_max to a value at least 100 bytes larger than the desired value of nfs_chars, sets 
nfs_chars to 1 30972, then stops and restarts the nfsds to put the new values into effect. If 
you determine that this change improves performance, you should put the no and nfso 
commands in /etc/rc.nfs, just before the startsrc command that starts the nfsds. 

NFS Server Disk Configuration 

NFS servers that experience high levels of write activity can benefit from configuring the 
journal logical volume on a separate physical volume from the data volumes. This 
technique is discussed in "Disk Pre-Installation Guidelines" on page 67. 

Hardware Accelerators 

Prestoserve 

The objective of the Prestoserve product is to reduce NFS write latency by providing a 
faster method than disk I/O of satisfying the NFS requirement for synchronous writes. It 
provides nonvolatile RAM into which NFS can write data. The data is then considered 
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"safe," and NFS can allow the client to proceed. The data is later written to disk as device 
availability allows. Ultimately, it is impossible to exceed the long-term bandwidth of the 
disk, but since much NFS traffic is in bursts, Prestoserve is able to smooth out the 
workload on the disk with sometimes dramatic performance effects. 

Interphase Network Coprocessor 

This product handles NFS protocol processing on Ethernets, reducing the load on the 
CPU. NFS protocol processing is particularly onerous on Ethernets because NFS blocks 
must be broken down to fit within Ethernet's maximum MTU size of 1 500 bytes. 

Misuses of NFS That Affect Performance 

Many of the misuses of NFS occur because people don't realize that the files they are 
accessing are at the other end of an expensive communication path. A few examples we 
have seen are: 

• A COBOL application running on one AIX system doing random updates of an 
NFS-mounted inventory file-supporting a real-time retail cash register 
application. 

• A development environment in which a source code directory on each system 
was NFS-mounted on all of the other systems in the environment, with 
developers logging onto arbitrary systems to do editing and compiles. This 
practically guaranteed that all of the compiles would be obtaining their source 
code from, and writing their output to, remote systems. 

• Running the Id command on one system to transform .o files in an NFS-mounted 
directory into an a.out file in the same directory. 

It can be argued that these are valid uses of the transparency provided by NFS. 
Perhaps so, but these uses cost processor time and LAN bandwidth and degrade response 
time. When a system configuration involves NFS access as part of the standard pattern of 
operation, the configuration designers should be prepared to defend the consequent costs 
with offsetting technical or business advantages, such as : 

• Placing all of the data or source code on a server, rather than on individual 
workstations, will improve source-code control and simplify centralized 
backups. 

• A number of different systems access the same data, making a dedicated server 
more efficient than one or more systems combining client and server roles. 

Serving Diskless Workstations 

Diskless systems potentially offer excellent processor power coupled with low cost, low 
noise and space requirements, and centralized data management. As tantalizing as these 
advantages seem, diskless workstations are not the best solution for every desktop. This 
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section sheds some light on the workings of AIX diskless workstations, the kinds of loads 
they present to their servers, and the resulting performance of different kinds of programs. 
Much of the NFS background in this section also applies to serving requests from 
workstations with disks. 

How a Diskless System Is Different 

In a system with local disks (also referred to as a dis/iful system), the operating system and 
the programs needed to do the most basic functions are contained on one or more local 
disks. When the system is started, the operating system is loaded from local disk. When 
the system is fully operational, the files accessible to users are usually on local disk. The 
software that manages the local disks is the journaled file system (JFS).  

In a diskless system, the operating system must be booted from a server using 
bootstrap code that is in the diskless machine's read-only storage. The loading takes place 
over a local area network: an Ethernet or a Token Ring. When the system is fully 
operational, the files accessible to users are located on disks on one or more server 
systems. 

The primary mechanism used by diskless workstations to access files is the Network 
File System (NFS) .  NFS makes remote files seem to be located on the diskless system. 
NFS is not exclusive to diskless systems. Diskful systems can also mount remote file 
systems. Diskless systems, or diskful systems that depend on servers for files, are usually 
called clients. 

Normally, several diskless clients are attached to each server, so they contend for the 
server's resources . The difference in performance between otherwise identical diskless 
and diskful systems is a function of file systems (NFS versus JFS), the network speed, and 
the server resources. 

NFS Considerations 

The Network File System lets multiple clients access remotely mounted data in a 
consistent manner. It provides primitives for basic file-system functions such as create, 
read, write, and remove. NFS also provides support for directory operations such as 
making a directory, removing a directory, reading and setting attributes, and path-name 
lookup. 

The protocol used by NFS is stateless, that is, no request to the server depends on 
any previous request. This adds to the robustness of the protocol. It also introduces 
performance problems. Consider the case of writing a file. As the file is written, the 
modified data is either in the client memory or on the server. The NFS protocol requires 
that data written from the client to the server must be committed to nonvolatile storage, 
normally disk, before the write operation is considered complete. That way, if the server 
crashes, the data the client had written can be recovered after system restart. Data that was 
being written and was not committed to the disk would be rewritten by the client to the 
server until the write was successful. Because NFS does not allow write buffering in the 
server, each NFS write requires one or more synchronous disk writes. For example, if a 
new file of 1 byte is written by the client, the completion of that write would entail three 
disk I/Os on the server. The first would be the data itself. The second would be the journal 
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record, a feature of JFS to maintain file-system integrity. The third is a flush of the 
file-allocation data. Because disks can only write 50 to 100 times a second, total write 
throughput is limited by the number of and type of disks on the server system. 

Read and write requests used by AIX clients are 4096 bytes or 8 1 92 bytes in length. 
These requests generally require more server resources to process than other request 
types.  

Because remote files and file attributes may be cached in the memory of the client, 
the NFS protocol provides mechanisms for ensuring that the client version of file-system 
information is current. For example, if a I -byte file is read, the file data will be cached as 
long as the space it occupies in the client is not needed for another activity. If a program in 
the client reads the file again later, the client ensures that the data in the local copy of the 
file is current. This is accomplished by a Get Attribute call to the server to find out if the 
file has been modified since it was last read. 

Path-name resolution is the process of following the directory tree to a file. For 
example, opening the file I u I x  I y I z normally requires examining I u ,  x ,  y ,  and 
z in that order. If any component of the path does not exist, the file cannot exist as named. 
One of NFS's caches is used to cache frequently used names, reducing the number of 
requests actually going to the server. 

Obviously, the server receives some mix of read or write and smaller requests 
during any time interval. This mix is hard to predict. Workloads that move large files 
frequently will be dominated by read/write requests. Support of multiple diskless 
workstations will tend to generate a larger proportion of small NFS requests, although it 
depends greatly on the workload. 

When a Program Runs on a Diskless Workstation 

To better understand the flow of NFS requests in a diskless client, let's look at the Korn 
shell execution of the trivial C program: 

# include <s tdio . h> 
main ( )  

{ 
print f ( " This is a test program\n " ) ; 
} 

The program is compiled, yielding an executable named a .  out.  Now if the PATH 
environment variable is /usr /bin : /usr /bin/Xl 1 :  . (the period representing the 
current working directory is at the end of the path) and the command a . out is entered at 
the command line, the following sequence of operations occurs : 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Bytes Sent 
Request type Component and Received 

NFS_LOOKUP usr ( ca l l ed by s tatx) ( send 1 7 8 , 
NFS_LOOKUP bin 
NFS_LOOKUP a . out ( Not f ound ) 
NFS_LOOKUP usr ( ca l l ed by s tatx ) 
NFS_LOOKUP bin 
NFS_LOOKUP Xll ( send 1 7 4 , 
NFS_LOOKUP a . out ( No t  found) ( send 1 7 4 , 
NFS_LOOKUP ( ca l l ed by s tatx) ( send 1 7 4 , 
NFS_LOOKUP 

rev 7 0 )  

rev 1 5 6 )  
rev 7 0 )  
rev 1 5 6 )  
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1 0  NFS_LOOKUP 
1 1  NFS_LOOKUP 
1 2  NFS_LOOKUP 
13  NFS_GETATTR 
14  NFS_LOOKUP 
1 5  NFS_LOOKUP 

1 6  fork 
17 exec 
1 8  NFS_LOOKUP 
1 9  NFS_LOOKUP 
2 0  NFS_LOOKUP 
2 1  NFS_LOOKUP 
2 2  NFS_LOOKUP 
2 3  NFS_LOOKUP 
2 4  NFS_LOOKUP 
2 5  NFS_LOOKUP 
2 6  NFS_LOOKUP 
2 7  NFS_OPEN 
2 8  NFS_GETATTR 
2 9  NFS_ACCESS 

3 0  NFS_GETATTR 
3 1  FS_GETATTR 
3 2  NFS_READ 

3 3  NFS_GETATTR 
3 4  NFS_LOOKUP 
3 5  NFS_LOOKUP 
3 6  NFS_LOOKUP 
3 7  NFS_READLINK 
3 8  NFS_LOOKUP 
3 9  NFS_LOOKUP 
4 0  NFS_LOOKUP 
4 1  NFS_LOOKUP 
4 2  NFS_OPEN 
4 3  NFS_GETATTR 
4 4  NFS_ACCESS 

4 5  NFS_GETATTR 
4 6  NFS_GETATTR 
4 7  NFS_CLOSE 
4 8  exi t  -

a . out 
( ca l l ed by accessx)  

a . out 
a . out 

a . out 

usr 
bin 
a . out ( No t  found) 
usr 
bin 
Xll 
a . out ( Not found ) 

a . out 

a . out 

a . out 
a . out 
a . out ( Read executable )  

a . out 
usr (Access l ibrary ) 
l ib 
l ibc . a  
l ibc . a  
usr 
ccs 
l ib 
l ibc . a  
l ibc . a  
l ibc . a  
l ibc . a  

l ibc . a  
l ibc . a  
l ibc . a  

( send 17 8 ,  rev 1 5 6 )  

( send 1 7 0 , rev 1 0 4 , 
s end 1 9 0 , rev 1 6 8 )  

( send 1 7 8 , rev 7 0 )  

( send 1 7 8 , rev 7 0 )  

( send 1 6 6 , rev 1 3 8 )  

( send 1 7 0 , rev 1 0 4 ,  
send 1 9 0 , rev 1 8 2 )  

( send 17 8 ,  rev 1 5 1 4 , 
rev 1 5 1 4 , rev 8 4 )  

( send 1 6 6 , rev 8 0 )  

( send 1 6 6 , rev 12 4 )  

( send 1 7 0 , rev 1 0 4 , 
s end 1 9 0 , rev 1 7 8 )  

If the PATH were different, the series of NFS operations would be different. For 
example, a PATH of . : / us r / bin : / u s r / b i n / Xl l : would allow the program 
a .  out to be found much sooner. The negative side of this PATH would be that most 
commands would be slower to execute since most of them are in /usr / bin. Another 
fast way to execute the program would be by entering . I a . out, since no lookup is 
needed on the executable (although library resolution still is needed). Adding a lot of 
seldom-used directories to the PATH will slow down command execution. This applies to 
all environments, but is particularly significant in diskless environments. 

Another factor to consider in program development is minimizing the number of 
libraries referenced. Obviously, the more libraries that need to be loaded, the slower the 
program execution becomes. Also the LIBPATH environment variable can affect the 
speed of program loading, so use it carefully if at all .  

National Language Support can also be a factor in program execution. The above 
example was run in the "C" locale, the most efficient. Running in other locales can cause 
additional overhead to access message catalogs. 
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At first look, the NFS activity for a small program seems intimidating. Actually, the 
performance of the above example is quite acceptable. Remember that the path resolution 
for file accesses also takes place in JFS file systems, so the total number of operations is 
similar. The NFS cache ensures that not all NFS operations result in network traffic. 
Finally, the latency for network operations is usually small, so the aggregate increase in 
elapsed time for the command is not great-unless the server itself is overloaded. 

Paging 

AIX diskless systems perform paging via the NFS protocol. Paging i s  the process by 
which working storage such as program variables may be written to and read from disk. 
Paging occurs when the sum of the memory requirements of the processes running in a 
system is larger than the system memory. (See "Performance Overview of the Virtual 
Memory Manager (VMM)" on page 17 .)  

Paging i s  a mixed bless ing in any system. It does allow memory to be  
overcommitted, but performance usually suffers. In fact, there is a narrow range of  paging 
that will allow acceptable response time in a workstation environment. 

In the diskless environment, paging is particularly slow. This is a result of the NFS 
protocol forcing writes to disk. In fact, one can expect each page out (write) operation to 
be at best two to three times slower than on a diskful system. Because of paging 
performance, it is important that diskless systems contain enough memory that the 
application mix being executed does not normally page. (See "Memory-Limited 
Programs" on page 64.) 

AIXwindows-based desktop products encourage behavior that can lead to periods of 
intense paging in systems with inadequate memory. For example, a user may have two 
programs running in different windows: a large spreadsheet and a database. The user 
recalculates a spreadsheet, waits for the calculation to complete, then switches windows to 
the database and begins a query. Although the spreadsheet is not currently running, it 
occupies a substantial amount of storage. Running the database query also requires lots of 
storage. Unless real memory is large enough to hold both of these programs, the 
virtual-memory pages of the spreadsheet are paged out, and the database is paged in. The 
next time the user interacts with the spreadsheet, memory occupied by the database must 
be paged out, and the spreadsheet must be paged back in. Clearly user tolerance of this 
situation will be determined by how often windows are switched and how loaded the 
server becomes. 

Resource Requirements of Diskless Workstations 

Several AIX services can be used to measure client-server workloads. The number of NFS 
requests processed by a system is available via nfsstat. This command details the 
NFS-request counts by category. The netstat command allows analysis of total packet 
counts and bytes transferred to a network device. The iostat command details processor 
utilization and disk utilization, which are useful for measuring server systems. Finally, the 
AIX trace facility allows the collection of very detailed performance data. 

Capacity planning for diskless networks is often complicated by the "burstiness" of 
client I/O requests-the characteristic pattern of short periods of high request rates 
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interspersed with longer periods of low request rates. This phenomenon is common in 
systems where people act as the primary drivers of applications. 

The capacity, or number of clients supported by a server and network for a 
particular workload, is determined by request statistics and end-user requirements. Several 
questions should be asked. 

• How often do users really execute this workload? Normally, a user spends a large 
percentage of his or her day on things other than compiling and linking 
programs. Assuming that all of the users will spend all of their time interacting 
with their workstations at top speed can lead to over-conservative estimates of 
the number of users that can be supported. 

• What is the acceptable average network utilization? For Ethernets, it is usually 
30% to 60%, depending on site concerns. 

• What is the probability that a large number of clients will encounter a period in 
which their network utilizations peak simultaneously? During these periods, 
response time will suffer. How often do concurrent peaks occur, and how long do 
they last? 

Sometimes remote execution is more appropriate for running large applications. 
One example is the InfoExplorer online documentation system. lnfoExplorer has a large 
memory requirement. By running the application on the server, via a remote window, the 
client is able to take advantage of the memory of the server system and the fact that 
multiple instances of lnfoExplorer from different clients could share pages of code and 
document files. If the application is run in the client, swapping behavior as described 
previously would dramatically affect response time . Other uses ,  such as large , 
disk-intensive make or cp operations, can also benefit by moving the application closer to 
the hard disks. 

When configuring networks and servers for diskless clients ,  application 
measurement should be performed whenever possible. Don't forget to measure server 
processor utilization and disk utilization. They are more likely to present bottlenecks than 
either Ethernet or 1 6Mb Token-Ring networks. 

Tuning for Performance 

The capacity of a client/server configuration may be thought of in terms of supply and 
demand. The supply of resources is constrained by the type of network and the server 
configuration. The demand is the sum of all client requirements on the server. When a 
configuration produces unacceptable performance, improvement can be obtained by 
changing the client demand or by increasing the server supply of resource. 

Utilization is the percentage of time a device is in use. Devices with utilizations 
greater than 70% will see rapidly increasing response times because incoming requests 
have to wait for previous requests to complete. Maximum acceptable utilizations are a 
trade-off of response time for throughput. In interactive systems, utilizations of devices 
should generally not exceed 70-80% for acceptable response times. Batch systems, where 
throughput on multiple job streams is important, can run close to 100% utilization. 
Obviously, with mixtures of batch and interactive users, care must be taken to keep 
interactive response time acceptable. 
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Client Tuning 

Client tuning can involve any combination of: 

• Adding client memory 

• Increasing the number of client NFS biod daemons 

• Changing client network configuration 

• Adding a disk to the client configuration 

If a client contains insufficient memory, the end result is working-storage paging. 
This can be detected by looking at the output of vmstat -s. If a client experiences 
continual working-storage paging, adding memory to the client will almost always 
improve the client's perfonnance. 

The number of block 1/0 daemons (biods) configured on a client limits the number 
of outstanding NFS read and write requests. In a diskless system without NFS explicitly 
activated, only a few biods are available. If NFS is activated, the number increases. 
Normally, the default number of biods available with NFS activated is sufficient for a 
diskless workstation. 

Both the Ethernet and Token Ring device drivers have parameters defining the 
transmit queue size and receive queue size for the device. These parameters can have 
performance implications in the client. See the section on "Tuning Other Layers to 
Improve NFS Perfonnance" on page 1 83 .  

Adding a disk to a diskless machine should not be considered heresy. In  fact, 
marketing studies indicate that diskless systems are usually upgraded to having a disk 
within a year of purchase. Adding a disk does not necessarily nullify the chief advantage 
of diskless systems-centralized file maintenance. A disk may be added for paging only. 
This is usually called a dataless system. Other combinations exist. For example a disk 
may contain both paging space and temporary file space. " '  

Network Tuning 

The network bandwidth of Ethernet is nominally 1 0  megabits/second. In practice, 
contention among the users of the Ethernet makes it impossible to use the full nominal 
bandwidth. Considering that an IBM SCSI disk can provide up to 32 megabits/second, it 
is alanning to consider a number of clients sharing about one-fourth the bandwidth of a 
disk. This comparison is only valid, however, for applications that do sequential disk 1/0. 
Most workloads are dominated by random 1/0, which is seek and rotational-latency 
limited. Since most SCSI disks have sustainable throughputs of 50 - 85 random 1/0 
operations per second, the effective random 1/0 rate of a disk is 2 - 3 megabits/second. 
Therefore, an Ethernet bandwidth is roughly equivalent to about two disks doing random 
1/0. There is a lesson here. Applications that do sequential 1/0 on large files should be run 
on the system to which the disks are attached, not on a diskless workstation. 

Although the maximum transfer unit (MTU) of a LAN can be changed using SMIT, 
diskless workstations are limited to using the default sizes. 
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Server Tuning 

Server configuration involves : 

• Server CPU 
• Server disk configuration 
• Server NFS configuration 
• Server memory configuration 
• Server network configuration 

The server CPU processing power is significant because all server requests require 
CPU service. Generally, the CPU processing required for read and write requests is 
significantly more than for other requests. 

Server disk configuration is usually the first bottleneck encountered. One obvious 
tuning hint is to balance the disk 1/0, so that no one disk's utilization is much greater than 
the others. Another is to maximize the number of disks . For example, two 400MB disks 
will provide almost twice the random I/Os per second of a single 857MB disk. 
Additionally, with AIX it is possible to place a journal log on another device. By doing 
this, the multiple-write NFS sequence is improved as follows: 

• Write data on file disk 
• Write journal log on log disk (no disk seek) 
• Write file allocation data on file disk (small seek) 

By not having the journal on the file disk, one or two potentially long disk-seek 
operations are avoided. (If the file and the journal log were on the same lightly loaded 
disk, the accessor would be continually seeking back-and-forth between file area and 
journal log.) 

The number of instances of the NFS daemon (nfsd) running on the server limits the 
number of NFS requests that the server can be executing concurrently. The default number 
of nfsds is only 8, which is probably insufficient for all but low-end servers. The number 
of nfsds started at each boot can be changed via smit nfs (Network File System (NFS) 
-> Configure NFS on This System). 

The server memory size is significant only for NFS read operations. Since writes 
cannot be cached, memory size has no effect on write performance. On the other hand, 
assuming that some files are used repetitively, the larger the server memory, the higher the 
probability that a read can be satisfied from memory, avoiding disk 1/0. Avoiding disk 1/0 
has the threefold benefit of reducing disk utilization, improving response time for the 
read, and decreasing server CPU utilization. You can observe server disk activity using 
iostat. The following cues may indicate that additional memory could improve the 
performance of the server: 

• One or more of the disk drives is operating close to its limit (40-85 random I/Os 
per second, see "Disk Pre-Installation Guidelines" on page 67). 

• Over a period of minutes or longer, the number of bytes read is significantly 
greater than the number of bytes written. 

As in the client, both the Ethernet and Token-Ring device drivers have limits on the 
number of buffers available for sending data. See "Tuning Other Layers to Improve NFS 
Performance" on page 1 83 .  
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Commands Performance 

AIX commands experience the same kinds of behavior we observed when running a 
trivial program (see "When a Program Runs on a Diskless Workstation" on page 1 87). 
The behavior of commands can be predicted based on the type and number of file-system 
operations required in their execution. Commands that do numerous file lookup 
operations, such as fmd, or lots of read and/or write operations, such as a large cp, will 
run much slower on a diskless system. The figure "Test Results" should give you a sense 
of the diskless performance of some frequently used commands. 
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Figure 21 : Test Results 
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The penalty experienced by a command on a diskless client is expressed as a ratio of 
elapsed time diskful to elapsed time diskless. This ratio is interesting, but not always 
important. For example, if a command executes in 0.05 seconds diskful and 0.2 seconds 
diskless, the diskless penalty is four. But does an end user care? The 0.2 second response 
is well within human tolerance. On the other hand, if the command is used in a shell script 
and executed 100 times, the shell script response time might increase from 5 seconds to 20 
seconds. For this reason, a good rule of thumb is to avoid diskless workstations for users 
who have complex, frequently executed shell scripts. 

Case Study 1 -An Office Workload 

As an example of client 1/0 characteristics, we measured a workload that is representative 
of a single-user-per-client office environment on a 16MB diskless RISC System/6000 
Model 220. The workload creates a file, using the vi editor, at a typing rate of 6 characters 
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per second. nroff, spell, and cat utilities are run against the document. The document is 
tftped to the server. Additional commands include cal, calendar, rm, mail, and a small 
program to do telephone number lookup. Simulated "think time" is included between 
commands. 

The figure "Office Server CPU Utilization" and the figure "Office Server Disk 
Utilization" show server-CPU and server-disk resource utilization for the office workload. 
The server is a Model 530H with a single 857MB hard disk. The client running the office 
workload is a single Model 220. The workload is "bursty"-the peaks of utilization are 
much higher than the average utilization. 

The figure "Office Ethernet Packets/Second" shows the 1/0-request pattern on the 
Ethernet over the period of the workload execution. The average NFS request count is 9.5 
requests/second, with a peak of 249 requests/second. The figure "Office Ethernet 
Bytes/second" shows the total bytes transferred per second, including protocol overhead. 
The average transfer rate is 4000 bytes/second, with a peak of 1 14,341 bytes/second. This 
workload consumes an average of 1/300th of the nominal bandwidth of an Ethernet, with 
a peak of 1/1 1 utilization. 

Since the average per-client server-CPU utilization is 2%, the average server-disk 
utilization per client is 2.8%, and the average Ethernet utilization is 0.3%, the disk will 
probably be the critical resource when a number of copies of this workload are using a 
single server. 
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Figure 22: Office Server CPU Uti lization 
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Figure 23: Office Server Disk Utilization 
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Figure 24: Office Ethernet Packets/Second 
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Figure 25: Office Ethernet Bytes/Second 
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Case Study 2-A Software-Development Workload 

As another example of client-I/O characteristics, we measured a compile/link/execute 
workload on a 1 6MB diskless RISC System/6000 Model 220. This is a very heavy 
workload compared with the office case just described. The workload combines a number 
of AIX services commonly used in software development in a single-user-per-client 
environment. Simulated "think time" is included to mimic typing delays. 

The figures "Software Development Server CPU Utilization" and "Software 
Development Server Disk Utilization" show the server-resource utilization for this 
workload. The same configuration as the previous case study was used. 
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Figure 26: Software Development Server CPU Util ization 
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Figure 27: Software Development Server Disk Uti lization 
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Figure 28: Software Development Ethernet Packets/Second 
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Figure 29: Software Development Ethernet Bytes/Second 

The figure "Software Development Ethernet Packets/Second" shows the 1/0 request 
pattern on the Ethernet over the period of the workload execution. The average NFS 
request count is 82 requests/second, with a peak of 364 requests/second. The figure 
"Software Development Ethernet Bytes/Second" shows the total bytes transferred per 
second, including protocol overhead. The average transfer rate is 67 ,540 bytes/second, 
with a peak of 3 14,750 bytes/second. This workload consumes an average of I/18th of the 
nominal bandwidth of an Ethernet, with a peak of 1/4 utilization. 
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Since the average per-client server-CPU utilization is 4.2%, the average server-disk 
utilization per client is 8 .9%, and the average Ethernet utilization is 5 .3%, the disk will 
probably be the critical resource when a number of copies of this workload are using a 
single server. However, if a second disk were added to the server configuration, the 
Ethernet would probably be the next resource to saturate. There's always a "next 
bottleneck." 

Number of Cl ients 

Figure 30: Average Server Uti l ization 
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Figure 31 : NFS Request Response Time 

Given that the disk bottleneck occurs at a small number of clients for this workload, 
it is easily measured. The figure "Average Server Utilization" shows the average CPU 
utilization and average disk utilization (one-disk server) of the server as clients are added. 
The figure "NFS Request Response Time" shows the measured response time for NFS 
requests as the number of clients is increased. 
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Tuning Asynchronous Connections for H igh-Speed 
Transfers 

Async ports permit the connection to a computer of optional devices such as terminals, 
printers, fax machines, and modems. Async ports are provided by adapter devices such as 
the 8-, 1 6-, or 64-port IBM adapters or the 128-port Digiboard adapter, which reside on 
the Micro Channel and provide multiple asynchronous connections, typically RS232 or 
RS422. Many adapters, such as the three IBM async adapters mentioned above, were 
originally designed for servicing terminals and printers, and so are optimized for output 
(sends) .  Input processing (receives) is not as well optimized, perhaps because the 
assumption was once made that users could not type very fast. This is not a great concern 
when data transmission is slow and irregular, as with keyboard input. It becomes a 
problem with raw-mode applications, where massive chunks of input are transmitted by 
other computers and by devices such as fax machines. 

This section discusses the performance of the various adapters when receiving and 
sending raw-mode file transfers. While some adapters have inherent limitations, we 
provide some guidelines and methods that can squeeze out better performance from those 
adapters for raw-mode transfers. 

Measurement Objectives and Configurations 

Our measurements had two objectives : to evaluate throughput, effective baud rate, and 
CPU utilization at various baud rates for the adapters and to determine the maximum 
number of ports that could be supported by each device at each baud rate. 

Note: Our throughput measurements were made using raw-mode file-transfer workloads 
and are mainly useful for estimating performance of raw-mode devices, like fax 
machines and modems. These measurements do not apply to commercial multiuser 
configurations, which may incur significant CPU overhead for database accesses or 
screen control and are often gated by disk-1/0 limitations. 

In raw-mode processing, data is treated as a continuous stream; input bytes are not 
assembled into lines, and erase and kill processing are disabled. A minimum data-block 
size and a read timer are used to determine how the operating system processes the bytes 
received before passing them to the application. 

Measurements were performed on the native, 8-, 1 6-, and 64-port adapters at 2400-, 
9600-, 19,200- and 38,400-baud line speeds. (Because RISC System/6000 native async 
ports, the 8-port adapter, and the 1 6-port adapter are all serviced by the same device driver 
and have similar performance, they are referred to as one, the 8/1 6-port adapter.) The 
128-port adapter was measured only at 19,200 and 38,400 baud. 

All ports tested were configured and optimized as fast ports for raw-mode transfers 
(see the fas tport . s shell script on page 205) .  A 1 28,000-character file was written on 
each TTY line by the driver, a RISC System/6000 Model 530, and simultaneously read by 
the system under test, another 530. Each 530 was configured with 32MB of RAM and a 
single 857MB disk drive. 

The AIX performance-monitoring command, iostat (or sar, in the case of the 
1 28-port adapter), was run in the background at a predetermined frequency to monitor 
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system performance. Measurements were taken upon reaching steady state for a fixed 
interval of time in the flat portion of the throughput curve. In each test, the system load 
was gradually increased by adding active ports up to some maximum or until 100% CPU 
utilization was reached. 

Three metrics that best describe peak performance characteristics-aggregate 
character throughput per second (char/sec) averaged over the measured interval, effective 
per-line baud rate, and CPU utilization-were measured for half-duplex receive and 
half-duplex send. 

XON/XOFF pacing (async handshaking, no relation to AIX disk-110 pacing), 
RTS/CTS pacing, and no pacing were tested. Pacing and handshaking refer to hardware or 
software mechanisms used in data communication to tum off transmission when the 
receiving device is unable to store the data it is receiving. We found that XON/XOFF 
pacing was appropriate for the 8/1 6-port adapters when receiving and for the 1 28-port 
adapter both sending and receiving. RTS/CTS was better for the 64-port adapter when 
receiving. No pacing was better for the 8/ 1 6- and 64-port adapters when sending. 

Character throughput is the aggregate number of characters transmitted per second 
across all the lines. Line speeds (or baud rates) of 2400, 9600, 19 ,200, and 38,400, which 
are set through the software, are the optimum speed settings for transfer of data over TTY 
lines. While the baud rate is the peak line speed, measured in bits/second, the effective 
baud rate is always less, and is calculated as 1 0  times the character throughput divided by 
the number of lines. (The factor 1 OX is used because it takes 1 0  bits to transfer one 8-bit 
character.) 

Results 

The following table summarizes our results . "Max ports :" is the number of ports that can 
be supported by the adapter when the effective baud rate most closely approaches the line 
speed. 

Line Speed 8/16-port: 64-port: 128-port: 
Send Receive Send Receive Send Receive 

2400 baud 
Max ports: 32 16  64 64 NIA NIA 
Char/sec 7700 3800 15200 14720 
Eff. Kb/sec: 2.4 2.4 2.3 2.3 
CPU util . % :  5 32 9 76 

9600 baud 
Max ports: 32 1 2  56 20 1 28 1 28 
Char/sec 30700 1 1 500 53200 19200 1 22200 1 22700 
Eff. Kb/sec : 9.6 9.6 9.5 9.6 9,6 9.6 
CPU util . %: 17  96 25 99 2 1  27 

19,200 baud 
Max ports: 32 6 32 10  1 28 1 28 
Char/sec 48900 1 1090 5 1 200 1 8000 245400 245900 
Eff. Kb/sec: 15 .3  1 8 .5 16  1 8  19.2 1 9.2 
CPU util. % :  35  93 23 92 39 39 
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38400 baud 
Max ports: 32 4 24 7 75 75 
Char/sec 78400 10550 50400 15750 255200 255600 
Eff. Kb/sec: 24.5 26.4 2 1  22.5 34 34 
CPU util. % :  68 98 23 8 1  40 37 

The 8/1 6 Async Port Adapter 

8/16 Half-Duplex Send 

The 8/1 6  half-duplex send measurements were made with no pacing, allowing the 
unimpeded outbound transmission of data. For the 8/ 1 6-port adapter, the RISC 
System/6000 processes approximately 1400 char/sec per l % CPU utilization. The peak 
throughput of a single 1 6-port adapter is 48,000 char/sec. 

8/16 Half-Duplex Receive 

In this configuration, using XON/XOFF pacing, the RISC System/6000 processes about 
120 char/sec per 1 % CPU. The peak bandwidth is 1 1 ,000 char/sec at 100% CPU 
utilization for the 1 6-port async adapter. 

The 64-Port Async Adapter 

The limiting device in 64-port async adapter systems is typically the 1 6-port concentrator 
box, of which there can be up to four. Concentrator saturation is a concern because as the 
concentrator box approaches overload, no additional throughput is accepted. The effective 
baud rate is lowered, and there is a noticeable slowdown in work. For the following 
measurements, four 16-port concentrators were connected to the 64 RS232 ports. 

64 Half-Duplex Receive 

The 64-port half-duplex receive measurements used RTS/CTS hardware pacing. In this 
configuration, the RISC System/6000 processes about 195 char/sec per 1 % CPU. The 
peak bandwidth is 19,500 char/sec at 100% CPU utilization. 

For half-duplex receive, a single 16-port concentrator box saturates at 8450 char/sec 
with 44% CPU. Once the concentrator is saturated, no additional throughput is possible 
until another concentrator is added. At 38,400 baud, the single-concentrator saturation 
point is four active ports with an effective rate of 22.5 Kbaud. At 19,200 baud the 
saturation point is five ports with an effective baud rate of 17  Kbaud. At 9600 baud 
saturation is at nine ports with an effective baud rate of 9.6 Kbaud. At 2400 baud the 
system supports all 64 ports with an effective baud rate of 2.3 Kbaud with no saturation 
point. Peak throughput is 14,800 chars/sec. 

64 Half-Duplex Send 

The 64-port half-duplex send measurements were made with no pacing, allowing the 
unimpeded outbound transmission of data with no flow-control restrictions. For the 
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64-port adapter, the RISC System/6000 processes approximately 2200 char/sec per 1 % 
CPU utilization. The peak throughput of the 64-port adapter using all four concentrators is 
54,500 char/sec. 

A single concentrator box saturates at 13300 char/sec with 6% CPU. At 38,400 baud 
it supports six ports with an effective baud rate of approximately 22 Kbaud. At 19,200 
baud it supports eight ports with an effective baud rate of approximately 16 .3 Kbaud. 

The 1 28-Port Async Adapter 

Up to seven 1 28-port Digiboard async adapters can be connected to a given RISC 
System/6000, for a total of 896 ports. 

There are two synchronous-data-link-control (SDLC) links per adapter, with a 
combined capacity of 2.4 Mbaud. (The 64-port adapter has a four-channel SDLC with a 
combined capacity of 768 Kbaud.) 

Other 128-port features that favorably affect data transmission speed and reduce 
CPU utilization are: 

• The polling algorithm piggybacks the clock interrupt, so there are no additional 
host interrupts. Polling rates can be changed by the application on a per-port 
basis . 

• The device driver detects raw-mode 1/0 and moves data from adapter memory to 
user space, bypassing the host line discipline. 

• The concentrator processes most line-discipline options. An exception is cooked 
mode, in which all processing is done by the host. 

• Adapter microcode reallocates memory buffers based on the number of 
concentrators and the available memory. 

No concentrator saturation occurs in the 1 28-port async adapters, giving this adapter 
the advantage over the 64-port async-adapter systems. 

For the measurements, eight 1 6-port concentrator boxes were connected to the 1 28 
RS232 ports. 

128 Half-Duplex Receive 

Using XON/XOFF software pacing, this configuration processes about 6908 char/sec per 
1 % CPU. The peak throughput is 255,600 char/sec at 37% CPU utilization. 

128 Half-Duplex Send 

With no pacing the maximum rate at which this configuration can send data to a TTY 
device is approximately 5800 char/sec per 1 % CPU utilization. The peak throughput of 
the 128-port adapter is 255,200 char/sec. 

Async Port Tuning Techniques 

The test configurations in this study used a number of hardware and software flow-control 
mechanisms and additional software techniques to optimize character-transmission rates. 
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The guidelines below discuss these techniques. (A shell script containing appropriate stty 
commands to implement most of the techniques is given at the end of the section.) 

• Increase the value of the vmin variable for each TTY from the default of 4. The 
vmin variable value is the minimum number of bytes that should be received 
when the read is successful. The value chosen for the vmin variable should be the 
lesser of the application data-block size or 255 (the maximum allowed) . If the 
application block size is variable or unknown, vmin should be set to 255 .  Setting 
the vmin variable to 255 will result in fewer read executions and will reduce CPU 
utilization by 15-20% for file-transfer programs. 

• Except on the 1 28-port adapter, set vtime > 0 to prevent an indefinite block on 
read. If the vtime variable is set to zero on the 1 28-port adapter, POSIX 
line-discipline processing will be offloaded to the adapter hardware, reducing 
CPU processing significantly. 

• For raw-mode sends where output translations are not needed, tum off the opost 
option in the POSIX line discipline. This will help the CPU performance by 
reducing the output path length. For file-transfer applications, which move large 
amounts of data on TTY lines, this can reduce CPU utilization by 3X. Example: 

# s t ty -opost < / dev / t tyn 

• Because the 64-port adapter is prone to unpredictable data overruns at higher 
baud rates when XON/XOFF is used for pacing, use RTS/CTS hardware pacing 
instead. This avoids the risk of losing data. 

• Since the 64-port-adapter concentrator boxes have a limited bandwidth and 
saturate at higher baud rates, adding more ports to a saturated concentrator will 
decrease the performance of all ports connected. Instead, add another 
concentrator and keep going until it is saturated or you have run out of CPU. 

• For input processing, using the echo option is expensive, as it increases the time 
per character. Character echo is useful for canonical user input but is probably 
not necessary for most raw-mode applications. Example: 

# s t ty -echo < / dev / t tyn 

fastport for Fast File Transfers 

The fast port . s script is intended to condition a TTY port for fast file transfers in raw 
mode; for example, when a FAX machine is to be connected. Using the script may 
improve CPU performance by a factor of 3 at 38,400 baud. fastport . s is not intended 
for the canonical processing that is used when interacting with a user at an async terminal, 
because canonical processing cannot be easily buffered. The bandwidth of the canonical 
read is too small for the fast-port settings to make a perceptible difference. 
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Any TTY port can be configured as a fast port. The improved performance is the 
result of reducing the number of interrupts to the CPU during the read cycle on a given 
TTY line. 

1. Create a TTY for the port using SMIT (Devices -> TTY -> Add a TTY), with 
Enable LOGIN=disable and BAUD rate=38,400. 

2. Create the Korn shell script named fas tport . s, as follows :  

# * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

# 
# Configures a fas tport for " raw" async I / 0 . 
# 
# * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
set -x 
sync ; sync 
i=$ 1 

i f  [ $ i - le  1 0 0  l 
then 

# for the native async ports and the 8 - , 1 6 - , and 6 4-port adapters 
# set vmin= 2 5 5  and vtime= 0 . 5  secs with the following s tty 

s t ty -g < / dev/ t ty$ i l awk ' BEGIN { FS= " : " ; OFS= " : "  } 
{ $ 5= " f f " ; $ 6 = 5 ; print $ 0  } ' >foo 

# for a 1 2 8-port adapter , remove the preceding s t ty ,  then 
# uncomment and use the 
# f o l l owing s t ty ins tead to 

# set vmin=2 5 5  and vt ime=O to o f f l oad l ine discipl ine process ing 
# s t ty -g < / dev/ tty$ i l awk ' BEGIN { FS= " : " ; OFS= " : "  } 
# { $ 5 = " ff " ; $ 6 = 0 ; print $ 0  } ' > foo 

s t ty ' cat foo ' < / dev/ tty$ i 
s leep 2 

# s e t  raw mode wi th minimal input and output process ing 
s tty -opos t  - icanon -isig - icrnl -echo -onlcr< / dev / t ty$ i 

rm foo 
sync ; sync 

e l s e  
echo " Usage i s  fas tport . s  < TTY number > "  
f i  

3 .  Invoke the script for TTY number with the command: 

fastport . s  number 

Using netpmon to Evaluate Network Performance 

The netpmon command uses the trace facility to obtain a detailed picture of network 
activity during a time interval. Since it uses the trace facility, netpmon can be run only by 
root or by a member of the· sys tem group. 

In AIX Version 4. 1 ,  the netpmon command is packaged as part of the Performance 
Toolbox for AIX. To determine whether netpmon is available, use: 

l s lpp - l I  perfagent . tools 
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If this package has been installed, netpmon is available. 
Tracing is started by the netpmon command, optionally suspended with trcoff and 

resumed with trcon, and terminated with trcstop. As soon as tracing is terminated, 
netpmon writes its report to stdout. The following sequence of commands gives a simple 
example of netpmon use: 

# netpmon -o nm . test . out ping xac t ive 2 5 6  5 ; trcstop 

The report (somewhat condensed) produced by this sequence, in an otherwise idle 
system, was : 

Wed Jan 12 1 4 : 3 3 : 2 5 1 9 9 4  
Sys tem : AIX alborz Node : 3 Machine : 0 0 0 2 4 9 5 7 3 1 0 0  
4 . 1 5 5  secs i n  measured interval 

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =  
Process CPU Usage Stat i s t i c s : 

Process ( top 2 0 )  PID CPU T ime 
Network 

CPU % CPU % 

p ing 
trcs top 
ksh 
rlogind 
netpmon 
netw 
ne tpmon 
trace 
swapper 
wri tesrv 

Total ( al l  processes ) 
Idle t ime 

1 2 6 9 9  

1 2 7 0 0  
1 3 4 5 7  

6 3 2 1  
12 6 9 0  

7 7 1  
1 0 6 5 0  
1 0 6 4 3  

0 
1 6 3 2  

0 . 0 5 7 3  1 . 3 8 0  
0 . 0 1 5 0  0 . 3 6 0  
0 . 0 1 5 0  0 . 3 6 0  
0 . 0 1 2 7  0 . 3 0 6  
0 . 0 0 6 4  0 . 1 5 3  
0 . 0 0 4 7  0 . 1 1 3  
0 .  0 0 3 7  0 . 0 9 0  
0 . 0 0 2 3  0 . 0 5 5  
0 . 0 0 2 2  0 . 0 5 3  
0 . 0 0 0 9  0 . 0 2 1  

0 . 12 0 1  2 . 8 9 1  

3 . 8 9 0 4  9 3 . 6 3 9  

0 . 0 3 3  

0 . 0 0 0  
0 . 0 0 0  
0 . 0 8 8  
0 . 0 0 0  
0 . 1 1 3  

0 . 0 0 0  
0 . 0 0 0  

0 . 0 0 0  
0 . 0 0 0  

0 . 2 3 4  

First Level Interrupt Handler CPU Usage Stat i s t i c s : 

FLIH 

external devic e  
data page fau l t  
f loat ing point 

Total ( al l  FLIHs ) 

Network 
CPU Time CPU % CPU % 

0 . 0 5 7 3  
0 . 0 3 6 8  
0 . 0 0 0 1  

0 . 0 9 4 3  

1 .  3 7 9  
0 . 8 8 7  
0 . 0 0 3  

2 . 2 6 9  

0 . 8 9 0  
0 . 0 0 0  
0 . 0 0 0  

0 . 8 9 0  

Second Level Interrupt Handler CPU Usage Stat i s t i c s : 

SLIH 

cl ock 
tokdd 
<addr=Ox 0 0 0 2 2 1 4 0 >  

CPU Time 

0 . 0 4 1 5  
0 . 0 0 6 4  
0 . 0 0 0 8  
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Network 
CPU % CPU % 

0 . 9 9 8  
0 . 1 5 4  
0 . 0 1 9  

0 . 0 0 0  
0 . 1 5 4  
0 . 0 0 0  



Total ( al l  SLIHs ) 0 . 0 4 8 6  1 . 1 7 1  0 . 1 5 4  
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =  
Network Device-Driver Statistics ( by Device ) : 

----------- Xmi t  ----------

Device Pkt s / s  Bytes / s  Util QLen 

/ dev/ tokO 3 . 3 7 6 2 9  0 . 0 0 5  0 . 0 0 5  

----- Recv - - - 
Pkts / s Bytes / s  

1 6 . 8 5 1 9 0 0  

Network Device-Driver Transmit Stat i s t i c s  (by Des tination Hos t ) : 

Hos t  Pkts / s  Bytes / s  

xact ive . austin . ibm . com 1 . 4 4 3 9 0  

Detai l ed Second Level Interrupt Handler CPU Usage S tatistic s : 

SLIH : tokdd 
count : 8 4  

cpu t ime (msec ) : avg 0 . 0 7 6  min 0 . 0 5 8  max 0 . 0 9 7  sdev 0 . 0 0 9  

Detailed Network Device-Driver S tat i s t i c s : 
--- - - - -- - ---- - ---- - - - - ---------- - - - - - -- - - -
DEVICE : / dev/ tokO 
recv packets : 7 0  

recv s i z es ( bytes ) :  avg 1 12 . 8  min 6 8  max 3 2 4  sdev 7 5 . 2  
recv t imes (msec ) : avg 0 . 2 2 6  min 0 . 1 5 8  max 0 . 4 4 9  sdev 0 . 0 5 6  

xmit packets : 14  
xmit s i zes ( bytes ) :  avg 1 8 6 . 6  min 5 2  max 3 14 sdev 1 0 0 . 0  
xmit t imes (msec ) : avg 1 . 5 5 2  min 1 . 12 7  max 2 . 5 3 2  sdev 0 . 3 8 0  

Detai led Network Device-Driver Transmi t Statistics ( by Hos t )  : 

HOST : xactive . austin . ibm . com 

xmi t packets : 
xmit s i z es ( bytes ) :  

xmi t times (msec ) : 

6 
avg 2 7 0 . 3  min 52 max 3 14 
avg 1 . 7 7 2  min 1 . 5 1 6  max 2 . 53 2  

sdev 9 7 . 6  
sdev 0 .  3 4 6  

Using iptrace to Analyze Performance Problems 

There are many tools for observing the activity, both normal and pathological, on the 
network. Some run under AIX, others run on dedicated hardware. One tool that can be 
used to obtain a detailed, packet-by-packet description of the LAN activity generated by a 
workload is the combination of the iptrace daemon and the ipreport command. The 
iptrace daemon can only be started by root.  

By default, iptrace traces all packets. An option (-a) allows exclusion of address 
resolution protocol (ARP) packets. Other options can narrow the scope of tracing to a 
particular source host (-s), destination host (-d), or protocol (-p). See AIX Version 4. 1 
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Commands Reference, Volume 2. Because iptrace can consume significant amounts 
of processor time, you should be as specific as possible in describing the packets you want 
traced. 

Since iptrace is a daemon, it should be started with a startsrc command rather that 
directly from the command line. This makes it easier to control and shut down cleanly. A 
typical invocation would be: 

# s tartsrc -s iptrace -a " - i trO /home /user/ iptrac e / logl " 

This command starts the iptrace daemon with directions to trace all activity on the 
Token-Ring interface, t r O ,  and place the trace data in / home / user I iptrace I logl .  

To stop the daemon, use: 

# stopsrc - s iptrace 

If you hadn't  started it with startsrc, you would have to find its process ID with ps 
and kill it. 

The ipreport command is a formatter for the log file. Its output is written to 
stdout.  Options allow recognition and formatting of RPC packets (-r), identifying each 
packet with a number (-n) , and prefixing each line with a 3-character string that identifies 
the protocol (-s). A typical ipreport command to format the logl file just created 
(which is owned by root) would be: 

# ipreport -ns logl > logl_formatted 

This would result in a sequence of packet reports similar to the following examples. 
The first packet is the first half of a ping. The fields of most interest are: the source (SRC) 
and destination (DST) host address, both in dotted decimal and in ASCII; the IP packet 
length (ip_len) ; and the indication of the higher-level protocol in use (ip_p). 

Packet Number 1 3 1  
TOK : ===== ( packet transmitted o n  interface trO ) =====Fri Dec 1 0  0 8 : 42 : 0 7 

1 9 9 3  
TOK : 8 0 2 . 5  packet 
TOK : 8 0 2 . 5  MAC header : 

TOK : access control f i eld = 0 ,  frame contro l field = 4 0  
TOK : [ src = 9 0 : 0 0 : 5 a : a8 : 8 8 : 8 1 ,  dst = 1 0 : 0 0 : 5a : 4 f : 3 5 : 8 2 ]  
TOK : rout ing control f i eld = 0 8 3 0 ,  3 rout ing segments 
TOK : rout ing segments [ e f 3 1 c e 6 1  ba3 0 
TOK : 8 0 2 . 2  LLC header : 
TOK : dsap aa , ssap aa , ctrl 3 ,  proto 0 : 0 : 0 , type 8 0 0  ( I P )  
IP : < SRC = 1 2 9 . 3 5 . 1 4 5 . 1 4 0  > ( alborz . austin . ibm . com )  

IP : < DST = 1 2 9 . 3 5 . 1 4 5 . 13 5  > ( xact ive . austin . ibm . com )  
I P :  ip_v=4 ,  ip_hl =2 0 ,  ip_tos = O , ip_len= 8 4 , ip_id= 3 8 8 9 2 , ip_o f f = O  
IP : ip_ttl = 2 5 5 , ip_sum= f e6 1 ,  ip_p = 1 ( ICMP ) 
ICMP : i cmp_type=8 ( ECHO_REQUEST ) icmp_id= 5 9 2 3  icmp_seq= O 

ICMP : 0 0 0 0 0 0 0 0  2 d 0 8 8abf 0 0 0 5 4 5 9 9  0 8 0 9 0a0b O c O d O e O f  1 - . . . . . E . . . . . . . . . I 
ICMP : 0 0 0 0 0 0 1 0  1 0 1 1 1 2 1 3  1 4 1 5 1 6 1 7  1 8 1 9 1alb lcldl e l f  I · · · · · · · · · · · · · · · ·  I 
ICMP : 0 0 0 0 0 0 2 0  2 02 1 2 2 2 3  2 4 2 5 2 6 2 7  2 8 2 9 2 a2b 2 c 2 d2 e 2 f I ! " # $ % & ' ( )  * + , - . / I 
ICMP : 0 0 0 0 0 0 3 0  3 0 3 1 3 2 3 3  3 4 3 5 3 6 3 7  \ 0 1 2 3 4 5 6 7  I 

208 Monitoring and Tuning Communications 1/0 



The next example is a frame from an ftp operation. Note that the IP packet is the 
size of the MTU for this LAN-1492 bytes. 

Packet Number 5 0 1  
TOK : ===== ( packet received o n  interface t r O  ) =====Fri Dec 1 0  0 8 : 4 2 : 5 1 

1 9 9 3  
TOK : 8 0 2 . 5  packet 
TOK : 8 02 . 5  MAC header : 
TOK : access  control f ield = 1 8 , frame control field = 4 0  
TOK : [ src = 9 0 : 0 0 : 5a : 4 f : 3 5 : 82 ,  ds t = 1 0 : 0 0 : 5a : a8 : 8 8 : 8 1 ]  
TOK : rout ing control field = 0 8b0 , 3 routing segments 
TOK : rout ing s egments [ e f 3 1  ce61 ba3 0 
TOK : 8 0 2 . 2  LLC header : 
TOK : dsap aa , s s ap aa , ctrl 3 ,  proto 0 : 0 : 0 , type 8 0 0  ( IP )  
IP : < SRC = 1 2 9 . 3 5 . 14 5 . 1 3 5  > ( xact ive . aus t in . ibm . com) 
IP : < DST = 1 2 9 . 3 5 . 1 4 5 . 14 0  > ( alborz . austin . ibm . com )  
IP : ip_v=4 ,  ip_hl=2 0 ,  ip_tos=O , ip_len= 1 4 9 2 , ip_id= 3 4 2 3 3 , ip_o f f = O  
IP : ip_t t l= 6 0 , ip_sum= 5ac , ip_p = 6 ( TC P )  
TCP : < s ource port=2 0 ( f tp-data ) , des tination port= 1 0 3 2  > 
TCP : th_seq= 4 4 5 e 4 e 0 2 , th_ack=ed8aae0 2  
TCP : th_o f f = 5 , f lags<ACK I >  
TCP : th_win= 1 5 9 7 2 , th_sum= O ,  th_urp=O 
TCP : 0 0 0 0 0 0 0 0  O ldf 0 0 0 7  2cd6 c 0 7 c  0 0 0 0 4 6 3 5  0 0 0 0 0 2 c 2  1 . . • •  , . .  I . •  F 5  . . . .  1 
TCP : 0 0 0 0 0 0 1 0  0 0 4 8 1 0 0 2  O l ObO O O l  0 0 0 0 2 1b4 0 0 0 0 0d 6 0  l . H . . . . . . . .  ! . . . .  ' I  

--------- Lots o f  uninteresting data omi tted -----------

TCP : 0 0 0 0 0 5 9 0  6 3 e4 0 0 0 0  3 8 6 0 0 0 0 f  4 8 0 0 17 7 d  8 0 4 1 0 0 14 l c . . .  8 '  . .  H . .  } . A . .  I 
TCP : 0 0 0 0 0 5 a0 8 2 2 2 0 0 0 8  3 0 6 1 0 0 3 8  3 0 9 1 0 0 2 0  l . n . .  oa . 8 0 . . I 
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1 0  
DFS Performance Tuning 

Note: The following recommendations are based on performance experiments using AIX 
Version 3 .2 .5 .  At the time this book was written, the degree to which these 
recommendations would apply to AIX Version 4. 1 was not known. 

From the performance standpoint, the most important difference between DFS and 
NFS is the client data-caching capability of DFS, so it is not surprising that the most 
important performance-tuning techniques for DFS involve choosing the attributes of the 
client cache. 

DFS Caching on Disk or Memory? 

To assess the disk versus memory trade-off in your environment, consider the following 
points : 

• If the system being tuned, or another system with similar workload, is already 
running DFS with a disk cache, you can estimate the required size of a memory 
cache by issuing the following command toward the end of a period of peak 
workload: 

cm getcache s i z e  

Divide the number of I KB  blocks being used by .9 to determine the memory 
cache size needed to accommodate the same amount of data. (About 10% of the 
blocks in the cache are used for DFS record keeping.) 

• If the data being handled is frequently reaccessed, the greater potential capacity 
of a disk cache is probably appropriate. 

• If the data being handled is so extensive that it would overflow the largest 
feasible disk cache, or if the data is frequently changed by another client, a 
memory cache is probably more appropriate because of its greater effect on RPC 
performance. 

• The size of a memory cache should not exceed 10% of the real memory size of 
the machine. The recommended size is about 5% of real memory. Because DFS 
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exploits the memory caching capability of the AIX VMM, most of a DFS 
memory cache is used to hold directory and mount-point information. 

• If your system shows any sign of being memory-bound, as evidenced by nonzero 
values in the pi or po columns of a vmstat report, you should not use a memory 
cache for DFS. 

• As a feasibility check, you could temporarily reduce, using rmss, the effective 
memory size of the machine by the amount of memory you are considering using 
for a memory cache. If you observe paging activity, or diminished performance, 
or both, you should not use a memory cache. See "Assessing Memory 
Requirements via the rmss Command" on page 1 15 .  

DFS Cache Size 

Determining the appropriate DFS cache size for a particular system will take some 
experimentation. You might begin by estimating the sum of: 

• The sizes of the set of DPS-resident data files that are read at least once a day. 
• The amount of DPS-resident data that is generated by the users of the system 

each day. 
• The sizes of the DPS-resident programs that are executed more than once a day. 

If the users ' home directories are in DFS, you will want to make an allowance for 
the frequency with which the home directory is accessed, and the effect on perceived 
responsiveness of the system. 

The size of the client cache is specified in the Cachelnfo file and can be overridden 
with the dfsd -blocks n option, where n is the number of KB in the cache. This parameter 
applies to both memory and disk caches. 

DFS Cache Chunk Size 

The DFS cache chunk size can range from 8KB to 256KB. For large files (several MB), 
sequential read and write performance increases as chunk size increases, up t<? about 
64KB. For very large files ( lOOMB or more) a chunk size of 256KB yields the best read 
performance. 

The chunk size is specified with the dfsd -chunksize n option, where n is an integer 
from 1 3  to 1 8, inclusive. The cache size is 2**n bytes, and so ranges from 8KB (2** 1 3) to 
256KB(2** 1 8). This parameter applies to both memory and disk caches. The default size 
is 8KB for memory caches and 64KB for disk caches. 

Number of DFS Cache Chunks 

This parameter only applies to disk caches. For memory caches, the number of chunks is 
already specified by the combination of cache size and chunk size. For disk caches, the 
default number of chunks is computed as the number of cache blocks divided by 8. If a du 
of the cache directory indicates that the space is less than 90% full, increase the number of 
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cache chunks with the dfsd -files n option, where n is the number of chunks to be 
accommodated. This allows better utilization of the available cache space in applications 
that use many small files. Since multiple files cannot share a chunk, the number of chunks 
determines the maximum number of files the cache can accommodate. 

Location of DFS Disk Cache 

The disk cache should be in a logical volume that is : 

• In the outer_edge area, if it is on a 200MB, 540MB, or l .OGB disk drive. 
• In the c enter area, if it is on any other disk drive. 
• Not in the rootvg volume group. 
• Not on the same physical volume as a paging space. 
• Primarily or exclusively for use by the disk cache. 
• Large enough to hold the specified disk cache without encroachment by other 

contents. 

Cache Status-Buffer Size 

The status-buffer size limits the maximum number of files that can be in the cache at one 
time. One entry is required for each file. If the status buffer is full ,  new files will displace 
old files in the cache, even though there is enough disk space to hold them. If your 
workload consists mostly of files that are equal to or smaller than the chunk size, the status 
buffer should have as many entries as there are chunks in the cache. 

The status-buffer size is specified with the dfsd -stat n option, where n is the 
number of entries in the status buffer. The default value of n is 300. 

Effect of Appl ication Read/Write Size 

Sequential read and write performance are affected by the size of the records being read or 
written by the application. In general, read throughput increases with record size up to 
4KB, above which it levels off. Write throughput increases with record size up to 2KB, 
above which it levels off or decreases slightly. 

Communications Parameter Settings for DFS 

DFS uses UDP as its communications protocol . The recommendations for tuning DFS 
communications for servers and multiuser client systems parallel those for tuning 
communications in general (see "UDP, TCP/IP, and mbuf Tuning Parameters Summary" 
on page 1 75) :  

• Set the network adapter transmit and receive queue sizes to 150 ( the maximum). 
This can be done with smit commodev -> (adapter type) -> Adapter -> Change 
I Show Characteristics of a (adapter type) Adapter. These parameters cannot be 
changed while the adapter is in operation. SMIT allows you to specify the change 
to take effect when the system is next restarted. 
You can also use chdev to set these parameters, if you take the adapter offline 
first. For example, for a Token-Ring adapter, the sequence of commands would 
be: 
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# i fconfig trO detach 

# chdev - 1 tokO -a xrnt_que_s i z e = 1 5 0  -a rec_que_s i ze = l 5 0  
# i f conf i g  t r O  hos tname up 

You can observe the effect of the change with: 

$ lsattr -E -1 tokO 

• If a netstat -s command reports a nonzero number in udp : n s o cket 

buf f e r  overflows , increasing the sb_max and udp_recvspace parameters 
with the no command will only solve the problem if an application other than 
DFS is experiencing the overflows. DFS sets its own values ( 176KB) for 
sb_max and udp_recvspace. These values are not displayed or changed by the 
no command. 

DFS File Server Tuning 

On high-speed servers, i t  may be desirable to increase the number of -mainprocs and 
-tokenprocs (in the fxd command), to ensure that all of the available CPU capacity can 
be used effectively. 

• A good level to start with is -mainprocs 10 -tokenprocs 4. 

• Run vmstat during periods of heavy load. If a considerable level of CPU 110 
wait is being experienced, try increasing the -mainprocs and -tokenprocs 
values further. 

DCE LFS Tuning for DFS Performance 

The following should be considered when setting up a DCE LFS aggregate (using the 
newaggr command) on a DFS server: 

• If most of the files will be large, set the -blocksize parameter to the largest 
permitted value that is less than the typical file size. The -blocksize parameter 
can any power of 2 in the range from 4KB to 64KB. 

• If most of the files will be several times larger than the -blocksize parameter, set 
the -fragsize parameter equal to the -blocksize parameter. This may use some 
additional disk space, but will streamline processing. 

• If the aggregate is smaller than lOOMB, use the -logsize parameter to ensure that 
the log is larger than the default ( 1  % of the aggregate size). In general, logsize 
should never be less than 1000 blocks . 
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1 1  
Performance Analysis with the 
Trace Facility 

The AIX trace facility is a powerful system observation tool. The trace facility captures a 
sequential flow of time-stamped system events, providing a fine level of detail on system 
activity. Events are shown in time sequence and in the context of other events . Trace is a 
valuable tool for observing system and application execution. Where other tools provide 
high-level statistics, such as CPU utilization or 1/0-wait time, the trace facility is useful in 
expanding the information to understand who, when, how, and why. 

The operating system is instrumented to provide general visibility to system 
execution. Users can extend visibility into their applications by inserting additional events 
and providing formatting rules. 

Care was taken in the design and implementation of this facility to make the 
collection of trace data efficient, so that system performance and flow would be minimally 
altered by activating trace. Because of this ,  the facility is extremely useful as a 
performance-analysis tool and as a problem-determination tool. 

Understanding the Trace Facility 

The trace facility is more flexible than traditional system-monitor services that access and 
present statistics maintained by the system. With traditional monitor services, data 
reduction (conversion of system events to statistics) is largely coupled to the system 
instrumentation. For example, many systems maintain the minimum, maximum, and 
average elapsed time observed for executions of task A and permit this information to be 
extracted. 

The AIX trace facility does not strongly couple data reduction to instrumentation, 
but provides a stream of trace event records (usually abbreviated to events). It is not 
necessary to decide in advance what statistics will be needed; data reduction is to a large 
degree separated from the instrumentation. The user may choose to determine the 
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minimum, maximum and average time for task A from the flow of events . But it is also 
possible to extract the average time for task A when called by process B; or the average 
time for task A when conditions XYZ are met; or calculate the standard deviation of run 
time for task A; or even decide that some other task, recognized by a stream of events, is 
more meaningful to summarize. This flexibility is invaluable for diagnosing performance 
or functional problems. 

In addition to providing detailed information about system activity, the trace facility 
allows application programs to be instrumented and their trace events collected in addition 
to system events. The trace file then contains a complete record of the application and 
system activity, in the correct sequence and with precise time stamps. 

Limiting the Amount of Trace Data Col lected 

The trace facility generates large volumes of data. This data cannot be captured for 
extended periods of time without overflowing the storage device. There are two ways that 
the trace facility can be used efficiently: 

• The trace facility can be turned on and off in multiple ways to capture snippets of 
system activity. It is practical to capture in this way seconds to minutes of system 
activity for post processing. This is enough time to characterize major 
application transactions or interesting sections of a long task. 

• The trace facility can be configured to direct the event stream to standard output. 
This allows a real-time process to connect to the event stream and provide data 
reduction as the events are recorded, thereby creating long-term monitoring 
capability. A logical extension for specialized instrumentation is to direct the 
data stream to an auxiliary device that can either store massive amounts of data 
or provide dynamic data reduction. This technique is used by the performance 
tools tprof, netpmon, and filemon. 

Starting and Control l ing Trace 

The trace facility provides three distinct modes of use: 

• Subcommand Mode. Trace is started with a shell command (trace) and carries on 
a dialog with the user via subcommands. The workload being traced must be 
provided by other processes, because the original shell process is in use. 

• Command Mode. Trace is started with a shell command (trace -a) that includes 
a flag which specifies that the trace facility is to run asynchronously. The original 
shell process is free to run ordinary commands, interspersed with trace-control 
commands. 

• Application-Controlled Mode. Trace is started (with trcstart()) and controlled by 
subroutine calls (such as trcon(), trcoff()) from an application program. 

Formatting Trace Data 

A general-purpose trace report facility is provided by the trcrpt command. The report 
facility provides little data reduction, but converts the raw binary event stream to a 
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readable ASCII listing. Data can be visually extracted by a reader, or tools can be 
developed to further reduce the data. 

The report facility displays text and data for each event according to rules provided 
in the trace format file. The default trace format file is /etc/trcfmt. It contains a stanza for 
each event ID. The stanza for the event provides the report facility with formatting rules 
for that event. This technique allows users to add their own events to programs and insert 
corresponding event stanzas in the format file to specify how the new events should be 
formatted. 

Viewing Trace Data 

When trace data is formatted, all data for a given event is usually placed on a single line. 
Additional lines may contain explanatory information. Depending on the fields included, 
the formatted lines can easily exceed 80 characters. It is best to view the reports on an 
output device that supports 132 columns. 

An Example of Trace Facility Use 

Obtaining a Sample Trace File 

Trace data accumulates rapidly. We want to bracket the data collection as closely around 
the area of interest as possible. One technique for doing this is to issue several commands 
on the same command line. For example: 

$ trace -a -k " 2 0 e , 2 0 f "  -o . / trc_raw ; cp . .  /bin/ track / tmp / j unk ; trcs top 

captures the execution of the cp command. We have used two features of the trace 
command. The -k " 2  o e ,  2 o f "  option suppresses the collection of events from the lockl 
and unlockl functions. These calls are numerous and add volume to the report without 
adding understanding at the level we're interested in. The -o . / trc_raw option causes 
the raw trace output file to be written in our local directory. 

Note: This example is more educational if the input file is not already cached in system 
memory. Choose as the source file any file that is about 50KB and has not been 
touched recently. 

Formatting the Sample Trace 

We use the following form of the trcrpt command for our report: 

$ trcrpt -0 " exec=on , pid=on " trc_raw > cp . rp t  

This reports both the fully qualified name of the file that is execed and the process 
ID that is assigned to it. 

A quick look at the report file shows us that there are numerous VMM page assign 
and delete events in the trace, like the following sequence: 

lBl ksh 8 5 2 5  0 . 0 0 3 1 0 9 8 8 8  0 . 1 6 2 8 1 6  

0 0 . 1 5 0 E  ppage= lF7F 

ss_private working_s torage 
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lBO ksh 8 5 2 5  0 . 0 0 3 1 4 1 3 7 6  0 . 0 3 1 4 8 8  VMM page assign :  V . S = O O  
0 0 . 2 F 3 3  ppage=1F7F 

delete_in_progres s  process_private working_s torage 

We are not interested in this level of VMM activity detail at the moment, so we 
reformat the trace with: 

$ trcrpt -k " lbO , lbl " -0 " exec = on , pid=on " trc_raw > cp . rpt2 

The - k " lb O  , lbl " option suppresses the unwanted VMM events in the formatted 
output. It saves us from having to retrace the workload to suppress unwanted events. We 
could have used the -k function of trcrpt instead of that of the trace command to 
suppress the lockl and unlockl events, if we had believed that we might need to look at the 
lock activity at some point. If we had been interested in only a small set of events, we 
could have specified -d "hookidl,hookid2" to produce a report with only those events. 
Since the hook ID is the left-most column of the report, you can quickly compile a list of 
hooks to include or exclude. 

A comprehensive list of Trace hook IDs is available in lnfoExplorer. The hook IDs 
are defined in /usr/include/sys/trchkid.h. 

Reading a Trace Report 

The header of the trace report tells you when and where the trace was taken, as well as the 
command that was used to produce it: 

Fri Nov 19 1 2 : 12 : 4 9 1 9 9 3  
Sys tem : AIX ptool Node : 3 
Machine : 0 0 0 1 6 8 2 8 1 0 0 0  
Internet Addres s : 0 0 0 0 0 0 0 0  0 . 0 . 0 . 0  
trace -ak 2 0 e  2 0 f  -o -o . / trc_raw 

The body of the report looks approximately as follows: 

ID PROCESS NAME PID ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL 

INTERRUPT 
1 0 1  ksh 8 5 2 5  0 . 0 0 5 8 3 3 4 7 2  0 . 1 0 7 0 0 8  
1 0 1  ksh 7 2 14  0 . 0 1 2 8 2 0 2 2 4  0 . 0 3 17 4 4  
1 3 4  cp 7 2 14 0 . 0 1 4 4 5 1 4 5 6  0 . 0 3 0 4 6 4 
. .  /bin/ trk / j unk 

In cp . rpt you can see the following phenomena: 

kfork 
execve 
exec cp 

• The fork, exec, and page fault activities of the cp process 
• The opening of the input file for reading and the creation of the I tmp I j unk file 
• The successive read/write system calls to accomplish the copy 
• The process cp becoming blocked while waiting for 1/0 completion, and the wait 

process being dispatched 
• How logical-volume requests are translated to physical-volume requests 
• The files are mapped rather than buffered in traditional kernel buffers, and the 

read accesses cause page faults that must be resolved by the Virtual Memory 
Manager. 

• The Virtual Memory Manager senses sequential access and begins to prefetch the 
file pages. 
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• The size of the prefetch becomes larger as sequential access continues. 
• When possible, the disk device driver coalesces multiple file requests into one 

1/0 request to the drive. 

The trace output looks a little overwhelming at first. This is a good example to use 
as a learning aid. If you can discern the activities described, you are well on your way to 
being able to use the trace facility to diagnose system-performance problems. 

Fi ltering of the Trace Report 

The full detail of the trace data may not be required. You can choose specific events of 
interest to be shown. For example, it is sometimes useful to find the number of times a 
certain event occurred. To answer the question "How many opens occurred in the copy 
example?" first find the event ID for the open system call . This can be done as follows:  

$ trcrpt - j I grep - i open 

You should be able to see that event ID 15b is the open event. Now, process the data 
from the copy example as follows: 

$ trcrpt -d 15b -o " exec=on" trc_raw 

The report is written to standard output, and you can determine the number of open 
subroutines that occurred. If you want to see only the open subroutines that were 
performed by the cp process, run the report command again using the following: 

$ trcrpt -d 15b -p cp -0 " exec=on " trc_raw 

Starting and Control l ing Trace from the Command Line 

The trace facility is configured and data collection optionally started by the trace 
command, the detailed syntax of which is described in AIX Version 4. 1 Commands 
Reference, Volume 5. 

After trace is configured by the trace command, there are controls to turn data 
collection on and off and to stop the trace facility (stop deconfigures trace and unpins 
buffers) .  There are several ways to invoke the controls :  subcommands, commands, 
subroutines, and ioctl calls. The subroutine and ioctl interfaces are described in "Starting 
and Controlling Trace from a Program" on page 219 .  

Control l ing Trace in  Subcommand Mode 

If the trace routine is configured without the -a option, it runs in subcommand mode. 
Instead of the normal shell prompt, a prompt of ">" is given. In this mode the following 
subcommands are recognized: 

trcon 

trcoff 

q or quit 

!command 

Starts or resumes collection of event data. 

Suspends collection of event data. 

Stops collection of event data and terminates the trace routine. 

Runs the specified shell command. 
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Control l ing Trace by Commands 

If the trace routine is configured to run asynchronously (trace -a), trace can be controlled 
by the following commands: 

trcon 

trcoff 

trcstop 

Starts or resumes collection of event data. 

Suspends collection of event data. 

Stops collection of event data and terminates the trace routine. 

Starting and Controlling Trace from a Program 

The AIX trace facility can be started from a program, via a subroutine call. The subroutine 
is trcstart and is in the librts.a library. The syntax of the trcstart subroutine is: 

int trcstart(char •args) 

where args is simply the options list that you would have entered for the trace command. 
By default, the system trace (channel 0) is started. If you want to start a generic trace, you 
should include a -g option in the args string. On successful completion, the trcstart 
subroutine returns the channel ID. For generic tracing this channel ID can be used to 
record to the private generic channel. 

When compiling a program using this subroutine, the link to the librts.a library 
must be specifically requested (use -I rts as a compile option). 

Control l ing Trace with Trace Subroutine Calls 

The controls for the trace routine are available as subroutines from the librts.a library. 
The subroutines return zero on successful completion. The subroutines are: 

int trcon() Begins or resumes collection of trace data. 

int trcoff() Suspends collection of trace data. 

int trcstop() Stops collection of trace data and terminates the trace routine. 

Control l ing Trace with ioctl Cal ls 

Each of the above subroutines for controlling trace: 

• opens the trace control device (/dev/systrctl) 

• Issues the appropriate ioctl 

• closes the control device 
• Returns to the calling program 

To turn tracing on and off around individual sections of code, it may be more 
efficient for a program to issue the ioctl controls directly. This avoids the repetitive 
opening and closing of the trace control device. To use the ioctl interface in a program, 
include <sys/trcctl.h> to define the ioctl commands. The syntax of the ioctl is as follows: 

ioctl (fd, CMD, Channe� 
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where: 

f d is the file descriptor returned from opening /dev/systrctl 

CMD is one of: TRCON, TRCOFF, or TRCSTOP 

Channel is the trace channel (0 for system trace) 

The following code example shows how to start a trace from a program and only 
trace around a specified section of code: 

# include < f cntl . h> 
# include <sys / trcct l . h> 
extern int trcs tart ( char * arg ) ; 
char * c t l_dev = " / dev/ sys trct l " ; 

int c t l_fd ; 
main ( )  

{ 
print f ( " conf iguring trace c o l l ection \ n" ) ; 
i f  ( trcs tart ( " -ad" ) ) {  

perror ( " trcs tart " ) ; 
exi t ( 1 ) ; 

printf ( " opening the trace device \n " ) ; 
i f ( ( c tl_fd =open ( c tl_dev , O_RDWR ) ) < O ) { 

perror ( " open ct l_dev " ) ;  
exi t ( 1 ) ; 

printf ( " turning data collect ion on \ n" ) ; 

i f ( ioctl ( c t l_fd , TRCON , 0 ) ) {  
perror ( " TRCON" ) ; 
exi t ( l ) ; 

/ *  * * *  code here wi l l  be traced * * *  * /  

printf ( " The code to print this l ine wi l l  be traced . " ) ; 

printf ( " turning data collection o f f \ n " ) ; 
i f  ( ioctl ( c t l_fd , TRCOFF , 0 ) ) { 

perror ( " TRCOFF " ) ; 
exi t ( 1 ) ; 

print f ( " s topping the trace daemon \n " ) ; 
i f  ( trcstop ( O ) ) {  

perror ( " trcs top " ) ; 
exit ( 1 ) ; 

exi t  ( 0 ) ; 

Since no output file was specified in the parameter to the trcstart() subroutine, the 
output of the trace will be in /var/adm/ras/trcitle, which is also the default input file of 
the trcrpt command. 
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Adding New Trace Events 

The operating system is shipped instrumented with key events. The user need only 
activate trace to capture the flow of events from the operating system. Application 
developers may want to instrument their application code during development for tuning 
purposes. This provides them with insight into how their applications are interacting with 
the system. 

To add a trace event you have to design the trace records generated by your program 
in accordance with trace interface conventions. You then add trace-hook macros to the 
program at the appropriate locations. Traces can then be taken via any of the standard 
ways of invoking and controlling trace (commands, subcommands, or subroutine calls). 
To use the trcrpt program to format your traces, you need to add stanzas describing each 
new trace record and its formatting requirements to the trace format file. 

Possible Forms of a Trace Event Record 

A trace event can take several forms. An event consists of a hook word, optional data 
words, and an optional time stamp, as shown in the figure "Format of a Trace Event 
Record" on page 22 1 .  A four-bit type is defined for each form the event record can take. 
The type field is imposed by the recording routine so that the report facility can always 
skip from event to event when processing the data, even if the formatting rules in the trace 
format file are incorrect or missing for that event. 

1 2-bit I 4-bit I 1 6-bit 
Hook ID Type Data Field 

Hook Word 
(required) 

I Data Word 1 I � - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -..... 
D1 
(optional) 

I Data Word 2 � I . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - � 
1 Data Word 3 : L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - , I 
1 Data Word 4 I 

I L- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - · . 

: Data Word 5 I 
� - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - � 
I 32-bit Time Stamp : 
L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Figure 32: Format of a Trace Event Record 

D2 
(optional) 
D3 
(optional) 
D4 
(optional) 
D5 
(optional) 
T 
(optional) 

An event record should be as short as possible. Many system events use only the 
hook word and time stamp. There is another event type that is mentioned but should 
seldom be used because it is less efficient and is intrusive. It is a long format that allows 
the user to record a variable length of data. In this long form, the 16-bit data field of the 
hook word is converted to a length field that describes the length of the event record. 
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Trace Channels 

The trace facility can accommodate up to eight simultaneous channels of trace-hook 
activity, which are numbered 0-7. Channel 0 is always used for system events, but 
application events can also use it. The other seven channels, called generic channels, can 
be used for tracing application-program activity. 

When trace is started, channel 0 is used by default. A trace -n command (where n is 
the channel number) starts trace to a generic channel. Use of the generic channels has 
some limitations. 

• The interface to the generic channels costs more CPU time than the interface to 
channel 0 because of the need to distinguish between channels and because 
generic channels record variable-length records. 

• Events recorded on channel 0 and on the generic channels can be correlated only 
by time stamp, not by sequence, so there may be situations in which it is not 
possible to determine which event occurred first. 

Macros for Recording Trace Events 

There is a macro to record each possible type of event record. The macros are defined in 
/usr/include/sys/trcmacros.h. The event IDs are defined in /usr/include/sys/trchkid.h. 
These two files should be included by any program that is recording trace events. 

The macros to record events on channel 0 with a time stamp are: 

TRCHKLOT(hw) 

TRCHKLlT(hw,Dl) 

TRCHKL2T(hw,Dl ,D2) 

TRCHKL3T(hw,Dl,D2,D3) 

TRCHKL4T(hw,Dl,D2,D3,D4) 

TRCHKL5T(hw,Dl,D2,D3,D4,D5) 

Similarly, to record events on channel 0 without a time stamp, use: 

TRCHKLO(hw) 

TRCHKLl(hw,Dl) 

TRCHKL2(hw,DJ,D2) 

TRCHKL3(hw,Dl ,D2,D3) 

TRCHKL4(hw,Dl ,D2,D3,D4) 

TRCHKLS(hw,Dl ,D2,D3,D4,D5) 

The type field of the trace event record is set to the value that corresponds to the 
macro used, regardless of the value of those 4 bits in the hw parameter. 

There are only two macros to record events to one of the generic channels ( 1-7) .  
These are as follows: 

TRCGEN(ch,hw,Dl, len,buf) 
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TRCGENT(ch,hw,Dl, len,buj) 

These macros record in the event stream specified by the channel parameter (ch) a 
hook word (hw), a data word (DJ) and Len bytes from the user's data segment beginning at 
the location specified by buf 

Use of Event IDs 

The event ID in a trace record identifies that record as belonging to a particular class of 
records. The event ID is the basis on which the trace mechanism records or ignores trace 
hooks, as well as the basis on which the trcrpt command includes or excludes trace 
records in the formatted report. 

Event IDs are 1 2  bits (three hexadecimal digits) for a possible 4096 IDs. Event IDs 
that are permanently left in and shipped with code are permanently assigned by IBM to 
avoid duplication. To allow users to define events in their environments or during 
development, the range of event IDs from hex 010  through hex OFF has been set aside for 
temporary use. Users can freely use IDs in this range in their own environment (that is, 
any set of systems within which the users are prepared to ensure that the same event ID is 
not used ambiguously). 

Warning: It is important that users who make use of this event range do not let the code 
leave their environment. If you ship code instrumented with temporary hook 
IDs to an environment in which you do not control the use of IDs, you risk 
collision with other programs that already use the same IDs in that environment. 

Event IDs should be conserved because there are so few of them, but they can be 
extended by using the 16-bit Data Field. This yields a possible 65536 distinguishable 
events for every formal hook ID. The only reason to have a unique ID is that an ID is the 
level at which collection and report filtering are available in the trace facility. 

A user-added event can be formatted by the trcrpt command if there is a stanza for 
the event in the specified trace format file. The trace format file is an editable ASCII 
file-see "Syntax of Stanzas in the Trace Format File", below. 

Examples of Coding and Formatting Events 

The following example shows the use of trace events to time the execution of a program 
loop: 

#inc lude < sys / trcc t l . h> 
# inc lude < sys / trcmacros . h> 
# inc lude < sys / trchkid . h> 
char * c t l_file = " / dev/ systrc t l " ;  
int c t l f d ;  
int i ;  
main { )  

{ 
print f { " configuring trace c o l l ec tion \n " ) ; 
i f  { trcs tart { " -ad" ) ) {  

perror { " trcs tart " ) ; 
exit ( 1 ) ; 
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printf ( " opening the trace device \ n " ) ; 

i f ( ( c t l fd = open ( c t l_f i l e , 0 ) ) < 0 )  { 
perror ( c tl_f i l e ) ;  

exi t ( 1 ) ; 

print f ( " turning trace on \ n " ) ; 
i f ( ioctl ( c t l f d , TRCON , 0 ) ) { 

perror ( " TRCON " ) ; 

exi t  ( 1 ) ; 

for ( i= l ; i < ll ; i++ ) { 
TRCHKLlT ( HKWD_USERl , i ) ; 

/ *  The code being measured goes here . The interval * /  
/ *  be tween occurrences o f HKWD_USERl i n  the trace * /  
/ *  f i l e  i s  the total t ime for one i t erat ion . * /  

print f ( " turning trace o f f \ n " ) ; 
i f ( ioctl ( c t l f d , TRCSTOP , 0 ) ) { 

perror ( " TRCOFF " ) ; 

exit ( 1 ) ; 

print f ( " s topping the trace daemon \n " ) ; 

i f  ( trcstop ( O ) ) { 
perror ( " trcs top " ) ; 
exi t  ( 1 ) ; 

exi t ( 0 ) ; 

When you compile the sample program, you need to link to the librts.a library as 
follows: 

$ xlc -03 sample . c  -o sample - 1  rts 

HKWD_USERl is event ID 010 hexadecimal (you can verify this by looking at 
/usr/include/sys/trchkid.h) . The report facility does not know how to format the 
HKWD_USERl event, unless rules are provided in the trace format file. The following 
example of a stanza for HKWD_USERl could be used. 

# User event HKWD_USERl Formatt ing Rules Stanza 
# An example that wi l l  format the event usage of  the sample program 
0 1 0  1 . 0  L=APPL " USER EVENT - HKWD_USERl " 02 . 0  \ n  \ 

" The # of loop i terations = "  U4 \ n  \ 
" The elapsed time of the last l oop = " \ 

endt imer ( Ox0 1 0 , 0x0 1 0 ) s tartt imer ( Ox0 1 0 , 0x0 1 0 ) 

When entering the example stanza, do not modify the master format file 
/etc/trcfmt, but instead make a copy and keep it in your own directory (assume you name 
it mytrc fmt). When you run the sample program, the raw event data is captured in the 
default log file since no other log file was specified to the trcstart subroutine. You 
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probably want to filter the output report to get only your events. To do this, run the trcrpt 
command as follows: 

trcrpt -d 0 1 0  - t mytrc fmt -0 " exec=on " > sample . rpt 

You can browse samp l e . rpt to see the result. 

Syntax for Stanzas in the Trace Format File 

The intent of the trace format file is to provide rules for presentation and display of the 
expected data for each event ID. This allows new events to be formatted without changing 
the report facility. Rules for new events are simply added to the format file. The syntax of 
the rules provides flexibility in the presentation of the data. 

APPL 
Event_/d - V. R- L= � SVC 7 Event_Label 

KERN 
INT 

\n 
\t 
starttimer(#,#) 
endtimer(#,#) 

Data_Descriptor 

where a Data_ Descriptor has the syntax: 

Format 
Data_ Label 

Data Descriptor 

Figure 33: Syntax of a Stanza in a Trace Format File 
The figure "Syntax of a Stanza in a Trace Format File" illustrates the syntax for a 

given event. A trace format stanza can be as long as required to describe the rules for any 
particular event. The stanza can be continued to the next line by terminating the present 
line with a '\' character. The fields are: 

event_id 

V.R 

L= 

Each stanza begins with the three-digit hexadecimal event ID that the 
stanza describes, followed by a space. 

Describes the version (V) and release (R) in which the event was first 
assigned. Any integers will work for V and R, and users may want to 
keep their own tracking mechanism. 

Specifies text indentation level. The text description of an event can 
begin at various indentation levels. This improves the readability of the 
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event_label 

\n 

\t 

report output. The indentation levels correspond to the level at which 
the system is executing. The recognized levels are application level 
(APPL), a transitioning system call (SVC), kernel level (KERN), and 
interrupt (INT). 

Specifies an ASCII text string that describes the overall use of the event 
ID. This is used by the -j option of the trcrpt command to provide a 
listing of events and their first-level description. The event_label also 
appears in the formatted output for the event unless the event_label 

starts with an @ character. 

The event stanza describes how to parse, label, and present the data 
contained in an event record. The \n (newline) function can be 
imbedded in the event stanza to force presentation of the data to a new 
line. This allows the presentation of the data for an event to be several 
lines long. 

Inserts a tab at the point where it is encountered in parsing the 
description. This is similar to the way the \n function inserts new lines. 
Spacing can also be inserted by spaces in the data_label or match_label 

fields . 

starttimer(timer!D), endtimer(timer!D) 

The timer/D is a unique identifier that associates a particular starttimer 

with a later endtimer that has the same identifier. By (unenforced) 
convention, the timer/D is of the form: 

ID of starting event, ID of ending event 

When the report facility encounters a starttimer directive while parsing 
an event, it associates the starting event's  time with the specified 
timer/D. When an endtimer with the same timer/D is encountered, the 
report facility shows the delta time (in brackets) that elapsed between 
the starting event and ending event. The begin- and end-system-call 
events make use of this capability. On the return from a system-call 
event, a delta time indicates how long the system call took. 

data_descriptor Describes how the data should be consumed, labeled, and presented by 
the report facility. The syntax of the data_descriptor field is expanded 
in the second part of the figure "Syntax of a Stanza in a Trace Format 
File" on page 225 . The various fields of the data_descriptor are 
described as follows: 

format The user can think of the report facility as having a pointer into the data 
portion of an event. This data pointer is initialized to point to the 
beginning of the event data (the 1 6-bit data field in the hook word). The 
format field describes how much data the report facility should consume 
from this point and how the data should be considered. For example, a 
format field of Bm.n tells the report facility to consume m bytes and n 

bits of data and to consider it as binary data. (The possible format fields 
are described in following sections.) If the format field is not followed 
by a comma, the report facility outputs the consumed data in the format 
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data_label 

specified. If, however, the format field is followed by a comma, it 
signifies that the data is not to be displayed but instead compared 
against the following match_values. The data descriptor associated with 
the matching match_value is then applied to the remainder of the data. 

The data_label is an ASCII string that can optionally precede the output 
of data consumed by the format field. 

match_value The match_va.lue is data of the same format described by the preceding 
format fields. Several match_values typically follow a format field that 
is being matched. The successive match fields are separated by 
commas. The last match value is not followed by a comma. A \* is used 
as a pattern-matching character to match anything. A pattern-matching 
character is frequently used as the last match_value field to specify 
default rules if the preceding match_values field did not occur. 

match_label The match_label is an ASCII string that will be output for the 
corresponding match. 

All of the possible format fields are described in the comments of the /etc/trcfmt 
file. A brief introduction to the possibilities is provided here: 

Format Field Descriptions 

Am.n 

Sl, S2, S4 

Bm.n 

Xm 

D2, D4 

U2, U4 

F4, F8 

Gm.n 

Om.n 

Specifies that m bytes of data should be consumed as ASCII text and 
that the text should be displayed in an output field that is n characters 
wide. The data pointer is moved m bytes. 

Specifies left-justified string. The length of the field is defined as 1 byte 
(Sl) ,  2 bytes (S2) , or 4 bytes (S4) . The data pointer is moved 
accordingly. 

Specifies binary data of m bytes and n bits. The data pointer is moved 
accordingly. 

Specifies hexadecimal data of m bytes. The data pointer is moved 
accordingly. 

Specifies signed decimal format. Data length of 2 (02) bytes or 4 (04) 
bytes is consumed. 

Specifies unsigned decimal format. Data length of 2 or 4 bytes is 
consumed. 

Specifies floating point of 4 or 8 bytes. 

Specifies that the data pointer should be positioned m bytes and n bits 
into the data. 

Omits, from the current location of the data pointer, the next m bytes 
and n bits . 

Rm Reverses the data pointer m bytes. 
Some macros are provided that can be used as format fields to quickly access data. 

For example: 

$HD, $01, $02, $03, $04, $05 
Access the 16-bit data field of the hook word and data words 1 through . 
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$D1%B2 . 3  

5 of the event record, respectively. The data pointer is not moved. The 
data accessed by a macro is hexadecimal by default. A macro can be 
cast to a different data type (X, D, U, B) by using a "%" character 
followed by the new format code. For example: 

This macro causes data word 1 to be accessed but to be considered as 2 
bytes and 3 bits of binary data. 

The comments in the /etc/trcfmt file describe other format and macro possibilities 
and describe how a user can define additional macros .  
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12 
Performance Diagnostic Tool 
(PDT) 

PDT assesses the current state of a system and tracks changes in workload and 
performance. It attempts to identify incipient problems and suggest solutions before the 
problems become critical. PDT is available only on AIX Version 4. 1 .  

For the most part, PDT functions with no required user input. PDT data collection 
and reporting are easily enabled, and then no further administrator activity is required. 
Periodically, data is collected and recorded for historical analysis, and a report is produced 
and mailed to the adm userid. Normally, only the most significant apparent problems are 
recorded on the report. If there are no significant problems, that fact is reported. PDT can 
also be customized to direct its report to a different user or to report apparent problems of 
a lower severity level. 

Structure of PDT 

As shown in the figure "PDT Component Structure," the PDT application consists of three 
components: 

• The collection component comprises a set of programs that periodically collect 
and record data. 

• The retention component periodically reviews the collected data and discards 
data that is obsolete. 

• The reporting component periodically produces a diagnostic report from the 
current set of historical data. 
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PDT considers various aspects of a system's configuration, availability, and 
delivered performance in making its assessment. In particular, areas of configuration 
imbalance are sought out (such as I/0-configuration balance, paging-configuration 
balance) as well as other configuration problems (for example, disks not allocated to 
volume groups). A wide variety of trending assessments is made, including file sizes, 
file-system sizes, paging-area usage, network delays and workload-related delays. 

Scope of PDT Analysis 

PDT collects configuration, availability, workload, and performance data on a daily basis. 
This data is maintained in a historical record. Approximately a month's worth of data is 
kept in this way. Also on a daily basis, PDT generates a diagnostic report. The report is 
mailed to user adrn. 

In addition to mailing the report, PDT stores a copy in /var/perf/tmp/PDT_RE· 
PORT. B efore the new report i s  written, the previous report i s  renamed 
/var/perf/tmp/PDT _REPORT.last. 

While many common system performance problems are of a specific nature-a 
system may have too little memory-PDT also attempts to apply some general concepts 
of well-performing systems to its search for problems. 
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Balanced Use of Resources 

In general, if there are several resources of the same type, then a balanced use of those 
resources produces better performance. 

• Comparable numbers of physical volumes (disks) on each disk adapter 
• Paging space distributed across multiple physical volumes 
• Roughly equal measured load on different physical volumes 

Operation within Bounds 

Resources have limits to their use. Trends that would attempt to exceed those limits should 
be detected and reported. 

• A disk drive cannot be utilized more than 100% of the time. 

• File and file-system sizes cannot exceed the allocated space. 

Identify Workload Trends 

Trends can indicate a change in the nature of the workload as well as increases in the 
amount of resource used: 

• Number of users logged on. 
• Total number of processes 
• CPU-idle percentage 

Error-Free Operation 

Hardware or software errors often produce performance problems. 

• Check the hardware and software error logs. 
• Report bad VMM pages. 

Changes Should be Investigated 

New workloads or processes that start to consume resources may be the first sign of a 
problem. 

• Appearance of new processes that consume lots of CPU or memory resources. 

Appropriate Setting of System Parameters 

There are many parameters in a system. Are all of them set appropriately? 

• Is maxuproc set too low? 
• How about the memory-load-control-parameter settings? 

The PDT report consists of several sections (see the example, below). After the 
header information, the Alerts section contains identified violations of the concepts noted 
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above. If no alerts are found, the section is not present in the report. The next two sections 
are for upward trends and downward trends. These two sections focus on problem 
anticipation, rather than on the identification of existing problems. In general, the same 
concepts are applied-but with a view toward projecting when violations will occur. If no 
upward or downward trends are detected, these sections are not present in the report. 

Sample PDT Report 

Performance Diagno s t i c  Fac i l i ty 1 . 0  

Report printed : Tue Aug 3 1 0 : 0 0 : 0 1 1 9 9 3  
Hos t name : tes t . austin . ibm . com 
Range of analys is is from : Hour 16 on Monday , July 5 th ,  1 9 9 3  

to : Hour 9 o n  Tuesday , Augus t  3 rd ,  1 9 9 3 . 

[ To disable/modi fy/ enable collect ion or report ing , execute the pdt_config 

scrip t ]  

--------------------- Alerts ------------- --------

I /  0 BALANCE 
Phys . vo l . hdiskO is s igni f i cant ly bus ier than others 
vo lume cdO , mean ut i l . = 0 . 0 0 
volume hdiskO , mean util . 1 1 . 7 5 
volume hdiskl , mean u t i l . = 0 . 0 0 

PAGE SPACE AND MEMORY 
Mean page space used = 4 6 . 8 5 MB 

Sys tem has 3 2 MB memory ; may be inadequate . 
Cons ider further inves tigations to determine i f  memory is a 

bottleneck 

------------------- Upward Trends ----------------

FILE SYSTEMS 

F i l e  sys tem hd2 ( /usr )  PERCENTAGE FULL 
now , 4 5 . 0 0 % ful l , and growing an avg . of 2 . 0  % / day 
At thi s rate , hd2 wi l l  be full in about 1 5  days 

PAGE SPACE 

Page space hd6 USE 

now , 4 4 . 8 0 MB and growing an avg . of 1 . 8 1 MB/ day 
At thi s rate , hd6 wi l l  be full in about 3 0  days 

WORKLOAD TRACKING 
- Workload nusers indicator is increas ing ; 

now 2 3 , and growing an avg . of 1 . 2  per day 
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----------------- ------ Sys tem Heal th - - - - - - - - - - - - - - 
SYSTEM HEALTH 

- Current process state breakdown : 
2 .  0 0  [ 3 .  0 % ]  : wai t ing for the cpu 
6 4 . 0 0  [ 9 7 . 0 % ]  : s leeping 
6 6 . 0 0 = TOTAL 
[ based on 1 measurement cons i s ting of 10 2 -second samples ] 

------------------ Summary ------------------- -----

Thi s i s  a s everi ty level 2 report 
Further detai l s  are available at severi ty leve l s  > 2 

In the above example, the header section indicates the release number of PDT, the 
date the report was printed, the host from which the data was collected, and the range of 
dates of the data that fed the analysis. 

The next section, Alerts, indicates suspicious configuration and load conditions. In 
the example, it appears that, of the three disks on the system, one is getting essentially all 
of the 1/0 activity. Clearly, 1/0 load is not distributed in such a way as to best make use of 
the available resources . The next message, PAGE SPACE AND MEMORY, suggests that 
the system may be underconfigured in memory. 

The Upward Trends section in the example identifies two possible trends. The first 
is that the file system on logical volume hd2 (the /usr file system) is growing at an 
average rate of 2% per day. An estimated date at which the file system will be full is 
provided, based on an assumption of continued linear growth. 

The second trend is the apparent systematic growth in the utilization level of one of 
the paging areas. Information about its rate of increase and expected fill-date is given. 
Knowledge of growing file systems and paging spaces approaching their limits is 
potentially very important (especially if the rate is high or the expected fill-date is 
imminent), since a full file system or paging space can cause system or application failure. 

The third trend is a change in one of the workload indicators. The following 
indicators are tracked by PDT for trends : 

Keyword Indicator 

nusers 

loadavg 

nprocesses 

STAT_A 

STAT_W 

STAT_Z 

STAT_I 

STAT_T 

STAT_x 

cp 

idle_pct_cpuO 

idle_pct_avg 

Total number of logged-on users . 
1 5-minute load average. 

Total number of processes. 
Number of active processes. 
Number of swapped processes. 
Number of zombie processes . 

Number of idle processes. 

Number of processes stopped after receiving a signal. 
Number of processes reported by the ps command as being in state x, 
where x is a state not listed above. 
Time to copy a 40KB file. 
CPU-idle percentage. 
CPU-idle percentage. 
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The next section, System Health, uses a number of the workload indicators to assess 
how processes are spending their time. 

The final section of the report (Summary) indicates the selected severity level, and 
whether or not additional detail can be obtained by changing that level. (The highest 
severity level is 1 ,  which is the default level reported. The lowest level is 3 . )  

Any message (excluding header and summary information) occurring in the PDT 
report should be investigated. The indicated problem should be corrected or an 
explanation for the condition obtained. Possible responses to specific messages are 
covered in "Responding to PDT-Report Messages" on page 238. 

Instal l ing and Enabl ing PDT 

PDT is installed via installp as the bos.perf.diag_tool option of the AIX 4. 1 BOS LPP. 
PDT must be enabled in order to begin data collection and report writing. PDT is 

enabled by executing the script /usr/sbin/perf/diag_tool/pdt_config. Only the root 

userid is permitted to run this script. When executed, the following message is displayed: 

# /usr/ sbin/perf / diag_too l / pdt_config 

_______ PDT cus tomi zat ion menu. _______ _ 

1 )  show current PDT report recipient and severi ty level 

2 )  modi fy/ enable PDT reporting 
3 )  disable PDT report ing 
4 )  modi fy/ enable PDT collection 
5 )  disable PDT collection 
6 )  de-install PDT 
7 )  exi t pdt_conf ig 
Please enter a number : 

When you respond with 4, default PDT collection and reporting is enabled. The 
crontab entry for user adm is updated to add the PDT entries. Actual collection occurs 
when the cron jobs are run by cron. Respond with 7 to terminate the pdt_config program. 

Option 5 should be selected to disable collection. 

Customizing PDT 

Certain aspects of PDT can be customized. For example, any user can be designated as the 
regular recipient of PDT reports, and the retention period for data in PDT's historical 
record can be modified. All customization is performed either by modifying one of the 
PDT files in /var/perf/cfg/diag_tool/ or by executing the /usr/sbin/perf/diag_tool/ 
pdt_config script. 

We recommend that no changes be made until after PDT has produced several 
reports, and a certain familiarity with PDT has been acquired. 

Changing the PDT Report Recipient and Severity Level 

By default, PDT reports are generated with severity level 1 .  This means that only the most 
serious problems are identified. There are other severity levels (2,3) at which more 
detailed information is frequently available. Further, whenever a PDT report is produced, 
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it is mailed to userid adm. It might be desirable to have the report mailed elsewhere or not 
mailed at all .  

Both of these parameters are controlled with the pdt_config script. The following 
dialog changes the user and the severity level : 

# /usr/ sbin/perf / diag_too l / pdt_config 
�������-PDT cust omi zation menu.��������-

1 )  show current PDT report rec ipient 
2 )  modi fy/ enable PDT reporting 
3 )  terminate PDT reporting 
4 )  modi fy/ enable PDT col l ection 
5 )  terminate PDT collection 
6 )  de-ins tal l PDT 

7 )  exi t  pdt_config 
Please enter a number : 1 
adm 1 
Please enter a number : 2 

and severi ty l evel 

enter i d@host for recipient o f  report : rsmi th 
enter s everity level for report ( 1 - 3 ) : 2 
Please enter a number : 1 

rsmi th 2 
Please enter a number : 7 
# 

In the above example, the recipient is changed to user rsrni th, and the severity is 
changed to 2. This means that user rsrni th will receive the PDT report, and that both 
severity 1 and 2 messages will be included. Note the use of option 1 to determine the 
current PDT report recipient and report severity level. 

To terminate reporting (but allow collection to continue), option 3 is selected, for 
example: 

Please enter a number :  3 
Please enter a number : 1 
reporting has been disabled ( f i l e  . reporting . l i s t  not found ) . 
Please enter a number :  7 

# 

PDT Severity Levels 

The following lists indicate the possible problems associated with each severity level. 
Remember that selecting Severity n results in the reporting of all problems of severity less 
than or equal to n. 

Severity I Problems 

• JFS file system becomes unavailable 
• JFS file system nearly full 
• Physical volume not allocated to a volume group 
• All paging spaces defined on one physical volume 
• System appears to have too little memory for current workload. 
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• Page space nearly full 

• Possible problems in the settings of load control parameters 

• VMM-detected bad memory frames 

• Any host in .nodes becomes unreachable 

Severity 2 Problems 

• Imbalance in the 1/0 configuration (e.g. ,  disks per adapter) 

• Imbalance in allocation of paging space on physical volumes with paging space 

• Fragmentation of a paging space in a volume group 

• Significant imbalance in measured 1/0 load to physical volumes 

• New process is identified as a heavy memory or CPU consumer 

• A file in .files exhibits systematic growth (or decline) in size 

• A file system or page space exhibits systematic growth (or decline) in space 
utilization 

• A host in .nodes exhibits degradation in ping delays or packet loss percentage 

• A getty process consumes too much CPU time 

• A process with high CPU or memory consumption exhibits systematic growth 
(or decline) in resource use 

Severity 3 Messages: 

• Severity 3 messages provide additional detail about problems identified at 
severity levels 1 and 2. This includes the data-collection characteristics, such as 
number of samples, for severity 1 and 2 messages. 

Obtaining a PDT Report on Demand 

As an alternative to using the periodic report, any user can request a current report from 
the existing data by executing /usr/sbin/perf/diag_tooVpdt_report [SeverityNum] . The 
report is produced with the given severity (if none is provided, SeverityNum defaults to 1 )  
and written to stdout. Generating a report in this way does not cause any change to the 
/var/perf/tmp/PDT _REPORT or /var/perf/tmp/PDT _REPORT.last files . 

PDT Error Reporting 

Errors can occur within each of the different PDT components. In general, an error does 
not terminate PDT. Instead, a message is output to PDT' s  standard error file :  
/var/perf/tmp/.stderr, and that phase of processing terminates. 

Users experiencing unexpected behavior, such as the PDT report not being 
produced as expected, should examine /var/perf/tmp/.stderr. 
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De-Installing PDT 

It is not possible to de-install PDT directly using pdt_config, but if option 6 is requested, 
a message describes the steps necessary to remove PDT from the system: 

# /usr/ sbin/perf / diag_too l / pdt_conf i g  
_______ PDT customi zation menu _______ _ 

1 )  show current PDT report recipient and severity l evel 
2 )  modi fy/ enable PDT reporting 
3 )  terminate PDT reporting 
4 )  modi fy/ enable PDT c o l l ec tion 
5 )  terminate PDT collect i on 
6 )  de-ins tal l PDT 
7 )  exi t pdt_confi g  
Please enter a number : 6 

PDT i s  ins talled as package bos . perf . diag_tool in the bos lpp . 
use the ins tal lp faci l i ty to remove the package 

Please enter a number :  7 
# 

Modifying the List of Files Monitored by PDT 

PDT analyzes files and directories for systematic growth in size. It examines only those 
files and directories listed in the file /var/perf/cfg/diag_tool/.files. The format of the .files 
file is one file/directory name per line. The default content is: 

/usr/ adm/wtmp 
/var / spoo l / qdaemon/ 
/var/ adm / ras/  
/ tmp / 

You can modify this file with an editor to track files and directories that are 
important to your system. 

Modifying the List of Hosts That PDT Monitors 

PDT tracks the average ping delay to hosts whose names are l i sted in 
/var/perf/cfg/diag_tool/.nodes. This file is not shipped with PDT (which means that no 
host analysis is performed by default), but may be created by the administrator. The 
format of the .nodes file is one host name per line in the file. 

Changing the Historical-Record Retention Period 

Periodically, a retention shell script is run that discards entries in PDT's historical record 
that are older than the designated retention period. The retention of all data is governed by 
the same retention policy. This policy is described in the /var/perf/cfg/diag_tool/.reten
tion.list file. The default .retention.list content is: 

* * * 3 5  

which causes all data to be retained no more than 3 5  days. The number 35 can be replaced 
by any unsigned integer. 
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PDT uses the historical record to assess trends and identify system changes .  
Extending the retention period increases the scope of this analysis at the cost of additional 
disk storage and PDT processing time. 

PDT's historical record is maintained in /var/perf/tmp/.SM. The retention script 
creates a copy of this file in /var/perf/tmp/.SM.last prior to performing the retention 
operation. In addition, historical data that is discarded is appended to /var/perf/ 
tmp/.SM.discards. 

The existence of /var/perf/tmp/.SM.last provides limited backup, but the 
administrator should ensure that the /var/perf/tmp/.SM file is regularly backed up. If the 
file is lost, PDT continues to function, but without the historical information. Over time, 
the historical record will grow again as new data is collected. 

Modifying the Collection, Retention, and Reporting Times 

Collection, reporting and retention are driven by three entries in user ad.m's cron table. 
Collection occurs on every weekday at 9 a.m. Reporting occurs every weekday at 10 a.m. 
The retention analysis is performed once a week, on Saturday evening at 9 p.m. The cron 
entries (created by executing the /usr/sbin/perf/diag_tool/pdt_config script and selecting 
option 2) are shown below: 

0 9 * * 1 - 5  /usr/ sbin/perf / diag_tool / Driver_ dai ly 

0 10 * * 1- 5 /usr/ sbin/perf / di ag_too l / Driver_ dai ly2 
0 2 1  * * 6 /usr/ sbin/perf / diag_too l / Driver_ o f fweekly 

While it is possible to modify these times by editing ad.m's cron table, this is not 
recommended. 

Responding to PDT-Report Messages 

PDT identifies many types of problems. Responses to these indications depends on the 
individual organization's available resources and set of priorities. The following samples 
suggest some possibilities: 

Problem: JFS file system becomes unavailable 

Response: 
Useful cmds: 

Problem: 

Response: 

Useful cmds: 

Problem: 

Response: 

Useful cmds: 

Investigate why file system is unavailable. 

lsfs (to determine file system status) 

JFS file system nearly full 

Look for large files in the file system, possibly caused by a runaway 
process. Has this file system exhibited long term growth trend (look at 
the rest of the PDT report-or past PDT reports-to check this)? 
du, ls, lvedit 

Physical volume not allocated to a volume group 

Volume should be defined in a volume group ; otherwise,  it i s  
inaccessible to AIX and is being wasted. 

lspv (to confirm that the volume is not allocated) 
smit (to manipulate volume groups) 
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Problem: 

Response: 

Useful cmds: 

Problem: 

Response: 

Useful cmds: 

Problem: 

Response: 

Useful cmds: 

Problem: 

Response: 

Useful cmds 

Problem: 

Response: 

Useful cmds: 

Problem: 

Response: 

Useful cmds: 

Problem: 

Response: 

Useful cmds: 

Problem: 

Response: 

All paging spaces defmed on one physical volume 

The system has more than one physical volume, yet all paging space is 
defined on a single volume. If the system experiences paging, this 
configuration will result in reduced performance. 
smit (to modify paging spaces) 

Apparently too little memory for current workload 

If the system is paging heavily, more memory may be required on the 
system for good performance. 
lsps -a, vmstat 

Page space nearly full 

The system's paging space may need to be enlarged, unless the problem 
is due to a process with a memory leak, in which case that process 
should be identified and the application fixed. 
ps aucg (to examine process activity) 
smit (to modify page space characteristics) 

Possible problems in the settings of load control parameters 

The memory-load-control parameters are evaluated in relation to 
current paging activity. For example, if thrashing is occurring and load 
control is not enabled, it may be appropriate to enable load control. 
schedtune 

VMM-detected bad memory frames 

It may be necessary to have the memory analyzed. Compare the amount 
of installed memory with the memory actually accessible; if the latter is 
less than the former, then bad memory has been identified. 
You can use /usr/sbin/perf/diag_tooVgetvmparms and look at the 
value of numframes to determine the actual number of 4.KB memory 
frames. 
lscfg I grep mem (to obtain installed memory size in MB) 

Any host in .nodes becomes unreachable 

Determine if problem is with current host (has a change in the /etc/hosts 
file been made?), with the remote host (is it down?), or with the network 
(is the nameserver down?) . 
ping 

Imbalance in the 1/0 configuration (number of disks per adapter) 

Consider moving disks around so that an individual SCSI adapter is not 
overloaded. 
lscfg (to examine the current configuration) 
iostat (to determine if the actual load on the adapters is out of balance) 

Imbalance in allocation of paging space on physical volumes with 
paging space 

Consider making paging spaces the same size, except for a few extra 
megabytes (say, 4) on the primary paging space (hd6) . A substantial 
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Useful cmds: 

Problem: 

Response: 

Useful cmds : 

imbalance in the sizes of paging spaces can cause performance 
problems. 

smit 

Fragmentation of a paging space in a volume group 

Paging performance is better if paging areas are contiguous on a 
physical volume. However, when paging areas are enlarged, it is 
possible to create fragments that are scattered across the disk surface .  

lspv -p hdiskn for each physical volume in the volume group. Look for 
more than one PP Range with the same LVNAME and a TYPE of 
"paging." 

Problem: Significant imbalance in measured 1/0 load to physical volumes 

Response: If one physical volume seems to be getting little 110 activity, consider 
moving data from busier physical volumes onto less busy volumes.  In 
general , the more evenly the 1/0 is distributed,  the better the 
performance. 

Useful cmds: iostat -d 2 20 (to view the current distribution of 1/0 across physical 
volumes) 

Problem: New process is a heavy consumer of memory or CPU 

Response: Top CPU and memory consumers are regularly identified by PDT. If 
any of these processes haven't been seen before, they are highlighted in 
a problem report. These processes should be examined for unusual 
behavior. Note that PDT simply looks at the process ID. If a known 
heavy user terminates, then is resumed (with a different process id), it 
will be identified here as a NEW heavy user. 

Useful cmds: ps aucg (To view all processes and their activity) 

Problem: Any file in .files exhibits systematic growth (or decline) in size 

Response: Look at the current size. Consider the projected growth rate. What user 
or application is generating the data? For example, the /var/adm/wtmp 
file is liable to grow unbounded. If it gets too large, login times can 
increase. In some cases, the solution is to delete the file. In most cases, it 
is important to identify the user causing the growth and work with that 
user to correct the problem. 

Useful cmds: Is -al (to view file/directory sizes) 

Problem: Any file system or paging space exhibits systematic growth (or 
decline) in space used 

Response: Consider the projected growth rate and expected time to fill. It may be 
necessary to enlarge the file system (or page space) . On the other hand, 
the growth may be an undesirable effect (for example, a process having 
a memory leak) . 

Useful cmds: smit (to manipulate file systems/page spaces) 
ps aucg, svmon (to view process virtual memory activity) 
filemon (to view file system activity) 
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Problem: Degradation in ping response time or packet loss percentage for 
any host in .nodes 

Response: Is the host in question experiencing performance problems? Is the 
network having performance problems? 

Useful cmds: ping, rlogin, rsh (to time known workloads
· 
on remote host) 

Problem: A getty process that consumes too much CPU time 

Response: Getty processes that use more than just a few percent of the CPU may 
be in error. It is possible in certain situations for these processes to 
consume system CPU, even though no users are actually logged on. In 
general, the solution is to terminate the process. 

Useful cmds: ps aucg (to see how much CPU is being used) 

Problem: A process that is a top consumer of CPU or memory resources 
exhibits systematic growth or decline in consumption 

Response: Known large consumers of CPU and memory resources are tracked over 
time to see if their demands grow. As major consumers, a steady growth 
in their demand is of interest from several perspectives. If the growth is 
normal, this represents useful capacity planning information. If the 
growth is unexpected, then the workload should be evaluated for a 
change (or a chronic problem, such as a memory leak). 

Useful cmds: ps aucg 

Problem: maxuproc indicated as being possibly too low for a particular 
userid 

Response: it is likely that this user is hitting the maxuproc threshold. 
maxuproc is a system-wide parameter that limits the number of 
processes that nonroot users are allowed to have simultaneously active. 
If the limit is too low, the user's work can be delayed or terminated. On 
the other hand, the user might be accidently creating more processes 
than needed or appropriate. Further investigation is warranted in either 
case. The user should be consulted in order to understand more clearly 
what is happening. 

Useful cmds: lsattr -E -1 sysO I grep maxuproc 

to determine the current value of maxuproc (although it is also reported 
directly in the PDT message) .  
chdev -1 sysO -a maxuproc=lOO 

to change maxuproc to 100 (for example). Root authority is required. 

Problem: A WORKLOAD TRACKING indicator shows an upward trend. 

Response: The response depends on which workload indicator shows the trend: 
loadavg - 1 5-minute load average 
In general, the level of contention in the system is growing. Examine 
the rest of the PDT report for indicators of system bottlenecks (for 
example, substantial page space use may indicate a memory shortage; 
IJO imbalances may indicate that the 1/0 subsystem requires attention) . 
nusers - total number of logged users 
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The number of users on the system is growing. This is important from a 
capacity planning perspective. Is the growth expected? Can it be 
explained? 
nprocesses - total number of processes 
The total number of processes on the system is growing. Are there users 
bumping up against the maxuproc limitation? Perhaps there are 
"runaway" applications forking too many processes. 
STAT_A - number of active processes 
A trend here indicates processes are spending more time waiting for the 
CPU. 
STAT_ W - number of swapped processes 

A trend here indicates that processes are contending excessively for 
memory. 
STAT_Z - number of zombie processes 

Zombies should not stay around for a long time. If the number of 
zombies on a system is growing, this may be cause for concern. 
STAT_I - number of idle processes 
This might not be of much concern. 
STAT_T - number of processes stopped after receiving a signal 
A trend here might indicate a programming error. 
STAT_x - (where x is any valid character in the ps command output 
indicating a process state that has not been listed above) 
The interpretation of a trend here depends on the the meaning of the 
character x. 

cp - time required to copy a 40KB file 

A trend in the time to do a file copy suggests that degradation in the 1/0 
subsystem is evident. 
idle_pct_cpuO - idle percentage for processor 0 

An upward trend in the idle percentage might indicate increased 
contention in non-CPU resources such as paging or 1/0. Such an 
increase is of interest because it suggests the CPU resource is not being 
well-utilized. 
idle_pct_avg - average idle percentage for all processors 
An upward trend in the idle percentage might indicate increased 
contention in non-CPU resources such as paging or 1/0. Such an 
increase is of interest because it suggests the CPU resource is not being 
well-utilized. 
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1 3  
Handling a Possible AIX 
Performance Bug 

If you believe that you have found a possible performance problem in AIX, there are tools 
and procedures for reporting the problem and supplying problem-analysis data. They are 
intended to ensure that you get a prompt and accurate response with a minimum of effort 
and time on your part. 

Measuring the Baseline 

Performance problems are often reported right after some change to the system's 
hardware or software. Unless there is a pre-change baseline measurement with which to 
compare post-change performance, quantification of the problem is impossible. Still 
better would be collection of a full set of performance and configuration information 
using the PerfPMR package, as recommended in "Check Before You Change" on page 80. 

Having the Performance Diagnostic Tool (PDT) installed and operational also 
provides a baseline of overall system performance. 

Reporting the Problem 

You should report suspected AIX performance problems to the IBM Software Service 
organization. Use your normal software problem-reporting channel. If you are not familiar 
with the correct problem-reporting channel for your organization, check with your IBM 
representative. 

When you report the problem, you should supply the following basic information: 

• A description of the problem that can be used to search the problem-history 
database to see if a similar problem has already been reported. 

• What aspect of your analysis led you to conclude that the problem is due to a 
defect in AIX? 

• What is the hardware/software configuration in which the problem is occurring? 
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- Is the problem confined to a single system, or does it affect multiple systems? 
- What are the models, memory sizes, and number and size of disks on the 

affected system(s)? 
- What kinds of LAN and other communications media are connected to the 

system(s)? 
- Does the overall configuration include non-AIX systems? Non-UNIX 

systems? 
• What are the characteristics of the program or workload that is experiencing the 

problem? 
- Does an analysis with time, iostat, and vmstat indicate that it CPU-limited or 

1/0-limited? 
- Are the workloads being run on the affected system(s) : workstation, server, 

multiuser, or a mixture? 
• What are the performance objectives that are not being met? 

- Is the primary objective in terms of console or terminal response time, 
throughput, or real-time responsiveness? 

- Were the objectives derived from measurements on another AIX system? If 
so, what was its configuration? 

If this is the first report of the problem, you will receive a PMR number for use in 
identifying any additional data you supply and for future reference. 

\ You will probably be asked to provide data to help IBM analyze the problem. An 
IBM-provided tools package called PerfPMR can collect the necessary data. On AIX 
Version 3.2.5, PerfPMR is an informal tool available from your IBM representative. On 
AIX Version 4. 1 ,  PerfPMR is an optionally installable package on the AIX Base 
Operating System distribution medium. 

Obtaining and Instal l ing AIX Version 3.2.5 Perf PMR 

Your IBM representative can obtain a copy of  AIX Version 3 .2.5 PerfPMR on suitable 
media. To install PerfPMR you: 

• Log in as root or use the su command to obtain root authority. 
• Create the perfpmr directory and move to that directory (this example assumes 

the directory built is under /tmp) .  

# cd / tmp 
# mkdir perfpmr 
# cd perfpmr 

• Copy the compressed tar file from diskette (this example assumes the diskette 
drive used is fdO) : 

# tar -xvf / dev/ fdO perfpmr . tarbinz 

• Rename the compressed tar file: 

# mv perfpmr . tarbinz perfpmr . tarbin . Z  

• Uncompress the tar file with: 

244 Handling a Possible AIX Performance Bug 



# uncompress perfpmr . tarbin . Z  

• Extract the shell scripts from the tar file with: 

# tar -xvf perfpmr . tarbin 

• Install the shell scripts with: 

# • / Ins tall 

Instal l ing AIX Version 4.1 PerfPMR 

If you are not sure whether or not PerfPMR i s  installed on the system, enter: 

# l s lpp - l I  bos . perf . pmr 

To install PerfPMR from a high-density tape, enter: 

# instal lp -acd/ dev/ rmt0 . 1  bos . perf . pmr 

If the Base Operating System is on low-density tape, use rmt O . 5 as the device. 
The installation process places the PerfPMR package in a directory called 

/usr/sbin/perf/pmr. The package takes approximately 200KB of disk space. 

Problem-Analysis Data 

All of the following items should be included when the supporting information for the 
PMR is first gathered: 

• A means of reproducing the problem 
- If possible, a program or shell script that demonstrates the problem should be 

included. 
- At a minimum, a detailed description of the conditions under which the 

problem occurs is needed. 
• Data collected by the PerfPMR tools 

- On each system involved 
- At the same time 
- While the performance problem is occurring 

• The application experiencing the problem 
- If the application is, or depends on, a software product, the exact version and 

release of that product should be identified, even if the software is not an IBM 
product. 

- If the source code of a user-written application cannot be released, the exact 
set of compiler parameters used to create the executable should be 
documented. 

Capturing the Data 

To capture and package the data in usable form, perform the following steps on each of the 
systems involved with the problem. If possible, step 6 should be performed on all of the 
systems at (approximately) the same time. 

1. Login as, or su to, roo t .  

2 .  PerfPMR captures more information i f  the tprof, filemon, and netpmon 
performance tools are available. In AIX Version 4. 1 ,  these tools are packaged as 
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part of the Performance Toolbox for AIX. To determine whether the performance 
tools have been installed on the system, check with: 

$ l slpp - l I  perfagent . tools 

If this package has been installed, the tools are available. 

3. Make sure that your PATH variable includes the directory that contains the 
PerfPMR executables. 

In AIX Version 4, add /usr/sbin/perf/pmr to the PATH. For example: 

# echo $ PATH 
/usr/bin : / etc : /usr / l ocal /bin : /usr/ucb : . :  
# PATH= $ PATH : / usr / sbin/per f / pmr : 
# export PATH 

In Version 3, add to the PATH the directory in which you installed PerfPMR (in 
place of /usr/sbin/perf/pmr) and the directory for the performance tools, 
/usr/lpp/bosperf. 

4. In Version 4, the output of perfpmr will be written to /var/perf/tmp. In Version 
3, you should: 

a. cd to a suitable directory, such as /tmp, in a file system that has at least 5MB 
of free space. 

b. Create a subdirectory to hold the data and switch to it, with: 

# mkdir perfdata 
# cd perfdata 

5. Track system activity for 1 hour with: 

# perfpmr 3 6 0 0  

(in Version 3,  perfpmr i s  named perfpmr.sh.) 

6. Combine the files into one compressed tar file with: 

# cd . .  
# tar -cvf pmmumber. tarbin perfdata 
# compress pmmumber. tarbin 

Where pmmumber is the number assigned to the PMR by Software Service. 

7. Put the file on a diskette (or other portable volume) with, for example: 

# tar -cvf /dev/ fdO pmrnumber. tarbin . z 

8. Label the portable volume with: 

- PMR number 
- Date the information was gathered 
- Command and flags that should be used to remove the data from the portable 

volume, for example: 

# tar -xvf / dev/ fdO 
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9. Within the United States, send the data to: 

IBM Corporation 
Dept. J65, Zip 2900, Building 042 
1 1400 Burnet Road 
Austin, TX 78758 
Attn: V4DEFECT (or V3DEFECT, as appropriate) 

Outside the United States, send the data to your IBM Software Service 
organization. 
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Appendix A 
AIX Performance Monitoring 
and Tuning Commands 

Performance tools for the AIX environment fall into two general categories: those that tell 
you what is going on and those that let you do something about it. A few do both. This 
appendix lists these performance-related commands. Many of them are discussed in the 
chapters on tuning specific aspects of the system. The details of the syntax and functions 
of most of these commands are documented in the AIX Version 4. I Commands Reference. 

The schedtune, pdt_config, pdt_report, and vmtune commands are documented later in 
this appendix. 

Some of the performance-related commands are packaged as part of the 
Performance Toolbox for AIX (PTX), rather than the AIX Base Operating System. Those 
commands are identified with (PTX). You can determine whether the PTX tools have been 
installed with: 

$ ls lpp - l I  perfagent . too l s  

If this package i s  listed as  AVAILABLE, the PTX tools can be  used. 

Performance Reporting and Analysis Commands 

These tools give you information on the performance of one or more aspects of the system 
or on one or more of the parameters that affect performance. 

Command Function 

bf, bfrpt 

filemon 

fileplace 

(PTX) Provides detailed reports of the memory-access patterns of 
applications.  

(PTX) Uses the trace facility to report on the 1/0 activity of physical 
volumes, logical volumes, individual files, and the Virtual Memory 
Manager. 

(PTX) Displays the physical or logical placement of the blocks that 
constitute a file within the physical or logical volume on which they 
reside. 
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gprof 

iostat 

lockstat 

lsattr 

lslv 

netpmon 

netstat 

nfso 

nfsstat 

no 

pdt_config 

pdt_report 

ps 

Reports the flow of control among the subroutines of a program and the 
amount of CPU time consumed by each subroutine. This command is 
documented in A/X Version 4. 1 Commands Reference, Volume 2. 

Displays utilization data for: 
• Terminals 

• CPU 

• Disks 

(PTX) Displays information about kernel lock contention. 

Displays attributes of the system that affect performance, such as : 
• Size of the caches 

• Size of real memory 

• Maximum number of pages in the block 1/0 buffer cache 

• Maximum number of kilobytes of memory allowed for mbufs 

• High- and low-water marks for disk-1/0 pacing 

Displays information about a logical volume. 

(PTX) Uses the trace facility to report on network activity, including: 
• CPU consumption 

• Data rates 

• Response time 

Displays a wide variety of configuration information and statistics on 
communications activity, such as: 

• Current status of the mbuf pool 

• Routing tables 

• Cumulative statistics on network activity 

Displays (or changes) the values of NFS options 

Displays statistics on Network File System (NFS) and Remote 
Procedure Call (RPC) server and client activity 

Displays (or changes) the values of network options, such as : 
• Default send and receive socket buffer sizes 

• Maximum total amount of memory used in mbuf and cluster 
pools 

Starts, stops, or changes the parameters of the Performance Diagnostic 
Tool. 

Generates a PDT report based on the current historical data. 

Displays statistics and status information about the processes in the 
system, such as : 

• Process ID 

• 1/0 activity 

• CPU utilization 
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sar 

schedtune 

smit 

stem 

svmon 

syscalls 

time 

tprof 

trace 

vmstat 

vmtune 

Displays statistics on operating-system activity such as : 

• Directory accesses 

• Read and write system calls 

• Forks and execs 

• Paging activity 

Displays (or changes) the values of VMM memory-load-control 
parameters, the CPU-time-slice duration, and the paging-space-low 
retry interval. 

Displays (or changes) system-management parameters. 

(PTX) Supports the entry and exit instrumentation of executable 
programs without requiring access to the source code of the executable. 

(PTX) Reports on the status of memory at system, process, and segment 
levels 

(PTX) Records and counts system calls 

Prints the elapsed and CPU time used by the execution of a command 

(PTX) Uses the trace facility to report the CPU consumption of kernel 
services, library subroutines ,  application-program modules,  and 
individual lines of source code in the application program 

Writes a file that records the exact sequence of activities within the 
system 

Displays VMM data, such as : 
• Number of processes that are dispatchable or waiting 

• Page-frame free-list size 

• Page-fault activity 

• CPU utilization 

Displays (or changes) the Virtual Memory Manager page-replacement 
algorithm parameters . 

Performance Tun ing Commands 

The following tools allow you to change one or more performance-related aspects 
of the system. 

Command 

fdpr 

lvedit 

nfso 

nice 

no 

Function 

(PTX) Optimizes executable files for a specific workload. 

(PTX) Permits the system administrator to make detailed changes to the 
location and attributes of logical volumes 

Changes (or displays) the values of NFS options 

Executes a command at a specified priority 

Changes (or displays) the values of network options 
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re nice 

reorgvg 

rmss 

schedtune 

smit 

vmtune 

Changes the priority of running processes 

Reorganizes elements of a volume group. 

(PTX) Temporarily reduces the effective RAM size of a system to 
assess the probable performance of a workload on a smaller machine or 
to ascertain the memory requirement of one element of a workload. 

Changes (or displays) the values of VMM memory load control 
parameters, the CPU-time-slice duration, and the paging-space-low 
retry interval. 

Changes (or displays) system-management parameters. 

Changes (or displays) the Virtual Memory Manager page-replacement 
algorithm parameters. 
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schedtune Command 

Purpose 

Sets parameters for CPU scheduler and Virtual Memory Manager processing. 

Syntax 

- schedtune 

-e n  
-f n 
-h n 
-m n 
-p n 
-r n 
-t n 
-w n 

Description 

Priority-Calculation Parameters 

The priority of most user processes varies with the amount of CPU time the process has 
used recently. The CPU scheduler's priority calculations are based on two parameters that 
are set with schedtune: -r and -d. The r and d values are in thirty-seconds ( 1132) ;  that is, 
the formula used by the scheduler to calculate the amount to be added to a process's 
priority value as a penalty for recent CPU use is :  

CPU penalty = (recently used CPU value of the process) * (r/32) 
and the once-per-second recalculation of the recently used CPU value of each process is :  

new recently used CPU value = 
(old recently used CPU value nf the process) * (d/32) 

Both r and d have default values of 16 .  This maintains the CPU scheduling behavior 
of previous versions of AIX. Before experimenting with these values, you should be 
familiar with "Tuning the Process-Priority-Value Calculation with schedtune", on page 
107. 

Memory-Load-Control Parameters 

The AIX scheduler performs memory load control by suspending processes when 
memory is overcommitted. The system does not swap out processes ; instead pages are 
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"stolen" as they are needed to fulfill the current memory requirements. Typically, pages 
are stolen from suspended processes. Memory is considered overcommitted when the 
following condition is met: 

p * h > s where p is the number of pages written to paging space in the last 
second, h is an integer specified by the -h flag, and s is the number of 
page steals that have occurred in the last second. 

A process is suspended when memory is overcommitted and the following 
condition is met: 

r * p >f where r is the number of repages that the process has accumulated in the 
last second, p is an integer specified by the -p flag, and/ is the number 
of page faults that the process has experienced in the last second. 

In addition, fixed-priority processes and kernel processes are exempt from being 
suspended. 

The term "repages" refers to the number of pages belonging to the process, which 
were reclaimed and are soon after referenced again by the process. 

The user also can specify a minimum multiprogramming level with the -m flag. 
Doing so ensures that a minimum number of processes remain active throughout the 
process-suspension period. Active processes are those that are runnable and waiting for 
page 1/0. Processes that are waiting for events and processes that are suspended are not 
considered active, nor is the wait process considered active. 

Suspended processes can be added back into the mix when the system has stayed 
below the overcommitted threshold for n seconds, where n is specified by the -w flag. 
Processes are added back into the system based, first, on their priority and, second, on the 
length of their suspension period. 

Before experimenting with these values, you should be thoroughly familiar with 
"Tuning VMM Memory Load Control" on page 124. 

Time-Slice-Increment Parameter 

The schedtune command can also be used to change the amount of time the operating 
system allows a given process to run before the dispatcher is called to choose another 
process to run (the time slice) . The default value for this interval is a single clock tick ( 10  
milliseconds) . The -t flag of the schedtune command allows the user to specify the 
number of clock ticks by which the time slice length is to be increased. 

In AIX Version 4. 1 ,  this parameter only applies to threads with the SCHED_RR 
scheduling policy. See "Scheduling Policy for Threads with Local or Global Contention 
Scope" on page 15 .  

fork() Retry Interval Parameter 

If a fork() subroutine call fails because there is not enough paging space available to 
create a new process, the system retries the call after waiting for a specified period of 
time. That interval is set with the schedtune -f flag. 
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schedtune Limitations 

schedtune can only be executed by root.  Changes made by the schedtune command last 
until the next reboot of the system. If a permanent change in VMM or time-slice 
parameters is needed, an appropriate schedtune command should be put in /etc/inittab. 

Warning: Misuse of this command can cause performance degradation or 

Flags 

operating-system failure. Be sure that you have studied the appropriate tuning 
sections before using schedtune to change system parameters. 

If no flags are specified, the current values are printed. 

-D Restores the default values (h=6, p=4, w=l ,  m=2, e=2, f= lO, t=O, r=l6, 
d=16) .  

-d d Each process 's recently used CPU value is multiplied by d/32 once a 
second. 

-e n Specifies that a recently resumed suspended process is eligible to be 
suspended again when it has been active for at least n seconds. 

-f n Specifies the number of ( IO-millisecond) clock ticks to delay before 
retrying a fork call that has failed because of insufficient paging space. 
The system retries the fork call up to five times. 

-h n Specifies the systemwide criterion for determining when process 
suspension begins and ends . A value of zero effectively turns off 
memory load control. 

-m n Sets the minimum multiprogramming level . 

-p n Specifies the per-process criterion for determining which processes to 
suspend. 

-r r A process's recently used CPU value is multiplied by r/32 when the 
process's priority value is recalculated. 

-t n Increases the duration of the time slice-the maximum amount of time 
before another process is scheduled to run. The default time-slice 
duration is 1 0  milli seconds .  The parameter n is in units of 1 0  
milliseconds each. If n=O, the time-slice duration is 1 0  milliseconds. If 
n=2, the time-slice duration is 30 milliseconds. In AIX Version 4. 1 ,  this 
parameter only applies to threads with the SCHED_RR scheduling 
policy 

-w n Specifies the number of seconds to wait, after thrashing ends, before 
reactivating any suspended processes. 

-? Displays a brief description of the command and its parameters . 

Related Information 

"Real-Memory management" on page 17 
"Tuning the Process-Priority-Value Calculation with schedtune" on page 107 
"Tuning VMM Memory Load Control" on page 124. 
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vmtune Command 

Purpose 

Changes operational parameters of the Virtual Memory Manager and other AIX 
components. 

Syntax 

- vmtune 
-f minfree 
-F max.free 
-p minperm 
-P maxperm 
-r minpgahead 
-R maxpgahead 
-M maxpin 
-b numfsbuf 
-c numclust 
-w npswarn 
-k npskill 
-B num but 

Description 

The Virtual Memory Manager (VMM) maintains a list of free real-memory page frames. 
These page frames are available to hold virtual-memory pages needed to satisfy a page 
fault. When the number of pages on the free list falls below that specified by the minfree 

parameter, the VMM begins to steal pages to add to the free list. The VMM continues to 
steal pages until the free list has at least the number of pages specified by the maxfree 

parameter. 
If the number of file pages (permanent pages) in memory is less than the number 

specified by the minperm parameter, the VMM steals frames from either computational or 
file pages, regardless of repage rates. If the number of file pages is greater than the 
number specified by the maxperm parameter, the VMM steals frames only from file 
pages. Between the two, the VMM normally steals only file pages, but if the repage rate 
for file pages is higher than the repage rate for computational pages, computational pages 
are stolen as well . 

If a process appears to be reading sequentially from a file, the values specified by 
the minpgahead parameter determine the number of pages to be read ahead when the 
condition is first detected. The value specified by the maxpgahead parameter sets the 
maximum number of pages that will be read ahead, regardless of the number of preceding 
sequential reads. 

In AIX Version 3 .2.5, no more than 80% of real memory can be pinned. In AIX 
Version 4. 1 ,  the maxpin parameter allows you to specify the upper limit on the percentage 
of memory that is pinned. 
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AIX Version 4. 1 allows tuning of the number of file system bu f s t r u c t s  

(numfsbuf) and the amount of data processed by  the write-behind algorithm (numclust). 

In AIX Version 4. 1 you can also modify the thresholds that are used to decide when 
the system is running out of paging space. The npswarn parameter specifies the number of 
paging-space pages available at which the system begins warning processes that paging 
space is low. The npskill parameter specifies the number of paging-space pages available 
at which the system begins killing processes to release paging space. 

vmtune can only be executed by roo t .  Changes made by the vmtune command 
last until the next reboot of the system. If a permanent change in VMM parameters is 
needed, an appropriate vmtune command should be put in inittab. 

Warning: Misuse of this command can cause performance degradation or 
operating-system failure. Before experimenting with vmtune, you should be 
thoroughly familiar with both "Performance Overview of the Virtual Memory 
Manager (VMM)", beginning on page 17 ,  and "Tuning VMM Page 
Replacement" on page 126. 

Flags 

-b numfsbuf 

-B numpbuf 

-c numclust 

-f minfree 

-F maxfree 

-k npskill 

-M maxpin 

-p minperm 

Specifies the number of file system bu f s t ructs.  The default value is 
64. 

Specifies the number of pbufs used by the LYM. The maximum value is 
128 .  In AIX Version 3, the number of pbufs may need to be increased in 
systems doing many large, sequential 1/0 operations. 

Specifies the number of 16KB clusters processed by write behind. The 
default value is 1 .  

Specifies the minimum number of frames on the free list. This number 
can range from 8 to 204800. 

Specifies the number of frames on the free list at which page stealing is 
to stop. This number can range from 16  to 204800 but must be greater 
than the number specified by the minfree parameter by at least the value 
of maxpgahead. 

Specifies the number of free paging-space pages at which AIX begins 
killing processes. The default value is 128.  

Specifies the maximum percentage of real memory that can be pinned. 
The default value is 80. If this value is changed, the new value should 
ensure that at least 4MB of real memory will be left unpinned for use by 
the kernel. 

Specifies the point below which file pages are protected from the repage 
algorithm. This value is a percentage of the total real-memory page 
frames in the system. The specified value must be greater than or equal 
to 5 .  
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-P maxperm Specifies the point above which the page stealing algorithm steals only 
file pages .  This value is expressed as a percentage of the total 
real-memory page frames in the system. The specified value must be 
greater than or equal to 5 .  

-r minpgahead Specifies the number of pages with which sequential read-ahead starts. 
This value can range from 0 through 4096. It should be a power of 2. 

-R maxpgahead Specifies the maximum number of pages to be read ahead. This value 
can range from 0 through 4096. It should be a power of 2 and should be 
greater than or equal to minpgahead. 

-w npswarn Specifies the number of free paging-space pages at which AIX begins 
sending the SIGDANGER signal to processes. The default value is 5 12.  
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pdt_config Script 

Purpose 

Controls the operation of the Performance Diagnostic Tool (PDT). 

Syntax 

- pdt_config -

Description 

The pdt_config script is interactive. When invoked, it displays the following menu: 

# /usr/ sbin/perf / diag_tool /pdt_config 

_______ PDT cus tomi zation menu. _______ _ 

1 )  show current PDT report recipient and severity l evel 
2 )  modi fy I enable PDT reporting 
3 )  disable PDT reporting 
4 )  modi fy/ enable PDT collecti on 
5 )  disable PDT collect ion 
6 )  de- install PDT 
7 )  exi t  pdt_conf ig 
Please enter a number : 

Menu items are selected by typing the corresponding number and pressing Enter. 
The directory /usr/sbin/perf/diag_tool must be in the search path, or the script can 

be invoked with /usr/sbin/perf/diag_tooVpdt_config. 

The pdt_config script can only be run by root.  

Flags 

None 

Related Information 

Chapter 12 .  "Performance Diagnostic Tool (PDT)" 
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pdt_report Script 

Purpose 

Generates a Performance Diagnostic Tool (PDT) report based on the current historical 
information. 

Syntax 

- pdt_report -{=: . 3 
seventy 

Description 

PDT periodically samples the performance of the system and adds the data to a historical 
database. Normally, PDT generates a report daily at a set time. The pdt_report script 
creates such a report on demand. The report is written to stdout. Error messages are 
directed to stderr. 

Messages from PDT can range in severity from 1 to 3 (with 1 being the most 
severe) . By default, only messages of severity 1 are included in the report. Optionally, 
pdt_report can be instructed to include messages of lower severity. 

The directory /usr/sbin/perf/diag_tool must be in the search path, or the script can 
be invoked with /usr/sbin/perf/diag_tool/pdt_report 

Flags 

severity The lowest severity messages to be included in the report. Can range 
from 1 to 3. 

Related Information 

Chapter 1 2. "Performance Diagnostic Tool (PDT)" 
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Appendix B 
Performance-Related 
Subroutines 

The following subroutines can be used in monitoring and tuning performance: 

Subroutines Function 

getpri 

getpriority 

getrusage 

nice 

psdanger 

setpri 

setpriority 

Determines the scheduling priority of a running process. 

Determines the nice value of a running process 

Retrieves information about the use of system resources. 

Increments the nice value of the current process. 

Retrieves information about paging space use. 

Changes the priority of a running process to a fixed priority. 

Sets the nice value of a running process. 
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Appendix C 
Cache and Addressing 
Considerations 

Because efficient use of caches is a major factor in achieving high processor performance, 
software developers should understand what constitutes appropriate and inappropriate 
coding technique from the standpoint of cache use. Achieving that understanding requires 
some knowledge of the RISC System/6000 cache architectures. 

Disclaimer 

The following discussion is for the benefit of programmers who are interested in the effect 
of caches and virtual addressing on the performance of their programs.  Engineers who are 
interested in the details of the electronic logic and packaging of the RISC System/6000 
will find it oversimplified, and the distinctions among the POWER, PowerPC, and 
POWER2 architectures blurred. 

Addressing 

Figure 35, "Successive Transformations of a Memory Address," shows the stages by 
which a 32-bit data virtual-memory address generated by a program is transformed into a 
real-memory address. The exact bit numbers vary by model. Models differ in detail but 
not in principle. 

When the program requests that a register be loaded with the contents of a portion of 
memory, the memory location is specified by a 32-bit virtual address . The high-order 4 
bits of this address are used to index into the bank of 16  segment registers. The segment 
registers are maintained by the operating system, and at any given time contain the 24-bit 
segment IDs that have been assigned to the currently executing process. Those segment 
IDs are unique, unless the process is sharing a segment with one or more other processes. 
The 24-bit segment ID from the selected segment register is combined with the 28 
low-order bits of the data address to form the 52-bit virtual address of the data item to be 
loaded. Since the offset within the segment is 28 bits, each segment is 256MB long. 
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Figure 35: Successive Transformations of a Memory Address 

Cache Lookup 

The 52-bit virtual address is used for the data cache lookup, as shown in the figure "Data 
Cache Lookup" on page 263 . Since the lines in the cache are 1 28 bytes long, the 
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low-order 7 bits of the address represent the offset within the cache line. The data cache 
contains 128KB of space, and is four-way set associative. Thus each bank of the cache 
contains 256 128-byte lines ( 128KB/( 128*4) = 256), and so the next higher-order 8 bits 
represent the line number (0-255) .  Each bank of the cache has a line with that number, 
and the four lines with the same number form the congruence class, that is, the four 
possible locations for the data being sought. This is a four-way set-associative cache. If 
the congruence class had two members, we would speak of the cache as two-way 
set-associative. If there were exactly one cache line corresponding to a given address, the 
cache would be direct-mapped. 

Bank o 

Tag Data 
Bank 1 

Tag Data 
Bank 2 

Tag Data 

Figure 36: Data Cache Lookup 
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Associated with each line of the cache is a 37-bit tag, which is the high-order part of 
the 52-bit address from which the cache line was originally loaded. If one of the tags of 
the four lines in the congruence set matches the high-order 37 bits of the 52-bit virtual 
address just generated, we have a cache hit. The data from the cache line is loaded into the 
register, and no access to the RAM (and so no real address) is required. 

If none of the four tags in the congruence set matches the tag of the data to be 
loaded, there is a data cache miss. In this machine there is an L2 cache, so a cache lookup 
similar to the one in the data cache is performed. The primary difference between the data 
cache lookup and the L2 cache lookup is that the L2 is direct mapped. The lines are 1 28 
bytes long, and the cache can hold lMB. There are therefore 8 192 lines. The low-order 7 
bits of the 52-bit address are still the offset within the line. The next 1 3  bits constitute the 
cache line number. Each line is associated with a single 32-bit tag. If that tag matches the 
high-order 32 bits of the 52-bit address, there is an L2 cache hit. If not, the real address of 
the data must be determined and the data obtained from RAM. 
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Different implementations of the POWER architectures have different sizes and 
geometries of caches; some have no L2 cache, some have combined instruction and data 
caches, some have different line lengths. The precise size and position of the fields in the 
52-bit address may differ, but the principles of cache lookup are the same. 

TLB Lookup 

The data translation lookaside buffer (TLB) is a cache of addresses. The TLB tag is the 
high-order 32 bits of the 52-bit virtual address. The next 8 bits of the 52-bit virtual address 
are the line number in the TLB, which has 5 12 entries and is two-way set-associative (so 
each bank has 256 entries). The low-order 12 bits of the 52-bit address are the offset 
within the 4096-byte page. The data portion of each TLB line is the 20 high-order bits of 
the 32-bit real address of the page (see the figure "Data TLB Lookup") . If there is a TLB 
hit, the 20 high-order bits from the TLB entry are combined with the low-order 12 bits of 
offset within the page to form the 32-bit real address of the data. 

52-Bit Virtual Address 

32 bits 

Real Page 
Address 

20 bits 

Figure 37: Data TLB Lookup 
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If there is a TLB miss, the hardware determines the real address of the data using the 
page tables via an algorithm that is beyond the scope of this book. Obtaining the real 
address from the page tables takes several dozen processor cycles. When the 32-bit real 
address has been calculated, its 20-bit page-address portion is cached in the appropriate 
TLB entry, and the tag for that entry is updated appropriately. 

RAM Access 

However derived, the 32-bit real address of the data is used to issue a request to RAM . 
Normally, there is a latency of at least eight processor cycles between the issuing of the 
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RAM-request and the return of the first 16-byte ( 128 bits-the width of the memory bus) 
section of data, which includes the data being loaded. At this point the processor can 
resume operation. The RAM access continues for a further seven processor cycles to load 
the appropriate data cache line with its full 128 bytes, 16 bytes at a time. Thus, a cache 
miss entails at least 16 processor cycles from beginning to end. The tag of the cache line is 
updated with the high-order 37 bits of the data address. The previous content of the cache 
line is lost. 

Impl ications 

Several kinds of pathological addressing patterns can cause incessant cache or TLB 
misses, greatly slowing the effective rate of execution. For example, if the program 
accesses an array larger than the cache with a stride of exactly 128 bytes, it will incur a 
cache miss for each access. If the program presents the processor with a series of requests 
for the same cache line number but in different pages, a series of congruence-set collisions 
will occur, resulting in numerous cache misses even though the full capacity of the cache 
is not being used. The fact that the cache is four-way set-associative makes it unlikely that 
this will happen by chance, but a particularly unfortunate choice of offsets for data items 
could make a specific program particularly slow. 

Large arrays can also cause problems. The figure "Array Layout in Memory" shows 
the storage layout of arrays in C and in FORTRAN. C arrays are row-major, while 
FORTRAN arrays are column-major. If the innermost loop of a C program indexes by 
column, or a FORTRAN program by row, a sufficiently large array (for example, 5 1 2x5 12  
double-precision floating point) can cause a TLB miss on every access. For a further 
discussion of these phenomena, see "A (Synthetic) Cautionary Example" beginning on 
page 95 . 

FORTRAN Array 

I Column 1 I Column 2 I I Column n I 

C Array 

I Row 1 I Row 2 I I Row n I 

Figure 38: Array Layout in Memory 
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Appendix D 
Efficient Use of the Id 
Command 

The AIX binder (invoked as the final stage of a compile or directly via the Id command) 
has functions that are not found in the typical UNIX linker. This can result in longer 
linking times if the additional power of the AIX binder is not exploited. This section 
describes some techniques for more efficient use of the binder. 

Rebindable Executables 

The formal documentation of the binder refers to the ability of the binder to take an 
executable (a load module) as input. Exploitation of this function can significantly 
improve the overall performance of the system with software-development workloads, as 
well as the response time of individual Ids . 

In most typical UNIX systems, the Id command always takes as input a set of files 
containing object code, either from individual .o files or from archived libraries of .o files. 
The Id command then resolves the external references among these files and writes an 
executable with the default name of a.out. The a.out file can only be executed. If a bug is 
found in one of the modules that was included in the a.out file, the defective source code 
is changed and recompiled, and then the entire Id process must be repeated, starting from 
the full set of .o files. 

In the AIX operating system, however, the binder can accept both .o and a.out files 
as input, because the binder includes resolved External Symbol Dictionary (ESD) and 
Relocation Dictionary (RLD) information in the executable file. This means that the user 
has the ability to rebind an existing executable to replace a single modified .o file, rather 
than build a new executable from the beginning. Since the binding process consumes 
storage and processor cycles partly in proportion to the number of different files being 
accessed and the number of different references to symbols that have to be resolved, 
rebinding an executable with a new version of one module is much quicker than binding it 
from scratch. 

Prebound Subroutine Libraries 

Equally important in some environments is the ability to bind an entire subroutine library 
in advance of its use. The system subroutine libraries such as Ube.a are, in effect, shipped 
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in binder-output format, rather than as an archive file of .o files. This saves the user 
considerable processing time when binding an application with the required system 
libraries, since only the references from the application to the library subroutines have to 
be resolved. References among the system library routines themselves have already been 
resolved during the system-build process. 

Many third-party subroutine libraries, however, are routinely shipped in archive 
form as raw .o files. When users bind applications with such libraries, the binder has to do 
symbol resolution for the entire library each time the application is bound. This results in 
long bind times in environments where applications are being bound with large libraries 
on small machines. 

The performance difference between bound and unbound libraries is dramatic, 
especially in minimum configurations. One user reported Id command execution times on 
the order of 11 minutes in an 8MB Model 320 when binding a small FORTRAN program 
with an 8+MB subroutine library that had been built in the usual archive form. When the 
subroutine library was prebound, the time required to bind the FORTRAN program fell to 
approximately 1 .  7 minutes. When the resulting a.out file was rebound with a new 
FORTRAN .o file, simulating the handling of a trivial bug fix, the bind time fell to 
approximately 4 seconds . 

Examples 

1. To prebind a library, use the following command on the archive file: 

ld -r l ibfoo . a  -o l ibfooa . o  

2. The compile and bind of the FORTRAN program something.f is then: 

xl f something . f  l ibfooa . o  

Notice that the prebound library is treated as another ordinary input file, not with 
the usual library identification syntax (-lfoo). 

3. To recompile the module and rebind the executable after fixing a bug, use: 

xl f something . f  a . out 

4. However, if the bug fix had resulted in a call to a different subroutine in the 
library, the bind would fail. The following Korn shell script tests for a failure 
return code and recovers : 

# ! /usr/bin / ksh 
# She l l  s cript for source f i l e  replacement bind 
# 
x l f  something . f  a . out 
re= $ ?  
i f  [ " $r e "  ! =  0 
then 

f i  

echo "New func tion added 
xl f something . o  l ibfooa . o  

us ing l ibfooa . o " 
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Appendix E 
Performance of the 
Performance Tools 

Occasionally, the AIX Performance Group is asked about the "overhead" of the 
performance tools. This is certainly a meaningful question, because some of the tools can 
add significantly to system workload. It is also a difficult question to answer, because the 
cost of running the tools is often proportional to some aspect of the workload. The 
following sections contain brief, informal discussions of the speed and resource use of the 
main performance monitoring and tuning facilities. These discussions are intended to give 
a general sense of the relative cost of various tools-not to constitute a rigorous 
description of tool performance. Most of the experiments were performed on AIX Version 
3 .2.5 on a RISC System/6000 Model 320. Exceptions are noted where they occur. 

filemon 

Most of filemon's load on the system is its CPU-time consumption. In a CPU-saturated 
environment with little 1/0, filemon slowed a large compile by about 1 % .  In a 
CPU-saturated environment with a high disk-output rate, filemon slowed the writing 
program by about 5%.  

fi leplace 

Most variations of this command use less than .3 seconds of CPU time. 

iostat 

This command uses about 20 milliseconds of CPU time for each periodic report 
generated. 

lsattr 

This command is 1/0-limited. The first time it is run, it may take 2 to 4 seconds to read the 
necessary data. Subsequent executions on a lightly loaded system will use about .5 
seconds of CPU time. 
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lslv 

This command is CPU-limited. As an example, the command: 

l s lv -p hdiskO hdl 

consumes about .5 seconds of CPU time. 

netpmon 

With a moderate, network-oriented workload, netpmon increases overall CPU utilization 
by 3-5%.  In a CPU-saturated environment with little 1/0 of any kind, netpmon slowed a 
large compile by about 3.5%. 

netstat 

Most of the variations of this command use less than .2 seconds of CPU time. 

nfsstat 

Most of the variations of this command use less than . 1  seconds of CPU time. 

PDT 

Daily data collection takes several elapsed minutes, but most qf that time is spent sleeping. 
Total CPU consumption is normally less than 30 seconds. 

ps 

The CPU time consumed by this command varies with the number of processes to be 
displayed, but usually does not exceed .3 seconds. 

svmon 

The svmon -G command uses about 3 .2 seconds of CPU time. An svmon command for a 
single process (svmon -P processid), takes about .7 seconds of CPU time. 

tprof 

Since tprof uses trace, it causes some system overhead. tprof only enables one trace 
hook, however, so its overhead is less than that of a full trace. For example, tprof 
degraded the performance of a large compile by less than 2%. 

trace 

The overhead added by trace varies widely, depending on the workload and the number of 
hook IDs being collected. As an extreme case, a long-running, CPU-intensive job in an 
otherwise idle system took 3.2% longer when trace was running with all hooks enabled. 
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vmstat 

This command uses about 40 milliseconds of CPU time for each report generated. The 
vmstat -s command requires about 90 milliseconds of CPU time. 
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Appendix F 
Application Memory 
Management-ma/Joe and 
realloc 

AIX acquired a new memory-management algorithm in Version 3 .2, which is retained in 
Version 4. 1 .  The previous algorithm, which is widely used in UNIX systems, rounded up 
the size of all malloc requests to the next power of 2. The result was considerable virtual
and real-memory fragmentation and poor locality of reference. The Version 3.2 algorithm 
allocates exactly the amount of space requested and is more efficient about reclaiming 
previously used blocks of memory. 

Unfortunately, a certain number of existing application programs depended 
inadvertently on the previous algorithm for acceptable performance or even for correct 
functioning. For example, if a program depends on the additional space provided by the 
rounding-up process because it actually overruns the end of an array, it will probably fail 
when used with the Version 3.2 malloc. 

As another example, because of the inefficient space reclamation of the Version 3 . 1  
routine, the application program almost always receives space that has been set to zeros 
(when a process touches a given page in its working segment for the first time, that page is 
set to zeros). Applications may depend on this side effect for correct execution. In fact, 
zeroing out of the allocated space is not a specified function of malloc and would result in 
an unnecessary performance penalty for programs that initialize only as required and 
possibly not to zeros. Because the Version 3 .2 malloc is more aggressive about reusing 
space, programs that are dependent on receiving zeroed storage from malloc will probably 
fail in Version 3.2 or later systems. 

Similarly, if a program continually reallocs a structure to a slightly greater size, in 
Version 3 . 1  realloc may not need to move the structure very often. In many cases realloc 
can make use of the extra space provided by the rounding. In Version 3 .2, realloc will 
usually have to move the structure to a slightly larger area because something else has 
been malloced just above it. This has the appearance of a deterioration in realloc 
performance, when in fact it is the surfacing of a cost that is implicit in the application 
program's structure. 
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The possibility that existing AIX programs, and programs ported from other UNIX 
systems, might depend on side effects of the Version 3 . 1 malloc subroutine was foreseen. 
The Version 3 . 1  algorithm can be reinvoked by entering: 

MALLOCTYPE= 3 . l ; export MALLOCTYPE 

Thereafter, all programs run by the shell will use the previous version of the malloc 
subroutine. Setting MALLOCTYPE to anything other than 3 . 1 causes the shell to revert to 
Version 3.2 behavior. 
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Appendix G 
Performance Effects of Shared 
Libraries 

The shared-library capability sometimes provides an opportunity to make time and 
memory trade-offs. 

Advantages and Disadvantages of Shared Libraries 

The idea behind shared libraries is to have only one copy of commonly used routines and 
to maintain this common copy in a unique shared-library segment. This can significantly 
reduce the size of executables, thereby saving disk space. In addition, since these common 
routines are used by many processes in a multiuser environment, the routine may already 
be in real memory when you first reference it. In that case, the time it takes to page fault 
the subroutine into real memory and the page frame it would occupy are saved. Another 
advantage to shared libraries is that the routines are not statically bound to the application 
but are dynamically bound when the application is loaded. This permits applications to 
automatically inherit changes to the shared libraries, without recompiling or rebinding. 

There are, however, possible disadvantages to the use of shared libraries. From a 
performance viewpoint, there is "glue code" that is required in the executable to access the 
shared segment. This code adds a number of cycles per call to a shared-library segment. A 
more subtle effect is a reduction in "locality of reference." You may be interested in only a 
few of the routines in a library, and these routines may be scattered widely in the virtual 
address space of the library. Thus, the total number of pages you need to touch in order to 
access all of your routines is significantly higher than if these routines were all bound 
directly into your executable. One impact of this is that, if you are the only user of these 
routines, you experience more page faults to get them all into real memory. In addition, 
since more pages are touched, there is a greater likelihood of causing an instruction 
translation lookaside buffer (TLB) miss. 

How to Bui ld Executables Shared or Nonshared 

The cc command defaults to the shared-library option. To override the default, use the 
-bnso option as follows: 

cc xxx . c  -o xxx . noshr -o -bnso -bI : / l ib/ syscal l s . exp 
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How to Determine If Nonshared Wi l l  Help 

The obvious method of determining whether your application is  sensitive to the 
shared-library approach is to recompile your executable using the nonshare option. If the 
performance is significantly better, you may want to consider trading off the other 
advantages of shared libraries for the performance gain. Be sure to measure performance 
in an authentic environment, however. A program that had been bound nonshared might 
run faster as a single instance in a lightly loaded machine. That same program, when used 
by a number of users simultaneously, might increase real memory usage enough to slow 
down the whole workload. 
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Appendix H 

Accessing the Processor 
Timer 

Attempts to measure very . small time intervals in AIX are often frustrated by the 
intermittent background activity that is part of the operating system and by the processing 
time consumed by the system time routines. One approach to solving this problem is to 
access the processor timer directly to determine the beginning and ending times of 
measurement intervals, run the measurements repeatedly, and then filter the results to 
remove periods when an interrupt intervened. 

The POWER and POWER2 architectures implement the processor timer as a pair of 
special-purpose registers. The PowerPC architecture defines a 64-bit register called the 

. Time Base. These registers can only be accessed by assembler-language programs. 

Warning: The time measured by the processor timer is the absolute wall-clock time. If an 
interrupt occurs between accesses to the timer, the calculated duration will 
include the processing of the interrupt and possibly other processes being 
dispatched before control is returned to the code being timed. The time from the 
processor timer is the raw time and should never be used in situations in which it 
will not be subjected to a reasonableness test. 

In AIX Version 4. 1 ,  a pair of library subroutines has been added to the system to 
make accessing of these registers easier and architecture-independent. The subroutines are 
read_real_time and time_base_to_time. The read_real_time subroutine obtains the 
current time from the appropriate source and stores it as two 32-bit values. The 
time_base_to_time subroutine ensures that the time values are in seconds and 
nanoseconds, performing any necessary conversion from the TimeBase format. The 
reason for the separation of the time-acquisition and time-conversion functions is to 
minimize the overhead of time acquisition. 
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The following example shows how these new subroutines could be used to measure 
the elapsed time for a specific piece of code: 

# inc lude < stdio . h> 

# inc lude < sys / t ime . h> 

int main ( void)  { 
timebases truc t_t s tart , f inish ; 
int val = 3 ;  
int wl , w2 ; 
double t ime ; 

/ *  get the time before the operation begins * /  

read_real_t ime ( &s tart , TIMEBASE_SZ ) ; 

/ *  begin code to be timed * /  
printf ( n This i s  a sample l ine % d  \ n " , val ) ; 
/ *  end code to be t imed * /  

/ *  get the time after the operation i s  complete 
read_real_time ( & f inish , TIMEBASE_S Z ) ; 

/ *  call the convers i on routines uncondit i onal ly ,  to ensure * /  
/ *  that both values are i n  seconds and nanoseconds regardless * /  
/ *  o f  the hardware platform .  * /  
time_bas e_to_time ( &s tart , TIMEBASE_S Z ) ; 
t ime_bas e_to_t ime ( & f inish , TIMEBASE_S Z ) ; 

/ *  subtract the s tarting time from the ending t ime * /  

wl f inish . tb_high - s tart . tb_high ; / *  probably zero * /  
w2 = f inish . tb_low - s tart . tb_low ; 

/ *  i f  there was a carry from low-order to high-order during * /  
/ *  the measurement , we may have to undo i t . * /  
i f  ( w2 < 0 )  { 

wl-- ; 
w2 += 1 0 0 0 0 0 0 0 0 0 ; 

/ *  convert the net elapsed t ime to f loat ing point microseconds * /  

t ime = ( ( double )  w2 ) / 1 0 0 0 . 0 ;  
i f  ( wl > 0 )  

t ime += ( ( double )  wl ) * l O O O O O O . O ; 

print f ( " Time was % 9 . 3 f  microseconds \ n " , time ) ; 
exi t ( O ) ; 

To minimize the overhead of calling and returning from the timer routines, the 
analyst may want to experiment with binding the benchmark nonshared (see Appendix G). 

If this were a real performance benchmark, we would perform the code to be 
measured repeatedly. If we timed a number of consecutive repetitions collectively, we 
could calculate an average time for the operation, but it might include interrupt handling 

276 Accessing the Processor Timer 



or other extraneous activity. If we timed a number of repetitions individually, we could 
inspect the individual times for reasonableness, but the overhead of the timing routines 
would be included in each measurement. It may be desirable to use both techniques and 
compare the results. In any case, the analyst will want to consider the purpose of the 
measurements in choosing the method. 

POWER-Architecture-Unique Timer Access 

Warning: The following discussion applies only to the POWER and POWER2 
architectures (and the IBM 601 processor chip). The code examples will 
fanction correctly in a PowerPC system(that is, they won't blow up), but some 
of the instructions will be simulated. Since the purpose of accessing the 
processor timer is to obtain high-precision times with low overhead, simulation 
makes the results much less useful. 

The POWER and POWER2 processor architectures include two special-purpose 
registers (an upper register and a lower register) that contain a high-resolution timer. The 
upper register contains time in seconds, and the lower register contains a count of 
fractional seconds in nanoseconds. The actual precision of the time in the lower register 
depends on its update frequency, which is model-specific. 

Assembler Routines to Access the POWER Timer Registers 

The following assembler-language module (timer.s) provides routines (rtc_upper and 
rtc_l ower) to access the upper and lower registers of the timer . 

. globl . rtc_upper 
. rtc_upper : mfspr 3 , 4  # copy RTCU to return regi ster 

br 

. gl obl . rtc_l ower 
. rtc_lower : mfspr 3 , 5  

br 

# copy RTCL to return regi s ter 

C Subroutine to Supply the Time in Seconds 

The following module (second.c) contains a C routine that calls the timer.s routines to 
access the upper and lower register contents and returns a double-precision real value of 
time in seconds. 

double second ( ) 

{ 
int ts , tl , tu ; 

ts = rtc_upper ( ) ; 
tl = rtc_lower ( ) ; 
tu = rtc_upper ( ) ; 
i f  ( t s ! =  tu ) 

/ * seconds 
/ * nanos econds 
/ * Check for a carry from 
/ * the l ower reg to the upper . 

* I  
* / 
* /  
* / 

tl = rtc_lower ( ) ; / * Recover from the race condi tion . * /  
return ( tu +  ( double ) t l / 1 0 0 0 0 0 0 0 0 0  ) ;  
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The subroutine second, can be called from either a C routine or a FORTRAN 
routine. 

Note: Depending on the length of time since the last system reset, second.c may yield a 
varying amount of precision. The longer the time since reset, the larger the number 
of bits of precision consumed by the (probably uninteresting) whole-seconds part 
of the number. The technique shown in the first part of this Appendix avoids this 
problem by performing the subtraction required to obtain an elapsed time before 
converting to floating point. 

Accessing Timer Registers in PowerPC-Architecture Systems 

The PowerPC processor architecture includes a 64-bit Time Base register, which is 
logically divided into 32-bit upper and lower fields (TBU and TBL). The Time Base 
register is incremented at a frequency that is hardware and software implementation 
dependent and may vary from time to time. Transforming the values from Time Base into 
seconds is a more complex task than in the POWER architecture. We strongly recommend 
using the read_real_time and time_base_to_time interfaces to obtain time values in 
PowerPC systems. 

Example Use of the second Routine 

An example (main.c) of a C program using the second subroutine is: 

# include < s tdio . h> 
double second ( ) ; 
main ( )  

double t l , t2 ;  

t l  = second ( ) ; 
my_favorite_function ( ) ; 
t2 = second ( ) ; 

print f ( "my_favori te_func t ion time : %7 . 9 f \ n '' , t2 - t l ) ; 
exi t ( ) ; 

An example (main.f) of a FORTRAN program using the second subroutine is :  

double precis ion tl 
double precis ion t2 

t l  = second ( )  
my_favorite_subrout ine ( )  
t2 = second ( )  
wri te ( 6 ,  1 1 )  ( t2 - t l )  

1 1  f ormat ( f2 0 . 12 )  
end 

To compile and use either main.c or main.f, use the following: 
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xlc -03 -c second . c  timer . s  

xl f -03 -o mainF main . f  second . o  timer . o  

xl c -03 -o mainC main . c  second . 0  t imer . o  
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Appendix I 
National Language Support
Locale vs Speed 

AIX National Language Support (NLS) facilitates the use of AIX in various language 
environments . Because informed use of NLS is increasingly important in obtaining 
optimum performance from the system, a brief review of NLS is in order. 

NLS allows AIX to be tailored to the individual user 's language and cultural 
expectations. A locale is a specific combination of language and geographic or cultural 
requirements that is identified by a compound name, such as en_US (English as used in 
the United States) . For each supported locale, there is a set of message catalogs, collation 
value tables, and other information that defines the requirements of that locale. When AIX 
is installed, the system administrator can choose what locale information should be 
installed. Thereafter, the individual users can control the locale of each shell by changing 
the LANG and LC_ALL variables. 

The one locale that does not conform to the structure just described is the C (or 
POSIX) locale. The C locale is the system default locale unless the user explicitly chooses 
another. It is also the locale in which each newly forked process starts. Running in the C 
locale is the nearest equivalent in AIX to running in the original, unilingual form of 
UNIX. There are no C message catalogs. Instead, programs that attempt to get a message 
from the catalog are given back the default message that is compiled into the program. 
Some commands, such as the sort command, revert to their original, character-set-specific 
algorithms. 

Our measurements show that the performance of NLS falls into three bands. The C 
locale is generally the fastest for the execution of commands, followed by the single-byte 
(Latin alphabet) locales such as en_ US, with the multibyte locales resulting in the slowest 
command execution. 

Programming Considerations 

Historically, the C language has displayed a certain amount of provinciality in its 
interchangeable use of the words byte and character. Thus, an array declared char 
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foo [ 1 O ]  is an array of 10 bytes. But not all of the languages in the world are written 
with characters that can be expressed in a single byte. Japanese and Chinese, for example, 
require two or more bytes to identify a particular graphic to be displayed. Therefore, in 
AIX we distinguish between a byte, which is 8 bits of data, and a character, which is the 
amount of information needed to represent a single graphic. 

Two characteristics of each locale are the maximum number of bytes required to 
express a character in that locale and the maximum number of output display positions a 
single character can occupy. These values can be obtained with the MB_CUR_MAX and 
MAX_DISP _WIDTH macros. If both values are 1 ,  the locale is one in which the 
equivalence of byte and character still holds. If either value is greater than 1 ,  programs 
that do character-by-character processing, or that keep track of the number of display 
positions used, will need to use internationalization functions to do so. 

Since the multibyte encodings consist of variable numbers of bytes per character, 
they cannot be processed as arrays of characters. To allow efficient coding in situations 
where each character has to receive extensive processing, a fixed-byte-width data type, 
wchar_t, has been defined. A wchar_t is wide enough to contain a translated form of any 
supported character encoding. Programmers can therefore declare arrays of wchar_t and 
process them with (roughly) the same logic they would have used on an array of char, 
using the wide-character analogs of the traditional libc functions. Unfortunately, the 
translation from the multibyte form in which text is entered, stored on disk, or written to 
the display, to the wchar_t form, is computationally quite expensive. It should only be 
performed in situations in which the processing efficiency of the wchar_t form will more 
than compensate for the cost of translation to and from the wchar_t form. 

Some Simpl ifying Rules 

It is possible to write a slow, multilingual application program if the programmer is 
unaware of some constraints on the design of multibyte character sets that allow many 
programs to run efficiently in a multibyte locale with little use of internationalization 
functions. For example: 

• In all code sets supported by IBM, the character codes OxOO through Ox3F are 
unique and encode the ASCII standard characters . Being unique means that these 
bit combinations never appear as one of the bytes of a multibyte character. Since 
the null character is part of this set, the strlen, strcpy, and strcat functions work 
on multibyte as well as single-byte strings. The programmer must remember that 
the value returned by strlen is the number of bytes in the string, not the number 
of characters. 

• Similarly, the standard string function s t r chr ( f o o s t r , ' I ' ) works 
correctly in all locales, since the I (slash) is part of the unique code-point range. 
In fact, most of the standard delimiters are in the OxOO to Ox3F range, so most 
parsing can be accomplished without recourse to internationalization functions or 
translation to wchar_t form. 

• Comparisons between strings fall into two classes : equal and unequal . 
Comparisons for equality can and should be done with the standard strcmp 
function. When we write 
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i f  ( s trcmp ( foostr , " a  rose " ) == 0 )  

we are not looking for 11 a rose 11 by any other name; we are looking for that set 
of bits only. If f oos tr contains " a  rose 11 we are not interested. 

• Unequal comparisons occur when we are attempting to arrange strings in the 
locale-defined collation sequence. In that case, we would use 

if ( s trcol l ( foostr , barstr)  > 0 )  

and pay the performance cost of obtaining the collation information about each 
character. 

• When a program is execed, it always starts in the C locale. If it will use one or 
more internationalization functions, including accessing message catalogs, it 
must execute: 

setlocal e ( LC_ALL , " " ) ; 

to switch to the locale of its parent process before calling any internationalization 
function. 

Control l ing Locale 

The command sequence: 

LANG=C 
export LANG 

sets the default locale to C (that is ,  C is used unless a given variable, such as 
LC_ COLLATE, is explicitly set to something else) . 

The sequence: 

LC_ALL=C 
export LC_ALL 

forcibly sets all the locale variables to C, regardless of previous settings.  
For a report on the current settings of the locale variables, type locale.  
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Appendix J 
Summary of Tunable AIX 
Parameters 

Each of the following sections describes one of the AIX parameters that can affect 
performance. The parameters are described in alphabetical order. 

arpt_ki l lc 

Purpose: 
Values: 
Display: 
Change: 

Diagnosis : 
Tuning: 

Refer to: 

Time before an inactive, complete ARP entry is deleted. 
Default: 20 (minutes) ,  Range: NIA 
no -a or no -o arpt_killc 
no -o arpt_killc=NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding no command to /etc/re.net. 
NIA 
To reduce ARP activity in a stable network, arpt_killc can be increased. 
This is not a large effect. 
NIA 

biod Count 

Purpose: 
Values: 
Display: 
Change: 

Diagnosis : 
Tuning: 
Refer to: 

Number of biod processes available to handle NFS requests on a client. 
Default: 6, Range: 1 to any positive integer 
ps -ef I grep biod 
chnfs -b New Value 
Change normally takes effect immediately and is permanent. The -N flag 
causes an immediate, temporary change. The -I flag causes a change that 
takes effect at the next boot. 
netstat -s to look for UDP socket buffer overflows. 
Increase number until socket buffer overflows cease. 
"How Many biods and nfsds Are Needed for Good Performance?" on 
page 1 80. 
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Disk Adapter Outstanding-Requests Limit 

Purpose: 

Values : 
Display : 
Change: 

Diagnosis: 
Tuning: 

Refer to: 

Maximum number of requests that can be outstanding on a SCSI bus. 
(Applies only to the SCSI-2 Fast/Wide Adapter.) 
Default: 40, Range: 40 to 1 28 
lsattr -E -1 scsin -a num_cmd_elems 
chdev -1 scsin -a num_cmd_elems=NewValue 
Change is effective immediately and is permanent. If the -T flag is used, 
the change is immediate and lasts until the next boot. If the -P flag is 
used, the change is deferred until the next boot, and is permanent. 
NIA 
Value should equal the number of physical drives (including those in disk 
arrays) on the SCSI bus, times the queue depth of the individual drives. 
"Setting SCSI-Adapter and Disk-Device Queue Limits" on page 1 50. 

Disk Drive Queue Depth 

Purpose: 
Values: 

Display: 
Change: 

Diagnosis : 
Tuning: 

Refer to : 

dog_ ticks 

Purpose: 
Values: 
Display: 
Change: 
Diagnosis: 
Tuning: 
Refer to: 

Maximum number of requests the disk device can hold in its queue. 
Default: IBM disks=3, Range: NIA 
Default: Non-IBM disks=O, Range: specified by manufacturer. 
lsattr -E -1 hdiskn 
chdev -1 hdiskn -a q_type=simple -a queue_depth=NewValue 
Change is effective immediately and is permanent. If the -T flag is used, 
the change is immediate and lasts until the next boot. If the -P flag is 
used, the change is deferred until the next boot, and is permanent. 
NIA 
If the non-IBM disk drive is capable of request queuing, this change 
should be made to ensure that the operating system takes advantage of the 
capability. 
"Setting SCSI-Adapter and Disk-Device Queue Limits" on page 1 50. 

Timer granularity for lfWatchdog routines. This value is not used in AIX. 
Default: 60 
NIA 
NIA 
NIA 
NIA 
NIA 
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fork() Retry Interval 

Purpose: 

Values : 
Display: 
Change: 

Diagnosis: 

Tuning: 

Refer to: 

Specify the amount of time to wait to retry a fork that has failed for lack 
of paging space. 
Default: 10 ( 10-millisecond clock ticks), Range: 10 to n clock ticks 
sehedtune 
sehedtune -f New Value 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding sehedtune command to /etc/inittab. 
If processes have been killed for lack of paging space, monitor the 
situation with the sigdanger() subroutine. 
If the paging-space-low condition is only due to brief, sporadic workload 
peaks, increasing the retry interval may allow processes to delay !Ong 
enough for paging space to be released. Otherwise, make the paging 
spaces larger. 
NIA 

ipforwarding 

Purpose: 
Values: 
Display: 
Change: 

Diagnosis: 
Tuning: 
Refer to: 

ipfragttl 

Purpose: 
Values : 
Display: 
Change: 

Diagnosis : 
Tuning: 

Refer to: 

Specifies whether the kernel forwards IP packets. 
Default: 0 (no), Range: 0 to 1 
no -a or no -o ipforwarding 
no -o ipforwarding=NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding no command to /etc/re.net. 
NIA 
This is a configuration decision with performance consequences. 
NIA 

Time to live for IP packet fragments. 
Default: 60 (seconds) ,  Range: 60 to n 
no -a or no -o ipfragttl 
no -o ipfragttl=NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding no command to /etc/re.net. 
netstat -s 
If value of IP : fragment s  dropped a f t er t imeout is 
nonzero, increasing ipfragttl may reduce retransmissions. 
NIA 
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/ 

ipqmaxlen 

Purpose: 
Values: 
Display: 
Change: 

Diagnosis: 
Tuning: 
Refer to: 

Specify the maximum number of entries on the IP input queue. 
Default: 50, Range: 50 to n 
no -a or no -o ipqmaxlen 
no -o ipqmaxlen=NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding no command to /etclrc.net. 
Use crash to access IP input queue overflow counter. 
Increase size. 
"IP Protocol Performance Tuning Recommendations" on page 1 67. 

ipsendredirects 

Purpose: 
Values : 
Display: 
Change: 

Diagnosis: 
Tuning: 
Refer to: 

Specifies whether the kernel sends redirect signals. 
Default: 1 (yes), Range: 0 to 1 
no -a or no -o ipsendredirects 
no -o ipsendredirects=NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding no command to /etclrc.net. 
NIA 
NIA. This is a configuration decision with performance consequences. 
NIA 

loop_check_sum (3.2.5 only) 

Purpose: 

Values :  
Display: 
Change: 

Diagnosis: 
Tuning: 
Refer to : 

Specifies whether checksums are built and verified on a loopback 
interface. (This function does not exist in AIX Version 4. 1 .) 
Default: 1 (yes), Range: 0 to 1 
no -a or no -o loop_cbeck_sum 
no -o loop_check_sum=O 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding no command to /etclrc.net. 
NIA 
Turning checksum verification off (loop_check_sum=O) is recommended. 
NIA 

lowclust (3.2.5 only) 

Purpose: 
Values : 
Display: 
Change: � 

Diagnosis : 
Tuning: 
Refer to: 

Specifies the low-water mark for the mbuf cluster pool. 
Default: configuration-dependent, Range: 5 to n 
no -a or no -o lowclust 
no -o lowclust=NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding no command to /etclrc.net. 
netstat -m 
If "requests for memory denied" is nonzero, increase lowclust. 
"AIX Version 3.2.5 mbuf Pool Performance Tuning" on page 1 70. 
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lowmbuf (3.2.5 only) 

Purpose: 
Values : 
Display: 
Change: 

Diagnosis : 
Tuning: 
Refer to: 

maxbuf 

Purpose: 
Values: 
Display: 
Change: 

Diagnosis: 
Tuning: 

Refer to: 

Specifies the low-water mark for the mbuf pool 
Default: configuration-dependent, Range: 64 to n 
no -a or no -o lowmbuf 
no -o lowmbuf=NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding no command to /etc/re.net. 
netstat -m 
If "requests for memory denied" is nonzero, increase lowmbuf. 
"AIX Version 3 .2.5 mbuf Pool Performance Tuning" on page 170. 

Number of (4KB) pages in the block-1/0 buffer cache. 
Default: 20, Range: x to y 
lsattr -E -I sysO -a maxbuf 
chdev -1 sysO -a maxbuf=NewValue 
Change is effective immediately and is permanent. If the -T flag is used, 
the change is immediate and lasts until the next boot. If the -P flag is 
used, the change is deferred until the next boot and is permanent. 
NIA 
This parameter normally has little performance effect on an AIX system, 
since ordinary 1/0 does not use the block-1/0 buffer cache. 
NIA 

max_ coalesce 

Purpose: 

Values: 
Display: 
Change: 

Diagnosis: 
Tuning: 
Refer to: 

Specifies the maximum size, in bytes, of requests that the SCSI device 
driver will coalesce from the requests in its queue. 
Default: 64KB, Range: 64KB to 2GB 
odmget 
odmdelete, odmadd, bosboot 
Change takes effect at next boot and is permanent. 
NIA 
Increase if striped logical volumes or disk arrays are in use. 
"Modifying the SCSI Device Driver max_coalesce Parameter" on page 
149. 
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maxfree 

Purpose: 

Values : 
Display: 
Change: 

Diagnosis: 
Tuning: 

Refer to: 

maxperm 

Purpose: 

Values : 
Display: 
Change: 

Diagnosis : 
Tuning: 

Refer to : 

The maximum size to which the VMM page-frame free list will grow by 
page stealing. 
Default: configuration-dependent, Range: 16 to 204800 (4KB frames) 
vmtune 
vmtune -F New Value 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding vmtune command to /etc/inittab. 
Observe free-list-size changes with vmstat n. 
If vmstat n shows free-list size frequently driven below minfree by 
application demands, increase maxfree to reduce calls to replenish free 
list. Generally, keep maxfree - minfree <= 100. 
"Tuning VMM Page Replacement" on page 126. 

The percentage of memory page frames occupied by permanent pages 
above which only permanent pages will have their frames stolen. 
Default: 80% of (memory size - 4MB), Range: 5 to 1 00 
vmtune 
vmtune -P NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding vmtune command to /etdinittab. 
Monitor disk 1/0 with iostat n. 
If some files are known to be read repetitively, and 1/0 rates do not 
decrease with time from startup, maxperm may be too low. 
"Tuning VMM Page Replacement" on page 126. 

maxpgahead 

Purpose: 

Values : 
Display: 
Change: 

Diagnosis : 

Tuning: 

Refer to : 

The upper limit on the number of pages the VMM will read ahead when 
processing a sequentially accessed file. 
Default: 8 ,  Range: 0 to 16  
vmtune 
vmtune -R New Value 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding vmtune command to /etc/inittab. 
Observe the elapsed execution time of critical sequential-1/0-dependent 
applications with time command. 
If execution time decreases with higher maxpgahead, observe other 
applications to ensure that their performance has not deteriorated. 
"Tuning Sequential Read Ahead" on page 14 1 .  
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maxpin (4.1 on ly) 

Purpose: 
Values: 

Display: 
Change: 

Diagnosis: 
Tuning: 

Refer to: 

max pout 

Purpose: 
Values : 

Display: 
Change: 

Diagnosis : 

Tuning: 

Refer to: 

maxttl 

Purpose: 
Values: 
Display: 
Change: 

Diagnosis : 
Tuning: 
Refer to: 

The maximum percentage of real memory that can be pinned. 
Default: 80 (% of RAM), Range: At least 4MB pinnable to at least 4MB 
unpinnable. 
vmtune 
vmtune -M New Value 
Change takes effect immediately. Change is effective until next boot. 
NIA 
Only change for extreme situations, such as maximum-load 
benchmarking. 
vmtune command on page 255 .  

Specifies the maximum number of pending I/Os to a file. 
Default: 0 (no checking), Range: 0 to n (n should be a multiple of 4, plus 
1 )  
lsattr -E -1 sysO -a maxpout 
chdev -1 sysO -a maxpout=NewValue 
Change is effective immediately and is permanent. If the -T flag is used, 
the change is immediate and lasts until the next boot. If the -P flag is 
used, the change is deferred until the next boot and is permanent. 
If foreground response time sometimes deteriorates when programs with 
large amounts of sequential disk output are running, sequential output may 
need to be paced. 
Set maxpout to 33 and minpout to 16. If sequential performance 
deteriorates unacceptably, increase one or both. If foreground performance 
is still unacceptable, decrease both. 
"Use of Disk-110 Pacing" on page 142. 

Time to live for Routing Information Protocol (RIP) packets. 
Default: 255, Range: NIA 
no -a or no -o maxttl 
no -o maxttl=NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding no command to /etc/re.net. 
NIA 
NIA 
NIA 
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mb_cl_hiwat (3.2.5 only) 

Purpose: 
Values: 
Display : 
Change: 

Diagnosis: 
Tuning: 

Refer to: 

Specifies the high-water mark for the mbuf cluster pool 
Default: configuration-dependent, Range: NI A 
no -a or no -o mb_cl_hiwat 
no -o mb_cl_hiwat=NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding no command to /etc/re.net. 
netstat -m 
If the number of mbuf clusters (called "mapped pages" by netstat) is 
regularly greater than mb_cl_hiwat, increase mb_cl_hiwat. 
"AIX Version 3 .2.5 mbuf Pool Performance Tuning" on page 170. 

Memory-Load-Control Parameters 

Purpose: 

Values : 

Display: 
Change: 

Diagnosis: 
Tuning: 

Refer to : 

minfree 

Purpose: 

Values: 
Display: 
Change: 

Diagnosis: 
Tuning: 

Refer to: 

Customize the VMM memory-load-control facility to maximize use of the 
system while avoiding thrashing. The most frequently used parameters 
are: 

h High memory-overcommitment threshold 
p Process memory-overcommitment threshold 
m Minimum level of multiprogramming 

h Default: 6, Range: 0 to any positive integer 
p Default: 4, Range: 0 to any positive integer 
m Default: 2, Range: 0 to any positive integer 
schedtune 
schedtune [-h New Value] [-p New Value] [-m New Value] 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding schedtune command to /etc/inittab. 
Heavy memory loads cause wide variations in response time. 
schedtune -h 0 turns off memory load control. 
schedtune -p 2 requires a higher level of repaging by a given process 
before it is a candidate for suspension by memory load control. 
schedtune -m 10 requires that memory load control always leave at least 
10 user processes running when it is suspending processes. 
"VMM Memory Load Control Facility" on page 21 and "Tuning VMM 
Memory Load Control" on page 124. 

The VMM page-frame free-list size at which the VMM starts to steal 
pages to replenish the free list. 
Default: configuration-dependent, Range: x to any positive integer 
vmtune 
vmtune -f New Value 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding vmtune command to /etc/inittab. 
vmstat n 
If processes are being delayed by page stealing, increase minfree to 
improve response time. Increase maxfree by an equal or greater amount. 
"Tuning VMM Page Replacement" on page 126. 
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min perm 

Purpose: 

Values: 
Display: 
Change: 

Diagnosis: 
Tuning: 

Refer to: 

The percentage of page frames occupied by permanent pages below which 
the VMM steals frames from both permanent and working pages without 
regard to repage rates. 
Default: 20% of (memory size - 4MB),  Range: 5 to 1 00 
vmtune 
vmtune -P New Value 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding vmtune command to /etc/inittab. 
Monitor disk 1/0 with iostat n. 
If some files are known to be read repetitively, and 1/0 rates do not 
decrease with time from startup, minperm may be too low. 
"Tuning VMM Page Replacement" on page 1 26. 

minpgahead 

Purpose: 

Values: 
Display: 
Change: 

Diagnosis: 

Tuning: 

Refer to: 

min pout 

Purpose: 

Values: 

Display: 
Change: 

Diagnosis: 

Tuning: 

Refer to: 

The number of pages the VMM reads ahead when it first detects 
sequential access. 
Default: 2, Range: 0 to 16 
vmtune 
vmtune -r NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding vmtune command to /etc/inittab. 
Observe the elapsed execution time of critical sequential-1/0-dependent 
applications with time command. 
If execution time decreases with higher minpgahead, observe other 
applications to ensure that their performance has not deteriorated. 
"Tuning Sequential Read Ahead" on page 14 1 .  

Specifies the point at which programs that have hit maxpout can resume 
writing to the file. 
Default: 0 (no checking), Range: 0 to n (n should be a multiple of 4 and 
should be at least 4 less than maxpout) 
lsattr -E -I sysO -a minpout 
chdev -1 sysO -a minpout=NewValue 
Change is effective immediately and is permanent. If the -T flag is used, 
the change is immediate and lasts until the next boot. If the -P flag is 
used, the change is deferred until the next boot and is permanent. 
If foreground response time sometimes deteriorates when programs with 
large amounts of sequential disk output are running, sequential output may 
need to be paced. 
Set maxpout to 33 and minpout to 16.  If sequential performance 
deteriorates unacceptably, increase one or both. If foreground performance 
is still unacceptable, decrease both. 
"Use of Disk-1/0 Pacing" on page 142. 
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MTU 

Purpose: 
Values: 

Display: 
Change: 

Diagnosis : 
Tuning: 

Refer to: 

Limits the size of packets that are transmitted on the network. 
trn (4Mb) : Default: 1492, Range: 60 to 3900 
trn ( 16Mb) :  Default: 1492, Range: 60 to 1 7960 
enn: Default: 1 500, Range: 60 to 1 500 
fin: Default: 4352, Range: 60 to 4352 
bin: Default: 65536, Range: 60 to 65536 
son: Default: 6 1428, Range: 60 to 6 1428 
Ion: Default: 1500 (3.2.5) 16896 (4. 1 ) ,  Range: 60 to 65536 
lsattr -E -I trn 
chdev -I trn -a mtu=NewValue 
Cannot be changed while the interface is in use. Because all systems on a 
LAN must have the same MTU, they must all change simultaneously. 
Change is effective across boots. 
Packet fragmentation stats 
Increase MTU size for the Token Ring interfaces: 
trn (4Mb): 4056 
trn ( 1 6Mb): 8500 
For the loopback interface Ion in Version 3.2.5, increase to 1 6896. 
For other interfaces, the default should be kept. 
"LAN Adapters and Device Drivers" on page 1 62. 

nfs_chars (3.2.5), nfs_socketsize (4. 1 ) 

Purpose: 
Values: 
Display: 
Change: 

Diagnosis: 
Tuning: 

Refer to: 

The size of the NFS UDP socket buffer. 
Default: 60000, Range: 60000 to (sb_max -128) 
nfso -a or nfso -o nfs_chars (In 4. 1 ,  nfso -o nfs_socketsize) 
nfso -o nfs_chars=NewValue 
(In 4. 1 ,  nfso -o nfs_socketsize=NewValue) 
stopsrc -g nfs 
startsrc -g nfs 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding nfso command to /etc/rc.nfs or 
/etc/re.net. sb_max must change appropriately first. 
netstat -s 
If the "UDP: socket buffer overflows" count is nonzero, increase sb_max 
and nfs_chars. 
"NFS Tuning" on page 179. 
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nfsd Count 

Purpose: 
Values : 
Display: 
Change: 

Diagnosis: 
Tuning: 
Refer to: 

Number of nfsd processes available to handle NFS requests on a server. 
Default: 8, Range: 1 to n 
ps -ef I grep nfsd 
chnfs -n New Value 
Change normally takes effect immediately and is permanent. The -N flag 
causes an immediate, temporary change. The -I flag causes a change that 
takes effect at the next boot. 
netstat -s to look for UDP socket buffer overflows. 
Increase number until socket buffer overflows cease. 
"How Many biods and nfsds Are Needed for Good Performance?" on 
page 1 80. 

nfs_gather_threshold (4.1  on ly) 

Purpose: 

Values : 
Display: 
Change: 

Diagnosis: 
Tuning: 
Refer to: 

Minimum size of a write that sleeps before syncing. Used to disable 
scatter/gather of writes to the same vnode. 
Default: 4096, Range: x to y 
nfso -a or nfso -o nfs_gather_threshold 
nfso -o nfs_gather_threshold=NewVa/ue 
Change takes effect immediately. 
Change is effective until next boot. 
NIA 
NIA 
NIA 

nfs_portmon (3.2.5), portcheck (4.1 ) 

Purpose: 

Values: 
Display: 
Change: 

Diagnosis: 
Tuning: 
Refer to: 

Specifies that NFS is to check whether or not requests come from 
privileged ports. 
Default: 0 (no), Range: 0 to 1 
nfso -a or nfso -o nfs_portmon 
nfso -o nfs_portmon=NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding nfso command to /etdrc.nfs. 
NIA 
This is a configuration decision with minimal performance consequences .  
NIA 

nfs_repeat_messages (4.1  only) 

Purpose: 
Values: 
Display: 
Change: 

Diagnosis : 
Tuning: 
Refer to: 

Should messages written by NFS be repeated? 
Default: 1 (yes), Range: 0 to 1 
nfso -a or nfso -o nfs_repeat_messages 
nfso -o nfs_repeat_messages=NewVa/ue 
Change takes effect immediately. 
Change is effective until next boot. 
NIA 
NIA 
NIA 
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nfs_setattr_error (4.1  only) 

Purpose: 
Values: 
Display: 
Change: 

Diagnosis :  
Tuning: 
Refer to: 

Specifies that NFS is to ignore NFS errors due to illegal PC setattrs. 
Default: 1 ,  Range: 0 to 1 
nfso -a 
nfso -o nfs_setattr_error=NewValue 
Change takes effect immediately. 
Change is effective until next boot. 
NIA 
NIA 
NIA 

nfsudpcksum (3.2.5), udpchecksum (4.1 ) 

Purpose: 
Values: 
Display: 
Change: 

Diagnosis : 
Tuning: 

Refer to: 

Specifies that NFS is to use UDP checksum processing. 
Default: 1 (yes), Range: 0 to 1 
nfso -a or nfso -o nfsudpcksum 
nfso -o nfsudpcksum=NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding nfso command to /etc/rc.nfs. 
NIA 
Turning checksum processing off may save some processing time but 
increases the risk of undetected data errors . 
NIA 

nonlocsrcroute 

Purpose: 

Values: 
Display: 
Change: 

Diagnosis: 
Tuning: 
Refer to : 

Indicates that strict-source-routed IP packets can be addressed to hosts 
outside the local ring. (Loose source routing is not affected.) 
Default: 1 (yes), Range: 0 to 1 
no -a or no -o nonlocsrcroute 
no -o nonlocsrcroute=NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding no command to /etc/re.net. 
NIA 
This is a configuration decision with minimal performance consequences. 
NIA 

npski l l  (4.1  on ly) 

Purpose: 

Values: 
Display: 
Change: 

Diagnosis: 
Tuning: 
Refer to: 

The number of free paging-space pages at which processes begin to be 
killed. 
Default: 1 28,  Range: 0 to the number of pages in real memory. 
vmtune 
vmtune -k New Value 
Change takes effect immediately. Change is effective until next boot. 
NIA 
NIA 
vmtune command on page 255 .  
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npswarn (4. 1 on ly) 

Purpose: 

Values: 

Display:  
Change: 

Diagnosis : 
Tuning: 
Refer to: 

The number of free paging-space pages at which processes begin to 
receive SIGDANGER. 
Default: 5 12, Range: At least npskill to the number of pages in real 
memory. 
vmtune 
vmtune -w New Value 
Change takes effect immediately. Change is effective until next boot. 
NIA 
Increase if you experience processes being killed for low paging space. 
vmtune command on page 255 .  

numclust (4. 1 on ly) 

Purpose: 
Values : 
Display: 
Change: 

Diagnosis : 
Tuning: 

Refer to: 

The number of 16KB clusters processed by write behind. 
Default: 1 ,  Range: 1 to any positive integer 
vmtune 
vmtune -c New Value 
Change takes effect immediately. Change is effective until next boot. 
NIA 
May be appropriate to increase if striped logical volumes or disk arrays 
are being used. 
vmtune command on page 255 .  

numfsbuf (4. 1  only) 

Purpose: 
Values: 
Display: 
Change: 

Diagnosis: 
Tuning: 

Refer to : 

The number of file-system buf s t ruc ts.  

Default: 64, Range: 64 to any positive integer 
vmtune 
vmtune -b New Value 
Change takes effect immediately. Change is effective until next boot. 
NIA 
May be appropriate to increase if striped logical volumes or disk arrays 
are being used. 
vmtune command on page 255 .  

Paging Space Size 

Purpose: 
Values : 
Display: 
Change: 

Diagnosis : 

Tuning: 

Refer to: 

The amount of disk space required to hold pages of working storage. 
Default: configuration-dependent, Range: 1 6MB to nMB 
lsps -a 
mkps or chps or smit pgsp 
Change takes effect immediately and is permanent. Paging space is not 
necessarily put into use immediately, however. 
lsps -a If processes have been killed for lack of paging space, monitor 
the situation with the psdanger() subroutine. 
If it appears that there is not enough paging space to handle the normal 
workload, add a new paging space on another physical volume or make 
the existing paging spaces larger. 
"Placement and Sizes of Paging Spaces" on page 69. 
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Process-Priority Calculation 

Purpose: 

Values: 

Display: 
Change: 

Diagnosis: 

Tuning: 

Refer to: 

Specify the amount by which a process's priority value will be increased 
by its recent CPU usage, and the rate at which the recent-CPU-usage 
value decays. The parameters are called r and d. 
Default: 1 6, Range: 0 to 32 (Note: When applied to the calculation, the 
values of r and d are divided by 32. Thus the effective range of factors is 
from 0 to 1 in increments of .03 125 . )  
schedtune 
schedtune -r or schedtune -d _ 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding schedtune command to /etc/inittab. 
ps al If you find that the PRI column has priority values for foreground 
processes (those with NI values of 20) that are higher than the PRI values 
of some background processes (NI values > 20), you may want to reduce 
the r value. 
Decreasing r makes it easier for foreground processes to compete. 
Decreasing d enables foreground processes to avoid competition with 
background processes for a longer time. schedtune -r 2 would ensure that 
any new foreground process would receive at least .5 seconds of CPU 
time before it had to compete with any process with NI >= 24. 
"Tuning the Process-Priority-Value Calculation with schedtune" on page 
107. 

rec_que_size 

Purpose: 

Values : 
Display: 
Change: 

Diagnosis: 
Tuning: 

Refer to : 

(Tunable only in AIX Version 3 . )  Specifies the maximum number of 
receive buffers that can be queued up for the interface. 
Default: 30, Range: 20 to 150 
lsattr -E -1 tokn -a rec_que_size 
ifconfig trO detach 
chdev -I tokn -a rec_que_size=NewValue 
ifconfig trO hostname up 
Change is effective across boots . 
NIA 
Increase size. Should be set to 150 as a matter of course on 
network-oriented systems, especially servers. 
"LAN Adapters and Device Drivers" on page 162. 
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rfc1 1 22addrchk 

Purpose: 

Values : 
Display: 
Change: 

Diagnosis: 
Tuning: 
Refer to: 

rfc1 323 

Purpose: 

Values : 
Display: 
Change: 

Diagnosis: 
Tuning: 

Refer to: 

sb_max 

Purpose: 

Values: 
Display: 
Change: 

Diagnosis: 
Tuning: 

Refer to: 

Specifies whether address validation is performed between 
communications layers. 

· 
Default: 0 (no), Range: 0 to 1 
no -a or no -o rfcll22addrchk 
no --o rfc1122addrchk=NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding no command to /etc/re.net. 
NIA 
This value should not be changed. 
NIA 

Value of 1 indicates that tcp_sendspace and tcp_recvspace can exceed 
64KB. 
Default: 0, Range: 0 or 1 
no -a or no -o rfc1323 
no --o rfc1323=NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding no command to /etc/re.net. 
None. 
Change before attempting to set tcp_sendspace and tcp_recvspace to 
more than 64KB. 
"TCP Layer" on page 157.  

Provide an absolute upper bound on the size of TCP and UDP socket 
buffers . Limits setsockopt(), udp_sendspace, udp_recvspace, 
tcp_sendspace, and tcp_recvspace. 
Default: 65536, Range: NIA 
no -a or no --o sb_max 
no --o sb_max=NewValue 
Change takes effect immediately for new connections. Change is effective 
until next boot. Permanent change is made by adding no command to 
/etc/re.net. 
None. 
Increase size, preferably to multiple of 4096. Should be about twice the 
largest socket buffer limit. 
"Socket Layer" on page 155 
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subnetsarelocal 

Purpose: 

Values: 
Display: 
Change: 

Diagnosis: 
Tuning: 

Refer to: 

Specifies that all subnets that match the subnet mask are to be considered 
local for purposes of establishing, for example, the TCP maximum 
segment size. 
Default: 1 (yes), Range: 0 to 1 
no -a or no -o subnetsarelocal 
no -o subnetsarelocal=NewVa/ue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding no command to /etc/re.net. 
NIA 
This is a configuration decision with performance consequences. If the 
subnets do not all have the same MTU, fragmentation at bridges may 
degrade performance. If the subnets do have the same MTU, and 
subnetsarelocal is 0, TCP sessions may use an unnecessarily small MSS . 
"Tuning TCP Maximum Segment Size (MSS)" on page 1 65 .  

syncd Interval 

Purpose: 
Values: 
Display: 
Change: 

Diagnosis: 
Tuning: 

Refer to : 

The time between sync() calls by syncd. 
Default: 60 (seconds), Range: 1 to any positive integer 
grep syncd /shin/re.boot 
vi /shin/re.boot 
Change takes effect at next boot and is permanent. 
NIA 
At its default level, this parameter has little performance cost. No change 
is recommended. Significant reductions in the syncd interval in the 
interests of data integrity could have adverse consequences. 
"Performance Implications of synclfsync" on page 149. 

tcp_keepidle 

Purpose: 
Values : 
Display: 
Change: 

Diagnosis : 
Tuning: 

Refer to : 

Total length of time to keep an idle TCP connection alive. 
Default: 14400 (half-seconds) = 2 hours, Range: any positive integer 
no -a or no -o tcp_keepidle 
no -o tcp_keepidle=NewVa/ue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding no command to /etc/re.net. 
NIA 
This is a configuration decision with minimal performance consequences .  
No change is recommended. 
NIA 
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tcp_keepintvl 

Purpose: 
Values: 
Display: 
Change: 

Diagnosis: 
Tuning: 

Refer to: 

Interval between packets sent to validate the TCP connection. 
Default: 150 (half-seconds) = 75 seconds, Range: any positive integer 
no -a or no -o tcp_keepintvl 
no -o tcp_keepintvl=NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding no command to /etc/re.net. 
NIA 
This is a configuration decision with minimal performance consequences. 
No change is recommended. If the interval were shortened significantly, 
processing and bandwidth costs might become significant. 
NIA 

tcp_mssdflt 

Purpose: 

Values: 
Display:  
Change: 

Diagnosis : 
Tuning: 
Refer to: 

Default maximum segment size used in communicating with remote 
networks. 
Default: 5 1 2, Range: 5 12 to (MTU of local net - 64) 
no -a or no -o tcp_mssdflt 
no -o tcp_mssdflt=NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding no command to /etc/re.net. 
NIA 
Increase, if practical. 
"Tuning TCP Maximum Segment Size (MSS)" on page 165 .  

tcp_recvspace 

Purpose: 
Values: 

Display: 
Change: 

Diagnosis : 
Tuning: 
Refer to: 

Provide the default value of the size of the TCP socket receive buffer. 
Default: 16384, Range: 0 to 64KB if rfcl323=0, 
Range: 0 to 4GB if rfc1323=1.  
Must be less than or equal to sb_max. 
Should be equal to tcp_sendspace and uniform on all frequently accessed 
AIX systems. 
no -a or no -o tcp_recvspace 
no -o tcp_recvspace=NewValue 
Change takes effect immediately for new connections. Change is effective 
until next boot. Permanent change is made by adding no command to 
/etc/re.net. 
Poor throughput. 
Increase size, preferably to multiple of 4096. 
"Socket Layer" on page 155 .  
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tcp_sendspace 

Purpose: 
Values: 

Display: 
Change: 

Diagnosis: 
Tuning: 
Refer to : 

tcp_ttl 

Purpose: 
Values: 
Display: 
Change: 

Diagnosis: 
Tuning: 

Refer to : 

thewall 

Purpose: 

Values: 
Display: 
Change: 

Diagnosis : 
Tuning: 
Refer to: 

Provide the default value of the size of the TCP socket send buffer. 
Default: 1 6384, Range: 0 to 64KB if rfcl323=0, 
Range: 0 to 4GB if rfc1323=1.  
Must be less than or equal to sb_max. 
Should be equal to tep_reevspaee and uniform on all frequently accessed 
AIX systems. 
no -a or no -o tep_sendspaee 
no -o tep_sendspaee=NewValue 
Change takes effect immediately for new connections. Change is effective 
until next boot. Permanent change is made by adding no command to 
/etc/re.net. 
Poor throughput. 
Increase size, preferably to multiple of 4096.  
"Socket Layer" on page 155 .  

Time to live for TCP packets. 
Default: 60 ( 10-millisecond processor ticks), Range: any positive integer 
no -a or no -o tep_ttl 
no -o tep_ttl=NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding no command to /etc/re.net. 
netstat -s 
If the system is experiencing TCP timeouts, increasing tep_ttl may reduce 
retransmissions. 
NIA 

Provide an absolute upper bound on the amount of real memory that can 
be used by the communications subsystem. 
Default: 25% of real memory, Range: 0 to 50% of real memory 
no -a or no -o thewall 
no -o thewall=NewValue 
New Value is in KB, not bytes. Change takes effect immediately for new 
connections. Change is effective until next boot. Permanent change is 
made by adding no command to /etc/re.net. 
None. 
Increase size, preferably to multiple of 4(KB).  
"AIX Version 3.2.5 mbuf Pool Performance Tuning" on page 170 
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Time-Sl ice Expansion Amount 

Purpose: 

Values: 
Display: 
Change: 

Diagnosis: 
Tuning: 

Refer to: 

The number of 10  millisecond clock ticks by which the default 10 
millisecond time slice is to be increased. 
Default: 0, Range: 0 to any positive integer 
schedtune 
schedtune -t New Value 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding schedtune command to /etc/inittab. 
NIA 
In general, this parameter should not be changed. If the workload consists 
almost entirely of very long-running, CPU-intensive programs, increasing 
this parameter may have some positive effect. 
"Modifying the Scheduler Time Slice" on page 109 .  

udp_recvspace 

Purpose: 
Values : 

Display: 
Change: 

Diagnosis : 
Tuning: 
Refer to: 

Provide the default value of the size of the UDP socket receive buffer. 
Default: 41600, Range: NIA 
Must be less than or equal to sb_max. 
no -a or no -o udp_recvspace 
no -o udp_recvspace=New Value 
Change takes effect immediately for new connections. Change is effective 
until next boot. Permanent change is made by adding no command to 
/etc/re.net. 
Nonzero n in netstat -s report of udp: n socket buffer overflows 
Increase size, preferably to multiple of 4096. 
"Socket Layer" on page 155 

udp_sendspace 

Purpose: 
Values: 

Display: 
Change: 

Diagnosis : 
Tuning: 
Refer to: 

Provide the default value for the size of the UDP socket send buffer. 
Default: 921 6, Range: 0 to 65536 
Must be less than or equal to sb_max. 
no -a or no -o udp_sendspace 
no -o udp_sendspace=NewValue 
Change takes effect immediately for new connections . Change is effective 
until next boot. Permanent change is made by adding no command to 
/etc/re.net. 
NIA 
Increase size, preferably to multiple of 4096. 
"Socket Layer" on page 155 
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udp_ttl 

Purpose: 
Values: 
Display: 
Change: 

Diagnosis: 
Tuning: 
Refer to : 

Time to live for UDP packets. 
Default: 30 ( IO-millisecond timer ticks) ,  Range: any positive integer 
no -a or no -o udp_ttl 
no -o udp_ttl=NewValue 
Change takes effect immediately. Change is effective until next boot. 
Permanent change is made by adding no command to /etc/re.net. 
NIA 
NIA 
NIA 

xmt_que_size 

Purpose: 

Values : 
Display: 
Change: 

Diagnosis: 

Tuning: 

Refer to: 

Specifies the maximum number of send buffers that can be queued up for 
the device. 
Default: 30, Range: 20 to 150 
lsattr -E -I tokO -a xmt_que_size 
ifconfig trO detach 
chdev -I tokO -a xmt_que_size=NewValue 
ifconfig trO hostname up 
Change is effective across boots. 
netstat -i 
Oerr > 0 
Increase size. Should be set to 150 as a matter of course on 
network-oriented systems, especially servers. 
"LAN Adapters and Device Drivers" on page 1 62 
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G lossary 

The purpose of this glossary is to help you understand AIX performance tuning. In some 
cases, the definitions apply specifically to AIX or to the tuning of a production system, 
rather than to the universe of all computers or to measurement under laboratory 
conditions. 
baud. Technically, the number of changes in signal levels, frequency, or phase per second 
on a communications channel. Informally (as used by programmers) synonymous with 
"bits per second." (Named for J. Baudot, 1845-1903, French inventor.) 

benchmark. The combination of a rigorously specified workload and a method of 
quantifying the performance of a system when processing that workload. The 
performance metric is usually derived from the time required to process the workload. 

binding. In a multiprocessor context, constraining a thread to a specific physical 
processor to gain the benefit of processor affinity. 

cache. 1 .  High-speed storage that can deliver data or instructions faster than the storage 
medium on which that information usually resides . 2. A (usually software) technique 
whereby high-speed storage that is not immediately required for other purposes is used to 
retain data that has been loaded into it once, in the hope that another request for the data 
will occur before the high-speed storage must be reassigned. 

cache coherency. The need to ensure that multiple threads on multiple processors 
changing a single cache line do not create inconsistent versions of the cache line in the 
different caches. 

cache hit. A processor storage reference that is satisfied by information from a cache. 

cache line. The cache component that is normally loaded, stored, and interrogated during 
cache lookup. 

cache line tag. The information kept with each cache line to identify the part of virtual 
storage it contains. 

cache lookup. The process of determining whether or not a cache contains the 
information necessary to satisfy a storage reference. A defined set of bits in the address 
being referenced identifies the line or lines to be interrogated. 

cache miss. A processor storage reference that cannot be satisfied from a cache and 
therefore requires a RAM access. 

cluster. 1) a group of LAN-connected systems that share workload, 2) a page-size 
(4096-byte) buffer provided by the mbuf management facility to the various layers of 
communication software in AIX. Also called "cluster mbuf," "mbuf cluster," and 
"mapped page." 

combined I and D cache. A cache that contains both instructions and data, 
distinguishable only by the cache line tag. 

computational memory. The set of all virtual-memory pages in real memory that are part 
of working-storage or program-text segments. 

congruence class. The set of lines in a set-associative cache that must be interrogated to 
determine whether or not the cache contains the required information. 
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contention scope. The group of threads against which a given thread must compete for 
the CPU. If local, the thread competes against other threads in the same process. If global, 
the thread competes against all other threads in the system. 
critical resource. The system resource whose speed and/or size limits the speed with 
which a particular workload can be processed. 
data cache. A cache for providing data to the processor faster than it can be obtained from 
RAM. 
direct-mapped cache. A cache in which exactly one line corresponds to each possible 
value of the virtual-address field that identifies the line to be interrogated. 
effective rate. The average sustained speed at which a device operates under real-world 
conditions, when processing a representative workload. 
executable. A file that can be loaded into memory and executed as a program. An 
executable is produced by the binder (Id) from one or more object (.o) files . The default 
processing of compilation commands includes invoking the binder to produce an 
executable whose name is a.out. 

FDDI. Fiber distributed data interface. A I 00 Mbit/sec optical LAN interface. 
file memory. Virtual-memory pages that are currently in real memory that are not part of 
computational memory. Normally these are pages of nonexecutable files. 
fragment. A unit of disk storage that is smaller that a (4KB) page. 
free list. The set of real-memory page frames that are available for immediate allocation. 
funnelling. Forcing device drivers and kernel extensions that are not known to be MP safe 
to run only on the master processor. 
industry-standard benchmark. A benchmark that has been adopted by consensus or by 
some (presumably neutral) sponsoring organization as constituting a meaningful measure 
of some aspect of computer-system performance. There are many counter-examples to the 
assumption that an improvement in industry-standard benchmark performance 
corresponds to an improvement in the performance experienced by users. 
instruction cache. A cache for providing program instructions to the processor faster than 
they can be obtained from RAM. 
Ll cache. The first cache accessed when a storage reference occurs. 
L2 cache. The cache that is accessed, on certain RISC System/6000 models, if the LI  
cache lookup results in  a cache miss. Normally, the L2  cache i s  larger and slower than the 
L I  cache, but faster than RAM. 
latency. The time from the initiation of an operation until something actually starts 
happening (for example, data transmission begins) . 
line of memory. The section of memory that corresponds to a cache line, which 
corresponds to a single virtual-memory address tag. 
load module. See executable. 
locality of reference. The degree to which a running program makes use of a compact 
range of addresses for instructions and/or data. 
logical partition (LP). A fixed-size portion of a logical volume. A logical partition is the 
same size as the physical partitions in its volume group. Unless the logical volume of 
which it is a part is mirrored, each logical partition corresponds to-and its contents are 
stored on-a single physical partition. 
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logical resource. A software construct, such as a lock or a buffer, that is required for the 
execution of a program and is in limited supply. 

logical volume (LV). A virtual disk drive made up of one or more logical partitions, each 
of which is stored on one or more physical partitions from one or more of the physical 
volumes of a given volume group. A logical volume has a device name of the form 
I dev /hdn and contains a single file system. 

master processor. The first processor started at boot time in a multiprocessor system. 

mbuf. A small (256-byte) buffer provided by the mbuf management facility to the various 
layers of communication software in AIX. 

memory leak. A software bug in which the program allocates memory, loses track of it, 
and then allocates some more. If the program is long-running, it can eventually tie up 
large amounts of real memory and paging space . System performance gradually 
deteriorates and the program that finally fails due to lack of resource may not be the 
culprit. Memory leaks in kernel extensions that allocate pinned memory may be 
particularly costly. 

memory load control. A VMM facility that detects memory overcommitment and 
temporarily reduces the number of running processes, thus avoiding thrashing. 

memory overcommitment. A condition in which the number of virtual-memory pages 
being used by the currently running programs exceeds the number of real-memory page 
frames available to hold them. If the overcommitment is large or sustained, system 
performance suffers. 

MTU (maximum transfer unit). The largest amount of data that can be transmitted in a 
single frame for a particular network interface. 

mutex. Jargon for mutual exclusion lock. Use of this type of lock excludes all threads 
other than the lock holder from any access whatsoever to the locked resource. 

object file. The primary output of a compiler or assembler, which can be processed by the 
binder (Id) to produce an executable file. The names of object files normally end in .o. 

page. A 4096-contiguous-byte portion of a virtual-memory segment. The offset of each 
page from the beginning of the segment is an integral multiple of 4096. 

page fault. An interrupt that occurs when the processor attempts to access a 
virtual-memory page that is not in real memory. 

page frame. A 4096-contiguous-byte portion of real memory that is used to hold a 
virtual-memory page. 

peak rate. The maximum speed at which a device could operate under ideal conditions, if 
its designer were choosing the workload. 

persistent segment. A segment whose pages have permanent locations on disk, rather 
than temporary slots in the paging space. 

physical partition (PP). A fixed-size portion of a physical volume. One or more physical 
partitions constitute the underlying physical storage medium for a logical partition. 

physical volume (PV). The actual storage space provided by a single hard-disk drive. 
Physical volumes normally have names of the form I dev /hdi skn 

priority. The importance or urgency of a process. 
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priority value. A number maintained by the AIX scheduler for each process, that 
indicates the priority of that process. The smaller the priority value of the process, the 
higher its priority. 

process concurrency. The degree to which a given process has multiple dispatchable 
threads at all times. 

processor affinity. The degree to which a thread is likely to be dispatched to the same 
physical processor on which it last ran. 

program-text segment. A virtual-memory segment that contains the executable 
instructions of an application program. A program-text segment is identified by the 
occurrence of an instruction-cache miss in that segment. 

repage fault. A page fault on a virtual-memory page that is known to have been read from 
disk "recently." 

response time. The time from the initiation of an operation until its initiator has enough 
information to proceed 

RW lock. Abbreviation for read shared/write exclusive lock. Any number of threads can 
hold the lock simultaneously for reading, but if a thread holds the lock for writing, all 
other threads are excluded from reading or writing the locked resource. 

scalability. The ability of a workload to benefit from a multiprocessor environment. 

scaling factor. The throughput of a workload on a multiprocessor divided by the 
throughput of that workload on a comparable uniprocessor (not on a single-processor 
SMP system). 

scheduling policy. The set of rules that govern when a thread will lose control of the CPU 
and which thread will get control next. 

segment. The information that can be addressed via a single, unique segment-register 
value. A segment is up to 256MB long. 

set-associative cache. A cache in which two or four (or more) lines correspond to each 
possible value of the virtual-address field that identifies the line to be interrogated during 
cache lookup. 

single-processor SMP. A system designed to handle two or more processors, running the 
SMP version of the operating system, which has been configured with a single processor. 
(This is in contrast to a true "uniprocessor" system) 

SLA. Serial link adapter. See SOCC. 

SMP efficient. Avoidance in a program of any action that would cause functional or 
performance problems in an SMP environment. A program that is described as SMP 
efficient is generally assumed to be SMP safe as well. An SMP-efficient program has 
usually undergone additional changes to minimize incipient bottlenecks. 

SMP exploiting. Adding features to a program that are specifically intended to make 
effective use of an SMP environment. A program that is described as SMP exploiting is 
generally assumed to be SMP safe and SMP �fficient as well. 

SMP safe. Avoidance in a program of any action, such as unserialized access to shared 
data, that would cause functional problems in an SMP environment. This term, when used 
alone, usually refers to a program that has undergone only the minimum changes 
necessary for correct functioning in an SMP environment. 
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steal (a page frame). The act (by the Virtual Memory Manager) of reallocating a 
real-memory page frame that contains a virtual-memory page that is being used by a 
currently executing program. 

SOCC. Serial optical channel converter. A 220 Mbit/sec optical point-to-point link. 

thrashing. A condition, caused by a high level of memory overcommitment, in which the 
system is spending almost all of its time writing out virtual-memory pages and reading 
them back in. The application programs make no progress because their pages don't stay 
in memory long enough to be used. Memory load control is intended to avoid or quash 
thrashing. 

thread. The dispatchable entity in AIX Version 4. Each thread represents the current 
execution state of a single instance of a program. Each user thread runs in the environment 
provided by a specific process, but multiple threads may share the resources owned by 
that process. 

throughput. The number of workload operations that can be accomplished per unit of 
time 

time slice. The interval between scheduled checks by the CPU scheduler to see if a 
different thread should be dispatched. Unscheduled checks may occur as a result of 
interrupts or system calls. 

uniprocessor. A system containing a single processor. As used in this book, the phrase 
"comparable uniprocessor'' means a system designed to have only a single processor, with 
the same CPU-clock speed and cache capacity as the SMP system being discussed, 
running a uniprocessor version of the operating system. (This is in contrast to a 
single-processor SMP system-see above.) 

volume group (VG). A set of one or more physical volumes from which space can be 
allocated to one or more logical volumes. 

working segment. A segment whose pages are backed by slots in the disk paging space 
rather than by a permanent location on disk. 

working set. The parts of a program's executable code and/or data areas that are being 
used intensively and are therefore important to keep in the fastest possible type of storage. 
Thus a program's "instruction cache working set" is the set of program cache lines that 
need to be kept in the instruction cache if the program is to run at near-maximum speed. 

workload. A sequence of requests-such as commands ,  1/0 operations , and 
subroutine-library calls-that constitute the work being done by a system. In performance 
analysis the term normally refers to a workload that has been captured in such a way as to 
be repeatable (via shell scripts, remote terminal emulators), so that it can be used to 
measure the performance effect of changes to the system. 

workload concurrency. The degree to which the system approaches the ideal of always 
having as many dispatchable threads as there are processors. 
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I ndex 

Symbols 
#pragma disjoint, 59 

#pragma for C program, 59 

#pragma isolated_call, 60 

A 
a.out input to Id command, 266 

AIX Performance Toolbox, checking avail-
ability, 248 

AIX problem reporting. See PerfPMR 

architecture-specific compilation, 58  

arrays 
C, 98 
storage layout, 265 

async connections 
fastport script, 205 
tuning for high-speed input, 200 

ATM, tuning recommendations, 1 69 

B 
benchmark, industry-standard, 2 

BEST/1 , xiv 

BigFoot tool, 1 1 5  

binder. See Id (binder) 

binding subroutine libraries, 266 

biod daemon, 1 80, 283 

c 
C arrays, 98 

C compiler speed, 63 

cache 
architecture, 261 
direct mapped, 263 
four-way set associative, 263 
hit, 5, 263 
line refill, 265 
miss, 5, 263 

calloc subroutine use, 65 

cc command run time, 63 

character, multibyte, 280 

cluster 
description, 170 

lowclust, 1 70 
mb_cl_hiwat, 1 7 1  
mbuf, 1 55  

code optimization. See optimization 

coding 
effective use of preprocessor and com-

piler, 57 
efficient C and C++ style, 62 
pageable code style, 65 
string subroutines, 62 

communications 
See also network 
installation and tuning recommenda-

tions summary, 1 75 

compilation, architecture-specific, 58 

compiler speed, 63 

compression, file system, 147 

configuration 
disk recommendations, 67 
recording a performance baseline before 

changing, 80 
size and location of paging spaces, 69 

contention scope, 15 
See also thread 

CPU. See processor 

CPU hot spots, finding in a program, 94 

CPU usage. See priority 

critical resource. See resource 

cycles per instruction, 7 

D 
DFS tuning, 2 10  

disk array, 29 

disk-dependent applications, 83 

diskless workstation, 1 86 
NFS activity for simple program execu

tion, 1 87 
paging over NFS, 1 89 
performance difference from diskful, 

194 
resource requirements, 1 89 
tuning considerations, 1 90 

disks 
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adapter outstanding-requests limit, 284 
assessing performance with iostat, 1 30 
block size, 26 
expanding and enhancing configuration, 

140 
file-system compression, 147 
filemon command, 1 37 
fragment allocation, 147 
fragmentation, 26 

reducing, 134 
1/0 pacing, 29, 142 

maxpout parameter, 289 
minpout parameter, 291 

journaled file system (JFS) ,  26 
logical partition, 26 
logical volume (LV) 

definition, 26 
mirror write consistency, 71 

management overview, 25 
mapped files, 28 
paging space. See paging space 
physical partition (PP), 26 
physical placement of a file, 1 33 
physical placement of logical volume, 

1 3 1  
physical volume (PV), 25 
planning physical and logical configura-

tion, 67 
queue depth, 284 
raw device, 148 
read ahead, 27 
relative speeds, 68 
reorganizing, 1 34, 1 35 
striping, 144 
sync/fsync, 149 
tuning sequential read ahead, 141  
. volume group (VG), 26 
write behind, 28 
write verify, 7 1  

dog_ticks, 284 

E 
early allocation of paging space slots, 25 

environment variable 
LANG, 282 
LC_ALL, 282 
MALLOCTYPE, 272 
PATH, 1 88 
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Ethernet, tuning recommendations, 168 

executable files, 266 

F 
FDDI, tuning recommendations, 1 69 

filemon command, 1 37 
availability, 1 37 

files. See disks 

fixed disk. See disks 

fixed priority. See priority 

fork, retry interval, 285 

fragmentation, disk. See disks 

fragment�, file system, 147 

free list, 1 8  
changing size, 126 
maxfree parameter, 288 
minfree parameter, 290 

free subroutine 
avoiding memory leaks, 1 14 
unnecessary use, 1 14 

fsync subroutine, 149 

G 
global contention scope, 15  

H 
HIPPI, tuning recommendations, 1 69 

1/0 pacing. See disks 

initial thread, 4 1  

installation 
configuration and setup guidelines, 66 
disk recommendations, 67 

interface (IF) layer 
receive flow, 162 
send flow, 162 

International Language Support (ILS), 280 
coding hints, 281 
environment variable 

LANG, 282 
LC_ALL, 282 

lnterphase Network Coprocessor, 1 85 

interrupt handlers, 6 

intrusiveness, of the performance tools, 268 



iostat command 

IP 

performance monitoring, 73 
sample shell script, 1 30 
sample summary reports, 8 1  

functional overview, 1 6 1  
ipforwarding parameter, 285 
ipfragttl parameter, 285 
ipqmaxlen parameter, 286 
ipsendredirects parameter, 286 
maxttl, 289 
nonlocsrcroute parameter, 294 
receive flow, 1 6 1  
send flow, 16 1  
tuning recommendations, 167 

IP input queue overrun, 167 

ipqmaxlen, summary, 1 77 

ipreport command, 208 

iptrace 

J 

report formatting, 208 
sample output, 208, 209 
starting and stopping, 208 
use on performance problems, 207 

journaled file system (JFS). See disks 

L 
LAN adapter device driver 

receive flow, 163 
send flow, 162 

LANG. See International Language Support 
(ILS) 

late allocation of paging space slots, 25 

latency 
definition, 4 
RAM, 5 
rotational, 4 
seek, 4 

LC_ALL. See International Language Sup-
port (ILS) 

ld (binder) use, 266 

libc.a, 99 

libraries. See shared libraries 

loader, 5 

local contention scope, 15  

locale, 280 

locality of reference 
definition, 54 
example, 7 

location on disk. See disks 

lockstat command, 83 

logical partition. See disks 

logical volume (LV). See disks 

Logical Volume Manager, 7 

logical volume striping, 144 

lowclust, 286 
See also cluster 

lowmbuf, 287 
See also mbuf 

M 
malloc 

AIX 3 . 1 vs AIX 3 .2, 27 1 
efficient use of, 65 
memory leaks, 1 14 
paging-space slot allocation, 25 

MALLOCTYPE environment variable, 272 

matrix operations, 56 

maxbuf, 287 

maxfree. See free list 

maxperm, 288 
changing, 128 
overview, 2 1  

maxpgahead, 288 

maxpout, 289 

mb_cl_hiwat. See cluster 

mbuf 
description, 1 70 
lowclust, 170, 286 
lowmbuf, 170, 287 
management overview, 155 
mb_cl_hiwat, 1 7 1 ,  290 
tuning guidelines, 173 
verifying current pool size, 1 74 

mbuf cluster, 155 
See also cluster 

memory 
assessing application requirements, 1 1 8  
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computational, 19  
file, 1 9  
size reduction, 86 

memory load control 
description, 2 1  
parameters summary, 290 
schedtune command, 252 
tuning for large real memories, 1 26 

minfree. See free list 

minperm, 29 1 
changing, 128 
overview, 21 

minpgahead, 29 1 

minpout, 29 1 

mirror write consistency. See disks 

monitoring 
continuous, 72 
overhead, 268 
with iostat, netstat, and/or vmstat, 73 
with the Performance Diagnostic Tool, 

74 

MTU, 179, 292 

multiuser workload. See workload 

N 
National Language Support (NLS). See In

ternational Language Support (ILS) 

netpmon command, 205 
availability, 205 

netstat command 
-m option for reporting mbuf usage, 

172 
performance monitoring, 73 
use in tuning mbuf pools, 1 7 1  

network 
arpt_killc parameter, 283 
iptrace, 207 
loop_check_sum parameter, 286 
netpmon command, 205 

NFS 
ACL support, 183  
biod count, 283 
data caching, 1 83 
file attribute cache, 1 83 
hard vs soft mounts, 1 82 
hardware accelerators, 1 85 
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nfs_chars parameter, 292 
nfs__gather_threshold parameter, 293 
nfs_portmon parameter, 293 
nfs_repeat_messages parameter, 293 
nfs_setattr_error parameter, 294 
nfs_udpcksum parameter, 294 
number of biods and nfsds, 1 80 
overview, 1 80 
relationship to lower layers, 184 
server disk configuration, 68 
socket buffer size, 1 84 
timeo parameter, 1 82 

nfsd daemon, 1 80, 293 

nice command 
See also priority 
clarification of syntax, 107 
examples of use, 104 

nice value. See priority 

non-fixed priority. See priority 

0 
optimization 

architecture-specific, 58 
effect on compile time, 63 
levels, 61 
XL compilers, 57 

overhead, of monitoring tools, 268 

overrun IP input queues, 1 67 

p 
pacing 

See also disks 
disk 1/0. See disks 

page fault 
example of, 4 
latency, 64 
new, 20 
repage, 20 

page out, 1 9  

page replacement, 255 

page-replacement algorithm 
description, 2 1  
tuning, 1 26 

pages, 17 

paging space, 19  
early allocation of slots, 25 
insufficient paging space retry parame

ter, 254, 285 



late allocation of slots, 25 
placement and sizes, 69 
psdanger() subroutine, 69 
size, 295 

paging statistics, 84 

parameters, tunable, summary, 283 

path length, 7 

pathname resolution, 1 87 

pdt_config script, 258 

pdt_report script, 259 

Performance Diagnostic Tool (PDT), 74 

performance monitoring. See monitoring 

performance problem solving 
communications, 153 
CPU, 88 
disk, 1 30 
general, 75 
memory, 1 1 1  

performance requirements, 44 
Performance Toolbox (PTX), xv, 74 

checking availability, 248 

performance tools, 248,  250 

performance-tuning process, steps, 8 

PerfPMR 
data capture, 245 
for AIX Version 3, 244 
installation, 245 
reporting a possible AIX performance 

bug, 243 
use in performance diagnosis, 78 

physical partition. See disks 

physical volume. See disks 

pinned storage, 66 

placement on disk. See disks 

POWER architectures, 58  

pragma. See #pragma 

Prestoserve, 1 85 

printf subroutine performance, 101  

priority 
components 

CPU usage, 16 
nice value, 16 
user-thread minimum, 16 

displaying with ps, 106 
fixed, 1 5  

displaying with ps, 106 
setting with setpri, 105 

modifying with renice, 106 
nice command, 16  
non-fixed, 15 ,  104 
priority value, 15  
renice command, 16  
running a command with nice, 104 
setpri subroutine, 1 6  
tuning the calculation algorithm, 296 

problem reporting. See PerfPMR 

processor 
accessing the hardware timer, 275 
control of contention with priority, 104 
identifying heavy users with the ps 

command, 9 1  
measuring use with the time command, 

89 
monitoring with vmstat, 88 
profiling a program for hot spots, 94 
time slice, 17,  109 
virtual addressing scheme, 261 

ps command 
displaying process priority, 106 
flags specifying what columns to dis

play, 93 
flags specifying what processes to re-

port on, 92 
identifying CPU-intensive programs, 9 1  
list of columns that can be displayed, 93 
memory reporting, 1 12 

psdanger() subroutine, 69 

PTX, xv 
checking availability, 248 

R 
RAID, 29 

RAM, measuring requirements with rmss. 
See memory 

raw devices, disk. See disks 

read ahead. See disks 

realloc subroutine, 1 14 

realloc subroutine usage, 27 1 

rebinding executable files, 266 

rec_que_size, 296 
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renice command 
See also priority 
clarification of syntax, 107 
example of use, 106 

reorganizing disk data. See disks 

repage fault, 20 

repage history buffer, 20 

reporting and analysis tools, 248 

requirements 
performance, 44 
resource. See resource 

resource 
additional, 12, 140 
critical, 9 
estimation, 45, 50 
logical, 9 
measurement, 47 
real, 9 

response time, 2 

rfc 1 122addrchk, 297 

rfc 1 323, 297 
summary, 176 

rmss command 

s 

changing effective machine size, 86 
examples of use, 1 16, 1 1 8  
memory size simulation, 1 15 

safe interval, 22 

sb_max, 297 
summary, 175 

schedtune command, 1 26, 252 
incrementing time slice, 17, 109 
warning, 125 

schedulers, 14 

scheduling policy, 1 5  
See also thread 

seek latency, 4 

segment 
client, 19  
deferred, 19  
journaled, 1 9  
persistent, 1 8 ,  26 
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virtual memory, 261 
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segment registers, 26 1 

sequential read ahead. See disks 

server workload. See workload 

setpri subroutine 
See also priority 
example of use, 105 

shared libraries, 273 
assessing CPU usage, 99 

SMIT 
creating a TTY port, 205 
setting disk 1/0 pacing parameters, 143 
setting number of nfsd daemons started 

at boot, 192 

SOCC, tuning recommendations, 1 69 

socket 
buffer size. See NFS 
buffer size limits, 155 
receive flow, 156 
send flow, 1 56 

sort, performance in C and non-C locales, 
280 

STEM tool, control flow analysis example, 
10 1  

string subroutines, 62 

strip mining, 56 

striping, 144 

subnetsarelocal, 298 

subroutine libraries, 266 

svmon command, examples of use, 1 1 2  

sync command or subroutine, 149 

syncd interval, 298 

system activity, analysis with the trace facil
ity, 2 14  

System Management Interface Tool. See 
SMIT 

T 
TCP 

functional overview, 157 
receive flow, 1 60 
send flow, 1 60 
tuning recommendations, 1 63 
window illustration, 158  



TCP/IP 
See also IP; TCP 
data flow illustration, 153  
iptrace, 207 

tcp_keepidle, 298 

tcp_keepintvl, 299 

tcp_mssdflt, 299 

tcp_recvspace, 299 
summary, 177 

tcp_sendspace, 300 
summary, 177 

tcp_ttl, 300 

thewall, 300 
summary, 175 

thewall description. See mbuf, cluster 

thrashing, avoidance, 124 

thread 
contention scope, 1 5  
global contention scope, 1 5  
local contention scope, 1 5  
scheduling policy, 1 5  

thread support, overview, 1 4  

throughput, 2 

time command, measuring CPU use, 89 

time slice, 1 7  
effect of, 17  
expansion amount, 301  
modification of with schedtune, 17 ,  109 

timer (hardware), accessing, 275 

TLB. See translation lookaside buffer (TLB) 

token ring ( 16Mb), tuning recommenda-
tions, 1 68 

token ring (4Mb), tuning recommendations, 
168 

toolbox, xv 
checking availability, 248 

tprof command, extended example of use, 
95 

trace 
adding new events, 22 1 
channels, 222 
control commands, 2 19  
control ioctl calls, 2 19  
control subroutines, 2 19  

event IDs, 223 
event record format, 221 
example of user event, 223 
facility introduction, 2 14  
format-file-stanza syntax, 225 
macros, 222 
subcommands, 2 1 8  

translation lookaside buffer (TLB) 
hit, 264 
miss, 5 ,  264 

trcstart subroutine, 2 19  

tunable AfX parameters, summary of, 283 

tuning system performance, steps in the pro-
cess, 8 

tuning tools, 250 

u 
UDP 

data flow illustration, 153  
functional overview, 1 56 
receive flow, 1 57 
send flow, 1 57 
tuning recommendations, 1 63 

UDP, TCP/IP, and mbuf tuning parameters, 
175 

udp_recvspace, 301 
summary, 176 

udp_sendspace, 301 
summary, 176 

udp_ttl, 302 

v 
Virtual Memory Manager 

definition, 17  
description, 7 

VMM memory load control. See memory 
load control 

vmstat command 
memory reporting, 1 1 1  
monitoring CPU use, 88  
performance monitoring, 73 
reporting CPU and 1/0 activity, 80 
reporting on memory, 84 

vmstatit shell script, 84 

vmtune, overview, 20 

vmtune command, 255 
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warning, 1 26 

volume group (VG). See disks 

w 
working set definition, 54 

workload 
identifying, 9 
multiuser, 8 
server, 8 

316 Index 

workload management, 87 

workstation workload, 8 

write behind. See disks 

write verify. See disks 

x 
xlc command run time, 63 

xmt_que_size, 302 
summary, 178 
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