<|ll

GL3.2 Version 4.1 for AIX: Programming
Concepts (POWER-based Systems only)

<|ll

GL3.2 Version 4.1 for AIX: Programming
Concepts (POWER-based Systems only)

First Edition (October 1994)
Before using the information in this book, read the general information in Naoticed.

This edition applies to the GL3.2 Version 4.1 for AIX Licensed Program and to all subsequent releases of this
product until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1994. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Book

Who Should Use This Book
How to Use This Book .
Before You Begin .
Highlighting .

ISO 9000

Related Publications
Trademarks.

Chapter 1. Graphics Library Overview
Introducing the Graphics Library
GL Structure and Function
Understanding the Hardware Used by GL
Hardware and Software Prerequisites for GL .
Language Bindings .
New Features, Documentat|on and Programs
Graphics Library Subroutines and Functional Categories
Choosing the Right GL Subroutine.
Drawing Subroutines.
Coordinate Transformation Subroutlnes .
Viewport and Screenmask Subroutines .
Hidden Surface Removal Subroutines
Lighting Subroutines .
Depth-Cueing Subroutines
Frame Buffer Subroutines . .
Object (Display List) Subroutines .
Picking and Selecting Subroutines.
Window and Input Control Subroutines .
Enhanced X-Windows GL Subroutines .

Chapter 2. Getting Started in GL
Hello World Example Program .
Animation Example Program.
Events Example Program .

Chapter 3. Drawing with Graphics Library
Drawing with Begin-End Style Subroutines .
List of GL Begin-End Style Subroutines
Begin-End Style Introduction .
Lines, Polylines, and Closed Lines .

Points.

Polygons
Point-Sampled Polygons
Polygonal Shading .
Triangular Meshes .

Drawing with Move-Draw Style Subroutlnes
List of GL Move-Draw Style Subroutines .
Move-Draw Introduction .

Current Graphics Position

Points.

Lines and Rela’uve Llnes

Polygons and Relative Polygons .
Setting Drawing Attributes

© Copyright IBM Corp. 1994

. Xi
. Xi
. Xi
. Xi
. Xi
. Xii
. Xii
. Xii

ARAAARADWWWWWWNMNN = = = o =

List of GL Drawing Attribute Subroutines .
Setting Pipeline Options .
List of GL Pipeline Option- Settlng Subroutlnes
Drawing Rectangles, Circles, Arcs, and Polygons. .
List of GL Rectangle, Circle, Arc, and Polygon Subroutlnes .
Rectangles .
Circles
Arcs .
Polygon Outhnes and F|IIed Polygons .
Reading and Writing Pixels .
List of GL Pixel Block Transfer Subroutmes
Pixel Formats . .
Efficient Pixel Reading and ertlng
Reading and Writing to Overlay Planes
Other Pixel Access Subroutines .
Creating Text Characters.
List of GL Text Subroutines .
Character Strings
International Text Support
Fonts . .
Font Query Subroutlnes .
Smoothing Jagged Lines with Antlahasmg
List of GL Antialiasing Subroutines .
Antialiasing Introduction .
Pixel Coverage .
Improving Intersections
Example Program With and Wlthout Color Comparlson
Enabling Color Comparison.
Depth-Cueing . .
Drawing Wire Frame Curves and Surface Patches .

List of GL Wire Frame Curve and Surface Patch Subroutlnes .

Wire Frame Curves and Surface Patches Introduction .
Curve Mathematics .
Drawing Curves .
Rational Curves .
Drawing Surfaces
Drawing NURBS Curves and Surface Patches .
List of GL NURBS Curve and Surface Patch Subroutlnes
NURBS Curves and Surfaces Introduction
B-Spline Curves and Surfaces.
NURBS Interface
NURBS Surface Descrlptlon
Trimming
Controlling D|splay Propertles

Chapter 4. Working with Coordinate Systems .
List of GL Coordinate Transformation Subroutines
Coordinate Transformations.

Types of Coordinate Systems .

Types of Transformations

Modeling Transformations

Viewing Transformations .

Projection Transformations .
User-Defined Transformations .

loadmatrix Subroutine .

multmatrix Subroutine .

iV GL Programming Concepts

. 31
. 32
.32
.32
. 33
. 33
. 35
. 35
. 37
. 38
. 39
. 39
. 39
. 42
. 42
. 43
. 43
. 44
. 46
. 47
. 50
. 51
. 51
. 51
. 52
. 55
. 55
. 56
. 57
. 57
. 57
. 58
. 58
. 63
. 68
. 69
. 73
. 73
. 74
. 74
. 76
. 76
.77
.79

. 81
. 81
. 81
. 82
. 82
. 84
. 87
. 90
. 95
. 96
. 96

getmatrix Subroutine .

Establishing a One-to-One Mapplng Between Screen Space and World Space.

Controlling the Order of Transformations .
Hierarchical Drawing with the Matrix Stack .
Mathematical Details of the Matrix Subroutines

Chapter 5. Using Viewports and Screenmasks .
List of GL Viewport and Screenmask Subroutines .
viewport Subroutine .

getviewport Subroutine .

scrmask Subroutine .

getscrmask Subroutine .

pushviewport Subroutine

popviewport Subroutine.

Chapter 6. Removing Hidden Surfaces .
List of GL Hidden Surface Removal Subroutines
Understanding Hidden Surface Removal
Backfacing Polygon Removal
backface Subroutine .
getbackface Subroutine.
Z-Buffering
Control of Z Values
Isetdepth Subroutine .
czclear Subroutine .
Additional Z-Buffer Features .
Reading the Z-Buffer.
Hidden Surface Removal in the Overlay Planes
Drawing into the Z-buffer .
Alternate Comparisons .
Z-buffer Writemask

Chapter 7. Creating Lighting Effects .
List of GL Lighting Subroutines .
Lighting Introduction .
Lighting Basics .
A Simple Lighting Calculatlon
Specularity .
Multiple Surface Matenals and Mult|ple nghts
Advanced Lighting Capabilities . .
Material Emission .
More on Ambient Light .
Imcolor Subroutine
Local Viewer .
Local Lights .
Light Attenuation
Lighting in Matrix Mode .
Transforming Vectors into Normahzed DeV|ce Coordmates
Positioning the Lights
Lighting Subroutines .
n3f Subroutine .
normal Subroutine.
mmode Subroutine
getmmode Subroutine
Imdef Subroutine .
Imbind Subroutine .

. 96
.97
.97
. 98
. 99

. 101
. 101
. 101
. 102
. 102
. 102
. 102
. 102

. 103
. 103
. 103
. 104
. 104
. 104
. 104
. 105
. 105
. 106
. 106
. 106
. 107
. 107
. 107
. 108

. 109
. 109
. 109
. 109
. 110
. 112
. 113
. 114
. 114
. 115
. 115
. 116
. 117
. 117
. 118
. 118
. 120
. 121
. 122
. 122
. 122
. 123
. 123
. 125

Contents

\'

Imcolor Subroutine
Lighting Execution Time and Performance
Formula for Lighting Calculation.

How r, I, v and p Are Computed.

Chapter 8. Performing Depth-Cueing .
List of GL Depth-Cueing Subroutines .
Depth-Cueing in Color Map Mode .
Depth-Cueing in RGB Mode .

Chapter 9. Configuring the Frame Buffer

List of GL Frame Buffer Configuration Subroutines .

Understanding the Frame Buffer
Main Color Buffer .

Overlay and Underlay Buffers
Alpha Buffer . S
Z-Buffer

Query Functions . . .

Working in Color Map and RGB Modes .
List of GL Color Map and RGB Mode Subroutrnes
Color Display Ce e
Onemap and Multimap Modes .

Gamma Correction

Creating Animated Scenes .
List of GL Animation Subroutines .
Double and Single Buffering .
Animation Subroutines .

Underlay and Overlay Modes
List of Underlay and Overlay Mode Subroutlnes
Default Configuration. .
Configuring Underlay and Overlay PIanes .

Alpha Blending Modes . .

Writemasks and Logical Operatlons .

List of GL Writemask and Logical Operatlon Subroutmes
Writemasks .
Partitions .
Writemask for the Z Buffer
Logical Operation . .
Clearing, Resetting, and Inrtrahzmg GL .

List of GL Clearing, Resetting, and Initializing Subroutrnes .

Chapter 10. Working with Objects (Display Lists) .
List of GL Object (Display Llst) Subroutines
Defining an Object Coe
makeobj Subroutine .
closeobj Subroutine .
isobj Subroutine
genobj Subroutine.
delobj Subroutine .
Using Objects
callobj Subroutine .
bbox2 Subroutine .
Mapping Screen Coordmates to World Coordmates
mapw Subroutine .
mapw2 Subroutine
Object Editing

Vi GL Programming Concepts

. 126
. 126
. 127
. 128

. 129
. 129
. 129
. 129

. 131
. 131
. 131
. 133
. 133
. 133
. 133
. 133
. 134
. 134
. 134
. 136
. 137
. 138
. 138
. 139
. 139
. 142
. 143
. 143
. 143
. 144
. 145
. 145
. 145
. 148
. 149
. 150
. 150
. 151

. 153
. 153
. 154
. 154
. 154
. 155
. 155
. 155
. 156
. 156
. 158
. 159
. 159
. 159
. 159

editobj Subroutine .

getopenobj Subroutine . .
Identifying Display List Items Wlth Tags .
maketag Subroutine . -
newtag Subroutine

istag Subroutine

gentag Subroutine.

deltag Subroutine .

Inserting, Deleting, and Replacmg W|th|n Objects
objinsert Subroutine .

objdelete Subroutine .

objreplace Subroutine

Object Editing Examples

Object Memory Management.
compactify Subroutine .

chunksize Subroutine

Chapter 11. Picking and Selecting . .
List of GL Picking and Selecting Subroutines .
Picking .

Picking Introduct|on .

Recording Hits .

Using the Name Stack .

Defining the Picking Reglon .

Pick Matrix . .
Selecting .

gselect Subroutlne

endselect Subroutine.

Selecting Example Program .

Chapter 12. Understanding Windows and Input Control

Creating and Managing Windows .
List of GL Window Subroutines .
Opening and Closing Windows .
Setting Window Attributes and Constralnts
Controlling Window Placement .
Changing Windows Noninteractively .
Managing Multiple Windows .
Other Window Subroutines

Creating a Cursor .
List of GL Cursor Subroutlnes
Introduction to Cursors .
Defining a New Cursor .
Cross-Hair Cursor.
Cursor Subroutines

Using the Keyboard . . .
List of GL Keyboard Subroutlnes
International Keyboard Input .
Controlling the Keyboard

Controlling Queues and Devices

List of GL Queue and Device Control Subroutlnes .

Polling and Queuing .
Polling a Device
Event Queue.

Input Focus .
Special Devices

Contents

. 159
. 160
. 160
. 160
. 160
. 160
. 160
. 160
. 161
. 161
. 161
. 161
. 161
. 162
. 162
. 162

. 165
. 165
. 165
. 165
. 166
. 168
. 169
171
171
. 172
. 172
. 172

. 175
. 175
. 175
. 176
. 176
177
. 178
. 178
. 179
. 179
. 179
. 179
. 180
. 181
. 181
. 183
. 183
. 184
. 185
. 186
. 186
. 187
. 188
. 189
. 191
. 192

Vii

Controlling Peripheral Input/Output Devices
Querying the System. Ce
List of GL Query Subroutlnes .
Creating and Managing Pop-Up Menus .
List of GL Pop-Up Menu Subroutines.
Creating a Menu . Co
Calling Up a Pop-Up Menu
Advanced Menu Formats .
Working with the Textport . .
List of GL Textport Subroutines .

Chapter 13. Using Enhanced X-Windows Calls with GL Subroutines
Restrictions on Using Enhanced X-Windows Calls with GL Subroutines .
List of GL Enhanced X-Windows Subroutines.
Rendering Models.
Color Maps .
Fonts
Internal Propertres
Widgets
Fullscreen Mode .
Coordinate Transformation.
Mixed GL and Windows Input
Example Programs
Enhanced X-Windows and GL Interoperabllrty
Mapping and Unmapping GL Windows .
Integration of GL and Enhanced X-Windows .
Maintaining Synchronization .
X11 Header File Collision with the /user/rnclude/gl/gl h F|Ie

Chapter 14. Portability, Compatibility, and Performance.
AlXwindows Environment/6000 3-D Feature Version 1
Example Programs
Performance Tuning . .

Writing Event Driven AppI|cat|ons .

Minimizing REDRAW Events .

Fast Line Drawing.

Fast Pixel Transfer (BLITS)

Chapter 15. System Programming Considerations.
Multiple Process Management .
Using the fork, execl, execv and Other Subroutrnes
Using Signals and Other Asynchronous Event Systems .
Linking and Compiling Using the GL Shared Library .
Linking FORTRAN and C Modules. .
Unsupported Subroutines .
Obsolete Subroutines

Chapter 16. Understanding the Graphics Adapter .

3-D Color Graphics Processor . .
24-Bit High-Performance 3-D Color Graphrcs Processor wrth Z Buffer Optron .
24-Bit High-Performance 3-D Color Graphics Processor without Z-Buffer Option .
8-Bit High-Performance 3-D Color Graphics Processor with Z-Buffer Option
8-Bit High-Performance 3-D Color Graphics Processor without Z-buffer Option

IBM RS/6000 POWERSstation 730 and POWERgraphics GTO Supergraphics Processor Subsystem

IBM RS/6000 POWERSstation 730 and POWERgraphics GTO, 24-Bit Configuration .
IBM RS/6000 POWERSstation 730 and POWERgraphics GTO, 8-Bit Configuration .

viii GL Programming Concepts

. 193
. 194
. 194
. 195
. 195
. 195
. 197
. 198
. 199
. 200

. 201
. 201
. 202
. 202
. 203
. 203
. 203
. 204
. 204
. 204
. 204
. 205
. 205
. 205
. 206
. 206
. 206

. 209
. 209
. 210
. 210
. 211
. 212
. 212
. 212

. 213
. 213
. 213
. 214
. 214
. 214
. 215
. 216

. 217
. 217
. 217
. 218
. 218
. 219

219

. 220
. 220

Hardware Considerations
POWER Gt4 and POWER Gt4x Adapters .
POWER GXT1000 Adapter .
Hardware Colormap Organization .

3-D Color Graphics Processor .

POWERgraphics GTO

POWER Gt4 and POWER Gt4x.

Chapter 17. GL Subroutines

GL Subroutines (A-F) .o
Appendix A. GL Subroutines (G- L)
GL Subroutines (M-R)

GL Subroutines (S-2)

Chapter 18. GL Subroutine Modality .

Chapter 19. Adapter Description Table for GL

Chapter 20. Porting SGI GL Applications to Your GL Environment

SGI GL File Transfer Compiling and L|nk|ng .
Undefined Functions . .
Redefined Functions .
Functions Returning Only One Value
Functions Having Null Definitions .
Functions That Are Not Defined in libgl.a .
SGI GL Performance and System Environment ConS|derat|ons .

Appendix A. Notices
Appendix B. Special Terms Used in GL .

Index

. 221
. 221
. 222
. 223
. 223
. 224
. 224

. 225
. 225
. 226
. 228
. 230

. 233

. 241

. 247
. 247
. 248
. 248
. 248
. 248
. 248
. 249

. 251

. 253

. 263

Contents

ix

X GL Programming Concepts

About This Book

GL3.2 Version 4.1 for AIX: Programming Concepts (POWER-based Systems Only) provides information on
the Graphics Library (GL). GL is an application programming interface (API) for performing advanced 3-D
rendering, window management, and input device support. This book serves as both a tutorial and a
guide; it is a programmer’s source book for learning about 3-D graphics from a programmer’s perspective.

Who Should Use This Book

This book is intended for programmers with C programming knowledge who want to develop 3-D
applications. You should be acquainted with the C programming language enough to be able to write,
compile, and link a program that prints Hello, World! on the screen. This book does not assume
knowledge of computer graphics as a prerequisite.

How to Use This Book

In general, each chapter begins with basic information and progresses to more advanced topics. On first
reading, advanced topics can be skipped.

For the subroutines themselves and for example programs not shown in this book, see GL3.2 for AlX:
Graphics Library (GL) Technical Reference (POWER-based Systems Only).

The examples given in this book and in GL3.2 for AIX: Graphics Library (GL) Technical Reference
(POWER-based Systems Only) are merely examples, provided for the sole purpose of illustrating that the
GL basic subroutines can be used to create extended or enhanced subroutines. The subroutines are
provided "as is” without warranty of any kind, either express or implied, including but not limited to the
implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the quality
and performance of each GL subroutine is with you.

Before You Begin

Having a basic understanding of the concepts of computer graphics makes this book easier to understand.

An introduction to computer graphics can be found in one of the following books:

* Foley, James D.; van Dam, Andries; Feiner, Steven K.; and Hughes, John F. Computer Graphics:
Principles and Practice, Second Edition. Reading, Massachusetts: Addison-Wesley Publishing Company,
1990.

* Rogers, David F. Procedural Elements for Computer Graphics. New York: McGraw-Hill Book Company,
1985.

* Hearn, Donald; and Baker, M. Pauline. Computer Graphics. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., 1986.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files,
structures, directories, and other items whose names are
predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to
be supplied by the user.

© Copyright IBM Corp. 1994 Xi

Monospace Identifies examples of specific data values, examples of
text similar to what you might see displayed, examples of
portions of program code similar to what you might write
as a programmer, messages from the system, or
information you should actually type.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications

The following books contain information about or related to programming graphics:

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

* AlXwindows
UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be the trademarks or service marks of others.

Xii GL Programming Concepts

../../aixbman/admnconc/admnconc.htm
../../libs/gl32tref/gl32tref.htm
../../libs/openglrf/openglrf.htm
../../aixprggd/gl32prgd/gl32prgd.htm

Chapter 1. Graphics Library Overview

This information on the function of the Graphics Library (GL) groups subroutines with similar functions.
Note that example programs not shown in this book can be found in GL3.2 for AIX: Graphics Library (GL)
Technical Reference (POWER-based Systems Only). See the following for more information on the
function of GL.

. Dioda e T
. CoEesTl ST i —

Introducing the Graphics Library

GL is a set of graphics and utility subroutines that provide high- and low-level support for graphics. If you
are using this library for the first time, read the following sections first.

GL Structure and Function

Graphics primitives are expressed in 2-D or 3-D user-defined coordinates. These primitives go through the
i ind, which performs matrix kransformationd on the coordinates, clips the coordinates to
normalized coordinates, and scales the transformed, clipped coordinates to screen or window coordinates.
The output of the graphics pipeline is then sent to the raster subsystem.

The kaster subsysten fills in the pixels between the endpoints of the lines and the interiors of polygons;
draws bit-mapped characters; and performs khading, depth-cueing, and hidden surface remaval. A color
value for each pixel is stored in the bitplanes. The system uses the values contained in the bitplanes to
display an image on the monitor.

Understanding the Hardware Used by GL

GL runs on high-resolution color workstations. GL provides a set of graphics primitives in a combination of
customized, very large scale integrated (VLSI) circuits and conventional hardware, firmware, and software.

The heart of the system is the raphics pipelind. This pipeline accepts points, vectors, polygons,
characters, and curves in user-defined coordinate systems and transforms them to screen coordinates. It
also provides hardware support for rotation, clipping, and scaling.

In addition to the graphics pipeline, the system consists of one or more general-purpose microprocessors,
a raster subsystem, a high-resolution color monitor, a keyboard, and graphics input devices.

GL windowing subroutines are implemented on top of Enhanced X-Windows. (For more information on
starting Enhanced X-Windows, see the kinil command.) The GL drawing subroutines are implemented by
means of direct adapter access. GL applications and other XClients can run simultaneously on the same X
server. GL works with any X-based window manager, including the AIXwindows window manager.

On the POWER GXT1000, the multibuffer, ancillary buffer, and overlay extensions for X must be loaded to
run GL.

Hardware and Software Prerequisites for GL

There are both hardware and software prerequisites for running the GL application programming interface
(API).

Of the following hardware, GL must have one as a prerequisite:

+ A B-D Color Graphics Pracessod adapter must be installed, with or without the 24-bit color option, and

with or without the 24-bit z-buffer option.

© Copyright IBM Corp. 1994 1

remhidden.htm
../../cmds/aixcmds6/xinit.htm#HDRA773C66779JCAT

- [POWER Gt4 class machined, such as the POWER Gt4, POWER Gt4x, and POWER Gt4e adapters,
must be installed.

* A 7235 POWERgraphics GTO must be installed.

+ The system must be a PQWERSstation 730 with the Supergraphics Processor Subsyster.
« The BQWER GXT100d must be installed.

GL has the following software prerequisites:

* AIX/6000 must be installed.

» AlXwindows Environment/6000 must be installed.

* AlIXwindows Environment/6000 3-D Feature must be installed.

Language Bindings
GL is available with C, FORTRAN, and Ada language bindings.

New Features, Documentation, and Programs
This release of GL includes the following new or enhanced functions:

Imdef() Support for two-sided lighting is now available on the POWER Gt4 family of graphics
adapters.

set_dither() Suport for enabling/disabling dither on the POWER Gt4 family of graphics adapters is now
provided.

glcompat() Controls backwards compatibility modes for the overlay planes and fullscreen function on

the GXT1000.

The GL documentation has been updated. In particular, note that Chapter15 contains important information
about using GL with the system fork() and exec() routines and about compiling and linking GL programs.

Several new example programs can be found in /usr/Ipp/GL/examples, including:

rgenter.c Example showing how to write re-entrant queueing code. The example creates a pipe
and then checks for input on both the pipe and on the GL queue. USR1 signals caught
by the process result in input being placed on the pipe. (The shell script gen_sig.sh can
be used to generate signals.)

xinput.c Example of X/GL integration. Shows how to simultaneously manipulate both the GL and
the X11 event queues within the same process. The example can be extended to
simultaneously read other (pipe, socket, or file-based) event sources.

Xcolormap.c Example of X/GL integration. Shows how X11 can be used to manipulate the colormap
associated with a GL window.

fork_examp.c A very simple example involving GL and the system fork() subroutine. Shows how the GL
subsystem must be shut down before using the system fork() routine.

fork_examp2.c A more sophisticated fork() example.

GLexec.c A very simple example involving GL and the system exec() routine. Shows how the GL

subsystem must be shut down before using any of the system exec() routines.

Graphics Library Subroutines and Functional Categories

To help you select the proper subroutines for your application, the following list comprises the functional
categories for GL.

2 GL Programming Concepts

Choosing the Right GL Subroutine

Select an entry from the left column for the list of subroutines in that category.

Select an entry from the right column for conceptual information on that topic.

Drawing Subroutines

|Antialiasing Draw smooth lined or points.

[attributed Set or return bttributed.

Begin-End Style Drawing Provide fast kertex-hased drawing
primitives.

Becianalos Circlos. B Pal] 5 =7]

nitialization Initialize or terminate [GL_functiond.

Mave-Draw Style Drawing Braw primitived by moving and
connecting points.

NUBRS Curves and Surfaces Draw nonuniform rational B-spline
kurves and surfaced.

Bipeline Option-Setting Control flow of primitives through the

Pixeld Bit-block transfer (blit) kectanguilad
imaged.

ffext Characters and Stringd Create kext characterd and draw text
strings.

Wire Frame Curves/Surfaces Draw wire frame curved and surface
patches.

Coordinate Transformation Subroutines

|Mnue,_miate,_ar_sca.ld drawing primitives.

Viewport and Screenmask Subroutines

||\Liempm:t.an.d.$m:eenmasﬂ

| Create and control Miewparts and screenmaskd.

Hidden Surface Removal Subroutines

|I:I.idden_Su1:tace_B.emmLal

|Control g-huffering and backfacing polygon removal.

Lighting Subroutines

|I.j.gh1i.nd | Define multiple materials_lights_and lighting madeld.

Depth-Cueing Subroutines

|Dep1h=m1e|.nd | Make color depend on Histance to viewed.

Chapter 1. Graphics Library Overview

3

workcoords.htm
useviewprts.htm

Frame Buffer Subroutines

Animation Employ double buffering to create hnimated graphicd.
[ttributed Set or return bttributed.

Clearing, Resetting, Starting Initialize terminate or configurd GL functions.

iColor Map and RGB Maded Manipulate kalor mapd or work in BGR madd.

[Erame Buffer Configuration Configure frame buifed and return information.
Writemasks and | agical Ops Control luritemaskd for frame buffer.

m Request information about W

Object (Display List) Subroutines

|hb;ecL(.D.lsp1a.y_L|sIJ |Create and manage lgraphical ohjectd (display lists).

Picking and Selecting Subroutines

|I2u:kmg_and_Se1ec1md | Control hicking and selecting operations.

Window and Input Control Subroutines

Cursord Define and control tursor

Keybhoard Manage keyboard functions.

Pop-up Menud Create and manipulate hop-tip menud.

Query Request information about Eystem resourced.
Queue and Devicd Control input lgueues and deviced.

extpord Create and manage a kcreenared for textual output.
Windows Create and manage Mindowd.

Enhanced X-Windows GL Subroutines

|En.b.anced_XAALLndomd |ban.tmL\Aundnw_mappm.d set window properties, create widgets.

4 GL Programming Concepts

configframebuf.htm
workobjects.htm
picknselect.htm
exhwindcalls.htm

Chapter 2. Getting Started in GL

GL provides a set of fully featured functions that support graphics without depending on other graphics
systems. These functions include support for input devices, a windowing system, frame buffer
configuration and control, immediate and retained mode graphics, and support for basic and advanced 3-D
rendering.

GL subroutines provide basic function and are limited in scope; subroutines do not interact in a complex
fashion; minimal use is made of stored state; and where possible, the subroutines access hardware
functionality directly. (Note that you cannot start a GL and graPHIGS application from the same process
ID.)

The following series of programs introduces you to GL functions:

To run GL programs, your system must have an adapter installed that supports GL. The GL prerequisites

are discussed in Hardware and Software Prerequisites. In addition, the AIXwindows server must be

actively running. If the X server is not already running, you need to start it. To do this, enter the following
at the command line prompt:

xinit

Hello World Example Program

The first GL program opens a window on the screen, and prints the message Hello, World! inside it.
Create a hello.c file and enter the following text:
#include <g1/g1.h>
main ()
{

prefsize (200, 100);

winopen ("HI THERE");

color (BLACK);

clear();

color (GREEN);

cmov2 (50, 50);

charstr ("Hello, World!");

sleep (5);
1

To compile and link this program, enter the following command:

cc hello.c -0 hello -1g1

To run the program, enter the following at the command prompt:
./hello

Depending on the configuration of your X server (as controlled by the .Xdefaults and .mwmrc files), either
the window is displayed immediately on the screen or a rubber band is displayed. If a rubber band is
displayed, you can place it at any location; to display the window, press the left mouse button. To learn

more about customizing the X server for GL applications, see IUnderstanding Windows and Input Contral.

The first line of the hello.c program, #include <g1/g1.h>, includes constant, type, and function
declarations needed for all GL programs. For instance, it defines the preprocessor tokens BLACK and
GREEN. This line should be included in every GL program.

© Copyright IBM Corp. 1994 5

underwininput.htm

The fprefsizd subroutine communicates to the window manager the suggested size of the window that is
created with the lvinoped subroutine. The prefsize subroutine does not actually create the window; it only
specifies the window size preferences. In this case, the preference is a window that is 200 pixels wide and
100 pixels high. You can also control other window properties, such as the preferred posmon or the
window title. To learn more about creating and managing windows, see

The kalad subroutine sets the current color. Everything you draw is is displayed in the current color until
you change that color. The color subroutine itself does not draw anything. To learn more about setting
attributes, see [Setting Drawing Attributes. To learn more about setting colors and frame buffer modes (an

advanced topic), see Understanding the Frame Buffel.

The klead subroutine clears the entire window to the current color. Because the program line immediately
preceding the clear subroutine call sets the current color to black, the window is cleared to black.

The kmova subroutine sets the current character position. Every character you draw is displayed at the
current character position until you change that position. In this example, the current character position is
set to 50 pixels up and 50 pixels to the right of the lower left-hand corner of the window.

The kharstd subroutine actually draws the text Hello, World!. The text is drawn with the current color,
which is now green. To learn more about drawing text (such as choosmg fonts), see
. To learn about drawing lines and polygons, see i

The m subroutine is an operating system call. In this example, the sleep subroutine prompts the
system to do nothing for 5 seconds. After 5 seconds, the sleep subroutine returns and the program exits.
When a GL program exits, any windows that it has created disappear. Without the sleep call, the window
would be created, would flash to black, with some green text, and would then disappear immediately. You
can replace the sleep call with anything that will keep the program running: for instance, an infinite loop.
But when the program exits, the window definitely disappears.

Animation Example Program

The previous program demonstrated some basic concepts of GL: how to open a window, how to set
attributes, and how to draw. The following example program demonstrates how to create an animated
scene. When this example program executes, the Hello, World! text moves around in a circle. This is
done by clearing and redrawing the text again and again, each time at a new location.

This action is complicated by image flicker, which occurs because the system draws each image quickly,
but perceptibly; that is, you do not see each individual character being drawn, only an irregular flashing
and flickering. The flashing can be mild to severe, depending on what else is happening in the system or
on the screen at that time.

To avoid this flashing, double-buffering is used. The frame buffer is partitioned into two pieces, front and
back. The front buffer contains data for the pixels that are visible. The back buffer, which also contains
pixel data, is invisible, but identical to the front buffer in other respects. To get smooth animation, never
draw to the front buffer; instead, limit all drawing to the back buffer. When drawing is complete, the front
and back buffers are swapped, and what was previously hidden is now visible. The result is smooth,
flicker-free animation. The actual, step-by-step drawing process is not visible, only the final result. The
following example shows how to create an animated scene by using double-buffering:

#include <math.h>

#include <g1/g1.h>

main ()

{

int i, ix, iy;

6 GL Programming Concepts

../../libs/gl32tref/prefsize.htm#HDRA142X91671
../../libs/gl32tref/winopen.htm#HDRA142X91549
underwininput.htm
underwininput.htm
../../libs/gl32tref/color.htm#HDRA146X9429
../../libs/gl32tref/clear.htm#HDRCEH1160MARJ
../../libs/gl32tref/cmov.htm#HDRA143X9D1D
../../libs/gl32tref/charstr.htm#HDRA143X9CFB
drawwithgl.htm
../../cmds/aixcmds5/sleep.htm#HDRA2089AEB

prefsize (200, 100);
winopen ("HI THERE");
doubTebuffer ();
gconfig ();

for (i=1; i<1800; i++) {
color (BLACK);
clear ();
color (GREEN);
ix = (int) 40.0 * cos (((double) i)
iy = (int) 40.0 * sin (((double) i)
charstr ("Hello, World!");
swapbuffers ();
}
1

20.0);
20.0); cmov2 (50+ix, 50+iy);

~

To compile this program, enter the following at the command line prompt:
cc hello2.c -0 hello2 -1g1 -Im

The -Im flag option on the cc command tells the linker to link to the math library, where the and cos
functions are located.

The operation of this program is as follows: First, a window is created exactly as before. Next, the system
is told to convert this window into a double-buffered window. The program does this in two steps:

1. Alerts the system with the Houblebuffed subroutine.
2. Sets double-buffering into operation with the m subroutine.

The process requires two steps because there are, in fact, a number of configurations into which a window
can be placed. To learn more about configuring the frame buffer, an advanced topic, see

Next, the program goes into a loop that is repeated 1800 times. Inside this loop, we clear the screen and
draw the text as before. The kid and cos subroutines are operating system calls that return the sine and
cosine of an angle. They are useful for drawing circular primitives. The program uses the loop counter as
an angle, and moves the current character position accordingly.

Finally, when drawing is complete, the Ewapbufferd subroutine exchanges the front and the back buffers.
After looping 1800 times, the program exits and the window disappears.

To learn more about creating animated scenes, see Creating Animated Scenes.

Note: Not all adapters support double buffering. You must have one of the following:

» 3-D Color Graphics Processor adapter installed, with or without the 24-bit color option, with or without
the 24-bit z-buffer option.

« POWER Gt4 or POWER Gt4x adapter installed, with or without the 48-bit option.

» 7235 POWERGgraphics GTO adapter installed.

« POWER GXT1000 adapter installed.

» System must be a POWERSstation 730 with the Supergraphics Processor Subsystem.

Events Example Program

The first two programs demonstrated how to draw and create animated scenes, respectively. The next
program demonstrates how to obtain input and illustrates the concept of an event loop.

Chapter 2. Getting Started in GL 7

../../libs/basetrf2/sin.htm#HDRA66F0689
../../libs/gl32tref/doublebuffer.htm#HDRA145X91A7
../../libs/gl32tref/gconfig.htm#HDRHS4260NITA
../../libs/basetrf2/sin.htm#HDRA66F0689
../../libs/gl32tref/swapbuffers.htm#HDRA145X9302

The event loop is critical to writing applications for a windowing system. An event loop allows a program to
respond to events occurring in the system that are beyond the control of the application program: for
example, when a user picks up a window and moves it, has a window obscured and then unobscured by
other windows, or resizes a window.

At this point, return to the W change the sleep time to 50 seconds, then recompile and rerun
the program. While it is running, pick up another window (for instance, the xclock), drop it on the HI THERE
window, pick it up again, and remove it. Notice that the original Hello, World! display was destroyed. This
occurred because the other window overwrote the pixel data in the HI THERE window, and the overwritten
data was not saved (GL does not support backing store or save-under).

When the contents of a window are destroyed in this fashion, the application itself must redraw the
window. GL provides an event that indicates that a window may have to be redrawn. The application must
test for this event, and redraw the window whenever the event is received. The discussion after the
following program explains how the testing and redrawing is done.

#include <g1/g1.h>
#include <gl1/device.h>

/* This subroutine draws stuff =/
drawstuff (int xxx, int yyy)
{
color (BLACK);
clear ();
color (GREEN);
cmov2i (XXX, yyy);
charstr ("Hello, World!");
swapbuffers ();
1

main ()
{
int ox, oy;
int ix = 150, iy = 200;
int update = TRUE;
/* Create and configure window */
prefsize (400, 400);
winopen ("HI THERE");
doubTebuffer ();
gconfig ();

/* get window origin =/
getorigin (&ox, &oy);

/* queue up input devices */

gdevice (REDRAW); /* window needs to be redrawn */
gdevice (WINQUIT); /* user selected "close" from window menu */
gdevice (MOUSEX); /* mouse x position, in pixels */

gdevice (MOUSEY); /* mouse y position, in pixels =/

gqdevice (ESCKEY); /* user pressed escape key */

gdevice (RIGHTMOUSE);/+* user pressed right mouse button */

/* enter event Toop */
while (TRUE) {

long dev;

short value;

/* if there aren't any events, and data has changed, redraw */
if (!qtest() & update) {

drawstuff (ix, iy);

update = FALSE;
1

/* get the next event */
dev = gread (&value);

/* dispatch the next event */
switch (dev) {
case MOUSEX:

8 GL Programming Concepts

ix = value - ox; /* update x location */
update = TRUE;
break;

case MOUSEY:
iy = value - oy; /* update y location */
update = TRUE;
break;

case REDRAW: /* redraw it */
getorigin (&ox, &oy); /* get window origin */
update = TRUE;

break;
case ESCKEY: /* if user presses escape key, quit =/
case RIGHTMOUSE: /* if user presses right mouse button,
quit =/
case WINQUIT: /% if "close" selected from window menu x/
exit();
default:
break;

}
}
}

When you run this program, you will find that the character string Hel1o, World! follows the cursor around.
You can can pick up the window, move it, obscure it, and uncover it, but it will always appear correctly.
The following discussion examines the operation of this complicated program in detail.

First, this program includes a new header file: gl/device.h. This file contains definitions and type
definitions (typedefs) pertaining to GL devices. To make the program easier to read, the drawing section
has been put into its own subroutine, drawstuff, which contains a set of GL subroutines. When you want
the program to draw, call this subroutine.

The program begins as before: the first step opens a window. Next, the program obtains the window origin
with thegm subroutine, which will be needed later. Then, a number of devices are queued up.
These devices, the REDRAW device, the MOUSEX device, and so on, generate events and place them
on a queue. The program reads events from the bottom of the queue and processes them according to
what came in. The m subroutine itself does not generate or process events, but only initializes these
devices and readies them for use.

Next, the program enters the event loop. Although this looks like an infinite loop, if the user presses either
the escape key or the right mouse button, or else chooses the Close option from the window menu, the
program ends.

In the loop, the program tests to see if there are any events on the event queue. If the queue is empty and
the picture needs to be redrawn, the program begins to draw at this time. If the queue is not empty, then
the program reads the next event and processes it. The M subroutine returns the device that
generated the event and a value associated with that event.

Depending on the device, the switch statement branches to the correct code to handle the event. If, for
instance, the event is a mouse-motion event, the new x or y coordinate (or both) is recorded. If the event
is an Escape key press, then the program is ended. After a nonterminating event is processed, the
program returns to the beginning of the event loop and processes the next event.

If the user moves the window, a REDRAW event is generated. In this case, the window origin is obtained,
so that the character string can be drawn in the right place later.

To learn more about devices and events, see (Controlling Queues and Devices.

Chapter 2. Getting Started in GL 9

../../libs/gl32tref/getorigin.htm#HDRA142X91F76
../../libs/gl32tref/qdevice.htm#HDRA143X967
../../libs/gl32tref/qread.htm#HDRA143X989

10 GL Programming Concepts

Chapter 3. Drawing with Graphics Library

The GL provides several categories of drawing subroutines for creating geometric figures, curves and
surfaces, and character strings. Some subroutines draw a complete figure while others are very basic and
draw only a line or a point. The following sections explain the drawing subroutine categories and how each
works:
. Do T BeginEnd S m ed
These subroutines draw primitive graphics figures, points, lines, and polygons, which are described as a
set of vertices.
. D T MoveD Sle S el
These subroutines draw essentially the same figures as the begin-end style subroutines, but not
point-sampled polygons. These subroutines are primarily included for compatibility with existing GL
programs.

. Eoting Drawing At |
Color, texture pattern, line style, and many others attributes affect all drawing subroutines. Unless you

change an attribute before calling a drawing subroutine, the subroutine renders to the screen using the
attributes currently set in the system.

. Eolina Piosine Onfiond

Turning optional pipeline tasks on and off speeds up the rendering process.

. Diawno R Ciral : I Pal |
The high-level subroutines draw rectangles, circles, arcs, and polygons with varying parameters and in
either filled or unfilled styles.

The pixel subroutines handle reading and writing pixel data, which are nongeometric drawing tasks.
The text subroutines handle text drawing, a nongeometric drawing task.

. E — [Tnos with Ariiaiasind

This section deals with smoothing jagged lines of geometric figures through a method called
antialiasing.

. DawboWieE s = Baiched
These subroutines support previous methods for drawing curves and surfaces.
+ Drawing NURBS Curves and Surfaced

These subroutines support nonuniform rational B-splines (NURBS).

Drawing with Begin-End Style Subroutines

This section on begin-end style drawing discusses the following topics:
- O Bol ol [Tined

« [Paintd

+ Balygond

© Copyright IBM Corp. 1994 11

List of GL Begin-End Style Subroutines

The following GL begin-end style subroutines are found in GL3.2 for AlIX: Graphics Library (GL) Technical
Reference (POWER-based Systems Only).

bgnclosedline Draws closed line vertices.

m Draws vertex-based lines.

W Draws vertex-based points.

W Draws vertex-based polygons.

m Draws triangle mesh vertices.

koncavd Allows the system to draw concave polygons.
kbndclosedlind Ends a series of closed line vertices.

kbndlind Ends a series of vertex-based lines.

m Ends a series of vertex-based points.
W Ends a vertex-based polygon.

Endtmesn Ends a series of triangle mesh vertices.

hai Specifies a normal vector for lighting calculations.
hormai Specifies a normal vector for lighting calculations (can be used for display lists).
EwaptmesH Toggles the triangle mesh register pointer.

Y Transfers a vertex to the graphics pipe.

Begin-End Style Introduction

Begin-end style drawing subroutines draw primitive graphical figures. In these subroutines, all points, lines,
and polygons are described in terms of vertices (sets of coordinates that identify points in space).

» A point is described by a single vertex.
* Aline segment is described by two vertices indicating its end points.
* A polygon is described by a set of three or more vertices indicating its corners.

To draw a graphical figure, use a series of vertex subroutines surrounded by a pair of begin and end
subroutines, which mark the beginning and end of the figure. For example, the code to draw a set of five
points A, B, C, D and E takes the following form:

<beginning of point vertices>
<vertex A>

<vertex B>

<vertex C>

<vertex D>

<vertex E>

<end of point vertices>.

To draw a polygon whose corners are the same five points, the code takes the form:

<beginning of polygon vertices>
<vertex A>

<vertex B>

<vertex C>

<vertex D>

<vertex E>

<end of polygon vertices>.

Other styles of drawing you can use are described in Drawing with Move-Draw Style Subroutines and
Drawing B los_Ciral ; Lo Pal]

12 GL Programming Concepts

../../libs/gl32tref/bgnclosedline.htm#HDRA144X960C
../../libs/gl32tref/bgnline.htm#HDRA144X962E
../../libs/gl32tref/bgnpoint.htm#HDRA144X9650
../../libs/gl32tref/bgnpolygon.htm#HDRA144X9672
../../libs/gl32tref/bgntmesh.htm#HDRA144X9694
../../libs/gl32tref/concave.htm#HDRHXF320MARJ
../../libs/gl32tref/bgnclosedline.htm#HDRA144X960C
../../libs/gl32tref/bgnline.htm#HDRA144X962E
../../libs/gl32tref/bgnpoint.htm#HDRA144X9650
../../libs/gl32tref/bgnpolygon.htm#HDRA144X9672
../../libs/gl32tref/bgntmesh.htm#HDRA144X9694
../../libs/gl32tref/n3f.htm#HDRA139X91EF3
../../libs/gl32tref/normal.htm#HDRA142X9B7
../../libs/gl32tref/swaptmesh.htm#HDRA144X9782
../../libs/gl32tref/v.htm#HDRA144X97A4

Lines, Polylines, and Closed Lines

This simple example program, crisscross, clears a window to white, and then draws a pair of red lines
connecting its opposite corners.

#include <g1/g1.h>

main()

{
Int32 vertl[2] = {100, 100}; /* Tower left corner =*/
Int32 vert2[2] = {100, 500}; /* upper left corner */
Int32 vert3[2] = {500, 500}; /* upper right corner =*/
Int32 vert4[2] = {500, 100}; /* Tower right corner */

prefposition(100, 500, 100, 500);
winopen("crisscross");
ortho2(99.5, 500.5, 99.5, 500.5);
color(WHITE);
clear();
color(RED);
bgnline();
v2i(vertl);
v2i(vert3);
endline();
bgnline();
v2i(vert2);
v2i(vertd);
endline();
sleep(3);
1

In this example, four long arrays are declared, vertl, vert2, vert3, and vert4. Values are assigned to all
the elements of each array. The m subroutine defines the next window as a square covering
pixels 100 through 500 in both the x and y directions. The m subroutine then opens the window
described by the prefposition subroutine and assigns it the name crisscross. The E‘h subroutine sets
up the default coordinate system so that a point with coordinates (x, y) maps exactly to the point on the
screen that has the same coordinates. The lealad subroutine sets the window’s color property to white and
the call to the clear subroutine clears the window to the current value of the window’s color property,
white.

The next four lines of code draw a line from (100, 100) to (500, 500) - the lower-left corner to the
upper-right corner. The m subroutine tells the system to prepare to draw a line using the following
vertices. Then the k21 subroutine takes an array of coordinates as its parameter and creates a vertex at
those coordinates.

The first v2i subroutine call after the bgnline subroutine creates the first end point of the line segment.
The second v2i subroutine call after the bgnline subroutine creates the end point of the line segment and
the system draws a line. The Bndlind subroutine call tells the system that it has all the vertices for the line.
The next four lines of code draw a line from (100, 500) to (500, 100), the lower-right corner to the
upper-left corner.

Finally, s1eep(3) delays the program from exiting until three seconds pass; the picture remains on the
screen for three seconds.

Polylines
If more than two points are listed between the bgnliné and kndlind subroutines, each point is connected
to the next by a line. The following example program, greensquare, draws an outlined green square in the

center of the window:
#include <g1/g1.h>

Chapter 3. Drawing with Graphics Library 13

../../libs/gl32tref/prefposition.htm#HDRA142X9164F
../../libs/gl32tref/winopen.htm#HDRA142X91549
../../libs/gl32tref/ortho.htm#HDRA144X9496
../../libs/gl32tref/color.htm#HDRA146X9429
../../libs/gl32tref/bgnline.htm#HDRA144X962E
../../libs/gl32tref/v.htm#HDRA144X97A4
../../libs/gl32tref/bgnline.htm#HDRA144X962E
../../libs/gl32tref/bgnline.htm#HDRA144X962E
../../libs/gl32tref/bgnline.htm#HDRA144X962E

main()

{

Int32 vertl[2] = {200, 200};
Int32 vert2[2] = {200, 400};
Int32 vert3[2] = {400, 400};
Int32 vert4[2] = {400, 200};

prefposition(100, 500, 100, 500);
winopen("greensquare");
ortho2(99.5, 500.5, 99.5, 500.5);
color(WHITE);

clear();

color(GREEN);

bgnline();

v2i(vertl);

v2i(vert2);

v2i(vert3);

v2i(vertd);

v2i(vertl);

endline();

sleep(3);

Note: The first vertex, v2i (vertl), is repeated to close the series of line segments.

A series of connected line segments is called a polyline. GL cannot draw polylines with more than 256
vertices. Other than the number of vertices, there are no restrictions on a polyline. The segments can
cross each other, vertices can be reused, and if the vertices are defined in terms of three dimensions, you
can place them anywhere within three-dimensional space. In a three-dimensional space, the vertices need
not all lie in the same plane.

vertex Subroutine

The previously discussed example programs trisscrossand greensquard use only one form of the vertex
subroutine: a two-dimensional version with 32-bit integer coordinates. GL contains 12 forms of vertex (ﬂ)
subroutines. The coordinates can be short integers (16 bits), long integers (32 bits), single-precision
floating-point values (32 bits), and double-precision floating-point values (64 bits). For each of these types,
there is a two-dimensional version, a three-dimensional version, and a version that expects vertices

expressed in hamogeneous coordinatesl

The vertex subroutines are illustrated in the following table.

The Vertex Subroutines

2-D 3-D 4-D
16-bit integer v2s v3s vis
32-bit integer v2i v3i A\
32-bit floating point vaf v3f vaf
64-bit floating point vad v3d v4d

All forms of the vertex subroutine begin with the letter v. The second character is 2, 3, or 4, indicating the
number of dimensions, and the final character is s for short integer, i for long integer, f for single-precision
floating-point, and d for double-precision floating-point. For example, the 2-D syntaxes are as follows:

void v2s(Intl6 vector[2])
void v2i(Int32 vector[2])
void v2f(Float32 vector[2])
void v2d(Float64 vector[2])

14 GL Programming Concepts

../../libs/gl32tref/v.htm#HDRA144X97A4

The following example program, greensquare2, illustrates the use of some of the different vertex
subroutines. It draws exactly the same picture as the previous example does, but uses different versions
of the vertex subroutine.

#include <g1/g1.h>
main()

200, 200, 0};

Intl6 vertl[3] = {
= {200, 400},

Int32 vert2[2]
Float32 vert3[2] = {400.0, 400.0};
Float64 vert4[3] {400.0, 200.0, 0.0};
prefposition (100, 500, 100, 500);
winopen("greensquare2");
ortho2(99.5, 500.5, 99.5, 500.5);
color(WHITE);

clear();

color(GREEN);

bgnline();

v3s(vertl);

v2i(vert2);

v2f(vert3);

v3d(vertd);

v3s(vertl);

endline();

sleep(3);

1

The previous program illustrates two things:

» Within one geometric figure (in this case, a polyline), you can mix different kinds of vertices together. In
a typical application, all the vertices tend to have the same dimension and form.

» GL treats all geometric figures as three-dimensional figures. Two-dimensional versions of the vertex
subroutines are actually shorthand for an equivalent three-dimensional subroutine with the z coordinate
set to zero.

Closed Lines
In the previous two examples, the program draws a closed polyline — a line segment connecting the last

point in the polyline to the first point in the polyline. Because this is a fairly common operation, there is a

pair of subroutines to do it: the hgnclasedline and kendclosedline subroutines.

The following program, n-gon, draws a regular, unfilled polygon centered at the origin. Specify the number
of sides for the polygon on the command line when you run the program.

#include <g1/g1.h>
#include <math.h>

main(argc, argv)
int argc;
char *argv[];

Int32 n, i
float vert[2];

if (argc != 2) {
printf("usage: %s <number of sides>\n", argv[0]);
exit(1);
1
n = atoi(argv[1]);
if (n > 256) {
printf("Too many sides\n");
exit(1);
}

prefposition(100, 500, 100, 500);
winopen("n-gon");

ortho2(-1.5, 1.5, -1.5, 1.5);
color(WHITE);

Chapter 3. Drawing with Graphics Library 15

../../libs/gl32tref/bgnclosedline.htm#HDRA144X960C
../../libs/gl32tref/bgnclosedline.htm#HDRA144X960C

clear();

color(RED);

bgnclosedline();

for (i =0; i <n; i=i+l) {
vert[0] = cos(i*2.0*M_PI/n);
vert[1] = sin(i*2.0*M_PI/n);
v2f(vert);

1

endclosedline();

sleep(3);

1

The four lines that begin with if (argc != 2) test to determine whether the number of sides was entered
on the command line. In other words, if the compiled file were called ngon, then you should run it as:
ngon 14, or ngon 24. The line n = atoi(argv[1]); converts the parameter from ASCII to integer n. The
E?E subroutine sets the default coordinate system up so that the coordinates displayed in the window
satisfy the conditions: -1.5 <=x, y <= 1.5.

The purpose of the previous example program is to draw exactly one n-gon, so there is no real penalty for
computing the coordinates of the vertices between the bgnclosedline and endclasedling subroutines. If it
is necessary to draw the polygon repeatedly, the calculated vertices can be saved in an array.

Other styles of drawing you can use include Drawing with Move-Draw Style Subroutines in GL and
Drawing B s Ci ; = |

in GL.

Points

To draw a set of unconnected points in GL, enter a set of vertices specified between the lhgnpaini and

subroutines. The system draws each vertex as a one-pixel point on the screen. The following
example program draws a set of unconnected points arranged in a square pattern. The square is 20 pixels
wide by 20 pixels high, and the points are spaced 10 pixels apart.

#include <g1/g1.h>
main()

{
Int32 vert[2];
int i, j;
prefposition(100, 500, 100, 500);
winopen("pointpatch");
color(BLACK);
clear();
color(WHITE);
for (i = 0; 1 <20; i = i+1) {
vert[0] = 100 + 10%i; /* load the x coordinate */
bgnpoint();
for (j = 05 j <20; j = j+1) {
vert[1] = 100 + 10*j; /* load the y coordinate x/
v2i(vert); /* draw the point */
1
endpoint();
}
sleep(3);

As for the line-drawing subroutines, you can have no more than 256 vertices between calls to the
bgnpoint and endpoind subroutines. Consequently, the example program cannot wrap the bgnpoint and
endpoint subroutines around the loop that increments the variable 1i; if it did, it would include 400 points.
The program, as written, draws 20 points at a time.

The points that are drawn by the bgnpoint and endpoint subroutines are precisely one pixel in size. This
size cannot be changed. Although GL does not have any explicit bgnpolymarker or endpolymarker
subroutines, there are several methods you can use to get polypoints that are larger than one pixel.

16 GL Programming Concepts

../../libs/gl32tref/ortho.htm#HDRA144X9496
../../libs/gl32tref/bgnclosedline.htm#HDRA144X960C
../../libs/gl32tref/bgnclosedline.htm#HDRA144X960C
../../libs/gl32tref/bgnpoint.htm#HDRA144X9650
../../libs/gl32tref/bgnpoint.htm#HDRA144X9650
../../libs/gl32tref/bgnpoint.htm#HDRA144X9650
../../libs/gl32tref/bgnpoint.htm#HDRA144X9650

If you want polypoints in the shape of raster patterns, use the font subroutines. That is, the set of rasters
to use should be associated with letters of the alphabet with the Hefrasterfoni subroutine. This font is then
made current with the fand subroutine. The raster patterns, which do not have to look like letters, can be
positioned and drawn with the emoW and tharst subroutines, respectively.

Nonraster polymarker primitives can be created with display lists. For instance, display list line drawings in
the shape of boxes, stars, crosses, asterisks, and so forth, can be created by using the

subroutine, followed by the drawing, followed by a subroutine. To draw one of these items,
position with the ﬁ/@ subroutine and draw it with the subroutine.

Other aspects of begin-end style drawing include Paintd, Palygons, Paint-Sampled Palygond, Palygonal
Bhading, and [Criangular Meshed.

Polygons

GL draws a polygon as a filled area on the screen. It draws polygons using the same basic syntax it uses
for polylines and sets of polypoints: a list of vertex subroutines surrounded by the m and
m subroutines. For example, the following program draws a filled hexagon on the screen:
#include <g1/g1.h>

float hexdata[6][2] = {
{20.0, 10.0},

Int32 i;

prefposition(100, 500, 100, 500);
winopen("bluehex");
color(BLACK) ; clear();
color(BLUE);
bgnpolygon();
for (i = 0; i <6; i = i+l) v2f(hexdata[i]);
endpolygon();
sleep(3);
1

As with lines and points, polygons must have fewer than 256 vertices. As it does with closed lines, the GL
software connects the first and the last point. You do not need to repeat the first point. An informal
definition for the procedure for generating a polygon is as follows:

Begin with a list of vertices.

2. Draw a line segment between each vertex and the preceding one.

3. On reaching the last vertex in the list, draw a line from that vertex to the first vertex in the list.
4. Fill the area that this line circumscribes.

—_

There are cases when this procedure does not generate a true polygon, but it is sufficient for simple
enclosed areas.

Definition of Polygons

In GL, a polygon is specified by a sequence of distinct vertices, v1, v2,..., vn, that all lie in a plane. You
can define the boundary of the polygon by connecting v1 to v2, v2 to v3, and so on, finally connecting vn
back to v1. These connecting segments are called edges. The interior of the polygon is the area inside this
region bound by line segments. A polygon is said to be simple if edges intersect only at their common
vertices; that is, the edges cannot cross or touch each other.

Chapter 3. Drawing with Graphics Library 17

../../libs/gl32tref/defrasterfont.htm#HDRA143X9D3F
../../libs/gl32tref/font.htm#HDRA143X9D61
../../libs/gl32tref/cmov.htm#HDRA143X9D1D
../../libs/gl32tref/charstr.htm#HDRA143X9CFB
../../libs/gl32tref/makeobj.htm#HDRA142X912D
../../libs/gl32tref/closeobj.htm#HDRA142X915B
../../libs/gl32tref/translate.htm#HDRA144X95C8
../../libs/gl32tref/callobj.htm#HDRA142X91C8
../../libs/gl32tref/bgnpolygon.htm#HDRA144X9672
../../libs/gl32tref/bgnpolygon.htm#HDRA144X9672

A polygon is convex if the line segment joining any two points in the figure is completely contained within
the figure. Nonconvex polygons are concave. Algorithms that render only convex polygons are much
simpler than those that can render both convex and concave polygons.

GL and the hardware can correctly render any polygon if it is simple, or if it consists of exactly four points.
(Non-simple four-point polygons are often called bowties because of their shape.)

Some versions of the hardware automatically check for and draw concave polygons correctly, but others
do not. The koncavd subroutine guarantees that the system renders concave polygons correctly. On some
hardware there is a slight performance penalty when you use concave. If you intend to draw concave
polygons, use the concave subroutine, even if your code is running on a machine that automatically does
the correct thing. There is no penalty for the call, and it makes the code portable to other machines.

The following figures illustrate some examples of polygons. The heavy black dots represent vertices, and
the lines represent edges:

Simple Convex Polygon

Simple Concave Polygon

Another Simple Concave Polygon

18 GL Programming Concepts

../../libs/gl32tref/concave.htm#HDRHXF320MARJ

Non-Simple Polygon

Another Non-Simple Polygon

Bow-Tie Polygon

Certain distortion problems can arise when viewing a polygon. Sometimes these distortions arise from
floating-point inaccuracies. But viewing distortions can also arise if the vertices of the polygon were
originally specified in three dimensions, and then were transformed and projected to two dimensions (the
screen). The only distortion possible for a true polygon (that is, a polygon whose vertices lie in a single
plane) is to view it edge on, in which case it collapses to a line.

However, if the defining vertices for the polygon do not all lie in a plane, the projected polygon on the
two-dimensional screen might appear to have duplicate vertices, or crossing edges. Various applications
may create these not-quite-true polygons when they use a mesh of polygons to model a curved surface.

For most of the surface, the polygons formed by the mesh will be nearly flat (true) polygons. However, as
the surface twists, the mesh must twist and the view of the mesh might generate bowtie polygons. This
effect is most noticeable at silhouette edges where the mesh curves around to the back of the depicted
object.

GL can render the bowties that arise from surface approximating meshes. In most other circumstances,
however, GL subroutines for generating polygons generate only true polygons.

Point-Sampled Polygons

To represent a polygon on the screen, the system must turn on a set of pixels. Given a set of coordinates
for the vertices of a polygon, there is more than one way to decide which pixels ought to be turned on.
The begin-end style subroutines draw point-sampled polygons, while the move-draw style subroutines (for
example, the , kect, and kird subroutines) draw outlined point-sampled polygons. The latter type of

subroutine is described in Drawing with Move-Draw Style Subroutined.

Chapter 3. Drawing with Graphics Library 19

../../libs/gl32tref/polf.htm#HDRZSF1C0MARJ
../../libs/gl32tref/rect.htm#HDRKAG110MARJ
../../libs/gl32tref/circ.htm#HDRZJPNITA

To illustrate the point sampling method and the reasons for using it, consider drawing two rectangles:
rectangle 1 has 2 <= x <= 5 and 1 <= y <= 4; rectangle 2 has 2 <= x <= 5 and 4 <= y <= 6. What pixels
should the system turn on in both cases? The most obvious answer is shown in the figure entitled

8 8
7 7
6 6 0000
5 5 0000
4 0000 4 0000
3 0000 3
2 0000 2
1 0000 1
0 0
01 2 3 4 5 6 0 1 2 3 4 5 6

Non-Point-Sampled Polygons

If you draw a figure consisting of the two non-point-sampled polygons, you expect them to fit together.
Unfortunately, if you draw them both, the pixels on the line y = 4 are drawn twice; once for each polygon.
A similar problem occurs if you abut a polygon to the right. Normally, this is not a problem, but if the
polygons represent a transparent surface, the duplicated edge, being twice as dense, gives the entire
surface a spiderweb-like appearance.

Even if the surface is not transparent, there can still be undesired visual effects. If you draw a
checkerboard pattern with edges that overlap by exactly one pixel and then redraw it in
, the redrawing is visible because the edges of the squares flicker from one color to the other, even

though the final second image is identical to the first. (See Creating Animated Sceneg for more about
single buffer mode.)

GL resolves these problems by using point-sampled polygans,

8 8
7 7

6 6

5 5 000
4 4 000
3 00 3

2 00 2

1 00 1

0 0

012 345 6 012 3 45 6

Point-Sampled Polygons

20 GL Programming Concepts

The model used assumes this: ideal mathematical lines (no thickness) connect the vertices. The system
draws any pixel whose center lies inside the mathematically precise polygon. It does not draw a pixel if its
center lies outside the polygon, nor any pixel whose center lies exactly on the mathematical line segments
or vertices that define the polygon. The system draws the pixel only if it lies strictly within the polygon.

This definition effectively eliminates the duplication of pixels from the right and top edges of the polygon,
but adjacent polygons can fill those pixels. The figure entitled shows

point-sampled versions of the two rectangles in hlan_EanSa.maled_P_aLygmsl

Another advantage of a point-sampled polygon without an outline is that the drawn area of the polygon is

much closer to the actual mathematical area of the polygon. In both the Non-Paint-Sampled Palygond and

Boint-Sampled Palygond figures, the drawn areas correspond exactly to the true areas of the polygons. In
nonrectangular polygons, the drawn area of the polygon cannot be exact, but the drawn area of the

no-outline point-sampled polygon is closer to the true area of the polygon than the area drawn by the older
outlined model.

The following figure, lAnather Point-Sampled Palygon, illustrates the pixels that are turned on in a

point-sampled representation of the polygon that connects the vertices (1,1) (1,4) (5,6) and (5,1). The
darkened pixels are drawn. The pixels at (1,4), (3,5), (5,6), (5,5), (5,4), (5,3), (5,2), and (5,1) all lie
mathematically on the boundary of the polygon but are not drawn because they are on the upper or right
edge.

®
[J
[J
®

0000 "
00000

d
®
o
@

© = N W & O O N O

0 1 2 3 4 5 6
Another Point-Sampled Polygon

As mathematical entities, lines have no thickness. However, to represent a line on the screen, the system
assumes a thickness of exactly one pixel. When you scale an object composed of lines, the lines behave
differently from polygons. No matter how much a transformatiod magnifies or reduces an object composed
of lines, the representation of the line remains one pixel thick. Accordingly, there is no corresponding
concept of a point sampled line. If a line is drawn around a point-sampled polygon, it fills in the pixels at
the upper- and right-hand edges. For compatibility, the fpolfi, keci, and kird subroutines draw a line around

the point-sampled version. See Drawing with Move-Draw Style Subroutined for information about these

subroutines.

Anomalies can occur in the display of very thinly filled polygons. For example, consider the point-sampled
rendition of the triangle connecting the points (1,1), (2,3), and (12,7). It is apparently riddled with holes, as
illustrated in the following figure, Paint-Sampling Anomaly. However, if adjacent polygons that share the
vertices are drawn, all the pixels will eventually be filled.

Chapter 3. Drawing with Graphics Library 21

../../libs/gl32tref/polf.htm#HDRZSF1C0MARJ
../../libs/gl32tref/rect.htm#HDRKAG110MARJ
../../libs/gl32tref/circ.htm#HDRZJPNITA

L
0®
Q/

@

01 2 3 4 5 6 7 8 9 10 11 12

o = N W & O O N @

Point-Sampling Anomaly

Polygonal Shading

GL offers two methods of shading polygons: flat and Gouraud. Flat-shaded polygons are those that appear
flat because they are drawn with only one color. Gouraud-shaded polygons are multicolored; the interior of
the polygon is a smooth blend of the colors at the vertices. Usually, the use of Gouraud shading, where
appropriate, results in a significantly more realistic image.

Polygonal, or m, shading is accomplished as follows: the colors at each vertex are linearly
interpolated along the edges connecting them, and then the interpolated colors on the edges are
interpolated again across the interior of the polygon. The result is a smooth color variation across the
entire polygon.

The interpolation is linear in all three components. For example, suppose the edge of a polygon that is 6
pixels long is colored with RGB components (0,20,100) at one end and (75,60,50) at the other. The six
pixels would be colored as follows: (0,20,100), (15,28,90), (30,36,80), (45,44,70), (60,52,60), and
(75,60,50).

Notice that each of the color components changes smoothly from each pixel to the next. The red
component increases by 15 for each pixel, the green component increases by 8, and the blue component
decreases by 10 each time. In this case, the pixel color differences work out to whole numbers. Usually
this is not the case, but the approximation is done as accurately as possible.

After the colors of the pixels on the edges of the polygon are determined, the same process is used to find
the colors of the pixels on the interior. The figure entitled [Shaded Triangld shows the result of shading a
triangle whose vertices have colors (0,20,100), (75,60,50), and (0,0,0).

22 GL Programming Concepts

(0,20,100)

(15,28,90) (0,16,80)

(30,36,80) | (15,24,70) | (0,12,60)

(45,44,70) | (30,32,60) | (15,20,50) (0,8,40)

(60,52,60) | (45,40,50) | (30,28,40) | (15,16,30) (0,4,20)

(75,60,50) | (60,48,40) | (45,36,30) | (30,24,20) | (0,12,10) (0,0,0)

Shaded Triangle

Gouraud shading also works in color map mode. In this case, the color indexes, rather than the RGB
values, are interpolated. Thus, a shaded six-pixel line with endpoints colored 1 (red) and 6 (cyan) would
have its six pixels colored 1, 2, 3, 4, 5, 6, or red, green, yellow, blue, magenta, cyan, assuming that the
default color map is used.

Gouraud shading in color map mode is useful when false color data is being presented; for example,
engineering or geophysical data such as pressure and elevation. Of course, an appropriate color ramp
must be loaded to take full advantage of Gouraud shading in color map mode. A color ramp is a smooth
progression of colors in the color map. For instance, the color ramp 1=red, 2=reddish-orange, 3=orange,
4=orange-yellow, 5=yellow, 6=lime-yellow would make the previous example of a six-pixel line appear
smooth shaded.

Other aspects of begin-end style drawing include Lines_Polylines_and Closed | ined; [Palygons;
Paint-Sampled Polygans; Polyganal Shading; and Mriangular Meshed.

Triangular Meshes

Triangular meshes provide a very efficient way to specify three-dimensional objects that are composed of
triangular faces.

A triangular mesh is a set of triangles formed from a series of points. In the Simple Triangle MesH figure,
the seven vertices form five triangles (123, 324, 345, 546, 567). Points 1 and 7 appear in one triangle;

Chapter 3. Drawing with Graphics Library 23

points 2 and 6 appear in two triangles, and all the rest appear in all three. In a longer sequence, a higher
percentage of the points are used three times. If the mesh in this figure is drawn as five separate triangles,
many of the points are transformed multiple times (in fact, transformation to screen coordinates occurs 15
times, although there are only 7 points). The triangular mesh primitive provides a more efficient way to
display sequences of triangles.

1 3 5 7
Simple Triangle Mesh

The ISimple Triangle MesH figure illustrates the simplest case. It uses the sequence

{bgntmesh(); v(1); v(2); v(3); v(4); v(5); v(6); v(7);
endtmesh();}

where v (i) stands for any vertex subroutine with the coordinates of the i-th point. As a result, the pipeline
accepts (and transforms) points 1 and 2. When point 3 arrives, it is transformed and the system draws the
triangle 123. Then point 3 replaces point 1 (so the pipeline now remembers points 2 and 3), and when
point 4 arrives, triangle 324 is drawn, and point 4 replaces point 2.

This sequence continues. Each time a new point is sent, the system draws a triangle containing the new
point and the two retained points. The oldest retained point is then discarded, and is replaced by the new
point. The sequence ends with a call to the m subroutine is sent.

swaptmesh Subroutine
The Example of the swaptmesh Subroutind figure illustrates a more complex situation. The first six

triangles (123, 234, 345, 456, 567, 678) could be drawn as before, but if nothing is done, the arrival of
point 9 causes triangle 789 to be drawn, not triangle 689 as desired. To draw meshes like the one in this
figure, we must examine more closely the mechanism the geometry hardware uses to retain points.

11 10 9

1 3 5 7

Example of the swaptmesh Subroutine

24 GL Programming Concepts

../../libs/gl32tref/bgntmesh.htm#HDRA144X9694

The pipeline maintains two previous vertices together with a pointer that points to one or the other of them
while drawing a triangle mesh. When a new vertex arrives, a triangle is drawn using all three vertices, and
then the new vertex replaces the one pointed to by the pointer. The pointer is then changed to point to the
other retained vertex. Thus if nothing special is done, the discarded vertex alternates, drawing a picture

like the ISimple Triangle MesH figure.

The following table illustrates what happens internally when the simple triangle mesh is drawn:

Initial state: After vertex1: After vertex2:
P -> R1 = junki R1 = vertl P -> R1 = vertl
R2 = junk2 P-> R2 = junk2 R2 = vert2
When vertex3 arrives, triangle 123 is drawn, and the state is:

R1 = vert3
P -> R2 = vert2
The next few states are:
After drawing 324: After 345: After 546:
P -> R1 = vert3 R1 = vert5 P -> R1 = vert5
R2 = vert4 P -> R2 = vert4 R2 = vert6

GL contains a subroutine, m whose only effect is to swap the pointer to the other retained
vertex. The following sequence draws the mesh in the figure entitled Example of the swaptmesH
Bubroutind.

bgntmesh();
v(1);
v(2);
v(3);
v(4);
v(5);
v(6);
v(7);
swaptmesh();
v(8);
swaptmesh();
v(9);
swaptmesh();
v(10);
v(4);
v(11);
endtmesh();

The following table shows what is happening internally:

After vertex7:

After swaptmesh:

After vertex8:

R1 = vert7

P -> R1 = vert7

R1 = vert8

P -> R2 = vert6 R2 = vert6 P -> R2 = vert6
After swaptmesh: After vertex9: After swaptmesh:
P -> R1 = vert8 R1 = vert9 P -> R1 = vert9

R2 = vert6

P -> R2 = vert6

R2 = vert6

Chapter 3. Drawing with Graphics Library 25

../../libs/gl32tref/swaptmesh.htm#HDRA144X9782

After vertex10: After vertex4: After vertexi1:

R1 = vert10 P -> R1 = vert10 R1 = verti1

P -> R2 = vert6 R2 = vert4 P -> R2 = vert4

Without going into such detail, here is the sequence that draws the figure in Another swaptmesh Example:

1 3 5
Another swaptmesh Example

bgntmesh();
v(1);
v(2);
v(3);
v(4);
v(5);
swaptmesh();
v(6);
v(7);
swaptmesh();
v(8);
v(9);
endtmesh();

At most, a limit of 256 kerted subroutines can occur between the bgntmesH and EndtmesH subroutines.

The program betahedron d (inin GL3.2 for AIX: Graphics Library (GL) Technical Reference

(POWER-based Systems Only)) draws a 3-D octahedron (8-sided regular polyhedron) using the mesh
primitive. Because meshes in two dimensions are of little use, the example is three-dimensional. This
example uses a number of advanced concepts and routines that are covered in other sections. These
include B=D rotationd, hidden surface remaval, smooth (Houble buffered) motion, and a different color

mode.

Drawing with Move-Draw Style Subroutines

This section discusses the following aspects of move-draw style subroutines:

26 GL Programming Concepts

../../libs/gl32tref/v.htm#HDRA144X97A4
../../libs/gl32tref/bgntmesh.htm#HDRA144X9694
../../libs/gl32tref/bgntmesh.htm#HDRA144X9694
../../libs/gl32tref/octahedron_c.htm#HDRB6U1320BRIA

List of GL Move-Draw Style Subroutines

The following GL Move-Draw Style Subroutines are found in GL3.2 for AIX: Graphics Library (GL)
Technical Reference (POWER-based Systems Only).

Draws a line.

Gets the current graphics position.

Moves the current graphics position to a specified point.

Closes a filled polygon.

Specifies the next point in a polygon.

Specifies the starting point for a polygon.

Draws a point.

Draws a relative line.

Moves the current graphics position to a point relative to the current point.

Draws a relative polygon.

gggaagagggg

Moves the current graphics position to the starting point for a filled polygon relative to the current
point.

Move-Draw Introduction

Except for polygons, the figures drawn by the move-draw subroutines are the same as those drawn by the
begin-end style ones. For example, points are drawn as a single pixel. However, the subroutines draw
polygons only similar to paint-sampled polygond; they draw lines connecting the vertices, effectively
point-sampled polygons with an outline. For many polygons, the drawing time is approximately doubled
when both the polygon and its outline are drawn.

The display list subroutines described in the section entitled Mlorking with Objects (Display | ists)
(makeohj, tlaseohj, kallabj, and so on) are not supported in the begin-end style subroutines.

The move-draw style subroutines used most often are the three-dimensional ones. Therefore, the naming

convention assigns the shortest name (for example, the pnt subroutine) to the most common, 3-D form.

The less-used, 2-D form is assigned the longer name, as in the pnt2 subroutine. The 2-D versions are

assumed to lie in the z=0 plane, but the 2-D primitives can be transformed out of that plane by the various
subroutines.

Current Graphics Position

In GL, the graphical figures are sent together: a set of points, a polyline, and a polygon are sent bracketed
by a call to the bgn<type> and end<type> subroutines. The rendering of the figure does not start until the
end<type> subroutine is received.

The system automatically maintains the current graphics position, so very few applications need to access
it directly, although the m subroutine does return the current graphics position. Its parameters
include four pointers to floating point numbers in which the homogeneous coordinates of the current
transformed point are returned. The form is getgpos (&fx, &fy, &fz, &fw).

For compatibility, the current graphics position is maintained in exactly the same way for all the move-draw

style subroutines. All other graphics subroutines do not depend on the current graphics position, and in
fact, leave it in an unpredictable state.

Chapter 3. Drawing with Graphics Library 27

../../libs/gl32tref/draw.htm#HDREYF2E0MARJ
../../libs/gl32tref/getgpos.htm#HDRCZF60MARJ
../../libs/gl32tref/move.htm#HDRPOFMARJ
../../libs/gl32tref/pclos.htm#HDRT2G270MARJ
../../libs/gl32tref/pdr.htm#HDRBQF1C0MARJ
../../libs/gl32tref/pmv.htm#HDRA139X91EED
../../libs/gl32tref/pnt.htm#HDRPTF3A0MARJ
../../libs/gl32tref/rdr.htm#HDRGPF1C0MARJ
../../libs/gl32tref/rmv.htm#HDRKZF90MARJ
../../libs/gl32tref/rpdr.htm#HDRHRFA0MARJ
../../libs/gl32tref/rpmv.htm#HDRLXF370MARJ
workobjects.htm
../../libs/gl32tref/makeobj.htm#HDRA142X912D
../../libs/gl32tref/closeobj.htm#HDRA142X915B
../../libs/gl32tref/callobj.htm#HDRA142X91C8
../../libs/gl32tref/getgpos.htm#HDRCZF60MARJ

Points
The six versions of the fpnfl subroutine are shown in the following table.

Versions of the Point Subroutine

Parameter type 2-D 3-D

short integer pnt2s pnts
long integer pnt2i pnti
floating point pnt2 pnt

The parameter lists are: pnt2(x, y) and pnt(x, y, z). In addition to drawing a point, the pnt subroutine
updates the current graphics position to its location. The syntax is as follows:

void pnt(Coord x, Coord y, Coord z)

The following example program draws 100 points in a square area of the window:
#include <g1/g1.h>
main()

{
int i, J;
prefposition(100, 500, 100, 500);
winopen("pointsquare");
color(BLACK);
clear();
color(BLUE);
for (i = 0; i < 10; i++)
for (j = 0; j < 10; j++)

pnti(ix5, j*5, 0);

sleep(3);

}

Lines and Relative Lines
Lines can be drawn using either the move or draw subroutine. Similar subroutines draw relative lines.
move and draw Subroutines

Lines can be drawn using either of two subroutines, move and draw. The syntax for the move and draw
subroutines is as follows:

void move(Coord x, Coord y, Coord z)
void draw(Coord x, Coord y, Coord z)

The move subroutine sets the current graphics position to the specified point. The draw subroutine draws
from the current graphics position to the specified point and then updates the current graphics position to
that point. The parameters and types of the move and draw subroutines are the same as for the point
subroutines. The following table is a complete list of the move and draw subroutines.

The move and draw Subroutines

Parameter type 2-D 3-D
short integer move2s moves
long integer move2i movei
floating point move2 move
short integer draw2s draws
long integer draw2i drawi
floating point draw2 draw

28 GL Programming Concepts

../../libs/gl32tref/pnt.htm#HDRPTF3A0MARJ
../../libs/gl32tref/move.htm#HDRPOFMARJ
../../libs/gl32tref/draw.htm#HDREYF2E0MARJ

The following example program draws the outline of a blue box on the screen using the move and draw
subroutines:

#include <g1/g1.h>
main()

{
prefposition(100, 500, 100, 500);
winopen("bluebox");
color(BLACK);
clear();
color(BLUE);
move2i (200, 200);
draw2i (200, 300);
draw2i (300, 300);
draw2i (300, 200);
draw2i (200, 200);
sleep(3);

1

Relative Line Subroutines

The relative line-drawing subroutines are similar to the Imovel and drawl subroutines, except that their
parameters are interpreted as motions relative to the current graphics position. The relative move and
draw subroutines are the kmy and kdd subroutines, respectively. After each call to a relative move or draw
subroutine, the current graphics position is updated to the specified position. The syntax for the rmv and
rdr subroutines is as follows:

void rmv(Coord x, Coord y, Coord z)

void rdr(Coord x, Coord y, Coord z)

If the current graphics position is (x, y, 2), then rdr(a, b, c¢) draws a line from (x, y, 2) to (x+a, y+b, z+c),
and leaves the current graphics position at (x+a, y+b, z+c).

The following table is a complete list of the relative line subroutines.

Relative Line Subroutines

Parameter type 2-D 3-D
short integer rmv2s rmvs
long integer rmv2i rmvi
floating point rmv2 rmv
short integer rdr2s rdrs
long integer rdr2i rdri
floating point rdr2 rdr

The following program draws a blue box identical to the blue box drawn by the previous example program.
But this time, the program uses relative drawing subroutines.

#include <g1/g1.h>
main()

{

prefposition(100, 500, 100, 500);
winopen("bluebox2");
color(BLACK) ;

clear();

color(BLUE);

move2i (200, 200);

rdr2i (0, 100);

rdr2i (100, 0);

Chapter 3. Drawing with Graphics Library 29

../../libs/gl32tref/move.htm#HDRPOFMARJ
../../libs/gl32tref/draw.htm#HDREYF2E0MARJ
../../libs/gl32tref/move.htm#HDRPOFMARJ
../../libs/gl32tref/draw.htm#HDREYF2E0MARJ
../../libs/gl32tref/rmv.htm#HDRKZF90MARJ
../../libs/gl32tref/rdr.htm#HDRGPF1C0MARJ

rdr2i (0, -100);
rdr2i(-100, 0);
sleep(3);

1

Note: The first subroutine is still m; this initializes the current graphics position. If another box
were to be drawn starting 200 units to the right of the first, it might begin with rmv2i(200, 0).

Polygons and Relative Polygons
GL provides subroutines to draw filled polygons and relative versions of filled polygons.
Filled Polygon Subroutines

The move-draw style subroutines that draw filled polygons are the m and E subroutines. The following
table is a complete list of the filled polygon subroutines.

Filled Polygon Subroutines

Parameter type 2-D 3-D
short integer pmv2s pmvs
long integer pmv2i pmvi
floating point pmv2 pmv
short integer pdr2s pdrs
long integer pdr2i pdri
floating point pdr2 pdr

The syntax for the pmv and pdr subroutines is as follows:
void pmv(Coord x, Coord y, Coord z)
void pdr(Coord x, Coord y, Coord z)

Relative Filled Polygon Subroutines
The relative versions of the filled polygon routines are shown in the following table:

Relative Filled Polygon Routines

Parameter type 2-D 3-D
short integer rpmv2s rpmvs
long integer rpmv2i rpmvi
floating point rpmv2 rpmv
short integer rpdr2s rpdrs
long integer rpdr2i rpdri
floating point rpdr2 rpdr

The syntax for the rpmv and rpdr subroutines is as follows:
void rpmv(Coord x, Coord y, Coord z)
void rpdr(Coord x, Coord y, Coord z)

A polygon is specified by the following sequence of calls:

1. A pmv subroutine (or rpmv subroutine) to locate the first point on the boundary
2. A sequence of pdr (or rpdr) subroutines for each additional vertex

3. The pclos subroutine to close and fill the polygon.

30 GL Programming Concepts

../../libs/gl32tref/move.htm#HDRPOFMARJ
../../libs/gl32tref/pmv.htm#HDRA139X91EED
../../libs/gl32tref/pdr.htm#HDRBQF1C0MARJ

The pclos subroutine has no parameters All the other subroutines take either two or three parameters of
the appropriate type.

After any polygon subroutine, the current graphics position is left at the original point of the polygon, the
point identified by the pmv (or rpmv) subroutine.

The following sample program draws a filled blue polygon:
#include <g1/g1.h>
main()

{

prefposition(100, 500, 100, 500);
winopen("bluebox");

color(BLACK);

clear();
color(BLUE);
pmv2i (200, 200);
pdr2i (200, 300);
pdr2i (300, 300);
pdr2i (300, 200);
pclos(
sleep(

)s
3);

Note: The pclos subroutine connects back to the original starting point.

Other drawing methods are explained in Drawing with Begin-End Style Subroutinedand Drawing
Bectangles Circles _Arcs_and Polygond.

Setting Drawing Attributes
GL contains subroutines designed to define the attributes for drawing m These subroutines set the

in either kalor map madd or RGB madd; the current linestyle, width, and color for line
drawings; and the current fill pattern for solid objects. The mi subroutine sets the shading model
for drawing shaded polygons.

You may want to read about the effects of certain attributes in Creating Lighting Fffectd and in Working in
Color Map and RGB Maded.

To read about the effects of certain attribute subroutines, see Creating [Lighting Fffectd in GL and Working
in Color Map and RGB Maded in GL.

List of GL Drawing Attribute Subroutines

d Sets the current color in RGB mode.

kolod Sets the current color in color map mode.
@ Sets the current color as a packed 32-bit integer.
m Defines a linestyle.

m Defines a pattern.

m Returns the current color in color map mode.
m Returns the linestyle repeat count.

m Returns the current linestyle.

m Returns the current linewidth.

W Returns the index of current fill pattern.

m Returns the shading model used to draw polygons.

Chapter 3. Drawing with Graphics Library 31

../../libs/gl32tref/shademodel.htm#HDRA143X9AB9
crlighteff.htm
crlighteff.htm
../../libs/gl32tref/c.htm#HDRA143X9262
../../libs/gl32tref/color.htm#HDRA146X9429
../../libs/gl32tref/cpack.htm#HDRA143X9284
../../libs/gl32tref/deflinestyle.htm#HDRA143X9B1F
../../libs/gl32tref/defpattern.htm#HDRA143X9B41
../../libs/gl32tref/getcolor.htm#HDRA146X924B
../../libs/gl32tref/getlsrepeat.htm#HDRA143X9BA7
../../libs/gl32tref/getlstyle.htm#HDRA143X9BC9
../../libs/gl32tref/getlwidth.htm#HDRA213X91299C
../../libs/gl32tref/getpattern.htm#HDRA143X9B63
../../libs/gl32tref/getsm.htm#HDRA143X9A53

gRGBcolod Returns the current color (RGB mode).

linewidtr Specifies a linewidth.

m Sets the repeat factor for the current linestyle.
W Pops the attribute stack.

W Pushes down the attribute stack.

BGBcalal Sets the current color in RGB mode.

Eetlinestyld Selects a linestyle.

m Selects a pattern for filling polygons and rectangles.
Ehademadel Selects a shading model used to draw polygons.

Setting Pipeline Options

Setting pipeline options is accomplished by a group of subroutines that allows a programmer to turn off
and on optional tasks provided by the graphics pipeline. Turning off these tasks when they are not needed
speeds the rendering process.

You may want to read about the various pipeline options in Creating W Removing Hidded
Burfaces, [Setting Drawing Attributed, Working with Coardinate Systemd, and Performing m

Various pipeline options are explained in Creating W in GL, Performing m in GL,
Removing Hidden Surfaced in GL, Setting Drawing Attrihuted in GL, and Working with Coordinate Systemd

in GL.

List of GL Pipeline Option-Setting Subroutines

backface Allows or suppresses the display of backfacing polygons.
koncavd Allows the system to draw concave polygons.

depthcud Turns depth-cueing on or off.

igetbackfacd Indicates whether backfacing polygon removal is on or off.
W Returns the current matrix mode.

getsm Returns the shading style used to draw filled polygons.
mmodd Sets the current matrix mode.

khademadel Selects the shading style used to draw filled polygons.

Drawing Rectangles, Circles, Arcs, and Polygons

By using the Inove-dravl style subroutines, it is possible to draw any of the m geometric figures in
GL (except curves and surfaces). However, because these primitives are drawn so often, GL provides
subroutines to draw them. The following sections explain GL high-level drawing:

» Polygon outlines and filled w

Most of the high-level subroutine names follow a pattern. If the geometric figures they draw are filled, the
original subroutine name has a lowercase f appended to it. For example, the kect subroutine draws a
rectangular outline, while kect draws a filled (solid) rectangle. The parameters to the subroutines can be
short integers (16 bits), long integers (32 bits), or floating-point numbers (32 bits). Floating point is the

32 GL Programming Concepts

../../libs/gl32tref/gRGBcolor.htm#HDRESL13A0MARJ
../../libs/gl32tref/linewidth.htm#HDRA3MM11B0MARJ
../../libs/gl32tref/lsrepeat.htm#HDRDMN1110MARJ
../../libs/gl32tref/popattributes.htm#HDRVMX2140MARJ
../../libs/gl32tref/pushattributes.htm#HDRTHX220MARJ
../../libs/gl32tref/RGBcolor.htm#HDRA143X9394
../../libs/gl32tref/setlinestyle.htm#HDRXFM1310MARJ
../../libs/gl32tref/setpattern.htm#HDRWEM11C0MARJ
../../libs/gl32tref/shademodel.htm#HDRA143X9AB9
crlighteff.htm
remhidden.htm
remhidden.htm
workcoords.htm
crlighteff.htm
remhidden.htm
workcoords.htm
../../libs/gl32tref/backface.htm#HDRA143X974B
../../libs/gl32tref/concave.htm#HDRHXF320MARJ
../../libs/gl32tref/depthcue.htm#HDRPNK22D0MARJ
../../libs/gl32tref/getbackface.htm#HDRA143X976D
../../libs/gl32tref/getmmode.htm#HDRIDZ2E0MARJ
../../libs/gl32tref/getsm.htm#HDRA143X9A53
../../libs/gl32tref/mmode.htm#HDRXHZ2370MARJ
../../libs/gl32tref/shademodel.htm#HDRA143X9AB9
../../libs/gl32tref/rect.htm#HDRKAG110MARJ
../../libs/gl32tref/rectf.htm#HDRQ5G330MARJ

default, but if the parameter type is a short integer, there is a lowercase s suffix. If the parameter type is a
long integer, the subroutine name takes a lowercase i suffix. As with the i subroutine, only the least
significant 24 bits of the long integer are considered .

List of GL Rectangle, Circle, Arc, and Polygon Subroutines

Draws a circular arc.

Draws a pie-shaped filled circular arc.

Draws a circle.

Draws a filled circle.

Draws a filled polygon.

Draws a polygon.

Draws multiple, disjointed polygons.

Draws multiple, disjointed polylines.

Draws a rectangle.

Draws a filled rectangle.

Draws a screen-aligned rectangle.

Draws a filled screen-aligned rectangle.

Draws a shaded filled polygon.

a@gaaaaaaaaam

Rectangles

GL provides two types of rectangle subroutines: filled and unfilled. Filled rectangles are just rectangular
polygons, and unfilled rectangles are rectangular outlines. In both types of subroutines, only the x and y
coordinates of the corners of the rectangle are given, and the z coordinate is assumed to be zero. The
rectangle is assumed to be aligned with the x and y axes.

The following table lists the six different forms of the rectangle subroutine.

Forms of the Rectangle Subroutine

Parameter type Filled Unfilled
short integer rectfs rects
long integer rectfi recti
floating point rectf rect

rect Subroutine
The parameters to all six versions of the kect rectangle subroutines are the same: rect(x1, y1, x2, y2).

The point defined by the x7, y1 parameters is one corner of the rectangle and that defined by the x2, y2
parameters is the opposite corner. Because the rectangle is assumed to be aligned with the axes, the
coordinates of the other corners are defined by the x7, y2 and y1, x2 parameters, respectively. The
syntax is as follows:

void rect(Coord x1, Coord yl, Coord x2, Coord y2)

Rectangles can undergo three-dimensional geometric transformations, and the resulting figure need not
appear to be a rectangle. (For example, imagine rotating the rectangle about the x axis so that one end is
farther from you and then viewing it in perspective. On the screen, the rotated rectangle appears to be a
trapezoid.) Rectangles drawn with the h subroutine (and also circles, arcs, and other 2-D figures) can
be Eositioned anywhere in world space with the use of the routines described in i i i

Chapter 3. Drawing with Graphics Library 33

../../libs/gl32tref/v.htm#HDRA144X97A4
../../libs/gl32tref/arc.htm#HDRTEP310NITA
../../libs/gl32tref/arcf.htm#HDRAJP60NITA
../../libs/gl32tref/circ.htm#HDRZJPNITA
../../libs/gl32tref/circf.htm#HDRSJP120NITA
../../libs/gl32tref/polf.htm#HDRZSF1C0MARJ
../../libs/gl32tref/poly.htm#HDRAVF2C0MARJ
../../libs/gl32tref/polygonlist.htm#HDRXTO2D0NITA
../../libs/gl32tref/polygonlist.htm#HDRXTO2D0NITA
../../libs/gl32tref/rect.htm#HDRKAG110MARJ
../../libs/gl32tref/rectf.htm#HDRQ5G330MARJ
../../libs/gl32tref/sbox.htm#HDRA213X91178A
../../libs/gl32tref/sboxf.htm#HDRJTE1190MARJ
../../libs/gl32tref/splf.htm#HDRA143X9AFD
../../libs/gl32tref/rect.htm#HDRKAG110MARJ
../../libs/gl32tref/rect.htm#HDRKAG110MARJ
workcoords.htm
workcoords.htm

It is important to understand that the matrix manipulation routines (for instance, translatd, rotatd, and

) execute considerably slower than the drawing subroutines such as the begin-end style subroutines.

Therefore, it is almost always more efficient to draw the desired rectangle in its final position with the

subroutines bgnpolygor and Endpolygod, rather than using the kect subroutine with translate, rotate,

and scale. Performance considerations do not necessarily apply to circles and arcs, in part because these

are more complex figures and are unique in the convenience they provide.

The following example program draws a chess board with black and white squares on a green background
using the subroutine. In addition, to demonstrate the unfilled rectangle subroutines, there is a red line

outlining the board.
#include <g1/g1.h>
main()

{
Int32 i, j;

prefposition(100, 500, 100, 500);
winopen("chesshoard");
color(GREEN) ; clear();
for (1 = 0; i <8; 1 = 1i+l)
for (J =05 j <8; j = j+1) {
if (odd(i+j))
color(WHITE);
else
color(BLACK);
rectfi (100 + i*25, 100 + j*25, 124 + i%25, 124 + j*25);

}

color(RED);

recti(97, 97, 302, 302);

sleep(3);
1
odd(n) /* returns 1 if n is odd; O otherwise. =/
Int32 n;
{

}
sbox and sboxf Subroutines

return n&l;

The kbox subroutine draws a two-dimensional, screen-aligned rectangle using the current Ealod,
luritemasK, linestyle, and linestyle repeat. Only these attributes, not the normal line attributes, are used.

Most of the lighting/shading/viewing pipeline is bypassed.

Forms of the sbox Subroutine

Parameter type Filled Unfilled
short integer sboxfs sboxs
long integer sboxfi sboxi
floating point sboxf sbox

The syntax is as follows:
void sbox(Coord x1, Coord yl, Coord x2, Coord y2)

The sboxf subroutine draws a filled rectangle.

When you use the sbox subroutine, you must not use lighting, backfacing, Hepth-cueing, z buffering,

Gouraud shading, or alphablending.

34 GL Programming Concepts

../../libs/gl32tref/translate.htm#HDRA144X95C8
../../libs/gl32tref/rotate.htm#HDRA8G2120MARJ
../../libs/gl32tref/scale.htm#HDRA144X95A6
../../libs/gl32tref/bgnpolygon.htm#HDRA144X9672
../../libs/gl32tref/bgnpolygon.htm#HDRA144X9672
../../libs/gl32tref/rect.htm#HDRKAG110MARJ
../../libs/gl32tref/rect.htm#HDRKAG110MARJ
../../libs/gl32tref/sbox.htm#HDRA213X91178A

Circles

Like rectangles, circles are two-dimensional figures, and lie in the x-y plane, with z coordinates equal to
zero. If they are viewed at an angle, circles will be appear to be ellipses.

The parameters for the circle subroutines include the center point, defined by the x, y parameters, and the
radius. Like rectangles, circles are either filled or unfilled, and the center coordinates and radius are
specified in integers, short integers, or floating-point numbers.

The following table lists the six different forms of the kird subroutine. The parameters to all six subroutines
are the same: circ(x, y, radius).

Forms of the Circle Subroutine

Parameter type Filled Unfilled
short integer circfs circs
long integer circfi circi
floating point circf circ

circ Subroutine
Circles are drawn with 80 equally spaced points, either as a closed line (for unfilled circles), or as a

polygon (for filled circles). If your application draws many tiny circles, it is a good idea to write a circle
m_ﬁﬁ that uses fewer line segments, and which can therefore be drawn much more quickly. A similar
problem can arise for very large circles. If they are magnified enough, you can see the individual straight
line segments. However, circles drawn with 80 segments look smooth over a wide range of sizes. The
syntax is as follows:

void circ(Coord x, Coord y, Coord radius)

The following example program, bullseye, draws an archery target using filled circles:
#include <g1/g1.h>
main()

{

prefposition(100, 500, 100, 500);
winopen("bullseye");
ortho2(-1.0, 1.0, -1.0, 1.0);
color(BLACK);
clear();
color(GREEN);
circf(0.0, 0.0, 0.9);
color(YELLOW);
circf(0.0, 0.0, 0.7);
color(BLUE);
circf(0.0, 0.0, 0.5);
color(CYAN);
circf(0.0, 0.0, 0.3);
color(RED);
circf(0.0, 0.0, 0.1);
sleep(3);

}

Arcs

Arcs are also two-dimensional figures, and like circles and rectangles, GL assumes they lie in the plane z

= 0. When viewed at an angle, arcs appear to be segments of ellipses. Arcs can be either filled or unfilled.

As shown in the Unfilled Arc figurd, these are simply segments of circles, whereas filled arcs, shown in the
figure, look like sections of a pie.

Chapter 3. Drawing with Graphics Library 35

../../libs/gl32tref/circ.htm#HDRZJPNITA

Ynd angle
A
\

radius start angle
y
X
arc(x,y,radius,start angle, end angle);
Unfilled Arc
\end angle
/A \
. \‘ start anple
radius
y

X
filled arcfi(x,y,radius,start angle,end angle);

Filled Arc

Arcs are defined by a center (x, y), a radius, a starting angle, and an ending angle. The angles are
measured from the positive x axis in a counterclockwise (?’EM) direction. Negative angles are

measured clockwise. Both angles are expressed as integers in tenths of degrees, so a 90 degree angle is
expressed as 900.

36 GL Programming Concepts

An arc is always drawn counterclockwise from the starting angle to the ending angle, so if startang = 0
and endang = 100, a 10-degree arc is be drawn. If the starting angle is 100 and the ending angle is 0, a
350-degree arc is drawn.

The circular portions of the arcs drawn are approximated by straight lines, and a full 360-degree arc
consists of 80 segments. If your application draws many tiny arcs, it is a good idea to write an arcs
primitive that uses fewer line segments and that can therefore be drawn much more quickly. A similar
problem can arise for very large arcs. If they are magnified enough, you can easily see the individual
straight line segments. However, arcs drawn with 80 segments look reasonably good over a wide range of
sizes.

Arcs subroutines come in the same six forms as subroutines for circles and rectangles as shown in the
following table:

Forms of the Arc Subroutine

Parameter type Filled Unfilled
short integer arcfs arcs
long integer arcfi arci
floating point arcf arc

arc Subroutine
The parameter order for all six versions of the brd subroutine is x, y, radius, startang, endang. The syntax

is as follows:

void arc(Coord x, Coord y, Coord radius,
Angle startang, Angle endang)

The following example program, piechart, draws a pie chart using filled arcs:
#include <g1/g1.h>
main()

{

prefposition(100, 500, 100, 500);
winopen("piechart");
ortho2(-1.0, 1.0, -1.0, 1.0);
color(BLACK);
clear();
color(RED);
arcf(0.0, 0.0, 0.9, 0, 800);
color(GREEN);
arcf(0.0, 0.0, 0.9, 800, 1200);
color(YELLOW) ;
arcf(0.0, 0.0, 0.9, 1200, 2200);
color(MAGENTA) ;
arcf(0.0, 0.0, 0.9, 2200, 3400);
color(BLUE);
arcf(0.0, 0.0, 0.9, 3400, 0);
sleep(3);

1

Polygon Outlines and Filled Polygons

GL has two sets of subroutines that take arrays of vertex coordinates and draw filled and unfilled
polygons. These subroutines draw exactly the same figures as the move-dravl (or polygon move and
polygon draw) subroutines, but are often more convenient to use.

polf and poly Subroutines

Filled polygons are drawn by the m subroutine, and polygon outlines are drawn by the m subroutine.
The following table is a complete list of the polygon and filled polygon subroutines.

Chapter 3. Drawing with Graphics Library 37

../../libs/gl32tref/arc.htm#HDRTEP310NITA
../../libs/gl32tref/polf.htm#HDRZSF1C0MARJ
../../libs/gl32tref/poly.htm#HDRAVF2C0MARJ

Forms of the Polygon Subroutines

Parameter type 2-D 3-D
short integer poly2s polys
long integer poly2i polyi
floating point poly2 poly
short integer polf2s polfs
long integer polf2i polfi
floating point polf2 polf

Both the polf and the poly subroutines take two parameters. The first parameter, n, is the number of
vertices in the polygon, and the second, parray, is a two-dimensional array containing the coordinates. The
syntax for the polf and poly subroutines is as follows:

void polf(Int32 n, Coord parray[][3])
void poly(Int32 n, Coord parray[][3])

This example program draws a hexagon using the polf subroutine:
#include <g1/g1.h>

Int32 parray[6][2] = {{200,100},{100,300},{200,500},
{400,500}, {500,300} ,{400,100}};

main()
{

prefposition(100, 600, 100, 600);
winopen("hexagon");

color(BLACK);

clear();

color(GREEN);

polf2i(6, parray);

sleep(3);

Reading and Writing Pixels

Information in this section includes the following:

+ Pixel Earmatd
« Efficient Pixel Beading and Writing
. Bead Wi ~ Baned

« Other Pixel Bccesd Subroutines

A pixel is a rectangular picture element. The display screen is composed of an array of pixels. In a
black-and-white system, pixels are turned on and off to form images. In a color system, each pixel has
three components: red, green, and blue. The intensity of each component can be controlled.

Pixels, like m, are not as easy to transform as geometric figures. Coding for pixel representation
on the screen often requires information about the window dimensions, the screen resolution, and so forth.

Another problem with reading and writing pixels is that the contents of each pixel can mean different things
depending on the display mode. The same physical m are used to store either color index
information or RGB information. Accordingly, the mode of the window determines whether the contents are
interpreted as RGB triples or as indexes into the color map.

The GL pixel-handling subroutines operate on arbitrarily sized rectangles, and they operate in all modes.

38 GL Programming Concepts

List of GL Pixel Block Transfer Subroutines

logicop Specifies a logical operation for pixel writes.

m Controls the operation of the Irectread and Irectwrite subroutines.
m Returns a row of specific pixels in color map mode.

keadRGH Returns a row of specific pixels in RGB mode.

keadsourcd Specifies the source for pixels to be read.

m Copies a rectangle of pixels screen to screen with optional zoom.
kectread lrectread Reads a rectangular array of pixels into host memory.

kectwrite _Irectwrite Draws a rectangular array of pixels into the frame buffer.
kectzoon Specifies the zoom factor for rectangle copies and writes.
m Paints a row of pixels on screen in color map mode.

furiteRGH Paints a row of pixels on screen in RGB mode.

Pixel Formats

The following three pixel formats constitute the standard GL pixel formats:

» Pixel data to be interpreted as red-green-blue-alpha packs 8 bits for each into a 32-bit word. Bits 0-7
represent red, bits 8-15 represent green, bits 16-23 represent blue, and bits 24-31 represent alpha. For
example, 0x01020304 corresponds to a pixel whose red, green, blue, and alpha values are 4, 3, 2, and

1, respectively. This is exactly the same format used by the m subroutine. See lALatkmg_Ln_CaLoi
for more information.

Note: Alpha functions require specialized alpha hardware. The High-Performance 3-D Color
Graphics Processor does not have alpha bitplanes.

» Pixels interpreted as indexes into a single, 4096-entry color map interpret the low-order 12 bits as the
color index. The high-order 20 bits should be zero.

« Pixels that read or write the Ebuffel directly. The z buffer contains 24 bits of data, stored as the
low-order 24 bits of a 32-bit word. The top 8 bits should be zero.

Efficient Pixel Reading and Writing

This section describes subroutines that read and write pixels with the highest possible performance.

Note: These subroutines do not check to make sure that the data is valid. If you read pixel data from
a window in kolor map modd and then write the data into an RGB window or into the z buffer, the
data is interpreted according to the new mode. The results are unpredictable.

pixmode aubroutme

The subroutine controls the format in which pixmaps are transferred to and from the adapter.
You can use the pixmode subroutine to specify the format of a pixmap as handled by your application.
The pixmode subroutine performs the following functions:

» Describes the format of a pixmap so that the hardware can operate with it.
* Provides a device-independent interface to pixel block transfers (BLITs).

» Allows the casual user to perform BLITs without having to understand the frame buffer organization in
detail.

» Provides convenience by understanding a large variety of pixmap formats.
* Provides the most efficient interface to the hardware by minimizing unneccesary data copying.

Note: The pixmap subroutine is not intended to be an “image processing function” or to be used
for pixmap format conversion.

Chapter 3. Drawing with Graphics Library 39

../../libs/gl32tref/logicop.htm#HDRIM521A0MARJ
../../libs/gl32tref/pixmode.htm#HDRBAV30MARJ
../../libs/gl32tref/readpixels.htm#HDRA142X91059
../../libs/gl32tref/readRGB.htm#HDRA142X9107B
../../libs/gl32tref/readsource.htm#HDRA142X9CC0
../../libs/gl32tref/rectcopy.htm#HDRA142X9D04
../../libs/gl32tref/rectread.htm#HDRA142X9C7C
../../libs/gl32tref/rectwrite.htm#HDRA142X9C9E
../../libs/gl32tref/rectzoom.htm#HDRA142X9D26
../../libs/gl32tref/writepixels.htm#HDRA142X9E62
../../libs/gl32tref/writeRGB.htm#HDRA142X9FF2
../../libs/gl32tref/cpack.htm#HDRA143X9284
../../libs/gl32tref/pixmode.htm#HDRBAV30MARJ

After you specify the pixmap format, the Irectread and lrectwrite subroutines automatically perform the
transfer from this format to the internal format of the frame buffed. The syntax is as follows:

void pixmode (Int32 mode, Int32 value)

FASTMODE is useful when it is important to store and retrieve images quickly, and when the internal
format of the image is not important. A compatible mode is supplied by setting FASTMODE to FALSE.
Using FASTMODE on certain adapters, for example the Supergraphics Processor Subsystem, can result in
significantly improved pixel transfer capabilities.

rectread and Irectread Subroutines

The subroutine reads a rectangular array of pixels from the window where the xl/l, yll parameters
are the coordinates for the lower-left corner of the rectangle and the xur, yur parameters are the
coordinates for the upper-right corner. All coordinates are relative to the lower-left corner of the window in
screen coordinates. The syntax is as follows:

Int32 rectread(Screencoord x11, Screencoord y11,
Screencoord xur, Screencoord xur, Intl6 *parray)

The parray parameter is an array of 16-bit values. Only the low-order 16 bits of each pixel are read, so the
rectread subroutine is useful primarily for windows drawn in color map mode. The data is loaded into the
parray parameter left to right, and then bottom to top. In other words, if the pixel data on the screen looked
like this:

1 2 3 4

5 6 7 8

910 11 12

The parray parameter would contain parray[0] = 9, parray[1] = 10, or
{9, 10, 11, 12, 5, 6, 7, 8, 1, 2, 3, 4}, and so forth. The rectread subroutine returns the number of
pixels successfully read. Normally, this is defined as:

(x2 - x1 +1)(y2 -yl +1)

If any part of the specified rectangle is off the screen, or if the coordinates are mixed up, the behavior of
the % subroutine is undefined.

Errors occur only outside the screen, not in the window. It is possible to read pixels outside a window, as
long as they are on the physical screen. This can be useful for certain applications that magnify data in
other windows or that process images produced by other programs. The main difficulty is that the data can
come from areas of the screen that are in different modes (kolor map modd or BGB maodd). Because the
rectread subroutine is not restricted to the current window, any or all of the coordinates can be negative.

The Irectread subroutine is very similar to the rectread subroutine. It differs in that its operation is
controlled by the fpixmodd subroutine and that the parray parameter contains 32-bit quantities. Although
the Irectread subroutine is useful for any kind of data, it wastes space if the data is known to be from a
window in color map mode. The syntax is as follows:

Int32 Trectread(Screencoord x11, Screencoord y11,

Screencoord xur, Screencoord xur,
Int32 =*parray)

rea?f_aoagﬁubroutine

The subroutine determines the source of pixels read by the kectread, lrectread, kectcopy,
teadpixels, and keadRGH subroutines. The source parameter has four possible values defined in the
lusr/include/gl/gl.h file. They are SRC_AUTO, SRC_FRONT, SRC_BACK, and SRC_ZBUFFER.

The default value is SRC_AUTO, which selects the front buffer in kingle buffer madd and the back buffer
in Houble buffer modd. The SRC_FRONT value always reads from the front buffed (this is always valid),

40 GL Programming Concepts

../../libs/gl32tref/rectread.htm#HDRA142X9C7C
../../libs/gl32tref/rectwrite.htm#HDRA142X9C9E
../../libs/gl32tref/rectread.htm#HDRA142X9C7C
../../libs/gl32tref/rectread.htm#HDRA142X9C7C
../../libs/gl32tref/rectread.htm#HDRA142X9C7C
../../libs/gl32tref/pixmode.htm#HDRBAV30MARJ
../../libs/gl32tref/readsource.htm#HDRA142X9CC0
../../libs/gl32tref/rectread.htm#HDRA142X9C7C
../../libs/gl32tref/rectread.htm#HDRA142X9C7C
../../libs/gl32tref/rectcopy.htm#HDRA142X9D04
../../libs/gl32tref/readpixels.htm#HDRA142X91059
../../libs/gl32tref/readRGB.htm#HDRA142X9107B

and the SRC_BACK value always reads from the back buffet (valid only in double buffer mode). Finally,
SRC_ZBUFFER reads 24-bit data from the Z_buffel. The SRC_ZBUFFER value is valid in both single and
double buffer modes. The syntax is as follows:

void readsource(Int32 source)

rectwrite and Irectwrite Subroutines
The subroutines that draw rectangular arrays of pixels, kectwritd and lrectwrite, are similar to those that

read pixels. The data in the parray parameter is 16-bit quantities for the rectwrite subroutine, and 32-bit
quantities for the Irectwrite subroutine. The destination buffer is determined by the

backbuffer, and zdraw subroutines (see Double and Single Buffering and Z-Buffering). The syntax for the

rectwrite and Irectwrite subroutines is as follows:

Int32 rectwrite(Screencoord x11, Screencoord y11,
Screencoord xur, Screencoord xur,
Intl6 *parray)

Int32 Trectwrite(Screencoord x11, Screencoord y11,
Screencoord xur, Screencoord xur,
Int32 *parray)

Data is stored in the same order as in the rectread subroutine. In other words, if you call the kectread
subroutine and then the rectwrite (or lrectread followed by Irectwrite) subroutine with the same
parameters, exactly the same data is written as is read. The rectwrite and Irectwrite subroutines obey the
zoom factors set by the kectzoom subroutine.

rectcopy Subroutine
The subroutine copies the pixels from a rectangular region of the screen to a new region. As
was the case with the kectread and Irectread subroutines, the source rectangle must be on the physical

screen, but not necessarily constrained to the current window. The bitplane source for the pixels is
determined by the m subroutine, and the destination is determined by the m
backbufferd, and zdraw subroutines (see Dauble and Single Buffering and Z-Buffering). Self-intersecting

rectangles work correctly in all cases. The syntax is as follows:

void rectcopy(Screencoord x11, Screencoord y11,
Screencoord xur, Screencoord xur,
Screencoord newx, Screencoord newy)

rectzoom Subroutine
With the kectcopyl subroutine, the source rectangle can be zoomed by independent amounts in both the x

and y directions. The kectzaam subroutine accomplishes this, where its xfactor and yfactor parameters are
floating-point values defaulting to 1.0. The syntax is as follows:

void rectzoom(Float32 xfactor, Float32 yfactor)

The current system supports only integer values for the xfactor and yfactor parameters. If
rectzoom(2.0, 3.0) is called and the following rectangle is copied:

1 2
3 4

the following copy is made:
2 2

1
1
1
3
3
3

w w W = ==
A~ B2 BN
BT~ R L S

The following program, zoom, magnifies the rectangular area above and to the right of the cursor to fill the
window:

Chapter 3. Drawing with Graphics Library 41

../../libs/gl32tref/rectwrite.htm#HDRA142X9C9E
../../libs/gl32tref/rectwrite.htm#HDRA142X9C9E
../../libs/gl32tref/frontbuffer.htm#HDRA145X9A0
../../libs/gl32tref/backbuffer.htm#HDRA145X94A
../../libs/gl32tref/zdraw.htm#HDRA143X97F5
../../libs/gl32tref/rectread.htm#HDRA142X9C7C
../../libs/gl32tref/rectread.htm#HDRA142X9C7C
../../libs/gl32tref/rectzoom.htm#HDRA142X9D26
../../libs/gl32tref/rectcopy.htm#HDRA142X9D04
../../libs/gl32tref/rectread.htm#HDRA142X9C7C
../../libs/gl32tref/readsource.htm#HDRA142X9CC0
../../libs/gl32tref/frontbuffer.htm#HDRA145X9A0
../../libs/gl32tref/backbuffer.htm#HDRA145X94A
../../libs/gl32tref/zdraw.htm#HDRA143X97F5
../../libs/gl32tref/rectcopy.htm#HDRA142X9D04
../../libs/gl32tref/rectzoom.htm#HDRA142X9D26

#include <g1/g1.h>
#include <device.h>

main()

{
Int32 xsize, ysize, readxsize, readysize, x, y;
Int32 xorg, yorg;

winopen("zoom");
getsize(&xsize, &ysize);
getorigin(&xorg, &yorg);
readxsize = xsize/3;
readysize = ysize/3;
rectzoom(3.0, 3.0);
while (1) {
x = getvaluator(MOUSEX);
y = getvaluator(MOUSEY);
rectcopy(x-xorg,y-yorg,x-xorg+readxsize,
y-yorg+readysize,0,0);
1
}

After determining the size and shape of the window, the program simply loops, copying a properly sized
rectangle above and to the right of the cursor into the window magnified by a factor of 3 in each direction.
The expressions x-xorg and y-yorg convert the cursor’s kcreen coardinated into window coordinates.

If you use the previous program as it is, note that regions of the screen drawn in BGR madd appear
incorrect, and color-mapped portions look fine. Also, notice that with Houble-huffered programs, the zoom
window appears to blink. This happens because the program is continually switching buffers, while zoom
is always reading the same buffer. If you magnify the program’s own window some fairly interesting effects
can appear; that is, a sort of recursion takes place. These effects are enhanced if the zoom factor is set to
(1.0,1.0).

Reading and Writing to Overlay Planes

To read from the overlay planes, set the pixel source with readsource (SRC_OVER). The rectread
subroutine returns one pixel per short word; the Irectread subroutine returns one pixel per long word.
When reading, all other bits in the short or long word are set to zero.

To write to the overlay planes, set drawmode (OVERDRAW), and then use the rectwrite or Irectwrite
subroutine. Pixels must be specified one pixel per short word for the rectwrite subroutine and one pixel
per long word for the Irectwrite subroutine. The pixel must lie in the lowest order bits of the short or long
word. All other bits in the short or long word are ignored during a write.

To copy from one location in the overlay planes to another, specify readsource (SRC_OVER) and
drawmode (OVERDRAW), and then use the rectcopy subroutine. The rectcopy subroutine does not
support pixel block copies from the main frame buffer to the overlays, or vice versa. To copy to or from the
main frame buffer to or from the overlays, adjust the readsource subroutine, use either the rectread or
Irectread subroutine, adjust the drawmode subroutine, and then use either the Irectwrite or rectwrite
subroutine.

The setting for pixmode (PM_SIZE) is ignored when performing transfers to or from the overlay planes.

Other Pixel Access Subroutines
The following GL subroutines provide other types of access to pixel blocks:

readpixels Subroutine

The m subroutine returns values of specific pixels from the frame buffer in kcalor map made] It
reads them into the array starting from the current character position along a single scan line (constant)
in the direction of increasing x. The syntax is as follows:

42 GL Programming Concepts

../../libs/gl32tref/readpixels.htm#HDRA142X91059

Int32 readpixels(Intl6 number, Colorindex colors[])

readRGB Subroutine

The subroutine attempts to read specific pixel values from the frame buffer in RGB mode. The
returned value of this function is the number of pixels actually read. A returned function value of 0 (zero)
indicates that the starting point is not a valid character position.

Note: The kectread subroutine provides significantly better performance for pixel block transfers.
Even when only one row of pixels needs to be read, use the rectread subroutine. Do not use the
readpixels or readRGB subroutines in new development.

The syntax is as follows:

Int32 readRGB(Intl6 number, RGBvalue red[], RGBvalue green[],
RGBvalue blue[])

writepixels Subroutine

The subroutine paints a row of pixels on the screen in color map mode.The system reads
elements from the colors array and draws a pixel of the appropriate color for each. The syntax is as
follows:

void writepixels(Intl6 number, Colorindex colors[])

writeRGB Subroutine
The writeRGB subroutine paints a row of pixels on the screen in RGB mode. The system reads elements
from the red, green, and blue arrays and draws a pixel of the appropriate color for each.

Note: The kectwritd subroutine provides significantly better performance for pixel block transfers.
Even when only one row of pixels needs to be read, use the rectwrite subroutine. Do not use the
writepixels subroutine in new development.

The syntax is as follows:

void writeRGB(Intl6 number, RGBvalue red[], RGBvalue green[],
RGBvalue blue[])

Other topics affected by reading and writing pixels are Creating [lext Characterd and Working in Calor Magd
and RGR Mades.

Creating Text Characters

This section includes the following aspects of character creation in GL:

The GL supports the rapid display of rasterized characters in multiple fonts. The fonts can be fixed or
variable pitch and can be different point sizes. You can design and use your own fonts or make use of the
Enhanced X-Windows fonts supplied with the system. The system also provides query functions to
determine information about the currently defined font.

For information on getting a list of available fonts, see the XListFonts function.

List of GL Text Subroutines

charstd Draws a string of raster characters on the screen.

kmod Moves the current character position.

Chapter 3. Drawing with Graphics Library 43

../../libs/gl32tref/readRGB.htm#HDRA142X9107B
../../libs/gl32tref/rectread.htm#HDRA142X9C7C
../../libs/gl32tref/writepixels.htm#HDRA142X9E62
../../libs/gl32tref/rectwrite.htm#HDRA142X9C9E
../../libs/gl32tref/charstr.htm#HDRA143X9CFB
../../libs/gl32tref/cmov.htm#HDRA143X9D1D

defrasterfoni Defines bitmaps for a raster font.

koni Selects a raster font.

M Returns the current character position.

W Returns the baseline extent of the longest character descender.
m Returns the current raster font number.

W Returns the font encoding of the current raster font.
W Returns the font type of the current raster font.

m Returns the maximum character height in the current raster font.
loadXfont Loads an Enhanced X-Windows font into the font table.
ktrwidtH Returns the width of a specified text string.

Character Strings

The kmoy subroutine determines where the system draws text on the screen, and the kharstd subroutine
draws a string of characters. The EtrwidtH subroutine returns the width of a text string.

The system draws the character string in the current font, which, by default, is a fixed-width, sans-serif font
nine pixels wide. Strings drawn with raster fonts are not scaled, therefore although a labeled object shrinks
as it moves away from the viewer, the label stays the same size. Similarly, no matter what rotation is in
effect, the character string maintains the same orientation (horizontal for any standard font) because fonts
are defined in 2-D with respect to the raster display. Scaling, rotating, or translating such 2-D primitives
has no meaning in a 3-D context.

cmov Subroutine
The kurrent character pasitiod determines where the system draws text on the screen. The kmay

subroutine moves the current character position to a specified point in the same way that the mavd
subroutine sets the current line-drawing position. The x, y, and z parameters are given as integers, short
integers, or real numbers in 2-D or 3-D and specify a point in world coordinates.

The emov subroutine transforms the world coordinates into window coordinates, which become the new
character position. The emov subroutine does not affect the current graphics position.

If the current character position is clipped out by the current viewing transformation, the character position

is set to invalid, and any character strings that are drawn do not appear. The ecmov subroutine does not

cause anything to be drawn. It simply sets the current character position where drawing occurs when the
subroutine is issued.

The parameters are (x, y) for the emov2 subroutines and (x, y, z) for the emov subroutines. The syntax
for the emov and emov2 subroutines is as follows:

void cmov(Coord x, Coord y, Coord z)
void cmov2(Coord x, Coord y)

Forms of the cmov Subroutine

Parameter Type 2-D 3-D
Int16 cmov2s cmovs
Int32 cmov2i cmovi
Float cmov2 cmov

44 GL Programming Concepts

../../libs/gl32tref/defrasterfont.htm#HDRA143X9D3F
../../libs/gl32tref/font.htm#HDRA143X9D61
../../libs/gl32tref/getcpos.htm#HDRA144X9364
../../libs/gl32tref/getdescender.htm#HDRA144X9386
../../libs/gl32tref/getfont.htm#HDRA144X93A8
../../libs/gl32tref/getfontencoding.htm#HDRAZ7960NITA
../../libs/gl32tref/getfonttype.htm#HDRY89340NITA
../../libs/gl32tref/getheight.htm#HDRA144X93CA
../../libs/gl32tref/loadXfont.htm#HDRVUO390NITA
../../libs/gl32tref/strwidth.htm#HDRA144X93EC
../../libs/gl32tref/move.htm#HDRPOFMARJ

charstr Subroutine
The kharstl subroutine draws a string of raster characters. The origin of the first character in the string is

the current character position. After the system draws the string, it updates the current character position
to the pixel to the right of the last character in the string. Character strings are null-terminated in C. The
text string is drawn in the current font and color. The syntax is as follows:

void charstr(Char8 *string)

If the origin of a character string lies outside the m none of the characters in the string are drawn. If
the origin is inside the viewport, the characters are individually clipped to the Ecreenmasl. The
screenmask is normally set to the same size as the viewport, although it can be set smaller than the
viewport to enable two kinds of clipping, as illustrated in the Gross and Fine Clipping "figure” on page

Before Clipping Viewport

Screenmask

Lo ipsum dolor sit amet consectetur adipscing
a eiusmod temport incidunt ut labor et dolorg

Ut enimin ominimim veniami quis nos

After Gross Clipping Viewport
Screenmask
a eiusmod temport incidunt ut labor et dolore
Ut enimin ominimim veniami quis nos
After Fine Clipping Viewport
Screenmask

a eiusmod temport incidunt ut labor et dolore

Ut enimin ominimim veniami qUIS nos

Gross and Fine Clipping

Gross clipping removes all strings that start outside the viewport. Fine clipping trims individual characters
to the screenmask. Viewport clipping and screenmask clipping apply to all drawing primitives as well.
However, the difference between these two types of clipping is usually not important, except for character
strings.

Characters are drawn in the current color. Unless the font is specifically changed in the program, character
strings are drawn in the current font. The default font is Eontd, defined when the luinoped subroutine is
called. The following example program, rasterchars, draws two lines of text. The program assumes the
default font is less than 12 pixels high.

#include <g1/g1.h>

main()

{ prefposition(100, 500, 100, 500);
winopen("rasterchars");
color(BLACK) ;

Chapter 3. Drawing with Graphics Library 45

../../libs/gl32tref/charstr.htm#HDRA143X9CFB
../../libs/gl32tref/winopen.htm#HDRA142X91549

clear();

color(RED);

cmov2i (50,80) ;

charstr("The first line is drawn ");
charstr("in two parts. ");

cmov2i (50, 66);

charstr("This Tine is 14 pixels Tower. ");
sleep(10); /* pause for ten seconds */

}

The rasterchars program illustrates the following:

» First, notice that the first line is drawn in two parts. The first cmov2i subroutine sets the current
character position to 50 pixels over and 80 pixels up from the lower left corner of the window. After the
first string is drawn, the current character position is advanced to follow the space character at the end
of the line. When the phrase in two parts. is drawn, it continues from the current character position.

» Finally, the character position is reset to start below the beginning of the top line, and the second line is
drawn.

Note: The characters are drawn in the current color. Because nothing was mentioned in the
program about fonts, all the strings are drawn in the current font.

Example Program Using the rotate Subroutine
The following example uses the rotate subroutine and illustrates that character strings are drawn in the

same orientation no matter where they move, and that the current character move function of the cmov
subroutine is transformed like any other geometry. In the example, the rotate subroutine rotates the
polygon about the z axis (coming directly out of the screen) by 5 degrees each time. The rotation is about
the origin, so vertex pl should remain fixed. The vertex callouts rotate with the vertices.

#include <g1/g1.h>

float pl[] = {0.0, 0.0};
float p2[] = {0.6, 0.0};
float p3[] = {0.0, 0.6};
main()
{

long 1i;

prefposition (100, 500, 100, 500);
winopen("rasterchars");
ortho2(-1.0, 1.0, -1.0, 1.0);
for (i = 0; 1 < 40; i++) {
color(BLACK) ;
clear();
rotate(50, 'z');
color(RED);
bgnpolygon();
v2f(pl); v2f(p2); v2f(p3);
endpolygon();
color(GREEN);
cmov2(0.0, 0.0);
charstr("vertl");
cmov2(0.6, 0.0);

charstr("vert2");
cmov2(0.0, 0.6);
charstr("vert3");
sleep(1);
1
}

International Text Support
The charstr subroutine supports both single-and double-byte raster character rendering.

46 GL Programming Concepts

If the current font is a double-byte font, this subroutine expects the first two bytes to represent the first
character, the second two bytes to represent the next character, and so on. Double-byte fonts are useful in
languages with extremely large character sets such as Japanese and Chinese.

If the current font is a single-byte font, each byte represents one character. The ASCII code set is an
example of a single-byte font.

It is the user’s responsibility to determine if the currently bound font is a single- or double-byte font and to
pass the appropriate string. To determine the font type, use the Wsubroutine.

Using Double-Bﬁte Character Sets

Currently, the subroutine does not support double-byte character set (DBCS) window titles. To
set the name of a GL window to a DBCS string, use the XSetWMName subroutine. The window id of a GL
window can be obtained with the W subroutine. To use DBCS strings in a pop-up menu, redefine
the default font (font id 0) to be a DBCS font. This can be done with the [%aﬁo% subroutine. Note that
only loadXfont can be used to redefine font id 0; the defrasterfant subroutine does not allow font id 0 to
be redefined. Be sure to specify pop-up menu entries as DBCS strings. The kharstd subroutine does
support DBCS output, provided that the current font is a DBCS font.

Using the charstr Subroutine to Render Japanese and Asian Fonts
The following code fragment demonstrates how double-byte fonts can be loaded and used for rendering in

GL. An example program illustrating this use can be found in the /usr/Ipp/GL/examples/jischarstr.c file.

char jisX0201 =
"-ibm_aix-gothic-medium-r-normal--35-230-100-100-m-170-jisx0201.1976-0";

char* jisX0208 =
"-ibm_aix-gothic-medium-r-normal--35-230-100-100-m-340-jisx0208.1983-0"; char* ibmUDC =

"-ibm_aix-gothic-medium-r-normal--35-230-100-100-m-340-1ibm-udcjp"; loadXfont(2, jisXx0201); /* Kana Font */
ToadXfont(3, jisX0208); /+ Kanji Font */
loadXfont(4, ibmuDC); /* 1BM User Defined Chars */

font(2)

charstr("k1k2k300"); /* Draw Kana Character */

font(3);

charstr("K1K2K300"); /* Draw Kanji string =/

Note: The two null bytes are required to terminate a DBCS string. A single null byte is not sufficient; a
short word whose first byte is null, but whose second byte is not is still a valid glyph index.

strwidth Subroutine
The strwidth subroutine returns the width of a text string in pixels, using the character-spacing parameters

in the current raster font. This text string can be any null-terminated ASCII string of characters. Characters
in some fonts may not be all the same width, so the strwidth subroutine does not necessarily return the
width of a character times the number of characters in the string. The syntax is as follows:

Int32 strwidth(Char8 xstring)

Fonts

A GL raster font is a collection of up to 255 rectangular arrays of masks. If a 1 (one) appears in a mask,
then the corresponding pixel is turned on to the current color. If a 0 (zero) appears, the pixel remains as it
is. For example, the following bitmasks might be used to draw the character A:

Binary Hexadecimal

0000011000000000 = 0x0600
0000011000000000 = 0x0600
0000111100000000 = OxOF00
0000111100000000 = OxOF00
0001100110000000 = 0x1980
0001100110000000 = 0x1980
0011000011000000 = 0x30C0

Chapter 3. Drawing with Graphics Library 47

../../libs/gl32tref/getfonttype.htm#HDRY89340NITA
../../libs/gl32tref/winopen.htm#HDRA142X91549
../../libs/gl32tref/getXdpy.htm#HDRA114C13C
../../libs/gl32tref/loadXfont.htm#HDRVUO390NITA
../../libs/gl32tref/defrasterfont.htm#HDRA143X9D3F
../../libs/gl32tref/charstr.htm#HDRA143X9CFB
../../libs/gl32tref/strwidth.htm#HDRA144X93EC

0011111111000000 = Ox3FCO
0110000001100000 = 0x6060
0110000001100000 = 0x6060
1100000000110000 = 0xCO30
1100000000110000 = 0xCO30

To define a single character, you need the following variables:
* bitmask

* width

* height

» xoffset

» yoffset

» xincrement

The defrasterfond subroutine allows you to define a collection of characters with these variables.

Raster font characters are defined by a bitmap, 1 bit per pixel. The width and height of the character, the
number of bits in one row of the bitmap, and the baseline position are also specified.

Each array of bitmasks defining an ASCII character makes up a bitmask entry for that character. For the
previous example, the ASCII value of A is 65 (decimal), so entry 65 in the font is associated with the
bitmask. If such a font were defined, the string AAA would draw three copies of the character shown in this
bitmask.

In addition to the bitmask information for each character, you need to know the width and height of the
character in pixels. The width cannot be inferred from the bitmask, because all bitmask data comes in
16-bit words. In the previous example, the width of the A is 12 bits; that is, a maximum of 12 bits would be
written horizontally for this character. The height is also 12 bits.

Normally, a character’s origin is at the lower-left corner of the bitmask, and this is the case for the previous
example. The origin for a character is what is put at the current character position. For a character with a
descender, such as g, (see "illustration” on page), you need extra bits that lie below the current
character position. Therefore, the origin should not be at the lower-left corner. Two values, xoffset and
yoffset, tell how far the character’s origin must be moved to bring it to the lower-left corner. For characters
with descenders, the yoffset value is typically negative.

baseline

'

yoffset —2 | >
xinc 9

Using the defraster Subroutine to Describe a Character

Finally, another number for each character indicates how far to the right the current character position
must be advanced after drawing the character. This number is usually different from the width and is

48 GL Programming Concepts

labeled the x increment. In the previous example of the bitmap for the letter A, the character position is
advanced by about 14 pixels to leave a little space between characters.

To simplify matters, the character bitmasks are packed together in one array of 16-bit values, so the
bitmask is determined by the offset into the bitmask array. For example, if the font contained the A
example previously described as its first character, and a bitmask for the letter B as its second, the offset
for the letter B would be 12 short integers (the length of the bitmask definition of the letter A). The length
and width together determine the number of short integers in a character’s definition.

The lond subroutine selects the font for use when drawing a character string and this font remains the
current font until changed by another call to the font subroutine.

Default Font (font 0)
The default font is that font associated with font index 0. The user cannot use the Hefrasterfont

subroutine to redefine this font. The user can, however, change this font by setting the $GLFONTO
environment variable.

The default font for the version 3.2 of the operating system supports 1ISO8859-1 encoding. This font is a
fixed-width font, X pixels high, Y pixels wide, and is a euro-sans-serif type font.

defrasterfont Subroutine

The subroutine defines bitmaps for a raster font. The chars parameter contains a description
of each character in the font. The figure "Using the " on page lddefrasterfont Subroutine to Describe a
Character includes:

* The height and width of the character in pixels.

» The offsets from the character origin to the lower left-corner of the bounding box.

* An offset into the array of rasters.

» The amount to add to the current character x position after drawing the character.

The chars parameter is an array of structures of type Fontchar, defined in the standard
lusrlinclude/gl/gl.h file. The syntax is as follows:
void defrasterfont(Int32 index, Intl6 height,

Intl6 numchars, Fontchar chars[],
Intl6 numraster, Intl6 raster[])

The raster parameter is an array of bitmap-information shorts given in the numraster parameter. It is a
one-dimensional array of bitmask bytes ordered from left to right, then bottom to top. Mask bits are left
justified in the character’s bounding box.

The following code fragment draws the g character (as illustrated in the following "figure” on page B8):
defrasterfont (n, ht, nc, chars, nr, rasters);

chars ['g'] = { 724, 8, 9, 0, -2 9 }
byte offset w h xoffset yoffset xinc
into rasterarray

Intl6 n ={...

rasterarray cee

position 724 > 0x7E00, 0xC300, 0x0300, 0x0300,
0x7F00, 0xC300, 0xC300, 0xC300,

0x7E00,

Chapter 3. Drawing with Graphics Library 49

../../libs/gl32tref/defrasterfont.htm#HDRA143X9D3F
../../libs/gl32tref/defrasterfont.htm#HDRA143X9D3F

font Subroutine

The [fand subroutine selects the font the system uses whenever the charstr subroutine draws a text string.
The fontnum parameter is an index into the font table built by the Hefrasterfoni subroutine or loaded with
the loadXfoni subroutine. This font remains the current font until you use the font subroutine to select
another font. The syntax is as follows:

void font(Int32 fontnum)

The kont3 d example program defines a font with three characters: a lowercase j, an arrow, and the Greek
letter sigma. The j is assigned to the ASCII value of j, and the arrow and sigma are assigned to ASCII
values 1 and 2 (written \001 and \002 in the C code). Two sample strings are then written out, the first of
which contains only characters that are defined, while the second contains undefined characters.

Note: When characters are not defined, no error occurs but nothing is printed out for them.

loadXfont Subroutine

The subroutine loads an Enhanced X-Windows font so that it can be used by GL applications
for rendering text. The application must provide a valid font name. There are several ways to obtain a valid
font name. The easiest way is to use Enhanced X-Windows subroutines that return lists of installed fonts,
with the assumption that a font file is already installed on the system. The kfonts d example program
(found in in GL3.2 for AIX: Graphics Library (GL) Technical Reference (POWER-based Systems Only))
shows subroutines that can be used.

Given a font name, this subroutine searches the file system (along the font path) for that font. If the font
name is found, the subroutine loads it into the GL table of defined fonts. In other words, the loadXfont
subroutine works much like the defrasterfont subroutine, except that the character bitmaps are obtained
from pre-installed files. The directory path that is searched for fonts can be controlled with Enhanced
X-Windows routines. The syntax is as follows:

void ToadXfont(Int32 id_num, Char8 *name)

Font Query Subroutines

The following subroutines return information about the current font (what number it is, how high the
characters are, and how long a descender any character has).

getfont Subroutine
The lgetfoni subroutine returns the index of the current raster font. The syntax is as follows:

Int32 getfont()

getheight Subroutine

The subroutine returns the maximum height of a character in the current raster font, including
ascenders (present in such characters as the letters t and h, which ascend above the baseline) and
descenders (present in such characters as the letters y and p, which descend below the baseline). It
returns the height in pixels. The syntax is as follows:

Int32 getheight()

get ubroutine
The subroutine gets the current character position, in screen coordinates relative to the lower-left
corner of the window, and writes it into the parameters. The syntax is as follows:

void getcpos(Screencoord *ix, Screencoord *iy)

getdescender Subroutine
The subroutine returns the longest descender in the current font. It returns the number of
pixels that the longest descender goes below the baseline. The syntax is as follows:

Int32 getdescender()

50 GL Programming Concepts

../../libs/gl32tref/font.htm#HDRA143X9D61
../../libs/gl32tref/defrasterfont.htm#HDRA143X9D3F
../../libs/gl32tref/loadXfont.htm#HDRVUO390NITA
../../libs/gl32tref/font3_c.htm#HDRA149C18A9
../../libs/gl32tref/loadXfont.htm#HDRVUO390NITA
../../libs/gl32tref/xfonts_c.htm#HDRUP45120NITA
../../libs/gl32tref/defrasterfont.htm#HDRA143X9D3F
../../libs/gl32tref/getfont.htm#HDRA144X93A8
../../libs/gl32tref/getheight.htm#HDRA144X93CA
../../libs/gl32tref/getcpos.htm#HDRA144X9364
../../libs/gl32tref/getdescender.htm#HDRA144X9386

getfontencodin
The EEEEEEEEEEEB subroutine returns the font encoding of the current raster font. The syntax is as

follows:

void getfontencoding (char * end)

getfontt
The subroutine returns the font type of the current raster font. Fonts may be either single-byte
character set (SBCS) or double-byte character set (DBCS) fonts. The syntax is as follows:

int getfonttype()

Smoothing Jagged Lines with Antialiasing

This discussion of antialiasing includes the following topics:

Other topics that affect or are affected by antialiasing subroutines include Performing Depth-Cueing,
Bemoving Hidden Surfaced, and Working in Calar Map and RGH Modes.

List of GL Antialiasing Subroutines

linesmooth Specifies antialiasing of lines.
bntsmooth Specifies antialiasing of points.
m Controls placement of point, line, and polygon vertices.

Antialiasing Introduction

Antialiasing makes lines and points drawn on the display screen appear smooth. You can draw smooth
lines using antialiasing with the linesmaatH subroutine.

When lines are drawn on a raster computer screen, they are often displayed as jagged, especially if they
are nearly (but not quite) horizontal or vertical. The reason is that when a line is drawn on the screen, the
true mathematical line is approximated by a series of points that happen to lie on the pixel grid. Except for
a few special cases (horizontal, vertical, and 45-degree lines), many of the approximating pixels are not on
the mathematical line connecting the two pixels.

As an example, consider the worst case: a line that connects (0, 0) to (1279, 1). It moves up one pixel for
every 1280 pixels it moves sideways. The line is rendered as two horizontal segments 640 pixels long,
one having y coordinate 0 and one having y coordinate 1. Although the pixels are small, you can easily
detect the jump from y=0 to y=1.

The following jagged.c example program illustrates the problem of lines that are displayed as jagged on
the computer screen:

#include <g1/g1.h>

#include <gl1/device.h>

Int32 vertl[2] {100, 100};
Int32 vert2[2] {500, 0};

main()

{
Int32 xorg, yorg;

Chapter 3. Drawing with Graphics Library 51

../../libs/gl32tref/getfontencoding.htm#HDRAZ7960NITA
../../libs/gl32tref/getfonttype.htm#HDRY89340NITA
remhidden.htm
../../libs/gl32tref/linesmooth.htm#HDREW1F0MARJ
../../libs/gl32tref/pntsmooth.htm#HDRW3O220MARJ
../../libs/gl32tref/subpixel.htm#HDRJIZ1120MARJ
../../libs/gl32tref/linesmooth.htm#HDREW1F0MARJ

winopen("Jagged");
doublebuffer();
geonfig();
getorigin(&xorg, &yorg);
while (TRUE) {

color(BLACK) ;

clear();

color(WHITE);

vert2[0] = getvaluator(MOUSEX) - xorg;
vert2[1] = getvaluator(MOUSEY) - yorg;

bgnline();
v2i(vertl);
v2i(vert2);
endline();
swapbuffers();
1
1

This example draws a line from the point (100, 100) to the current cursor position. Move the cursor around
and notice how jagged the lines are displayed especially when they are nearly vertical or horizontal. Even
at angles far from vertical or horizontal, there is some jaggedness, but it is not as noticeable. The jagged
effect that you see is called aliasing, and techniques to eliminate or reduce it are called antialiasing.

Note: Only solid, single, pixel-wide lines can be antialiased, and they cannot be used in conjunction
with shading processor functions such as z-buffer, light, shade, and depthcue.

Pixel Coverage

One way to smooth a line is to vary the coloring of the pixels along the path according to how much of
each pixel is covered by the line and how much is background color. This is illustrated in the following
"figure” on page B3. This illustration shows a short line drawn between the pixels (2,2) and (5,4). Each
square represents a pixel, and the ideal line segment is the tilted rectangle. This rectangle is exactly one
pixel wide, and the centers of pixels C and L are one-half pixel from the end of the rectangle. This is
exactly the shape of rectangle that would be drawn parallel to the axes.

.040510
.040510
.878469
434259
.007639
.141435
.759952
.759952
.141435
.007639
434258
.878469
.040510
.040510

J K] Lbm
pd
B{c|o|E

ZErXC"IOTMMOOW>

Antialiased Line

Each pixel can be set to only a single color. In the figure "Antialiased Line” on page B4, the ideal line hits
parts of 14 pixels, and none of them are covered completely. The affected pixels are labeled A through N,
and the chart at the side shows the percentage of each pixel that is covered by the ideal rectangle. Here,
87% of C and L are covered, while less than 1 % of E and J are covered.

Other pixels have intermediate-sized intersections. If pure white were color 1.0 and pure black were 0.0, a

reasonable antialiased line could be drawn by coloring A and B as .04051 (almost black), C as .87847
(almost white), and so on.

52 GL Programming Concepts

linesmooth Subroutine
GL automatically draws antialiased lines in both RGB and color map modes. The linesmaotH subroutine
turns this capability on and off. The syntax is as follows:

void Tlinesmooth(Int32 mode)

RGB Mode: If antialiasing is turned on in RGB mode, the drawing of antialiased lines proceeds
automatically. The drawing hardware automatically performs what is called a “read-modify-write” operation
into the frame buffer. That is, it reads the color of a pixel in the frame buffer, computes a new color for that
pixel, and then writes it back into the frame buffer. The color that is computed is a blend of the pixel color
and the current drawing color, the blend being based on the overlap of the line with the pixel.

To draw antialiased lines in RGB mode, you need only to call the linesmootH subroutine, and then
proceed to draw as normal.

Note: In order for antialiased lines and points to appear visually smooth, gamma correction must be

erformed. Gamma correction is performed by loading a gamma-corrected color ramp with the
m subroutine. Gamma-corrected ramps are nonlinear ramps from dark colors to light,
usually specified with a power function, but sometimes logarithmically. Gamma correction is required
to take into account nonlinearities in the display electronics, in the phosphorescence of the display
phosphors, in the human visual system, and in the pixel coverage sampling algorithm. If gamma
correction is not performed, lines do not appear smooth, but exhibit a roping or braiding effect, as if
the line were composed of separate, intertwining strands.

The m example program demonstrates how a gamma-corrected ramp may be constructed and
loaded on the system. A gamma correction factor in the range of 2.4 to 2.7 is suggested.

Color Map Mode: Drawing antialiased lines in color map mode requires greater involvement from the
application. In particular, a special color map, called a color ramp, must be loaded. To understand the color
ramp, it helps to know what the hardware does in color map mode.

When antialiasing is turned on, the hardware replaces the low-order 4 bits of the current color index with a
number ranging from 0 to 15 that represents the fractional pixel coverage. When a line is drawn, the index
values stored into the frame buffer are these modified color values. As a result of this replacement of
values, the images do not look correct on the screen. To alleviate this problem, the low-order 4 bits of the
color map must contain a ramp from the foreground color (the color of the line) and the background color
(the color to which the frame buffer was cleared).

In the following example, 16 consecutive cells in the color map are filled with colors that are uniformly
spaced between black and white:

for (i = 0; 1 < 165 i++)

mapcolor(144+i, i*17, i*17, i*17);

This maps color entries 144 through 159 to shades of gray having equal red, green, and blue components
of 0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, and 255. The starting number, 144,
is not completely arbitrary. For antialiasing to work, the starting number must be an exact multiple of 16.
The number 144 is large enough that the color map entries affected do not conflict those lower entries in
the color map used in many simple applications.

If antialiasing is turned on with the linesmooty subroutine, the percentage each pixel is covered by the
ideal line is approximated by the hardware, and that number is scaled uniformly into the range of 16
consecutive shades to find the color to paint the pixel. The smooth.c example program that follows is a
slight modification of the m example program. It behaves similarly except that smooth lines are
drawn if the left mouse button is pressed.

Chapter 3. Drawing with Graphics Library 53

../../libs/gl32tref/linesmooth.htm#HDREW1F0MARJ
../../libs/gl32tref/linesmooth.htm#HDREW1F0MARJ
../../libs/gl32tref/gammaramp.htm#HDRKZ4NITA
../../libs/gl32tref/gamma_c.htm#HDRA101C12370
../../libs/gl32tref/linesmooth.htm#HDREW1F0MARJ

#include <g1/g1.h>
#include <g1/device.h>

Int32 vertl[2] {100, 100};
Int32 vert2[2] = {500, 0};

main()

{
Int32 xorg, yorg, i;

winopen("smooth");

doublebuffer();

gconfig();

getorigin(&xorg, &yorg);

for (i = 0; 1 < 16; i++)
mapcolor(144+i, i*17, i*17, ix17);

while (TRUE) {
color(BLACK) ;
clear();
if (getbutton(LEFTMOUSE)) {
Tinesmooth (TRUE) ;
color(144);

} else {
Tinesmooth (FALSE);
color(WHITE);

}

vert2[0]

vert2[1]

bgnline();
v2i(vertl);
v2i(vert2);

endline();

swapbuffers();

getvaluator(MOUSEX) - xorg;
getvaluator(MOUSEY) - yorg;

}
}

Before anything is drawn, the color map entries between 144 and 159 are loaded with shades of gray.
Then, in the main loop, the left mouse button is examined, and the color is set either to white, if the
subroutine is turned off, or to 144 if it is turned on.

You can draw multicolor antialiased lines on arbitrary multicolored backgrounds if you load suitable ramps.
The Blias.d example program partitions eight adapter bitplanes into two that store the background image
and two that store the line colors, with the remaining four being overridden by the antialiasing hardware.
The color map is loaded with ramps from all possible line colors to all possible background colors. The

_ example program illustrates the drawing of antialiased lines of multiple foreground colors on
a monochrome background. The hlias_fore.d example program, in contrast, illustrates drawing antialiased
lines of a single foreground color on an arbitrary multicolored background.

The accurate selection of ramp intensities is imperative for effective visual appearance. The ramp must
include corrections for nonlinearities in the electronics, the screen phosphors, and the human eye. Such
corrected ramps are usually referred to as gamma ramps. In the alias.c example program, the colors are
gamma corrected. The gamma ramp hardware, however, is not used; rather, the corrections are folded in
with the color ramps.

Notes:
1. The Supergraphics Processor Subsystem does not support antialiasing in color map mode.
2. The High-Performance 3D Color Graphics Processor does not support antialiasing in RGB mode.

Other topics that affect or are affected by antialiasing subroutines include Performing Depth-Cueing,
Remaving Hidden Surfaced, and Working in IColor Map and RGH Modes.

54 GL Programming Concepts

../../libs/gl32tref/linesmooth.htm#HDREW1F0MARJ
../../libs/gl32tref/alias_c.htm#HDRJBM90NITA
../../libs/gl32tref/alias_back_c.htm#HDRA114C19C9
../../libs/gl32tref/alias_fore_c.htm#HDRA114C19E6
remhidden.htm

Improving Intersections

When antialiased lines cross each other, there may be some undesirable presentations because the
hardware is interpolating between the line color and the background color. It does not take into account
any other lines that may already be drawn. Thus, if a program draws a series of smooth lines all crossing
each other at the same point, you might expect the intersection to be almost entirely the color of the line.
However, the hardware continues to average the original background color into each new line. The
following example program, linesmooth1.c, which draws a multirayed star, illustrates the problem:
#include <g1/g1.h>

#include <math.h>

#define PI 3.14159265
#define RADIUS 2.0

main()
{
long i;
float x, y, radangle;
keepaspect(1, 1);
winopen("Tinesmoothl");
ortho2(-1.0, 1.0, -1.0, 1.0);
for (i = 0; i < 16; i++)
mapcolor(256+i, 17*i, 17*i, 17%1);
color(BLACK) ;
clear();
color(256);
Tinesmooth (TRUE) ;
for (i = 0; i <= 180; i += 10) {
radangle = i*P1/180.0;
x = RADIUS*cos(radangle);
y = RADIUS*sin(radangle);
move2 (-x, -y);
draw2(x, y);

}
sleep(20);

}

The first ray drawn contains pixels blended with the background color to smooth the line. Each successive
line’s color is also blended with the original background color and is unaffected, even close to the
intersection, by the color resulting from the previous line’s blending. The pixels surrounding the center of
the star are no brighter than any other line portion that has been averaged with the background color.
Antialiased lines in color map mode have no effect on the color of successively drawn lines.

The interpolation problem is also apparent when two lines that are nearly parallel cross each other. One
solution to this sort of problem can be obtained by using the z-buffering hardware for color comparisons.
Instead of using the z-buffer to draw objects that are nearest the viewer, the z-buffering compares each
new pixel color with the existing color for that pixel and causes the brightest color to be drawn. This is not
a perfect solution, but it gives good results. The point at the intersection of two lines is at least as bright as
the lines were originally.

Example Program With and Without Color Comparison

The following example program, linesmooth2.c, draws a pair of intersecting lines both with and without
the color comparison. As it runs, press the left mouse button to see the effects of a z-buffer type color
comparison.

#include <g1/g1.h>

#include <math.h>

#include <device.h>

#define PI 3.14159265
#define RADIUS 300.0

Chapter 3. Drawing with Graphics Library 55

main()
{

long i3

float x, y, radangle;

keepaspect(1, 1);

winopen("Tinesmooth2");

doublebuffer();

ortho2(-1.0, 1.0, -1.0, 1.0);

RGBmode() ;

gconfig();

frontbuffer(TRUE);

wmpack (Oxffffffff);

cpack(0);

clear();

frontbuffer(FALSE) ;

cmode () ;

gconfig();

for (i = 03 i < 16; i++)
mapcolor(48+i, 17%i, 17%i, 17xi);

Tinesmooth (TRUE) ;

for (i = 0; i < 1000000; i++) {
if (getbutton(LEFTMOUSE)) {
zbuffer(TRUE);
zsource(ZSRC_COLOR) ;
zfunction(ZF_GEQUAL);
} else {
zbuffer(FALSE);

}
color(BLACK) ;
clear();
color(48);

move2(-1.0, 0.0);

draw2(1.0, 0.0);

move2(-1.0, -sin(i/30.0)*.05);
draw2(1.0, sin(i/30.0%.05);
swapbuffers();

}
}

The linesmooth2.c example program has several interesting features. The hardware that does the
comparison to find the largest color index actually compares the entire 24-bit contents of the pixel. The
same physical memory is used for RGB information as is used for color indexes, but the color index data
occupies only the low-order 12 bits. If there is garbage in the high-order bits, perhaps left behind by
previous windows, this has no effect on the displayed values. Because the comparisons are made on the
full 24 bits, the garbage contents can have an effect on the results of the comparisons.

For this reason, it is a good idea to clear out all 32 bits completely before starting. This is done by putting
the system in RGB mode, and then writing a zero (for all 32 bits) with a writemask of Oxffffffff (all 32 bits
enabled). This guarantees that everything in the high-order bits of the frame buffer is set to zero. Because
the linesmooth2.c example program is double buffered, this must be done for both the front and back
buffers by setting frontbuffer(TRUE).

Enabling Color Comparison
Three things must be done to enable the z-buffer color comparison properly:
* The z-buffer must be turned on by setting zbuffer(TRUE).

* The z-buffer must be set to do a color comparison instead of a depth comparison with
zsource(ZSRC_COLOR).

* The color comparison must be changed by setting zfunction(ZF_GEQUAL).

56 GL Programming Concepts

The comparison function is ZF_GEQUAL (it could also be ZF_GREATER), so that the new value is written
into the pixel if its value is greater than or equal to the current value. (In standard z-buffer comparisons,
values are written if they are closer to the eye: ZF_LESS or ZF_LEQUAL.)

pntsmooth §ubroutine
The subroutine draws antialiased points. The syntax is as follows:

void pntsmooth(Int32 mode)

subpixel Subroutine

The subroutine controls the placement of point, line, and polygon vertices in kcreen coordinates.
The default value of the bool parameter is False, causing vertices to be snapped to the center of the
nearest pixel after they have been transformed to screen coordinates. The subpixel subroutine is typically
set to True while smooth points or smooth lines are being drawn.

The syntax is as follows:
void subpixel(Int32 bool)

Depth-Cueing

It is possible to draw lines that are both antialiased and depth-cued in color map mode, but not in RGB
mode The depth-cueing hardware maps the transformed z component linearly into a region of the color
map. If the color map is arranged as a series of 16-entry ramps, each beginning at a multiple of 16, and
each mapping a range from the background color to a series of brighter and brighter colors, depth-cueing
and antialiasing work together.

First, the depth-cueing calculation gives a position within the map corresponding to how bright a fully
illuminated pixel on a line should be. Then the antialiasing hardware calculates a percentage pixel
coverage, and the appropriate entry from the 16 color range is chosen. Although it is an approximation,
this method gives reasonably good results.

Drawing Wire Frame Curves and Surface Patches

This section discusses the following topics:
« Wire Frame Curves and Surface Patches Intraductiod

« ICurve Mathematicd including Bezier Cubic Curvd, Cardinal Spline Cubic Curve, and B-Spline Cubid
Curvd

+ Drawing Curved

+ Drawing Surfaced

List of GL Wire Frame Curve and Surface Patch Subroutines
knd Draws a cubic spline curve.

krvd Draws a series of cubic spline curves.

kurvehasid Sets the current cubic spline curve basis matrix.

kurveit Draws a curve segment by iterating the forward difference matrix.
W Sets the number of line segments that compose a cubic spline curve.
befbasid Defines a cubic spline basis matrix.

m Draws a cubic spline surface patch.

m Sets the current spline surface basis matrices.

m Sets the number of curves used to represent a patch.
W Sets the precision at which curves are drawn.

kcnl Draws a rational cubic spline curve.

Chapter 3. Drawing with Graphics Library 57

../../libs/gl32tref/pntsmooth.htm#HDRW3O220MARJ
../../libs/gl32tref/subpixel.htm#HDRJIZ1120MARJ
../../libs/gl32tref/crv.htm#HDRZMS220MARJ
../../libs/gl32tref/crvn.htm#HDRESS22C0MARJ
../../libs/gl32tref/curvebasis.htm#HDRSTS23A0MARJ
../../libs/gl32tref/curveit.htm#HDRLPS22C0MARJ
../../libs/gl32tref/curveprecision.htm#HDRAUS2120MARJ
../../libs/gl32tref/defbasis.htm#HDRA150X930
../../libs/gl32tref/patch.htm#HDRA143X95B4
../../libs/gl32tref/patchbasis.htm#HDRA143X95D6
../../libs/gl32tref/patchcurves.htm#HDRA143X95F8
../../libs/gl32tref/patchprecision.htm#HDRA143X961A
../../libs/gl32tref/rcrv.htm#HDRWRS2380MARJ

kcrun Draws a series of rational curve segments.

m Draws a rational cubic spline surface patch.

Wire Frame Curves and Surface Patches Introduction

This section describes the models, mathematics, and programming statements used for drawing curves
and surfaces that were available before the NURBS functions that have been introduced in the latest
release of GL. These techniques and GL functions are still supported for compatibility with programs
written for earlier versions of GL.

You draw a curve segment by specifying:
* A set of four control points.
* A basis, which defines how the system uses the control points to determine the shape of the segment.

You create complex curved lines by joining several curve segments end to end. The curve facility provides
the means for making smooth joints between the segments.

Three-dimensional surfaces, or patches, are represented by a lvire framd of curve segments. You draw a
patch by specifying:

* A set of 16 control points.

* The number of curve segments to be drawn in each direction of the patch.

* The two bases that define how the control points determine the shape of the patch.

You can create complex surfaces by joining several patches into one large patch.

Curve Mathematics

The mathematical basis for the GL curve facility is the lparametric cubic curve. The curves in most
applications are too complex to be represented by a single curve segment and instead must be
represented by a series of curve segments joined end to end. To create smooth joints, you must control
the positions and curvatures at the endpoints of curve segments. Parametric cubic curves are the lowest
order representation of curve segments that provide continuity of position, slope, and curvature at the point
where two curve segments meet.

In the following equation, a parametric cubic curve has the property that x, y, and z can be defined as
third-order polynomials for variable £

X(t) = axt® + byt? + ¢yt + dy
y(t) = ayt3 + byt? + ¢yt + dy

Z(t) = a t3 + b,t2 + ¢c,t + d,

58 GL Programming Concepts

../../libs/gl32tref/rcrvn.htm#HDRA1TS2220MARJ
../../libs/gl32tref/rpatch.htm#HDRO5K2MARJ

A cubic curve segment is defined over a range of values for t (usually 0 <= f <= 1), and can be expressed
as a vector product as in this equation:

Ct=at*+bte+ct+d

= |:t3t2t1:|

=TM

O0TO®

GL approximates the shape of a curve segment with a series of straight line segments. The endpoints for
all the line segments can be computed by evaluating the vector product C(t) for a series of t values
between 0 and 1. The shape of the curve segment is determined by the coefficients of the vector product,
which are stored in column vector M. These coefficients can be expressed as a function of a set of four
control points. Thus, the vector product becomes

C(t) =TM=T (BG)

where G is a set of four control points, or the geometry, and B is a matrix called the basis. The basis
matrix is determined from a set of constraints that express how the shape of the curve segment relates to
the control points. For example, a constraint might be that one endpoint of the curve segment is located at
the first control point; or the tangent vector at that endpoint lies on the line segment formed by the first two
control points. When the vector product C is solved for a particular set of constraints, the coefficients of
the vector product are identified as a function of four variables (the control points). Then, given four control
points, you can use the vector product to generate the points on the curve segment.

There are three classes of cubic curves: Bezied Cardinal splind, and B-splind. Each has a set of

constraints that define its class, plus a basis matrid derived from those constraints that you can use to

Hraw curve segmentd.

Bezier Cubic Curve

A Bezier cubic curve segment passes through the first and fourth control points and uses the second and
third points to determine the shape of the curve segment. Of the three kinds of curves, the Bezier form
provides the most intuitive control over the shape of the curve. The Bezier basis matrix is derived from the
following four constraints:

One kndpaini of the segment is located at p(1):

Bezier(0) = p4

The other endpaint is located at p(4):

Bezier(1) = ps

Chapter 3. Drawing with Graphics Library 59

The first derivative, or slope, of the segment at one endpoint is equal to this kalud:

Bezier(0)' = 3(p2 - p+)

The first derivative at the other endpoint is equal to this kalud:

Bezier(1)’ = 3(p4 — p3)

Solving for these constraints yields this equation:

—1
Bezier(t) = |:t3 2t 1:| _g -
]

= TMpGp

OOoOWwWw

oSCwWow
[efoNa s
e
w

You can generate all the points on the Bezier cubic curve segment from p(1) to p(4) by evaluating
Bezier(t) for 0 <= t <= 1. It is more efficient, however, to construct a forward difference matrid that
generates the points in a curve segment incrementally.

The following figure, Bezier, Cardinal_and B-Spline Curved, shows three Bezier curve segments. The first

segment uses points 0, 1, 2, and 3 as control points. The second uses 1, 2, 3, and 4. The third uses 2, 3,
4, and 5. You can use the technique of overlapping sets of control points more effectively with the
following two classes of cubic curves to create a single large curve from a series of curve segments.

Cardinal Spline Cubic Curve

In the following i , a spline curve segment passes through the two interior control points and is
continuous in the first derivative at the points where segments meet. The curve segment starts at p(2) and
ends at p (3), and uses p(1) and p(4) to define the shape of the curve.

60 GL Programming Concepts

Bezier
(@) 2
-1.0 3.0 -3.0 1.0 5
3.0 -6.0 3.0 0.0
-3.0 3.0 0.0 0.0
1.0 0.0 0.0 0.0
4
1
3
. . 0
Cardinal Spline .
(b) 2
-0.5 1.5 -1.5 0.5 5
1.0 -25 20 -0.5 *
-0.5 00 -0.5 0.0
0.0 1.0 0.0 0.0
4
1
3
B-Spline 9
(c) 2
-1.0 30 -3.0 1.0 5 .
1 30 -60 30 0.0 .
6 -3.0 0.0 3.0 0.0
1.0 4.0 1.0 0.0
4
1
[]
3

Bezier, Cardinal, and B-Spline Curves

Three different curves are shown with appropriate basis matrices. With the Bezier basis matrix, three sets
of overlapping control points result in three separate curve segments. With the Cardinal spline and
B-spline matrices, the same overlapping sets of control points result in three joined curve segments.

Chapter 3. Drawing with Graphics Library 61

The Cardinal spline basis matrix is derived from the following four constraints:

Cardinal(0) =
Cardinal(1) = p3
Cardinal(0) = a(p3 — p1)

Cardinal(1)’ = a(p4 — p2)
The scalar coefficient a must be positive; it determines the length of the tangent vector at point:

p2 : tangent2 = a(p3 — p4)

and at >point:

p3 : tangent3 = a(p4 — po)

Solving for these constraints yields the following equation:

—-a 2—-a —2+a a P1

) B 3.0 2a —-3+a 3-2a -a)
Cardinal(t) = |:t t t1:| -a 0 a 0 P3
0 1 0 O P4

= TMpGp

The three joined Cardinal spline curve segments in the Bezier Cardinal_and B-Spline Curved figure use

the same three sets of control points as the Bezier curve segments. Many different bases have Cardinal
spline properties. You can derive the different bases by trying different values of a.

B-Spline Cubic Curve
In general, a B-spline curve segment does not pass through any control points, but is continuous in both

the first and second derivatives at the points where segments meet. Thus, a series of joined B-spline
curve segments is smoother than a series of Cardinal spline segments (see the Bezier, Cardinal_and

B-Spline Curved figure).
The B-spline basis matrix is derived from the following four constraints:

(P3—P1)
2

(P4 —p2)
2

B-spline(0)’ =

B-spline(1)’ =

B-spline(0)” = p1 — 2p2 + p3

B-spline(1)” = po — 2p3 + p4

62 GL Programming Concepts

Solving for these constraints yields the following equation:

; -1 3 -3 1 P1
. ~ 3.0 i 3 -6 3 0 P2
B-spline(t) = |:t t t1:| 5 | -3 0 3 0 P3
1 4 A 0 P4

=TMgGp

Drawing Curves

Drawing a curve segment on the screen involves four steps:

1. Define and name a basis matrix with the bHefbasid subroutine.

2. Select a defined basis matrix as the current basis matrix with the keurvebasid subroutine.

3. Specify the number of line segments used to approximate each curve segment with the
curveprecisiod subroutine.

4. Draw the curve segment using the current basis matrix, the current curve precision, and the four
control points with the krd subroutine. The kend subroutine draws a rational curve.

defbasis Subroutine
The subroutine defines and names a basis matrix to generate curves and patches. The value of

the mat parameter is saved and is associated with the id parameter. Use the id parameter in subsequent

calls to the curvebasis and patchbasis subroutines. The syntax is as follows:

void defbasis(Int32 id, Matrix mat)

curvebasis Subroutine
The eurvebasid subroutine selects a basis matrix (defined by the defbasid subroutine) as the current

basis matrix to draw curve segments. The syntax is as follows:
void curvebasis(Int32 basis_id)

curveprecision Subroutine
The subroutine specifies the number of line segments used to draw a curve. Whenever

the kerd, Ervd, kerd, or kervd subroutine executes, a number of straight line segments (the value of the
nsegments parameter) approximates each curve segment. The greater the value of the nsegments
parameter, the smoother the curve, but the longer the drawing time. The syntax is as follows:

void curveprecision(Intl6 nsegments)

crv Subroutine
The kend subroutine draws the curve segment using the current basis matrix, the current curve precision,

and the four control points specified in the points parameter. The syntax is as follows:
void crv(Coord points[4][3])

Chapter 3. Drawing with Graphics Library 63

../../libs/gl32tref/defbasis.htm#HDRA150X930
../../libs/gl32tref/curvebasis.htm#HDRSTS23A0MARJ
../../libs/gl32tref/curveprecision.htm#HDRAUS2120MARJ
../../libs/gl32tref/crv.htm#HDRZMS220MARJ
../../libs/gl32tref/rcrv.htm#HDRWRS2380MARJ
../../libs/gl32tref/defbasis.htm#HDRA150X930
../../libs/gl32tref/curvebasis.htm#HDRSTS23A0MARJ
../../libs/gl32tref/patchbasis.htm#HDRA143X95D6
../../libs/gl32tref/curvebasis.htm#HDRSTS23A0MARJ
../../libs/gl32tref/defbasis.htm#HDRA150X930
../../libs/gl32tref/curveprecision.htm#HDRAUS2120MARJ
../../libs/gl32tref/crv.htm#HDRZMS220MARJ
../../libs/gl32tref/crvn.htm#HDRESS22C0MARJ
../../libs/gl32tref/rcrv.htm#HDRWRS2380MARJ
../../libs/gl32tref/rcrvn.htm#HDRA1TS2220MARJ
../../libs/gl32tref/crv.htm#HDRZMS220MARJ

When you issue the crv command, a matrix is built from the geometry, the current basis, and the current
precision:

M = I:precisionMbasingeom

6
-55 0 0 0
6 2 0 0
3 2
= n n Mbasingeom

1 1 1 0
nd n2 n

0 0 0 1]

where n = the current precision. The bottom row of the resulting transformation matrix identifies the first of
n points that describe the curve. To generate the remaining points in the curve, the following algorithm is
used to iterate the matrix as a forward difference matrix. The third row is added to the fourth row, the
second row is added to the third row, and the first row is added to the second row. The fourth row is then
output as one of the points on the curve.
/* This is the forward difference algorithm */
/* M is the current transformation matrix =*/
move (M[3][6]/M[3][3], M[3][1]/M[3]1[3], M[3][2]/M[3][3]);
/* iteration Toop */
for (cnt = 0; cnt < iterationcount; cnt++) {

for (i=3; i>0; i--)

for (j=0; j<4; j++)
MIi103] = MIi103] + M[i-11031;5
draw(M[3] [6]/M[3][3], M[3]1[11/M[3]1[3], M[3]1[2]/M[3][3]);

Each iteration draws one line segment of the curve segment. If the precision matrix on the previous page
is iterated as a forward difference matrix, it generates the kequence of paints:

3 3 3
©0,0,0, 10 (=13, (2= 12,21 1 (298 (22 2 1y ()3, (=292, = 1);
n n n n n n n n n

This is the same sequence of points generated by the equation:
1 2 3

t=0,—,—,—, ...
n n n

for the vector

(tdl tz! t! 1)

64 GL Programming Concepts

The example program Eurve2.d (found in in GL3.2 for AIX: Graphics Library (GL) Technical Reference
(POWER-based Systems Only)) draws the three curve segments in the figure entitled ICurve Segmentd. All
use the same set of four control points, which is contained in the geom1 parameter. The three basis matrix
arrays (beziermatrix, cardinalmatrix, and bsplinematrix) contain the values outlined in the

Cardinal_and B-Spline Curves figure.

. 2

Bezier °
1 /\/ 4

[

3

Cardinal spline

10 ° 4

3

2

B-spline °
10 ° 4

[J

3

Curve Segments

Before the Erd or kerd subroutine is called, a basis and precision matrix must be defined. This is also true
if the routines are compiled into an object.

Each of the curve segments in the previous figure uses the same set of four control points and the same
precision, but a different basis matrix.

Chapter 3. Drawing with Graphics Library 65

../../libs/gl32tref/curve2_c.htm#HDRA16C0C7CD
../../libs/gl32tref/crv.htm#HDRZMS220MARJ
../../libs/gl32tref/rcrv.htm#HDRWRS2380MARJ

crvn Subroutine

The kervd subroutine takes a series of control points and draws a series of cubic spline or rational cubic
spline curve segments using the current basis and precision; the kcrvd subroutine draws rational splines.
The control points specified in the geom parameter determine the shapes of the curve segments and are
used four at a time. If the current basis is a B-spline, Cardinal spline, or basis with similar properties, the
curve segments are joined end to end and appear as a single curve. Calling the crvn subroutlne has the
same effect as calling the krd subroutine with overlapping control points (see the =

With No Rational Componeni figure). The syntax is as follows:

[] [] °
Uniform Cubic B-Spline with No Rational Component

void crvn(Int32 n, Coord geom[][3])

When you issue this subroutine with a Cardinal spline or B-spline basis, it produces a single curve.
However, a Ervrd subroutine issued with a Bezier basis produces several separate curve segments.

As with the kerd and kerd subroutines, a precision and basis must be defined before calling the ervn or
subroutine. This is true even if the routines are compiled into objects. The example program
(found in in GL3.2 for AIX: Graphics Library (GL) Technical Reference (POWER-based Systems
Only)) draws the three joined curve segments in the Bezier Surface Patch figurd using the crvn

subroutine. The geom2 parameter contains six control points.

66 GL Programming Concepts

../../libs/gl32tref/crvn.htm#HDRESS22C0MARJ
../../libs/gl32tref/rcrvn.htm#HDRA1TS2220MARJ
../../libs/gl32tref/crv.htm#HDRZMS220MARJ
../../libs/gl32tref/crvn.htm#HDRESS22C0MARJ
../../libs/gl32tref/crv.htm#HDRZMS220MARJ
../../libs/gl32tref/rcrv.htm#HDRWRS2380MARJ
../../libs/gl32tref/rcrvn.htm#HDRA1TS2220MARJ
../../libs/gl32tref/curve2_c.htm#HDRA16C0C7CD

Bezier Surface Patch

curveit Subroutine

The iteration loop of the forward difference algorithm is implemented in the graphics pipeline. The kurveif

subroutine provides direct access to this facility, making it possible to generate a curve directly from a
forward difference matrix. This subroutine iterates the current matrix (the one on top of the matrix stack) as
many times as indicated in the count parameter. Each iteration draws one of the line segments that
approximate the curve. The syntax is as follows:

void curveit(Intl6 count)

The curveit subroutine does not execute the initial move in the forward difference algorithm. A
move(0.0,0.0,0.0) must precede the curveit subroutine so that the correct first point is generated from
the forward difference matrix.

This example program kurve3d (found in in GL3.2 for AIX: Graphics Library (GL) Technical Reference
POWER-based Systems Only)) draws the Bezier curve segment shown in the figure entitled Cund
m using the curveit subroutine. The Cardinal spline and B-spline curve segments could be drawn
using a similar sequence of commands - only the basis matrix would be different.

Chapter 3. Drawing with Graphics Library 67

../../libs/gl32tref/curveit.htm#HDRLPS22C0MARJ
../../libs/gl32tref/curve3_c.htm#HDRA16C0C81C

Bezier °

Cardinal spline

1 * 4

3

2

B-spline °
10 ° 4

[]

3

Curve Segments

Rational Curves

Cubic splines have been the focus of discussion. Cubic splines are splines whose x, y, and z coordinates
can be expressed as a cubic polynomial in t.

GL actually works in homogeneous coordinated x, y, z and w, where 3-D coordinates are given by xw,
yw, and zw. The w coordinate is normally the constant 1, so the homogeneous character of the system is

hidden.

In fact, the w coordinate can also be expressed as a cubic function of ¢ so that the 3-D coordinates of
points along the curve are given as a quotient of two cubic polynomials. The only constraint is that the
denominator for all three coordinates must be the same. When w is not the constant 1, but some cubic
polynomial function of t, the curves generated are usually called parametric rational cubic curves.

68 GL Programming Concepts

A circle is a useful example. There is no cubic spline that exactly matches any short segment of a circle,
but if X, y, z, and w are defined in this equation>:

X(t) =

y(t) =

z(t) =

w(t) =2 + 1

the real coordinates, as shown in this equation,
X z 2 -1 2t

oW Y

all lie on the circle with center at (0,0,0) in the x-y plane with radius 1 (exactly). All the conic sections
(ellipses, hyperbolas, parabolas) can be similarly defined.

For rational splines, the basis definitions and precision specifications are identical to those for cubic
splines. The only difference is that the geometry matrix must be specified in four-dimensional
homogeneous coordinates. This is done with the kend subroutine.

rcrv_Subroutine
The kend subroutine draws a rational curve segment using the current basis matrix, the current curve
precision, and the four control points specified in the its parameter. The syntax is as follows:

void rcrv(Coord geom[4][4])

The rerv subroutine is exactly analogous to the krd subroutine, except that w coordinates are included in
the control point definitions.

rcrvn Subroutine

The kervd subroutine takes a series of control points given by the value of the n parameter and draws a
series of parametric rational cubic curve segments, using the current basis and precision. The control
points specified in the geom parameter determine the shapes of the curve segments and are used four at
a time. The syntax is as follows:

void rcrvn(Int32 n, Coord geom[][4])

Drawing Surfaces

The method for drawing surfaces is similar to that for drawing curves. A surface patch appears on the

screen as a m of curve segments. A set of user-defined control points determines the shape of

the patch. A complex surface consisting of several joined patches can be created by using overlapping

sets of control points and the B-spline and Cardinal spline curve bases shown in the Bezier, Cardinal, and
figure.

The mathematical basis for the GL surface facility is the parametric bicubic surface.

Chapter 3. Drawing with Graphics Library 69

../../libs/gl32tref/rcrv.htm#HDRWRS2380MARJ
../../libs/gl32tref/rcrv.htm#HDRWRS2380MARJ
../../libs/gl32tref/crv.htm#HDRZMS220MARJ
../../libs/gl32tref/rcrvn.htm#HDRA1TS2220MARJ

The parametric equation for x is:

X(u,v) = aq1uvs + aqoudvs + aq3udv + aq4u’
+ 321U2V3 + 322U2V2 + 323U2V + 324U2
+ agquVS3 + agoUV2 + agguVv + agsu

+ 3.41V3 + a42v2 + ay3V + ayy

(The equations for y and z are similar.) The points on a bicubic patch are defined by varying the
parameters u and v from O to 1. If one parameter is held constant and the other varied from O to 1, the
result is a cubic curve. Thus, a wire frame patch can be created by holding u constant at several values
and using the GL curve facility to draw curve segments in one direction, and then doing the same for v in
the other direction.

There are five steps involved in drawing a surface patch:

1. The appropriate bases matrices are defined using the befbasid subroutine. A Bezier basis provides
intuitive control over the shape of the patch. The Cardinal spline and B-spline bases shown in the
i i -Spli figure allow smooth joints to be created between patches.

2. A basis for each of the directions in the patch, u and v, must be specified with the m
subroutine.

Note: The u basis and the v basis do not have to be the same.

3. The number of curve segments to be drawn in each direction is specified by the m
subroutine. A different number of curve segments can be drawn in each direction.

4. The precisions for the curve segments in each direction must be specified with the W
subroutine. The precision is the minimum number of line segments approximating each curve segment
and can be different for each direction. The actual number of line segments is a multiple of the number
of curve segments being drawn in the opposing direction. This guarantees that the u and v curve
segments forming the wire frame actually intersect.

5. The surface patch is actually drawn with the m subroutine. The parameters contain the 16 control
points that govern the shape of the patch. The value of the geomx parameter is a 4x4 matrix
containing the x coordinates of the 16 control points; the geomy parameter contains the y coordinates;
the geomz parameter contains the z coordinates. The curve segments in the patch are drawn using
the current linestyle, linewidth, color, and writemask.

The kpatcH subroutine draws a rational surface patch.

patchbasis Subroutine
The lpatchbasid subroutine sets the current basis matrices (defined by the Hefhasid subroutine) for the
parametric directions of a surface patch as given in the uid and vid parameters. The syntax is as follows:

void patchbasis(Int32 uid, Int32 vid)

patchcurves Subroutine
The fpatchcurved subroutine sets the current number of curves in both directions as given in the ucurves
and vcurves parameters that represent a patch as a wire frame. The syntax is as follows:

void patchcurves(Int32 ucurves, Int32 vcurves)

patchprecision Subroutine
The subroutine sets the precision at which curves defining a wire frame patch are drawn.

The u and v directions for a patch specify the precisions independently. Patch precisions specify the
minimum number of line segments used to draw a patch. The syntax is as follows:

void patchprecision(Int32 usegments, Int32 vsegments)

70 GL Programming Concepts

../../libs/gl32tref/defbasis.htm#HDRA150X930
../../libs/gl32tref/patchbasis.htm#HDRA143X95D6
../../libs/gl32tref/patchcurves.htm#HDRA143X95F8
../../libs/gl32tref/patchprecision.htm#HDRA143X961A
../../libs/gl32tref/patch.htm#HDRA143X95B4
../../libs/gl32tref/rpatch.htm#HDRO5K2MARJ
../../libs/gl32tref/patchbasis.htm#HDRA143X95D6
../../libs/gl32tref/defbasis.htm#HDRA150X930
../../libs/gl32tref/patchcurves.htm#HDRA143X95F8
../../libs/gl32tref/patchprecision.htm#HDRA143X961A

patch and rpatch Subroutines

The lpatcH and kpatcH subroutines draw a surface patch using the current values set by the fpatchbasid,
, and m subroutines. The rpatch subroutine draws a rational surface patch.

The control points given in the geomx, geomy, and geomz parameters determine the shape of the patch.

The control point given in the geomw parameter specifies the rational component of the patch to the

rpatch subroutine. The syntax for the patch and rpatch subroutines is as follows:

void patch(Matrix geomx, Matrix geomy, Matrix geomz)

void rpatch(Matrix geomx, Matrix geomy,
Matrix geomz, Matrix geomw)

The Bezier Surface PatcH, Cardinal Spline Surface Patch, and B-Spline Surface PatcH figures show the

same number of curve segments and the same precisions but different basis matrices. All three use the
same set of 16 control points.

Cardinal Spline Surface Patch

Chapter 3. Drawing with Graphics Library 71

../../libs/gl32tref/patch.htm#HDRA143X95B4
../../libs/gl32tref/rpatch.htm#HDRO5K2MARJ
../../libs/gl32tref/patchbasis.htm#HDRA143X95D6
../../libs/gl32tref/patchprecision.htm#HDRA143X961A
../../libs/gl32tref/patchcurves.htm#HDRA143X95F8

0
o] 3

o/ 1) 2 3

| ﬁ 2\3
1 2

B-Spline Surface Patch

The example program patch1.d (found in in GL3.2 for AIX: Graphics Library (GL) Technical Reference
(POWER-based Systems Only)) draws three surface patches similar to those shown in the foregoing
figures.

You can join patches to create a more complex surface by using the Cardinal spline or B-spline bases and
by overlapping sets of control points. The surface in the m figure consists of three joined
patches and was drawn using a Cardinal spline basis matrix.

72 GL Programming Concepts

../../libs/gl32tref/patch1_c.htm#HDRA17C0DAF

[] [)
1 ° ° PY
° °
|
° ° |
° ° ° °

Joined Patches

Drawing NURBS Curves and Surface Patches

The section on NURBS curves and surface patches includes discussions on the following:
« NURBS Curves and Surfaces Introductiod

+ INURBS Interfacd

. NURBS Sux 0 oiiod

. C inoDisola P =

List of GL NURBS Curve and Surface Patch Subroutines

bhgnsurfacel Marks the beginning of a NURBS surface definition.

bgntrin Marks the beginning of a NURBS surface trimming loop.

bndsurfacd Marks the end of a NURBS surface definition.

Endtrind Marks the end of a NURBS surface trimming loop.

getnurbsproperty Returns the current value of a timmed NURBS surfaces display property.
burbscurvd Controls the shape of a NURBS trimming curve.

Chapter 3. Drawing with Graphics Library

73

../../libs/gl32tref/bgnsurface.htm#HDRA251X9D7
../../libs/gl32tref/bgntrim.htm#HDRA251X98D
../../libs/gl32tref/bgnsurface.htm#HDRA251X9D7
../../libs/gl32tref/bgntrim.htm#HDRA251X98D
../../libs/gl32tref/getnurbsproperty.htm#HDRA252X986E
../../libs/gl32tref/nurbscurve.htm#HDRA255X93CA

nurbssurfacd Controls the shape of an untrimmed NURBS surface.
m Describes a piecewise linear trimming curve for NURBS surfaces.

ketnurbspropertyl Sets the property for display of trimmed NURBS surfaces.

NURBS Curves and Surfaces Introduction
GL provides subroutines that draw parametric non-uniform rational B-spline surfaces (NURBS) that can be
trimmed with NURBS curves and pi ise li

As you can with most other graphics library primitives, you can transform NURBS curves and surfaces
with the standard GL modeling commands. You must use the standard lighting models when rendering
NURBS curves and surfaces.

B-Spline Curves and Surfaces

The following m illustrates a spline with a set of 8 control points. Notice how the spline (or curve) is
attracted to the control points, but does not necessarily pass through any of them.

Uniform Cubic B-Spline with No Rational Component

The figure entitled Effects of Moving a Caontrol Paini illustrates the result of moving the sixth control point

from the left to a series of locations, and the corresponding B-splines created as the one control point
moves. Notice that moving the control point affects only a portion of the curve near the control point. This
is an important property of B-splines; the influence of the control points is local.

74 GL Programming Concepts

../../libs/gl32tref/nurbssurface.htm#HDRA252X98B9
../../libs/gl32tref/pwlcurve.htm#HDRA257X9FC
../../libs/gl32tref/setnurbsproperty.htm#HDRA257X911B

Effects of Moving a Control Point

In fact, for cubic B-splines, each small segment of the curve is controlled by the positions of 4 control
points. In this example, the curve is actually drawn as 5 small segments. The first is controlled by points 1,
2, 3, 4; the second by 2, 3, 4, 5; and so on.

The last segment is controlled by control points 5, 6, 7, and 8. When the sixth control point is moved, the
only parts of the spline affected are those controlled by points 3, 4, 5, 6, points 4, 5, 6, 7, and points 5, 6,
7, 8.

In the two preceding examples, the control points are evenly spaced in the horizontal direction. This is not

necessary, as illustrated In the following figure, luneven Cantrol Paint Spacing.

Uneven Control Point Spacing

Any number of control points greater than 4 can be used to define a cubic B-spline. The spline is actually
drawn in segments, each of which is controlled by successive sets of 4 control points.

Trimmed NURBS surfaces are a convenient means of representing curving, bent, and cut surfaces. The
bends and curves of the surface are represented by a polynomial mapping of a 2-D space (the s-t plane,
or domain) into 3-D space. A rational polynomial mapping can be achieved in 3-space if the s-t plane is
mapped into projective 4-space. Cuts and holes in the surface can be achieved by the use of trimming
loops, which are closed curves in s-t space. Trimming loops help describe what subset of the s-t plane
should actually be mapped into 3-space (drawn on the monitor). Trimming loops themselves may be
specified as NURBS curves or as piecewise linear curves.

Chapter 3. Drawing with Graphics Library 75

NURBS Interface

To describe an untrimmed NURBS surface, you must specify these controlling factors:
» A set of nondecreasing knot values in both the s and t directions.

» The order (which is the degree + 1) of the surface in both directions.

» A rectangular set of control points.

The control points can be either three- or four-dimensional, corresponding respectively to polynomial
(sometimes called nonrational) and rational surfaces. In three dimensions, the coordinates have the form
(%, ¥, 2), and in four, (wx, wy, wz, w).

Certain dependencies exist between the surface orders, the knot counts, and the number of control points;
that is to say, you specify the surface orders and the knot counts in order to obtain the control points. If Os
and Ot are the surface orders in the s and t directions, and if Ks and Kt are the knot counts in those
directions, then the control points must form a rectangular array of size (Ks - Os)*(Kt - Ot).

NURBS Surface Description

You define an untrimmed NURBS surface with the lhurbssurfacd subroutine as shown in this example
program:

nurbssurface (
Int32 sknot_count, /* of s knots */
Float64 s_knot[], /* non-decreasing knot values in s */
Int32 tknot_count, /* number of t knots */
Float64 t_knot[], /* non-decreasing knot values in t*/
Int32 s_byte stride, /+ offset to next control point */
/* in the s direction */
Int32 t_byte stride, /* offset to next control pointx/
/* in the t direction */
double *ctlarray, /* pointer to first control point */
Int32 s_order, /* surface order in s parameter */
Int32 t_order, /* surface order in t parameter */
Int32 type /* rational or polynomial =*/
)

This implementation of NURBS surfaces supports up to order 4. Trimming curves can be up to order 8.

Many of the parameters in the preceding example are explained in the following:

s_knot[] An array of length sknot_count

t_knot[] An array of length tknot_count

s_order The order of the surface in the s direction

t_order The order of the surface in the t direction

type One of the constants N_XYZ or N_XYZW (defined in the gl/gl.h file) depending on whether the

control points are nonrational (3 coordinates), or rational (4 coordinates).

The description of control points is somewhat unusual. The s_byte_stride parameter indicates the offset (in
bytes) between successive control points in the s direction, and t_byte_stride does the same thing for the t
direction. This interface is powerful in that the only requirement is that the x, y, z, and possibly w
coordinates are placed in successive memory locations. The data may be a part of a larger data structure,
or the points may form part of a larger array. For example, suppose the data appears as follows:

struct ptdata

{
Int32 tagl, tag2;
float x, y, z, w;
} points[5][6];

76 GL Programming Concepts

../../libs/gl32tref/nurbssurface.htm#HDRA252X98B9

Then the s_byte_stride parameter should be set to sizeof(struct ptdata), and the t_byte_stride
parameter should be set to 6*sizeof(struct ptdata), and the ctlarray parameter should be ptdata or
&(points[0] [0].x).

As another example, suppose that the data were declared as previously, but only a square of 4 by 4
control points is needed from the middle of the array including everything between and including
points[1][1] and points[4] [4]. In that case, the s_byte_stride and t_byte_stride parameters are as
previously, but the ctlarray parameter is set to &(points[1][1].x).

Note: In both examples, the type is N_XYZW because the data includes the homogeneous w
coordinate.

Trimming
A trimming curve or trimming loop defines the visible regions in a NURBS surface. You can define
trimming curves by the following methods:

* NURBS curves, using the hurbscurvd subroutine.
» Piecewise linear curves, using the m subroutine.
* Any combination of these two.

In any case, the trimming curve must be closed: that is, the coordinates of the first and last points of the
trimming curve must be identical (within a tolerance of 10E-6). Because NURBS curves normally do not
pass through the control point, one way to ensure a closed curve is to repeat the coordinates for the
control point a number of times equal to the order of the curve. For example, quadruple the control points
for a fourth-order curve if you wish to make the curve pass through that point. Another technique is to
construct a knot vector that generates positional continuity of the endpoints of the curve.

When error checking is activated, the software sends error messages and does not display the NURBS
surfaces associate with the faulty trim data. Likewise, the end points of piecewise linear curves and the
NURBS curves used to form a compound trimming curve must touch.

A NURBS surface is the result of a mathematical function that maps domain space to model space. You
determine the visible parts of the NURBS surface by defining a trim region. The trim region is the area of
the NURBS surface in which the surface domain is trimmed by a closed directed loop (composed of one
or more trimming curves) in s-t space, where the interior of the loop is defined to be the region to the left
of the loop. The surface domain can be trimmed by many such loops, as long as they describe a
consistent region. The loops can neither touch nor intersect (except at their end points, which must touch),
and their orientations must also be consistent. The following w illustrates a set of 5 loops that describe
a valid trimming region. The image of the shaded portion is the trimmed NURBS surface.

B

>
Trimming Loops

Chapter 3. Drawing with Graphics Library 77

../../libs/gl32tref/nurbscurve.htm#HDRA255X93CA
../../libs/gl32tref/pwlcurve.htm#HDRA257X9FC

If no trimming information is provided, the entire surface is drawn. If any trimming loops are given, the
outer loop (or loops) must be counterclockwise. Thus to describe a region that consists of the whole
surface minus a small circle in the middle, two trimming loops must be specified: one running clockwise
around the circle, and another running counterclockwise around the entire s-t domain.

A trimming loop can be described either as piecewise linear curves (a series of s-t coordinates locating
successive points along a path), or as NURBS curves in the s-t plane. A loop can be described either by a
single NURBS curve, by a piecewise linear curve, or as a series of curves (of either type) joined head to
tail.

The general form of the interface to describe a trimmed or untrimmed NURBS surface looks like this:

bgnsurface();
nurbssurface(. . .);

bgntrim();
nurbscurve(. . .);

endtrim();

bgntrim();
pwlcurve(. . .);

endtrim();

bgntrim();
nurbscurve(. . .);
pwlicurve(. . .);
nurbscurve(. . .);

endtrim();

endsurface();

Each trimming loop is surrounded by a bgntrim and endtrim subroutine pair. A single curve defines the
first two trimming loops; the third loop consists of three segments, connected head to tail. The last point of
each curve segment must touch the first point of the next, and the last point of the last segment must
touch the first point of the first segment. The nurbssurface subroutine describes the untrimmed surface
and appears before any trimming information. The trimmed surface description is bracketed by a
bgnsurface and an endsurface subroutine pair.

The other subroutines specifically related to the properties of NURBS surfaces are ketnurbspraperty and
getnurhsproperty. These subroutines allow the user to set and get drawing tolerances of various types.

All the subroutines in the Exampld, except for the getnurbsproperty subroutine, can be used in display
lists. In this implementation, NURBS surfaces described in display lists usually run faster because some of
the display computations can be cached between display list traversals.

All the parameters are passed with strict call-by-value semantics. This means that the system copies all
values, including trim points and control points, at the time of the call. For example, if you have an array
containing control points, and you define a NURBS surface in a display list using it and then change the
value in your array, the display list will continue to draw the surface using the original control point values.

nur%ubroutine
The subroutine can be used only within a bgntrim/endtrim loop and in curves of up to order
8.

The structure of the parameters is analogous to those for the hurbssurfacd subroutine, except, of course,
there is only one dimension to describe. When the nurbscurve subroutine describes a trimming curve, it
must be two-dimensional, so the only legal values for type are N_STW and N_ST. The control point
formats for N_STW and N_ST are (ws, wt, w) and (s,), respectively.

If a single curve defines the entire trimming loop, both ends of the curve must lie at the same point and
must be included in the parameter count.

78 GL Programming Concepts

../../libs/gl32tref/setnurbsproperty.htm#HDRA257X911B
../../libs/gl32tref/getnurbsproperty.htm#HDRA252X986E
../../libs/gl32tref/nurbscurve.htm#HDRA255X93CA
../../libs/gl32tref/nurbssurface.htm#HDRA252X98B9

When you trim a NURBS surface with a NURBS trimming curve, the software analytically calculates
coordinates on the surface and their corresponding normal vectors for each point on the tessellated
NURBS trimming curve.

nurbscurve (

Int32 knot_count, /* number of knots */
Float64 knot_list[], /* non-decreasing knot sequence */

Int32 stride, /* byte offset to next control point */
Float32 *ctlarray, /* pointer to first control point */
Int32 order, /* spline order */

Int32 type /* spline type -- 2D, 3D, rational,

polynomial =/

)

pwicurve Subroutine
To define a piecewise linear trimming curve, use the m subroutine. The syntax is as follows:

void pwlcurve(Int32 count, Float64 *data_array,
Int32 stride, Int32 type)

The trimming curve in the s-t plane is drawn by connecting each point in the data_array parameter to the
next. It is as important to increment the trim point count as it is to duplicate the last point. In other words,
although the last and first points are identical, they must be specified and counted twice.

Controlling Display Properties
The following subroutines control NURBS curves and surfaces display properties.

setnurbsEroEer% and getnurbsproperty Subroutines

The subroutine changes various properties that control the rendering of NURBS curves
and surfaces. The call uses this format:

void setnurbsproperty(Int32 property, Float32 value)

A list of properties is defined in the /usr/include/gl/gl.h file and includes N_PIXEL_TOLERANCE and
N_ERRORCHECKING. Each has some reasonable default value but can be changed to affect the
accuracy of some part of the rendering. You can get the current value of any of these properties with a call

to the getnurhspropertyl subroutine. The syntax is as follows:

void getnurbsproperty(Int32 property, Float32 *value)

For maximum generality, express the value of a property in floating point. For some properties, only
integer values make sense, but you must still pass them in floating-point form; for example, 1.0 means
TRUE.

The values of the properties are global to a process, and each call to the setnurbspropertyl subroutine
changes this global state.

The properties have the following meanings:

N_PIXEL_TOLERANCE A value representing how accurately a NURBS surface is to be rendered. Smaller
values indicate more accuracy.
ERRORCHECKING If TRUE, performs additional error checking.

Chapter 3. Drawing with Graphics Library 79

../../libs/gl32tref/pwlcurve.htm#HDRA257X9FC
../../libs/gl32tref/setnurbsproperty.htm#HDRA257X911B
../../libs/gl32tref/getnurbsproperty.htm#HDRA252X986E
../../libs/gl32tref/setnurbsproperty.htm#HDRA257X911B

80 GL Programming Concepts

Chapter 4. Working with Coordinate Systems

This section contains the following information:

List of GL Coordinate Transformation Subroutines

igetmatrix Gets a copy of the current transformation matrix.

loadmatrid Loads a transformation matrix.

foakal Defines a viewing transformation.

m Maps a point on the screen into line in 3-D world coordinates.

W Maps a point on the screen into line in 2-D world coordinates.
nultmatriyd Premultiplies the current transformation matrix.

brihd Defines a 3-D orthographic transformation.

brthod Defines a 2-D orthographic transformation.

m Defines a perspective projection transformation in terms of a field of view.
m Defines the viewer’s position in polar coordinates.

m Pops the transformation matrix stack.

fushmatrix Pushes down the transformation matrix stack.

kol Rotates a graphical primitive (floating-point version).

katatd Rotates a graphical primitive (fixed-point version).

Scales and mirrors graphical primitives.

kransiatd Translates a graphical primitive.

fwindowl Defines a perspective projection transformation in terms of x and y coordinates.

Coordinate Transformations

When displaying 3-D shapes, it is useful to be able to move the shapes around relative to each other and
to the viewer; to rotate and scale them; and to be able to change the viewer’s point of view, field of view,
and orientation. The subroutines that perform coordinate transformations allow you to manipulate
geometric figures and viewpoints in 3-D space in very general ways.

GL converts the 3-D coordinates of geometric figures into pixels on the screen in the following operations:

1. A set of 3-D operations, such as rotation, translation, and scaling moves the objects and viewpoint to
the desired position for a given scene.
2. A subsequent operation maps 3-D points to 2-D screen coordinates, taking into consideration the

portion of 3-D space (as well as its orientation with respect to the screen) that is visible during a given
scene.

The 3-D operations can be further divided into projection, viewing, and modeling transformations.
Conversion from the original 3-D figures to the 2-D pixels on the screen is handled by another set of

subroutines, including the Miewpaort and lsetdepth subroutines.

© Copyright IBM Corp. 1994 81

../../libs/gl32tref/getmatrix.htm#HDRA144X940E
../../libs/gl32tref/loadmatrix.htm#HDRA144X9430
../../libs/gl32tref/lookat.htm#HDRA144X9452
../../libs/gl32tref/mapw.htm#HDRA213X9119FE
../../libs/gl32tref/mapw2.htm#HDRA213X911A56
../../libs/gl32tref/multmatrix.htm#HDRA144X9474
../../libs/gl32tref/ortho.htm#HDRA144X9496
../../libs/gl32tref/ortho.htm#HDRA144X9496
../../libs/gl32tref/perspective.htm#HDRA144X94DA
../../libs/gl32tref/polarview.htm#HDRA144X94FC
../../libs/gl32tref/popmatrix.htm#HDRA144X951E
../../libs/gl32tref/pushmatrix.htm#HDRA144X9540
../../libs/gl32tref/rot.htm#HDRA144X9562
../../libs/gl32tref/rotate.htm#HDRA8G2120MARJ
../../libs/gl32tref/scale.htm#HDRA144X95A6
../../libs/gl32tref/translate.htm#HDRA144X95C8
../../libs/gl32tref/window.htm#HDRA144X95EA
../../libs/gl32tref/viewport.htm#HDRQRY270MARJ
../../libs/gl32tref/lsetdepth.htm#HDRNAR120MARJ

Types of Coordinate Systems

There are basically five coordinate systems of interest. First, there is a 3-D system defined in right-handed
Cartesian floating-point coordinates; vertices are specified in (x,y,2) triplets. Let us refer to this as the
modeling coordinate system. There are no limits to the size of sensible coordinates (other than the largest
legal floating-point value).

The second system is the world coordinate system, also a 3-D floating-point coordinate system. World
coordinates are used conceptually for locating the entire scene. For example, the drawing of a bolt may be
defined at the origin of the modeling coordinate system (because this is the easiest way to define a bolt),
but that bolt may be drawn repetitively in many different places in world coordinates.

The third is called the eye, or viewer, coordinate system. The position of all things is measured with
respect to the location of the viewer’s eye. GL uses the same set of subroutines to manipulate the
placement of shapes in these first three coordinate systems. These subroutines become the modeling,
viewing, and projection transformations, depending on the order in which they are called and the mode the
system is in.

The fourth is called the normalized coordinate system. This system is also 3-D with floating-point values,
but its range is limited to -1.0 <= x,y,z <= 1.0. The 3-D cube defined by these limits is convenient for
clipping. After transformation to the normalized system, the clipping hardware eliminates all geometry with
coordinates outside the range of -1.0 to 1.0.

The x and y coordinates of this 3-D cube are scaled directly into the fifth coordinate system, usually called
the screen coordinate system. If you draw into an arbitrarily placed window on the screen, the pixel at the
lower-left corner of the window has screen coordinates (0,0). Because screen coordinates represent pixel
values, they are always expressed in integers, so the transformation from normalized coordinates to
screen coordinates might involve some rounding and consequent loss of accuracy.

Screen coordinates are typically thought of as 2-D, but in fact all three dimensions of the normalized
coordinates are scaled, and there is a screen z coordinate that can be used for many things, such as
hidden surface removal and depth-cueing.

Types of Transformations
This section contains information on:

To map between the five coordinate systems, there are four distinct types of coordinate transformations.
These are as follows:

+ Maodeling transformationd, which map from modeling coordinates to world coordinates. That is, they take
a 3-D figure drawn in modeling coordinates and indicate how it is placed in world coordinates.

+ Miewing transformationd, which map from world coordinates to eye coordinates. That is, they indicate
the location of the eye and the direction in which it is looking, and relate that to world coordinates.

+ [Projection transfarmationd, which map from eye coordinates to normalized device coordinates.
Projection transformations are usually used to control the amount of perspective in the scene.

* Viewport transformations, which map from normalized device coordinates (NDC) to device coordinates
(DC) (also called screen coordinates or window-relative coordinates). These control the placement of
the drawn scene on the monitor; that is, where it appears on the screen. Viewport transformations are
not full-fledged transformations like the previous three; for example, rotations are not allowed. These
transformations are controlled by the Miewpard and Isetdepthl subroutines.

82 GL Programming Concepts

../../libs/gl32tref/viewport.htm#HDRQRY270MARJ
../../libs/gl32tref/lsetdepth.htm#HDRNAR120MARJ

These transformations are represented in the following "figure” on page B4.

av)

eye

P
=

Sl

Modeling coordinates

Operations performed on the
matrix stack transform
modeling to world coordinates

World coordinates

Operations performed on the
matrix stack transform world to
viewing coordinates

Viewing coordinates

Operations performed on the
projection matrix transform
viewing to normalized device
coordinates

Normalized device coordinates

Operations performed on the
viewport stack transform
normalized device to screen
coordinates

Screen
coordinates

Coordinate Transformations

Chapter 4. Working with Coordinate Systems

83

Modeling Transformations

When you create a graphical object, or geometric model, the system creates it with respect to its own
coordinate system. You can manipulate the entire object using the modeling transformation subroutines:
kotatd, kol kranslatd, and Ecald. By combining or linking together drawing subroutines, you can create
more complex modeling transformations that express relationships between different parts of a complex
object.

All objects drawn after these subroutines execute are transformed as specified by the individual
subroutine. Therefore, bani.mlllng_the_a:dell in which you specify transformation operations is extremely
important.

rotate Subroutine
The kotatd subroutine rotates graphical objects by specifying an angle and an axis of rotation. The angle

is given in tenths of degrees according to the right-hand rule: if the right hand is wrapped around the axis
of rotation, the fingers curl in the same direction as positive rotation, and the thumb point in the same
direction as the axis of rotation. A right-handed rotation is counterclockwise. An X, y, or z character defines
the axis of rotation. (The character can be uppercase or lowercase.)

Note: In the following discussion, the word object refers to the general idea of a drawn thing or shape
(graphical primitive). It does not refer specifically to display lists.

All objects drawn after the rotate subroutine executes are rotated.

The kof subroutine is similar to the rotate subroutine, except that the angle is given in floating point. Both
subroutines create a "matrix” on page 84 and premultiply it into the current matrix.

1 0e 0e 0
— 0 cos sin 0
Rot(®) = 0 -sin cos®§ O
0 0 0 1
[cosH 0 -sin® 0 |
0 1 0 0
Roty (6) = sin® 0 cos§ O
0 0 0 1
B cos® sin® 0 0 |
Rot, (§)= | —sin® cosB 0 0
0 0 1 0
0 0 0 1

The rot and rotate subroutines syntax is as follows:
void rotate(Angle angle, Char8 axis)
void rot(Float32 angle, Char8 axis)

translate Subroutine
The subroutine moves the object origin to the point specified in the current object coordinate

system. All objects drawn after the translate subroutine executes are translated. The translate subroutine
creates a "matrix” on page Bd and premultiplies it into the current matrix.

84 GL Programming Concepts

../../libs/gl32tref/rotate.htm#HDRA8G2120MARJ
../../libs/gl32tref/rot.htm#HDRA144X9562
../../libs/gl32tref/translate.htm#HDRA144X95C8
../../libs/gl32tref/scale.htm#HDRA144X95A6
../../libs/gl32tref/rotate.htm#HDRA8G2120MARJ
../../libs/gl32tref/rot.htm#HDRA144X9562
../../libs/gl32tref/translate.htm#HDRA144X95C8

Translate (T, Ty, T,)=

[eXe
o—=0
i =X=]
- 000

The syntax is as follows:
void translate(Coord x, Coord y, Coord z)

scale Subroutine

The lscald subroutine shrinks, expands, and mirrors objects. Its three parameters (x, y, z) specify scaling
in each of the three coordinate directions. Values with magnitudes greater than 1 expand the object;
values with magnitudes less than 1 shrink it. Negative values cause mirroring.

All objects that are drawn after the scale subroutine executes are scaled. The scale subroutine creates a
"matrix” on page and premultiplies it into the current matrix.

Scale (S, Sy, S;)=

OOO>SD
OO<(DO
ONCDOO
- OO0

The syntax is as follows:
void scale(Float32 x, Float32 y, Float32 z)

The modeling subroutines are illustrated in the following "figure” on page g,

Chapter 4. Working with Coordinate Systems 85

../../libs/gl32tref/scale.htm#HDRA144X95A6

» X

(a) original object at (0,0,0) (b) rotate (300 ,°Z’);
y y
7 §

(c) translate (1.,1.,0.); (d) scale (-.5,.5,1.);

y

(e) scale (2.,1.,1.);
Modeling Subroutines
The modeling subroutines are not commutative: if you reverse the order of operations, you can get
different results. The following "figure” on page B7 shows (a) a rotation of 60 degrees about the origin

followed by a translation of 4 degrees in the X direction. Part (b) shows the same operation performed in
the reverse order. Rotations are about the origin of the coordinate system.

86 GL Programming Concepts

\ - -
Ll - Ll

X X X
(a) rot (600,'Z’); trans (4.,0.,0);
y y y
A
(b) trans (4.,0.,0); rot (600,'Z’);

The translate and rotate Subroutines

Viewing Transformations

The viewing transformations allow you to specify the position of the eye in the world coordinate system,
and to specify the direction toward which it is looking. The polarview and loakat subroutines provide
convenient ways to do this.

polarview Subroutine
The m subroutine assumes that the object you are viewing is near the origin. The eye’s position is

specified by a radius (distance from the origin) and by angles measuring the azimuth and elevation. The
specification is similar to polar coordinates, hence, the name. There is still one degree of freedom because
these values tell only where the eye is relative to the object. A twist parameter tells which direction is up.

The angle of incidence equals the angle between the Z-axis in world coordinates and the location of the
origin of viewing coordinates. The angle of azimuth equals the angle between the X-axis in world
coordinates and the x,y coordinates of the origin of the viewing coordinates.

To understand incidence and azimuth, imagine that you are standing at the origin in world coordinates. You
are facing north, along the Y-axis, with the X-axis on your right. The Z-axis points straight up, towards the
zenith. There is a very large eye in the sky, looking down at you. It is located at the origin of the viewing
coordinate system. This eye is the system, and whatever that eye sees appears on the screen.

Where is the eye? The azimuth is the compass point at which it is located: O degrees if straight north, 90
degrees if straight east, and so on, in a clockwise fashion (in conformance with astronomical usage). The
incidence is the angle down from zenith: O degrees means the eye is directly overhead; 90 degrees means
that the eye is on the horizon.

The altitude (again following astronomical usage) is precisely equal to 90 degrees minus the incidence.
This coordinate system is called horizon coordinates or topocentric coordinates. The syntax is as follows:

Chapter 4. Working with Coordinate Systems 87

../../libs/gl32tref/polarview.htm#HDRA144X94FC
../../libs/gl32tref/lookat.htm#HDRA144X9452
../../libs/gl32tref/polarview.htm#HDRA144X94FC

void polarview(Coord distance, Angle azimuth, Angle incidence,
Angle twist)

The following "figure” on page illustrates this viewpoint concept.

Zyorld L.
A angle of incidence

/ distance
pY

» Yworld

/

Xworld angle of azimuth

The polarview Subroutine

lookat Subroutine
The loakaf subroutine allows you to specify the eye’s position in space and a point at which it is looking.

Both points are given with Cartesian x, y, and z coordinates. A twist parameter specifies the angle of
rotation. Once you specify the eye position, the point you are looking at could be any point along a line,
and the identical transformation is specified. This viewpoint concept is illustrated in the following "figure”
on page Bd.

88 GL Programming Concepts

../../libs/gl32tref/lookat.htm#HDRA144X9452

Yworld

line of sight

/

/\

/

Zyorld Xworld

lookat (Vy,Vy,Vz,0.,0.,0.,0);

Yworld
twist
T~
Zyorld Xworld

lookat (Vy,Vy,V,0.,0.,0.,300);

The lookat Subroutine

Both viewing subroutines work in conjunction with a projection subroutine. If you wish to view point (1, 2,
3) from point (4, 5, 6) in perspective, use the perspective and laokal subroutines in conjunction. When
the orthogonal projections are used, the exact position of the eye used in the viewing subroutines does not
make any difference. The only thing that matters is the viewing direction.

The viewing transformations work mathematically by transforming, by means of rotations and translations,
the position of the eye to the origin and by adjusting the viewing direction so that it lies along the negative
Z axis.

The polarview and lookat subroutines create a "matrix” on page and premultiply it into the current
matrix.

Chapter 4. Working with Coordinate Systems 89

../../libs/gl32tref/perspective.htm#HDRA144X94DA
../../libs/gl32tref/lookat.htm#HDRA144X9452

Polarview (dist, azim, inc, twist) =
[Rot, (—azim)] [Rot, (—inc)] [Rot, (—twist)] [Trans (0.0, 0.0, —dist)]

Lookat(vy , vy, Vz, p twist) =
[Trans(—vy, vy,—vzxs F¥oty(é [F{o’(X @)] [Rot; (—twist)]

Px—Vx
where sin@) =

¥ (px—Vx)? + (P7~V2)?

Vz—Pz
cogp) =
¥ (px—Vx)? + (P7~V2)?
sin(@) = By
v (PxVx)? + (py_Vy)2 +(p~V2)?
—v.)2 _v_)2
cosP) = Y (Px—Vx)? + (P~V7)

+ (px_Vx)2 + (pv_Vv)2 + (pz_vz)2

Projection Transformations

Viewing items in perspective on the computer screen is like looking at them through a rectangular piece of
perfectly transparent glass. Imagine drawing a line from your eye through the glass to an item. The line
colors a dot on the glass the same color as the spot on the item intersected by that line. If this were done
for all possible lines through the glass, if the coloring were perfect, and the eye not allowed to move, then
the picture painted on the glass would be indistinguishable from the true scene.

The collection of all the lines leaving your eye and passing through the glass would form an infinite
four-sided pyramid with its apex at your eye. Anything outside the pyramid would not appear on the glass,
so the four planes passing through your eye and the edges of the glass would clip out invisible items.
These are called the left, right, bottom, and top clipping planes.

The geometry hardware also provides two other clipping planes that eliminate anything too far from the
eye or too near the eye. They are called the near and far clipping planes. Near and far clipping is always
turned on, but it is possible to set the near plane very close to the eye and the far plane very far from the
eye so that all the geometric items of interest are visible.

Because floating-point calculations are not exact, it is a good idea to move the near plane as far as
possible from the eye, and to bring in the far plane as close as possible. This gives optimal resolution for

distance-based operations such as those discussed in Remaving Hidden Surfaced and Performing

Thus, for a perspective view, the region that is visible looks like an Egyptian pyramid with the top sliced
off. The technical name for this is a frustum, or rectangular viewing frustum.

perspective Subroutine
The dEEEEEEiiE subroutine maps a frustum of eye, or viewer, space so that it exactly fills the viewport.

This frustum is part of a pyramid whose apex is at the origin (0.0, 0.0, 0.0), whose base is parallel to the
X-Y plane, and which extends along the negative Z axis. In other words, it is the view obtained when the
eye at the origin looks down the nﬁative Z axis, and the plate of glass is perpendicular to the line of sight,
as shown in the "figure” on page

90 GL Programming Concepts

remhidden.htm
../../libs/gl32tref/perspective.htm#HDRA144X94DA

Yeye

near clipping plane far clipping plane

Zoye

Xey /
e

field of view angle

L—1

Yeye

Zoye

The perspective Subroutine

The perspective subroutine has four parameters: the field of view in the y direction, the aspect ratio, and
the distances to the near and far clipping planes. Typically, the aspect ratio is chosen so that it is the same
as the aspect ratio of the window on the screen, but it need not be. The distances to the near and far
clipping planes are floating-point values.

Mathematically, the perspective subroutine works by mapping the 3-D volume enclosed by the viewing
frustum into normalized device coordinates. Any point outside the frustum is mapped to a point outside the
cube; that is, at least one of its coordinates is greater than 1.0 or less than -1.0. The clipping hardware
then eliminates all the geometry outside the normalized viewing cube, and the x and y coordinates of the
remaining geometry are scaled linearly to fill the window on the screen. The syntax is as follows:

void perspective(Angle fovy, Float32 aspect,
Coord near, Coord far)

All the projection transformations work basically the same way. A viewing volume is mapped into the
normalized cube, the geometry outside the cube is clipped out, and the remaining data is linearly scaled to
fill the window (actually the viewport). The only differences between the projection transformations are the
definitions of the viewing volumes.

window Subroutine

Another perspective projection transformation is the lvindowl subroutine. This subroutine is similar to the
m subroutine, but its viewing frustum is defined in terms of distances to the left, right, bottom,
top, near, and far clipping planes.

Chapter 4. Working with Coordinate Systems 91

../../libs/gl32tref/window.htm#HDRA144X95EA
../../libs/gl32tref/perspective.htm#HDRA144X94DA

The window subroutine specifies the position and size of the rectangular viewing frustum closest to the
eye (in the near clipping plane) and the location of the far clipping plane. The following "figure” on page
illustrates this function, defining a viewing window in the X-Y plane looking down the negative Z axis. A
perspective view of the image is projected onto the window. The syntax is as follows:

Yeye

(left, top, near)

Zeye /

Xey
e
(right, bottom, near)
(left, bottom, far)
Yeye

Zoye

window (-5.,5.,-3.,3.,1.,3.);
translate (0.,0.,-2.)

The window Subroutine

void window(Coord left, Coord right, Coord bottom,
Coord top, Coord near, Coord far)

The perspective transformation subroutines create "matrices” on page B3 and load them as the projection
matrix.

92 GL Programming Concepts

B ¢ fov |
el =5 0 0 0
aspect
0 cot fov. 0 0
2
Perspective
(fov, aspect, near, far) = 0 0 far+near »
far—near
0 0 B 2xfarxnear 0
far—near
2xnear 0 0
right—left
2xnear 0 0
Window top—bottom
(left, right, bottom, top, near, far) =
right+left top+bottom far+near 1
right-left top-bottom far—near
0 0 _2xfarxnear 0
far—near

ortho and ortho2 Subroutines

The other two projection subroutines that are part of GL are the orthogonal transformations. Their viewing
volumes are rectangular boxes. They correspond to the limiting case of a perspective frustum as the eye
is moved infinitely far away and the field of view decreases appropriately.

Another way to think of the ortho subroutines is that the geometry outside the box is clipped out, and the
geometry inside is projected parallel to the Z axis onto a face parallel to the X-Y plane.

The larthd subroutine allows you to specify the entire box: the X, Y, and Z limits. The brthod subroutine,
usually used for 2-D drawing, requires a specification of the X and Y limits only. The Z limits are assumed
to be -1 and 1. Objects with z coordinates outside the range -1.0 <= z <= 1.0 are clipped out.

The following "figure” on page B4 illustrates this function, defining a viewing window in the X-Y plane

looking down the negative Z axis. An orthographic view of the object between the near and far planes is
projected onto the window. The syntax is as follows:

Chapter 4. Working with Coordinate Systems 93

../../libs/gl32tref/ortho.htm#HDRA144X9496
../../libs/gl32tref/ortho.htm#HDRA144X9496

Yeye (left, top, near)

/

(left, bottom, far)

/

Zoye

Xeye

™~

(right, bottom, far)

ortho (-5.,5.,-3.,3.,1.,3.);
translate (0.,0.,-2.);

The ortho Subroutine

void ortho(Coord left, Coord right, Coord bottom,
Coord top, Coord near, Coord far)

The orthographic subroutines create "matrices” on page B4 and load them as the projection matrix.

94 GL Programming Concepts

_L 0 0 0
right-left
0 S 0 0
top—bottom
Orthogq
(left, right, bottom, top, near, far) =)
0 0 S 0
far-near
right+left top+bottom far+near 1
right-left top—bottom far—near
—2 0 0 0
right—left
0 2 0 0
top—bottom
Orthoogq
(left, right, bottom, top) =
0 0 -1 0
right+left top+bottom 0 1
right-left top—bottom

User-Defined Transformations

A transformation changes the size and orientation of an object by modifying either the object itself or the
position of the viewpoint. A transformation is expressed as a 4x4 floating-point matrix. You can build
complex transformations by linking a series of primitive transformation subroutines, such as kotatd, ko,
translatd, or kealel. If M,V, and P are lmadeling, Liewing, and hrojectiod transformations, you can formulate
transformation S, which maps model space into normalized device coordinates (NDC), as in the following
equation:

S =MVP

[Xyzw]MVP=[Xy Zw]

Chapter 4. Working with Coordinate Systems 95

../../libs/gl32tref/rotate.htm#HDRA8G2120MARJ
../../libs/gl32tref/rot.htm#HDRA144X9562
../../libs/gl32tref/translate.htm#HDRA144X95C8
../../libs/gl32tref/scale.htm#HDRA144X95A6

The clipping boundaries are:

x=1*wy=*+twandz= *tw

The resulting NDC coordinates:

L,_y,andi

w w w

are then scaled to the current viewport with the current viewport mapping.

The graphics pipeline maintains a stack that holds up to 32 transformation matrices. The system applies
the matrix on top of the stack (the current transformation matrix) to all coordinate data.

The graphics pipeline forms a complex transformation matrix by premultiplying the current matrix by each
primitive transformation. The pipeline forms transformation S by executing coordinate transformation
subroutines in reverse order: first, brojection subroutined; second, kiewing subroutined; and third, lnodeling

Note: In MSINGLE matrix mode, the graphics pipeline loads the P transformation onto the matrix
stack, while both the V and M transformations premultiply the current matrix. For additional

information on matrix manipulation and the graphics pipeline, refer to Lighting in Matrix Maodé.

The projection, viewing, and modeling subroutines provide a high-level interface that manages the
transformation matrix stack. Additional subroutines allow direct control over the stack. These subroutines
load or multiply user-defined transformation matrices, push and pop the transformation stack, and retrieve
the matrix on the top of the stack.

loadmatrix Subroutine

The loadmatrid subroutine loads a 4x4 floating-point matrix onto the stack, replacing the current top of the
stack. The syntax is as follows:

void loadmatrix(Matrix matrix)

multmatrix Subroutine

The Imultmatrid subroutine premultiplies the current top of the transformation stack by the given matrix.
That is, if T is the current matrix, multmatrix(M) replaces T with MT. The syntax is as follows:

void multmatrix(Matrix matrix)

getmatrix Subroutine

The lgetmatrid subroutine copies the transformation matrix from the top of the transformation stack to an
array provided by the user. The stack does not change. If lighting is not being used (the default case), the
product MVP of the modeling, viewing, and projection matrices is kept on the stack. The syntax is as
follows:

void getmatrix(Matrix matrix)

96 GL Programming Concepts

../../libs/gl32tref/loadmatrix.htm#HDRA144X9430
../../libs/gl32tref/multmatrix.htm#HDRA144X9474
../../libs/gl32tref/getmatrix.htm#HDRA144X940E

When lighting is being used, the projection matrix P is kept separately, and only the product of the

modeling and viewing matrices, MV, is kept on the stack. A special mechanism, the matrix mode, is
provided for accessing P and MV separately. Otherwise, the matrix subroutines work as previously

described.

Establishing a One-to-One Mapping Between Screen Space and World
Space

Specifying or defining the ortho2 subroutine parameters brings up the issue of creating a window that has
a one-to-one mapping between screen space (viewport) and world space (in this case, ortho2). Consider
the following example.

Assume a window that is four pixels wide by six pixels high. This window runs from coordinates 0 to 3 on
the X-axis and from 0 to 5 on the Y-axis. In order to set up a mapping between world space (floating-point
coordinates) and screen space (integer coordinates) that makes pixel (1,2) centered exactly at the point
(1.0, 2.0) in the brthod world space, you must call the following subroutines:

viewport(0, 3, 0, 5);
ortho2(-0.5, 3.5, -0.5, 5.5);

To understand why these values are correct, consider the X component. The width in X of this window is 4
pixels, which are integer values; it makes no sense to talk about pixel 1.3. In world coordinates, however,
an X location of 1.3 is valid. The mapping from world to screen coordinates attempts to convert the X
world coordinate 1.3 to the nearest whole-number pixel box it can find. Rounding off 1.3 points GL at pixel
1.

The call to the ortho2 subroutine runs between x values of 0.5 and 3.5 in order to let the rounding
operation center the four x world-space whole-number values of 0.0, 1.0, 2.0, and 3.0 in the middle of
each pixel in the X dimension.

In this scheme, -0.5 can be thought of as the extreme left-hand edge of the window, while 3.5 is the
extreme right-hand edge, 1.5 is the boundary between pixel 1 and pixel 2, and so on. This lets you define
the x range in the ortho2 subroutine so that, in effect, the world coordinates straddle the discrete whole
number boundaries and center the whole numbers (0.0, 1.0, 2.0, 3.0) in the middle of each pixel (0, 1, 2,
3).

Extrapolate from this and assume a situation where the window has been resized and you need to
redefine a current ortho2 subroutine based on the new size. To do this, use the following three
statements:
getsize(&xsize, &ysize);
viewport(0, xsize - 1, 0, ysize - 1);
ortho2 (-0.5,(float)(xsize-0.5),

-0.5,(float) (ysize-0.5);

In the call to the m subroutine, you must subtract 1 from the value of xsize and ysize because
they start at zero, not one. Likewise, in the call to the bortho? subroutine, you need to start at 0.5;
therefore, you need to subtract 0.5 from xsize and ysize to create the straddling effect described
previously.

Controlling the Order of Transformations

Each time you specify a transformation such as kotatiod or translatiod, the software automatically
generates a transformation matrix that specifies the amount by which the object’s coordinate system is to
be premultiplied. This transformation matrix is loaded atop a hardware stack in the Graphics pipelind.
When you specify a series of transformations, the software loads each successive transformation matrix
onto the stack and modifies the current transformation matrix.

Chapter 4. Working with Coordinate Systems 97

../../libs/gl32tref/ortho.htm#HDRA144X9496
../../libs/gl32tref/viewport.htm#HDRQRY270MARJ
../../libs/gl32tref/ortho.htm#HDRA144X9496

Because the graphics pipeline maintains a stack of matrices, you can save transformation matrices that
define a particular state by manipulating the matrix stack.

Hierarchical Drawing with the Matrix Stack

A drawing is often composed of copies of simpler drawings, each of which may itself be composed of still
simpler drawings. For example, if you were writing a program to draw a picture of a bicycle, you might
want to have a subroutine that draws a wheel. Calling that subroutine twice, appropriately translated,
would draw two wheels. The wheel itself might be drawn by calling the spoke-drawing subroutine 36 times,
appropriately rotated. In a still more complicated drawing of many bicycles, you could call the
bicycle-drawing routine many times.

Suppose the bicycle is described in a coordinate system where the bottom bracket (the hole through which
the pedal crank’s axle runs) is the origin. You would draw the frame relative to this origin, but translate
forward a few inches before drawing the front wheel (defined relative to its axis). You would then remove
the forward translation to get back to the bicycle’s frame of reference, translate back, and draw another
instance of the wheel.

What happens mathematically is this: suppose the modeling transformation that describes the bicycle’s
frame of reference is M, and that S and T are transformations (relative to M) to move forward for drawing
the front wheel and move back for the back wheel, respectively. Moreover, suppose you want to draw the
wheel using transformation SM for the front wheel and transformation TM for the back wheel.

This is easily done using the matrix stack. At any point in a drawing, there is a current matrix on top of the
matrix stack, composed of all the transformations thus far. In the bicycle example, we call this collection of
transformations M. Any vertex is transformed by the top matrix, which is just what you want to do for
drawing the frame.

The pushmatrix and popmatrixl subroutines push and pop the matrix stack. The pushmatrix subroutine
pushes the matrix stack down and copies the current matrix to the new top. Following a call to the
pushmatrix subroutine, there would be two copies of M on top. A call to the m subroutine (by a
translation matrix S) leaves the stack with SM on top and M underneath. The wheel is then drawn once
using the SM transformation. A call to the popmatrix subroutine then eliminates the SM on top, leaving M.
A second call to the pushmatrix subroutine makes two copies of M.

Translating by T puts TM on top, so you can now draw the back wheel. After the matrix stack is popped
again, M is on top, and you can draw the rest of the frame. The code for drawing the bicycle would look
similar to this:
... /* code to get M on top of the stack */
pushmatrix();
translate(-dist_to_back_wheel, 0.0, 0.0);
drawwheel () ;
popmatrix();
pushmatrix();
translate(dist_to_front_wheel, 0.0, 0.0);
drawwheel();
popmatrix();
drawframe() ;

As shown in the code, the drawwheel subroutine can itself push and pop matrices before calling the
drawspoke subroutine.

pushmatrix Subroutine

The subroutine pushes down the transformation stack, duplicating the current matrix. For
example, if the transformation stack contains one matrix, M, then after a call to the pushmatrix
subroutine, it contains two copies of M. You can modify only the top copy. The syntax is as follows:

void pushmatrix()

98 GL Programming Concepts

../../libs/gl32tref/pushmatrix.htm#HDRA144X9540
../../libs/gl32tref/popmatrix.htm#HDRA144X951E
../../libs/gl32tref/translate.htm#HDRA144X95C8
../../libs/gl32tref/pushmatrix.htm#HDRA144X9540

popmatrix Subroutine
The fpapmatrix subroutine pops the transformation stack. When this subroutine executes, the matrix on

top of the stack is lost. The syntax is as follows:

void popmatrix()

Mathematical Details of the Matrix Subroutines
This section defines the formulas used by the kol, kotatd, kranslatd, kcald, lookat, bolarview| lvindowl,

and W subroutines. These formulas are placed here for information only. It is not necessary to
understand their meaning to use them successfully.

The rot and rotate subroutines create the following "matrix” on page B4 and premultiply it into the current
matrix.

The translate subroutine creates the following "matrix” on page Bd and premultiplies it into the current
matrix.

The scale subroutine creates the following "matrix” on page 83 and premultiplies it into the current matrix.

The polarview and lookat subroutines create the following "matrix” on page &d and premultiply it into the
current matrix.

The perspective transformation subroutines create the following "matrices” on page B4 and load them as
the projection matrix.

The orthographic subroutines create the following "matrices” on page 3 and load them as the projection
matrix.

Chapter 4. Working with Coordinate Systems 99

../../libs/gl32tref/popmatrix.htm#HDRA144X951E
../../libs/gl32tref/rot.htm#HDRA144X9562
../../libs/gl32tref/rotate.htm#HDRA8G2120MARJ
../../libs/gl32tref/translate.htm#HDRA144X95C8
../../libs/gl32tref/scale.htm#HDRA144X95A6
../../libs/gl32tref/lookat.htm#HDRA144X9452
../../libs/gl32tref/polarview.htm#HDRA144X94FC
../../libs/gl32tref/window.htm#HDRA144X95EA
../../libs/gl32tref/perspective.htm#HDRA144X94DA

100 GL Programming Concepts

Chapter 5. Using Viewports and Screenmasks

The viewport is the area of the window that displays an image. You specify it in window coordinates,
where the coordinates of the lower left corner of the window are (0, 0). A more technically accurate
definition of the viewport is that it is the mapping from normalized device coordinates (NDC), the
coordinate frame in which the 3-D clipping is performed, to window coordinates.

Because 3-D clipping occurs in NDC, no drawing primitive is ever drawn outside the boundaries of the Lni
Eubd in NDC. Thus, when the unit cube of the NDC is transformed to window coordinates, no drawing
primitive draws outside the viewport. An exception to this are text strings. Refer to

for more information.

For more information on using viewports and screenmasks in GL, see:

List of GL Viewport and Screenmask Subroutines

getscrmasid Returns the current screenmask.

W Gets a copy of the dimensions of the current viewport.
igetdepth Gets the distance of the near and far clipping planes.
m Sets the viewport depth range.

fopviewpord Pops the viewport stack.

m Pushes the viewport onto the viewport stack.
keshapeviewpaori Sets the viewport to the dimensions of the current window.
Ecreenspacd Interprets graphics positions as absolute screen coordinates.
kcrmask Defines a rectangular 2-D clipping mask.

kiewpori Set the area of the window used for all drawing.

viewport Subroutine

The Miewporl subroutine specifies, in window coordinates, the area of the window that displays an image.
By default, when a window is opened on the screen, its viewport is set to cover the whole window. Its
parameters (left, right, bottom, top) define a rectangular area on the window by specifying the left, rlght
bottom, and top coordinates. The portion of modeling space that the Wwindow, brthd, or

subroutine describes is mapped into the viewport. The syntax is as follows:

void viewport(Screencoord left, Screencoord right,
Screencoord bottom, Screencoord top)

© Copyright IBM Corp. 1994 101

../../libs/gl32tref/getscrmask.htm#HDRA213X911C47
../../libs/gl32tref/getviewport.htm#HDRA142X9107
../../libs/gl32tref/lgetdepth.htm#HDRQTC320MARJ
../../libs/gl32tref/lsetdepth.htm#HDRNAR120MARJ
../../libs/gl32tref/popviewport.htm#HDRA213X911D3C
../../libs/gl32tref/pushviewport.htm#HDRA213X911BEE
../../libs/gl32tref/reshapeviewport.htm#HDRA7LQ3B0MARJ
../../libs/gl32tref/screenspace.htm#HDRA213X911CF1
../../libs/gl32tref/scrmask.htm#HDRFWN250MARJ
../../libs/gl32tref/viewport.htm#HDRQRY270MARJ
../../libs/gl32tref/viewport.htm#HDRQRY270MARJ
../../libs/gl32tref/window.htm#HDRA144X95EA
../../libs/gl32tref/ortho.htm#HDRA144X9496
../../libs/gl32tref/perspective.htm#HDRA144X94DA

getviewport Subroutine

The lgetviewport subroutine returns the current viewport. Its parameters (left, right, bottom, top) are the
addresses of four memory locations. These are assigned the left, right, bottom, and top coordinates of the
current viewport. The syntax is as follows:

void getviewport(Screencoord *1eft, Screencoord *right,
Screencoord *bottom, Screencoord *top)

scrmask Subroutine

The subroutine specifies a two-dimensional rectangular clipping mask. The EcreenmasH is
specified in window coordinates. Every drawing primitive is clipped to this area: that is, no drawing
primitive can draw outside the screenmask. The clipping performed by the screenmask is separate from
and independent of the 3-D clipping performed by the system. The syntax is as follows:

void scrmask(Screencoord *left, Screencoord *right,
Screencoord *bottom, Screencoord =*top)

Normally, the screenmask is precisely the same size as the window. The screenmask cannot be made
larger than the window. When the m subroutine is called, it resets the screenmask to be the same
size as the

Although the scrmask subroutine clips all primitives, it is not useful except for performing character
clipping. The 3-D clipping performed by the system is sufficient for all other clipping. However, in reference
to character strings, the 3-D clipping mechanism only clips the origin of the character string. That is, if the
origin of the character string is inside the viewport, the entire string would be drawn if the screenmask was
not in effect. If the origin is outside the viewport, none of the character string would be drawn, even if,
logically, some of the string ought to be visible.

This type of clipping is called m The screenmask is provided for m clipping down to
a subcharacter level. To use it, set the screenmask to be smaller than the viewport. Strings that begin

inside the viewport are drawn, but only starting at the character (or fraction of the character) that lies

inside the screenmask. Please refer to Creating Text Characterd for more information.

getscrmask Subroutine

The lgetscrmasH subroutine returns the coordinates of the current screenmask in the parameters left,
right, bottom, and top. The syntax is as follows:

void getscrmask(Screencoord *left, Screencoord *right,
Screencoord *bottom, Screencoord *top)

pushviewport Subroutine

The system maintains a stack of viewports and screenmasks, and the top element in the stack is the
current viewport and screenmask. The W subroutine duplicates the current viewport and
screenmask and pushes this duplicate element on the stack. The syntax is as follows:

void pushviewport()

popviewport Subroutine

The W subroutine pops the stack of viewports and screenmasks. The viewport and screenmask
element on top of the stack is lost. The new top element becomes the current viewport and screenmask.
The syntax is as follows:

void pushviewport()

102 GL Programming Concepts

../../libs/gl32tref/getviewport.htm#HDRA142X9107
../../libs/gl32tref/scrmask.htm#HDRFWN250MARJ
../../libs/gl32tref/viewport.htm#HDRQRY270MARJ
../../libs/gl32tref/getscrmask.htm#HDRA213X911C47
../../libs/gl32tref/pushviewport.htm#HDRA213X911BEE
../../libs/gl32tref/popviewport.htm#HDRA213X911D3C

Chapter 6. Removing Hidden Surfaces

This section discusses the following aspects of hidden surface removal:

- |Additional Z-Buffer Featured, including reading the z-buffer, hidden surface removal in the overlay
planes, drawing into the z-buffer, alternate comparisons, and z-buffer writemasks

List of GL Hidden Surface Removal Subroutines

backfacd Allows or suppresses display of backfacing polygons.

krontfacd Controls frontfacing polygon removal.

W Indicates whether backfacing polygon removal is on or off.

m Indicates whether z-buffering is on or off.

Ebuffed Enables or disables the z-buffer for storing depth information.

kdrawl Enables drawing to the z-buffer.

Efunctiod Specifies the function used for depth comparison.

Esourcd Selects depth or color as the source for z comparisons.

Bwritemasi Specifies which bits of the z-buffer are drawn during normal z-buffer operation.

Understanding Hidden Surface Removal

By default, GL does no hidden surface removal: figures are rendered on the screen in the order that they
are drawn. For most 3-D drawings, it is important to draw only those surfaces that are nearest the eye, at
least for opaque objects. All other surfaces are obscured by those nearer the eye. The time it takes to
draw surfaces that are not visible in the final scene can cause a noticeable degradation of performance in
complex scenes where drawing speed is important.

There are many ways to do hidden surface removal, depending on the types of figures being rendered.
The primary method used by GL is a z-buffer, which works by calculating the distance to the eye from the
surfaces covering each pixel and drawing only the closest surface. The calculation has to be done on a
per-pixel basis because it is possible to have a set consisting of as few as three polygons, each of which
is overlapped by another in the set, as in the following figure:

Overlapping Polygons

© Copyright IBM Corp. 1994 103

../../libs/gl32tref/backface.htm#HDRA143X974B
../../libs/gl32tref/frontface.htm#HDRA74C12
../../libs/gl32tref/getbackface.htm#HDRA143X976D
../../libs/gl32tref/getzbuffer.htm#HDRA9SR350MARJ
../../libs/gl32tref/zbuffer.htm#HDRA143X97B1
../../libs/gl32tref/zdraw.htm#HDRA143X97F5
../../libs/gl32tref/zfunction.htm#HDRA22F0MARJ
../../libs/gl32tref/zsource.htm#HDRA143X96D6
../../libs/gl32tref/zwritemask.htm#HDRA143X9817

Note: Z-buffer hardware is optional on the High Performance 8-Bit 3-D Color Graphics Processor and
the High Performance 24-Bit 3-D Color Graphics Processor. Be sure that you have a z-buffer
installed on your system before using z-buffer features. Z-buffering does not work unless the z-buffer
option is installed.

Backfacing Polygon Removal

Another method of hidden surface removal supported by GL is backfacing polygon removal. For many
objects, including all convex polygonal 3-D figures, if each polygonal face is drawn in counterclockwise
order when viewed from outside the object, then after transformation, the faces on the front are in
counterclockwise order and those on the back in clockwise order. The system can be put in a mode where
only counterclockwise polygons are drawn. For cases such as this, the 3-D figures are correctly rendered
with hidden surfaces removed.

A backfacing polygon is defined as a polygon whose vertices appear in clockwise order in screen space.
When backfacing polygon removal is turned on, the only polygons displayed are those in which the
vertices appear in counterclockwise order, that is, polygons that point toward you. Therefore, all polygon
vertices should be specified in counterclockwise order.

backface Subroutine

The backfacd subroutine initiates or terminates backfacing polygon removal. It is used to improve the
performance of programs that represent solid shapes as collections of polygons. The vertices of the
polygons on the far side of the solid are in clockwise order and are not drawn.

The backface subroutine takes a single parameter. A value of True enables backfacing polygon elimination
and False (the default) disables it. The syntax is as follows:

void backface(Int32 bool)

getbackface Subroutine

The lgethackfacd subroutine returns the state of backfacing filled polygon removal: 1 if removal is enabled,
0 if disabled.

The backfacing polygon removal is not as general as z-buffering. However, it can be useful for drawing
polygons whose front side is drawn with a different color and pattern than the back side. (The polygon
would have to be drawn twice, with the vertices in reversed order the second time.) The syntax is as
follows:

Int32 getbackface()

Z-Buffering

The z-buffer determines which of the things being drawn (polygons, lines, or text) is closest to the viewer.
The distance to the figure being drawn is compared to the distance of the shapes already drawn in the
scene. If the current figure is more distant (and therefore hidden), it is not drawn.

The z-buffer is a set of 24-bit integers, one associated with each pixel of the screen. You start by clearing
the z-buffer: that is, by setting the z value of each pixel to the most distant (most positive) value possible.
Then as each polygon, line, point, or character is rendered, its x and y screen coordinates are calculated
in the usual way. Before the pixel is colored, however, the z coordinate is also calculated. The z coordinate
is effectively the distance to the eye.

This incoming z value is compared to the z-buffer value already stored for that pixel. If the z value is
smaller than the value in the z-buffer, the pixel is colored, and the pixel’'s z-buffer value is set to the new z

104 GL Programming Concepts

../../libs/gl32tref/backface.htm#HDRA143X974B
../../libs/gl32tref/getbackface.htm#HDRA143X976D

value. At any point in the drawing, the values in the z-buffer represent the distance to the item that is
currently closest to the eye. The color value stored in the bitplanes represents the color of that item. The z
comparison is unsigned.

Near and far values in the call to perspective have a profound effect on the resolution of the z-buffer’s
comparison facility. The z-buffer contains a fixed and finite number of integer values that can be used to
compare against the z value of the object in the scene. With this capability, you can control the resolution
of the z-buffer by setting the near and far values. The more closely you bracket the objects between the
near and far clipping planes, the better z compare resolution you achieve.

The kbuffer2 d example program draws three cubical objects (they are all originally perfect cubes, but
scale stretches them along their axes). The objects tumble through each other and the whole scene is also
rotating. While the left mouse button is up, the scene is drawn without z-buffering. When it is down,
z-buffering is enabled. If the program is called with an argument, there is a short delay between drawing
each of the polygons. In this mode, the left mouse button still controls the z-buffering.

The key part of the program that turns on the z-buffering is the pair of subroutines:
zbuffer(TRUE);
zclear();

The first subroutine enables z-buffer comparisons to be made before each write, and the second sets all
the z values to the largest possible value for pixels in the viewport. In this example, zbuffer(TRUE) is
called for every frame, but this is not necessary. The zbuffer(TRUE) call in a typical program is called only
at the beginning. In the Ebuffer2 d example program, the code is written as it is because the left mouse
button can come up at any time, in which case z-buffering should be turned off.

The getzbuffer subroutine returns True or False, depending on whether z-buffering is enabled or not. By
default, z-buffering is turned off; most applications that require 3-D hidden surface removal should
probably turn on z-buffering.

Control of Z Values

When coordinate data is transformed to screen coordinates by the graphics pipelind, the transformation is
done in two steps. First, the data is multiplied by a transformation matrix that transforms all visible vertices
so that they lie in the 3-D cube -1.0 <= x, ¥, z <= 1.0. The clipping hardware eliminates all data outside
this cube. The second stage of the transformation scales the coordinate values (now transformed to lie
between -1.0 and 1.0) to screen coordinates.

The x and y coordinates undergo scaling to the viewport coordinates before they are drawn, and the z
coordinates undergo the same transformation. The x, y scaling is controlled by the kiewporf subroutine,
and the z scaling by the [setdeptH subroutine.

In the default mode with z-buffering turned off, the scaled z coordinates are ignored, and the drawing
depends only on the x and y coordinates. When z-buffering is turned on, the z values are compared to
determine whether to draw each pixel. The z values for these comparisons are based on the scaled z
values.

Note: The preferred programming practice to determine the minimum and maximum z values that a
given hardware platform supports is to use the getgdesc subroutine with the GD_ZMIN and
GD_ZMAX tokens.

Isetdepth Subroutine

The W subroutine controls the scaling of the z coordinates, just as the W subroutine
controls the scaling of the x and y coordinates. The Isetdepth subroutine takes two parameters of type
Int32, corresponding to the near and far planes. By default, the near parameter is set to the minimum

Chapter 6. Removing Hidden Surfaces 105

../../libs/gl32tref/zbuffer2_c.htm#HDRMYO10NITA
../../libs/gl32tref/zbuffer2_c.htm#HDRMYO10NITA
../../libs/gl32tref/viewport.htm#HDRQRY270MARJ
../../libs/gl32tref/lsetdepth.htm#HDRNAR120MARJ
../../libs/gl32tref/lsetdepth.htm#HDRNAR120MARJ
../../libs/gl32tref/viewport.htm#HDRQRY270MARJ

value that can be stored in the z-buffer and the far parameter is set to the maximum value. The minimum
value is -0x800000, the maximum value is +0x7fffff, the largest and smallest values that can be written into
a 24-bit z-buffer. The syntax is as follows:

void Tsetdepth(Int32 near, Int32 far)

czclear Subroutine

A very common code sequence in programs that do z-buffering is the following:

color(0);
clear();
zclear();

This sequence clears the color bitplanes to zero and clears the z-buffer bitplanes to the maximum value.
Execution of the sequence takes time because the klead subroutine touches each pixel, and then the

subroutine touches each pixel. Some hardware implementations can, in certain cases,
simultaneously clear the color planes and the z-buffer planes. The kzclead subroutine allows you to do
this.

The czclear subroutine clears the bitplanes to color and the z-buffer to the value of the zval parameter
simultaneously. This subroutine is available only in immediate mode.

To speed up the czclear subroutine by as much as a factor of four for common values of the zval
parameter, call the Efunctiod subroutine in conjunction with it. One of the following conditions must be
met:

Conditions

zval zfunction

-0x800000 ZF_GREATER or ZF_GEQUAL
+0x7FFFFF ZF_LESS or ZF_LEQUAL

The syntax is as follows:

void czclear(Int32 cval, Int32 zval)

Additional Z-Buffer Features

This section deals with special features that control z-buffering. Topics covered include keading thd

E-buffed using the z-buffer for hidden surface removalin overlay planed, drawing directly inta the z-buffed,
using Blternate depth comparison functions and sources, and writemasks for the z-buffet.

Reading the Z-Buffer

The contents of the z-buffer can be obtained by using the zdraw subroutine in conjunction with the
Irectread subroutine.

Due to the nature of the design of the 3D Color Graphics Processor, values read back from the z-buffer
may appear to be incorrect. To avoid obtaining peculiar z values, use the czclear subroutine to clear the
z-buffer before drawing, and specify any z-value other than 0x7fffff or -0x800000 for the clear value. For
instance, clearing to a value of -0x7ffffe can work without sacrificing dynamic range or accuracy. Note,
however, that clearing to such non-standard z-values may degrade z clear performance and affect overall
application performance.

Note: Not all graphics adapters support reading the z-buffer.

106 GL Programming Concepts

../../libs/gl32tref/clear.htm#HDRCEH1160MARJ
../../libs/gl32tref/zclear.htm#HDRA143X97D3
../../libs/gl32tref/czclear.htm#HDRA143X92C8
../../libs/gl32tref/zfunction.htm#HDRA22F0MARJ

Hidden Surface Removal in the Overlay Planes

The z-buffer can be used in conjunction with the overlay planes to provide hidden-line and hidden-surface
removal in the overlays. In a typical application, a solid-shaded figure might be drawn in the main frame
buffer, while a wire-frame drawing is actively dragged about in the overlays. If the wire-frame drawing is
dragged behind the solid-shaded figure, the z-buffer automatically prevents the hidden portion of the
wire-frame drawing from being drawn. When performing such dragging, be sure to enable the z-buffer (by
setting the z-buffer to True), and to set the z-buffer writemask so that the wire-frame drawing does not
change any values already in the z-buffer.

Note: Unless the above effect is specifically desired, it is recommended that z-buffering be disabled
(by setting the z-buffer to False) while drawing into the overlay planes. Otherwise, confusing visual
images may be the unintentional result when a drawing in the overlay becomes z-buffered.

Drawing into the Z-buffer

In some cases it is useful to be able to draw directly into the z-buffer. For instance, the z-buffer can be
used as a clipping mask by writing near values into the region to be masked. If no other primitive is nearer
than the value written into the z-buffer, the z-buffer hardware prevents the pixels from being written,
effectively masking the region.

On the High Performance 3-D Color Graphics Processor, the Edrawl subroutine enables block transfer of
pixels into and out of the z-buffer. If the zdraw subroutine is enabled, the lrectwritd and Lrectread
subroutines transfer pixels to and from the z-buffer.

The kdrawl subroutine is similar to the frantbuffed and backbuffed subroutines in that it permits writing
into the z-buffer bank. Normally, if you are writing into the z-buffer, you do not want to write into the front
buffer and back buffer at the same time. Usually, drawing into the z-buffer should be bracketed by
subroutines that set backbuffer(FALSE) and then backbuffer(TRUE) afterwards (assuming the program is

in double buffer madd).

In single buffer madd, the Erantbuffed subroutine normally has no effect. However, if you call
frontbuffer(FALSE), a flag is set so that when the zdraw subroutine is set to TRUE, the front buffer (the
only buffer in single buffer mode) is not written into. If the zdraw subroutine is set to FALSE,
frontbuffer(FALSE) has no effect.

Alternate Comparisons

In the default mode, the z coordinate of the new pixel is compared to the z coordinate of the figure
currently at that pixel. If the incoming z value shows that the new geometry is closer to the eye than the
old one, the values of the old pixel and of the old z value are replaced by the new ones.

The new value is compared to the old, and if it is less than the old, the old quantities are replaced. It is
possible to change the comparison function from less-than to many other things. The available
comparisons are shown in the following list.

Comparison Function Definition

ZF _NEVER Never overwrite the source pixel value.

ZF_LESS Overwrite the source pixel value if the z of the source pixel value is less than
the z of the destination value.

ZF_EQUAL Overwrite the source pixel value if the z of the source pixel value is equal to
the z of the destination value.

ZF_LEQUAL Overwrite the source pixel value if the z of the source pixel value is less than
or equal to the z of the destination value (default).

ZF_GREATER Overwrite the source pixel value if the z of the source pixel value is greater
than the z of the destination value.

ZF_NOTEQUAL Overwrite the source pixel value if the z of the source pixel value is not equal

to the z of the destination value.

Chapter 6. Removing Hidden Surfaces 107

../../libs/gl32tref/zdraw.htm#HDRA143X97F5
../../libs/gl32tref/rectwrite.htm#HDRA142X9C9E
../../libs/gl32tref/rectread.htm#HDRA142X9C7C
../../libs/gl32tref/zdraw.htm#HDRA143X97F5
../../libs/gl32tref/frontbuffer.htm#HDRA145X9A0
../../libs/gl32tref/backbuffer.htm#HDRA145X94A
../../libs/gl32tref/frontbuffer.htm#HDRA145X9A0

Comparison Function Definition

ZF_GEQUAL Overwrite the source pixel value if the z of the source pixel value is greater
than or equal to the z of the destination value.
ZF_ALWAYS Always overwrite the source pixel value regardless of destination value.

To change the comparison function, use the Efunctiod subroutine.

Z-buffer Writemask

The kwritemasld subroutine can be used like other writemasks to control writing into the z-buffer. The two
valid settings are 0 (no write at all) and Oxffffff (write all the bits). This subroutine could be useful for a
very complicated background into which a few objects are going to be drawn and moved quickly. Setting
the zwritemask to 0 locks the background information in and prevents its modification. New objects are
drawn or not depending on whether the depth comparison indicates that they are in front of or behind
anything else in the scene.

108 GL Programming Concepts

../../libs/gl32tref/zfunction.htm#HDRA22F0MARJ
../../libs/gl32tref/zwritemask.htm#HDRA143X9817

Chapter 7. Creating Lighting Effects

This section discusses the following topics:

List of GL Lighting Subroutines

getmmoded Returns the current matrix mode.

imbind Binds a new material, light source, or lighting model definition.
imcalod Respecifies the currently bound material properties.

imdet Defines a new material, light, or lighting model.

mmadd Sets the current matrix mode.

Lighting Introduction

The GL lighting model facility automatically calculates color using the geometries, colors, and properties of
the currently bound material, lights, and lighting model. The lighting model subroutines can define multiple
materials, lights, and lighting models. A lighting equation consists of one material, eight lights, and one
lighting model.

A significant feature of GL is that the hardware can efficiently perform the lighting calculations needed to
enhance the realism of the displayed geometry. Because different applications require different degrees of
realism, the lighting facility in GL provides a variety of capabilities and features that allow you to control
the degree of realism in the images produced by your application. You can use many of these realism
features without a negative effect on the drawing performance.

When you look at an object in the real world, the color of that object (as perceived by your eye) depends
on several parameters:

» The color, location, and direction of the light source or sources illuminating the object.
* The color and surface properties of the object itself.
» The position and view direction of the observer.

Although GL allows you to control all of these parameters, you will find that you can produce quite realistic
images by using only a subset of the available parameters.

Lighting Basics

This section discusses the basic techniques of lighting, including:
+ A Simple Lighting Calculatiod

* Multiple Surface Materials and W

© Copyright IBM Corp. 1994 109

../../libs/gl32tref/getmmode.htm#HDRIDZ2E0MARJ
../../libs/gl32tref/lmbind.htm#HDRXEZ2340MARJ
../../libs/gl32tref/lmcolor.htm#HDROFZ220MARJ
../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ
../../libs/gl32tref/mmode.htm#HDRXHZ2370MARJ

A Simple Lighting Calculation

The kylinder1.d example program (found in in GL3.2 for AIX: Graphics Library (GL) Technical Reference
(POWER-based Systems Only)) illustrates how to use GL to light a cylinder using a simple lighting
calculation. Consider a pale gray cylinder with a rough surface that is illuminated by a source of white
light. Objects with rough surfaces tend to reflect or scatter light equally in all directions. Such reflections
are termed diffuse reflections.

In our simple lighting calculation, the color and intensity of the diffusely reflected light at a point on the
surface depends on three things:

* Light source color

» The angular relationship between the light source direction and reflecting surface orientation at that
point

» The reflectance characteristics of the cylinder surface

The short arrows in the following "figure” on page fi1d show how the diffuse light is scattered equally in all

directions.

L = light
N = normal

Diffuse Lighting

The orientation of the reflecting surface is specified by the surface normal vector, which is perpendicular to
the surface at the point in question. The normal vector must be normalized (must be of unit length).
Because the surface normal differs at every point on a curved surface, the calculation for reflected light
produces a different color at every point on the surface.

The number of points used in the lighting calculations depends on the number of vertices used to define
the surface. For a local light (a light not very far from the surface), the system computes a color at every
vertex of the polygon mesh used to represent the surface. The application writer must specify the
surface-normal vector at every vertex of the polygon mesh.

In addition to the light originating from the light source that reflects off the surface, ambient light is also
accounted for in the model. Ambient light is assumed to be nondirectional and is reflected uniformly in all
directions by the reflecting surface. Thus, the color and intensity of the reflected ambient light are functions
of both the level of ambient light in the scene and the reflectance properties of the surface. They are not
functions of the angular relationship between the source of light and the surface normal.

110 GL Programming Concepts

../../libs/gl32tref/cylinder1_c.htm#HDRGGI2E0MARJ

Subroutines from Example Pro%ram cylinderi.c

The example C language program introduces four new subroutines that use the GL lighting

facility. The new subroutines are mmodd, imdef, imbind, and 3t

To perform lighting calculations, the system must be able to distinguish between the projection matrix
(used byw subroutine) and the viewing and modeling matrix (used by the lookat subroutine
and the subroutine). The mmode subroutine is used to indicate to the hardware which matrices

represent brojection transformationd and which represent Miewing or nodeling transformatiods.

The lmded subroutine, called from the def simple light cald subroutine of the example program, found
in in GL3.2 for AIX: Graphics Library (GL) Technical Reference (POWER-based Systems Only), defines
instances of the three necessary components to perform a lighting calculation:

* A surface material
* Alight source
* A lighting model

The program line Tmdef (DEFMATERIAL, 1, 0, NULL) tells GL about surface material number 1. The value
given the first parameter, DEFMATERIAL, indicates that you are defining a surface material. The value for the
second parameter defines this material as material number 1. The value for the third parameter (0) is the
length of the properties array specified by the fourth parameter. The properties array specifies the
properties of the surface material. Here, NULL instructs GL to use the default values for surface materials.

The next two calls to the Imded subroutine are similar to the first. By substituting DEFMATERIAL with
DEFLIGHT, and subsequently DEFLMODEL, you can define a light source and lighting model using the default
values prescribed by GL. The default values for a surface material, a light source, and a lighting model are
all that are necessary to perform a simple lighting calculation. Properties of a lighting model are the
properties that affect the entire scene rather than a specific light source or surface material (the intensity
and color of the ambient light in the scene). The subroutine Iﬁi is covered in greater detail in the

section on lighting subroutined.

Another subroutine introduced in the example program is the Imbind subroutine. Once you have defined a
surface material, light source, and lighting model you can instruct GL to use them when performing lighting
calculations. The three calls to the subroutine in the example program tell the system to use the
material, light source, and light model defined by the Imdef subroutine.

It is more efficient to define surface materials, light sources, and lighting models before activating them
with the Imbind subroutine because more computation is involved in defining models than in invoking
them. By predefining all the materials, light sources, and lighting models to use in your application, you
can quickly switch among different materials and lighting sources when drawing a scene.

There can be only one active light model and surface material at any one time. However, you can use up
to the value of MAXLIGHTS lights, where MAXLIGHTS is a constant defined in the /usr/include/gl/gl.h
file. (The value is 8 for the High Performance 3-D Color Graphics Processor, and should not be changed.)
The example program W (found in in GL3.2 for AlX: Graphics Library (GL) Technical Reference
(POWER-based Systems Only)) uses multiple lights.

The final new subroutine is the 31 subroutine. Use it to define surface normal vectors. Look at the n3t
subroutine called from the m subroutine of the example program (found in in GL3.2 for AlX:
Graphics Library (GL) Technical Reference (POWER-based Systems Only)) . In the simple lighting
calculation, the resultant color at a vertex depends on the angular relationship between the surface normal
at that vertex and the light source direction.

The call to the n3f subroutine sends a normal vector of unit length to the graphics hardware to be
transformed and subsequently used for a lighting calculation. Each time a different normal is sent to the

Chapter 7. Creating Lighting Effects 111

../../libs/gl32tref/cylinder1_c.htm#HDRGGI2E0MARJ
../../libs/gl32tref/mmode.htm#HDRXHZ2370MARJ
../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ
../../libs/gl32tref/lmbind.htm#HDRXEZ2340MARJ
../../libs/gl32tref/n3f.htm#HDRA139X91EF3
../../libs/gl32tref/perspective.htm#HDRA144X94DA
../../libs/gl32tref/lookat.htm#HDRA144X9452
../../libs/gl32tref/rotate.htm#HDRA8G2120MARJ
../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ
../../libs/gl32tref/cylinder1_c.htm#SPTA64EA57551TTAY
../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ
../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ
../../libs/gl32tref/lmbind.htm#HDRXEZ2340MARJ
../../libs/gl32tref/lmbind.htm#HDRXEZ2340MARJ
../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ
../../libs/gl32tref/cylinder2_c.htm#HDRA16C0C87C
../../libs/gl32tref/n3f.htm#HDRA139X91EF3
../../libs/gl32tref/n3f.htm#HDRA139X91EF3
../../libs/gl32tref/cylinder1_c.htm#SPTA64EA59429TTAY

graphics hardware, a lighting calculation is performed and the resultant color is associated with the vertex
(using the k31 subroutine) following the n3f command.

If you have not done so already, try running the example program kylinder1.d. Notice as the cylinder
rotates, the color changes to different shades of gray. This is because the angular relationships between
the surface normals and the light source (which happens to be located behind our eye along the z axis) is
changing.

Also, note that as the interior of the cylinder comes into view, the interior color appears a constant shade
of dark gray. This is because the surface normals are facing away from the light source, so the interior of
the cylinder is illuminated only by ambient light, which is independent of the direction of the light source.

Now that you have seen how to implement a simple lighting calculation, you can expand the capabilities of
the lighting calculation to include specularity and multiple surface materials and lights.

Specularity

What if the cylinder in the example were made of a shiny metal instead of a rough material? Compared to
rough or diffusely reflecting surfaces that reflect light equally in all directions, smooth surfaces tend to
reflect light in a directional manner. This directional reflection, called specular reflection, is what causes
highlights.

On a perfectly smooth surface such as a mirror, the direction of a reflected ray is equal to the angle of
incidence (that is, the angle between the light direction vector and the surface normal vector). On surfaces
that are less than perfectly smooth there will be some scattering of the reflected light. Thus, the angle of
the reflected light is weighted towards, but not always equal to, the angle of incidence (see the following
"figure” on page f1d).

L
N
L = light
N = normal
R = reflection
V = viewer
R
\' ¢
eye
Specularity

Calculations for diffusely reflected light from a light source depend on the angular relationship between the
surface normal and light source direction, as well as the reflectance characteristics of the surface. In
addition to reflectance characteristics, specularly reflected light depends on the angular relationships
between the surface normal, light source direction, and view direction. When the view direction coincides
with the direction of the reflected light rays, the viewer sees a specular highlight or glare.

112 GL Programming Concepts

../../libs/gl32tref/v.htm#HDRA144X97A4
../../libs/gl32tref/cylinder1_c.htm#HDRGGI2E0MARJ

The surface material of the cylinder can be made to appear smoother by incorporating specular reflections.
You can do this by changing the def simple 1ight cald subroutine to look like this:

def_simple_light _model () {

Imdef (DEFMATERIAL, 1, 11, shiny material);
Imdef (DEFLIGHT, 1, 0, NULL);
Tmdef (DEFLMODEL, 1, 0, NULL);

1

At the module level of the program, include the definition for the shiny material property array:

float shiny material[] = {
SPECULAR, 0.8, 0.8, 0.8,
DIFFUSE, 0.4, 0.4, 0.4,
SHININESS, 30.0,
LMNULL}

Now we have provided a non-NULL properties array; values are available for further lighting calculations.
Properties are set by specifying a property identifier followed by the expected values for that property. In
our example, we set the specular reflectance (using SPECULAR as the property identifier) of the surface for
the red, green, and blue components of white light to [0.8, 0.8, and 0.8], respectively. Likewise, the
diffuse reflectance was set to [0.4, 0.4, 0.4].

Reflectance components vary between 0.0 and 1.0 (0.0 being 0% reflective and 1.0 being 100%
reflective). The shininess property indicates how smooth or shiny the surface appears. The higher the
number, the smoother the surface, and subsequently the more focused the specular highlight.

The values for SHININESS can range from 0.0 (no specular highlight) to 128.0 (very focused specular
highlight). The shininess specified should be a whole number. When a property identifier and the
corresponding values are specified in a call to the Imdef subroutine, the new value for that property
overrides a default that is provided by GL. This way, you have to specify only those properties whose
default values you do not want.

You must always end a property list with the LMNULL token. This token lets GL know that you are finished
specifying properties. There are more properties for surface materials that we have not discussed as well
as other properties that apply specifically to lighting models and light sources. A complete description of all
the properties available to the imdef subroutine call and their defaults appears in the section on

If you run the example program with these changes, you will notice how much shinier the cylinder looks.
Watch how the highlight appears when the surface normals point at your eye and disappear as they move
away.

Multiple Surface Materials and Multiple Lights

The next example program displays two intersecting cylinders, using a different surface material for each
cylinder. You can also light each cylinder with two light sources. Study the example program
(found in in GL3.2 for AIX: Graphics Library (GL) Technical Reference (POWER-based Systems Only)) .

At the top of the program, a second property list is defined for a new material called purple_material and
a property list for a second light called bTue_Tight. In the blue_Tight property list, the light direction is
specified as [0.0, 1.0, 0.0, 0.0]. The first three numbers specify the xyz direction of the light. The
direction vector [0.0, 1.0, 0.0] indicates that the light direction is along the y axis pointing towards the
origin.

In other words, the blue light is above the cylinders and pointing toward them. The fourth number (0.0)
indicates that the light is positioned infinitely far away along the direction vector (in our example the Y
axis). Differences between infinite and noninfinite lights are discussed in

Chapter 7. Creating Lighting Effects 113

../../libs/gl32tref/cylinder1_c.htm#SPTA64EA57551TTAY
../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ
../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ
../../libs/gl32tref/cylinder2_c.htm#HDRA16C0C87C

The LCOLOR specifies the RGB color of the light. This light has only blue color. By varying the values of
each of the three color components between 0.0 and 1.0 you can vary the intensity of the light. That is,
setting the blue light color to [0.0, 0.0, 0.6] produces a more intense blue than it would have been if
you had set the color to [0.0, 0.0, 0.3].

In the m subroutine, additional material and light source are defined using the Imdef
subroutine. In the portion of the program, both light sources are bound because both are
used during the entire animation. However, because you want to switch back and forth between surface
materials, the program does not bind the surface material until ready to use it. In the main loop, the
program performs an

Tmbind (MATERIAL, 1)

before drawing the first cylinder and then another
Tmbind (MATERIAL, 2)

when drawing the second cylinder.
When you run the example program m notice that the first cylinder has the same surface

material as the cylinder drawn by the example program m but that the second cylinder consists
of a duller, purple material. In addition, each cylinder reflects different amounts of the blue overhead light.

Advanced Lighting Capabilities

Now that you are familiar with the basic lighting capabilities of GL, the following sections discuss some of
the advanced lighting features.

. Naiera Ermesiod
. © he T
« Imcolor Subrouting
« [Lacal Lightd

. [EE —

Material Emission

One property of surface materials is emissivity, the amount of light radiated (not reflected) by the material
itself. A material can be made self-luminous by adding the identifier EMISSION to the property list followed
by the red, green, and blue emission components (each with a value between 0.0 and 1.0). For example,
we could define the properties list for a material as the following:

float glowing material[] = {
EMISSION, 0.8, 0.25, 0.
AMBIENT, 0.0, 0.0, 0.0,
DIFFUSE, 0.0, 0.0, 0.0,
SPECULAR, 0.0, 0.0, 0.0,
LMNULL} ;

H

The material would appear to emit orange light. The ambient, diffuse, and specular reflectance values are
specifically assigned to 0.0 so the color of the object is not affected by light sources. If the coefficients are
not zeroed out, GL uses the default nonzero values.

Using a material definition such as glowing material that has emissive but no reflective properties is
useful for simulating lights at night. It is important to distinguish between the way the lighting facility
handles surface materials with emissive properties and the way it handles light emitted from light sources.
Unlike a light source, emitted light from a material does not affect the color of any other object.

114 GL Programming Concepts

../../libs/gl32tref/cylinder2_c.htm#SPTA64EA47488TTAY
../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ
../../libs/gl32tref/cylinder2_c.htm#SPTA64EA47742TTAY
../../libs/gl32tref/cylinder2_c.htm#HDRA16C0C87C
../../libs/gl32tref/cylinder1_c.htm#HDRGGI2E0MARJ

More on Ambient Light

In defining the simple lighting calculation, the default values for ambient light and ambient reflectance
provided by GL were used. However, GL allows you to control the amount of ambient light displayed in the
scene in three different ways:

e Color
» Additional, specific light source
* Material reflectance values

You can specify the color of ambient light present in the entire scene. Because the color of ambient light is
the same at any point in the scene, the scene ambient light color is a property of the lighting model. For
example, in defining a lighting calculation with the Imded subroutine using the property list, the lines

float simple_light_model[] =
{AMBIENT, 0.3, 0.3, 0.3, LMNULL};

define a lighting model similar to the simple lighting calculation except that this example overrides the
default scene ambient light color with the specified values.

In addition to the scene W color specified in the lighting model, a specific light source can

contribute to the ambient light in the scene. Consider the following modification to the property array

blue_Tight:

float blue light[] =
{LCOLOR, 0.0, 0.0, 0.
AMBIENT, 0.0, 0.0, 0.2,
POSITION, 0.0, 1.0, 0.0, 0.0, LMNULL};

s

6,
2

Now, the ambient light associated with blue_1ight is added to the scene ambient light once blue _1ight
has been defined and bound. Unlike the scene ambient light, the ambient contribution from the blue light
disappears if you turn the blue light off. It is important to note that ambient light associated with a
particular light source is omnidirectional just like ambient light specified with the lighting model.

The third method of controlling displayed ambient color is to alter the ambient light reflectance values of
the material. You have seen how to specify this property by using glowing materiall (you set it to

[0.0, 0.0, 0.0]). The ambient color displayed for a surface is determined by adding the ambient
contributions from the light model and all of the light sources and multiplying the sum by the material’s
ambient light reflectance values.

Imcolor Subroutine

You can also use the Imcalod subroutine to change the lighting components of an object while the
program is running.

The lmcolod subroutine lets you change the properties of the currently bound material. It provides a
high-performance path to the hardware that would not be otherwise available. Normally, to change the
properties of the currently bound material, one would have to redefine the material with the

subroutine and then rebind it with the lmbind subroutine. The Imcolor subroutine helps avoid some of the
software overhead involved in redefinitions and rebindings.

The mcolod subroutine works by redirecting the target of the RGB mode color subroutines (m, E,
and m). Normally, these subroutines set the current color. If lighting is off, the color subroutines can
be made to affect material properties instead. The syntax is as follows:

void Tmcolor(Int32 mode)

Chapter 7. Creating Lighting Effects 115

../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ
../../libs/gl32tref/lmcolor.htm#HDROFZ220MARJ
../../libs/gl32tref/lmcolor.htm#HDROFZ220MARJ
../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ
../../libs/gl32tref/lmbind.htm#HDRXEZ2340MARJ
../../libs/gl32tref/lmcolor.htm#HDROFZ220MARJ
../../libs/gl32tref/RGBcolor.htm#HDRA143X9394
../../libs/gl32tref/c.htm#HDRA143X9262
../../libs/gl32tref/cpack.htm#HDRA143X9284

This function accepts the following values for mode:

LMC_COLOR RGB color commands set the current color. If a color is the last thing sent before drawing a
vertex, the vertex is drawn in that color; if a normal is the last thing sent before drawing a
vertex, the vertex is lighted (the default mode).

LMC_EMISSION RGB color commands set the emission color property of the currently bound material.

LMC_AMBIENT RGB color commands set the ambient color property of the currently bound material.

LMC_DIFFUSE LRGB color commands set the diffuse color property of the currently bound material.

LMC_SPECULAR RGB color commands set the specular color property of the currently bound material.

LMC_AD RGB color commands set the diffuse and ambient color properties of the currently bound
material.

LMC_NULL RGB color commands are ignored.

Calls to the lmdef subroutine can change properties of the currently bound material, but because it must
modify the data structure of the material, this subroutine executes relatively slowly. The Imcolot subroutine
provides a fast and efficient way to change properties of the currently bound material as maintained in the
graphics hardware without changing the definition of the material. This means, however, that all Imcolor
changes are lost when you bind a new material.

Use the standard RGB-mode color subroutines RGBcalod, B, and m to change material properties
selected by the Imcolor subroutine. When lighting is not active, RGB-mode color commands change the
current drawing color. The Imcolor subroutine is significant only while lighting is on.

Local Viewer

As stated in the section on m the intensity and color of the specular highlight seen depends on the
view direction. The lighting calculations performed by the system take into account the view direction,
although they can do so in one of two different ways. One of the methods, called infinite viewer, involves
an approximation, but results in significantly improved performance. The other method, local viewer, is
considerably slower, but more exact. For most applications, there is very little difference in the visual
appearance between the two methods, and therefore the infinite viewer is the default.

The infinite viewer makes the approximation that the eye (as far as the lighting calculations are concerned)
is infinitely far away. This does not mean that the transformation matrices are somehow altered; they are
not. The geometry of the scene being drawn is completely unaffected; only the colors that come out of the
lighting equations are affected.

When this assumption is made, the view direction vector remains constant throughout the scene. Using an
infinite viewer is beneficial to application performance because the system does not have to recompute the
view direction vector for every vertex in the scene (recomputing this vector is computationally expensive
because it requires a square root operation).

However, describing the viewer as located infinitely far away is not as realistic as placing the viewer at
some finite position. To define a local viewer, set the local viewer property in the property list for the
lighting model to true (1.0):

float local viewer model[] = {LOCALVIEWER, 1.0, LMNULL};

Note: Because the local view vector changes with each vertex, the lighting computation must be
performed when the vertex subroutine (M31) rather than the normal) subroutine is issued. When
performing the lighting calculation at the vertex, the graphics hardware uses the normal vector from
the most recently issued normal subroutine.

The difference between infinite and local viewer is significant only when the surface being drawn is

extremely close to the eye. For normal drawing, the performance improvement of the infinite viewer should
significantly outweigh the improved appearance of the local viewer.

116 GL Programming Concepts

../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ
../../libs/gl32tref/lmcolor.htm#HDROFZ220MARJ
../../libs/gl32tref/RGBcolor.htm#HDRA143X9394
../../libs/gl32tref/c.htm#HDRA143X9262
../../libs/gl32tref/cpack.htm#HDRA143X9284
../../libs/gl32tref/v.htm#HDRA144X97A4
../../libs/gl32tref/n3f.htm#HDRA139X91EF3

Local Lights

Local lights are analogous to a local viewer and are available through the lighting facility. To convert the
blue light from the earlier example to a local light, change the property list definition to the following:
float blue light[] = {

LCOLOR, 0.0, 0.0, 0.6,
POSITION, 0.0, 5.0, 0.0, 1.0, LMNULL};

Changing the fourth positional component from a 0.0 to a 1.0 tells the system that this light is local and
that the x, y, and z components specify a light position rather than a light direction. This is a significant
difference because the light direction vector becomes the vector from the current vertex to the position of
the light. Thus, you must take care not to position the light too close to the surface. If you are not careful,
you may find that you positioned the light source within or below a surface in your scene (notice the y
component of the position is changed from a 1.0 to 5.0 in the property list for M). Like a local
viewer computation, the lighting computation is performed when a vertex subroutine is issued when you
are using a local light.

Using a local viewer or local lights, or both, makes a significant visual difference when you are displaying
geometry that contains flat surfaces. The normal vector across a flat surface is constant. Thus, if you are
using infinite light sources and an infinite viewer, the angular relationships between the normal, view, and
light vectors remain constant, resulting in a constant color across the surface. Using a local viewer or
lights, or both, causes the view or light vectors, or both, and the resultant color to change across the flat
surface. (See the example programgm (inin GL3.2 for AIX: Graphics Library (GL) Technical
Reference (POWER-based Systems Only) .)

Light Attenuation

As you move a light further away from an object, the effect of the light on the object diminishes. This is
referred to as light attenuation. If you are using local lights in your lighting model, the lighting facility will
attenuate them if desired. The amount of attenuation is a function of the distance from the current vertex
to the light source. Because the attenuation function used is the same for all local lights, the attenuation
function is a property of the light model rather than of a particular light. The attenuation function used is as
follows:

1.0
Kot + Krate X Dist

where Koff equals the constant scene attenuation factor, fixed; Krate equals the scene attenuation rate;
and Dist equals the distance from current vertex to light source.

The constant scene attenuation factor sets the minimum attenuation that a light will undergo. It should be
set to a value greater than zero. The attenuation rate controls how fast the attenuation sets in as a light is
moved away. It should not be set to a negative value. The resulting attenuation factor computed at a
vertex is clipped to [0.0, 1.0] and is multiplied with the light source color in order to attenuate it.

To specify attenuation in the light model property list, specify the constant attenuation parameter followed
by the attenuation rate parameter:

float local_light_model[] = {AMBIENT, 0.3, 0.3, 0.3,
LOCALVIEWER, 1.0,
ATTENUATION, 1.0, 1.5, LMNULL};

The fixed scene attenuation factor dampens the overall attenuation function. By increasing the value of the
fixed attenuation factor, you lessen the effect of the distance-dependent attenuation. It is a good idea to

Chapter 7. Creating Lighting Effects 117

../../libs/gl32tref/platelocal_c.htm#HDRSFM70MARJ

start off with the fixed attenuation factor equal to 1.0. That way, when the distance from the vertex to the
light is zero, there is no attenuation. Furthermore, if you make the attenuation rate factor large, the
illumination falls off too quickly.

There are two reasons why the formula shown is used for attenuation, rather than some different form (for
example, an inverse square law):

» One reason is based on physical principles. Although it is true that light from a POINT source falls off as
the square of the distance, this is not true when one is near an extended light source.

» The other reason that the inverse linear form is preferred has to do with monitor phosphors and the
dynamic range of typical monitors. No monitor can be as bright as the sun, nor as dark as a cave. Their
dynamic range does not approach the capabilities of the human eye. An inverse square attenuation (or
an exponential attenuation) leads to very large changes in brightness. Such attenuations normally result
in a very poor visual appearance on the monitor.

Lighting in Matrix Mode

This section outlines the technique of creating lighting effects in matrix mode:

» [Mransfarming Vectors into Normalized Device Coordinates
. P e Tn

Transforming Vectors into Normalized Device Coordinates

If you are not doing lighting calculations, the geometric transformation pipeline is relatively simple. Vertices
(vectors) representing positions in 3-D space are transformed into normalized device coordinates (NDCs,
that is, 3-D cubes whose X, y, and z coordinates are restricted to lie between -1.0 and 1.0) and then
scaled to the physical window (and screen) integer coordinates.

The transformation to NDCs is accomplished by multiplying the input vector by a matrix that represents the
combined actions of modeling, viewing, and projection transformationd. Each of the individual
transformations is represented by a matrix, and these can all be multiplied together to yield one matrix that
has the same effect as the sequential application of all the individual matrices. (See m

Coardinate Systemdfor more information.)

For lighting calculations, the transformation is done in two steps because the calculations require vectors
transformed by the modeling and viewing matrices but not yet projected. The subroutine is
required to put the system into the two-step mode when lighting is turned on.

In the one-step mode, all transformations are kept on one transformation stack, and all transformation
subroutines operate on that stack. In the two-step mode, modeling/viewing transformations are kept
separate from the projection transformations. The modeling/viewing transformations are kept on a stack;
the projection matrix is kept separately and is not on a stack.

There are three matrix modes: MSINGLE, MVIEWING, and MPROJECTION. The default is MSINGLE, the
one-step mode. The system can be placed in the one-step mode by calling

mmode (MSINGLE) ;

although, by default, it is already in that mode. To use lighting the system MUST be placed in the
MVIEWING mode. This is done by making the call

mmode (MVIEWING) ;
After this call, all matrix subroutines operate on the matrix stack. The subroutine returns the top
matrix on the modeling/viewing stack; the loadmatrix, multmatrix, , translatd, lscalg, lookal, and

all operate on the top matrix of the stack. Note, however, that the perspective projection
subroutines (perspectivel, windowi, lartha2, or brthd) are an exception: they do not operate on the

modeling/viewing stack, but rather affect the projection matrix directly.

118 GL Programming Concepts

workcoords.htm
workcoords.htm
../../libs/gl32tref/mmode.htm#HDRXHZ2370MARJ
../../libs/gl32tref/getmatrix.htm#HDRA144X940E
../../libs/gl32tref/loadmatrix.htm#HDRA144X9430
../../libs/gl32tref/multmatrix.htm#HDRA144X9474
../../libs/gl32tref/rotate.htm#HDRA8G2120MARJ
../../libs/gl32tref/translate.htm#HDRA144X95C8
../../libs/gl32tref/scale.htm#HDRA144X95A6
../../libs/gl32tref/lookat.htm#HDRA144X9452
../../libs/gl32tref/polarview.htm#HDRA144X94FC
../../libs/gl32tref/perspective.htm#HDRA144X94DA
../../libs/gl32tref/window.htm#HDRA144X95EA
../../libs/gl32tref/ortho.htm#HDRA144X9496
../../libs/gl32tref/ortho.htm#HDRA144X9496

If the application needs to define a customized perspective transformation (one that is not covered by
perspective, window, ortho, or ortho2) while lighting is turned on, the application should go into
MPROJECTION mode by calling

mmode (MPROJECTION) ;
In this mode all the matrix subroutines operate on the projection matrix. The subroutine returns
the current projection matrix. The loadmatrix, multmatrix, kol, kotatd, , kcale, lookat, and

all operate directly on the projection matrix, as well as the usual prOJectlon subroutines
(perspectivel, Wwindowl, lorthod, and lorthd). On the other hand, the pushmatrix and popmatrix calls
make no sense in this mode because the stack is not directly accessible. Furthermore, no drawing should
be done while in MPROJECTION mode; the system is not configured for drawing when it is in this mode.
When you are finished defining the projection matrix, you should go back directly to MVIEWING mode.
Please heed the following note of caution:

Attention: Entering or leaving MSINGLE mode scrambles the contents of the matrix stack and leaves
the current projection matrix undefined.

When you write a GL program, you must always remember to initialize the transformations. By default,
they are NOT pre-initialized by the system. In the one-step mode (MSINGLE mode), a call to loadmatrix
or to one of the four projection subroutines (perspective, window, brtho3, or larthd) is sufficient. In the
two-step mode, both the projection and the modeling/viewing matrices must be initialized. Again, calls to
the projection subroutines are sufficient to initialize the projection matrix; the modeling/viewing matrix can
be initialized by a call to the loadmatrix subroutine while in MVIEWING mode.

Normally, you load the identity matrix (a 4x4 matrix with ones running along the diagonal, the other entries
zero), although any matrix may be loaded. The initialization is required because most of the matrix
subroutines (multmatrix, kol, kotatd, kransiatd, Ecald, laakal, and lpalarviewl) multiply into the current
matrix, and if that matrix does not exist, the multiplication cannot take place. Remember, if you intend to
use lighting, you must leave MSINGLE mode before performing the initialization.

Like vertices, normal vectors associated with the vertices must also be transformed. However, normals are
transformed according to different mathematical rules than vertices. For lighting calculations, the normal
vectors are multiplied by the inverse transpose of the 3X3 upper left submatrix of the modeling/viewing
transformation.

As you operate on the modeling/viewing stack, its inverse transpose is automatically kept up to date.

The lgetmmadd subroutine returns the current matrix mode. The values returned can be compared to the
values of MSINGLE, MPROJECTION, and MVIEWING to determine the current mode. Mode identifiers are
defined in the /usr/include/gl/gl.hfile.

The following "figure” on page 24 illustrates the calculations done to each vertex sent down the pipeline
in MVIEWING mode.

Chapter 7. Creating Lighting Effects 119

../../libs/gl32tref/getmatrix.htm#HDRA144X940E
../../libs/gl32tref/loadmatrix.htm#HDRA144X9430
../../libs/gl32tref/multmatrix.htm#HDRA144X9474
../../libs/gl32tref/rot.htm#HDRA144X9562
../../libs/gl32tref/rotate.htm#HDRA8G2120MARJ
../../libs/gl32tref/translate.htm#HDRA144X95C8
../../libs/gl32tref/scale.htm#HDRA144X95A6
../../libs/gl32tref/lookat.htm#HDRA144X9452
../../libs/gl32tref/polarview.htm#HDRA144X94FC
../../libs/gl32tref/perspective.htm#HDRA144X94DA
../../libs/gl32tref/window.htm#HDRA144X95EA
../../libs/gl32tref/ortho.htm#HDRA144X9496
../../libs/gl32tref/ortho.htm#HDRA144X9496
../../libs/gl32tref/pushmatrix.htm#HDRA144X9540
../../libs/gl32tref/popmatrix.htm#HDRA144X951E
../../libs/gl32tref/perspective.htm#HDRA144X94DA
../../libs/gl32tref/window.htm#HDRA144X95EA
../../libs/gl32tref/ortho.htm#HDRA144X9496
../../libs/gl32tref/ortho.htm#HDRA144X9496
../../libs/gl32tref/multmatrix.htm#HDRA144X9474
../../libs/gl32tref/rot.htm#HDRA144X9562
../../libs/gl32tref/rotate.htm#HDRA8G2120MARJ
../../libs/gl32tref/translate.htm#HDRA144X95C8
../../libs/gl32tref/scale.htm#HDRA144X95A6
../../libs/gl32tref/lookat.htm#HDRA144X9452
../../libs/gl32tref/polarview.htm#HDRA144X94FC
../../libs/gl32tref/getmmode.htm#HDRIDZ2E0MARJ

world space eye space] screen space
[X,V,Z,W] v — [X,V,Z,W] P — [X,V,Z,W] —_

viewing matrix projection matrix

Lighting Model

[Nx, Ny, Nz] v_1T —» [Nx,Ny,Nz] —p Calculations
OO0 O0O0O0

color

Raster
Subsystem

Lighting Calculations

Positioning the Lights

When a light is bound with the imbind subroutine, the location it takes up in world space depends on the
transformation on the top of the matrix stack. That is, the coordinates of the light are run through the
geometry pipeline just as any other 3-D coordinate would be. This must be kept in mind when rendering
complex, animated scenes.

How to draw a scene where the eyepoint changes from frame to frame, while the light remains fixed in
world coordinates, or to draw a scene where the light moves about from frame to frame, might not be
immediately obvious. Therefore, we summarize the following steps to achieve a moving eyepoint and/or to
have moving lights. There are five general cases:

» A static eyepoint and a static light.

» A static eyepoint and a moving light.

* A moving eyepoint and a static light.

* A moving eyepoint and a moving light.

* A moving eyepoint with the light attached to the eyepoint.

The general rules for binding lights are:

« Call Tmbind(LIGHT#, index) after changing the view.

+ Call Tmbind(LIGHT#, index) only when transformations for the light are premultiplied on the stack.

* Never call Tmbind(LIGHT#, index) when transformations for surfaces are premultiplied on the stack.

The detailed steps in setting up the viewing transformations, the modeling transformation, and the lighting
model specifications for each of these five cases are outlined here. The first four cases all use the
following pseudocode:

1. Specify the kiewing transformation.

2. Push the transformation stack.

3. Set up the modeling matrix to position the light correctly.
4. Call the lmbind subroutine to bind the light source.

120 GL Programming Concepts

../../libs/gl32tref/lmbind.htm#HDRXEZ2340MARJ
../../libs/gl32tref/lmbind.htm#HDRXEZ2340MARJ

5. Pop the transformation stack.
6. Push the transformation stack.
7. Draw the objects.

8. Pop the transformation stack.

A Static Eyepoint and a Static Light
In this scenario, the drawing loop simply repeats steps 6 through 8. Presumably, the objects are drawn in
different locations each time through the loop, if you are interested in having moving objects.

A Static Eyepoint and a Moving Light

In this scenario, the drawing loop returns to step 2 and repeats steps 2 through 8. Each time through the
loop, change the modeling transformation in step 3 to move the light. You can have either moving or static
objects by changing step 7.

A Moving Eyepoint and a Static Light

In this scenario, the drawing loop returns to step 1 and repeats steps 1 through 8. Each time through the
loop, change the viewing transformation in step 1 to move the eyepoint. Do not change the modeling
matrix in step 3 if you do not want the light to move around in world coordinates. Again, you can have
either moving or static objects by changing step 7.

A Moving Eyepoint and a Moving Light

In this scenario, the drawing loop returns to step 1 and repeats steps 1 through 8. Each time through the
loop, change the viewing transformation in step 1 to move the eyepoint. Change the modeling matrix in
step 3 to move the light around. Again, you can have either moving or static objects by changing step 7.

A Moving Eyepoint with the Light Attached to the Eyepoint
This scenario requires a different sequence of steps:

1. Specify the kiewing transformation.

Set up the modeling matrix to position the light correcily.
Call the Imhind subroutine to bind the light source.
Specify the viewing transformation again.

Push the transformation stack.

Draw the objects.

Pop the transformation stack.

N o o koD

In this case, the drawing loop returns to step 4 and repeats steps 4 through 7. Each time through the loop,
change the viewing transformation in step 4 to move the eyepoint. Again, you can have either moving or
static objects by changing step 6.

Lighting Subroutines

The GL lighting facility is implemented with seven additional subroutines to the Graphics Library:
+ b3t and hormal subroutines, which set the current normal.

- Immaodd subroutine, which sets the current matrix mode.

. m subroutine, which returns the current matrix mode.

+ mded subroutine, which defines a material, light source, or lighting model.

« mbind subroutine, which makes a material, light source, or lighting model current.

+ Imcolod subroutine, which enables dynamic resetting of the material properties.

All lighting model property names and constants are symbolically defined in the /usr/include/gl/gl.h file.

Chapter 7. Creating Lighting Effects 121

../../libs/gl32tref/lmbind.htm#HDRXEZ2340MARJ

n3f Subroutine

The 3l subroutine takes the address of an array of three floating-point numbers (the vector parameter)
and sets the value for the current vertex normal. Normal vectors are assumed to be of unit length,
therefore, the "equation” on page k23

X2 +y2 + 72

should equal 1.0. The normal vector is transformed into eye coordinates using the inverse transpose of the
current viewing matrix. It is then stored for use by the lighting equation.

New normals can occur as frequently as every new graphics position and as infrequently as desired. If
only one normal is given per polygon and the lighting equation is evaluated on a per-normal basis (when
using an infinite viewer and infinite light sources), then the calculations are done only once per polygon.
The syntax is as follows:

void n3f(Float32 vector[3])

normal Subroutine

The harmal subroutine takes exactly the same parameter as the h31 subroutine. The only difference is
that normal can be used in display lists and n3f cannot. The syntax is as follows:

void normal(Coord narray[3])

mmode Subroutine

The Inmodd subroutine takes one integer parameter (mode), which is either MSINGLE, MPROJECTION,
or MVIEWING. The different modes are necessary to maintain a separate projection matrix and a separate
modeling/viewing matrix and its inverse transpose.

The modeling/viewing matrix transforms model coordinates into eye coordinates where the lighting
calculations are performed. The inverse transpose of this matrix is used to transform normals from model
coordinates into eye coordinates. The projection matrix transforms eye coordinates into screen
coordinates. The figure entitled "Lighting Calculations” on page fi2d shows how the various matrices
operate on display list coordinates and normal vectors to produce screen coordinates and colors.

The lighting equation uses output of the modeling/viewing matrix and its inverse transpose. To use the
lighting facility, it is necessary to call mmode (MVIEWING) before setting viewing or modeling matrices. This
informs the system that future transformation subroutines will affect the modeling/viewing matrix and its
inverse transpose. Each of the matrix modes is described fully in the following sections. The syntax is as
follows:

void mmode(Int16 mode)

MSINGLE mode is the default mode. The viewing, modeling, and projection matrices are combined into
one matrix, which the m subroutine returns. Because all matrices are combined in MSINGLE
mode, there is no way to transform model coordinates into eye coordinates or to transform normals.
Therefore, the lighting model facility does not work in MSINGLE mode. Entering or exiting from MSINGLE
mode pops the entire matrix stack and leaves the current matrix undefined.

In MPROJECTION mode, all matrix subroutines deal only with the projection matrix. There is only one
projection matrix, and the pushmatrix and popmatrix subroutines result in errors in MPROJECTION

122 GL Programming Concepts

../../libs/gl32tref/n3f.htm#HDRA139X91EF3
../../libs/gl32tref/normal.htm#HDRA142X9B7
../../libs/gl32tref/n3f.htm#HDRA139X91EF3
../../libs/gl32tref/mmode.htm#HDRXHZ2370MARJ
../../libs/gl32tref/getmatrix.htm#HDRA144X940E
../../libs/gl32tref/pushmatrix.htm#HDRA144X9540
../../libs/gl32tref/popmatrix.htm#HDRA144X951E

mode. The getmatrix subroutine returns the current projection matrix. The modeling/viewing matrix is
disabled while in MPROJECTION mode: the results of transforming points in MPROJECTION are
undefined.

In MVIEWING mode, all matrix subroutines deal only with the modeling/viewing matrix and its inverse
transpose. All matrix subroutines premultiply or load the modeling/viewing matrix by the matrix, and
premultiply or load the inverse transpose viewing matrix with the inverse transpose of the matrix.

For the loadmatrix and multmatrix subroutines, the matrix has to be inverted, so singular matrices will
cause an error. In MVIEWING mode, the getmatrix subroutine returns the modeling/viewing matrix. The
perspectivd, windowl, brthd, and brtha2 subroutines load a projection matrix even in MVIEWING mode.
Because these subroutines do not affect the modeling/viewing matrix stack and because it is common to
build a viewing matrix using subroutines that only multiply matrices, it normally is necessary to load an
identity matrix onto the modeling/viewing matrix stack before defining the viewing matrix.

getmmode Subroutine

The m subroutine returns the current matrix mode. The values returned can be compared to the
values of MSINGLE, MPROJECTION, and MVIEWING to determine the current mode. Mode identifiers are
defined in the /usr/include/gl/gl.hfile. The syntax is as follows:

Int32 getmmode()

Imdef Subroutine

The Imded subroutine defines a new material, light source, or lighting model and takes four parameters.
The first parameter, deftype, specifies what is to be defined and is either DEFMATERIAL, DEFLIGHT, or
DEFLMODEL. The second parameter, index, is the name or index into the table of stored materials, light
sources, or lighting models. Indexes for each of these groups are independent. You can define up to
65535 materials, 65535 light sources, and 65535 lighting models. However, index 0 is predefined for each
group and cannot be changed.

The third parameter, numpoints, is the length of the properties array and is the number of floating point
numbers contained within the array. The fourth parameter, properties, is the properties array, which is a list
of properties to be assigned to the material, light source, or lighting model. Values in the array are property
identifiers, each followed by the appropriate number of data values. All identifiers and data values are
floating-point numbers. Only property identifiers appropriate for the object being defined should be included
in the properties array. The last entry must be LMNULL (0.0). Property identifiers are defined in the
lusr/include/gl/gl.h file.

All properties have default values that have been chosen for their efficient execution. The first time a
material, light, or lighting property is defined, it is initialized to the default values. A definition can be set to
all default values by calling the Imdef subroutine with either a null pointer to the property array (C
programming language only) or with LMNULL (0.0) as the first and only property identifier.

Incremental changes can be made to a material, light source, or lighting model definition. Each call to the
Imdef subroutine changes only the properties included in its properties array. Properties that are not
specified in the properties array keep their previous values. Any valid property can be changed regardless
of whether that property is relevant to the current lighting calculation. However, changes made to a
definition that is currently bound are effective immediately.

The format of the properties array is a sequence of property identifiers each followed by the appropriate
number of data values. The last array entry must be LMNULL. Described below are the material, light
source, and lighting model properties along with the number of data values that follow each identifier. Each
property is called by its symbolic name. The syntax is as follows:

void Tmdef(Int1l6 deftype, Int32 index,
Int16 numpoints, Float32 properties[])

Chapter 7. Creating Lighting Effects 123

../../libs/gl32tref/loadmatrix.htm#HDRA144X9430
../../libs/gl32tref/multmatrix.htm#HDRA144X9474
../../libs/gl32tref/perspective.htm#HDRA144X94DA
../../libs/gl32tref/window.htm#HDRA144X95EA
../../libs/gl32tref/ortho.htm#HDRA144X9496
../../libs/gl32tref/ortho.htm#HDRA144X9496
../../libs/gl32tref/getmmode.htm#HDRIDZ2E0MARJ
../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ
../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ

Material Properties
Material properties are all the properties a material groups together to define its surface characteristics,

such as diffuse reflectance and shininess. The available material properties are as follows:

EMISSION The EMISSION property is the emission color of the material. Following the property
identifier should be the new R, G, B color values where 0.0 <= R, G, B <= 1.0.

AMBIENT The AMBIENT property is the ambient reflectance of the material. Following the property
identifier should be the new R, G, B color values where 0.0 <= R, G, B <= 1.0.

DIFFUSE The DIFFUSE property is the diffuse reflectance of the material. Following the property
identifier should be the new R, G, B color values where 0.0 <= R, G, B <= 1.0.

SPECULAR The SPECULAR property is the specular reflectance of the material. Following the property
identifier should be the new R, G, B color values where 0.0 <= R, G, B <= 1.0.

SHININESS The SHININESS property is the specular light scattering exponent. Following the property

identifier should be the new value for the shininess. The values for shininess can range
from 0.0 to 128.0 and should represent whole numbers. If shininess <= 0.0 then there will
be no specular highlight. This is functionally equivalent to setting the material specular
reflectance to [0.0, 0.0, 0.0].

ALPHA The ALPHA property is the transparency of the material and can be used when performing
alpha blending. Following the property identifier should be the new alpha value where 0.0
<= alpha <= 1.0. Certain alpha blending operations require that alpha bitplanes be installed
in the system.

COLORINDEXES Specifies the material properties used when lighting in color map mode.

The default values for material properties are:

EMISSION 0.0, 0.0, 0.0
AMBIENT 0.2,02,02
DIFFUSE 0.8, 0.8, 0.8
SPECULAR 0.0, 0.0, 0.0
SHININESS 0.0

ALPHA 1.0
COLORINDEXES 0.0, 127.5, 255.0

Light Source Properties
Light source properties are all the properties a light source groups together to define its characteristics,
such as color and position. The available light properties are as follows:

AMBIENT The AMBIENT property is the color of the ambient light associated with the light source.
Following the property identifier should be the new R, G, B color values where 0.0 <= R,
G, B <= 1.0.

LCOLOR The LCOLOR property is the color of the light source. Following the property identifier
should be the new R, G, B color values where 0.0 <= R, G, B <= 1.0.

POSITION The POSITION property is the position of the light source. Following the property

identifier should be the new X, y, z, and w coordinates of the light. If the w coordinate of
the light source is 0.0, the light is an infinite light source and its position specifies the light
direction. (Such a light source can be called a directional light source.) The light direction
is computed by normalizing the light's position vector. If the w coordinate of the light is
not 0.0, then the light is a local light and x, y, z, and w are divided by w to specify the
position. Light positions or directions are defined in the current model coordinate space
and are affected by the current transformation matrix at the time they are bound.

SPOTDIRECTION Assigns the direction (axis) in which a spotlight source emits.

SPOTLIGHT Assigns the spread angle and concentration exponent of a spotlight.

The default values for light source properties are:

AMBIENT 0.0, 0.0, 0.0

124 GL Programming Concepts

LCOLOR 1.0, 1.0, 1.0

POSITION 0.0, 0.0, 1.0, 0.0
SPOTDIRECTION 0.0, 0.0, -1.0
SPOTLIGHT 0.0, 180.0

Lighting Model Properties
Lighting model properties are all the properties of a lighting model, such as scene ambient light and

distance attenuation factors. The available lighting model properties are as follows:

AMBIENT The AMBIENT property is the color of ambient light in the scene. Following the property
identifier should be the new R, G, B color values where 0.0 <= R, G, B <= 1.0.
LOCALVIEWER The LOCALVIEWER property informs the system whether the viewer (eye position) is local to

the scene. Following the property identifier should be either 1.0 or 0.0 (true or false). If the
viewer is local, then the eye position is assumed to be located at (0,0,0) in eye coordinates.
When the viewer is local, the vector from the vertex to the eye must be calculated for each
vertex. If the viewer is not local, then the viewer is at infinity along the positive z axis. The
view direction vector is [0,0,1] for all vertices.

Note: The LOCALVIEWER property affects only the manner in which the lighting

calculations are performed. The setting of the LOCALVIEWER does not in any way

affect the transformation stack or alter the geometrical position of the surfaces being

drawn. It only affects their apparent color (the output of the lighting calculations).

ATTENUATION The ATTENUATION property is the scene attenuation factors. Following the property identifier

should be the new values for the fixed scene attenuation factor and the variable scene
attenuation factor. If either factor is less than 0.0 then it is set to 0.0. If the variable
attenuation factor equals 0.0, then lighting attenuation is turned off.

The default values for lighting models are:

AMBIENT 0.2,0.2,02
LOCALVIEWER 0.0
ATTENUATION 1.0, 0.0

Imbind Subroutine

The Imbind subroutine takes two integer parameters: the first, target, specifies the target of the bind and
the second, index, is the index of the source. When a source is bound to a target, it becomes current and
subsequent evaluations of the lighting equation use its values. The syntax is as follows:

void Tmbind(Intl6 target, Int32 index)

The three types of targets are as follows:

MATERIAL If the target of a bind is MATERIAL, the source material becomes the currently bound material.
There is only one material target and therefore only one currently bound material.

Source materials are specified using the same index as when the material was defined using the
Iimdef subroutine. For example,

Tmbind (MATERIAL, 2)

binds material definition 2 to the currently bound material. Material O is the default material and
disables lighting calculations. This is the most efficient method to disable the lighting calculations. It
is functionally equivalent to binding lighting model 0. If an undefined material is the source for the
Imbind subroutine, material 0 is bound instead.

Chapter 7. Creating Lighting Effects 125

../../libs/gl32tref/lmbind.htm#HDRXEZ2340MARJ
../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ

LIGHTS There are MAXLIGHTS lights available as targets (LIGHTO, LIGHT1, and so on), and therefore a
MAXLIGHTS number of current lights. If the target of a bind is a light, then the source light
replaces whatever light was previously bound to the target. The replaced light is turned off and the
newly bound light is turned on. To turn a light off, bind light index 0 to the target light.

Source lights are specified using the same index as when the light was defined using the imdef
subroutine. For example,

Tmbind (LIGHT3, 54)

binds user light definition 54 to system light 3. Light index 0 is the default light and while bound
disables lighting calculations for the system light target. If an undefined light is the source to the
subroutine, light 0 is bound instead.

When a local light is bound, its position is transformed by the current modeling/viewing matrix and
stored. If the light is infinite, its position is taken as its direction and is also transformed by the
current modeling/viewing matrix and stored. Thus, by binding a light after some modeling
transformations, a light can easily be made part of an object that is moved through the scene (for
example, a handheld candle).

LMODEL If the target of a bind is LMODEL, then the source lighting model becomes the current lighting
model. There is only one lighting model target and therefore only one current lighting model.

Source lighting models are specified using the same index as when the lighting model was defined
using the subroutine. For example,

Tmbind (LMODEL, 1)

binds lighting model 1 to the current lighting model. Lighting model 0 is the default lighting model
and disables all lighting calculations. If an undefined lighting model is the source for the Imbind
subroutine, lighting model 0 is bound instead.

Imcolor Subroutine
The discussion of the Imcolad subroutine appears in [Advanced 1 ighting Capahilitied.

Lighting Execution Time and Performance

The lighting equation is evaluated whenever the normal or the graphics position changes, depending on
whether the viewer and light sources are local. If the viewer is local, or any of the light sources are local,
then the lighting calculation is performed when the graphics position changes (for example, when a k3t
command is issued).

When the viewer is local, the vector from the vertex to the eye is different for each vertex and has to be
calculated for each point. If the viewer is at infinity, then view vector is constant for all vertices and the
calculation time is less. When a light source is local, the vector from the vertex to the light source is
different for each vertex and has to be calculated for each vertex. If a light is at infinity, then light direction
vector is constant for all vertices and the calculation time is less.

Performance is highest when an infinite viewer and a single infinite light source are used in the lighting
calculation. Execution time increases slightly for each infinite light source added to the computation.
However, the addition of local light sources increases the execution time noticeably.

After a normal is transformed by the inverse transpose of the modeling/viewing matrix, it must be
renormalized if the transforming matrix is not orthonormal. This renormalization takes additional time and
results in lower performance.

A matrix is orthonormal if each of its row vectors is of unit length and orthogonal to the others. Rotations
and translations are always orthonormal. Shear transformations are never orthonormal. Because GL does

126 GL Programming Concepts

../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ
../../libs/gl32tref/lmbind.htm#HDRXEZ2340MARJ
../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ
../../libs/gl32tref/lmcolor.htm#HDROFZ220MARJ
../../libs/gl32tref/v.htm#HDRA144X97A4

not have any built-in shear transformations, the only transformations that might generate a nonorthonormal
modeling/viewing matrix are the multmatrid and loadmatrid subroutines, and the kcald subroutine when
the x, y, and z scale factors are not equal.

Note: If the transformation has been made nonorthonormal by introducing a shear or other
nonorthonormal transformation, the system is automatically renormalizing normal vectors. In such a
case, you do not need to feed normalized normal vectors to the system because they are
renormalized anyway. Note, however, this should not be used as a trick to avoid explicit normalization
by the user application.

Formula for Lighting Calculation

Lighting is calculated by the use of the following formula:
num_lights

|V = |lmambgamb Z kemiS(g /I\) + |iamb kamb pi|iinc Kdiff

i=0

A A
n- |

ey tickeres(e
The symbols are as follows:
IV is the color to be assigned to the vertex.
Imamb s the pervading ambient light (set with AMBIENT in LMODEL).
l@mb js the ambient intensity of the it light (set with AMBIENT in LIGHT).
linc is the direct intensity of the ith light (set with COLOR in LIGHT).

pi is the amount of light i is attenuated (computed internally if ATTENUATION
has been set in LMODEL).

kemis is the surface emissivity (set with EMISSIVITY in MATERIAL).

kamb js the ambient reflectivity (set with AMBIENT in MATERIAL).

kdiff is the diffuse reflectivity (set with DIFFUSE in MATERIAL).

kSPec is the specular reflectivity (set with SPECULAR in MATERIAL).

s is the shininess of the specular reflection (set with SHININESS in MATERIAL).

n is the unit normal vector to the surface (set with either the normal or n3f
subroutine).

l; is a unit vector pointing to the it light source (computed internally).
ri is a unit vector, the reflection of |; about the normal (computed internally).

v is a unit vector, pointing toward the viewer (computed internally).

Chapter 7. Creating Lighting Effects 127

../../libs/gl32tref/multmatrix.htm#HDRA144X9474
../../libs/gl32tref/loadmatrix.htm#HDRA144X9430
../../libs/gl32tref/scale.htm#HDRA144X95A6

How r, I, v and p Are Computed
The unit view vector (V) is given by the following equation:

-

V== if LOCALVIEWER is on (true)
| |

A A . .

V=2 if LOCALVIEWER is off (false)

The unit light vector (/) is given by the following equation:

= % if light is local (w ! =0)
| Li - X
i
T — if light is at infinity (w = 0)
| T
The reflection vector (r) is given by the following equation:

A A A A A
fi _(2Ii"n)n _li

The attenuation factor (p) is given by the following equation:

1

Koff"‘Kratel _L|>—7|

pi =

The attenuation factor is then clipped to a value from 0.0 to 1.0.
The symbols are as follows:

Tis the three-space position (x/w, y/w, z/w) of the vertex.

p——

L; is the location of the ith light in three-space set (set with POSITION in LIGHT).
A

z is a unit vector pointing in the positive (negative) z direction (z = (0,0,1)).

Koff and Kizte are the attenuation offset and rate constants (set with
ATTENUATION in LMODEL).

128 GL Programming Concepts

Chapter 8. Performing Depth-Cueing

Depth-cueing makes an image appear 3-D by drawing those points brighter that are nearer to the viewer.
In depth-cue mode, the intensities of all the polygons, lines, and points drawn to the screen vary according
to their z values. Depth-cue mode is invoked by the depthcud subroutine. For more information on
performing depth-cueing, see:

. [ELof Gl DenihCueng Sul el

List of GL Depth-Cueing Subroutines

depthcud Turns depth-cueing on and off.

m Indicates whether depth-cue mode is on or off.

m Sets the range of color indexes to use for depth-cueing in RGB mode.
m Sets the range of color indexes to use for depth-cueing in color map mode.

Depth-Cueing in Color Map Mode

For depth-cueing to work properly, the m locations specified by the W subroutine must
be loaded with a series of colors that gradually increase or decrease intensity. The Ishaderange

subroutine specifies the low-intensity color map index (lowindex) and the high-intensity color map index
(highindex). These values are mapped to the low and high z values specified by z1 and z2. The high index
must be greater than the low index and the difference between the high index and the low index must be
less than the difference between z1 and z2.

The values of z1 and z2 should correspond to or lie within the range of z values specified by the
subroutine, which delineates the entire transformation range. The Ishaderange subroutine
specifies the range of values where all of the shading is to occur.

The entries for the color map between the low index and the high index should reflect the appropriate
sequence of intensities for the color being drawn. When a depth-cued point is drawn, its z value is used to
determine its intensity. When a depth-cued line is drawn, the intensities of its points are linearly
interpolated from the intensities of its endpoints, which are determined from their z values. You can
achieve higher resolution if the near and far W bound the object as closely as possible.

Depth-Cueing in RGB Mode

Depth-cueing in BGR madd works in much the same way as in talor map madd. The only difference is
that a color ramp does not need to be loaded in the color map. Instead, the near and far RGB colors are
specified, and intermediate points are colored by linearly interpolating between the near and far colors.

In general, the color map mode version of depth-cueing is more interesting and versatile, because one has
direct control over the intermediate colors. For instance, every tenth color map entry can be made brilliant
white, or deep black, to superimpose a depth grid on the figure.

© Copyright IBM Corp. 1994 129

../../libs/gl32tref/depthcue.htm#HDRPNK22D0MARJ
../../libs/gl32tref/depthcue.htm#HDRPNK22D0MARJ
../../libs/gl32tref/getdcm.htm#HDRA5OK230MARJ
../../libs/gl32tref/lRGBrange.htm#HDRA143X93D8
../../libs/gl32tref/lshaderange.htm#HDRFKK1D0MARJ
../../libs/gl32tref/lshaderange.htm#HDRFKK1D0MARJ
../../libs/gl32tref/lsetdepth.htm#HDRNAR120MARJ

130 GL Programming Concepts

Chapter 9. Configuring the Frame Buffer

Information on configuring the frame buffer for GL includes the following topics:

The main color frame buffer stores GL image data pixel by pixel and makes the data available for display.
The memory in the main frame buffer can be addressed in single or double buffer mode. You can set the
number of bitplanes available for loverlay and underlay. Z-buffering is available for three-dimensional
calculations, and w functions enable you to determine the current configuration of the frame buffer.

List of GL Frame Buffer Configuration Subroutines

backbufferd Enables drawing in the back buffer.

Houblebutfed Sets the display mode to double buffer mode.

drawmode Chooses a set of bitplanes for drawing.

Erontbuffel Enables drawing in the front buffer

W Returns the current drawing mode.

m Returns information about currently installed graphics hardware.
betplaned Returns the number of available bitplanes.

betzhuffed Indicates whether z-buffering is on or off.

bverlay Sets the number of bitplanes used for overlay.

kinglebuffed Sets the display mode to single buffer mode.

Ewapbufferd Exchanges the front and back buffers.

m Sets the number of bitplanes used for underlay.

kbuffed Enables or disables the z-buffer for storing depth information.
kdraw Enables drawing to the z-buffer.

Understanding the Frame Buffer

Effective use of the full capabilities of GL requires an understanding of the frame buffer and its
organization. GL supports overlay planes, underlay planes, a double-buffered “main” frame buffer, a
z-buffer, an alpha buffer, color maps, and gamma ramps (see the figure entitled "Frame Buffer
Configuration” on page 133). These can be turned on or off, reconfigured, masked with writemasks, and
so on. However, the actual number of bitplanes in each buffer varies from adapter to adapter, and
therefore the ways in which these bitplanes can be configured and controlled vary from adapter to adapter.
The following sections present some basic concepts about the operation of a frame buffer. Following these
brief discussions are descriptions of the characteristics of the different systems.

© Copyright IBM Corp. 1994 131

../../libs/gl32tref/backbuffer.htm#HDRA145X94A
../../libs/gl32tref/doublebuffer.htm#HDRA145X91A7
../../libs/gl32tref/drawmode.htm#HDRA143X9460
../../libs/gl32tref/frontbuffer.htm#HDRA145X9A0
../../libs/gl32tref/getdrawmode.htm#HDRA143X9482
../../libs/gl32tref/getgdesc.htm#HDRT9311E0MARJ
../../libs/gl32tref/getplanes.htm#HDRA143X94A4
../../libs/gl32tref/getzbuffer.htm#HDRA9SR350MARJ
../../libs/gl32tref/overlay.htm#HDRA143X950A
../../libs/gl32tref/singlebuffer.htm#HDRA145X9259
../../libs/gl32tref/swapbuffers.htm#HDRA145X9302
../../libs/gl32tref/underlay.htm#HDRAZ5O370NITA
../../libs/gl32tref/zbuffer.htm#HDRA143X97B1
../../libs/gl32tref/zdraw.htm#HDRA143X97F5

cooe | (S| [V (2™ |
Eye

Underlay Main Overlay

ap. o Goor

RGBS R G Bl O RG Bl

dhd hdl B adhdhd Bl ?1%® n

e[« |] [efelel @ [] [¢ele

KE IE olefe

oloo| s e

olo|o

4095

Gamma
Ramps

DAC’s:
Digital
Analog
Converters

=5

v

w

Color

Monitor

P —
Frame Buffer Configuration

132 GL Programming Concepts

i
;

Main Color Buffer

The main color buffer can be thought of as having the width and height of the window and a depth that
can vary from 8 bits to 48 bits, depending on the current configuration and the installed adapter. Pixels
stored in this main buffer can be interpreted through a downstream color map (that is, the values stored in
the frame buffer are color map indexes), or they can be interpreted directly as red, green, blue (RGB)
values, with no intervening color maps. (For more information on how to use or bypass the color maps,
see Mlorking in Color Map and RGB Maded.)

The main color buffer can be single buffered or double buffered, depending on the current configuration
and the installed adapter. In double buffer mode, the main color buffer is divided in two: the front buffer,
which is visible, and the back buffer, which is invisible but can be drawn into. Double buffering is an
important technique used to provide smooth animation of moving pictures. (For more information on how

to use double buffering, see [Creating Animated Scened.)

The color map configuration and single and double buffer configuration can be changed dynamically by
making appropriate GL subroutine calls. The scope of such reconfiguration extends only over the current
drawing window.

Multiple windows can appear on the screen, each independently double buffered, each in color map or
RGB mode independent of the others. There is no limit to the number of such windows.

Overlay and Underlay Buffers

Like the main color buffer, the overlay and underlay buffers have the width and height of the window. Their
depth can range from 0 to 4 bits deep, depending on the installed adapter and the current configuration.
Overlay and underlay bitplanes cannot be double buffered and are always in color map mode.

Overlays and underlays function exactly as the names suggest: drawing into the overlay buffer obscures
the main color buffer, and drawing into the main color buffer obscures the underlay. (For more information

on overlays and underlays, consult Linderlay and Qverlay Modes.)

Some sophisticated applications find that four overlay and four underlay planes are not enough. Multiple
overlays or underlays, even double-buffered overlays and underlays, can be created by appropriately
manipulating the color map and the writemasks associated with the main color buffer. Such tricks can
easily get quite complicated, and such extra overlays have effectively been stolen from the main color

buffer. (For more information on writemasks, see Mritemasks and | ogical Operationd.)
Alpha Buffer

In order for GL to support an alpha blending (transparency) buffer, the installed adapter must contain an
alpha buffer. (For more information on alpha blending, see lAlpha Blending Mades .)

Z-Buffer

The z-buffer stores the z value for each pixel on the screen. The z value represents the z coordinate, or
distance to the eye, for each pixel. When z-buffering is enabled with the Eﬁ subroutine, the system
compares the z values for each pixel of any new polygon, line, point, or character to the current z value for
each pixel and renders only those values representing a distance closer to the eye. (For further discussion
of z-buffering, see Removing Hidden Surfaced.)

Query Functions

The query functions available for determining the current frame buffer configuration are the W
Betplaned, and lgetzbuffed subroutines.

Chapter 9. Configuring the Frame Buffer 133

../../libs/gl32tref/zbuffer.htm#HDRA143X97B1
remhidden.htm
../../libs/gl32tref/getdrawmode.htm#HDRA143X9482
../../libs/gl32tref/getplanes.htm#HDRA143X94A4
../../libs/gl32tref/getzbuffer.htm#HDRA9SR350MARJ

Working in Color Map and RGB Modes

This section contains discussions on the following topics:

. m including RGB mode and color map mode
+ lOnemap and Multimap Modé

+ [Gamma Correctiod

The creation of graphics includes two basic steps: first, the drawing subroutines write data into the
bitplanes, and second, the display hardware interprets that data as colors on the screen. The GL
subroutines control both the patterns of zeros and ones that are written into the bitplanes of each pixel and
the interpretation of those patterns as colors on the screen.

List of GL Color Map and RGB Mode Subroutines

kmade Sets color map mode as the current mode.
W Defines a color map ramp for gamma correction.
m Returns the organization of the current color map.
m Returns the number of the current color map.
getmcolod Gets a copy of the RGB values for a color map entry.
betmcolord Returns a range of color map RGB values.
imapcolod Changes a color map entry to a specified RGB value.
imapcolord Loads a range of color map entries.

m Organizes the color map as 16 small maps.
bnemag Organizes the color map as one large map.
RGBmode Sets a display mode that bypasses the color map.
ketmag Selects one of 16 small color maps.

Color Display

If you have a standard monitor, it has three color guns that sweep the entire screen area 60 times per
second. During this sweep, each gun points directly at each of the pixels for a very short time. The color
guns shoot out electrons that strike the screen and cause it to glow.

Each pixel on the screen is composed of three different phosphors that glow red, green, or blue. One color
gun activates only the red phosphors, one only the green, and the other only the blue. As each color gun
sweeps across the pixels, the number of electrons shot out (the intensity) is modified on a pixel-to-pixel
basis.

Consider just the red color gun. If no electrons are fired at a pixel, its phosphors do not glow at all, and it
appears black. If the gun is turned on to its highest intensity, the phosphor glows bright red. At
intermediate intensities, the colors vary between black to bright red.

The same is true for the other guns, except that the colors vary from black to bright green, or from black to
bright blue. The color your eye perceives for a pixel is the combination of all three colors. Different
combinations of intensity settings of the guns cause a wide variety of colors to appear.

Each color gun can be set to 256 different intensity levels, ranging from completely off to completely on.
Setting 0 is completely off and setting 255 is completely on. The intensities of the red, green, and blue
guns at the pixel determine its color. This is expressed as an RGB triple: three numbers between 0 and
255 indicating the red, green, and blue intensity, in that order.

134 GL Programming Concepts

../../libs/gl32tref/cmode.htm#HDRA146X93D6
../../libs/gl32tref/gammaramp.htm#HDRKZ4NITA
../../libs/gl32tref/getcmmode.htm#HDRA146X948E
../../libs/gl32tref/getmap.htm#HDRA146X94E2
../../libs/gl32tref/getmcolor.htm#HDRNXI1100MARJ
../../libs/gl32tref/getmcolors.htm#HDRUI2F0MARJ
../../libs/gl32tref/mapcolor.htm#HDRA146X9535
../../libs/gl32tref/mapcolors.htm#HDRCV2170MARJ
../../libs/gl32tref/multimap.htm#HDRA146X9593
../../libs/gl32tref/onemap.htm#HDRA146X95EF
../../libs/gl32tref/RGBmode.htm#HDRA143X93B6
../../libs/gl32tref/setmap.htm#HDRA146X9646

For example, black is represented by (0,0,0), bright red by (255,0,0), and bright green by (0,255,0). Other
examples include: (255,255,0) = yellow, (0,255,255) = cyan, (255,0,255) = magenta, (255,255,255) =
white. The colors represented by black = (0,0,0), (1,1,1), (2,2,2), and so on through (255,255,255) = white
are different shades of gray ranging from black to white. Because each gun has 256 different settings,
there are 16777216 (256x256x256) different colors available.

RGB Mode

The simplest way to interpret pixel data is to provide 8 bits each (255 values) for red, green, and blue,
then display exactly those values of red, green, and blue on the screen. This is called RGB mode and
requires 24 bits of data per pixel.

Hardware for RGB mode can be built easily if there are 24 bitplanes available. Each one of the three
groups of eight bitplanes can be used to store one of the RGB components. Each component is then fed
via the digital-to-analog converters (DAC) to the electron guns of the monitor.

Through a technique called dithering, RGB mode is also available on adapters with fewer than 24
bitplanes; in particular, the 8-bitplane systems. Because the 256 colors available on a 8-bitplane system
are not enough to create full-color images if employed in the most straightforward fashion, another
technique, such as dithering, is required to achieve full color realism.

Dithering is similar to the process used by magazines to print full-color photographs with a base of only
four colors. To replicate a color that is not in the palette of 256, alternating pixels in the frame buffer are
set to either one of the two or more nearest available colors. This creates a faint and very fine
checkerboard pattern that, when viewed from a distance, appears to be the desired color. The success of
this technique depends on the fact that the pixels are imperceptible at normal viewing distances.

Color Map Mode
Another way to write and interpret the data in the bitplanes is color map mode. Many applications are

better suited to color map mode than to BGR madd. Many of the principles of color maps are used in the
overlay, underlay, and pop-up menu modes.

Color map mode is useful for representing scalar false color data, such as temperatures, pressures,
viscosities, strains, elevations, and material compositions. It also provides a convenient way to achieve
blinking or other simple animation. This technique, called color map animation, makes predrawn images
appear to move by simply changing the color map.

Color map mode provides a level of indirection between the values stored in the bitplanes and the RGB
values displayed on the screen. The value stored in the standard bitplanes (up to 12 bits) is interpreted as
an index into a color map. Each entry in the color map consists of a full 8 bits each of red, green, and blue
intensity. To specify a color for a pixel on the screen, set the corresponding bit in each of the 12 bitplanes
to represent a number between 0 and 4095. This number specifies an index into the color map that
indicates the red, green, and blue value for that pixel.

Because the system is in color map mode by default, the lowest 8 values in the color map are loaded as
follows:

The Lowest 8 Color Map Values

Red Green Blue Color

0 0 0 BLACK
255 0 0 RED

0 255 0 GREEN
255 255 0 YELLOW
0 0 255 BLUE

255 0 255 MAGENTA

Chapter 9. Configuring the Frame Buffer 135

0 255 255 CYAN
255 255 255 WHITE

In the default color map mode, therefore, an index value of O for a given pixel causes that pixel to be
displayed as black.

Virtualization of Colormaps
The X server treats colormaps as a shared resource, that is, colormaps are virtualized by the X server.

Every X client can, but does not have to, request a colormap that is unique to itself and is different from
those of the other clients. Under certain circumstances (usually when the client has “focus”), the colormap
for that client is loaded into the physical hardware colormap. In such a case, the colors for the given
window for the given client appear correct; the colors of the other windows (possibly including the root
window) may appear incorrect, if the colormaps of the other windows are different than the currently
loaded colormap. The X server does not set the policy for when a given colormap is loaded; this is done
by the window manager. Additional information about colormaps and colormap focus policies can be found
in the X and Motif documentation.

Note: Some graphics adapters have more physical hardware colormaps than others. In particular, the
24-bit POWERGgraphics GTO, POWER Gt4 and POWER Gt4x adapters have five hardware
colormaps each. The X server, in concert with the window manager, is able to manage all five
colormaps. If all the clients running on the screen request more than five different colormaps, at least
some of the clients will have the incorrect colormap installed. This affects the management of
colormaps.

GL Colormaps
The GL paradigm for colormaps is that of a single, hardware colormap. Historically, the GL applications

programming interface (API) did not virtualize colormaps; it simply provided access to a single hardware
colormap. In the integration of GL with X windows, this behavior is emulated with special code. Thus, the
mapcolor and mapcolors subroutines set a single colormap kept within the X server. A change to this
colormap by one GL application affects not only all windows of that application, but all GL applications.
Thus, GL applications must cooperate in the sharing of this colormap to obtain high quality visual results.

Using X11 Colormaps with GL
GL supports the use of X11 colormap management subroutines to set and change the colormap(s)

associated with a GL window. If the X11 colormap routines are not used, GL creates a single instance of a
colormap and associates it with each GL window that is created. This single colormap is accessed with the
mapcolor and mapcolors subroutines. Use of this default colormap can be side-stepped by using the X
Window System to create a separate colormap, and associate it to a GL window.

If X11 is used to manage the colormaps for GL windows, then X11 must also be used to allocate the
entries in the colormap. The mapcolor and mapcolors subroutines can be used to change the colors only
in the default, private GL map and not in any separately created colormaps.

An example showing how X11 colormap facilities can be used with GL is found in
lusr/lpp/GL/examples/Xcolormap.c.

Note: On the POWERgraphics GXT1000, be sure that the correct X11 window ID has been obtained.
Note the GXT1000-specific information in the getXdpy subroutine.

Onemap and Multimap Modes

When you are in color map mode and in the default onemap mode, the value of the color bitplanes is used
as an index into the color map to determine the color displayed on the screen. In onemap mode, the
lowest order 12 bits in the frame buffer are used to index into a 4096-entry color map.

136 GL Programming Concepts

In multimap mode, the lsetmap subroutind makes one of the 16 small color maps current. All display is
done using the current small map, and the Imapcolof subroutine affects that map.

Call the Bcanfig subroutine to activate the onemap or multimap settings.

Subroutines you use with the bnemap subroutind and ultimap subroutingd are: the etcmmodd
Bubroutind

, which returns the organization of the current color map; the lsetmapAuhmulmd which selects
which of the small maps the system uses in multimap mode; the m subroutine, which returns the
number of the current color map; and the m subroutine, which cycles through the color maps at a
selected rate.

multimap Subroutine

The m subroutine organizes the color map as 16 small maps, each with a maximum of 256 RGB
entries. The multimap subroutine does not take effect until the m subroutine is called. The syntax is
as follows:

void multimap()

onemap Subroutine

The subroutine organizes the color map as a single map with 4096 entries. You must call the
m subroutine for the onemap subroutine to take effect. Onemap is the default mode. The syntax is
as follows:

void onemap ()

getcmmode Subroutine
The m subroutine returns the organization of the current color map. A return value of FALSE
indicates multimap mode, and TRUE indicates onemap mode. The syntax is as follows:

Int32 getcmmode ()

setmap Subroutine
The ERE subroutine selects which of the small maps (0 through 15) the system uses in multimad
hodd. This selection is ignored in onemap mode. The syntax is as follows:

void setmap(Intl6 mapnum)

getmap Subroutine
The subroutine returns the number (from 0 to 15) of the current color map. In onemap mode, this
subroutine always returns 0. The syntax is as follows:

Int32 getmap()

cyclemap Subroutine

The m subroutine cycles through color maps at a specified rate. It defines a duration (in kertical
ketraced, the current map, and the map that follows when the duration lapses. For example, the following
routines set up multimap mode and cycle between two maps, leaving map 1 on for 10 vertical retraces
and map 3 on for 5 retraces:

multimap();

gconfig();
cyclemap(10, 1, 3);
cyclemap(5, 3, 1);

When you kill a window or attach to a new window, the maps stop cycling. The syntax is as follows:
void cyclemap(Intl6 duration, Intl6 map, Intl6 nextmap)

Gamma Correction

The light output of any video display is controlled by the input voltage to the monitor. The relationship
between input voltage and the brightness of the display, however, is not linear. For instance, assume that
100% of a monitor’s input voltage produces 100% brightness. If you reduce the voltage to 50% of its initial
value, the monitor might display only 19% of its initial brightness.

Chapter 9. Configuring the Frame Buffer 137

../../libs/gl32tref/mapcolor.htm#HDRA146X9535
../../libs/gl32tref/gconfig.htm#HDRHS4260NITA
../../libs/gl32tref/multimap.htm#HDRA146X9593
../../libs/gl32tref/gconfig.htm#HDRHS4260NITA
../../libs/gl32tref/onemap.htm#HDRA146X95EF
../../libs/gl32tref/gconfig.htm#HDRHS4260NITA
../../libs/gl32tref/getcmmode.htm#HDRA146X948E
../../libs/gl32tref/setmap.htm#HDRA146X9646
../../libs/gl32tref/getmap.htm#HDRA146X94E2
../../libs/gl32tref/cyclemap.htm#HDRA143X92A6

To achieve a linear response from the monitor, the system must vary the input voltage by some exponent.
The exponent is called the monitor's gamma. Linear response is achieved on standard monitors with a
gamma of 2.4. The system uses a hardware lookup table to compensate for nonlinear response.

Note: Some graphics adapters have more physical hardware colormaps than others. In particular, the
24-bit POWERgraphics GTO, POWER Gt4 and POWER Gt4x adapters have five hardware
colormaps each. The X server, in concert with the window manager, is able to manage all five. Note
that if all the clients running on the screen request more than five different colormaps, at least some
of the clients will have the incorrect colormap installed. This affects the management of gamma
ramps.

GL Gamma Ramps

The historical GL paradigm for gamma ramps has been that of a single, hardware gamma ramp that
affected the entire screen. The gammaramp subroutine can be used to load that lookup table. This is the
case on the 3D Color Graphics Processor adapter; the X server is ignorant of this particular lookup table
and does not manage it.

With the newer adapters, the POWERgraphics GTO, the POWER Gt4 and the POWER Gt4x, this
paradigm has been modified. When in RGB mode, the gamma ramp for any particular window can be set
independently of any other window. Note that the gamma ramps for these adapters are realized as X
colormaps. Thus, the X server engages in the management of the RGB mode gamma ramps, and all of
the usual rules and behaviors with regard to X colormap management apply. Note, in particular, that a GL
RGB window may appear incorrect if the X server hasn't installed a linear ramp. Note also that if more
than five different gamma ramps are created, not all can be installed simultaneously, and some RGB
windows may appear with incorrect colors.

gammaramp Subroutine
The subroutine supplies another level of indirection for all color map and RGB values. It

affects only the display of color, not the values that are written in the bitplanes. Use the gammaramp
subroutine to provide gamma correction, to equalize monitors with different color characteristics, or to
modify the color warmth of the monitor.

The gammaramp subroutine affects the entire screen and all running processes. It stays in effect until
another call to the same subroutine is made or until the graphics hardware is reset. The default setting has
r[i]=g[i]=b[i]=i (no modification).

When objects are drawn on the screen in RGB mode, red, green, and blue are stored in the bitplanes,
displayed as (red, green, blue), and are the arrays last specified by the lgammaramg subroutine. Similarly,
in color map mode if color i is mapped to red, green, blue, objects written in color i are displayed as (red,
green, blue). The syntax is as follows:

void gammaramp(Intl6 red[256], Intl6 green[256], Intl6 blue[256])

You may want to read how the different color modes are used in ICreating Animated Scened, Creating
mﬁ Hidden Surfaces,

, Performing m and Removing Hi

Creating Animated Scenes

This section outlines the techniques for creating animated scenes within the following topics:
. Doudl S Buffering

. Bnimation Sul ned

List of GL Animation Subroutines

backbuffer Enables drawing in the back buffer.
blind Changes the color map entry at a selectable rate.

138 GL Programming Concepts

../../libs/gl32tref/gammaramp.htm#HDRKZ4NITA
../../libs/gl32tref/gammaramp.htm#HDRKZ4NITA
crlighteff.htm
remhidden.htm
../../libs/gl32tref/backbuffer.htm#HDRA145X94A
../../libs/gl32tref/blink.htm#HDRA146X937C

cyclemap Cycles between color maps at a specified rate.
boublebuffed Sets the display mode to double buffer mode.
krontbutted Enables drawing in the front buffer.

m Finds out which buffers are enabled for drawing.
W Returns the current display mode.

m Waits for the next vertical retrace period.
W Sets the display mode to single buffer mode.
W Exchanges the front and back buffers.
W Defines the minimum time between buffer swaps.

Double and Single Buffering

Animated objects on the screen are created by using a technique called double buffering.

For smooth motion, the system displays a completely drawn image for a certain time (for instance, a few
60ths of a second), then presents the next frame, also completely drawn, during the next time period, and
SO on.

Double buffering provides this capability. The system’s standard bitplanes are divided into two halves, only
one of which is displayed. Drawing is typically done into the other, invisible half. When the drawing is
complete, the buffers are swapped. The previously invisible buffer (now containing the next frame)
becomes visible, and the previously visible buffer becomes invisible and available for drawing the following
frame.

The currently visible buffer is the front buffer and the invisible, drawing buffer is the back buffer. Double
buffering works in either RGB mode or color map mode.

In double buffer mode, your program addresses frame buffer memory as if it were two buffers, only one of
which is available for drawing or for display at a time.

In single buffer mode, a program addresses frame buffer memory as a single buffer whose pixels are
always visible. By default, the system is in single buffer mode. Whatever you draw into the bitplanes is
immediately visible on the screen. For static drawings, this is acceptable, but it does not provide smooth
animated motion. If you try to animate a drawing in single buffer mode, you can see a visible flicker in all
but the simplest drawing operations.

Animation Subroutines
The following subroutines enable you to create animated scenes.

dou%Subroutine
The subroutine sets the display mode to double buffer mode. It does not take effect until

you call the m subroutine. In double buffer mode, the bitplanes are partitioned into two groups, the
front bitplanes and the back bitplanes. Double buffer mode displays only the front bitplanes. Drawing
routines normally update only the back bitplanes; the frontbuffer and backbuffer subroutines can override
the default. The gconfig subroutine sets the value for the frontbuffer subroutine to False and the
backbuffer subroutine to True in double buffer mode. The syntax follows:

void doublebuffer()

swapbuffers Subroutine
No matter what you are doing, the display hardware in the system constantly reads the contents of the

visible buffer (the front buffer in double buffer mode), and displays those results on the screen. On a
standard monitor, the electron guns sweep from the top of the screen to the bottom, refreshing all pixels,

Chapter 9. Configuring the Frame Buffer 139

../../libs/gl32tref/cyclemap.htm#HDRA143X92A6
../../libs/gl32tref/doublebuffer.htm#HDRA145X91A7
../../libs/gl32tref/frontbuffer.htm#HDRA145X9A0
../../libs/gl32tref/getbuffer.htm#HDRA145X9F6
../../libs/gl32tref/getdisplaymode.htm#HDRA145X9206
../../libs/gl32tref/gsync.htm#HDRA4H41120MARJ
../../libs/gl32tref/singlebuffer.htm#HDRA145X9259
../../libs/gl32tref/swapbuffers.htm#HDRA145X9302
../../libs/gl32tref/swapinterval.htm#HDRA145X92AF
../../libs/gl32tref/doublebuffer.htm#HDRA145X91A7
../../libs/gl32tref/gconfig.htm#HDRHS4260NITA

60 times each second. If the graphics hardware changes the contents of the visible frame buffer, the next
time the refresh hardware reads a changed pixel, the new value is drawn instead of the old one.

After sweeping out the entire frame, the guns are reset to the top of the screen again, and this takes a
short period of time. This time period is called the vertical retrace, and during this period (much shorter
than 60th of a second), nothing can change on the screen. The swapbuffers subroutine exchanges the
front and back buffers in double buffer mode during the next vertical retrace. The system waits for the
vertical retrace so that the currently displayed buffer is completely drawn.

If it did not wait for the vertical retrace, a frame would be drawn partly from one buffer, and partly from
another, causing a serious visual disturbance. Because vertical retraces occur every 60th of a second on
the standard monitor, the swapbuffers subroutine can block the running process for up to that long. (The
default monitor is refreshed 60 times per second. Other options can have other retrace periods.)

Once an image is fully drawn in the back buffer, the swapbuffers subroutine displays it. This subroutine is
ignored in single buffer mode.

Note: A caution is in order for double buffered programs. Suppose you are writing a flight simulator
that draws each frame, and then swaps the buffers. Suppose it runs at a certain rate (say 60 frames
per second). As you modify the program to increase the complexity of the scene, eventually you
reach a point where the drawing cannot be completed in a 60th of a second.

At this point, because the swapbuffers subroutine must wait for a vertical retrace, the frame rate suddenly
drops to 30 per second; that is, adding the last polygon cuts the performance in half. There is no smooth
degradation. Similarly, as more geometry is added, the rate drops to 20 per second, 15 per second, and
so on. Properly tuning such a program can be tricky if smooth motion is reguired. The m
subroutine helps adjust the timing between buffer swaps. Read the on the swapinterval
subroutine for further information.

The syntax follows:

void swapbuffers()

gconfig Subroutine
The subroutine sets the modes that you have requested. You must call the gconfig subroutine for
the , multimap, bverlay, underlay, bnemap, RGBmade, kkmade, and kinglebuffer

subroutines to take effect.

After a call to the gconfig subroutine, the writemask and color attributes are no longer defined. The
contents of the color map do not change. The syntax follows:

void gconfig()

singlebuffer Subroutine

In single buffer mode, the system simultaneously updates and displays the image data in the active
bitplanes; consequently, incomplete or changing pictures can appear on the screen. The

subroutine does not take effect until the subroutine is called. Single buffer mode is the default.
The syntax follows:

void singlebuffer()

frontbuffer Subroutine

Sometimes in double buffer mode, it is useful to be able to write the same thing into both buffers at once.
For example, suppose an animated image has both a fixed part and a changing part. The fixed part needs
to be drawn only once, but into both buffers. It is most easily done by enabling the front buffer (as well as
the back buffer) for writing, drawing the image, and then disabling the front buffer. The animation then
proceeds by drawing the changing part of the image using the usual double buffering techniques.

140 GL Programming Concepts

../../libs/gl32tref/swapinterval.htm#HDRA145X92AF
../../libs/gl32tref/gconfig.htm#HDRHS4260NITA
../../libs/gl32tref/doublebuffer.htm#HDRA145X91A7
../../libs/gl32tref/multimap.htm#HDRA146X9593
../../libs/gl32tref/overlay.htm#HDRA143X950A
../../libs/gl32tref/underlay.htm#HDRAZ5O370NITA
../../libs/gl32tref/onemap.htm#HDRA146X95EF
../../libs/gl32tref/RGBmode.htm#HDRA143X93B6
../../libs/gl32tref/cmode.htm#HDRA146X93D6
../../libs/gl32tref/singlebuffer.htm#HDRA145X9259
../../libs/gl32tref/singlebuffer.htm#HDRA145X9259
../../libs/gl32tref/gconfig.htm#HDRHS4260NITA

A frantbuffed subroutine setting of True enables simultaneous updating of (or writing into) the front while
the rear buffer is being updated. Its parameter is a 32-bit integer value. The m subroutine sets the
value of the frontbuffer subroutine to False. This subroutine is useful only in double buffer mode. The
syntax follows:

void frontbuffer(Int32 bool)

backbuffer Subroutine

It is sometimes convenient to uEdate both the front and the back buffers, or to update the front buffer
instead of the back. The subroutine enables updating in the back buffer. Its parameter is a
32-bit integer value. When the value of the parameter is True, the default, the back buffer is enabled for
writing. When the value of the parameter is False, the back buffer is not enabled for writing.

The m subroutine sets the value of the backbuffer subroutine to True. The syntax follows:
void backbuffer(Int32 bool)

getbuffer Subroutine

The m subroutine indicates which buffer or buffers are enabled for writing in double buffer mode.
The values returned can be compared to the values of MSINGLE, MPROJECTION, and MVIEWING to
determine the current mode. The back buffer is enabled by default. Other returned values indicate that the
front buffer or both buffers are enabled. The getbuffer subroutine returns zero if neither buffer is enabled
or if the system is not in double buffer mode. The syntax follows:

Int32 getbuffer()

swapinterval Subroutine
The m subroutine defines a minimum time between buffer swaps. For exampl

e, a swap interval
of 5 refreshes the screen at least five times between execution of successive calls to the
subroutine.

The swapinterval subroutine is typically used when you want to show frames at a constant rate, but the
images vary in complexity. To achieve a constant rate, the swap interval is set to be long enough that even
the most complex frame can be drawn in that time. If a simple frame is drawn, the user’s process simply
blocks and waits until the swap interval is used up. The default interval is 1.

The swapinterval subroutine is valid only in double buffer mode. The syntax follows:
void swapinterval(Intl6 interval)

getdisplaymode Subroutine
The subroutine returns the current display mode. The values returned can be compared

to the values of MSINGLE, MPROJECTION, and MVIEWING to determine the current mode. The syntax
follows:

Int32 getdisplaymode()

Values returned are:

DMRGB Indicates RGB single buffer mode.
DMRGBDOUBLE Indicates RGB double buffer mode.
DMSINGLE Indicates color map single buffer mode.
DMDOUBLE Indicates color map double buffer mode.

gsync Subroutine
The subroutine waits for the next lLertical retracd. Because this subroutine does not return until
vertical retrace begins, the calling process is effectively blocked until that time.

Chapter 9. Configuring the Frame Buffer 141

../../libs/gl32tref/frontbuffer.htm#HDRA145X9A0
../../libs/gl32tref/gconfig.htm#HDRHS4260NITA
../../libs/gl32tref/backbuffer.htm#HDRA145X94A
../../libs/gl32tref/gconfig.htm#HDRHS4260NITA
../../libs/gl32tref/getbuffer.htm#HDRA145X9F6
../../libs/gl32tref/swapinterval.htm#HDRA145X92AF
../../libs/gl32tref/swapbuffers.htm#HDRA145X9302
../../libs/gl32tref/getdisplaymode.htm#HDRA145X9206
../../libs/gl32tref/gsync.htm#HDRA4H41120MARJ

This subroutine is useful for pacing the drawing when in single buffer mode. If the amount of drawing to be
done is small, this subroutine can be used to achieve a limited amount of smooth animation in single
buffer mode. For high-quality, smooth animation, double buffer mode together with the m
subroutine should be used. The syntax follows:

void gsync()

Underlay and Overlay Modes

Underlay and overlay modes in GL overlays and underlays are independent frame buffers that lie over and
lie under, respectively, the principal frame buffer. They can be drawn into and cleared independently from
the main frame buffer. In this way, they provide a convenience to the graphics programmer: color values in
the underlays and overlays can be changed without destroying the contents of the main frame buffer. If the
picture in the main frame buffer took a long time to draw, and the program needs to put up a quick status
indicator, or perform some other temporary communications with the user, the overlay planes may be the
ideal place to do so. For example, GL pop-up menus use the overlay planes. When the pop-up menus are
erased, the contents of the principal frame buffer are unharmed. In some ways, overlays and underlays
are not as powerful as the main frame buffer: they contain fewer bitplanes (2 or 4, depending on the
graphics adapter) and thus a more limited selection of colors; they can be used only in color index mode,
and they do not support Gouraud shading.

The concept of partitions is in many ways similar to that of overlays. Partitions can be independently
cleared and drawn into; their stacking order can be changed, and they can be made invisible. Partitions,
unlike overlays, are not separate bitplanes, but are a partitioning of the principal frame buffer; thus their
name. For more information on partitions, please refer to m

You can control information overlaid on top of, and placed underneath, the main color frame buffer by
setting the number of bitplanes used for overlay and underlay.

Overlay bitplanes supply additional bits of information at each pixel. You can configure the system to have
0, 2, or 4 overlay bitplanes, depending on the Installed adapted. Whenever all the overlay bitplanes contain
0 at a pixel, the color of the pixel from the main color bitplanes is presented on the screen.

If any of the overlay planes contains a nonzero entry (there are three ways for this to happen with two
overlay bitplanes: 01, 10, and 11), the overlay value is looked up in a separate color table, and that color
is presented instead. The overlay color lookup table behaves exactly like the standard color map, except
that the lookup table only has three usable entries.

Underlay bitplanes are similar in concept, in that there are extra bits for each pixel. The values of these
extra bits are normally ignored unless the color in the standard bitplanes is 0. In that case, the underlay
color is looked up in a color map and presented. Thus, the underlay color shows up only if there is nothing
(the pixel value equals 0) in the standard bitplanes. With two underlay bitplanes, there are four possible
underlay colors.

Overlay and underlay planes can be used in single or double buffer mode, and in color map or RGB
mode. Overlay bitplanes are useful for such things as menus, construction lines, rubber-banding lines, and
so forth. Underlay planes might be used for background grids that appear wherever nothing else is drawn.
(See the figure entitled "Frame Buffer Configuration” on page)

Many of the same operations are available for operating on overlay or underlay bitplanes as are available
for the standard bitplanes in color map mode. The color map subroutines (the tolod, igetcolod, lgetmcalar,

, mapcolod, and mapcolard subroutines) affect the overlay and underlay bitplanes if the
system is in overlay or underlay mode.

For example, in overlay mode, the color subroutine sets the overlay color, the getcolor subroutine gets
the current overlay color, the mapcolor subroutine affects entries in the overlay map, and the getmcolor

142 GL Programming Concepts

../../libs/gl32tref/swapbuffers.htm#HDRA145X9302
undergraphadapt.htm
../../libs/gl32tref/color.htm#HDRA146X9429
../../libs/gl32tref/getcolor.htm#HDRA146X924B
../../libs/gl32tref/getmcolor.htm#HDRNXI1100MARJ
../../libs/gl32tref/getmcolors.htm#HDRUI2F0MARJ
../../libs/gl32tref/mapcolor.htm#HDRA146X9535
../../libs/gl32tref/mapcolors.htm#HDRCV2170MARJ

subroutine reads those entries. In overlay mode, all drawing routines draw into the overlay bitplanes rather
than the standard bitplanes. The routines are similarly redefined for underlay mode. Use the
subroutine to set the overlay or underlay mode.

To set the number of user-defined bitplanes you want to use for underlay color or overlay color, call the
underlay and bverlay subroutines. You cannot use the user-defined bitplanes for overlay and underlay
color simultaneously. Call the m subroutine after the overlay or underlay subroutines to activate
their settings.

List of Underlay and Overlay Mode Subroutines

koloid Sets the current color in color map mode.
drawmadd Chooses a set of bitplanes for drawing.

m Returns the current color in color map mode.
m Gets a copy of the RGB values for a color map entry.
m Changes a color map entry to a specified RGB value.
m Sets the number of bitplanes used for overlay.
EEEEEEQ Sets the number of bitplanes used for underlay.

Default Configuration

By default, the auxiliary (overlay and underlay) planes are always enabled, for all windows, including the
root window. Overlays can be disabled for a window only by the application that created the window
(Overlays are disabled by making the subroutine calling sequence overlay(0); gconfig();. When
overlays are disabled, their contents are not visible.)

Overlays are by default enabled for the root window. The default has the following results:

1. When an application renders into the overlays while in fullscreen mode, the rendered drawing is visible
even if it overlies other windows.

2. Garbage generated by other applications can be left behind in the overlay planes. Since the overlay
planes are not automatically cleared when a program terminates, drawings intentionally or
unintentionally left behind in the overlay remain visible. You can use the following code fragment to
clear garbage left in the overlay planes:

fullscrn(); /* Gain access to the entire screen */
drawmode (OVERDRAW) ; /* Access the overlay planes specifically =/
color(0); /* The transparent overlay color */

clear();

drawmode (NORMALDRAW) ; /* Return to normal operation %/
endfullscrn(); /* Reset clipping to window boundaries =/

}

The /usr/lpp/GL/examples/clover.c file contains an example of the prior code segment.

Configuring Underlay and Overlay Planes

Overlays are configured by making the overlay(n); gconfig; subroutine calling sequence , after having set
n equal to the number of desired overlay planes. The number of acceptable values for n are extremely
limited, and depend on the installed adapter. Refer to the section “Understanding the Adapter” for
information about the number of supported overlay planes for a given adapter. This number can also be
queried at run time with the getgdesc subroutine. When overlays are disabled (equivalently, when zero
overlay planes are configured, by calling overlay(0); gconfig);), they become invisible. Although the
actual bitplanes are still physically present, their actual contents are no longer visible on the screen. For
most of the currently supported graphics adapters, the overlay planes are not cleared when they are
disabled;any data stored in them remains more or less intact.

Chapter 9. Configuring the Frame Buffer 143

../../libs/gl32tref/underlay.htm#HDRAZ5O370NITA
../../libs/gl32tref/overlay.htm#HDRA143X950A
../../libs/gl32tref/gconfig.htm#HDRHS4260NITA
../../libs/gl32tref/color.htm#HDRA146X9429
../../libs/gl32tref/drawmode.htm#HDRA143X9460
../../libs/gl32tref/getcolor.htm#HDRA146X924B
../../libs/gl32tref/getmcolor.htm#HDRNXI1100MARJ
../../libs/gl32tref/mapcolor.htm#HDRA146X9535
../../libs/gl32tref/overlay.htm#HDRA143X950A
../../libs/gl32tref/underlay.htm#HDRAZ5O370NITA

drawmode Subroutine

The drawmadd subroutine is used to put the system into overlay or underlay mode, or back into normal
mode after drawing into the overlay bitplanes is finished. The OVERDRAW and UNDERDRAW settings in
the drawmode subroutine put the system into overlay and underlay mode. The NORMALDRAW setting
returns the system to the default, where the color subroutines refer to the standard bitplanes. The other
settings for this subroutine are PUPDRAW, which sets operations for the pop-up menu, and
CURSORDRAW, which sets operations for the cursor. The syntax is as follows:

void drawmode(Int32 mode)

Alpha Blending Modes

Alpha-blending provides a mechanism for drawing semi-transparent surfaces. With alpha-blending
enabled, pixel colors in the frame buffer can be blended in varying proportion with the color of the graphics
primitive being drawn. The proportion is referred to as the “transparency” or alpha value. In normal usage,
the incoming color is multiplied by alpha, while the existing color is multiplied by one minus alpha, and the
two are summed, to determine the resulting color. That is, the blending is linear:

FinalColor = alpha * IncomingColor + (1.0-alpha) * ExistingColor

In this normal mode of operation, the whole can never be more than the sum of the parts, because (alpha
+ (1.0-alpha)) equals one. Generically, the blending can be more general:

FinalColor = alpha * IncomingColor + beta * ExistingColor

This usage is more rare, and is used only for special purposes. In GL, the blending is done on a per pixel
basis; that is, the blending is done for each pixel individually. Blending is supported in RGB mode only;
blending in color index mode is not well supported. The blending is performed for the red, green and blue
channels individually:

FinalRed = alpha * IncomingRed + beta * ExistingRed
FinalGreen = alpha * IncomingGreen + beta * ExistingGreen
FinalBlue = alpha * IncomingBlue + beta * ExistingBlue

The alpha and beta blending factors can be set with the blendfunction subroutine. For more information
on this subroutine, please refer to the Graphics Technical Reference.

By its very nature, alpha-blending is order dependent. That is, drawing one semi-transparent polygon after
another gives a different visual result than drawing the one before the other. In most cases, it is desirable
to draw the image from back to front, drawing the closest semi-transparent polygon last. The graphics
system does not automatically order or re-order graphics primitives to be in the right order when
alpha-blending is enabled; it is up to the graphics program to order drawing. Note that the z-buffer, while
useful for hidden surface removal, does not actually provide any ordering. That is, if a more distant
polygon is drawn after a closer, semi-transparent polygon, that more distant polygon does not
automatically appear behind the semi-transparent polygon.

An example program illustrating alpha-blending can be found in the /usr/lpp/GL/examples file.

For information on specifying the function to be used for alpha blending, see the blendfunctior
subroutine.

For information on setting the current color in RGB mode, see the d subroutine.

144 GL Programming Concepts

../../libs/gl32tref/drawmode.htm#HDRA143X9460
../../libs/gl32tref/blendfunction.htm#HDRA143X9240
../../libs/gl32tref/c.htm#HDRA143X9262

For information on specifying RGBA color with a single packed 32-bit integer, see the lepacl subroutine.

For information on defining a new material, light, or lighting model, see the Imdet subroutine.

Writemasks and Logical Operations

This section contains information on the following frame buffer update topics:

Various writemasks control what data is stored in each bitplane of the frame buffer by shielding portions of
the frame buffer from being written into. In color map mode, the luritemasMd subroutine protects specified
bitplanes from ordinary drawing routines. In RGB mode, the RGBwritemasH subroutine performs this
function. The m subroutine controls writing into the lz-buffed The laogicop subroutine specifies
the logical operation to use when writing pixels. The W subroutine and W subroutine
allow you to determine the current writemasks.

List of GL Writemask and Logical Operation Subroutines

blendfunction| Specifies the alpha blending ratio.

W Returns the current writemask.

bBRGBmasi Returns the current RGB writemask.

m Specifies a logical operation for pixel writes.

BGBwritemasH Grants write permission to a subset of available bitplanes (in RGB mode).
m Specifies an RGBA writemask with a single packed integer.

fritemasH Grants write permission to a subset of available bitplanes in color map mode.
kfunctiod Specifies the function used for depth comparison.

ksourcd Selects depth or color as the source for z comparisons.

writemask Specifies which bits of the z-buffer are written during normal z-buffer operation.
Writemasks

In all cases when the system uses Ealor magds (the standard hitplaned in Eolor map modd, and the overlay

and underlay bitplanes), a writemask is available that can limit the drawing into the bitplanes. By default,
the writemask is set up so that there are no drawing restrictions, but it is sometimes useful to limit the
effects of the drawing routines. Two common cases are to provide the equivalent of extra overlay bitplanes
and to display a layered scene where the contents of the layers are independent of each other.

The writemask is described in terms of the standard drawing bitplanes, but exactly the same comments
are true if the system is in overlay or underlay mode. For this discussion, it is assumed that only 8 of the
12 bitplanes are used, although the discussion applies equally well to different numbers, including 24
bitplanes.

With 8 bitplanes, the color is a number from 0 to 255, which can be represented by 8 binary bits. For
example, color 68 is 01000100. Without writemask controls, if the color is set to 68, then every drawing
subroutine puts 01000100 into the 8 bitplanes of the affected pixels.

A writemask restricts this overwriting. If, in the previous example, the writemask were 15 (= 00001111),
then only the bottom 4 bits of the color are written into the bitplanes (that is, with writemask, a 1 enables a

Chapter 9. Configuring the Frame Buffer 145

../../libs/gl32tref/cpack.htm#HDRA143X9284
../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ
../../libs/gl32tref/blendfunction.htm#HDRA143X9240
../../libs/gl32tref/getwritemask.htm#HDRA143X94C6
../../libs/gl32tref/gRGBmask.htm#HDRA143X94E8
../../libs/gl32tref/logicop.htm#HDRIM521A0MARJ
../../libs/gl32tref/RGBwritemask.htm#HDRA143X93FA
../../libs/gl32tref/wmpack.htm#HDRA143X9570
../../libs/gl32tref/writemask.htm#HDRA143X9592
../../libs/gl32tref/zfunction.htm#HDRA22F0MARJ
../../libs/gl32tref/zsource.htm#HDRA143X96D6
../../libs/gl32tref/zwritemask.htm#HDRA143X9817

bitplane for writing, and a 0 disables it). If the color is 68, then any pixels hit by a drawing subroutine
would contain wxyz0100, where wxyz are the 4 bits that were previously there. The Os (zeros) in the
writemask prevent those bits from being overwritten. The default writemask is entirely 1s, so there is no
restriction.

Writemasks determine whether a new value can be stored in each bitplane. A 1 (one) in the writemask
allows the system to store a new value (0 or 1) in the corresponding bitplane. A 0 (zero) prevents the
system from storing a new value, and the corresponding bitplane retains its current value.

In the "figure” on page fi4d, the values in the first and second bits (b1 and b2) do not change because the
corresponding positions in the writemask are zero. All the other values (originally b3, b4, ...b8) change to
a3, a4, ...a8 because the corresponding positions in the writemask are 1. Each value a1, ...a8 and b1,
...b8 is either 0 or 1, and the setting of the writemask determines whether the value is written.

new color index

a1 a» a3 a4 as ag ay ag

writemask final color index

ooj1 1 1 1 1 1 by bo|lag a4 a5 ag ay; ag

current color index

by by by by bs bg by bg

Writemask Function

Writemask Example Programs

As a very simple example, suppose you wish to draw two completely independent electronic circuits on the
screen, power and ground. You would like the power grid to be drawn in blue, the ground grid to be drawn
in black, and short-circuits (where both power and ground appear) to be drawn in red. The background
color is white.

Initialize the program as follows:

#define BACKGROUND 0 /*=00%/
#define POWER 1 /*=01%/
#define GROUND 2 /*=10%/
#define SHORT 3 [*=11%/
mapcolor(0, 255, 255, 255); /*whitex/
mapcolor(1l, 0, 0, 255); /*bluex/
mapcolor(2, 0, 0, 0); /*black*/
mapcolor(3, 255, 0, 0); /*redx/

Then draw all the power circuitry into bitplane 1 and the ground circuitry in bitplane 2. Where both power
and ground appear, there is a 1 in both bitplanes, making color 3.

To clear the window before drawing:

writemask(3);
color(BACKGROUND) ;
clear();

146 GL Programming Concepts

To draw power circuitry without affecting ground circuitry:
writemask(1);

color(l);

<drawing subroutines>

To draw ground circuitry without affecting power circuitry:
writemask(2);

color(2);

<drawing subroutines>

To erase all power circuitry:
writemask(1);

color(0);

clear();

To erase all ground circuitry:
writemask(2);

color(0);

clear();

The kircuit.d example program demonstrates the use of writemasks by drawing power circuitry as
previously discussed.

writemask Subroutine

The subroutine grants write permission to available bitplanes. It protects bitplanes, in the
current drawing mode, that are reserved for special uses from ordinary drawing subroutines. The
parameter is a mask with 1 bit available per bitplane.

Whenever there are 1s in the writemask, the corresponding bits in the color index are written into the
bitplanes. Zeros in the writemask mark bitplanes as read-only. These bitplanes are not changed,
regardless of the bits in the color index.

If the drawing mode is NORMALDRAW, the writemask affects the standard bitplanes; if the mode is
OVERDRAVW, the writemask affects the overlay bitplanes; if the mode is UNDERDRAW, the writemask
affects the underlay bitplanes. Use the mm subroutine in .

It is very important to understand that with the writemask, the bit pattern at each pixel is additive. This
means that although you can protect certain bits from being overwritten, all the bits at any pixel are still
taken as a single integer or color index value. The syntax is as follows:

void writemask(Colorindex writem)

getwritemask Subroutine

The W subroutine returns the current writemask of the current drawing mode. The writemask
is an integer with up to 12 significant bits, one for each available bitplane. Use the gRGBmasH subroutine
in RGB mode. The syntax is as follows:

Int32 getwritemask()

RGBwritemask Subroutine

The BGBwritemasH subroutine is the same as the writemask subroutine, except it functions in RGB
mode. The red, green, and blue parameters are masks for each of the three sets of bitplanes. In the same
way that writemasks affect drawing in bitplanes in NORMALDRAW color map mode, separate red, green,
and blue masks can be applied in NORMALDRAW RGB mode. The syntax is as follows:

void RGBwritemask(Intl6 red, Intl6 green, Intl6 blue)

Chapter 9. Configuring the Frame Buffer 147

../../libs/gl32tref/circuit_c.htm#HDRUA32D0NITA
../../libs/gl32tref/writemask.htm#HDRA143X9592
../../libs/gl32tref/RGBwritemask.htm#HDRA143X93FA
../../libs/gl32tref/getwritemask.htm#HDRA143X94C6
../../libs/gl32tref/gRGBmask.htm#HDRA143X94E8
../../libs/gl32tref/RGBwritemask.htm#HDRA143X93FA

gRGBmask Subroutine

The lgRGBmasHK subroutine returns the current RGB writemask as three 8-bit masks. This subroutine
places masks in the low-order 8 bits of the locations pointed to by the redmask, greenmask, and bluemask
parameters. The system must be in RGB mode when the gRGBmask subroutine executes. The syntax is
as follows:

void gRGBmask(Intl6 *redmask, Intl6 xgreenmask, Intl6 xbluemask)

Partitions

Partitioning is a method of slicing the frame buffer into a number of smaller subbuffers. Each subbuffer, or
partition, has properties and a behavior like the main frame buffer, although not exactly. In some ways,
partitions behave like overlays and underlays, and present characteristics of each as follows:

» Any partition can be cleared and drawn into independently, without disturbing the contents of other
partitions.

» Partitions can be turned off and on (that is, made hidden or visible) without having to clear or redraw
their contents.

» Colors used in any partition can be changed at any time without having to clear or redraw the contents.

Unlike overlays and underlays, partitions can be stacked in any order, and the stacking order can be
changed dynamically, without having to redraw any geometry.

A limitation of partitions is that there is a limited number of colors, with the following corollaries:
* No, or limited, smooth (Gouraud) shading.
* No RGB-style (direct color) drawing. Only color index operation is supported.

The foundation of the partition is the writemask. Writemasks are used to protect one set of bitplanes while
writing into another set. The concept of partitions can be actualized by careful choice of colors,
writemasks, and color maps.

Partitions are created by allocating bitplanes from the main frame buffer. A partition can be one or more
bitplanes broad, up to the breadth of the frame buffer. Partitions are protected from one another by using
writemasks. This protection mechanism allows the application developer to clear and draw into one
partition while leaving the contents of other partitions alone. The stacking order of partitions, and their
visibility or invisibility, are determined by the loaded color map.

There are two generic types of partitions, depending on the hardware organization of the color maps and
how they are connected to the frame buffer. These types of partitions are referred to here as indexed and
partitions.

There are two types of color map organization: true-color maps and gamma-ramp-type color maps. In a
true-color organization, a color index value is stored in the frame buffer. In the gamma-ramp organization,
used by the POWERgraphics GTO and Model 730 Supergraphics Processor Subsystem and on the
POWER Gt4 and POWER Gt4x, the frame buffer always stores RGB values, but the value of each
individual component is passed through a look-up table, traditionally called a gamma ramp. These gamma
ramps operate on a per-window basis, not a per-screen basis.

Indexed Partitions

Partitions for true-color-map frame buffer organization use a combination of writemasks and special color
maps, set by the user, to reconfigure the frame buffer dynamically into a set of overlay/underlay planes.
The total number of bitplanes summed over the partitions must be equal to or less than log2 of the
number of color map entries.

Component Partitions

Partitions for gamma-ramp frame buffer organization use the same tools: color maps and writemasks.
Instead of groups of bitplanes, however, this method uses sets of RGB triplets.

148 GL Programming Concepts

../../libs/gl32tref/gRGBmask.htm#HDRA143X94E8

A basic partition might be two bitplanes reserved out of the red buffer, two from the green buffer, and two
from the blue buffer. To determine how many colors can be obtained with this partition, the user can pick
one of the three available shades for red and, independently, pick one of the three shades of green and
one of the three shades of blue. In this instance, all possible combinations yield 3 x 3 x 3 = 27 different
colors on the screen. These colors are not entirely independent of each other; they are mixtures of the
component colors, of which there are only three. Therefore, only three totally, truly independent shades are
possible.

By judicious choice of the component colors (for example by a least-squares search of the LP space), a
large number of visually distinct shades are possible. Thus, the RGB gamma-ramp patrtition is both limiting
and expansive; a 256-entry gamma ramp can be made to display thousands of colors. What looks like two
bitplanes can be made to show 27 colors, because there are really 2 x 3 = 6 bitplanes. Three bitplanes
can show 7 x 7 x 7 = 343 colors, because there are really 3 x 3 = 9 bitplanes, and so on.

Example source code demonstrating the use of partitions can be found in the
lusr/lpp/GL/examples directory.

Writemask for the Z-Buffer

The following subroutines control accessibility and comparison values for the z-buffer.

zwritemask Subroutine

The kwritemasK subroutine controls writing into the z-buffer. The valid settings are 0 (no write at all) and

OxFFFFFF (write all the bits). This subroutine might be useful for a very complicated background into which
a few objects are going to be drawn and moved quickly. Setting the zwritemask subroutine to zero locks

in the background information and prevents its modification. Whether the new objects are drawn depends
on the results of the depth comparison. The syntax is as follows:

void zwritemask(Int32 mask)

zfunction Subroutine

The Efunction subroutine compares the z value of the current context (destination value) of a pixel against
the z value for the input (source value) pixel. If the result of the comparison matches the subroutine’s
parameter, the system draws new values into that pixel. The syntax is as follows:

void zfunction(Int32 func)

zsource Subroutine
The ksoured subroutine selects either depth or color as the source for z comparisons. After a call to the

pbeginl, ginif, gresel, or Winopen subroutine, the default z-buffering is done with depth (z) values.

Note: The zsource subroutine is unavailable on the POWER Gt4 and POWER GXT1000 adapters.

You can set the source for comparison on color buffers rather than on the z-buffer. This is useful primarily
for drawing antialiased lines that cross each other. The syntax is as follows:

void zsource(Int32 source)

The "figure” on page fi5d shows the implementation of the z-source function.

Chapter 9. Configuring the Frame Buffer 149

../../libs/gl32tref/zwritemask.htm#HDRA143X9817
../../libs/gl32tref/zfunction.htm#HDRA22F0MARJ
../../libs/gl32tref/zsource.htm#HDRA143X96D6
../../libs/gl32tref/gbegin.htm#HDRJS4380NITA
../../libs/gl32tref/ginit.htm#HDRLDG21C0MARJ
../../libs/gl32tref/greset.htm#HDRXW42E0NITA
../../libs/gl32tref/winopen.htm#HDRA142X91549

7 incoming incoming
Z value color value
Z-source dmux
l i 24 % 24
24-bit
24-bit Frame Z-source mux
Z-buffer buffer
% 24 f 24
4 | o4 = equal
Z-source mux =z not equal
< less than
4+ 24 i 24 < less than or
v equal to
. > greater than
< % I::)r:.gt'g‘e > greater than
P or equal to
always
never

Z-source Diagram

Logical Operation

A logical operation determines how the system combines the color for each pixel produced by a primitive
with the current color of the destination pixel in the frame buffer.

logicop Subroutine

The E}h subroutine specifies the bit-wise logical operation for writing pixels. The logical operation is
applied between the incoming (source) and existing (destination) values to generate the final pixel value.
In color map mode, all writemask-enabled index bits (up to 12) are changed. In RGB mode, all enabled

component bits (up to 24) are changed.

The logicop subroutine is valid in all drawing modes (NORMALDRAW, UNDERDRAW, OVERDRAW,
PUPDRAW, and CURSORDRAW) and in both color map and RGB modes. This subroutine affects all
drawing operations, including points, lines, polygons, and pixel area transfers. The setting of the logicop
subroutine does NOT apply to pixel block transfers to the z-buffer. The syntax is as follows:

void Togicop(Int32 opcode)

You can also read Configuring the Frame Buffet and how frame buffer update relates to ICreating Animated
Beened and Removing Hidden Surfaced.

Clearing, Resetting, and Initializing GL

GL contains a number of subroutines that perform startup functions or reconfigure the system to
accommodate a requested mode of operation. For example, the laverlay, underlayl, doublebuffer,
singlebuffer, multimag, lonemap, RGBmadel, and emade subroutines do not take effect until the
beanfig subroutine is called.

Other subroutines initialize or terminate programs (ginifl and bexil); clear the viewport, color bitplanes, and
z-buffer (clead, kclead, and kzclead); or turn on or off full-screen mode (fullscrn and endfullscrr). The

subroutine resets all global state attributes to initial values. The @ subroutine initializes the
graphics system without changing the color map. The m subroutine returns the version of GL being
used. Them subroutine returns information about the currently installed graphics hardware.

150 GL Programming Concepts

../../libs/gl32tref/logicop.htm#HDRIM521A0MARJ
configframebuf.htm
remhidden.htm
../../libs/gl32tref/overlay.htm#HDRA143X950A
../../libs/gl32tref/underlay.htm#HDRAZ5O370NITA
../../libs/gl32tref/doublebuffer.htm#HDRA145X91A7
../../libs/gl32tref/singlebuffer.htm#HDRA145X9259
../../libs/gl32tref/multimap.htm#HDRA146X9593
../../libs/gl32tref/onemap.htm#HDRA146X95EF
../../libs/gl32tref/RGBmode.htm#HDRA143X93B6
../../libs/gl32tref/cmode.htm#HDRA146X93D6
../../libs/gl32tref/gconfig.htm#HDRHS4260NITA
../../libs/gl32tref/ginit.htm#HDRLDG21C0MARJ
../../libs/gl32tref/gexit.htm#HDRXT41A0NITA
../../libs/gl32tref/clear.htm#HDRCEH1160MARJ
../../libs/gl32tref/zclear.htm#HDRA143X97D3
../../libs/gl32tref/czclear.htm#HDRA143X92C8
../../libs/gl32tref/fullscrn.htm#HDRQGA140MARJ
../../libs/gl32tref/endfullscrn.htm#HDRLAA350MARJ
../../libs/gl32tref/greset.htm#HDRXW42E0NITA
../../libs/gl32tref/gbegin.htm#HDRJS4380NITA
../../libs/gl32tref/gversion.htm#HDRA237X9480E
../../libs/gl32tref/getgdesc.htm#HDRT9311E0MARJ

GL runs on top of Enhanced X-Windows and initializes with a default font. GL also has access to X fonts
through the X server.

List of GL Clearing, Resetting, and Initializing Subroutines

clead Clears to the screenmask.

kzclead Clears the color bitplanes and the z-buffer simultaneously.
kendfullscrd Ends full screen mode.

kutlscrd Enables drawing outside current window boundaries.

m Initializes the graphics system without changing the color map.
m Reconfigures the system.

Terminates a graphics program.

Initializes the graphics system.

m Resets all global state attributes to initial values.
m Returns the version of GL being used.
kclead Initializes the z-buffer.

Chapter 9. Configuring the Frame Buffer 151

../../libs/gl32tref/clear.htm#HDRCEH1160MARJ
../../libs/gl32tref/czclear.htm#HDRA143X92C8
../../libs/gl32tref/endfullscrn.htm#HDRLAA350MARJ
../../libs/gl32tref/fullscrn.htm#HDRQGA140MARJ
../../libs/gl32tref/gbegin.htm#HDRJS4380NITA
../../libs/gl32tref/gconfig.htm#HDRHS4260NITA
../../libs/gl32tref/gexit.htm#HDRXT41A0NITA
../../libs/gl32tref/ginit.htm#HDRLDG21C0MARJ
../../libs/gl32tref/greset.htm#HDRXW42E0NITA
../../libs/gl32tref/gversion.htm#HDRA237X9480E
../../libs/gl32tref/zclear.htm#HDRA143X97D3

152 GL Programming Concepts

Chapter 10. Working with Objects (Display Lists)

This section discusses the following topics on defining, using, and modifying objects in GL:
. [SLof GL Object (Display Lisf) Sif ed

. Deim Sbiacl

« [Using Objectd

. VEnnDoS Soord o World Coord |

- [Object Editind

It is sometimes convenient to group a sequence of drawing routines and give it an identifier. The entire
sequence can then be repeated with a single reference to the identifier rather than by repeating all the
drawing routines. In GL, such sequences are called graphical objects; on other systems they are
sometimes known as display lists.

A graphical object is a list of graphics primitives (drawing routines) to display. For example, a drawing of
an automobile can be viewed as a compilation of smaller drawings of each of its parts: windows, doors
wheels, and so forth. Each part might be a graphical object: a series of calls to the m, m, and EE
subroutines.

To make the automobile a graphical object, first create objects that draw its parts, such as a wheel object,
a door object, and a body object. The automobile object is a series of calls to the part objects, which
together with appropriate rotation, translation, and scale routines, puts all the parts in their correct places.

List of GL Object (Display List) Subroutines

bhhox2 Culls and prunes to the bounding box.

m Draws an instance of an object.

khunksizd Specifies the minimum object size in memory.

Eloseahj Closes an object.

Eompactify Compacts memory storage of an object.

Helobj Deletes an object.

deltag Deletes a tag from an object.

kditobj Opens an object for editing.

m Returns a unique integer for use as object identifier.
bentag Returns a unique integer for use as tag number.
lgetopenabj Returns the current open object.

isobj Establishes the uniqueness of object number.

@ Establishes the uniqueness of tag number.

m Creates a new object (display list).

m Inserts a tag into the display list.

m Maps a point on the screen into a line in 3-D world coordinates.
W Maps a point on the screen into a line in 2-D world coordinates.
m Inserts a tag at an offset from an existing tag.

m Deletes a routine from an object.

bbjinserd Inserts a routine into an object.

m Replaces the existing display list routine with a new one.

© Copyright IBM Corp. 1994 153

../../libs/gl32tref/move.htm#HDRPOFMARJ
../../libs/gl32tref/draw.htm#HDREYF2E0MARJ
../../libs/gl32tref/pdr.htm#HDRBQF1C0MARJ
../../libs/gl32tref/bbox2.htm#HDRA142X922E
../../libs/gl32tref/callobj.htm#HDRA142X91C8
../../libs/gl32tref/chunksize.htm#HDRA142X9C38
../../libs/gl32tref/closeobj.htm#HDRA142X915B
../../libs/gl32tref/compactify.htm#HDRA142X9C5A
../../libs/gl32tref/delobj.htm#HDRA142X940A
../../libs/gl32tref/deltag.htm#HDRA1N61210MARJ
../../libs/gl32tref/editobj.htm#HDRA142X9360
../../libs/gl32tref/genobj.htm#HDRA142X91EA
../../libs/gl32tref/gentag.htm#HDRA48X2120MARJ
../../libs/gl32tref/getopenobj.htm#HDRA142X9382
../../libs/gl32tref/isobj.htm#HDRA142X920C
../../libs/gl32tref/istag.htm#HDRJXW220MARJ
../../libs/gl32tref/makeobj.htm#HDRA142X912D
../../libs/gl32tref/maketag.htm#HDRA142X942C
../../libs/gl32tref/mapw.htm#HDRA213X9119FE
../../libs/gl32tref/mapw2.htm#HDRA213X911A56
../../libs/gl32tref/newtag.htm#HDRA142X93A4
../../libs/gl32tref/objdelete.htm#HDRA142X9AFD
../../libs/gl32tref/objinsert.htm#HDRA142X9ADB
../../libs/gl32tref/objreplace.htm#HDRA142X9B50

Defining an Object

Create and name objects with the makeobj subroutine. When you call the makeobj subroutine, the
system defines an object. Its object parameter is a signed 32-bit integer, which is the object’s numeric
identifier.

When the makeobj subroutine executes, the system enters the object’s numeric identifier into a symbol
table and allocates memory for its list of drawing routines. This opens a new, empty object to which you
can add drawing routines. When you open an object for editing, drawing routines are not executed and
drawn on the screen, but are added to the list until the m subroutine is called.

Thus, a graphical object is a list of primitive drawing routines to be executed. Drawing the display list
consists of executing each routine in the listed order. There is no flow control, such as looping, iteration, or
condition tests (except for the bhoxd subroutine).

Note: Not all Graphics Library routines can be put in a display list. A general rule is to include
drawing routines and not to include routines that return values. If you have a question about a

particular subroutine, check that entry in Choosing the Right GI Subrouting.

makeobj Subroutine

The m subroutine creates a graphical object. It takes one parameter, a signed 32-bit integer that is
associated with the object. If the object parameter is the number of an existing object, the contents of that
object are deleted.

When the makeobj subroutine executes, the object number is entered into a symbol table and memory is
allocated for a display list. Subsequent graphics routines are compiled into the display list instead of
executing. The syntax is as follows:

void makeobj (Int32 object)

closeobj Subroutine

The kloseab] subroutine terminates the object definition and closes the open object. All the routines in the
graphical object between the makeobj and closeobj subroutines are part of the object definition.

The following fragment shows the object definition of a simple shape, as illustrated in the following "figure”
on page Ef

154 GL Programming Concepts

../../libs/gl32tref/makeobj.htm#HDRA142X912D
../../libs/gl32tref/closeobj.htm#HDRA142X915B
../../libs/gl32tref/bbox2.htm#HDRA142X922E
../../libs/gl32tref/makeobj.htm#HDRA142X912D
../../libs/gl32tref/closeobj.htm#HDRA142X915B

Sphere

makeobj (sphere=genobj);
for (phi=0; phi<=PI; phi=P1/9){
for (theta=0; theta<=2+PI; theta+=PI/18){
x=sin(theta) * cos(phi);
y=sin(theta) * sin(phi);
z=cos(theta);
if (theta==0)move (x,y,z);
else draw (x,y,z);
1
1

closeobj();

If you specify a numeric identifier that is already in use, the system replaces the existing object definition
with the new one. To ensure your object’s numeric identifier is unique, use the isabj and lgenohj
subroutines.

isobj Subroutine

The m subroutine tests whether there is an existing object with a given numeric identifier. Its object
parameter specifies the desired numeric identifier. The isobj subroutine returns TRUE if an object exists
with the specified numeric identifier, and FALSE if none exists. The syntax is as follows:

Int32 isobj(Int32 object)

genobj Subroutine

Use the lgenahj subroutine to generate a unique numeric identifier. It does not generate current numeric
identifiers. This subroutine is useful in naming objects when it is impossible to anticipate what the current
numeric identifier will be when the routine is called. The syntax is as follows:

Int32 genobj()

delobj Subroutine

The m subroutine deletes an object. It frees all memory storage associated with the object. The
numeric identifier is undefined until it is reused to create a new object. The system ignores calls to deleted
or undefined objects. The syntax is as follows:

void delobj(Int32 object)

Chapter 10. Working with Objects (Display Lists) 155

../../libs/gl32tref/isobj.htm#HDRA142X920C
../../libs/gl32tref/genobj.htm#HDRA142X91EA
../../libs/gl32tref/isobj.htm#HDRA142X920C
../../libs/gl32tref/genobj.htm#HDRA142X91EA
../../libs/gl32tref/delobj.htm#HDRA142X940A

Using Objects

After an object has been created, there are several subroutines for using the object in a display.

callobj Subroutine

Once you create an object, use the w subroutine to draw it on the screen. Its object parameter takes
the numeric identifier of the object you want to draw. The syntax is as follows:

void callobj(Int32 object)

You can use the callobj subroutine to call one object from inside another object. You can draw more
complex pictures when you use a hierarchy of simple objects. For example, the following program uses a
single callobj (pearl) call to draw the object, a string of pearls, by calling the previously defined object
pearl seven times.

Int32 pearl = 1, pearls = 2

makeobj (pearl);
color(BLUE);
for(angle=0; angle<3600; angle=angle+300) {
rotate(300, 'y');
circ(0.0, 0.0, 1.0);

closeobj();
makeobj (pearls);
for(i=0; i<7; i=i+1) {
translate(2.0, 0.0, 0.0);
color(i);
callobj(pearl);

closeobj();
The "Solarsystem” on page hs4 figure shows another example using simple objects to build more complex

ones. It defines a solar system as a hierarchical object. Calling one object solarsystem draws all the other
objects named in its definition (the sun, the planets, and their orbits).

156 GL Programming Concepts

../../libs/gl32tref/callobj.htm#HDRA142X91C8

filled circle

planets circle
f|IIed circle

circle

solarsystem—sun-sphere

filled circle

planets circle
f|IIed circle

circle

Solarsystem

Solarsystem, a complex object, is defined hierarchically, as shown in the tree diagram. Branches in the
tree represent the callobj subroutines.

The system does not save global attributes before the m subroutine takes effect. Thus, if an attribute,
such as color, changes within an object, the change can affect the caller as well. When needed, use the

pushattributes and popattributed subroutines to preserve global attributes.

When a complex object is called, the system draws the whole hierarchy of objects in its definition. For
example, in the "Solarsystem” on page 54 figure, because the system draws the whole object
solarsystem, it can draw objects that are not visible in the viewport. The settings in the bbox2 subroutine
determine whether an object is within the viewport and whether it is large enough to be seen.

Chapter 10. Working with Objects (Display Lists) 157

../../libs/gl32tref/callobj.htm#HDRA142X91C8
../../libs/gl32tref/pushattributes.htm#HDRTHX220MARJ
../../libs/gl32tref/popattributes.htm#HDRVMX2140MARJ

bbox2 Subroutine

The bhax3 subroutine performs the graphical functions known as pruning and culling. Culling determines
which parts of the picture are less than the minimum feature size and, thus, too small to draw on the
screen. Pruning calculates whether an object is completely outside the viewport.

The bbox2 subroutine takes as its parameters an object space bounding box in coordinates (given in the
x1, y1, x2, y2 parameters) and minimum horizontal and vertical feature sizes (given in the xmin, ymin
parameters) in pixels. The system calculates the bounding box, transforms it to screen coordinates, and
compares it with the viewport.

If the bounding box is completely outside the viewport, the routines between the bbox2 subroutine and the
end of the object are ignored. If the bounding box is within the viewport, the system compares it with the
minimum feature size. If it is too small in both the x and y dimensions, the rest of the routines in the object
are ignored. Otherwise, the system continues to interpret the object.

The "Bounding Boxes” on Eage bisd figure shows some of the objects within the complex object

"Solarsystem” on page juxtaposed to specified bounding boxes. The bounding boxes can perform
pruning. to determine what objects are partially in the viewport.

2D bounding boxes

Z,

viewport

N

Bounding Boxes

Bounding boxes are computed to determine which objects are outside the screen viewport. If the bounding
box is entirely outside the viewport, the rest of the object display list is not traversed. The sphere in the
bounding box that lies partially within the viewport is drawn and clipped to the edge of the viewport. The
syntax is as follows:

158 GL Programming Concepts

../../libs/gl32tref/bbox2.htm#HDRA142X922E

void bbox2(Screencoord xmin, Screencoord ymin,
Coord x1, Coord yl, Coord x2, Coord y2)

Mapping Screen Coordinates to World Coordinates

The following subroutines map screen coordinates to world coordinates. If you want to know what the
world coordinate values are for the screen coordinates of an object, these subroutines provide a 2-D and a
3-D method to perform the mapping.

mapw Subroutine

The m subroutine takes a 2-D screen point and maps it onto a line in 3-D world space. Its viewobj
parameter contains the Miewing, brojection, and Miewport transformationd that map the current displayed
objects to the screen.

The maEw subroutine reverses these transformations and maps the kcreen coardinated back to fworld
. It returns two points in the (modelx1, modely1, modelz1) and the (modelx2, modely2,

modelz2) parameters, which specify the endpoints of the line. The screenx and screeny parameters

specify the screen point to be mapped. The syntax is as follows:

void mapw(Int32 viewobj, Screencoord screenx, Screencoord screeny,

Coord *modelxl, Coord *modelyl, Coord *modelzl,
Coord *modelx2, Coord *modely2, Coord *modelz2)

mapw2 Subroutine

The W subroutine is the 2-D version of the m subroutine. In 2-D, the system maps screen
coordinates to world coordinates rather than to a line. The viewobj parameter contains the m and

transformations that map the displayed objects to world coordinates; the screenx and screeny
parameters define screen coordinates. The modelx and modely parameters return the corresponding world
coordinates. If the transformations in the viewobj parameter are not two-dimensional (orthogonal)
projections, the result is undefined. The syntax is as follows:

void mapw2(Int32 viewobj, Screencoord screenx,
Screencoord screeny, Coord *modelx, Coord *modely)

Object Editing

This section discusses the following topics

You can change an object by editing it. Editing requires you to identify and locate the drawing routines that
you want to change. You use two types of routines when you edit an object:

» Editing subroutines, which add, remove, or replace drawing routines.
» Tag subroutines, which identify locations of drawing routines within an object.

editobj Subroutine
To open an object for editing, use the m subroutine. A pointer acts as a cursor that appends new
routines. The pointer is initially set to the end of the object. The system appends graphics routines to the

ob!ect until either a Eloseab] subroutine or a pointer positioning routine (the bbjdeletd, bbjinserd, or

subroutines) executes. The syntax is as follows:
void editobj(Int32 object)

Chapter 10. Working with Objects (Display Lists) 159

../../libs/gl32tref/mapw.htm#HDRA213X9119FE
../../libs/gl32tref/mapw2.htm#HDRA213X911A56
../../libs/gl32tref/mapw.htm#HDRA213X9119FE
../../libs/gl32tref/editobj.htm#HDRA142X9360
../../libs/gl32tref/closeobj.htm#HDRA142X915B
../../libs/gl32tref/objdelete.htm#HDRA142X9AFD
../../libs/gl32tref/objinsert.htm#HDRA142X9ADB
../../libs/gl32tref/objreplace.htm#HDRA142X9B50

The system interprets the editing routines following the editobj subroutine call. Use the closeobj
subroutine to terminate your editing session. If you specify an undefined object, an error message
appears.

getopenobj Subroutine

To determine if an object is open for editing, use the W subroutine. If an object is open, it returns
the object’s numeric identifier. If no object is open, it returns -1. The syntax is as follows:

Int32 getopenobj()

Identifying Display List ltems with Tags
Tags locate display list items you want to edit. Editing routines require tag names as parameters. The
STARTTAG value is a predefined tag that goes before the very first item to mark the beginning of the list.

The STARTTAG value does not have any effect on drawing or modifying the object; use it only to return to
(find) the beginning of the list.

The ENDTAG value is a predefined tag that is positioned after the last item to mark the end of the list.
Like STARTTAG, ENDTAG does not have any effect on drawing or modifying the object; use it to find the
end of the graphical object. When you call the makeobj subroutine to create a list, STARTTAG and
ENDTAG automatically appear. You cannot delete these tags. When an object is opened for editing, a
pointer appears at ENDTAG, after the last routine in the object. To perform edits on other items, refer to
them by their tags.

maketag Subroutine

Use tags to mark display list items you may want to change. You explicitly tag routines with the m
subroutine. You specify a signed 32-bit numeric identifier and the system places a marker between two list
items. You can use the same tag name in different objects. The syntax is as follows:

void maketag(Int32 tag)

newtag Subroutine

The hewtad subroutine also adds tags to an object, but uses an existing tag to determine its relative
position within the object. The newtag subroutine creates a new tag that is offset beyond the other tag by
the number of lines given in its parameter offset. The syntax is as follows:

void newtag(Int32 newt, Int32 oldtag, Int32 offset)

istag Subroutine

The istag subroutine tells whether a given tag is in use within the current open object. The subroutine
returns TRUE if the tag is in use, and FALSE if it is not. The result is undefined if there is no currently
open object. The syntax is as follows:

Int32 istag(Int32 tag)

gentag Subroutine

The m subroutine generates a unique integer to use as a tag within the current open object. The
syntax is as follows:

Int32 gentag()

deltag Subroutine

The m subroutine deletes tags from the object currently open for editing. Remember, you cannot
delete the special STARTTAG and ENDTAG tags. The syntax is as follows:

void deltag(Int32 tag)

160 GL Programming Concepts

../../libs/gl32tref/getopenobj.htm#HDRA142X9382
../../libs/gl32tref/maketag.htm#HDRA142X942C
../../libs/gl32tref/newtag.htm#HDRA142X93A4
../../libs/gl32tref/istag.htm#HDRJXW220MARJ
../../libs/gl32tref/gentag.htm#HDRA48X2120MARJ
../../libs/gl32tref/deltag.htm#HDRA1N61210MARJ

Inserting, Deleting, and Replacing within Objects

The following subroutines allow you to edit an object by moving the subroutines inside the object using
tags as markers for inserting or deleting.

objinsert Subroutine

Use the m subroutine to add routines to an object at the location specified in the tag parameter.
The objinsert subroutine positions an editing pointer on the tag specified in the tag parameter. The
system inserts graphics routines immediately after the tag. To terminate the insertion, use the
subroutine or the objdelete or lobjreplace editing subroutines. The syntax is as follows:

void objinsert(Int32 tag)

objdelete Subroutine

The m subroutine removes routines from the current open object. It removes everything between
the tag1 and fag2 parameters, including routines and other tag names. For example,
objdelete(STARTTAG, ENDTAG) would delete every routine. The system ignores the objdelete subroutine if
no object is open for editing. This routine leaves the pointer at the ftag1 parameter location after it
executes. The syntax is as follows:

void objdelete(Int32 tagl, Int32 tag2)

objreplace Subroutine
The bbjreplacd subroutine combines the functions of the bhjdeletd and bbjinserd subroutines. It provides

a quick way to replace one routine with another that occupies the same amount of display list space. lts
tag parameter is a single tag. Graphics routines that follow the objreplace subroutine overwrite existing
routines until an occurrence of the m or an editing subroutine (objinsert or objdelete) terminates
the replacement.

Note: The objreplace subroutine requires that the new routine to be exactly the same length in bytes
as the previous one. If it is not, there is a danger that the display list will be scrambled. Use the
objdelete and objinsert subroutines for more general replacement.

The syntax is as follows:
void objreplace(Int32 tag)

Object Editing Examples
The following is an example of object editing. The object star is defined.

makeobj (star);
color(GREEN);
maketag (BOX) ;
recti(l, 1, 9, 9);
maketag (INNER) ;
color(BLUE);
poly2i(8, Inner);
maketag (OUTER) ;
color(RED);
poly2i(8, Outer);
maketag (CENTER) ;
color(YELLOW);
pnt2i(5, 5);

closeobj();

This object is then edited with the following routine to produce a modified object:

editobj(star);
circi(l, 5, 5);
objinsert (BOX);

Chapter 10. Working with Objects (Display Lists) 161

../../libs/gl32tref/objinsert.htm#HDRA142X9ADB
../../libs/gl32tref/closeobj.htm#HDRA142X915B
../../libs/gl32tref/objdelete.htm#HDRA142X9AFD
../../libs/gl32tref/objreplace.htm#HDRA142X9B50
../../libs/gl32tref/objdelete.htm#HDRA142X9AFD
../../libs/gl32tref/objreplace.htm#HDRA142X9B50
../../libs/gl32tref/objdelete.htm#HDRA142X9AFD
../../libs/gl32tref/objinsert.htm#HDRA142X9ADB
../../libs/gl32tref/closeobj.htm#HDRA142X915B

recti(0, 0, 10, 10);

objreplace(INNER);

color(GREEN) ;
closeobj();

The object resulting from the editing session is equivalent to an object created by the following code.

makeobj (star);
color(GREEN) ;
maketag (BOX) ;
recti(0, 0, 10, 10);
recti(1, 1, 9, 9);
maketag (INNER) ;
color(GREEN) ;
poly2i(8, Inner);
maketag (OUTER) ;
color(RED);
poly2i(8, Outer);
maketag (CENTER) ;
color(YELLOW);
pnt2i(5, 5);
circi(l, 5, 5);

closeobj();

Object Memory Management

Editing can require large amounts of memory. The bompactifyl and khunksize subroutines perform
memory management tasks.

compactify Subroutine

As memory is modified by the various editing routines, an open object can become fragmented and stored
inefficiently. When the amount of wasted space becomes large, the system automatically calls the
m subroutine during the m operation. The routine allows you to perform the compaction
explicitly. Unless new routines are inserted in the middle of an object, compaction is not necessary.

Note: The compactify subroutine uses a significant amount of computing time. Do not call it unless
the amount of available storage space is critical; use it sparingly when performance is a
consideration.

The syntax is as follows:
void compactify(Int32 object)

chunksize Subroutine

The khunksize subroutine specifies the minimum chunk of memory necessary to accommodate the
largest GL command call. Normally, this is a call to the paly or palf subroutine with a very large number of
vertices. If there is a memory shortage, use the chunksize subroutine to allocate memory differently to an
object.

The chunksize subroutine specifies the minimum amount of memory that the system allocates to an
object. The default chunk is 1020 bytes. When a chunk is specified, its size varies according to the needs
of the application. As the object grows, more memory is allocated in units of the size specified in the chunk
parameter. The chunksize subroutine is called once after the lginif or linopen subroutine, and once
before the first m subroutine.

The khunksizd subroutine helps use memory economically. For example, when graphical objects require
very little memory, the system can be used more efficiently by specifying smaller chunks of memory. There
are drawbacks to the use of the chunksize subroutine. There is both memory and execution time
overhead associated with each chunk. Many small chunks can be inefficient in both ways. The syntax is
as follows:

162 GL Programming Concepts

../../libs/gl32tref/compactify.htm#HDRA142X9C5A
../../libs/gl32tref/chunksize.htm#HDRA142X9C38
../../libs/gl32tref/compactify.htm#HDRA142X9C5A
../../libs/gl32tref/closeobj.htm#HDRA142X915B
../../libs/gl32tref/chunksize.htm#HDRA142X9C38
../../libs/gl32tref/poly.htm#HDRAVF2C0MARJ
../../libs/gl32tref/polf.htm#HDRZSF1C0MARJ
../../libs/gl32tref/ginit.htm#HDRLDG21C0MARJ
../../libs/gl32tref/winopen.htm#HDRA142X91549
../../libs/gl32tref/makeobj.htm#HDRA142X912D
../../libs/gl32tref/chunksize.htm#HDRA142X9C38

void chunksize(Int32 chunk)

Chapter 10. Working with Objects (Display Lists) 163

164 GL Programming Concepts

Chapter 11. Picking and Selecting

GL provides two related mechanisms for returning information about where primitives are being drawn:

Pickingd returns all primitives that are currently being drawn in the vicinitg of the cursor. [Selectind returns all

primitives that are being drawn into a 3-D rectilinear volume in . Both methods return the same
type of data and use the same general mechanism for their operation. They differ in the way that the
or selecting volume is specified.

There are three concepts behind picking/selecting:

» The picking/selecting region is the area of the screen (for picking) or of world space (for selecting) that
is sensitized.

» The format of the returned data is controlled by the hame stacld and the routines that manipulate the
name stack.

* The method of structuring a program to make use of picking/selecting.

List of GL Picking and Selecting Subroutines

endpick Turns off picking mode.

Endselect Turns off selecting mode.

seleci Turns selecting mode on.

initnamed Initializes the name stack.

loadnamd Loads a name on top of the name stack.
m Puts the system in picking mode.
picksizd Sets the dimensions of the picking region.
bopnamd Pops a name off the name stack.
fushnamd Pushes a new name onto the name stack.
Picking

This section discusses the following aspects of picking:
. Ploknal oiod

« Becording Hitd

+ [Using the Name StacK

. Defninaibe Pokna Beaon

« [Pick Matrix

Picking Introduction

Use picking to identify the figures (drawing primitives) on the screen that appear near the cursor. To use
picking, your software must be structured so that you can regenerate the picture on the screen whenever
picking is required. When it is, set the system into picking mode with the h subroutine, redraw the
image on the screen, and finish by calling the @ subroutine. Data recorded during the pick appears
in the buffer specified by the pick and endpick subroutines.

© Copyright IBM Corp. 1994 165

../../libs/gl32tref/endpick.htm#HDRA213X91185B
../../libs/gl32tref/endselect.htm#HDRA213X91190C
../../libs/gl32tref/gselect.htm#HDRA213X9118B2
../../libs/gl32tref/initnames.htm#HDRYLD250MARJ
../../libs/gl32tref/loadname.htm#HDRA213X9119AF
../../libs/gl32tref/pick.htm#HDRH632F0NITA
../../libs/gl32tref/picksize.htm#HDRA6CV180MARJ
../../libs/gl32tref/popname.htm#HDRA213X911AF9
../../libs/gl32tref/pushname.htm#HDRA213X911B48
../../libs/gl32tref/pick.htm#HDRH632F0NITA
../../libs/gl32tref/endpick.htm#HDRA213X91185B

When the system is in picking mode, it does not draw anything to the screen. Instead, it checks for hits. A
hit occurs every time a drawing primitive intersects the picking region. The picking region is a rectangular
area of the screen, centered about the location of the cursor. By default, it is 10 by 10 pixels in size. The

size of the picking region can be controlled with the ficksize subroutine.

With one exception, all the standard drawing routines cause hits, including those for points, lines,
polygons, arcs, circles, curves, and patches. Raster objects, such as character strings and pixels drawn
with the EEE subroutine, do not cause hits, but the ﬂEﬂ subroutine does. Thus, to pick the string, the
cursor must be near the lower left corner of the string. Note also that because the m and

subroutines are often preceded by a call to the emov subroutine, these routines can appear to
cause hits. The following "figure” on page ﬁ illustrates the picking process.

EXT IS PICKED
AN
PICKED

Picking

In picking mode, you can identify the parts of an image that lie near the cursor. The cursor is shown as an
arrow. The small box at the tip of the arrow is the picking region. The large shaded circle is picked. The
text string whose origin is in the picking region is also picked. The shaded triangle and the other text string
are not picked.

Recording Hits

The system records hits by writing data into the picking buffer. The actual data that is recorded is the
entire contents of the name stack, preceded by the size of the name stack. The name stack is a stack of
16-bit integers (here referred to as names, not to be confused with the actual GL names of the routines
that cause hits).

The application (your program) has complete control over the name stack. Names can be loaded onto the
stack; pushed onto the stack; poEEed off the stack with the loadname, pushname, or

subroutine; or initialized with the subroutine.

Note that the actual ASCII name of the drawing routine (for example,) that caused the hit is not
recorded. Rather, you must add 16-bit integer names to the name stack or delete them from the name
stack to receive interpretable data back when picking is completed.

166 GL Programming Concepts

../../libs/gl32tref/picksize.htm#HDRA6CV180MARJ
../../libs/gl32tref/charstr.htm#HDRA143X9CFB
../../libs/gl32tref/cmov.htm#HDRA143X9D1D
../../libs/gl32tref/readpixels.htm#HDRA142X91059
../../libs/gl32tref/readRGB.htm#HDRA142X9107B
../../libs/gl32tref/loadname.htm#HDRA213X9119AF
../../libs/gl32tref/pushname.htm#HDRA213X911B48
../../libs/gl32tref/popname.htm#HDRA213X911AF9
../../libs/gl32tref/initnames.htm#HDRYLD250MARJ
../../libs/gl32tref/arc.htm#HDRTEP310NITA

It is very important to realize that not every hit is recorded. A hit is recorded only if the name stack has
been changed since the last hit. The three name stack subroutines, loadname, pushname, and
popname, all touch the name stack. Thus, multiple hits can occur, but only one gets recorded into the
buffer if the name stack never changes.

For example, suppose your application draws three points widely spaced on the screen, and you want to
find which one is close to the cursor using picking mode. Your point-drawing code (that is executed both to
draw points and to redraw them in a picking operation), might look like this:

ortho(<ortho parameters>);

Tookat (<lookat parameters>);

translate (-x, -y, -z);

rotate(30, 'y');

translate(x, y, z);

Toadname(0) ;

pnt(<point 0>);

Toadname(1);

pnt(<point 1>);

Toadname(2) ;

pnt(<point 2>);

Note that the complete specification for drawing the picture must be there, including any m and

routines. When this code segment is executed in picking mode and the cursor is near point
1, the buffer returned after the m subroutine would contain the name 1. If the cursor is near point 2,
the buffer would contain the name 2. If the cursor is not near any of the points, an empty buffer would be
returned.

The stack is intended for used with hierarchical drawings. For example, suppose you want to draw a car
with four instances of a wheel, with each wheel having five instances of a bolt, and you want to pick an
individual bolt from the picture. You might have one piece of code to draw each wheel that contained the
sequence:

pushname(0) ;

<draw bolt 0>

popname () ;

pushname(1);

<draw bolt 1>

popname () ;

The car-drawing code might look like this:

loadname(0);
<translate>
<draw wheel>
Toadname(1);
<translate>
<draw wheel>

Each hit on a bolt would occur with the name stack containing two names, the first of which is the wheel
number and the second of which is the bolt number on that wheel. Deeper nesting of the hierarchy is
possible.

The names reported on hits are completely application dependent. Many drawing routines can occur

between changes to the name stack. If any of those routines cause a hit, the contents of the name stack
is reported.

Chapter 11. Picking and Selecting 167

../../libs/gl32tref/endpick.htm#HDRA213X91185B

Because the contents of the name stack is reported only when it changes, one hit is reported no matter
how many of the drawing routines actually draw something near the cursor. If more accuracy than this is
required by the application, it must touch the name stack more often. In the code fragment that follows, if
all three points caused hits, three identical name stacks are reported:

Toadname (1) ;

pnt(-);

loadname(1);

pnt(-);

loadname(1);

pnt(-);

pick Subroutine
The subroutine puts the system in picking mode. The bufferlen parameter specifies the length of the

buffer array. It should be less than or equal to the size of the buffer as measured in 16-bit short integers.
Graphical items that intersect the picking region cause hits. If the name stack has changed since the last
hit, the length and contents of the name stack are recorded in the buffer. The syntax is as follows:

void pick(Intl6 buffer, Int32 bufferlen)

Using the Name Stack
You maintain the name stack with the loadnamd, ushnamd, bopnamd, and initnamed subroutines.

Each name in the name stack is 16 bits long. You can store up to 1000 names in the name stack. You can
intersperse these routines with drawing routines, or you can insert them into

loadname Subroutine
The subroutine puts a new name at the top of the name stack and erases what was there

before. The syntax is as follows:
void loadname(Intl6 name)

pushname Subroutine
The lpushnamd subroutine puts a new name at the top of the stack and pushes all the other names in the

stack one level lower. The syntax is as follows:
void pushname(Intl6 name)

Before the first loadname subroutine is called, the current name is unpredictable. Calling the pushname
subroutine before calling the loadname subroutine can cause unpredictable results.

popname Subroutine
The lapnamd subroutine discards the name at the top of the stack and moves all the other names up one

level. The syntax is as follows:
void popname()

initnames Subroutine
The lnitnamed discards all the names in the stack and leaves the stack empty. The syntax is as follows:

void initnames()

endpick Subroutine

The subroutine takes the system out of picking mode and returns the number of times the name
stack was dumped into the buffer. If this number is positive, the buffer was large enough to contain all of
the name stacks written to it. If the number is negative, the buffer was too small to store all the name lists.
The magnitude of the returned number is the number of name stacks that were recorded. The syntax is as
follows:

Int32 endpick(Intl6 buffer[])

The buffer parameter contains copies of the name stack that were recorded as hits occurred. As explained
previously, not every hit causes the name stack to be recorded; only the first hit after the name stack has

168 GL Programming Concepts

../../libs/gl32tref/pick.htm#HDRH632F0NITA
../../libs/gl32tref/loadname.htm#HDRA213X9119AF
../../libs/gl32tref/pushname.htm#HDRA213X911B48
../../libs/gl32tref/popname.htm#HDRA213X911AF9
../../libs/gl32tref/initnames.htm#HDRYLD250MARJ
../../libs/gl32tref/loadname.htm#HDRA213X9119AF
../../libs/gl32tref/pushname.htm#HDRA213X911B48
../../libs/gl32tref/popname.htm#HDRA213X911AF9
../../libs/gl32tref/initnames.htm#HDRYLD250MARJ
../../libs/gl32tref/endpick.htm#HDRA213X91185B

been touched is recorded. When stored in the buffer, each name stack is preceded by the length of the
name stack. If the name stack is empty when a hit occurs, the length is recorded as 0 (zero), and the
stack is not recorded.

Defining the Picking Region

Picking loads a projection "matrix” on page [16d that makes the picking region fill the entire w This
picking matrix replaces the projection transformation matrix that is normally used when drawing routines
are called. Therefore, you must restate the original projection transformation after the E subroutine to
ensure that the system maps the objects to be picked to the proper coordinates.

vpsizex

_ 0 0 0
picksizex
vpsizey
0 picksizey 0

Picking matrix =
vpcenterx—cpx vpcentery—cpy
picksizex picksizey

—_
o

where:

Cpx = cursor position (x)

Cpy = cursor position (y)

vpsizex = viewport width

vpsizey = viewport height

vpcenterx = viewport center (x)
vpcentery = viewport center (y)
picksizex = width of the pick rectangle
picksizey = height of pick rectangle

If no projection transformation was originally issued, you must specify the default subroutine, brthod.
When the transformation routine is restated, the product of the transformation matrix and the picking matrix
is placed at the top of the matrix stack. If you do not restate the projection transformation, picking does not
work properly. Instead, the system typically picks every object, regardless of cursor position and picksize.

picksize Subroutine
The default height and width of the picking region is 10 pixels, centered at the cursor. You can change the

picking region with the picksize subroutine. The deltax and deltay parameters specify a rectangle centered
at the current cursor position (the origin of the cursor glyph). (See ICreating a Cursot for a discussion of
cursors.) The syntax is as follows:

void picksize(Intl6 deltax, Intl6 deltay)

Picking Example Program
The following example program draws an object consisting of three shapes; then it loops, until the right

mouse button is pressed. Each time the middle mouse button is pressed, the graphics system:
1. Enters pick mode.

2. Calls the object.

3. Records hits for any routines that draw into the picking region.

4. Prints out the contents of the picking buffer.

Chapter 11. Picking and Selecting 169

../../libs/gl32tref/pick.htm#HDRH632F0NITA
../../libs/gl32tref/ortho.htm#HDRA144X9496

Note: When you call an object in picking mode, the screen does not change. Because the
picking matrix is recalculated only when pick is called, the system exits and reenters picking
mode to obtain new cursor positions.

When the program is run, there are five possible outcomes for each picking session (the circles can be
picked together because they overlap):

* Nothing is picked = hit count: 0 hits:

» The square is picked = hit count: 1. hits: (1)

» The bottom circle is picked = hit count: 1. hit: (2 21)

* The top circle is picked = hit count: 1. hit: (2 22)

» Both the top and bottom circles are picked = hit count: 2 hits: (2 21) (2 22)

[*xx

pick.c - example of picking
*kk [

#include <g1/g1.h>

#include <g1/device.h>

#define BUFSIZE 50

void

drawit()

{
color(RED);
loadname(1);
rectfi(20,20,100,100);
Toadname(2) ;
pushname (21) ;
circi (50, 500, 50);
popname () ;
pushname(22) ;
circi (50, 530, 60);
popname() ;

1

int

main()

{

short dev, val;

short buffer[BUFSIZE];

int hits;

int xsize, ysize;

int i;
prefsize (600, 600);
(void) winopen("pick");
getsize(&xsize, &ysize);
color(BLACK);
clear();
qdevice(LEFTMOUSE) ;
qdevice(ESCKEY);
for (i = 03 i < BUFSIZE; i++) buffer[i] = 0;

drawit();

while (1)

dev = gread(&val);

switch (dev) {
case LEFTMOUSE:
if (val == 0) break;
pick(buffer, BUFSIZE);
ortho2(-0.5, xsize + 0.5, -0.5, ysize + 0.5);
drawit(); /* no actual drawing takes place */
hits = endpick(buffer);

170 GL Programming Concepts

/* display hit information */
{

int index, items, h, i;

printf("hit count: %d hits: ", hits);
index = 0;
for (h = 0; h < hits; h++) {

items = buffer[index++];

printf("(");

for (i = 0; 1 < items; i++) {

if (i !=) printf(" ");
printf("%d", buffer[index++]);

}
printf(") ");
}

printf("\n");

break;
case ESCKEY: /* exit program */
return 0;
break;
}
}
}

Pick Matrix

The lpicK and bndpicK subroutines create the following "matrix” on page [16d and load it as the current
matrix. This formula is placed here for information only. It is not necessary to understand its meaning to
use it successfully.

Selecting

Selecting is much like picking, but is more general. The same concept of hits is used, and the same name
stack manipulation routines apply. The returned data buffer is filled in the same way. The only difference is
in the way the selecting region is defined.

The selecting region corresponds to a rhomboid in world coordinates. Any drawing primitive that intersects
with this rhomboid causes a hit and is recorded in the same manner as in picking. There is no special call
to set the selecting volume; instead, the matrix manipulation routines are used.

Like picking, no actual drawing occurs while the system is in select mode. Instead, all drawing primitives
are transformed through the geometry pipeline and compared to the canonical 3-D unit cube clipping
volume. If the drawing primitive is inside this volume, it causes a hit. If it is wholly outside, there is no hit
recorded. Transforming through the pipeline means that every drawing primitive is run through the
combination of the modeling, viewing, and projection transformations. If, after these transformations, any
portion of the primitive ends up inside the volume -w <= X, y, z <= +w, a hit has occurred.

To perform selecting, you must set up your viewing/projection matrices correctly. You can set up the
matrices either immediately before or after a call to the w subroutine. The gselect subroutine, unlike
the @ subroutine, does not alter the matrix stack.

In most applications, only the viewing matrix is changed, not the projection matrix. The viewing matrix
controls what portion of the world space ends up inside the NDC unit cube (-w <= X, y, z <= +w). Also, the
individual modeling routines are not changed because they only serve to embed individual subportions of
the drawing into the world coordinate frame. The usual process is to draw the same primitives in the same
places they previously occupied while selecting is going on.

To end selecting mode, call the bndselect subroutine. The returned data is in exactly the same format as
for the mqsubroutine.

Chapter 11. Picking and Selecting 171

../../libs/gl32tref/pick.htm#HDRH632F0NITA
../../libs/gl32tref/endpick.htm#HDRA213X91185B
../../libs/gl32tref/gselect.htm#HDRA213X9118B2
../../libs/gl32tref/pick.htm#HDRH632F0NITA
../../libs/gl32tref/endselect.htm#HDRA213X91190C
../../libs/gl32tref/endpick.htm#HDRA213X91185B

gselect Subroutine

The lgselect subroutine turns on the selection mode. The gselect and picK subroutines are identical,
except that the gselect subroutine is more general. It allows you to define an arbitrary rhomboid in world
coordinates as the selecting region. The syntax is as follows:

void gselect(Intl6 buffer[], Int32 numnames)

The numnames parameter specifies the maximum number of values that the buffer can store. Each
drawing routine that intersects the selecting region causes a hit. The contents of the name stack, preceded
by the length of the name stack, are written into the buffer only if this is the first hit since the last time that
the name stack was touched. The name stack is controlled in the same way as in picking.

endselect Subroutine

The kndselect subroutine takes the system out of selecting mode mode and returns the number of times
the name stack was dumped into the buffer. If this number is positive, the buffer was large enough to
contain all of the name stacks written to it. If the number is negative, the buffer was too small to store all
the name lists. The magnitude of the returned number is the number of name stacks that were recorded.
The syntax is as follows:

Int32 endselect(Intl6 buffer[])

The buffer parameter contains copies of the name stack that were recorded as hits occurred. As explained
previously, not every hit causes the name stack to be recorded; only the first hit after the name stack has
been touched is recorded. When stored in the buffer, each name stack is preceded by the length of the
name stack. If the name stack is empty when a hit occurs, the length is recorded as 0 (zero), and the
stack is not recorded.

Selecting Example Program

The following program demonstrates a simple application of selecting. This program draws a planet and
then draws a box representing the ship each time the left mouse button is pressed. The program prints
CRASH and exits when the ship collides with the planet:

[x%*

crash.c - example of selecting
*xk [

#include <g1/g1.h>
#include <g1/device.h>
#define BUFSIZE 50
#define PLANET 109
#define SHIPWIDTH 20
#define SHIPHEIGHT 10
void

drawplanet ()

circfi(200, 200, 20);

1

int

main()

{

short dev, val;

short buffer[BUFSIZE];

int count, i;

float shipx, shipy, shipz;

int xorigin, yorigin;
minsize (300, 300);
(void) winopen("crash");
getorigin(&xorigin, &yorigin);

172 GL Programming Concepts

../../libs/gl32tref/gselect.htm#HDRA213X9118B2
../../libs/gl32tref/pick.htm#HDRH632F0NITA
../../libs/gl32tref/endselect.htm#HDRA213X91190C

qdevice (LEFTMOUSE) ;
qdevice(ESCKEY);
color(BLACK) ;
clear();
for (i = 0; i < BUFSIZE; i++) buffer[i] = 0;
color(RED);
drawplanet();
while (TRUE) {
dev = qread(&val);
switch (dev) {
case LEFTMOUSE:

if (val)
shipz = 0;
shipx = getvaluator(MOUSEX) - xorigin;

shipy = getvaluator(MOUSEY) - yorigin;

color(BLUE);
rect(shipx, shipy,
shipx + SHIPWIDTH, shipy + SHIPHEIGHT);

/* specify the selecting region to be a box
surrounding the rocket ship */
pushmatrix();
ortho2(shipx, shipx + SHIPWIDTH,
shipy, shipy + SHIPHEIGHT);
initnames();
gselect(buffer, BUFSIZE); /xenter selecting modex/
Toadname (PLANET) ;
drawplanet(); /* no actual drawing takes place x/
count = endselect(buffer); /+ exit select mode */
popmatrix();
/* check to see if PLANET was selected x/
if ((count > 0) && (buffer[0] == 1) &&
(buffer[1] == PLANET)) {
printf("CRASH!\n");

}

}

break;

case ESCKEY:

return 0;
break;

Chapter 11. Picking and Selecting

173

174 GL Programming Concepts

Chapter 12. Understanding Windows and Input Control

The Graphics Library provides subroutines to control windows and input from an application program.
These subroutines cover the following aspects of window and input control:

Creating and Managing Windows

This section discusses the following aspects of window management:

GL provides subroutines to create and manipulate windows from an application program. The windowing
subroutines are implemented on top of Enhanced X-Windows and work with any window manager,
including the AIXwindows window manager. A GL window is one in which a GL application draws an
image, while a text window runs a shell.

List of GL Window Subroutines

blankscreen Turns screen refresh on and off.

blanktimd Sets screen blanking timeout.

Endfullscrn Ends full screen mode.

m Specifies pixel values to be added to a window size.
Fullscrn Enables drawing outside current window boundaries.
lpetorigin Returns the position of a window.

lgetsizd Returns the size of a window.

iconsize Specifies the size of a window icon.

fcontitid Specifies the title of a window icon.

W Specifies the aspect ratio of a window.

axsizd Specifies the maximum size of a window.

Iinsizd Specifies the minimum size of a window.

hoborded Removes the border from a window.

m Specifies that a program does not require a window.
W Constrains the window position and size.

m Constrains the window size.

© Copyright IBM Corp. 1994

175

../../libs/gl32tref/blankscreen.htm#HDRA144X9128
../../libs/gl32tref/blanktime.htm#HDRA144X9178
../../libs/gl32tref/endfullscrn.htm#HDRLAA350MARJ
../../libs/gl32tref/fudge.htm#HDRA142X917A6
../../libs/gl32tref/fullscrn.htm#HDRQGA140MARJ
../../libs/gl32tref/getorigin.htm#HDRA142X91F76
../../libs/gl32tref/getsize.htm#HDRX513200MARJ
../../libs/gl32tref/iconsize.htm#HDRLA13E0MARJ
../../libs/gl32tref/icontitle.htm#HDRSH13240MARJ
../../libs/gl32tref/keepaspect.htm#HDRA142X91896
../../libs/gl32tref/maxsize.htm#HDRA142X916D6
../../libs/gl32tref/minsize.htm#HDRMJ13260MARJ
../../libs/gl32tref/noborder.htm#HDRA142X91D7A
../../libs/gl32tref/noport.htm#HDRZN13170MARJ
../../libs/gl32tref/prefposition.htm#HDRA142X9164F
../../libs/gl32tref/prefsize.htm#HDRA142X91671

istepunii Specifies a window size change in discrete steps.
W Creates a restricted subwindow.

lwinclosd Closes a window.

lwinconstraintd Binds window constraints to the current window.
m Indicates the stacking order of windows on the screen.
m Returns the identifier of the current window.
winmovd Moves the current window by its lower-left corner.
m Creates a new window.

m Raises the current window on top of all other windows.
lwinpositior] Changes current location and size of a window.
m Lowers the current window beneath all other windows.
fwinsel Sets the current window.

hvintitid Adds a title bar to the current window.

Opening and Closing Windows
The GL subroutines for opening and closing windows are the winapen), kwinopen, and winclose

subroutines. (The swinopen subroutine creates subwindows from a parent window.) Exiting a program
causes any existing windows to close automatically.

Setting Window Attributes and Constraints

You can control the size, location, and shape of windows from a GL client program. Calling the winopen
subroutine without specifying any of these characteristics allows you to open a window of any size or
shape anywhere on the screen. You can, however, open a specific window, such as a small square with a
border, if you specify the desired size and shape.

Use the window constraint subroutines in the following table to specify window characteristics. Call these
subroutines before opening a window with the m subroutine. GL applies these constraints when it
opens the window.

Window Constraint Subroutines

To Specify Use
Minimum size ninsizd
Maximum size maxsizd
Aspect ratio W
Size, in pixels m
Size and location W
Sizing increment ktepunit
Small increase in size m

Size of window’s icon iconsizd
Give a window’s icon a title ficontitid
Make a title bar for the current window hwintitid

No window borders hobarded
No screen space needed m

176 GL Programming Concepts

../../libs/gl32tref/stepunit.htm#HDRA142X91BD2
../../libs/gl32tref/swinopen.htm#HDRA2T741B0NITA
../../libs/gl32tref/winclose.htm#HDRA142X91418
../../libs/gl32tref/winconstraints.htm#HDRA142X914C1
../../libs/gl32tref/windepth.htm#HDRA142X914E3
../../libs/gl32tref/winget.htm#HDRA142X91505
../../libs/gl32tref/winmove.htm#HDRA142X91527
../../libs/gl32tref/winopen.htm#HDRA142X91549
../../libs/gl32tref/winpop.htm#HDRA142X9156B
../../libs/gl32tref/winposition.htm#HDRA142X9158D
../../libs/gl32tref/winpush.htm#HDRA4X13320MARJ
../../libs/gl32tref/winset.htm#HDRNY1320MARJ
../../libs/gl32tref/wintitle.htm#HDRA142X915F3
../../libs/gl32tref/winopen.htm#HDRA142X91549
../../libs/gl32tref/swinopen.htm#HDRA2T741B0NITA
../../libs/gl32tref/winclose.htm#HDRA142X91418
../../libs/gl32tref/winopen.htm#HDRA142X91549
../../libs/gl32tref/minsize.htm#HDRMJ13260MARJ
../../libs/gl32tref/maxsize.htm#HDRA142X916D6
../../libs/gl32tref/keepaspect.htm#HDRA142X91896
../../libs/gl32tref/prefsize.htm#HDRA142X91671
../../libs/gl32tref/prefposition.htm#HDRA142X9164F
../../libs/gl32tref/stepunit.htm#HDRA142X91BD2
../../libs/gl32tref/fudge.htm#HDRA142X917A6
../../libs/gl32tref/iconsize.htm#HDRLA13E0MARJ
../../libs/gl32tref/icontitle.htm#HDRSH13240MARJ
../../libs/gl32tref/wintitle.htm#HDRA142X915F3
../../libs/gl32tref/noborder.htm#HDRA142X91D7A
../../libs/gl32tref/noport.htm#HDRZN13170MARJ

To respecify constraints for a window that is already open, first call the desired series of window constraint
subroutines from the previous table, then call the luinconstraintd subroutine.

When a user interactively changes a window, the window constraints are automatically enforced.
Interactively changing a window means using the mouse and keyboard, in cooperation with the currently
running window manager, to move, resize, or reshape a window.

The window constraints allow the applications programmer to control and limit how the user resizes and
reshapes a window. The Imaxsizd subroutine prevents a user from resizing a window to any size larger

than the size set by the subroutine parameters. Likewise, the Iminsizd subroutine prevents the user from
shrinking a window below the specified size.

The subroutine prevents a user from resizing a window so that the aspect ratio is changed.
The subroutine allows the window to be resized only in specified discrete steps. Normally, a
window can be resized by arbitrary amounts; in other words, the stepunit subroutine usually specifies one
pixel.

The lprefsize and prefposition subroutines constrain the size and position of the window. The prefsize
subroutine prevents a user from resizing the window. The prefposition subroutine prevents a user from
moving the window. To place a window on the screen in some position, allowing the user afterwards to
reposition or resize the window, call the lwinconstraintd subroutine after the ﬁm subroutine (or call
the winconstraints subroutine twice in a row.) The winconstraints subroutine clears previous constraints
and sets any new ones.

Controlling Window Placement

Ultimately, window placement is controlled by the window manager. The default window manager for your
system is the AIXwindows window manager. To control the behavior of this window manager regarding
interpretation and placement, edit the .Xdefaults file in the user's home directory.

In controlling interpretation of the prefposition subroutine parameters, if you add the following line to the
.Xdefaults file:

Mwm#positionIsFrame: True

the location of the window is assumed to include the boundary of the window. That is, the screen
coordinates are assumed to refer to the lower left-hand corner of the window border. In contrast, if you add
the following line to the .Xdefaults file:

Mwm*positionIsFrame: False

the window manager interprets the position as the location of the window’s interior, ignoring the window
border.

The AlXwindows window manager normally places a window so that it is fully visible on the screen. To
open a window partly or wholly off the screen, add the following line to the .Xdefaults file:

Mwm#positionOnScreen: False

Changing the line to read:

Mwm*positionOnScreen: True

makes the window manager ignore the values specified with the prefposition subroutine and place the
window so that it is fully visible on the screen.

In controlling placement of a window, if you add the following line to the .Xdefaults file:
MwmxinteractivePlacement: True

Chapter 12. Understanding Windows and Input Control 177

../../libs/gl32tref/winconstraints.htm#HDRA142X914C1
../../libs/gl32tref/maxsize.htm#HDRA142X916D6
../../libs/gl32tref/minsize.htm#HDRMJ13260MARJ
../../libs/gl32tref/keepaspect.htm#HDRA142X91896
../../libs/gl32tref/stepunit.htm#HDRA142X91BD2
../../libs/gl32tref/prefsize.htm#HDRA142X91671
../../libs/gl32tref/prefposition.htm#HDRA142X9164F
../../libs/gl32tref/winconstraints.htm#HDRA142X914C1
../../libs/gl32tref/winopen.htm#HDRA142X91549

a rubber-banded window appears when the winopen subroutine is executed. The user can place the
window where desired on the screen. If you change the line to read:

MwmxinteractivePlacement: False

the window is immediately placed on the screen in the specified position when the winopen subroutine is
executed.

The AlXwindows window manager normally adds an offset to the location of every new window that is
opened. This offset is used to keep new windows from piling up at one place. The offset spreads windows
evenly over the entire screen. To turn off this behavior, specify

Mwm*clientAutoPlace: False

When clientAutoPlace is turned off, GL windows are mapped on the screen exactly at the location
specified with the W subroutine.

Changing Windows Noninteractively

The applications programmer can have the same control over windows that an applications user can. A
window may be moved, resized, raised, and lowered from the applications program with the subroutines in
the following table:

Window Control Subroutines

To Use

Move and reshape the current window inpositiod
Move the current window fvinmovd
Lower the current window to bottom m
Raise the current window to top winpog
Return the size of a window betsizd
Return the origin of the window m
Return depth of window in the window stack windeptH

GL performs these operations on the current window, which is set with the hwinset subroutine.

Managing Multiple Windows

Multiple GL windows opened by the same process do not normally share attributes. Every window has its
own current color; its own transformation matrix stack; and its own viewport stack, name stack, and
attribute stack (which contains attributes such as the current linestyle and linewidth). The action of

subroutines such as swapbuffers, RGBmode, depthcue, and Imbind is limited to the current window.

The only exceptions to this rule are a few window management subroutines (such as the linsef
subroutine) and the def subroutines: deflinestyld, defpattern, , loadXfoni, lmdef, and

. If a linestyle, pattern, light, font, or object is defined for one wmdow it becomes available to all
windows opened by the same process. These definitions are referenced by the same index in all such
windows. Information is never shared between different processes. The previous comments apply only to
windows opened by one and the same process.

The exception made for the def subroutines is provided as a convenience to the user. If a linestyle has
been defined in one window, and the user wants to use it in another, the definition should not have to be
respecified in other, possibly numerous, windows. In addition, the def subroutine exception allows the
system to operate in a more efficient manner. The system does not need to keep track of multiple copies
of duplicate information.

178 GL Programming Concepts

../../libs/gl32tref/prefposition.htm#HDRA142X9164F
../../libs/gl32tref/winposition.htm#HDRA142X9158D
../../libs/gl32tref/winmove.htm#HDRA142X91527
../../libs/gl32tref/winpush.htm#HDRA4X13320MARJ
../../libs/gl32tref/winpop.htm#HDRA142X9156B
../../libs/gl32tref/getsize.htm#HDRX513200MARJ
../../libs/gl32tref/getorigin.htm#HDRA142X91F76
../../libs/gl32tref/windepth.htm#HDRA142X914E3
../../libs/gl32tref/winset.htm#HDRNY1320MARJ
../../libs/gl32tref/swapbuffers.htm#HDRA145X9302
../../libs/gl32tref/RGBmode.htm#HDRA143X93B6
../../libs/gl32tref/depthcue.htm#HDRPNK22D0MARJ
../../libs/gl32tref/lmbind.htm#HDRXEZ2340MARJ
../../libs/gl32tref/winset.htm#HDRNY1320MARJ
../../libs/gl32tref/deflinestyle.htm#HDRA143X9B1F
../../libs/gl32tref/defpattern.htm#HDRA143X9B41
../../libs/gl32tref/defrasterfont.htm#HDRA143X9D3F
../../libs/gl32tref/loadXfont.htm#HDRVUO390NITA
../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ
../../libs/gl32tref/makeobj.htm#HDRA142X912D

Other than these shared definitions, all other attributes that are part of GL have been made deliberately
nonsharable across windows. True multiple, independent drawing sessions can therefore be performed in
multiple windows. Separate windows do not interfere with one another, and the applications writer does not
have to engage in complicated window attribute management. The system maintains the attribute
management automatically.

Other Window Subroutines
GL provides other subroutines to control the windows, as shown in the following table:

Miscellaneous Window Subroutines

To Use

Put the program in screen space m

Put viewport at current window position W
Enable the entire screen for writing fullscrd

End full-screen mode Endfullscrd
Return identifier of current window lvinged

Set the current window [vinset

Specify length of screen blank timeout blanktimd
Control screen refresh, on/off blankscreerd

Creating a Cursor

This section discusses the following aspects of cursors:

List of GL Cursor Subroutines

kcurorigin Sets the origin of the cursor.
W Control cursor visibility.

m Defines the type and size of cursor.
befcursod Defines the cursor.

W Returns the cursor characteristics.
ketcursod Sets cursor characteristics.

bttachcursod Couples cursor position to valuator device.

Introduction to Cursors

The cursor is handled with special cursor hardware. As the color guns scan the screen and cross the
square region of the screen where the cursor is to be drawn, they look at the corresponding position in the
cursor mask to see what color to draw.

The cursor mask can be 1 or 2 bits deep. If the cursor mask is 0, the normal color is presented. If the
mask is nonzero, the mask value is looked up in a color table (very similar to overlay) to find out what

Chapter 12. Understanding Windows and Input Control 179

../../libs/gl32tref/screenspace.htm#HDRA213X911CF1
../../libs/gl32tref/reshapeviewport.htm#HDRA7LQ3B0MARJ
../../libs/gl32tref/fullscrn.htm#HDRQGA140MARJ
../../libs/gl32tref/endfullscrn.htm#HDRLAA350MARJ
../../libs/gl32tref/winget.htm#HDRA142X91505
../../libs/gl32tref/winset.htm#HDRNY1320MARJ
../../libs/gl32tref/blanktime.htm#HDRA144X9178
../../libs/gl32tref/blankscreen.htm#HDRA144X9128
../../libs/gl32tref/curorigin.htm#HDRA150X9398
../../libs/gl32tref/curson.htm#HDRRU1280NITA
../../libs/gl32tref/curstype.htm#HDRA150X93EE
../../libs/gl32tref/defcursor.htm#HDRA150X9444
../../libs/gl32tref/getcursor.htm#HDRSP1160NITA
../../libs/gl32tref/setcursor.htm#HDRZR1NITA
../../libs/gl32tref/attachcursor.htm#HDRA71D6F2375CSOL

color to draw. The cursor color takes precedence over the overlay color. As with overlays, if the cursor
mask is 1 bit deep, there is only one possible color. If the cursor mask is 2 bits deep, the cursor can have
up to three colors.

The system supports five different cursor types: a 16-by-16-bit cursor in one or three colors; a 32-by-32-bit
cursor in one or three colors; and a cross-hair, one-color cursor. To specify a cursor completely, you need
to specify not only its type, but also its shape and colors. In addition, every cursor has an origin, or hot
spot, and can be turned on or off. See the "Sample Cursors” on page figure for examples of a
16-by-16-bit one-color cursor.

Cursor arrow = { 0OxFE00, 0xFC00, 0xF800, 0xF800,
0xFC00, 0xDE0O, 0x8F00, 0x0780,
0x03C0, 0x01EO0, 0x00F0, 0x0078,
0x003C, 0x001E, 0x000E, 0x0004 }

Cursor hourglass = { 0x1FF0, 0x1FF0, 0x0820, 0x0820,
0x0820, 0x0C60, 0x06C0, 0x0100,
0x0100, 0x06C0, 0x0C60, 0x0820,
0x0820, 0x0820, Ox1FFO0, Ox1FFO }

Cursor martini = { 0x1FF8, 0x0180, 0x0180, 0x0180,
0x0180, 0x0180, 0x0180, 0x0180,
0x0180, 0x0240, 0x0720, 0x0B10,
0x1088, 0x3FFC, 0x4022, 0x8011 }

Sample Cursors

Cursor number zero (0), the default cursor, is an arrow pointing to the upper left corner of the cursor glyph;
its origin is at (0, 15), the tip of the arrow. The default cursor cannot be redefined and can always be used.
The position of the origin of the cursor is set to the current values of the valuators that are attached to the
cursor.

Defining a New Cursor

To define and use a new cursor, you must follow these steps:

1. Enable or disable the visibility of the cursor with the kurson/cursoff subroutines.

2. Set the cursor type to one of the five allowable types with the Eurstypd subroutine.
3. Define the cursor’s shape and assign it a number with the befcursod subroutine.
4

If necessary, define its origin (or hot spot) with the m subroutine, and its colors with the
drawmodd and mapcolod subroutines.

5. Finally, the new cursor becomes the current cursor with a call to the ketcursal subroutine.

180 GL Programming Concepts

../../libs/gl32tref/curson.htm#HDRRU1280NITA
../../libs/gl32tref/curstype.htm#HDRA150X93EE
../../libs/gl32tref/defcursor.htm#HDRA150X9444
../../libs/gl32tref/curorigin.htm#HDRA150X9398
../../libs/gl32tref/drawmode.htm#HDRA143X9460
../../libs/gl32tref/mapcolor.htm#HDRA146X9535
../../libs/gl32tref/setcursor.htm#HDRZR1NITA

The following "figure” on page illustrates various types of cursors.

If an application needs a number of different cursors, it typically defines all of them on initialization, and
then switches from one to another using the (and perhaps. the mapcolod) subroutine. Although
they do not physically do so, cursors can be thought of as occupying one or two bitplanes of their own,
which behave like overlay bitplanes as described previously.

A one-color cursor uses one bitplane and a three-color cursor occupies two. Where there are zeros in the
cursor’s bitplanes, the contents of the standard, overlay, and underlay bitplanes appear. In the same way
that overlay colors are defined, the brawmodd and mapcolor subroutines define the cursor’s colors. For
example, call the following for a one-color cursor:

drawmode (CURSORDRAW) ;
mapcolor(1l, r, g, b);

Or, call the following for a three-color cursor:
mapcolor(1l, rl, gl, bl);
mapcolor(2, r2, g2, b2);
mapcolor(3, r3, g3, b3);

When the cursor pattern contains a 1(=01), the color value (r1, g1, b1) is presented. When the cursor
pattern is 2(=10), the color value (r2, g2, b2) appears, and so on. Be sure, after you have defined the
cursor’s colors, to call:

drawmode (NORMALDRAW)

Cross-Hair Cursor

The cross-hair cursor is formed with two 1-pixel-wide, intersecting lines, one horizontal and one vertical
that extend completely across the screen. Its origin is at the intersection of the two lines. This one-color
cursor always uses cursor color 3 as its color. The color of the cross-hair cursor is set by mapping color
index 1.

The cross-hair cursor consists of a default glyph that cannot be changed. If you assign a value to it with
the Hefcursod subroutine, the user-defined glyph is ignored. The cross-hair cursor does not work if more
than one window is open.

Cursor Subroutines
The following GL subroutines control cursors.

curson and cursoff Subroutines

The kurson and cursoffl subroutines turn the cursor visibility on and off, respectively. However, they
execute fairly slowly and should not be heavily used. These subroutines control only the visibility of the
cursor and do not disable or enable the cursor or mouse-button click events inside the current window.
The curson subroutine is the default. The syntax for the curson and cursoff subroutines is as follows:

void curson()

void cursoff()

GL formerly required the cursor to be turned off before any drawing was attempted and turned on again
after drawing was completed. This is no longer required. However, existing code that is being ported to the
current release may often use this function. This code should be modified to remove these subroutines, or
the subroutines should be effectively removed by using #ifdef with the C programming language
preprocessor. If this is not done, performance will be adversely and severely affected.

curs&*ﬁubroutine
The subroutine defines the current cursor type. The value %iven in the type parameter is C16X1,
C16X2, C32X1, C32X2, or CCROSS. This value is used by the subroutine to determine the
dimensions of the arrays that define the cursor’s shape. The default value is C16x1. The CCROSS value

Chapter 12. Understanding Windows and Input Control 181

../../libs/gl32tref/setcursor.htm#HDRZR1NITA
../../libs/gl32tref/mapcolor.htm#HDRA146X9535
../../libs/gl32tref/drawmode.htm#HDRA143X9460
../../libs/gl32tref/defcursor.htm#HDRA150X9444
../../libs/gl32tref/curson.htm#HDRRU1280NITA
../../libs/gl32tref/curstype.htm#HDRA150X93EE
../../libs/gl32tref/defcursor.htm#HDRA150X9444

indicates a predefined cross-hair cursor, which is one pixel wide. The hot spot is at the center of the cross.
Its default center is (15, 15). The CCROSS value uses cursor color 3. The syntax is as follows:

void curstype(Int32 type)

After you call the curstype subroutine, call the defcursor subroutine to specify the appropriate-sized array
and assign a numeric value to the cursor glyph.

def%ubroutine

The subroutine defines a cursor glyph. The index parameter is an index into the table of
defined cursors, and the cursor parameter is an array of bits of the correct size, which depends on the
current cursor type. The format of the array of bits is exactly the same as that for characters in a font. The
16-bit word at the lower-left of the cursor bitmap is given first, then (if the cursor is 32 bits wide) the word
to its right. Continue in this way to the top of the cursor bitmap for either 16 or 64 words. If the cursor is
three-colored, another set of 16 or 64 words follows (again beginning at the bottom) for the second plane
of the mask. The syntax is as follows:

void defcursor(Int32 index, Uintl6 =*cursor)

curorigln Subroutine

The sets the origin of a cursor. The origin is the point on the cursor that aligns with the current
cursor valuators. The lower-left corner of the cursor has coordinates (0,0). Before calling the curorigin
subroutine, you must define the cursor with the Hefcursod subroutine. The index parameter is an index
into the cursor table created bﬁ the defcursor subroutine. The curorigin subroutine does not take effect
until there is a call to the subroutine. The syntax is as follows:

void curorigin(Intl6 index, Intl6 xorigin, Intl6 yorigin)

setcursor Subroutine
The subroutine sets the cursor characteristics. It selects a cursor glyph from among those

defined with the defcursor subroutine. The index parameter picks a glyph from the definition table. The
color and writemask parameters are ignored. They are present for compatibility with older systems that still
make use of them. Set the color for the cursor with the mapcalod and drawmode subroutines. The syntax
is as follows:

void setcursor(Intl6 index,
Colorindex color, Colorindex writemask)

getcursor Subroutine
The lgetcursal subroutine returns the cursor characteristics. It returns two values: the cursor glyph (in the

index parameter) and a Boolean value (in the bool parameter) indicating whether the cursor is visible.

Note: The color and writemask parameters are included for compatibility with previous versions;
otherwise, they provide no useful information for current usage.

The syntax is as follows:

void getcursor(Intl6 *index, Colorindex xcolor,
Colorindex *writemask, Int32 =*bool)

The default is the glyph index 0 in the cursor table, displayed with the color 1, drawn in the first available
bitplane, and automatically updated on each vertical retrace.

The following example program defines a three-color, 32-by-32-bit cursor in the shape of an American flag
with 12 stars:

#include <g1/g1.h>

main ()

{
winopen("flag");
setflag();

182 GL Programming Concepts

../../libs/gl32tref/defcursor.htm#HDRA150X9444
../../libs/gl32tref/curorigin.htm#HDRA150X9398
../../libs/gl32tref/defcursor.htm#HDRA150X9444
../../libs/gl32tref/setcursor.htm#HDRZR1NITA
../../libs/gl32tref/setcursor.htm#HDRZR1NITA
../../libs/gl32tref/mapcolor.htm#HDRA146X9535
../../libs/gl32tref/drawmode.htm#HDRA143X9460
../../libs/gl32tref/getcursor.htm#HDRSP1160NITA

color(0);
clear();
sleep(20);

setflag()
{
static short curs2[128] = {
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,

OXFFFf, OXFFFf, OXFFFF, OXFFFf,
OXFFFf, OxFFFF, OXFFF, OXFFFT,
OXFFFf, OxFFFF, OXFFFF, OXFFFF,
OXFFFf, OxFFFF, OXFFFF, OXFFFF,
OXFFFf, OxFFFf, OXFFFF, OXFFFF,
OXFFFf, OXFFFf, OXFFFF, OXFFFf,
OXFFFf, OxFFFF, OXFFF, OXFFFF,
0, OxFFff, Ox6666, OXFFff,
OX6666, OxFFFf, 0, OXFfff,
0, OXFfff, Ox6666, OXFFff,
0X6666, OXFFff, 0, OXFFff,
0, OxFFff, 0x6666, OXFfff,
0X6666, OXFFff, 0, OXFFff,

B 05

[cNoNoNO]

0’ 0’ E 0’
OxFFFf, OxFFFf, OXFFF, OXFFFF,
0, 0, 0, 0,
OxFFFf, OxFFFf, OXFFF, OXFFFF,
0, 0, 0, 0,
OxFFFf, OxFFFf, OXFFF, OXFFFF,
0, 0, 0, 0,
OXFFFf, OxFFFf, OXFFFF, OXFFFF,
OXFFFF, 0, OXFfff, 0,
OXFFFf, OxFFFf, OXFFFF, OXFFFF,
OXFFFF, 0, OXFfff, 0,
OXFFFf, OxFFFf, OXFFFF, OXFFFF,
OxFFFF, 0, OXFfff, 0 };

curstype(C32X2);
drawmode (CURSORDRAW) ;
mapcolor(1,255,0,0);
mapcolor(2,0,0,255);
mapcolor(3,255,255,255);
defcursor(1l,curs?2);
setcursor(1,0,0);
drawmode (NORMALDRAW) ;

Using the Keyboard

The keyboard class of special devices reports character values when keys, or a combination of keys, are
pressed. The following section discusses both international keyboard input and controlling keyboard
characteristics and behavior.

List of GL Keyboard Subroutines

klkan clkoft Turns keyboard click on and off.
W Turns the keyboard display lights on and off.
kingbell Rings the keyboard bell.

kethell Sets the duration of the keyboard bell sound.

Chapter 12. Understanding Windows and Input Control 183

../../libs/gl32tref/clkoff.htm#HDRA213X9112DE
../../libs/gl32tref/lampoff.htm#HDRA213X9113BC
../../libs/gl32tref/ringbell.htm#HDRA213X911463
../../libs/gl32tref/setbell.htm#HDRA213X9114AE

||setdbllg.hl:§ |Sets the lights on the dial and switch box.

International Keyboard Input

The KEYBD device returns code points that correspond to the keys typed on the keyboard. The manner in
which keystrokes are matched with the returned value depends on the locale, a language, territory, and
code set combination used to identify a set of language conventions. For example, in United
States-English installation, the value returned is the ASCII value that corresponds to the key pressed,
taking into account the Shift and Ctrl keys. In other language keyboard installations, encodings from the
ISO8859 family of code sets are returned. For further information on code sets, see

in in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs..

Input Method

The method used for matching up keystrokes to returned values is called the input method. The locale,
which determines the key mapping, is determined from the default setting when the system was
configured, or from the $LANG environment variable, or from the most recent invocation of the ketlacald
subroutine. The input method helps correct for different key placements on different keyboards; for
instance, the letter Z on the French keyboard appears in the same location as the letter W on the US
English keyboard. For further information on input method, see lnput Method Querviewl in in A/X 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

The input method also automatically takes into account cases where multiple keystrokes are needed to
specify one unique letter. The value returned may be a single-byte value (in the case of languages with
single-byte code sets), or double-byte value (for Ianguages supporting double-byte code sets) For further
information on National Language Support, refer to the

in in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

In the example of the United States-English keyboard device, events are reported only on a key
downstroke. The value returned takes into account the state of the modifier key (the Ctrl, Shift, and
Shift-lock keys). Pressing the lowercase letter a on the keyboard returns the ASCII value 0x61, while
pressing Shift-A returns the ASCII value 0x41. Similarly, pressing the Ctrl-G key sequence returns BEL
(hex value 0x07), the Ctrl-D key sequence returns ETX (hex value 0x03) and so on, proceeding with the
standard ASCII mapping.

It is important to understand the difference between the device and the values it returns when you queue
the keyboard. If your program contains the following instruction:

qdevice(KEYBD) ;

then the statement:
dev = gread(&val);
returns the following:
dev == KEYBD

val == the IS08859 code set encoding of the character pressed.

In United States-English keyboard installations, you can test for individual keystrokes by using instructions
with the following format:

qdevice(AKEY);
This returns the AKEY device when the uppercase A or lowercase a key is pressed.

Note: Currently, the keyboard mapping for KEY devices is guaranteed to be correct only in United
States-English installations.

184 GL Programming Concepts

../../libs/gl32tref/setdblights.htm#HDRA213X911501
../../aixprggd/genprogc/codeset_over.htm#HDRA163C116E3
../../libs/basetrf2/setlocale.htm#HDRA15096AB
../../aixprggd/genprogc/input_method.htm#HDRA8F046
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/nls.htm#HDRA2919F7

Keyboard Mapping
The actual keyboard mapping used by the KEYBD device is contained in an imkeymap file. The following
locations are searched, in the order indicated, for this file:

1. $XDIR/imkeymap
2. $HOME/imkeymap
3. lust/lib/nis/loc/$SLANG

If none of these files are found, the mapping defaults to the ISO8859 (Latin-1) keyboard mapping. An input
method determines the mapping. By default, the input method used is IMSimpleMap. For most country and
language combinations, two different encodings are supplied: the ISO8859 encoding and the IBM-850
encoding. For example, $LANG = Fr_CH is used to indicate the IBM-850 encoding for Swiss French, while
$LANG = fr_FR indicates that the ISO8859-1 encoding should be used.

Note: Changing the locale after initialization has no effect. Keyboard initialization occurs at the time
the X server is brought up. Therefore, the locale (or SLANG variable) should be set before the X
server is started.

For applications developed for use in countries and languages with more complex input-composing
requirements, such as in the Asian/Pacific Rim regions, it is strongly suggested that the AIXwindows input
widget be used. Use of AIXwindows for input requires knowledge of the X display connection and the X
Window identifier of a GL window for a GL session. This information can be obtained with the GL
or subroutines. For a review of limitations, see Llsi =Wi i

. Example usages can be found in the /usr/lpp/GL/examples directory.

Alt PF Key Keystroke Sequences

In the normal course of operations, the window manager interprets some key sequences as having special
meaning. These key sequences typically involve pressing a PF key while holding down the Alt key, and
are used to modify a window by moving, resizing, raising, lowering it, and so on. The window manager
removes these events from the event queue, and a GL application requesting these key events does not
receive them. The actual keystrokes that are grabbed are under control of the .mwmrc file, and are known
as accelerators. Although the default accelerators shipped with the system are Alt-PF key sequences, the
user can change or eliminate the key sequences used as menu accelerators by editing the
$HOME/.mwmrc file. Note, however, that changes made to the $SHOME/.mwmrc file affect all applications.
Currently, there is no selective means of disabling the key grabbing for some, but not all, applications.

Controlling the Keyboard

In addition to routines that poll and queue input devices, there are subroutines that control the
characteristics and behavior of the GL peripheral input and output devices. For example, some of these
subroutines turn the keyboard click on and off (the clkon and clkoff subroutines, respectively) or set the
keyboard bell. You set these controls to your preference or needs.

cIk%Subroutines
The subroutines turn the keyboard click on and off. The syntax for the clkon and clkoff

subroutines is as follows:
void cTkon()
void clkoff()

lampon and lampoff Subroutines
The W subroutines control the four lamps on the keyboard. Each 1 (as opposed to 0) in

the four lower-order bits of the lamps parameter to the lampon subroutine causes the corresponding
keyboard lamp to be on or off, depending on the subroutine called. The syntax for the lampon and
lampoff subroutines is as follows:

void Tampon(Int8 lamps)
void Tlampoff(Int8 Tamps)

Chapter 12. Understanding Windows and Input Control 185

../../libs/gl32tref/getXdpy.htm#HDRA114C13C
../../libs/gl32tref/getXdpy.htm#HDRA114C13C
exhwindcalls.htm
exhwindcalls.htm
../../libs/gl32tref/clkoff.htm#HDRA213X9112DE
../../libs/gl32tref/lampoff.htm#HDRA213X9113BC

ringbell Subroutine
The l-:iEEEEiI subroutine rings the keyboard bell. The syntax is as follows:

void ringbell()

setbell Subroutine
The subroutine sets the duration of the keyboard bell. A value of 0 in the durat parameter is off, 1
is a short beep, and 2 is a long beep. The syntax is as follows:

void setbell(Char8 durat)

setdblights Subroutine

The m subroutine controls the 32 lighted switches on a dial and switch box. For example, to turn
on switches 3 and 7, the third and seventh bits of the mask must be set to 1 (1<<3) | (1<<7)=0x88. The
syntax is as follows:

void setdblights(Int32 mask)

Controlling Queues and Devices

This section discusses the following areas:

GL supports three classes of input devices:

valuators Return an integer value. For example, a dial on a Hial and button box is a valuator. A
mouse is a pair of valuators: one reports horizontal position and the other reports vertical
position.

buttons Return a Boolean value: FALSE when they are not pressed (open) and TRUE when they

are pressed (closed). Examples of buttons are keys on an unencoded keyboard, buttons
on a mouse, and the switches on a dial and button box.

other devices Return information about other system events. For example, the keyboard returns ASCII
characters. Most of these special devices register events. The keyboard device reports
character values when keys (or combinations of keys) are pressed. If you press the A
key, an ASCII a is reported; if you press the Shift key, nothing is reported. If you hold
down the Shift key and then press the A key, an ASCII A is reported.

List of GL Queue and Device Control Subroutines

blkgread Reads multiple entries from the event queue.

m Returns the current state of a button.

m Reads a list of valuators.

m Returns the current state of a valuator.

m Indicates whether a specified device is enabled for event queuing.
haisd Filters valuator motion.

m Enables an input device for event queuing.

bented Creates an event queue entry.

read Reads the first entry in the event queue.

186 GL Programming Concepts

../../libs/gl32tref/ringbell.htm#HDRA213X911463
../../libs/gl32tref/setbell.htm#HDRA213X9114AE
../../libs/gl32tref/setdblights.htm#HDRA213X911501
../../libs/gl32tref/blkqread.htm#HDRA143X91FC
../../libs/gl32tref/getbutton.htm#HDRA143X91
../../libs/gl32tref/getdev.htm#HDRA143X923
../../libs/gl32tref/getvaluator.htm#HDRA143X945
../../libs/gl32tref/isqueued.htm#HDRA143X91DA
../../libs/gl32tref/noise.htm#HDRA143X9174
../../libs/gl32tref/qdevice.htm#HDRA143X967
../../libs/gl32tref/qenter.htm#HDRA143X9152
../../libs/gl32tref/qread.htm#HDRA143X989

lqreset Empties the event queue.

@ Checks the contents of the event queue.
ketvaluatod Assigns an initial value to a valuator.

kid Ties two valuators to a button.

m Disables an input device for event queuing.

Understanding Windows and Input Contral in GL introduces window and input control categories.

Polling and Queuing

Most input devices have an associated current value. If the input device is a button, the value is either 1
(pressed) or 0 (not pressed). If the device is a valuator, such as a dial or the x position of the mouse, its
value is an integer that indicates the position of the device. Some special devices do not have an
associated current value.

A program can get the value from input devices by either polling or queuing:

» Polling immediately returns the value of a device that is a button or valuator. For example, a
getbutton(LEFTMOUSE) subroutine call returns 1 if the left button of the mouse is down, and returns O if it
is up.

* Queuing uses an event queue to save changes in device values and other input events so the program
can read them later.

Input Queue versus Polling
In most cases, using the input queue is better than polling. For example, if you press and release a mouse

button in an instant, a program that uses polling can miss the event (that the button was down) if it
happened between two calls to getbutton (LEFTMOUSE).

For example, in a drawing program where you may want to indicate a series of vertices quickly and the
system’s calculations cannot keep up, queuing saves all the state changes so nothing is missed. This is so
even if the program is doing something else when the event happens.

Devices that are queued act as asynchronous devices, independent of the user process. Whenever a
device that is queued changes state, an entry is made in the event queue. If a program reads the queue in
a timely fashion, no events are lost.

You can decide which devices, if any, to queue and establish some rules about what constitutes a state
change, or event, for those devices. By default, no devices are queued.

Another difference between polling and queuing is that as long as a holled I/O devicd is active, it continues
to send its value to the program that polls it. For instance, a call to getbutton (LEFTMOUSE) continues
returning a value as long as you hold down the mouse button. In contrast, if the left mouse button had
been queued, you could hold it down for any length of time and only one event is added to the queue. A
second event is added to the queue only when the button is released and pressed a second time.

In addition to input subroutines, other subroutines control the characteristics of the peripheral input/output
devices (see lsi). These subroutines turn the W and the W on
and off; ring the ; and control the lights on the dial and button box.

Device Descriptions
See the Input Buttons, Input Valuators, and Special Devices tables for listings of specific devices and their

descrigtions. SEeCiaI devices, such as window manager, cursor, and ghost devices, are discussed in

|Input Buttons |

Chapter 12. Understanding Windows and Input Control 187

../../libs/gl32tref/qreset.htm#HDRA143X9AB
../../libs/gl32tref/qtest.htm#HDRA143X9CD
../../libs/gl32tref/setvaluator.htm#HDRA143X921E
../../libs/gl32tref/tie.htm#HDRA143X9196
../../libs/gl32tref/unqdevice.htm#HDRA143X91B8
underwininput.htm

Devices Description

MOUSEH1 Right mouse button

MOUSE2 Middle mouse button

MOUSE3 Left mouse button
RIGHTMOUSE Right mouse button
MIDDLEMOUSE Middle mouse button
LEFTMOUSE Left mouse button

SWO...SW31 32 buttons on dial and button box

AKEY...PADENTER, BKEY...PADENTER

All the keys on the keyboard

BPADO Pen stylus or button for digitizer tablet
BPAD1 Button for digitizer tablet

BPAD2 Button for digitizer tablet

BPAD3 Button for digitizer tablet
MENUBUTTON Menu button

Input Valuators

Devices Description

MOUSEX X valuator on mouse

MOUSEY y valuator on mouse

DIALO...DIAL7 Dials on dial and button box

BPADX x valuator on digitizer tablet

BPADY y valuator on digitizer tablet

CURSORX x valuator attached to cursor (usually MOUSEX)
CURSORY y valuator attached to cursor (usually MOUSEY)
GHOST X x ghost valuator

GHOSTY y ghost valuator

TIMERO...TIMER3 Timer devices

Special Devices

Device

Description

QFULL

Creates event when device queue overflows

Polling a Device
You can poll a device to determine its current state.

getbutton Subroutine
The subroutine polls a button and returns its current state. The number parameter specifies the

number of the device you want to poll. The getbutton subroutine returns either TRUE or FALSE. TRUE
indicates the button is pressed. The syntax is as follows:

Int32 getbutton(Device number)

188 GL Programming Concepts

../../libs/gl32tref/getbutton.htm#HDRA143X91

getdev Subroutine

The m subroutine polls up to 128 valuators and buttons at one time. You specify the number of
devices you want to poll and an array of devices. (See the Input Buttons and Input Valuators tables for
listings of devices.) The values parameter returns the state of each device in the corresponding array
location. The syntax is as follows:

void getdev(Int32 number, Device *devices, Intl6 *values)

getvaluator Subroutine

To determine the values of valuators, use the W subroutine. You can poll any valuator, whether it
is queued or not. The device parameter specifies a valuator device number, whose value reflects the
current state of the device. The syntax is as follows:

Int32 getvaluator(Device device)

Event Queue

Input devices can make entries in the event queue. Each entry includes the device number and a device
value. The m subroutine enables queuing of events from an input device. The
subroutine indicates that a device is no longer queued. The m& subroutine tells you if a specific

device is queued. The three subroutines most commonly used for queuing are qdevice, fread, and gtesi.

The input queue can contain up to 101 events at a time. To check for overflow, you can queue the QFULL
device. This inserts a QFULL event in the graphics input queue of a GL program at the point where queue
overflow occurred. This event is returned by the qread subroutine at the point in the input queue at which
data was lost.

qdevice Subroutine
The m subroutine queues the specified device (a keyboard, button, or valuator). The device
arameter specifies a device name. Each time the device changes state, an entry is made in the Bvent
. The syntax is as follows:

void qdevice(Device device)

qtest Subroutine

The kgtesi subroutine returns the device number of the first entry in the kvent queud; if the queue is empty,
the subroutine returns zero. The qtest subroutine always returns immediately to the caller and makes no
changes to the queue. The syntax is as follows:

Int32 gtest()

qread Subroutine

The lgread subroutine, like the qtest subroutine, returns the device number of the first entry in the Eveni
. However, if the queue is empty, the subroutine waits until an event is added to the queue. The

qgread subroutine returns the device number, writes the data part of the entry into data, and removes the

entry from the queue. The syntax is as follows:

Int32 gread(Intl6 data)

qre%eés_%ubroutine
The subroutine removes all entries from the m and discards them. The syntax is as
follows:

void qreset()

Polling and Queuing Example Program
The following C language code uses both polling and queuing to control a simple paint program. To
determine the color, the program reads characters typed from the keyboard. To determine the drawing
location, the program polls the LEFTMOUSE device and draws a 5-pixel-wide circle if the value for the
device is TRUE.

while (TRUE) {

while (qtest() || !attached) {
dev=qgread(&value);

Chapter 12. Understanding Windows and Input Control 189

../../libs/gl32tref/getdev.htm#HDRA143X923
../../libs/gl32tref/getvaluator.htm#HDRA143X945
../../libs/gl32tref/qdevice.htm#HDRA143X967
../../libs/gl32tref/unqdevice.htm#HDRA143X91B8
../../libs/gl32tref/isqueued.htm#HDRA143X91DA
../../libs/gl32tref/qread.htm#HDRA143X989
../../libs/gl32tref/qtest.htm#HDRA143X9CD
../../libs/gl32tref/qdevice.htm#HDRA143X967
../../libs/gl32tref/qtest.htm#HDRA143X9CD
../../libs/gl32tref/qread.htm#HDRA143X989
../../libs/gl32tref/qreset.htm#HDRA143X9AB

if (dev == ESCKEY) {
exit(0);

}

else if (dev == REDRAW) {
/* if first in queue */
reshapeviewport();

color (BLUE);

clear();

1
else if (dev == RKEY) {
color(RED);

1
else if (dev == GKEY) {
color(GREEN);

}
else if (dev == BKEY) {
color (BLUE);

1
else if (dev == INPUTCHANGE) attached = value;
} /xend of while gtest or not attached */
mdraw() ;
} /* end of while (TRUE) =/
} /% end of main() =/
mdraw() {
int ix;
int iy;
if (getbutton(LEFTMOUSE)) {
ix=getvaluator(MOUSEX) ;
iy=getvaluator(MOUSEY);
circfi (ix, iy, 5);
}
1

This example assumes that you have initialized the program appropriately, especially regarding the use of
the m subroutine to enable the R, G, and B keys for queuing.

tie Subroutine

You can tie a queued button to one or two valuators so that whenever the button changes state, the
system records the button change and the current valuator position in the vent queud. The kid subroutine
takes three parameters: button and two valuators, val1 and val2. The syntax is as follows:

void tie(Device button, Device vall, Device val2)

Whenever the button changes state, three entries are made in the queue that record the current state of
the button and the current position of each valuator. You can tie one valuator to a button by making the
val2 parameter equal to zero. You can untie a button from valuators by making both the val? and val2
parameters equal to zero.

noise Subroutine
Some valuators are noisy; that is, they report small fluctuations in value, indicating movement when no
event has occurred. The E subroutine allows you to set a lower limit on what constitutes a move. The
value of a noisy valuator must change by at least the value set in the delta parameter before the motion is
significant. The noise subroutine determines how often a queued valuator makes entries in the

. For example, noise(v,5) means that the valuator specified in the valuator parameter must move at
least five units before a new queue entry is made. The syntax is as follows:

void noise(Device valuator, Intl6 delta)

qgenter Subroutine

The m subroutine creates event queue entries. It places entries directly into the event queue. The
genter subroutine takes two 16-bit integers, given in the gtype and value parameters, and enters them into
the m The syntax is as follows:

void genter(Intl6 qtype, Intl6 value)

190 GL Programming Concepts

../../libs/gl32tref/qdevice.htm#HDRA143X967
../../libs/gl32tref/tie.htm#HDRA143X9196
../../libs/gl32tref/noise.htm#HDRA143X9174
../../libs/gl32tref/qenter.htm#HDRA143X9152

unqgdevice Subroutine
Use the ingdevicd subroutine to disable the queuing of events from a device. If the device has recorded

events in the queue that have not been read, those events remain in the queue. (You can use the
subroutine to flush the Bvent queud.) The syntax is as follows:

void ungdevice(Device dev)

isq%%ﬁubroutine

The subroutine indicates whether a specific device is queued. It returns a Boolean value. A
value of TRUE indicates that the device is enabled for m; FALSE indicates that the device is not
queued. The syntax is as follows:

Int32 isqueued(Intl6 device)

blkqread Subroutine

The m subroutine returns multiple queue entries. Its first parameter, data, specifies an array of
short integers, and its second parameter, number, specifies the size of the array data. The blkqread
subroutine returns the number of 16-bit integers stored in the array specified in the data parameter. The
array is filled alternately with device numbers and device values. Because each queue entry consists of
two 16-bit words, the number of entries read is twice the number of queue entries and cannot be more
than the value of the number parameter. The syntax is as follows:

Int32 blkgread(Intl6 *data, Intl6 number)

You can also use this subroutine when only the last entry in the m is of interest; for example,
when a user-defined cursor is being dragged across the screen and only its final position is significant.

Input Focus

Keyboard, mouse, and valuator events are added to the event queue only when the application window
has input focus. Input focus is controlled by the window manager. Windows with focus are usually
highlighted in some fashion (typically by changing the border color of the window).

Note: In a multiwindow application, only one of the application windows can have input focus at a
time.

The default window manager for your system is the AIXwindows window manager. The behavior of this
window manager can be controlled by appropriately editing the ./.Xdefaults file in the user's home
directory. The focus policy is controlled by the keyboardFocusPolicy resource. If the following line is
added to the .Xdefaults file:

Mwm*keyboardFocusPolicy: pointer

the window with the cursor in it has input focus. Alternatively, if the following line is added to the
.Xdefaults file:

Mwm*keyboardFocusPolicy: explicit
the user must click with the left mouse button inside a window to give that window input focus.

Notes:

1. The window focus affects how the MOUSEX and MOUSEY events are reported. In particular, if
pointer focus is selected, mouse events are reported only when the cursor is inside one of the
application’s windows. If explicit focus is selected, mouse events may be reported, depending
on which window has the focus, even if the cursor is outside any of the application’s windows.

2. The focus policy determines how INPUTCHANGE events are queued. An INPUTCHANGE event
is queued when an application’s window receives or loses input focus. If pointer focus is
selected, an INPUTCHANGE event is queued when the cursor enters or leaves an application
window. If explicit focus is selected, the INPUTCHANGE token is generated only when the user
makes a focus change by clicking the mouse elsewhere.

Chapter 12. Understanding Windows and Input Control 191

../../libs/gl32tref/unqdevice.htm#HDRA143X91B8
../../libs/gl32tref/qreset.htm#HDRA143X9AB
../../libs/gl32tref/isqueued.htm#HDRA143X91DA
../../libs/gl32tref/blkqread.htm#HDRA143X91FC

Special Devices

This section discusses the five types of special devices:
+ [Keyhoard

+ Mimed

- Cursal

- lGhosl

Keyboard Devices

(See lusing the Keyhoard))

Timer Devices

The timer devices record an event every 60th of a second. You can use a timer device to synchronize a
graphics program with a real clock. To record events less frequently, use the hoisd subroutine. For
example, if you call:

noise (TIMERO, 30)

only every 30th event is recorded, so an event queue entry is made each half second.

Cursor Devices
The cursor devices are pseudo-devices that are equivalent to the valuators currently attached to the

cursor. (See Creating a Cursat for more information.)

Ghost Devices

Ghost devices, GHOSTX and GHOSTY, do not correspond to any physical devices, although they can be

used to change a device under program control. For example, to drive the cursor from software, use

attachcursor(GHOSTX,GHOSTY) to make the cursor position depend on the ghost devices. Then use the
subroutine on GHOSTX and GHOSTY to move the cursor.

Window Manager Devices

The following devices can be queued by the user application to obtain window manager events. Some of
these devices are queued automatically when a window is opened. Some have to be queued explicitly. All
of these devices return the window ID of the window associated with the event. See Eclizem%

Managing Windowd for more information.

REDRAW The window manager inserts a redraw token each time a window becomes
exposed and needs to be redrawn. The REDRAW device is queued
automatically when a window is opened.

REDRAW events are generated for a window whenever the following events
occur:

1. the window is uncovered because another window has been moved away
or pushed below it.

2. the window has been resized smaller or larger by the user.

3. whenever the window is moved.
In the current implementation, the contents of the z-buffer are not copied to
the new location on a window move; therefore, a REDRAW event is generated
out of necessity. In the current implementation, REDRAW events are not
generated if the overlay portion of a window has been drawn into or otherwise
affected by other windows, other GL applications, or the use of the fullscrn,
endfullscrn subroutines. Currently, the REDRAWOVERLAY pseudodevice is
not supported.

REDRAWICONIC The window manager sends this token when a window needs to be redrawn
as an icon. The REDRAWICONIC device is queued automatically when the

subroutine is called.

192 GL Programming Concepts

../../libs/gl32tref/noise.htm#HDRA143X9174
../../libs/gl32tref/setvaluator.htm#HDRA143X921E
../../libs/gl32tref/iconsize.htm#HDRLA13E0MARJ

DEPTHCHANGE

WINSHUT

WINQUIT

WINFREEZE

WINTHAW
INPUTCHANGE

PIECECHANGE

When queued, this device indicates an open window has been pushed or
popped. The value of the token is the gid of the window that has changed.
Use the luindeptH subroutine to determine the stacking order.

Note: The DEPTHCHANGE device is currently tied to the
INPUTCHANGE device; DEPTHCHANGE events are only generated
when INPUTCHANGE events are. DEPTHCHANGE events are reocrded
only relative to the current process; changes of window stacking order
involving other GL applications and/or X clients are not recorded.

When queued, the window manager

sends this token when the Close item

is selected from the window

manager’s title bar option menu. If the

WINSHUT device is not queued, the

Close item on the program’s window

menu appears grayed-out and has no

effect if selected. Do not confuse the

WINSHUT with the WINQUIT device.

The WINSHUT device is used by the

applications program to shut a

window; the WINQUIT device is used

to quit and exit the program.

Note: The WINSHUT device is
not currently supported.

When queued, the window manager sends this token rather than killing a
process when the Quit item is selected from the window manager’s title bar
option menu. If this device is not quit, the window manager issues a kill -15
command to the process ID of the process owning the window.
If queued, the window manager sends this token when a window is stowed to
icons, rather than blocking the processes of the stowed windows. This device
should be queued if the program is designed to draw an icon (see the

subroutine) or is a multiwindow application. In other words, if one
window of a multiwindow application is stowed, this device allows the owner
process to continue.
If queued, the window manager sends this token when a window is unstowed.
The window manager inserts an INPUTCHANGE token when a window is
given input focus. The value inserted with the token is the window ID of the
window receiving focus. A value of 0 (zero) is returned if the window given
focus belongs to another application. The INPUTCHANGE device is queued
automatically when a window is opened.
If queued, this device indicates that a window has been exposed because
another window has been moved away. This token is not sent if the window
has been unstowed from an icon, or has been exposed due to a depth
change.

Controlling Peripheral Input/Output Devices
The application programmer can set the initial value of a valuator device with the setvaluator subroutine.

setvaluator Subroutine

Valuators are single-value input devices: for example, the horizontal and vertical motion of mouse, or the
turning of a dial. The value is a 16-bit integer. The subroutine assigns an initial value (the init
parameter) to a valuator. The min and max parameters specify the minimum and maximum values the
device can assume. The syntax is as follows:

void setvaluator(Device val, Intl6 init, Intl6 min, Intl6 max)

Chapter 12. Understanding Windows and Input Control 193

../../libs/gl32tref/windepth.htm#HDRA142X914E3
../../libs/gl32tref/iconsize.htm#HDRLA13E0MARJ
../../libs/gl32tref/setvaluator.htm#HDRA143X921E

In addition to subroutines that poll and queue input devices, there are those that control the characteristics
and behavior of the GL peripheral input/output devices. See Using the Keyboard for this information.

Querying the System

Certain GL subroutines obtain information about various processes in or aspects of the system. These
include current cursor characteristics, maximum character height in the current raster font, and the current
display, color map, or drawing mode.

Other subroutines furnish lists, such as the W subroutine, which reads a block of event queue
entries, and the m subroutine, which polls the specified valuators.

List of GL Query Subroutines

blkqgread Reads multiple entries from the event queue.

m Returns a unique integer for use as an object identifier.
m Returns a unique integer for use as a tag number.
m Indicates whether backfacing polygon removal is on or off.
m Indicates which buffers are enabled for drawing.

m Returns the current state of a button.

betcmmadd Returns the organization of the current color map.

ketcolod Returns the current color in color map mode.

etcpod Returns the current character position.

betcursor Returns the cursor characteristics.

etdend Indicates whether depth-cue mode is on or off.

betdescender Returns the baseline extent of the longest character descender.
etded Reads a list of valuators.

lgetdisplaymodd Returns the current display mode.

W Returns the current drawing mode.

w Returns the current raster font number.

m Returns information about currently installed graphics hardware.
W Gets the current graphics position.

W Returns the maximum character height in the current raster font.
m Returns the linestyle repeat count.

m Returns the current linestyle.

m Returns the current linewidth.

m Returns the number of the current color map.

m Gets a copy of the current transformation matrix.

m Gets a copy of the RGB values for a color map entry.
betmcolord Returns a range of color map RGB values.

m Returns the current matrix mode.

getnurhsproperhl Returns the current value of a trimmed NURBS surfaces display property.
m Returns the current open object.

w Returns the position of a window.

W Returns the index of the current fill pattern.

194 GL Programming Concepts

../../libs/gl32tref/blkqread.htm#HDRA143X91FC
../../libs/gl32tref/getdev.htm#HDRA143X923
../../libs/gl32tref/blkqread.htm#HDRA143X91FC
../../libs/gl32tref/genobj.htm#HDRA142X91EA
../../libs/gl32tref/gentag.htm#HDRA48X2120MARJ
../../libs/gl32tref/getbackface.htm#HDRA143X976D
../../libs/gl32tref/getbuffer.htm#HDRA145X9F6
../../libs/gl32tref/getbutton.htm#HDRA143X91
../../libs/gl32tref/getcmmode.htm#HDRA146X948E
../../libs/gl32tref/getcolor.htm#HDRA146X924B
../../libs/gl32tref/getcpos.htm#HDRA144X9364
../../libs/gl32tref/getcursor.htm#HDRSP1160NITA
../../libs/gl32tref/getdcm.htm#HDRA5OK230MARJ
../../libs/gl32tref/getdescender.htm#HDRA144X9386
../../libs/gl32tref/getdev.htm#HDRA143X923
../../libs/gl32tref/getdisplaymode.htm#HDRA145X9206
../../libs/gl32tref/getdrawmode.htm#HDRA143X9482
../../libs/gl32tref/getfont.htm#HDRA144X93A8
../../libs/gl32tref/getgdesc.htm#HDRT9311E0MARJ
../../libs/gl32tref/getgpos.htm#HDRCZF60MARJ
../../libs/gl32tref/getheight.htm#HDRA144X93CA
../../libs/gl32tref/getlsrepeat.htm#HDRA143X9BA7
../../libs/gl32tref/getlstyle.htm#HDRA143X9BC9
../../libs/gl32tref/getlwidth.htm#HDRA213X91299C
../../libs/gl32tref/getmap.htm#HDRA146X94E2
../../libs/gl32tref/getmatrix.htm#HDRA144X940E
../../libs/gl32tref/getmcolor.htm#HDRNXI1100MARJ
../../libs/gl32tref/getmcolors.htm#HDRUI2F0MARJ
../../libs/gl32tref/getmmode.htm#HDRIDZ2E0MARJ
../../libs/gl32tref/getnurbsproperty.htm#HDRA252X986E
../../libs/gl32tref/getopenobj.htm#HDRA142X9382
../../libs/gl32tref/getorigin.htm#HDRA142X91F76
../../libs/gl32tref/getpattern.htm#HDRA143X9B63

igetplanes Returns the number of available bitplanes.
W Returns the current screenmask.

@ Returns the size of a window.

@ Returns the current shading style used to draw filled polygons.
m Returns the current state of a valuator.

w Gets a copy of the dimensions of the current viewport.
W Returns the current writemask.

m Indicates whether z-buffering is on or off.

bBRGRBcalad Returns the current color in RGB mode.

m Returns the current RGB writemask.

bversiod Returns the version of GL being used.

m Reads the first entry in the event queue.

EtrwidtH Returns the width of the specified text string.

m Returns the identifier of the current window.

Creating and Managing Pop-Up Menus

This section discusses the following topics:

List of GL Pop-Up Menu Subroutines

laddtopup Adds an item to an existing pop-up menu.

defpud Defines a pop-up menu.

dopup Displays a pop-up menu.

m Frees (deallocates) a pop-up menu and its data structures.
m Allocates and initializes the structure for a new pop-up menu.
@ Enables or disables a given pop-up entry.

Note: Using popup menu facilities when the X server has been initialized in layer 1 (the overlay
bitplane) is ugly. The GL popup menus use the fullscrn subroutine.

Creating a Menu

GL contains subroutines that you can include in your graphics programs to create and use pop-up menus.
When you select an item from a menu, these subroutines automatically identify which menu item has been
selected.

To create a pop-up menu in C programming language, use the defpup subroutind. To create a pop-up

menu in FORTRAN, use the hewpup and addtopug subroutine.

You can also design your own pop-up menu interface using the overlay bitplanes.

To set pop-up menu colors, use the mapcolor and mapcolors subroutines. To facilitate color selection,
the following tokens are defined in the /ust/include/gl/gl.h file:

Chapter 12. Understanding Windows and Input Control 195

../../libs/gl32tref/getplanes.htm#HDRA143X94A4
../../libs/gl32tref/getscrmask.htm#HDRA213X911C47
../../libs/gl32tref/getsize.htm#HDRX513200MARJ
../../libs/gl32tref/getsm.htm#HDRA143X9A53
../../libs/gl32tref/getvaluator.htm#HDRA143X945
../../libs/gl32tref/getviewport.htm#HDRA142X9107
../../libs/gl32tref/getwritemask.htm#HDRA143X94C6
../../libs/gl32tref/getzbuffer.htm#HDRA9SR350MARJ
../../libs/gl32tref/gRGBcolor.htm#HDRESL13A0MARJ
../../libs/gl32tref/gRGBmask.htm#HDRA143X94E8
../../libs/gl32tref/gversion.htm#HDRA237X9480E
../../libs/gl32tref/qread.htm#HDRA143X989
../../libs/gl32tref/strwidth.htm#HDRA144X93EC
../../libs/gl32tref/winget.htm#HDRA142X91505
../../libs/gl32tref/addtopup.htm#HDRA142X9109D
../../libs/gl32tref/defpup.htm#HDRA142X910BF
../../libs/gl32tref/dopup.htm#HDRA142X910E1
../../libs/gl32tref/freepup.htm#HDRA142X91103
../../libs/gl32tref/newpup.htm#HDRA142X91125
../../libs/gl32tref/setpup.htm#HDRA5UM1280MARJ

 PUP_CLEAR
*+ PUP_COLOR
 PUP_BLACK
 PUP_WHITE

def ubroutine

The subroutine defines a pop-up menu by allocating structure and making menu entries. In C
programming language, you can combine the functions of the hewpup and addtopupl subroutines by
calling the defpup subroutine, available only in C programming language. FORTRAN does not support
variable parameter lists. The syntax is as follows:

Int32 defpup(Char8 *String [, Int32 arguments ...])

The defpup subroutine creates the menu in one step. You can add menu entries with the addtopup
subroutine.

The PUPDRAW option of the Brawmodd subroutine allows you to define the colors for pop-up menus with
the W subroutine. Be aware that you cannot draw while using the PUPDRAW option of the
drawmode subroutine.

If you program in FORTRAN, you must use the hewpug and addtapug subroutines to create the menu.

newpup Subroutine

The subroutine allocates and initializes a structure for a new menu. This subroutine takes no
arguments and returns a 32-bit integer identifier (the popup parameter) for the pop-up menu. The syntax is
as follows:

Int32 newpup()

addtopup Subroutine
After the newpup subroutine creates an empty menu, use the m subroutine to build the menu by
adding entries to the bottom of the empty menu structure. The syntax is as follows:

void addtopup(Int32 popup, Char8 *String, Int32 argument)

The popup parameter is the menu identifier returned by the hewpugd subroutine or the Hefpud subroutine.
The String parameter is a character string that specifies the entries in the menu. The string lists the menu
labels from the top to the bottom of the menu, with a | (vertical bar delimiter) between entries.

The FORTRAN version, the addtopup subroutine, takes an additional Length parameter, which specifies
the number of characters in the string. The Argument parameter is necessary only for advanced menu
formats.

Following are two examples of adding to a menu:

In C programming language:

menu = newpup();
addtopup (menu, "first|second|third");

In FORTRAN:

IMENU = NEWPUP();
CALL ADDTOP (IMENU, "first|second|third", 18);

The number 18 in the FORTRAN subroutine is the number of characters in the string, including the vertical
bar delimiters.

196 GL Programming Concepts

../../libs/gl32tref/defpup.htm#HDRA142X910BF
../../libs/gl32tref/newpup.htm#HDRA142X91125
../../libs/gl32tref/addtopup.htm#HDRA142X9109D
../../libs/gl32tref/drawmode.htm#HDRA143X9460
../../libs/gl32tref/mapcolor.htm#HDRA146X9535
../../libs/gl32tref/newpup.htm#HDRA142X91125
../../libs/gl32tref/addtopup.htm#HDRA142X9109D
../../libs/gl32tref/newpup.htm#HDRA142X91125
../../libs/gl32tref/addtopup.htm#HDRA142X9109D
../../libs/gl32tref/newpup.htm#HDRA142X91125
../../libs/gl32tref/defpup.htm#HDRA142X910BF

Calling Up a Pop-Up Menu
The following subroutines allow you to invoke your choice of pop-up menus and free the memory occupied
by the menu when no longer needed.

Note: Do not call the exit routine directly from a pop-up menu. This could cause the pop-up menu to
be erased from the overlays. To prevent this, either return from the dopup subroutine or clear the
overlays before you call the exit routine.

dopup Subroutine

The subroutine displays a pop-up menu previously defined with the w subroutine. The popup
parameter is the identifier of the pop-up menu. The system displays the menu until you either make a
selection or release the button with the cursor off the menu. The value that the dopup subroutine returns
depends on the menu selection. If no selection is made, the dopup subroutine returns -1 (negative one). If
the pop-up menu does not use an advanced menu format, the dopup subroutine returns an integer
corresponding to the position of the item in the menu. The syntax is as follows:

Int32 dopup(Int32 popup)

To cause the right mouse button to bring up the menu built in the previous example, use the following
code:

In C programming language:

dev = gread(&val);
if (dev == RIGHTMOUSE) {
if (val == 1) { /* right mouse button is pressed */
menuval = dopup (menu);
1

}

In FORTRAN:

IDEV = QREAD(IVAL)
IF (IDEV .EQ. RIGHTM) THEN
IF (IVAL .EQ. 1) THEN
MENVAL = DOPUP (IMENU);
ENDIF
ENDIF

Select the first, second, or third item in the menu by positioning the cursor over one of these items, then
releasing the button. To make no selection, release the button with the cursor off the menu. The following
table shows the return value for each possible selection in the example:

Default Return Values

Selection Return Value
First 1

Second 2

Third 3

No selection -1

free%ug %ubroutine
The subroutine deletes a pop-up menu, freeing the memory reserved for its data structures. The
syntax is as follows:

void freepup(Int32 popup)

setpup Subroutine
The subroutine enables or disables a given pop-up menu entry. If used properly, this subroutine
renders submenus associated with a disabled entry inaccessible. The syntax is as follows:

Chapter 12. Understanding Windows and Input Control 197

../../libs/gl32tref/dopup.htm#HDRA142X910E1
../../libs/gl32tref/defpup.htm#HDRA142X910BF
../../libs/gl32tref/freepup.htm#HDRA142X91103
../../libs/gl32tref/setpup.htm#HDRA5UM1280MARJ

void setpup(Int32 pup, Int 32 entry, Int32 mode)

Advanced Menu Formats

You can use advanced menu format to:

* Change the value returned when you select a menu item.
* Bind a function to a whole menu or to a menu item.

* Make a title bar or a nested (rollover) menu.

You introduce the special format when you call the defpup or addtopup subroutine. Following the string
that defines the menu entry, add these format instructions:

» Percent sign (%) begins the special format.

* One format character specifies which format to use (see the Summary of Advanced Menu Formats
table).

* Numeric values, parameters, or both, are required for some formats. Numeric values immediately follow
the format character. Parameters always come at the end of the defpup or addtopup subroutine.

More than one special format can be associated with a menu entry. Use a | (vertical bar) to separate
entries.

Summary of Advanced Menu Formats

Task Format Changes Return Needs Numeric Needs Parameters?
Value? Value?

Return default values | %n No No No

Return other values YoX Yes Yes No

Make title Yot No No No

Bind function/ whole | %F Yes Possibly Yes

menu

Bind function/ menu | %f Yes Possibly Yes

item

Make nested menu Yom Yes No Yes

Returning the Default Values for Menu Selections
The %n format can be used to return a menu entry to its default settings. The %n format takes no

parameters. The following menu:

menu = newpup();
addtopup(menu, "first|second|third");

is the same as this menu:
menu = newpup();
addtopup(menu, "first %n|second %n|third %n");

Changing the Return Values for Menu Selections
The %x format changes the numeric value that the subroutine returns. Note the following menu:

menu = newpup();
addtopup(menu, "first %x15|second %x7");

Selecting first causes the dopup subroutine to return 15, not -1 (the default). Selecting second causes
the dopup subroutine to return 7, not 2 (the default). For this format, you must specify a numeric value
that the dopup subroutine returns in place of the default.

Making a Title Bar
The %t format creates a title bar on a pop-up menu. You cannot select the title bar. It does not highlight.

198 GL Programming Concepts

../../libs/gl32tref/defpup.htm#HDRA142X910BF
../../libs/gl32tref/addtopup.htm#HDRA142X9109D
../../libs/gl32tref/dopup.htm#HDRA142X910E1

The following menu is the same as the first example, except that there is a title bar at the top of the menu.
The %t format takes no parameters.

menu = newpup();
addtopup(menu, "Cardinal %t|first|second|third");

Binding a Function to a Whole Menu

The %F format specifies a function that affects all values returned by any item in the menu. This format
requires a parameter to specify the function or subroutine that affects all values that the dopup subroutine
returns.

menu = newpup();

addtopup(menu, "Cardinal %t %F|first|second %x10", funct);

When the user selects first from the pop-up menu, the dopup subroutine returns funct(1) instead of 1.
When the user selects second, the dopup subroutine returns funct(10).

Binding a Function to a Menu Entry

The %f format makes a menu entry that calls a function or subroutine. The name of the function is the
parameter to this format:

menu = newpup();

addtopup(menu, "first|call %f", func);

When the user selects call from the pop-up menu, the funct function is called with a parameter of 2 (the
default return value for this selection). The dopup(menu) returns funct(2).

Call the addtopup subroutine each time you want to add another menu entry that has its own function.

You can also use the defpup subroutine to define a pop-up with one or more menu entries that bind to a
function.

Making a Nested (Rollover) Menu

The %m format creates a simple nested pop-up menu (a submenu). When you roll the cursor to the right
side of the menu item, you invoke the submenu. Labels on the submenu can have further choices. This
format requires a parameter to specify the menu identifier for the pop-up submenu.

Note: You must declare any submenus before the main menu in your program.

submenu = newpup();

addtopup (submenu, "one|two");

menu = newpup();

addtopup(menu, "Cardinal %t|above %x5|below %m", submenu);

If you select an item from the submenu, the dopup (menu) returns the same value as the dopup (submenu). If
you display the submenu without making a selection, the dopup subroutine returns negative 1.

Working with the Textport

GL provides subroutines both to set up a textport, a window associated with a graphics application shell,
and to turn it on and off. The m subroutine allocates an area of the screen for a textport, and the
parameters specify the screen coordinates for the textport. The syntax is as follows:

void textport(Screencoord left, Screencoord right,
Screencoord bottom, Screencoord top

The m subroutine brings the textport to the front of any windows that conceal it so that character strings
can be drawn into it. Thegm subroutine pushes the textport behind all other windows. When the textport
is off, it is not visible on the screen, and character strings cannot be written into it. The syntax for the tpon
and tpoff subroutines is as follows:

void tpon()

void tpoff()

Chapter 12. Understanding Windows and Input Control 199

../../libs/gl32tref/textport.htm#HDRA143X9CB7
../../libs/gl32tref/tpon.htm#HDRA14K110NITA
../../libs/gl32tref/tpoff.htm#HDRA143X9C2F

List of GL Textport Subroutines

textpord Allocates an area of the screen for a textport.
m Turns off the textport.
ﬁ Turns on the textport.

200 GL Programming Concepts

../../libs/gl32tref/textport.htm#HDRA143X9CB7
../../libs/gl32tref/tpoff.htm#HDRA143X9C2F
../../libs/gl32tref/tpon.htm#HDRA14K110NITA

Chapter 13. Using Enhanced X-Windows Calls with GL
Subroutines

This section describes how GL drawing subroutines can be used with AIXwindows window management
routines to control the mapping of windows, set window properties, and create widgets. The subroutines
and techniques described in this section allow the user to mix Enhanced X-Windows and GL calls within
the same program. However, not all possible mixings of Enhanced X-Windows and GL within the same
program result in predictable behavior. To use GL and Enhanced X-Windows together constructively, it is
important to have a basic understanding of the internal structure and implementation of GL in the
AlXwindows Environment/6000.

In general, there are two kinds of GL subroutines: those used for drawing or controlling the hardware and
those used for window management, obtaining input, and managing pop-up menus. Drawing subroutines
isuch as k3, loadmatrid, and hurbssurfacd) and hardware control subroutines (such as ém and

) access and control the graphics adapter directly. That is, there are no complex code layers
between these subroutines and the graphics adapter. Specifically, this means that the X server remains
ignorant of the current state and contents of a GL window. Eliminating complex code layers improves
calculation time.

In contrast, window management subroutines (such as lwinpopl and icontitld) and input subroutines (such
as read and igetbuttar) are implemented as a layer on top of the Enhanced X-Windows Protocol. As a
result, all input and events are obtained from the X server, and the X server knows about and carries out
all requests to create, move, map, and resize windows. In this way, a single centralized process manages
all windows visible on the screen.

The differences between direct access subroutines and those that work through the X server affect how
GL and Enhanced X-Windows can and cannot be used together. The following section discusses
restrictions on GL and Enhanced X-Windows use. Later sections discuss and give examples of how GL
and Enhanced X-Windows calls can be used together.

For more information on using Enhanced X-Windows calls with GL subroutines, see:
. Besiich Sno Enl I YXoWind s wih GL S0t el
. Ex X Wind TG T

Note: This section deals with an advanced topic and may be difficult to understand unless the
reader has a good conceptual and practical grasp of GL and the Enhanced X-Windows System.

Restrictions on Using Enhanced X-Windows Calls with GL Subroutines

Some GL and Enhanced X-Windows calls cannot be used together. Only a few routines make sense and
are valid, while all others result in undefined behavior.

As mentioned previously, the GL subroutine library is partitioned into two pieces: one, of which the X
server remains ignorant, and the second, which operates through Enhanced X-Windows. Due to this
partitioning, certain Enhanced X-Windows calls, when invoked with GL calls, result in unpredictable
behavior. For this reason, do not use these calls together. The following sections outline restrictions on
calls:

© Copyright IBM Corp. 1994 201

../../libs/gl32tref/v.htm#HDRA144X97A4
../../libs/gl32tref/loadmatrix.htm#HDRA144X9430
../../libs/gl32tref/nurbssurface.htm#HDRA252X98B9
../../libs/gl32tref/gconfig.htm#HDRHS4260NITA
../../libs/gl32tref/zfunction.htm#HDRA22F0MARJ
../../libs/gl32tref/winpop.htm#HDRA142X9156B
../../libs/gl32tref/icontitle.htm#HDRSH13240MARJ
../../libs/gl32tref/qread.htm#HDRA143X989
../../libs/gl32tref/getbutton.htm#HDRA143X91

. Condinais Tenst —
. Mheddl Windows oo

List of GL Enhanced X-Windows Subroutines

igetXdpy Returns the Enhanced X-Windows connection for the given GL session.
W Returns the Enhanced X-Windows ID of the current GL window.

fwinX Converts the specified Enhanced X-Windows window into a GL window.
finisH Blocks until all buffers and FIFOs are empty.

Rendering Models

Enhanced X-Windows calls should not be used to render into a GL window, and GL calls should not be
used to render into an Enhanced X-Windows window. The X server is ignorant of the state of a GL
window, and the GL subroutines are not aware of Enhanced X-Windows. If rendering into the other type of
window is attempted, the most likely outcome is that anything drawn appears either in the wrong colors or
the wrong place, or does not appear at all. In some situations, the application exits prematurely.

The previous restrictions do not imply that you cannot do Enhanced X-Windows and GL drawing within the
same process, only that you should not use both rendering models to draw into the same window. As long
as Enhanced X-Windows drawing is limited to Enhanced X-Windows windows, and GL drawing is limited
to GL windows, there should be no conflicts.

The following is a partial list of Enhanced X-Windows and base operating system drawing routines. Do not
use these routines to draw inside a GL window.

Enhanced X-Windows and base operating system Drawing Routines Restricted from GL Windows

XClearArea XDrawString16
XClearWindow XDrawText
XDrawArc XDrawText16
XDrawArcsXDrawRectangles XFillArc
XDrawlmageString XFillArcs
XDrawlmageString16 XFillPolygon
XDrawLine XFillRectangle
XDrawLines XFillRectangles
XDrawPoint XPutimage
XDrawPoints XPutPixel

XDrawRectangle

XmStringDraw

XDrawRectangles

XmStringDrawlmage

XDrawSegments

XmStringDrawUnderline

XDrawString

Do not use GL subroutines on an Enhanced X-Windows window unless that window has first been

converted to a GL window with the luinX subroutine.

202 GL Programming Concepts

../../libs/gl32tref/getXdpy.htm#HDRA114C13C
../../libs/gl32tref/getXdpy.htm#HDRA114C13C
../../libs/gl32tref/winX.htm#HDRA114C163
../../libs/gl32tref/finish.htm#HDRA9URSG3C3CSOL
../../libs/gl32tref/winX.htm#HDRA114C163

Color Maps

The AlXwindows window manager does not always install a new colormap immediately. Usually,
colormaps are installed only when the input focus changes. This problem can affect color index mode
windows, as well as RGB mode windows on the POWERgraphics GTO, POWER Gt4, and POWER Gt4x
adapters.

Although the X server performs overall color map management, including color map creation, allocation,
and installation, do not use Enhanced X-Windows calls to change the GL color map, or GL calls to change
X color maps.

Internally, GL maintains two color maps. One is the global color-index-mode color map, and it can be
modified by any GL application. The other color map is an internal color map maintained for PseudoRGB
graphics adapters. For 8-bit adapters, this internal palette is loaded with a 3-3-2 dithered color map. On
24-bit adapters, this palette is loaded with an 8-8-8 straight ramp. The actual format of either of these two
color maps depends on which adapter is installed in your system. Modifying either of these color maps
results in unpredictable colors on the screen.

The following is a partial list of Enhanced X-Windows color map manipulation routines. Do not use these
routines to modify GL color maps.

Enhanced X-Windows Color Map Routines Restricted from GL

XAllocColor XSetRGBColormaps
XAllocColorCells XSetWindowColormaps
XAllocColorPlanes XSetWMColormapWindows
XAllocNamedColor XStoreColor
XAllocStandardColormap XStoreColors
XCopyColormapAndFree XStoreNamedColor
XCreateColormap XUninstallColormap
XinstallColormap

Fonts

Do not use Enhanced X-Windows fonts calls to load a GL font. If you wish to use Enhanced X-Windows
fonts with the GL kharshl subroutine, use the GL loadXfoni subroutine to access them. The following
Enhanced X-Windows routines cannot be used to load a GL font and do not affect the current GL font:

» XLoadFont
* XLoadQueryFont

Likewise, do not attempt to use the GL loadXfont subroutine to get a font for Enhanced X-Windows
rendering.

Although the internal GL font structure is almost identical to the Enhanced X-Windows font structure, each
font registered with either the loadXfoni or idefrasterfoni subroutine associates a handle with that font.
GL keeps an internal hash table of all fonts registered for the process. Xfonts need to be registered with
GL to be usable by GL.

Internal Properties

GL defines several Enhanced X-Windows properties that are used internally. If these properties are
changed or destroyed, unpredictable behavior results. Therefore, use the following routines with caution:

+ XChangeProperty
* XDeleteProperty

Chapter 13. Using Enhanced X-Windows Calls with GL Subroutines 203

../../libs/gl32tref/charstr.htm#HDRA143X9CFB
../../libs/gl32tref/loadXfont.htm#HDRVUO390NITA
../../libs/gl32tref/loadXfont.htm#HDRVUO390NITA
../../libs/gl32tref/defrasterfont.htm#HDRA143X9D3F

Widgets

The GL widget is not properly created and initialized if it is created with the XtCreateManagedWidget
subroutine. To properly create and initialize the GL widget, use the XtCreateWidget subroutine and
subsequently manage the widget with the XtManageChild subroutine.

Fullscreen Mode

In the current implementation of the GL Fullsced subroutine, the pointer is grabbed so that all input is
redirected to the process that has called the fullscrn subroutine. Ungrabbing the pointer prematurely
causes unpredictable results. Performing any other grabs or ungrabs can also cause unpredictable results
within a fullscrn/endfullscrd subroutine pair.

The following Enhanced X-Windows functions interfere with GL fullscreen mode. Do not use these routines
when GL is in fullscreen mode.

Enhanced X-Windows Grab Routines Restricted from GL Fullscreen Mode
XChangeActive PointerGrab XUngrabServer
XGrabButton XtGrabButton
XGrabKey XtGrabKey
XGrabKeyboard XtGrabKeyboard
XGrabPointer XtGrabPointer
XGrabServer XtRemoveGrab
XUngrabButton XtUngrabButton
XUngrabKey XtUngrabKey
XUngrabKeyboard XtUngrabPointer
XUngrabPointer

Coordinate Transformation

GL and Enhanced X-Windows have different coordinate mappings. The GL window origin is in the lower
left and the Enhanced X-Windows window origin is in the upper left. Do not use the
XTranslateCoordinates subroutine, an Enhanced X-Windows function, to manipulate GL coordinate data.

Likewise, do not use GL matrix and viewport manipulation routines on Enhanced X-Windows windows.

Mixed GL and Windows Input

Currently, programming that combines GL input queue handling routines (such as qread and qgtest) with X
input queue handling routines (such as XNextEvent and XChecklIfEvent) on the same display connection
is not recommended. X and GL input can be combined provided that such input is obtained through
separate sockets.

Although you can use the Enhanced X-Windows event mechanism to obtain Enhanced X-Windows events
for a GL window, do not try to use the GL event mechanism to obtain events for some GL windows and
the Enhanced X-Windows event mechanism to obtain events for other GL windows.

The GL event queue is fed by events returning from the X server; the GL event handling library simply
converts events from X format into GL format. The mapping is not one-to-one; sometimes multiple X
events translate into only on GL event; sometimes multiple GL events are generated from one X event. If
an unrecognized or unexpected event is encountered, it is discarded. Thus, changing the event mask for
the GL connection, removing X events from the GL connection, or sending events to the GL connection
results in the unpredictable or inconsistent operation of the GL input queue handling routines. It is for this
reason that X and GL event routines should not be combined on the same display connection.

204 GL Programming Concepts

../../libs/gl32tref/fullscrn.htm#HDRQGA140MARJ
../../libs/gl32tref/endfullscrn.htm#HDRLAA350MARJ

In the current implementation, when a ktest or lgread subroutine call is made, all pending events for the
process are retrieved from the X server and placed in an internal device queue. As a result, the GL and
the Enhanced X-Windows event queues are no longer synchronized; that is, the arrival order of events is
not preserved. Events retrieved by freely mixing calls to the GL qread subroutines and calls to the
Enhanced X-Windows event processing routines are not guaranteed to be in chronological order.

In the current implementation, the GL @ subroutine performs an XSendEvent subroutine call, and
thus writes to the Enhanced X-Windows event queue.

The following is a partial list of Enhanced X-Windows functions that, if used in conjunction with the GL
input queue, lead to asynchronous event delivery. Do not use these routines in conjunction with the GL

input queue.

Enhanced X-Windows Event Routines Restricted from GL Input Queue
XChangeKeyboardMapping XSelectinput
XChecklIfEvent XSetPlaneMask
XCheckMaskEvent XWindowEvent
XCheckTypedEvent XtAppMainLoop
XCheckTypedWindowEvent XtAppNextEvent
XCheckWindowEvent XtAppPeekEvent
XEventsQueued XtAppPending
XIfEvent XtAppProcessEvent
XNextEvent XtDispatchEvent
XPeekEvent XtMainLoop
XPeekIfEvent XtNextEvent
XPending XtPeekEvent
XPutBackEvent XtPending
XQLength XtProcessEvent

Example Programs

Example programs showing the usage of the betXdpy, lgetXwid, and lxinX subroutines can be found in
the /usr/lpp/GL/examples directory.

Enhanced X-Windows and GL Interoperability

This section describes the interoperability between GL applications and Enhanced X-Windows and
discussing interoperability issues such as queue handling and synchronization. The interoperability topics
discussed in this section are as follows:

Mapping and Unmapping GL Windows

The mapping of GL windows can be deferred by creating them using a noport; winopen; subroutine
combination. The mapwin.c example program illustrates this usage. However, the following warning
applies:

Chapter 13. Using Enhanced X-Windows Calls with GL Subroutines 205

../../libs/gl32tref/qtest.htm#HDRA143X9CD
../../libs/gl32tref/qread.htm#HDRA143X989
../../libs/gl32tref/qenter.htm#HDRA143X9152
../../libs/gl32tref/getXdpy.htm#HDRA114C13C
../../libs/gl32tref/getXdpy.htm#HDRA114C13C
../../libs/gl32tref/winX.htm#HDRA114C163

Attention: One should NEVER draw into a recently mapped window until after a REDRAW
(MapNotify) event has been received for that window. For a window to be ready for GL rendering, it
must not only be mapped, but the X server must complete a number of internal computations. After
the X server has properly set up the window, it will generate a REDRAW (MapNotify) event for that
window. Any drawing done prior to the receipt of the REDRAW event will result in a race condition:
drawing orders may be lost or ignored, or other unrelated unpredictable behaviors may result (such
as the inconsistent placement of the mapped window). Invoking XSync is NOT sulfficient to guarantee
that the X server has completed mapping the window.

Integration of GL and Enhanced X-Windows

By default, there is no guaranteed synchronization between actions performed through the Enhanced
X-Windows programming interface (hereafter termed X) and the GL programming interface. In particular,
there is no guarantee that drawing done with X and drawing done with GL will appear on the screen in the
same order as performed by the application.

The underlying reason for this asynchronous behavior is the differing GL and X drawing models. The X
server does all X drawing, and much of the rest of X processing. The processing does not actually occur
until the X server is scheduled to run by the operating system; in the meantime, work requests are queued
up. In contrast, all GL drawing subroutines send drawing orders to the graphics adapter directly; the
adapter, in turn, renders as fast as possible.

Note: For some harware systems, there is no synchronization of drawing across GL windows
resulting in asynchronous windows input.

Synchronization of X and GL drawing can be re-established by using the finish subroutine and the XSync
subroutine. The finish subroutine will block (will not return) until all GL primitives have been rendered. The
XSync subroutine flush the X display connection.

Use of the XSync subroutine does not guarantee that all X drawing is complete; it only guarantees that
the Windows Server has received all generated Windows protocol packets. The Windows Server and/or
adapter can still be in the process of rendering when the XSync subroutine returns. Since the latency
between the Windows Server’s receipt of a protocol packet and the completion of rendering to the screen
is almost never more than a few milliseconds, this latency should normally not be noticeable.

Maintaining Synchronization

On the POWER Gt4 and the POWER Gt4x adapters, there is no guarantee that drawing is synchronized
between different windows belonging to the same process. That is, a line drawn in one window may
appear on the screen before a polygon is drawn in another window, even though the application made the
subroutine call to draw the polygon before the subroutine call to draw the line. This de-synchronization
occurs because a separate FIFO (first-in, first-out queue) is maintained for every window. All drawing
commands are placed as tokens into the FIFOs. The graphics hardware has been designed to service the
FIFOs in a round-robin fashion; the hardware does not necessarily drain one FIFO before moving on to
the next. As a result, tokens in one FIFO may be processed before tokens in another, even though they
were placed in the FIFO at a later time.

In most cases, the synchronization jitter should be on the order of milliseconds, or less, and should
therefore be visually unobservable. If it is absolutely vital to re-establish synchronization, the finish
subroutine can be used. The finish subroutine blocks (does not return to the calling application) until all
buffers/FIFOs associated with the current window have been drained. The finish subroutine guarantees, in
effect, that all drawing sent to a window has appeared on the screen.

X11 Header File Collision with the /user/include/gl/gl.h File

The /user/include/gl/gl.h file contains three typedefs that collide with X11 Toolkit Header files. These
typedefs are as follows:

206 GL Programming Concepts

» typedef long Boolean;
+ typedef long Object;
 typedef char *String;

To avoid this collision, adhere to following directions:
* Do not use these GL types in any source file that includes X11 code.
* Include all X11 header files before including any GL header file.

By doing this, the X11 types will hold, and the GL types will be undefined.

These three typedefs were in the /usr/include/gai/g3dm2types.h file and have been moved to the
lusr/include/gl/gl.h file.

The typedefs Boolean and String were colliding with similiar typedefs in the /usr/include/X11/Intrinsic.h
file while Object collided with a structure definition in the /usr/include/X11/Object.h file. The following was
placed in /usr/include/gl/gl.h file to alleviate the type collisions.

#ifndef _XtIntrinsic_h

typedef long Boolean;

typedef char *String;

#endif

#ifndef _XtObject_h

typedef long Object;

#endif

This scenario requires that any include of XToolkit header files must occur before any include of
lusr/include/gl/gl.h file. While using mixed mode programming the X11 types are the only valid types.

Chapter 13. Using Enhanced X-Windows Calls with GL Subroutines 207

208 GL Programming Concepts

Chapter 14. Portability, Compatibility, and Performance

This section discusses the following topics:

« AlIXwindows Environment/6000 3-D Feature Version 1 Release 3

+ [Example Programs
+ [Performance Tuning

AlIXwindows Environment/6000 3-D Feature Version 1

In this release, GL is available to customers as a part of the optional 3-D feature to AIXwindows
Environment/6000. This release of GL provides features that differ significantly from previous releases.
These enhancements include new subroutines or changes to the operation of existing subroutines, new
example programs, and new utilities, as follows:

kcharstd subroutine Supports double-byte character set (DBCS) national language output.

m subroutine Allows popup menus to operate in the overlay planes.

krontfacd subroutine Enables frontfacing polygon culling on the POWER Gt4, POWER
Gt4x, and the POWERgraphics GTO adapters.

W subroutine Gamma ramps can be specified on a per window basis on the
POWER Gt4, POWER Gt4x, and POWERgraphics GTO adapters.
This function enables RGB mode partitions.

m subroutine Returns graphics hardware description table.

MSubroutine Returns the Enhanced X-Windows connection of the GL session.

mmbroutine Returns the Enhanced X-Windows identifier of a GL window.

imded subroutine Support spotlights. Support for two-sided lighting is available on the
POWER Gt4 class adapters.

oadXfani subroutine Allows users to access X fonts.

m subroutine Supports additional arguments, which allow mathematical operations
to be carried out on pixels, as well as logical operations. These
arithmetic functions are supported on the POWER Gt4 and POWER
Gt4x adapters.

Imakeobj subroutine All rendering subroutines, including all begin and end style
subroutines, can now be used inside an object.

ixmodd subroutine Pixmap row stride and pixel size can be specified on the POWER
Gt4 and POWER Gt4x adapters.

fwinX subroutine Converts Enhanced X-Windows into a GL window.

writemasksubroutine Masks 8-bit banks of the z-buffer on the POWER Gt4 and POWER
Gt4x adapters.

rendering subroutines Most are now display-listable (can be used within objects). A
complete list of these can be found in the GL_Subroutine Modality
table in Appendix B.

pop-up menus Operate in the overlay planes. Refer to List of GL Pop-Up Menu
m for descriptions of these subroutines.

chrate.c example program Shows how the mouse transmit rate can be changed. This example
program is located in the /usr/lpp/GL/examples/chrate.c file.

Note: When there is a conflict between GL standards and AlXwindows standards, the AIXwindows
standard overrides the GL standard. If this affects the capabilities of a specific subroutine, a note is

© Copyright IBM Corp. 1994

209

../../libs/gl32tref/charstr.htm#HDRA143X9CFB
../../libs/gl32tref/dopup.htm#HDRA142X910E1
../../libs/gl32tref/frontface.htm#HDRA74C12
../../libs/gl32tref/gammaramp.htm#HDRKZ4NITA
../../libs/gl32tref/getgdesc.htm#HDRT9311E0MARJ
../../libs/gl32tref/getXdpy.htm#HDRA114C13C
../../libs/gl32tref/getXdpy.htm#HDRA114C13C
../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ
../../libs/gl32tref/loadXfont.htm#HDRVUO390NITA
../../libs/gl32tref/logicop.htm#HDRIM521A0MARJ
../../libs/gl32tref/makeobj.htm#HDRA142X912D
../../libs/gl32tref/pixmode.htm#HDRBAV30MARJ
../../libs/gl32tref/winX.htm#HDRA114C163
../../libs/gl32tref/zwritemask.htm#HDRA143X9817
glsubmodal.htm

included in the description section of that subroutine. (Subroutines are described in GL3.2 for AlX:
Graphics Library (GL) Technical Reference (POWER-based Systems Only).)

Example Programs

Additional example programs can be found in the /usr/Ipp/GL/examples directory.

Note: Please consult the README file in the /ust/lpp/GL directory for additional information.

Performance Tuning

Programming in GL is similar to programming in a low-level language; small investments in programming
effort can lead to large performance gains. Furthermore, different machines and adapters execute drawing
commands at different relative drawing rates. An understanding of the type of hardware your code runs on
can help you get optimal performance.

For example, there are many ways to draw a rectangle:

« Call the kermasM subroutine to mask off the appropriate area of the window, and then call the Cleal
subroutine.

« Call the kzclead subroutine.

« Call the Ebaxi subroutine.

» Load the appropriate transform matrices on the matrix stack, and then call the kectf subroutine.

« Call the kectwritd subroutine to block transfer of a pixmap that is one solid color.

Which of these methods draws the rectangle most quickly depends on the type of hardware on which the
code is executing. The end cF;oaI also determines the choice of subroutines. If you want to clear the entire
window and its z-buffer, the subroutine is the fastest method of achieving this. But if you want to
clear only a portion of the window, the Ehoxf subroutine executes faster than a combination of the

scrmask and klear subroutines.

The previous discussion is only an example. There are several ways to perform nearly any graphics
operation. Where speed is critical, so is design. The following paragraphs discuss some of the
performance implications of new or modified subroutines.

Imcolor subroutine If the design calls for changing material properties often,
consider the Imcalod subroutine. By using the Imcolor
subroutine, you can avoid using the relatively slowly
executing combination of the Imded and lmhind
subroutines. If the Imcolor subroutine cannot be used,
then perform all transactions with the Imdef subroutine
before drawing. This method pulls the relatively slowly
executing Imdef subroutine out of the performance-critical
drawing loop.

curson, cursoff subroutines In the current release of GL, the kurson and cursoff
subroutines turn the cursor visibility on and off. However,
they execute fairly slowly and should not be heavily used.

GL formerly required the cursor to be turned off before
any drawing was done, and turned on again after drawing
completion. This is no longer required. However, existing
code that is being ported to the current release may often
make use of this function. This code should be modified to
remove these subroutines, or the subroutines should be
effectively removed by using the #ifdef condition with the
C programming language preprocessor. Not doing so can
result in a severe performance impact will be observed.

210 GL Programming Concepts

../../libs/gl32tref/scrmask.htm#HDRFWN250MARJ
../../libs/gl32tref/clear.htm#HDRCEH1160MARJ
../../libs/gl32tref/czclear.htm#HDRA143X92C8
../../libs/gl32tref/sboxf.htm#HDRJTE1190MARJ
../../libs/gl32tref/rectf.htm#HDRQ5G330MARJ
../../libs/gl32tref/rectwrite.htm#HDRA142X9C9E
../../libs/gl32tref/czclear.htm#HDRA143X92C8
../../libs/gl32tref/sboxf.htm#HDRJTE1190MARJ
../../libs/gl32tref/scrmask.htm#HDRFWN250MARJ
../../libs/gl32tref/clear.htm#HDRCEH1160MARJ
../../libs/gl32tref/lmcolor.htm#HDROFZ220MARJ
../../libs/gl32tref/lmdef.htm#HDRRGZ2250MARJ
../../libs/gl32tref/lmbind.htm#HDRXEZ2340MARJ
../../libs/gl32tref/curson.htm#HDRRU1280NITA

mapcolors, getmcolors subroutines If the design employs color maps or color map mode, use

the mapcolord and getmcalors subroutines. Using these

subroutines improves performance 10 to 1,000 times over

using the mapcalod or getmcolod subroutines inside a

drawing loop.

Color maps are managed by the X server. The server
updates the color map as change requests come into it.
The mapcolor and mapcolors subroutines make one
change request to the X server every time they are called.
Because there is considerable system overhead in
communication with the X server process, change
requests are processed most efficiently if they are
buffered and sent as one request by using the mapcolors
subroutine.

concave subroutine The koncavd subroutine causes the system to use more
robust, but slower algorithms to render concave polygons
correctly. If all affected polygons are convex, the
applications programmer should disable the concavity
check; this causes the system to use faster algorithms for
polygon rendering. On most adapters, the performance
improvement gained by disabling concave
polygon-checking should be noticeable.

getcolor, getcpos, getgpos, getmatrix, grRGBcolor subroutines
These routines must query the graphics adapter to obtain
the information that they return. Due to the current
graphics adapter design, there is a significant amount of
latency in such an operation. For the returned data to be
valid, the graphics adapter must complete all preceding
operations that may be queued for execution. In some
cases, the queue may be quite deep, or some operations
may take a long time. Therefore, the amount of time it
takes any of these five routines to execute is variable, and
could be quite long, depending on the contents of the
queue. To obtain maximum performance, the use of these
routines should be avoided.

scale subroutine If lighting is enabled, and the Ecald subroutine is called
with unequal arguments, the system is forced to
renormalize all normal vectors. On some adapters, there
is a noticeable performance improvement if the scale
subroutine is not used with unequal arguments.

Writing Event Driven Applications

Most graphics applications are event driven. When developing such applications, keep in mind that the
responsiveness is highly dependent on the rate of arrival of events. In particular, the mouse transmit rate
can have a tremendous impact on look and feel performance (that is, how the system appears to respond
to a mouse movement).

The reason for this is easy to understand. Many applications try to perform some fixed (and possibly large)
amount of processing per mouse event. For example, the update and redraw of a slider, a scrollbar, or a
3D viewing parameter. High mouse transmit rates cause a large number of events to be queued up, and
an application that does not discard some fraction of these events appears to be slow and sluggish. In
contrast, low mouse transmit rates cause the same application to appear light and responsive.

Following are several remedies you can use to improve user-interface response.

Chapter 14. Portability, Compatibility, and Performance 211

../../libs/gl32tref/mapcolors.htm#HDRCV2170MARJ
../../libs/gl32tref/getmcolors.htm#HDRUI2F0MARJ
../../libs/gl32tref/mapcolor.htm#HDRA146X9535
../../libs/gl32tref/getmcolor.htm#HDRNXI1100MARJ
../../libs/gl32tref/concave.htm#HDRHXF320MARJ
../../libs/gl32tref/scale.htm#HDRA144X95A6

» Decrease the mouse transmit rate. This is the most obvious approach. The program found in the
lusr/lpp/GL/examples/chrate.c file shows how to use the terminal device driver to control the rate at
which the mouse reports changes in its position.

Note: Currently, there is no interface in GL, nor in AIXwindows, that controls this transmit rate.

This remedy is acceptable for prototype and non-commercial code. However, if the application is meant
to be marketed to a broad customer base, it is not wise to depend strongly on the mouse transmit rate.
Setting the mouse transmit rate may adversely affect other applications; and conversely, if other
applications set the mouse transmit rate, your application may be adversely affected.

» Decrease the amount of work done per event. One way to do this is to simply record the current mouse
position whenever a MOUSEX or MOUSEY event arrives, but not perform any other work. When the
event queue has finally been emptied, then the image (whatever is being drawn) can be updated based
on the last recorded position. Thus, events are processed very quickly, but significant computation is not
performed until events have stopped arriving.

» Discard every other, or even two out of every three, mouse events. This strategy is less desirable than
the others because it can give an inferior look and feel. This strategy can be particularly troublesome
when the user is attempting to position some object very carefully with the mouse. A small correction
made by the user may be the event that is thrown away.

Minimizing REDRAW Events

You can reduce the number of REDRAW events issued to a GL application by changing the window
manager default for feedback boxes. To do this, add the following to the SHOME/.Xdefaults file:

Mwm*showFeedback:restart

This setting causes the window manager not to display the small window size and position indicator that is
normally shown when you move or resize a window. When it is on, this small indicator box (located in the
center of the screen) can land on a GL window and generate REDRAW events. Multiple REDRAW events
can result in significant performance impact on applications which take a long time to regenerate a
window.

Fast Line Drawing

You can improve polyline drawing performance by using the polylinelist subroutine. The polylinelist
subroutine helps eliminate the subroutine interface calling overhead of the bgnline ... v ... v ...
endline interface. Subroutine calling overhead into the GL library can exceed one microsecond per call.

Fast Pixel Transfer (BLITS)

On the POWER Gt4 and POWER Gt4x adapters, and on the POWER Gt4, POWER Gt4x, and POWER
GXT1000 adapters, the use of the rectread and rectwritesubroutines is deprecated. The Irectread and
Irectwrite subroutines provide a faster, more efficient interface to pixel transfers. The format of the pixels
can be adjusted with the pixmode subroutine.

212 GL Programming Concepts

Chapter 15. System Programming Considerations

This section discusses the following topics:

+ Multiple Process Management

. Dok . TS 5L S N |
. [IDKing EORIBAN S Modiuled

* Unsupported Subroutined

+ lQbsolete Subroutined

Multiple Process Management

Special considerations apply to the use of the fork, vfork, and other subroutines and to rendering
processes used in conjunction with asynchronous handlers.

Using the fork, execl, execv and Other Subroutines

When using the fork or vfork subroutine with an Enhanced X-Windows, X Toolkit, or AIXwindows
application, open a separate display connection (socket) with the XOpenDisplay or XtOpenDisplay
subroutines for the forked process. The child process should never use the same display connection as
the parent. Display connections are embodied with sockets and sockets are inherited by the child process.
Any attempt to have multiple processes writing to the same display connection results in the random
interleaving of X protocol packets at the word level. The resulting data written to the socket is generally
invalid in the form of undefined X protocol packets that cannot be interpreted by the X server.

The exec and fork subroutines may be used within GL with some restrictions. The GL library manipulates
a complex collection of resources. State information is stored in many places: in global (non-exported)
variables in the process .data segment; in the X server; in the kernel, as part of the process table; and in
the graphics hardware. Children created with the fork subroutine inherit (duplicate copies of) some, but not
all of this state information. For example, the fork subroutine does not cause the X server to treat the child
process as if it were a new client. In fact, the X server is ignorant of the fact that a fork has taken place.
Similarly, the exec routine will overlay the old process image (in particular, wiping out values stored in
global variables), but does not reset state contained in the X server or the kernel. (For example, the exec
routine does not automatically close files or sockets.)

Current Restrictions

The following restrictions apply to the use of the exec and fork subroutines within a GL application:

 If the exec subroutine is used alone (that is, not immediately preceded by a call to the fork subroutine),
and the new process image or any future overlays need to use GL, then the GL gexit subroutine must
be called before the exec subroutine. This is required to reset process attributes; if this is not done, GL
initialization performed by the new process image will be unsuccessful.

 If the fork subroutine is used alone (that is, not immediately followed by the exec subroutine) then the
child process must not attempt to make any additional GL subroutine calls. Drawing by the child
process may hang the graphics adapter or the X server, or may cause unpredictable results and place
the system in an unpredictable state.

In particular, the child process should not call the gexit subroutine. Because of a known implementation
problem, the gexit subroutine adversely affects the parent process and the GL subroutine call in the
child process.

« If the fork subroutine is used alone (that is, without a trailing exec subroutine) and both the child and
the parent processes use GL, then the gexit subroutine must be called before the fork subroutine.

 If the fork subroutine is followed by an exec subroutine, the procedures for gracefully resetting the
system depend on whether the exec subroutine occurs in the parent or in the child.

If the exec subroutine is performed in the parent, then a gexit subroutine must precede the exec
subroutine.

© Copyright IBM Corp. 1994 213

If the exec subroutine is performed by the child, then calling the gexit routine can be avoided, but at a
risk. Failing to call the gexit subroutine leaves connections and shared memory segments open; this will
prevent a process from performing more than nine consecutive forks in a row.

» For programs that end normally (for example, by using the exit subroutine), the gexit subroutine should
be called first. In some circumstances, failure to do so can leave a process in the zombie state.
Zombies are most likely to occur if the exiting process has child processes that are using GL subroutine
calls.

Using Signals and Other Asynchronous Event Systems

GL is not designed to support rendering in a re-entrant fashion from within the same process. In particular,
GL rendering from asynchronous handlers, such as signal handlers, is not recommended.

All GL rendering routines are interruptable; they do not mask any signals. GL rendering routines are
particularly vulnerable when communicating with the graphics adapter. Adapter commands may be many
words in length but must arrive in atomic units; adapter commands with embedded miscellaneous text or
symbols may hang the adapter. If a GL routine is interrupted while writing to the adapter, and the
interrupting routine also writes to the adapter, the resulting adapter command is embedded in the
previously started data stream, thus corrupting it.

If the application performs rendering from within a signal handler, then the application must protect itself.
This can be accomplished by masking all relevant signals before beginning rendering and unmasking them
after completion. The application must mask all occurrences of rendering, whether within the signal
handler or within the main program. Failure to do so risks corruption of the data stream and a hang of the
graphic adapter.

Linking and Compiling Using the GL Shared Library

The GL library libgl.a is a shared library. By default, a GL program linked with the -Igl flag will link to the
libgl.a library as a shared library. By using shared libraries, programs minimize the amount of disk space
and memory that they use. A shared library is not bound in with the executable; thus the size of the
executable is smaller (kilobytes, for small programs, instead of megabytes). Memory usage is decreased,
because several programs running at the same time share the .text segment (the segment where the
executable code is contained) of the library (a separate .data segment is created for each program).

Attention: The GL library cannot be linked non-shared. Doing so will result in erratic and incorrect
behaviour of GL programs. This warning applies to the C version of GL (libgl.a library) as well as the
FORTRAN version (libfgl.a library).

Linking FORTRAN and C Modules

In general FORTRAN compilers append an underscore character ('_’) to each user defined symbol. In this
way name space conflicts can be avoided between C and FORTRAN. However, the xIf (f77) compiler does
not add the trailing underscore to user defined symbols by default.

The FORTRAN GL library supports both naming conventions by exporting symbols with and without
appended underscores. Because of a potential name space clash between the FORTRAN and C libraries,
some care must be taken when linking together modules that use both the C and FORTRAN bindings for
GL subroutines.

Programs written in FORTRAN and using GL fall into one of four categories. The following gives an
example from each category, showing how FORTRAN GL applications can be linked.

To link FORTRAN-only source code, enter the following:
x1f -U foof.f -1fgl -Tm

214 GL Programming Concepts

This binds the FORTRAN application with the FORTRAN GL library and the Math Library.

To link C and FORTRAN source where GL is referenced only through the FORTRAN interface, enter the
following:

xlc -¢ fooc.c
x1f -U foof.f fooc.o -1fgl -1c -Im

This binds the MIXED application with the FORTRAN GL library, the C library, and the Math Library. The C
Library is used to resolve externals from the module compiled by the xle command.

To link C and FORTRAN source where GL is referenced only through the C interface, enter the following

x1f -U -c foof.f
xlc fooc.c foof.o -Tgl -1x1f -Im

This binds the MIXED application with the C GL library, the XLF library, and the Math Library. The XLF
Library is used to resolve externals from the module compiled by the xIf command.

To link C and FORTRAN source where GL is referenced through both the C and FORTRAN interfaces,
enter the following:
x1f -U -gextname -c foof.f

xTc -c fooc.c
xlc foof.o fooc.o -1g1 -1c -1fgl -I1x1f -Tm

This creates the MIXED application. By compiling the FORTRAN modules with the -gextname flag, the
extended naming rules are enforced. The extended naming rules append an underscore to all user-defined
symbols.

1. The C libraries are specified first so that all C externals are resolved for the FORTRAN GL library
contains references to functions with and without the trailing underscores. The FORTRAN libraries will
then resolve all functions with the trailing underscores.

2. The order in which the libraries are placed on the compile line is important. If they are not placed
according to the guidelines herein, the proper linkage will not be achieved and run-time errors will
result.

Unsupported Subroutines

The following subroutines are not currently supported due to system constraints.

Note: These functions return without performing any function.

Unsupported Subroutines

dglopen getvideo
dgiclose setvideo
callfunc getmonitor
e_callfunc setmonitor
getresetls getothermonitor
resetls

When stippled lines are drawn (by calling the m subroutine with a nontrivial style), the linestyle
counter is normally initialized at the beginning of a polyline. As subsequent line segments are drawn, the
linestyle counter is not reset, and the line stipple continues around the corner.

Chapter 15. System Programming Considerations 215

../../libs/gl32tref/setlinestyle.htm#HDRXFM1310MARJ

The resetls subroutine, now obsolete, set a flag (mode) that caused the system to reset the line stipple at
every vertex. If it is important for your application to reset the linestyle for every line segment, surround
each segment with a bgnline and endline subroutine pair. The m subroutine automatically resets
the line pattern counter when called.

On the POWER GXT1000 adapter, the line stipple is reset for every segment within a bgn and end
subroutine pair.

Obsolete Subroutines

The following GL subroutines are no longer supported. The functions that they formerly accomplished are
not applicable to the current system. As an aid to portability, stubs for these subroutines can be found in
the /usr/lpp/GL/examples/glports.h file.

Obsolete Subroutines

addtop getpor pupmode wintit
charst getport RGBcursor xfpt
clearhitcode gettp RGBrange xfpti
dbtext gewrite setdepth xfpts
devport gRGBcursor setfastcom xfpt2
endfeedback iconti setshade xfpt2i
endpupmode imakebackground setslowcom xfpt2s
feedback ismex shaderange xfptd
foreground Isbackup textcolor xfptdi
getdepth pagecolor textinit xfptds
gethitcode pagewritemask textwritemask

getisbackup passthrough winattach

216 GL Programming Concepts

../../libs/gl32tref/bgnline.htm#HDRA144X962E

Chapter 16. Understanding the Graphics Adapter

GL graphics adapters have different capabilities and different sizes of frame buffers. The functions that
control the frame buffer configuration behave differently depending on the size of the frame buffer and
depending on which adapter is installed. The following discussion summarizes the available systems and
adapters, the differences between them, and how these differences affect the behavior of GL.

GL is intended to be an interface to graphics hardware. If the graphics hardware (the graphics adapter) is
not capable of performing certain functions, GL does not emulate these functions. Therefore, the available
GL functions depend on the installed graphics adapter.

This section discusses the following topics:

RS/6000 POWERstation 730 and POQWERgraphics GTQ Supergraphics Processor Subsystem
POWER Gt4 and POWER Gt4x Bdapterd

+ POQWER GXT1000 Adapted

. Had . ~roanization

3-D Color Graphics Processor

The 3-D Color Graphics Processor is available in four configurations:

24-Bit High-Performance 3-D Color Graphics Processor with Z-Buffer
Option
This adapter contains a 24-bit deep main frame buffer, 4 auxiliary planes dynamically configurable as

overlay/underlay planes, and a 24-bit deep z-buffer. It contains a 4096-entry output color map (color
lookup table) in onemap mode and sixteen 256-entry color maps in multimap mode.

In double buffer mode, the 24 main bitplanes are divided into a pair of buffers of 12 bits each. In RGB
mode, these 12 bits are treated as 444 RGB, that is, as 4 bitplanes for storing red values, 4 bitplanes for
storing green values, and 4 bitplanes for storing blue values. To maintain greater color fidelity and prevent
color aliasing, dithering is automatically enabled, thus giving a greater perceived dynamic range (that is,
more than 4 bits of accuracy for each band). The truncation of the nonleading bits and their convolution
with the dithering matrix is Ferformed automatically, and there is no modification of any of the drawing
subroutines. The subroutine should be used for bit block transfers in RGB modes; it always
assumes 888 RGB, and the appropriate bit-shifting to 444 is performed internally and automatically.

In double-buffered color map mode, all 12 bits of each buffer access the color map directly. Use the
tectread and kectwritd subroutines for bit block transfers.

The 4 auxiliary bitplanes can be dynamically configured as 4 overlay planes, as 2 overlay and 2 underlay
planes, or as 4 underlay planes.

Because this adapter does not have an alpha-blending buffer, the blendfunctiod subroutine returns
without Eerforming any action. Depth comparisons cannot be performed against the color buffer, therefore,
the subroutine returns without performing any action. The only valid value for the zsource
subroutine is ZSRC_DEPTH.

© Copyright IBM Corp. 1994 217

../../libs/gl32tref/rectwrite.htm#HDRA142X9C9E
../../libs/gl32tref/rectread.htm#HDRA142X9C7C
../../libs/gl32tref/rectwrite.htm#HDRA142X9C9E
../../libs/gl32tref/blendfunction.htm#HDRA143X9240
../../libs/gl32tref/zsource.htm#HDRA143X96D6

24-Bit High-Performance 3-D Color Graphics Processor without
Z-Buffer Option

This adapter contains a 24-bit deep main frame buffer and 4 auxiliary planes dynamically configurable as
overlay/underlay planes. There is no z-buffer. It contains a 4096-entry output color map (color lookup
table) in onemap mode and sixteen 256-entry color maps in multimap mode. The color maps are usable
by the main frame buffer.

The main overlay/underlay and RGB/color map control functions operate identically as on the 24-bit
processor with z-buffer option. The only difference between this adapter and the previously described
adapter is that there is no z-buffer with this adapter. Therefore, none of the functions that control the
z-buffer are operable; all return without performing any operation. These subroutines are as follows:

« kwritemasid
The action of the kzclead subroutine is modified because this adapter does not have a z-buffer.

8-Bit High-Performance 3-D Color Graphics Processor with Z-Buffer
Option

This adapter contains an 8-bit deep main frame buffer, 2 auxiliary planes dynamically configurable as
overlay/underlay planes, and a 24-bit deep z-buffer. It contains a 256-entry output color map (color lookup

table) in onemap mode and sixteen 16-entry color maps in multimap mode. The color maps are usable by
the main frame buffer.

1. The 8-bit, high-performance 3-D Color Graphics Processor is limited in its ability to display multiple
visible windows on the screen in conjunction with one or more GL double-buffered windows. It is
possible for the user to establish enough visible windows on the screen so that it is impossible to
display all the visible windows correctly and simultaneously. This limitation can manifest itself by
displaying the wrong buffer, displaying a blank window, or displaying the window using the wrong
colors. If the user needs to display multiple visible windows on the screen in conjunction with one or
more GL double-buffered windows, the 24-bit High-Performance 3-D Color Graphics Processor should
be used instead.

2. To avoid displaying windows improperly on the 8-bit adapter, the user should avoid running more than
one GL window at the same time. If the user needs to run more than one GL window, the user should
ensure that the window arrangement is rectangular, (for example, do not overlap windows in such a
way that their boundaries cannot be described as a rectangle). Keeping windows rectangular also
provides the user with faster window updates.

This adapter contains only 8 bits of main color buffer. It can be placed into RGB mode and into color map
mode, and the operation of the subroutines that do this are unmodified.

In single-buffered RGB mode, pixels are written in 332 RGB: that is, with 3 bits of red, 3 bits of green, and
2 bits of blue. Dithering is always enabled. Because dithering uses the lesser significant bits to determine
the color written into the frame buffer, the perceived accuracy of information stored in the frame buffer
exceeds 8 bits and approaches 11 or 12 bits (as perceived by the human eye). (For more information on
dithering, see Working in ICalor Map and RGB Moded.)

In single-buffered color map mode, all 8 bits are used to address the color map. In onemap mode, the
color map is accessed as a single map of 256 entries. In multimap mode, it is accessed as 16 maps of 16
entries each.

218 GL Programming Concepts

../../libs/gl32tref/zbuffer.htm#HDRA143X97B1
../../libs/gl32tref/zclear.htm#HDRA143X97D3
../../libs/gl32tref/zdraw.htm#HDRA143X97F5
../../libs/gl32tref/zfunction.htm#HDRA22F0MARJ
../../libs/gl32tref/zsource.htm#HDRA143X96D6
../../libs/gl32tref/zwritemask.htm#HDRA143X9817
../../libs/gl32tref/czclear.htm#HDRA143X92C8

This adapter supports double buffering only in color map mode. In this case, the main color buffer is
divided into a pair of buffers of 4 bits each. In onemap mode, only the lowest 16 entries in the color map
are addressed. When double buffered, this adapter should be operated in multimap mode. Double
buffering in RGB mode is not available.

This adapter has 2 auxiliary planes, which can be configured as 2 overlay planes or 2 underlay planes.

This adapter does not have gamma ramps. The W subroutine is not emulated and returns
without performing any function.

Because the sizes of the color maps supported on this adapter differ from those on the 24-bit adapter, the

actions of the bnemap, multimag, and lsetmag subroutines are modified.

Because this adapter does not have an alpha blending buffer, the blendfunctiod subroutine returns
without Eerforming any action. Depth comparisons cannot be performed against the color buffer; therefore,
the subroutine returns without performing any action. The only valid value for the zsource
subroutine is ZSRC_DEPTH.

8-Bit High-Performance 3-D Color Graphics Processor without Z-buffer
Option

This adapter contains an 8-bit deep main frame buffer, 2 auxiliary planes dynamically configurable as
overlay/underlay planes. There is no z-buffer. It contains a 256-entry output color map (color lookup table)

in onemap mode and sixteen 16-entry color maps in multimap mode. The color maps are usable by the
main frame buffer.

The main, overlay/underlay, and RGB/color map control functions operate almost identically as those on
the 8-bit with z-buffer option. The only difference between this adapter and the one previously described is

that there is no z-buffer. Because there is no z-buffer, none of the functions that control the z-buffer are
operable; all return without performing any action. The affected functions are as follows:

« [writemasHd
The action of the kEzclead subroutine is modified because this adapter does not have a z-buffer.

Because this adapter has no alpha blending buffer, the hlendfunctionl subroutine returns without
performing any action.

IBM RS/6000 POWERSstation 730 and POWERgraphics GTO
Supergraphics Processor Subsystem

The IBM RS/6000 POWERSstation 730 has the Supergraphics Processor Subsystem adapter built in. This
model has an extra-wide case to accommodate the Supergraphics Processor. The Supergraphics
Processor Subsystem adapter cannot be removed, although other display adapters can be added. The
POWERSstation 730 is available in two standard configurations: with double-buffered 24-bit frame buffer
and with double-buffered 8-bit frame buffer.

The IBM RS/6000 POWERgraphics GTO consists of a Supergraphics Processor Subsystem packaged in
its own case with a power supply. A cable connects the POWERgraphics GTO to a Micro Channel adapter,
which can be plugged into any IBM RS/6000. It is available in double-buffered 8-bit and double-buffered

Chapter 16. Understanding the Graphics Adapter 219

../../libs/gl32tref/gammaramp.htm#HDRKZ4NITA
../../libs/gl32tref/onemap.htm#HDRA146X95EF
../../libs/gl32tref/multimap.htm#HDRA146X9593
../../libs/gl32tref/setmap.htm#HDRA146X9646
../../libs/gl32tref/blendfunction.htm#HDRA143X9240
../../libs/gl32tref/zsource.htm#HDRA143X96D6
../../libs/gl32tref/zbuffer.htm#HDRA143X97B1
../../libs/gl32tref/zclear.htm#HDRA143X97D3
../../libs/gl32tref/zdraw.htm#HDRA143X97F5
../../libs/gl32tref/zfunction.htm#HDRA22F0MARJ
../../libs/gl32tref/zsource.htm#HDRA143X96D6
../../libs/gl32tref/zwritemask.htm#HDRA143X9817
../../libs/gl32tref/czclear.htm#HDRA143X92C8
../../libs/gl32tref/blendfunction.htm#HDRA143X9240

24-bit configurations. The 24-bit POWERgraphics GTO is functionally equivalent to the IBM RS/6000
POWERstation 730 Supergraphics Processor Subsystem. The 8-bit POWERgraphics GTO differs from the
POWERstation 730 in that it lacks the Shading Processor (ShP) and the z-buffer.

IBM RS/6000 POWERstation 730 and POWERgraphics GTO, 24-Bit
Configuration

This configuration contains a total of 48 bitplanes in the main color frame buffer, 4 bits of overlay and a
21-bit z-buffer. There are multiple independent 256-entry color maps.

In single-buffered RGB mode, there are 24 bitplanes in the main color buffer, organized in an 888 RGB
fashion. In double-buffered RGB mode, the front buffer and the back buffer each have 24 bitplanes.
Dithering is not required and not supported.

In single-buffered color map mode, 8 bitplanes are available to select from a 256-entry color map. In
double-buffered color map mode, there are 8 bitplanes in the front and back buffers each (a total of 16).

The RS/6000 POWERSstation 730 and POWERgraphics GTO support a 21-bit z-buffer, and the operation
of the z-buffer is modified. The following subroutines are affected:

Isetdeptr
The valid values for the parameters are 0x0 <= near <= far <= Ox1fffff.
The default depth range and shade range is from 0x0 to Ox1fffff.

kcleal
This function clears to the value that is farthest from the viewer for the default z comparison
function. This value is 0xO0.

kfunctiod
The only valid values for the parameter are ZF_LEQUAL, ZF_GEQUAL, ZF_ALWAYS. The default
depth comparison function is ZF_GEQUAL.

ksourcd

The only valid value is ZSRC_DEPTH.

Note: The values written into the z-buffer are a nonlinear function of the z distance.

IBM RS/6000 POWERstation 730 and POWERgraphics GTO, 8-Bit
Configuration

This configuration contains a total of 16 bitplanes in the main color frame buffer, 2 bits of overlay and a
21-bit z-buffer. There are multiple independent 256-entry color maps.

The 8-bit RS/6000 POWERGgraphics GTO does not include the Shading Processor (ShP) and the z-buffer.
Therefore, it does not support the Shading Processor, gouraud shading, lighting, depthcueing, blending,
and z-buffering.

The 8-bit RS/6000 POWERstation 730 Supergraphics Processor Subsystem includes the ShP and the
z-buffer, and therefore, does support the associated capabilities.

This configuration does not support RGB mode (and therefore does not support dithering). The only
supported frame buffer modes are color map single buffered and color map double buffered.

In single-buffered color map mode, 8 bitplanes are available to select from a 256-entry color map. In
double-buffered color map mode, there are 8 bitplanes each in the front and back buffers (a total of 16).

The POWERstation 730 and POWERSstation support a 21-bit z-buffer, which operates as described in the
24-bit configuration.

220 GL Programming Concepts

../../libs/gl32tref/lsetdepth.htm#HDRNAR120MARJ
../../libs/gl32tref/greset.htm#HDRXW42E0NITA
../../libs/gl32tref/zclear.htm#HDRA143X97D3
../../libs/gl32tref/zfunction.htm#HDRA22F0MARJ
../../libs/gl32tref/zsource.htm#HDRA143X96D6

Hardware Considerations

The RS/6000 Supergraphics Processor Subsystem contains specialized matrix multiplication hardware. As
a result, the operation of the loadmatrix and multmatrix subroutines are modified. These subroutines
accept only matrices of the following form:

Acceptable Matrices for Supergraphics Processor Subsystem

all al2 al3 k*al3
a21 a22 a23 k * a23
a3t a32 a33 k * a33
adl a42 a43 ad4

Matrices of this type support all rotations and translations and most of the common perspective
transformations.

The following constraints on patterns and linestyles apply to the Supergraphics Processor Subsystem:

Patterns Cannot be drawn and used if:
* Shademodel is set to Gouraud.
» Lighting is being used.
* The z-buffer is being used for depth comparisons.
» Depth-cueing is being used.
The only supported pattern sizes are 16x16 and 32x32. Affected subroutines are W
Imbind, ketpattern, shademadel, and zbuffed.

Lines Linestyle repeat factors must be a multiple of 4. Valid values run from 4 to 252 in multiples of 4. The
lowest possible value for the linestyle repeat factor is 4. The affected subroutine is @

The following constraints apply to material properties on the Supergraphics Processor Subsystem:

Materials Material properties cannot be changed on a per-vertex basis. In particular, all calls to the imbind
and Imcolod subroutines made between bgn... and end... style primitives are ignored. This is true
for triangular strips only and not polygons, points, and lines.

POWER Gt4 and POWER Gt4x Adapters

The POWER Gt4 and POWER Gt4x adapters are available in 16-bit (double-buffered 8-bit), and 48-bit
(double-buffered 24-bit) configurations. Both adapters occupy 2 or 3 Micro Channel slots and suppor