<|lI!

AIX 5L Version 5.2

Performance Management Guide

SC23-4876-00






<|lI!

AIX 5L Version 5.2

Performance Management Guide

SC23-4876-00



Note
FBefore using this information and the product it supports, read the information in[Appendix H, “Notices,” on page 399

Sixth Edition (May 2004)

This edition applies to AIX 5L Version 5.2 and to all subsequent releases of this product until otherwise indicated in
new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to Information Development, Department HEDS-905-6C006, 11501 Burnet Road, Austin, Texas
78758-3493. To send comments electronically, use this commercial Internet address: aix6kpub @ austin.ibm.com. Any
information that you supply may be used without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

About This Book . . .
Who Should Use This Book
Highlighting . .
Case-Sensitivity in AIX

ISO 9000 .
Related Publications

Chapter 1. Performance overview .
System workload .

Performance objectives.

Program execution model .

Hardware hierarchy .

Software hierarchy

System Tuning .

Chapter 2. Performance tuning . R
Introduction to the performance-tuning process .
Performance benchmarking .

Chapter 3. Performance tuning enhancements for AIX 5.2 .
AIX kernel tuning parameter modifications

Modifications to the vmtune and schedtune commands
Enhancements to the no and nfso commands .

AIX 5.2 compatibility mode .

AIX 5.2 system recovery procedures

Chapter 4. System performance monitoring. .
Advantages of continuous system performance monitoring

Continuous system-performance monitoring with the vmstat, iostat, netstat and sar commands.

Continuous system-performance monitoring with the topas monitor .
Continuous system-performance monitoring with the Performance Toolbox

Chapter 5. Initial performance diagnosis .
Types of reported performance problems.
Performance-Limiting Resource identification
Workload Management Diagnosis

Chapter 6. Resource Management Overview

Performance Overview of the processor Scheduler . .
Performance Overview of the Virtual Memory Manager (VMM) .
Performance overview of fixed-disk storage management.
Support for pinned memory .

Large page support.

Chapter 7. Introduction to Multiprocessing . .
Symmetrical Multiprocessor (SMP) Concepts and Archltecture .
SMP Performance Issues

SMP Workloads . .

SMP Thread Scheduling .

Thread Tuning

SMP Tools .

Chapter 8. Planning and Implementing for Performance .

© Copyright IBM Corp. 1997, 2004

SN

. Vii
. Vii
. Vii
. Vii
. Vii
. Vii

PP WNN= =

. 15
. 15
. 15
. 16
. 16
.17

.19
.19
.19
.21
. 23

. 25
. 25
. 28
. 33

. 35
. 35
.4
. 49
. 51
. 52

. 53
. 53
. 59
. 60
. 63
. 65
. 70

.77



Identifying the Components of the Workload

Documenting Performance Requirements .
Estimating the Resource Requirements of the Workload .
Designing and Implementing Efficient Programs .

Using Performance-Related Installation Guidelines .

Chapter 9. Using POWER4-based Systems .

POWER4 Performance Enhancements .
Scalability Enhancements for POWER4-based Systems .
64-bit Kernel . . . .o .
Enhanced Journaled F|Ie System (JFSZ)

Related Information . Ce e

Chapter 10. CPU performance.

Chapter 11. CPU performance monitoring .

The vmstat command (CPU) .

The iostat command .

The sar command.

The xmperf program .

Use of the time command to measure CPU use.
Identification of CPU-intensive programs

Use of the tprof program to analyze programs for CPU use

Use of the pprof command to measure CPU usage of kernel threads .

Detection of instruction emulation with the emstat tool

Detection of alignment exceptions with the alstat tool .
Restructure of executable programs with the fdpr program .
Controlling contention for the CPU.

CPU-efficient user id administration with the mkpasswd command

Chapter 12. Memory performance .

Memory usage .

Memory-leaking programs . .

Memory requirements assessment W|th the rmss command
VMM memory load control tuning with the schedo command .
VMM page replacement tuning .

Paging-space thresholds tuning .

Page space allocation

Shared memory .

AIX memory affinity support .

Chapter 13. Logical volume and disk I/O performance .
Monitoring Disk 1/O

Changing Logical Volume Attrlbutes That Affect Performance
Physical Volume Considerations e
Volume Group Recommendations .

Reorganizing Logical Volumes .

Using Disk-I/O Pacing .

Tuning Logical Volume Strlplng

Using Raw Disk I/O .

Using sync/fsync Calls . .o

Setting SCSI-Adapter and Disk- Dewce Queue L|m|ts
Expanding the Configuration . e

Using RAID . .

Using SSA

Using Fast Write Cache

iV Performance Management Guide

.77
. 78
. 78
. 84
.92

.97
. 97
. 98
. 99
.. 99
. 100

. 101

. 103
. 103
. 105
. 106
. 109
. 109
111
. 113
. 115
.17
. 118
. 119
. 120
. 125

. 127
. 127
. 138
. 139
. 145
. 148
. 151
. 152
. 153
. 154

. 157
. 157
. 175
. 178
. 178
. 179
. 181
. 182
. 185
. 185
. 185
. 186
. 187
. 189
. 190



Chapter 14. File system performance .

File system overview. .
Potential performance |nh|b|tors for JFS and Enhanced JFS
File system performance enhancements

Summary of file system tunable parameters .

File system attributes that affect performance.

Reorganization of file systems

File system performance tuning.

Reorganization of file system logs and Iog Iogrcal volumes

Chapter 15. NFS performance.

NFS overview

NFS performance monltorlng and tunlng
NFS performance monitoring on the server
NFS performance tuning on the server .
NFS performance monitoring on the client .
NFS tuning on the client

Cache file system .

NFS references.

Chapter 16. Network performance .
TCP and UDP performance tuning.
Tuning mbuf pool performance .

ARP cache tuning .

Name resolution tuning .

Analyzing Network Performance

Tuning the SP Network .

UDP and TCP/IP Performance Overvrew

Chapter 17. LPAR performance .

Performance considerations with logical partltromng
Workload management in a partition . .
LPAR performance impacts

CPUs in a patrtition

Application considerations .

Chapter 18. Dynamic logical partitioning
DLPAR overview . e
DLPAR performance |mpI|cat|ons .

DLPAR tuning tools .

DLPAR guidelines for adding CPUs or memory

Chapter 19. Application Tuning .

Profiling

Compiler Optlmlzatlon Technlques .
Optimizing Preprocessors for FORTRAN and C
Code-Optimization Techniques . .o

Chapter 20. Java performance monitoring .
Advantages of Java . .

Java performance guidelines .

Java monitoring tools

Java tuning for AIX

Garbage collection impacts to Java performance

Chapter 21. Analyzing Performance with the Trace Facility

. 191
. 191
. 196
. 196
. 199
. 199
. 201
. 203
. 209

. 211
. 211
. 214
. 221
. 222
. 223
. 226
. 230
. 233

. 237
. 237
. 262
. 265
. 266
. 267
. 293
. 297

. 309
. 309
. 310
.31
.31
. 312

. 315
. 315
. 316
. 316
. 317

. 319
. 319
. 324
. 331
. 332

. 335
. 335
. 335
. 336
. 336
. 337

. 339

Contents

\'}



Understanding the Trace Facility

Example of Trace Facility Use .
Starting and Controlling Trace from the Command Lme .
Starting and Controlling Trace from a Program .

Using the trcrpt Command to Format a Report .

Adding New Trace Events .

Chapter 22. Reporting Performance Problems
Measuring the Baseline.

What is a Performance Problem

Performance Problem Description .

Reporting a Performance Problem .

Appendix A. Monitoring and Tuning Commands and Subroutines.

Performance Reporting and Analysis Commands
Performance Tuning Commands
Performance-Related Subroutines .

Appendix B. Efficient Use of the Id Command
Rebindable Executable Programs . .o
Prebound Subroutine Libraries .

Examples .

Appendix C. Accessing the Processor Timer .
POWER-based-Architecture-Unique Timer Access .
Accessing Timer Registers in PowerPC Systems
Example of the second Subroutine.

Appendix D. Determining CPU Speed.

Appendix E. National Language Support: Locale versus Speed
Programming Considerations.

Some Simplifying Rules.

Setting the Locale.

Appendix F. Summary of Tunable Parameters
Environment Variables .

Kernel Tunable Parameters

Network Tunable Parameters.

Appendix G. Test Case Scenarios .

Improving NFS Client Large File Writing Performance .
Improve Tivoli Storage Manager (TSM) Backup Performance .
Streamline Security Subroutines with Password Indexing

Appendix H. Notices
Trademarks .

Index

Vi  Performance Management Guide

. 339
. 341
. 343
. 344
. 344
. 346

. 351
. 351
. 352
. 352
. 352

. 355
. 355
. 358
. 359

. 361
. 361
. 361
. 361

. 363
. 364
. 365
. 365

. 367

. 371
. 371
. 372
. 372

. 373
. 373
. 382
. 389

. 395
. 395
. 396
. 397

. 399
. 400

. 403



About This Book

This book provides information on concepts, tools, and techniques for assessing and tuning the
performance of systems. Topics covered include efficient system and application design and
implementation, as well as post-implementation tuning of CPU use, memory use, disk I/O, and
communications 1/0O.

This edition supports the release of AIX 5L Version 5.2 with the 5200-03 Recommended Maintenance
package. Any specific references to this maintenance package are indicated as AIX 5.2 with 5200-03.

Who Should Use This Book

This book is intended for application programmers, customer engineers, experienced end users, enterprise
system administrators, experienced system administrators, system engineers, and system programmers
concerned with performance tuning of operating systems. You should be familiar with the operating system
environment. Introductory sections are included to assist those who are less experienced and to acquaint
experienced users with performance-tuning terminology.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items
whose names are predefined by the system. Also identifies graphical objects such as buttons,
labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see
displayed, examples of portions of program code similar to what you might write as a
programmer, messages from the system, or information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the Is command to list files. If you type LS, the
system responds that the command is "not found.” Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications

The following books contain information about or related to performance monitoring:
« [AIX 5L Version 5.2 Commands Referenced

* AIX 5L Version 5.2 Technical Reference

« |AIX 5L Version 5.2 Files Reference

» [AIX 5L Version 5.2 System User’s Guide: Operating System and Devices
» [AIX 5L Version 5.2 System User’s Guide: Communications and Networks
* |AIX 5L Version 5.2 System Management Guide: Operating System and Devices§
» [AIX 5L Version 5.2 System Management Guide: Communications and Networks

© Copyright IBM Corp. 1997, 2004 vii



« |AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging Programg
« [Performance Toolbox Version 2 and 3 for AIX: Guide and Reference|
» PCI Adapter Placement Reference, order number SA38-0538

Viii  Performance Management Guide



Chapter 1. Performance overview

This topic includes information on the dynamics of program execution and provides a conceptual
framework for evaluating system performance. It contains the following sections:

+ [System workload|

« [Performance objectives|

+ [Program execution model
+ [Hardware hierarchy|
[Software hierarchy]

* [System tuning

System workload

An accurate and complete definition of a system’s workload is critical to predicting or understanding its
performance. A difference in workload can cause far more variation in the measured performance of a
system than differences in CPU clock speed or random access memory (RAM) size. The workload
definition must include not only the type and rate of requests sent to the system, but also the exact
software packages and in-house application programs to be executed.

It is important to include the work that a system is doing in the background. For example, if a system
contains file systems that are NFS-mounted and frequently accessed by other systems, handling those
accesses is probably a significant fraction of the overall workload, even though the system is not officially
a server.

A workload that has been standardized to allow comparisons among dissimilar systems is called a
benchmark. However, few real workloads duplicate the exact algorithms and environment of a benchmark.
Even industry-standard benchmarks that were originally derived from real applications have been simplified
and homogenized to make them portable to a wide variety of hardware platforms. The only valid use for
industry-standard benchmarks is to narrow the field of candidate systems that will be subjected to a
serious evaluation. Therefore, you should not solely rely on benchmark results when trying to understand
the workload and performance of your system.

It is possible to classify workloads into the following categories:

Multiuser
A workload that consists of a number of users submitting work through individual terminals.
Typically, the performance objectives of such a workload are either to maximize system throughput
while preserving a specified worst-case response time or to obtain the best possible response time
for a constant workload.

Server
A workload that consists of requests from other systems. For example, a file-server workload is
mostly disk read and disk write requests. It is the disk-I/O component of a multiuser workload (plus
NFS or other I/O activity), so the same objective of maximum throughput within a given
response-time limit applies. Other server workloads consist of items such as math-intensive
programs, database transactions, printer jobs.

Workstation
A workload that consists of a single user submitting work through a keyboard and receiving results
on the display of that system. Typically, the highest-priority performance objective of such a
workload is minimum response time to the user’s requests.

© Copyright IBM Corp. 1997, 2004 1



Performance objectives

After defining the workload that your system will have to process, you can choose performance criteria and
set performance objectives based on those criteria. The overall performance criteria of computer systems
are response time and throughput.

Response time is the elapsed time between when a request is submitted and when the response from that
request is returned. Examples include:

» The amount of time a database query takes
* The amount of time it takes to echo characters to the terminal
* The amount of time it takes to access a Web page

Throughput is a measure of the amount of work that can be accomplished over some unit of time.
Examples include:

» Database transactions per minute

» Kilobytes of a file transferred per second

» Kilobytes of a file read or written per second
* Web server hits per minute

The relationship between these metrics is complex. Sometimes you can have higher throughput at the cost
of response time or better response time at the cost of throughput. In other situations, a single change can
improve both. Acceptable performance is based on reasonable throughput combined with reasonable
response time.

In planning for or tuning any system, make sure that you have clear objectives for both response time and
throughput when processing the specified workload. Otherwise, you risk spending analysis time and
resource dollars improving an aspect of system performance that is of secondary importance.

Program execution model

To clearly examine the performance characteristics of a workload, a dynamic rather than a static model of
program execution is necessary, as shown in the following figure.

2 Performance Management Guide



Hardware Operating System

Processor Pipeline Current Instruction

and Registers

Cache Currently Dispatched Thread

Translation
Lookaside Buffer
(TLB)

Dispatchable Threads

Real Memory Waiting Threads/

Interrupt Handlers

Disk Executable Programs

Figure 1. Program Execution Hierarchy. The figure is a triangle on its base. The left side represents hardware entities
that are matched to the appropriate operating system entity on the right side. A program must go from the lowest level
of being stored on disk, to the highest level being the processor running program instructions. For instance, from
bottom to top, the disk hardware entity holds executable programs; real memory holds waiting operating system
threads and interrupt handlers; the translation lookaside buffer holds dispatchable threads; cache contains the
currently dispatched thread and the processor pipeline and registers contain the current instruction.

To run, a program must make its way up both the hardware and operating-system hierarchies in parallel.
Each element in the hardware hierarchy is more scarce and more expensive than the element below it.
Not only does the program have to contend with other programs for each resource, the transition from one
level to the next takes time. To understand the dynamics of program execution, you need a basic
understanding of each of the levels in the hierarchy.

Hardware hierarchy

Usually, the time required to move from one hardware level to another consists primarily of the latency of
the lower level (the time from the issuing of a request to the receipt of the first data).

Fixed disks

The slowest operation for a running program on a standalone system is obtaining code or data from a
disk, for the following reasons:

» The disk controller must be directed to access the specified blocks (queuing delay).
* The disk arm must seek to the correct cylinder (seek latency).
* The read/write heads must wait until the correct block rotates under them (rotational latency).

* The data must be transmitted to the controller (transmission time) and then conveyed to the application
program (interrupt-handling time).

Slow disk operations can have many causes besides explicit read or write requests in the program.
System-tuning activities frequently prove to be hunts for unnecessary disk 1/0.

Chapter 1. Performance overview 3



Real memory

Real memory, often referred to as Random Access Memory, or RAM, is faster than disk, but much more
expensive per byte. Operating systems try to keep in RAM only the code and data that are currently in
use, storing any excess onto disk, or never bringing them into RAM in the first place.

RAM is not necessarily faster than the processor though. Typically, a RAM latency of dozens of processor
cycles occurs between the time the hardware recognizes the need for a RAM access and the time the
data or instruction is available to the processor.

If the access is going to a page of virtual memory that is stored over to disk, or has not been brought in
yet, a page fault occurs, and the execution of the program is suspended until the page has been read from
disk.

Translation Lookaside Buffer (TLB)

Programmers are insulated from the physical limitations of the system by the implementation of virtual
memory. You design and code programs as though the memory were very large, and the system takes
responsibility for translating the program’s virtual addresses for instructions and data into the real
addresses that are needed to get the instructions and data from RAM. Because this address-translation
process can be time-consuming, the system keeps the real addresses of recently accessed virtual-memory
pages in a cache called the translation lookaside buffer (TLB).

As long as the running program continues to access a small set of program and data pages, the full
virtual-to-real page-address translation does not need to be redone for each RAM access. When the
program tries to access a virtual-memory page that does not have a TLB entry, called a TLB miss, dozens
of processor cycles, called the TLB-miss latency are required to perform the address translation.

Caches

To minimize the number of times the program has to experience the RAM latency, systems incorporate
caches for instructions and data. If the required instruction or data is already in the cache, a cache hit
results and the instruction or data is available to the processor on the next cycle with no delay. Otherwise,
a cache miss occurs with RAM latency.

In some systems, there are two or three levels of cache, usually called L1, L2, and L3. If a particular
storage reference results in an L1 miss, then L2 is checked. If L2 generates a miss, then the reference
goes to the next level, either L3, if it is present, or RAM.

Cache sizes and structures vary by model, but the principles of using them efficiently are identical.

Pipeline and registers

A pipelined, superscalar architecture makes possible, under certain circumstances, the simultaneous
processing of multiple instructions. Large sets of general-purpose registers and floating-point registers
make it possible to keep considerable amounts of the program’s data in registers, rather than continually
storing and reloading the data.

The optimizing compilers are designed to take maximum advantage of these capabilities. The compilers’
optimization functions should always be used when generating production programs, however small the
programs are. The Optimization and Tuning Guide for XL Fortran, XL C and XL C++ describes how
programs can be tuned for maximum performance.

Software hierarchy

To run, a program must also progress through a series of steps in the software hierarchy.

4  Performance Management Guide



Executable programs

When you request a program to run, the operating system performs a number of operations to transform
the executable program on disk to a running program. First, the directories in the your current PATH
environment variable must be scanned to find the correct copy of the program. Then, the system loader
(not to be confused with the Id command, which is the binder) must resolve any external references from
the program to shared libraries.

To represent your request, the operating system creates a process, or a set of resources, such as a
private virtual address segment, which is required by any running program.

The operating system also automatically creates a single thread within that process. A thread is the current
execution state of a single instance of a program. In AIX, access to the processor and other resources is
allocated on a thread basis, rather than a process basis. Multiple threads can be created within a process
by the application program. Those threads share the resources owned by the process within which they
are running.

Finally, the system branches to the entry point of the program. If the program page that contains the entry
point is not already in memory (as it might be if the program had been recently compiled, executed, or
copied), the resulting page-fault interrupt causes the page to be read from its backing storage.

Interrupt handlers

The mechanism for notifying the operating system that an external event has taken place is to interrupt the
currently running thread and transfer control to an interrupt handler. Before the interrupt handler can run,
enough of the hardware state must be saved to ensure that the system can restore the context of the
thread after interrupt handling is complete. Newly invoked interrupt handlers experience all of the delays of
moving up the hardware hierarchy (except page faults). Unless the interrupt handler was run very recently
(or the intervening programs were very economical), it is unlikely that any of its code or data remains in
the TLBs or the caches.

When the interrupted thread is dispatched again, its execution context (such as register contents) is
logically restored, so that it functions correctly. However, the contents of the TLBs and caches must be
reconstructed on the basis of the program’s subsequent demands. Thus, both the interrupt handler and the
interrupted thread can experience significant cache-miss and TLB-miss delays as a result of the interrupt.

Waiting threads

Whenever an executing program makes a request that cannot be satisfied immediately, such as a
synchronous I/O operation (either explicit or as the result of a page fault), that thread is put in a waiting
state until the request is complete. Normally, this results in another set of TLB and cache latencies, in
addition to the time required for the request itself.

Dispatchable threads

When a thread is dispatchable but not running, it is accomplishing nothing useful. Worse, other threads
that are running may cause the thread’s cache lines to be reused and real memory pages to be reclaimed,
resulting in even more delays when the thread is finally dispatched.

Currently dispatched threads

The scheduler chooses the thread that has the strongest claim to the use of the processor. The
considerations that affect that choice are discussed in [Performance Overview of the CPU Scheduler, When
the thread is dispatched, the logical state of the processor is restored to the state that was in effect when
the thread was interrupted.

Chapter 1. Performance overview 5



Current machine instructions

Most of the machine instructions are capable of executing in a single processor cycle if no TLB or cache
miss occurs. In contrast, if a program branches rapidly to different areas of the program and accesses
data from a large number of different areas causing high TLB and cache-miss rates, the average number
of processor cycles per instruction (CPI) executed might be much greater than one. The program is said to
exhibit poor locality of reference. It might be using the minimum number of instructions necessary to do its
job, but it is consuming an unnecessarily large number of cycles. In part because of this poor correlation
between number of instructions and number of cycles, reviewing a program listing to calculate path length
no longer yields a time value directly. While a shorter path is usually faster than a longer path, the speed
ratio can be very different from the path-length ratio.

The compilers rearrange code in sophisticated ways to minimize the number of cycles required for the
execution of the program. The programmer seeking maximum performance must be primarily concerned
with ensuring that the compiler has all of the information necessary to optimize the code effectively, rather
than trying to second-guess the compiler’s optimization techniques (see |Effective Use of Preprocessors|
|and the Compilersb. The real measure of optimization effectiveness is the performance of an authentic
workload.

System Tuning

After efficiently implementing application programs, further improvements in the overall performance of
your system becomes a matter of system tuning. The main components that are subject to system-level
tuning are:

Communications 1/0
Depending on the type of workload and the type of communications link, it might be necessary to
tune one or more of the following communications device drivers: TCP/IP, or NFS.

Fixed Disk
The Logical Volume Manager (LVM) controls the placement of file systems and paging spaces on
the disk, which can significantly affect the amount of seek latency the system experiences. The
disk device drivers control the order in which I/O requests are acted upon.

Real Memory
The Virtual Memory Manager (VMM) controls the pool of free real-memory frames and determines
when and from where to steal frames to replenish the pool.

Running Thread
The scheduler determines which dispatchable entity should next receive control. In AlX, the
dispatchable entity is a thread. See [Thread Supporil

6 Performance Management Guide



Chapter 2. Performance tuning

This topic is an introduction to performance tuning of the system and workload and contains the following
sections:

+ [Introduction to the performance-tuning procesg
« [Performance benchmarking|

Introduction to the performance-tuning process

Performance tuning is primarily a matter of resource management and correct system-parameter setting.
Tuning the workload and the system for efficient resource use consists of the following steps:

1.
2.

6.
7.

Identifying the workloads on the system

Setting objectives:

a. Determining how the results will be measured

b. Quantifying and prioritizing the objectives

Identifying the critical resources that limit the system’s performance

Minimizing the workload’s critical-resource requirements:

a. Using the most appropriate resource, if there is a choice

b. Reducing the critical-resource requirements of individual programs or system functions
c. Structuring for parallel resource use

Modifying the allocation of resources to reflect priorities

a. Changing the priority or resource limits of individual programs

b. Changing the settings of system resource-management parameters
Repeating steps 3 through 5 until objectives are met (or resources are saturated)
Applying additional resources, if necessary

There are appropriate tools for each phase of system performance management (see

[Monitoring and Tuning Commands and Subroutines). Some of the tools are available from IBM; others are

the products of third parties. The following figure illustrates the phases of performance management in a
simple LAN environment.

© Copyright IBM Corp. 1997, 2004



! J

Plan Install Monitor Tune Expand
(Idle) (Unbalanced) (Balanced) (Overloaded)

Figure 2. Performance Phases. The figure uses five weighted circles to illustrate the steps of performance tuning a
system; plan, install, monitor, tune, and expand. Each circle represents the system in various states of performance;
idle, unbalanced, balanced, and overloaded. Essentially, you expand a system that is overloaded, tune a system until
it is balanced, monitor an unbalanced system and install for more resources when an expansion is necessary.

Identification of the workloads

It is essential that all of the work performed by the system be identified. Especially in LAN-connected
systems, a complex set of cross-mounted file systems can easily develop with only informal agreement
among the users of the systems. These file systems must be identified and taken into account as part of
any tuning activity.

With multiuser workloads, the analyst must quantify both the typical and peak request rates. It is also
important to be realistic about the proportion of the time that a user is actually interacting with the terminal.

An important element of this identification stage is determining whether the measurement and tuning
activity has to be done on the production system or can be accomplished on another system (or off-shift)
with a simulated version of the actual workload. The analyst must weigh the greater authenticity of results
from a production environment against the flexibility of the nonproduction environment, where the analyst
can perform experiments that risk performance degradation or worse.

Importance of setting objectives

Although you can set objectives in terms of measurable quantities, the actual desired result is often
subjective, such as satisfactory response time. Further, the analyst must resist the temptation to tune what
is measurable rather than what is important. If no system-provided measurement corresponds to the
desired improvement, that measurement must be devised.

The most valuable aspect of quantifying the objectives is not selecting numbers to be achieved, but
making a public decision about the relative importance of (usually) multiple objectives. Unless these
priorities are set in advance, and understood by everyone concerned, the analyst cannot make trade-off
decisions without incessant consultation. The analyst is also apt to be surprised by the reaction of users or
management to aspects of performance that have been ignored. If the support and use of the system
crosses organizational boundaries, you might need a written service-level agreement between the
providers and the users to ensure that there is a clear common understanding of the performance
objectives and priorities.

8 Performance Management Guide



Identification of critical resources

In general, the performance of a given workload is determined by the availability and speed of one or two
critical system resources. The analyst must identify those resources correctly or risk falling into an endless
trial-and-error operation.

Systems have both real and logical resources. Critical real resources are generally easier to identify,
because more system performance tools are available to assess the utilization of real resources. The real
resources that most often affect performance are as follows:

* CPU cycles

* Memory

* 1/O bus

» Various adapters
» Disk arms

» Disk space

* Network access

Logical resources are less readily identified. Logical resources are generally programming abstractions that
partition real resources. The partitioning is done to share and manage the real resource.

Some examples of real resources and the logical resources built on them are as follows:

CPU

¢ Processor time slice

Memory

* Page frames

» Stacks

» Buffers

* Queues

* Tables

* Locks and semaphores

Disk space

* Logical volumes
* File systems

* Files
 Partitions

Network access
» Sessions
* Packets
* Channels

It is important to be aware of logical resources as well as real resources. Threads can be blocked by a
lack of logical resources just as for a lack of real resources, and expanding the underlying real resource
does not necessarily ensure that additional logical resources will be created. For example, consider the
NFS block 1/0O daemon, biod. A biod daemon on the client is required to handle each pending NFS
remote I/O request. The number of biod daemons therefore limits the number of NFS 1/O operations that
can be in progress simultaneously. When a shortage of biod daemons exists, system instrumentation may
indicate that the CPU and communications links are used only slightly. You may have the false impression
that your system is underused (and slow), when in fact you have a shortage of biod daemons that is

Chapter 2. Performance tuning 9



constraining the rest of the resources. A biod daemon uses processor cycles and memory, but you cannot
fix this problem simply by adding real memory or converting to a faster CPU. The solution is to create
more of the logical resource (biod daemons).

Logical resources and bottlenecks can be created inadvertently during application development. A method
of passing data or controlling a device may, in effect, create a logical resource. When such resources are
created by accident, there are generally no tools to monitor their use and no interface to control their
allocation. Their existence may not be appreciated until a specific performance problem highlights their
importance.

Minimizing critical-resource requirements
Consider minimizing the workload’s critical-resource requirements at three levels, as discussed below.

Using the appropriate resource

The decision to use one resource over another should be done consciously and with specific goals in
mind. An example of a resource choice during application development would be a trade-off of increased
memory consumption for reduced CPU consumption. A common system configuration decision that
demonstrates resource choice is whether to place files locally on an individual workstation or remotely on
a server.

Reducing the requirement for the critical resource

For locally developed applications, the programs can be reviewed for ways to perform the same function
more efficiently or to remove unnecessary function. At a system-management level, low-priority workloads
that are contending for the critical resource can be moved to other systems, run at other times, or
controlled with the Workload Manager.

Structuring for parallel use of resources

Because workloads require multiple system resources to run, take advantage of the fact that the resources
are separate and can be consumed in parallel. For example, the operating system read-ahead algorithm
detects the fact that a program is accessing a file sequentially and schedules additional sequential reads
to be done in parallel with the application’s processing of the previous data. Parallelism applies to system
management as well. For example, if an application accesses two or more files at the same time, adding
an additional disk drive might improve the disk-1/O rate if the files that are accessed at the same time are
placed on different drives.

Resource allocation priorities

The operating system provides a number of ways to prioritize activities. Some, such as disk pacing, are
set at the system level. Others, such as process priority, can be set by individual users to reflect the
importance they attach to a specific task.

Repeating the tuning steps

A truism of performance analysis is that there is always a next bottleneck. Reducing the use of one
resource means that another resource limits throughput or response time. Suppose, for example, we have
a system in which the utilization levels are as follows:

CPU: 90% Disk: 70% Memory 60%
This workload is CPU-bound. If we successfully tune the workload so that the CPU load is reduced from
90 to 45 percent, we might expect a two-fold improvement in performance. Unfortunately, the workload is

now I/O-limited, with utilizations of approximately the following:

CPU: 45% Disk: 90% Memory 60%

10 Performance Management Guide



The improved CPU utilization allows the programs to submit disk requests sooner, but then we hit the limit
imposed by the disk drive’s capacity. The performance improvement is perhaps 30 percent instead of the
100 percent we had envisioned.

There is always a new critical resource. The important question is whether we have met the performance
objectives with the resources at hand.

Attention: Improper system tuning with vmtune, schedtune, and other tuning commands can result in
unexpected system behavior like degraded system or application performance, or a system hang.
Changes should only be applied when a bottleneck has been identified by performance analysis.

Note: There is no such thing as a general recommendation for performance dependent tuning settings.

Applying additional resources

If, after all of the preceding approaches have been exhausted, the performance of the system still does not
meet its objectives, the critical resource must be enhanced or expanded. If the critical resource is logical
and the underlying real resource is adequate, the logical resource can be expanded at no additional cost.
If the critical resource is real, the analyst must investigate some additional questions:

* How much must the critical resource be enhanced or expanded so that it ceases to be a bottleneck?

*  Will the performance of the system then meet its objectives, or will another resource become saturated
first?

 If there will be a succession of critical resources, is it more cost-effective to enhance or expand all of
them, or to divide the current workload with another system?

Performance benchmarking

When we attempt to compare the performance of a given piece of software in different environments, we
are subject to a number of possible errors, some technical, some conceptual. This section contains mostly
cautionary information. Other sections of this book discuss the various ways in which elapsed and
process-specific times can be measured.

When we measure the elapsed (wall-clock) time required to process a system call, we get a number that
consists of the following:

* The actual time during which the instructions to perform the service were executing

» Varying amounts of time during which the processor was stalled while waiting for instructions or data
from memory (that is, the cost of cache and TLB misses)

» The time required to access the clock at the beginning and end of the call
» Time consumed by periodic events, such as system timer interrupts
» Time consumed by more or less random events, such as /O interrupts

To avoid reporting an inaccurate number, we normally measure the workload a number of times. Because

all of the extraneous factors add to the actual processing time, the typical set of measurements has a
curve of the form shown in the following illustration.

Chapter 2. Performance tuning 11



"Actual" value Mean of measured values

Distribution of
measured values

Figure 3. Curve for Typical Set of Measurement.

The extreme low end may represent a low-probability optimum caching situation or may be a rounding
effect.

A regularly recurring extraneous event might give the curve a bimodal form (two maxima), as shown in the
following illustration.

"Actual" value — Mean

Figure 4. Bimodal Curve

One or two time-consuming interrupts might skew the curve even further, as shown in the following
illustration:

12 Performance Management Guide



"Actual" value Mean of measured values

Distribution of
measured values

Figure 5. Skewed Curve

The distribution of the measurements about the actual value is not random, and the classic tests of
inferential statistics can be applied only with great caution. Also, depending on the purpose of the
measurement, it may be that neither the mean nor the actual value is an appropriate characterization of
performance.

Chapter 2. Performance tuning 13



14 Performance Management Guide



Chapter 3. Performance tuning enhancements for AIX 5.2

This section includes the following performance tuning changes introduced in AIX 5.2:
« [AIX kernel tuning parameter modifications|

[Modifications to the vmtune and schedtune commands|

« [Enhancements to the no and nfso commandsg

[AIX 5.2 compatibility mode]

[AIX 5.2 system recovery procedures|

AIX kernel tuning parameter modifications

AIX 5.2 introduces a more flexible and centralized mode for setting most of the AlX kernel tuning
parameters. It is now possible to make permanent changes without editing any rc files. This is achieved by
placing the reboot values for all tunable parameters in a new /etc/tunables/nextboot stanza file. When
the machine is rebooted, the values in that file are automatically applied.

The /etc/tunables/lastboot stanza file is automatically generated with all the values that were set
immediately after the reboot. This provides the ability to return to those values at any time. The
letc/tunables/lastboot.log log file records any changes made or that could not be made during reboot.
There are sets of SMIT panels and a Web-based System Manager plug-in also available to manipulate
current and reboot values for all tuning parameters, as well as the files in the /etc/tunables directory.

The following commands were introduced in AIX 5.2 to modify the tunables files:

Command Purpose

tunsave Saves values to a stanza file

tunrestore Applies applicable parameter values that are specified in a file
tuncheck Validates files that are created manually

tundefault Resets tunable parameters to their default values

All of the above commands work on both current and reboot tunables parameters values. For more
information, see their respective man pages.

For more information about any of these kernel tuning parameter modifications, see the Kernel Tuning
section in AIX 5L Version 5.2 Performance Tools Guide and Reference.

Modifications to the vmtune and schedtune commands

The vmtune and schedtune commands are being replaced by the vmo, ioo, and schedo commands.
Both the vmo and ioo commands together replace vmtune, while the schedo command replaces
schedtune. All existing parameters are used by the new commands.

The ioo command manages all the I/O-related tuning parameters, while the vmo command manages all
the other Virtual Memory Manager, or VMM, parameters previously managed by the vmtune command. All
three commands are part of the bos.perf.tune fileset, which also contains the tunsave, tunrestore,
tuncheck, and tundefault commands. The bos.adt.samples fileset still includes the vmtune and
schedtune commands, which are compatibility shell scripts calling the vmo, ioo, and schedo commands
as appropriate. These compatibility scripts only support changes to parameters which can be changed
interactively. Parameters that need bosboot and then require a reboot of the machine to be effective are
no longer supported by the vmtune script. To change those parameters, users must now use the vmo -r
command. The vmtune command options and parameters in question are as follows:

© Copyright IBM Corp. 1997, 2004 15



The previous vmtune |Usage New command
option
-C ol page coloring vmo -r -0 pagecoloring=0I1
-g n1 large page size vmo -r -0 Igpg_size=n1 -o Igpg_regions=n2
-L n2 number of large pages
to reserve
-m n memory pools VMo -r -0 mempools=n
v n number of frames per | vmo -r -o framesets=n
memory pool
-in interval for special data | vmo -r -o spec_dataseg_int=n
segment identifiers
-V n number of special data |vmo -r -o num_spec_dataseg=n
segment identifiers to
reserve
-y 0I1 p690 memory affinity vmo -r -0 memory_affinity=0I1

Enhancements to the no and nfso commands

The no and nfso commands have been enhanced so that you can make permanent changes to tunable
parameters with the /etc/tunables/nextboot file. They both also have a new -h flag which can be used to
display help about any parameter. The content of the help information includes:

* Purpose of the parameter
» Possible values such as default, range, and type
» Diagnostic and tuning information to decide when to change the parameter value

All of these new tuning commands, ioo, nfso, no, vmo, and schedo, use a common syntax. For more
details and the complete list of tuning parameters supported, see the man pages for each command.

AIX 5.2 compatibility mode

When you migrate a system from a previous version of AIX to AIX 5.2 it is automatically set to run in
compatibility mode, which means that the current behavior of the tuning commands is completely
preserved, with the exception of the previously described vmtune parameters.

Contrary to the normal AIX 5.2 tuning mode where permanent tunable parameter settings are set by
applying values from the /etc/tunables/nextboot file, compatibility mode allows you to make permanent
changes to tunable parameters by embedding calls to tuning commands in scripts called during the boot
process. The only perceivable difference is that the /etc/tunables/lastboot and /etc/tunables/lastboot.log
files are created during reboot. The lastboot.log file contains a warning that says tat AIX is currently
running in compatibility mode and that the nextboot file has not been applied.

Except for parameters of type Bosboot (see [‘Modifications to the vmtune and schedtune commands” on|
, neither the new reboot and permanent options, the -r and -p flags respectively, of the tuning
commands are meaningful because the content of the file is not applied at reboot time. The tuning
commands are not controlling the reboot values of parameters like they would in non-compatibility mode.
Parameters of type Bosboot are preserved during migration, stored in the /etc/tunables/nextboot file, and
can be modified using the -r option, whether you are running in compatibility mode or not. Do not delete
the /etc/tunables/nextboot file.

Compatibility mode is controlled by a new sys0 attribute called pre520tune, which is automatically set to
enable during a migration installation. In the case of a fresh installation of AIX 5.2, the attribute is set to

16 Performance Management Guide



disabTe. In the disable mode, embedded calls to tuning commands in scripts called during reboot are
overwritten by the content of the nextboot file. The current setting of the pre520tune attribute can be
viewed by running the following command:

# Tsattr -E -1 sys0O

and changed either by using the following command:
# chdev -1 sys0 -a pre520tune=disable

or using SMIT or Web-based System Manager.

When the compatibility mode is disabled, the following no command parameters, which are all of type
Reboot, which means that they can only be changed during reboot, cannot be changed without using the
-r flag:

» arptab_bsiz

» arptab_nb

* extendednetstats

* ifsize

* inet_stack_size

* ipgmaxlen

* nstrpush

* pseintrstack

Switching to non-compatibility mode while preserving the current reboot settings can be done by first
changing the pre520tune attribute, and then by running the following command:

# tunrestore -r -f Tastboot

This copies the content of the lastboot file to the nextboot file. For details about the new AIX 5.2 tuning
mode, see the Kernel tuning section in the AIX 5L Version 5.2 Performance Tools Guide and Reference.

AIX 5.2 system recovery procedures

If a machine is unstable after rebooting and the pre520tune attribute is set to enable, delete the offending
calls to tuning commands from scripts called during reboot. To detect the parameters that are set during
reboot, look at the /etc/tunables/lastboot file and search for parameters not marked with # DEFAULT
VALUE. For more information on the content of tunable files, see the ffunables File Format| section in AlX
5L Version 5.2 Files Reference.

Alternatively, to reset all of the tunable parameters to their default values, take the following steps:
1. Delete the /etc/tunables/nextboot file.

2. Set the pre520tune attribute to disable.

3. Run the bosboot command.

4. Reboot the machine.

Chapter 3. Performance tuning enhancements for AIX 5.2 17



18 Performance Management Guide



Chapter 4. System performance monitoring

This topic includes information on tools and techniques for monitoring performance-related system activity
in the following sections:

+ [Advantages of continuous system performance monitoring

« [Continuous system-performance monitoring with the vmstat, iostat, netstat, and sar commands|
« [Continuous system-performance monitoring with the topas monitor|

« [Continuous system-performance monitoring with the Performance Toolbox|

Advantages of continuous system performance monitoring

Continuous system performance monitoring can do the following:

* Sometimes detect underlying problems before they have an adverse effect
» Detect problems that affect a user’s productivity

» Collect data when a problem occurs for the first time

» Allow you to establish a baseline for comparison

Successful monitoring involves the following:

» Periodically obtaining performance-related information from the operating system
+ Storing the information for future use in problem diagnosis

» Displaying the information for the benefit of the system administrator

» Detecting situations that require additional data collection or responding to directions from the system
administrator to collect such data, or both

» Collecting and storing the necessary detail data
» Tracking changes made to the system and applications

Continuous system-performance monitoring with the vmstat, iostat,
netstat, and sar commands

The vmstat, iostat, netstat, and sar commands provide the basic foundation upon which you can
construct a performance-monitoring mechanism.

You can write shell scripts to perform data reduction on the command output, warn of performance
problems, or record data on the status of a system when a problem is occurring. For example, a shell
script can test the CPU idle percentage for zero, a saturated condition, and execute another shell script for
when the CPU-saturated condition occurred. The following script records the 15 active processes that
consumed the most CPU time other than the processes owned by the user of the script:

# ps -ef | egrep -v "STIME|$LOGNAME" | sort +3 -r | head -n 15

Continuous performance monitoring with the vmstat command

The vmstat command is useful for obtaining an overall picture of CPU, paging, and memory usage. The
following is a sample report produced by the vmstat command:

# vmstat 5 2
kthr memory page faults cpu

r b awm fre re pi po fr sr cy in sy cs us sy id wa
1 1197167 477552 06 © © 7 21 0 106 1114 451 0 0 99 O
0 0 197178 477541 O 0O 0 O 0 0443 1123442 0 099 0

Remember that the first report from the vmstat command displays cumulative activity since the last
system boot. The second report shows activity for the first 5-second interval.

© Copyright IBM Corp. 1997, 2004 19



For detailed discussions of the vmstat command, see [The vmstat Command (CPU)| [The vmstat]
[Command (Memory)}, and|Assessing Disk Performance with the vmstat Command|

Continuous performance monitoring with the iostat command

The iostat command is useful for determining disk and CPU usage. The following is a sample report
produced by the iostat command:

# iostat 5 2

tty: tin tout avg-cpu: % user % Sys % idle % iowait
0.1 102.3 0.5 0.2 99.3 0.1

" Disk history since boot not available. "

tty: tin tout avg-cpu: % user % SYys % idle % iowait
0.2 79594.4 0.6 6.6 73.7 19.2

Disks: % tm_act Kbps tps Kb_read  Kb_wrtn

hdiskl 0.0 0.0 0.0 0 0

hdisko 78.2 1129.6 282.4 5648 0

cdl 0.0 0.0 0.0 0 0

Remember that the first report from the iostat command shows cumulative activity since the last system
boot. The second report shows activity for the first 5-second interval.

The system maintains a history of disk activity. In the example above, you can see that the history is
disabled by the appearance of the following message:

Disk history since boot not available.

To disable or enable disk 1/O history with smitty, type the following at the command line:
# smitty chgsys

Continuously maintain DISK I/0 history [value]

and set the value to either false to disable disk I/O history or true to enable disk I/O history. The interval
disk I/O statistics are unaffected by this setting.

For detailed discussion of the iostat command, see [The iostat Command| and |Assessing Disk|
[Performance with the iostat Command}

Continuous performance monitoring with the netstat command

The netstat command is useful in determining the number of sent and received packets. The following is a
sample report produced by the netstat command:

# netstat -I en0 5
input (en0) output input  (Total) output
packets errs packets errs colls packets errs packets errs colls
8305067 0 7784711 0 0 20731867 0 20211853 0 0
3 0 1 0 0 7 0 5 0 0
24 0 127 0 0 28 0 131 0 0
CTRL C

Remember that the first report from the netstat command shows cumulative activity since the last system
boot. The second report shows activity for the first 5-second interval.

Other useful netstat command options are -s and -v. For details, see [The netstat Command|

20 Performance Management Guide



Continuous performance monitoring with the sar command

The sar command is useful in determining CPU usage. The following is a sample report produced by the
sar command:

# sar -P ALL 5 2
AIX aixhost 2 5 00040BOF4C00 01/29/04

%idle
99

10:23:15 cpu %us Swi
10:23:20 0

1

%Sy

10:23:25

I W, oO 1T Wi
NWOOPRPODODOO O 3
loNoNoNoNoNoNoN N oNoN]
[cNoNoNoNoNoNoNoRo N e
Yo}
©

Average

W o
= =0 oN
[oNoNoNoNo)
[oNoNoNoNo)
O
=}

The sar command does not report the cumulative activity since the last system boot.

For details on the sar command, see[The sar Command| and |Assessing Disk Performance with the sar
-Command

Continuous system-performance monitoring with the topas monitor

The topas program reports vital statistics about the activity on the local system on a character terminal.
The bos.perf.tools fileset must be installed on the system to run the topas program.

The topas program extracts and displays statistics from the system with a default interval of 2 seconds.
The topas program offers the following alternate screens:

* Overall system statistics
» List of busiest processes
* WLM statistics

For more information on the topas program, please refer to [The topas Command|in AIX 5L Version 5.2
Commands Reference, Volume 5.

Overall system statistics screen of the topas monitor

The output of the overall system statistics screen consists of one fixed section and one variable section.
The top two lines at the left of the output shows the name of the system that the topas program is running
on, the date and time of the last observation, and the monitoring interval. Below this section is a variable
section which lists the following subsections:

» CPU utilization

* Network interfaces
* Physical disks

» WLM classes

* Processes

To the right of this section is the fixed section which contains the following subsections of statistics:

Chapter 4. System performance monitoring 21



EVENTS/QUEUES
FILE/TTY

PAGING

MEMORY

PAGING SPACE
NFS

The following is a sample output of the overall system statistics screen:

Topas Monitor for host: aixhost

Wed Feb 4 11:23:41 2004 Interval: 2

Kernel 0.0 ’ |
User 0.9

Wait 0.0 } {
Idle 99.0 [ RA AR AR AR AR AR AR AR Ak

Network KBPS  I-Pack 0-Pack KB-In KB-Out
eno 0.8 0.4 0.9 0.0 0.8
100 0.0 0.0 0.0 0.0 0.0
Disk Busy% KBPS TPS KB-Read KB-Writ
hdisk0 0.0 0.0 0.0 0.0 0.0
hdiskl 0.0 0.0 0.0 0.0 0.0
WLM-Class (Active) CPU% Mem% Disk-I1/0%
System 0 0

Shared 0 0

Default 0 0

Name PID CPU% PgSp Class 0

topas 10442 3.0 0.8 System

ksh 13438 0.0 0.4 System

gil 1548 0.0 0.0 System

EVENTS/QUEUES
Cswitch
Syscall
Reads
Writes
Forks
Execs
Runqueue
Waitqueue

53
152
3

0
0
0
0.0
0.0
PAGING
Faults
Steals
PgspIn
PgspOut
Pageln
PageQut
Sios

[cNoNoNo NN V]

NFS (calls/sec)
ServerV2
ClientV2
ServerV3

0
0
0
ClientV3 0

FILE/TTY
Readch 6323
Writech 431
Rawin 0
Ttyout 0
Igets 0
Namei 10
Dirblk 0
MEMORY
Real,MB 4095
% Comp 8.0
% Noncomp 15.8
% Client  14.7
PAGING SPACE
Size,MB 512
% Used 1.2
% Free 98.7

Press:

"h" for help

"q" to quit

Except for the variable Processes subsection, you can sort all of the subsections by any column by
moving the cursor to the top of the desired column. All of the variable subsections, except the Processes
subsection, have the following views:

» List of top resource users
* One-line report presenting the sum of the activity

For example, the one-line-report view might show just the total disk or network throughput.

For the CPU subsection, you can select either the list of busy processors or the global CPU utilization, as
shown in the above example.

List of busiest processes screen of the topas monitor

To view the screen that lists the busiest processes, use the -P flag of the topas command. This screen is
similar to the Processes subsection of the overall system statistics screen, but with additional detail. You
can sort this screen by any of the columns by moving the cursor to the top of the desired column. The
following is an example of the output of the busiest processes screen:

Topas Monitor for host:

USER PID PPID P
root 1 0
root 774 0
root 1032 0
root 1290 0
root 1548 0
root 1806 0
22

RI
60
17
60
36
37
16

aixhost Interva
DATA TEXT PAG

NI RES RES SPAC

20 202 9 20

41 4 0

41 4 0

41 4 0

41 17 0 1

41 4 0

Performance Management Guide

1:

E
E
2
4
4
4
7
4

2

PGFAULTS
TIME CPU% I/0 OTH
0:04 0.0 111 1277
0:00 0.0 0 2
0:00 0.0 0 2
0:01 0.0 0 530
1:24 0.0 0 23
0:00 0.0 0 12

Wed Feb 4 11:24:05 2004

COMMAND
init
reaper
Xxmgc
netm

gil
wimsched



root 2494 0 60 20 4 0 4 0:00 0.0 0 6 rtcmd
root 2676 1 60 20 91 10 91 0:00 0.0 20 6946 cron

root 2940 1 6020 171 22 171 0:00 0.0 15 129 errdemon
root 3186 0 60 20 4 0 4 0:00 0.0 0 125 kbiod
root 3406 1 6020 139 2 139 1:23 0.0 1542187 syncd
root 3886 0 50 41 4 0 4 0:00 0.0 0 2 jfsz

root 4404 0 60 20 4 0 4 0:00 0.0 0 2 Tvmbb
root 4648 1 60 20 17 1 17 0:00 0.0 1 24 sa_daemon
root 4980 1 60 20 97 13 97 0:00 0.0 37 375 srcmstr
root 5440 1 60 20 15 2 15 0:00 0.0 7 28 shlap
root 5762 1 60 20 4 0 4 0:00 0.0 0 2 random
root 5962 4980 60 20 73 10 73 0:00 0.0 22 242 syslogd
root 6374 4980 60 20 63 2 63 0:00 0.0 2 188 rpc.lockd
root 6458 4980 60 20 117 12 117 0:00 0.0 54 287 portmap

WLM statistics screen of the topas monitor

To view the screen that shows the WLM statistics, use the -W flag of the topas command. This screen is
divided into the following sections:

* The top section is the list of busiest WLM classes, as presented in the WLM subsection of the overall
system statistics screen, which you can also sort by any of the columns.

* The second section of this screen is a list of hot processes within the WLM class you select by using
the arrow keys or the f key.

The following is an example of the WLM full screen report:

Topas Monitor for host: aixhost Interval: 2 Wed Feb 4 11:24:29 2004
WLM-Class (Active) CPU% Memé% Disk-1/0%

System 0 0 0

Shared 0 0 0

Default 0 0 0

Unmanaged 0 0 0

Unclassified 0 0 0

DATA TEXT PAGE PGFAULTS
USER PID PPID PRI NI RES RES SPACE TIME CPU% 1/0 OTH COMMAND
root 1 0 60 20 202 9 202 0:04 0.0 0 0 init
root 774 0 17 41 4 0 4 0:00 0.0 0 0 reaper
root 1032 0 60 41 4 0 4 0:00 0.0 0 0 xmgc
root 1290 0 36 41 4 0 4 0:01 0.0 0 0 netm
root 1548 0 37 41 17 0 17 1:24 0.0 0 0 gil
root 1806 0 16 41 4 0 4 0:00 0.0 0 0 wimsched
root 2494 0 60 20 4 0 4 0:00 0.0 0 0 rtcmd
root 2676 1 60 20 91 10 91 0:00 0.0 0 0 cron
root 2940 1 6020 171 22 171 0:00 0.0 0 0 errdemon
root 3186 0 60 20 4 0 4 0:00 0.0 0 0 kbiod

Continuous system-performance monitoring with the Performance
Toolbox

The Performance Toolbox (PTX) is a licensed product that graphically displays a variety of
performance-related metrics. One of the prime advantages of PTX is that you can check current system
performance by taking a glance at the graphical display rather than looking at a screen full of numbers.
PTX also facilitates the compilation of information from multiple performance-related commands and allows
the recording and playback of data.

PTX contains tools for local and remote system-activity monitoring and tuning. The PTX tools that are best
suited for continuous monitoring are the following:

Chapter 4. System performance monitoring 23



* The ptxrlog command produces recordings in ASCII format, which allows you to either print the output
or post-process it. You can also use the ptxrlog command to produce a recording file in binary that can
be viewed with the azizo or xmperf commands.

* The xmservd daemon acts as a recording facility and is controlled through the xmservd.cf
configuration file. This daemon simultaneously provides near real-time network-based data monitoring
and local recording on a given node.

* The xmtrend daemon, much like the xmservd daemon, acts as a recording facility. The main difference
between the xmtrend daemon and the xmservd daemon is in the storage requirements for each
daemon. Typically, the xmservd daemon recordings can consume several megabytes of disk storage
every hour. The xmtrend daemon provides manageable and perpetual recordings of large metric sets.

» The jazizo tool is a Java version of the azizo command. The jazizo command is a tool for analyzing the
long-term performance characteristics of a system. It analyzes recordings created by the xmtrend
daemon and provides displays of the recorded data that can be customized.

* The wimperf tools provide graphical views of Workload Manager (WLM) resource activities by class.
This tool can generate reports from trend recordings made by the PTX daemons covering a period of
minutes, hours, days, weeks, or months.

For more information about PTX, see Performance Toolbox Version 2 and 3 for AlX: Guide and Reference
and Customizing Performance Toolbox and Performance Toolbox Extensions for AlX.

24  Performance Management Guide



Chapter 5. Initial performance diagnosis

This topic includes information on diagnosing performance problems. The major sections are:
+ [Types of reported performance problems|

« [Performance-limiting resource identification|

« [Workload Management Diagnosis|

Types of reported performance problems

When a performance problem is reported, it is helpful to determine the kind of performance problem by
narrowing the list of possibilities. The following is a list of the types of potential performance problems:
« [A particular program runs slowly|

* |Everything runs slowly at a particular time of day|

. :Everything runs slowly at unpredictable times
. :Everything that an individual user runs is slow|

« [A number of LAN-connected systems slow down simultaneously|
* |Everything on a particular service or device slows down at timesl
. ‘Everything runs slowly when connected remotely]|

We discuss each of these issues in more detail in the following sections.

A particular program runs slowly
Although this situation might seem trivial, there are still questions to answer:
* Has the program always run slowly?
If the program has just started running slowly, a recent change might be the cause.
» Has the source code changed or a new version installed?
If so, check with the programmer or vendor.
» Has something in the environment changed?

If a file used by the program, including its own executable program, has been moved, it may now be
experiencing network delays that did not exist previously. Or, files may be contending for a single-disk
accessor that were on different disks previously.

If the system administrator changed system-tuning parameters, the program may be subject to
constraints that it did not experience previously. For example, if the system administrator changed the
way priorities are calculated, programs that used to run rather quickly in the background may now be
slowed down, while foreground programs have sped up.

* Is the program written in the perl, awk, csh, or some other interpretive language?

Unfortunately, interpretive languages are not optimized by a compiler. Also, it is easy in a language like
perl or awk to request an extremely compute- or I/O-intensive operation with a few characters. It is
often worthwhile to perform a desk check or informal peer review of such programs with the emphasis
on the number of iterations implied by each operation.

* Does the program always run at the same speed or is it sometimes faster?

The file system uses some of system memory to hold pages of files for future reference. If a disk-limited
program is run twice in quick succession, it will normally run faster the second time than the first.
Similar behavior might be observed with programs that use NFS. This can also occur with large
programs, such as compilers. The program’s algorithm might not be disk-limited, but the time needed to
load a large executable program might make the first execution of the program much longer than
subsequent ones.

 |If the program has always run slowly, or has slowed down without any obvious change in its
environment, look at its dependency on resources.

© Copyright IBM Corp. 1997, 2004 25



[Performance-limiting resource identification| describes techniques for finding the bottleneck.

Everything runs slowly at a particular time of day

Most people have experienced the rush-hour slowdown that occurs because a large number of people in
the organization habitually use the system at one or more particular times each day. This phenomenon is
not always simply due to a concentration of load. Sometimes it is an indication of an imbalance that is only
a problem when the load is high. Other sources of recurring situations in the system should be considered.

» If you run the iostat and netstat commands for a period that spans the time of the slowdown, or if you
have previously captured data from your monitoring mechanism, are some disks much more heavily
used than others? Is the CPU idle percentage consistently near zero? Is the number of packets sent or
received unusually high?

— If the disks are unbalanced, see [Monitoring and Tuning Disk /O Usé|

— If the CPU is saturated, use the ps or topas commands to identify the programs being run during
this period. The sample script given in|Continuous system-performance monitoring with the vmstatj
liostat, netstat, and sar commands| simplifies the search for the heaviest CPU users.

— If the slowdown is counter-intuitive, such as paralysis during lunch time, look for a pathological
program such as a graphic xlock or game program. Some versions of the xlock program are known
to use huge amounts of CPU time to display graphic patterns on an idle display. It is also possible
that someone is running a program that is a known CPU burner and is trying to run it at the least
intrusive time.

* Unless your /var/adm/cron/cron.allow file is null, you may want to check the contents of the
Ivar/adm/cron/crontab directory for expensive operations.

If you find that the problem stems from conflict between foreground activity and long-running,
CPU-intensive programs that are, or should be, run in the background, consider changing the wa
priorities are calculated using the schedo command to give the foreground higher priority. See
[Thread-Priority-Value Calculation}

Everything runs slowly at unpredictable times

The best tool for this situation is an overload detector, such as the filtd daemon, a component of PTX.

The filtd daemon can be set up to execute shell scripts or collect specific information when a particular
condition is detected. You can construct a similar, but more specialized, mechanism using shell scripts

containing the vmstat, iostat, netstat, sar, and ps commands.

If the problem is local to a single system in a distributed environment, there is probably a pathological
program at work, or perhaps two that intersect randomly.

Everything that an individual user runs is slow
Sometimes a system seems to affect a particular individual.

» The solution in this case is to quantify the problem. Ask the user which commands they use frequently,
and run those commands with the time command, as in the following example:
# time cp .profile testjunk
real Om0.08s
user Om0.00s
Sys Om0.01s
Then run the same commands under a user ID that is not experiencing performance problems. Is there
a difference in the reported real time?

* A program should not show much CPU time (user+sys) difference from run to run, but may show a real
time difference because of more or slower I/O. Are the user’s files on an NFS-mounted directory? Or on
a disk that has high activity for other reasons?

» Check the user’s .profile file for unusual $PATH specifications. For example, if you always search a few
NFS-mounted directories before searching /ust/bin, everything will take longer.

26 Performance Management Guide



A number of LAN-connected systems slow down simultaneously

There are some common problems that arise in the transition from independent systems to distributed
systems. The problems usually result from the need to get a new configuration running as soon as
possible, or from a lack of awareness of the cost of certain functions. In addition to tuning the LAN
configuration in terms of maximum transmission units (MTU) and mbufs (see|Monitoring and Tuning|
|Network Performanceb, look for LAN-specific pathologies or nonoptimal situations that may have evolved
through a sequence of individually reasonable decisions.

» Use network statistics to ensure that there are no physical network problems. Ensure that commands
such as netstat -v, entstat, tokstat, atmstat, or fddistat do not show excessive errors or collision on
the adapter.

* Some types of software or firmware bugs can sporadically saturate the LAN with broadcast or other
packets.

When a broadcast storm occurs, even systems that are not actively using the network can be slowed by
the incessant interrupts and by the CPU resource consumed in receiving and processing the packets.
These problems are better detected and localized with LAN analysis devices than with the normal
performance tools.

* Do you have two LANs connected through a system?

Using a system as a router consumes large amounts of CPU time to process and copy packets. It is
also subject to interference from other work being processed by the system. Dedicated hardware
routers and bridges are usually a more cost-effective and robust solution.

* |s there a clear purpose for each NFS mount?

At some stages in the development of distributed configurations, NFS mounts are used to give users on
new systems access to their home directories on their original systems. This situation simplifies the
initial transition, but imposes a continuing data communication cost. It is not unknown to have users on
system A interacting primarily with data on system B and vice versa.

Access to files through NFS imposes a considerable cost in LAN traffic, client and server CPU time, and
end-user response time. A general guideline is that user and data should normally be on the same
system. The exceptions are those situations in which an overriding concern justifies the extra expense
and time of remote data. Some examples are a need to centralize data for more reliable backup and
control, or a need to ensure that all users are working with the most current version of a program.

If these and other needs dictate a significant level of NFS client-server interchange, it is better to
dedicate a system to the role of server than to have a number of systems that are part-server,
part-client.

* Have programs been ported correctly and justifiably to use remote procedure calls (RPCs)?

The simplest method of porting a program into a distributed environment is to replace program calls with
RPCs on a 1:1 basis. Unfortunately, the disparity in performance between local program calls and RPCs
is even greater than the disparity between local disk I/0 and NFS I/O. Assuming that the RPCs are
really necessary, they should be batched whenever possible.

Everything on a particular service or device slows down at times

If everything that uses a particular device or service slows down at times, refer to the topic that covers that
particular device or service:

» |Monitoring and Tuning CPU Performance]

. :Monitoring and Tuning Memory Performancel

. ‘Monitoring and Tuning Physical and Logical Volume Performance
* [Monitoring and Tuning File System Performance]

. ‘Monitoring and Tuning Network Performance|

* |Monitoring and Tuning NFS Performance|

Chapter 5. Initial performance diagnosis 27



Everything runs slowly when connected remotely

Local and remote authentication to a system can behave very differently. By default, the local
authentication files are consulted first when a user logs in with their user id. This has a faster response
time than network-based authentication mechanisms.

If a user logs in and authenticates with some kind of network-authentication mechanism, that will be the
first mechanism searched when looking up user ids. This will affect any command that performs lookups of
user login names. It will also impact the following commands:

* ps -ef
* Is -l
* ipcs -a

The specific authentication programs are defined in the /usr/lib/security/methods.cfg file. The default
value is compat, which is the local authentication method. To view your current authentication setting for a
particular user id, login with the user id and at the command line, type:

# echo $AUTHSTATE

If you want to ensure that you are using a local authentication mechanism first and then the
network-based authentication mechanism, like DCE for example, type the following at the command line:

# export AUTHSTATE="compat,DCE"

Performance-Limiting Resource identification

The best tool for an overall look at resource utilization while running a multiuser workload is the vmstat
command. The vmstat command reports CPU and disk-1/O activity, as well as memory utilization data.
The following instantiation of the vmstat command produces a one-line summary report of system activity
every 5 seconds:

# vmstat 5

In the example above, because there is no count specified following the interval, reporting continues until
you cancel the command.

The following vmstat report was created on a system running AlXwindows and several synthetic
applications (some low-activity intervals have been removed for example purposes):

kthr memory page faults cpu

r b awm fre re pi po fr sr cy in sy cs us sy id wa
0 0 8793 81 0 0 0 1 7 0125 42 30 1 295 2
0 0 8793 890 0 0 0 0 06 0155 113 79 14 878 0
0 0 8793 57 6 3 0 0 06 0178 28 69 11281 6
0 0 9192 66 0 0 16 81 167 0151 32 34 1 67716
0 0 9193 65 06 0 0 0 06 0117 29 26 1 39 0
0 0 9193 65 06 0 0 0 0 0120 30 31 1 395 0
0 0 9693 69 0 0 53100 216 0 168 27 57 1 463 33
0 0 9693 69 06 0 0 0 0 0134 96 60 12 484 0
0 0 10193 57 06 0 0 0 0 0124 29 32 1 394 2
0 0 11194 64 0 0 38201 1080 0 168 29 57 2 8 62 29
0 0 11194 63 06 0 0 0 0 0141 111 6512 781 0O
0 0 5480 755 3 1 0 0 0 0154 107 7113 878 2
0 0 5467 5747 0 3 0 0 06 0167 39 68 11679 5
0O 1 4797 5821 0 21 0 0O 0 0191 192 125 20 5 42 33
0 1 3778 6119 0 24 0 0 0 0188 170 98 5 8 41 46
0 0 3751 6139 0 0 0 0 0 0145 24 54 11089 0

In this initial assessment, pay particular attention to the pi and po columns of the page category and the
four columns in the cpu category.

28 Performance Management Guide



The pi and po entries represent the paging-space page-ins and page-outs, respectively. If you observe
any instances of paging-space 1/0O, the workload may be approaching or beyond the system’s memory
limits.

If the sum of the user and system CPU-utilization percentages, us and sy, is greater than 90 percent in a
given 5-second interval, the workload is approaching the CPU limits of the system during that interval.

If the 1/0O wait percentage, wa, is close to zero and the pi and po values are zero, the system is spending
time waiting on nonoverlapped file /0, and some part of the workload is I/O-limited.

If the vmstat command indicates a significant amount of I/O wait time, use the iostat command to gather
more detailed information.

The following instantiation of the iostat command produces summary reports of /0O activity and CPU
utilization every 5 seconds, and because we specify a count of 3 following the interval, reporting will stop
after the third report:

# iostat 5 3

The following iostat report was created on a system running the same workload as the one in the vmstat
example above, but at a different time. The first report represents the cumulative activity since the
preceding boot, while subsequent reports represent the activity during the preceding 5-second interval:

tty: tin tout avg-cpu: % user % Sys % idle %iowait
0.0 4.3 0.2 0.6 98.8 0.4

Disks: % tm_act Kbps tps Kb_read Kb_wrtn

hdisk0 0.0 0.2 0.0 7993 4408

hdiskl 0.0 0.0 0.0 2179 1692

hdisk2 0.4 1.5 0.3 67548 59151

cdo 0.0 0.0 0.0 0 0

tty: tin tout avg-cpu: % user % Sys % idle %iowait
0.0 30.3 8.8 7.2 83.9 0.2

Disks: % tm_act Kbps tps Kb_read  Kb_wrtn

hdisko 0.2 0.8 0.2 4 0

hdiskl 0.0 0.0 0.0 ¢] 0

hdisk2 0.0 0.0 0.0 0 0

cdo 0.0 0.0 0.0 0 0

tty: tin tout avg-cpu: % user % Sys % idle %iowait
0.0 8.4 0.2 5.8 0.0 93.8

Disks: % tm_act Kbps tps Kb_read Kb_wrtn

hdisko 0.0 0.0 0.0 0 0

hdiskl 0.0 0.0 0.0 0 0

hdisk2 98.4 575.6 61.9 396 2488

cdo 0.0 0.0 0.0 0 0

The first report shows that the 1/0 on this system is unbalanced. Most of the I/O (86.9 percent of kilobytes
read and 90.7 percent of kilobytes written) goes to hdisk2, which contains both the operating system and
the paging space. The cumulative CPU utilization since boot statistic is usually meaningless, unless you
use the system consistently, 24 hours a day.

The second report shows a small amount of disk activity reading from hdisk0, which contains a separate
file system for the system’s primary user. The CPU activity arises from two application programs and the
iostat command itself.

In the third report, you can see that we artificially created a near-thrashing condition by running a program
that allocates and stores a large amount of memory, which is about 26 MB in the above example. Also in
the above example, hdisk2 is active 98.4 percent of the time, which results in 93.8 percent I/0O wait.

Chapter 5. Initial performance diagnosis 29



The limiting factor for a single program

If you are the sole user of a system, you can get a general idea of whether a program is 1/0 or CPU
dependent by using the time command as follows:

# time cp foo.in foo.out

real Om0.13s
user 0mo.01s
Sys 0m0.02s

Note: Examples of the time command use the version that is built into the Korn shell, ksh. The official
time command, /usr/bin/time, reports with a lower precision.

In the above example, the fact that the real elapsed time for the execution of the cp program (0.13
seconds) is significantly greater than the sum (.03 seconds) of the user and system CPU times indicates
that the program is I/0 bound. This occurs primarily because the foo.in file has not been read recently.

On an SMP, the output takes on a new meaning. See [time and timex Cautions|for more information.

Running the same command a few seconds later against the same file gives the following output:

real 0Om0.06s
user 0m0.01s
Sys 0m0.03s

Most or all of the pages of the foo.in file are still in memory because there has been no intervening
process to cause them to be reclaimed and because the file is small compared with the amount of RAM
on the system. A small foo.out file would also be buffered in memory, and a program using it as input
would show little disk dependency.

If you are trying to determine the disk dependency of a program, you must be sure that its input is in an
authentic state. That is, if the program will normally be run against a file that has not been accessed
recently, you must make sure that the file used in measuring the program is not in memory. If, on the other
hand, a program is usually run as part of a standard sequence in which it gets its input from the output of
the preceding program, you should prime memory to ensure that the measurement is authentic. For
example, the following command would have the effect of priming memory with the pages of the foo.in
file:

# cp foo.in /dev/null

The situation is more complex if the file is large compared to RAM. If the output of one program is the
input of the next and the entire file will not fit in RAM, the second program will read pages at the head of
the file, which displaces pages at the end. Although this situation is very hard to simulate authentically, it is
nearly equivalent to one in which no disk caching takes place.

The case of a file that is perhaps just slightly larger than RAM is a special case of the RAM versus disk
analysis discussed in the next section.

Disk or memory-related problem

Just as a large fraction of real memory is available for buffering files, the system’s page space is available
as temporary storage for program working data that has been forced out of RAM. Suppose that you have
a program that reads little or no data and yet shows the symptoms of being 1/0 dependent. Worse, the
ratio of real time to user + system time does not improve with successive runs. The program is probably
memory-limited, and its I/O is to, and possibly from the paging space. A way to check on this possibility is
shown in the following vmstatit shell script:

30 Performance Management Guide



vmstat -s >temp.file # cumulative counts before the command
time $1 # command under test

vmstat -s >>temp.file # cumulative counts after execution
grep "pagi.*ins" temp.file >>results # extract only the data
grep "pagi.xouts" temp.file >>results # of interest

The vmstatit script summarizes the voluminous vmstat -s report, which gives cumulative counts for a
number of system activities since the system was started.

If the shell script is run as follows:
# vmstatit "cp filel file2" 2>results

the result is as follows:

real 0m0.03s

user 0m0.01s

Sys 0m0.02s
2323 paging space page ins
2323 paging space page ins
4850 paging space page outs
4850 paging space page outs

The before-and-after paging statistics are identical, which confirms our belief that the ep command is not
paging-bound. An extended variant of the vmstatit shell script can be used to show the true situation, as
follows:

vmstat -s >temp.file

time §$1

vmstat -s >>temp.file

echo "Ordinary Input:" >>results
grep "~[ 0-9]*page ins" temp.file >>results
echo "Ordinary OQutput:" >>results
grep "~[ 0-9]*page outs" temp.file >>results
echo "True Paging OQutput:" >>results
grep "pagi.*xouts" temp.file >>results
echo "True Paging Input:" >>results
grep "pagi.*ins" temp.file >>results

Because file I/O in the operating system is processed through the VMM, the vmstat -s command reports
ordinary program I/O as page ins and page outs. When the previous version of the vmstatit shell script
was run against the cp command of a large file that had not been read recently, the result was as follows:

real 0m2.09s
user 0m0.03s
Sys Omo.74s
Ordinary Input:
46416 page ins
47132 page ins
Ordinary OQutput:
146483 page outs
147012 page outs
True Paging OQutput:
4854 paging space page outs
4854 paging space page outs
True Paging Input:
2527 paging space page ins
2527 paging space page ins

The time command output confirms the existence of an I/O dependency. The increase in page ins shows
the 1/0 necessary to satisfy the ep command. The increase in page outs indicates that the file is large
enough to force the writing of dirty pages (not necessarily its own) from memory. The fact that there is no
change in the cumulative paging-space-I/O counts confirms that the cp command does not build data
structures large enough to overload the memory of the test machine.

Chapter 5. Initial performance diagnosis 31



The order in which this version of the vmstatit script reports 1/O is intentional. Typical programs read file
input and then write file output. Paging activity, on the other hand, typically begins with the writing out of a
working-segment page that does not fit. The page is read back in only if the program tries to access it.
The fact that the test system has experienced almost twice as many paging space page outs as paging
space page ins since it was booted indicates that at least some of the programs that have been run on
this system have stored data in memory that was not accessed again before the end of the program.
Memory-Limited Programs| provides more information. See aIso|Monitoring and Tuning Memoryl

Performancel

To show the effects of memory limitation on these statistics, the following example observes a given
command in an environment of adequate memory (32 MB) and then artificially shrinks the system using
the rmss command (see|Assessing Memory Requirements Through the rmss Command). The following
command sequence

# cc -c ed.c
# vmstatit "cc -c ed.c" 2>results

first primes memory with the 7944-line source file and the executable file of the C compiler, then measures
the 1/0 activity of the second execution:

real Om7.76s
user Om7.44s
Sys Omo.15s
Ordinary Input:
57192 page ins
57192 page ins
Ordinary OQutput:
165516 page outs
165553 page outs
True Paging OQutput:
10846 paging space page outs
10846 paging space page outs
True Paging Input:
6409 paging space page ins
6409 paging space page ins

Clearly, this is not I/O limited. There is not even any 1/O necessary to read the source code. If we then
issue the following command:

# rmss -c 8

to change the effective size of the machine to 8 MB, and perform the same sequence of commands, we
get the following output:

real 0m9.87s
user Om7.70s
Sys 0m0.18s
Ordinary Input:
57625 page ins
57809 page ins
Ordinary Output:
165811 page outs
165882 page outs
True Paging Output:
11010 paging space page outs
11061 paging space page outs
True Paging Input:
6623 paging space page ins
6701 paging space page ins

The following symptoms of I/O dependency are present:
» Elapsed time is longer than total CPU time
+ Significant amounts of ordinary 1/0 on the nth execution of the command

32  Performance Management Guide



The fact that the elapsed time is longer than in the memory-unconstrained situation, and the existence of
significant amounts of paging-space /O, make it clear that the compiler is being hampered by insufficient
memory.

Note: This example illustrates the effects of memory constraint. No effort was made to minimize the use
of memory by other processes, so the absolute size at which the compiler was forced to page in
this environment does not constitute a meaningful measurement.

To avoid working with an artificially shrunken machine until the next restart, run
# rmss -r

to release back to the operating system the memory that the rmss command had sequestered, thus
restoring the system to its normal capacity.

Workload Management Diagnosis

When you have exhausted the program performance-improvement and system-tuning possibilities, and
performance is still unsatisfactory at times, you have three choices:

* Let the situation remain as is
* Upgrade the performance-limiting resource
» Adopt workload-management techniques

The first approach leads to frustration and decreased productivity for some of your users. If you choose to
upgrade a resource, you have to be able to justify the expenditure. Thus the obvious solution is to
investigate the possibilities of workload management.

Workload management simply means assessing the priority of each of the components of the workload.
Usually, there are jobs that you can postpone. For example, a report that you need first thing in the
morning is equally useful when run at 3 a.m. as at 4 p.m. on the preceding day. The difference is that it
uses CPU cycles and other resources that are most likely idle at 3 a.m. You can use the at or crontab
command to request a program to run at a specific time or at regular intervals.

Similarly, some programs that have to run during the day can run at reduced priority. They will take longer
to complete, but they will be in less competition with really time-critical processes.

Another technique is to move work from one machine to another; for example, if you run a compilation on
the machine where the source code resides. This kind of workload balancing requires more planning and
monitoring because reducing the load on the network and increasing the CPU load on a server might
result in a net loss.

The AIX Workload Manager (WLM) is part of the operating system kernel. WLM is designed to give the
system administrator greater control over how the scheduler and virtual memory manager (VMM) allocate
CPU and physical memory resources to processes. Disk usage can also be controlled by WLM. This can
prevent different classes of jobs from interfering with each other and to explicitly apply resources based on
the requirements of different groups of users. For further information, see Server Consolidation on
RS/6000.

Chapter 5. Initial performance diagnosis 33



34  Performance Management Guide



Chapter 6. Resource Management Overview

This chapter describes the components of the operating system that manage the resources that have the
most effect on system performance, and the ways in which these components can be tuned. This chapter
contains the following major sections:

« [Performance Overview of the CPU Scheduler]
« [Performance Overview of the Virtual Memory Manager (VMM)}
« [Performance Overview of Fixed-Disk Storage Management.

Specific tuning recommendations appear in the following:
+ [Chapter 6. Monitoring and Tuning CPU Use|
 [Chapter 7. Monitoring and Tuning Memory Use|
* |Chapter 8. Monitoring and Tuning Disk 1/0O Use
« [Chapter 9. Monitoring and Tuning Communications 1/0 Use]
* |Chapter 10. Monitoring and Tuning NFS Usel

Performance Overview of the processor Scheduler

This section discusses performance related topics for the processor Scheduler.

Thread Support

A thread can be thought of as a low-overhead process. It is a dispatchable entity that requires fewer
resources to create than a process. The fundamental dispatchable entity of the AIX Version 4 scheduler is
the thread.

Processes are composed of one or more threads. In fact, workloads migrated directly from earlier releases
of the operating system continue to create and manage processes. Each new process is created with a
single thread that has its parent process priority and contends for the processor with the threads of other
processes. The process owns the resources used in execution; the thread owns only its current state.

When new or modified applications take advantage of the operating system’s thread support to create
additional threads, those threads are created within the context of the process. They share the process’s
private segment and other resources.

A user thread within a process has a specified contention scope. If the contention scope is global, the
thread contends for processor time with all other threads in the system. The thread that is created when a
process is created has global contention scope. If the contention scope is local, the thread contends with
the other threads within the process to be the recipient of the process’s share of processor time.

The algorithm for determining which thread should be run next is called a scheduling policy.

Processes and Threads

A process is an activity within the system that is started by a command, a shell program, or another
process.

Process properties are as follows:
* pid
* pgid
e uid
+ gid

© Copyright IBM Corp. 1997, 2004 35



* environment

* cwd

« file descriptors
* signal actions

* process statistics
* nice

These properties are defined in /usr/include/sys/proc.h.

Thread properties are as follows:
» stack

» scheduling policy

» scheduling priority

» pending signals

* blocked signals

» thread-specific data

These thread properties are defined in /usr/include/sys/thread.h.

Each process is made up of one or more threads. A thread is a single sequential flow of control. Multiple
threads of control allow an application to overlap operations, such as reading from a terminal and writing
to a file.

Multiple threads of control also allow an application to service requests from multiple users at the same
time. Threads provide these capabilities without the added overhead of multiple processes such as those
created through the fork() system call.

AIX 4.3.1 introduced a fast fork routine called f_fork(). This routine is very useful for multithreaded
applications that will call the exec() subroutine immediately after they would have called the fork()
subroutine. The fork() subroutine is slower because it has to call fork handlers to acquire all the library
locks before actually forking and letting the child run all child handlers to initialize all the locks. The
f_fork() subroutine bypasses these handlers and calls the kfork() system call directly. Web servers are a
good example of an application that can use the f_fork() subroutine.

Process and Thread Priority

The priority management tools manipulate process priority. In AIX Version 4, process priority is simply a
precursor to thread priority. When the fork() subroutine is called, a process and a thread to run in it are
created. The thread has the priority that would have been attributed to the process.

The kernel maintains a priority value (sometimes termed the scheduling priority) for each thread. The
priority value is a positive integer and varies inversely with the importance of the associated thread. That
is, a smaller priority value indicates a more important thread. When the scheduler is looking for a thread to
dispatch, it chooses the dispatchable thread with the smallest priority value.

A thread can be fixed-priority or nonfixed priority. The priority value of a fixed-priority thread is constant,
while the priority value of a nonfixed-priority thread varies based on the minimum priority level for user
threads (a constant 40), the thread’s nice value (20 by default, optionally set by the nice or renice
command), and its processor-usage penalty.

The priority of a thread can be fixed at a certain value, which can have a priority value less than 40, if their
priority is set (fixed) through the setpri() subroutine. These threads are immune to the scheduler

36  Performance Management Guide



recalculation algorithms. If their priority values are fixed to be less than 40, these threads will run and
complete before any user threads can run. For example, a thread with a fixed value of 10 will run before a
thread with a fixed value of 15.

Users can apply the nice command to make a thread’s nonfixed priority less favorable. The system
manager can apply a negative nice value to a thread, thus giving it a better priority.

The following illustration shows some of the ways in which the priority value can change.

At Thread After Some After renice -5 After
Initiation Execution setpri( )
to 50
CPU penalty CPU penalty
o nice value nice value nice value
Priority Value defaults to 20 remains 20 now 15 , —
(smaller value Fixed priority
means higher value is 50.
priority) Nice value
and CPU
Base priority Base priority Base priority usage are now
defaults to 40 remains 40 remains 40 irrelevant.

Figure 6. How the Priority Value is Determined. The illustration shows how the scheduling priority value of a thread
can change during execution or after applying the nice command. The smaller the priority value, the higher the thread
priority. At initiation, the nice value defaults to 20 and the base priority defaults to 40. After some execution and a
processor penality, the nice value remains 20 and the base priority remains 40. After running the renice —5 command
and with the same processor usage as before, the nice value is now 15 and the base priority remains 40. After issuing
the setpri() subroutine with a value of 50, fixed priority is now 50 and the nice value and processor usage is irrelevant.

The nice value of a thread is set when the thread is created and is constant over the life of the thread,
unless explicitly changed by the user through the renice command or the setpri(), setpriority(),
thread_setsched(), or nice() system calls.

The processor penalty is an integer that is calculated from the recent processor usage of a thread. The
recent processor usage increases by approximately 1 each time the thread is in control of the processor at
the end of a 10 ms clock tick, up to a maximum value of 120. The actual priority penalty per tick increases
with the nice value. Once per second, the recent processor usage values for all threads are recalculated.

The result is the following:
* The priority of a nonfixed-priority thread becomes less favorable as its recent processor usage

increases and vice versa. This implies that, on average, the more time slices a thread has been
allocated recently, the less likely it is that the thread will be allocated the next time slice.

* The priority of a nonfixed-priority thread becomes less favorable as its nice value increases, and vice
versa.

Note: With the use of multiple processor run queues and their load balancing mechanism, nice or renice
values might not have the expected effect on thread priorities because less favored priorities might
have equal or greater run time than favored priorities. Threads requiring the expected effects of
nice or renice should be placed on the global run queue.

You can use the ps command to display the priority value, nice value, and short-term processor-usage
values for a process.

Chapter 6. Resource Management Overview 37



See [Controlling Contention for the processor| for a more detailed discussion on using the nice and renice
commands.

See [Tuning the Thread-Priority-Value Calculation} for the details of the calculation of the processor penalty
and the decay of the recent processor usage values.

The priority mechanism is also used by AIX Workload Manager to enforce processor resource
management. Because threads classified under the Workload Manager have their priorities managed by
the Workload Manager, they might have different priority behavior over threads not classified under the
Workload Manager.

Scheduling Policy for Threads

The following are the possible values for thread scheduling policy:

SCHED_FIFO
After a thread with this policy is scheduled, it runs to completion unless it is blocked, it voluntarily
yields control of the processor, or a higher-priority thread becomes dispatchable. Only fixed-priority
threads can have a SCHED_FIFO scheduling policy.

SCHED_RR
When a SCHED_RR thread has control at the end of the time slice, it moves to the tail of the
queue of dispatchable threads of its priority. Only fixed-priority threads can have a SCHED_RR
scheduling policy.

SCHED_OTHER
This policy is defined by POSIX Standard 1003.4a as implementation-defined. The recalculation of
the running thread’s priority value at each clock interrupt means that a thread may lose control
because its priority value has risen above that of another dispatchable thread.

SCHED_FIFO2
The policy is the same as for SCHED_FIFO, except that it allows a thread which has slept for only
a short amount of time to be put at the head of its run queue when it is awakened. This time
period is the affinity limit (tunable with schedtune -a). This policy is only available beginning with
AlX 4.3.3.

SCHED_FIFO3
A thread whose scheduling policy is set to SCHED_FIFOS is always put at the head of a run
queue. To prevent a thread belonging to SCHED_FIFO2 scheduling policy from being put ahead of
SCHED_FIFOS3, the run queue parameters are changed when a SCHED_FIFOS3 thread is
enqueued, so that no thread belonging to SCHED_FIFO2 will satisfy the criterion that enables it to
join the head of the run queue. This policy is only available beginning with AIX 4.3.3.

SCHED_FIFO4
A higher priority SCHED_FIFO4 scheduling class thread does not preempt the currently running
low priority thread as long as their priorities differ by a value of 1. The default behavior is the
preemption of the currently running low priority thread on a given CPU by a high priority thread
that becomes eligible to run on the same CPU. This policy is only available beginning with AIX 5L
Version 5100-01 + APAR 1Y22854.

The scheduling policies are set with the thread_setsched() system call and are only effective for the
calling thread. However, a thread can be set to the SCHED_RR scheduling policy by issuing a setpri() call
specifying the process ID; the caller of setpri() and the target of setpri() do not have to match.

Only processes that have root authority can issue the setpri() system call. Only threads that have root
authority can change the scheduling policy to any of the SCHED_FIFO options or SCHED_RR. If the
scheduling policy is SCHED_OTHER, the priority parameter is ignored by the thread_setsched()
subroutine.

38  Performance Management Guide



Threads are primarily of interest for applications that currently consist of several asynchronous processes.
These applications might impose a lighter load on the system if converted to a multithreaded structure.

Scheduler Run Queue

The scheduler maintains a run queue of all of the threads that are ready to be dispatched. The following
illustration depicts the run queue symbolically.

0 Priority F--——-=-=-=-=-=-- Priority Queue

Y
\4

\
\4

\ 4
Y

Run Queue

\4

Y

A\ 4
\4

127 L

Figure 7. Run Queue. This illustration simply shows how threads with a lower priority value are passed through the run
queue before threads with a higher priority value. The range of possible priority values is 0 to 127 which directly relate
to a total of 128 total run queues.

All the dispatchable threads of a given priority occupy positions in the run queue.

The fundamental dispatchable entity of the scheduler is the thread. AIX 5.1 maintains 256 run queues (128
in AIX 4.3 and prior releases). In AlIX 5.1, run queues relate directly to the range of possible values (0
through 255) for the priority field for each thread.. This method makes it easier for the scheduler to
determine which thread is most favored to run. Without having to search a single large run queue, the
scheduler consults a mask where a bit is on to indicate the presence of a ready-to-run thread in the
corresponding run queue.

The priority value of a thread changes rapidly and frequently. The constant movement is due to the way
that the scheduler recalculates priorities. This is not true, however, for fixed-priority threads.

Starting with AlX 4.3.3, each processor has its own run queue. The run queue values reported in the
performance tools will be the sum of all the threads in each run queue. Having a per-processor run queue
saves overhead on dispatching locks and improves overall processor affinity. Threads will tend to stay on
the same processor more often. If a thread becomes runnable because of an event on another processor
than the one in which the newly runnable thread had been running on, then this thread would only get
dispatched immediately if there was an idle processor. No preemption occurs until the processor’s state
can be examined (such as an interrupt on this thread’s processor).

On multiprocessor systems with multiple run queues, transient priority inversions can occur. It is possible

at any point in time that one run queue could have several threads having more favorable priority than
another run queue. AIX has mechanisms for priority balancing over time, but if strict priority is required (for

Chapter 6. Resource Management Overview 39



example, for real-time applications) an environment variable called RT_GRQ exists, that, if set to ON, will
cause this thread to be on a global run queue. In that case, the global run queue is searched to see which
thread has the best priority. This can improve performance for threads that are interrupt driven. Threads
that are running at fixed priority are placed on the global run queue if schedtune -F is set to 1.

The average number of threads in the run queue can be seen in the first column of the vmstat command

output. If you divide this number by the number of processors, the result is the average number of threads
that can be run on each processor. If this value is greater than one, these threads must wait their turn for

the processor (the greater the number, the more likely it is that performance delays are noticed).

When a thread is moved to the end of the run queue (for example, when the thread has control at the end
of a time slice), it is moved to a position after the last thread in the queue that has the same priority value.

Scheduler processor Time Slice

The processor time slice is the amount of time a SCHED_RR thread can absorb before the scheduler
switches to another thread at the same priority. You can use the -t option of the schedtune command to
increase the number of clock ticks in the time slice by 10 millisecond increments (see
[Scheduler Time Slice with the schedtune Command).

Note: The time slice is not a guaranteed amount of processor time. It is the longest time that a thread can
be in control before it faces the possibility of being replaced by another thread. There are many
ways in which a thread can lose control of the processor before it has had control for a full time
slice.

Mode Switching

A user process undergoes a mode switch when it needs access to system resources. This is implemented
through the system call interface or by interrupts such as page faults. There are two modes:

e User mode
¢ Kernel mode

Processor time spent in user mode (application and shared libraries) is reflected as user time in the output
of commands such as the vmstat, iostat, and sar commands. Processor time spent in kernel mode is
reflected as system time in the output of these commands.

User Mode

Programs that execute in the user protection domain are user processes. Code that executes in this
protection domain executes in user execution mode, and has the following access:

» Read/write access to user data in the process private region
* Read access to the user text and shared text regions
» Access to shared data regions using the shared memory functions

Programs executing in the user protection domain do not have access to the kernel or kernel data
segments, except indirectly through the use of system calls. A program in this protection domain can only
affect its own execution environment and executes in the process or unprivileged state.

Kernel Mode

Programs that execute in the kernel protection domain include interrupt handlers, kernel processes, the
base kernel, and kernel extensions (device driver, system calls and file systems). This protection domain
implies that code executes in kernel execution mode, and has the following access:

» Read/write access to the global kernel address space
* Read/write access to the kernel data in the process region when executing within a process

Kernel services must be used to access user data within the process address space.

40 Performance Management Guide



Programs executing in this protection domain can affect the execution environments of all programs,
because they have the following characteristics:

* They can access global system data

* They can use kernel services

* They are exempt from all security restraints

* They execute in the processor privileged state.

Mode Switches

The use of a system call by a user-mode process allows a kernel function to be called from user mode.
Access to functions that directly or indirectly invoke system calls is typically provided by programming
libraries, which provide access to operating system functions.

Mode switches should be differentiated from the context switches seen in the output of the vmstat (cs
column) and sar (cswch/s) commands. A context switch occurs when the currently running thread is
different from the previously running thread on that processor.

The scheduler performs a context switch when any of the following occurs:

» A thread must wait for a resource (voluntarily), such as disk I/O, network 1/O, sleep, or locks
* A higher priority thread wakes up (involuntarily)

* The thread has used up its time slice (usually 10 ms).

Context switch time, system calls, device interrupts, NFS I/O, and any other activity in the kernel is
considered as system time.

Performance Overview of the Virtual Memory Manager (VMM)

The virtual address space is partitioned into segments. A segment is a 256 MB, contiguous portion of the
virtual-memory address space into which a data object can be mapped.

Process addressability to data is managed at the segment (or object) level so that a segment can be
shared between processes or maintained as private. For example, processes can share code segments
yet have separate and private data segments.

Real-Memory Management

Virtual-memory segments are partitioned into fixed-size units called pages. The default page size is 4096
bytes. Some systems also support a larger page size, typically accessed only through the shmat system
call.Each page in a segment can be in real memory (RAM), or stored on disk until it is needed. Similarly,
real memory is divided into 4096-byte page frames. The role of the VMM is to manage the allocation of
real-memory page frames and to resolve references by the program to virtual-memory pages that are not
currently in real memory or do not yet exist (for example, when a process makes the first reference to a
page of its data segment).

Because the amount of virtual memory that is in use at any given instant can be larger than real memory,
the VMM must store the surplus on disk. From the performance standpoint, the VMM has two, somewhat
opposed, objectives:

* Minimize the overall processor-time and disk-bandwidth cost of the use of virtual memory
* Minimize the response-time cost of page faults

In pursuit of these objectives, the VMM maintains a free list of page frames that are available to satisfy a
page fault. The VMM uses a page-replacement algorithm to determine which virtual-memory pages
currently in memory will have their page frames reassigned to the free list. The page-replacement
algorithm uses several mechanisms:

» Virtual-memory segments are classified into either persistent segments or working segments.

Chapter 6. Resource Management Overview 41



» Virtual-memory segments are classified as containing either computational or file memory.
» Virtual-memory pages whose access causes a page fault are tracked.

» Page faults are classified as new-page faults or as repage faults.

+ Statistics are maintained on the rate of repage faults in each virtual-memory segment.

» User-tunable thresholds influence the page-replacement algorithm’s decisions.

The following sections describe the free list and the page-replacement mechanisms in more detail.

Free List

The VMM maintains a logical list of free page frames that it uses to accommodate page faults. In most
environments, the VMM must occasionally add to the free list by reassigning some page frames owned by
running processes. The virtual-memory pages whose page frames are to be reassigned are selected by
the VMM’s page-replacement algorithm. The VMM thresholds determine the number of frames reassigned.

Persistent versus Working Segments

The pages of a persistent segment have permanent storage locations on disk. Files containing data or
executable programs are mapped to persistent segments. Because each page of a persistent segment has
a permanent disk storage location, the VMM writes the page back to that location when the page has been
changed and can no longer be kept in real memory. If the page has not changed when selected for
placement on a free list, no 1/O is required. If the page is referenced again later, a new copy is read in
from its permanent disk-storage location.

Working segments are transitory, exist only during their use by a process, and have no permanent
disk-storage location. Process stack and data regions are mapped to working segments, as are the kernel
text segment, the kernel-extension text segments, as well as the shared-library text and data segments.
Pages of working segments must also have disk-storage locations to occupy when they cannot be kept in
real memory. The disk-paging space is used for this purpose.

The following illustration shows the relationship between some of the types of segments and the locations

of their pages on disk. It also shows the actual (arbitrary) locations of the pages when they are in real
memory.

42 Performance Management Guide



N~ A

Process Program text segment (persistent) \
Thread(s) Stack and data segment (working)
read(s
\ Paging Space
|:|

Shared library segment (working)

~
Pages

Touched 0 o 4KBPageFrames............. n Real
Real 1/0
Memory

Figure 8. Persistent and Working Storage Segments. This illustration shows the relationship between some of the
types of segments and the locations of their pages on disk. It also shows the actual (arbitrary) locations of the pages
when they are in real memory. Working segments are transitory, meaning they exist only during their use by a process
and have no permanent disk-storage location. Process stack and data regions are mapped to working segments, as
are the kernel text segment, the kernel-extension text segments, and the shared-library text and data segments.
Pages of working segments must also have disk-storage locations to occupy when they cannot be kept in real
memory. The disk-paging space is used for this purpose.

Persistent-segment types are further classified. Client segments are used to map remote files (for
example, files that are being accessed through NFS), including remote executable programs. Pages from
client segments are saved and restored over the network to their permanent file location, not on the
local-disk paging space. Journaled and deferred segments are persistent segments that must be
atomically updated. If a page from a journaled or deferred segment is selected to be removed from real
memory (paged out), it must be written to disk paging space unless it is in a state that allows it to be
committed (written to its permanent file location).

Computational versus File Memory
Computational memory, also known as computational pages, consists of the pages that belong to
working-storage segments or program text (executable files) segments.

File memory (or file pages) consists of the remaining pages. These are usually pages from permanent
data files in persistent storage.

Page Replacement
When the number of available real memory frames on the free list becomes low, a page stealer is invoked.
A page stealer moves through the Page Frame Table (PFT), looking for pages to steal.

The PFT includes flags to signal which pages have been referenced and which have been modified. If the
page stealer encounters a page that has been referenced, it does not steal that page, but instead, resets
the reference flag for that page. The next time the clock hand (page stealer) passes that page and the
reference bit is still off, that page is stolen. A page that was not referenced in the first pass is immediately
stolen.

The modify flag indicates that the data on that page has been changed since it was brought into memory.
When a page is to be stolen, if the modify flag is set, a pageout call is made before stealing the page.
Pages that are part of working segments are written to paging space; persistent segments are written to
disk.

Chapter 6. Resource Management Overview 43



Second Chance:

PFT (excerpt) I:I Left in memory,

Real Seg REF MOD but REF bit cleared
Free List Addr. Type
e aaat W i * —————
Addr. > W N . _
aaa? aaa > Paging Space
aaa3 w +
aaad
bbb2 aaasd W
bbbA bbbt P * + S —
cecd bbb3 P N
bbb4 P
ccc’ c b * Yb NFS Server
cce2 C +
cce3 C +
cccd C
Resulting PFT (excerpt)
Real Seg REF MOD _ T Page Frame Table (excerpt)
Addr. | Type N
aaa1 wW +
aaa3 w
bbb1 =) +
bbb3 P
ccel C +
ccc3 C

Figure 9. Page Replacement Example. The illustration consists of excerpts from three tables. The first table is the
page frame table with four columns that contain the real address, the segment type, a reference flag, and a modify
flag. A second table is called the free list table and contains addresses of all free pages. The last table represents the
resulting page frame table after all of the free addresses have been removed.

In addition to the page-replacement, the algorithm keeps track of both new page faults (referenced for the
first time) and repage faults (referencing pages that have been paged out), by using a history buffer that
contains the IDs of the most recent page faults. It then tries to balance file (persistent data) page outs with
computational (working storage or program text) page outs.

When a process exits, its working storage is released immediately and its associated memory frames are
put back on the free list. However, any files that the process may have opened can stay in memory.

Page replacement is done directly within the scope of the thread if running on a uniprocessor. On a
multiprocessor system, page replacement is done through the Irud kernel process, which is dispatched to
a CPU when the minfree threshold has been reached. Starting with AIX 4.3.3, the Irud kernel process is
multithreaded with one thread per memory pool. Real memory is split into evenly sized memory pools
based on the number of CPUs and the amount of RAM. The number of memory pools on a system can be
determined by running the vmtune -A command.

In AIX 4.3.3 and later use the vmtune -m <number of memory pools> command to change the number of
memory pools that will be configured at system boot. The values for minfree and maxfree in the vmtune
command output will be the sum of the minfree and maxfree for each memory pool.

Repaging

A page fault is considered to be either a new page fault or a repage fault. A new page fault occurs when
there is no record of the page having been referenced recently. A repage fault occurs when a page that is

44  Performance Management Guide



known to have been referenced recently is referenced again, and is not found in memory because the
page has been replaced (and perhaps written to disk) since it was last accessed.

A perfect page-replacement policy would eliminate repage faults entirely (assuming adequate real memory)
by always stealing frames from pages that are not going to be referenced again. Thus, the number of
repage faults is an inverse measure of the effectiveness of the page-replacement algorithm in keeping
frequently reused pages in memory, thereby reducing overall I/O demand and potentially improving system
performance.

To classify a page fault as new or repage, the VMM maintains a repage history buffer that contains the
page IDs of the N most recent page faults, where N is the number of frames that the memory can hold.
For example, 512 MB memory requires a 128 KB repage history buffer. At page-in, if the page’s ID is
found in the repage history buffer, it is counted as a repage. Also, the VMM estimates the
computational-memory repaging rate and the file-memory repaging rate separately by maintaining counts
of repage faults for each type of memory. The repaging rates are multiplied by 0.9 each time the
page-replacement algorithm runs, so that they reflect recent repaging activity more strongly than historical
repaging activity.

VMM Thresholds

Several numerical thresholds define the objectives of the VMM. When one of these thresholds is
breached, the VMM takes appropriate action to bring the state of memory back within bounds. This section
discusses the thresholds that the system administrator can alter through the vmtune command.

The number of page frames on the free list is controlled by the following parameters:

minfree
Minimum acceptable number of real-memory page frames in the free list. When the size of the
free list falls below this number, the VMM begins stealing pages. It continues stealing pages until
the size of the free list reaches maxfree.

maxfree
Maximum size to which the free list will grow by VMM page-stealing. The size of the free list may
exceed this number as a result of processes terminating and freeing their working-segment pages
or the deletion of files that have pages in memory.

The VMM attempts to keep the size of the free list greater than or equal to minfree. When page faults or
system demands cause the free list size to fall below minfree, the page-replacement algorithm runs. The
size of the free list must be kept above a certain level (the default value of minfree) for several reasons.
For example, the operating system’s sequential-prefetch algorithm requires several frames at a time for
each process that is doing sequential reads. Also, the VMM must avoid deadlocks within the operating
system itself, which could occur if there were not enough space to read in a page that was required to free
a page frame.

The following thresholds are expressed as percentages. They represent the fraction of the total real
memory of the machine that is occupied by file pages (pages of noncomputational segments).

minperm
If the percentage of real memory occupied by file pages falls below this level, the
page-replacement algorithm steals both file and computational pages, regardless of repage rates.

maxperm
If the percentage of real memory occupied by file pages rises above this level, the
page-replacement algorithm steals only file pages.

maxclient
If the percentage of real memory occupied by file pages is above this level, the page-replacement
algorithm steals only client pages.

Chapter 6. Resource Management Overview 45



When the percentage of real memory occupied by file pages is between minperm and maxperm, the
VMM normally steals only file pages, but if the repaging rate for file pages is higher than the repaging rate
for computational pages, computational pages are stolen as well.

The main intent of the page-replacement algorithm is to ensure that computational pages are given fair
treatment. For example, the sequential reading of a long data file into memory should not cause the loss
of program text pages that are likely to be used again soon. The page-replacement algorithm’s use of the
thresholds and repaging rates ensures that both types of pages get treated fairly, with a slight bias in favor
of computational pages.

VMM Memory Load Control Facility

A process requires real-memory pages to execute. When a process references a virtual-memory page that
is on disk, because it either has been paged-out or has never been read, the referenced page must be
paged-in and, on average, one or more pages must be paged out (if replaced pages had been modified),
creating /O traffic and delaying the progress of the process.

The operating system attempts to steal real memory from pages that are unlikely to be referenced in the
near future, through the page-replacement algorithm. A successful page-replacement algorithm allows the
operating system to keep enough processes active in memory to keep the CPU busy. But at some level of
competition for memory, no pages are good candidates for paging out to disk because they will all be
reused in the near future by the active set of processes. This situation depends on the following:

» Total amount of memory in the system

* The number of processes

* The time-varying memory requirements of each process
* The page-replacement algorithm

When this happens, continuous paging-in and paging-out occurs. This condition is called thrashing.
Thrashing results in incessant 1/O to the paging disk and causes each process to encounter a page fault
almost as soon as it is dispatched, with the result that none of the processes make any significant
progress.

The most destructive aspect of thrashing is that, although thrashing may have been triggered by a brief,
random peak in workload (such as all of the users of a system happening to press Enter in the same
second), the system might continue thrashing for an indefinitely long time.

The operating system has a memory load-control algorithm that detects when the system is starting to
thrash and then suspends active processes and delays the initiation of new processes for a period of time.
Five parameters set rates and bounds for the algorithm. The default values of these parameters have
been chosen to be "fail safe” across a wide range of workloads. In AIX Version 4, memory load control is
disabled by default on systems that have available memory frames that add up to greater than or equal to
128 MB.

Memory Load Control Algorithm

The memory load control mechanism assesses, once per second, whether sufficient memory is available
for the set of active processes. When a memory-overcommitment condition is detected, some processes
are suspended, decreasing the number of active processes and thereby decreasing the level of memory
overcommitment.

When a process is suspended, all of its threads are suspended when they reach a suspendable state. The
pages of the suspended processes quickly become stale and are paged out by the page-replacement
algorithm, releasing enough page frames to allow the remaining active processes to progress. During the
interval in which existing processes are suspended, newly created processes are also suspended,
preventing new work from entering the system. Suspended processes are not reactivated until a
subsequent interval passes during which no potential thrashing condition exists. Once this safe interval
has passed, the threads of the suspended processes are gradually reactivated.

46 Performance Management Guide



Memory load-control parameters specify the following:
* The system memory overcommitment threshold (schedtune -h)
* The number of seconds required to make a safe interval (schedtune -w)

* The individual process memory overcommitment threshold by which an individual process is qualified as
a suspension candidate (schedtune -p)

* The minimum number of active processes when processes are being suspended (schedtune -m)
* The minimum number of elapsed seconds of activity for a process after reactivation (schedtune -e)

For information on setting and tuning these parameters, see ITuning VMM Memory Load Control with the|
lschedtune Command|

Once per second, the scheduler (process 0) examines the values of all the above measures that have
been collected over the preceding one-second interval, and determines if processes are to be suspended
or activated. If processes are to be suspended, every process eligible for suspension by the -p and -e
parameter test is marked for suspension. When that process next receives the CPU in user mode, it is
suspended (unless doing so would reduce the number of active processes below the -m value). The
user-mode criterion is applied so that a process is ineligible for suspension during critical system activities
performed on its behalf. If, during subsequent one-second intervals, the thrashing criterion is still being
met, additional process candidates meeting the criteria set by -p and -e are marked for suspension. When
the scheduler subsequently determines that the safe-interval criterion has been met and processes are to
be reactivated, some number of suspended processes are put on the run queue (made active) every
second.

Suspended processes are reactivated by:
1. Priority
2. The order in which they were suspended

The suspended processes are not all reactivated at once. A value for the number of processes reactivated
is selected by a formula that recognizes the number of then-active processes and reactivates either
one-fifth of the number of then-active processes or a monotonically increasing lower bound, whichever is
greater. This cautious strategy results in increasing the degree of multiprogramming roughly 20 percent per
second. The intent of this strategy is to make the rate of reactivation relatively slow during the first second
after the safe interval has expired, while steadily increasing the reintroduction rate in subsequent seconds.
If the memory-overcommitment condition recurs during the course of reactivating processes, the following
occur:

* Reactivation is halted
* The marked-to-be reactivated processes are again marked suspended
» Additional processes are suspended in accordance with the above rules

Allocation and Reclamation of Paging Space Slots

The operating system supports three allocation methods for working storage, also referred to as
paging-space slots, as follows:

* Late allocation
» Early allocation
» Deferred allocation

Note: Paging-space slots are only released by process (not thread) termination or by the disclaim()
system call. The slots are not released by the free() system call.

Chapter 6. Resource Management Overview 47



Late Allocation Algorithm

Prior to AIX 4.3.2 with the late allocation algorithm, a paging slot is allocated to a page of virtual memory
only when that page is first touched. That is the first time that the page’s content is of interest to the
executing program.

Many programs exploit late allocation by allocating virtual-memory address ranges for maximum-sized
structures and then only using as much of the structure as the situation requires. The pages of the
virtual-memory address range that are never accessed never require real-memory frames or paging-space
slots.

This technique does involve some degree of risk. If all of the programs running in a machine happened to
encounter maximume-size situations simultaneously, paging space might be exhausted. Some programs
might not be able to continue to completion.

Early Allocation Algorithm

The second operating system’s paging-space-slot-allocation method is intended for use in installations
where this situation is likely, or where the cost of failure to complete is intolerably high. Aptly called early
allocation, this algorithm causes the appropriate number of paging-space slots to be allocated at the time
the virtual-memory address range is allocated, for example, with the malloc() subroutine. If there are not
enough paging-space slots to support the malloc() subroutine, an error code is set. The early-allocation
algorithm is invoked as follows:

# export PSALLOC=early

This example causes all future programs to be executed in the environment to use early allocation. The
currently executing shell is not affected.

Early allocation is of interest to the performance analyst mainly because of its paging-space size
implications. If early allocation is turned on for those programs, paging-space requirements can increase
many times. Whereas the normal recommendation for paging-space size is at least twice the size of the
system’s real memory, the recommendation for systems that use PSALLOC=early is at least four times
the real memory size. Actually, this is just a starting point. Analyze the virtual storage requirements of your
workload and allocate paging spaces to accommodate them. As an example, at one time, the AlXwindows
server required 250 MB of paging space when run with early allocation.

When using PSALLOC=early, the user should set a handler for the following SIGSEGV signal by
pre-allocating and setting the memory as a stack using the sigaltstack function. Even though
PSALLOC-=early is specified, when there is not enough paging space and a program attempts to expand
the stack, the program may receive the SIGSEGV signal.

Deferred Allocation Algorithm

The third operating system’s paging-space-slot-allocation method is the default beginning with AIX 4.3.2
Deferred Page Space Allocation (DPSA) policy delays allocation of paging space until it is necessary to
page out the page, which results in no wasted paging space allocation. This method can save huge
amounts of paging space, which means disk space.

On some systems, paging space might not ever be needed even if all the pages accessed have been
touched. This situation is most common on systems with very large amount of RAM. However, this may
result in overcommitment of paging space in cases where more virtual memory than available RAM is
accessed.

To disable DPSA and preserve the Late Page Space Allocation policy, run the following command:

# /usr/samples/kernel/vmtune -d 0

To activate DPSA, run the following command:

# /usr/samples/kernel/vmtune -d 1

48 Performance Management Guide



In general, system performance can be improved by DPSA, because the overhead of allocating page
space after page faults is avoided the. Paging space devices need less disk space if DPSA is used.

For further information, see [Choosing a Page Space Allocation Method| and [Placement and Sizes of|

Paging Spaces,

Performance overview of fixed-disk storage management

The following illustration shows the hierarchy of structures used by the operating system to manage
fixed-disk storage. Each individual disk drive, called a physical volume (PV), has a name, such as
/dev/hdiskO. If the physical volume is in use, it belongs to a volume group (VG). All of the physical
volumes in a volume group are divided into physical partitions (PPs) of the same size (by default, 4 MB in
volume groups that include physical volumes smaller than 4 GB; 8 MB or more with bigger disks).

For space-allocation purposes, each physical volume is divided into five regions. See |Position on Physical|
for more information. The number of physical partitions in each region varies, depending on the
total capacity of the disk drive.

Chapter 6. Resource Management Overview 49



/Opffilename File

lop FS
11 |p | ql—~|r | hdl 1123 |~ |n |hd2 Lvs
LPs
PPs
o lom|m|im]| i o |lom|m |im]| i o lom|m|im]| i PVs
/dev/hdiskO /dev/hdisk1 /dev/hdisk2
othervg / rootvg
VGs

Figure 10. Organization of Fixed-Disk Data (Unmirrored). The illustration shows the hierarchy of a physical volume that
is partitioned into one or more logical volumes. These partitions or logical volumes contain file systems with directory
structures which contain individual files. Files are written to blocks contained in tracks on the storage media and these
blocks are usually not contiguous. Disk fragmenting occurs when data gets erased and new data files are written to
the empty blocks that are randomly scattered around multiple tracks on the media.

Within each volume group, one or more logical volumes (LVs) are defined. Each logical volume consists of
one or more logical partitions. Each logical partition corresponds to at least one physical partition. If
mirroring is specified for the logical volume, additional physical partitions are allocated to store the
additional copies of each logical partition. Although the logical partitions are numbered consecutively, the
underlying physical partitions are not necessarily consecutive or contiguous.

Logical volumes can serve a number of system purposes, such as paging, but each logical volume that
holds ordinary system data or user data or programs contains a single journaled file system (JFS or
Enhanced JFS). Each JFS consists of a pool of page-size (4096-byte) blocks. When data is to be written
to a file, one or more additional blocks are allocated to that file. These blocks may or may not be
contiguous with one another and with other blocks previously allocated to the file.

50 Performance Management Guide



For purposes of illustration, the previous figure shows a bad (but not the worst possible) situation that
might arise in a file system that had been in use for a long period without reorganization. The
lop/filename file is physically recorded on a large number of blocks that are physically distant from one
another. Reading the file sequentially would result in many time-consuming seek operations.

While an operating system’s file is conceptually a sequential and contiguous string of bytes, the physical
reality might be very different. Fragmentation may arise from multiple extensions to logical volumes as well
as allocation/release/reallocation activity within a file system. A file system is fragmented when its available
space consists of large numbers of small chunks of space, making it impossible to write out a new file in
contiguous blocks.

Access to files in a highly fragmented file system may result in a large number of seeks and longer 1/O
response times (seek latency dominates 1/O response time). For example, if the file is accessed
sequentially, a file placement that consists of many, widely separated chunks requires more seeks than a
placement that consists of one or a few large contiguous chunks. If the file is accessed randomly, a
placement that is widely dispersed requires longer seeks than a placement in which the file’s blocks are
close together.

The effect of a file’s placement on 1/0O performance diminishes when the file is buffered in memory. When
a file is opened in the operating system, it is mapped to a persistent data segment in virtual memory. The
segment represents a virtual buffer for the file; the file’s blocks map directly to segment pages. The VMM
manages the segment pages, reading file blocks into segment pages upon demand (as they are
accessed). There are several circumstances that cause the VMM to write a page back to its corresponding
block in the file on disk; but, in general, the VMM keeps a page in memory if it has been accessed
recently. Thus, frequently accessed pages tend to stay in memory longer, and logical file accesses to the
corresponding blocks can be satisfied without physical disk accesses.

At some point, the user or system administrator can choose to reorganize the placement of files within
logical volumes and the placement of logical volumes within physical volumes to reduce fragmentation and
to more evenly distribute the total I/O load. [Logical volume and disk I/O performance] contains further
details about detecting and correcting disk placement and fragmentation problems.

Disk I/0 pacing

Because most writes are asynchronous, FIFO I/O queues of several megabytes can build up, which can
take several seconds to complete. The performance of an interactive process is severely impacted if every
disk read spends several seconds working its way through the queue. In response to this problem, the
VMM has an option called 1/O pacing to control writes.

I/0 pacing does not change the interface or processing logic of I/O. It simply limits the number of 1/Os that
can be outstanding against a file. When a process tries to exceed that limit, it is suspended until enough
outstanding requests have been processed to reach a lower threshold. [Using Disk-1/O Pacing| describes
I/0O pacing in more detail.

Support for pinned memory

AIX 4.3.3 and AIX 5.1 enable memory pages to be maintained in real memory all the time. This
mechanism is called pinning memory. Pinning a memory region prohibits the pager from stealing pages
from the pages backing the pinned memory region. Memory regions defined in either system space or
user space may be pinned. After a memory region is pinned, accessing that region does not result in a
page fault until the region is subsequently unpinned. While a portion of the kernel remains pinned, many
regions are pageable and are only pinned while being accessed.

Chapter 6. Resource Management Overview 51



The advantage of having portions of memory pinned is that, when accessing a page that is pinned, you
can retrieve the page without going through the page replacement algorithm. An adverse side effect of
having too many pinned memory pages is that it can increase paging activity for unpinned pages, which
would degrade performance.

To tune pinned memory, use the vmtune command to dedicate a number of pages at boot time for pinned
memory. The following flags affect how AlIX manages pinned memory:

maxpin
Specifies the maximum percentage of real memory that can be pinned.

v_pinshm
Setting the v_pinshm parameter to 1 (-S 1) causes pages in shared memory segments to be
pinned by VMM, if the application, which does the shmget(), specifies SHM_PIN as part of the
flags. The default value is 0. This option is available only in AIX 4.3.3 and later.

Large page support

In addition to regular page sizes of 4 kilobytes, beginning with AIX 5.1, the operating system supports
large, 16—MB pages. Applications can use large pages with the shmget and shmat system calls. For the
system to be able to use large pages, the pages must be enabled by specifying the SHM_LGPAGE flag
with the shmget system call. Use this flag in conjunction with the SHM_PIN flag, and enable with the
vmtune command.

To enable support for large pages, use the following flags with the vmtune command:

Table 1.

-gLargePageSize Specifies the size in bytes of the hardware-supported large pages used for the
implementation for the shmget system call with the SHM_LGPAGE flag. Large
pages must be enabled with a non-zero value for the -L flag and the bosboot
command must be run and the system restarted for this change to take effect.

-LLargePages Specifies the number of large pages to reserve for implementing the shmget system

call with the SHM_LGPAGE flag. For this change to take effect, you must specify the
-g flag, run the bosboot command, and restart the system.

Use the following flags with the shmget system call:

SHM_LGPAGE
Creates the region so it can be mapped through hardware-supported, large-page mechanisms, if
enabled. This flag must be used in conjunction with the SHM_PIN flag and enabled with the
vmtune -L command, to reserve memory for the region (which requires a restart) and vmtune -S
to enable SHM_PIN. This has no effect on shared memory regions created with the EXTSHM=0ON
environment variable.

SHM_PIN
Pins the shared memory region if enabled. This flag must be enabled with the vmtune command.
This has no effect on shared memory regions created with EXTSHM=ON environment variable.

52  Performance Management Guide



Chapter 7. Introduction to Multiprocessing

At any given time, a technological limit exists on the speed with which a single processor chip can
operate. If a system’s workload cannot be handled satisfactorily by a single processor, one response is to
apply multiple processors to the problem.

The success of this response depends not only on the skill of the system designers, but also on whether
the workload is amenable to multiprocessing. In terms of human tasks, adding people might be a good
idea if the task is answering calls to a toll-free number, but is dubious if the task is driving a car.

If improved performance is the objective of a proposed migration from a uniprocessor to a multiprocessor
system, the following conditions must be true:

» The workload is processor-limited and has saturated its uniprocessor system.

* The workload contains multiple processor-intensive elements, such as transactions or complex
calculations, that can be performed simultaneously and independently.

» The existing uniprocessor cannot be upgraded or replaced with another uniprocessor of adequate
power.

Although unchanged single-thread applications normally function correctly in a multiprocessor environment,
their performance often changes in unexpected ways. Migration to a multiprocessor can improve the
throughput of a system, and can improve the execution time of complex, multithreaded applications, but
seldom improves the response time of individual, single-thread commands.

Getting the best possible performance from a multiprocessor system requires an understanding of the
operating-system and hardware-execution dynamics that are unique to the multiprocessor environment.

This chapter includes the following major sections:

+ [Symmetrical Multiprocessor (SMP) Concepts and Architecture]
[SMP Performance Issues

[SMP Workloads|

[SMP Thread Scheduling|

* [Thread Tuning
* [SMP Tools

Symmetrical Multiprocessor (SMP) Concepts and Architecture

As with any change that increases the complexity of the system, the use of multiple processors generates
design considerations that must be addressed for satisfactory operation and performance. The additional
complexity gives more scope for hardware/software tradeoffs and requires closer hardware/software
design coordination than in uniprocessor systems. The different combinations of design responses and
tradeoffs give rise to a wide variety of multiprocessor system architectures.

This section describes the main design considerations of multiprocessor systems and the hardware
responses to those considerations.

Types of Multiprocessing
Several categories of multiprocessing (MP) systems exist, as described below:

Shared Nothing MP (pure cluster)
Each processor is a complete stand-alone machine and runs a copy of the operating system. The
processors share nothing (each has its own memory, caches, and disks), but they are interconnected.

© Copyright IBM Corp. 1997, 2004 53



When LAN-connected, processors are loosely coupled. When connected by a switch, the processors are
tightly coupled. Communication between processors is done through message-passing.

The advantages of such a system are very good scalability and high availability. The disadvantages of
such a system are an unfamiliar programming model (message passing).

Shared Disks MP

Processors have their own memory and cache. The processors run in parallel and share disks. Each
processor runs a copy of the operating system and the processors are loosely coupled (connected through
LAN). Communication between processors is done through message-passing.

The advantages of shared disks are that part of a familiar programming model is retained (disk data is
addressable and coherent, memory is not), and high availability is much easier than with shared-memory
systems. The disadvantages are limited scalability due to bottlenecks in physical and logical access to
shared data.

Shared Memory Cluster (SMC)

All of the processors in a shared memory cluster have their own resources (main memory, disks, I/O) and
each processor runs a copy of the operating system. Processors are tightly coupled (connected through a
switch). Communication between the processors is done through shared memory.

Shared Memory MP

All of the processors are tightly coupled inside the same box with a high-speed bus or a switch. The
processors share the same global memory, disks, and I/O devices. Only one copy of the operating system
runs across all of the processors, and the operating system must be designed to exploit this architecture
(multithreaded operating system).

SMPs have several advantages:
* They are a cost-effective way to increase throughput.

» They offer a single system image since the Operating System is shared between all the processors
(administration is easy).

» They apply multiple processors to a single problem (parallel programming).

* Load balancing is done by the operating system.

* The uniprocessor (UP) programming model can be used in an SMP.

* They are scalable for shared data.

» All data is addressable by all the processors and kept coherent by the hardware snooping logic.

* There is no need to use message-passing libraries to communicate between processors because
communication is done through the global shared memory.

* More power requirements can be solved by adding more processors to the system. However, you must
set realistic expectations about the increase in performance when adding more processors to an SMP
system.

* More and more applications and tools are available today. Most UP applications can run on or are
ported to SMP architecture.

There are some limitations of SMP systems, as follows:
» There are limits on scalability due to cache coherency, locking mechanism, shared objects, and others.

* There is a need for new skills to exploit multiprocessors, such as threads programming and device
drivers programming.

Parallelizing an Application
An application can be parallelized on an SMP in two ways, as follows:

54  Performance Management Guide



» The traditional way is to break the application into multiple processes. These processes communicate
using inter-process communication (IPC) such as pipes, semaphores or shared memory. The processes
must be able to block waiting for events such as messages from other processes, and they must
coordinate access to shared objects with something like locks.

» Another way is to use the portable operating system interface for UNIX (POSIX) threads. Threads have
similar coordination problems as processes and similar mechanisms to deal with them. Thus a single
process can have any number of its threads running simultaneously on different processors.
Coordinating them and serializing access to shared data are the developer’s responsibility.

Consider the advantages of both threads and processes when you are determining which method to use
for parallelizing an application. Threads may be faster than processes and memory sharing is easier. On
another hand, a process implementation will distribute more easily to multiple machines or clusters. If an
application needs to create or delete new instances, then threads are faster (more overhead in forking
processes). For other functions, the overhead of threads is about the same as that of processes.

Data Serialization

Any storage element that can be read or written by more than one thread may change while the program
is running. This is generally true of multiprogramming environments as well as multiprocessing
environments, but the advent of multiprocessors adds to the scope and importance of this consideration in
two ways:

» Multiprocessors and thread support make it attractive and easier to write applications that share data
among threads.

» The kernel can no longer solve the serialization problem simply by disabling interrupts.

Note: To avoid serious problems, programs that share data must arrange to access that data serially,
rather than in parallel. Before a program updates a shared data item, it must ensure that no other
program (including another copy of itself running on another thread) will change the item. Reads
can usually be done in parallel.

The primary mechanism that is used to keep programs from interfering with one another is the lock. A lock
is an abstraction that represents permission to access one or more data items. Lock and unlock requests
are atomic; that is, they are implemented in such a way that neither interrupts nor multiprocessor access
affect the outcome. All programs that access a shared data item must obtain the lock that corresponds to
that data item before manipulating it. If the lock is already held by another program (or another thread
running the same program), the requesting program must defer its access until the lock becomes
available.

Besides the time spent waiting for the lock, serialization adds to the number of times a thread becomes
nondispatchable. While the thread is nondispatchable, other threads are probably causing the
nondispatchable thread’s cache lines to be replaced, which results in increased memory-latency costs
when the thread finally gets the lock and is dispatched.

The operating system’s kernel contains many shared data items, so it must perform serialization internally.
Serialization delays can therefore occur even in an application program that does not share data with other
programs, because the kernel services used by the program have to serialize shared kernel data.

Types of Locks

The Open Software Foundation/1 (OSF/1) 1.1 locking methodology was used as a model for the AIX
multiprocessor lock functions. However, because the system is preemptable and pageable, some
characteristics have been added to the OSF/1 1.1 Locking Model. Simple locks and complex locks are
preemptable. Also, a thread may sleep when trying to acquire a busy simple lock if the owner of the lock is
not currently running. In addition, a simple lock becomes a sleep lock when a processor has been spinning
on a simple lock for a certain amount of time (this amount of time is a systemwide variable).

Chapter 7. Introduction to Multiprocessing 595



AIX Version 4 Simple Locks

A simple lock in operating system version 4 is a spin lock that will sleep under certain conditions
preventing a thread from spinning indefinitely. Simple locks are preemptable, meaning that a kernel thread
can be preempted by another higher priority kernel thread while it holds a simple lock. On a multiprocessor
system, simple locks, which protect thread-interrupt critical sections, must be used in conjunction with
interrupt control in order to serialize execution both within the executing processor and between different
processors.

On a uniprocessor system, interrupt control is sufficient; there is no need to use locks. Simple locks are
intended to protect thread-thread and thread-interrupt critical sections. Simple locks will spin until the lock
becomes available if in an interrupt handler. They have two states: locked or unlocked.

AIX Version 4 Complex Locks

The complex locks in AIX are read-write locks which protect thread-thread critical sections. These locks
are preemptable. Complex locks are spin locks that will sleep under certain conditions. By default, they are
not recursive, but can become recursive through the lock_set_recursive() kernel service. They have three
states: exclusive-write, shared-read, or unlocked.

Lock Granularity

A programmer working in a multiprocessor environment must decide how many separate locks must be
created for shared data. If there is a single lock to serialize the entire set of shared data items, lock
contention is comparatively likely. The existence of widely used locks places an upper limit on the
throughput of the system.

If each distinct data item has its own lock, the probability of two threads contending for that lock is
comparatively low. Each additional lock and unlock call costs processor time, however, and the existence
of multiple locks makes a deadlock possible. At its simplest, deadlock is the situation shown in the
following illustration, in which Thread 1 owns Lock A and is waiting for Lock B. Meanwhile, Thread 2 owns
Lock B and is waiting for Lock A. Neither program will ever reach the unlock() call that would break the
deadlock. The usual preventive for deadlock is to establish a protocol by which all of the programs that
use a given set of locks must always acquire them in exactly the same sequence.

Thread 1 Kernel Thread 2

lock A _ lock
— grant

lock — lock B
grant _—

lock B E— lock

wait

lock < lock A
unlock A wait unlock B

Figure 11. Deadlock. Shown in the following illustration is a deadlock in which a column named Thread 1 owns Lock A
and is waiting for Lock B. Meanwhile, the column named Thread 2 owns Lock B and is waiting for Lock A. Neither
program thread will ever reach the unlock call that would break the deadlock.

56 Performance Management Guide



According to queuing theory, the less idle a resource, the longer the average wait to get it. The
relationship is nonlinear; if the lock is doubled, the average wait time for that lock more than doubles.

The most effective way to reduce wait time for a lock is to reduce the size of what the lock is protecting.
Here are some guidelines:

* Reduce the frequency with which any lock is requested.

* Lock just the code that accesses shared data, not all the code in a component (this will reduce lock
holding time).

* Lock only specific data items or structures and not entire routines.
» Always associate locks with specific data items or structures, not with routines.

» For large data structures, choose one lock for each element of the structure rather than one lock for the
whole structure.

» Never perform synchronous I/O or any other blocking activity while holding a lock.

» |If you have more than one access to the same data in your component, try to move them together so
they can be covered by one lock-unlock action.

» Avoid double wake-up. If you modify some data under a lock and have to notify someone that you have
done it, release the lock before you post the wake-up.

* If you must hold two locks simultaneously, request the busiest one last.

On the other hand, a too-fine granularity will increase the frequency of locks requests and locks releases,
which therefore will add additional instructions. You must locate a balance between a too-fine and
too-coarse granularity. The optimum granularity will have to be found by trial and error, and is one of the
big challenges in an MP system. The following graph shows the relation between the throughput and the
granularity of locks.

A

Throughput

Granularity

>
Fine Coarse

Figure 12. Relationship Between Throughput and Granularity. This illustration is a simple two axis chart. The vertical,
or y axis, represents throughput. The horizontal, or x axis, represents granularity going from fine to coarse as it moves
out on the scale. An elongated bell curve shows the relationship of granularity on throughput. As granularity goes from
fine to coarse, throughput gradually increases to a maximum level and then slowly starts to decline. It shows that a
compromise in granularity is necessary to reach maximum throughput.

Locking Overhead

Requesting locks, waiting for locks, and releasing locks add processing overhead in several ways:

Chapter 7. Introduction to Multiprocessing 57



» A program that supports multiprocessing always does the same lock and unlock processing, even
though it is running in a uniprocessor or is the only user in a multiprocessor system of the locks in
question.

* When one thread requests a lock held by another thread, the requesting thread may spin for a while or
be put to sleep and, if possible, another thread dispatched. This consumes processor time.

* The existence of widely used locks places an upper bound on the throughput of the system. For
example, if a given program spends 20 percent of its execution time holding a mutual-exclusion lock, at
most five instances of that program can run simultaneously, regardless of the number of processors in
the system. In fact, even five instances would probably never be so nicely synchronized as to avoid
waiting for one another (see |Multiprocessor Throughput Scalability).

Waiting for Locks

When a thread wants a lock already owned by another thread, the thread is blocked and must wait until
the lock becomes free. There are two different ways of waiting:

» Spin locks are suitable for locks that are held only for very short times. It allows the waiting thread to
keep its processor, repeatedly checking the lock bit in a tight loop (spin) until the lock becomes free.
Spinning results in increased CPU time (system time for kernel or kernel extension locks).

» Sleeping locks are suitable for locks that may be held for longer periods. The thread sleeps until the
lock is free and is put back in the run queue when the lock becomes free. Sleeping results in more idle
time.

Waiting always decreases system performance. If a spin lock is used, the processor is busy, but it is not
doing useful work (not contributing to throughput). If a sleeping lock is used, the overhead of context
switching and dispatching as well as the consequent increase in cache misses is incurred.

Operating system developers can choose between two types of locks: mutually exclusive simple locks that
allow the process to spin and sleep while waiting for the lock to become available, and complex read-write
locks that can spin and block the process while waiting for the lock to become available.

Conventions govern the rules about using locks. Neither hardware nor software has an enforcement or
checking mechanism. Although using locks has made the AIX Version 4 "MP Safe,” developers are
responsible to define and implement an appropriate locking strategy to protect their own global data.

Cache Coherency

In designing a multiprocessor, engineers give considerable attention to ensuring cache coherency. They
succeed; but cache coherency has a performance cost. We need to understand the problem being
attacked:

If each processor has a cache that reflects the state of various parts of memory, it is possible that two or
more caches may have copies of the same line. It is also possible that a given line may contain more than
one lockable data item. If two threads make appropriately serialized changes to those data items, the
result could be that both caches end up with different, incorrect versions of the line of memory. In other
words, the system’s state is no longer coherent because the system contains two different versions of
what is supposed to be the content of a specific area of memory.

The solutions to the cache coherency problem usually include invalidating all but one of the duplicate lines
when the line is modified. Although the hardware uses snooping logic to invalidate, without any software
intervention, any processor whose cache line has been invalidated will have a cache miss, with its
attendant delay, the next time that line is addressed.

Snooping is the logic used to resolve the problem of cache consistency. Snooping logic in the processor

broadcasts a message over the bus each time a word in its cache has been modified. The snooping logic
also snoops on the bus looking for such messages from other processors.

58 Performance Management Guide



When a processor detects that another processor has changed a value at an address existing in its own
cache, the snooping logic invalidates that entry in its cache. This is called cross invalidate. Cross
invalidate reminds the processor that the value in the cache is not valid, and it must look for the correct
value somewhere else (memory or other cache). Since cross invalidates increase cache misses and the
snooping protocol adds to the bus traffic, solving the cache consistency problem reduces the performance
and scalability of all SMPs.

Processor Affinity and Binding

If a thread is interrupted and later redispatched to the same processor, the processor’s cache might still
contain lines that belong to the thread. If the thread is dispatched to a different processor, it will probably
experience a series of cache misses until its cache working set has been retrieved from RAM or the other
processor’s cache. On the other hand, if a dispatchable thread has to wait until the processor that it was
previously running on is available, the thread may experience an even longer delay.

Processor affinity is the probability of dispatching of a thread to the processor that was previously
executing it. The degree of emphasis on processor affinity should vary directly with the size of the thread’s
cache working set and inversely with the length of time since it was last dispatched. The AIX Version 4
dispatcher enforces affinity with the processors, so affinity is done implicitly by the operating system.

The highest possible degree of processor affinity is to bind a thread to a specific processor. Binding means
that the thread will be dispatched to that processor only, regardless of the availability of other processors.
The bindprocessor command and the bindprocessor() subroutine bind the thread (or threads) of a
specified process to a particular processor (see[The bindprocessor Command). Explicit binding is inherited
through fork() and exec() system calls.

The binding can be useful for CPU-intensive programs that experience few interrupts. It can sometimes be
counterproductive for ordinary programs, because it may delay the redispatch of a thread after an 1/O until
the processor to which the thread is bound becomes available. If the thread has been blocked for the
duration of an 1/O operation, it is unlikely that much of its processing context remains in the caches of the
processor to which it is bound. The thread would probably be better served if it were dispatched to the
next available processor.

Memory and Bus Contention

In a uniprocessor, contention for some internal resources, such as banks of memory and I/O or memory
buses, is usually a minor component using time. In a multiprocessor, these effects can become more
significant, particularly if cache-coherency algorithms add to the number of accesses to RAM.

SMP Performance Issues

To effectively use an SMP, take the following into account when you are attempting to enhance
performance:

Workload Concurrency

The primary performance issue that is unique to SMP systems is workload concurrency, which can be
expressed as, "Now that we have n processors, how do we keep them all usefully employed”? If only one
processor in a four-way multiprocessor system is doing useful work at any given time, it is no better than a
uniprocessor. It could possibly be worse, because of the extra code to avoid interprocessor interference.

Workload concurrency is the complement of serialization. To the extent that the system software or the
application workload (or the interaction of the two) require serialization, workload concurrency suffers.

Chapter 7. Introduction to Multiprocessing 59



Workload concurrency may also be decreased, more desirably, by increased processor affinity. The
improved cache efficiency gained from processor affinity may result in quicker completion of the program.
Workload concurrency is reduced (unless there are more dispatchable threads available), but response
time is improved.

A component of workload concurrency, process concurrency, is the degree to which a multithreaded
process has multiple dispatchable threads at all times.

Throughput
The throughput of an SMP system is mainly dependent on:

* A consistently high level of workload concurrency. More dispatchable threads than processors at certain
times cannot compensate for idle processors at other times.

* The amount of lock contention.
» The degree of processor affinity.

Response Time
The response time of a particular program in an SMP system is dependent on:

» The process-concurrency level of the program. If the program consistently has two or more dispatchable
threads, its response time will probably improve in an SMP environment. If the program consists of a
single thread, its response time will be, at best, comparable to that in a uniprocessor of the same
speed.

» The amount of lock contention of other instances of the program or with other programs that use the
same locks.

* The degree of processor affinity of the program. If each dispatch of the program is to a different
processor that has none of the program’s cache lines, the program may run more slowly than in a
comparable uniprocessor.

SMP Workloads

The effect of additional processors on performance is dominated by certain characteristics of the specific
workload being handled. This section discusses those critical characteristics and their effects.

The following terms are used to describe the extent to which an existing program has been modified, or a
new program designed, to operate in an SMP environment:

SMP safe
Avoidance in a program of any action, such as unserialized access to shared data, that would
cause functional problems in an SMP environment. This term, when used alone, usually refers to a
program that has undergone only the minimum changes necessary for correct functioning in an
SMP environment.

SMP efficient
Avoidance in a program of any action that would cause functional or performance problems in an
SMP environment. A program that is described as SMP-efficient is SMP-safe as well. An
SMP-efficient program has usually undergone additional changes to minimize incipient bottlenecks.

SMP exploiting
Adding features to a program that are specifically intended to make effective use of an SMP
environment, such as multithreading. A program that is described as SMP-exploiting is generally
assumed to be SMP-safe and SMP-efficient as well.

Workload Multiprocessing

Multiprogramming operating systems running heavy workloads on fast computers give our human senses
the impression that several things are happening simultaneously. In fact, many demanding workloads do

60 Performance Management Guide



not have large numbers of dispatchable threads at any given instant, even when running on a
single-processor system where serialization is less of a problem. Unless there are always at least as many
dispatchable threads as there are processors, one or more processors will be idle part of the time.

The number of dispatchable threads is the total number of threads in the system
* Minus the number of threads that are waiting for 1/O,

* Minus the number of threads that are waiting for a shared resource,

* Minus the number of threads that are waiting for the results of another thread,
* Minus the number of threads that are sleeping at their own request.

A workload can be said to be multiprocessable to the extent that it presents at all times as many
dispatchable threads as there are processors in the system. Note that this does not mean simply an
average number of dispatchable threads equal to the processor count. If the number of dispatchable
threads is zero half the time and twice the processor count the rest of the time, the average number of
dispatchable threads will equal the processor count, but any given processor in the system will be working
only half the time.

Increasing the multiprocessability of a workload involves one or both of the following:
 |dentifying and resolving any bottlenecks that cause threads to wait
* Increasing the total number of threads in the system

These solutions are not independent. If there is a single, major system bottleneck, increasing the number
of threads of the existing workload that pass through the bottleneck will simply increase the proportion of
threads waiting. If there is not currently a bottleneck, increasing the number of threads may create one.

Multiprocessor Throughput Scalability

Real workloads do not scale perfectly on an SMP system. Some factors that inhibit perfect scaling are as
follows:

» Bus/switch contention increases while the number of processors increases

* Memory contention increases (all the memory is shared by all the processors)

* Increased cost of cache misses as memory gets farther away

» Cache cross-invalidates and reads from another cache to maintain cache coherency

* Increased cache misses because of higher dispatching rates (more processes/threads need to be
dispatched on the system)

* Increased cost of synchronization instructions

* Increased cache misses because of larger operating system and application data structures
* Increased operating system and application path lengths for lock-unlock

* Increased operating system and application path lengths waiting for locks

All of these factors contribute to what is called the scalability of a workload. Scalability is the degree to
which workload throughput benefits from the availability of additional processors. It is usually expressed as
the quotient of the throughput of the workload on a multiprocessor divided by the throughput on a
comparable uniprocessor. For example, if a uniprocessor achieved 20 requests per second on a given
workload and a four-processor system achieved 58 requests per second, the scaling factor would be 2.9.
That workload is highly scalable. A workload that consisted exclusively of long-running, compute-intensive
programs with negligible I/O or other kernel activity and no shared data might approach a scaling factor of
3.2 to 3.9 on a 4-way system. However, most real-world workloads would not. Because scalability is very
difficult to estimate, scalability assumptions should be based on measurements of authentic workloads.

The following figure illustrates the problems of scaling. The workload consists of a series of hypothetical
commands. Each command is about one-third normal processing, one-third I/O wait, and one-third
processing with a lock held. On the uniprocessor, only one command can actually be processing at a time,

Chapter 7. Introduction to Multiprocessing 61



regardless of whether the lock is held. In the time interval shown (five times the standalone execution time
of the command), the uniprocessor handles 7.67 of the commands.

Uni- HENgEENgEENpEEN

processor HENpEENnEESREE
(| OO0 T3 T3 113
fnl\fYtiy-{ HENpEENnEESREE
processor | [ [] O T T O
. L] c B

. Waiting for 1/0 ;
|:| Processing |:| (or Lock on MP) |:| Holding Lock

Figure 13. Multiprocessor Scaling. This figure illustrates the problems of scaling. The workload consists of a series of
hypothetical commands. Each command is about one-third normal processing, one-third I/O wait, and one-third
processing with a lock held. On the uniprocessor, only one command can actually be processing at a time, regardless
of whether the lock is held. In the same time interval, the uniprocessor handles 7.67 of the commands. In that same
period, the multiprocessor handles 14 commands for a scaling factor of 1.83..

On the multiprocessor, two processors handle program execution, but there is still only one lock. For
simplicity, all of the lock contention is shown affecting processor B. In the period shown, the multiprocessor
handles 14 commands. The scaling factor is thus 1.83. We stop at two processors because more would
not change the situation. The lock is now in use 100 percent of the time. In a four-way multiprocessor, the
scaling factor would be 1.83 or less.

Real programs are seldom as symmetrical as the commands in the illustration. In addition we have only
taken into account one dimension of contention: locking. If we had included cache-coherency and
processor-affinity effects, the scaling factor would almost certainly be lower.

This example illustrates that workloads often cannot be made to run faster simply by adding processors. It
is also necessary to identify and minimize the sources of contention among the threads.

Scaling is workload-dependent. Some published benchmark results imply that high levels of scalability are
easy to achieve. Most such benchmarks are constructed by running combinations of small, CPU-intensive
programs that use almost no kernel services. These benchmark results represent an upper bound on
scalability, not a realistic expectation.

Another interesting point to note for benchmarks is that in general, a one-way SMP will run slower (about
5-15 percent) than the equivalent uniprocessor running the UP version of the operating system.

Multiprocessor Response Time

A multiprocessor can only improve the execution time of an individual program to the extent that the

program can run in multithreaded mode. There are several ways to achieve parallel execution of parts of a

single program:

» Making explicit calls to libpthreads.a subroutines (or, in older programs, to the fork() subroutine) to
create multiple threads that run simultaneously.

62 Performance Management Guide



» Processing the program with a parallelizing compiler or preprocessor that detects sequences of code
that can be executed simultaneously and generates multiple threads to run them in parallel.

* Using a software package that is itself multithreaded.

Unless one or more of these techniques is used, the program will run no faster in a multiprocessor system
than in a comparable uniprocessor. In fact, because it may experience more locking overhead and delays
due to being dispatched to different processors at different times, it may be slower.

Even if all of the applicable techniques are exploited, the maximum improvement is limited by a rule that

has been called Amdahl’s Law:

» If a fraction x of a program’s uniprocessor execution time, t, can only be processed sequentially, the
improvement in execution time in an n-way multiprocessor over execution time in a comparable
uniprocessor (the speed-up) is given by the equation:

speed up = uniprocessor time _ _ t - 1
P P seq time + mp time xt + (x-1)t X+X_
n n
1

lim speed-up =
n—» oo

Figure 14. Amdahl’s Law. Amdahl’s Law says speed-up equals uniprocessor time divided by sequence time plus
multiprocessor time or 1 divided by x plus (x over n). Lim speed-up equals 1 divided by x and n equals infinity.

As an example, if 50 percent of a program’s processing must be done sequentially, and 50 percent can be
done in parallel, the maximum response-time improvement is less than a factor of 2 (in an otherwise-idle
4-way multiprocessor, it is at most 1.6).

SMP Thread Scheduling

Thread support divides program-execution control into two elements:

* A process is a collection of physical resources required to run the program, such as memory and
access to files.

* A thread is the execution state of an instance of the program, such as the current contents of the
instruction-address register and the general-purpose registers. Each thread runs within the context of a
given process and uses that process’s resources. Multiple threads can run within a single process,
sharing its resources.

In the SMP environment, the availability of thread support makes it easier and less expensive to
implement SMP-exploiting applications. Forking multiple processes to create multiple flows of control is
cumbersome and expensive, because each process has its own set of memory resources and requires
considerable system processing to set up. Creating multiple threads within a single process requires less
processing and uses less memory.

Thread support exists at two levels:
 libpthreads.a support in the application program environment
» Kernel thread support

Although threads are normally a convenient and efficient mechanism to exploit multiprocessing, there are

scalability limits associated with threads. Because threads share process resources and state, locking and
serialization of these resources can sometimes limit scalability.

Chapter 7. Introduction to Multiprocessing 63



Default Scheduler Processing of Migrated Workloads

The division between processes and threads is invisible to existing programs. In fact, workloads migrated
directly from earlier releases of the operating system create processes as they have always done. Each
new process is created with a single thread (the initial thread) that contends for the CPU with the threads
of other processes.

The default attributes of the initial thread, in conjunction with the new scheduler algorithms, minimize
changes in system dynamics for unchanged workloads.

Priorities can be manipulated with the nice and renice commands and the setpri() and setpriority()
system calls, as before. The scheduler allows a given thread to run for at most one time slice (normally 10
ms) before forcing it to yield to the next dispatchable thread of the same or higher priority. See
[Contention for the CPU|for more detail.

Scheduling Algorithm Variables

Several variables affect the scheduling of threads. Some are unique to thread support; others are
elaborations of process-scheduling considerations:

Priority
A thread’s priority value is the basic indicator of its precedence in the contention for processor
time.

Scheduler run queue position
A thread’s position in the scheduler's queue of dispatchable threads reflects a number of
preceding conditions.

Scheduling policy
This thread attribute determines what happens to a running thread at the end of the time slice.

Contention scope
A thread’s contention scope determines whether it competes only with the other threads within its
process or with all threads in the system. A pthread created with process contention scope is
scheduled by the library, while those created with system scope are scheduled by the kernel. The
library scheduler utilizes a pool of kernels threads to schedule pthreads with process scope.
Generally, create pthreads with system scope, if they are performing I/O. Process scope is useful,
when there is a lot of intra-process synchronizations. Contention scope is a libpthreads.a
concept.

Processor affinity
The degree to which affinity is enforced affects performance.

The combinations of these considerations can seem complex, but you can choose from three distinct
approaches when you are managing a given process:

Default
The process has one thread, whose priority varies with CPU consumption and whose scheduling
policy is SCHED_OTHER.

Process-level control
The process can have one or more threads, but the scheduling policy of those threads is left as
the default SCHED_OTHER, which permits the use of the existing methods of controlling nice
values and fixed priorities. All of these methods affect all of the threads in the process identically. If
the setpri() subroutine is used, the scheduling policy of all of the threads in the process is set to
SCHED_RR.

Thread-level control
The process can have one or more threads. The scheduling policy of these threads is set to
SCHED_RR or SCHED_FIFOn, as appropriate. The priority of each thread is fixed and is
manipulated with thread-level subroutines.

64  Performance Management Guide



The scheduling policies are described in[Scheduling Policy for Threads|

Thread Tuning

User threads provide independent flow of control within a process. If the user threads need to access
kernel services (such as system calls), the user threads will be serviced by associated kernel threads.
User threads are provided in various software packages with the most notable being the pthreads shared
library (libpthreads.a). With the libpthreads implementation, user threads sit on top of virtual processors
(VP) which are themselves on top of kernel threads. A multithreaded user process can use one of two
models, as follows:

1:1 Thread Model
The 1:1 model indicates that each user thread will have exactly one kernel thread mapped to it.
This is the default model on AIX 4.1, AIX 4.2, and AIX 4.3. In this model, each user thread is
bound to a VP and linked to exactly one kernel thread. The VP is not necessarily bound to a real
CPU (unless binding to a processor was done). A thread which is bound to a VP is said to have
system scope because it is directly scheduled with all the other user threads by the kernel
scheduler.

M:N Thread Model
The M:N model was implemented in AIX 4.3.1 and is also now the default model. In this model,
several user threads can share the same virtual processor or the same pool of VPs. Each VP can
be thought of as a virtual CPU available for executing user code and system calls. A thread which
is not bound to a VP is said to be a local or process scope because it is not directly scheduled
with all the other threads by the kernel scheduler. The pthreads library will handle the scheduling
of user threads to the VP and then the kernel will schedule the associated kernel thread. As of AIX
4.3.2, the default is to have one kernel thread mapped to eight user threads. This is tunable from
within the application or through an environment variable.

Thread Environment Variables

Within the libpthreads.a framework, a series of tuning knobs have been provided that might impact the
performance of the application. If possible, the application developer should provide a front-end shell script
to invoke the binary executable programs, in which the developer may specify new values to override the
system defaults. These environment variables are as follows:

AIXTHREAD_COND_DEBUG (AIX 4.3.3 and subsequent versions)

The AIXTHREAD_COND_DEBUG varible maintains a list of condition variables for use by the debugger. If
the program contains a large number of active condition variables and frequently creates and destroys
condition variables, this may create higher overhead for maintaining the list of condition variables. Setting
the variable to OFF will disable the list. Leaving this variable turned on makes debugging threaded
applications easier, but may impose some overhead.

AIXTHREAD_ENRUSG

This variable enables or disables the pthread resource collection. Turning it on allows for resource
collection of all pthreads in a process, but will impose some overhead.

AIXTHREAD_GUARDPAGES=n
For AIX 4.3 and later:

* Fom o +

* | pthread attr |

* o + <--- pthread->pt_attr

* | pthread struct |

* o e + <--- pthread->pt_stk.st_limit
* pthread stack

* |

* v

* Fo o + <--- pthread->pt_stk.st_base
* | RED ZONE |

Chapter 7. Introduction to Multiprocessing 695



* o + <--- pthread->pt_guardaddr
* | pthread private data |
* o + <--- pthread->pt_data

The RED ZONE on this illustration is called the Guardpage.

Starting with AIX 5.2, the pthread attr, pthread, and ctx represent the PTH_FIXED part of the memory
allocated for a pthread.

The approximate byte sizes in the diagram below are in [] for 32-bit. For 64-bit, expect the pieces
comprising PTH_FIXED to be slightly larger and the key data to be 8 Kb, but otherwise the same.

* o e +

* | page alignment 2 |

* | [8K-4K+PTH_FIXED-al] |

* e +

* | pthread ctx [368] |

* B ettt +<--- pthread->pt_attr

* | pthread attr [112] |

* o + <--- pthread->pt_attr

* | pthread struct [960] |

* oo - + <--- pthread

* pthread stack pthread->pt_stk.st_Timit
* | [96K+4K-PTH_FIXED]

* | V

* B e e e + <--- pthread->pt_stk.st_base
* | RED ZONE [4K] |

* R e L L + <--- pthread->pt_guardaddr
* | pthread key data [4K] |

* Fomm + <--- pthread->pt_data

* page alignment 1 (al)

* [<4K]

* Fom o +

The RED ZONE on this illustration is called the Guardpage.

The decimal number of guard pages to add to the end of the pthread stack is n. It overrides the attribute
values that are specified at pthread creation time. If the application specifies its own stack, no guard pages
are created. The default is 0 and n must be a positive value.

The guardpage size in bytes is determined by multiplying n by the PAGESIZE. Pagesize is a system
determined size.

AIXTHREAD_MNRATIO (AIX 4.3 and later)

AIXTHREAD_MNRATIO controls the scaling factor of the library. This ratio is used when creating and
terminating pthreads. It ay be useful for applications with a very large number of threads. However, always
test a ratio of 1:1 because it may provide for better performance.

AIXTHREAD_MUTEX_DEBUG (AIX 4.3.3 and later)

This variable maintains a list of active mutexes for use by the debugger. If the program contains a large
number of active mutexes and frequently creates and destroys mutexes, this may create higher overhead
for maintaining the list of mutexes. Setting the variable to ON makes debugging threaded applications
easier, but may impose the additional overhead. Leaving the variable off will disable the list.

AIXTHREAD_RWLOCK_DEBUG (AIX 4.3.3 and later)

Maintains a list of read-write locks for use by the debugger. If the program contains a large number of
active read-write locks and frequently creates and destroys read-write locks, this may create higher
overhead for maintaining the list of read-write locks. Setting the variable to OFF will disable the list.

AIXTHREAD_SCOPE={PIS} (AIX 4.3.1 and later)

P signifies process-wide contention scope (M:N) and S signifies system-wide contention scope (1:1). Either
P or S should be specified and the current default is process-wide scope.

66 Performance Management Guide



The use of this environment variable impacts only those threads created with the default attribute. The
default attribute is employed, when the atfr parameter to the pthread_create() subroutine is NULL.

If a user thread is created with system-wide scope, it is bound to a kernel thread and it is scheduled by
the kernel. The underlying kernel thread is not shared with any other user thread.

If a user thread is created with process-wide scope, it is subject to the user scheduler. It does not have a
dedicated kernel thread; it sleeps in user mode; it is placed on the user run queue when it is waiting for a
processor; and it is subjected to time slicing by the user scheduler.

Tests on AIX 4.3.2 have shown that certain applications can perform much better with the 1:1 model.

AIXTHREAD_SLPRATIO (AIX 4.3 and later)

This thread tuning variable controls the number of kernel threads that should be held in reserve for
sleeping threads. In general, fewer kernel threads are required to support sleeping pthreads because they
are generally woken one at a time. This conserves kernel resources.

AIXTHREAD_STK=n (AIX 4.3.3 ML 09 and AIX 5.1.1)

The decimal number number of bytes that should be allocated for each pthread. This value may be
overridden by pthread_attr_setstacksize.

MALLOCBUCKETS

Malloc buckets provides an optional buckets-based extension of the default allocator. It is intended to
improve malloc performance for applications that issue large numbers of small allocation requests. When
malloc buckets is enabled, allocation requests that fall within a predefined range of block sizes are
processed by malloc buckets. All other requests are processed in the usual manner by the default
allocator.

Malloc buckets is not enabled by default. It is enabled and configured prior to process startup by setting
the MALLOCTYPE and MALLOCBUCKETS environment variables.

For more information on mallos buckets, see (General Programming Concepts: Writing and Debugging|
-Prorams

MALLOCMULTIHEAP={considersize,heaps:n} (AIX 4.3.1 and later)

Multiple heaps are required so that a threaded application can have more than one thread issuing
malloc(), free(), and realloc() subroutine calls. With a single heap, all threads trying to do a malloc(),
free(), or realloc() call would be serialized (that is only one thread can do malloc/free/realloc at a time).
The result is a serious impact on multi-processor machines. With multiple heaps, each thread gets its own
heap. If all heaps are being used then any new threads trying to malloc/free/realloc will have to wait (that
is serialize) until one or more of the heaps becomes available again. We still have serialization, but its
likelihood and impact are greatly reduced.

The thread-safe locking has been changed to handle this approach. Each heap has its own lock, and the
locking routine "intelligently” selects a heap to try to prevent serialization. If considersize is set in the
MALLOCMULTIHEAP environment variable, then the selection will also try to select any available heap
that has enough free space to handle the request instead of just selecting the next unlocked heap.

More than one option can be specified (and in any order) as long as they are comma-separated, for
example, MALLOCMULTIHEAP=considersize,heaps:3. The options are:

heaps:n
The number of heaps used can be changed with this option. If n is not valid (that is, n<=0 or
n>32), 32 is used.

Chapter 7. Introduction to Multiprocessing 67



considersize
Uses a different heap-selection algorithm that tries to minimize the working set size of the process.
The default is not to consider it and use the faster algorithm.

The default for MALLOCMULTIHEAP is NOT SET (only the first heap is used). If the environment variable
MALLOCMULTIHEAP is set (for example, MALLOCMULTIHEAP=1) then the threaded application will be

able to use all of the 32 heaps. Setting MALLOCMULTIHEAP=heaps:n will limit the number of heaps to n
instead of the 32 heaps.

For more information, see the [Malloc Multiheap|section in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

SPINLOOPTIME=n

Controls the number of times that the system will try to get a busy mutex or spin lock without taking a
secondary action such as calling the kernel to yield the process. This control is intended for MP systems,
where it is hoped that the lock being held by another actively running pthread will be released. The
parameter works only within libpthreads (user threads). The kernel parameter MAXSPIN affects spinning in
the kernel lock routines (see [The schedtune -s Command). If locks are usually available within a short
amount of time, you may want to increase the spin time by setting this environment variable. The number
of times to retry a busy lock before yielding to another pthread is n. The default is 40 and n must be a
positive value.

YIELDLOOPTIME=n

Controls the number of times that the system yields the processor when trying to acquire a busy mutex or
spin lock before actually going to sleep on the lock. The processor is yielded to another kernel thread,
assuming there is another runnable one with sufficient priority. This variable has been shown to be
effective in complex applications, where multiple locks are in use. The number of times to yield the
processor before blocking on a busy lock is n. The default is 0 and n must be a positive value.

Variables for Process-Wide Contention Scope

The following environment variables impact the scheduling of pthreads created with process-wide
contention scope.

AIXTHREAD_MNRATIO=p:k
where k is the number of kernel threads that should be employed to handle p runnable pthreads.
This environment variable controls the scaling factor of the library. This ratio is used when creating
and terminating pthreads. The variable is only valid with process-wide scope; with system-wide
scope, this environment variable is ignored. The default setting is 8:1.

AIXTHREAD_SLPRATIO=k:p
where k is the number of kernel threads that should be held in reserve for p sleeping pthreads.
The sleep ratio is the number of kernel threads to keep on the side in support of sleeping
pthreads. In general, fewer kernel threads are required to support sleeping pthreads, since they
are generally woken one at a time. This conserves kernel resources. Any positive integer value
may be specified for p and k. If k>p, then the ratio is treated as 1:1. The default is 1:12.

AIXTHREAD_MINKTHREADS=n
where n is the minimum number of kernel threads that should be used. The library scheduler will
not reclaim kernel threads below this figure. A kernel thread may be reclaimed at virtually any
point. Generally, a kernel thread is targeted for reclaim as a result of a pthread terminating. The
default is 8.

Thread Debug Options

The pthreads library maintains a list of active mutexes, condition variables, and read-write locks for use by
the debugger.

68 Performance Management Guide



When a lock is initialized, it is added to the list, assuming that it is not already on the list. The list is held
as a linked list, so determining that a new lock is not already on the list has a performance implication
when the list gets large. The problem is compounded by the fact that the list is protected by a lock
(dbx__mutexes), which is held across the search of the list. In this case other calls to the
pthread_mutex_init() subroutine are held while the search is done.

If the following environment variables are set to OFF, which is the default, then the appropriate debugging
list will be disabled completely. That means the dbx command (or any debugger using the pthread debug
library) will show no objects in existence.

* AIXTHREAD_MUTEX_DEBUG
+ AIXTHREAD_COND_DEBUG
* AIXTHREAD_RWLOCK_DEBUG

To set any of these environment variables to ON, use the following command:
# export variable_name=0N

Thread Tuning Summary

Depending on the type of application, the administrator can choose to use a different thread model. Tests
on AIX 4.3.2 have shown that certain applications can perform much better with the 1:1 model. This is an
important point because the default as of AIX 4.3.1 is M:N. By simply setting the environment variable
AIXTHREAD_SCOPE-=S for that process, we can set the thread model to 1:1 and then compare the
performance to its previous performance when the thread model was M:N.

If you see an application creating and deleting threads, it could be the kernel threads are being harvested
because of the 8:1 default ratio of user threads to kernel threads. This harvesting along with the overhead
of the library scheduling can affect the performance. On the other hand, when thousands of user threads
exist, there may be less overhead to schedule them in user space in the library rather than manage
thousands of kernel threads. You should always try changing the scope if you encounter a performance
problem when using pthreads; in many cases, the system scope can provide better performance.

If an application is running on an SMP system, then if a user thread cannot acquire a mutex, it will attempt
to spin for up to 40 times. It could easily be the case that the mutex was available within a short amount of
time, so it may be worthwhile to spin for a longer period of time. As you add more CPUs, if the
performance goes down, this usually indicates a locking problem. You might want to increase the spin time
by setting the environment variable SPINLOOPTIME=n, where n is the number of spins. It is not unusual
to set the value as high as in the thousands depending on the speed of the CPUs and the number of
CPUs. Once the spin count has been exhausted, the thread can go to sleep waiting for the mutex to
become available or it can issue the yield() system call and simply give up the CPU but stay in a runnable
state rather than going to sleep. By default, it will go to sleep, but by setting the YIELDLOOPTIME
environment variable to a number, it will yield up to that many times before going to sleep. Each time it
gets the CPU after it yields, it can try to acquire the mutex.

Certain multithreaded user processes that use the malloc subsystem heavily may obtain better
performance by exporting the environment variable MALLOCMULTIHEAP=1 before starting the
application. The potential performance improvement is particularly likely for multithreaded C++ programs,
because these may make use of the malloc subsystem whenever a constructor or destructor is called. Any
available performance improvement will be most evident when the multithreaded user process is running
on an SMP system, and particularly when system scope threads are used (M:N ratio of 1:1). However, in
some cases, improvement may also be evident under other conditions, and on uniprocessors.

Chapter 7. Introduction to Multiprocessing 69



SMP Tools

All performance tools of the operating system support SMP machines. Some performance tools provide
individual processor utilization statistics. Other performance tools average out the utilization statistics for all
processors and display only the averages.

This section describes the tools that are only supported on SMP. For details on all other performance
tools, see the appropriate chapters.

The bindprocessor Command

Use the bindprocessor command to bind or unbind the kernel threads of a process to a processor. Root
authority is necessary to bind or unbind threads in processes that you do not own.

Note: The bindprocessor command is meant for multiprocessor systems. Although it will also work on
uniprocessor systems, binding has no effect on such systems.

To query the available processors, run the following:

# bindprocessor -q
The available processors are: 012 3

The output shows the logical processor numbers for the available processors, which are used with the
bindprocessor command as will be seen.

To bind a process whose PID is 14596 to processor 1, run the following:
# bindprocessor 14596 1

No return message is given if the command was successful. To verify if a process is bound or unbound to
a processor, use the ps -mo THREAD command as explained in [Using the ps Command}

# ps -mo THREAD

USER  PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND

root 3292 7130 - A 1 60 1 - 240001 pts/6 - -ksh
- - - 14309 S 1 60 1 - 400 - - -

root 14596 3292 -A 73100 1 - 200001 pts/0 1 /tmp/cpubound
- - - 15629 R 73 100 1 - 0 - 1-

root 15606 3292 -A 74101 1 - 200001 pts/0 - /tmp/cpubound
- - - 16895 R 74 101 1 - 0 - - -

root 16634 3292 -A 73100 1 - 200001 pts/0 - /tmp/cpubound
- - - 15107 R 73 100 1 - 0 - - -

root 18048 3292 -A 14 67 1 - 200001 pts/0 - ps -mo THREAD
- - - 17801 R 14 67 1 - 0 - - -

The column BND shows the number of the processor that the process is bound to or a dash (-) if the
process is not bound at all.

To unbind a process whose PID is 14596, use the following command:

# bindprocessor -u 14596
# ps -mo THREAD

USER  PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND

root 3292 7130 - A 2 61 1 - 240001 pts/0 - -ksh
- - - 14309 S 2 61 1 - 400 - - -

root 14596 3292 - A 120 124 1 - 200001 pts/0 - /tmp/cpubound
- - - 15629 R 120 124 1 - 0 - - -

root 15606 3292 - A 120 124 1 - 200001 pts/0 - /tmp/cpubound
- - - 16895 R 120 124 1 - 0 - - -

root 16634 3292 - A 120 124 0 - 200001 pts/0 - /tmp/cpubound
- - - 15107 R 120 124 © - 0 - - -

root 18052 3292 -A 12 66 1 - 200001 pts/0 - ps -mo THREAD
- - - 17805 R 12 66 1 - 0 - - -

70  Performance Management Guide



When the bindprocessor command is used on a process, all of its threads will then be bound to one
processor and unbound from their former processor. Unbinding the process will also unbind all its threads.
You cannot bind or unbind an individual thread using the bindprocessor command.

However, within a program, you can use the bindprocessor() function call to bind individual threads. If the
bindprocessor() function is used within a piece of code to bind threads to processors, the threads remain
with these processors and cannot be unbound. If the bindprocessor command is used on that process,
all of its threads will then be bound to one processor and unbound from their respective former
processors. An unbinding of the whole process will also unbind all the threads.

A process cannot be bound until it is started; that is, it must exist in order to be bound. When a process
does not exist, the following error displays:

# bindprocessor 7359 1
1730-002: Process 7359 does not match an existing process

When a processor does not exist, the following error displays:

# bindprocessor 7358 4
1730-001: Processor 4 is not available

Note: Do not use the bindprocessor command on the wait processes kproc.

Considerations

Binding can be useful for CPU-intensive programs that experience few interrupts. It can sometimes be
counterproductive for ordinary programs because it may delay the redispatch of a thread after an I/O until
the processor to which the thread is bound becomes available. If the thread has been blocked for the
duration of an I/O operation, it is unlikely that much of its processing context remains in the caches of the
processor to which it is bound. The thread would probably be better served if it were dispatched to the
next available processor.

Binding does not prevent other processes from being dispatched on the processor on which you bound
your process. Binding is different from partitioning. Without Workload Manager (WLM), introduced in AlIX
4.3.3, it is not possible to dedicate a set of processors to a specific workload and another set of
processors to another workload. Therefore, a higher priority process might be dispatched on the processor
where you bound your process. In this case, your process will not be dispatched on other processors, and
therefore, you will not always increase the performance of the bound process. Better results may be
achieved if you increase the priority of the bound process.

If you bind a process on a heavily loaded system, you might decrease its performance because when a
processor becomes idle, the process will not be able to run on the idle processor if it is not the processor
on which the process is bound.

If the process is multithreaded, binding the process will bind all its threads to the same processor.
Therefore, the process does not take advantage of the multiprocessing, and performance will not be
improved.

Note: Use process binding with care, because it disrupts the natural load balancing provided by AIX
Version 4, and the overall performance of the system could degrade. If the workload of the machine
changes from that which is monitored when making the initial binding, system performance can
suffer. If you use the bindprocessor command, take care to monitor the machine regularly
because the environment might change, making the bound process adversely affect system
performance.

The lockstat Command
The lockstat command is only available in AIX Version 4.

Chapter 7. Introduction to Multiprocessing 71



As described earlier in this chapter, the use of locks and finding the right granularity is one of the big
challenges in a MP operating system. You need to have a way to determine if locks are posing a problem
on the system (for example, lock contention). The lockstat command displays lock-contention statistics for
operating system locks on SMP systems.

To determine whether the lockstat command is installed and available, run the following command:
# 1slpp -11 perfagent.tools

Before you use the lockstat command, create as root a new bosboot image with the -L option to enable
lock instrumentation. Assume that the boot disk is hdisk0. Run the following:

# bosboot -a -d /dev/hdisk® -L

After you run the command, reboot the machine to enable lock instrumentation. At this time, you can use
the lockstat command to look at the locking activity.

It is only possible to see which kernel locks are generated by the workload. Application locks cannot be
seen directly with the lockstat command. However, they can be seen indirectly. In that case, check the
application for bottlenecks, such as:

* One message queue with lots of processes writing and one reading (VMM)
» All processes yield (Dispatcher)

The lockstat command can be CPU-intensive because there is overhead involved with lock
instrumentation, which is why it is not turned on by default. The overhead of enabling lock instrumentation
is typically 3-5 percent. Also note that trace buffers fill up much quicker when using this option because
there are a lot of locks being used.

AlX Version 4 defines subsystems comprised of lock classes in /usr/include/sys/lockname.h. Each time
an operating system developer needs to acquire a lock, they pick up or create a lock class which serves to
identify the lock.

The lockstat command generates a report for each kernel lock that meets all specified conditions. When
no conditions are specified, the default values are used. The following are the parameters that can be
used to filter the data collected:

-a Displays a supplementary list showing the most requested (or active) locks, regardless of the
conditions defined by other flags.

-c LockCount
Specifies how many times a lock must be requested during an interval in order to be displayed. A
lock request is a lock operation which in some cases cannot be satisfied immediately. All lock
requests are counted. The default is 200.

-b BlockRatio
Specifies a block ratio. When a lock request is not satisfied, it is said to be blocked. A lock must
have a block ratio that is higher than BlockRatio to appear in the list. The default of BlockRatio is
5 percent.

-nCheckCount
Specifies the number of locks that are to be checked. The lockstat command sorts locks
according to lock activity. This parameter determines how many of the most active locks will be
subject to further checking. Limiting the number of locks that are checked maximizes system
performance, particularly if the lockstat command is executed in intervals. The default value is 40.

-p LockRate
Specifies a percentage of the activity of the most-requested lock in the kernel. Only locks that are
more active than this percentage will be listed. The default value is 2, which means that the only
locks listed are those requested at least 2 percent as often as the most active lock.

72  Performance Management Guide



-t MaxLocks
Specifies the maximum number of locks to be displayed. The default is 10.

If the lockstat command is executed with no options, an output similar to the following is displayed:

# Tockstat

Subsys Name Ocn  Ref/s %Ref  %Block %Sleep
PFS IRDWR_LOCK_CLASS 259 75356  37.49 9.44 0.21

PROC PROC_INT_CLASS 1 12842 6.39 17.75 0.00

The first column is the subsystem (Subsys) to which the lock belongs. Some common subsystems are as
follows:

PROC Scheduler, dispatcher or interrupt handlers
VMM Pages, segment and free list
TCP  Sockets, NFS

PFS I-nodes, i-cache

Next, the symbolic name of the lock class is shown. Some common classes are as follows:

TOD_LOCK_CLASS
All interrupts that need the Time-of-Day (TOD) timer

PROC_INT_CLASS
Interrupts for processes

U_TIMER_CLASS
Per-process timer lock

VMM_LOCK_VMKER
Free list

VMM_LOCK_PDT
Paging device table

VMM_LOCK_LV
Per paging space

ICACHE_LOCK_CLASS
I-node cache

The other columns are as follows:

* The 0cn column provides the occurrence number of the lock in its class.

» The reference number (Ref/s) is the number of lock requests per second.

* The %Ref column is the reference rate expressed as a percentage of all lock requests.

» The last two columns present respectively the ratio of blocking lock requests to total lock requests
(%B1ock) and the percentage of lock requests that cause the calling thread to sleep (%S1eep).

As a guideline, be concerned if a lock has a reference number (Ref/s) above 10000. In the example, both
classes shown present a very high rate. In this case, you may want to use the vmstat command to
investigate further. Refer to[The vmstat Command|for more information. If the output of the vmstat
command shows a significant amount of CPU idle time when the system seems subjectively to be running
slowly, delays might be due to kernel lock contention, because lock requestors go into blocked mode. Lock
contentions cause wasted cycles because a thread may be spinning on a busy lock or sleeping until the
lock is granted. Improper designs may even lead to deadlocks. The wasted cycles would degrade system
performance.

Chapter 7. Introduction to Multiprocessing 73



The lockstat command output does not indicate exactly which application is causing a problem to the
system. The lock-contentions problem can only be solved at the source-code level. For example, if your
application has a high number of processes that read and write a unique message queue, you might have
lock contention for the inter-process communication (IPC) subsystem. Adding more message queues may
reduce the level of lock contention.

In this example, many instances of a process that opens the same file for read-only were running
simultaneously on the system. In the operating system, every time a file is accessed, its i-node is updated
with the last access time. That is the reason for the high reference number observed for the lock class
IRDWR_LOCK_CLASS. Many threads were trying to update the i-node of the same file concurrently.

When the lockstat command is run without options, only the locks with %Block above 5 percent are listed.
You can change this behavior by specifying another BlockRatio with the -b option, as follows:

# lockstat -b 1

Subsys Name Ocn  Ref/s %Ref  %Block %Sleep
PFS IRDWR_LOCK_CLASS 258 95660 60.22 69.15 0.16
PROC PROC_INT_CLASS 1 5798 3.65 4.73 0.00
PROC PROC_INT_CLASS 2 2359 1.48 1.02 0.00

In this case, all the lock requests with %BTock above 1 percent will be shown.

If no lock has a BlockRatio within the given range, the output would be as follows:
# lockstat

No Contention

However, this might also indicate that the lock instrumentation has not been activated.

The -a option additionally lists the 10 most-requested (or active) locks, as follows:
# Tockstat -a

Subsys Name Ocn  Ref/s %Ref  %Block %Sleep
PFS IRDWR_LOCK_CLASS 259 75356  37.49 9.44 0.21
PROC PROC_INT_CLASS 1 12842 6.39 17.75 0.00

First 10 Targest reference rate Tocks :

Subsys Name Ocn  Ref/s %Ref  %Block %Sleep
PES IRDWR_LOCK_CLASS 259 75356  37.49 9.44 0.21
PROC PROC_INT_CLASS 1 12842 6.39 17.75 0.00
PROC TOD_LOCK_CLASS -- 5949 2.96 1.68 0.00
PROC PROC_INT_CLASS 2 5288 2.63 3.97 0.00
XPSE  PSE_OPEN_LOCK -- 4498  2.24  0.87  0.00
10S SELPOLL_LOCK_CLASS -- 4276 2.13 3.20 0.00
XPSE PSE_SQH_LOCK 95 4223 2.10 0.62 0.00
XPSE PSE_SQH_LOCK 105 4213 2.10 0.50 0.00
XPSE PSE_SQH_LOCK 75 3585 1.78 0.31 0.00
XPTY PTY_LOCK_CLASS 6 3336 1.66 0.00 0.00

The meaning of the fields is the same as in the previous example. The first table is a list of locks with
%Block above 5 percent. A list of the top 10 reference-rate locks, sorted in decreasing order, is then
provided. The number of locks in the most-requested list can be changed with the -t option, as follows:

# lockstat -a -t 3

Subsys Name Ocn  Ref/s %Ref %Block %Sleep
PFS IRDWR_LOCK_CLASS 259 75356  37.49 9.44 0.21

74  Performance Management Guide



PROC PROC_INT_CLASS 1 12842 6.39 17.75 0.00

First 3 largest reference rate locks :

Subsys Name Ocn  Ref/s %Ref  %Block %Sleep
PFS IRDWR_LOCK_CLASS 259 75356  37.49 9.44 0.21
PROC PROC_INT_CLASS 1 12842 6.39 17.75 0.00
PROC TOD_LOCK CLASS -- 5949 2.96 1.68 0.00

In the previous example, the -t option specifies that only the top three reference-rate locks will be shown.

If the output of the lockstat -a command looks similar to the following:
No Contention

First 10 largest reference rate locks :

Subsys Name Ocn  Ref/s %Ref  %Block %Sleep

then an empty most-requested lock list means that the lock instrumentation has not been enabled. It can
be enabled by executing the bosboot command as explained at the beginning of this section.

The lockstat command can also be run in intervals, as follows:
# lockstat 10 100

The first number passed in the command line specifies the amount of time (in seconds) between each
report. Each report contains statistics collected during the interval since the previous report. If no interval is
specified, the system gives information covering an interval of one second and then exits. The second
number determines the number of reports generated. The second number can only be specified if an
interval is given.

Note: Under excessive lock contention on large SMPs, the lockstat command does not scale well and
might not return in the time period specified.

The schedtune -s Command

If a thread wants to acquire a lock when another thread currently owns that lock and is running on another
CPU, the thread that wants the lock will spin on the CPU until the owner thread releases the lock. Prior to
AlIX 4.3.1, this thread would spin indefinitely. In AIX 4.3.1, the thread spins up to a certain value as
specified by a tunable parameter called MAXSPIN.

The default value of MAXSPIN was previously OXFFFFFFFF (the hexadecimal representation of a very
large number in decimal form) on SMP systems and 1 on UP systems. In AIX 4.3.1, the default value of
MAXSPIN is 0x4000 (16384) for SMP systems and remains at 1 on UP systems. If you notice more idle or
I/0 wait time on a system that had not shown this previously, it could be that threads are going to sleep
more often. If this is causing a performance problem, then tune MAXSPIN such that it is a higher value or
set to -1 which means to spin up to OXFFFFFFFF times.

To revise the number of times to spin before going to sleep use the -s option of the schedtune command.
To reduce CPU usage that might be caused by excessive spins, reduce the value of MAXSPIN as follows:

# /usr/samples/kernel/schedtune -s 8192

You may observe an increase in context-switching. If context-switching becomes the bottleneck, increase
MAXSPIN.

To determine whether the schedtune command is installed and available, run the following command:

Chapter 7. Introduction to Multiprocessing 75



# 1slpp -1I bos.adt.samples

To change the value, you must be the root user.

76  Performance Management Guide



Chapter 8. Planning and Implementing for Performance

A program that does not perform acceptably is not functional. Every program must satisfy a set of users,
sometimes a large and diverse set. If the performance of the program is truly unacceptable to a significant
number of those users, it will not be used. A program that is not being used is not performing its intended
function.

This situation is true of licensed software packages as well as user-written applications, although most
developers of software packages are aware of the effects of poor performance and take pains to make
their programs run as fast as possible. Unfortunately, they cannot anticipate all of the environments and
uses that their programs will experience. Final responsibility for acceptable performance falls on the people
who select or write, plan for, and install software packages.

This chapter describes the stages by which a programmer or system administrator can ensure that a
newly written or purchased program has acceptable performance. (Wherever the word programmer
appears alone, the term includes system administrators and anyone else who is responsible for the
ultimate success of a program.)

To achieve acceptable performance in a program, identify and quantify acceptability at the start of the
project and never lose sight of the measures and resources needed to achieve it. Although this method
sounds elementary, some programming projects consciously reject it. They adopt a policy that might be
fairly described as design, code, debug, maybe document, and if we have time, fix the performance.

The only way that programs can predictably be made to function in time, not just in logic, is by integrating
performance considerations in the software planning and development process. Advance planning is
perhaps more critical when existing software is being installed, because the installer has less freedom than
the developer.

Although the detail of this process might seem burdensome for a small program, remember that we have a
second "agenda.” Not only must the new program have satisfactory performance, we must also ensure
that the addition of that program to an existing system does not degrade the performance of other
programs run on that system.

This chapter includes the following major sections:

« [Identifying the Components of the Workload|

« [Documenting Performance Requirements|

+ [Estimating the Resource Requirements of the Workload|
+ [Designing and Implementing Efficient Programs|

+ [Using Performance-Related Installation Guidelines

Identifying the Components of the Workload

Whether the program is new or purchased, small or large, the developers, the installers, and the
prospective users have assumptions about the use of the program, such as:

* Who will be using the program

+ Situations in which the program will be run

* How often those situations will arise and at what times of the hour, day, month, or year

* Whether those situations will also require additional uses of existing programs

* Which systems the program will run on

* How much data will be handled, and from where

* Whether data created by or for the program will be used in other ways

© Copyright IBM Corp. 1997, 2004 77



Unless these ideas are elicited as part of the design process, they will probably be vague, and the
programmers will almost certainly have different assumptions than the prospective users. Even in the
apparently trivial case in which the programmer is also the user, leaving the assumptions unarticulated
makes it impossible to compare design to assumptions in any rigorous way. Worse, it is impossible to
identify performance requirements without a complete understanding of the work being performed.

Documenting Performance Requirements

In identifying and quantifying performance requirements, it is important to identify the reasoning behind a
particular requirement. This is part of the general capacity planning process. Users might be basing their
statements of requirements on assumptions about the logic of the program that do not match the
programmer’s assumptions. At a minimum, a set of performance requirements should document the
following:

* The maximum satisfactory response time to be experienced most of the time for each distinct type of
user-computer interaction, along with a definition of most of the time. Response time is measured from
the time that the user performs the action that says "Go” until the user receives enough feedback from
the computer to continue the task. It is the user’s subjective wait time. It is not from entry to a
subroutine until the first write statement.

If the user denies interest in response time and indicates that only the result is of interest, you can ask
whether "ten times your current estimate of stand-alone execution time” would be acceptable. If the
answer is "yes,” you can proceed to discuss throughput. Otherwise, you can continue the discussion of
response time with the user’s full attention.

* The response time that is minimally acceptable the rest of the time. A longer response time can cause
users to think the system is down. You also need to specify rest of the time; for example, the peak
minute of a day, 1 percent of interactions. Response time degradations can be more costly or painful at
a particular time of the day.

» The typical throughput required and the times it will be taking place. This is not a casual consideration.
For example, the requirement for one program might be that it runs twice a day: at 10:00 a.m. and 3:15
p.m. If this is a CPU-limited program that runs for 15 minutes and is planned to run on a multiuser
system, some negotiation is in order.

* The size and timing of maximum-throughput periods.
* The mix of requests expected and how the mix varies with time.

* The number of users per machine and total number of users, if this is a multiuser application. This
description should include the times these users log on and off, as well as their assumed rates of
keystrokes, completed requests, and think times. You may want to investigate whether think times vary
systematically with the preceding and following request.

* Any assumptions that the user is making about the machines the workload will run on. If the user has a
specific existing machine in mind, make sure you know that early on. Similarly, if the user is assuming a
particular type, size, cost, location, interconnection, or any other variable that will constrain your ability
to satisfy the preceding requirements, that assumption also becomes part of the requirements.
Satisfaction will probably not be assessed on the system where the program is developed, tested, or
first installed.

Estimating the Resource Requirements of the Workload

Unless you are purchasing a software package that comes with detailed resource-requirement
documentation, estimating resources can be the most difficult task in the performance-planning process.
The difficulty has several causes, as follows:

« There are several ways to do any task. You can write a C (or other high-level language) program, a
shell script, a perl script, an awk script, a sed script, an AIXwindows dialog, and so on. Some
techniques that may seem particularly suitable for the algorithm and for programmer productivity are
extraordinarily expensive from the performance perspective.

78  Performance Management Guide



A useful guideline is that, the higher the level of abstraction, the more caution is needed to ensure that
one does not receive a performance surprise. Consider carefully the data volumes and number of
iterations implied by some apparently harmless constructs.

* The precise cost of a single process is difficult to define. This difficulty is not merely technical; it is
philosophical. If multiple instances of a given program run by multiple users are sharing pages of
program text, which process should be charged with those pages of memory? The operating system
leaves recently used file pages in memory to provide a caching effect for programs that reaccess that
data. Should programs that reaccess data be charged for the space that was used to retain the data?
The granularity of some measurements such as the system clock can cause variations in the CPU time
attributed to successive instances of the same program.

Two approaches deal with resource-report ambiguity and variability. The first is to ignore the ambiguity
and to keep eliminating sources of variability until the measurements become acceptably consistent.
The second approach is to try to make the measurements as realistic as possible and describe the
results statistically. Note that the latter yields results that have some correlation with production
situations.

» Systems are rarely dedicated to running a single instance of a single program. There are almost always
daemons running, there is frequently communications activity, and often workload from multiple users.
These activities seldom add up linearly. For example, increasing the number of instances of a given
program may result in few new program text pages being used, because most of the program was
already in memory. However, the additional processes may result in more contention for the processor’s
caches, so that not only do the other processes have to share processor time with the newcomer, but
all processes may experience more cycles per instruction. This is, in effect, a slowdown of the
processor, as a result of more frequent cache misses.

Make your estimate as realistic as the specific situation allows, using the following guidelines:

 If the program exists, measure the existing installation that most closely resembles your own
requirements. The best method is to use a capacity planning tool such as BEST/1.

» If no suitable installation is available, do a trial installation and measure a synthetic workload.

« |If it is impractical to generate a synthetic workload that matches the requirements, measure individual
interactions and use the results as input to a simulation.

 If the program does not exist yet, find a comparable program that uses the same language and general
structure, and measure it. Again, the more abstract the language, the more care is needed in
determining comparability.

* If no comparable program exists, develop a prototype of the main algorithms in the planned language,
measure the prototype, and model the workload.

* Only if measurement of any kind is impossible or infeasible should you make an educated guess. If it is
necessary to guess at resource requirements during the planning stage, it is critical that the actual
program be measured at the earliest possible stage of its development.

Keep in mind that independent software vendors (ISV) often have sizing guidelines for their applications.

In estimating resources, we are primarily interested in four dimensions (in no particular order):

CPU time
Processor cost of the workload

Disk accesses
Rate at which the workload generates disk reads or writes

LAN traffic
Number of packets the workload generates and the number of bytes of data exchanged

Real memory
Amount of RAM the workload requires

The following sections discuss how to determine these values in various situations.

Chapter 8. Planning and Implementing for Performance 79



Measuring Workload Resources

If the real program, a comparable program, or a prototype is available for measurement, the choice of
technique depends on the following:

* Whether the system is processing other work in addition to the workload we want to measure.

* Whether we have permission to use tools that may degrade performance (for example, is this system in
production or is it dedicated to our use for the duration of the measurement?).

* The degree to which we can simulate or observe an authentic workload.

Measuring a Complete Workload on a Dedicated System
Using a dedicated system is the ideal situation because we can use measurements that include system
overhead as well as the cost of individual processes.

To measure overall system performance for most of the system activity, use the vmstat command:

# vmstat 5 >vmstat.output

This gives us a picture of the state of the system every 5 seconds during the measurement run. The first
set of vmstat output contains the cumulative data from the last boot to the start of the vmstat command.
The remaining sets are the results for the preceding interval, in this case 5 seconds. A typical set of
vmstat output on a system looks similar to the following:

kthr memory page faults cpu
r b awm fre re pi po fr sr cy in sy cs us sy id wa
0 175186 192 0 0 0 0O 1 03441998 403 6 292 0

To measure CPU and disk activity, use the iostat command:
# iostat 5 >jostat.output

This gives us a picture of the state of the system every 5 seconds during the measurement run. The first
set of iostat output contains the cumulative data from the last boot to the start of the iostat command.
The remaining sets are the results for the preceding interval, in this case 5 seconds. A typical set of iostat
output on a system looks similar to the following:

tty: tin tou avg-cpu: % user % Sys % idle % iowait
0.0 0.0 19.4 5.7 70.8 4.1

Disks: % tm_act Kbps tps Kb_read Kb_wrtn

hdisko 8.0 34.5 8.2 12 164

hdiskl 0.0 0.0 0.0 0 0

cdo 0.0 0.0 0.0 0 0

To measure memory, use the svmon command. The svmon -G command gives a picture of overall
memory use. The statistics are in terms of 4 KB pages (example from AlX 5.2):

# svmon -G

size inuse free pin virtual
memory 65527 65406 121 5963 74711
pg space 131072 37218

work pers cint Tpage
pin 5972 0 0
in use 54177 9023 2206 0

In this example, the machine’s 256 MB memory is fully used. About 83 percent of RAM is in use for
working segments, the read/write memory of running programs (the rest is for caching files). If there are
long-running processes in which we are interested, we can review their memory requirements in detail.
The following example determines the memory used by a process of user hoetzel.

80 Performance Management Guide



# ps -fu hoetzel
Uib PID PPID C STIME TTY TIME CMD
hoetzel 24896 33604 0 09:27:35 pts/3 0:00 /usr/bin/ksh
hoetzel 32496 25350 6 15:16:34 pts/5 0:00 ps -fu hoetzel

# svmon -P 24896

Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
24896 ksh 7547 4045 1186 7486 N N N
Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
0 0 work kernel seg - 6324 4041 1186 6324
6a89%aa d work shared library text - 1064 0 0 1064
72d3cb 2 work process private - 75 4 0 75
401100 1 pers code,/dev/hd2:6250 - 59 0 - -
3d40f f work shared library data - 23 0 0 23
16925a - pers /dev/hd4:447 - 2 0 - -

The working segment (5176), with 4 pages in use, is the cost of this instance of the ksh program. The
2619-page cost of the shared library and the 58-page cost of the ksh program are spread across all of the
running programs and all instances of the ksh program, respectively.

If we believe that our 256 MB system is larger than necessary, use the rmss command to reduce the
effective size of the machine and remeasure the workload. If paging increases significantly or response
time deteriorates, we have reduced memory too much. This technique can be continued until we find a
size that runs our workload without degradation. See [Assessing Memory Requirements Through the rmss

for more information on this technique.

The primary command for measuring network usage is the netstat program. The following example shows
the activity of a specific Token-Ring interface:
# netstat -1 tr0 5
input (tro) output input  (Total) output
packets errs packets errs colls packets errs packets errs colls
35552822 213488 30283693 0 0 35608011 213488 30338882 0 0

300 0 426 0 0 300 0 426 0 0
272 2 190 0 0 272 2 190 0 0
231 0 192 0 0 231 0 192 0 0
143 0 113 0 0 143 0 113 0 0
408 1 176 0 0 408 1 176 0 0

The first line of the report shows the cumulative network traffic since the last boot. Each subsequent line
shows the activity for the preceding 5-second interval.

Measuring a Complete Workload on a Production System
The techniques of measurement on production systems are similar to those on dedicated systems, but we
must be careful to avoid degrading system performance.

Probably the most cost-effective tool is the vmstat command, which supplies data on memory, 1/O, and
CPU usage in a single report. If the vmstat intervals are kept reasonably long, for example, 10 seconds,
the average cost is relatively low. See |Identifying the Performance-Limiting Resource| for more information
on using the vmstat command.

Measuring a Partial Workload on a Production System

By partial workload, we mean measuring a part of the production system’s workload for possible transfer
to or duplication on a different system. Because this is a production system, we must be as unobtrusive as
possible. At the same time, we must analyze the workload in more detail to distinguish between the parts
we are interested in and those we are not. To do a partial measurement, we must discover what the
workload elements of interest have in common. Are they:

» The same program or a small set of related programs?

Chapter 8. Planning and Implementing for Performance 81



» Work performed by one or more specific users of the system?
* Work that comes from one or more specific terminals?

Depending on the commonality, we could use one of the following

# ps -ef | grep pgmname
# ps -fuusername, . . .
# ps -ftttyname, . . .

to identify the processes of interest and report the cumulative CPU time consumption of those processes.
We can then use the svmon command (judiciously) to assess the memory use of the processes.

Measuring an Individual Program

Many tools are available for measuring the resource consumption of individual programs. Some of these
programs are capable of more comprehensive workload measurements as well, but are too intrusive for
use on production systems. Most of these tools are discussed in depth in the chapters that discuss tuning
for minimum consumption of specific resources. Some of the more prominent are:

svmon

Measures the real memory used by a process. Discussed in|Determining How Much Memory |s|

time Measures the elapsed execution time and CPU consumption of an individual program. Discussed
in [Using the time Command to Measure CPU Use|

tprof Measures the relative CPU consumption of programs, subroutine libraries, and the operating
system’s kernel. Discussed in [Using the tprof Program to Analyze Programs for CPU Use}

vmstat -s
Measures the 1/0 load generated by a program. Discussed in|Assessing Overall Disk 1/O with the]
vmstat Command|,

Estimating Resources Required by a New Program

It is impossible to make precise estimates of unwritten programs. The invention and redesign that take
place during the coding phase defy prediction, but the following guidelines can help you to get a general
sense of the requirements. As a starting point, a minimal program would need the following:

» About 50 milliseconds of CPU time, mostly system time.
* Real Memory
— One page for program text
— About 15 pages (of which 2 are pinned) for the working (data) segment

— Access to libc.a. Normally this is shared with all other programs and is considered part of the base
cost of the operating system.

» About 12 page-in Disk I/O operations, if the program has not been compiled, copied, or used recently.
Otherwise, none required.

To the above, add the basic cost allowances for demands implied by the design (the units given are for
example purposes only):

e CPU time

— The CPU consumption of an ordinary program that does not contain high levels of iteration or costly
subroutine calls is almost unmeasurably small.

— If the proposed program contains a computationally expensive algorithm, develop a prototype and
measure the algorithm.

— If the proposed program uses computationally expensive library subroutines, such as X or Motif
constructs or the printf() subroutine, measure their CPU consumption with otherwise trivial
programs.

* Real Memory

82 Performance Management Guide



Allow approximately 350 lines of code per page of program text, which is about 12 bytes per line.
Keep in mind that coding style and compiler options can make a difference of a factor or two in
either direction. This allowance is for pages that are touched in your typical scenario. If your design
places infrequently executed subroutines at the end of the executable program, those pages do not
normally consume real memory.

References to shared libraries other than libc.a increase the memory requirement only to the extent
that those libraries are not shared with other programs or instances of the program being estimated.
To measure the size of these libraries, write a trivial, long-running program that refers to them and
use the svmon -P command against the process.

Estimate the amount of storage that will be required by the data structures identified in the design.
Round up to the nearest page.

In the short run, each disk 1/O operation will use one page of memory. Assume that the page has to
be available already. Do not assume that the program will wait for another program’s page to be
freed.

Disk 1/0

For sequential I/O, each 4096 bytes read or written causes one I/O operation, unless the file has
been accessed recently enough that some of its pages are still in memory.

For random I/O, each access, however small, to a different 4096-byte page causes one I/O
operation, unless the file has been accessed recently enough that some of its pages are still in
memory.

Each sequential read or write of a 4 KB page in a large file takes about 100 units. Each random read
or write of a 4 KB page takes about 300 units. Remember that real files are not necessarily stored
sequentially on disk, even though they are written and read sequentially by the program.
Consequently, the typical CPU cost of an actual disk access will be closer to the random-access cost
than to the sequential-access cost.

Communications 1/0O

If disk 1/O is actually to Network File System (NFS) remote-mounted file systems, the disk I/O is
performed on the server, but the client experiences higher CPU and memory demands.

RPCs of any kind contribute substantially to the CPU load. The proposed RPCs in the design should
be minimized, batched, prototyped, and measured in advance.

Each sequential NFS read or write of an 4 KB page takes about 600 units on the client. Each
random NFS read or write of a 4 KB page takes about 1000 units on the client.

Web browsing and Web serving implies considerable network I/O, with TCP connections opening
and closing quite frequently.

Transforming Program-Level Estimates to Workload Estimates

The best method for estimating peak and typical resource requirements is to use a queuing model such as
BEST/1. Static models can be used, but you run the risk of overestimating or underestimating the peak
resource. In either case, you need to understand how multiple programs in a workload interact from the
standpoint of resource requirements.

If you are building a static model, use a time interval that is the specified worst-acceptable response time
for the most frequent or demanding program (usually they are the same). Determine which programs will
typically be running during each interval, based on your projected number of users, their think time, their
key entry rate, and the anticipated mix of operations.

Use the following guidelines:

CPU time

Add together the CPU requirements for the all of the programs that are running during the interval.
Include the CPU requirements of the disk and communications I/O the programs will be doing.

If this number is greater than 75 percent of the available CPU time during the interval, consider
fewer users or more CPUs.

Chapter 8. Planning and Implementing for Performance 83



* Real Memory

— The operating system memory requirement scales with the amount of physical memory. Start with 6
to 8 MB for the operating system itself. The lower figure is for a standalone system. The latter figure
is for a system that is LAN-connected and uses TCP/IP and NFS.

— Add together the working segment requirements of all of the instances of the programs that will be
running during the interval, including the space estimated for the program’s data structures.

— Add to that total the memory requirement of the text segment of each distinct program that will be
running (one copy of the program text serves all instances of that program). Remember that any
(and only) subroutines that are from unshared libraries will be part of the executable program, but
the libraries themselves will not be in memory.

— Add to the total the amount of space consumed by each of the shared libraries that will be used by
any program in the workload. Again, one copy serves all.

— To allow adequate space for some file caching and the free list, your total memory projection should
not exceed 80 percent of the size of the machine to be used.

» Disk I/O

— Add the number of I/Os implied by each instance of each program. Keep separate totals for 1/Os to
small files (or randomly to large files) versus purely sequential reading or writing of large files (more
than 32 KB).

— Subtract those 1/Os that you believe will be satisfied from memory. Any record that was read or
written in the previous interval is probably still available in the current interval. Beyond that, examine
the size of the proposed machine versus the total RAM requirements of the machine’s workload. Any
space remaining after the operating system’s requirement and the workload’s requirements probably
contains the most recently read or written file pages. If your application’s design is such that there is
a high probability that you will reuse recently accessed data, you can calculate an allowance for the
caching effect. Remember that the reuse is at the page level, not at the record level. If the probability
of reuse of a given record is low, but there are a lot of records per page, it is likely that some of the
records needed in any given interval will fall in the same page as other, recently used, records.

— Compare the net I/0 requirements (disk 1/Os per second per disk) to the approximate capabilities of
current disk drives. If the random or sequential requirement is greater than 75 percent of the total
corresponding capability of the disks that will hold application data, tuning (and possibly expansion)
will be needed when the application is in production.

e Communications I/O

— Calculate the bandwidth consumption of the workload. If the total bandwidth consumption of all of the
nodes on the LAN is greater than 70 percent of nominal bandwidth (50 percent for Ethernet), you
might want to use a network with higher bandwidth.

— Perform a similar analysis of CPU, memory, and I/O requirements of the added load that will be
placed on the server.

Note: Remember that these guidelines are intended for use only when no extensive measurement is
possible. Any application-specific measurement that can be used in place of a guideline will
considerably improve the accuracy of the estimate.

Designing and Implementing Efficient Programs

If you have determined which resource will limit the speed of your program, you can go directly to the
section that discusses appropriate techniques for minimizing the use of that resource. Otherwise, assume
that the program will be balanced and that all of the recommendations in this chapter apply. Once the
program is implemented, proceed to |Identifying the Performance-Limiting Resourcel

CPU-Limited Programs
The maximum speed of a truly processor-limited program is determined by:
* The algorithm used

84  Performance Management Guide



* The source code and data structures created by the programmer

* The sequence of machine-language instructions generated by the compiler

» The sizes and structures of the processor’s caches

The architecture and clock rate of the processor itself (see |Appendix D. Determining CPU Speed)

If the program is CPU-limited because it consists almost entirely of numerical computation, the chosen
algorithm will have a major effect on the performance of the program. A discussion of alternative
algorithms is beyond the scope of this book. It is assumed that computational efficiency has been
considered in choosing the algorithm.

Given an algorithm, the only items in the preceding list that the programmer can affect are the source
code, the compiler options used, and possibly the data structures. The following sections deal with
techniques that can be used to improve the efficiency of an individual program for which the user has the
source code. If the source code is not available, attempt to use tuning or workload-management
techniques.

Design and Coding for Effective Use of Caches

In|Performance Concepts| we indicated that processors have a multilevel hierarchy of memory:
Instruction pipeline and the CPU registers

2. Instruction and data cache(s) and the corresponding translation lookaside buffers
3. RAM

4. Disk

—_

As instructions and data move up the hierarchy, they move into storage that is faster than the level below
it, but also smaller and more expensive. To obtain the maximum possible performance from a given
machine, therefore, the programmer must make the most effective use of the available storage at each
level.

Effective use of storage means keeping it full of instructions and data that are likely to be used. An
obstacle to achieving this objective is the fact that storage is allocated in fixed-length blocks such as cache
lines and real memory pages that usually do not correspond to boundaries within programs or data
structures. Programs and data structures that are designed without regard to the storage hierarchy often
make inefficient use of the storage allocated to them, with adverse performance effects in small or heavily
loaded systems.

Taking the storage hierarchy into account means understanding and adapting to the general principles of
efficient programming in a cached or virtual-memory environment. Repackaging techniques can yield
significant improvements without recoding, and any new code should be designed with efficient storage
use in mind.

Two terms are essential to any discussion of the efficient use of hierarchical storage: locality of reference
and working set.

» The locality of reference of a program is the degree to which its instruction-execution addresses and
data references are clustered in a small area of storage during a given time interval.

* The working set of a program during that same interval is the set of storage blocks that are in use, or,
more precisely, the code or data that occupy those blocks.

A program with good locality of reference has a minimal working set, because the blocks that are in use
are tightly packed with executing code or data. A functionally equivalent program with poor locality of
reference has a larger working set, because more blocks are needed to accommodate the wider range of
addresses being accessed.

Chapter 8. Planning and Implementing for Performance 85



Because each block takes a significant amount of time to load into a given level of the hierarchy, the
objective of efficient programming for a hierarchical-storage system is to design and package code in such
a way that the working set remains as small as practical.

The following figure illustrates good and bad practice at a subroutine level. The first version of the program
is packaged in the sequence in which it was probably written. The first subroutine PriSub1 contains the
entry point of the program. It always uses primary subroutines PriSub2 and PriSub3. Some infrequently
used functions of the program require secondary subroutines SecSub1 and SecSub2. On rare occasions,
the error subroutines ErrSub1 and ErrSub2 are needed.

Poor Locality of Reference, Large Working Set

Page 1 Page 2 Page 3

PriSub1 SecSub1 ErrSub1 PriSub2 SecSub2 ErrSub2 PriSub3

Good Locality of Reference, Small Working Set

Page 1 Page 2 Page 3

PriSub1 PriSub2 PriSub3 SecSub1 SecSub2 ErrSub1 ErrSub2

Figure 15. Locality of Reference. The top half of the figure describes how a binary program is packaged which shows
low locality of reference. The instructions for PriSub1 is in the binary executable first, followed by the instructions for
SecSub1, ErrSub1, PriSub2, SecSub2, ErrSub2, and PriSub3. In this executable, the instructions for PriSub1,
SecSub1, and ErrSub1 occupy into the first page of memory. The instructions for PriSub2, SecSub2, and ErrSub2
occupy the second page of memory, and the instructions for PriSub3 occupy the third page of memory. SecSub1 and
SecSub2 are infrequently used; also ErrSub1 and ErrSub2 are rarely used, if ever. Therefore, the packaging of this
program exhibits poor locality of reference and may use more memory than required. In the second half of the figure,
PriSub1, PriSub2, and PriSub3 are located next to each other and occupy the first page of memory. Following PriSub3
is SecSub1, SecSub2, and ErrSub1 which all occupy the second page of memory. Finally, ErrSub2 is at the end and
occupies the third page of memory. Because ErrSub2 may never be needed, it would reduce the memory
requirements by one page in this case.

The initial version of the program has poor locality of reference because it takes three pages of memory to
run in the normal case. The secondary and error subroutines separate the main path of the program into
three, physically distant sections.

The improved version of the program places the primary subroutines adjacent to one another and puts the
low-frequency function after that. The necessary error subroutines (which are rarely-used) are left at the
end of the executable program. The most common functions of the program can now be handled with only
one disk read and one page of memory instead of the three previously required.

Remember that locality of reference and working set are defined with respect to time. If a program works
in stages, each of which takes a significant time and uses a different set of subroutines, try to minimize the
working set of each stage.

Registers and Pipeline

In general, allocating and optimizing of register space and keeping the pipeline full are the responsibilities
of the compilers. The programmer’s main obligation is to avoid structures that defeat compiler-optimization
techniques. For example, if you use one of your subroutines in one of the critical loops of your program, it

86 Performance Management Guide



may be appropriate for the compiler to inline that subroutine to minimize execution time. If the subroutine
has been packaged in a different .c module, however, it cannot be inlined by the compiler.

Cache and TLBs

Depending on the processor architecture and model, processors have from one to several caches to hold
the following:

» Parts of executing programs
» Data used by executing programs

» Translation lookaside buffers (TLBs), which contain the mapping from virtual address to real address of
recently used pages of instruction text or data

If a cache miss occurs, loading a complete cache line can take dozens of processor cycles. If a TLB miss
occurs, calculating the virtual-to-real mapping of a page can take several dozen cycles. The exact cost is
implementation-dependent.

Even if a program and its data fit in the caches, the more lines or TLB entries used (that is, the lower the
locality of reference), the more CPU cycles it takes to get everything loaded in. Unless the instructions and
data are reused many times, the overhead of loading them is a significant fraction of total program
execution time, resulting in degraded system performance.

Good programming techniques keep the main-line, typical-case flow of the program as compact as
possible. The main procedure and all of the subroutines it calls frequently should be contiguous.
Low-probability conditions, such as obscure errors, should be tested for only in the main line. If the
condition actually occurs, its processing should take place in a separate subroutine. All such subroutines
should be grouped together at the end of the module. This arrangement reduces the probability that
low-usage code will take up space in a high-usage cache line. In large modules, some or all of the
low-usage subroutines might occupy a page that almost never has to be read into memory.

The same principle applies to data structures, although it is sometimes necessary to change the code to
compensate for the compiler’s rules about data layout.

For example, some matrix operations, such as matrix multiplication, involve algorithms that, if coded
simplistically, have poor locality of reference. Matrix operations generally involve accessing the matrix data
sequentially, such as row elements acting on column elements. Each compiler has specific rules about the
storage layout of matrixes. The FORTRAN compiler lays out matrixes in column-major format (that is, all of
the elements of column 1, followed by all the elements of column 2, and so forth). The C compiler lays out
matrixes in row-major format. If the matrixes are small, the row and column elements can be contained in
the data cache, and the processor and floating-point unit can run at full speed. However, as the size of the
matrixes increases, the locality of reference of such row/column operations deteriorates to a point where
the data can no longer be maintained in the cache. In fact, the natural access pattern of the row/column
operations generates a thrashing pattern for the cache where a string of elements accessed is larger than
the cache, forcing the initially accessed elements out and then repeating the access pattern again for the
same data.

The general solution to such matrix access patterns is to partition the operation into blocks, so that
multiple operations on the same elements can be performed while they remain in the cache. This general
technique is given the name strip mining.

Experts in numerical analysis were asked to code versions of the matrix-manipulation algorithms that
made use of strip mining and other optimization techniques. The result was a 30-fold improvement in
matrix-multiplication performance. The tuned routines are in the Basic Linear Algebra Subroutines (BLAS)
library, lusr/lib/libblas.a. A larger set of performance-tuned subroutines is the Engineering and Scientific
Subroutine Library (ESSL) licensed program.

Chapter 8. Planning and Implementing for Performance 87



The functions and interfaces of the Basic Linear Algebra Subroutines are documented in AIX 5L Version
5.2 Technical Reference. The FORTRAN run-time environment must be installed to use the library. Users
should generally use this library for their matrix and vector operations because its subroutines are tuned to
a degree that users are unlikely to achieve by themselves.

If the data structures are controlled by the programmer, other efficiencies are possible. The general
principle is to pack frequently used data together whenever possible. If a structure contains frequently
accessed control information and occasionally accessed detailed data, make sure that the control
information is allocated in consecutive bytes. This will increase the probability that all of the control
information will be loaded into the cache with a single (or at least with the minimum number of) cache
misses.

Effective Use of Preprocessors and the Compilers

The programmer who wants to obtain the highest possible performance from a given program running on
a given machine must deal with several considerations:

» There are preprocessors that can rearrange some source code structures to form a functionally
equivalent source module that can be compiled into more efficient executable code.

» Just as there are several variants of the architecture, there are several compiler options to allow optimal
compilation for a specific variant or set of variants.

* The programmer can use the #pragma feature to inform the C compiler of certain aspects of the
program that will allow the compiler to generate more efficient code by relaxing some of its worst-case
assumptions.

* There are several levels of optimization that give the compiler different degrees of freedom in instruction
rearrangement.

Programmers who are unable to experiment, should always optimize. The difference in performance
between optimized and unoptimized code is almost always so large that basic optimization (the -O option
of the compiler commands) should always be used. The only exceptions are testing situations in which
there is a specific need for straightforward code generation, such as statement-level performance analysis
using the tprof tool.

These techniques yield additional performance improvement for some programs, but the determination of
which combination yields the best performance for a specific program might require considerable
recompilation and measurement.

For an extensive discussion of the techniques for efficient use of compilers, see Optimization and Tuning
Guide for XL Fortran, XL C and XL C++.

Levels of Optimization
The levels of optimization in the compilers are as follows:

No Optimization
In the absence of any version of the -0 flag, the compiler generates straightforward code with no
instruction reordering or other attempt at performance improvement.

-0 or -02

These equivalent flags cause the compiler to optimize on the basis of conservative assumptions about
code reordering. Only explicit relaxations such as the #pragma directives are used. This level performs no
software pipelining, loop unrolling, or simple predictive commoning. It also constrains the amount of
memory the compiler can use.

-03
This flag directs the compiler to be aggressive about the optimization techniques used and to use as much
memory as necessary for maximum optimization.

88  Performance Management Guide



This level of optimization may result in functional changes to the program if the program is sensitive to the
following:

* Floating-point exceptions
* The sign of zero
» Precision effects of reordering calculations

These side effects can be avoided, at some performance cost, by using the -gstrict option in combination
with -O3.

The -ghot option, in combination with -O3, enables predictive commoning and some unrolling.

The result of these changes is that large or complex routines should have the same or better performance
with the -O3 option (possibly in conjunction with -gstrict or -ghot) that they had with the -O option in
earlier versions of the compiler.

-04
This flag is equivalent to -O3 -gipa with automatic generation of architecture and tuning option ideal for
that platform.

-05

This flag is similiar to -O4, except in this case,-gipa = level = 2.

Compiling for Specific Hardware Platforms (-qarch, -qtune)

Systems can use several type of processors. By using the -qarch and -qtune options, you can optimize
programs for the special instructions and particular strengths of these processors.

Follow these guidelines:

 If your program will be run only on a single system, or on a group of systems with the same processor
type, use the -qarch option to specify the processor type.

 If your program will be run on systems with different processor types, and you can identify one
processor type as the most important, use the appropriate -qarch and -qtune settings. FORTRAN and
HPF users can use the xxIf and xxlhpf commands to select these settings interactively.

» |If your program is intended to run on the full range of processor implementations, and is not intended
primarily for one processor type, do not use either -qarch or -qtune.

C Options for string.h Subroutine Performance

The operating system provides the ability to embed the string subroutines in the application program rather
than using them from libe.a, saving call and return linkage time. To embed the string subroutines, the
source code of the application must have the following statement prior to the use of the subroutine(s):

#include <string.h>

C and C++ Coding Style for Best Performance

In many cases, the performance cost of a C construct is not obvious, and sometimes is even
counter-intuitive. Some of these situations are as follows:

* Whenever possible, use int instead of char or short.

In most cases, char and short data items take more instructions to manipulate. The extra instructions
cost time, and, except in large arrays, any space that is saved by using the smaller data types is more
than offset by the increased size of the executable program.

» If you have to use a char, make it unsigned, if possible.

A signed char takes another two instructions more than an unsigned char each time the variable is
loaded into a register.

* Use local (automatic) variables rather than global variables whenever possible.

Chapter 8. Planning and Implementing for Performance 89



Global variables require more instructions to access than local variables. Also, in the absence of
information to the contrary, the compiler assumes that any global variable may have been changed by a
subroutine call. This change has an adverse effect on optimization because the value of any global
variable used after a subroutine call will have to be reloaded.

* When it is necessary to access a global variable (that is not shared with other threads), copy the value
into a local variable and use the copy.

Unless the global variable is accessed only once, it is more efficient to use the local copy.

» Use binary codes rather than strings to record and test for situations. Strings consume both data and
instruction space. For example, the sequence:
#define situation_1 1
#define situation_2 2
#define situation_3 3
int situation_val;

situation_val = situation_2;

if (situation_val == situation_1)

is much more efficient than the following sequence:
char situation_val[20];

strcpy(situation_val,"situation_2");

if ((strcmp(situation_val,"situation_1"))==0)

* When strings are necessary, use fixed-length strings rather than null-terminated variable-length strings
wherever possible.

The mem*() family of routines, such as memcpy(), is faster than the corresponding str*() routines, such
as strepy(), because the str*() routines must check each byte for null and the mem () routines do not.

Compiler Execution Time

In the operating system, the C compiler can be invoked by two different commands: cc and xle. The cc
command, which has historically been used to invoke the system’s C compiler, causes the C compiler to
run in langlevel=extended mode. This mode allows the compilation of existing C programs that are not
ANSI-compliant. It also consumes processor time.

If the program being compiled is, in fact, ANSI-compliant, it is more efficient to invoke the C compiler by
using the xle command.

Use of the -03 flag implicitly includes the -gmaxmem option. This option allows the compiler to use as
much memory as necessary for maximum optimization. This situation can have two effects:

* On a multiuser system, a large -O3 compilation may consume enough memory to have an adverse
effect on the performance experienced by other users.

* On a system with small real memory, a large -O3 compilation may consume enough memory to cause
high paging rates, making compilation slow.

Memory-Limited Programs

To programmers accustomed to struggling with the addressing limitations of, for instance, the DOS
environment, 256 MB virtual memory segments seem effectively infinite. The programmer is tempted to
ignore storage constraints and code for minimum path length and maximum simplicity. Unfortunately, there
is a drawback to this attitude. Virtual memory is large, but it is variable-speed. The more memory used,
the slower it becomes, and the relationship is not linear. As long as the total amount of virtual storage
actually being touched by all programs (that is, the sum of the working sets) is slightly less than the
amount of unpinned real memory in the machine, virtual memory performs at about the speed of real
memory. As the sum of the working sets of all executing programs passes the number of available page

90 Performance Management Guide



frames, memory performance degrades rapidly (if VMM memory load control is turned off) by up to two
orders of magnitude. When the system reaches this point, it is said to be thrashing. It is spending almost
all of its time paging, and no useful work is being done because each process is trying to steal back from
other processes the storage necessary to accommodate its working set. If VMM memory load control is
active, it can avoid this self-perpetuating thrashing, but at the cost of significantly increased response
times.

The degradation caused by inefficient use of memory is much greater than that from inefficient use of the
caches because the difference in speed between memory and disk is so much higher than the difference
between cache and memory. Where a cache miss can take a few dozen CPU cycles, a page fault typically
takes 10 milliseconds or more, which is at least 400,000 CPU cycles.

Although VMM memory load control can ensure that incipient thrashing situations do not become
self-perpetuating, unnecessary page faults still exact a cost in degraded response time and reduced
throughput (see [Tuning VMM Memory Load Control with the schedtune Command).

Structuring of Pageable Code
To minimize the code working set of a program, the general objective is to pack code that is frequently
executed into a small area, separating it from infrequently executed code. Specifically:

* Do not put long blocks of error-handling code in line. Place them in separate subroutines, preferably in
separate source-code modules. This applies not only to error paths, but to any functional option that is
infrequently used.

* Do not structure load modules arbitrarily. Try to ensure that frequently called object modules are located
as close to their callers as possible. Object modules consisting (ideally) of infrequently called
subroutines should be concentrated at the end of the load module. The pages they inhabit will seldom
be read in.

Structuring of Pageable Data
To minimize the data working set, try to concentrate the frequently used data and avoid unnecessary
references to virtual-storage pages. Specifically:

» Use the malloc() or calloc() subroutines to request only as much space as you actually need. Never
request and then initialize a maximum-sized array when the actual situation uses only a fraction of it.
When you touch a new page to initialize the array elements, you effectively force the VMM to steal a
page of real memory from someone. Later, this results in a page fault when the process that owned that
page tries to access it again. The difference between the malloc() and calloc() subroutines is not just in
the interface.

» Because the calloc() subroutine zeroes the allocated storage, it touches every page that is allocated,
whereas the malloc() subroutine touches only the first page. If you use the calloc() subroutine to
allocate a large area and then use only a small portion at the beginning, you place an unnecessary load
on the system. Not only do the pages have to be initialized; if their real-memory frames are reclaimed,
the initialized and never-to-be-used pages must be written out to paging space. This situation wastes
both I/0O and paging-space slots.

» Linked lists of large structures (such as buffers) can result in similar problems. If your program does a
lot of chain-following looking for a particular key, consider maintaining the links and keys separately
from the data or using a hash-table approach instead.

» Locality of reference means locality in time, not just in address space. Initialize data structures just prior
to when they are used (if at all). In a heavily loaded system, data structures that are resident for a long
time between initialization and use risk having their frames stolen. Your program would then experience
an unnecessary page fault when it began to use the data structure.

» Similarly, if a large structure is used early and then left untouched for the remainder of the program, it
should be released. It is not sufficient to use the free() subroutine to free the space that was allocated
with the malloc() or calloc() subroutines. The free() subroutine releases only the address range that
the structure occupied. To release the real memory and paging space, use the disclaim() subroutine to
disclaim the space as well. The call to disclaim() should be before the call to free().

Chapter 8. Planning and Implementing for Performance 91



Misuse of Pinned Storage

To avoid circularities and time-outs, a small fraction of the system must be pinned in real memory. For this

code and data, the concept of working set is meaningless, because all of the pinned information is in real

storage all the time, whether or not it is used. Any program (such as a user-written device driver) that pins
code or data must be carefully designed (or scrutinized, if ported) to ensure that only minimal amounts of
pinned storage are used. Some cautionary examples are as follows:

» Code is pinned on a load-module (executable file) basis. If a component has some object modules that
must be pinned and others that can be pageable, package the pinned object modules in a separate
load module.

* Pinning a module or a data structure because there might be a problem is irresponsible. The designer
should understand the conditions under which the information could be required and whether a page
fault could be tolerated at that point.

* Pinned structures whose required size is load-dependent, such as buffer pools, should be tunable by
the system administrator.

Using Performance-Related Installation Guidelines

This topic provides recommended actions you should take (or not take) before and during the installation
process.

Operating System Preinstallation Guidelines
Two situations require consideration, as follows:
* Installing the Operating System on a New System

Before you begin the installation process, be sure that you have made decisions about the size and
location of disk file systems and paging spaces, and that you understand how to communicate those
decisions to the operating system.

 Installing a New Level of the Operating System on an Existing System
If you are upgrading to a new level of the operating system, do the following:
— Identify all uses in your present environment of the release-specific schedtune and vmtune

performance tools. Because these tools can only be run by the root user, their use should not be
widespread.

— If these programs are used during system boot, such as from /etc/inittab, they should be temporarily
removed or bypassed until you are convinced by documentation or experiment that your use of these
tools work correctly in the new release of the operating system.

CPU Preinstallation Guidelines

Use the default CPU scheduling parameters, such as the time-slice duration. Unless you have extensive
monitoring and tuning experience with the same workload on a nearly identical configuration, leave these
parameters unchanged at installation time.

See [Monitoring and Tuning CPU Use] for post-installation recommendations.

Memory Preinstallation Guidelines

Do not make any memory-threshold changes until you have had experience with the response of the
system to the actual workload.

See |Monitoring and Tuning Memory Use| for post-installation recommendations.

92  Performance Management Guide



Disk Preinstallation Guidelines

The mechanisms for defining and expanding logical volumes attempt to make the best possible default
choices. However, satisfactory disk-1/0O performance is much more likely if the installer of the system tailors
the size and placement of the logical volumes to the expected data storage and workload requirements.
Recommendations are as follows:

If possible, the default volume group, rootvg, should consist only of the physical volume on which the
system is initially installed. Define one or more other volume groups to control the other physical
volumes in the system. This recommendation has system management, as well as performance,
advantages.

If a volume group consists of more than one physical volume, you may gain performance by:
— Initially defining the volume group with a single physical volume.

— Defining a logical volume within the new volume group. This definition causes the allocation of the
volume group’s journal logical volume on the first physical volume.

— Adding the remaining physical volumes to the volume group.
— Defining the high-activity file systems on the newly added physical volumes.

— Defining only very-low-activity file systems, if any, on the physical volume containing the journal
logical volume. This affects performance only if I/O would cause journaled file system (JFS) log
transactions.

This approach separates journaled I/O activity from the high-activity data I/O, increasing the
probability of overlap. This technique can have an especially significant effect on NFS server
performance, because both data and journal writes must be complete before NFS signals 1/0
complete for a write operation.

At the earliest opportunity, define or expand the logical volumes to their maximum expected sizes. To
maximize the probability that performance-critical logical volumes will be contiguous and in the desired
location, define or expand them first.

High-usage logical volumes should occupy parts of multiple disk drives. If the RANGE of physical
volumes option on the Add a Logical Volume screen of the SMIT program (fast path: smitty mklv) is
set to maximum, the new logical volume will be divided among the physical volumes of the volume
group (or the set of physical volumes explicitly listed).

If the system has drives of different types (or you are trying to decide which drives to order), consider
the following guidelines:

— Place large files that are normally accessed sequentially on the fastest available disk drive.

— If you expect frequent sequential accesses to large files on the fastest disk drives, limit the number
of disk drivers per disk adapter.

— When possible, attach drives with critical, high-volume performance requirements to a high speed
adapter. These adapters have features, such as back-to-back write capability, that are not available
on other disk adapters.

— On the smaller disk drives, logical volumes that will hold large, frequently accessed sequential files
should be allocated in the outer_edge of the physical volume. These disks have more blocks per
track in their outer sections, which improves sequential performance.

— On the original SCSI bus, the highest-numbered drives (those with the numerically largest SCSI
addresses, as set on the physical drives) have the highest priority. Subsequent specifications usually
attempt to maintain compatibility with the original specification. Thus, the order from highest to lowest
priority is as follows: 7-6-5-4-3-2-1-0-15-14-13-12-11-10-9-8.

In most situations this effect is not noticeable, but large sequential file operations have been known
to exclude low-numbered drives from access to the bus. You should probably configure the disk
drives holding the most response-time-critical data at the highest addresses on each SCSI bus.

The Isdev -Cs scsi command reports on the current address assignments on each SCSI bus. For
the original SCSI adapter, the SCSI address is the first number in the fourth pair of numbers in the
output. In the following output example, one 400 GB disk is at SCSI address 4, another at address 5,
the 8mm tape drive at address 1, and the CDROM drive is at address 3.

Chapter 8. Planning and Implementing for Performance 93



cdo Available 10-80-00-3,0

hdiskO Available 10-80-00-4,0 16 Bit SCSI Disk Drive
hdiskl Available 10-80-00-5,0 16 Bit SCSI Disk Drive
rmt0 Available 10-80-00-1,0 2.3 GB 8mm Tape Drive

— Large files that are heavily used and are normally accessed randomly, such as data bases, should
be spread across two or more physical volumes.

SCSI Multimedia CD-ROM Drive
1

See |Monitoring and Tuning Disk I/O Use| for post-installation recommendations.

Placement and Sizes of Paging Spaces

The general recommendation is that the sum of the sizes of the paging spaces should be equal to at least
twice the size of the real memory of the machine, up to a memory size of 256 MB (512 MB of paging
space).

Note: For memories larger than 256 MB, the following is recommended:
total paging space = 512 MB + (memory size - 256 MB) * 1.25

However, starting with AIX 4.3.2 and Deferred Page Space Allocation, this guideline may tie up
more disk space than actually necessary. See [Choosing a Page Space Allocation Method for more
information.

Ideally, there should be several paging spaces of roughly equal size, each on a different physical disk
drive. If you decide to create additional paging spaces, create them on physical volumes that are more
lightly loaded than the physical volume in rootvg. When allocating paging space blocks, the VMM allocates
four blocks, in turn, from each of the active paging spaces that has space available. While the system is
booting, only the primary paging space (hd6) is active. Consequently, all paging-space blocks allocated
during boot are on the primary paging space. This means that the primary paging space should be
somewhat larger than the secondary paging spaces. The secondary paging spaces should all be of the
same size to ensure that the algorithm performed in turn can work effectively.

The Isps -a command gives a snapshot of the current utilization level of all the paging spaces on a
system. You can also used the psdanger() subroutine to determine how closely paging-space utilization is
approaching critical levels. As an example, the following program uses the psdanger() subroutine to
provide a warning message when a threshold is exceeded:

/* psmonitor.c
Monitors system for paging space low conditions. When the condition is
detected, writes a message to stderr.
Usage: psmonitor [Interval [Count]]
Default: psmonitor 1 1000000
*
/
#include <stdio.h>
#include <signal.h>
main(int argc,char *xargv)

{

int interval = 1; /* seconds */

int count = 1000000; /* intervals */

int current; /* interval =/

int last; /* check */

int kill_offset; /* returned by psdanger() =*/
int danger_offset; /* returned by psdanger() */

/* are there any parameters at all? =/
if (argc > 1) {
if ( (interval = atoi(argv[1])) <1 ) {
fprintf(stderr,"Usage: psmonitor [ interval [ count ] ]\n");
exit(1);

if (argc > 2) {
if ( (count = atoi( argv[2])) < 1) {

94  Performance Management Guide



fprintf(stderr,"Usage: psmonitor [ interval [ count ] ]\n");
exit(1);
}
1
}
last = count -1;
for(current = 0; current < count; current++) {
ki11_offset = psdanger(SIGKILL); /* check for out of paging space */
if (kill_offset < 0)
fprintf(stderr,
"OUT OF PAGING SPACE! %d blocks beyond SIGKILL threshold.\n",
kill_offsetx(-1));
else {
danger_offset = psdanger(SIGDANGER); /+ check for paging space Tow */
if (danger_offset < 0) {
fprintf(stderr,
"WARNING: paging space low. %d blocks beyond SIGDANGER threshold.\n",
danger_offsetx(-1));
fprintf(stderr,
" %d blocks below SIGKILL threshold.\n",
ki1l _offset);
}
1
if (current < last)
sleep(interval);
}
1

Performance Implications of Disk Mirroring

If mirroring is being used and Mirror Write Consistency is on (as it is by default), consider locating the
copies in the outer region of the disk, because the Mirror Write Consistency information is always written
in Cylinder 0. From a performance standpoint, mirroring is costly, mirroring with Write Verify is costlier still
(extra disk rotation per write), and mirroring with both Write Verify and Mirror Write Consistency is costliest
of all (disk rotation plus a seek to Cylinder 0). From a fiscal standpoint, only mirroring with writes is
expensive. Although an Islv command will usually show Mirror Write Consistency to be on for non-mirrored
logical volumes, no actual processing is incurred unless the COPIES value is greater than one. Write
Verify defaults to off, because it does have meaning (and cost) for non-mirrored logical volumes.

Beginning in AIX 5.1, a mirror write consistency option called Passive Mirror Write Consistency (MWC) is
available. The default mechanism for ensuring mirror write consistency is Active MWC. Active MWC
provides fast recovery at reboot time after a crash has occurred. However, this benefit comes at the
expense of write performance degradation, particularly in the case of random writes. Disabling Active
MWC eliminates this write-performance penalty, but upon reboot after a crash you must use the syncvg -f
command to manually synchronize the entire volume group before users can access the volume group. To
achieve this, automatic vary-on of volume groups must be disabled.

Enabling Passive MWC not only eliminates the write-performance penalty associated with Active MWC, but
logical volumes will be automatically resynchronized as the partitions are being accessed. This means that
the administrator does not have to synchronize logical volumes manually or disable automatic vary-on.
The disadvantage of Passive MWC is that slower read operations may occur until all the partitions have
been resynchronized.

You can select either mirror write consistency option within SMIT when creating or changing a logical
volume. The selection option takes effect only when the logical volume is mirrored (copies > 1).

Performance Implications of Mirrored Striped LVs

Prior to AIX 4.3.3, logical volumes could not be mirrored and striped at the same time. Logical volume
mirroring and striping combines the data availability of RAID 1 with the performance of RAID 0 entirely
through software. Volume groups that contain striped and mirrored logical volumes cannot be imported into
AlX 4.3.2 or earlier.

Chapter 8. Planning and Implementing for Performance 95



Communications Preinstallation Guidelines

See the summary of communications tuning recommendations in[Tuning TCP and UDP Performance| and
[Tuning mbuf Pool Performance]

For correct placement of adapters and various performance guidelines, see PCI Adapter Placement
Reference.

96 Performance Management Guide



Chapter 9. Using POWER4-based Systems

This chapter discusses performance issues related to POWER4-based servers and contains the following

major sections:

« [POWER4 Performance Enhancements|

[Scalability Enhancements for POWER4-based Systems|

* |64-bit Kernel
¢ |Enhanced JFS

[Related Information|

POWER4 Performance Enhancements

The POWER4 microprocessor provides many performance improvements over previous microprocessor

architectures:

» |t is optimized for symmetric multiprocessing (SMP), thus providing better instruction parallelism.
* It employs better scheduling for instructions and data prefetching and a more effective branch-prediction

mechanism.

* It provides higher memory bandwidth than the POWERS microprocessor, and is designed to operate at

much higher frequencies.

Also, It is

Microprocessor Comparison
The following table compares key aspects of different microprocessors used on the IBM server line.

Table 2. Processor Comparisons

POWER3 RS64 POWER4
Frequency 450 MHz 750 MHz > 1 GHz
Fixed Point Units 3 2 2
Floating Point Units 2 1 2
Load/Store Units 2 1 2
Branch/Other Units 1 1 2
Dispatch Width 4 4 5
Branch Prediction Dynamic Static Dynamic
I-cache size 32 KB 128 KB 64 KB
D-cache size 128 KB 128 KB 32 KB
L2-cache size 1,4, 8 MB 2,4,8,16 MB 1.44
L3-cache size N/A N/A Scales with number of

processors

Data Prefetch Yes No Yes

© Copyright IBM Corp. 1997, 2004

97



Scalability Enhancements for POWER4-based Systems

Beginning with AIX 5.1 running on POWER4-based systems, the operating system provides several
scalability advantages over previous systems, both in terms of workload and performance. Workload
scalability refers to the ability to handle an increasing application-workload. Performance scalability refers
to maintaining an acceptable level of performance as software resources increase to meet the demands of
larger workloads.

The following are some of the most important scalability changes introduced in AIX 5.1.

Pinned Shared Memory for Database

AIX 4.3.3 and AIX 5.1 enable memory pages to be maintained in real memory all the time. This
mechanism is called pinning memory. Pinning a memory region prohibits the pager from stealing pages
from the pages that back the pinned memory region.

For more information on pinned memory, see |Resource Management Overview|

Larger Memory Support

The maximum real-memory size supported by the 64-bit kernel is 256 GB. This size is based upon the
boot-time real memory requirements of hardware systems and possible I/O configurations that the 64-bit
kernel supports. No minimum paging-space size requirement exists for the 64-bit kernel. This is because
deferred paging-space allocation support was introduced into the kernel base in AIX 4.3.3.

Large Page Support

Beginning with AIX 5.1, the POWER4 processor in the IBM eServer pSeries systems supports two virtual
page sizes. It supports the traditional POWER architecture 4 KB page size, as well as the 16 MB page
size, which is referred to as large page. AIX supports large page usage by both 32- and 64-bit applications
and both the 32- and 64-bit versions of the AIX kernel support large pages.

Large page usage is primarily intended to provide performance improvements to high performance
computing (HPC) applications. Memory-access intensive applications that use large amounts of virtual
memory may obtain performance improvements by using large pages. The large page performance
improvements are attributable to reduced translation lookaside buffer (TLB) misses due to the TLB being
able to map a larger virtual memory range. Large pages also improve memory prefetching by eliminating
the need to restart prefetch operations on 4 KB boundaries.

AIX must be configured to use large pages. Large pages are pinned(locked into physcal memory). They
are not pageable and they cannot be used interchangeably with memory for standard programs. The
default is to not have any memory allocated to the large page physical memory pool, so the amount of
physical memory to be used to back large pages must be specified. The vmtune command is used to
configure the size of the large page physical memory pool. The following command allocates 4 GB to the
large page physical memory pool:

# vmtune -g 16777216 -L 256

The -g flag specifies the large page size in bytes. The allowable values are 16777216 (16 MB) or
268435456 (256 MB). The -L flag is the number of the -g sized blocks that are allocated to the large page
physical memory pool. While the 268435456 (256 MB) size is supported by the vmtune command, on
POWER4 architecture machines, the storage is managed in 16 MB size pages.

Before the new size large page memory pool can take effect, run the bosboot command and then reboot.
To use large pages for shared memory, the SHM_PIN parameter for the shmget() subroutine must be

enabled for every system boot. It might be beneficial to include the following vmtune command in the
letc/inittab file to automatically enable the SHM_PIN parameter during system boot:

98 Performance Management Guide



# vmtune -S 1

Note: Large page is a special-purpose performance-improvement feature and is not recommended for
general use. Large page usage only provides performance value to a select set of applications that
are primarily long-running memory-access intensive and that use large amounts of virtual memory.
Not all applications benefit by using large pages and the performance of some applications can be
severely degraded by the use of large pages, especially applications that do a large number of
fork() operations (such as shell scripts).

For more detailed information, see |AIX Support for Large Pagel

64-bit Kernel

Beginning with AIX 5.1, the operating system provides a 64-bit kernel that addresses bottlenecks which
could have limited throughput on 32-way systems. POWER4 systems are optimized for the 64-bit kernel,
which is intended to increase scalability of RS/6000 IBM eServer pSeries systems. It is optimized for
running 64-bit applications on POWER4 systems. The code base for the 64-bit kernel is almost identical to
that for the 32-bit kernel. However, 64-bit code is built using a more advanced compiler.

The 64-bit kernel also improves scalability by allowing you to use larger sizes of physical memory. The
32-bit kernel is limited to 96 GB of physical memory.

64-bit Applications on 32-bit Kernel

The performance of 64-bit applications running on the 64-bit kernel on POWER4-based systems should be
greater than, or equal to, the same application running on the same hardware with the 32-bit kernel. The
64-bit kernel allows 64-bit applications to be supported without requiring system call parameters to be
remapped or reshaped. The 64-bit kernel applications use a more advanced compiler that is optimized
specifically for the POWER4 system.

32-bit Applications on 64-bit Kernel

In most instances, 32-bit applications can run on the 64-bit kernel without performance degradation.
However, 32-bit applications on the 64-bit kernel will typically have slightly lower performance than on the
32-bit call because of parameter reshaping. This performance degradation is typically not greater than 5%.
For example, calling the fork() comand might result in significantly more overhead.

64-bit Applications on 64-bit Kernel, Non-POWER4 Systems

The performance of 64-bit applications under the 64-bit kernel on non-POWER4 systems may be lower
than that of the same applications on the same hardware under the 32-bit kernel. The non-POWER4
systems are intended as a bridge to POWER4 systems and lack some of the support that is needed for
optimal 64-bit kernel performance.

64-bit Kernel Extensions on Non-POWER4 Systems

The performance of 64-bit kernel extensions on POWER4 systems should be the same or better than their
32-bit counterparts on the same hardware. However, performance of 64-bit kernel extensions on
non-POWER4 machines may be lower than that of 32-bit kernel extensions on the same hardware
because of the lack of optimization for 64-bit kernel performance on non-POWER4 systems.

Enhanced Journaled File System (JFS2)

Enhanced JFS (also known as JFS2) provides better scalability than JFS. Additionally JFS2 is the default
file system for the 64-bit kernel. You can choose to use either JFS, which is the recommended file system
for 32-bit environments, or Enhanced JFS, which is recommended for 64-bit kernel. For more information
on Enhanced JFS, see [Monitoring and Tuning File Systems.

Chapter 9. Using POWER4-based Systems 99


http://www-1.ibm.com/servers/aix/whitepapers/large_page.html

Related Information

[Monitoring and Tuning File Systems|

[Resource Management Overview|

IBM Redbook [The POWER4 Processor Introduction and Tuning Guide]

100 Performance Management Guide


http://www.redbooks.ibm.com/redbooks/SG247041.html

Chapter 10. CPU performance

This topic includes information on techniques for detecting runaway or CPU-intensive programs and
minimizing their adverse affects on system performance.

If you are not familiar with CPU scheduling, you may want to refer to the Performance Overview of the
CPU scheduler topic before continuing.

The following sections describe the different aspects of CPU tuning:

« [CPU performance monitoring|

[Use of the time command to measure CPU use|

« [Identification of CPU-intensive programs|

« |Use of the tprof program to analyze programs for CPU use]

* |Use of the pprof command to measure CPU usage of kernel threadsl
« |Detection of instruction emulation with the emstat tool

+ |Detection of alignment exceptions with the alstat tool
» |Restructure of executable programs with the fdpr program|
* [Controlling contention for the CPU
- [CPU-efficient user id administration with the mkpasswd command|

© Copyright IBM Corp. 1997, 2004

101



102 Performance Management Guide



Chapter 11. CPU performance monitoring

The processing unit is one of the fastest components of the system. It is comparatively rare for a single
program to keep the CPU 100 percent busy (that is, 0 percent idle and O percent wait) for more than a few
seconds at a time. Even in heavily loaded multiuser systems, there are occasional 10 milliseconds (ms)
periods that end with all threads in a wait state. If a monitor shows the CPU 100 percent busy for an
extended period, there is a good chance that some program is in an infinite loop. Even if the program is
"merely” expensive, rather than broken, it needs to be identified and dealt with.

The vmstat command (CPU)

The first tool to use is the vmstat command, which quickly provides compact information about various
system resources and their related performance problems. The vmstat command reports statistics about
kernel threads in the run and wait queue, memory, paging, disks, interrupts, system calls, context
switches, and CPU activity. The reported CPU activity is a percentage breakdown of user mode, system
mode, idle time, and waits for disk 1/O.

Note: If the vmstat command is used without any options or only with the interval and optionally, the
count parameter, such as vmstat 2 10; then the first line of numbers is an average since system
reboot.

As a CPU monitor, the vmstat command is superior to the iostat command in that its one-line-per-report
output is easier to scan as it scrolls and there is less overhead involved if there are a lot of disks attached
to the system. The following example can help you identify situations in which a program has run away or
is too CPU-intensive to run in a multiuser environment.

# vmstat 2

kthr memory page faults cpu
r b awm fre re pi po fr sr cy in sy cs us sy id wa
1 022478 1677 O 0 0 0 0 0 188 1380 157 57 32 0 10
1 022506 1609 06 0 0 0O 0 0214 1476 186 48 37 0 16
0O 022498 1582 0 0 0 0O 0 0 248 1470 226 55 36 0 9
2 022534 1465 0 0 0 0 0 0238 9032397723 0 0
2 022534 1445 0 0 0 0 0 0209 1142 2057228 0 0
2 022534 1426 0 0 0 © 0 0 189 1220 212 7426 0 0O
3 022534 1410 0 0 0 0O 0 0 255 1704 268 70 30 0 O
2 122557 1365 O © 0O © 0 0383 977 2167228 0 0
2 022541 1356 0 0 0 0O 0 0237 1418 209 63 33 0 4
1 022524 1356 O O 0O O 0 0241 1348 179 52 32 0 16
1 022546 1293 O 0O 0 O 0 0217 1473 180 51 35 0 14

This output shows the effect of introducing a program in a tight loop to a busy multiuser system. The first
three reports (the summary has been removed) show the system balanced at 50-55 percent user, 30-35
percent system, and 10-15 percent 1/0 wait. When the looping program begins, all available CPU cycles
are consumed. Because the looping program does no /O, it can absorb all of the cycles previously
unused because of I/O wait. Worse, it represents a process that is always ready to take over the CPU
when a useful process relinquishes it. Because the looping program has a priority equal to that of all other
foreground processes, it will not necessarily have to give up the CPU when another process becomes
dispatchable. The program runs for about 10 seconds (five reports), and then the activity reported by the
vmstat command returns to a more normal pattern.

Optimum use would have the CPU working 100 percent of the time. This holds true in the case of a
single-user system with no need to share the CPU. Generally, if us + sy time is below 90 percent, a

© Copyright IBM Corp. 1997, 2004 103



single-user system is not considered CPU constrained. However, if us + sy time on a multiuser system
exceeds 80 percent, the processes may spend time waiting in the run queue. Response time and
throughput might suffer.

To check if the CPU is the bottleneck, consider the four cpu columns and the two kthr (kernel threads)
columns in the vmstat report. It may also be worthwhile looking at the faults column:

* cpu
Percentage breakdown of CPU time usage during the interval. The cpu columns are as follows:
- us
The us column shows the percent of CPU time spent in user mode. A UNIX process can execute in
either user mode or system (kernel) mode. When in user mode, a process executes within its

application code and does not require kernel resources to perform computations, manage memory,
or set variables.

The sy column details the percentage of time the CPU was executing a process in system mode.
This includes CPU resource consumed by kernel processes (kprocs) and others that need access to
kernel resources. If a process needs kernel resources, it must execute a system call and is thereby
switched to system mode to make that resource available. For example, reading or writing of a file
requires kernel resources to open the file, seek a specific location, and read or write data, unless
memory mapped files are used.

- id
The id column shows the percentage of time which the CPU is idle, or waiting, without pending local
disk 1/O. If there are no threads available for execution (the run queue is empty), the system
dispatches a thread called wait, which is also known as the idle kproc. On an SMP system, one
wait thread per processor can be dispatched. The report generated by the ps command (with the -k
or -g 0 option) identifies this as kproc or wait. If the ps report shows a high aggregate time for this
thread, it means there were significant periods of time when no other thread was ready to run or
waiting to be executed on the CPU. The system was therefore mostly idle and waiting for new tasks.

- wa
The wa column details the percentage of time the CPU was idle with pending local disk I/O and
NFS-mounted disks. If there is at least one outstanding I/O to a disk when wait is running, the time
is classified as waiting for I/O. Unless asynchronous I/O is being used by the process, an I/O request
to disk causes the calling process to block (or sleep) until the request has been completed. Once an
I/0 request for a process completes, it is placed on the run queue. If the 1/Os were completing faster,
more CPU time could be used.
A wa value over 25 percent could indicate that the disk subsystem might not be balanced properly, or
it might be the result of a disk-intensive workload.

For information on the change made to wa, see [Wait I/O Time Reporting}
» kthr

Number of kernel threads in various queues averaged per second over the sampling interval. The kthr

columns are as follows:

- r
Average number of kernel threads that are runnable, which includes threads that are running and
threads that are waiting for the CPU. If this number is greater than the number of CPUs, there is at
least one thread waiting for a CPU and the more threads there are waiting for CPUs, the greater the
likelihood of a performance impact.

- b
Average number of kernel threads in the VMM wait queue per second. This includes threads that are
waiting on filesystem 1/O or threads that have been suspended due to memory load control.

If processes are suspended due to memory load control, the blocked column (b) in the vmstat report
indicates the increase in the number of threads rather than the run queue.

104 Performance Management Guide



- P
For vmstat -1 The number of threads waiting on 1/Os to raw devices per second.Threads waiting on
I/Os to filesystems would not be included here.

» faults
Information about process control, such as trap and interrupt rate. The faults columns are as follows:
— in
Number of device interrupts per second observed in the interval. Additional information can be found
in |Assessing Disk Performance with the vmstat Commandl

The number of system calls per second observed in the interval. Resources are available to user
processes through well-defined system calls. These calls instruct the kernel to perform operations for
the calling process and exchange data between the kernel and the process. Because workloads and
applications vary widely, and different calls perform different functions, it is impossible to define how
many system calls per-second are too many. But typically, when the sy column raises over 10000
calls per second on a uniprocessor, further investigations is called for (on an SMP system the
number is 10000 calls per second per processor). One reason could be "polling” subroutines like the
select() subroutine. For this column, it is advisable to have a baseline measurement that gives a
count for a normal sy value.

- ¢cs
Number of context switches per second observed in the interval. The physical CPU resource is
subdivided into logical time slices of 10 milliseconds each. Assuming a thread is scheduled for
execution, it will run until its time slice expires, until it is preempted, or until it voluntarily gives up
control of the CPU. When another thread is given control of the CPU, the context or working
environment of the previous thread must be saved and the context of the current thread must be
loaded. The operating system has a very efficient context switching procedure, so each switch is
inexpensive in terms of resources. Any significant increase in context switches, such as when cs is a
lot higher than the disk 1/0O and network packet rate, should be cause for further investigation.

The iostat command

The iostat command is the fastest way to get a first impression, whether or not the system has a disk
I/O-bound performance problem (see|Assessing Disk Performance with the iostat Command). The tool
also reports CPU statistics.

The following example shows a part of an iostat command output. The first stanza shows the summary
statistic since system startup.

# iostat -t 2 6

tty: tin tout avg-cpu: % user % Sys % idle % iowait
0.0 0.8 8.4 2.6 88.5 0.5
0.0 80.2 4.5 3.0 92.1 0.5
0.0 40.5 7.0 4.0 89.0 0.0
0.0 40.5 9.0 2.5 88.5 0.0
0.0 40.5 7.5 1.0 91.5 0.0
0.0 40.5 10.0 3.5 80.5 6.0

The CPU statistics columns (% user, % sys, % idle, and % iowait) provide a breakdown of CPU usage.
This information is also reported in the vmstat command output in the columns labeled us, sy, id, and wa.
For a detailed explanation for the values, see IThe vmstat Command[ Also note the change made to
%iowait described in |Wait I/O Time Reporting.

Chapter 11. CPU performance monitoring 105



The sar command

The sar command gathers statistical data about the system. Though it can be used to gather some useful
data regarding system performance, the sar command can increase the system load that can exacerbate
a pre-existing performance problem if the sampling frequency is high. But compared to the accounting
package, the sar command is less intrusive. The system maintains a series of system activity counters
which record various activities and provide the data that the sar command reports. The sar command
does not cause these counters to be updated or used; this is done automatically regardless of whether or
not the sar command runs. It merely extracts the data in the counters and saves it, based on the sampling
rate and number of samples specified to the sar command.

With its numerous options, the sar command provides queuing, paging, TTY, and many other statistics.
One important feature of the sar command is that it reports either system-wide (global among all
processors) CPU statistics (which are calculated as averages for values expressed as percentages, and
as sums otherwise), or it reports statistics for each individual processor. Therefore, this command is
particularly useful on SMP systems.

There are three situations to use the sar command:

Real-time sampling and display
To collect and display system statistic reports immediately, use the following command:
# sar -u 2 5

AIX aixhost 2 5 00049FDF4C00 02/21/04

18:11:12 susr %SYys swio  %idle
18:11:14 4 6 0 91
18:11:16 2 7 0 91
18:11:18 3 6 0 92
18:11:20 2 7 0 92
18:11:22 2 7 1 90
Average 2 6 0 91

This example is from a single user workstation and shows the CPU utilization.

Display previously captured data

The -o and -f options (write and read to/from user given data files) allow you to visualize the behavior of
your machine in two independent steps. This consumes less resources during the problem-reproduction
period. You can use a separate machine to analyze the data by transferring the file because the collected
binary file keeps all data the sar command needs.

# sar -o /tmp/sar.out 2 5 > /dev/null

The above command runs the sar command in the background, collects system activity data at 2-second
intervals for 5 intervals, and stores the (unformatted) sar data in the /tmp/sar.out file. The redirection of
standard output is used to avoid a screen output.

The following command extracts CPU information from the file and outputs a formatted report to standard
output:

# sar -f/tmp/sar.out

AIX aixhost 2 5 00049FDF4C00 02/21/04

18:10:18 susr %SYys %wio  %idle
18:10:20 9 2 0 88
18:10:22 13 10 0 76
18:10:24 37 4 0 59

106 Performance Management Guide



18:10:26 8 2 0 90
18:10:28 20 3 0 77

Average 18 4 0 78

The captured binary data file keeps all information needed for the reports. Every possible sar report could
therefore be investigated. This also allows to display the processor-specific information of an SMP system
on a single processor system.

System activity accounting via cron daemon

The sar command calls a process named sadc to access system data. Two shell scripts (/usr/lib/sa/sal
and /usr/lib/sa/sa2) are structured to be run by the cron daemon and provide daily statistics and reports.
Sample stanzas are included (but commented out) in the /var/spool/cron/crontabs/adm crontab file to
specify when the cron daemon should run the shell scripts.

The following lines show a modified crontab for the adm user. Only the comment characters for the data
collections were removed:

#

# SYSTEM ACTIVITY REPORTS

# 8am-5pm activity reports every 20 mins during weekdays.
# activity reports every an hour on Saturday and Sunday.
# 6pm-7am activity reports every an hour during weekdays.
# Daily summary prepared at 18:05.
#
0
0
0
5
#

8-17 * = 1-5 /usr/1ib/sa/sal 1200 3 &

x % % 0,6 /usr/Tib/sa/sal &

18-7 % % 1-5 Jusr/lib/sa/sal &

18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 3600 -ubcwyaqvm &

Collection of data in this manner is useful to characterize system usage over a period of time and to
determine peak usage hours.

Useful CPU options

The most useful CPU-related options for the sar command are:

* sar-P
The -P option reports per-processor statistics for the specified processors. By specifying the ALL
keyword, statistics for each individual processor and an average for all processors is reported. Of the
flags which specify the statistics to be reported, only the -a, -¢, -m, -u, and -w flags are meaningful with
the -P flag.

The following example shows the per-processor statistic while a CPU-bound program was running on
processor number 0:

# sar -P ALL 2 3

AIX aixsmphost 2 5 00049FDF4D0O1 02/22/04

17:30:50 cpu susr %Sys swio  %idle
17:30:52 0 8 92 0 0
1 0 4 0 96
2 0 1 0 99
3 0 0 0 100
- 2 24 0 74
17:30:54 0 12 88 0 0
1 0 3 0 97
2 0 1 0 99
3 0 0 0 100
- 3 23 0 74
17:30:56 0 11 89 0 0
1 0 3 0 97
2 0 0 0 100

Chapter 11. CPU performance monitoring 107



3 0 0 0 100

- 3 23 0 74
Average 0 10 90 0 0
1 0 4 0 96
2 0 1 0 99
3 0 0 0 100
- 3 24 0 74

The last line of every stanza, which starts with a dash (-) in the cpu column, is the average for all
processors. An average (-) line displays only if the -P ALL option is used. It is removed if processors
are specified. The last stanza, labeled with the word Average instead of a time stamp, keeps the
averages for the processor-specific rows over all stanzas.

The following example shows the vmstat output during this time:

# vmstat 2 5

kthr memory page faults cpu
r b avm fre re pi po fr sr cy in sy cs us sy id wa
0O 0 255636 16054 0 0 0O O 06 0 116 266 5 0 1 990
1 1 25573315931 © © 0O 0 0 0 476 5078135 2 27 700
1 1 255733159306 06 0 0O O 0 0 476 49437 27 2 24740
1 1 255733159306 06 6 0O O 0 0 473 4892331 3 23740
1 1 25573315930 0 © 0O ©O 0 0O 466 4938327 3 23740

The first numbered line is the summary since startup of the system. The second line reflects the start of
the sar command, and with the third row, the reports are comparable. The vmstat command can only
display the average CPU utilization over all processors. This is comparable with the dashed (-) rows
from the CPU utilization output from the sar command.

e sar-u
This displays the CPU utilization. It is the default if no other flag is specified. It shows the same
information as the CPU statistics of the vmstat or iostat commands.
During the following example, a copy command was started:
# sar -u -P ALL 1 5

AIX aixsmphost 2 5 00049FDF4D01 02/22/04

13:33:42 cpu %us wi

13:33:43 0

N

%idle
100
100
100
100
100

32

99
100
99

82

3

%Sy 0
0
0
0
0
0
0
0
0
0
0
4
0 99
0
0
1
1
0
0
0
3
3
0
0
0
3

13:33:44

[Sa i

NORONNFRF OO PRPOPRFEF NN OFROOODOOOOW

13:33:45 4
96
100
74
1
100
100
99
75
0
100
99
100
75

—

1
13:33:46 9

2
13:33:47 9

I WN RO 1 WN RO WN RO WN RO 1 WN -
[cNoNoNoNoNoNoNoNoNoNoNoNoNol pNoNoNoNol i VoNoNoNoNole ]

2

(<]
—_
N
~

Average 46 27

108 Performance Management Guide



1 0 0 0 100
2 0 1 0 99
3 0 0 0 100
- 0 7 11 81

The cp command is working on processor number 0, and the three other processors are idle. See
[I/0 Time Reporting| for more information.

¢ sar-c

The -c option shows the system call rate.

# sar -c 1 3
19:28:25 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s

19:28:26 134 36 1 0.00 0.00 2691306 1517
19:28:27 46 34 1 0.00 0.00 2716922 1531
19:28:28 46 34 1 0.00 0.00 2716922 1531
Average 75 35 1 0.00 0.00 2708329 1527

While the vmstat command shows system call rates as well, the sar command can also show if these
system calls are read(), write(), fork(), exec(), and others. Pay particular attention to the fork/s
column. If this is high, then further investigation might be needed using the accounting utilities, the trace
command, or the tprof command.

* sar -q
The -q option shows the run-queue size and the swap-queue size.
# sar -q 5 3

19:31:42 rung-sz %runocc swpg-Sz %Swpocc
19:31:47 1.0 100 1.0 100
19:31:52 2.0 100 1.0 100
19:31:57 1.0 100 1.0 100

Average 1.3 95 1.0 95

runqg-sz
The average number of threads that are runnable per second and the percentage of time that
the run queue was occupied (the % field is subject to error).

swapq-sz
The average number of threads in the VMM wait queue and the % of time that the swap queue
was occupied. (The % field is subject to error.)

The -q option can indicate whether you have too many jobs running (rung-sz) or have a potential
paging bottleneck. In a highly transactional system, for example Enterprise Resource Planning (ERP),
the run queue can be in the hundreds, because each transaction uses small amounts of CPU time. If
paging is the problem, run the vmstat command. High I/O wait indicates that there is significant
competing disk activity or excessive paging due to insufficient memory.

The xmperf program

Using the xmperf program displays CPU use as a moving skyline chart. The xmperf program is described
in detail in the Performance Toolbox Version 2 and 3 for AIX: Guide and Reference.

Use of the time command to measure CPU use

Use the time command to understand the performance characteristics of a single program and its
synchronous children. It reports the real time, that is the elapsed time from beginning to end of the
program. It also reports the amount of CPU time used by the program. The CPU time is divided into user
and sys. The user value is the time used by the program itself and any library subroutines it calls. The sys
value is the time used by system calls invoked by the program (directly or indirectly).

Chapter 11. CPU performance monitoring 109



The sum of user + sys is the total direct CPU cost of executing the program. This does not include the
CPU costs of parts of the kernel that can be said to run on behalf of the program, but which do not
actually run on its thread. For example, the cost of stealing page frames to replace the page frames taken
from the free list when the program started is not reported as part of the program’s CPU consumption.

On a uniprocessor, the difference between the real time and the total CPU time, that is:
real - (user + sys)

is the sum of all of the factors that can delay the program, plus the program’s own unattributed costs. On
an SMP, an approximation would be as follows:

real * number_of processors - (user + sys)

In approximately the order of diminishing size, the factors can be:
» 1/O required to bring in the program’s text and data

* |/O required to acquire real memory for the program’s use

« CPU time consumed by other programs

» CPU time consumed by the operating system

In the following example, the program used in the preceding section has been compiled with -O3 to make
it run more quickly. There is very little difference between the real (wall-clock) time required to run the
program and the sum of its user and system CPU times. The program is getting all the time it wants,
probably at the expense of other programs in the system.

# time looper

real 0m3.58s

user Om3.16s
Sys Om0.04s

In the next example, we run the program at a less favorable priority by adding 10 to its nice value. It takes
almost twice as long to run, but other programs are also getting a chance to do their work:

# time nice -n 10 Tooper

real 0m6.54s

user Om3.17s
Sys 0m0.03s

Note that we placed the nice command within the time command, rather than the reverse. If we had
entered

# nice -n 10 time Tooper

we would have gotten a different time command (/usr/bin/time) with a lower-precision report, rather than
the version of the time command we have been using, which is built into the ksh shell. If the time
command comes first, you get the built-in version, unless you specify the fully qualified name of
lusr/bin/time. If the time command is invoked from another command, you get /usr/bin/time.

Considerations of the time and timex commands
Take several considerations into account when you use either the time or the timex command:

* The use of the /usr/bin/time and /usr/bin/timex commands is not recommended. When possible, use
the time subcommand of the Korn or C shell.

* The timex -s command uses the sar command to acquire additional statistics. Because the sar
command is intrusive, the timex -s command is also. Especially for brief runs, the data reported by the
timex -s command may not precisely reflect the behavior of a program in an unmonitored system.

» Because of the length of the system clock tick (10 milliseconds) and the rules used by the scheduler in
attributing CPU time use to threads, the results of the time command are not completely deterministic.
Because the time is sampled, there is a certain amount of unavoidable variation between successive

110 Performance Management Guide



runs. This variation is in terms of clock ticks. The shorter the run time of the program, the larger the
variation as a percentage of the reported result (see |Accessing the Processor Timer).

* Use of the time or timex command (whether from /usr/bin or through the built-in shell time function) to
measure the user or system time of a sequence of commands connected by pipes, entered on the
command line, is not recommended. One potential problem is that syntax oversights can cause the time
command to measure only one of the commands, without any indication of a user error. The syntax is
technically correct; it just does not produce the answer that the user intended.

» Although the time command syntax did not change, its output takes on a new meaning in an SMP
environment:

On an SMP the real, or elapsed time may be smaller than the user time of a process. The user time is
now the sum of all the times spent by the threads or the process on all processors.

If a process has four threads, running it on a uniprocessor (UP) system shows that the real time is
greater than the user time:

# time 4threadedprog

real Oml1.70s

user Oml11.09s

Sys Om0.08s

Running it on a 4-way SMP system could show that the real time is only about 1/4 of the user time. The
following output shows that the multithreaded process distributed its workload on several processors
and improved its real execution time. The throughput of the system was therefore increased.

# time 4threadedprog

real 0m3.40s

user 0m9.81s
Sys Om0.09s

Identification of CPU-intensive programs

To locate the processes dominating CPU usage, there are two standard tools, the ps command and the
acctcom command. Another tool to use is the topas monitor, which is described in|Using the topas

Using the ps command

The ps command is a flexible tool for identifying the programs that are running on the system and the
resources they are using. It displays statistics and status information about processes on the system, such
as process or thread ID, I/O activity, CPU and memory utilization. In this chapter, we discuss only the
options and output fields that are relevant for CPU.

Three of the possible ps output columns report CPU use, each in a different way.

Column
Value Is:

C Recently used CPU time for the process (in units of clock ticks).
TIME Total CPU time used by the process since it started (in units of minutes and seconds).

%CPU Total CPU time used by the process since it started, divided by the elapsed time since the process
started. This is a measure of the CPU dependence of the program.

CPU intensive
The following shell script:

# ps -ef | egrep -v "STIME|$LOGNAME" | sort +3 -r | head -n 15

is a tool for focusing on the highest recently used CPU-intensive user processes in the system (the header
line has been reinserted for clarity):

Chapter 11. CPU performance monitoring 111



UID PID PPID C STIME TTY TIME CMD
mary 45742 54702 120 15:19:05 pts/29 0:02 ./looper
root 52122 1 11 15:32:33 pts/31 58:39 xhogger

root 4250 1 3 15:32:33 pts/31 26:03 xmconsole allcon
root 38812 4250 1 15:32:34 pts/31 8:58 xmconstats 0 3 30
root 27036 6864 1 15:18:35 - 0:00 rlogind
root 47418 25926 0 17:04:26 - 0:00 coelogin <d29dbms:0>
bick 37652 43538 0 16:58:40 pts/4 0:00 /bin/ksh

bick 43538 1 0 16:58:38 - 0:07 aixterm

Tuc 60062 27036 0 15:18:35 pts/18 0:00 -ksh

Recent CPU use is the fourth column (C). The looping program’s process easily heads the list. Observe
that the C value may understate the looping process’ CPU usage, because the scheduler stops counting at
120.

CPU time ratio

The ps command, run periodically, displays the CPU time under the TIME column and the ratio of CPU
time to real time under the %CPU column. Look for the processes that dominate usage. The au and v
options give similar information on user processes. The options aux and vg display both user and system
processes.

The following example is taken from a four-way SMP system:

# ps au

USER PID %CPU %MEM  SZ RSS TTY STAT STIME TIME COMMAND

root 19048 24.6 0.0 28 44 pts/1A 13:53:00 2:16 /tmp/cpubound
root 19388 0.0 0.0 372 460 pts/1 A Feb 20 0:02 -ksh

root 15348 0.0 0.0 372 460 pts/4 A Feb 20 0:01 -ksh

root 20418 0.0 0.0 368 452 pts/3 A Feb 20 0:01 -ksh

root 16178 0.0 0.0 292 364 0 A Feb 19 0:00 /usr/sbin/getty
root 16780 0.0 0.0 364 392 pts/2 A Feb 19 0:00 -ksh

root 18516 0.0 0.0 360 412 pts/0 A Feb 20 0:00 -ksh

root 15746 0.0 0.0 212 268 pts/1 A 13:55:18 0:00 ps au

The %CPU is the percentage of CPU time that has been allocated to that process since the process was
started. It is calculated as follows:

(process CPU time / process duration) * 100

Imagine two processes: The first starts and runs five seconds, but does not finish; then the second starts
and runs five seconds but does not finish. The ps command would now show 50 percent %CPU for the first
process (five seconds CPU for 10 seconds of elapsed time) and 100 percent for the second (five seconds
CPU for five seconds of elapsed time).

On an SMP, this value is divided by the number of available CPUs on the system. Looking back at the
previous example, this is the reason why the %CPU value for the cpubound process will never exceed 25,
because the example is run on a four-way processor system. The cpubound process uses 100 percent of
one processor, but the %CPU value is divided by the number of available CPUs.

The THREAD option

The ps command can display threads and the CPUs that threads or processes are bound to by using the
ps -mo THREAD command. The following is an example:

# ps -mo THREAD

USER PID  PPID TID ST CP PRI SC WCHAN F T BND COMMAND
root 20918 20660 - A O 60 1 - 240001 pts/1 -  -ksh
- - - 20005 S 0 60 1 - 400 - - -

The TID column shows the thread ID, the BND column shows processes and threads bound to a processor.

112  Performance Management Guide



It is normal to see a process named kproc (PID of 516 in operating system version 4) using CPU time.
When there are no threads that can be run during a time slice, the scheduler assigns the CPU time for
that time slice to this kernel process (kproc), which is known as the idle or wait kproc. SMP systems will
have an idle kproc for each processor.

For complete details about the ps command, see the AIX 5L Version 5.2 Commands Reference.

The acctcom command

The acctcom command displays historical data on CPU usage if the accounting system is activated.
Starting the accounting system puts a measurable overhead on the system. Therefore, activate accounting
only if absolutely needed. To activate the accounting system, do the following:

1. Create an empty accounting file:
# touch acctfile

2. Turn on accounting:
# /usr/sbin/acct/accton acctfile

3. Allow accounting to run for a while and then turn off accounting:
# /usr/sbin/acct/accton

4. Display what accounting captured, as follows:

# /usr/sbhin/acct/acctcom acctfile

COMMAND START END REAL CPU MEAN
NAME USER TTYNAME TIME TIME (SECS)  (SECS) SIZE(K)
#accton root pts/2  19:57:18 19:57:18 0.02 0.02 184.00
#ps root pts/2  19:57:19 19:57:19 0.19 0.17 35.00
#1s root pts/2  19:57:20 19:57:20 0.09 0.03 109.00
#ps root pts/2  19:57:22 19:57:22 0.19 0.17 34.00
#accton root pts/2  20:04:17 20:04:17 0.00 0.00 0.00
#who root pts/2 20:04:19 20:04:19 0.02 0.02 0.00

If you reuse the same file, you can see when the newer processes were started by looking for the accton
process (this was the process used to turn off accounting the first time).

Use of the tprof program to analyze programs for CPU use

The typical program execution is a variable mixture of application code, library subroutines, and kernel
services. Frequently, a program that has not yet been tuned is found to expend most of its CPU cycles in
a few statements or subroutines. Often these hot spots are a surprise to the programmer. They often can
be considered performance problems. Use the tprof command to pinpoint any hot spots (for additional
information see [The tprof Command). The tprof command can profile any program produced by one of the
compilers: C, C++, and FORTRAN.

To determine whether the tprof program is installed and available, run the following command:
# 1slpp -1I bos.perf.tools

The raw data for the tprof program is obtained through the trace facility (see|Analyzing Performance with|
the Trace Facility). When a program is profiled, the trace facility is activated and instructed to collect data
from the trace hook (hook ID 234) that records the contents of the Instruction Address Register when a
system-clock interrupt occurs (100 times a second per processor). Several other trace hooks are also
activated to allow the tprof program to track process and dispatch activity. The trace records are not
written to a disk file; they are written to a pipe that is read by a program that builds a table of the unique
program addresses that have been encountered and the number of times each one occurred. When the
workload being profiled is complete, the table of addresses and their occurrence counts is written to disk.
The data-reduction component of the tprof program then correlates the instruction addresses that were
encountered with the ranges of addresses occupied by the various programs and reports the distribution of
address occurrences (ticks) across the programs involved in the workload.

Chapter 11. CPU performance monitoring 113



The distribution of ticks is roughly proportional to the CPU time spent in each program (10 milliseconds per
tick). After the high-use programs have been identified, the programmer can take action to restructure their
hot spots or minimize their use.

A tprof example

The tprof command has been completely rewritten for AIX 5.2 such that now it is much faster than before
and provides more functionality. The syntax is different than the previous tprof, and you can view the
complete documentation of tprof in AIX 5L Version 5.2 Commands Reference.

The following is an example of how to collect a CPU tick profile of the version1 program using the new
tprof command, executed on a 4—way SMP system. Since this machine is a very fast running system, the
command finished in less than a second. To make this program run longer, the array size was changed to
4096 instead of 1024, which is the value of the Asize variable in version1.c:

# tprof -z -u -p versionl -x versionl

A file called versioni.prof (shown below) is created in the current directory which reports how many CPU
ticks for each of the programs running on the system while version1 was running.

Process Freq Total Kernel User  Shared Other
wait 4 5810 5810 0 0 0
./versionl 1 1672 35 1637 0 0
/usr/bin/tprof 2 15 13 0 2 0
/etc/syncd 1 2 2 0 0 0
Jusr/bin/sh 2 2 2 0 0 0
swapper 1 1 1 0 0 0
/usr/bin/trcstop 1 1 1 0 0 0
rmcd 1 1 1 0 0 0
Total 13 7504 5865 1637 2 0
Process PID TID Total Kernel User  Shared Other
wait 16392 16393 1874 1874 0 0 0
wait 12294 12295 1873 1873 0 0 0
wait 20490 20491 1860 1860 0 0 0
./versionl 245974 606263 1672 35 1637 0 0
wait 8196 8197 203 203 0 0 0
/usr/bin/tprof 291002 643291 13 13 0 0 0
/usr/bin/tprof 274580 610467 2 0 0 2 0
/etc/syncd 73824 110691 2 2 0 0 0
/usr/bin/sh 245974 606263 1 1 0 0 0
/usr/bin/sh 245976 606265 1 1 0 0 0
/usr/bin/trcstop 245976 606263 1 1 0 0 0
swapper 0 3 1 1 0 0 0
rmcd 155876 348337 1 1 0 0 0
Total 7504 5865 1637 2 0
Total Samples = 7504 Total Elapsed Time = 18.76s
Profile: ./versionl
Total Ticks For A1l Processes (./versionl) = 1637
Subroutine  Ticks % Source  Address Bytes
.main 1637 21.82 versionl.c 350 536

Profile: ./versionl
Total Ticks For ./versionl1[245974] (./versionl) = 1637

114  Performance Management Guide



Subroutine  Ticks % Source  Address Bytes

.main 1637 21.82 versionl.c 350 536

The first section of the report summarizes the results by program, regardless of the process ID. It shows
the number of different processes (Freq) that ran each program at some point.

The second section of the tprof report shows the number of ticks consumed by, or on behalf of, each
process. The program version1 used 1637 ticks itself and 35 ticks occurred in the kernel on behalf of
theversion1 process.

The third section breaks down the user ticks associated with the executable program being profiled. It
reports the number of ticks used by each function in the executable program, and the percentage of the
total run’s CPU ticks (7504) that each function’s ticks represent. Since this system’s CPUs were mostly
idle, most of the 7504 ticks are idle ticks. To see what percentage of the busy time this program took,
subtract the wait thread’s CPU ticks (these are the idle CPU ticks) from the total and then subtract that
from the total number of ticks. So, 7504-5810 gives us 1694. This is the total number of ticks for actual
work done on the system. If we divide the version1 program’s user ticks (1637) by 1694, we find that its
percentage of system busy ticks is 1637/1694*100, which is 96.6%.

Offline processing with the tprof command

The new tprof command can do offline processing of trace files, but it requires that filenames be specified
with a rootstring name. This can be whatever you want to call it. Also, there are certain suffixes required
for the input files that tprof will use. For example, the trace binary file should end in .trc. The trace binary
file does not have to be post-processed with trerpt -r any more. Also, instead of using gennames output,
you need to collect gensyms output and put this in a file called rootstring.syms.

Let us call our rootstring trace1. Then to collect a trace, we can trace using all of the hooks or at least the
following hooks:

trace -af -T 1000000 -L 10000000 -o tracel.trc -j 000,001,002,003,005,006,234,106,10C,134,139,00A,465
workload

trcoff

gensyms > tracel.syms

trcstop

trcrpt -r tracel -k -u -s -z

He o F e e HR I

This creates a trace1.prof file which gives you a CPU profile of the system while trace was running.

Use of the pprof command to measure CPU usage of kernel threads

The pprof command reports CPU usage on all kernel threads running within an interval using the trace
utility. The raw process information is saved to pprof.flow and five reports are generated. If no flags are
specified, all reports are generated.

To determine whether the pprof program is installed and available, run the following command:
# 1slpp -11 bos.perf.tools

The types of reports are as follows:

pprof.cpu
Lists all kernel level threads sorted by actual CPU time. Contains: Process Name, Process ID,
Parent Process ID, Process State at Beginning and End, Thread ID, Parent Thread ID, Actual
CPU Time, Start Time, Stop Time, Stop - Start.

Chapter 11. CPU performance monitoring 115



pprof.famcpu
Lists the information for all families (processes with a common ancestor). The Process Name and
Process ID for the family is not necessarily the ancestor. Contains: Start Time, Process Name,
Process ID, Number of Threads, Total CPU Time.

pprof.famind
Lists all processes grouped by families (processes with a common ancestor). Child process names
are indented with respect to the parent. Contains: Start Time, Stop Time, Actual CPU Time,
Process ID, Parent Process ID, Thread ID, Parent Thread ID, Process State at Beginning and
End, Level, Process Name.

pprof.namecpu
Lists information about each type of kernel thread (all executable with the same name). Contains:
Process Name, Number of Threads, CPU Time, % of Total CPU Time.

pprof.start
Lists all kernel threads sorted by start time that were dispatched during the the pprof command
interval. Contains: Process Name, Process ID, Parent Process ID, Process State Beginning and
End, Thread ID, Parent Thread ID, Actual CPU Time, Start Time, Stop Time, Stop - Start.

Following is a sample pprof.namecpu file that was generated by running the tthreads32 program, which
forks off four threads, which in turn each fork off a process of their own. These processes then execute
several ksh and sleep programs:

Pprof PROCESS NAME Report
Sorted by CPU Time

From: Thu Oct 19 17:53:07 2000
To:  Thu Oct 19 17:53:22 2000

Pname #ofThreads CPU_Time %
tthreads32 13 0.116 37.935
sh 8 0.092 30.087

Idle 2 0.055 17.987
ksh 12 0.026 8.503
trace 3 0.007 2.289
java 3 0.006 1.962
kproc 5 0.004 1.308
xmservd 1 0.000 0.000
trcstop 1 0.000 0.000
swapper 1 0.000 0.000
gil 1 0.000 0.000

1s 4 0.000 0.000
sleep 9 0.000 0.000
ps 4 0.000 0.000
syslogd 1 0.000 0.000
nfsd 2 0.000 0.000

The corresponding pprof.cpu is as follows:
Pprof CPU Report

Sorted by Actual CPU Time
From: Thu Oct 19 17:53:07 2000
To:  Thu Oct 19 17:53:22 2000

E
X

Exec'd F
Exited A

Forked
Alive (when traced started or stopped)

116  Performance Management Guide



C = Thread Created

Idle
tthreads32
sh

sh

sh

ksh
tthreads32
tthreads32
tthreads32
ksh
tthreads32
tthreads32
tthreads32
tthreads32
tthreads32
trace
kproc

Idle

java

java

trace

sh

trace

ksh

kproc

ps
tthreads32
sh

ps

sh
tthreads32
1s

5490
11396
14106
13792

5490

5490

5490
14506
11982
13792

5490
11396

5490
14106

5488

1548

516
11612
11612
12544
14506
12544

4930

6478
14108
13794
13794
13794
14108
14108
13792

BE TID

AA 775 0 0.052
EX 18161 22435 0.040
EE 21917 5093 0.035
EE 16999 18867 0.028
EE 20777 18179 0.028
FE 18161 22435 0.016
CX 5093 18161 0.011
CX 18179 18161 0.010
FE 17239 10133 0.010
AA 22435 0 0.010
FE 20777 18179 0.010
CX 18867 18161 0.010
FE 21917 5093 0.009
CX 10133 18161 0.008
FE 16999 18867 0.008
AX 18159 0 0.006
AA 2065 0 0.004
AA 517 0 0.003
AA 14965 0 0.003
AA 14707 0 0.003
AA 20507 0 0.001
EE 17239 10133 0.001
CA 19297 20507 0.000
AA 5963 0 0.000
AA 3133 0 0.000
EX 17001 18867 0.000
FE 20779 18179 0.000
EE 20779 18179 0.000
EX 20779 18179 0.000
EE 17001 18867 0.000
FE 17001 18867 0.000
EX 20777 18179 0.000

[cNoNoRoNoNoNoNoNoNolooNoNoNoRoNololoNoNoNoRoNoNoNoNoNoNolNoNo o]
e e e e e e & s s e e e e e e e e e e

.000
.143
.001
.154
.154
.154
.154
.154
.154
.154
.154
.154

[cNoNoRoNoNoNoNoNoNoRoNoloNoloNoNoNoNoNoNooNoNloNoNoNoNoNoNoNoNol

PTID ACC_time STT_time STP_time

STP-

[cNoNoRoNoNoNoNoNoNoloNoloNoNoRoNololoNoNoNoRoNoNoNoNoNoNolNoNo Nl
e e e e e s s e e e e e s e e e e e e e e e e e e e e .

STT

.000
.000
.000
.000

Detection of instruction emulation with the emstat tool

To maintain compatibility with older binaries, the AIX kernel includes emulation routines that provide
support for instructions that might not be included in a particular chip architecture. Attempting to execute a

non-supported instruction results in an illegal instruction exception. The kernel decodes the illegal

instruction, and if it is a non-supported instruction, the kernel runs an emulation routine that functionally
emulates the instruction.

However, depending upon the execution frequency of non-supported instructions and the their emulation
path lengths, emulation can result in varying degrees of performance degradation due to kernel context
switch and instruction emulation overhead. Even a very small percentage of emulation might result in a big

performance difference. The following table shows estimated instruction path lengths for several of the

non-supported instructions:

Instruction Emulated in Estimated Path Length (instructions)
abs assembler 117
doz assembler 120
mul assembler 127
rimi C 425

Chapter 11. CPU performance monitoring

117



Instruction Emulated in Estimated Path Length (instructions)
sle C 447

clf C 542

div C 1079

Instructions that are not common on all platforms must be removed from code written in assembler,
because recompilation is only effective for high-level source code. Routines coded in assembler must be
changed so that they do not use missing instructions, because recompilation has no effect in this case.

The first step is to determine if instruction emulation is occurring by using the emstat tool.

To determine whether the emstat program is installed and available, run the following command:
# 1slpp -1I bos.perf.tools

The emstat command works similarly to the vmstat command in that you specify an interval time in
seconds, and optionally, the number of intervals. The value in the first column is the cumulative count
since system boot, while the value in the second column is the number of instructions emulated during that
interval. Emulations on the order of many thousands per second can have an impact on performance.

The following is an example of output from issuing the emstat 1 command:
# emstat 1

Emulation Emulation

SinceBoot Delta
0 0
0 0
0 0

Once emulation has been detected, the next step is to determine which application is emulating
instructions. This is much harder to determine. One way is to run only one application at a time and
monitor it with the emstat program. Sometimes certain emulations cause a trace hook to be encountered.
This can be viewed in the ASCII trace report file with the words PROGRAM CHECK. The process/thread
associated with this trace event is emulating instructions either due to its own code emulating instructions,
or it is executing library or code in other modules that are emulating instructions.

Detection of alignment exceptions with the alstat tool

AIX compilers perform natural alignment of data types. For example, data of type short, which is 2 bytes
long, is padded automatically to 4 bytes by the compiler. Common programming practices such as
typecasting and usage of alignment pragmas can cause application data to be aligned incorrectly.
POWER-based optimization assumes correct alignment of data. Thus, fetching misaligned data may
require multiple memory accesses where a single access should have sufficed. Misalignment of data can
cause the hardware to generate an alignment exception, which would force the kernel to simulate the
needed memory accesses. As with the case of instrution emulation, this can degrade application
performance.

The alstat tool packaged with bos.perf.tools can be used to detect if alignment exceptions are occurring.
To show alignment exceptions on a per-CPU basis, use the -v option.

Because alstat and emstat are the same binary, either of these tools can be used to sho instruction
emulation and alignment exceptions. To show instruction emulation, use the -e option on alstat. To show
alignment exceptions, use the -a option on emstat.

The output for alstat looks similar to the following:

118 Performance Management Guide



# alstat -e 1
Alignment Alignment Emulation Emulation

SinceBoot Delta SinceBoot Delta
0 0 0 0
0 0 0 0
0 0 0 0

Restructure of executable programs with the fdpr program

The fdpr (feedback-directed program restructuring) program optimizes executable modules for faster
execution and more efficient use of real memory. To determine whether the fdpr program is installed and
available on your system, run the following command:

# 1slpp -11 perfagent.tools

The fdpr command is a performance-tuning utility that can improve both performance and real memory
utilization of user-level application programs. The source code is not necessary as input to the fdpr
program. However, stripped executable programs are not supported. If source code is available, programs
built with the -qfdpr compiler flag contain information to assist the fdpr program in producing reordered
programs with guaranteed functionality. If the -qfdpr flag is used, it should be used for all object modules
in a program. Static linking will not enhance performance if the -gfdpr flag is used.

The fdpr tool reorders the instructions in an executable program to improve instruction cache, Translation
Lookaside Buffer (TLB), and real memory utilization by doing the following:

» Packing together highly executed code sequences (as determined through profiling)
» Recoding conditional branches to improve hardware branch prediction
* Moving infrequently executed code out of line

For example, given an "if-then-else” statement, the fdpr program might conclude that the program uses
the else branch more often than the if branch. It will then reverse the condition and the two branches as
shown in the following figure.

if (condition) if (! condition)
then ‘ then

instructions would become other instructions
else else

other instructions instruction

endif endif

Figure 16. Example of Conditional Branch Recoding. The illustration shows how conditional branch recoding changes
certain code. For example, the code If (condition) would become If (I condition); the code then stays then; instructions
becomes other instructions; else stays else; other instructions become instruction; and endif stays endif.

Large applications (larger than 5 MB) that are CPU-bound can improve execution time up to 23 percent,
but typically the performance is improved between 5 and 20 percent. The reduction of real memory
requirements for text pages for this type of program can reach 70 percent. The average is between 20 and
50 percent. The numbers depend on the application’s behavior and the optimization options issued when
using the fdpr program.

The fdpr processing takes place in three stages:
1. The executable module to be optimized is instrumented to allow detailed performance-data collection.

2. The instrumented executable module is run in a workload provided by the user, and performance data
from that run is recorded.

3. The performance data is used to drive a performance-optimization process that results in a
restructured executable module that should perform the workload that exercised the instrumented

Chapter 11. CPU performance monitoring 119



executable program more efficiently. It is critically important that the workload used to drive the fdpr
program closely match the actual use of the program. The performance of the restructured executable
program with workloads that differ substantially from that used to drive the fdpr program is
unpredictable, but can be worse than that of the original executable program.

As an example, the command
# fdpr -p ProgramName -R3 -x test.sh

would use the testcase test.sh to run an instrumented form of program ProgramName. The output of that
run would be used to perform the most aggressive optimization (-R3) of the program to form a new
module called, by default, ProgramName.fdpr. The degree to which the optimized executable program
performed better in production than its unoptimized predecessor would depend largely on the degree to
which the testcase test.sh successfully imitated the production workload.

Note: The fdpr program incorporates advanced optimization algorithms that sometimes result in optimized
executable programs that do not function in the same way as the original executable module. It is
absolutely essential that any optimized executable program be thoroughly tested before being used
in any production situation; that is, before its output is trusted.

In summary, users of the fdpr program should adhere to the following:

» Take pains to use a workload to drive the fdpr program that is representative of the intended use.
» Thoroughly test the functioning of the resulting restructured executable program.

» Use the restructured executable program only on the workload for which it has been tuned.

Controlling contention for the CPU

Although the AIX kernel dispatches threads to the various processors, most of the system management
tools refer to the process in which the thread is running rather than the thread itself.

Controlling the priority of user processes

User-process priorities can be manipulated using the nice or renice command or the setpri() subroutine,
and displayed with the ps command. An overview of priority is provided in [Process and Thread Priority]

Priority calculation is employed to accomplish the following:

» Share the CPU among threads

* Prevent starvation of any thread

* Penalize compute-bound threads

* Increase continuous discrimination between threads over time

Running a command with the nice command

Any user can run a command at a less-favorable-than-normal priority by using the nice command. Only
the root user can use the nice command to run commands at a more-favorable-than-normal priority. In this
case, the nice command values range between -20 and 19.

With the nice command, the user specifies a value to be added to or subtracted from the standard nice
value. The modified nice value is used for the process that runs the specified command. The priority of
the process is still non-fixed; that is, the priority value is still recalculated periodically based on the CPU
usage, nice value, and minimum user-process-priority value.

The standard nice value of a foreground process is 20 (24 for a ksh background process). The following
command would cause the vmstat command to be run in the foreground with a nice value of 25 (instead
of the standard 20), resulting in a less favorable priority.

# nice -n 5 vmstat 10 3 > vmstat.out

120 Performance Management Guide



If you use the root login, the vmstat command can be run at a more favorable priority with the following:
# nice -n -5 vmstat 10 3 > vmstat.out

If you were not using root login and issued the preceding example nice command, the vmstat command
would still be run but at the standard nice value of 20, and the nice command would not issue any error
message.

Setting a fixed priority with the setpri subroutine
An application that runs under the root user ID can use the setpri() subroutine to set its own priority or
that of another process. For example:

retcode = setpri(0,59);
would give the current process a fixed priority of 59. If the setpri() subroutine fails, it returns -1.

The following program accepts a priority value and a list of process IDs and sets the priority of all of the
processes to the specified value.

/*

fixprocpri.c

Usage: fixprocpri priority PID . . .
*/

#include <sys/sched.h>
#include <stdio.h>
#include <sys/errno.h>

main(int argc,char *xargv)
{

pid_t ProcessID;

int Priority,ReturnP;

if( argc <3 ) {
printf(" usage - setpri priority pid(s) \n");
exit(1);

}

argv+t;

Priority=atoi(*argv++);

if ( Priority < 50 ) {
printf(" Priority must be >= 50 \n");
exit(1);

1

while (*argv) {
ProcessID=atoi (*argv++);
ReturnP = setpri(ProcessID, Priority);
if ( ReturnP > 0 )
printf("pid=%d new pri=%d old pri=%d\n",
(int)ProcessID,Priority,ReturnP);
else {
perror(" setpri failed ");
exit(1);
}
1
1

Displaying process priority with the ps command

The -I (lowercase L) flag of the ps command displays the nice values and current priority values of the
specified processes. For example, you can display the priorities of all of the processes owned by a given
user with the following:

Chapter 11. CPU performance monitoring 121



# ps -lu userl

F S UID PID PPID C PRI NI ADDR \YA WCHAN TTY TIME CMD
241801 S 200 7032 7286 O 60 20 lb4c 108 pts/2 0:00 ksh
200801 S 200 7568 7032 O 70 25 2310 88 5910a58 pts/2 0:00 vmstat
241801 S 200 8544 6494 0 60 20 154b 108 pts/0 0:00 ksh

The output shows the result of the nice -n 5 command described previously. Process 7568 has an inferior
priority of 70. (The ps command was run by a separate session in superuser mode, hence the presence of
two TTYs.)

If one of the processes had used the setpri(10758, 59) subroutine to give itself a fixed priority, a sample
ps -l output would be as follows:

F SUID PID PPID C PRI NI ADDR \YA WCHAN TTY TIME CMD
200903 S 0 10758 10500 O 59 -- 3438 40 4f91f98 pts/0 0:00 fixpri

Modifying the priority with the renice command

The renice command alters the nice value, and thus the priority, of one or more processes that are
already running. The processes are identified either by process ID, process group ID, or the name of the
user who owns the processes.

The renice command cannot be used on fixed-priority processes. A non-root user can specify a value to
be added to, but not subtracted from the nice value of one or more running processes. The modification is
done to the nice values of the processes. The priority of these processes is still non-fixed. Only the root
user can use the renice command to alter the priority value within the range of -20 to 20, or subtract from
the nice value of one or more running processes.

To continue the example, use the renice command to alter the nice value of the vmstat process that you
started with nice.

# renice -n -5 7568
# ps -Tu userl

F S UID PID PPID C PRI NI ADDR \YA WCHAN TTY TIME CMD
241801 S 200 7032 7286 O 60 20 lb4c 108 pts/2 0:00 ksh
200801 S 200 7568 7032 O 60 20 2310 92 5910a58 pts/2 0:00 vmstat
241801 S 200 8544 6494 0 60 20 154b 108 pts/0 0:00 ksh

Now the process is running at a more favorable priority that is equal to the other foreground processes. To
undo the effects of this, you could issue the following:

# renice -n 5 7569
# ps -Tu userl

F S UID PID PPID C PRI NI ADDR \YA WCHAN TTY TIME CMD
241801 S 200 7032 7286 O 60 20 lbdc 108 pts/2 0:00 ksh
200801 S 200 7568 7032 1 70 25 2310 92 5910a58 pts/2 0:00 vmstat
241801 S 200 8544 6494 0 60 20 154b 108 pts/0 0:00 ksh

In these examples, the renice command was run by the root user. When run by an ordinary user ID, there
are two major limitations to the use of the renice command:

* Only processes owned by that user ID can be specified.

* The nice value of the process cannot be decreased, not even to return the process to the default
priority after making its priority less favorable with the renice command.

Clarification of the nice and renice command syntax

The nice and renice commands have different ways of specifying the amount that is to be added to the
standard nice value of 20.

Command Command Resulting nice Value Best Priority Value

nice -n 5 renice -n 5 25 70

122 Performance Management Guide



nice -n +5 renice -n +5 25 70

nice -n -5 renice -n -5 15 55

Thread-Priority-Value calculation
This section discusses tuning using the following:
+ [Priority Calculation|

* The |schedo| command

The schedo command allows you to change some of the CPU scheduler parameters used to calculate the
priority value for each thread. See |Process and Thread Priority| for background information on priority.

To determine whether the schedo program is installed and available, run the following command:
# 1slpp -1I bos.perf.tune

Priority calculation
The formula for calculating the priority value is:

priority value = base priority + nice penalty + (CPU penalty based on recent CPU usage)

The recent CPU usage value of a given thread is incremented by 1 each time that thread is in control of
the CPU when the timer interrupt occurs (every 10 milliseconds). The recent CPU usage value is
displayed as the C column in the ps command output. The maximum value of recent CPU usage is 120.

The default algorithm calculates the CPU penalty by dividing recent CPU usage by 2. The
CPU-penalty-to-recent-CPU-usage ratio is therefore 0.5. This ratio is controlled by a value called R (the
default is 16). The formula is as follows:

CPU_penalty = C * R/32

Once a second, the default algorithm divides the recent CPU usage value of every thread by 2. The
recent-CPU-usage-decay factor is therefore 0.5. This factor is controlled by a value called D (the default is
16). The formula is as follows:

C=2C=D/32

The algorithm for calculating priority value uses the nice value of the process to determine the priority of
the threads in the process. As the units of CPU time increase, the priority decreases with the nice effect.
Using schedo -r -d can give additional control over the priority calculation by setting new values for R and
D. See[‘The schedo command’|for further information.

Begin with the following equation:

p_nice = base priority + nice value

Now use the following formula:

If p_nice > 60,
then x_nice =
else x_nice =

(p_nice * 2) - 60,
p_nice.

If the nice value is greater than 20, then it has double the impact on the priority value than if it was less
than or equal to 20. The new priority calculation (ignoring integer truncation) is as follows:

priority value = x_nice + [(x_nice + 4)/64 % Cx(R/32)]

The schedo command
Tuning is accomplished through two options of the schedo command: sched_R and sched_D. Each
option specifies a parameter that is an integer from 0 through 32. The parameters are applied by

Chapter 11. CPU performance monitoring 123



multiplying by the parameter’s value and then dividing by 32. The default R and D values are 16, which
yields the same behavior as the original algorithm [(D=R=16)/32=0.5]. The new range of values permits a
far wider spectrum of behaviors. For example:

# schedo -0 sched R=0

[(R=0)/32=0, (D=16)/32=0.5] would mean that the CPU penalty was always 0, making priority a function of
the nice value only. No background process would get any CPU time unless there were no dispatchable
foreground processes at all. The priority values of the threads would effectively be constant, although they
would not technically be fixed-priority threads.

# schedo -o sched_R=b

[(R=5)/32=0.15625, (D=16)/32=0.5] would mean that a foreground process would never have to compete
with a background process started with the command nice -n 10. The limit of 120 CPU time slices
accumulated would mean that the maximum CPU penalty for the foreground process would be 18.

# schedo -o sched_R=6 -o sched_D=16

[(R=6)/32=0.1875, (D=16)/32=0.5] would mean that, if the background process were started with the
command nice -n 10, it would be at least one second before the background process began to receive
any CPU time. Foreground processes, however, would still be distinguishable on the basis of CPU usage.
Long-running foreground processes that should probably be in the background would ultimately
accumulate enough CPU usage to keep them from interfering with the true foreground.

# schedo -o sched R=32 -0 sched D=32

[(R=32)/32=1, (D=32)/32=1] would mean that long-running threads would reach a C value of 120 and
remain there, contending on the basis of their nice values. New threads would have priority, regardless of
their nice value, until they had accumulated enough time slices to bring them within the priority value
range of the existing threads.

Here are some guidelines for R and D:

* Smaller values of R narrow the priority range and make the nice value have more of an impact on the
priority.

» Larger values of R widen the priority range and make the nice value have less of an impact on the
priority.

* Smaller values of D decay CPU usage at a faster rate and can cause CPU-intensive threads to be
scheduled sooner.

» Larger values of D decay CPU usage at a slower rate and penalize CPU-intensive threads more (thus
favoring interactive-type threads).

Example of a priority calculation
The example shows R=4 and D=31 and assumes no other runnable threads:

current_effective_priority
base process priority
nice value
count (time slices consumed)
(schedo -o sched R)

time 0 p=140+20+ (0 *4/32) = 60
time 10 ms p=140+20+ (1 =*4/32) = 60
time 20 ms p=140+20+ (2 =*4/32) = 60
time 30 ms p=140+20+ (3 *4/32) = 60
time 40 ms p =40 +20+ (4 *4/32) = 60
time 50 ms p=140+20+ (5 =*4/32) = 60
time 60 ms p=140+20+ (6 *4/32) = 60
time 70 ms p=140+20+ (7 =*4/32) = 60
time 80 ms p=140+20+ (8 *4/32) = 61
time 90 ms p =140 +20+ (9 =*x4/32) = 61
time 100ms p =140+ 20 + (10 * 4/32) = 61

124  Performance Management Guide



(skipping forward to 1000msec or 1 second)

time 1000ms p =40 + 20 + (100 = 4/32) = 72
time 1000ms swapper recalculates the accumulated CPU usage counts of
all processes. For the above process:
new_CPU_usage = 100 * 31/32 = 96 (if d=31)
after decaying by the swapper: p = 40 + 20 + ( 96 * 4/32) = 72
(if d=16, then p = 40 + 20 + (100/2 * 4/32) = 66)
= +

+

time 1010ms p=140+20+ (97 * 4/32) = 72
time 1020ms p =40 +20 + (98 x 4/32) = 72
time 1030ms p=140+20+ (99 = 4/32) = 72
time 1230ms p =40+ 20 + (119 = 4/32) = 74
time 1240ms p =40 + 20 + (120 = 4/32) = 75 count <= 120
time 1250ms p =40 + 20 + (120 = 4/32) = 75
time 1260ms p =40 + 20 + (120 = 4/32) = 75

time 2000ms p =40 + 20 + (120 = 4/32) = 75

time 2000ms swapper recalculates the counts of all processes.
For above process 120 * 31/32 = 116

time 2010ms p =40 + 20 + (117 = 4/32) = 74

Modification of the scheduler time slice with the schedo command

The length of the scheduler time slice can be modified with the schedo command. To change the time
slice, use the schedo -o timeslice=value option.

The value of -t is the number of ticks for the time slice and only SCHED_RR threads will use the
nondefault time slice value (see [Scheduling Policy for Threads| for a description of fixed priority threads).

Changing the time slice takes effect instantly and does not require a reboot.

A thread running with SCHED_OTHER or SCHED_RR scheduling policy can use the CPU for up to a full
time slice (the default time slice being 1 clock tick), a clock tick being 10 ms.

In some situations, too much context switching is occurring and the overhead of dispatching threads can
be more costly than allowing these threads to run for a longer time slice. In these cases, increasing the
time slice might have a positive impact on the performance of fixed-priority threads. Use the vmstat and
sar commands for determining the number of context switches per second.

In an environment in which the length of the time slice has been increased, some applications might not
need or should not have the full time slice. These applications can give up the processor explicitly with the
yield() system call (as can programs in an unmodified environment). After a yield() call, the calling thread
is moved to the end of the dispatch queue for its priority level.

CPU-efficient user id administration with the mkpasswd command

To improve login response time and conserve CPU time in systems with many users, the operating system
can use a indexed version of the /etc/passwd file to look up user IDs. When this facility is used, the
letc/passwd file still exists, but is not used in normal processing. The indexed versions of the file are built
by the mkpasswd command. If the indexed versions are not current, login processing reverts to a slow,
CPU-intensive sequential search through /etc/passwd.

The command to create indexed password files is mkpasswd -f. This command creates indexed versions
of /etc/passwd, /etc/security/passwd, and /etc/security/lastlog. The files created are
letc/passwd.nm.idx, /etc/passwd.id.idx, /etc/security/passwd.idx, and /etc/security/lastlog.idx. Note
that this will greatly enhance performance of applications that also need the encrypted password (such as
login and any other program that needs to do password authentication).

Chapter 11. CPU performance monitoring 125



Applications can also be changed to use alternative routines such as _getpwent() instead of getpwent(),
_getpwnam_shadow(name,0) instead of getpwnam(name), or _getpwuid_shadow(uid,0) instead of
getpwuid(uid) to do name/ID resolution in cases where the encrypted password is not needed. This
prevents a lookup of /etc/security/passwd.

Do not edit the password files by hand because the time stamps of the database files (.idx) will not be in
sync and the default lookup method (linear) will be used. If the passwd, mkuser, chuser, rmuser
commands (or the SMIT command equivalents, with fast paths of the same name) are used to administer
user IDs, the indexed files are kept up to date automatically. If the /etc/passwd file is changed with an
editor or with the pwdadm command, the index files must be rebuilt.

Note: The mkpasswd command does not affect NIS, DCE, or LDAP user databases.

126 Performance Management Guide



Chapter 12. Memory performance

The memory of a system is almost constantly filled to capacity. Even if currently running programs do not
consume all available memory, the operating system retains in memory the text pages of programs that
ran earlier and the files that they used. There is no cost associated with this retention, because the
memory would have been unused anyway. In many cases, the programs or files will be used again, which
reduces disk 1/0.

This topic describes how memory use can be measured and modified. It contains the following major
sections:

.

* [Memory-leaking programs|

* [Memory requirements assessment with the rmss command|
+ [VMM memory load control tuning with the schedo command|
* |VMM page replacement tuningj

. ‘Paging-space threshold tuning]

+ |Page space allocation|

* |Shared memoryj
+ |AIX memory affinity suppor

Readers who are not familiar with the operating system’s virtual-memory management may want to look at
|Performance overview of the Virtual Memory Manager (VMM)| before continuing.

Memory usage

Several performance tools provide memory usage reports. The reports of most interest are from the
vmstat, ps, and svmon commands.

Memory usage determination with the vmstat command

The vmstat command summarizes the total active virtual memory used by all of the processes in the
system, as well as the number of real-memory page frames on the free list. Active virtual memory is
defined as the number of virtual-memory working segment pages that have actually been touched. For a
more detailed definition, see |Late page space allocationl This number can be larger than the number of
real page frames in the machine, because some of the active virtual-memory pages may have been
written out to paging space.

When determining if a system might be short on memory or if some memory tuning needs to be done, run
the vmstat command over a set interval and examine the pi and po columns on the resulting report.
These columns indicate the number of paging space page-ins per second and the number of paging space
page-outs per second. If the values are constantly non-zero, there might be a memory bottleneck. Having
occasional non-zero values is not be a concern because paging is the main principle of virtual memory.

# vmstat 2 10

kthr memory page faults cpu

r b avwm fre re pi po fr sr cy in sy cs us sy id wa
1 3113726 124 0 14 6 151 600 0O 521 5533 816 23 13 7 57
0 3113643 346 0 2 14 208 690 0 585 2201 866 16 9 2 73
0 3113659 135 © 2 2108 323 0 516 1563 797 25 7 2 66
0 2 113661 122 © 3 2120 375 0 527 1622 871 13 7 279
0 3113662 128 0 10 3 134 432 0 644 1434 948 22 7 4 67
1 5113858 238 0 35 1 146 422 0 599 5103 903 40 16 0 44
0 3113969 127 © 5 10 153 529 0 565 2006 823 19 8 3 70

© Copyright IBM Corp. 1997, 2004 127



0 3
0 3
0 4

113983 125 0 33 5153 424 0 559 2165 921 25 8 4 63
113682 121 © 20 9 154 470 0 608 1569 1007 15 8 0 77
113701 124 0 3 29 228 635 0O 674 1730 1086 18 9 0 73

In the example output above, notice the high I/O wait in the output and also the number of threads on the
blocked queue. Other I/O activities might cause I/O wait, but in this particular case, the I/O wait is most
likely due to the paging in and out from paging space.

To see if the system has performance problems with its VMM, examine the columns under memory and

page:

* memory
Provides information about the real and virtual memory.

avm

The Active Virtual Memory, avm, column represents the number of active virtual memory pages
present at the time the vmstat sample was collected. The deferred page space policy is the default
policy. Under this policy, the value for avm might be higher than the number of paging space pages
used. The avm statistics do not include file pages.

fre

The fre column shows the average number of free memory pages. A page is a 4 KB area of real
memory. The system maintains a buffer of memory pages, called the free list, that will be readily
accessible when the VMM needs space. The minimum number of pages that the VMM keeps on the
free list is determined by the minfree parameter of the vmtune command. For more details, see
[VMM page replacement tuning with the vmtune command|

When an application terminates, all of its working pages are immediately returned to the free list. Its
persistent pages, or files, however, remain in RAM and are not added back to the free list until they
are stolen by the VMM for other programs. Persistent pages are also freed if the corresponding file is
deleted.

For this reason, the fre value may not indicate all the real memory that can be readily available for
use by processes. If a page frame is needed, then persistent pages related to terminated
applications are among the first to be handed over to another program.

If the fre value is substantially above the maxfree value, it is unlikely that the system is thrashing.
Thrashing means that the system is continuously paging in and out. However, if the system is
experiencing thrashing, you can be assured that the fre value will be small.

* page
Information about page faults and paging activity. These are averaged over the interval and given in
units per second.

128

re

Note: This column is currently not supported.

pi

The pi column details the number of pages paged in from paging space. Paging space is the part of
virtual memory that resides on disk. It is used as an overflow when memory is over committed.
Paging space consists of logical volumes dedicated to the storage of working set pages that have
been stolen from real memory. When a stolen page is referenced by the process, a page fault
occurs, and the page must be read into memory from paging space.

Due to the variety of configurations of hardware, software and applications, there is no absolute
number to look out for. This field is important as a key indicator of paging-space activity. If a page-in
occurs, there must have been a previous page-out for that page. It is also likely in a
memory-constrained environment that each page-in will force a different page to be stolen and,
therefore, paged out.

po

Performance Management Guide



The po column shows the number (rate) of pages paged out to paging space. Whenever a page of
working storage is stolen, it is written to paging space, if it does not yet reside in paging space or if it
was modified. If not referenced again, it will remain on the paging device until the process terminates
or disclaims the space. Subsequent references to addresses contained within the faulted-out pages
results in page faults, and the pages are paged in individually by the system. When a process
terminates normally, any paging space allocated to that process is freed. If the system is reading in a
significant number of persistent pages, you might see an increase in po without corresponding
increases in pi. This does not necessarily indicate thrashing, but may warrant investigation into
data-access patterns of the applications.

- fr

Number of pages that were freed per second by the page-replacement algorithm during the interval.
As the VMM page-replacement routine scans the Page Frame Table, or PFT, it uses criteria to select
which pages are to be stolen to replenish the free list of available memory frames. The criteria
include both kinds of pages, working (computational) and file (persistent) pages. Just because a
page has been freed, it does not mean that any 1/O has taken place. For example, if a persistent
storage (file) page has not been modified, it will not be written back to the disk. If I/O is not
necessary, minimal system resources are required to free a page.

- Sr

Number of pages that were examined per second by the page-replacement algorithm during the
interval. The page-replacement algorithm might have to scan many page frames before it can steal
enough to satisfy the page-replacement thresholds. The higher the sr value compared to the fr
value, the harder it is for the page-replacement algorithm to find eligible pages to steal.

Number of cycles per second of the clock algorithm. The VMM uses a technique known as the clock
algorithm to select pages to be replaced. This technique takes advantage of a referenced bit for

each page as an indication of what pages have been recently used (referenced). When the
page-stealer routine is called, it cycles through the PFT, examining each page’s referenced bit.

The cy column shows how many times per second the page-replacement code has scanned the
PFT. Because the free list can be replenished without a complete scan of the PFT and because all of
the vmstat fields are reported as integers, this field is usually zero.

One way to determine the appropriate amount of RAM for a system is to look at the largest value for avm
as reported by the vmstat command. Multiply that by 4 K to get the number of bytes and then compare
that to the number of bytes of RAM on the system. Ideally, avm should be smaller than total RAM. If not,
some amount of virtual memory paging will occur. How much paging occurs will depend on the difference
between the two values. Remember, the idea of virtual memory is that it gives us the capability of
addressing more memory than we have (some of the memory is in RAM and the rest is in paging space).
But if there is far more virtual memory than real memory, this could cause excessive paging which then
results in delays. If avm is lower than RAM, then paging-space paging could be caused by RAM being filled
up with file pages. In that case, tuning the minperm,maxperm, and maxclient values could reduce the
amount of paging-space paging. Refer to VMM page replacement tuning with the vmo command|for more
information.

The vmstat -| command

The vmstat - command displays additional information, such as file pages in per-second, file pages out
per-second which means any VMM page-ins and page-outs that are not paging space page-ins or paging
space page-outs. The re and cy columns are not reported with this flag.

The vmstat -s command

The summary option, -s, sends a summary report to standard output starting from system initialization
expressed in absolute counts rather than on an interval basis. The recommended way of using these
statistics is to run this command before a workload, save the output, and then run it again after the

Chapter 12. Memory performance 129



workload and save its output. The next step is to determine the difference between the two sets of output.
An awk script called vmstatit that does this automatically is provided in [Determining whether the problem|
lis related to disk or memory|

# vmstat -s
3231543 total address trans. faults
63623 page ins
383540 page outs
149 paging space page ins
832 paging space page outs
0 total reclaims
807729 zero filled pages faults
4450 executable filled pages faults
429258 pages examined by clock
8 revolutions of the clock hand
175846 pages freed by the clock
18975 backtracks
0 lock misses
40 free frame waits
0 extend XPT waits
16984 pending I/0 waits
186443 start I/0s
186443 iodones
141695229 cpu context switches
317690215 device interrupts
0 software interrupts
0 traps
55102397 syscalls

The page-in and page-out numbers in the summary represent virtual memory activity to page in or out
pages from page space and file space. The paging space ins and outs are representative of only page
space.

Memory usage determination with the ps command

The ps command can also be used to monitor memory usage of individual processes. The ps v PID
command provides the most comprehensive report on memory-related statistics for an individual process,
such as:

* Page faults

» Size of working segment that has been touched

» Size of working segment and code segment in memory
» Size of text segment

» Size of resident set

» Percentage of real memory used by this process

The following is an example:

#ps v
PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
36626 pts/3 A 0:00 0 316 408 32768 51 60 0.0 0.0 ps v

The most important columns on the resulting ps report are described as follows:

PGIN Number of page-ins caused by page faults. Since all I/O is classified as page faults, this is
basically a measure of 1/0 volume.

SIZE Virtual size (in paging space) in kilobytes of the data section of the process (displayed as SZ by
other flags). This number is equal to the number of working segment pages of the process that
have been touched times 4. If some working segment pages are currently paged out, this number
is larger than the amount of real memory being used. SIZE includes pages in the private segment
and the shared-library data segment of the process.

130 Performance Management Guide



RSS Real-memory (resident set) size in kilobytes of the process. This number is equal to the sum of
the number of working segment and code segment pages in memory times 4. Remember that
code segment pages are shared among all of the currently running instances of the program. If 26
ksh processes are running, only one copy of any given page of the ksh executable program
would be in memory, but the ps command would report that code segment size as part of the RSS
of each instance of the ksh program.

TSIZ Size of text (shared-program) image. This is the size of the text section of the executable file.
Pages of the text section of the executable program are only brought into memory when they are
touched, that is, branched to or loaded from. This number represents only an upper bound on the
amount of text that could be loaded. The TSIZ value does not reflect actual memory usage. This
TSIZ value can also be seen by executing the dump -ov command against an executable
program (for example, dump -ov /usr/bin/ls).

TRS  Size of the resident set (real memory) of text. This is the number of code segment pages times 4.
This number exaggerates memory use for programs of which multiple instances are running. The
TRS value can be higher than the TSIZ value because other pages may be included in the code
segment such as the XCOFF header and the loader section.

%MEM
Calculated as the sum of the number of working segment and code segment pages in memory
times 4 (that is, the RSS value), divided by the size of the real memory of the machine in KB,
times 100, rounded to the nearest full percentage point. This value attempts to convey the
percentage of real memory being used by the process. Unfortunately, like RSS, it tends the
exaggerate the cost of a process that is sharing program text with other processes. Further, the
rounding to the nearest percentage point causes all of the processes in the system that have RSS
values under 0.005 times real memory size to have a %MEM of 0.0.

Note: The ps command does not indicate memory consumed by shared memory segments or
memory-mapped segments. Because many applications use shared memory or memory-mapped
segments, the svmon command is a better tool to view the memory usage of these segments.

The svmon command

The svmon command provides a more in-depth analysis of memory usage. It is more informative, but also
more intrusive, than the vmstat and ps commands. The svmon command captures a snapshot of the
current state of memory. However, it is not a true snapshot because it runs at the user level with interrupts
enabled.

To determine whether svmon is installed and available, run the following command:
# 1slpp -11 bos.perf.tools

The svmon command can only be executed by the root user.

If an interval is used, which is the -i option, statistics will be displayed until the command is killed or until
the number of intervals, which can be specified right after the interval, is reached.

You can use the following different reports to analyze the displayed information:

Global (-G)
Displays statistics describing the real memory and paging space in use for the whole system.

Process (-P)
Displays memory usage statistics for active processes.

Segment (-S)
Displays memory usage for a specified number of segments or the top ten highest memory-usage
processes in descending order.

Chapter 12. Memory performance 131



Detailed Segment (-D)
Displays detailed information on specified segments.

User (-U)
Displays memory usage statistics for the specified login names. If no list of login names is
supplied, memory usage statistics display all defined login names.

Command (-C)
Displays memory usage statistics for the processes specified by command name.

Workload Management Class (-W)
Displays memory usage statistics for the specified workload management classes. If no classes
are supplied, memory usage statistics display all defined classes.

Frame (-F)
Displays information about frames. When no frame number is specified, the percentage of used
memory is reported. When a frame number is specified, information about that frame is reported.

Tier (-T)
Displays information about tiers, such as the tier number, the superclass name when the -a flag is
used, and the total number of pages in real memory from segments belonging to the tier.

Amount of memory in use

To print out global statistics, use the -G flag. In this example, we will repeat it five times at two-second
intervals.

# svmon -G -i 2 5

memory in use pin pg space
size inuse free pin work pers cInt work pers ciInt size  inuse
16384 16250 134 2006 10675 2939 2636 2006 40960 12674
16384 16254 130 2006 10679 2939 2636 2006 40960 12676
16384 16254 130 2006 10679 2939 2636 2006 40960 12676
16384 16254 130 2006 10679 2939 2636 2006 40960 12676
16384 16254 130 2006 10679 2939 2636 2006 40960 12676

[oNoNoNoNo)
[oNoNoNoNo)

The columns on the resulting svmon report are described as follows:

memory
Statistics describing the use of real memory, shown in 4 K pages.

size  Total size of memory in 4 K pages.

inuse Number of pages in RAM that are in use by a process plus the number of persistent
pages that belonged to a terminated process and are still resident in RAM. This value is
the total size of memory minus the number of pages on the free list.

free  Number of pages on the free list.

pin Number of pages pinned in RAM (a pinned page is a page that is always resident in RAM
and cannot be paged out).

in use Detailed statistics on the subset of real memory in use, shown in 4 K frames.
work Number of working pages in RAM.
pers Number of persistent pages in RAM.
cint Number of client pages in RAM (client page is a remote file page).
pin Detailed statistics on the subset of real memory containing pinned pages, shown in 4 K frames.
work Number of working pages pinned in RAM.
pers Number of persistent pages pinned in RAM.

cint  Number of client pages pinned in RAM.

132 Performance Management Guide



pg space
Statistics describing the use of paging space, shown in 4 K pages. This data is reported only if the
-r flag is not used. The value reported is the actual number of paging-space pages used, which

indicates that these pages were paged out to the paging space. This differs from the vmstat

command in that the vmstat command’s avm column which shows the virtual memory accessed
but not necessarily paged out.

size  Total size of paging space in 4 K pages.

inuse Total number of allocated pages.

In the example, there are 16384 pages of total size of memory. Multiply this number by 4096 to see the
total real memory size (64 MB). While 16250 pages are in use, there are 134 pages on the free list and
2006 pages are pinned in RAM. Of the total pages in use, there are 10675 working pages in RAM, 2939

persistent pages in RAM, and 2636 client pages in RAM. The sum of these three parts is equal to the

inuse column of the memory part. The pin part divides the pinned memory size into working, persistent and
client categories. The sum of them is equal to the pin column of the memory part. There are 40960 pages

(160 MB) of total paging space, and 12676 pages are in use. The inuse column of memory is usually
greater than the inuse column of pg space because memory for file pages is not freed when a program

completes, while paging-space allocation is.

The following output is an example of the svmon command:

# svmon

memory
pg space

pin
in use

memory
pg space

pin
in use

memory
pg space

pin
in use

memory
pg space

pin
in use

memory
pg space

-G -i25

size
65527
131072

work
5918
47554

size
65527
131072

work
5918
47558

size
65527
131072

work
5918
47558

size
65527
131072

work
5918
47558

size
65527
131072

inuse
64087
55824

pers
13838
inuse
64091
55824

pers
13838
inuse
64091
55824

pers
13838
inuse
64090
55824

pers
13837
inuse

64168
55824

free
1440

clnt
0
2695

free
1436

clnt
0
2695

free
1436

cInt
0
2695

free
1437

cInt
0
2695

free
1359

pin
5909

pin
5909

pin
5909

pin
5909

pin
5912

virtual
81136

virtual
81137

virtual
81137

virtual
81137

virtual
81206

Chapter 12. Memory performance

133



work pers cInt
pin 5921 0 0
in use 47636 13837 2695

The additional output field is the virtual field, which shows the number of pages allocated in the system
virtual space.

Memory usage by processes
The following command displays the memory usage statistics for the top ten processes. If you do not
specify a number, it will display all the processes currently running in the system.

# svmon -Pau 10

Pid Command Inuse Pin Pgspace
15012 maker4dX.exe 4783 1174 4781
2750 X 4353 1178 5544
15706 dtwm 3257 1174 4003
17172 dtsession 2986 1174 3827
21150 dtterm 2941 1174 3697
17764 aixterm 2862 1174 3644
2910 dtterm 2813 1174 3705
19334 dtterm 2813 1174 3704
13664 dtterm 2804 1174 3706
17520 aixterm 2801 1174 3619
Pid: 15012
Command: maker4X.exe
Segid Type Description Inuse Pin Pgspace Address Range
1572 pers /dev/hd3:62 0 0 0 0..-1

142 pers /dev/hd3:51 0 0 0 0..-1

lbde pers /dev/hd3:50 0 0 0 0..-1

2cl pers /dev/hd3:49 1 0 0 0..7

9ab pers /dev/hd2:53289 1 0 0 0..0

404 work kernel extension 27 27 0 0..24580

1d9b work T1ib data 39 0 23 0..607

909 work shared library text 864 0 7 0..65535

5a3 work sreg[4] 9 0 12 0..32768

1096 work sreg[3] 32 0 32 0..32783

1b9d work private 1057 1 1219 0..1306 : 65307..65535
1laf8 clInt 961 0 0 0..1716

0 work kernel 1792 1146 3488 0..32767 : 32768..65535

The output is divided into summary and detail sections. The summary section lists the top ten highest
memory-usage processes in descending order.

Pid 15012 is the process ID that has the highest memory usage. The Command indicates the command
name, in this case maker4X.exe. The Inuse column, which is the total number of pages in real memory
from segments that are used by the process, shows 4783 pages. Each page is 4 KB. The Pin column,
which is the total number of pages pinned from segments that are used by the process, shows 1174
pages. The Pgspace column, which is the total number of paging-space pages that are used by the
process, shows 4781 pages.

The detailed section displays information about each segment for each process that is shown in the
summary section. This includes the segment ID, the type of the segment, description (a textual description
of the segment, including the volume name and i-node of the file for persistent segments), number of
pages in RAM, number of pinned pages in RAM, number of pages in paging space, and address range.

The Address Range specifies one range for a persistent or client segment and two ranges for a working
segment. The range for a persistent or a client segment takes the form ’0..x,” where x is the maximum
number of virtual pages that have been used. The range field for a working segment can be ’0..x :

134  Performance Management Guide



y..65535’, where 0..x contains global data and grows upward, and y..65535 contains stack area and grows
downward. For the address range, in a working segment, space is allocated starting from both ends and
working towards the middle. If the working segment is non-private (kernel or shared library), space is
allocated differently. In this example, the segment ID 1b9d is a private working segment; its address range
is 0..1306 : 65307..65535. The segment ID 909 is a shared library text working segment; its address
range is 0..65535.

A segment can be used by multiple processes. Each page in real memory from such a segment is
accounted for in the Inuse field for each process using that segment. Thus, the total for Inuse may exceed
the total number of pages in real memory. The same is true for the Pgspace and Pin fields. The sum of
Inuse, Pin, and Pgspace of all segments of a process is equal to the numbers in the summary section.

The Vsid column is the virtual segment ID, and the Esid column is the effective segment ID. The effective
segment ID reflects the segment register that is used to access the corresponding pages.

You can use one of the following commands to display the file name associated with the i-node:
* ncheck -i i-node_number volume_name
» find file_system_associated_with_Iv_name -xdev -inum inode_number -print

Detailed information on a specific segment id
The -D option displays detailed memory-usage statistics for segments.

The following is an example:
# svmon -D 629 -b

Segid: 629

Type: working

Address Range: 0..77

Size of page space allocation: 7 pages ( 0.0 Mb)
Virtual: 11 frames ( 0.0 Mb)

Inuse: 7 frames ( 0.0 Mb)

o
>

P
—+
=
o

Frame
32304
32167
32321
32320
32941
48357
47897

"
QU
«

N, OTONWOD
Z=z==z===== -
Z=<<=<=<=<®
<< =<=<=<-=<=<0

~

The explanation of the columns are as follows:

Page Specifies the index of the page within the segment.

Frame Specifies the index of the real memory frame that the page resides in.

Pin Specifies a flag indicating whether the page is pinned.

Ref Specifies a flag indicating whether the page’s reference bit is on.

Mod Specifies a flag indicating whether the page is modified.

The -b flag shows the status of the reference and modified bits of all the displayed frames. After it is

shown, the reference bit of the frame is reset. When used with the -i flag, it detects which frames are
accessed between each interval.

List of top memory usage of segments
The -S option is used to sort segments by memory usage and to display the memory-usage statistics for
the top memory-usage segments. The following command sorts system and non-system segments by the

Chapter 12. Memory performance 135



number of pages in real memory. The -t option can be used to limit the number of segments displayed to
the count specified. The -u flag sorts the output in descending order by the total number of pages in real
memory.

The following is example output of the svmon command with the -S, -t, and -u options:
# svmon -Sut 10

Vsid Esid Type Description Inuse  Pin Pgsp Virtual Addr Range
1966 - work 9985 4 31892 32234 0..32272 :
65309..65535
14c3 - work 5644 1 161 5993 0..6550 :
65293..65535
5453 - work 3437 12971 4187 0..4141 :
65303..65535
4411 - work 3165 0 1264 1315 0..65535
bale - work 2986 1 13 2994 0..3036 :
65295..65535
340d - work misc kernel tables 2643 0 993 2645 0..15038 :
63488..65535
380e - work kernel pinned heap 2183 1055 1416 2936 0..65535
0 - work kernel seg 2044 1455 1370 4170  0..32767 :
65475..65535
6afb - pers /dev/notes:92 1522 0 - - 0..10295
2faa - cint 1189 0 - - 0..2324

Correlation between the svymon and vmstat command outputs
There is a correlation between the svmon and vmstat outputs.

The following is example output from the svmon command:

# svmon -G

size inuse free pin virtual
memory 2097136 1347642 749494 156369 205041
pg space 249856 871

work pers cInt 1page
pin 156369 0 0 0
in use 205060 1130522 12060 0

The vmstat command was run in a separate window while the svmon command was running. The
vmstat report follows:

# vmstat 5

kthr memory page faults cpu

r b awm fre re pi po fr sr cy in sy cs us sy id wa

1 5205031 749504 0 0O 0 O 0O 0 1240 248318 0 099 0
0 0 205042 749493 0 0 0 0 0 0 1242 663319 0 099 0
0 0205042 749493 0 0O 0 O 0O 0 1244 658320 0 099 0
0 0 205042 749493 0 0 0 0 0 0 1241 665317 0 099 0
0 0 205042 749493 0 © 0 O 0 01242 655318 0 099 O
0 0 205042 749493 0 0 0 0 0O 0 1242 656 320 0 099 0
0 0205042 749493 0 0 0 O 0 01241 654316 0 099 0

The global svmon report shows related numbers. The fre column of the vmstat command relates to the
memory fre column of the svmon command. The Active Virtual Memory, avm, value of 205042 that the
vmstat command reports is similar to the virtual memory value of 205041 that the svmon command
reports.

Correlation between the svymon and ps command outputs

There are some relationships between the svmon and ps command outputs. The svmon command
output is as follows:

136 Performance Management Guide



# svmon -P 770204

Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
770204 -ksh 7930 3273 869 7870 N N N
Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
0 0 work kernel segment - 5994 3269 869 5994
509aa d work loader segment - 179 0 0 1794
98fb3 2 work process private - 59 4 0 59
8c21 1 cInt code,/dev/hd2:88 - 58 0 - -
88fdl f work shared library data - 23 0 0 23
58fch - cInt /dev/hd4:1158 - 2 0 - -

Compare the above example with the ps report which follows:

# ps v 770204
PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
770204 pts/0 A 0:00 0 328 560 xx 202 232 0.0 0.0 -ksh

The SIZE value of 328 correlates to the Virtual value of the svmon command for process private value of
59 plus the shared library data value of 23, which is in 1 KB units. This number is equal to the number of
working segment pages of the process that have been touched (that is, the number of paging-space pages
that have been allocated) times 4. It must be multiplied by 4 because pages are in 4 K units and SIZE is in
1 K units. If some working segment pages are currently paged out, this number is larger than the amount
of real memory being used. The SIZE value (240) correlates with the Pgspace number from the svmon
command for private (32) plus 1ib data (28) in 1 K units.

RSS refers to the real memory (resident set) size in KB of the process. This number is equal to the sum of
the number of working segment and code segment pages in memory times 4. Remember that code
segment pages are shared among all of the currently running instances of the program. If 26 ksh
processes are running, only one copy of any given page of the ksh executable program would be in
memory, but the ps command would report that code segment size as part of the RSS of each instance of
the ksh program. The RSS value of 560 correlates with the Inuse numbers from the svmon command for
the private value of 59 working-storage segments, for 58 code segments, and for the shared Tibrary
data value of 23 of the process in 1 KB units.

The TRS value refers to the size of the resident set (real memory) of text. This is the number of code
segment pages times four. As was noted earlier, this number exaggerates memory use for programs of
which multiple instances are running. This does not include the shared text of the process. The TRS value
of 232 correlates with the number of the svmon pages in the code segment (58) of the Inuse column in 1
K units. The TRS value can be higher than the TSIZ value because other pages, such as the XCOFF
header and the loader section, may be included in the code segment.

The following calculations can be made for the values mentioned:

SIZE = 4 = Pgspace of (work 1ib data + work private)
RSS =4 = Inuse of (work 1ib data + work private + pers code)
TRS = 4 % Inuse of (pers code)

Minimum memory requirement calculation
The formula to calculate the minimum memory requirement of a program is the following:
Total memory pages (4 KB units) =T+ (N=* (PD+1LD) ) +F

where:

T = Number of pages for text (shared by all users)

N = Number of copies of this program running simultaneously

PD = Number of working segment pages in process private segment

Chapter 12. Memory performance 137



LD = Number of shared library data pages used by the process

F = Number of file pages (shared by all users)

Multiply the result by 4 to obtain the number of kilobytes required. You may want to add in the kernel,
kernel extension, and shared library text segment values to this as well even though they are shared by all
processes on the system. For example, some applications like CATIA and databases use very large
shared library modules. Note that because we have only used statistics from a single snapshot of the
process, there is no guarantee that the value we get from the formula will be the correct value for the
minimum working set size of a process. To get working set size, one would need to run a tool such as the
rmss command or take many snapshots during the life of the process and determine the average values
from these snapshots. See|Memory requirements assessment with the rmss Commandl for more
information.

Memory-leaking programs

A memory leak is a program error that consists of repeatedly allocating memory, using it, and then
neglecting to free it. A memory leak in a long-running program, such as an interactive application, is a
serious problem, because it can result in memory fragmentation and the accumulation of large numbers of
mostly garbage-filled pages in real memory and page space. Systems have been known to run out of
page space because of a memory leak in a single program.

A memory leak can be detected with the svmon command, by looking for processes whose working
segment continually grows. A leak in a kernel segment can be caused by an mbuf leak or by a device
driver, kernel extension, or even the kernel. To determine if a segment is growing, use the svmon
command with the -i option to look at a process or a group of processes and see if any segment continues
to grow.

Identifying the offending subroutine or line of code is more difficult, especially in AIXwindows applications,
which generate large numbers of malloc() and free() calls. C++ provides a HeapView Debugger for
analyzing/tuning memory usage and leaks. Some third-party programs exist for analyzing memory leaks,
but they require access to the program source code.

Some uses of the realloc() subroutine, while not actually programming errors, can have the same effect
as a memory leak. If a program frequently uses the realloc() subroutine to increase the size of a data
area, the working segment of the process can become increasingly fragmented if the storage released by
the realloc() subroutine cannot be reused for anything else.

Use the disclaim() system call and free() call to release memory that is no longer required. The
disclaim() system call must be called before the free() call. It wastes CPU time to free memory after the
last malloc() call, if the program will finish soon. When the program terminates, its working segment is
destroyed and the real memory page frames that contained working segment data are added to the free
list. The following example is a memory-leaking program where the Inuse, Pgspace, and Address Range
values of the private working segment are continually growing:

# svmon -P 13548 -i 1 3

Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
13548 pacman 8535 2178 847 8533 N N N
Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual

0 0 work kernel seg - 4375 2176 847 4375
48412 2 work process private - 2357 2 0 2357
6c01b d work shared Tibrary text - 1790 0 0 1790
4c413 f work shared library data - 11 0 0 11
3040c 1 pers code,/dev/prodlv:4097 - 2 0 - -
ginger :svmon -P 13548 -i 1 3

Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
13548 pacman 8589 2178 847 8587 N N N

138 Performance Management Guide



Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
0 0 work kernel seg - 4375 2176 847 4375
48412 2 work process private - 2411 2 0 2411
6c01b d work shared Tibrary text - 1790 0 0 1790
4c413 f work shared library data - 11 0 0 11
3040c 1 pers code,/dev/prodlv:4097 - 2 0 - -
Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
13548 pacman 8599 2178 847 8597 N N N
Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
0 0 work kernel seg 4375 2176 847 4375
48412 2 work process private 2421 2 0 2421
6c01b d work shared Tibrary text - 1790 0 0 1790
4c413 f work shared library data - 11 0 0 11
3040c 1 pers code,/dev/prodlv:4097 - 2 0 - -

Memory requirements assessment with the rmss command

The rmss command, Reduced-Memory System Simulator, provides you with a means to simulate different
sizes of real memories that are smaller than your actual machine, without having to extract and replace
memory boards. Moreover, the rmss command provides a facility to run an application over a range of
memory sizes, displaying, for each memory size, performance statistics such as the response time of the
application and the amount of paging. The rmss command is designed to help you answer the question:
“How many megabytes of real memory does a system need to run the operating system and a given
application with an acceptable level of performance?”. In the multiuser context, it is designed to help you
answer the question: “How many users can run this application simultaneously in a machine with X
megabytes of real memory?”

The main use for the rmss command is as a capacity planning tool, to determine how much memory a
workload needs. It can also be used as a problem determination tool, particularly for those cases where
having more memory degrades performance.

To determine whether the rmss command is installed and available, run the following command:
# 1slpp -11 bos.perf.tools

It is important to keep in mind that the memory size simulated by the rmss command is the total size of
the machine’s real memory, including the memory used by the operating system and any other programs
that may be running. It is not the amount of memory used specifically by the application itself. Because of
the performance degradation it can cause, the rmss command can be used only by a root user or a
member of the system group.

Overview of the rmss command
You can use the rmss command in the following ways:
1. To change the memory size and exit.

2. As a driver program which executes a specified application multiple times over a range of memory
sizes and displays important statistics that describe the application’s performance at each memory
size.

The first method is useful when you want to get the look and feel of how your application performs at a
given system memory size, when your application is too complex to be expressed as a single command,
or when you want to run multiple instances of the application. The second method is appropriate when you
have an application that can be invoked as an executable program or shell script file.

Memory size change
To change the memory size and exit, use the -c flag of the rmss command. For example, to change the
memory size to 128 MB, use the following:

139

Chapter 12. Memory performance



# rmss -c 128

The memory size is an integer or decimal fraction number of megabytes (for example, 128.25).
Additionally, the size must be between 8 MB and the amount of physical real memory in your machine.
Depending on the hardware and software configuration, the rmss command may not be able to change
the memory size to small sizes, because of the size of inherent system structures such as the kernel.
When the rmss command is unable to change to a given memory size, it displays an error message.

The rmss command reduces the effective memory size of a system by stealing free page frames from the
list of free frames that is maintained by the VMM. The stolen frames are kept in a pool of unusable frames
and are returned to the free frame list when the effective memory size is to be increased. Also, the rmss
command dynamically adjusts certain system variables and data structures that must be kept proportional
to the effective size of memory.

It may take a short while (up to 15 to 20 seconds) to change the memory size. In general, the more you
want to reduce the memory size, the longer the rmss command takes to complete. When successful, the
rmss command responds with the following message:

Simulated memory size changed to 128.00 Mb.

To display the current memory size, use the -p flag, as follows:
# rmss -p

The rmss output is as follows:
Simulated memory size is 128.00 Mb.

Finally, if you want to reset the memory size to the actual memory size of the machine, use the -r flag, as
follows:

# rmss -r

No matter what the current simulated memory size, using the -r flag sets the memory size to be the
physical real memory size of the machine. A side effect of the rmss -r command is that the related
vmtune parameters are also reset to their corresponding defaults.

Because this example was run on a 256 MB machine, the rmss command responded as follows:
Simulated memory size changed to 256.00 Mb.

Note: The rmss command reports usable real memory. On machines that contain bad memory or
memory that is in use, the rmss command reports the amount of real memory as the amount of
physical real memory minus the memory that is bad or in use by the system. For example, the
rmss -r command might report:

Simulated memory size changed to 79.9062 Mb.

This could be a result of some pages being marked bad or a result of a device that is reserving
some pages for its own use and thus not available to the user.

The -c, -p, and -r flags of the rmss command: The advantage of using the -c, -p and -r flags of the
rmss command is that they allow you to experiment with complex applications that cannot be expressed
as a single executable program or shell script file. On the other hand, the disadvantage of using the -c, -p,
and -r options is that they force you to do your own performance measurements. Fortunately, you can use
the command vmstat -s to measure the paging-space activity that occurred while your application ran.

By running the command vmstat -s, running your application, then running the command vmstat -s again,

and subtracting the number of paging-space page-ins before from the number of paging-space page-ins
after, you can determine the number of paging-space page-ins that occurred while your program ran.

140 Performance Management Guide



Furthermore, by timing your program, and dividing the number of paging-space page-ins by the program’s
elapsed run time, you can obtain the average paging-space page-in rate.

It is also important to run the application multiple times at each memory size, for two reasons:

* When changing memory size, the rmss command often clears out a lot of memory. Thus, the first time
you run your application after changing memory sizes it is possible that a substantial part of the run
time may be due to your application reading files into real memory. But, since the files may remain in
memory after your application terminates, subsequent executions of your application may result in
substantially shorter elapsed times.

» To get a feel for the average performance of the application at that memory size. It is impossible to
duplicate the system state each time your application runs. Because of this, the performance of your
application can vary significantly from run to run.

To summarize, consider the following set of steps as a desirable way to invoke the rmss command:
while there are interesting memory sizes to investigate:

{
change to an interesting memory size using rmss -c;
run the application once as a warm-up;
for a couple of iterations:
{
use vmstat -s to get the "before" value of paging-space page ins;
run the application, while timing it;
use vmstat -s to get the "after" value of paging-space page ins;
subtract the "before" value from the "after" value to get the
number of page ins that occurred while the application ran;
divide the number of paging-space page ins by the response time
to get the paging-space page-in rate;
}

}

run rmss -r to restore the system to normal memory size (or reboot)

The calculation of the (after - before) paging 1/0 numbers can be automated by using the vmstatit script
described in|Disk or memory-related problem|

Execution of applications over a range of memory sizes with the rmss command
The -s, -f, -d, -n, and -o flags of the rmss command are used in combination to invoke the rmss
command as a driver program. As a driver program, the rmss command executes a specified application
over a range of memory sizes and displays statistics describing the application’s performance at each
memory size. The syntax for this invocation style of the rmss command is as follows:

rmss [ -s smemsize ] [ -f fmemsize ] [ -d memdelta ]
[ -n numiterations ] [ -o outputfile ] command

Each of the following flags is discussed in detail below. The -s, -f, and -d flags are used to specify the
range of memory sizes.

-n This flag is used to specify the number of times to run and measure the command at each
memory size.

-0 This flag is used to specify the file into which to write the rmss report, while command is the
application that you wish to run and measure at each memory size.

-S This flag specifies the starting size.

-f This flag specifies the final size.

-d This flag specifies the difference between sizes.

All values are in integer or decimal fractions of megabytes. For example, if you wanted to run and
measure a command at sizes 256, 224, 192, 160 and 128 MB, you would use the following combination:

-s 256 -f 128 -d 32

Chapter 12. Memory performance 141



Likewise, if you wanted to run and measure a command at 128, 160, 192, 224, and 256 MB, you would
use the following combination:

-s 128 -f 256 -d 32

If the -s flag is omitted, the rmss command starts at the actual memory size of the machine. If the -f flag
is omitted, the rmss command finishes at 8 MB. If the -d flag is omitted, there is a default of 8 MB
between memory sizes.

What values should you choose for the -s, -f, and -d flags? A simple choice would be to cover the memory
sizes of systems that are being considered to run the application you are measuring. However, increments
of less than 8 MB can be useful, because you can get an estimate of how much space you will have when
you settle on a given size. For instance, if a given application thrashes at 120 MB but runs without
page-ins at 128 MB, it would be useful to know where within the 120 to 128 MB range the application
starts thrashing. If it starts at 127 MB, you may want to consider configuring the system with more than
128 MB of memory, or you may want to try to modify the application so that there is more space. On the
other hand, if the thrashing starts at 121 MB, you know that you have enough space with a 128 MB
machine.

The -n flag is used to specify how many times to run and measure the command at each memory size.
After running and measuring the command the specified number of times, the rmss command displays
statistics describing the average performance of the application at that memory size. To run the command
3 times at each memory size, you would use the following:

-n 3

If the -n flag is omitted, the rmss command determines during initialization how many times your
application must be run to accumulate a total run time of 10 seconds. The rmss command does this to
ensure that the performance statistics for short-running programs will not be significantly skewed by
outside influences, such as daemons.

Note: If you are measuring a very brief program, the number of iterations required to accumulate 10
seconds of CPU time can be very large. Because each execution of the program takes a minimum
of about 2 elapsed seconds of rmss overhead, specify the -n parameter explicitly for short
programs.

What are good values to use for the -n flag? If you know that your application takes much more than 10
seconds to run, you can specify -n 1 so that the command is run twce, but measured only once at each
memory size. The advantage of using the -n flag is that the rmss command will finish sooner because it
will not have to spend time during initialization to determine how many times to run your program. This can
be particularly valuable when the command being measured is long-running and interactive.

It is important to note that the rmss command always runs the command once at each memory size as a
warm-up before running and measuring the command. The warm-up is needed to avoid the I/O that occurs
when the application is not already in memory. Although such I/O does affect performance, it is not
necessarily due to a lack of real memory. The warm-up run is not included in the number of iterations
specified by the -n flag.

The -o flag is used to specify a file into which to write the rmss report. If the -o flag is omitted, the report
is written into the file rmss.out.

Finally, command is used to specify the application to be measured. It can be an executable program or
shell script, with or without command-line arguments. There are some limitations on the form of the
command however. First, it cannot contain the redirection of input or output (for example, foo > output or
foo < input). This is because the rmss command treats everything to the right of the command name as
an argument to the command. To redirect, place the command in a shell script file.

142 Performance Management Guide



Usually, if you want to store the rmss output in a specific file, use the -0 option. If you want to redirect the
standard output of the rmss command (for example, to concatenate it to the end of an existing file) then
use the Korn shell to enclose the rmss invocation in parentheses, as follows:

# (rmss -s 24 -f 8 foo) >> output

Interpretation of results from the rmss command

The example in the |Report generated for the foo program| section was produced by running the rmss
command on an actual application program, although the name of the program has been changed to foo
for anonymity. The specific command to generate the report is as follows:

# rmss -s 16 -f 8 -d 1 -n 1 -0 rmss.out foo

Report generated for the foo Program

Hostname: aixhostl.austin.ibm.com

Real memory size: 16.00 Mb

Time of day: Thu Mar 18 19:04:04 2004

Command: foo

Simulated memory size initialized to 16.00 Mb.

Number of iterations per memory size = 1 warm-up + 1 measured = 2.

Memory size Avg. Pageins Avg. Response Time Avg. Pagein Rate

(megabytes) (sec.) (pageins / sec.)
16.00 115.0 123.9 0.9

15.00 112.0 125.1 0.9

14.00 179.0 126.2 1.4

13.00 81.0 125.7 0.6

12.00 403.0 132.0 3.1

11.00 855.0 141.5 6.0

10.00 1161.0 146.8 7.9

9.00 1529.0 161.3 9.5

8.00 2931.0 202.5 14.5

The report consists of four columns. The leftmost column gives the memory size, while the Avg. Pageins

column gives the average number of page-ins that occurred when the application was run at that memory
size. It is important to note that the Avg. Pageins column refers to all page-in operations, including code,

data, and file reads, from all programs, that completed while the application ran. The Avg. Response Time
column gives the average amount of time it took the application to complete, while the Avg. Pagein Rate

column gives the average rate of page-ins.

Concentrate on the Avg. Pagein Rate column. From 16 MB to 13 MB, the page-in rate is relatively small
(< 1.5 page-ins per second). However, from 13 MB to 8 MB, the page-in rate grows gradually at first, and
then rapidly as 8 MB is reached. The Avg. Response Time column has a similar shape: relatively flat at
first, then increasing gradually, and finally increasing rapidly as the memory size is decreased to 8 MB.

Here, the page-in rate actually decreases when the memory size changes from 14 MB (1.4 page-ins per
second) to 13 MB (0.6 page-ins per second). This is not cause for alarm. In an actual system, it is
impossible to expect the results to be perfectly smooth. The important point is that the page-in rate is
relatively low at both 14 MB and 13 MB.

Finally, you can make a couple of deductions from the report. First, if the performance of the application is
deemed unacceptable at 8 MB (as it probably would be), then adding memory would enhance
performance significantly. Note that the response time rises from approximately 124 seconds at 16 MB to
202 seconds at 8 MB, an increase of 63 percent. On the other hand, if the performance is deemed
unacceptable at 16 MB, adding memory will not enhance performance much, because page-ins do not
slow the program appreciably at 16 MB.

Chapter 12. Memory performance 143



Report for a 16 MB remote copy
The following example illustrates a report that was generated (on a client machine) by running the rmss
command on a command that copied a 16 MB file from a remote (server) machine through NFS.

Hostname: aixhost2.austin.ibm.com

Real memory size: 48.00 Mb

Time of day: Mon Mar 22 18:16:42 2004

Command: cp /mnt/al6Mfile /dev/null

Simulated memory size initialized to 48.00 Mb.

Number of iterations per memory size = 1 warm-up + 4 measured = 5.

Memory size Avg. Pageins  Avg. Response Time Avg. Pagein Rate

(megabytes) (sec.) (pageins / sec.)
48.00 0.0 2.7 0.0
40.00 0.0 2.7 0.0
32.00 0.0 2.7 0.0
24.00 1520.8 26.9 56.6
16.00 4104.2 67.5 60.8
8.00 4106.8 66.9 61.4

Note that the response time and page-in rate in this report start relatively low, rapidly increase at a
memory size of 24 MB, and then reach a plateau at 16 and 8 MB. This report shows the importance of
choosing a wide range of memory sizes when you use the rmss command. If this user had only looked at
memory sizes from 24 MB to 8 MB, he or she might have missed an opportunity to configure the system
with enough memory to accommodate the application without page-ins.

Hints for usage of the -s, -f, -d, -n, and -o flags

One helpful feature of the rmss command, when used in this way, is that it can be terminated (by the
interrupt key, Ctrl-C by default) without destroying the report that has been written to the output file. In
addition to writing the report to the output file, this causes the rmss command to reset the memory size to
the physical memory size of the machine.

You can run the rmss command in the background, even after you have logged out, by using the nohup
command. To do this, precede the rmss command by the nohup command, and follow the entire
command with an & (ampersand), as follows:

# nohup rmss -s 48 -f 8 -o foo.out foo &

Guidelines to consider when using the rmss command

No matter which rmss invocation style you are using, it is important to re-create the end-user environment
as closely as possible. For instance, are you using the same model CPU, the same model disks, the same
network? Will the users have application files mounted from a remote node via NFS or some other
distributed file system? This last point is particularly important, because pages from remote files are
treated differently by the VMM than pages from local files.

Likewise, it is best to eliminate any system activity that is not related to the desired system configuration or
the application you are measuring. For instance, you do not want to have people working on the same
machine as the rmss command unless they are running part of the workload you are measuring.

Note: You cannot run multiple invocations of the rmss command simultaneously.

When you have completed all runs of the rmss command, it is best to shut down and reboot the system.

This will remove all changes that the rmss command has made to the system and will restore the VMM
memory load control parameters to their typical settings.

144  Performance Management Guide



VMM memory load control tuning with the schedo command

The VMM memory load control facility, described in[VMM memory load control facility, protects an
overloaded system from thrashing.

For early versions of the operating system, if a large number of processes hit the system at the same
time, memory became overcommitted and thrashing occurred, causing performance to degrade rapidly. A
memory-load control mechanism was developed that could detect thrashing. Certain parameters affect the
function of the load control mechanism.

With the schedo command, the root user can affect the criteria used to determine thrashing, the criteria
used to determine which processes to suspend, the length of time to wait after thrashing ends before
reactivating processes, the minimum number of processes exempt from suspension, or reset values to the
defaults. To determine whether the schedo command is installed and available, run the following
command:

# 1slpp -1I bos.perf.tune

Memory load control tuning

Memory load control is intended to smooth out infrequent peaks in load that might otherwise cause the
system to thrash. It trades multiprogramming for throughput and is not intended to act continuously in a
configuration that has too litle RAM to handle its normal workload. The design was made for batch jobs
and is not very discriminating. The AlIX Workload Manager provides a better solution to protect critical
tasks.

The correct solution to a fundamental, persistent RAM shortage is to add RAM, not to experiment with
memory load control in an attempt to trade off response time for memory. The situations in which the
memory-load-control facility may really need to be tuned are those in which there is more RAM, not less
than the defaults were chosen for. An example would be configurations in which the defaults are too
conservative.

You should not change the memory load control parameter settings unless your workload is consistent and
you believe the default parameters are ill-suited to your workload.

The default parameter settings shipped with the system are always in force unless changed. The default
values of these parameters have been chosen to "fail safe” across a wide range of workloads. Changed
parameters last only until the next system boot. All memory load control tuning activities must be done by
the root user. The system administrator can use the schedo command to change the parameters to tune
the algorithm to a particular workload or to disable it entirely.

The following example displays the current parameter values with the schedo command:
# schedo -a

v_repage_hi = 0
v_repage_proc = 4
v_sec_wait =1
v_min_process = 2
v_exempt_secs = 2
pacefork = 10
sched_D = 16
sched R = 16
timeslice =1
maxspin = 1
%usDelta = 100
affinity_lim = n/a
idle_migration_barrier = n/a
fixed_pri_global = n/a
big_tick size =1
force_grq = n/a

Chapter 12. Memory performance 145



The first five parameters specify the thresholds for the memory load control algorithm. These parameters
set rates and thresholds for the algorithm. If the algorithm shows that RAM is overcommitted, the
V_repage_proc, v_min_process, v_sec_wait, and v_exempt_secs values are used. Otherwise, these
values are ignored. If memory load control is disabled, these latter values are not used.

After a tuning experiment, memory load control can be reset to its default characteristics by executing the
command schedo -D.

The v_repage_hi parameter

The v_repage_hi parameter controls the threshold defining memory overcommitment. Memory load
control attempts to suspend processes when this threshold is exceeded during any one-second period.
The threshold is a relationship between two direct measures: the number of pages written to paging space
in the last second (po) and the number of page steals occurring in the last second (fr). You can see both
these values in the vmstat output. The number of page writes is usually much less than the number of
page steals. Memory is overcommitted when the following is true:

po/fr > 1/v_repage_hi or po*v_repage_hi > fr

The schedo -o v_repage_hi=0 command effectively disables memory load control. If a system has at
least 128 MB of memory, the default value is 0, otherwise the default value is 6. With at least 128 MB of
RAM, the normal VMM algorithms usually correct thrashing conditions on the average more efficiently than
by using memory load control.

In some specialized situations, it might be appropriate to disable memory load control from the outset. For
example, if you are using a terminal emulator with a time-out feature to simulate a multiuser workload,
memory load control intervention may result in some responses being delayed long enough for the
process to be killed by the time-out feature. Another example is, if you are using the rmss command to
investigate the effects of reduced memory sizes, disable memory load control to avoid interference with
your measurement.

If disabling memory load control results in more, rather than fewer, thrashing situations (with
correspondingly poorer responsiveness), then memory load control is playing an active and supportive role
in your system. Tuning the memory load control parameters then may result in improved performance or
you may need to add RAM.

A lower value of v_repage_hi raises the thrashing detection threshold; that is, the system is allowed to
come closer to thrashing before processes are suspended. Regardless of the system configuration, when
the above po/fr fraction is low, thrashing is unlikely.

To alter the threshold to 4, enter the following:

# schedo -o v_repage_hi=4

In this way, you permit the system to come closer to thrashing before the algorithm starts suspending
processes.

The v_repage_proc parameter

The v_repage_proc parameter determines whether a process is eligible for suspension and is used to set
a threshold for the ratio of two measures that are maintained for every process: the number of repages ()
and the number of page faults that the process has accumulated in the last second (f). A high ratio of
repages to page faults means the individual process is thrashing. A process is considered eligible for
suspension (it is thrashing or contributing to overall thrashing) when the following is true:

r/f > 1/v_repage_proc or rxv_repage_proc > f

The default value of v_repage_proc is 4, meaning that a process is considered to be thrashing (and a
candidate for suspension) when the fraction of repages to page faults over the last second is greater than
25 percent. A low value of v_repage_proc results in a higher degree of individual process thrashing being
allowed before a process is eligible for suspension.

146 Performance Management Guide



To disable processes from being suspended by the memory load control, do the following:
# schedo -0 v_repage_proc=0

Note that fixed-priority processes and kernel processes are exempt from being suspended.

The v_min_process parameter

The v_min_process parameter determines a lower limit for the degree of multiprogramming, which is
defined as the number of active processes. Active processes are those that can be run and are waiting for
page I/O. Processes that are waiting for events and processes suspended are not considered active nor is
the wait process considered active.

Setting the minimum multiprogramming level, the v_min_process parameter effectively keeps
v_min_process processes from being suspended. Suppose a system administrator knows that at least
ten processes must always be resident and active in RAM for successful performance, and suspects that
memory load control was too vigorously suspending processes. If the schedo -o v_min_process=10
command was issued, the system would never suspend so many processes that fewer than ten were
competing for memory. The v_min_process parameter does not count:

* The kernel processes

* Processes that have been pinned in RAM with the plock() system call
» Fixed-priority processes with priority values less than 60

* Processes awaiting events

The system default value of v_min_process=2 ensures that the kernel, all pinned processes, and two
user processes will always be in the set of processes competing for RAM.

While v_min_process=2 is appropriate for a desktop, single-user configuration, it is frequently too small
for larger, multiuser, or server configurations with large amounts of RAM.

If the system you are installing is larger than 32 MB, but less than 128 MB, and is expected to support
more than five active users at one time, consider raising the minimum level of multiprogramming of the
VMM memory-load-control mechanism.

As an example, if your conservative estimate is that four of your most memory-intensive applications
should be able to run simultaneously, leaving at least 16 MB for the operating system and 25 percent of
real memory for file pages, you could increase the minimum multiprogramming level from the default of 2
to 4 with the following command:

# schedo -0 v_min_process=4

On these systems, setting the v_min_process parameter to 4 or 6 may result in the best performance.
Lower values of v_min_process , while allowed, mean that at times as few as one user process may be
active.

When the memory requirements of the thrashing application are known, thev_min_process value can be
suitably chosen. Suppose thrashing is caused by numerous instances of one application of size M. Given
the system memory size N, thev_min_process parameter should be set to a value close to N/M. Setting
the v_min_process value too low would unnecessarily limit the number of processes that could be active
at the same time.

The v_sec_wait parameter

The v_sec_wait parameter controls the number of one-second intervals during which the po/fr fraction
(explained in the|The v_repage_hi parameted section) must remain below 1/v_repage_hi before
suspended processes are reactivated. The default value of one second is close to the minimum value
allowed, which is zero. A value of one second aggressively attempts to reactivate processes as soon as a
one-second safe period has occurred. Large values of v_sec_wait run the risk of unnecessarily poor
response times for suspended processes while the processor is idle for lack of active processes to run.

Chapter 12. Memory performance 147



To alter the wait time to reactivate processes after two seconds, enter the following:
# schedo -0 v_sec_wait=2

The v_exempt_secs parameter

Each time a suspended process is reactivated, it is exempt from suspension for a period of
v_exempt_secs elapsed seconds. This ensures that the high cost in disk 1/0O of paging in the pages of a
suspended process results in a reasonable opportunity for progress. The default value of v_exempt_secs
is 2 seconds.

To alter this parameter, enter the following:
# schedo -o v_exempt_secs=1

Suppose thrashing is caused occasionally by an application that uses lots of memory but runs for about T
seconds. The default system setting of 2 seconds for the v_exempt_secs parameter probably causes this
application swapping in and out T/2 times on a busy system. In this case, resetting the v_exempt_secs
parameter to a longer time helps this application progress. System performance improves when this
offending application is pushed through quickly.

VMM page replacement tuning

The memory management algorithm, discussed in [Real-memory management, tries to keep the size of the
free list and the percentage of real memory occupied by persistent segment pages within specified
bounds. These bounds can be altered with the vmo command, which can only be run by the root user.
Changes made by this tool remain in effect until the next reboot of the system. To determine whether the
vmo command is installed and available, run the following command:

# 1slpp -1I bos.perf.tune

Executing the vmo command with the -a option displays the current parameter settings. For example:
# vmo -a

memory_frames = 1572864
pinnable_frames = 1431781
maxfree = 128
minfree = 120
minperm% = 20
minperm = 294356
maxperm% = 80
maxperm = 1177427
strict_maxperm = 0
maxpin% = 80
maxpin = 1258292
maxclient% = 80
Trubucket = 131072
defps =1
nokilluid = 0
numpsblks = 655360
npskill = 5120
npswarn = 20480
v_pinshm = 0
pta_balance_threshold = n/a
pagecoloring = n/a
framesets = 2
mempools = 1
1gpg_size = n/a
1gpg_regions = n/a
num_spec_dataseg = n/a
spec_dataseg_int = n/a
memory_affinity = n/a
htabscale = -1
force_relalias_lite = 0
relalias_percentage = 0

148 Performance Management Guide



Values for minfree and maxfree parameters

The purpose of the free list is to keep track of real-memory page frames released by terminating
processes and to supply page frames to requestors immediately, without forcing them to wait for page
steals and the accompanying 1/0 to complete. The minfree limit specifies the free-list size below which
page stealing to replenish the free list is to be started. The maxfree parameter is the size above which
stealing will end.

The objectives in tuning these limits are to ensure that:

* Any activity that has critical response-time objectives can always get the page frames it needs from the
free list.

* The system does not experience unnecessarily high levels of 1/0 because of premature stealing of
pages to expand the free list.

The default value of minfree and maxfree depend on the memory size of the machine. The default value
of maxfree is determined by this formula:

maxfree = minimum (# of memory pages/128, 128)

By default the minfree value is the value of maxfree - 8. However, the difference between minfree and
maxfree should always be equal to or greater than maxpgahead. Or in other words, the value of maxfree
should always be greater than or equal to minfree plus the size of maxpgahead. The minfree/maxfree
values will be different if there is more than one memory pool. Memory pools were introduced in AlX 4.3.3
for MP systems with large amounts of RAM. Each memory pool will have its own minfree/maxfree which
are determined by the previous formulas, but the minfree/maxfree values shown by the vmo command
will be the sum of the minfree/maxfree for all memory pools.

Remember, that minfree pages in some sense are wasted, because they are available, but not in use. If
you have a short list of the programs you want to run fast, you can investigate their memory requirements
with the svmon command (see Memori usaéeb, and set minfree to the size of the largest. This technique
risks being too conservative because not all of the pages that a process uses are acquired in one burst. At
the same time, you might be missing dynamic demands that come from programs not on your list that may
lower the average size of the free list when your critical programs run.

A less precise but more comprehensive tool for investigating an appropriate size for minfree is the vmstat
command. The following is a portion of vmstat command output on a system where the minfree value is
being reached:

# vmstat 1

kthr memory page faults cpu
r b awm fre re pi po fr sr cy in sy c¢s us sy id wa
2 070668 414 0 0 0 0 0 0178 7364 257 35 14 0 51
1 070669 755 © 0 0O O 0 0 196 19119 272 40 20 0 41
1 070704 707 O 0O 0 O 0 0 190 8506 272 37 8 0 55
1 070670 725 ©6 0 0 0O 0 02058821 313 41 10 0 49
6 473362 123 0 5 36 313 1646 0 361 16256 863 47 53 0 0
5 373547 126 0 6 26 152 614 0 324 18243 1248 39 61 0 0
4 473591 124 O 3 11 90 372 0 307 19741 1287 3961 0 O
6 473540 127 0 4 30 122 358 0 340 20097 970 44 56 0 0
8 373825 116 O 18 22 220 781 0 324 16012 934 5149 0 O
8 4 74309 26 0 45 62 291 1079 0 352 14674 972 4456 0 0
2 9 75322 0O 0 41 87 283 943 0 403 16950 1071 4456 0 0O
5 7 75020 74 0 23 119 410 1611 0 353 15908 854 49 51 0 O

In the above example output, you can see that the minfree value of 120 is constantly being reached.
Therefore, page replacement occurs and in this particular case, the free list even reaches 0 at one point.
When that happens, threads needing free frames get blocked and cannot run until page replacement frees
up some pages. To prevent this situation, you might consider increasing the minfree and maxfree values.

Chapter 12. Memory performance 149



If you conclude that you should always have at least 1000 pages free, run the following command:
# vmo -0 minfree=1000 -0 maxfree=1008

To make this a permanent change, include the -p flag:

# vmo -0 minfree=1000 -0 maxfree=1008 -p

Memory pools

The vmo -0 mempools=number_of_memory_pools command allows you to change the number of
memory pools that are configured at system boot time. The mempools option is therefore not a dynamic
change. It is recommended to not change this value without a good understanding of the behavior of the
system and the VMM algorithms. You cannot change the mempools value on a UP kernel and on an MP
kernel, the change is written to the kernel file.

Reduce memory scanning overhead with Irubucket

Tuning with the Irubucket parameter can reduce scanning overhead on large memory systems. The
page-replacement algorithm scans memory frames looking for a free frame. During this scan, reference
bits of pages are reset, and if a free frame has not been found, a second scan is done. In the second
scan, if the reference bit is still off, the frame will be used for a new page (page replacement).

On large memory systems, there may be too many frames to scan, so now memory is divided up into
buckets of frames. The page-replacement algorithm will scan the frames in the bucket and then start over
on that bucket for the second scan before moving on to the next bucket. The default number of frames in
this bucket is 131072 or 512 MB of RAM. The number of frames is tunable with the command vmo -o
Irubucket=new value, and the value is in 4 KB frames.

Values for minperm and maxperm parameters

The operating system takes advantage of the varying requirements for real memory by leaving in memory
pages of files that have been read or written. If the file pages are requested again before their page
frames are reassigned, this technique saves an I/O operation. These file pages may be from local or
remote (for example, NFS) file systems.

The ratio of page frames used for files versus those used for computational (working or program text)
segments is loosely controlled by the minperm and maxperm values:

» |If percentage of RAM occupied by file pages rises above maxperm, page-replacement steals only file
pages.

 |If percentage of RAM occupied by file pages falls below minperm, page-replacement steals both file
and computational pages.

 |If percentage of RAM occupied by file pages is between minperm and maxperm, page-replacement
steals only file pages unless the number of file repages is higher than the number of computational
repages.

In a particular workload, it might be worthwhile to emphasize the avoidance of file I/O. In another
workload, keeping computational segment pages in memory might be more important. To understand what
the ratio is in the untuned state, use the vmstat command with the -v option.

# vmstat -v
1048576 memory pages
1002054 Truable pages
478136 free pages
1 memory pools
95342 pinned pages
80.1 maxpin percentage
20.0 minperm percentage
80.0 maxperm percentage
36.1 numperm percentage
362570 file pages

150 Performance Management Guide



0.0 compressed percentage
0 compressed pages
35.0 numclient percentage
80.0 maxclient percentage
350782 client pages
0 remote pageouts scheduled
80 pending disk I/0s blocked with no pbuf
0 paging space I/0s blocked with no psbuf
3312 filesystem I/0s blocked with no fshuf
0 client filesystem I/0s blocked with no fsbhuf
474178 external pager filesystem I/0s blocked with no fsbuf

The numperm value gives the number of file pages in memory, 362570. This is 36.1 percent of real
memory.

If you notice that the system is paging out to paging space, it could be that the file repaging rate is higher
than the computational repaging rate since the number of file pages in memory is below the maxperm
value. So, in this case we can prevent computational pages from being paged out by lowering the
maxperm value to something lower than the numperm value. Since the numperm value is approximately
36%, we could lower the maxperm value down to 30%. Therefore, the page replacement algorithm only
steals file pages.

Persistent file cache limit with the strict_maxperm option

The strict_maxpermoption of the vmo command, when set to 1, places a hard limit on how much
memory is used for a persistent file cache by making the maxperm value be the upper limit for this file
cache. When the upper limit is reached, the least recently used (LRU) is performed on persistent pages.

Attention: The strict_maxperm option should only be enabled for those cases that require a hard limit
on the persistent file cache. Improper use of strict_maxperm can cause unexpected system behavior
because it changes the VMM method of page replacement.

Enhanced JFS file system cache limit with the maxclient parameter

The enhanced JFS file system uses client pages for its buffer cache, which are not affected by the
maxperm and minperm threshold values. To establish hard limits on enhanced JFS file system cache,
you can tune the maxclient parameter. This parameter represents the maximum number of client pages
that can be used for buffer cache. To change this value, you can use the vmo -o maxclient command.
The value for maxclient is shown as a percentage of real memory.

After the maxclient threshold is reached, LRU begins to steal client pages that have not been referenced
recently. If not enough client pages can be stolen, the LRU might replace other types of pages. By
reducing the value for maxclient, you help prevent Enhanced JFS file-page accesses from causing LRU
to replace working storage pages, minimizing paging from paging space. The maxclient parameter also
affects NFS clients and compressed pages. Also note that maxclient should generally be set to a value
that is less than or equal to maxperm, particularly in the case where strict_maxperm is enabled.

Paging-space thresholds tuning

If available paging space depletes to a low level, the operating system attempts to release resources by
first warning processes to release paging space and finally by killing processes if there still is not enough
paging space available for the current processes.

Values for the npswarn and npskill paramaters

The npswarn and npskill thresholds are used by the VMM to determine when to first warn processes and
eventually when to kill processes.

These two parameters can be set through the vmo command:

Chapter 12. Memory performance 151



npswarn
Specifies the number of free paging-space pages at which the operating system begins sending
the SIGDANGER signal to processes. If the npswarn threshold is reached and a process is
handling this signal, the process can choose to ignore it or do some other action such as exit or
release memory using the disclaim() subroutine.

The value of npswarn must be greater than zero and less than the total number of paging-space
pages on the system. It can be changed with the command vmo -0 npswarn=value.

npskill
Specifies the number of free paging-space pages at which the operating system begins killing
processes. If the npskill threshold is reached, a SIGKILL signal is sent to the youngest process.
Processes that are handling SIGDANGER or processes that are using the early page-space
allocation (paging space is allocated as soon as memory is requested) are exempt from being
killed. The formula to determine the default value of npskill is as follows:

npskill = maximum (64, number_of paging_space_pages/128)

The npskill value must be greater than zero and less than the total number of paging space
pages on the system. It can be changed with the command vmo -o npskill=value.

nokillroot and nokilluid
By setting the nokillroot option to 1 with the command vmo -o nokillroot=1, processes owned by
root will be exempt from being killed when the npskill threshold is reached.

By setting the nokilluid option to a nonzero value with the command vmo -o nokilluid, user IDs
lower than this value will be exempt from being killed because of low page-space conditions.

The fork() retry interval parameter

If a process cannot be forked due to a lack of paging-space pages, the scheduler will retry the fork five
times. In between each retry, the scheduler will delay for a default of 10 clock ticks.

The pacefork parameter of the schedo command specifies the number of clock ticks to wait before
retrying a failed fork() call. For example, if a fork() subroutine call fails because there is not enough space
available to create a new process, the system retries the call after waiting the specified number of clock
ticks. The default value is 10, and because there is one clock tick every 10 ms, the system would retry the
fork() call every 100 ms.

If the paging space is low only due to brief, sporadic workload peaks, increasing the retry interval might
allow processes to delay long enough to be released like in the following example:

# schedo -o pacefork=15

In this way, when the system retries the fork() call, there is a higher chance of success because some
processes might have finished their execution and, consequently, released pages from paging space.

Page space allocation

The following page space allocation policies are available in AIX:
» Late Page Space Allocation (LPSA)

» Early Page Space Allocation (EPSA)

» Deferred Page Space Allocation (DPSA)

Late page space allocation

The AIX operating system provides a way to enable the late page-space allocation policy, which means
that the disk block for a paging space page is only allocated when the corresponding in-memory page is
touched. Being touched means the page was modified in some way. For example, with the bzero()
subroutine or if page was requested by the calloc() subroutine or the page was initialized to some value.

152 Performance Management Guide



With the late page space allocation policy, paging space slots are allocated if RAM pages are touched, but
the pages are not assigned to a particular process until that process wants to page out. Therefore, there is
no guarantee that a process will always have sufficient paging space available if it needed to page out
because some other process can start later and consume all of the paging space.

Early page space allocation

If you want to ensure that a process will not be killed due to low paging conditions, this process can
preallocate paging space by using the Early Page Space Allocation policy. This is done by setting an
environment variable called PSALLOC to the value of early. This can be done from within the process or
at the command line (PSALLOC=early command). When the process uses the malloc() subroutine to
allocate memory, this memory will now have paging-space disk blocks reserved for this process, that is,
they are reserved for this process so that there is a guarantee that if the process needed to page out,
there will always be paging space slots available for it. If using early policy and if CPU savings is a
concern, you may want to set another environment variable called NODISCLAIM=true so that each free()
subroutine call does not also result in a disclaim() system call.

Deferred page space allocation

The deferred page space allocation policy is the default policy in AIX. With deferred page space allocation,
the disk block allocation of paging space is delayed until it is necessary to page out the page, which
results in no wasted paging space allocation. This does, however, result in additional overcommitment of
paging space. On a system where enough virtual memory is accessed that paging is necessary, the
amount of paging space required may be as much as was required on previously.

After a page has been paged out to paging space, the disk block is reserved for that page if that page is
paged back into RAM. Therefore, the paging space percentage-used value may not necessarily reflect the
number of pages only in paging space because some of it may be back in RAM as well. If the page that
was paged back in is working storage of a thread, and if the thread releases the memory associated with
that page or if the thread exits, then the disk block for that page is released.

Choosing between LPSA and DPSA with the vmo command

Running the vmo -0 defps command enables turning on or off the deferred page space allocation in order
to preserve the late page space allocation policy. A value of 1 indicates that DPSA should be on, and a
value of 0 indicates that DPSA should be off.

Paging space and virtual memory

The vmstat command (avm column), ps command (SIZE, SZ), and other utilities report the amount of virtual
memory actually accessed because with DPSA, the paging space may not get touched.

It is safer to use the Isps -s command rather than the Isps -a command to look at available paging space
because the command Isps -a only shows paging space that is actually being used. But the command
Isps -s will include paging space being used along with paging space that was reserved using the EPSA

policy.

Shared memory

By using the shmat() or mmap() subroutines, files can be explicitly mapped into memory. This avoids
buffering and avoids system-call overhead. The memory areas are known as the shared memory
segments or regions. Beginning with AIX 4.2.1 and only affecting 32-bit applications, segment 14 was
released providing 11 shared memory segments (not including the shared library data or shared library text
segments) for processes (segments 3-12 and 14). Each of these segments are 256 MB in size.
Applications can read/write the file by reading/writing in the segment. Applications can avoid overhead of
read/write system calls simply by manipulating pointers in these mapped segments.

Chapter 12. Memory performance 153



Files or data can also be shared among multiple processes/threads. However, this requires
synchronization between these processes/threads and its handling is up to the application. Typical use is
by database applications for use as a large database buffer cache.

Paging space is allocated for shared memory regions just as it would for the process private segment
(paging space is used as soon as the pages are touched if deferred page space allocation policy is off).

Extended Shared Memory (EXTSHM)

By default, each shared memory region (whatever its size), always consumes a 256 MB region of address
space. AlX provides a feature called Extended Shared Memory, which allows for more granular shared
memory regions that can be in size of 1 byte up to 256 MB. However, the address space consumption will
be rounded up to the next page (4096 byte) boundary. Extended Shared Memory essentially removes the
limitation of only 11 shared memory regions, but note that when using EXTSHM, the mmap services are
actually used and thus will have the same performance implications of mmap.

This feature is available to processes that have the variable EXTSHM set to ON (EXTSHM=ON) in their
process environment. There is no limit on the number of shared memory regions that a process can
attach. File mapping is supported as before, but still consumes address space that is a multiple of 256 MB
(segment size). Resizing a shared memory region is not supported in this mode. Kernel processes will still
have the same behavior. Without this environment variable set, eleven 256 MB regions are available.

Extended Shared Memory has the following restrictions:
* |/O support is restricted in the same manner as for memory-mapped regions.
* Only uphysio() type of I/O is supported (no raw 1/O).

* These shared memory regions cannot be used as I/O buffers where the unpinning of the buffer occurs
in an interrupt handler. For example, these regions cannot be used for async I/0O buffers.

* The segments cannot be pinned using the plock() subroutine because memory-mapped segments
cannot be pinned with the plock() subroutine.

AIX memory affinity support

AIX memory affinity support introduction

IBM POWER-based SMP hardware systems contain several multichip modules (MCMs), each containing
multiple processors. System memory is attached to these MCMs. While any processor can access all of
the memory in the system, a processor has faster access, and higher bandwidth, when addressing
memory that is attached to its own MCM rather than memory attached to the other MCMs in the system.

AIX has optional support to recognize the division of system memory among the MCMs. If the memory
affinity support is enabled, AlX attempts to satisfy a page fault using memory attached to the MCM
containing the processor that caused the page fault. This may provide a performance benefit to the
application. Memory affinity is enabled by default in AIX.

Using the memory affinity support on AIX is a two step process. The following vmo command will enable
the support:

vmo -o memory_affinity=0]1 (0 disabled, 1 enabled)
Note: A boshoot and a reboot are required in order for it to take effect.
This action will only tell AlIX to organize its data structures along MCM boundaries. The default memory

allocation policy rotates among the MCMs. In order to obtain preferential local MCM memory allocation, an
application must export the MEMORY_AFFINITY environment variable as follows:

MEMORY_AFFINITY=MCM

154  Performance Management Guide



This behavior is propagated across a fork. However, for this behavior to be retained across an exec, the
variable must be contained in the environment string passed to the exec function call.

Performance impact of local MCM memory allocation

The effect local MCM memory allocation will have on a specific application is difficult to predict. Some
applications are unaffected, some might improve, and others might degrade.

Most applications must be bound to processors to get a performance benefit from memory affinity. This is
needed to prevent the AIX dispatcher from moving the application to processors in different MCMs while
the application executes.

The most likely way to obtain a benefit from memory affinity is to limit the application to running only on
the processors contained in a single MCM. This can be done with the bindprocessor command and the
bindprocessor() function. It can also be done with the resource set affinity commands and services.

When the application requires more processors than contained in a single MCM, the performance benefit
through memory affinity depends on the memory allocation and access patterns of the various threads in
the application. Applications with threads that individually allocate and reference unique data areas may
see improved performance. Applications that share memory among all the threads are more likely to get a
degradation from memory affinity.

Related information
Thecommand and [VMM page replacement tuning with the vmo command}

The [bindprocessor|command or subroutine.

[WLM Class Attributes| and [Resource Set Attributes|

Chapter 12. Memory performance 155



156 Performance Management Guide



Chapter 13. Logical volume and disk I/O performance

This topic focuses on the performance of logical volumes and locally attached disk drives. If you are not
familiar with the operating system concepts of volume groups, logical and physical volumes, or logical and
physical partitions, read [Performance overview of fixed-disk storage management

Deciding on the number and types of hard disks, and the sizes and placements of paging spaces and
logical volumes on those hard disks is a critical pre-installation process because of the performance
implications. For an extensive discussion of the considerations for pre-installation disk configuration
planning, see [Disk Pre-installation Guidelines|

The following sections are presented in this topic:

« [Monitoring Disk I/Q|

. :Changing Logical Volume Attributes That Affect Performance]
. ‘Physical Volume Considerations|
+ |Volume Group Recommendations|

* |Reorganizing Logical Vqumes|
. ‘Using Disk-1/0 Pacingl

* [Tuning Logical Volume Striping|
+ [Using Raw Disk /O
» |Using sync/fsync Callg

« [Setting SCSI-Adapter and Disk-Device Queue Limitg
+ [Expanding the Configuration|

« [Using RAID

.

+ [Using Fast Write Caché]

Monitoring Disk I/O

When you are monitoring disk I/O, use the following to determine your course of action:
* Find the most active files, file systems, and logical volumes:

— Can "hot” file systems be better located on the physical drive or be spread across multiple physical
drives? (Islv, iostat, filemon)

— Are "hot” files local or remote? (filemon)
— Does paging space dominate disk utilization? (vmstat, filemon)

— |s there enough memory to cache the file pages being used by running processes? (vmstat, svmon,
vmtune)

— Does the application perform a lot of synchronous (non-cached) file 1/0?
* Determine file fragmentation:

— Are "hot” files heavily fragmented? (fileplace)
* Find the physical volume with the highest utilization:

— Is the type of drive or I/O adapter causing a bottleneck? (iostat, filemon)

Building a Pre-Tuning Baseline

Before you make significant changes in your disk configuration or tuning parameters, it is a good idea to
build a baseline of measurements that record the current configuration and performance.

© Copyright IBM Corp. 1997, 2004 157



Wait 1/0 Time Reporting

AIX 4.3.3 and later contain enhancements to the method used to compute the percentage of CPU time
spent waiting on disk 1/O (wio time). The method used in AlX 4.3.2 and earlier versions of the operating
system can, under certain circumstances, give an inflated view of wio time on SMPs. The wio time is
reported by the commands sar (%wio), vmstat (wa) and iostat (% iowait).

Another change is that the wa column details the percentage of time the CPU was idle with pending disk
I/0O to not only local, but also NFS-mounted disks.

Method Used in AIX 4.3.2 and Earlier

At each clock interrupt on each processor (100 times a second per processor), a determination is made as
to which of the four categories (usr/sys/wio/idle) to place the last 10 ms of time. If the CPU was busy in
usr mode at the time of the clock interrupt, then usr gets the clock tick added into its category. If the CPU
was busy in kernel mode at the time of the clock interrupt, then the sys category gets the tick. If the CPU
was not busy, a check is made to see if any 1/O to disk is in progress. If any disk I/O is in progress, the
wio category is incremented. If no disk I/O is in progress and the CPU is not busy, the idle category gets
the tick.

The inflated view of wio time results from all idle CPUs being categorized as wio regardless of the number
of threads waiting on 1/0. For example, systems with just one thread doing I/O could report over 90
percent wio time regardless of the number of CPUs it has.

Method Used in AIX 4.3.3 and Later

The change in AlX 4.3.3 is to only mark an idle CPU as wio if an outstanding 1/0O was started on that CPU.
This method can report much lower wio times when just a few threads are doing I/O and the system is
otherwise idle. For example, a system with four CPUs and one thread doing I/O will report a maximum of
25 percent wio time. A system with 12 CPUs and one thread doing 1/O will report a maximum of 8.3
percent wio time.

Also, starting with AIX 4.3.3, waiting on I/O to NFS mounted file systems is reported as wait 1/0 time.

Assessing Disk Performance with the iostat Command

Begin the assessment by running the iostat command with an interval parameter during your system’s
peak workload period or while running a critical application for which you need to minimize I/O delays. The
following shell script runs the iostat command in the background while a copy of a large file runs in the
foreground so that there is some 1/0 to measure:

# iostat 5 3 >io.out &
# cp bigl /dev/null

This example leaves the following three reports in the io.out file:tty: tin tout avg-cpu: % user % sys % idle
% iowait 0.0 1.3 0.2 0.6 98.9 0.3 Disks: % tm_act Kbps tps Kb_read Kb_wrtn hdiskO 0.0 0.3 0.0 29753
48076 hdisk1 0.1 0.1 0.0 11971 26460 hdisk2 0.2 0.8 0.1 91200 108355 cd0 0.0 0.0 0.0 0 O tty: tin tout
avg-cpu: % user % sys % idle % iowait 0.8 0.8 0.6 9.7 50.2 39.5 Disks: % tm_act Kbps tps Kb_read
Kb_wrtn hdisk0 47.0 674.6 21.8 3376 24 hdisk1 1.2 2.4 0.6 0 12 hdisk2 4.0 7.9 1.8 8 32 ¢d0 0.0 0.0 0.0 0
0 tty: tin tout avg-cpu: % user % sys % idle % iowait 2.0 2.0 0.2 1.8 93.4 4.6 Disks: % tm_act Kbps tps
Kb_read Kb_wrtn hdisk0 0.0 0.0 0.0 0 0 hdisk1 0.0 0.0 0.0 0 0 hdisk2 4.8 12.8 3.2 64 0 cd0 0.0 0.00.00
0

The first report is the summary since the last reboot and shows the overall balance (or, in this case,
imbalance) in the I/O to each of the hard disks. hdisk1 was almost idle and hdisk2 received about 63
percent of the total /O (from Kb_read and Kb_wrtn).

Note: The system maintains a history of disk activity. If the history is disabled (smitty chgsys ->

Continuously maintain DISK I/O history [false]), the following message displays when you run
the iostat command:

158 Performance Management Guide



Disk history since boot not available.
The interval disk I/O statistics are unaffected by this.

The second report shows the 5-second interval during which cp ran. Examine this information carefully.
The elapsed time for this cp was about 2.6 seconds. Thus, 2.5 seconds of high 1/0O dependency are being
averaged with 2.5 seconds of idle time to yield the 39.5 percent % iowait reported. A shorter interval
would have given a more detailed characterization of the command itself, but this example demonstrates
what you must consider when you are looking at reports that show average activity across intervals.

TTY Report

The two columns of TTY information (tin and tout) in the iostat output show the number of characters
read and written by all TTY devices. This includes both real and pseudo TTY devices. Real TTY devices
are those connected to an asynchronous port. Some pseudo TTY devices are shells, telnet sessions, and
aixterm windows.

Because the processing of input and output characters consumes CPU resources, look for a correlation
between increased TTY activity and CPU utilization. If such a relationship exists, evaluate ways to improve
the performance of the TTY subsystem. Steps that could be taken include changing the application
program, modifying TTY port parameters during file transfer, or perhaps upgrading to a faster or more
efficient asynchronous communications adapter.

CPU Report

The CPU statistics columns (% user, % sys, % idle, and % iowait) provide a breakdown of CPU usage.
This information is also reported in the vmstat command output in the columns labeled us, sy, id, and wa.
For a detailed explanation for the values, see [The vmstat Command| Also note the change made to %
iowait described in [Wait I/O Time Reporting|

On systems running one application, high 1/0 wait percentage might be related to the workload. On
systems with many processes, some will be running while others wait for I/O. In this case, the % jowait
can be small or zero because running processes "hide” some wait time. Although % iowait is low, a
bottleneck can still limit application performance.

If the iostat command indicates that a CPU-bound situation does not exist, and % iowait time is greater
than 20 percent, you might have an I/O or disk-bound situation. This situation could be caused by
excessive paging due to a lack of real memory. It could also be due to unbalanced disk load, fragmented
data or usage patterns. For an unbalanced disk load, the same iostat report provides the necessary
information. But for information about file systems or logical volumes, which are logical resources, you
must use tools such as the filemon or fileplace commands.

Drive Report

When you suspect a disk I/O performance problem, use the iostat command. To avoid the information
about the TTY and CPU statistics, use the -d option. In addition, the disk statistics can be limited to the
important disks by specifying the disk names.

Remember that the first set of data represents all activity since system startup.

Disks: Shows the names of the physical volumes. They are either hdisk or cd followed by a number. If
physical volume names are specified with the iostat command, only those names specified are
displayed.

% tm_act
Indicates the percentage of time that the physical disk was active (bandwidth utilization for the
drive) or, in other words, the total time disk requests are outstanding. A drive is active during data
transfer and command processing, such as seeking to a new location. The "disk active time”
percentage is directly proportional to resource contention and inversely proportional to
performance. As disk use increases, performance decreases and response time increases. In

Chapter 13. Logical volume and disk I/O performance 159



general, when the utilization exceeds 70 percent, processes are waiting longer than necessary for
I/0O to complete because most UNIX processes block (or sleep) while waiting for their I/0O requests
to complete. Look for busy versus idle drives. Moving data from busy to idle drives can help
alleviate a disk bottleneck. Paging to and from disk will contribute to the I/O load.

Kbps Indicates the amount of data transferred (read or written) to the drive in KB per second. This is the
sum of Kb_read plus Kb_wrtn, divided by the seconds in the reporting interval.

tps Indicates the number of transfers per second that were issued to the physical disk. A transfer is an
I/0O request through the device driver level to the physical disk. Multiple logical requests can be
combined into a single 1/O request to the disk. A transfer is of indeterminate size.

Kb_read
Reports the total data (in KB) read from the physical volume during the measured interval.

Kb_wrtn
Shows the amount of data (in KB) written to the physical volume during the measured interval.

Taken alone, there is no unacceptable value for any of the above fields because statistics are too closely
related to application characteristics, system configuration, and type of physical disk drives and adapters.
Therefore, when you are evaluating data, look for patterns and relationships. The most common
relationship is between disk utilization (%tm_act) and data transfer rate (tps).

To draw any valid conclusions from this data, you have to understand the application’s disk data access
patterns such as sequential, random, or combination, as well as the type of physical disk drives and
adapters on the system. For example, if an application reads/writes sequentially, you should expect a high
disk transfer rate (Kbps) when you have a high disk busy rate (%tm_act). Columns Kb_read and Kb_wrtn
can confirm an understanding of an application’s read/write behavior. However, these columns provide no
information on the data access patterns.

Generally you do not need to be concerned about a high disk busy rate (%tm_act) as long as the disk
transfer rate (Kbps) is also high. However, if you get a high disk busy rate and a low disk transfer rate, you
may have a fragmented logical volume, file system, or individual file.

Discussions of disk, logical volume and file system performance sometimes lead to the conclusion that the
more drives you have on your system, the better the disk I/O performance. This is not always true
because there is a limit to the amount of data that can be handled by a disk adapter. The disk adapter can
also become a bottleneck. If all your disk drives are on one disk adapter, and your hot file systems are on
separate physical volumes, you might benefit from using multiple disk adapters. Performance improvement
will depend on the type of access.

To see if a particular adapter is saturated, use the iostat command and add up all the Kbps amounts for
the disks attached to a particular disk adapter. For maximum aggregate performance, the total of the
transfer rates (Kbps) must be below the disk adapter throughput rating. In most cases, use 70 percent of
the throughput rate. In operating system versions later than 4.3.3 the -a or -A option will display this
information.

Assessing Disk Performance with the vmstat Command

To prove that the system is I/O bound, it is better to use the iostat command. However, the vmstat
command could point to that direction by looking at the wa column, as discussed in|The vmstat Command.
Other indicators for I/0 bound are:

* The disk xfer part of the vmstat output

To display a statistic about the logical disks (a maximum of four disks is allowed), use the following
command:

# vmstat hdisk0 hdiskl 1 8
kthr memory page faults cpu disk xfer

160 Performance Management Guide



r b awm fre re pi po fr sr cy in sy c¢s us sy idwa 1234
0O O 345627743 0 06 6 6 0O 0131 149 28 0 199 0 060
0O O 345627743 06 ©6 6 6 O 0131 77 30 0 199 0 060
1 0 349827152 0 0 0 06 0 01531088 35 11087 2 611
0 1 349926543 0 O O O O 0199 1530 38 119 080 0 59
0O 1 349925406 0 0 6 0 O 0187 2472 38 226 072 053
0O O 345624329 0 6 6 6 0O 0178 1301 37 2 12 20 66 0 42
0O O 345624329 0 O 6 06 O 0124 58 19 0 099 0 060
0O 0 345624329 0 6 6 6 0 0123 58 23 0 099 0 060

The disk xfer part provides the number of transfers per second to the specified physical volumes that
occurred in the sample interval. One to four physical volume names can be specified. Transfer statistics
are given for each specified drive in the order specified. This count represents requests to the physical
device. It does not imply an amount of data that was read or written. Several logical requests can be
combined into one physical request.

* The in column of the vmstat output

This column shows the number of hardware or device interrupts (per second) observed over the
measurement interval. Examples of interrupts are disk request completions and the 10 millisecond clock
interrupt. Since the latter occurs 100 times per second, the in field is always greater than 100. But the
vmstat command also provides a more detailed output about the system interrupts.

* The vmstat -i output

The -i parameter displays the number of interrupts taken by each device since system startup. But, by
adding the interval and, optionally, the count parameter, the statistic since startup is only displayed in
the first stanza; every trailing stanza is a statistic about the scanned interval.

# vmstat -1 1 2

priority level type count module(handler)
0 hardware 0 i_misc_pwr(a868c)
0 1  hardware 0 i_scu(a8680)
0 2 hardware 0 i_epow(954€0)
0 2 hardware 0 /etc/drivers/ascsiddpin(189acd4)
1 2 hardware 194 /etc/drivers/rsdd(1941354)
3 10 hardware 10589024 /etc/drivers/mpsdd(1977a88)
3 14  hardware 101947 /etc/drivers/ascsiddpin(189ab8c)
5 62 hardware 61336129 clock(952c4)
10 63 hardware 13769 i_softoff(9527c)
priority level type  count module(handler)
0 0 hardware 0 i_misc_pwr(a868c)
0 1  hardware 0 i_scu(a8680)
0 2 hardware 0 i_epow(954€0)
0 2 hardware 0 /etc/drivers/ascsiddpin(189acd4)
1 2 hardware 0 /etc/drivers/rsdd(1941354)
3 10 hardware 25 /etc/drivers/mpsdd(1977a88)
3 14 hardware 0 /etc/drivers/ascsiddpin(189ab8c)
5 62 hardware 105 clock(952c4)
10 63 hardware 0 i_softoff(9527c)

Note: The output will differ from system to system, depending on hardware and software configurations
(for example, the clock interrupts may not be displayed in the vmstat -i output although they will
be accounted for under the in column in the normal vmstat output). Check for high numbers in
the count column and investigate why this module has to execute so many interrupts.

Assessing Disk Performance with the sar Command

The sar command is a standard UNIX command used to gather statistical data about the system. With its
numerous options, the sar command provides queuing, paging, TTY, and many other statistics. With AIX
4.3.3, the sar -d option generates real-time disk I/O statistics.

# sar -d 3 3
AIX konark 3 4 0002506F4C00 08/26/99

12:09:50 device %busy avque r+w/s  blks/s avwait avserv

Chapter 13. Logical volume and disk I/O performance 161



12:09:53 hdisk0 1 0.0 0 5 0.0 0.0
hdiskl 0 0.0 0 1 0.0 0.0

cd0 0 0.0 0 0 0.0 0.0

12:09:56 hdisk0 0 0.0 0 0 0.0 0.0
hdiskl 0 0.0 0 1 0.0 0.0

cd0 0 0.0 0 0 0.0 0.0

12:09:59 hdisk0 1 0.0 1 4 0.0 0.0
hdiskl 0 0.0 0 1 0.0 0.0

cd0 0 0.0 0 0 0.0 0.0

Average hdisk0 0 0.0 0 3 0.0 0.0
hdiskl 0 0.0 0 1 0.0 0.0

cd0 0 0.0 0 0 0.0 0.0

The fields listed by the sar -d command are as follows:

%busy
Portion of time device was busy servicing a transfer request. This is the same as the %tm act
column in the iostat command report.

avque Average number of requests outstanding from the adapter to the device during that time. There
may be additonal I/O operations in the queue of the device driver. This number is a good indicator
if an 1/0O bottleneck exists.

r+w/s Number of read/write transfers from or to device. This is the same as tps in the iostat command
report.

blks/s Number of bytes transferred in 512-byte units

avwait
Average number of transactions waiting for service (queue length). Average time (in milliseconds)
that transfer requests waited idly on queue for the device. This number is currently not reported
and shows 0.0 by default.

avserv
Number of milliseconds per average seek. Average time (in milliseconds) to service each transfer
request (includes seek, rotational latency, and data transfer times) for the device. This number is
currently not reported and shows 0.0 by default.

Assessing Logical Volume Fragmentation with the Islv Command

The Islv command shows, among other information, the logical volume fragmentation. To check logical
volume fragmentation, use the command Islv -l lvhame, as follows:

# 1s1v -1 hd2

hd2:/usr

PV COPIES IN BAND DISTRIBUTION

hdisk0 114:000:000 22% 000:042:026:000:046

The output of COPIES shows the logical volume hd2 has only one copy. The IN BAND shows how well the
intrapolicy, an attribute of logical volumes, is followed. The higher the percentage, the better the allocation
efficiency. Each logical volume has its own intrapolicy. If the operating system cannot meet this
requirement, it chooses the best way to meet the requirements. In our example, there are a total of 114
logical partitions (LP); 42 LPs are located on middle, 26 LPs on center, and 46 LPs on inner-edge. Since
the logical volume intrapolicy is center, the in-band is 22 percent (26 / (42+26+46). The DISTRIBUTION
shows how the physical partitions are placed in each part of the intrapolicy; that is:

edge : middle : center : inner-middle : inner-edge

See [Position on Physical Volume] for additional information about physical partitions placement.

162 Performance Management Guide



Assessing Physical Placement of Data with the Islv Command

If the workload shows a significant degree of I/O dependency, you can investigate the physical placement
of the files on the disk to determine if reorganization at some level would yield an improvement. To see the
placement of the partitions of logical volume hd11 within physical volume hdisk0, use the following:

# 1slv -p hdisk0 hdll

hdisk0:hd11:/home/op

USED USED USED USED USED USED USED USED USED USED 1-10

USED USED USED USED USED USED USED 11-17

USED USED USED USED USED USED USED USED USED USED 18-27
USED USED USED USED USED USED USED 28-34

USED USED USED USED USED USED USED USED USED USED 35-44
USED USED USED USED USED USED 45-50

USED USED USED USED USED USED USED USED USED USED 51-60
0052 0053 0054 0055 0056 0057 0058 61-67

0059 0060 0061 0062 0063 0064 0065 0066 0067 0068 68-77
0069 0070 0071 0072 0073 0074 0075 78-84

Look for the rest of hd11 on hdisk1 with the following:

# 1sTv -p hdiskl hdll
hdiskl:hd11:/home/op
0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 1-10
0045 0046 0047 0048 0049 0050 0051 11-17

USED USED USED USED USED USED USED USED USED USED  18-27
USED USED USED USED USED USED USED 28-34

USED USED USED USED USED USED USED USED USED USED  35-44
USED USED USED USED USED USED 45-50

0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 51-60
0011 0012 0013 0014 0015 0016 0017 61-67

0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 68-77
0028 0029 0030 0031 0032 0033 0034 78-84

From top to bottom, five blocks represent edge, middle, center, inner-middle, and inner-edge, respectively.

» A USED indicates that the physical partition at this location is used by a logical volume other than the one
specified. A number indicates the logical partition number of the logical volume specified with the Islv -p
command.

* A FREE indicates that this physical partition is not used by any logical volume. Logical volume
fragmentation occurs if logical partitions are not contiguous across the disk.

» A STALE physical partition is a physical partition that contains data you cannot use. You can also see the
STALE physical partitions with the Ispv -m command. Physical partitions marked as STALE must be
updated to contain the same information as valid physical partitions. This process, called
resynchronization with the syncvg command, can be done at vary-on time, or can be started anytime
the system is running. Until the STALE partitions have been rewritten with valid data, they are not used to
satisfy read requests, nor are they written to on write requests.

In the previous example, logical volume hd11 is fragmented within physical volume hdisk1, with its first
logical partitions in the inner-middle and inner regions of hdisk1, while logical partitions 35-51 are in the
outer region. A workload that accessed hd11 randomly would experience unnecessary I/0 wait time as
longer seeks might be needed on logical volume hd11. These reports also indicate that there are no free
physical partitions in either hdiskO or hdisk1.

Chapter 13. Logical volume and disk I/O performance 163



Assessing File Placement with the fileplace Command
To see how the file copied earlier, big1, is stored on the disk, we can use the fileplace command. The

fileplace command displays the placement of a file’s blocks within a logical volume or within one or more
physical volumes.

To determine whether the fileplace command is installed and available, run the following command:
# 1slpp -1I perfagent.tools

Use the following command:
# fileplace -pv bigl

File: bigl Size: 3554273 bytes Vol: /dev/hd10
Blk Size: 4096 Frag Size: 4096 Nfrags: 868  Compress: no
Inode: 19 Mode: -rwxr-xr-x Owner: hoetzel Group: system

Physical Addresses (mirror copy 1) Logical Fragment
0001584-0001591 hdisko 8 frags 32768 Bytes, 0.9 0001040-0001047
0001624-0001671 hdisko 48 frags 196608 Bytes, 5.5 0001080-0001127
0001728-0002539 hdisk®@ 812 frags 3325952 Bytes, 93.5 0001184-0001995

N O° o°

90.8

o

868 frags over space of 956 frags: space efficiency
3 fragments out of 868 possible: sequentiality = 99.

8%
This example shows that there is very little fragmentation within the file, and those are small gaps. We can
therefore infer that the disk arrangement of big1 is not significantly affecting its sequential read-time.
Further, given that a (recently created) 3.5 MB file encounters this little fragmentation, it appears that the
file system in general has not become particularly fragmented.

Occasionally, portions of a file may not be mapped to any blocks in the volume. These areas are implicitly
filled with zeroes by the file system. These areas show as unallocated logical blocks. A file that has these
holes will show the file size to be a larger number of bytes than it actually occupies (that is, the Is -I
command will show a large size, whereas the du command will show a smaller size or the number of
blocks the file really occupies on disk).

The fileplace command reads the file’s list of blocks from the logical volume. If the file is new, the
information may not be on disk yet. Use the sync command to flush the information. Also, the fileplace
command will not display NFS remote files (unless the command runs on the server).

Note: If a file has been created by seeking to various locations and writing widely dispersed records, only
the pages that contain records will take up space on disk and appear on a fileplace report. The file
system does not fill in the intervening pages automatically when the file is created. However, if such
a file is read sequentially (by the cp or tar commands, for example) the space between records is
read as binary zeroes. Thus, the output of such a c¢p command can be much larger than the input
file, although the data is the same.

Space Efficiency and Sequentiality

Higher space efficiency means files are less fragmented and probably provide better sequential file
access. A higher sequentiality indicates that the files are more contiguously allocated, and this will
probably be better for sequential file access.

Space efficiency =
Total number of fragments used for file storage /
(Largest fragment physical address -
Smallest fragment physical address + 1)

164 Performance Management Guide



Sequentiality =
(Total number of fragments -
Number of grouped fragments +1) /
Total number of fragments

If you find that your sequentiality or space efficiency values become low, you can use the reorgvg
command to improve logical volume utilization and efficiency (see IReorqanizing Logical Volumes). To
improve file system utilization and efficiency, see |Reorganizing File Systems]

In this example, the Largest fragment physical address - Smallest fragment physical address + 1 is:
0002539 - 0001584 + 1 = 956 fragments; total used fragments is: 8 + 48 + 812 = 868; the space efficiency
is 868 / 956 (90.8 percent); the sequentiality is (868 - 3 + 1) / 868 = 99.8 percent.

Because the total number of fragments used for file storage does not include the indirect blocks location,
but the physical address does, the space efficiency can never be 100 percent for files larger than 32 KB,
even if the file is located on contiguous fragments.

Assessing Paging Space I/0 with the vmstat Command

I/0 to and from paging spaces is random, mostly one page at a time. The vmstat reports indicate the
amount of paging-space /O taking place. Both of the following examples show the paging activity that
occurs during a C compilation in a machine that has been artificially shrunk using the rmss command. The
pi and po (paging-space page-ins and paging-space page-outs) columns show the amount of
paging-space /O (in terms of 4096-byte pages) during each 5-second interval. The first report (summary
since system reboot) has been removed. Notice that the paging activity occurs in bursts.

# vmstat 5 8

kthr memory page faults cpu

r b awm fre re pi po fr sr cy in sy cs us sy id wa
0 172379 434 0 6 0 0 2 0376 192 478 9 387 1
0 172379 391 0 8 0 0 0 0631 2967 77510 183 6
0 172379 391 0 © 0 0 0 06252672790 5 392 0
0 172379 175 0 7 0 0 0 0721 3215868 8 47216
2 171384 877 0 12 13 44 150 0 662 3049 853 7 12 40 41
0 271929 127 0 35 30 182 666 O 709 2838 977 1513 0 71
0 171938 122 0 6 8 32 122 0 608 3332 787 10 4 75 11
0 171938 122 0 © 0 3 12 06112834733 5 37517

The following "before and after” vmstat -s reports show the accumulation of paging activity. Remember
that it is the paging space page ins and paging space page outs that represent true paging-space 1/0O. The
(unqualified) page ins and page outs report total 1/0, that is both paging-space I/O and the ordinary file
I/O, performed by the paging mechanism. The reports have been edited to remove lines that are irrelevant
to this discussion.

# vmstat -s # before # vmstat -s # after

6602 page ins 7022 page ins

3948 page outs 4146 page outs

544 paging space page ins 689 paging space page ins
1923 paging space page outs 2032 paging space page outs
0 total reclaims 0 total reclaims

The fact that more paging-space page-ins than page-outs occurred during the compilation suggests that
we had shrunk the system to the point that thrashing begins. Some pages were being repaged because
their frames were stolen before their use was complete.

Chapter 13. Logical volume and disk I/O performance 165



Assessing Overall Disk I/0 with the vmstat Command

The technique just discussed can also be used to assess the disk I/O load generated by a program. If the
system is otherwise idle, the following sequence:

vmstat -s >statout
testpgm

sync

vmstat -s >> statout
egrep "ins|outs" statout

Y

yields a before and after picture of the cumulative disk activity counts, such as:

5698 page ins
5012 page outs
0 paging space page ins
32 paging space page outs
6671 page ins
5268 page outs
8 paging space page ins
225 paging space page outs

During the period when this command (a large C compile) was running, the system read a total of 981
pages (8 from paging space) and wrote a total of 449 pages (193 to paging space).

Detailed 1/0 Analysis with the filemon Command

The filemon command uses the trace facility to obtain a detailed picture of 1/0O activity during a time
interval on the various layers of file system utilization, including the logical file system, virtual memory
segments, LVM, and physical disk layers. Data can be collected on all the layers, or layers can be
specified with the -O layer option. The default is to collect data on the VM, LVM, and physical layers. Both
summary and detailed reports are generated. Since it uses the trace facility, the filemon command can be
run only by the root user or by a member of the system group.

To determine whether the filemon command is installed and available, run the following command:
# 1sTpp -11 perfagent.tools

Tracing is started by the filemon command, optionally suspended with the trcoff subcommand and
resumed with the trcon subcomand, and terminated with the trestop subcommand (you may want to
issue the command nice -n -20 trcstop to stop the filemon command since the filemon command is
currently running at priority 40). As soon as tracing is terminated, the filemon command writes its report to
stdout.

Note: Only data for those files opened after the filemon command was started will be collected, unless
you specify the -u flag.

The filemon command can read the I/O trace data from a specified file, instead of from the real-time trace
process. In this case, the filemon report summarizes the I/O activity for the system and period
represented by the trace file. This offline processing method is useful when it is necessary to postprocess
a trace file from a remote machine or perform the trace data collection at one time and postprocess it at
another time.

The trerpt -r command must be executed on the trace logfile and redirected to another file, as follows:

# gennames > gennames.out
# trcrpt -r  trace.out > trace.rpt

At this point an adjusted trace logfile is fed into the filemon command to report on I/O activity captured by
a previously recorded trace session as follows:

# filemon -i trace.rpt -n gennames.out | pg

166 Performance Management Guide



In this example, the filemon command reads file system trace events from the input file trace.rpt.
Because the trace data is already captured on a file, the filemon command does not put itself in the

background to allow application programs to be run. After the entire file is read, an I/O activity report for
the virtual memory, logical volume, and physical volume levels is displayed on standard output (which, in

this example, is piped to the pg command).

If the trace command was run with the -C all flag, then run the trerpt command also with the -C all flag

(see [Formatting a Report from trace -C Output).

The following sequence of commands gives an example of the filemon command usage:
# filemon -o fm.out -0 all; cp /smit.log /dev/null ; trcstop

The report produced by this sequence, in an otherwise-idle system, is as follows:

Thu Aug 19 11:30:49 1999
System: AIX texmex Node: 4 Machine: 000691854C00

0.369 secs in measured interval

Cpu utilization: 9.0%

Most Active Files
#MBs #opns  #rds  #wrs file volume:inode
0.1 1 14 0 smit.log /dev/hd4:858
0.0 1 0 13 null
0.0 2 4 0 ksh.cat /dev/hd2:16872
0.0 1 2 0 cmdtrace.cat /dev/hd2:16739

#MBs #rpgs #wpgs segid segtype volume:inode
0.1 13 0 5e93 1?77

0.0 2 0 22ed 1?77

0.0 1 0 5¢77 persistent

util #rblk #wblk KB/s volume description
0.06 112 0 151.9 /dev/hd4 /
0.04 16 0 21.7 /dev/hd2 /usr

util #rblk #wblk

FILE: /smit.log volume: /dev/hd4 (/) inode: 858
1

opens:
total bytes xfrd: 57344
reads: 14 (0 errs)
read sizes (bytes): avg 4096.0 min 4096 max 4096 sdev 0.0
read times (msec): avg 1.709 min  0.002 max 19.996 sdev  5.092

FILE: /dev/null

Chapter 13. Logical volume and disk 1/0 performance

167



opens:
total bytes xfrd:
writes:
write sizes (bytes):
write times (msec):

FILE: /usr/1ib/nls/msg/en_US/ksh.cat

opens:
total bytes xfrd:
reads:
read sizes (bytes):
read times (msec):
1seeks:

FILE: /usr/1ib/nls/msg/en_US/cmdtrace.cat

opens:
total bytes xfrd:
reads:
read sizes (bytes):
read times (msec):
1seeks:

1

50600

13 (0 errs)

avg 3892.3 min 1448 max
avg 0.007 min  0.003 max

4096
0.022

volume: /dev/hd2 (/usr)

SEGMENT: 5e93
segment flags:
reads:
read times (msec):
read sequences:
read seq. Tengths:

segtype:

SEGMENT: 22ed
segment flags:
reads:
read times (msec):
read sequences:
read seq. Tengths:

segtype:

SEGMENT: 5c77
segment flags:
reads:
read times (msec):
read sequences:
read seq. Tengths:

segtype:

VOLUME: /dev/hd4 description: /

reads:
read sizes (blks):
read times (msec):
read sequences:
read seq. Tengths:
seeks:
seek dist (blks):

time to next req(msec):
throughput:
utilization:

VOLUME: /dev/hd2 description: /usr

reads:
read sizes (blks):

168

2
16384
4 (0 errs)
avg 4096.0 min 4096 max 4096
avg 0.042 min  0.015 max 0.070
10

volume: /dev/hd2
1
8192
2 (0 errs)
avg 4096.0 min 4096 max 4096
avg 0.062 min  0.049 max 0.075
8

(4096 byte pages)

277
13 (0 errs)
avg  1.979 min  0.957 max 5.970
1
avg 13.0 min 13 max 13
277
inode
2 (0 errs)
avg 8.102 min 7.786 max 8.418
2
avg 1.0 min 1 max 1
persistent
pers defer
1 (0 errs)
avg 13.810 min 13.810 max 13.810
1
avg 1.0 min 1 max 1
Stats (512 byte blocks)
5 (0 errs)
avg 22.4 min 8 max 40
avg  4.847 min  0.938 max 13.792
3
avg 37.3 min 8 max 64
3 (60.0%)
init 6344,
avg 40.0 min 8 max 72
avg 70.473 min  0.224 max 331.020
151.9 KB/sec
0.06
2 (0 errs)
avg 8.0 min 8 max 8

Performance Management Guide

sdev  705.6
sdev  0.006
inode: 16872
sdev 0.0
sdev  0.025
(/usr) inode: 16739
sdev 0.0
sdev  0.013
sdev 1.310
sdev 0.0
sdev  0.316
sdev 0.0
sdev  0.000
sdev 0.0
sdev 12.8
sdev  4.819
sdev 22.9
sdev 32.0

sdev 130.364

sdev 0.0



read times (msec): avg 8.078 min  7.769 max 8.387 sdev  0.309

read sequences: 2

read seq. lengths: avg 8.0 min 8 max 8 sdev 0.0
seeks: 2 (100.0%)

seek dist (blks): init 608672,

avg 16.0 min 16 max 16 sdev 0.0

time to next req(msec): avg 162.160 min  8.497 max 315.823 sdev 153.663
throughput: 21.7 KB/sec
utilization: 0.04

VOLUME: /dev/hdisk0 description: N/A

reads: 7 (0 errs)
read sizes (blks): avg 18.3 min 8 max 40 sdev 12.6
read times (msec): avg 5.723 min  0.905 max 20.448 sdev  6.567
read sequences: 5
read seq. Tengths: avg 25.6 min 8 max 64 sdev 22.9
seeks: 5 (71.4%)
seek dist (blks): init 4233888,
avg 171086.0 min 8 max 684248 sdev 296274.2

seek dist (%tot blks):init 48.03665,
avg 1.94110 min 0.00009 max 7.76331 sdev 3.36145
time to next req(msec): avg 50.340 min  0.226 max 315.865 sdev 108.483
throughput: 173.6 KB/sec
utilization: 0.10

Using the filemon command in systems with real workloads would result in much larger reports and might
require more trace buffer space. Space and CPU time consumption for the filemon command can
degrade system performance to some extent. Use a nonproduction system to experiment with the filemon
command before starting it in a production environment. Also, use offline processing and on systems with
many CPUs use the -C all flag with the trace command.

Note: Although the filemon command reports average, minimum, maximum, and standard deviation in its
detailed-statistics sections, the results should not be used to develop confidence intervals or other
formal statistical inferences. In general, the distribution of data points is neither random nor
symmetrical.

Global Reports of the filemon Command

The global reports list the most active files, segments, logical volumes, and physical volumes during the
measured interval. They are shown at the beginning of the filemon report. By default, the logical file and
virtual memory reports are limited to the 20 most active files and segments, respectively, as measured by
the total amount of data transferred. If the -v flag has been specified, activity for all files and segments is
reported. All information in the reports is listed from top to bottom as most active to least active.

Most Active Files:

#MBs Total number of MBs transferred over measured interval for this file. The rows are sorted by this
field in decreasing order.

#opns Number of opens for files during measurement period.
#rds  Number of read calls to file.

#wrs  Number of write calls to file.

file File name (full path name is in detailed report).

volume:inode
The logical volume that the file resides in and the i-node number of the file in the associated file

Chapter 13. Logical volume and disk I/O performance 169



system. This field can be used to associate a file with its corresponding persistent segment shown
in the detailed VM segment reports. This field may be blank for temporary files created and
deleted during execution.

The most active files are smit.log on logical volume hd4 and file null. The application utilizes the terminfo
database for screen management; so the ksh.cat and cmdtrace.cat are also busy. Anytime the shell
needs to post a message to the screen, it uses the catalogs for the source of the data.

To identify unknown files, you can translate the logical volume name, /dev/hd1, to the mount point of the
file system, /home, and use the find or the ncheck command:

# find / -inum 858 -print
/smit.Tlog

or

# ncheck -i 858 /
/:
858 /smit.log

Most Active Segments:

#MBs Total number of MBs transferred over measured interval for this segment. The rows are sorted by
this field in decreasing order.

#rpgs Number of 4-KB pages read into segment from disk.

#wpgs
Number of 4-KB pages written from segment to disk (page out).

#segid
VMM ID of memory segment.

segtype
Type of segment: working segment, persistent segment (local file), client segment (remote file),
page table segment, system segment, or special persistent segments containing file system data
(log, root directory, .inode, .inodemap, .inodex, .inodexmap, .indirect, .diskmap).

volume:inode
For persistent segments, name of logical volume that contains the associated file and the file’s
i-node number. This field can be used to associate a persistent segment with its corresponding
file, shown in the Detailed File Stats reports. This field is blank for nonpersistent segments.

If the command is still active, the virtual memory analysis tool svmon can be used to display more
information about a segment, given its segment ID (segid), as follows: svmon -D segid. See[The svmor]
[Command] for a detailed discussion.

In our example, the segtype ??? means that the system cannot identify the segment type, and you must
use the svmon command to get more information.

Most Active Logical Volumes:

util Utilization of logical volume.

#rblk Number of 512-byte blocks read from logical volume.
#wblk Number of 512-byte blocks written to logical volume.
KB/s Average transfer data rate in KB per second.

volume
Logical volume name.

170 Performance Management Guide



description
Either the file system mount point or the logical volume type (paging, jfslog, boot, or sysdump). For
example, the logical volume /dev/hd2 is /usr; /dev/hd6 is paging, and /dev/hd8 is jfslog. There
may also be the word compressed. This means all data is compressed automatically using

Lempel-Zev (LZ) compression before being written to disk, and all data is uncompressed
automatically when read from disk (see for details).
The utilization is presented in percentage, 0.06 indicates 6 percent busy during measured interval.

Most Active Physical Volumes:

util Utilization of physical volume.

Note: Logical volume I/O requests start before and end after physical volume I/O requests. Total
logical volume utilization will appear therefore to be higher than total physical volume
utilization.

#rblk Number of 512-byte blocks read from physical volume.
#wblk Number of 512-byte blocks written to physical volume.
KB/s Average transfer data rate in KB per second.

volume
Physical volume name.

description
Simple description of the physical volume type, for example, SCSI Multimedia CD-ROM Drive or
16 Bit SCSI Disk Drive.

The utilization is presented in percentage, 0.10 indicates 10 percent busy during measured interval.

Detailed Reports of the filemon Command

The detailed reports give additional information for the global reports. There is one entry for each reported
file, segment, or volume in the detailed reports. The fields in each entry are described below for the four
detailed reports. Some of the fields report a single value; others report statistics that characterize a
distribution of many values. For example, response-time statistics are kept for all read or write requests
that were monitored. The average, minimum, and maximum response times are reported, as well as the
standard deviation of the response times. The standard deviation is used to show how much the individual
response times deviated from the average. Approximately two-thirds of the sampled response times are
between average minus standard deviation (avg - sdev) and average plus standard deviation (avg + sdev).
If the distribution of response times is scattered over a large range, the standard deviation will be large
compared to the average response time.

Detailed File Stats: Detailed file statistics are provided for each file listed in the Most Active Files
report. These stanzas can be used to determine what access has been made to the file. In addition to the
number of total bytes transferred, opens, reads, writes, and Iseeks, the user can also determine the
read/write size and times.

FILE Name of the file. The full path name is given, if possible.

volume
Name of the logical volume/file system containing the file.

inode I-node number for the file within its file system.
opens Number of times the file was opened while monitored.

total bytes xfrd
Total number of bytes read/written from/to the file.

reads Number of read calls against the file.

Chapter 13. Logical volume and disk I/O performance 171



read sizes (bytes)
Read transfer-size statistics (avg/min/max/sdev), in bytes.

read times (msec)
Read response-time statistics (avg/min/max/sdev), in milliseconds.

writes Number of write calls against the file.

write sizes (bytes)
Write transfer-size statistics.

write times (msec)
Write response-time statistics.

Iseeks
Number of Iseek() subroutine calls.

The read sizes and write sizes will give you an idea of how efficiently your application is reading and
writing information. Use a multiple of 4 KB pages for best results.

Detailed VM Segment Stats: Each element listed in the Most Active Segments report has a
corresponding stanza that shows detailed information about real 1/0O to and from memory.

SEGMENT
Internal operating system’s segment ID.

segtype
Type of segment contents.

segment flags
Various segment attributes.

volume
For persistent segments, the name of the logical volume containing the corresponding file.

inode For persistent segments, the i-node number for the corresponding file.
reads Number of 4096-byte pages read into the segment (that is, paged in).

read times (msec)
Read response-time statistics (avg/min/max/sdev), in milliseconds.

read sequences
Number of read sequences. A sequence is a string of pages that are read (paged in)
consecutively. The number of read sequences is an indicator of the amount of sequential access.

read seq. lengths
Statistics describing the lengths of the read sequences, in pages.

writes Number of pages written from the segment to disk (that is, paged out).

write times (msec)
Write response-time statistics.

write sequences
Number of write sequences. A sequence is a string of pages that are written (paged out)
consecutively.

write seq. lengths
Statistics describing the lengths of the write sequences, in pages.

By examining the reads and read-sequence counts, you can determine if the access is sequential or
random. For example, if the read-sequence count approaches the reads count, the file access is more

172  Performance Management Guide



random. On the other hand, if the read-sequence count is significantly smaller than the read count and the
read-sequence length is a high value, the file access is more sequential. The same logic applies for the
writes and write sequence.

Detailed Logical/Physical Volume Stats: Each element listed in the Most Active Logical Volumes /
Most Active Physical Volumes reports will have a corresponding stanza that shows detailed information
about the logical/physical volume. In addition to the number of reads and writes, the user can also
determine read and write times and sizes, as well as the initial and average seek distances for the logical /
physical volume.

VOLUME
Name of the volume.

description
Description of the volume. (Describes contents, if dealing with a logical volume; describes type, if
dealing with a physical volume.)

reads Number of read requests made against the volume.

read sizes (blks)
Read transfer-size statistics (avg/min/max/sdev), in units of 512-byte blocks.

read times (msec)
Read response-time statistics (avg/min/max/sdev), in milliseconds.

read sequences
Number of read sequences. A sequence is a string of 512-byte blocks that are read consecutively.
It indicates the amount of sequential access.

read seq. lengths
Statistics describing the lengths of the read sequences, in blocks.

writes Number of write requests made against the volume.

write sizes (blks)
Write transfer-size statistics.

write times (msec)
Write-response time statistics.

write sequences
Number of write sequences. A sequence is a string of 512-byte blocks that are written
consecutively.

write seq. lengths
Statistics describing the lengths of the write sequences, in blocks.

seeks Number of seeks that preceded a read or write request; also expressed as a percentage of the
total reads and writes that required seeks.

seek dist (blks)
Seek-distance statistics in units of 512-byte blocks. In addition to the usual statistics
(avg/min/max/sdev), the distance of the initial seek operation (assuming block 0 was the starting
position) is reported separately. This seek distance is sometimes very large; it is reported
separately to avoid skewing the other statistics.

seek dist (cyls)
(Physical volume only) Seek-distance statistics in units of disk cylinders.

time to next req
Statistics (avg/min/max/sdev) describing the length of time, in milliseconds, between consecutive
read or write requests to the volume. This column indicates the rate at which the volume is being
accessed.

Chapter 13. Logical volume and disk I/O performance 173



throughput
Total volume throughput in KB per second.

utilization
Fraction of time the volume was busy. The entries in this report are sorted by this field in
decreasing order.

A long seek time can increase 1/O response time and result in decreased application performance. By
examining the reads and read sequence counts, you can determine if the access is sequential or random.
The same logic applies to the writes and write sequence.

Guidelines for Using the filemon Command
Following are some guidelines for using the filemon command:

* The /etc/inittab file is always very active. Daemons specified in /etc/inittab are checked regularly to
determine whether they are required to be respawned.

» The /etc/passwd file is also always very active. Because files and directories access permissions are
checked.

* Along seek time increases I/0O response time and decreases performance.

 If the majority of the reads and writes require seeks, you might have fragmented files and overly active
file systems on the same physical disk. However, for online transaction processing (OLTP) or database
systems this behavior might be normal.

» If the number of reads and writes approaches the number of sequences, physical disk access is more
random than sequential. Sequences are strings of pages that are read (paged in) or written (paged out)
consecutively. The seq. Tengths is the length, in pages, of the sequences. A random file access can
also involve many seeks. In this case, you cannot distinguish from the filemon output if the file access
is random or if the file is fragmented. Use the fileplace command to investigate further.

* Remote files are listed in the volume:inode column with the remote system name.

Because the filemon command can potentially consume some CPU power, use this tool with discretion,
and analyze the system performance while taking into consideration the overhead involved in running the
tool. Tests have shown that in a CPU-saturated environment:

» With little 1/0O, the filemon command slowed a large compile by about one percent.
» With a high disk-output rate, the filemon command slowed the writing program by about five percent.

Summary for Monitoring Disk 1/0

In general, a high % iowait indicates that the system has an application problem, a memory shortage, or
an inefficient /0O subsystem configuration. For example, the application problem might be due to
requesting a lot of I/O, but not doing much with the data. Understanding the 1/O bottleneck and improving
the efficiency of the 1/0 subsystem is the key in solving this bottleneck. Disk sensitivity can come in a
number of forms, with different resolutions. Some typical solutions might include:

» Limiting number of active logical volumes and file systems placed on a particular physical disk. The idea
is to balance file 1/0 evenly across all physical disk drives.

» Spreading a logical volume across multiple physical disks. This is particularly useful when a number of
different files are being accessed.

» Creating multiple Journaled File Systems (JFS) logs for a volume group and assigning them to specific
file systems (preferably on fast write cache devices). This is beneficial for applications that create,
delete, or modify a large number of files, particularly temporary files.

« If the iostat output indicates that your workload 1/O activity is not evenly distributed among the system
disk drives, and the utilization of one or more disk drives is often 70-80 percent or more, consider
reorganizing file systems, such as backing up and restoring file systems to reduce fragmentation.
Fragmentation causes the drive to seek excessively and can be a large portion of overall response time.

 If large, I/O-intensive background jobs are interfering with interactive response time, you may want to
activate 1/O pacing.

174  Performance Management Guide



 If it appears that a small number of files are being read over and over again, consider whether
additional real memory would allow those files to be buffered more effectively.

 If the workload’s access pattern is predominantly random, you might consider adding disks and
distributing the randomly accessed files across more drives.

 |If the workload’s access pattern is predominantly sequential and involves multiple disk drives, you might
consider adding one or more disk adapters. It may also be appropriate to consider building a striped
logical volume to accommodate large, performance-critical sequential files.

» Using fast write cache devices.
* Using asynchronous |/O.

Each technique is discussed later in this chapter.

Changing Logical Volume Attributes That Affect Performance

Various factors have performance implications and can be controlled when creating a logical volume.
These options appear as prompts for values on the smitty mklv screen.

Position on Physical Volume

The Intra-Physical Volume Allocation Policy specifies what strategy should be used for choosing physical
partitions on a physical volume. The five general strategies are edge, inner-edge, middle, inner-middle,
and center.

Center

Inner-Middle Middle

Inner-Edge Edge

Figure 17. Intra-Physical Volume Allocation Policy. This figure illustrates storage position on a physical volume or disk.
The disk is formatted into hundreds of tracks beginning at the outer edge of the disk and moving toward the center of
the disk. Because of the way a disk is read (the tracks spinning under a movable read/write head), data that is written
toward the center of the disk will have faster seek times than data that is written on the outer edge. In part, this is due
to the mechanical action of the read/write head and the sectors of each track having to pass under the head. Data is
more dense as it moves toward the center, resulting in less physical movement of the head. This results in faster
overall throughput.

Physical partitions are numbered consecutively, starting with number one, from the outer-most edge to the
inner-most edge.

The edge and inner-edge strategies specify allocation of partitions to the edges of the physical volume.
These partitions have the slowest average seek times, which generally result in longer response times for
any application that uses them. Edge on disks produced since the mid-1990s can hold more sectors per
track so that the edge is faster for sequential 1/0.

Chapter 13. Logical volume and disk I/O performance 175



The middle and inner-middle strategies specify to avoid the edges of the physical volume and out of the
center when allocating partitions. These strategies allocate reasonably good locations for partitions with
reasonably good average seek times. Most of the partitions on a physical volume are available for
allocation using this strategy.

The center strategy specifies allocation of partitions to the center section of each physical volume. These
partitions have the fastest average seek times, which generally result in the best response time for any
application that uses them. Fewer partitions on a physical volume satisfy the center strategy than any
other general strategy.

The paging space logical volume is a good candidate for allocation at the center of a physical volume if
there is lot of paging activity. At the other extreme, the dump and boot logical volumes are used
infrequently and, therefore, should be allocated at the beginning or end of the physical volume.

The general rule, then, is that the more 1/Os, either absolutely or in the course of running an important
application, the closer to the center of the physical volumes the physical partitions of the logical volume
should be allocated.

Range of Physical Volumes

The Inter-Physical Volume Allocation Policy specifies which strategy should be used for choosing physical
devices to allocate the physical partitions of a logical volume. The choices are the minimum and maximum
options.

Maximum Inter-Disk Policy (Range=maximum) with a Single Logical
Volume Copy per Disk (Strict=y)

Copy of Copy of
Partition 2 Partition 1

Partition 1 Partition 2

Figure 18. Inter-Physical Volume Allocation Policy. This illustration shows 2 physical volumes. One contains partition 1
and a copy of partition 2. The other contains partition 2 with a copy of partition 1. The formula for allocation is
Maximum Inter-Disk Policy (Range=maximum) with a Single Logical Volume Copy per Disk (Strict=y).

The minimum option indicates the number of physical volumes used to allocate the required physical
partitions. This is generally the policy to use to provide the greatest reliability and availability, without
having copies, to a logical volume. Two choices are available when using the minimum option, with copies
and without, as follows:

»  Without Copies: The minimum option indicates one physical volume should contain all the physical
partitions of this logical volume. If the allocation program must use two or more physical volumes, it
uses the minimum number possible, remaining consistent with the other parameters.

» With Copies: The minimum option indicates that as many physical volumes as there are copies should
be used. If the allocation program must use two or more physical volumes, the minimum number of
physical volumes possible are used to hold all the physical partitions. At all times, the constraints
imposed by other parameters such as the strict option are observed.

176 Performance Management Guide



These definitions are applicable when extending or copying an existing logical volume. The existing
allocation is counted to determine the number of physical volumes to use in the minimum with copies
case, for example.

The maximum option indicates the number of physical volumes used to allocate the required physical
partitions. The maximum option intends, considering other constraints, to spread the physical partitions of
this logical volume over as many physical volumes as possible. This is a performance-oriented option and
should be used with copies to improve availability. If an uncopied logical volume is spread across multiple
physical volumes, the loss of any physical volume containing a physical partition from that logical volume
is enough to cause the logical volume to be incomplete.

Maximum Number of Physical Volumes to Use for Allocation

Sets the maximum number of physical volumes for new allocation. The value should be between one and
the total number of physical volumes in the volume group. This option relates to|Range of Physical|

Mirror Write Consistency

The LVM always ensures data consistency among mirrored copies of a logical volume during normal 1/0
processing. For every write to a logical volume, the LVM generates a write request for every mirror copy. A
problem arises if the system crashes in the middle of processing a mirrored write (before all copies are
written). If mirror write consistency recovery is requested for a logical volume, the LVM keeps additional
information to allow recovery of these inconsistent mirrors. Mirror write consistency recovery should be
performed for most mirrored logical volumes. Logical volumes, such as the page space that do not use the
existing data when the volume group is re-varied on, do not need this protection.

The Mirror Write Consistency (MWC) record consists of one sector. It identifies which logical partitions may
be inconsistent if the system is not shut down correctly. When the volume group is varied back on-line, this
information is used to make the logical partitions consistent again.

Note: With Mirror Write Consistency LVs, because the MWC control sector is on the edge of the disk,
performance may be improved if the mirrored logical volume is also on the edge.

Beginning in AIX 5, a mirror write consistency option called Passive Mirror Write Consistency (MWC) is
available. The default mechanism for ensuring mirror write consistency is Active MWC. Active MWC
provides fast recovery at reboot time after a crash has occurred. However, this benefit comes at the
expense of write performance degradation, particularly in the case of random writes. Disabling Active
MWC eliminates this write-performance penalty, but upon reboot after a crash you must use the syncvg -f
command to manually synchronize the entire volume group before users can access the volume group. To
achieve this, automatic vary-on of volume groups must be disabled.

Enabling Passive MWC not only eliminates the write-performance penalty associated with Active MWC, but
logical volumes will be automatically resynchronized as the partitions are being accessed. This means that
the administrator does not have to synchronize logical volumes manually or disable automatic vary-on. The
disadvantage of Passive MWC is that slower read operations may occur until all the partitions have been
resynchronized.

You can select either mirror write consistency option within SMIT when creating or changing a logical
volume. The selection option takes effect only when the logical volume is mirrored (copies > 1).

Allocate Each Logical Partition Copy on a Separate PV

Specifies whether to follow the strict allocation policy. Strict allocation policy allocates each copy of a
logical partition on a separate physical volume. This option relates to |Range of Physical Vqumesl

Chapter 13. Logical volume and disk I/O performance 177



Relocate the Logical Volume During Reorganization?

Specifies whether to allow the relocation of the logical volume during reorganization. For striped logical
volumes, the relocate parameter must be set to no (the default for striped logical volumes). Depending on
your installation you may want to relocate your logical volume.

Scheduling Policy for Reading/Writing Logical Partition Copies

Different scheduling policies can be set for the logical volume. Different types of scheduling policies are
used for logical volumes with multiple copies, as follows:

» The parallel policy balances reads between the disks. On each read, the system checks whether the
primary is busy. If it is not busy, the read is initiated on the primary. If the primary is busy, the system
checks the secondary. If it is not busy, the read is initiated on the secondary. If the secondary is busy,
the read is initiated on the copy with the least number of outstanding I/Os. Writes are initiated
concurrently.

» The parallel/sequential policy always initiates reads on the primary copy. Writes are initiated
concurrently.

» The parallel/round robin policy is similar to the parallel policy except that instead of always checking the
primary copy first, it alternates between the copies. This results in equal utilization for reads even when
there is never more than one /O outstanding at a time. Writes are initiated concurrently.

* The sequential policy results in all reads being issued to the primary copy. Writes happen serially, first to
the primary disk; only when that is completed is the second write initiated to the secondary disk.

For data that has only one physical copy, the logical volume device driver translates a logical read or write
request address into a physical address and calls the appropriate physical device driver to service the
request. This single-copy policy handl