
AIX 5L Version 5.3

AIXwindows Programming Guide

SC23-4921-02

���





AIX 5L Version 5.3

AIXwindows Programming Guide

SC23-4921-02

���



Note
Before using this information and the product it supports, read the information in Appendix F, “Notices,” on page 119.

Third Edition (July 2006)

This edition applies to AIX 5.1 and to the AIXwindows licensed program and to all subsequent releases of this
product until otherwise indicated in new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to Information Development, Department 04XA-905-6B013, 11501 Burnet Road, Austin, Texas
78758-3400. To send comments electronically, use this commercial Internet address: pserinfo@us.ibm.com. Any
information that you supply may be used without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2006.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

About This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Content of This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Highlighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Case-Sensitivity in AIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
ISO 9000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Chapter 1. AIXwindows Overview for Programmers . . . . . . . . . . . . . . . . . . . 1

Chapter 2. AIXwindows Window Manager Overview . . . . . . . . . . . . . . . . . . . 3
Starting and Exiting X and the AIXwindows Window Manager. . . . . . . . . . . . . . . . . 3
Restoring Default Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 3. Using the AIXwindows Customizing Tool . . . . . . . . . . . . . . . . . . . 5
Using the Customizing Tool Introduction . . . . . . . . . . . . . . . . . . . . . . . . 5
Related Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
How to Start the Customizing Tool. . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Using the Customizing Tool Main Window . . . . . . . . . . . . . . . . . . . . . . . . 6
Using the Browsers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Understanding the app-custom Files . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 4. AIXwindows Xlib Library . . . . . . . . . . . . . . . . . . . . . . . . . 19
Xlib Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Suggested Reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Using Display Functions in AIXwindows . . . . . . . . . . . . . . . . . . . . . . . . 21
Graphical Overlay Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
AIXwindows National Language Support (NLS) . . . . . . . . . . . . . . . . . . . . . 24

Chapter 5. Using Extensions in AIXwindows . . . . . . . . . . . . . . . . . . . . . 27
Extension Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Dynamically Loadable X Server Extensions . . . . . . . . . . . . . . . . . . . . . . . 35
AIXwindows Nonrectangular Window Shape Extension. . . . . . . . . . . . . . . . . . . 35
AIXwindows Screen Saver Extension . . . . . . . . . . . . . . . . . . . . . . . . . 38
Using AIXwindows Input Device Functions . . . . . . . . . . . . . . . . . . . . . . . 46
AIXwindows Input Extension Library . . . . . . . . . . . . . . . . . . . . . . . . . 51
AIXwindows Input Extension Protocol Specification . . . . . . . . . . . . . . . . . . . . 63
AIXwindows Double Buffer Extension Specification . . . . . . . . . . . . . . . . . . . . 69
AIXwindows XTest Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Chapter 6. AIXwindows Font Enhancements . . . . . . . . . . . . . . . . . . . . . 83
ISO9241 Compliant Bitmap Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . 83
TrueType Rasterizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Appendix A. Bidirectional Support in Xm (Motif 1.2) Library . . . . . . . . . . . . . . . 85
Library Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Bidirectional Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
The Text Widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
The Text Field Widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
The Label and Gadget Widget. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
The List Widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Effect of Layout Direction on Motif Widgets and Gadgets . . . . . . . . . . . . . . . . . . 87

© Copyright IBM Corp. 1997, 2006 iii



Example of Localizing a Motif Application for Bidirectional Support . . . . . . . . . . . . . . 88

Appendix B. Font Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Font Utility Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Font Utility Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
How to Use the Font Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Using the Font Utility Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Using the Reference Font Window . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Using the Raster Editor Window . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Using the Vector Editor Window. . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Appendix C. Display Power Management . . . . . . . . . . . . . . . . . . . . . . 107

Appendix D. Setting Up X11 Graphic Input Devices (LPFKeys, Dials, Tablet, Spaceball) . . . . 109
Tablet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Dials and LPFKeys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Spaceball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Appendix E. The X Virtual Frame Buffer . . . . . . . . . . . . . . . . . . . . . . . 111
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Installing the XVFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Starting the XVFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Testing the XVFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Implementing XVFB in Application Code. . . . . . . . . . . . . . . . . . . . . . . . 114
Working with the XVFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
DirectSoft OpenGL and the XVFB . . . . . . . . . . . . . . . . . . . . . . . . . . 116
CATweb and the XVFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Appendix F. Notices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

iv AIXwindows Programming Guide



About This Book

This book provides experienced C programmers with complete information about designing and writing
graphical user interfaces for the AIX operating system. Programmers can use this book to gain knowledge
of AIXwindow graphical user interfaces, either on a local system or across a network. Topics include tools,
library, font utilities and graphic input devices.

Content of This Book
This edition of this book contains no technical changes. The content is identical to the previous edition.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items whose
names are predefined by the system. Also identifies graphical objects such as buttons, labels, and
icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.
Monospace Identifies examples of specific data values, examples of text similar to what you might see

displayed, examples of portions of program code similar to what you might write as a programmer,
messages from the system, or information you should actually type.

Case-Sensitivity in AIX
Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the
system responds that the command is ″not found.″ Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications
The following book contains information about or related to programming the user interface:

v The graPHIGS Programming Interface: Understanding Concepts

© Copyright IBM Corp. 1997, 2006 v



vi AIXwindows Programming Guide



Chapter 1. AIXwindows Overview for Programmers

This book describes AIXwindows, IBM’s enhancements to X-Windows and Motif.

AIXwindows is a state-of-the-art graphical user interface environment that can be used by a wide range of
end users and application developers to create graphical user interfaces, either on your system or across
a network. The environment provides a graphical desktop that hides the low-level complexities of the
operating system. The environment also supports Base 2-D as well as 3-D products.

The Base 2-D products are X-Windows and Motif. The application programming interfaces (APIs) that
support 3-D are Graphics Library, and graPHIGS API. In addition, the AIX Common Desktop Environment
allows you to organize your online work much as you would organize work on your office desk.

This overview summarizes the features of the AIXwindows environment comprised of:

v X-Windows (previously called Enhanced X-Windows), a network-transparent windowing system for
creating and managing windows on bitmapped display screens. These windows enable you to show
multiple work items simultaneously, much like working at an office desk. Because of its portability and
network transparency, applications that run on AIXwindows look the same to the user and do not need
to be rewritten by the programmer

v Motif Environment (previously called AIXwindows), a set of guidelines and tools that specify how a user
interface for graphical computers should look and feel. These specifications focus on the design of the
objects that make up the user interface: the menus, buttons, dialog boxes, text entry, and display areas.

X-Windows consists of three components: the server, client programs, and the communications channel as
shown in the following figure.

The server distributes user input to and accepts output requests from various client programs
(applications) located either on the same machine or elsewhere on the network. These applications use
the low-level C-language Xlib library to interface with the window system through the communications
channel. Although a client usually runs on the same machine as the X server to which it is talking, this
need not be the case.

Figure 1. X-Windows Components

© Copyright IBM Corp. 1997, 2006 1



The Xlib library is a layer on the X server and is a set of functions that are called by applications. These
functions handle tasks such as adding a host, opening a display, manipulating windows, drawing, and
handling events. Xlib calls are translated to protocol requests that are passed either to the local server or
to another server across the network.

Applications are a layer on Xlib. Applications that run on Xlib can be used both by end-users and
application developers. These applications can be the user’s own or those provided with X-Windows.
Beginning-to-experienced end-users can use the provided client programs to run multiple terminals, use
desk accessories, set display and keyboard preferences, use font and graphic utilities, print applications,
and get information on windows and displays. Application developers can use the Motif Toolkit provided to
create and control user interfaces.

A Motif application consists of the X Intrinsics library and the Motif widget set. The X Intrinsics are a basic
set of functions used to define, create, manage, and destroy user interface components. These user
interface components are called widgets and make up the widget set. The Motif widget set is a layer on
the X Intrinsics. Different interfaces can be provided by different widget sets, but they all use the X
Intrinsics.

While the Motif Toolkit provides the building blocks for an interface, the window manager enables you to
control the interface. The window manager acts as an application program. With the window manager, you
can execute other application programs, move them on the screen, resize them, and so on.

X-Windows has standards and conventions that are applicable to all systems with bit-mapped display
terminals. This enables application programmers to spend more time improving their programs and less
time porting to new user-interface platforms. Standards and conventions are provided for the X protocol,
atoms, the Inter-Client Communications Conventions Manual (ICCCM), display manager control protocol
(XDMCP), logical font descriptions (XLFD), and compound text encoding.

Graphics Library is a set of graphics and utility functions that provide high-level and low-level support for
graphics. Graphics Library has become the industry standard for 3-D application development.

The graPHIGS API application programming interface (API), an implementation of the PHIGS and
proposed PHIGS PLUS standards, provides a set of device-independent programming tools that allow
portability across many hardware platforms. The graPHIGS API offers over 500 high-level subroutines to
define, modify, and display hierarchically organized graphics data. Advanced rendering capabilities, such
as lighting and hidden line and hidden surface removal, are included.

The AIX Common Desktop Environment provides you with the ability to run several applications at once on
your screen. Whether you are a beginner or an experienced user, the AIXwindows visual system helps you
manage your work and use the operating system to perform various tasks.

The product you choose to use will depend on your needs. If you are sending 2-D graphics across the
network, you should use X-Windows. However, if you are sending 3-D graphics across a network, you
must use the distributed application processing capability of the graPHIGS API.

If you are working on one system and do not need to send information across a network, the fastest
method would be to use the Graphics Library or graPHIGS API. Using these products would bypass the
server and allow direct adapter access. Although Graphics Library applications typically operate in
immediate mode and applications using the graPHIGS API have traditionally used structure storage, both
products offer retained and nonretained graphics display as well as advanced rendering capabilities.

2 AIXwindows Programming Guide



Chapter 2. AIXwindows Window Manager Overview

Starting and Exiting X and the AIXwindows Window Manager
Because different computer systems have different ways of starting X and AIXwindows, you should consult
with your system administrator to learn how to get started. Usually, X and MWM are started from a shell
script that runs automatically when you log in. You may, however, find that you need to start X or MWM or
both.

If you log in and find that your display is functioning as a single terminal, with no windows displayed, you
can start X by issuing the following command:
% xinit

If this command does not start X, check with your system administrator to ensure that the X11 directory
containing executable programs is in your search path. The appropriate path may differ from one system
to another.

If you log in and find one or more windows without frames, you can start MWM with the following
command:
% mwm &

Before entering this command, make sure that the pointer rests within a window that has a system prompt.

Press the Ctrl-Alt-Backspace key sequence to exit AIXwindows.

Note: Before exiting AIXwindows, the recommended procedure is to exit any application programs and
stop any commands that may be running in terminal windows. This avoids the possible loss of data
due to improperly stopping a program.

When you exit a program, the command-line prompt returns to the terminal window. However, if you
started the program automatically or from a menu, exiting also removes the terminal window. Selecting the
Close option from the window menu immediately stops any program running in the window. Interrupting a
program like this may cause it to lose data. However, you can close the clock, the load histogram, or an
″idle″ terminal window (one showing a command-line prompt) with no ill effect.

Restoring Default Behavior
Because AIXwindows permits a great deal of customization both by programmers writing AIXwindows
applications and by users, you may find that mouse buttons or other functions do not operate as you might
expect from reading this documentation. You can reset your AIXwindows environment to the default
behavior by pressing the following four keys simultaneously:

Ctrl-Alt-Shift-!

You can return to the customized behavior by pressing this key sequence again. If your system does not
permit this combination of keystrokes, you can also restore default behavior from the default root menu.

© Copyright IBM Corp. 1997, 2006 3



4 AIXwindows Programming Guide



Chapter 3. Using the AIXwindows Customizing Tool

The AIXwindows customizing tool helps to change the look of a client application. It provides a simplified
method for you to set the values of resources. Resources are items such as colors, fonts, and other
attributes which can be customized.

For more information on the customizing tool, see the following:

v Using the Customizing Tool Introduction

v How to Start the Customizing Tool

v Using the Customizing Tool Main Window

v Using the Browsers

v Understanding the app-custom Files

Using the Customizing Tool Introduction
The customizing tool helps to change the look of an application. It provides a user-friendly way to set the
values of resources. Resources allow you to customize a client application. Each application has its own
unique set of resources. Files called app-custom files have been created for a set of popular applications.
These files contain information in a special format that describes the resources available for the
modification of an application and, in some cases, the possible resource values you can select.

The customizing tool has browsers to help you choose valid values for the resources. It can often apply
these values to the application so you can see your changes immediately instead of having to restart your
application. Once you like the look of your application, you can save your changes permanently.

Related Information
AIXwindows Overview provides general information on the environment.

Using the AIXwindows Window Manager allows you to move windows, change their size, change them into
icons, and create new windows.

Bidirectional Support in Xm (Motif) Library provides a convenient way of creating Arabic/Hebrew graphical
user interfaces.

How to Start the Customizing Tool

Prerequisite Condition
The customizing tool must be installed before you can start it. The custom command is installed in the
/usr/bin/X11 directory.

Basic Start Procedure
To start the customizing tool with no options, enter the following:
custom

No command-line options are required. If no application name is specified at the command line, you are
prompted for it. Once the customizing tool start-up window is displayed, you may use one of the following
three methods to choose an application:

v Click on the application with the mouse button.

v Select the application from the list of applications.

v Type the application name into the text field.

© Copyright IBM Corp. 1997, 2006 5



After you have chosen an application, the customizing tool main window is displayed with the resources
that are valid for that application.

Detailed Start Procedure
To start the customizing tool using a command-line option, use the following syntax:
custom [-h | -e Browser | [-s ResourceFile] [Application]]

Command line help can be obtained using the -h option.

The -e option allows one of the standalone browsers to be called. Valid values for the Browser parameter
are color, font, cursor, and picture.

Use the -s option to specify the resource file from which to load and save resource settings. If the -s
option is not specified, the default is to load the values from the resource database stored in the
RESOURCE_MANAGER property on the X server. If this database does not exist, then
$HOME/.Xdefaults is loaded. See the custom command in AIX 5L Version 5.3 Commands Reference for
more information.

Most standard X Toolkit command-line options are understood by the custom command. See the table in
the custom command that lists the standard command-line options.

An application name can be specified on the command line. If no application name is specified on the
command line, you will be prompted for it.

When more than one instance of an application is running, all are updated immediately when a resource
value is changed. The same behavior occurs if you save these changes and restart your application.

The customizing tool searches for an app-custom file that describes the resources that can be set for the
application you chose. If there is no app-custom file for the application you are customizing, the
DEFAULT app-custom file is used. The DEFAULT app-custom file provides a set of resources that apply
to most applications. An error message is displayed if either the DEFAULT app-custom file cannot be
found or if there is an error in the app-custom file itself.

Related Information
AIXwindowsUsing the Customizing Tool Overview
Using the Customizing Tool Main Window
Using the Browsers
Understanding the app-custom Files

Using the Customizing Tool Main Window
This customizing tool has a graphical user interface that describes the resources available for modification
of a particular application and their possible values. Tools are provided to assist in setting these values.
When you complete modifications, you can save the changes, restore the defaults, start a new
customizing session, or exit the customizing tool.

For more information on the customizing tool main window, see the following:

v Application Class

v Resource Category Button

v Scrolled Window Area

v File Pulldown Menu

v View Pulldown Menu

v Options Pulldown Menu

6 AIXwindows Programming Guide



v Help Pulldown Menu

Application Class
The class of the application that you are customizing (for example, XCalc) is displayed in the area on the
right beneath the ″Customizing″ label. The class of the application is hard-coded into the application itself
and is generally different from the command that starts the application. By convention, the class usually
begins with a capital letter.

Resource Category Button
Pressing and holding the left mouse button on the Resource Category button displays a list of resource
categories. You can select a category by dragging the mouse over the list and releasing the mouse button
on your choice. The panel inside the scrolled window area changes to present another set of resources to
customize.

Scrolled Window Area
Inside the scrolled window are the resources that can be customized. Each line contains a description of
the resource, a field to enter a value for the resource, and, in some cases, a button that starts a tool called
a browser to assist in choosing a valid value.

On the left side of the scrolled window area are descriptive explanations of each resource you can
customize. To see the actual resource strings, select the Resources option from the View pulldown menu.

To the right of the resource descriptions are fields for entering values for particular resources. To type in
this field, press the left mouse button on this field so the keyboard focus is directed there; then enter the
desired text.

You can directly type a value into the text field or, if there is a button to the right, you can press it to
access a browser that assists you in choosing a valid value. The button is highlighted when the browser is
called and not highlighted when the browser is exited.

When changing a resource involving a cursor you must use the cursor browser to choose a value for a
cursor because you cannot type directly into the Chosen Value field for cursors.

When the <-Number label appears to the right of the text field, only numbers may be entered as valid
values.

To select a value when the <-Choice label is present, press the button to the left and select a value from
the displayed list. The first item in this menu is always <default>, which allows the default for that
resource to be used and specifies that no value is written to your resource file when you save.

File Pulldown Menu
The File item on the menu bar has four options:

Open Starts the customizing session for a new application. You are presented with the Starting the
Customizing Tool dialog. You can choose an application and press the OK button. If you decide
not to start a new session, you can press the Cancel button.

Save Saves your changes to the current resource database. This is usually the same place from which
the resources were initially loaded from showing the current values. The current resource
database can be changed by using the Save As . . . option, but most users do not need to
change it.

The default resource database initially used for loading and saving resources is the first of the
following:

1. The file specified by the -s ResourceFile command-line option, if any.

Chapter 3. Using the AIXwindows Customizing Tool 7



2. The file specified by the Custom*resourceFile resource, if any.

3. The X server resource database, if it exists.

4. Otherwise, the $HOME/.Xdefaults file.

The X server resource database is usually created by the xrdb command, and it is stored in the
RESOURCE_MANAGER property of the root window on screen zero.

When modifying an existing resource database, only the resource specifications that exactly match
those defined in the app-custom file for the application are replaced or deleted. Comments and
other settings are left intact.

Save As...

Allows you to save your changes to a location that you specify.

Once the Save As . . . option has been used, the Save option will continue to save to the new
location. For most users, there is no need to specify a different resource database and using the
Save option is sufficient.

You can specify that your settings be saved either to the resource database stored on the X server
or to a file. The X server resource database is usually created by the xrdb command, and it is
stored in the RESOURCE_MANAGER property of the root window on screen zero.

Reset Values
Erases all values you have chosen and reverts to values that were read in from the resource
database at the beginning of the customizing session. You can cancel this operation. If you
already saved your previous values, you must save again after resetting to erase those values and
to accept the reset operation values.

Exit Exits the customizing tool editor. If you have made modifications but have not saved them, you are
prompted to save and allowed to cancel the exit or exit.

View Pulldown Menu
The View item on the menu bar has two options: Resources and Immediate Changes. If you select the
Resources option, the attribute labels change to display the actual resource names. To return to the
descriptive strings, select the Resources option again.

The Immediate Changes toggle button controls the immediate updating of application resources.
Previously, running applications had to be restarted for resource value changes to be applied. Using the
customizing tool, many resources can be updated immediately when a value is changed. If you type a
value directly in the text field of the resource, you must press the Enter key to update the client
application.

The Immediate Changes button is desensitized (grayed out) until the customizing tool can communicate
with the application. When communication is established you can use the Immediate Changes button as
a toggle button to turn the immediate updating on or off. The default state for this button is on. If all
instances of the application are exited anytime after startup, the button is desensitized again.

The Immediate Changes option is intended as a tool to view possible changes. Since it is possible to
corrupt the interface of an application (for example, setting an unreadable font), it is best to use this option
only when the application is in a noncritical state. There are some limitations, such as the following, to the
immediate updating of applications:

v The Immediate Changes button is insensitive until communication with the application is established.
The amount of time to wait for the application to contact the customizing tool is controlled by the
Custom*timeout resource.

v Some undesired behavior may occur if you try to customize an application while it is starting. It is best
to wait for your application to be completely displayed before attempting to customize it.

8 AIXwindows Programming Guide



v To see immediate updating, the client that you are customizing must be run on a machine where the
customizing tool has been installed. This is necessary because the shared libXt.a library contains a
customizing tool enhancement.

v Some applications use low-level libX11.a calls that cannot be immediately updated by the customizing
tool (for example, the aixterm and mwm commands).

v Also, some applications may hard code values so they can be updated immediately but do not take
effect when the application is restarted. You can also bypass protection that the application writer
intended, unintentionally corrupting the interface.

v An object on the interface might not resize correctly after immediate changes are applied. This is
especially true for fonts.

v The customizing tool prefaces the resource with the application class. The resource value may not take
effect because a more specific resource may be set in the customizing tool, in your .Xdefaults file, in
the X server resource database or in the application app-defaults file. If you remove these resources or
make them less specific, the customizing tool changes can then apply.

The Immediate Changes button becomes insensitive if the customizing tool cannot update the application.
If you cannot update an application immediately, you can always save the changes to your resource file
and restart your application to see the changes take effect.

Options Pulldown Menu
The Options item on the menu bar has the following option:

Reacquire Immediate Changes
The Reacquire Immediate Changes option allows you to regain communication with an
application for the purpose of updating it immediately. You may wish to do this if the application
was not already running when you started the customizing tool or if you restarted the application.

Help Pulldown Menu
The Help item on the menu bar has the following three options.

Help Facility

Brings up the help facility at the introduction level.

The help facility contains a Help Message window for viewing the help messages and an index to
navigate through the facility. The index is hierarchical. Selecting an item in the index causes the
corresponding help message to be displayed in the Help window. If the index item has additional
help messages, selecting that item causes the index to descend to the next level. To return to the
preceding level, press the Go Back button.

The On Context button provides access to context-sensitive help. See the On Context description
that follows.

The help facility can remain active throughout your customizing session. To exit the help facility,
press the Cancel button.

On Context
Changes the mouse cursor to the question mark cursor, prompting you to click on any object of
interest. The index and help messages for that object are displayed in the help facility.

On Help
Brings up the help facility and displays the help message that describes how to use the facility.

Chapter 3. Using the AIXwindows Customizing Tool 9



Related Information
Using the AIXwindows Customizing Tool Overview
Using the Browsers
Understanding the app-custom Files
How to Start the Customizing Tool

Using the Browsers
The customizing tool provides useful browsers that assist you in changing the values of resources. The
most useful of these browsers can also be started as standalone applications. This can be useful, for
instance, if you want to locate a particular color but do not want to actually customize an application.

The following can be started as standalone browsers:

v Colors browser

v Fonts browser

v Pictures browser

v Cursors browser

The remaining tools are not available standalone:

v Choices browser

v Filenames browser

Colors Browser
The Colors browser assists you in choosing valid color values. The list of colors in the Colors browser
allows color names from the /usr/lib/X11/rgb.txt file to be selected. If your X server is not using the
/usr/lib/X11/rgb.txt file, the Custom*rgbtxtPath resource should be set to the path of the alternate
rgb.txt file. Otherwise, the following error will occur if a color is selected that is not contained in the
rgb.txt file in use by your X server:
The color name does not exist in /usr/lib/X11/rgb.txt

When you select a valid color from the list, the window directly below the list displays the chosen color, the
RGB sliders are set to the RGB value of the chosen color, and the Chosen Color text field is set to the
color name.

A color may also be set using the Red, Green, and Blue sliders, giving you finer control over color
selection. When you move a slider bar, the window above the sliders reflects the color defined by the RGB
slider values. The Chosen Color field is set to the RGB representation of the color, which begins with a #
sign and is followed by the hexadecimal representation of the red, green, and blue values, respectively (for
example, #8456c8).

After you position the RGB sliders to a desired color, you can press the Match RGB to Closest Color
Name button. It finds the closest color name to the RGB value in the list of colors, highlights that color
name in the list, and repositions the RGB sliders accordingly. The Chosen Color field is set to the value of
this color.

When the Select Color on Display with Mouse button is pressed, the mouse cursor changes shape,
prompting you to select any color that is displayed by clicking the left mouse button. The Colors browser
then finds the RGB values for that color, repositions the slider bars, and also highlights the color name in
the list of colors if it matches a valid color name.

You can press the OK button when you are satisfied and want to save the color choice, or you can press
the Cancel button if you want to exit the Colors browser without saving. The help facility for the Colors
browser is called by pressing the Help button. To exit the help facility, press the Cancel button.

10 AIXwindows Programming Guide



Fonts Browser
The Fonts browser assists you in choosing font values. The fonts in the list describe fonts available in
your system X server. There are six filters to narrow down font choices in the list. A specific family, weight,
slant, style, spacing, or size can be chosen. All of these filters offer the option of Any, which lists all items
of that category.

Some of the values that appear in these filters may not apply to the fonts that are available on your X
server. If you select a value from one of these filter lists that does not apply to any of the fonts that are
available, the browser displays an empty list of fonts and the following message:
0 fonts match the specified filters.

This situation may occur if your X server font path does not include paths to additional fonts installed on
the system. You can add font paths using the following command:

xset +fp

When you choose values for the filters, the list is refiltered to show only the fonts conforming to the
chosen values.

When you select a font from the list of fonts, it is displayed in the Chosen Font field. Your selection is also
reflected in the Sample field.

The Size filter lets you specify the size of a font in points, either by selecting a size from the list or by
typing a size into the text field beneath the list and pressing the Enter key. The list contains all the sizes
of bitmap fonts that have been installed on your X server. In addition, your X server may have scalable
fonts. These are fonts that are specially designed so that they can be drawn at any size you specify. To
see a list of the scalable fonts available, type a size into the text field located below the Size filter that
does not appear in the list and press the Enter key. A list of the scalable fonts scaled to the size you
specified is displayed. When you select a size from the list of sizes or when you enter a size that also
appears in the list, scaled fonts are included with the bitmap fonts in the list of fonts.

The Toggle button immediately above the Chosen Font field lets you specify that the character set
encoding to be used is determined from the locale in effect when the application that you are customizing
is run. This field is not a filter. Instead, it controls whether the chosen font is written in a
language-independent way with the *: notation replacing the character set. The *: notation is of most
concern if your language requires multiple fonts. Not all applications support the *: notation, but all
AIXwindows applications do support it.

Press the OK button to write the value to the resource text field. Press the Cancel button to exit the
browser without saving the value. Help for the Fonts browser is provided. To exit the help facility, press
the OK button.

ISO 9241.3 Fonts
You can use the Fonts browser to help you choose fonts that meet the requirements of the ISO 9241, part
3, standard. This standard sets ergonomic guidelines for fonts so that text is easier to read.

For this feature of the Fonts browser to function correctly, you must first inform the X server of the
physical dimensions of your display screen. You only need to do this set-up procedure one time. To set the
physical size of your display, first use a ruler to measure the width and height of the image area of your
display in millimeters (mm). Measure only the area of the screen that is actually used. Then log on as a
user with superuser privileges and enter the following command:

smit chdispsz

Chapter 3. Using the AIXwindows Customizing Tool 11



Select the name of the display you are using from the list that is presented. Enter the width and height into
the fields provided and press the Enter key to make the changes. Finally, exit all applications running on
your system, and then shut down and reboot the system using the following command:

shutdown -Fr

When the system comes back up, the display is configured with the new size you set.

Choosing ISO 9241.3 Fonts
The fonts that have been specially designed to meet the ISO 9241.3 standard have iso9241 as the
ADD_STYLE_NAME field of their XLFD names. You can list these fonts using the Fonts browser of the
customizing tool by selecting the ISO 9241.3 style filter.

However, a font that meets the standard on one display may not be satisfactory on another display. For
example, a font that is fine on one display may appear too small to read on a display with higher
resolution.

After selecting a font from the list, look for a message beneath the sample. If the characters in the font are
large enough when shown on the display screen you are currently using, the following message is
displayed:
When used on this display screen, this font meets
the requirements of the ISO 9241.3 standard.

Note: The ISO 9241.3 standard has guidelines for hardware display technology as well as the design of
fonts. The Customizing Tool is not able to detect whether the display being used has the necessary
characteristics. See the documentation that came with your display to see if it meets the
requirements of ISO 9241.3 standard.

Pictures Browser
The Pictures browser allows bitmaps and pixmaps to be chosen and viewed. A Filter selection box, in
which the path name is set to /usr/lpp/X11/bitmaps/*, is provided to browse the pictures. Use the Pictures
browser to change directories, view files, and select a file that contains a valid bitmap or pixmap. You can
view the bitmap or pixmap by pressing the View Picture button on the Pictures browser window.

You can edit the bitmap or pixmap by pressing the Edit Picture button on the Pictures browser window.
The editor is a separate application that exists on your system. It is called on your behalf. The
Custom*pictureEditor*editor resource determines which editor commands to choose from. This resource
accepts a list of commands separated by \n’s (backslash `n’s). The first command that identifies an
existing program that the user has permission to execute is used. The file name in the Chosen Picture text
field is passed as a parameter to the editor when it is invoked. The default setting for this resource is:

Custom*pictureEditor*editor:/usr/dt/bin/dticon -f \n\ /usr/lib/X11/bitmap

Note: The default editor, /usr/dt/bin/dticon only exists if the Common Desktop Environment (CDE) is
installed. It edits both bitmaps (monochrome images) and pixmaps (color images). The dticon
command accepts bitmaps stored in either the X Pixmap Version 2 Enhanced (XPM2) format which
was used by the X Desktop (xdt) application shipped in AIXwindows Version 1.2.5, or X Pixmap
Version 3 (XPM3) - a new XPG3 compliant format used by CDE. However, it requires pixmap
images be stored in the XPM3 format. CDE has documented tools that can be used to convert
pixmaps from the XPM2 to the XPM3 format.

The /usr/bin/X11/bitmap command is an unsupported sample program that accepts bitmaps in either the
XPM2 or XPM3 formats. It does not support pixmap editing. Be sure that the Bitmap app-defaults file has
been installed in the /usr/lib/X11/app-defaults directory before invoking the bitmap command. If not,
issue the following commands in the /usr/lpp/X11/Xamples/clients/bitmap directory:

12 AIXwindows Programming Guide



xmkmf;
make install

Error messages are displayed above the Chosen Picture text field. An informational message is usually
displayed stating the type of picture (pixmap or bitmap) and its size.

Press the OK button to write the value to the resource text field. Press the Filter button to switch the file
system. Press the Cancel button if you want to exit with no changes. Help is available for this editor.

Cursors Browser
The Cursors browser brings up a graphical list of cursors from which to choose. Applications use the
cursor font for the picture on the mouse cursor. The cursor font names and indexes can be found in the
/usr/include/X11/cursorfont.h file. A cursor can be selected from the list with the mouse button and is
displayed in the Chosen Cursor field. You can press the OK button to write the value to the resource text
field. The Cancel button to exit the editor without saving the value. Help for the cursor editor is provided.

Choices Browser
You can select several items from the list in the Choices Browser. The items are then joined and
displayed in the Chosen Items field as they appear when saved to the resource database. For example, if
the items in the list are translated into French, the value at the bottom still shows in an English
specification. Press the OK button to write the value to the resource text field. Press the Cancel button to
exit the browser without saving the value. Help for the Choices browser is available.

Filenames Browser
The Filenames browser is used to change directories, to view files, and to select files.

The Filter text field lets you display and edit a directory filter that is used to select the files to be
displayed. The directory filter must be a string specifying the base directory to be examined and a search
pattern.

The Directories field displays the subdirectories of the base directory, the base directory itself, and its
parent directory. To change directories, double click on an item in this list.

The Files field displays all files in the base directory that match the search pattern.

The Chosen Filename field contains the current file name selection. It is updated whenever you select a file
name from the Files field list.

If you press the Filter button, the Files field list is filtered to display all files and subdirectories in the base
directory that match the search pattern.

Press the OK button to write the value to the resource text field. Press the Cancel button to exit the editor
without saving the value. Help for the Filenames browser is provided.

Related Information
Using the AIXwindows Customizing Tool Overview
Using the Customizing Tool Main Window
Understanding the app-custom Files
How to Start the Customizing Tool

Chapter 3. Using the AIXwindows Customizing Tool 13



Understanding the app-custom Files
The resources that are important to customize should be listed in an app-custom file. The app-custom
file contains all of the necessary information to generate a customizing tool interface that is unique for
each application. For more information, see the following:

v Location of the app-custom Files

v Format of the app-custom Files

v Guidelines for Writing app-custom Files

Location of the app-custom Files
The customizing tool uses the application class to name app-custom files. Applications have two names:
their application name, which is usually the name used to start the application, and their application class,
which is permanently coded into the application.

By default, the customizing tool searches for the app-custom file in the following places, in the order
listed. The first file found is used. ($HOME is the user’s home directory. Locale is the locale in which
custom is running. Class is the class of the application to be customized.)

1. $HOME/Locale/app-custom/Class

2. $HOME/app-custom/Class

3. /usr/lib/X11/Locale/app-custom/Class

4. /usr/lib/X11/app-custom/Class

5. $HOME/Locale/app-custom/DEFAULT

6. $HOME/app-custom/DEFAULT

7. /usr/lib/X11/Locale/app-custom/DEFAULT

8. /usr/lib/X11/app-custom/DEFAULT

The place where the customizing tool looks for the app-custom file can be changed by specifying the
Custom.appCustomPath resource.

Format of the app-custom Files
Each line of the resource panel description file has the following format:
Group Type Resource

Description [Values];

The following is an explanation of these parameters:

Group Groups are used to organize similar resources. For example, scrollbar color, scrollbar on/off, and
number of scrolled lines to save are all different types of resources, but they are related. The
Group parameter can be any character string in any language you choose. If more than one word
is used for the group or if it contains any double-byte character strings, it must be enclosed in
quotation marks. You are limited to a maximum of 20 groups. The groups are listed on the
Resource Category button on the Customizing Tool main window.

Type The Type parameter specifies whether the possible values of a resource should be limited to
colors, fonts, or other types. The customizing tool provides graphical tools that assist in setting a
valid value for the resource type. The type of a resource must be one of the predefined
customizing tool types.

Resource
This is the actual resource string (for example, *background). The complete resource string must
be listed exactly as it would be in a resource database; it cannot be prefaced by the application
name or class and it must begin with an * (asterisk) or a . (period). This is required because the
customizing tool attaches the application class to the beginning of each resource string prior to
writing the string to the resource database.

14 AIXwindows Programming Guide



The custom command also accepts the following syntax, which is intended for the Window
Manager client-specific resources:
$MWM%% Resource

where each % is either an * (asterisk) or a .(period).

The customizing tool attempts to determine whether a window manager that is compatible with the
mwm window manager is currently running. If so, it substitutes the name or class of the window
manager for $MWM and inserts the class name of the application between the ** (asterisks), ..
(periods), *. (asterisk, period), or .* (period, asterisk), represented by %% above.

If the customizing tool does not detect that a window manager known to be compatible with mwm
is running, then all resource description statements containing $MWM are ignored.

For example, if $MWM**clientDecoration appears in the app-custom file for XClock and the dtwm
window manager is currently running, the customizing tool expands this syntax to:
Dtwm*XClock*clientDecoration

If the mwm window manager is currently running, this syntax expands to:
mwm*XClock*clientDecoration

If no window manager compatible with mwm is running, then this entire statement (from the Group
name to the ; (semicolon)) is ignored, and this resource is not shown on the user interface.

Description
This is a descriptive explanation of each resource that you can customize. This string is chosen to
represent the resource on the panel. It can be any descriptive text but should be brief because
space is limited on the custom interface.

Although the resource string must be in English, the description can be in any language, which
implies that language-specific app-custom files are localized files that are encoded in the current
native locale at run time. It is also necessary to enclose any double-byte character string in double
quotes.

The \n characters are recognized in description strings as a new-line character and can be used
to break the description into multiple lines.

Values Some data types require additional data from which to create the interface.

The following provides a more detailed description of individual data type app-custom file syntax:

v The color, font, cursor, file name, number, and string data types all use the following syntax:
Group Type Resource Description;

The following is an example of a color resource app-custom file syntax:
"Menu Bar" Color *menubar*background "menu bar background";

v A picture data type can be specified in the app-custom file using the following syntax:
Group Picture Resource Description PictureType;

The following is an example of the app-custom file syntax:
Icon Picture *appIcon "application icon" bitmap;

The PictureType value can be one of three types: bitmap, pixmap, or all. If bitmap is set, only bitmaps
can be browsed; pixmap is similar. However, if all is set, both bitmaps and pixmaps are browsed.

Bitmaps are black and white images where file names end with .bm or .xbm; pixmaps are multicolored
images where file extensions are .pm or .px.

v The selectmany data type allows many values to be selected from a list of choices. It is limited to 20
items. A selectmany data type can be specified in the app-custom file using the following syntax:
Group SelectMany Resource Description

"Separator" Item1 [= String] Item2 [= String]... ;

Chapter 3. Using the AIXwindows Customizing Tool 15



The Separator parameter specifies one or more characters that are used to separate each of the items
the user selected when the resource definition is written to the .Xdefaults file. The following is an
example of the app-custom file syntax:
Foods SelectMany *iceCream "Ice Cream Choices"

" " vanilla chocolate strawberry ;

If you want to see more descriptive names for the choices, you can attach a string to each value with
an = (equal sign). This is especially useful for translating values into other languages.

The following is an example:
Foods SelectMany *iceCream "Ice Cream Choices"

", "
vanilla = "Vanilla Flavor"
chocolate = Fudge
strawberry ;

v The selectone type is a generic data type for choosing one value from among a list of choices. It is
limited to 20 items. A selectone data type can be specified in the app-custom file using the following
syntax:
Group SelectOne Resource Description

Item1 [= String] Item2 [= String]... ;

The following is an example of the app-custom file syntax:
Foods SelectOne iceCream "Ice Cream Choices"

vanilla chocolate strawberry ;

The selectone data type is represented by an Option menu button to switch between the values. The
first option is always <default>. This is consistent with the other data types because no values are
written to the resource database unless you have specifically chosen one.

You can select an item by pressing the Option button, dragging the mouse over the list, and releasing
the mouse button on your choice.

If you want to see more descriptive names for the choices, you can attach a string to each value with
an = (equal sign). This is especially useful for translating values to other languages.

The following is an example:
Foods SelectOne *iceCream "Ice Cream Choices"

vanilla = "Vanilla Flavor"
chocolate = Fudge
strawberry ;

v Comments must begin with an ! (exclamation point) as the first character on the line.

A brief example of an app-custom file is as follows:
! XClock app-custom file
Size Number *width "width of clock";
Size Number *height "height of clock";
Color Color *foreground "foreground";
Color Color *hands "analog hands";
Color Color *highlight "highlight analog hands";
Color SelectOne *reverseVideo "reverse video"

true false;
Font Font *font "digital clock font";
Behavior Number *update "interval of updates/n (sec)";
Behavior SelectOne *analog "type of clock"

true = analog false = digital;
Behavior SelectOne *chime "chime every half hour"

true false;
Behavior Number *padding "internal padding (pixels)";

16 AIXwindows Programming Guide



Guidelines for Writing app-custom Files
The following are guidelines for writing app-custom files:

v Creating app-custom Files

v Organizing Resource Categories

v Choosing Resources

Creating app-custom Files
If you already have resources in your .Xdefaults file for an application, you can load your resource values
onto the customizing tool interface, remove the old resources from your .Xdefaults file, and use the
customizing tool to customize the application in the future.

If the app-custom file does not contain all the resource strings you need, you can create a subdirectory
named app-custom in your $HOME directory, copy the app-custom file from the /usr/lib/X11/app-
custom directory into it, and add the needed resource strings to this file. To create a new app-custom
file, copy the DEFAULT app-custom file and use it as a template.

If you want to create a new app-custom file, you should add the app-custom file and the application
name to the Custom.listOfApps resource. This resource is used to display the application names on the
starting dialog. The application name and corresponding app-custom file must be listed in pairs with the
following syntax:
Application:app-custom,

For example:
Custom.listOfApps:
xclock:XClock,custom:Custom,msmit:Msmit

You can specify a maximum of 100 applications.

Organizing Resource Categories
Group resources into the following recommended categories:

v Colors

v Fonts

v Size and position

v Icon

v Graphics

v Behaviors

If the application resources do not fall into one of these categories, you can create additional categories.
The new categories can be added after the other categories. You can create a new category if any of the
standard categories contain too many resources (more than 15 or 20). The new category needs to be
added after the category whose limit was exceeded.

Choosing Resources
The following are some general guidelines for selecting which resources to list in app-custom files:

v The resources in each category should be those resources the application writer decides are commonly
used or those that may be important to customize.

v Do not list the same resource more than once in a given app-custom file. Doing so can lead to
unexpected results.

v Although colors and fonts can be set on each object or groups of objects, try to keep it simple. For
example, *background sets the background color of the application to one color.

Chapter 3. Using the AIXwindows Customizing Tool 17



v You should append an * (asterisk) to the name of window manager client resources. This convention
tells the user that the window manager has to be restarted for changes to these resources to take
effect. For example,

$MWM**clientDecoration "client decoration *"

v Resource strings should not be prefaced with the application name or class because the customizing
tool prepends the class name to the resource string when saving to the resource file.

v The descriptions of the resource should be no more than 20 to 30 characters long. If longer descriptions
are needed, the \n (new-line) character can be used to break the description into multiple lines.

v The maximum number of bytes in any quoted string is 500.

Once you create your app-custom file, you can check the syntax by running the customizing tool.

Related Information
Using the AIXwindows Customizing Tool Overview

Using the Customizing Tool Main Window

Using the Browsers

How to Start the Customizing Tool

The xset command

18 AIXwindows Programming Guide



Chapter 4. AIXwindows Xlib Library

The following major sections describe the Xlib library and its functions:

v AIXwindows Xlib Introduction

v Using Displays

v Graphical Overlay Planes

v National Language Support (NLS) Reference Overview

v Suggested Reading

Xlib Introduction
When users enter input on a terminal, an X server distributes that input to client programs that are on the
same system or elsewhere in the network. The X server then returns the requested actions, such as
refreshing the screen or starting an application. The windowing interface is consistent across platforms and
remains consistent because the Xlib library controls system calls. The Xlib library is a C language function
library that client programs use to communicate with the windowing system. Calls to the client are sent
through the Xlib library, and return information passes back through the Xlib library, which translates
information to a standard X-Window language.

As a programmer, the application program you create is the client of the client-server relationship; you
write the program and the X server gives it hardware independence. There is one X server for each
virtual terminal that runs AIXwindows.

A window is a rectangular area on the screen that displays graphical output. Client applications can display
overlapping and nested windows on one or more screens that are driven by X servers on one or more
systems. There can be one or more physical screens each containing several windows. (The term screen
refers to a physical monitor, which can be color or black and white, and associated hardware.)

Compiling X Programs with AIXwindows
The following compiler command can be used to build your program:
cc {Compiler Options} -oSample Sample.c -lX11

In this example, Sample.c is the name of your C language source program, Sample is the name of your
executable C program and -lX11 indicates the function library (/usr/lib/libX11.a). The -l is the flag and
X11 indicates the library.

The compiler definitions for structures, parameters, error codes, and data types are located in the
/usr/include/X11/Xlib.h and /usr/include/X11/X.h files. You must include these files in any program that
uses these functions. To include these files, enter the following statement early in your program:
#include <X11/Xlib.h> /* also includes X11/X.h */

Window Relationships
The windows in an X server are arranged in a strict hierarchy. At the top of the hierarchy is the root
window, which covers the entire display screen. The root window is partially or completely covered by
lower-level child windows. The root window is parent to its child windows, and all windows except the root
have parents. Child windows can, in turn, have their own children, which allows an application program to
create an organizational tree on the screen. There is usually at least one window per application.

A child window can be larger than its parent, and part or all of the child window can extend beyond the
boundaries of the parent. However, moving a child window outside the parent clips it; the only visible part
of the window is that part within the parent’s boundaries.

© Copyright IBM Corp. 1997, 2006 19



If several children of a window have overlapping locations, one of the children is considered to be on top
of or raised over the others, obscuring them. Output to areas covered by other windows is not displayed; it
is suppressed by the window system.

Window Attributes
A window has a border that can be any pattern or solid color. A window usually has a background pattern
that the window system repaints when the window is uncovered. (To keep track of objects within, each
window has its own coordinate system.) Child windows obscure their parents unless the child has no
background. Graphic operations in the parent window are usually clipped by the child windows.

Input takes the form of events. Events can be side effects of a command (for example, restacking windows
generates exposure events) or they can be completely asynchronous (keyboard entries). AIXwindows
never sends events that a client application did not request; the client application must request to be
informed of events.

AIXwindows does not take responsibility for the contents of windows. When part or all of a window is
hidden and then brought back onto the screen, its contents may be lost. The client program is then notified
by an exposure event that part or all of the window needs to be repainted. Your programs must be
prepared to regenerate the contents of windows on demand.

AIXwindows provides off-screen storage of graphics objects, called pixmaps. Keeping graphics off screen
allows the system to redraw windows more quickly because the information within them is still in memory.
Single plane (depth 1) pixmaps are sometimes referred to as bitmaps. Bitmaps can be used in most
graphics functions interchangeably with windows and are used in various graphics operations to define
patterns, also called tiles. (Windows and pixmaps together are referred to as drawables.)

Window Caveats
Most of the functions in the Xlib library only add requests to an output buffer. These requests run later
(and asynchronously) on the X server. Functions that attempt to return values stored in the X server do
not return; these functions block until the X server sends an explicit reply or an error occurs. If a
nonblocking call results in an error, the error is generally not reported by an optional error handler until a
later blocking call is made.

If AIXwindows does not process a request asynchronously, a client can follow the request with a call to the
XSync function. The XSync function blocks until all previously buffered asynchronous events are sent and
acted upon. The output buffer is always erased by a call to any function that returns a value or waits for
input (for example, the XPending, XNextEvent, XWindowEvent, XFlush, or XSynchronize functions).

Many Xlib functions return an integer resource ID that allows you to refer to objects stored on the
X server. These objects can be of type Window, Font, Pixmap, Bitmap, Cursor, and GContext, as
defined in the file <X11/X.h>. (The < > is defined by the #include statement of the C compiler and is a file
relative to a well-known directory. In the AIX Operating System this directory is /usr/include.)

Some functions return Status, which is an integer error indication. If the function fails, the Status is 0
(zero). A status of 0 indicates the function did not update the return parameters. Because the C language
does not provide multiple return values, many functions must return their results by writing to client-passed
storage. A pointer that is used to return a value is designated by the Return suffix as part of its name. All
other pointers passed to these functions are used for reading only. By default, errors are handled either by
a standard library function or by a library function that you provide. Functions that return pointers to strings
return NULL pointers if the string does not exist.

Input events (for example, key press events or mouse activity events) arrive asynchronously from the
server and are queued until they are requested by a call to the XNextEvent or XWindowEvent functions.
In addition, some of the library functions (such as the XResizeWindow and XRaiseWindow functions)
generate exposure events or requests to repaint sections of a window that do not have valid contents.

20 AIXwindows Programming Guide



These events also arrive asynchronously, but the client can wait for them by explicitly calling the XSync
function after calling a function that generates exposure events.

Suggested Reading
AIXwindows Overview provides a conceptual introduction to using AIXwindows functions, macros,
protocols, extensions, and events. The AIXwindows program is a tool designed to help enhance the
usability of the overall application processing environment.

Using Display Functions in AIXwindows
Before a program can use a display, it must establish a connection to the X server driving the display.
Once users establish a connection, they can use the Xlib macros and functions to return information about
this display, such as image format size and depth.

The following information describes how to open windows. The two major sections are as follows:

v Opening a Display

v Shared Memory Transport (SMT)

Opening a Display
To open a connection to the X server controlling a specified display, use the XOpenDisplay function. This
function returns a display structure that serves as the connection to the X server. This display structure
contains information about the X server and connects the specified hardware display to the server through
Transmission Control Protocol (TCP) or UNIX domain sockets. If the host name is a host system name
and a : (colon) separates the host name and display number, the XOpenDisplay function connects the
host and the display using TCP sockets. If the host name does not exist, or if unix and a : (colon)
separates it from the display number, the XOpenDisplay function connects the host and the display using
UNIX domain sockets.

A single server can support any or all of these transport mechanisms simultaneously.

The display name or DISPLAY environment variable is a string with the following format:
HostName:Number.Screen

HostName
Specifies the name of the host system where the display is physically attached. The host name
should be followed by a : (colon).

Number
Specifies the ID number of the display server on that host machine. The display number can be
followed by a . (period).

Screen
Specifies the number of the screen on that host server. Multiple screens can be connected to or
controlled by a single X server. The screen sets an internal variable that can be accessed with the
DefaultScreen macro or the XDefaultScreen function.

For example, you can use the following format to specify screen 0 display 2 on the system named Dave:

Dave:2.0

Applications should not directly modify any part of the Display and Screen data structures. These
structures should be considered read-only by the user, but they can be changed by specified functions or
display macros.

Note: Communication from the Xlib to the X server is handled in one of the following three ways:

v UNIX domain sockets

Chapter 4. AIXwindows Xlib Library 21



v TCP domain sockets

v Shared Memory Transport Sockets

See Shared Memory Transport (SMT) for more information.

Shared Memory Transport (SMT)
Communication from Xlib to the X windows server is handled by UNIX domain sockets, TCP domain
sockets, and Shared Memory Transport sockets. UNIX domain sockets constitute a mechanism that was
an inherited mechanism for protocol transport. TCP sockets are used on a system when the application
(client) running is on a remote machine. Shared Memory Transport sockets constitute a newly developed
mechanism that is specifically designed for the X server.

The Shared Memory Transport sockets mechanism was developed to increase performance of the transfer
data from the client application (through Xlib) to the X server. As shown in the following illustration, data is
passed to and from the X server through one of the three transport mechanisms:

v UNIX Domain Sockets.

v TCP DOmain Sockets.

v Shared Memory Transport Sockets.

The default protocol transport method is a convention inherited from the Massachusetts Institute of
Technology (MIT) which is the fastest transport method available.

Data has shown that the communications overhead for the local X applications can be significant and can
be improved by using SMT sockets rather than UNIX or TCP sockets as the transport mechanism. The
standard communication mechanism for local X clients is UNIX domain sockets. This design provides a set
of services to facilitate the use of shared memory as a transport mechanism for local clients.

Goals of the Shared Memory Transport Design
The Shared Memory Transport (SMT) design assists in eliminating unnecessary data movement. When
UNIX domain sockets are used for communication, the data must be copied twice to move it between
processes. This data is copied into the kernel on ″sends″ and out of the kernel on ″receives.″ By using a
shared memory segment for the data, both the client and server processes can access the same data.
This saves one or more copies of the data.

Figure 2. Xlib Data Flow. This diagram shows data passing from the client application through the Xlib to the X server
and back.

22 AIXwindows Programming Guide



When multiple applications are running on a single server, little data may be transferred to or from a client
before another client requires service. In this type of scenario, the server spends much of its time in the
[select] system call in order to switch to another process.

The select system call contains much overhead that the X server does not need. The SMT design
implements a proprietary select called smselect. This SMT system call eliminates much of the
unnecessary overhead, minimizing the process switching time between the applications, and improving
performance.

Environment Variables and Shared Memory Transport
The X server uses SMT by default, which is transparent to the user (except for performance differences).
The user can, however, make use of two environment variables that can change the way the transport
layer works. These environment variables are: DISPLAY and X_SHM_SIZE.

DISPLAY is an existing environment variable that is commonly manipulated by X server users. This
variable is used to specify the connection to a specific X server. It can specify any number of either local
or remote X servers. By default, the DISPLAY environment variable is set to :screen#. This convention
specifies that the user would like to connect to the X server specified by screen# and use the fastest
available transport method. If the DISPLAY variable is set to unix:screen# then UNIX domain sockets are
used. If the variable is set to hostname:screen# then TCP sockets are used to transport the data to the
remote X server.

X_SHM_SIZE is an environment variable to X11R5 1.2.3 (Release 3.2.4). This variable can be used to
change the size of the client-to-server and server-to-client buffer sizes. The default buffer size is 64K
bytes, the minimum size is 16K bytes, and the maximum size is 252K bytes. The user may wish to change
the size of the buffers proportionally to the specific application needs. For example, large buffers for large
data sets, and small buffers for small data sets.

Other Shared Memory Mechanisms
It is important to note that the Shared Memory Transport mechanism is not the same as the Shared
Memory Extension shipped by MIT. The extension operates solely on pixmaps and images and requires
that the client application have detailed knowledge of the transport mechanism. In this scenario, the client
makes specific calls to the server-side extension to gain addressability to a shared memory segment
simultaneously with the server.

Shared Memory Transport, on the other hand, utilizes the shared memory segment to transport all data
(not just pixmaps and images) to and from the X server. The client is not required to do any special
processing. The Xlib program handles the transport mechanism for the client application.

Graphical Overlay Planes
Graphical overlay planes are made up of additional memory positioned logically on top of the frame buffer
(thus the name overlay). Typically, graphics applications would use this extra hardware for creating
windows that would not disturb the contents of existing windows in the frame buffer.

The primary goals for implementing this feature are:

v To reduce the need for redrawing underlying complex images while the user is navigating through the
user interface.

v To allow simple images, such as annotations, to be written over underlying images without overwriting
the images.

At X server startup/reset time, the following property is created on the root window of any screen that has
overlay capabilities:
property_name: SERVER_OVERLAY_VISUALS
property_type: SERVER_OVERLAY_VISUALS
format: 32

Chapter 4. AIXwindows Xlib Library 23



The contents of the property is a list of each visual that resides in the overlays. Each element of the list
contains information in the following format:
SERVER_OVERLAY_VISUALS {

overlay_visual: VISUALID
transparent_type: {None, TransparentPixel,

TransparentMask}
value: CARD32
layer: CARD32

}

Visuals in layer 0 (zero) are nonoverlay visuals, and would not appear in the list. Overlay visuals start in
layer 1 (one). (See the -layer flag of the X command for information concerning how to specify the default
visual.)

Drawing into a window created with an overlay visual (an overlay window) does not disturb the contents of
windows in layers different from the layer containing the overlay window. Additionally, there is a set
(perhaps empty) of transparent pixel values such that when written into an overlay window, pixels of
windows in the next lower-numbered layer show through. If these pixel values also happen to be
transparent, the process is applied until a window containing a nontransparent pixel value is found. Since
visuals in layer 0 are not displayed in the list, they cannot have any transparent pixel values. The
transparent_type and value fields specify the set of transparent pixel values as follows:

transparent_type Meaning of Value Field

0 - None Ignore the value field; there are no transparent pixels.

1 - TransparentPixel The value field explicitly names a transparent pixel.

2 - TransparentMask Any pixel value that has at least the same bits on as the
value field is transparent. A pixel is transparent if and
only if (value & pixel) == value.

The same overlay_visual element may appear more than once in the list. If it does:

v The union of the pixel values described by the transparent_type and value fields should all be
transparent.

v The value of the layer field is the same across all instances of a given overlay_visual element. (A
given overlay_visual element exists in one and only one layer.)

Note: There is no restriction on the parent-child relationships of windows with respect to the visual with
which the windows were created. A window can have combinations of children in any layer on,
below, or above its own layer.

AIXwindows National Language Support (NLS)

Overview
Internationalization is a method of application development that enables an application to be used in a
variety of locales. The concept of a locale is used to encompass the characteristics and requirements of a
given language. An internationalized application requires that any language-dependent or
custom-dependent information be stored external to the application program. A locale can be characterized
by several components. For example, character sets, sort order, text direction, and formats for data (such
as date and currency) are used to describe the unique characteristics of a locale. For each different locale,
information (such as menu items, help information, and user prompts) is defined and stored separately.
The information is localized, which means that it has been tailored for a specific language and country.

An application designed to run in different locales examines certain resources and environment variables
in order to determine which language to use when run. An application establishes file search paths for
resource files and other language-dependent information. There is a wide variety of information that can

24 AIXwindows Programming Guide



be localized. Localized information is stored in files that reside in different directories. AIXwindows uses an
underlying Xt Intrinsics mechanism (XtResolvePathname) to select and locate the appropriate files,
depending on the locale.

An internationalized application can set its locale at run time, typically using an internal procedure called a
language procedure. The language procedure processes data in your user environment and sets the
application’s locale. This feature enables you to modify your user environment and rerun an application in
a different locale. An application can use a default language procedure or supply its own procedure. As a
result, two applications can process the same user environment data with different results. Refer to the
user documentation for the application you intend to use for detailed instructions.

An input method is the underlying mechanism that takes keyboard input and displays the locale’s
corresponding characters on the screen. An input method interprets the user’s keystrokes based on the
conventions supplied by the input method. The input method used by an application based on an
alphabetic language is generally not visible. However, ideographic languages such as Chinese or
Japanese may use an input method that composes keystrokes in a separate window called a pre-edit
window. For example, you type a phonetic representation of a spoken word and the input method
determines the ideographic character that is pronounced in that way. When more than one character
meets the criteria, the input method displays a list of characters from which to select. Once you confirm a
selection in the pre-edit area, the information is passed to the application.

Input methods can be defined by the platform vendor, an application, or a user. Information about available
input methods and their features can be found in the documentation for the system or application that you
are using.

An internationalized application can dynamically set its language environment when it is run. The design of
the application defines what information is expected and how it is used to set the language environment.
Typically, you can modify the language environment used by an application by specifying a language
resource or a language environment variable. The exact method that you use to set the language
environment for an application is defined by the application. Refer to the documentation for the application
for specific information.

Exceptions
The AIXwindows system supports the standard X11R6 with the following exceptions:

Input Method Values
v XNVisiblePosition argument indicates whether the visible position masks of XIMFeedback in XIMText

are available.

v XNR6PreeditCallbackBehavior is obsolete and its use is not recommended. The argument originally
indicated whether the behavior of preedit callbacks regarding XIMPreeditDrawCallbackStruct values
followed Released 5 or Release 6 semantics.

Input Context Values
v String Conversion Callback argument speficies a string conversion callback. This callback is not

required for correct operation of either the input method or the client.

v String Conversion argument specifies the string to be converted by an input method. This argument is
not required for correct operation of either the input method or the client.

Chapter 4. AIXwindows Xlib Library 25



26 AIXwindows Programming Guide



Chapter 5. Using Extensions in AIXwindows

Because AIXwindows can evolve by extensions to the core protocol, it is important that extensions not be
given lesser importance.

To avoid initializing extensions explicitly in application programs, it is important that extensions perform
″lazy evaluations″ and automatically initialize themselves when called the first time.

The following sections describe techniques for writing extensions to the Xlib library that have the same
performance rate as Core protocol requests.

v Extension Functions

v Dynamically Loadable X Server Extensions

Note: Because an AIXwindows extension is expected to consist of multiple requests, defining 10 new
features as 10 separate extensions is not a good practice. Rather, package new features into a
single extension and use minor opcodes to distinguish between the features.

The following extension protocols are included in this chapter:

v AIXwindows Nonrectangular Window Shape Extension

v AIXwindows Screen Saver Extension

v AIXwindows Input Device Functions

v AIXwindows Input Extension Library

v AIXwindows Input Extension Protocol

v AIXwindows Double Buffer Extension

v AIXwindows XTest Extension

Extension Functions
The following are extensions function topics:

v Basic Extension Functions

v Hooking into the Xlib Library

v Graphics Context (GC) Caching

v Graphics Batching

v Lock Data Structures

v Define Extension Stubs, Requests, and Replies

v Define Request Formats

v Define Reply Formats

v Send Protocol Request and Arguments

v Variable Length Arguments

v Synchronous Calling

v Allocating and Deallocating Memory

v Deriving the Correct Extension Opcode

Basic Extension Functions
The basic protocol requests for extensions are the XQueryExtension extension function, the
XListExtensions extension function, and the XFreeExtensionList extension function.

© Copyright IBM Corp. 1997, 2006 27



Hooking into the Xlib Library
Hooking routines sink a connecting hook into the library. These routines normally are not used by
application programmers but, instead, by programmers who need to extend the Core AIXwindows protocol
and the AIXwindows library interface. Hooking routines, which generate protocol requests for AIXwindows,
are called stubs.

In extensions, stubs first check to see if they have initialized themselves on a connection. If the stubs have
not been initialized, they should call the XInitExtension function.

The wire-formatted structure XEvent is in the <X11/Xproto.h> header file, and the host-formatted structure
XEvent is in the <X11/Xlib.h> header file.

The XExtCodes data structure returns the information from the XQueryExtension extension function and
is defined in the <X11/Xlib.h> header file.

The XInitExtension function calls the XQueryExtension function to see if the extension exists. Then, it
allocates storage for maintaining the information about the extension on the connection. It chains this to
the extension list for the connection, and returns the information that the stub implementor needs to
access the extension. If the extension does not exist, the XInitExtension function returns NULL.

The extension number returned in the XExtCodes data structure is used in the other calls that follow. This
extension number is unique to a single connection only.
XExtCodes *XAddExtension(DisplayPtr)

Display *DisplayPtr;

For local Xlib library extensions, the XAddExtension function allocates the XExtCodes data structure,
bumps the extension number count, and chains the extension onto the extension list. (This allows
extensions access to the Xlib library without requiring server extensions.)

The types of functions and associated functions that hook into the AIXwindows library include the
following:

v Creating a new graphics context for a connection (the XESetCloseDisplay extension function and the
XESetCreateGC extension function).

v Copying a graphics context (the XESetCopyGC extension function).

v Freeing a graphics context (the XESetFreeGC extension function).

v Creating and freeing fonts (the XESetCreateFont extension function and the XESetFreeFont extension
function).

v Converting events defined by extensions to and from wire format (the XESetWireToEvent function and
the XESetEventToWire extension function).

v Handling errors (the XESetError extension function, and the XESetErrorString extension function.

Use these routines to define procedures to be called under certain circumstances. All these routines return
the previous routine defined for this extension.

Various Xlib library data structures have provisions for extension functions to chain extension-supplied
data onto a list. Because the list pointer is always the first member of the structure, a single set of
functions can be used to manipulate the data in these lists.

The XExtData data structure is used in these functions, and is defined in the <X11/Xlib.h> header file.

28 AIXwindows Programming Guide



Graphics Context (GC) Caching

GCs are cached by the library so that independent change requests can be merged into a single protocol
request. This cache is called a write back cache. Any extension function whose behavior depends on the
contents of a GC must erase the GC cache to make sure the server has up-to-date contents in its GC.

If you extend the GC to add additional resource ID components, you should ensure that the library stub
immediately sends the change request. Since a client can free a resource immediately after using it,
storing the value in the cache without forcing a protocol request can destroy the resource before it is set
into the GC.

The _XFlushGCCache procedure forces the cache to be erased.

Graphics Batching
If you extend AIXwindows to add more poly-graphics primitives, you might be able to take advantage of
facilities in the library to allow back-to-back single calls to be transformed into poly-requests. The display
structure has a pointer to an xReq called last_req, which is the last request being processed. By checking
that the last request type, drawable, GC, and other options are the same as the new one, and that there is
enough space left in the buffer, you might be able to extend the previous graphics request by extending
the length field of the request and appending the data to the buffer.

For example, the following is the source for the XDrawPoint stub:
#include <X11/Xlibint.h>
/* precompute the max size of batching request allowed */

static int size = sizeof(xPolyPointReq) + EPERBATCH
* sizeof(xPoint);

XDrawPoint(dpy, d, gc, x, y)
register Display *dpy;
Drawable d;
GC gc;
int x, y; /* INT16 */

{
xPoint *point;
LockDisplay(dpy);
FlushGC(dpy, gc);
{
register xPolyPointReq *req = (xPolyPointReq *)
dpy->last_req;
/* if same as previous request, with same drawable,
batch requests */
if (

(req->reqType == X_PolyPoint)
&& (req->drawable == d)
&& (req->gc == gc->gid)
&& (req->coordMode == CoordModeOrigin)
&& ((dpy->bufptr + sizeof (xPoint)) <=dpy->bufmax)
&& (((char *)dpy->bufptr - (char *)req) < size)) {
point = (xPoint *) dpy->bufptr;
req->length += sizeof (xPoint) >> 2;
dpy->bufptr += sizeof (xPoint);
}

else {
GetReqExtra(PolyPoint, 4, req ); /* 1 point = 4 bytes */
req->drawable = d;
req->gc = gc->gid;
req->coordMode = CoordModeOrigin;
point = (xPoint *) (req + 1);
}

point->x = x;
point->y = y;

Chapter 5. Using Extensions in AIXwindows 29



}
UnlockDisplay(dpy:);
SyncHandle();

}

To keep clients from generating long requests that might monopolize the server, there is a limit of
EPERBATCH defined in <X11/Xlib.h> on the number of requests batched. Note that the FlushGC macro
is called before picking up the value of the last_req field, since it may modify this field.

Lock Data Structures
To lock the display structure for systems that want to support multithreaded access to a single display
connection or to support asynchronous input, each stub needs to lock its critical section. Generally, this
section is the point immediately prior to the appropriate GetReq call when all arguments to the call have
been stored into the request. Two calls generally implemented as macros are:
LockDisplay(Display)

Display *Display;
UnlockDisplay(Display)

Display *Display;

The Display parameter specifies a pointer to the display structure of the display to be locked or unlocked.

Define Extension Stubs, Requests, and Replies
The <X11/Xproto.h> header file contains the following three sets of definitions:

v Request names

v Request structures

v Reply structures

X server requests contain the length, expressed as a 16-bit quantity of 32-bits, of the request. Therefore, a
single request can be no more than 256k long. Some servers may not support single requests of such a
length. The value of display ->max_request_size contains the maximum length as defined by the server
implementation.

An Xlib library stub routine should start as follows:
#include <X11/Xlibint.h>

XDoSomething (arguments, ...) /* argument declarations */
{

/* variable declarations, if any */

If the protocol request has a reply, then the variable declarations should include the reply structure for the
request. The following is an example:
xDoSomethingReply rep;

Generate a file equivalent to the <X11/Xproto.h> header file for your extension and include it in your stub
routine. Each stub routine also must include the <X11/Xlibint.h> header file.

The identifiers are deliberately chosen in such a way that if the request is called X_DoSomething, then its
request structure is xDoSomethingReq and its reply is xDoSomethingReply. The GetReq family of macros,
defined in the <X11/Xlibint.h> header file, takes advantage of this naming scheme.

For each X request, there is a definition in the <X11/Xproto.h> that looks similar to the following:
#define X_DoSomething 42

Note: In your extension header file, this is a minor opcode instead of a major opcode.

30 AIXwindows Programming Guide



Define Request Formats

Every request contains an 8-bit major opcode and a 16-bit length field expressed in units of 4 bytes. Every
request consists of a 4-byte header (containing the major opcode, the length field, and a data byte)
followed by a 0 (zero) or additional bytes of data. The length field defines the total length of the request,
including the header. The length field in a request must equal the minimum length required to contain the
request. If the specified length is smaller or larger than the required length, the extension should generate
a BadLength error. Unused bytes in a request are not required to be the value of 0.

The XMaxRequestSize extension function returns the maximum request size (4-byte units) supported by
the server.

Major opcodes 128 through 255 are reserved for extensions. Extensions are for holding multiple requests,
so extension requests typically have an additional minor opcode encoded in the spare data byte in the
request header. But the placement and interpretation of this minor opcode, as well as all other fields in
extension requests, are not defined by the Core protocol. Every request is implicitly assigned a sequence
number (starting with one) used in replies, errors, and events. The B16 and B32 macros have been
defined so that they can become bit-field specifications on some machines.

Most protocol requests have a corresponding structure typedef in the <X11/Xproto.h> header file. The
following is an example of the xResourceReq typedef structure:
typedef struct _ResourceReq{

CARD8 reqType; /* the request type, X_DoSomething */
BYTE pad; /* not used */
CARD16 length; /* 2 (= total number of bytes in

request, divided by 4) */
CARD32 id; /* the window, drawable, font, or

gcontext, for example */
} xResourceReq;

reqType
Identifies the type of the request, such as the X_MapWindow value or the X_CreatePixmap
value.

length Identifies how long (in units of 4 bytes) the request is. It includes both the request structure and
any variable length data, such as strings or lists, that follow the request structure. Request
structures come in different sizes, but all requests are padded to be a multiple of 4-bytes long.

If a Core protocol request has a single 32-bit argument, you do not need to declare a request structure in
your extension header file. Instead, such requests use the xResourceReq data structure in the
<X11/Xproto.h> header file. This structure is used for any request whose single argument is Window,
Pixmap, Drawable, GContext, Font, Cursor, Colormap, Atom, or VisualID.
typedef struct _DoSomethingReq{

CARD8 reqType; /* X_DoSomething */
CARD8 someDatum; /* used differently in different requests*/
CARD16 length; /* total number of bytes in request,

divided by 4 */
.... /* request-specific data */
...

} xDoSomethingReq;

reqType
Identifies the type of the request, such as the X_MapWindow value or the X_CreatePixmap
value.

length Identifies how long (in units of 4 bytes) the request is. It includes both the request structure and
any variable length data, such as strings or lists, that follow the request structure. Request
structures come in different sizes, but all requests are padded to be a multiple of 4-bytes long.

You can do something similar in your extension header file.

Chapter 5. Using Extensions in AIXwindows 31



A few protocol requests take no arguments at all. Instead, they use the xReq data structure, which
contains only a request type and a length (and a pad byte), in the <X11/Xproto.h> header file.

Define Reply Formats

If the protocol request requires a reply, then the <Xproto.h> header file also contains a reply structure
typedef.
typedef struct _DoSomethingReply {

BYTE type; /* always X_Reply */
BYTE someDatum /* used differently in different

requests */
CARD16 sequenceNumber; /* number of requests sent so far*/
CARD32 length; /* number of additional bytes,

divided by 4 */
....

/* request-specific data */
....

} xDoSomethingReply;

Most of these reply structures are 32 bytes long. If the reply value is less than 32 bytes, the reply structure
contains a sufficient number of pad fields to bring them up to 32 bytes.

The length is the total number of bytes in the request minus 32, divided by 4. This field is not the value of
0 if:

v The reply structure is followed by variable length data, such as a list or string.

v The reply structure is longer than 32 bytes.

The only Core protocol exceptions that have reply structures longer than 32 bytes are as follows:

v GetWindowAttributes protocol request

v QueryFont protocol request

v QueryKeymap protocol request

v GetKeyboardControl protocol request

A few protocol requests return replies that contain no data. The <X11/Xproto.h> header file does not
define reply structures for these. Instead, these protocol requests use the xGenericReply structure, which
contains only a type, length, and sequence number (and sufficient padding to make it 32-bytes long).

Send Protocol Requests and Arguments
After the variable declarations, a stub routine should call one of the following four macros defined in the
Xlibint.h file:

v GetReq

v GetReqExtra

v GetResReq

v GetEmptyReq

These macros take the name of the protocol request as declared in the <X11/Xproto.h> header file
without the X_ as their first argument. Each macro declares a Display structure pointer, called dpy and a
pointer to a request structure, called req, which is of the appropriate type. The macro then appends the
request structure to the output buffer, fills in the type and length field, and sets the req variable to point to
it.

If the protocol request, such as GrabServer, has no arguments, use the GetEmptyReq protocol request
as in the following example:
GetEmptyReq (DoSomething, req);

32 AIXwindows Programming Guide



If the protocol request has a single 32-bit argument (such as a Pixmap, Window, Drawable, or Atom), use
the GetResReq macro.

The second argument to this macro is the 32-bit object. The X_MapWindow request type is a good
example of the GetResReq macro:
GetResReq (DoSomething, rid, req);

The rid argument is the Pixmap or Window value, or other resource ID.

If the protocol request takes any other argument list, then call the GetReq macro. After the GetReq macro,
set all the other fields in the request structure, usually from arguments to the stub routine.
GetReq (DoSomething, req);
/* fill in arguments here */
req->arg1 = arg1;
req->arg2 = arg2;

A few stub routines, such as the XCreateGC function and the XCreatePixmap function, return a resource
ID to the caller but pass a resource ID as an argument to the protocol request. These stub routines use
the XAllocID macro to allocate a resource ID from the range of IDs that were assigned to this client when
it opened the connection. The following is an example of the XAllocID macro:
rid = req->rid = XAllocID();
return (rid);

Finally, some stub routines transmit a fixed amount of variable-length data after the request. Typically,
these routines, such as the XMoveWindow function and the XSetBackground function, are special cases
of more general routines like the XMoveResizeWindow function and the XChangeGC function. In these
cases, the GetReqExtra macro, which is like the GetReq macro with an additional argument, is used. The
additional argument is the number of extra bytes (a multiple of 4) allocated in the output buffer after the
request structure.

Variable Length Arguments

Some protocol requests take additional variable length data that follow the xDoSomethingReq structure.
The format of this data varies from one request to another. Some require a sequence of 8-bit bytes, others
a sequence of 16-bit or 32-bit entities, and still others a sequence of structures.

The length of any variable length data must be added to the length field of the request structure. The
length field is in units of 32-bit long words. If the data is a string or other sequence of 8-bit bytes, then
round up the length and shift it before adding. For example:
req->length += (nbytes+3)>>2;

To transmit the variable length data, use the Data macros. If the data fits into the output buffer, then this
macro copies it to the buffer. If it does not fit, however, the Data macro calls the _XSend, which first
transmits the contents of the buffer and then transmits your data. The Data macro takes three arguments:
the display, a pointer to the beginning of the data, and the number of bytes to be sent.

v Data (display, (char*) data, nbytes);

v Data16 (display, (short*) data, nbytes);

v Data32 (display, (long*) data,nbytes);

Data, Data16, and Data32 are macros that can use their last argument more than once, so that argument
should be a variable rather than an expression such as nitems*sizeof(item). You should do that kind of
computation in a separate statement before calling them. Use the appropriate macro when sending byte,
short, or long data.

Chapter 5. Using Extensions in AIXwindows 33



If the protocol request requires a reply, then call the procedure _XSend instead of the Data macro.
_XSend takes the same arguments, but because it sends your data immediately instead of copying it into
the output buffer (which would later be erased anyway by the following call on _XReply ), it is faster.

The following is an example of the Data macro:
Data(display, (char *) data, nbytes);

If the protocol request has a reply, use the _XReply function after dealing with all the fixed and variable
length arguments.

Synchronous Calling
To ease debugging, each routine should have a call to a routine immediately prior to returning to the user.
This routine is called SyncHandle() and is generally implemented as a macro. If the synchronous mode is
enabled with the XSynchronize function, the request is sent immediately. The library, however, waits until
any generated error has been handled.

Allocating and Deallocating Memory
To support the possible re-entry of these routines, several conventions should be observed when allocating
and deallocating memory. This is appropriate especially when the user does not know the size of the data
that is being returned. (The standard C language library routines on many systems are not protected
against signals or other multithreaded use.) The analogies to standard I/O library routines are defined as
follows:

Xmalloc()
Replaces the malloc() routine.

Xfree()
Replaces the free() routine.

Xcalloc()
Replaces the calloc() routine.

These routines should be used in place of any calls made to the normal C language library routines. For
example, if you need a single scratch buffer inside a critical section to pack and unpack data to and from
wire protocol, the general memory allocators may be too expensive to use (particularly in output routines,
which are performance critical). Use the _XAllocScratch function to return a scratch buffer. This storage
must only be used inside the critical section of your stub.

Deriving the Correct Extension Opcode
When writing an extension stub routine map from the call to the proper major and minor opcodes, you can
use the following suggested strategy:

1. Declare an array of pointers. The length of this array, _NFILE long (normally found in the <stdio.h>
header file), is the number of file descriptors supported on the system of type XExtCodes. These
descriptors should be initialized to the value of NULL.

2. When your stub is entered, your initialization test should use the display pointer to access the file
descriptor and an index into the array. If the entry is the value of NULL, then this is the first time you
are entering the routine for this display. Call your initialization routine and pass the display pointer.

3. Once in your initialization routine, call the XInitExtension function. If it succeeds, store the pointer
returned into this array. Establish a close display handler to allow you to zero the entry. Perform any
other initialization your extension requires. (For example, install event handlers.) Your initialization
routine normally returns a pointer to the XExtCodes data structure for this extension, which you
normally find in your array of pointers.

4. After the initialization routine, the stub routine can continue normally, since its major opcode is safely in
the XExtCodes data structure.

34 AIXwindows Programming Guide



Dynamically Loadable X Server Extensions
Certain server extensions can be loaded by the X server during runtime when the server initializes. This
can be done in two ways:

1. If the user wants to load the extension every time the server starts, the extension’s nickname and the
path name of its loadable module must be present in the file /usr/bin/X11/static_ext.

2. If the user wants to selectively load the extension in each invocation of the X server, the command line
flag -x and the extension’s nickname can be used. In order to use this method, the extension’s
nickname and the path name of its loadable module must be present in the file /usr/bin/X11/
dynamic_ext. Usage of the command line flag is shown below:

X -x dbe

This loads the Double Buffer Extension into the server. Multiple instances of the -x flag are allowed.

The format of both static_ext and dynamic_ext files is the same, it contains two fields, separated by
white spaces. The first field is the extension’s nickname used to identify the module to be loaded, the
nickname cannot be longer than 27 characters; the second field is the path name of the extension’s
loadable module. The total length of one entry, that is, the two fields and white spaces, cannot be longer
than 160 characters. The following is an example of the format:

dbe /usr/lpp/X11/bin/loadDBE

The server keeps track of nicknames of the extensions loaded, therefore, the same extension is only
loaded once, even if it has multiple entries in files static_ext and dynamic_ext and command line flag -x.

If the X server cannot find or load the specified extension module, it is considered a fatal error. The X
server uses the loadquery subroutine to query the error messages when the load system call fails. It then
executes execerror to display these error messages, and exits the process.

AIXwindows Nonrectangular Window Shape Extension
This extension provides arbitrary window and border shapes within the X11 protocol.

The restriction of rectangular windows within the X protocol can be a significant limitation. For example,
many transient windows would like to display a drop shadow to give the illusion of 3 dimensions. Also,
some user interface style guides call for buttons with rounded corners; the full simulation of a
nonrectangular shape, particularly with respect to event distribution and cursor shape, is not possible
within the Core X protocol. Finally, round clocks and nonrectangular icons are pleasant additions to the
desktop.

This extension provides mechanisms for changing the visible shape of a window to an arbitrary,
nonrectangular form. This extension supplements the existing semantics and does not replace them. In
particular, clients that are unaware of the extension need to be able to cope with oddly-shaped windows.
For example, window managers should still be able to negotiate screen real estate in rectangular pieces.
Toward this end, any shape specified for a window is clipped by the bounding rectangle for the window as
specified by the window’s geometry in the core protocol. An expected convention would be that client
programs expand their shape to fill the area offered by the window manager.

For additional information, refer to the following topics:

v Description

v Types

v C Language Binding

Chapter 5. Using Extensions in AIXwindows 35



Description
Each window (even with no shapes specified) is defined by two regions: the bounding region and the clip
region. The bounding region is the area of the parent window which the window will occupy (including
border). The clip region is the subset of the bounding region which is available for subwindows and
graphics. The area between the bounding region and the clip region is defined to be the border of the
window.

A nonshaped window will have a bounding region that is a rectangle spanning the window (including its
border); the clip region will be a rectangle filling the inside dimensions (not including the border). In this
document, these areas are referred to as the default bounding region and the default clip region. For a
window with inside size of width by height and border width width, the default bounding and clip regions
are the rectangles (relative to the window origin):

bounding.x = width

bounding.y = width

bounding.width = width + 2 * width

bounding.height = height + 2 * width

clip.x = 0

clip.y = 0

clip.width = width

clip.height = height

This extension allows a client to modify either or both of the bounding or clip regions by specifying new
regions that combine with the default regions. These new regions are called the client bounding region and
the client clip region. They are specified relative to the origin of the window and are always defined by
offsets relative to the window origin (that is, region adjustments are not required when the window is
moved). Three mechanisms for specifying regions are provided: a list of rectangles, a bitmap, and an
existing bounding or clip region from a window. This is modeled on the specification of regions in graphics
contexts in the Core protocol and allows a variety of different uses of the extension.

When using an existing window shape as an operand in specifying a new shape, the client region is used,
unless none has been set in which case the default region is used instead.

The effective bounding region of a window is defined as the intersection of the client bounding region with
the default bounding region. Any portion of the client bounding region that is not included in the default
bounding region is not included in the effective bounding region on the screen. This means that window
managers (or other geometry managers) accustomed to dealing with rectangular client windows can
constrain the client to a rectangular area of the screen.

Construction of the effective bounding region is dynamic; the client bounding region is not mutated to
obtain the effective bounding region. If a client bounding region is specified that extends beyond the
current default bounding region, and the window is later enlarged, the effective bounding region will be
enlarged to include more of the client bounding region.

The effective clip region of a window is defined to be the intersection of the client clip region with both the
default clip region and the client bounding region. Any portion of the client clip region which is not included
in both the default clip region and the client bounding region will not be included in the effective clip region
on the screen.

36 AIXwindows Programming Guide



Construction of the effective clip region is dynamic; the client clip region is not mutated to obtain the
effective clip region. If a client clip region is specified, which extends beyond the current default clip region,
and the window or its bounding region is later enlarged, the effective clip region will be enlarged to include
more of the client clip region if it is included in the effective bounding region.

The border of a window is defined to be the difference between the effective bounding region and the
effective clip region. If this region is empty, no border is displayed. If this region is not empty, the border is
filled using the border tile or border pixel of the window as specified in the Core protocol. Note that a
window with a nonzero border width will never be able to draw beyond the default clip region of the
window. Also note that a zero border width does not prevent a window from having a border, because the
clip shape can still be made smaller than the bounding shape.

All output to the window, and visible regions of any subwindows, will be clipped to the effective clip region.
The server must not retain window contents beyond the effective bounding region with backing store. The
window’s origin (for graphics operations, background tiling, and subwindow placement) is not affected by
the existence of a bounding region or clip region.

Areas that are inside the default bounding region but outside the effective bounding region are not part of
the window; these areas of the screen will be occupied by other windows. Input events that occur within
the default bounding region but outside the effective bounding region will be delivered as if the window
was not occluding the event position. Events which occur in a nonrectangular border of a window will be
delivered to that window, just as for events which occur in a normal rectangular border.

An InputOnly window can have its bounding region set, but it is a Match error to attempt to set a clip
region on an InputOnly window or to specify its clip region as a source to a request in this extension.

The server must accept changes to the clip region of a root window, but the server is permitted to ignore
requested changes to the bounding region of a root window. If the server accepts bounding region
changes, the contents of the screen outside the bounding region are implementation-dependent.

Types
The following types are used in the request and event definitions in subsequent sections:
SHAPE_KIND:

{Bounding,
Clip}

SHAPE_OP:
{Set,
Union,
Intersect,
Subtract,
Invert}

Set Indicates that the region specified as an explicit source in the request is stored unaltered as the
new destination client region.

Union Indicates that the source and destination regions are connected to produce the new destination
client region.

Intersect
Indicates that the source and destination regions are intersected together to produce the new
destination client region.

Subtract
Indicates that the source region is subtracted from the destination region to produce the new
destination region.

Invert Indicates that the destination region is subtracted from the source region to produce the new
destination region.

Chapter 5. Using Extensions in AIXwindows 37



C Language Binding
The C Language routines provide direct access to the protocol and add no additional semantics.

All XShape Extension functions and procedures, and all manifest constants and macros, start with the
string ″XShape″. All routines that have return type Status will return non-zero for success and zero for
failure. Even if the XShape Extension is supported, the server may withdraw such facilities arbitrarily; in
which case they will subsequently return zero.

The XShape Extension includes the following C Language routines:

v XShapeQueryExtension

v XShapeQueryVersion

v XShapeCombineRegion

v XShapeCombineRectangles

v XShapeCombineMask

v XShapeCombineShape

v XShapeOffsetShape

v XShapeQueryExtents

v XShapeSelectInput

v XShapeInputSelected

v XShapeGetRectangles

AIXwindows Screen Saver Extension
AIXwindows provides support for changing the image on a display screen after a user-defined period of
inactivity to avoid burning the cathode ray tube phosphors. However, no interfaces are provided for the
user to control the image that is drawn. This extension allows an external ``screen saver’’ client to detect
when the alternate image is to be displayed and to provide the graphics.

Current X server implementations typically provide at least one form of ``screen saver’’ image. Historically,
this has been a copy of the X logo drawn against the root background pattern. However, many users have
asked for the mechanism to allow them to write screen saver programs that provide capabilities similar to
those provided by other window systems. In particular, such users often wish to be able to display
corporate logos, instructions on how to reactivate the screen, and automatic screen-locking utilities. This
extension provides a means for writing such clients.

The core SetScreenSaver Protocol Request can be used to set the length of time without activity on any
input devices after which the screen saver should ``activate’’ and alter the image on the screen. This
image periodically ``cycles’’ to reduce the length of time that any particular pixel is illuminated. Finally, the
screen saver is ``deactivated’’ in response to activity on any of the input devices or particular X requests.

Screen saving is typically done by disabling video output to the display tube or by drawing a changing
pattern onto the display. If the server chooses the latter approach, a window with a special identifier is
created and mapped at the top of the stacking order where it remains until the screen saver deactivates.
At this time, the window is unmapped and is not accessible to any client requests.

The server’s default mechanism is referred to as the internal screen saver. An external screen saver client
requires a means of determining the window identifier for the screen saver window and setting the
attributes (that is, size, location, visual, colormap) to be used when the window is mapped. These
requirements form the basis of this extension.

38 AIXwindows Programming Guide



Assumptions
This extension exports the notion of a special screen saver window that is mapped above all other
windows on a display. This window has the override-redirect attribute set so that it is not subject to
manipulation by the window manager. Furthermore, the X identifier for the window is never returned by
QueryTree protocol requests on the root window, so it is typically not visible to other clients.

Types
In addition to the common types described in the core protocol, the following type is used in the request
and event definitions in subsequent sections.

Name Value

SCREENSAVEREVENT {ScreenSaverNotify, ScreenSaverCycle}

Errors
The Screen Saver extension adds no errors beyond the core protocol.

Requests
The Screen Saver extension adds the following requests:
ScreenSaverQueryVersion

client-major-version: CARD8
client-minor-version: CARD8

->
server-major-version: CARD8
server-minor-version: CARD8

This request allows the client and server to determine which version of the protocol should be used. The
client sends the version that it prefers; if the server understands that version, it returns the same values
and interprets subsequent requests for this extension according to the specified version. Otherwise, the
server returns the closest version of the protocol that it can support and interprets subsequent requests
according to that version. This document describes major version 1, minor version 0; the major and minor
revision numbers should only be increased in response to incompatible and compatible changes,
respectively.
ScreenSaverQueryInfo

drawable: DRAWABLE
->

saver-window: WINDOW
state: {Disabled, Off, On}
kind: {Blanked, Internal, External}
til-or-since: CARD32
idle: CARD32
event-mask: SETofSCREENSAVEREVENT
Errors: Drawable

This request returns information about the state of the screen saver on the screen associated with
drawable. The saver-window is the XID type that is associated with the screen saver window. This window
is not guaranteed to exist except when external screen saver is active. Although it is a child of the root,
this window is not returned by QueryTree protocol requests on the root. Whenever this window is mapped,
it is always above any of its siblings in the stacking order.

The state field specifies whether or not the screen saver is currently active and how the til-or-since value
should be interpreted:

Off The screen is not currently being saved; til-or-since specifies the number of milliseconds until the
screen saver is expected to activate.

Chapter 5. Using Extensions in AIXwindows 39



On The screen is currently being saved; til-or-since specifies the number of milliseconds since the
screen saver activated.

Disabled
The screen saver is currently disabled; til-or-since is zero.

The kind field specifies the mechanism that either is currently being used or would have been were the
screen being saved:

Blanked
The video signal to the display monitor was disabled.

Internal
A server-dependent, built-in screen saver image was displayed; either no client had set the screen
saver window attributes or a different client had the server grabbed when the screen saver
activated.

External
The screen saver window was mapped with attributes set by a client using the
ScreenSaverSetAttributes request.

The idle field specifies the number of milliseconds since the last input was received from the user on any
of the input devices.

The event-mask field specifies which, if any, screen saver events this client has requested using the
ScreenSaverSelectInput function.

If drawable is not a valid drawable identifier, a Drawable error is returned and the request is ignored.
ScreenSaverSelectInput

drawable: DRAWABLE
event-mask: SETofSCREENSAVEREVENT

Errors: Drawable, Match

This request specifies which Screen Saver extension events on the screen associated with drawable
should be generated for this client. If no bits are set in the eventmask field, then no events are generated.
Otherwise, any combination of the following bits may be set:

ScreenSaverNotify
If this bit is set, ScreenSaverNotify events are generated whenever the screen saver is activated
or deactivated.

ScreenSaverCycle
If this bit is set, ScreenSaverNotify events are generated whenever the screen saver cycle
interval passes.

If drawable is not a valid drawable identifier, a Drawable error is returned. If any undefined bits are set in
event-mask field, a Value error is returned. If an error is returned, the request is ignored.
ScreenSaverSetAttributes

drawable: DRAWABLE
class: {InputOutput, InputOnly, CopyFromParent}
depth: CARD8
visual: VISUALID or CopyFromParent
x, y: INT16
width, height, border-width: CARD16
value-mask: BITMASK

40 AIXwindows Programming Guide



value-list: LISTofVALUE

Errors: Access, Window, Pixmap, Colormap, Cursor, Match,
Value, Alloc

This request sets the attributes that this client would like to see used in creating the screen saver window
on the screen associated with drawable. If another client currently has the attributes set, an Access error is
generated and the request is ignored.

Otherwise, the specified window attributes are checked as if they were used in a core CreateWindow
protocol request whose parent is the root. The overrideredirect field is ignored as it is implicitly set to a
value of True. If the window attributes result in an error according to the rules for the CreateWindow
protocol request, the request is ignored.

Otherwise, the attributes are stored and take effect on the next activation that occurs when the server is
not grabbed by another client. Any resources specified for the background-pixmap or cursor attributes
may be freed immediately. The server is free to copy the background-pixmap or cursor resources or to
use them in place; therefore, the effect of changing the contents of those resources is undefined. If the
specified colormap no longer exists when the screen saver activates, the parent’s colormap is used
instead. If no errors are generated by this request, any previous screen saver window attributes set by this
client are released.

When the screen saver next activates and the server is not grabbed by another client, the screen saver
window is created, if necessary, and set to the specified attributes and events are generated as usual. The
colormap associated with the screen saver window is installed. Finally, the screen saver window is
mapped.

The window remains mapped and at the top of the stacking order until the screen saver is deactivated in
response to activity on any of the user input devices, a ForceScreenSaver protocol request with a value
of Reset, or any request that would cause the window to be unmapped.

If the screen saver activates while the server is grabbed by another client, the internal saver mechanism is
used. The ForceScreenSaver request may be used with a value of Active to deactivate the internal saver
and activate the external saver.

If the screen saver client’s connection to the server is broken while the screen saver is activated and the
client’s close down mode has not been Retain Permanent or Retain Temporary, the current screen saver is
deactivated and the internal screen saver is immediately activated.

When the screen saver deactivates, the screen saver window’s colormap is uninstalled and the window is
unmapped (except as described below). The screen saver XID is disassociated with the window and the
server may, but is not required to, destroy the window along with any children. When the screen saver is
being deactivated and then immediately reactivated (such as when switching screen savers), the server
may leave the screen saver window mapped (typically to avoid generating exposures).
ScreenSaverUnsetAttributes

drawable: DRAWABLE
Errors: Drawable

This request notifies the server that this client no longer wishes to control the screen saver window. Any
screen saver attributes set by this client and any descendents of the screen saver window created by this
client should be released immediately if the screen saver is not active, else upon deactivation.

This request is ignored if the client has not previously set the screen saver window attributes.

Events
The Screen Saver extension adds one event:

Chapter 5. Using Extensions in AIXwindows 41



ScreenSaverNotify

root: WINDOW
window: WINDOW
state: {Off, On, Cycle}
kind: {Blanked, Internal, External}
forced: BOOL
time: TIMESTAMP

This event is delivered to clients that have requested ScreenSaverNotify events using the
ScreenSaverSelectInput protocol request whenever the screen saver activates or deactivates.

The root field specifies root window of the screen for which the event was generated. The window field
specifies the value that is returned by the ScreenSaverQueryInfo function as the identifier for the screen
saver window. This window is not required to exist if the external screen saver is not active.

The state field specifies the cause of the event:

Off The screen saver deactivated; this event is sent if the client has set the ScreenSaverNotify bit in
its event mask.

On The screen saver activated. This event is sent if the client has set the ScreenSaverNotify bit in its
event mask.

Cycle The cycle interval passed and the client is expected to change the image on the screen. This
event is sent if the client has set the ScreenSaverCycle bit in its event mask.

If the state field is set to On or Off then forced indicates whether or not activation or deactivation was
caused by a core ForceScreenSaver protocol request; otherwise, forced is set to a value of False. The
kind field specifies mechanism that was used to save the screen when the screen saver was activated, as
described in the ScreenSaverQueryInfo function.

The time field indicates the server time when the event was generated.

Common Types
SETofSCREENSAVEREVENT

#x00000001ScreenSaverNotifyMask
#x00000002ScreenSaverCycleMask

Requests
ScreenSaverQueryVersion

1 CARD8 screen saver opcode
1 0 minor opcode
2 2 request length
1 CARD8 client major version
1 CARD8 client minor version
2 unused

->
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
1 CARD8 server major version
1 CARD8 server minor version
22 unused

ScreenSaverQueryInfo
1 CARD8 screen saver opcode
1 1 minor opcode
2 2 request length
4 DRAWABLE drawable associated with screen

42 AIXwindows Programming Guide



->
1 1 Reply
1 CARD8 state

0 Off
1 On
3 Disabled

2 CARD16 sequence number
4 0 reply length
4 WINDOW saver window
4 CARD32 milliseconds until saver or since saver
4 CARD32 milliseconds since last user device input
4 SETofSCREENSAVEREVENTevent mask
1 CARD8 kind

0 Blanked
1 Internal
2 External

10 unused

ScreenSaverSelectInput
1 CARD8 screen saver opcode
1 2 minor opcode
2 3 request length
4 DRAWABLE drawable associated with screen
4 SETofSCREENSAVEREVENTevent mask

ScreenSaverSetAttributes
1 CARD8 screen saver opcode
1 3 minor opcode
2 6+n request length
4 DRAWABLE drawable associated with screen
2 INT16 x
2 INT16 y
2 CARD16 width
2 CARD16 height
2 CARD16 border-width
1 class

0 CopyFromParent
1 InputOutput
2 InputOnly

1 CARD8 depth
4 VISUALID visual

0 CopyFromParent
4 BITMASK value-mask (has n bits set to 1)

encodings are the same as for core CreateWindow
4n LISTofVALUE value-list

encodings are the same as for core CreateWindow

ScreenSaverUnsetAttributes
1 CARD8 screen saver opcode
1 4 minor opcode
2 3 request length
4 DRAWABLE drawable associated with screen

Events
ScreenSaverNotify

1 CARD8 code assigned by core
1 CARD8 state

0 Off
1 On
2 Cycle

2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW screen saver window
1 CARD8 kind

0 Blanked

Chapter 5. Using Extensions in AIXwindows 43



1 Internal
2 External

1 BOOL forced
14 unused

Inter-Client Communications Conventions
Screen saver clients should create at least one resource value whose identifier can be stored in a property
named _SCREEN_SAVER_ID on the root of each screen it is managing. This property should have one
32-bit value corresponding to the resource identifier; the type of the property should indicate the type of
the resource and should be one of the following: WINDOW, PIXMAP, CURSOR, FONT, COLORMAP.

C Language Binding
The C binding for this extension simply provide access to the protocol; they add no semantics beyond
what is described above.

The include file for this extension is X11/extensions/scrnsaver.h.
Bool
XScreenSaverQueryExtension (Display,EventBase,ErrorBase)

Display *display;
int *event_base; /* RETURN */
int *error_base; /* RETURN */

This routine returns a value of True if the specified display supports the SCREEN-SAVER extension;
otherwise it returns False value. If the extension is supported, the event number for ScreenSaverNotify
event functions is returned in the value pointed to by the EventBase parameter. Since no additional errors
are defined by this extension, the results of the ErrorBase parameter are not defined.
Status
XScreenSaverQueryVersion (Display, Major, Minor)

Display *display;
int *major; /* RETURN */
int *minor; /* RETURN */

If the specified display supports the extension, the version numbers of the protocol expected by the server
are returned in Major and Minor parameters and a nonzero value is returned. Otherwise, the arguments
are not set and 0 (zero) is returned.
XScreenSaverInfo *
XScreenSaverAllocInfo ()

This routine allocates and returns an XScreenSaverInfo structure for use in calls to the
XScreenSaverQueryInfo Function. All fields in the structure are initialized to zero. If insufficient memory is
available, a Null value is returned. The results of this routine can be released using the XFree function.
Status
XScreenSaverQueryInfo (display, drawable, saver_info)

Display *display;
Drawable drawable;
XScreenSaverInfo *saver_info; /* RETURN */

If the specified display supports the extension, information about the current state of the screen server is
returned in saver_info and a non-zero value is returned. The XScreenSaverInfo structure is defined as
follows:
typedef struct {

Window window; /* screen saver window */
int state; /*

ScreenSaver{Off,On,Disabled} */
int /* ScreenSaver{Blanked,Internal,External} */

44 AIXwindows Programming Guide



unsigned long til_or_since; /* milliseconds */
unsigned long idle; /* milliseconds */
unsigned long event_mask; /* events */

} XScreenSaverInfo;

See the ScreenSaverQueryInfo protocol request for a description of the fields. If the extension is not
supported, the saver_info structure variable is not changed and 0 is returned.
void
XScreenSaverSelectInput (display, drawable, event_mask)

Display *display;
Drawable drawable;
unsigned long event_mask;

If the specified display supports the extension, this routine asks that events related to the screen saver be
generated for this client. The format of the events generated is:
typedef struct {

int type; /* of event */
unsigned long serial; /* # of last request */

/* processed by server */
Bool send_event; /* true if this came from a */

/* SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* screen saver window */
Window root; /* root window of event screen */
int state; /* ScreenSaver{Off,On,Cycle} */
int kind; /*

ScreenSaver{Blanked,Internal,External} */
Bool forced; /* extents of new region */
Time time; /* event timestamp */

} XScreenSaverNotifyEvent;

See the definition of the ScreenSaverSelectInput protocol request for descriptions of the allowed event
masks.
void
XScreenSaverSetAttributes (display, drawable, x, y, width, height, border_width,
depth, class, visual,

valuemask, attributes)
Display *dpy;
Drawable drawable;
int x;
int y;
unsigned int width;
unsigned int height;
unsigned int border_width;
int depth;
unsigned int class;
Visual *visual;
unsigned long valuemask;
XSetWindowAttributes *attributes;

If the specified display supports the extension, this routine sets the attributes to be used the next time the
external screen saver is activated. See the definition of the ScreenSaverSetAttributes protocol request
for a description of each of the arguments.
void
XScreenSaverUnsetAttributes (display, drawable)

Display *display;
Drawable drawable;

If the specified display supports the extension, this routine instructs the server to discard any previous
screen saver window attributes set by this client.

Chapter 5. Using Extensions in AIXwindows 45



Status
XScreenSaverRegister (display, screen, xid, type)

Display *display;
int screen;
XID xid;
Atom type;

This routine stores the given XID in the _SCREEN_SAVER_ID property (of the given type) on the root
window of the specified screen. It returns 0 (zero) if an error is encountered and the property is not
changed, otherwise it returns nonzero.
Status
XScreenSaverUnregister (display, screen)

Display *display;
int screen;

This routine removes any _SCREEN_SAVER_ID property from the root window of the specified screen. It
returns 0 (zero) if an error is encountered and the property is changed, otherwise it returns nonzero.
Status
XScreenSaverGetRegistered (display, screen, xid, type)

Display *display;
int screen;
XID *xid; /* RETURN */
Atom *type; /* RETURN */

This routine returns the XID and type stored in the _SCREEN_SAVER_ID property on the root window of
the specified screen. It returns 0 (zero) if an error is encountered or if the property does not exist or is not
of the correct format; otherwise it returns nonzero value.

Using AIXwindows Input Device Functions

You can use the Xlib input device functions to accomplish the following:

v Grab the pointer and individual buttons on the pointer.

v Grab the keyboard and individual keys on the keyboard.

v Move the pointer.

v Set the input focus.

v Manipulate the keyboard and pointer settings.

v Manipulate the keyboard encoding.

Pointer Grabbing
Xlib provides functions that you can use to control input from the pointer, which usually is a mouse.
Usually, as soon as keyboard and mouse events occur, the X server delivers them to the appropriate
client, which is determined by the window and input focus. The X server provides sufficient control over
event delivery to allow window managers to support mouse ahead and various other styles of user
interface. Many of these user interfaces depend upon synchronous delivery of events. The delivery of
pointer and keyboard events can be controlled independently.

When mouse buttons or keyboard keys are grabbed, events will be sent to the grabbing client rather than
the normal client who would have received the event. If the keyboard or pointer is in asynchronous mode,
further mouse and keyboard events will continue to be processed. If the keyboard or pointer is in
synchronous mode, no further events are processed until the grabbing client allows them (see
XAllowEvents). The keyboard or pointer is considered frozen during this interval. The event that triggered
the grab can also be replayed.

Note: The logical state of a device (as seen by client applications) may lag the physical state if device
event processing is frozen.

46 AIXwindows Programming Guide



There are two kinds of grabs: active and passive. An active grab occurs when a single client grabs the
keyboard and/or pointer explicitly (see the XGrabPointer and XGrabKeyboard functions.) A passive grab
occurs when clients grab a particular keyboard key or pointer button in a window, and the grab will activate
when the key or button is actually pressed. Passive grabs are convenient for implementing reliable pop-up
menus. For example, you can guarantee that the pop-up is mapped before the up pointer button event
occurs by grabbing a button requesting synchronous behavior. The down event will trigger the grab and
freeze further processing of pointer events until you have the chance to map the pop-up window. You can
then allow further event processing. The up event will then be correctly processed relative to the pop-up
window.

For many operations, there are functions that take a time argument. The X server includes a time stamp in
various events. One special time, called CurrentTime, represents the current server time. The X server
maintains the time when the input focus was last changed, when the keyboard was last grabbed, when the
pointer was last grabbed, or when a selection was last changed. Your application may be slow reacting to
an event. You often need some way to specify that your request should not occur if another application
has in the meanwhile taken control of the keyboard, pointer, or selection. By providing the time stamp from
the event in the request, you can arrange that the operation not take effect if someone else has performed
an operation in the meanwhile.

A time stamp is a time value, expressed in milliseconds. It typically is the time since the last server reset.
Time stamp values wrap around (after about 49.7 days). The server, given its current time is represented
by time stamp T, always interprets time stamps from clients by treating half of the time stamp space as
being later in time than T. One time stamp value, named CurrentTime, is never generated by the server.
This value is reserved for use in requests to represent the current server time.

The following functions are used for pointer grabbing:

Function Description
XGrabPointer Grabs control of the pointer.
XUngrabPointer Releases the pointer.
XChangeActivePointer Grab Changes the specified dynamic parameters.
XGrabButton Grabs a pointer button.
XUngrabButton Releases a pointer button.

For many of the functions used for pointer grabbing, you pass pointer event mask bits. The following are
valid pointer event mask bits:

ButtonPressMask

ButtonReleaseMask

EnterWindowMask

LeaveWindowMask

PointerMotionMask

PointerMotionHintMask

Button1MotionMask

Button2MotionMask

Button3MotionMask

Button4MotionMask

Button5MotionMask

ButtonMotionMask

KeyMapStateMask

Chapter 5. Using Extensions in AIXwindows 47



For other functions used for pointer grabbing, you pass keymask bits. The following are valid keymask
bits:

LockMask

ControlMask

Mod1Mask

Mod2Mask

Mod4Mask

Mod5Mask

Keyboard Grabbing
Xlib provides the following functions that you can use to grab or ungrab the keyboard and to allow events:

Function Description
XGrabKeyboard Grabs the keyboard.
XUngrabKeyboard Releases the keyboard.
XGrabKey Passively grabs a single key of the keyboard.
XUngrabKey Releases the key combination of the specified window.

For many functions used in keyboard grabbing, you pass keymask bits. The following are valid keymask
bits:

ShiftMask

LockMask

ControlMask

Mod1Mask

Mod2Mask

Mod3Mask

Mod4Mask

Mod5Mask

Resuming Event Processing
Use the XAllowEvents function to resume event processing. This function allows the processing of further
events when the device has been frozen.

Moving the Pointer
Although movement of the pointer normally should be left to the control of the end user, sometimes it is
necessary to move the pointer to a new position under program control. Use the XWarpPointer function to
move the pointer to an arbitrary point in a window.

Controlling Input Focus
Xlib provides functions that you can use to set and get the input focus. The input focus is a shared
resource, and cooperation among clients is required for correct interaction. See the Inter-Client
Communication Conventions Manual (ICCCM) for input focus policy. Use the following functions to control
input focus:

Function Description
XSetInputFocus Changes the input focus and the last-focus-change time.

48 AIXwindows Programming Guide



Function Description
XGetInputFocus Obtains the current input focus.

Keyboard and Pointer Settings
Xlib provides functions that you can use to change the keyboard control, obtain a list of the auto-repeat
keys, turn keyboard auto-repeat on or off, ring the bell, set or obtain the pointer button or keyboard
mapping, and obtain a bit vector for the keyboard.

This section discusses the user-preference options of bell, key click, pointer behavior, and so on. The
default values for many of these functions are determined by command line arguments to the X server
and, on POSIX-conformant systems, are typically set in the /etc/ttys file. Not all implementations will
actually be able to control all of these parameters.

Use the following functions to control keyboard and pointer settings:

Function Description
XChangeKeyboardControl Changes control of a keyboard.
XGetKeyboardControl Obtains the current control values for the keyboard.
XAutoRepeatOn Turns on keyboard auto-repeat.
XAutoRepeatOff Turns off auto-repeat.
XBell Rings a bell.
XQueryKeymap Obtains a bit vector that describes the state of the keyboard.
XSetPointerMapping Sets the mapping of the pointer buttons.
XGetPointerMapping Gets the pointer mapping.
XChangePointerControl Controls the interactive feel of the pointer.
XGetPointerControl Gets the current pointer parameters.

The XChangeKeyboardControl function operates on a XKeyboardControl structure:
/* Mask bits for ChangeKeyboardControl */
#define KBKeyClickPercent (1L<<0)
#define KBBellPercent (1L<<1)
#define KBBellPitch (1L<<2)
#define KBBellDuration (1L<<3)
#define KBLed (1L<<4)
#define KBLedMode (1L<<5)
#define KBKey (1L<<6)
#define KBAutoRepeatMode (1L<<7)
/* Values */

typedef struct {
int key_click_percent;
int bell_percent;
int bell_pitch;
int bell_duration;
int led;
int led_mode; /* LedModeOn, LedModeOff */
int key;
int auto_repeat_mode; /* AutoRepeatModeOff,

AutoRepeatModeOn,
AutoRepeatModeDefault */

} XKeyboardControl;

The key_click_percent member sets the volume for key clicks between 0 (off) and 100 (loud) inclusive, if
possible. A setting of \-1 restores the default. Other negative values generate a BadValue error.

The bell_percent sets the base volume for the bell between 0 (off) and 100 (loud) inclusive, if possible. A
setting of \-1 restores the default. Other negative values generate a BadValue error. The bell_pitch
member sets the pitch (specified in Hz) of the bell, if possible. A setting of \-1 restores the default. Other

Chapter 5. Using Extensions in AIXwindows 49



negative values generate a BadValue error. The bell_duration member sets the duration of the bell
specified in milliseconds, if possible. A setting of \-1 restores the default. Other negative values generate a
BadValue error.

If both the led_mode and led members are specified, the state of that LED is changed, if possible. The
led_mode member can be set to LedModeOn or LedModeOff. If only led_mode is specified, the state of
all LEDs is changed, if possible. At most, 32 LEDs numbered from one are supported. No standard
interpretation of LEDs is defined. If led is specified without led_mode, a BadMatch error results.

If both the auto_repeat_mode and key members are specified, the auto_repeat_mode of that key is
changed (according to AutoRepeatModeOn, AutoRepeatModeOff, or AutoRepeatModeDefault ), if
possible. If only auto_repeat_mode is specified, the global auto_repeat_mode for the entire keyboard is
changed, if possible, and does not affect the per key settings. If a key is specified without an
auto_repeat_mode, a BadMatch error results. Each key has an individual mode of whether or not it should
auto-repeat and a default setting for the mode. In addition, there is a global mode of whether auto-repeat
should be enabled or not and a default setting for that mode. When global mode is AutoRepeatModeOn,
keys should obey their individual auto-repeat modes. When global mode is AutoRepeatModeOff, no keys
should auto-repeat. An auto-repeating key generates alternating KeyPress and KeyRelease events. When
a key is used as a modifier, it is desirable for the key not to auto-repeat, regardless of its auto-repeat
setting.

A bell generator connected with the console but not directly on a keyboard is treated as if it were part of
the keyboard. The order in which controls are verified and altered is server-dependent. If an error is
generated, a subset of the controls may have been altered.

Keyboard Encoding
A KeyCode represents a physical (or logical) key. KeyCodes lie in the inclusive range [8,255]. A KeyCode
value carries no intrinsic information, although server implementors may attempt to encode geometry (for
example, matrix) information in some fashion so that it can be interpreted in a server-dependent fashion.
The mapping between keys and KeyCodes cannot be changed.

A KeySym is an encoding of a symbol on the cap of a key. The set of defined KeySyms includes the ISO
Latin character sets (1\-4), Katakana, Arabic, Cyrillic, Greek, Technical, Special, Publishing, APL, Hebrew,
and a special miscellany of keys found on keyboards (Return, Help, Tab, and so on). To the extent
possible, these sets are derived from international standards. In areas where no standards exist, some of
these sets are derived from Digital Equipment Corporation standards. The list of defined symbols can be
found in<X11/keysymdef.h>. Unfortunately, some C preprocessors have limits on the number of defined
symbols. If you must use KeySyms not in the Latin 1\-4, Greek, and miscellaneous classes, you may have
to define a symbol for those sets. Most applications usually only include <X11/keysym.h>, which defines
symbols for ISO Latin 1\-4, Greek, and miscellaneous.

A list of KeySyms is associated with each KeyCode. The list is intended to convey the set of symbols on
the corresponding key. If the list (ignoring trailing NoSymbol entries) is a single KeySym K, then the list is
treated as if it were the list K NoSymbol K NoSymbol. If the list (ignoring trailing NoSymbol entries) is a pair
of KeySyms K1 K2, then the list is treated as if it were the list K1 K2 K1 K2. If the list (ignoring trailing
NoSymbol entries) is a triple of KeySyms K1 K2 K3, then the list is treated as if it were the list K1 K2 K3
NoSymbol. When an explicit void element is desired in the list, the value VoidSymbol can be used.

The first four elements of the list are split into two groups of KeySyms. Group 1 contains the first and
second KeySyms; Group 2 contains the third and fourth KeySyms. Within each group, if the second
element of the group is NoSymbol, then the group should be treated as if the second element were the
same as the first element, except when the first element is an alphabetic KeySym ″K″ for which both
lowercase and uppercase forms are defined. In that case, the group should be treated as if the first
element were the lowercase form of K and the second element were the uppercase form of K.

50 AIXwindows Programming Guide



The standard rules for obtaining a KeySym from a KeyPress event make use of only the Group 1 and
Group 2 KeySyms; no interpretation of other KeySyms in the list is given. Which group to use is
determined by the modifier state. Switching between groups is controlled by the KeySym named MODE
SWITCH, by attaching that KeySym to some KeyCode and attaching that KeyCode to any one of the
modifiers Mod1 through Mod5. This modifier is called the group modifier. For any KeyCode, Group 1 is
used when the group modifier is off, and Group 2 is used when the group modifier is on.

Within a group, the modifier state also determines which KeySym to use. The first KeySym is used when
the Shift and Lock modifiers are off. The second KeySym is used when the Shift modifier is on, when the
Lock modifier is on and the second KeySym is uppercase alphabetic, or when the Lock modifier is on and
is interpreted as ShiftLock. Otherwise, when the Lock modifier is on and is interpreted as CapsLock, the
state of the Shift modifier is applied first to select a KeySym; but if that KeySym is lowercase alphabetic,
then the corresponding uppercase KeySym is used instead.

No spatial geometry of the symbols on the key is defined by their order in the KeySym list, although a
geometry might be defined on a vendor-specific basis. The X server does not use the mapping between
KeyCodes and KeySyms. Rather, it stores it merely for reading and writing by clients.

The KeyMask modifier named Lock is intended to be mapped to either a CapsLock or a ShiftLock key, but
which one is left as application-specific and/or user-specific. However, it is suggested that the
determination be made according to the associated KeySym(s) of the corresponding KeyCode.

The following functions are used for keyboard encoding:

Function Description
XChangeKeyboardMapping Defines the symbols for the keyboard mapping.
XDeleteModifiermapEntry Deletes an entry from an XModifierKeymap structure.
XDisplayKeycodes Returns the legal KeyCodes for a display.
XFreeModifiermap Destroys an XModifierKeymap structure.
XGetKeyboardMapping Returns the symbols for the specified KeyCodes.
XGetModifierMapping Returns the KeyCodes used as modifiers.
XInsertModifiermapEntry Adds a new entry to an XModifierKeymap structure.
XNewModifiermap Creates an XModifierKeymap structure.
XSetModifierMapping Sets the KeyCodes to be used as modifiers.

AIXwindows Input Extension Library

Purpose of the Extension
This document describes an extension to the X11 server. The purpose of this extension is to support the
use of additional input devices beyond the pointer and keyboard devices defined by the core X protocol.
This first section gives an overview of the input extension. The following sections correspond to Chapters
7 and 8, ″Window Manager Functions″ and ″Events and Event-Handling Functions″ of the Xlib - C
Language Interface manual and describe how to use the input extension.

Design Approach
The design approach of the extension is to define functions and events analogous to the core functions
and events. This allows extension input devices and events to be individually distinguishable from each
other and from the core input devices and events. These functions and events make use of a device
identifier and support the reporting of n-dimensional motion data as well as other data that is not currently
reportable via the core input events.

Chapter 5. Using Extensions in AIXwindows 51



Core Input Devices
The X server core protocol supports two input devices: a pointer and a keyboard. The pointer device has
two major functions. First, it may be used to generate motion information that client programs can detect.
Second, it may also be used to indicate the current location and focus of the X keyboard. To accomplish
this, the server echoes a cursor at the current position of the X pointer. Unless the X keyboard has been
explicitly focused, this cursor also shows the current location and focus of the X keyboard.

The X keyboard is used to generate input that client programs can detect.

The X keyboard and X pointer are referred to in this document as the core devices, and the input events
they generate (KeyPress, KeyRelease, ButtonPress, ButtonRelease, and MotionNotify) are known as
the core input events. All other input devices are referred to as extension input devices and the input
events they generate are referred to as extension input events.

Note: This input extension does not change the behavior or functionality of the core input devices, core
events, or core protocol requests, with the exception of the core grab requests. These requests
may affect the synchronization of events from extension devices. See the explanation in the section
titled Event Synchronization and Core Grabs .

Selection of the physical devices to be initially used by the server as the core devices is left
implementation dependent. Functions are defined that allow client programs to change which physical
devices are used as the core devices.

Extension Input Devices
The input extension controls access to input devices other than the X keyboard and X pointer. It allows
client programs to select input from these devices independently from each other and independently from
the core devices. Input events from these devices are of extension types (DeviceKeyPress,
DeviceKeyRelease, DeviceButtonPress, DeviceButtonRelease, DeviceMotionNotify, and so on) and
contain a device identifier so that events of the same type coming from different input devices can be
distinguished.

Extension input events are not limited in size by the size of the server 32-byte wire events. Extension input
events may be constructed by the server sending as many wire sized events as necessary to return the
information required for that event. The library event reformatting routines are responsible for combining
these into one or more client XEvents.

Any input device that generates key, button or motion data may be used as an extension input device.
Extension input devices may have zero or more keys, zero or more buttons, and may report zero or more
axes of motion. Motion may be reported as relative movements from a previous position or as an absolute
position. All valuators reporting motion information for a given extension input device must report the same
kind of motion information (absolute or relative).

This extension is designed to accommodate new types of input devices that may be added in the future.
The protocol requests that refer to specific characteristics of input devices organize that information by
input device classes. Server implementors may add new classes of input devices without changing the
protocol requests.

All extension input devices are treated like the core X keyboard in determining their location and focus.
The server does not track the location of these devices on an individual basis, and therefore does not
echo a cursor to indicate their current location. Instead, their location is determined by the location of the
core X pointer. Like the core X keyboard, some may be explicitly focused. If they are not explicitly focused,
their focus is determined by the location of the core X pointer.

52 AIXwindows Programming Guide



Input Device Classes
Some of the input extension requests divide input devices into classes based on their functionality. This is
intended to allow new classes of input devices to be defined at a later time without changing the
semantics of these functions. The following input device classes are currently defined:

Class Description

KEY The device reports key events.

BUTTON The device reports button events.

VALUATOR The device reports valuator data in motion events.

PROXIMITY The device reports proximity events.

FOCUS The device can be focused.

FEEDBACK The device supports feedbacks.

Additional classes may be added in the future. Functions that support multiple input classes, such as the
XListInputDevices function that lists all available input devices, organize the data they return by input
class. Client programs that use these functions should not access data unless it matches a class defined
at the time those clients were compiled. In this way, new classes can be added without forcing existing
clients that use these functions to be recompiled.

Using Extension Input Devices
A client that wishes to access an input device does so through the library functions defined in the following
sections. A typical sequence of requests that a client would make is as follows:

v XListInputDevices - List all of the available input devices. From the information returned by this
request, determine whether the desired input device is attached to the server. For a description of the
XListInputDevices request, see the section entitled Listing Available Devices .

v XOpenDevice - Request that the server open the device for access by this client. This request returns
an XDevice structure that is used by most other input extension requests to identify the specified
device. For a description of the XOpenDevice request, see the section entitled Enabling and Disabling
Extension Devices.

v Determine the event types and event classes needed to select the desired input extension events, and
identify them when they are received. This is done via macros whose name corresponds to the desired
event, that is, DeviceKeyPress. For a description of these macros, see the section entitled Selecting
Extension Device Events.

v XSelectExtensionEvent - Select the desired events from the server. For a description of the
XSelextExtensionEvent request, see the section entitled Selecting Extension Device Events .

v XNextEvent - Receive the next available event. This is the core XNextEvent function provided by the
standard X library.

Other requests are defined to grab and focus extension devices, to change their key, button, or modifier
mappings, to control the propagation of input extension events, to get motion history from an extension
device, and to send input extension events to another client. These functions are described in the following
sections.

Library Extension Requests
Extension input devices are accessed by client programs through the use of new protocol requests. The
following requests are provided as extensions to Xlib. Constants and structures referenced by these
functions may be found in the files XI.h and XInput.h, which are attached to this document as appendix A.

Chapter 5. Using Extensions in AIXwindows 53



The library returns NoSuchExtension if an extension request is made to a server that does not support
the input extension. Input extension requests cannot be used to access the X keyboard and X pointer
devices.

Window Manager Functions

Changing the Core Devices
These functions are provided to change which physical device is used as the X pointer or X keyboard.

Note: Using these functions may change the characteristics of the core devices. The new pointer device
may have a different number of buttons than the old one did, or the new keyboard device may have
a different number of keys or report a different range of keycodes. Client programs may be running
that depend on those characteristics. For example, a client program could allocate an array based
on the number of buttons on the pointer device, and then use the button numbers received in
button events as indices into that array. Changing the core devices could cause such client
programs to behave improperly or abnormally terminate, if they ignore the ChangeDeviceNotify
event generated by these requests.

These functions change the X keyboard or X pointer device and generate an XChangeDeviceNotify event
and a MappingNotify event. The specified device becomes the new X keyboard or X pointer device. The
location of the core device does not change as a result of this request.

These requests fail and return AlreadyGrabbed if either the specified device or the core device it would
replace are grabbed by some other client. They fail and return GrabFrozen if either device is frozen by the
active grab of another client.

These requests fail with a BadDevice error if the specified device is invalid, has not previously been
opened via an XOpenDevice request, or is not supported as a core device by the server implementation.

Once the device has successfully replaced one of the core devices, it is treated as a core device until it is
in turn replaced by another ChangeDevice request, or until the server terminates. The termination of the
client that changed the device does not cause it to change back. Attempts to use the XCloseDevice
request to close the new core device fails with a BadDevice error.

The XChangeKeyboardDevice function is used to change which physical device is used as the X
keyboard.

The XChangePointerDevice function is used to change which physical device is used as the X pointer.

Event Synchronization and Core Grabs
Implementation of the input extension requires an extension of the meaning of event synchronization for
the core grab requests. This is necessary in order to allow window managers to freeze all input devices
with a single request.

The core grab requests require a PointerMode and KeyboardMode argument. The meaning of these
modes is changed by the input extension. For the XGrabPointer and XGrabButton requests,
PointerMode controls synchronization of the pointer device, and KeyboardMode controls the
synchronization of all other input devices. For the XGrabKeyboard and XGrabKey requests, PointerMode
controls the synchronization of all input devices except the X keyboard, while KeyboardMode controls the
synchronization of the keyboard. When using one of the core grab requests, the synchronization of
extension devices is controlled by the mode specified for the device not being grabbed.

54 AIXwindows Programming Guide



Extension Active Grabs
Active grabs of extension devices are supported through the XGrabDevice function in the same way that
core devices are grabbed using the core XGrabKeyboard function, except that a device is passed as a
function parameter. The XUngrabDevice function allows a previous active grab for an extension device to
be released.

Passive Grabs of Buttons and Keys
Passive grabs of buttons and keys on extension devices are supported through the XGrabDeviceButton
and XGrabDeviceKey functions. These passive grabs are released through the XUngrabDeviceKey and
XUngrabDeviceButton functions.

Thawing a Device
The XAllowDeviceEvents function allows further events to be processed when a device has been frozen.

Controlling Device Focus
The current focus window for an extension input device can be determined using the XGetDeviceFocus
function. Extension devices are focused using the XSetDeviceFocus function in the same way that the
keyboard is focused using the core XSetInputFocus function, except that a device ID is passed as a
function parameter. One additional focus state, FollowKeyboard, is provided for extension devices.

Controlling Device Feedback
The current feedback settings of an extension input device are determined using the
XGetFeedbackControl function. The XFreeFeedbackList function frees the list of feedback control
information returned by the XGetFeedbackControl function.

The settings of a feedback on an extension device can be changed using the XChangeFeedbackControl
function. This function modifies the current control values of the specified feedback using information
passed in the appropriate XFeedbackControl structure for the feedback. Which values are modified
depends on the valuemask passed.

Ringing a Bell on an Input Device
A bell on a specified extension input device can be set to ring using the XDeviceBell function.

Controlling Device Encoding
The keyboard mapping of an extension device that supports input class Keys can be obtained by using
the XGetDeviceKeyMapping function. The XFree function frees the data returned by the
XGetDeviceKeyMapping function.The keyboard mapping of an extension device that supports input class
Keys can be changed using the XChangeDeviceKeyMapping function.

The keycodes that are used as modifiers on an extension device that supports input class Keys are
obtained by using the XGetDeviceModifierMapping function. The keycodes that are to be used as
modifiers for an extension device are set using the XSetDeviceModifierMapping function.

Controlling Button Mapping
The mapping of the buttons on an extension device is set using the XSetDeviceButtonMapping function.
The button mapping on an extension device is obtained using the XGetDeviceButtonMapping function.

Obtaining the State of a Device
To obtain information that describes the state of the keys, buttons and valuators of an extension device,
use the XQueryDeviceState function. The XFreeDeviceState function frees the device state data.

Events and Event-Handling Functions
The input extension creates input events analogous to the core input events. These extension input events
are generated by manipulating one of the extension input devices. The following sections describe these
events and explain how a client program can receive them.

Chapter 5. Using Extensions in AIXwindows 55



Event Types
Event types are integer numbers that a client can use to determine what kind of event it has received. The
client compares the type field of the event structure with known event types to make this determination.
The core input event types are constants and are defined in the header file <X11/X.h>. Extension event
types are not constants. Instead, they are dynamically allocated by the extension’s request to the X server
when the extension is initialized. Because of this, extension event types must be obtained by the client
from the server. The client program determines the event type for an extension event by using the
information returned by the XOpenDevice request. This type can then be used for comparison with the
type field of events received by the client. Extension events propagate up the window hierarchy in the
same manner as core events. If a window is not interested in an extension event, it usually propagates to
the closest ancestor that is interested, unless the dont_propagate list prohibits it. Grabs of extension
devices may alter the set of windows that receive a particular extension event. The following lists the event
category and its associated event type or types.

Event Category Event Type

Device key events DeviceKeyPress, DeviceKeyRelease

Device motion events DeviceButtonPress, DeviceButtonRelease, DeviceMotionNotify

Device input focus events DeviceFocusIn, DeviceFocusOut

Device state notification events DeviceStateNotify

Device proximity events ProximityIn, ProximityOut

Device mapping events DeviceMappingNotify

Device change events ChangeDeviceNotify

Event Classes
Event classes are integer numbers that are used in the same way as the core event masks. They are
used by a client program to indicate to the server which events that client program wishes to receive.

The core input event masks are constants and are defined in the header file <X11/X.h>. Extension event
classes are not constants. Instead, they are dynamically allocated by the extension’s request to the X
server when the extension is initialized. Because of this, extension event classes must be obtained by the
client from the server.

The event class for an extension event and device is obtained from information returned by the
XOpenDevice function. This class can then be used in an XSelectExtensionEvent request to ask that
events of that type from that device be sent to the client program.

For DeviceButtonPress events, the client may specify whether or not an implicit passive grab should be
done when the button is pressed. If the client wants to guarantee that it receives a DeviceButtonRelease
event for each DeviceButtonPress event it receives, it should specify the DeviceButtonPressGrab class
in addition to the DeviceButtonPress class. This restricts the client in that only one client at a time may
request DeviceButtonPress events from the same device and window if any client specifies this class.

If any client has specified the DeviceButtonPressGrab class, any requests by any other client that specify
the same device and window and specify either DeviceButtonPress or DeviceButtonPressGrab causes
an Access error to be generated.

If only the DeviceButtonPress class is specified, no implicit passive grab is done when a button is
pressed on the device. Multiple clients may use this class to specify the same device and window
combination.

56 AIXwindows Programming Guide



The client may also select DeviceMotion events only when a button is down. It does this by specifying the
event classes DeviceButton1Motion through DeviceButton5Motion. An input device only supports as
many button motion classes as it has buttons.

Event Structures
Each extension event type has a corresponding structure declared in <X11/XInput.h>. All event structures
have the following members:

Member Description

type Set to the event type number that uniquely identifies it. For example, when the X server reports
a DeviceKeyPress event to a client application, it sends an XDeviceKeyPressEvent structure.

display Set to a pointer to a structure that defines the display the event was read on.

send_event Set to True if the event came from an XSendEvent request.

serial Set from the serial number reported in the protocol but expanded from the 16-bit least-significant
bits to a full 32-bit value.

Extension event structures report the current position of the X pointer. In addition, if the device reports
motion data and is reporting absolute data, the current value of any valuators the device contains is also
reported.

Device Key Events
Key events from extension devices contain all the information that is contained in a key event from the X
keyboard. In addition, they contain a device ID and report the current value of any valuators on the device,
if that device is reporting absolute data. If data for more than six valuators is being reported, more than
one key event is sent. The axes_count field contains the number of axes that are being reported. The
server sends as many of these events as are needed to report the device data. Each event contains the
total number of axes reported in the axes_count field, and the first axis reported in the current event in the
first_axis field. If the device supports input class Valuators, but is not reporting absolute mode data, the
axes_count field contains 0 (zero). The location reported in the x, y and x_root, y_root fields is the
location of the core X pointer. The XDeviceKeyEvent structure is defined as follows:
typedef struct
{
int type; /* of event */
unsigned long serial; /* # of last request processed*/
Bool send_event; /* true if from SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* "event" window reported relative to */
XID deviceid;
Window root; /* root window event occurred on*/
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* x, y coordinates in eventwindow */
int x_root; /* coordinates relative to root */
int y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask */
unsigned int keycode; /* detail */
Bool same_screen; /* same screen flag */
unsigned char axes_count;
unsigned char first_axis;
unsigned int device_state; /* device key or button mask */
int axis_data[6];
} XDeviceKeyEvent;
typedef XDeviceKeyEvent XDeviceKeyPressedEvent;
typedef XDeviceKeyEvent XDeviceKeyReleasedEvent;

Chapter 5. Using Extensions in AIXwindows 57



Device Button Events
Button events from extension devices contain all the information that is contained in a button event from
the X pointer. In addition, they contain a device ID and report the current value of any valuators on the
device, if that device is reporting absolute data. If data for more than six valuators is being reported, more
than one button event may be sent. The axes_count field contains the number of axes that are being
reported. The server sends as many of these events as are needed to report the device data. Each event
contains the total number of axes reported in the axes_count field, and the first axis reported in the current
event in the first_axis field. If the device supports input class Valuators, but is not reporting absolute
mode data, the axes_count field contains 0. The location reported in the x, y and x_root, y_root fields is
the location of the core X pointer.
typedef struct {
int type; /* of event */
unsigned long serial; /* # of last request processed by

server*/
Bool send_event; /* true if from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* "event" window reported relative to */
XID deviceid;
Window root; /* root window that the event occurred

on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* x, y coordinates in event window */
int x_root; /* coordinates relative to root */
int y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask */
unsigned int button; /* detail */
Bool same_screen; /* same screen flag */
unsigned char axes_count;
unsigned char first_axis;
unsigned int device_state; /* device key or button mask */
int axis_data[6];
} XDeviceButtonEvent;

typedef XDeviceButtonEvent XDeviceButtonPressedEvent;
typedef XDeviceButtonEvent XDeviceButtonReleasedEvent;

Device Motion Events
Motion events from extension devices contain all the information that is contained in a motion event from
the X pointer. In addition, they contain a device ID and report the current value of any valuators on the
device. The location reported in the x, y and x_root, y_root fields is the location of the core X pointer, and
so is 2-dimensional. Extension motion devices may report motion data for a variable number of axes. The
axes_count field contains the number of axes that are being reported. The server sends as many of these
events as are needed to report the device data. Each event contains the total number of axes reported in
the axes_count field, and the first axis reported in the current event in the first_axis field.
typedef struct {
int type; /* of event */
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if from a SendEvent request */
Display *display; /* Display the event was read from */
Window window; /* "event" window reportedrelative to */
XID deviceid;
Window root; /* root window that the eventoccurred on */
Window subwindow; /* child window */
Time time; /* milliseconds */
int x, y; /* x, y coordinates in eventwindow */
int x_root; /* coordinates relative to root */
int y_root; /* coordinates relative to root */
unsigned int state; /* key or button mask */
char is_hint; /* detail */
Bool same_screen; /* same screen flag */
unsigned int device_state; /* device key or button mask */

58 AIXwindows Programming Guide



unsigned char axes_count;
unsigned char first_axis;
int axis_data[6];
} XDeviceMotionEvent;

Device Focus Events
These events are equivalent to the core focus events. They contain the same information, with the addition
of a device ID to identify which device has had a focus change, and a time stamp. DeviceFocusIn and
DeviceFocusOut events are generated for focus changes of extension devices in the same manner as
core focus events are generated.
typedef struct
{
int type; /* of event */
unsigned long serial; /* # of last request processed by

server */
Bool send_event; /* true if this came from a SendEvent

request */
Display *display; /* Display the event was read from */
Window window; /* "event" window it is reported

relative to */
XID deviceid;
int mode; /* NotifyNormal, NotifyGrab,NotifyUngrab */
int detail; /*

* NotifyAncestor, NotifyVirtual, NotifyInferior,
* NotifyNonLinear,NotifyNonLinearVirtual, NotifyPointer,
* NotifyPointerRoot, NotifyDetailNone
*/

Time time;
} XDeviceFocusChangeEvent;
typedef XDeviceFocusChangeEvent XDeviceFocusInEvent;
typedef XDeviceFocusChangeEvent XDeviceFocusOutEvent;

Device StateNotify Event
This event is analogous to the core keymap event, but reports the current state of the device for each
input class that it supports. It is generated after every DeviceFocusIn event and EnterNotify event and is
delivered to clients who have selected XDeviceStateNotify events. If the device supports input class
Valuators, the mode field in the XValuatorStatus structure is a bitmask that reports the device mode,
proximity state and other state information. The following bits are currently defined:
0x01 Relative = 0, Absolute = 1
0x02 InProximity = 0, OutOfProximity = 1

If the device supports more valuators than can be reported in a single XEvent, multiple
XDeviceStateNotify events are generated.
typedef struct
{
unsigned char class;
unsigned char length;
} XInputClass;

typedef struct {
int type;
unsigned long serial; /* # of last request processed by

server */
Bool send_event; /* true if this came from a SendEvent

request */
Display *display; /* Display the event was read from */
Window window;
XID deviceid;
Time time;
int num_classes;
char data[64];
} XDeviceStateNotifyEvent;

Chapter 5. Using Extensions in AIXwindows 59



typedef struct {
unsigned char class;
unsigned char length;
unsigned char num_valuators;
unsigned char mode;
int valuators[6];

} XValuatorStatus;

typedef struct {
unsigned char class;
unsigned char length;
short num_keys;
char keys[32];

} XKeyStatus;

typedef struct {
unsigned char class;
unsigned char length;
short num_buttons;
char buttons[32];

} XButtonStatus;

Device Mapping Event
This event is equivalent to the core MappingNotify event. It notifies client programs when the mapping of
keys, modifiers, or buttons on an extension device has changed.
typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
XID deviceid;
Time time;
int request;
int first_keycode;
int count;

} XDeviceMappingEvent;

ChangeDeviceNotify Event
This event has no equivalent in the core protocol. It notifies client programs when one of the core devices
has been changed.
typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
XID deviceid;
Time time;
int request;
} XChangeDeviceNotifyEvent;

Proximity Events
These events have no equivalent in the core protocol. Some input devices such as graphics tablets or
touch screens may send these events to indicate that a stylus has moved into or out of contact with a
positional sensing surface. The event contains the current value of any valuators on the device, if that
device is reporting absolute data. If data for more than six valuators is being reported, more than one
proximity event may be sent. The axes_count field contains the number of axes that are being reported.
The server sends as many of these events as are needed to report the device data. Each event contains
the total number of axes reported in the axes_count field, and the first axis reported in the current event in
the first_axis field. If the device supports input class Valuators, but is not reporting absolute mode data,
the axes_count field contains 0.

60 AIXwindows Programming Guide



typedef struct
{
int type; /* ProximityIn or ProximityOut */
unsigned long serial; /* # of last request processed

by server */
Bool send_event; /* true if this came from a

SendEvent request */
Display *display; /* Display the event was read from */
Window window;
XID deviceid;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;
unsigned int state;
Bool same_screen;
unsigned char axes_count;
unsigned char first_axis;
unsigned int device_state; /* device key or button mask */
int axis_data[6];
} XProximityNotifyEvent;
typedef XProximityNotifyEvent XProximityInEvent;
typedef XProximityNotifyEvent XProximityOutEvent;

Determining the Extension Version
The XExtensionVersion function allows a client to determine if a server supports the desired version of
the input extension. The XExtensionVersion structure returns information about the version of the
extension supported by the server.

Listing Available Devices
A client program that wishes to access a specific device must first determine whether that device is
connected to the X server. This is done through the XListInputDevices function, which returns a list of all
devices that can be opened by the X server. The client program can use one of the names defined in the
XI.h header file in an XInternAtom request, to determine the device type of the desired device. This type
can then be compared with the device types returned by the XListInputDevices request. The
XFreeDeviceList function frees the list of input device information.

Enabling and Disabling Extension Devices
Each client program that wishes to access an extension device must request that the server open that
device. This is done through the XOpenDevice request.

Before terminating, the client program should request that the server close the device. This is done
through the XCloseDevice request. A client may open the same extension device more than once.
Requests after the first successful one return an additional XDevice structure with the same information as
the first, but otherwise have no effect. A single XCloseDevice request terminates that client’s access to
the device. Closing a device releases any active or passive grabs the requesting client has established. If
the device is frozen only by an active grab of the requesting client, any queued events are released. If a
client program terminates without closing a device, the server automatically closes that device on behalf of
the client. This does not affect any other clients that may be accessing that device.

Changing the Mode of a Device
Some devices are capable of reporting either relative or absolute motion data. The mode of a device is
changed from relative to absolute using the XSetDeviceMode function. The valid values are Absolute or
Relative.

Chapter 5. Using Extensions in AIXwindows 61



Initializing Valuators on an Input Device
Some devices that report absolute positional data can be initialized to a starting value. Devices that are
capable of reporting relative motion or absolute positional data may require that their valuators be
initialized to a starting value after the mode of the device is changed to Absolute. The valuators on such a
device are initialized using the XSetDeviceValuators function.

Getting Input Device Controls
Some input devices support various configuration controls that can be queried or changed by clients. The
set of supported controls varies from one input device to another. Requests to manipulate these controls
fail if either the target X server or the target input device does not support the requested device control.
Each device control has a unique identifier. Information passed with each device control varies in length
and is mapped by data structures unique to that device control. Device controls are queried using the
XGetDeviceControl function.

Changing Input Device Controls
Some input devices support various configuration controls that can be changed by clients using the
XChangeDeviceControl function. Typically, this would be done to initialize the device to a known state or
configuration. The set of supported controls vary from one input device to another. Requests to manipulate
these controls fail if either the target X server or the target input device does not support the requested
device control. Setting the device control also fails if the target input device is grabbed by another client, or
is open by another client and has been set to a conflicting state.

Selecting Extension Device Events
Device input events are selected using the XSelectExtensionEvent function. The parameters passed are
a pointer to a list of classes that define the desired event types and devices, a count of the number of
elements in the list, and the ID of the window from which events are desired.

Determining Selected Device Events
The extension events that are currently selected from a given window can be determined using the
XGetSelectedExtensionEvents function.

Controlling Event Propagation
Extension events propagate up the window hierarchy in the same manner as core events. If a window is
not interested in an extension event, it usually propagates to the closest ancestor that is interested, unless
the dont_propagate list prohibits it. Grabs of extension devices may alter the set of windows that receive a
particular extension event. Client programs can control event propagation through the use of the
XChangeDeviceDontPropagateList and XGetDeviceDontPropagateList functions.

The XChangeDeviceDontPropagateList function adds an event to or deletes an event from the
do_not_propagate list of extension events for the specified window. There is one list per window, and the
list remains for the life of the window. The list is not altered if a client that changed the list terminates. The
XGetDeviceDontPropagateList function allows a client to determine the do_not_propagate list of
extension events for the specified window. The XSendExtensionEvent function allows a client to send an
extension event to another client.

Getting Motion History
The XGetDeviceMotionEvents function returns all positions in the device’s motion history buffer that fall
between the specified start and stop times inclusive. If the start time is in the future, or is later than the
stop time, no positions are returned. The XFreeDeviceMotionEvents function frees the array of motion
information.
#endif /* _XI_H_ */

62 AIXwindows Programming Guide



AIXwindows Input Extension Protocol Specification
This document defines an extension to the AIXwindows protocol to support input devices other than the
core X keyboard and pointer. An accompanying document defines a corresponding extension to Xlib
(similar extensions for languages other than C are anticipated). This first section gives an overview of the
input extension. The next section defines the new protocol requests defined by the extension. This
document concludes with a description of the new input events generated by the additional input devices.

Design Approach
The design approach of the extension is to define requests and events analogous to the core requests and
events. This allows extension input devices to be individually distinguished from each other and from the
core input devices. These requests and events make use of a device identifier and support the reporting of
n-dimensional motion data as well as other data that is not reportable by way of the core input events.

Core Input Devices
The X server core protocol supports two input devices: a pointer and a keyboard. The pointer device has
two major functions. First, it may be used to generate motion information that client programs can detect.
Second, it may also be used to indicate the current location and focus of the X keyboard. To accomplish
this, the server echoes a cursor at the current position of the X pointer. Unless the X keyboard has been
explicitly focused, this cursor also shows the current location and focus of the X keyboard.

The X keyboard is used to generate input that client programs can detect.

The X keyboard and X pointer are referred to in this document as the core devices, and the input events
they generate (KeyPress, KeyRelease, ButtonPress, ButtonRelease, and MotionNotify) are known as
the core input events. All other input devices are referred to as extension input devices and the input
events they generate are referred to as extension input events.

Note: This input extension does not change the behavior or functionality of the core input devices, core
events, or core protocol requests, with the exception of the core grab requests. These requests
may affect the synchronization of events from extension devices. See the explanation in the section
titled Event Synchronization and Core Grabs .

Selection of the physical devices to be initially used by the server as the core devices is left
implementation dependent. Requests are defined that allow client programs to change which physical
devices are used as the core devices.

Extension Input Devices
The input extension controls access to input devices other than the X keyboard and X pointer. It allows
client programs to select input from these devices independently from each other and independently from
the core devices.

A client that wishes to access a specific device must first determine whether that device is connected to
the X server. This is done through the ListInputDevices request, which will return a list of all devices that
can be opened by the X server. A client can then open one or more of these devices using the
OpenDevice request, specify what events they are interested in receiving, and receive and process input
events from extension devices in the same way as events from the X keyboard and X pointer. Input events
from these devices are of extension types (DeviceKeyPress, DeviceKeyRelease, DeviceButtonPress,
DeviceButtonRelease, DeviceMotionNotify, and so on) and contain a device identifier so that events of
the same type coming from different input devices can be distinguished.

Any kind of input device may be used as an extension input device. Extension input devices may have
zero or more keys, zero or more buttons, and may report zero or more axes of motion. Motion may be

Chapter 5. Using Extensions in AIXwindows 63



reported as relative movements from a previous position or as an absolute position. All valuators reporting
motion information for a given extension input device must report the same kind of motion information
(absolute or relative).

This extension is designed to accommodate new types of input devices that may be added in the future.
The protocol requests that refer to specific characteristics of input devices organize that information by
input classes. Server implementors may add new classes of input devices without changing the protocol
requests. Input classes are unique numbers registered with the X Consortium. Each extension input device
may support multiple input classes.

All extension input devices are treated like the core X keyboard in determining their location and focus.
The server does not track the location of these devices on an individual basis, and therefore does not
echo a cursor to indicate their current location. Instead, their location is determined by the location of the
core X pointer. Like the core X keyboard, some may be explicitly focused. If they are not explicitly focused,
their focus is determined by the location of the core X pointer.

Input events reported by the server to a client are of fixed size (32 bytes). In order to represent the change
in state of an input device the extension may need to generate a sequence of input events. A client side
library (such as Xlib) will typically take these raw input events and format them into a form more
convenient to the client.

Event Classes
In the core protocol a client registers interest in receiving certain input events directed to a window by
modifying that window’s event mask. Most of the bits in the event mask are already used to specify
interest in core X events. The input extension specifies a different mechanism by which a client can
express interest in events generated by this extension.

When a client opens a extension input device by way of the OpenDevice request, an XDevice structure is
returned. Macros are provided that extract 32-bit numbers called event classes from that structure, that a
client can use to register interest in extension events by way of the SelectExtensionEvent request. The
event class combines the desired event type and device ID, and may be thought of as the equivalent of
core event masks.

Input Classes
Some of the input extension requests divide input devices into classes based on their functionality. This is
intended to allow new classes of input devices to be defined at a later time without changing the
semantics of these requests. The following input device classes are currently defined:

KEY Reports key events.
BUTTON Reports button events.
VALUATOR Reports valuator data in motion events.
PROXIMITY Reports proximity events.
FOCUS Can be focused and reports focus events.
FEEDBACK Supports feedbacks.
OTHER The ChangeDeviceNotify, DeviceMappingNotify, and DeviceStateNotify macros may be invoked

passing the XDevice structure returned for this device.

Each extension input device may support multiple input classes. Additional classes may be added in the
future. Requests that support multiple input classes, such as the ListInputDevices function that lists all
available input devices, organize the data they return by input class. Client programs that use these
requests should not access data unless it matches a class defined at the time those clients were compiled.
In this way, new classes can be added without forcing existing clients that use these requests to be
recompiled.

64 AIXwindows Programming Guide



Extension input devices are accessed by client programs through the use of new protocol requests. This
section summarizes the new requests defined by this extension. The syntax and type definitions used
below follow the notation used for the X11 core protocol.

Getting the Extension Version
The GetExtensionVersion request returns version information about the input extension.

Listing Available Devices
A client that wishes to access a specific device must first determine whether that device is connected to
the X server. This is done through the ListInputDevices request, which returns a list of all devices that
can be opened by the X server.

Enabling Devices
Client programs that wish to access an extension device must request that the server open that device.
This is done by way of the OpenDevice request. Before it exits, the client program should explicitly
request that the server close the device. This is done by way of the CloseDevice request.

A client may open the same extension device more than once. Requests after the first successful one
return an additional XDevice structure with the same information as the first, but otherwise have no effect.
A single CloseDevice request will terminate that client’s access to the device.

Changing the Mode of a Device
Some devices are capable of reporting either relative or absolute motion data. The mode of a device is
changed from relative to absolute using the SetDeviceMode request. The valid values are Absolute or
Relative.

Initializing Valuators on an Input Device
Some devices that report absolute positional data can be initialized to a starting value. Devices that are
capable of reporting relative motion or absolute positional data may require that their valuators be
initialized to a starting value after the mode of the device is changed to Absolute. The
SetDeviceValuators request is used to initialize the valuators on such a device.

Getting Input Device Controls
The GetDeviceControl request returns the current state of the specified device control. The device control
must be supported by the target server and device or an error will result.

The ChangeDeviceControl request changes the specified device control according to the values specified
in the DeviceControl structure. The device control must be supported by the target server and device or
an error will result.

Selecting Extension Device Events
Extension input events are selected using the SelectExtensionEvent request.

Determining Selected Events
The GetSelectedExtensionEvents is used to determine which extension events are currently selected
from a given window.

Controlling Event Propagation
Extension events propagate up the window hierarchy in the same manner as core events. If a window is
not interested in an extension event, it usually propagates to the closest ancestor that is interested, unless
the dont_propagate list prohibits it. Grabs of extension devices may alter the set of windows that receive a
particular extension event.

Chapter 5. Using Extensions in AIXwindows 65



Client programs may control extension event propagation through the use of the
ChangeDeviceDontPropagateList and GetDeviceDontPropagateList requests.

The XChangeDeviceDontPropagateList function adds an event to or deletes an event from the
do_not_propagate list of extension events for the specified window. This list is maintained for the life of the
window, and is not altered if the client terminates.

Sending Extension Events
One client program may send an event to another by way of the XSendExtensionEvent function. The
event in the XEvent structure must be one of the events defined by the input extension, so that the X
server can correctly byte swap the contents as necessary. The contents of the event are otherwise
unaltered and unchecked by the X server except to force SendEvent to True in the forwarded event and to
set the sequence number in the event correctly. XSendExtensionEvent returns 0 (zero) if the
conversion-to-wire protocol failed, otherwise it returns nonzero.

Getting Motion History
The GetDeviceMotionEvents request returns all positions in the device’s motion history buffer that fall
between the specified start and stop times inclusive. If the start time is in the future, or is later than the
stop time, no positions are returned.

Changing the Core Devices
These ChangePointerDevice and ChangeKeyboardDevice requests are provided to change which
physical device is used as the X pointer or X keyboard.

Note: Using these requests may change the characteristics of the core devices. The new pointer device
may have a different number of buttons than the old one did, or the new keyboard device may have
a different number of keys or report a different range of keycodes. Client programs that depend on
those characteristics may be running. For example, a client program could allocate an array based
on the number of buttons on the pointer device, and then use the button numbers received in
button events as indices into that array. Changing the core devices could cause such client
programs to behave improperly or abnormally terminate.

These requests change the X keyboard or X pointer device and generate an ChangeDeviceNotify event
and a MappingNotify event. The ChangeDeviceNotify event is sent only to those clients that have
expressed an interest in receiving that event by way of the XSelectExtensionEvent request. The specified
device becomes the new X keyboard or X pointer device. The location of the core device does not change
as a result of this request.

These requests fail and return AlreadyGrabbed if either the specified device or the core device it would
replace are grabbed by some other client. They fail and return GrabFrozen if either device is frozen by the
active grab of another client.

These requests fail with a BadDevice error if the specified device is invalid, or has not previously been
opened by way of OpenDevice.

The ChangeKeyboardDevice request changes the X keyboard device. The specified device must support
input class Keys (as reported in the ListInputDevices request) or the request fails with a BadMatch error.
Once the device has successfully replaced one of the core devices, it is treated as a core device until it is
in turn replaced by another ChangeDevice request, or until the server terminates. The termination of the
client that changed the device will not cause it to change back. Attempts to use the CloseDevice request
to close the new core device will fail with a BadDevice error.

The ChangePointerDevice request changes the X pointer device. The specified device must support input
class Valuators (as reported in the ListInputDevices request) or the request fails with a BadMatch error.
The valuators to be used as the x and y axes of the pointer device must be specified. Data from other
valuators on the device are ignored.

66 AIXwindows Programming Guide



Event Synchronization and Core Grabs
Implementation of the input extension requires an extension of the meaning of event synchronization for
the core grab requests. This is necessary in order to allow window managers to freeze all input devices
with a single request.

The core grab requests require a PointerMode and KeyboardMode argument. The meaning of these
modes is changed by the input extension. For the XGrabPointer and XGrabButton requests,
PointerMode controls synchronization of the pointer device, and KeyboardMode controls the
synchronization of all other input devices. For the XGrabKeyboard and XGrabKey requests, PointerMode
controls the synchronization of all input devices except the X keyboard, while KeyboardMode controls the
synchronization of the keyboard. When using one of the core grab requests, the synchronization of
extension devices is controlled by the mode specified for the device not being grabbed.

Extension Active Grabs
Active grabs of extension devices are supported by way of the GrabDevice request in the same way that
core devices are grabbed using the core GrabKeyboard request, except that a Device is passed as a
function parameter. A list of events that the client wishes to receive is also passed. The UngrabDevice
request allows a previous active grab for an extension device to be released. To grab an extension device,
use the GrabDevice request. The device must have previously been opened using the OpenDevice
request.

Passively Grabbing Buttons and Keys
Passive grabs of buttons and keys on extension devices are supported by way of the GrabDeviceButton
and GrabDeviceKey requests. These passive grabs are released by way of the UngrabDeviceKey and
UngrabDeviceButton requests. To passively grab a single key on an extension device, use
GrabDeviceKey. That device must have previously been opened using the OpenDevice request.

Thawing a Device
The AllowDeviceEvents request allows further events to be processed when a device has been frozen.

Controlling Device Focus
The current focus window for an extension input device can be determined using the GetDeviceFocus
request. Extension devices are focused using the SetDeviceFocus request in the same way that the
keyboard is focused using the SetInputFocus request, except that a device is specified as part of the
request. One additional focus state, FollowKeyboard, is provided for extension devices.

Controlling Device Feedback
The GetFeedbackControl request gets the settings of feedbacks on an extension device. This request
provides functionality equivalent to the core GetKeyboardControl and GetPointerControl functions. It
also provides a way to control displays associated with an input device that are capable of displaying an
integer or string. The ChangeFeedbackControl request changes the settings of a feedback on an
extension device.

Ringing a Bell on an Input Device
The DeviceBell request rings a bell on an extension input device. The ChangeFeedbackControl request
changes the base volume of the bell.

Controlling Device Encoding
The GetDeviceKeyMapping request gets the keyboard mapping of an extension device that has keys.
The ChangeDeviceKeyMapping request changes the keyboard mapping of an extension device that has
keys.

The GetDeviceModifierMapping request obtains the keycodes that are used as modifiers on an extension
device that has keys. The SetDeviceModifierMapping request sets which keycodes are to be used as
modifiers for an extension device.

Chapter 5. Using Extensions in AIXwindows 67



Controlling Button Mapping
The GetDeviceButtonMapping request and the SetDeviceButtonMapping request are analogous to the
core GetPointerMapping and ChangePointerMapping requests. They allow a client to determine the
current mapping of buttons on an extension device, and to change that mapping. To get the current button
mapping for an extension device, use GetDeviceButtonMapping. The SetDeviceButtonMapping request
sets the button mapping for an extension device.

Obtaining the State of a Device
The QueryDeviceState request obtains vectors that describe the state of the keys, buttons and valuators
of an extension device.

Events
The input extension creates input events analogous to the core input events. These extension input events
are generated by manipulating one of the extension input devices.

Button, Key, and Motion Events
The DeviceKeyPress,DeviceKeyRelease, DeviceButtonPress, DeviceButtonRelease, and
DeviceMotionNotify events are generated when a key, button, or valuator logically changes state. The
generation of these logical changes may lag the physical changes, if device event processing is frozen.
Note that DeviceKeyPress and DeviceKeyRelease are generated for all keys, even those mapped to
modifier bits.

DeviceValuator Event
DeviceValuator events are generated to contain valuator information for which there is insufficient space
in DeviceKey, DeviceButton, DeviceMotion, and Proximity wire events. For events of these types, a
second event of type DeviceValuator follows immediately. The library combines these events into a single
event that a client can receive by way of XNextEvent. DeviceValuator events are not selected for by
clients, they only exist to contain information that will not fit into some event selected by clients.

Device Focus Events
The DeviceFocusIn and DeviceFocusOut events are generated when the input focus changes and are
reported to clients selecting DeviceFocusChange for the specified device and window. Events generated
by SetDeviceFocus when the device is not grabbed have Mode Normal. Events generated by
SetDeviceFocus when the device is grabbed have Mode WhileGrabbed. Events generated when a
device grab actives have Mode Grab, and events generated when a device grab deactivates have Mode
Ungrab. All DeviceFocusOut events caused by a window unmap are generated after any UnmapNotify
event, but the ordering of DeviceFocusOut with respect to generated EnterNotify, LeaveNotify,
VisibilityNotify and Expose events is not constrained. DeviceFocusIn and DeviceFocusOut events are
generated for focus changes of extension devices in the same manner as focus events for the core
devices are generated.

Device State Notify Event
The DeviceStateNotify event reports the state of the device just as in the QueryDeviceState request.
This event is reported to clients selecting DeviceStateNotify for the device and window and is generated
immediately after every EnterNotify and DeviceFocusIn. If the device has no more than 32 buttons, no
more than 32 keys, and no more than 3 valuators, this event can report the state of the device. If the
device has more than 32 buttons, the event will be immediately followed by a DeviceButtonStateNotify
event. If the device has more than 32 keys, the event will be followed by a DeviceKeyStateNotify event.
If the device has more than 3 valuators, the event will be followed by one or more DeviceValuator events.

Device KeyState and ButtonState Notify Events
The DeviceKeyStateNotify and the DeviceButtonStateNotify events contain information about the state
of keys and buttons on a device that will not fit into the DeviceStateNotify wire event. These events are
not selected by clients, rather they may immediately follow a DeviceStateNotify wire event and be
combined with it into a single DeviceStateNotify client event that a client may receive by way of
XNextEvent.

68 AIXwindows Programming Guide



DeviceMappingNotify Event
The DeviceMappingNotify event reports a change in the mapping of keys, modifiers, or buttons on an
extension device. This event is reported to clients selecting DeviceMappingNotify for the device and
window and is generated after every client SetDeviceButtonMapping, ChangeDeviceKeyMapping, or
ChangeDeviceModifierMapping request.

ChangeDeviceNotify Event
The ChangeDeviceNotify event reports a change in the physical device being used as the core X
keyboard or X pointer device. ChangeDeviceNotify events are reported to clients selecting
ChangeDeviceNotify for the device and window and is generated after every client
ChangeKeyboardDevice or ChangePointerDevice request.

Proximity Events
The ProximityIn and ProximityOut events are generated by some devices (such as graphics tablets or
touch screens) to indicate that a stylus has moved into or out of contact with a positional sensing surface.

AIXwindows Double Buffer Extension Specification

Introduction
The Double Buffer Extension (DBE) provides a standard way to utilize double bufferiing within the
framework of the X Window System. Double buffering uses two buffers, called front and back, which hold
images. The front buffer is visible to the user; the back buffer is not. Successive frames of an animation
are rendered into the back buffer while the previously rendered frame is displayed in the front buffer. When
a new frame is ready, the back and front buffers swap roles, making the new frame visible. Ideally, this
exchange appears to happen instantaneously to the user, with no visual artifacts. Thus, only completely
rendered images are presented to the user, and remain visible during the entire time it takes to render a
new frame. The result is a flicker-free animation.

This article contains the following sections:

v Goals

v Concepts

v Requests

v Encoding

v C Language Binding

Goals
This extension should enable clients to:

v Allocate and deallocate double-buffering for a window.

v Draw to and read from the front and back buffers associated with a window.

v Swap the front and back buffers associated with a window.

v Specify a wide range of actions to be taken when a window is swapped. This includes explicit, simple
swap actions (defined below), and more complex actions (for example, clearing ancillary buffers) that
can be put together within explicit ``begin’’ and ``end’’ requests (defined below).

v Request that the front and back buffers associated with multiple double-buffered windows be swapped
simultaneously.

In addition, the extension should:

v Allow multiple clients to use double-buffering on the same window.

v Support a range of implementation methods that can capitalize on existing hardware features.

v Add no new event types.

v Be reasonably easy to integrate with a variety of direct graphics hardware access (DGHA) architectures.

Chapter 5. Using Extensions in AIXwindows 69



Concepts
Normal windows are created using the core CreateWindow request, which allocates a set of window
attributes and, for InputOutput windows, a front buffer, into which an image can be drawn. The contents of
this buffer will be displayed when the window is visible.

This extension enables applications to use double buffering with a window. This involves creating a second
buffer, called a back buffer, and associating one or more back buffer names (XIDs) with the window, for
use when referring to (for example, drawing to or reading from) the window’s back buffer. The back buffer
name is a DRAWABLE of type BACKBUFFER.

DBE provides a relative double-buffering model. One XID, the window, always refers to the front buffer.
One or more other XIDs, the back buffer names, always refer to the back buffer. After a buffer swap, the
window continues to refer to the (new) front buffer, and the back buffer name continues to refer to the
(new) back buffer. Thus, applications and toolkits that want to just render to the back buffer always use the
back buffer name for all drawing requests to the window. Portions of an application that want to render to
the front buffer always use the window XID for all drawing requests to the window.

Multiple clients and toolkits can all use double-buffering on the same window. DBE doesn’t provide a
request for querying whether a window has double-buffering support, and if so, what the back buffer name
is. Given the asynchronous nature of the X Window System, this would cause race conditions. Instead,
DBE allows multiple back buffer names to exist for the same window; they all refer to the same physical
back buffer. The first time a back buffer name is allocated for a window, the window becomes double
buffered and the back buffer name is associated with the window. Subsequently, the window already is a
double-buffered window, and nothing about the window changes when a new back buffer name is
allocated, except that the new back buffer name is associated with the window. The window remains
double buffered until either the window is destroyed, or until all of the back buffer names for the window
are deallocated.

In general, both the front and back buffers are treated the same. In particular, here are some important
characteristics:

v Only one buffer per window can be visible at a time (the front buffer).

v Both buffers associated with a window have the same visual type, depth, width, height, and shape as
the window.

v Both buffers associated with a window are ``visible’’ (or ``obscured’’) in the same way. When an Expose
event is generated for a window, both buffers should be considered to be damaged in the exposed
area. Damage that occurs to either buffer will result in an Expose event on the window. When a
double-buffered window is exposed, both buffers are tiled with the window background, exactly as
stated by the core protocol. Even though the back buffer is not visible, terms such as obscure apply to
the back buffer as well as to the front buffer.

v It is acceptable at any time to pass a BACKBUFFER in any request, notably any core or extension drawing
request, that expects a DRAWABLE. This enables an application to draw directly into BACKBUFFERs in the
same fashion as it would draw into any other DRAWABLE.

v It is an error (Window) to pass a BACKBUFFER in a core request that expects a Window.

v A BACKBUFFER will never be sent by core X in a reply, event, or error where a Window is specified. If
core X11 backing-store and save-under applies to a double-buffered window, it applies to both buffers
equally.

v If the core ClearArea request is executed on a double-buffered window, the same area in both the front
and back buffers is cleared.

The effect of passing a window to a request that accepts a DRAWABLE is unchanged by this extension. The
window and front buffer are synonymous with each other. This includes obeying the GetImage semantics
and the subwindow-mode semantics if a core graphics context is involved. Regardless of whether the
window was explicitly passed in a GetImage request, or implicitly referenced (for example, one of the
window’s ancestors was passed in the request), the front (i.e., visible) buffer is always referenced. Thus,

70 AIXwindows Programming Guide



DBE-naive screen dump clients will always get the front buffer. GetImage on a back buffer returns
undefined image contents for any obscured regions of the back buffer that fall within the image.

Drawing to a back buffer always uses the clip region that would be used to draw to the front buffer with a
GC subwindow-mode of ClipByChildren. If an ancestor of a double-buffered window is drawn to with a
core GC having a subwindow-mode of IncludeInferiors, the effect on the double-buffered window’s back
buffer depends on the depth of the double-buffered window and the ancestor. If the depths are the same,
the contents of the back buffer of the double-buffered window are not changed. If the depths are different,
the contents of the back buffer of the double-buffered window are undefined for the pixels that the
IncludeInferiors drawing touched.

DBE adds no new events. DBE doesn’t extend the semantics of any existing events with the exception of
adding a new DRAWABLE type called BACKBUFFER. If events, replies, or errors that contain a DRAWABLE (for
example, GraphicsExpose) are generated in response to a request, the DRAWABLE returned will be the one
specified in the request.

DBE advertises which visuals support double-buffering.

DBE does not include any timing or synchronization facilities.

Window Management Operations
The basic philosophy of DBE is that both buffers are treated the same by core X window management
operations.

When the core DestroyWindow is executed on a double-buffered window, both buffers associated with
the window are destroyed, and all back buffer names associated with the window are freed.

If the core ConfigureWindow request changes the size of a window, both buffers assume the new size. If
the window’s size increases, the effect on the buffers depends on whether the implementation honors bit
gravity for buffers. If bit gravity is implemented, then the contents of both buffers are moved in accordance
with the window’s bit gravity (see the core ConfigureWindow request), and the remaining areas are tiled
with the window background. If bit gravity is not implemented, then the entire unobscured region of both
buffers is tiled with the window background. In either case, Expose events are generated for the region
that is tiled with the window background.

If the core GetGeometry request is executed on a BACKBUFFER, the returned x, y, and border-width will be
zero.

If the Shape extension ShapeRectangles, ShapeMask, ShapeCombine, or ShapeOffset request is
executed on a double-buffered window, both buffers are reshaped to match the new window shape. The
region difference

D = NewShape - OldShape

is tiled with the window background in both buffers, and Expose events are generated for D.

Complex Swap Actions
DBE has no explicit knowledge of ancillary buffers (for example, depth buffers or alpha buffers), and only
has a limited set of defined swap actions. Some applications may need a richer set of swap actions than
DBE provides. Some DBE implementations have knowledge of ancillary buffers, and/or can provide a rich
set of swap actions. Instead of continually extending DBE to increase its set of swap actions, DBE
provides a flexible ``idiom’’ mechanism. If an application’s needs are served by the defined swap actions, it
should use them; otherwise, it should use the following method of expressing a complex swap action as
an idiom. Following this policy will ensure the best possible performance across a wide variety of
implementations.

Chapter 5. Using Extensions in AIXwindows 71



As suggested by the term ``idiom,’’ a complex swap action should be expressed as a group or series of
requests. Taken together, this group of requests may be combined into an atomic operation by the
implementation, in order to maximize performance. The set of idioms actually recognized for optimization
is implementation dependent. To help with idiom expression and interpretation, an idiom must be
surrounded by two protocol requests: DBEBeginIdiom and DBEEndIdiom. Unless this begin-end pair
surrounds the idiom, it may not be recognized by a given implementation, and performance will suffer.

For example, if an application wants to swap buffers for two windows, and use core X to clear only certain
planes of the back buffers, the application would issue the following protocol requests as a group, and in
the following order:

v DBEBeginIdiom request.

v DBESwapBuffers request with XIDs for two windows, each of which uses a swap action of Untouched.

v Core X PolyFillRectangle request to the back buffer of one window.

v Core X PolyFillRectangle request to the back buffer of the other window.

v DBEEndIdiom request.

The DBEBeginIdiom and DBEEndIdiom requests don’t perform any actions themselves. They are treated
as markers by implementations that can combine certain groups or series of requests as idioms, and are
ignored by other implementations or for non-recognized groups or series of requests. If these requests are
sent out of order, or are mismatched, no errors are sent, and the requests are executed as usual, though
performance may suffer.

An idiom need not include a DBESwapBuffers request. For example, if a swap action of Copied is
desired, but only some of the planes should be copied, a core X CopyArea request may be used instead
of DBESwapBuffers. If DBESwapBuffers is included in an idiom, it should immediately follow the
DBEBeginIdiom request. Also, when the DBESwapBuffers is included in an idiom, that request’s swap
action will still be valid, and if the swap action might overlap with another request, then the final result of
the idiom must be as if the separate requests were executed serially. For example, if the specified swap
action is Untouched, and if a PolyFillRectangle using a client clip rectangle is done to the window’s back
buffer after the DBESwapBuffers request, then the contents of the new back buffer (after the idiom) will
be the same as if the idiom weren’t recognized by the implementation.

Requests
This section discusses the following requests:

v DBEGetVersion

v DBEGetVisualInfo

v DBEAllocateBackBufferName

v DBEDeallocateBackBufferName

v DBESwapBuffers

v DBEBeginIdiom

v DBEEndIdiom

v DBEGetBackBufferAttributes

DBEGetVersion
This request returns the major and minor version numbers of this extension.

DBEGetVersion:
client-major-version : CARD8
client-minor-version : CARD8
=>
server-major-version : CARD8
server-minor-version : CARD8

72 AIXwindows Programming Guide



The client-major-version and client-minor-version numbers indicate what version of the protocol the client
wants the server to implement. The server-major-version and the server-minor-version numbers returned
indicate the protocol this extension actually supports. This might not equal the version sent by the client.
An implementation can (but need not) support more than one version simultaneously. The
server-major-version and server-minor-version allow the creation of future revisions of the Double Buffering
Extension protocol which may be necessary. In general, the major version would increment for
incompatible changes, and the minor version would increment for small, upward-compatible changes.
Servers that support the protocol defined in this document will return a server-major-version of one (1),
and a server-minor-version of zero (0).

The Double Buffering client must issue a DBEGetVersion request before any other Double Buffering
request in order to negotiate a compatible protocol version, otherwise the client will get undefined behavior
(DBE may or may not work).

DBEGetVisualInfo
This request returns information about which visuals support double buffering.

DBEGetVisualInfo:
screen-specifiers : LISTofDRAWABLE
=>
visinfo : LISTofSCREENVISINFO

(Errors: Drawable)

The following type definitions apply:
SCREENVISINFO : LISTofVISINFO
VISINFO: [VISUALID visual;

CARD8 depth;
CARD8 perflevel]

All of the values passed in screen-specifiers must be valid DRAWABLEs (or a Drawable error results). For
each drawable in screen-specifiers, the reply will contain a list of VISINFO structures for visuals that
support double-buffering on the screen on which the drawable resides. The visual member specifies the
VISUALID. The depth member specifies the depth in bits for the visual. The perflevel is a performance hint.
The only operation defined on a perflevel is comparison to a perflevel of another visual on the same
screen. The visual having the higher perflevel is likely to have better double-buffer graphics performance
than the visual having the lower perflevel. Nothing can be deduced from any of the following: the
magnitude of the difference of two perflevels, a perflevel value in isolation, or comparing perflevels from
different servers.

If the list of screen-specifiers is empty, information for all screens is returned, starting with screen zero.

DBEAllocateBackBufferName
This request allocates a drawable ID used to refer to the back buffer of a window.

DBEAllocateBackBufferName:
window : WINDOW
back-buffer-name : BACKBUFFER
swap-action-hint : SWAPACTION

(Errors: Alloc, Value, IDChoice, Match, Window)

If the window isn’t already a double-buffered window, the window becomes double-buffered, and the
back-buffer-name is associated with the window. The swap-action-hint tells the server which swap action is
most likely to be used with the window in subsequent DBESwapBuffers requests. The swap-action-hint
must have one of the values specified for type SWAPACTION (or a Value error results). See the description of
the DBESwapBuffers request for a complete discussion of swap actions and the SWAPACTION type.

Chapter 5. Using Extensions in AIXwindows 73



If the window already is a double-buffered window, nothing about the window changes, except that an
additional back-buffer-name is associated with the window. The window remains double-buffered until
either the window is destroyed, or until all of the back buffer names for the window are deallocated.

The window passed into the request must be a valid WINDOW (or a Window error results). The window
passed into the request must be an InputOutput window (or a Match error results). The visual of the
window must be in the list returned by DBEGetVisualInfo (or a Match error results). The back-buffer-name
must be in the range assigned to the client, and must not already be in use (or an IDChoice error results).
If the server cannot allocate all resources associated with turning on double-buffering for the window, an
Alloc error results, the window’s double-buffer* status (whether it is already double-buffered or not)
remains unchanged, and the back-buffer-name is freed.

DBEDeallocateBackBufferName
This request frees a drawable ID that was obtained by DBEAllocateBackBufferName.

DBEDeallocateBackBufferName:
back-buffer-name : BACKBUFFER

(Errors: Buffer)

The back-buffer-name passed in the request is freed and no longer associated with the window. If this is
the last back-buffer-name associated with the window, then the back buffer is no longer accessible to
clients, and all double-buffering resources associated with the window may be freed. The window’s current
front buffer remains the front buffer.

The back-buffer-name must be a valid BACKBUFFER associated with a window (or a Buffer error results).

DBESwapBuffers
This request swaps the buffers for all windows listed, applying the appropriate swap action for each
window.

DBESwapBuffers:
windows : LISTofSWAPINFO

(Errors: Match, Window, Value)

The following type definitions apply:
SWAPINFO : [ WINDOW window; SWAPACTION swap-action ]
SWAPACTION : {Undefined, Background, Untouched, Copied}

Each window passed into the request must be a valid WINDOW (or a Window error results). Each window
passed into the request must be a double-buffered window (or a Match error results). Each window
passed into the request must only be listed once (or a Match error results). Each swap-action in the list
must have one of the values specified for type SWAPACTION (or a Value error results). If an error results,
none of the valid double-buffered windows will have their buffers swapped.

The swap-action determines what will happen to the new back buffer of the window it is paired with in the
list in addition to making the old back buffer become visible. The defined actions are as follows:

Undefined
The contents of the new back buffer become undefined. This may be the most efficient action
since it allows the implementation to discard the contents of the buffer if it needs to.

Background
The unobscured region of the new back buffer will be tiled with the window background. The
background action allows devices to use a fast clear capability during a swap.

74 AIXwindows Programming Guide



Untouched
The unobscured region of the new back buffer will be unmodified by the swap.

Copied
The unobscured region of the new back buffer will be the contents of the old back buffer.

If DBESwapBuffers is included in a ``swap and clear’’ type of idiom, it must immediately follow the
DBEBeginIdiom request.

DBEBeginIdiom
This request informs the server that a complex swap will immediately follow this request.

DBEBeginIdiom: As previously discussed, a complex swap action is a group/series of requests, which,
taken together, may be combined into an atomic operation by the implementation. The sole function of this
request is to serve as a ``marker’’ that the server can use to aid in idiom processing. The server is free to
implement this request as a no-op.

DBEEndIdiom
This request informs the server that a complex swap has concluded.

DBEEndIdiom: The sole function of this request is to serve as a ``marker’’ that the server can use to aid
in idiom processing. The server is free to implement this request as a no-op.

DBEGetBackBufferAttributes
This request returns information about a back buffer.

DBEGetBackBufferAttributes:
back-buffer-name : BACKBUFFER
=>
attributes : BUFFER_ATTRIBUTES

The following type definitions apply:
BUFFER_ATTRIBUTES: [WINDOW window;]

If back-buffer-name is a valid BACKBUFFER, the window field of the attributes in the reply will be the window
which has the back buffer that back-buffer-name refers to. If back-buffer-name is not a valid BACKBUFFER,
the window field of theattributes in the reply will be None.

Encoding
Refer to the X11 Protocol Encoding document, as this section uses syntactic conventions and data types
established there.

The name of this extension is ``DOUBLE-BUFFER’’.

Types
The following new types are used by the extension.
BACKBUFFER : XID

SWAPACTION
#x00 Undefined
#x01 Background
#x02 Untouched
#x03 Copied

SWAPINFO
4 WINDOW window
1 SWAPACTION swap action
3 unused

Chapter 5. Using Extensions in AIXwindows 75



VISINFO
4 VISUALID visual
1 CARD8 depth
1 CARD8 perflevel
2 unused

SCREENVISINFO
4 CARD32 n, number in list
8n LISTofVISINFO n VISINFOs

BUFFER_ATTRIBUTES
4 WINDOW window

Errors
Buffer
1 0 error
1 error base + 0 code
2 CARD16 sequence number
4 CARD32 bad buffer
2 CARD16 minor-opcode
1 CARD8 major-opcode
21 unused

Requests

DBEGetVersion:
1 CARD8 major-opcode
1 0 minor-opcode
2 2 request length
1 CARD8 client-major-version
1 CARD8 client-minor-version
2 unused
=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
1 CARD8 server-major-version
1 CARD8 server-minor-version
22 unused

DBEAllocateBackBufferName:
1 CARD8 major-opcode
1 1 minor-opcode
4 WINDOW window
4 BACKBUFFER back buffer name
1 SWAPACTION swap action hint
3 unused

DBEDeallocateBackBufferName:
1 CARD8 major-opcode
1 2 minor-opcode
4 BACKBUFFER back buffer name

DBESwapBuffers:
1 CARD8 major-opcode
1 4 minor-opcode
4 CARD32 n, number of window/swap action pairs in list
8n LISTofSWAPINFO window/swap action pairs

DBEBeginIdiom:
1 CARD8 major-opcode
1 4 minor-opcode
2 1 request length

76 AIXwindows Programming Guide



DBEEndIdiom:
1 CARD8 major-opcode
1 5 minor-opcode
2 1 request length

DBEGetVisualInfo:
1 CARD8 major-opcode
1 6 minor-opcode
2 2+n request length
4 CARD32 n, number of screen specifiers in list
4n LISTofDRAWABLE n screen specifiers
=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 CARD32 reply length
4 CARD32 m, number of SCREENVISINFOs in list
20 unused
4j LISTofSCREENVISINFO m SCREENVISINFOs

DBEGetBackBufferAttributes:
1 CARD8 major-opcode
1 7 minor-opcode4
2 2 request length
4 BACKBUFFER back-buffer-name
=>
1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
4 BUFFER_ATTRIBUTES attributes
20 unused

C Language Binding
The header for this extension is <X11/extensions/Xdbe.h>. All identifier names provided by this header
begin with Xdbe.

Types
The type XdbeBackBuffer is a Drawable.

The type XdbeSwapAction can be one of the constants XdbeUndefined , XdbeBackground,
XdbeUntouched, or XdbeCopied.

Functions
The C routines provide direct access to the protocol and add no additional semantics. For complete details
on the effects of these functions, refer to the appropriate protocol request, which can be derived by
replacing Xdbe at the start of the function name with DBE. All functions that have return type Status will
return non-zero for success and zero for failure.
Status
XdbeQueryExtension ( Display * dpy , int * major_version_return,
int * minor_version_return

Sets major_version_return andminor_version_return to the major and minor DBE protocol version
supported by the server. If the DBE library is compatible with the version returned by the server, this
function returns non-zero. If dpy does not support the DBE extension, or if there was an error during
communication with the server, or if the server and library protocol versions are incompatible, this function
returns zero. No other Xdbe functions may be called before this function. If a client violates this rule, the
effects of all subsequent Xdbe calls that it makes are undefined.

Chapter 5. Using Extensions in AIXwindows 77



XdbeScreenVisualInfo *
XdbeGetVisualInfo ( Display * dpy, Drawable * screen_specifiers,
int * num_screens

This function returns information about which visuals support double buffering. The argument num_screens
specifies how many elements there are in the screen_specifiers list. Each drawable in screen_specifiers
designates a screen for which the supported visuals are being requested. If num_screens is zero,
information for all screens is requested. In this case, upon return from this function, num_screens will be
set to the number of screens that were found. If an error occurs, this function returns NULL, else it returns
a pointer to a list of XdbeScreenVisualInfo structures of length num_screens. The nth element in the
returned list corresponds to the nth drawable in the screen_specifiers list, unlessnum_screens was passed
in with the value zero, in which case the nth element in the returned list corresponds to the nth screen of
the server, starting with screen zero.

The XdbeScreenVisualInfo structure has the following fields:
int count number of items in visinfo
XdbeVisualInfo* visinfo list of visuals and depths for

this screen

The XdbeVisualInfo structure has the following fields:
VisualID visual one visual ID that supports

double-buffering
int depth depth of visual in bits
int perflevel performance level of visual

void
XdbeFreeVisualInfo (XdbeScreenVisualInfo * visual_info)

This function frees the list of XdbeScreenVisualInfo returned by the function XdbeGetVisualInfo.
XdbeBackBuffer
XdbeAllocateBackBufferName (Display * dpy , Window window ,
XdbeSwapAction swap_action)

This function returns a drawable ID used to refer to the back buffer of the specified window. The
swap_action is a hint to indicate the swap action that will likely be used in subsequent calls to
XdbeSwapBuffers. The actual swap action used in calls to XdbeSwapBuffers does not have to be the
same as the swap_action passed to this function, though clients are encouraged to provide accurate
information whenever possible.
Status
XdbeDeallocateBackBufferName (Display * dpy , XdbeBackBuffer
buffer)

This function frees a drawable ID,buffer, that was obtained using XdbeAllocateBackBufferName. The
buffer must be a valid name for the back buffer of a window, or an XdbeBadBuffer error results.
Status
XdbeSwapBuffers (Display * dpy , XdbeSwapInfo * swap_info, int
num_windows)

This function swaps the front and back buffers for a list of windows. The argument num_windows specifies
how many windows are to have their buffers swapped; it is the number of elements in the swap_info array.
The argument swap_info specifies the information needed per window to do the swap.

The XdbeSwapInfo structure has the following fields:
Window swap_window window for which to swap buffers
XdbeSwapAction swap_action swap action to use for this

wap_window

Status
XdbeBeginIdiom (Display * dpy)

78 AIXwindows Programming Guide



This function marks the beginning of an idiom sequence. See Complex Swap Actions for a complete
discussion of idioms.
Status
XdbeEndIdiom (Display * dpy)

This function marks the end of an idiom sequence.
XdbeBackBufferAttributes *
XdbeGetBackBufferAttributes (Display * dpy , XdbeBackBuffer
buffer)

This function returns the attributes associated with the specified buffer.

The XdbeBackBufferAttributes structure has the following fields:
Window window window that buffer belongs to

If buffer is not a validXdbeBackBuffer, window is set to None.

The returned XdbeBackBufferAttributes structure can be freed with the Xlib function XFree.

Errors
The XdbeBufferError structure has the following fields:
int type
Display * display Display the event was read from
XdbeBackBuffer buffer resource id
unsigned long serial serial number of failed request
unsigned char error_code error base + XdbeBadBuffer
unsigned char request_code Major op-code of failed request
unsigned char minor_code Minor op-code of failed request

AIXwindows XTest Extension

Overview
This extension is a minimal set of client and server extensions required to completely test the X11 server
without user intervention.

This extension is not intended to support general journaling and playback of user actions. This is a difficult
area because it attempts to synchronize synthetic user interactions with their effects; it is at the higher
level of dialogue recording and playback rather than at the strictly lexical level. This extension addresses
the latter, simpler, case.

This extension provides a minimum set of facilities that solve immediate testing and validation problems.

This extension adheres to the following objectives:

v Confine the extension to an appropriate, high, level within the server to minimize portability problems. In
practice this means that the extension should be at the DIX level, or use the DIX/DDX interface, or both.
This has effects, in particular, on the level at which ″input synthesis″ can occur.

v Minimize the changes required in the rest of the server.

v Minimize performance penalties on normal server operation.

For additional information, refer to the following topics:

v Description

v Types

v C Language Xlib Binding

Chapter 5. Using Extensions in AIXwindows 79



Description
The functions provided by this extension fall into two groups, client operations and server requests.

Client Operations
The XTest Extension includes the following client operations:

v XTestSetGContextOfGC

v XTestSetGVisualIDOfVisual

v XTestDiscard

These routines manipulate otherwise hidden client-side behavior. The actual implementation will depend
on the details of the actual language binding and what degree of request buffering, GContext caching etc.,
is provided. In the C binding, defined in C Language Xlib Binding , routines are provided to access the
internals of two opaque data structures—GCs and visuals—and to discard any requests pending within the
output buffer of a connection. The exact details can be expected to differ for other language bindings.

These are abstract definitions of functionality. They refer to client-side objects like ″GC″ and ″VISUAL″
which are quoted to denote their abstract nature. Concrete versions of these functions are only defined for
particular language bindings. In some circumstances a particular language binding may not implement the
relevant abstract type or may provide it as a transparent, rather than opaque type, with the result that the
corresponding function does not make sense or is not required, respectively.

Server Requests
The XTest Extension includes the following server requests:

v XTestGetVersion

v XTestCompareCursor

v XTestFakeInput

The first of these requests is similar to that provided in most extensions: it allows a client to specify a
major and minor version number to the server and for the server to respond with major and minor versions
of its own. The remaining two requests

1. Allow access to an otherwise ″write-only″ server resource: the cursor associated with a given window;
and

2. Perhaps most importantly, allow limited synthesis of input device events, almost as if a cooperative
user had moved the pointing device or pressed a key or button.

Types
The following types are used in the request and event definitions.
FAKE_EVENT_TYPE: {KeyPress, KeyRelease, MotionNotify, ButtonPress, ButtonRelease}

FAKE_XINPUT_EVENT_TYPE: { XI_DeviceKeyPress, XI_DeviceKeyRelease, XI_DeviceMotionNotify,
XI_DeviceButtonPress, XI_DeviceButtonRelease, ProximityIn, ProximityOut }

FAKE_EVENT: [type:
FAKE_EVENT_TYPE; detail: BYTE; time: TIME; root: WINDOW; rootX: INT16; rootY:
INT16;]

FAKE_XINPUT_EVENT: [ type
: FAKE_XINPUT_EVENT_TYPE; detail : BYTE; time : TIME; root : WINDOW; rootX :
INT16; rootY : INT16; state : KeyButMask; same_screen : BOOL; deviceid : BYTE ]

FAKE_VALUATOR_EVENT: [ type :
XI_DeviceValuator; deviceid : BYTE; device_state : KeyButMask; num_valuators :

80 AIXwindows Programming Guide



BYTE; first_valuator : BYTE; valuator(0-5) : LISTofINT32 ]

CurrentCursor--1

The XTest Extension includes the following new types:
FAKE_EVENT_TYPE

2 KeyPress
3 KeyRelease
4 ButtonPress
5 ButtonRelease
6 MotionNotify

FAKE_XINPUT_EVENT_TYPE

Note: The preceding values are defined to be the same as those for the corresponding core protocol
event types. The values for FAKE_XINPUT_EVENT_TYPE are defined to be the same as those for
the XInput Extension.

C Language Xlib Binding
The C Language routines either provide direct access to the protocol and add no additional semantics to
those defined in Server Requests or they correspond directly to the abstract descriptions of client
operations in Client Operations .

All XTest Extension functions and procedures, and all manifest constants and macros, start with the string
″XTest″. All operations are classified as server/client (Server) or client-only (Client). All routines that have
return type Status will return non-zero for success and zero for failure. Even if the XTest Extension is
supported the server may withdraw such facilities arbitrarily; in which case they will subsequently return
zero.

The XTest Extension includes the following C Language routines:

v XTestQueryExtension

v XTestCompareCursorWithWindow

v XTestCompareCurrentCursorWithWindow

v XTestFakeKeyEvent

v XTestFakeButtonEvent

v XTestFakeMotionEvent

v XTestFakeRelativeMotionEvent

v XTestGrabControl

v XTestSetGContextOfGC

v XTestSetVisualIDOfVisual

v XTestDiscard

Chapter 5. Using Extensions in AIXwindows 81



82 AIXwindows Programming Guide



Chapter 6. AIXwindows Font Enhancements

ISO9241 Compliant Bitmap Fonts
The ISO standard 9241 ″Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs)″,
which provides minimum safety and health requirements for work with display screen equipment, was
adopted by the Council of European Communities. These requirements for VDTs include the following
bitmap font specific items:

v Character height

v Stroke width

v Character width-to-height ratio

v Character format

v Character size uniformity

v Between-character spacing

v Between-word spacing

v Between-line spacing

v Luminance contrast of character details, within or between characters.

The ISO9241-compliant bitmap fonts that are currently available include Ergo character cell fonts: Serif,
Sans Serif, and Symbol proportional fonts; and Typewriter monospaced fonts. Since different monitors
have different specifications, not all of these fonts will be ISO compliant on all monitors. However, clients
can be configured with any font using available customizing tools.

TrueType Rasterizer
A TrueType rasterizer is available in AIXwindows. The TrueType rasterizer supports TrueType 1.0 Font
Files. Also, a TrueType font is available on AIXwindows 4.3 which supports most of the character sets
currently defined in the Unicode 2.0 specification.

The font directory /usr/lib/X11/fonts/TrueType is in the default font path for the AIXwindows X-Server and
the AIXwindows Font Server. Users preferring to off-load the rasterization from the X-Server should add an
AIXwindows Font Server to the font path of their X-Server.

Font Encodings Supported by the TrueType Rasterizer
The AIXwindows TrueType rasterizer supports the font encodings required by the locales supported on
version 4.3. The following tables describes the parameters used when generating a country-specific
encoded bitmap font from a Unicode encoded TrueType font:

XLFD Charset
Column Row Default

Char

First Last First Last

iso8859-1 0x20 0xff 0x00 0x00 0x20

iso8859-2 0x20 0xff 0x00 0x00 0x20

iso8859-3 0x20 0xff 0x00 0x00 0x20

iso8859-4 0x20 0xff 0x00 0x00 0x20

iso8859-5 0x20 0xff 0x00 0x00 0x20

iso8859-6 0x20 0xff 0x00 0x00 0x20

iso8859-7 0x20 0xff 0x00 0x00 0x20

iso8859-8 0x20 0xff 0x00 0x00 0x20

© Copyright IBM Corp. 1997, 2006 83



XLFD Charset
Column Row Default

Char

First Last First Last

iso8859-9 0x20 0xff 0x00 0x00 0x20

IBM-856 0x20 0xff 0x00 0x00 0x20

IBM-1046 0x20 0xff 0x00 0x00 0x20

jisx0201.1976-0 0x20 0xdf 0x00 0x00 0x20

jisx0208.1983-0 0x21 0x7e 0x21 0x74 0x2121

IBM-udcJP 0x21 0x7e 0x65 0x7e 0x7e7e

ksc5601.1987-0 0xa1 0xfe 0xa1 0xfd 0xa1a1

cns11643.1986-1 0x21 0x7e 0x21 0x7d 0x2121

cns11643.1986-2 0x21 0x7e 0x21 0x72 0x2121

cns11643.1992-3 0x21 0x7e 0x21 0x62 0x2121

cns11643.1992-4 0x21 0x7e 0x21 0x6e 0x2121

ibm-udcTW 0x21 0x7e 0x21 0x24 0x2121

ibm-sbdTW 0x21 0x7e 0x21 0x24 0x2121

gb2312.1980-0 0x21 0x7e 0x21 0x77 0x2121

ibm-udcCN 0x21 0x22 0x21 0x22 0x2121

ibm-sbdCN 0x21 0x7e 0x21 0x7e 0x2121

ucs2.thai-0 0x00 0xff 0x00 0xff 0x0020

ucs-2 0x00 0xff 0x00 0xff 0xfffd

Note: This table is shipped in /usr/lpp/X11/defaults/TrueType/Xlfdcset. Users may extend the set of
encodings supported by the TrueType rasterizer by making additions to this table.

84 AIXwindows Programming Guide



Appendix A. Bidirectional Support in Xm (Motif 1.2) Library

Library Name
/usr/lib/libXm.a

Purpose
The Motif Toolkit is a library that defines a set of widgets with their corresponding functions. The
Bidirectional Motif toolkit provides a convenient way of creating Arabic/Hebrew graphical user interfaces.

Description
The additions in libXm.a for Arabic/Hebrew fall into two categories. There are changes which deal with the
reserved geometry (right-to-left screen orientation). These affect a large number of widgets and gadgets.
Whereas other changes deal with inputting bilingual text and supporting bidirectional functionality (that is,
character shaping, symmetric swapping, etc.). The later changes affect mostly Text widgets.

Since the additions in libXm.a for Arabic/Hebrew fall into two categories, a number of additional resources
were incorporated in the toolkit. In the following section is a description of these resources, their names
and their possible values.

Bidirectional Resources
These resources control the geometry of the screen as well as the bidi behavior of widgets. These can be
set, like other resources, either from a resource file or from inside a program (the XtSetArg function).
Depending on the way you choose to set them, the way their names and values are written will vary
accordingly.

Refer to the Layout Services in the libi18n.afile for more information on these values.

If the resources are set from a resource file:

Resource Name Values Effect Default Values

textMode text_mode_implicit Text display is in implicit mode text_mode_implicit

text_mode_visual Text display is in visual mode

text_mode_explicit Text display is in explicit mode

layoutDirection right_to_left Global orientation is set Right to Left. left_to_right

left_to_right Global orientation is set Left to Right.

csdMode (character
shaping)

csd_mode_auto- matic Automatic shaping mode csd_mode_automatic

csd_mode_pass- thru Passthru shaping mode

csd_mode_initial Characters shaped in initial form

csd_mode_middle Characters shaped in middle form

csd_mode_final Characters shaped in final form

csd_mode_isolated Characters shaped in Isolated form

nssMode (numeric
shaping)

nss_mode_bilingual Numbers represented upon context nss_mode_bilingual

nss_mode_arabic Numbers represented in Arabic true

nss_mode_hindu Numbers represented in Hindu false

© Copyright IBM Corp. 1997, 2006 85



Resource Name Values Effect Default Values

nss_mode_pass- thru Numbers in passthru mode false

symmetricSwap true Symmetric swapping on

false Symmetric swapping off

expandTail true Seen Family shaped on 2 cells

false Seen Family shaped on 1 cell

textCompose true Diacritics above consonants

false Diacritics beside consonants

If the resources are set through the widget’s argument list (using the XtSetArg function):

Resource Name Values Effect

XmNtextMode XmTEXT_MODE_IMPLICIT Text display is in implicit mode

XmTEXT_MODE_VISUAL Text display is in visual upon context mode

XmTEXT_MODE_EXPLICIT Text display is in explicit mode

XmNcsdMode XmCSD_MODE_AUTOMATIC Automatic shaping mode

XmCSD_MODE_PASSTHRU Passthru shaping mode

XmCSD_MODE_INITIAL Characters shaped in Initial form

XmCSD_MODE_MIDDLE Characters shaped in Middle form

XmCSD_MODE_FINAL Characters shaped in Final form

XmCSD_MODE_ISOLATED Characters shaped in Isolated form

XmNnssMode XmNSS_MODE_BILINGUAL Numbers represented upon context

XmNSS_MODE_ARABIC Numbers represented in Arabic

XmNSS_MODE_HINDU Numbers represented in Hindu

XmNSS_MODE_PASSTHRU Numbers in passthru mode

Note: Take care that another resource not related to the added Arabic/Hebrew support still needs to be
set, namely the fontList resource. The font list must include an Arabic/Hebrew font name so that
Arabic/Hebrew characters can be created.

Example
The following example creates a text widget after setting the layout direction right-to-left and the text mode
to implicit. This can be done either from a resource file:
*XmText*layoutDirection :right_to_left
*XmText*textMode :text_mode_implicit

Or, from inside a program:
ArgList args;
XtSetArg(args&1brk.0&rbrk., XmNlayoutDirection, XmRIGHT_TO_LEFT)
XtSetArg(args&1brk.1&rbrk., XmNtextMode, XmTEXT_MODE_IMPLICIT);
XmCreateTextWidget(parent_widget, text_widget_name, args, 2);

86 AIXwindows Programming Guide



The Text Widget
The XmText widget class is affected by all the bidi resources discussed previously. It can display text in
three modes: implicit, explicit and visual. It supports character and numeric shaping in addition to a couple
of miscellaneous functions: symmetric swapping and the special handling of the seen family. Furthermore,
the text widget supports bidi key combinations, these are the same as the ones used by the aixterm
Command. The XmText widget also reacts to the layoutDirection resource. See the following section
entitled: Effect of LayoutDirection on Motif Widgets and Gadgets.

The Text Field Widget
The XmTextField widget is affected by all the bidi resources. It behaves like the text widget but it does not
handle the explicit text mode.

The Label and Gadget Widget
The XmLabel and XmGadget widget class is affected by the textMode resource in addition to the
Primitive (or layoutDirection) resource. See the following section entitled: ″Effect of LayoutDirection on
Motif Widgets and Gadgets.″ Setting Implicit Control Support (ICS) and automatic shaping of the label
string overrides the default resource to implicit text mode. Otherwise, the label string displays in regular
motif behavior.

The List Widget
The XmList widget class is also affected by the textMode resource in addition to the layoutDirection or
Primitive resource like the XmLabel widget class. Once the text mode is set to implicit, the
Transformation mechanism applies to the list widget. Otherwise, the list item string displays in regular motif
behavior.

Effect of Layout Direction on Motif Widgets and Gadgets
The layoutDirection resource in the primitive widget affects the following Motif widgets and Gadgets to
enable the bidirectional layout:

Widget Name Effect
CascadeButton Reverse side of cascade graphic

Bring menu on left
Command Place prompt string at right hand side, with default of ″<″
DrawButton Show accelerator at left of label
FileSelectionBox Lay buttons out from right-to-left

Align labels on right hand side

Force string direction to right-to-left
Label Widget Locate accelerator text to left of label text

Force string direction to right-to-left
List Widget Force string direction to right-to-left
MessageBox Lay buttons out from right-to-left

Force string direction to right-to-left

Propagate layout direction to subordinate
PushButton Show accelerator at left of label
RowColumn Widget Layout subordinates from right-to-left for all menu types

Appendix A. Bidirectional Support in Xm (Motif 1.2) Library 87



Widget Name Effect
Scale If XmNorientation is XmVertical, and XmNshowValue is

true, show the value to the left of the scale

If XmNorientation is XmHorizontal, default

XmNprocessingDirection is XmMAX_ON_LEFT
ScrolledWindow Propagate direction to subordinates

Force scrollBarPlacement to XmBOTTOM_LEFT
ScrollBar If XmNorientation is XmHORIZONTAL, default

XMNprocessingDirection is XmMAX_ON_LEFT
SelectionBox Lay buttons out from right-to-left and align labels on

right-hand side

Force string direction to right-to-left

Propagate layout direction to subordinates
ToggleButton Show accelerator at left of label

Reverse side of toggle graphic
Text widget Force text orientation to right-to-left

Example of Localizing a Motif Application for Bidirectional Support
This section provides an example of how to localize the xmeditor file in /usr/sample for Hebrew and
Arabic. The Arabic locales are ar_AA and Ar_AA. The Hebrew locales are Iw_IL and iw_IL.

A translated version of the xmeditor file is also supplied. You can compare your changed version of the
file to the translated version.

Enter the following command to make sure that the Arabic/Hebrew locales are installed:
LANG=iw_IL locale

If the categories are not set, the locale may not be installed. Use the SMIT Manage Language
Environment menu to install the locales.

Setting the Locale and Changing Geometry
1. Add the following to the xmeditor.c file:

#include <local.h>
setlocale(LC_ALL , "");

2. Compile the xmeditor file.

3. Add the following line to your .Xdefaults file to work with Arabic in a LeftToRight geometry (LTR):
fontList: -dt-interface
system-medium-r-normal-L*-*-*-*-*-*-*:

4. Enter the following command to run the xmeditor:
LANG=ar_AA/./xmeditor

5. When the xmeditor opens, the keyboard is in the Latin layer. Go to the first text field and try the
following:

a. Press Alt+RightShift and enter data. The keyboard switches to the Arabic/Hebrew layer.

b. Press Alt+Enter. The whole text widget is toggled and the cursor movements are reversed. The
keyboard automatically switches to the appropriate layer.

88 AIXwindows Programming Guide



c. Press Alt+LeftShift and enter data. The data is entered in English.

6. Add the following line to your .Xdefaults file to change to global RightToLeft (RTL) geometry, and run
the xmeditor in a Hebrew or Arabic locale:
:wn'

and
layoutDirection: right_to_left

The whole layout directionality of the xmeditor is reversed and the Latin strings are also reversed.
Cascading pop-ups also work from right to left. All text fields open right to left and cursor movement is
opposite from the way it is in Latin.

Numeric swapping is automatically turned on. To turn it off and always see digits in Arabic (Latin) form set,
enter the following:
*nssMode: nss_mode_arabic

Translating Hard Coded Strings from Latin to Hebrew or Arabic
This example describes how to translate the File string in the Main Menu. However, you can use the same
process to translate all xmeditor strings.

In this example, the strings are hard coded. However, in many applications the strings you need to
translate are in separate files which often allows you to test without recompiling anything.

1. Use one of the following commands to open a Hebrew or Arabic aixterm window.

v For Arabic enter: LANG=ar_AA aixterm

v For Hebrew enter: LANG=iw_IL aixterm

2. Use the following steps to edit the xmeditor.c file:

a. Go to the File string location.

b. In an LTR screen, replace the string by entering data in Hebrew or Arabic. To enter data, press
Alt+RightShift and enter the text.

c. As you type, your text should display with all of the characters in the correct sequence.

3. Compile the xmeditor file and test it. Your layoutDirection can be either left_to_right or right_to_left.
You should be able to see the strings as you enter them using either layout.

Translating External Files for BIDI Text
This section describes how to translate files that are external to the application. This example describes
how to translate an external file with the following three names:
FILE
HELP
MENU

The output of this file as a translated flat file will be in Hebrew or Arabic, where the lower case characters
represent Hebrew/Arabic characters:
file
help
menu

This is how you see the file if you open an En_US aixterm with a Hebrew or Arabic font.

If you open an Arabic or Hebrew aixterm with Arabic or Hebrew font in Implicit mode, the file will display as
follows:
elif
pleh
unem

Appendix A. Bidirectional Support in Xm (Motif 1.2) Library 89



You can read the strings in the correct order.

If you use an Arabic or Hebrew aixterm to translate the original file, then what you have originally is:
FILE
HELP
MENU

Now you will start to translate the word FILE. Remove FILE and enter elif by pressing f, theni, then l,
then e, which is the correct order of the word in Hebrew or Arabic.

The result will be in what we see in the Hebrew or Arabic aixterm as follows:
elif
HELP
MENU

If you display the string as a flat file from an En_US aixterm, the file will display in the correct logical
character order as follows:
file
HELP
MENU

The shaping in Arabic is done automatically in the Arabic aixterm and in the Arabic Motif. When you
translate using it, it also shapes the characters for Arabic.

90 AIXwindows Programming Guide



Appendix B. Font Utility

The font utility, fontutil, is a tool used for creating and revising font images. Read the following to learn
more about the fontutil utility:

v Font Utility Introduction

v Font Utility Limitations

v How to Use the Font Utility

v Using the Font Utility Window

v Using the Reference Font Window

v Using the Raster Editor Window

v Using the Vector Editor Window

Font Utility Introduction
The fontutil utility is a font editor that runs under the AIXwindows environment and allows you to create
custom fonts. The font utility uses windows and is menu-driven.

The utility uses a library of fonts that can be selected and modified. This allows you to start editing a
character that looks similar to what you want, rather than using the slower method of drawing a character.

The utility provides two ways to edit fonts: raster editing and vector editing. In raster editing, a display
image is composed of an array of pixels arranged in rows and columns. In vector editing, display images
are generated from coordinate data.

Raster editing uses a lattice-like grid. Each grid unit contains a pixel. A pixel is a picture element, or dot,
on the screen. Together these pixels form a character. By turning these pixels on and off and setting the
pixels to different sizes, you can create a new character or slightly alter an existing character. The raster
editor is called by the fontutil utility to edit font files with the following file name extensions: .snf or .bdf
(that is, files set to SNF_FORMAT or BDF_FORMAT).

Vector editing uses a coordinate grid. You can set points in this grid, and connect the points to form lines.
To create a curve in a character, you connect a series of short, straight lines. Together, all these lines form
a character. The vector editor is called by the fontutil utility to edit font files with the following file name
extensions: .sym or .xgsl (that is, files set to graPHIGS_FORMAT or XGSL_FORMAT).

Raster editing is faster but is somewhat limited in what it can do. Scaling and other geometric
transformations cannot be easily performed in raster editing.

Vector editing is more flexible and allows for more font customization; however, vector editing requires
significant knowledge of XGSL and graPHIGS API fonts. For more information on fonts, see Understanding
graPHIGS API Fonts and Understanding Images in graPHIGS API in the publication entitled The
graPHIGS Programming Interface: Understanding Concepts. For more information on XGSL, see Package
XGSL in the publication entitled AIX Ada/6000 Support Package Reference.

Note: The font packages are not included with the operating system and must be ordered separately.

The main purpose of the fontutil utility is to provide users with the flexibility to do the following:

v Convert raster font files to a vector format (graPHIGS_FORMAT or XGSL_FORMAT) and edit the
characters within the raster font file with the vector editor. Users can also create vector font files that are
based on raster font files.

© Copyright IBM Corp. 1997, 2006 91



v Convert vector font files to a raster format (SNF_FORMAT or BDF_FORMAT) and edit the characters
within the vector font file with the raster editor. Users can also create raster font files that are based on
vector font files.

This flexibility allows both advanced and beginning users to edit and create fonts. The advanced user can
convert simpler raster font files to a vector format, thus providing the capability for significant
customization, while a beginning user can convert the most complex vector font to a raster format, which
then can be edited quickly and easily.

Note: Raster to vector conversion should only be performed by those users who have significant
experience with creating and editing vector font files.

For complete instructions on getting started with the fontutil program, see How to Use the Font Utility.

Font Utility Limitations
Be sure to consider the following limitations when you use the fontutil program:

v For SBCS font files, input and output file formats must be the same and bdf and xgsl formats cannot
be handled.

v For DBCS font files, fontutil is available only for version 3.1-based Kanji font files.

v When you read a font file which has font data whose encodings are -1, they are ignored; fontutil can
neither display them nor save the data.

Note: pcf format font file support is included in version 4.

How to Use the Font Utility

Prerequisite Condition
Before starting the font utility, ensure you are running under the AIXwindows environment.

Note: Many users often change certain visual aspects of an interface in order to suit their individual needs
and taste. However, when using the fontutil utility users must not change, edit, or delete the
Fontutil resource file. For example, attempting to customize the font of this interface may cause
serious problems with the display of menu messages. Therefore, users must not delete the
/usr/lib/X11/fonts/6x13.snf file or change the line defining the fixed font in the
/usr/lib/X11/fonts/fonts.alias file. If any changes are made to the Fontutil resource file, the font
utility program becomes corrupted or does not run at all.

Procedures
To use the font utility perform the following steps:

1. Enter the start-up command.

2. Create a new file or read an old file.

3. Verify the file header information.

4. Convert the current font format (optional).

5. Edit and save the image.

6. Save the file.

7. Quit the utility.

Enter the Start-Up Command
To begin the font utility, enter the following command:

fontutil

92 AIXwindows Programming Guide



This command makes the Font Utility window appear.

Create a New File or Read an Old File
From the Font Utility screen, select the File option from the window menu bar. Choose either Create to
create a font file or Read to read a font file.

Selecting Create displays the File Selection Dialog window.

Specify a font file from which to copy header information, then click on OK or press the Enter key. To
return to the Font Utility window, select Cancel.

Note: On starting the font utility, you must enter a path name or directory where font files can be found.
Enter this path name in the File Filter box in the File Selection Dialog window. Two such path
names are /usr/lib/X11/fonts and /usr/lpp/fonts. The following are examples of files within these
directories that you can use to create a new font file: Bld*.snf, Erg*.snf, Itl*.snf, and Rom*.snf.

If you click on OK, the Header Information window pops up for your file type. Verify the header information
and click on OK or press the Enter key. To return to the File Selection Dialog window, click on Cancel.

If you choose to create a new file but have made changes to another file that you have not saved, you will
be prompted to save the updated font file. Choose OK to update the file, No to close the file and lose your
current work, or Cancel to return to the Font Utility window.

Selecting OK returns you to the File Selection Dialog window.

Enter the name of the file to be saved in the Selection box. (To save a font file, one of the following file
name extensions must be used: .snf, .bdf, .sym, .xgsl.) Then click on OK or press the Enter key. To
return to the Font Utility window, select Cancel.

If you select OK, the Header Information window pops up for your file type. Verify the header information
and click on OK or press the Enter key. To return to the File Selection Dialog window, click on Cancel.

Selecting Read from the Font Utility window displays the File Selection Dialog window.

Choose a file name from the list in the Files box. Then click on OK or press the Enter key. To return to the
Font Utility window, select Cancel. If you select OK, the Header Information window is displayed for your
file type. Verify the header information and click on OK or press the Enter key. To return to the File
Selection Dialog window, click on Cancel.

If you choose to read a font file but have made changes to another file that you have not saved, a window
is displayed that prompts whether to save the updated file. The utility never allows you to open or edit
more than one font file at the same time.

The following file name extensions determine which font editor is used:

.snf Determines that the raster editor is used.

.bdf Determines that the raster editor is used.

.sym Determines that the vector editor is used.

.xgsl Determines that the vector editor is used.

Verify the File Header Information
When you create or read a file, a window pops up to display the header information for the font file you
selected in the File Selection Dialog window. Do not make any changes to the information listed in the
Header Information window; only verify that you chose the type of file you need. If you make an incorrect
choice, you can cancel the verification and choose another font file or you can convert the font format.

Appendix B. Font Utility 93



Convert the Current Font Format (optional)
If you want to change the header information on your new or existing file, make those changes by
selecting the Format suboption from the Extension option in the Font Utility window.

Edit and Save the Image
Use the raster or vector editor to edit and save your image. See Using the Raster Editor Window and
Using the Vector Editor Window for more information.

Save the File
From the Font Utility window menu bar, select the File option and choose the Save suboption.

Note: To save a file, you must use one of the following file name extensions: .snf, .bdf, .sym, .xgsl.

Quit the Utility
From the Font Utility window menu bar, select the Exit option. Select the Exit suboption to leave the font
utility. If you made changes and did not save the file, the utility gives you the option to save the file.

Using the Font Utility Window
Entering the fontutil start-up command displays the Font Utility window. Read the following to learn more
about the Font Utility window and the four main areas found within it:

v Menu Bar

v Control Panel

v Font Display Area

v Message Area

Menu Bar
The menu bar is displayed across the top of the Font Utility window. The menu options displayed are from
left to right: File, Refer, Extension, Information, and Exit.

File
The File option has three suboptions, Create, Read, and Save. These suboptions perform the following
functions:

v Create

The Create suboption allows you to create a new font file. Chosing to create a font file displays the File
Selection Dialog window.

Select one of the font files listed in the Files box from which to copy header information, then click on
OK or press the Enter key. To return to the Font Utility window, select Cancel. If you click on OK, the
Header Information window is displayed for your file type.

Verify the header information and click on OK or press the Enter key. To return to the File Selection
Dialog window, click on Cancel.

If you choose to create a new file but have made changes to another file that you have not saved, you
will be prompted to save any changes to the file.

Choose OK to update the file, No to close the file and lose your current work, or Cancel to return to the
Font Utility window. If you select OK, the File Selection Dialog window is displayed.

Enter the name of the file to be saved in the Selection box. (To save a font file, one of the following file
name extensions must be used: .snf, .bdf, .sym, .xgsl.) Then click on OK or press the Enter key. To
return to the Font Utility window, select Cancel.

If you select OK, the Header Information window pops up for your file type. Verify the header
information and click on OK or press the Enter key. To return to the File Selection Dialog window, click
on Cancel.

v Read

94 AIXwindows Programming Guide



The Read suboption allows you to create a new font file by editing specific characters within an existing
font file. If you choose to read a font file, the File Selection Dialog window is displayed.

Choose a file name from the list in the Files box. The file you choose is displayed in the Selection box.
Click on OK or press the Enter key. To return to the Font Utility window, select Cancel. If you select
OK, the Header Information window is displayed for your file type. Verify the header information and
click on OK or press the Enter key. To return to the File Selection Dialog window, click on Cancel.

If you choose to read a font file but have made changes to another file that you have not saved, you will
be prompted to save any changes to the updated file. The utility never allows you to open or edit two
font files at the same time.

Choose OK to update the file, No to close the file and lose your current work, or Cancel to return to the
Font Utility window.

v Save

The Save suboption saves a font file. When you select the Save suboption, the File Selection Dialog
window is displayed.

Enter the name of the font file you want to save in the Selection box (you can also select the file from
the list in the Files box). To save a font file, one of the following file name extensions must be used:
.snf, .bdf, .sym, .xgsl.

Refer
The Refer option allows you to reference a font file that is different from the one you are editing or
creating. For complete information on the Refer option, see Using the Reference Font Window .

Extension
The Extension option has three suboptions, Codeset, Format, and Size. The Extension suboptions
perform the following functions:

v Codeset

When you select the Codeset suboption, a pulldown menu is displayed. The menu options are PC and
PC16. Click on the code set you want. After the code set is changed, the smallest code font is
displayed in the upper left corner.

v Format

This suboption changes the format of the loaded font. When the Format suboption is selected, the
Format Convert window is displayed. The selections within the Format Convert window perform the
following functions:

Format Convert Function Changes the suffix of the font file name to:
SNF_FORMAT .snf
BDF_FORMAT .bdf
graPHIGS_FORMAT .sym
XGSL_FORMAT .xgsl

v Size

This suboption changes the size of the loaded font. When the Size suboption is selected, the Size
Convert window is displayed.

The Size Convert window lists the current height and width, and gives you two ways to change the size.
You can enter a new height or width in the NEW entry, or you can enter a sizing percentage in the
percent entry. However, you must enter either an actual size or a percent, not both.

Information
The Information option has the Information suboption, which displays the header IBM PC information for
the character set you are editing. There are two different types of font files: raster fonts and vector fonts.
Depending upon the type of font file you are editing, different information window will be displayed in the
Header Information Window.

Appendix B. Font Utility 95



Exit
The Exit option has two suboptions: Cancel and Exit.

The Exit suboption quits the font utility. The Cancel suboption cancels the Exit option and takes the user
back to the Font Utility window.

Control Panel
The control panel runs down the left side of the Font Utility window. The functions available are Copy,
Move, Delete, Edit, Mode, Undo, and Cancel.

Copy
The Copy function copies the specified characters from the Font Utility or Reference Font window. What is
copied depends on the mode that is set.

If the Mode option is set to POINT, you can select and copy only one character. After setting the mode to
POINT and selecting the Copy function, click on the character you want to copy with the left mouse
button. Click the left mouse button again in an empty space in the font display area, and the character you
copied is pasted in that space.

To copy individual characters from the Reference Font window into the Font Utility window, use the Copy
function provided in the Font Utility window. The Reference Font window does not have a control panel.

If the Mode option is set to AREA, select and click on two points (start point and end point) with the left
mouse button. Click the left mouse button a third time at the point you want the selected area to be
positioned, and the area whose range is specified by the start and end points is copied to the third
(destination) point.

If the Mode option is set to TOTAL AREA, the Copy function acts on the entire character set of a font file.
You can copy all the characters from the Reference Font window to the Font Utility window. After setting
the Mode option to TOTAL AREA, go to the Reference Font window and click your left mouse button on
the point in the grid whose coordinates are 0x0. All characters are highlighted to indicate that all
characters are to be copied. Next, go back to the Font Utility window and click the left mouse button in the
0x0 point in the grid in its display area. All the characters from the Reference Font window now also
appear in the Font Utility window.

Move
The Move function moves the specified characters from the Font Utility or Reference Font window. What is
moved depends on the mode that is set.

If the Mode option is set to POINT, you can select and move only one character. After setting the mode to
POINT and selecting the Move function, click on the character you want to move with the left mouse
button. Click the left mouse button again in an empty space in the font display area, and the character you
are moving is pasted in that space.

To move individual characters from the Reference Font window into the Font Utility window, use the Move
function provided in the Font Utility window. The Reference Font window does not have a control panel.

If the Mode option is set to AREA, you can select and click on two points (start point and end point) with
the left mouse button. Click the left mouse button a third time at the point you want the selected area to be
positioned, and the area whose range is specified by the start and end points is moved to the third
(destination) point.

If the Mode option is set to TOTAL AREA, the Move function acts on the entire character set of a font file.
You can move all the characters from the Reference Font window to the Font Utility window. After setting
the Mode option to TOTAL AREA, go to the Reference Font window and click your left mouse button on

96 AIXwindows Programming Guide



the point in the grid whose coordinates are 0x0. All characters are highlighted, indicating that all characters
are to be moved. Next, go back to the Font Utility window and click the left mouse button in the 0x0 point
in the grid in its display area. All the characters from the Reference Font window now appear in the Font
Utility window.

Note: You can copy and move characters within the Font Utility window and from the Reference Font
window to the Font Utility window, but you cannot copy and move characters from the Font Utility
window to the Reference Font window.

Delete
The Delete function removes the specified characters. What is removed depends on the mode that is set.

If the Mode function is set to POINT, select one character to be removed by clicking on it with your left
mouse button. Once the character is highlighted, click your left button again and the character is deleted. If
the Mode option is set to AREA, select and click on two points (start point and end point), and then click
the left mouse button once again; the characters within that area are deleted. If the Mode option is set to
TOTAL AREA and you click the left mouse button in the upper left corner of the display area, all
characters are deleted.

Edit
The Edit function calls the raster or vector editor, depending on the format of the font file (which can be
changed with the Format suboption under the Extension option of the Font Utility window). If the font file
ends with the .snf or .bdf suffix or the font format is changed to SNF_FORMAT or BDF_FORMAT, then
the raster editor is initiated. If the font file ends with the .sym or .xgsl suffix or the font format is changed
to graPHIGS_FORMAT or XGSL_FORMAT, the vector editor is initiated. Click on the Edit function, and
then click on the character you want to edit. The window for the appropriate editor is displayed, and the
selected character is displayed in the editing area.

Mode
The Mode option sets the mode to POINT, AREA, or TOTAL AREA. The selected mode determines how
the other functions operate. You can switch among these three modes by clicking on the Mode button in
the control panel. Each time you click, the next mode is displayed. After the TOTAL AREA mode, the
selection goes back to POINT mode.

Undo
The Undo function undoes the last function selected (for example, Copy or Move). This option is available
only when the last command entered has completed.

Cancel
The Cancel function cancels the currently running command.

Font Display Area
This area is a 10x10 grid square in the center of the Font Utility Window. The image for each character
code is displayed in this area; as many as 256 character images can be displayed at one time. Each
character image in the grid square is displayed after it is translated to the fixed size.

When displaying the character code, bits 0 through 3 represent the vertical line and bits 4 through 7
represent the horizontal line. For example, if CODE is set to 60, the vertical line number is set to 8, and
the horizontal line number is set to A, the code of the font character is 608A.

The font display area has a scroll bar that is located directly below the displayed character set. You can
use the scroll bar to move within the font file to access the character images you want to edit.

Appendix B. Font Utility 97



Message Area
The message area appears across the bottom of the screen and has three lines. The top line lists the font
file that is opened. The second line displays the current mode, code, and set. The bottom line displays any
current messages.

Using the Reference Font Window
Within the menu bar of the Font Utility window there is an option labeled Refer. The Refer option allows
you to reference a font file different from the one you are editing or creating. The Refer option provides
the Reference Font Window, which displays the character set of a font file. You can copy and move
individual characters from this window to the Font Utility window to combine and customize characters
from different font files within one new file.

When you select Refer, the File Selection Dialog window appears. Specify the font file to which you want
to refer, and click on OK or press the Enter key. This displays the Reference Font window, which is a
character grid of the current font. You can now edit the file displayed in the Font Utility window while
referring to the file in the Reference Font window. You can also copy and move characters from the
Reference Font window into the Font Utility window. This allows you to combine characters from different
fonts within one character set.

The Reference Font window consists of a menu bar across the top, a font display area, and a message
area. The font display area displays each character within the font file you specified. The message area
displays the file name and set of the file you specified. The menu bar has two options: Information and
Exit.

The Information option displays the Header Information window for the character set you are referencing.
There are two different types of font files: raster fonts and vector fonts. Depending upon the type of font
file you are referencing, different information window will be displayed in the Header Information Window.

The Exit option has two suboptions: Exit or Cancel. The Exit suboption exits the Reference Font window
and returns to the Font Utility window. The Cancel suboption cancels the Exit command and returns to the
Reference Font window.

Using the Raster Editor Window
The Raster Editor window is the window for editing character images with the raster editor. The raster
editor is called by the font utility to edit characters within font files that have a suffix of .snf or .bdf (are set
to SNF_FORMAT or BDF_FORMAT).

When you select the Edit function and a character from the display area in the Font Utility window (and
are working with a raster font file), the Raster Editor window is displayed. Read the following to learn more
about the Raster Editor window and the four main areas found within it:

v Menu Bar

v Control Panel

v Editing Area

v Message Area

Menu Bar
The menu bar is displayed across the top of the window. The menu options displayed are, from left to
right, Extension, Information, Entry, and Exit.

98 AIXwindows Programming Guide



Extension
The Extension option has two suboptions, Frame Edit and Refer Point. Selecting the Frame Edit
displays the Frame Edit window. Frame Edit changes the size of the frame that encloses the character
image in the editing area.

The TOP, BOTTOM, RIGHT, LEFT, and WIDTH of the frame can be changed. Click on the item that you wish to
change, and enter the new value. Then click on OK or press the Enter key. The editing area is changed
accordingly. To return to the Raster Editor window, click on Cancel.

The Refer Point suboption defines a reference point in the editing buffer. The editing buffer provides extra
space in which to create and edit character images. Use the scroll bars surrounding the editing area to
move the character box visible in the editing buffer. Position the character box so that it encloses a blank
area. The area that is enclosed in the character box is the area that appears in the editing area. So, you
can turn pixels on and off, and use all the other functions found in the control panel to create a new
character image. You can also use the Pickup function, the < (previous code) function, and the > (forward
code) function to reference an established character that you want to edit.

The Refer Point suboption is useful when creating or editing new characters within the editing buffer. For
example, select Refer Point (on condition) and a large dot appears over the left corner of the editing area.
This point is also visible in the editing buffer. If you select Refer Point again, pointing is stopped (off
condition). As you create several new characters and move around within the buffer, you can use
reference points to help you guide the character box so that it encloses each character image as it did
when you originally created or edited it.

Information
If you click on the Information option, you can look at the character information of the character image
displayed in the editing area. The STARTCHAR, ENCODING, SWIDTH, DWIDTH, and BBX fields are
shown.

Entry
The Entry option has one suboption, Image Entry.

The Image Entry suboption saves the image of the character in the editing area to the Font Utility window.

The code of the character image displayed in the editing area automatically appears in the Selection box
when the window is displayed. Enter the code that appears in the Selection box by clicking OK or
pressing the Enter key. To cancel the function and return to the Raster Editor window, click on Cancel. If
you enter the code, a window is displayed that prompts whether the character data for the character you
are saving has changed.

Select Yes to save the edited version of the character image, or select No to save the image in its original
form.

Exit
The Exit option has two suboptions: Exit and Cancel.

The Exit suboption exits the raster editor. If you have changed the character image displayed in the
editing area and have not saved it, you will be promted to save your work.

Select Yes to save your changes, No to close the Raster Editor window and lose your current work, or
Cancel to return to the Raster Editor window. If you select Yes, you will be promted to specify the code of
the altered character image.

The code of the character image displayed in the editing area automatically appears in the Selection box
when the window is displayed. Enter the code that appears in the Selection box by clicking OK or
pressing the Enter key. To cancel the function and return to the Raster Editor window, click on Cancel.

Appendix B. Font Utility 99



If you enter the code, you will be promted asking whether the character data for the character you are
saving has changed. Select Yes to save the edited version of the character image. If you select No, the
window in which you enter the character code is displayed once again. You can cancel the Exit option
from this window.

The Cancel suboption cancels the Exit option and returns to the Raster Editor window.

Control Panel
The control panel runs down the left side of the Raster Editor window and has several functions, which
appear in the following order:

Clear
The Clear function clears an area in the editing area or the editing buffer. What is cleared depends on the
mode that is set. If the Mode option is set to AREA, select and click on two points (starting bit and ending
bit) with the left mouse button. Click the left mouse button a third time and the square whose diagonal
points are the starting bit and ending bit is cleared. If the Mode option is set to POINT, click on any bit in
the editing area with the left mouse button and that single bit is cleared. If the Mode option is set to
TOTAL AREA, click on any bit in the editing buffer with the left mouse button and the entire buffer (as well
as the editing area) is cleared.

Set
The Set function fills an area in the editing area or the editing buffer. What is filled depends on the mode
that is set. If the Mode option is set to AREA, select and click on two points (starting bit and ending bit)
with the left mouse button. Click the left mouse button a third time and the area whose diagonal points are
the starting bit and ending bit is filled. If the Mode option is set to POINT, click on any bit in the editing
area with the left mouse button and that single bit is filled. If the Mode option is set to TOTAL AREA, click
on any bit in the editing buffer with the left mouse button and the entire buffer (as well as the editing area)
is filled.

Reverse
The Reverse function changes an area displayed in the editing area or the editing buffer to reverse video.
What is changed to reverse video depends on the mode that is set. If the Mode option is set to AREA,
select and click on two points (starting bit and ending bit) with the left mouse button. Click the left mouse
button a third time and the square whose diagonal points are the starting bit and ending bit is changed to
reverse video. If the Mode option is set to POINT, click on any bit in the editing area with the left mouse
button and that single bit is displayed in reverse video. If the Mode option is set to TOTAL AREA, click on
any bit in the editing buffer with the left mouse button and the buffer (as well as the editing area) is
displayed in reverse video.

Copy
The Copy function copies the specified range of bits in the editing area. Set the Mode option to AREA,
select and click on two points (starting bit and ending bit) with the left mouse button. Click the left mouse
button a third time at the point you want the selected area to be positioned. The area whose range is
specified by the start and end points is copied to the third (destination) point.

Overwrite
The Overwrite function copies and overwrites the specified range of bits in the editing area. Set the Mode
option to AREA, select and click on two points (starting bit and ending bit) with the left mouse button. Click
the left mouse button a third time at the point you want the selected area to be positioned. The area
specified by the starting bit and ending bit is copied to the third (destination) point and overwrites what
may already exist at the destination.

Move
The Move function moves the specified range of bits in the editing area. Set the Mode option to AREA,
select and click on two points (starting bit and ending bit) with the left mouse button. Click the left mouse

100 AIXwindows Programming Guide



button a third time at the point you want the selected area to be positioned; the area specified by the
starting bit and ending bit is moved to the third (destination) point.

< (Previous Code)
The < (previous code) function retrieves the previous code of the font you are editing. That is, each time
you click on the < (less than sign) with the left mouse button, the character that precedes the one you are
editing is displayed in the editing area. This function allows you to continue editing character images within
the same font file without having to return to the Font Utility window to select each character individually.

If you have changed the displayed character image and do not perform an Image Entry before you select
the < (previous code) function, you will be promoted to save your changes.

If you select No, the displayed character is not saved and the image changes to its original design. If you
select Yes, another window is displayed that prompts you to specify the code for the character image.
Once the code is specified and you verify that the character data has changed, the edited version of the
character image is saved.

> (Forward Code)
The > (forward code) function retrieves the forward code of the font you are editing. That is, each time you
click on the > (greater than sign) with the left mouse button, the character that follows the one you are
editing is displayed in the editing area. This function allows you to continue editing character images within
the same font file without having to return to the Font Utility window to select each character individually.

If you have changed the displayed character image and do not perform an Image Entry before you select
the > (forward code) function, you will be promted to save your changes.

If you select No, the displayed character is not saved and the image changes to its original design. If you
select Yes, another window is displayed that prompts you to specify the code for the character image.
Once the code is specified and you verify that the character data has changed, the edited version of the
character image is saved.

Pickup
The Pickup function retrieves the specified character from the Font Utility window. This allows you to use
a character with font characteristics similar to those you want and to edit that character.

To pick up a character from the Font Utility window, click on the Pickup function in the Raster Editor
window and then click on the character you want in the Font Utility window. The character is displayed in
the editing area.

If you have made any changes to the character image originally displayed and do not perform an Image
Entry before you select the Pickup function, you will be promted to save your changes.

If you select No, the character image is not saved and the image will change to its original design. If you
select Yes, another window is displayed that prompts you to specify the code for the character image.
Once the code is specified and you verify that the character data has changed, the edited version of the
character image is saved.

Mode
The Mode option changes the mode. The mode that is set determines how the other functions operate.
Three values can be set: POINT, AREA, or TOTAL AREA. You can switch among these three modes by
clicking through the selections with the left mouse button. Each time you click, the next mode is displayed.
After the TOTAL AREA mode, the selection goes back to POINT mode.

Undo
The Undo function undoes the last function selected (for example, Copy or Move). This option is available
only when the last command entered has completed.

Appendix B. Font Utility 101



Cancel
The Cancel function cancels the currently running command.

Editing Area
This area is a lattice-like grid in the center of the Rasterizer Editor window. Each grid can contain a pixel,
which can vary in size. The editing area has two scroll bars, moving buttons (located at either end of the
scroll bars), a base line, left line, and right line.

To the right of the editing area is the editing buffer area. The editing buffer area provides extra space in
which to create and edit character images and displays the actual size of character images. Use the scroll
bars surrounding the editing area to move the character box visible in the editing buffer. The area that is
enclosed in the character box is the area that appears in the editing area.

The moving buttons move the focus of the editing area to the right or left, up or down, pixel by pixel. This
becomes important when editing characters that may be too large to be displayed (in their entirety) within
the screen limitations of the editing area.

The base line emphasizes the ascent and descent SNF parameters. The left line emphasizes the left SNF
parameter, and the right line emphasizes the right SNF parameter.

In the editing area, the mouse buttons function as follows: the left button turns the pixel on (fills the pixel),
the middle button acts as a toggle switch, and the right button turns the pixel off (clears the pixel).

Message Area
The message area appears across the bottom of the screen and has two lines. The top line lists the
current mode, code, and set. The bottom line displays any current messages.

Using the Vector Editor Window
The Vector Editor window is the window for editing character images with the vector editor. The vector
editor is called by the font utility to edit characters within font files that have a suffix of .sym or .xgsl (are
set to graPHIGS_FORMAT or XGSL_FORMAT).

When you select the Edit function and a character from the display area in the Font Utility window (and
are working with a vector font file), the Vector Editor window is displayed. Read the following to learn more
about the Vector Editor window and the four main areas found within.

v Menu Bar

v Control Panel

v Editing Area

v Message Area

Menu Bar
The menu bar appears across the top of the window. The menu options are (left to right) Extension,
Information, Entry, and Exit.

Extension
The Extension option has one suboption, Frame Edit. The Frame Edit suboption changes the frame
information for the character in the editing area.

The TOP, BOTTOM, RIGHT, LEFT, and WIDTH of the frame can be changed. Click on the item that you
wish to change, and enter the new value. Then click on OK or press the Enter key. The editing area will
be changed accordingly. To return to the Vector Editor window without making changes, click on Cancel.

102 AIXwindows Programming Guide



Information
Click on the Information option to view the character information of the character image displayed in the
editing area. The FLAGS, TOP, BOTTOM, RIGHT, LEFT, ASCII Code, and EBCDIC Code fields are
shown.

Entry
The Entry option has one suboption, Image Entry. The Image Entry suboption saves the image of the
character in the editing area to the Font Utility window. The code of the character image displayed in the
editing area automatically appears in the Selection box when the window is displayed. Enter the code that
appears in the Selection box by clicking OK or pressing the Enter key. To cancel the function and return
to the Vector Editor window, click on Cancel. If you enter the code, you are prompted to save any
character data that may have changed.

Select Yes to save the edited version of the character image, or select No to save the image in its original
form.

Exit
The Exit option has two suboptions: Exit and Cancel.

The Exit suboption exits the vector editor. If you have changed the character image displayed in the
editing area and have not saved it, you will be prompted to save any changes.

Select Yes to save your changes, No to close the Vector Editor window and lose your current work, or
Cancel to return to the Vector Editor window. If you select Yes, you will be prompted to specify the code
of the altered character image.

The code of the character image displayed in the editing area automatically appears in the Selection box
when the window is displayed. Enter the code that appears in the Selection box by clicking OK or
pressing the Enter key. To cancel the function and return to the Vector Editor window, click on Cancel.

Control Panel
The control panel runs down the left side of the window and has several functions, displayed in the
following order:

Line
The Line function forms or edits a straight line in the editing area. The mouse functions as follows:

v If you want to draw a line, use the left button to form an end point. A line follows this end point. You can
create another end point at the end of the line with the left mouse button.

v If at this point you do not want the line to continue, click the center button. The center button ends the
line.

v If you decide to change the direction of the line you have drawn, click the right mouse button over the
center of the line. For example, if a line is angled to the left, it is changed to angle to the right.

Move
The Move function moves the specified area within the editing area. What is moved depends on the mode
that is set. If the Mode option is set to AREA, select the area you want to move by holding down the left
mouse button and moving the mouse so the area is enclosed in the box that is displayed. Once the area
you want to move is enclosed, release the left mouse button, and then click it one more time. The lines in
the area selected now move as you move the mouse. Click the left mouse button when the lines are in the
position you want. If the Mode option is set to POINT, click on any single end point and move the mouse
to reposition the end point. Click the left mouse button when the end point is positioned where you want it.

Copy
The Copy function copies the specified area within the editing area. What is copied depends on the mode
that is set. If the Mode option is set to AREA, select the area you want to copy by holding down the left

Appendix B. Font Utility 103



mouse button and moving the mouse so the area is enclosed in the box that is displayed. Once the area
you want to copy is enclosed, release the left mouse button and click it one more time. The lines in the
area selected are now copied and move as you move the mouse. Click the left mouse button when the
lines are in the position you want. You can copy individual lines by setting the Mode option to POINT and
clicking on the middle of any line with the left mouse button. The line is copied and you can position it by
clicking the left mouse button.

Delete
The Delete function removes specified lines from the editing area. What is removed depends on the mode
that is set. If the Mode option is set to AREA, select the area you want to delete by holding down the left
mouse button and moving the mouse so the area is enclosed in the box that is displayed. Once the area
you want to delete is enclosed, release the left mouse button and click it one more time. The lines in the
area selected are deleted. If the Mode option is set to POINT, click on any end point in the screen of the
editing area with the left mouse button and that endpoint is deleted. If the Mode option is set to TOTAL
AREA, click in the editing buffer area with the left mouse button and the lines there (as well as in the
editing area) are deleted.

Resize
The Resize function allows you to reduce or enlarge specified lines in the editing area. Set the Mode
option to AREA, and select the area you want to resize by holding down the left mouse button and moving
the mouse so the area is enclosed in the box that is displayed. Once the area you want to resize is
enclosed, release the left mouse button and click it one more time. The lines in the area selected now
become smaller or larger (depending on the starting point you select) as you move the mouse. When the
lines are the size you want, click the left mouse button to set them at that size.

< (Previous Code)
The < (previous code) function retrieves the previous code of the font you are editing. That is, each time
you click on the < (less than sign) with the left mouse button, the character that precedes the one you are
editing is displayed in the editing area. This function allows you to continue editing character images within
the same font file without having to return to the Font Utility window to select each character individually.

If you have changed the displayed character image and do not perform an Image Entry before you select
the < (previous code) function, you will be prompted to save any changes you made.

If you select No, the displayed character is not saved and the image changes to its original design. If you
select Yes, another window is displayed that prompts you to specify the code for the character image.
Once the code is specified and you verify that the character data has changed, the edited version of the
character image is saved.

> (Forward Code)
The > (forward code) function retrieves the forward code of the font you are editing. That is, each time you
click on the > (greater than sign) with the left mouse button, the character that follows the one you are
editing is displayed in the editing area. This function allows you to continue editing character images within
the same font file without having to return to the Font Utility window to select each character individually.

If you have changed the displayed character image and do not perform an Image Entry before you select
the > (forward code) function, you will be prompted to save any changes you have made.

If you select No, the displayed character is not saved and the image changes to its original design. If you
select Yes, another window is displayed that prompts you to specify the code for the character image.
Once the code is specified and you verify that the character data has changed, the edited version of the
character image is saved.

Mode
The Mode option changes the mode. The mode that is set determines how the other functions operate.
Three values can be set: POINT, AREA, or TOTAL AREA. You can switch among these three modes by

104 AIXwindows Programming Guide



clicking through the selections with the left mouse button. Each time you click, the next mode is displayed.
After the TOTAL AREA mode, the selection goes back to POINT mode.

Undo
The Undo function undoes the last function selected (for example, Copy or Move). This option is available
only when the last command entered has completed.

Cancel
The Cancel function cancels the currently running command.

Editing Area
This area is a coordinate grid in the center of the Vector Editor window. End points can appear on or off
each coordinate. The editing area has two scroll bars, moving buttons (located at either end of the scroll
bars), a cap line, a base line, and a center line.

To the right of the editing area is the editing buffer area. The editing buffer area provides extra space in
which to create and edit character images and displays the actual size of character images. The editing
buffer area contains a character box. The area that is enclosed in the character box is the same area that
appears in the editing area.

Use the scroll bars surrounding the editing area to move the character box in the editing buffer. You can
also move the character box, and thus change the focus of the editing area, by clicking on the top left
corner of the box with the left mouse button. Now you can position the character box anywhere within the
editing buffer area by clicking the left mouse button. After positioning the character box with either method,
you can return to the editing area and create or edit a new character.

The moving buttons move the focus of the editing area in single increments to the right or left, or up or
down. This becomes important when editing characters that may be too large to be displayed (in their
entirety) within the screen limitations of the editing area. The base line, cap line, and center line are
parameters for graPHIGS API character images.

Message Area
The message area appears across the bottom of the screen and has two lines. The top line lists the
current mode, code, and set. The bottom line displays any current messages.

Appendix B. Font Utility 105



106 AIXwindows Programming Guide



Appendix C. Display Power Management

Display Power Management (DPM) is available for display devices that conform to the VESA Display
Power Management Signaling standard, when attached to graphics display adapters that also support that
standard.

The VESA standard defines four levels of power consumption:

v Full on

v Standby

v Suspend

v Off

In full-on mode, the display is in its full power (normal) state with no power savings. The standby, suspend,
and off states are the low-power states in order of increasing power savings.

Note: Refer to your display and graphics display adapter product information to determine if your products
support the DPM function.

You can define when a supporting display enters each of the power management states through SMIT.
Select Devices from the main menu, then Graphic Display, and then Display Power Management. In
this dialog there are three time-out values corresponding to each of the low-power states. These time-outs
define the interval from the last operator input until the corresponding power management state is entered.

The default values for these time-outs are:

Standby 20 minutes
Suspend 30 minutes
Off 40 minutes

The DPM function is supported in both the LFT and graphics modes. In AIXwindows mode, changes to the
time-out values in ODM take effect after the next time the screen saver is deactivated, unless the user has
specified power management options on the X Server command line. For LFT mode, changes to the
time-out values take effect after the next reboot.

For displays not supporting VESA power management, the AIXwindows screen saver function continues to
provide the screen-saving function. A screen-blanking function has been added to LFT mode to reduce
burn-in and thus extend the life of the display.

AIXwindows users can also override the DPM time-outs with the -pm flag when AIXwindows is started.
The -pm flag allows three parameters, corresponding to the three time-out values, for example:
-pm t1 t2 t3

The time-out values are specified in minutes. The command:
xinit -s 10 -pm 20 30 40

indicates that AIXwindows is to be run with the screen saver activated after 10 minutes and the display to
be put in standby state at 20 minutes, suspend state at 30 minutes, and the off state at 40 minutes from
the last detected input event.

The DPM time-out function is disabled if either the screen saver is disabled (-s 0) or the first DPM
(standby) time-out is set to 0 (zero).

© Copyright IBM Corp. 1997, 2006 107



108 AIXwindows Programming Guide



Appendix D. Setting Up X11 Graphic Input Devices (LPFKeys,
Dials, Tablet, Spaceball)

The X11 graphic input devices are supported by X11, GL, graPHIGS, and OpenGL. To set up X11 graphic
input devices, refer to the procedure for the appropriate device.

Tablet
v Attach the graphics tablet to either the tablet port or the serial ports of your machine. The tablet port is

not available on all machines. When a tablet port is present, it is located next to the mouse and
keyboard ports. On some systems the tablet port is labeled with a T. If the graphics tablet is attached to
a serial port, you may need to add a tty to the system. To add a tty:

1. Enter smit devices

2. Select TTY.

3. Select Add a TTY.

4. Select the serial port to which the graphics tablet is connected.

v Install the following device-dependent software package for the graphics tablet:

AIXwindows Graphics Input Adapter Software

Dials and LPFKeys
v Attach the buttons (lighted programmable function keys or LPFKeys) and dials to either the GIO

(Graphics I/O) adapter or the serial ports of your machine. If the dials and LPFKeys are attached to a
serial port, you may need to add a tty to the system. To add a tty:

1. Enter smit devices

2. Select TTY.

3. Select Add a TTY.

4. Select the serial port to which the dials and LPFKeys are connected.

v Install the following device-dependent software packages for dials and LPFKeys:

– AIXwindows Graphics Input Adapter Software

– AIXwindows Serial Graphics Input Adapter Software

v When you reboot your system, the dials and LPFKeys that are attached to the GIO adapter should be
configured automatically. You can also configure them using SMIT.

Note: Serially-attached dials and LPFKeys must be configured using SMIT before they are used for the
first time. They are configured automatically on subsequent reboots.

To configure dials and LPFKeys:

1. Enter smit devices

2. Select Graphic Input Devices.

3. Select Dials/LPFKeys.

4. Select Add a Dials/LPFKeys.

5. Select the device type to configure.

6. Select the device’s attached location (for example, gio0 or tty0).

© Copyright IBM Corp. 1997, 2006 109



Spaceball
Attach the Spaceball to the serial port of your machine. The Spaceball requires a special serial cable and
connector that provides AC needed by the Spaceball.

Note: Some systems may be configured differently. See the information that came with your Spaceball.

v After connecting the Spaceball with the special serial cable, you may need to add a tty to the system.
To add a tty:

1. Enter smit devices

2. Select TTY.

3. Select Add a TTY.

4. Select the serial port to which the Spaceball is connected.

v Install the following device-dependent software packages for the Spaceball:

– AIXwindows Graphics Input Adapter Software

– AIXwindows 6094-030 Spaceball 3-D Input Device Software

v To add the actual Spaceball device:

1. Enter smit devices

2. Select Graphic Input Devices.

3. Select Spaceball.

4. Select Add Spaceball.

v You may need to reset the Spaceball by pressing the following buttons on the Spaceball:
1, 1, 2, 2, 3, 5, 6, 7, 8

110 AIXwindows Programming Guide



Appendix E. The X Virtual Frame Buffer

This chapter discusses the X Virtual Frame Buffer, an AIX feature that allows an application to render into
the main memory of the computer instead of the hardware graphics adapter. This feature is also related to
the hardware, because it can fully or partially replace the hardware.

Overview
The AIX X server has been enhanced to support the X Virtual Frame Buffer technology. The X Virtual
Frame Buffer (XVFB) allows the X server to initialize and run without the presence of any physical
graphics adapter. In the past, the X server required one or more graphics adapters in order to run and
would exit with an error if none were present.

Furthermore, in a standard X Window System environment, each 3D application running on a system must
share the same hardware frame buffer. While this is acceptable for viewing clients locally, it is not
acceptable for viewing clients remotely when the graphics windows overlap in the screen space. This
overlap causes rendering to be serialized and slows overall performance.

Using the XVFB, each application has a private 3D rendering area. Because there is no window overlap,
rendering can take place in parallel. The downside for any locally attached display is that you cannot see
the image on the screen; it must be displayed over the network to be viewed.

In the XVFB environment, an application renders images on a server machine. These images are then
distributed to viewing stations on a network, saved to a database, or used in some other way. The XVFB
environment is convenient for viewing 3D graphics on a low-end system for casual users.

The XVFB software is supported by AIX 4.3 or later. The XVFB is also supported on the RS/6000 SP.
Install the X11.vfb package, which requires approximately 1 MB of disk space. Make sure to reboot the
system after installing this package.

Installing the XVFB
This section describes how to install the software for the XVFB on various versions of AIX.

Note: For all versions of AIX, a reboot is required after XVFB is installed before it can be used.

AIX 4.3
The XVFB for AIX 4.3 is installed from the following fileset:

v U454163 - OpenGL.OpenGL_X.dev.vfb.04.03.0000.0000

v U454162 - X11.vfb.04.03.0000.0000

Two PTFs are needed to fix a window resizing problem, but because they are not available, you must
migrate to AIX 4.3.1 or later to use the XVFB with AIX 4.3 .

If the PTF U452591 is installed, CATweb Navigator Version 1 runs successfully.

v U452591 - OpenGL.OpenGL_X.rte.soft.4.3.0.1

AIX 4.3.1
The XVFB for AIX 4.3.1 is installed from the AIX 4.3.1 product CDs. Install the following filesets:

v OpenGL.OpenGL_X.dev.vfb.04.03.0001.0000

v X11.vfb.04.03.0001.0000

© Copyright IBM Corp. 1997, 2006 111



Two PTFs are needed to fix a window resizing problem and are available on fixdist:

v U456096 - OpenGL.OpenGL_X.dev.vfb.4.3.1.1

v U456079 - OpenGL.OpenGL_X.rte.soft.4.3.1.1

AIX 4.3.2
The XVFB for AIX 4.3.2 is installed from the AIX 4.3.2 product CDs. Install the following filesets:

v OpenGL.OpenGL_X.dev.vfb.04.03.0002.0000

v X11.vfb.04.03.0001.0000

AIX 4.3.3
The XVFB for AIX 4.3.3 is installed from the AIX 4.3.3 product CDs. Install the following filesets:

v OpenGL.OpenGL_X.dev.vfb.04.03.0003.0000

v X11.vfb.04.03.0003.0000

To get 8-bit pseudocolor support, install the following PTF, which is available on fixdist:

v U474006 - 4330-06 Recommended Maintenance for AIX 4.3.3

AIX 5.X
The XVFB for AIX 5.X is installed from the AIX 5.X product CDs. Install the following filesets substituting
the X with the actual version number:

v OpenGL.OpenGL_X.dev.vfb.05.0X

v X11.vfb.05.0X

Starting the XVFB
The XVFB is loaded into the X server with the -vfb flag:
/usr/bin/X11/X -force -vfb -x abx -x dbe -x GLX :n &

where n is the display number you wish to have associated with this instance of the XVFB. This starts the
X server without using any installed graphics adapter and loads the OpenGL extensions to the X server.

The xinit command, which starts both the X server and the window manager, can also be used. The xinit
command looks for the display number immediately following the -- . If it finds no display number in this
position, it uses the default display.
/usr/bin/X11/xinit -- :n -force -vfb -x abx -x dbe -x GLX &

The syntax of the xinit command used for starting XVFB is the same as that used for starting a normal
Xserver. For more information, see the xinit command in the AIX Commands Reference. The general form
of this command is:
xinit [ [ Client ] Options ] [ -- [ Server ] [ Display ] Options ]

Where Options for XVFB would need to include -vfb -force unless these flags were contained in the
xserverrc Server file. Note that all the commands listed need to be on a single line.

For example, to start XVFB on display 11 using the default xinitrc and xserverrc files, type:
xinit -- :11 -vfb -force &

or, to start XVFB on display 11 using other client and server options, type:
xinit /Pathname/Client_Filename -- /Pathname/Server_Filename :11 -vfb -force &

112 AIXwindows Programming Guide



Note: The display specifier, Display, must precede the Options specifier. It will follow Server unless Server
is not specified in which case it will follow the --.

You can specify a window manager to use with XVFB. To start mwm with the -multiscreen parameter, the
command line would be similar to the following:
/usr/lpp/X11/bin/xinit /usr/lpp/X11/bin/mwm -multiscreen -- :n -vfb -force -x abx -x dbe -x GLX &

If you need to start X with a window manager from the inittab, precede the command line with
Xvfb:2:once: or Xvfb:2:respawn: as shown by the example below:
Xvfb:2:once:/usr/lpp/X11/bin/xinit /usr/lpp/X11/bin/mwm -- :n -vfb -force -x abx -x dbe -x GLX &

If you want to start the XVFB server by itself from the inittab with no window manager or default client,
you can use something like the following:
Xvfb:2:once:/usr/lpp/X11/bin/X :n -vfb -force -x abx -x dbe -x GLX &

The respawn entry causes the XVFB to start at system boot time and restart automatically if the server
exits for any reason. The once entry causes the XVFB to start at system boot only.

You can run more than one X server at a time, with the following restrictions:

v You cannot use the COSE Desktop.

v You may use multiple instances of the XVFB X server.

v You can use only a single instance of the X server running to a graphics adapter.

If you have a system with a graphics adapter, and you want to run one or more XVFB X servers as well as
an X server to your graphics adapter, do the following:

1. Start your X server to the graphics adapter:
/usr/bin/X11/xinit

2. From an xterm/aixterm, start your XVFB server:
/usr/bin/X11/X -vfb -x GLX -x abx -x dbe -force :n &

The display number n needs to be other than the one used with the graphics adapter.

Starting with technology level 4330-06, the XVFB can be started with depth 8 or depth 24 (24 is the
default). To specify depth 8, include -d 8 on the command line. If the depth is 8, the colorclass will be 3
(pseudocolor). If the depth is 24, the colorclass will be 4 (truecolor). These are the only colorclasses
supported for XVFB. Depth 8 is not supported for DirectSoft OpenGL.

Note: DirectSoft OpenGL does not support an 8-bit visual. An attempt to load the GLX extension for
an XVFB with depth 8 will fail and an error will be posted in the xlogfile file.

To change the screen dimensions, add the following at the end of the command line used to start the
XVFB:
-I -screen S WxHxD

where W, H, and D are width, height, and depth and S is the screen number. For example, to set
1600x1200 at a depth of 8 bits for screen 0 and display 11 (an arbitrary number), the complete command
line would be as follows:
X :11 -vfb -force -x abx -x dbe -x GLX -I -screen 0 1600x1200x8 &

Only 8 and 24 bit depths are supported. The default screen dimensions are hard-coded at 1280x1024x24.
The actual values can be changed as described above. The -dpi parameter is not supported. For a
physical display, resolution in dpi is fixed by the dimensions in pixels (for example, 1280x1024) and the
dimensions in inches. If you want to change the resolution, change the dimensions in pixels. A vfb display
has no physical dimensions in inches associated with it. It can emulate a display of any physical size with
any resolution (within bounds) by setting the dimensions in pixels as appropriate.

Appendix E. The X Virtual Frame Buffer 113



The -sme option has been added in AIX 5.3. If you have a system with a graphics adapter, you can run
your X server with both the XVFB and the default graphics adapter where the XVFB display will be the
primary display. Replace -vfb option with the -sme option and remove :n.
/usr/bin/X11/X -force -sme -x abx -x dbe -x GLX &

The -sme option is not compatible with +xinerma option.

Testing the XVFB
Because you cannot see the frame buffer when using XVFB, it is difficult to confirm everything is working
correctly. Fortunately, several X clients ship with AIX that can be used to query and view window contents,
and can be used to help verify that XVFB is rendering the correct images. These clients include xwininfo,
xwd, and xwud.

Verifying that XVFB is Being Used
To verify that an X server is running with the XVFB, use the following command:
/usr/lpp/X11/Xamples/bin/xprop -display sysname:n -root | grep VFB
XVFB_SCREEN(STRING) = "TRUE" <== indicates XVFB is being used

where sysname is the system name and n is the display number for which you are inquiring.

Verifying that XVFB is Working
If you are unsure whether XVFB is installed and started correctly, use the following method to test XVFB.
Your system must be on a network and you need access to another system (with a screen) to view the
contents of the XVFB.

1. On the XVFB system, start the X server using the -vfb flag:
/usr/lpp/X11/bin/X -force -vfb -x GLX -x abx -x dbe :n &

2. On the XVFB system, run the xclock client program:
xclock -display :n &

3. On the other system, make sure X is running and that clients can connect:
xhost +

4. On the XVFB system, find the window ID for the xclock client:
xwininfo -root -tree | grep xclock

The first number (0x12345678) is the window ID.

5. On the XVFB system, use xwd/xwud to display the client window of the XVFB system on the other
system.
xwd -id 0x12345678 | xwud -display othersystem:0.0

An image of the xclock you started on the XVFB system displays on the other system.

Implementing XVFB in Application Code
XVFB allows developers to write Web-based 3D graphics applications for an RS/6000 server without the
need of a 3D graphics adapter. In most environments, XVFB-enhanced applications can achieve
near-linear scalability by adding processors to multiple-processor systems, because each client can render
into its own frame buffer without interaction with the X server. Users viewing data at client systems receive
the benefit of XVFB with no changes to software or invocation methods to applications. For an application
to operate in a XVFB environment, the application must be enhanced in the following way:

1. To extract a rendered image from a rendering server:

Extract or retrieve the image to be displayed from the rendering server. Typically, an application would
do an XGetImage for X applications or a glReadPixels for OpenGL applications. The application

114 AIXwindows Programming Guide



decides the frequency and type of actions that will result in the extraction of the image from the
rendering server. One criteria might be each time the buffer is swapped using the XdbeSwapBuffers
or glXSwapBuffer subroutine.

2. To send commands to a remote application on a server platform:

To give the application input to perform, such as opening files or transforming objects, there should be
a method to send the application input from a remote source. This can be a command language, a
socket connection, interaction with an HTTP server, or some other type of communication services.
The XRecord and XTest extensions can be used to send events to the X server and communicate
with the application through traditional X events.

3. To display an image on a display station:

The XVFB environment should contain a method to display the rendered image on the display station.
The method of display of the extracted image is at the discretion of the programmer. If the display
station is an AIX workstation executing an AIXwindows X server, the extracted image could be
displayed using the xwud command. The xwud command takes an image in the xwd format, creates a
window, and does an XPutImage to display the extracted image.

More sophisticated methods could include image compression and Java display applets. The
advantage of a Java display applet is that the image could be displayed on a variety of platform types.

Applications can also check for the value of the XVFB_SCREEN property to determine if they are
running with the XVFB. The following code shows how this can be done:
int isXVFB(Display *display,Screen screen)
{

Atom atom,actual_type;
int actual_format,status;
unsigned long nitems,bytes_after;
unsigned char *prop;
atom = XInternAtom(display,"XVFB_SCREEN",True);
if (atom == None)

return False;
status = XGetWindowProperty(display,RootWindow(display,screen),
atom,0,100,False,atom,&actual_type,&actual_format,&nitems,
&bytes_after,&prop);
if (strcmp((char*)prop,"TRUE") == 0)

return True;
return False;

}

Working with the XVFB
The XVFB works by providing an X Device-Dependent X (DDX) layer that drives a software graphics
adapter. The frame buffer is stored in system memory and all graphics processing (lines, polygons, text,
and so on) is done in the software using the system CPU.

The XVFB is intended to be used in a ″rendering server″ environment. With XVFB, X applications can run
and render images, and the images can be queried back into the application for saving to a file,
distributing across the network, saving to a database, and so on. In this mode, the X application is not
being used directly by a user in an interactive way. Instead, the X application is being driven remotely as a
rendering server.

With no physical graphics device, no RAMDAC (random access memory digital-to-analog converter) exists
to generate RGB signals. Therefore, it is impossible to connect a monitor to your system and view the
contents of the X server Virtual Frame Buffer. This situation is a good solution for rendering server
environments, where the added expense of a physical graphics adapter and display are not required.
When you cannot see the X frame buffer directly, it does make debugging your application more difficult. It
is suggested that applications be developed with a physical graphics adapter and then ported to the XVFB.
X client tools like xwininfo, xwd, and xwud can be used to help verify your application is running correctly
with the XVFB.

Appendix E. The X Virtual Frame Buffer 115



Input devices in the XVFB environment are not required. Because you cannot see the frame buffer,
moving the mouse around and typing on the keyboard are not very useful. Rendering server applications
are driven remotely with direct socket communication, interaction with an HTTP server, through CORBA
connections, message passing interface (MPI), or other methods. Most applications need modifications in
order to be controlled remotely for a rendering server environment.

OpenGL is currently supported with the XVFB; however, PEX, GL 3.2, and graPHIGS are not.

DirectSoft OpenGL and the XVFB
DirectSoft OpenGL (DSO) has been implemented to work with the XVFB and was designed specifically to
enhance CATweb server performance by:

v Eliminating extraneous interprocess communication

v Eliminating process context-switching overhead

v Making rendering and image reading more direct and efficient.

DSO is a pure software implementation of OpenGL that runs as a direct OpenGL Context. Therefore, all of
the CPU-intensive OpenGL work (3D rendering) is part of the application process, not part of the X server
process. By running direct, all of the interprocess communications with the X server are eliminated, making
3D rendering much more efficient. As a result, the AIX operating system does not have to perform context
switching between the X server and the 3D rendering applications, making system utilization more
efficient.

DSO and XVFB enable SMP machines as viable and scalable CATweb servers. DSO creates a private
rendering area for each 3D rendering application. When it is time to render a new image, the application
draws to its private rendering area. If two CATweb clients request new images at the same time, each of
the 3D rendering applications can draw new images concurrently, each to their own private rendering area.
Because multiple 3D rendering applications can draw concurrently, multiple CPUs can be exploited
concurrently. Without DSO and XVFB, the 3D rendering applications draw to a physical, shared frame
buffer, which means they must take turns and operate serially. With each 3D rendering application taking
turns to draw, only a single CPU can be effectively exploited.

If you use an OpenGL application with DirectSoft OpenGL and XVFB, the testing scenario with xwd and
xwud discussed earlier in this chapter will not work. This is because to increase performance, the default
OpenGL DirectSoft behavior does not blit the contents of the private frame buffer to the X Virtual Frame
Buffer. This behavior is fine for most OpenGL rendering server applications because the image will be
queried from the private frame buffer using glReadPixels. However, using xwd and xwud just grabs the
contents of a blank window.

To verify that DirectSoft OpenGL is working, set the _OGL_MIXED_MODE_RENDERING environment
variable to 1, and run your OpenGL application. This will force OpenGL to actually blit the rendered image
from the private software frame buffer to the X Virtual Frame Buffer. After this is done, you can use xwd
and xwud to grab and dump the contents of your OpenGL window.

Note: It is recommended that you not keep the _OGL_MIXED_MODE_RENDERING environment variable
set all the time, because this will slow the overall operation of DirectSoft OpenGL.

Applications can determine if they are using DirectSoft OpenGL by checking the OpenGL rendering string
using the glGetString subroutine, and checking the OpenGL context using the glXIsDirect subroutine.
The following code can be used:
int isDirectSoftOpenGL(Display *display,GLXContext context)
{
if (glXIsDirect(display,context) == FALSE)

return FALSE;

116 AIXwindows Programming Guide



if (strcmp(glGetString(GL_RENDERER),"SoftRaster") == 0)
return TRUE;

return FALSE;
}

CATweb and the XVFB
CATweb Navigator allows users with Java-enabled Web browsers to view and navigate product information
created with CATIA Solutions. By using the intuitive set of Java applets that make up the CATweb
Navigator client, users can connect to a CATweb Navigator server machine, select models for viewing, and
then view and navigate the models with a 3D viewer, 2D schematic viewer, or a report-style viewer. One
CATweb Navigator server machine can support multiple concurrently active CATweb Navigator clients. For
each CATweb client that attaches to the CATweb server, one or more CATweb processes is started on the
CATweb server to handle the requests of that particular CATweb client. One of these CATweb processes is
a 3D rendering application, which runs on the CATweb server and is responsible for:

v Loading the requested CATIA model

v Rendering the 3D model when the CATweb client requests new views

v Compressing the final rendered image

v Transferring the image to the Java CATweb client

This application uses both the X Window System and OpenGL libraries to quickly and accurately render
3D images. XVFB and DirectSoft OpenGL allow CATweb Navigator server machines to operate without
expensive graphics adapters and to effectively exploit Symmetric Multi Processing (SMP) machines. In
addition, XVFB and DirectSoft OpenGL allow a CATweb Navigator server to be usable at boot time without
requiring a user to log in interactively, making it easier to set up and administer a CATweb Navigator
server.

The CATweb Navigator does not use the XVFB by default. The image server rendering is done through
the X real frame buffer and all the concurrent CATweb renderings are synchronized to share this single
resource (CATweb rendering lock). In the XVFB mode, each CATweb process uses its own X Virtual
Frame Buffer, and the rendering synchronization is no longer necessary, improving the overall performance
in a multi-user environment.

To deactivate the default CATweb rendering lock, change the following value in the runServerCATIA file in
the .../CATwebNavigator/bin directory :
VirtualFrameBufferOn=1 (default value = 0)

The CATweb rendering unlock is effective at the next CATweb connection.

Appendix E. The X Virtual Frame Buffer 117



118 AIXwindows Programming Guide



Appendix F. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Dept. LRAS/Bldg. 003
11400 Burnet Road
Austin, TX 78758-3498
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

© Copyright IBM Corp. 1997, 2006 119



IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
(c) (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. (c)
Copyright IBM Corp. _enter the year or years_. All rights reserved.

Trademarks
The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

AIX

Common User Access

CUA

IBM

Presentation Manager

RS/6000

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be the trademarks or service marks of others.

120 AIXwindows Programming Guide



Index

A
AIXwindows

overview 1
app-custom files

choosing resources 17
creating 17
format 14
location 14
organizing resource categories 17
understanding 14
writing guidelines 17

arguments
send protocol 32
variable length 33

B
bidirectional resources 85
bidirectional support 85
browser

choices 13
cursors 13
filenames 13

browsers
fonts 11
picture 12
related information 13
using 10

buffering
double 69

C
C language binding 77
CATweb

X Virtual Frame Buffer 117
changing the mode of a device 65
choices browser 13
choosing resources 17
colors browser 10
core input devices 63
creating app-custom files 17
cursors browser 13
customizing tool

browsers 10
related information 13

choices browser 13
colors browser 10
cursor browser 13
filenames browser 13
fonts browser 11
introduction 5
main window 6

application name 7
file pulldown menu 7
help pulldown menu 9
options pulldown menu 9

customizing tool (continued)
main window (continued)

related information 10
resource category button 7
scrolled window area 7
view pulldown menu 8

overview 5
pictures browser 12
related information 5
starting 5

basic procedure 5
detailed 6
prerequisite 5
related information 6

D
data structures

locking 30
DBE

see double buffer extension 69
DBEAllocateBackBufferName 73, 76
DBEBeginIdiom 75, 76
DBEDeallocateBackBufferName 74, 76
DBEEndIdiom 75, 77
DBEGetBackBufferAttributes 75, 77
DBEGetVersion 72, 76
DBEGetVisualInfo 73, 77
DBESwapBuffers 74, 76
deriving the correct extension opcode 34
design approach 63
DirectSoft OpenGL

X Virtual Frame Buffer 116
display functions

opening 21
using 21

display power management 107
double buffer extension specification 69

C language binding 77
complex swap actions 71
concepts 70
goals 69
requests 72, 75

errors 76
requests 76
types 75

window management 71
DPM

see display power management 107
dynamically loadable x server extensions 35

E
easter editor window

control panel
clear function 100

© Copyright IBM Corp. 1997, 2006 121



examples
localizing a motif application for bidirectional

support 88
setting the locale and changing geometry 88
translating external files for BIDI text 89
translating hard coded strings from Latin to Hebrew

or Arabic 89
extension devices

changing input device controls 62
changing the mode 61
controlling event propagation 62
determining selected events 62
enabling and disabling 61
getting input device controls 62
initializing valuators 65
input 63
selecting events 62

extensions
double buffer 69
functions 27
input library 51
protocol requests 27
screen saver 38
using 27
XTest 79

F
file pulldown menu 7
filenames browser 13
files

app-custom 14
font enhancements 83

ISO9241 compliant bitmap fonts 83
TrueType rasterizer 83

font utility 91
how to use 92
introduction 91
limitations 92
start-up command 92

font utility window
control panel 96

Cancel function 97
Copy function 96
Delete function 97
Edit function 97
Mode option 97
Move function 96
Undo function 97

font display area 97
Information option 95
menu bar 94
message area 98
using 94

fonts browser 11
format of app-custom files 14

G
gadget 87

gadgets
layout direction effect 87

GC
see graphics context 29

getting input device controls 65
getting the extension version 65
graphic input devices

setting up 109
dials 109
LPFKeys 109
spaceball 110
tablet 109

graphical overlay planes 23
graphics

batching 29
graphics context

caching 29

H
help pulldown menu 9
hooking into the Xlib 28

I
input device functions

controlling input focus 48
keyboard and pointer settings 49
keyboard encoding 50
keyboard grabbing 48
moving the pointer 48
pointer grabbing 46
resuming event processing 48

Input Device Functions in Enhanced X Windows 46
input extension library 51

core input devices 52
design approach 51
extension input devices 52
input device classes 53
library extension requests 53
listing available devices 61
purpose 51
using extension input devices 53
window manager functions 54

input extension protocol specification 63

L
library

bidirectional support in Xm 85
Library

Xlib 19
listing available devices 65
location of app-custom files 14
lock data structures 30

M
main window for customizing tool 6

122 AIXwindows Programming Guide



memory
allocating 34
deallocating 34

N
national language support 24

exceptions 25
nls

see national language support 24
nonrectangular window shape extension 35

O
options pulldown menu 9
organizing resource categories 17

P
pictures browser 12
protocol

sending requests and arguments 32

R
raster editor window

control panel 100
> (forward code) function 101
<<<< (previous code) function 101
cancel function 102
copy function 100
mode option 101
move function 100
overwrite function 100
pickup function 101
reverse function 100
set function 100
undo function 101

editing area 102
entry option 99
exit option 99
extension option 99
information option 99
menu bar 98
message area 102
using 98

reference font window
using 98

replies
defining

formats 32
using Enhanced-Windows 30

requests
defining

formats 31
using Enhanced X-Windows 30

send protocol 32
resource category button 7

S
screen saver extension 38

assumptions 39
errors 39
events 41
requests 39
types 39

scrolled window area 7
setting up graphic input devices 109
shared memory transport 22

environment variables 23
goals 22
other mechanisms 23

SMT
see shared memory transport 22

stub
deriving correct extension opcode 34

stubs
writing 30

synchronous calling 34

U
understanding the app-custom files 14
using extensions in AIXwindows 27

V
vector editor window

control panel 103
> (forward code) function 104
<<<< (previous code) function 104
Cancel function 105
Copy function 103
Delete function 104
Line function 103
Mode option 104
Move function 103
Resize function 104
Undo function 105

editing area 105
Entry option 103
Exit option 103
Extension option 102
Information option 103
menu bar 102
message area 105
using 102

view pulldown menu 8

W
widgets

gadget 87
label 87
layout direction effect 87
list 87
text 87
text field 87

Index 123



window manager
overview 3
restoring defaults 3
starting and exiting 3

window shape
nonrectangular 35

writing app-custom files
guidelines 17

X
X Virtual Frame Buffer 111

CATweb 117
DirectSoft OpenGL 116
implementing in code 114
installing 111
starting 112
testing 114
working with 115

Xlib Library 19
xserver extensions

dynamically loadable 35
XTest Extension 79
XVFB

see X Virtual Frame Buffer 111

124 AIXwindows Programming Guide



Readers’ Comments — We’d Like to Hear from You

AIX 5L Version 5.3
AIXwindows Programming Guide

Publication No. SC23-4921-02

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM
business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the
personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send your comments via e-mail to: pserinfo@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. E-mail address



Readers’ Comments — We’d Like to Hear from You
SC23-4921-02

SC23-4921-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department 04XA-905-6B013
11501 Burnet Road
Austin, TX 78758-3400

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_





����

Printed in U.S.A.

SC23-4921-02


	Contents
	About This Book
	Content of This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	Related Publications

	Chapter 1. AIXwindows Overview for Programmers
	Chapter 2. AIXwindows Window Manager Overview
	Starting and Exiting X and the AIXwindows Window Manager
	Restoring Default Behavior

	Chapter 3. Using the AIXwindows Customizing Tool
	Using the Customizing Tool Introduction
	Related Information
	How to Start the Customizing Tool
	Prerequisite Condition
	Basic Start Procedure
	Detailed Start Procedure
	Related Information

	Using the Customizing Tool Main Window
	Application Class
	Resource Category Button
	Scrolled Window Area
	File Pulldown Menu
	View Pulldown Menu
	Options Pulldown Menu
	Help Pulldown Menu
	Related Information

	Using the Browsers
	Colors Browser
	Fonts Browser
	Pictures Browser
	Cursors Browser
	Choices Browser
	Filenames Browser
	Related Information

	Understanding the app-custom Files
	Location of the app-custom Files
	Format of the app-custom Files
	Guidelines for Writing app-custom Files
	Related Information


	Chapter 4. AIXwindows Xlib Library
	Xlib Introduction
	Compiling X Programs with AIXwindows
	Window Relationships
	Window Attributes
	Window Caveats

	Suggested Reading
	Using Display Functions in AIXwindows
	Opening a Display
	Shared Memory Transport (SMT)

	Graphical Overlay Planes
	AIXwindows National Language Support (NLS)
	Overview
	Exceptions


	Chapter 5. Using Extensions in AIXwindows
	Extension Functions
	Basic Extension Functions
	Hooking into the Xlib Library
	Graphics Context (GC) Caching
	Graphics Batching
	Lock Data Structures
	Define Extension Stubs, Requests, and Replies
	Define Request Formats
	Define Reply Formats
	Send Protocol Requests and Arguments
	Variable Length Arguments
	Synchronous Calling
	Allocating and Deallocating Memory
	Deriving the Correct Extension Opcode

	Dynamically Loadable X Server Extensions
	AIXwindows Nonrectangular Window Shape Extension
	Description
	Types
	C Language Binding

	AIXwindows Screen Saver Extension
	Assumptions
	Types
	Errors
	Requests
	Events
	Common Types
	Requests
	Events
	Inter-Client Communications Conventions
	C Language Binding

	Using AIXwindows Input Device Functions
	Pointer Grabbing
	Keyboard Grabbing
	Resuming Event Processing
	Moving the Pointer
	Controlling Input Focus
	Keyboard and Pointer Settings
	Keyboard Encoding

	AIXwindows Input Extension Library
	Purpose of the Extension
	Design Approach
	Core Input Devices
	Extension Input Devices
	Input Device Classes
	Using Extension Input Devices
	Library Extension Requests
	Window Manager Functions
	Events and Event-Handling Functions
	Listing Available Devices
	Enabling and Disabling Extension Devices
	Changing the Mode of a Device
	Initializing Valuators on an Input Device
	Getting Input Device Controls
	Changing Input Device Controls
	Selecting Extension Device Events
	Determining Selected Device Events
	Controlling Event Propagation
	Getting Motion History

	AIXwindows Input Extension Protocol Specification
	Design Approach
	Core Input Devices
	Extension Input Devices
	Getting the Extension Version
	Listing Available Devices
	Changing the Mode of a Device
	Initializing Valuators on an Input Device
	Getting Input Device Controls
	Events

	AIXwindows Double Buffer Extension Specification
	Introduction
	Goals
	Concepts
	Requests
	Encoding
	C Language Binding

	AIXwindows XTest Extension
	Overview
	Description
	Types
	C Language Xlib Binding


	Chapter 6. AIXwindows Font Enhancements
	ISO9241 Compliant Bitmap Fonts
	TrueType Rasterizer
	Font Encodings Supported by the TrueType Rasterizer


	Appendix A. Bidirectional Support in Xm (Motif 1.2) Library
	Library Name
	Purpose
	Description
	Bidirectional Resources
	Example

	The Text Widget
	The Text Field Widget
	The Label and Gadget Widget
	The List Widget
	Effect of Layout Direction on Motif Widgets and Gadgets
	Example of Localizing a Motif Application for Bidirectional Support
	Setting the Locale and Changing Geometry
	Translating Hard Coded Strings from Latin to Hebrew or Arabic
	Translating External Files for BIDI Text


	Appendix B. Font Utility
	Font Utility Introduction
	Font Utility Limitations
	How to Use the Font Utility
	Prerequisite Condition
	Procedures

	Using the Font Utility Window
	Menu Bar
	Control Panel
	Font Display Area
	Message Area

	Using the Reference Font Window
	Using the Raster Editor Window
	Menu Bar
	Control Panel
	Editing Area
	Message Area

	Using the Vector Editor Window
	Menu Bar
	Control Panel
	Editing Area
	Message Area


	Appendix C. Display Power Management
	Appendix D. Setting Up X11 Graphic Input Devices (LPFKeys, Dials, Tablet, Spaceball)
	Tablet
	Dials and LPFKeys
	Spaceball

	Appendix E. The X Virtual Frame Buffer
	Overview
	Installing the XVFB
	AIX 4.3
	AIX 4.3.1
	AIX 4.3.2
	AIX 4.3.3
	AIX 5.X

	Starting the XVFB
	Testing the XVFB
	Verifying that XVFB is Being Used
	Verifying that XVFB is Working

	Implementing XVFB in Application Code
	Working with the XVFB
	DirectSoft OpenGL and the XVFB
	CATweb and the XVFB

	Appendix F. Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	U
	V
	W
	X

	Readers’ Comments — We′d Like to Hear from You

