<|lI!

AIX 5L Version 5.3

Commands Reference, Volume 6, v - z

SC23-4893-06

<|lI!

AIX 5L Version 5.3

Commands Reference, Volume 6, v - z

SC23-4893-06

Note
FBefore using this information and the product it supports, read the information in[Appendix C, “Notices,” on page 319

Seventh Edition (October 2009)

This edition applies to AIX 5L Version 5.3 and to all subsequent releases of this product until otherwise indicated in
new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to Information Development, Department 04XA-905-6B013, 11501 Burnet Road, Austin, Texas
78758-3400. To send comments electronically, use this commercial Internet address: pserinfo@us.ibm.com. Any
information that you supply may be used without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book .
How to Use This Book.
ISO 9000.

32-Bit and 64-Bit Support for the Smgle UNIX SpeC|f|cat|on

Related Information .

Alphabetical Listing of Commands.
vacation Command . .
val Command (SCCS) .
varyoffvg Command .
varyonvg Command .

vc Command

vgrind Command

vi or vedit Command .
view Command .

vmh Command

vmo Command

vmstat Command .
vpdadd Command .
vpddel Command
vsdatalst Command
vsdchgserver Command .
vsdelnode Command .
vsdelvg Command .
vsdnode Command.
vsdskist Command .
vsdvg Command.
vsdvgts Command .

w Command .

wait Command

wall Command

wallevent Command
watch Command.

wc Command .

what Command .

whatis Command
whatnow Command
whereis Command .
which Command. .
which_fileset Command .
who Command

whoami Command .
whodo Command

whois Command

whom Command .
wimassign command.
wlmcheck command .
wimentrl Command .
wimmon and wimperf Commands .
wimstat Command.

wol command

write Command.

writesrv Daemon .

© Copyright IBM Corp. 1997, 2009

. Vi
. Vi

wsm Command.

wsmaccess Command .

wsmserver Command
wtmpfix Command
wump Command .
X Command .

x_add_fs_fpe Command
x_add_nfs_fpe Command .

x_rm_fpe Command .
xargs Command
xauth Command
xclock Command .
xcmsdb Command
xdm Command .
xfindproxy Command.
xfs Command

xget Command .
xhost Command

xinit Command .
xkbcomp Command .
xkbevd Daemon
xkbprint Command
xlock Command
xlsfonts Command
xmbind Command.
xmkmf Command .
xmwlm Command .
xmodem Command .
xmodmap Command.
xmpeek Command
xmscheck Command.
xmtopas Command .
xntpd Daemon .
xntpdc Command .
xpr Command .
xpreview Command .
xprofiler Command
xrdb Command .
xsend Command .
xset Command .
xsetroot Command
xss Command .

xstr Command .
xterm Command

xwd Command .
xwud Command
yacc Command.

yes Command .
ypbind Daemon.
ypcat Command
ypinit Command
ypmatch Command .
yppasswd Command.
yppasswdd Daemon .
yppoll Command .
yppush Command.

iV Commands Reference, Volume 6

. 124
. 125
. 126
. 128
. 129
. 130
. 142
. 143
. 144
. 145
. 148
. 151
. 153
. 154
. 168
. 169
171
. 173
. 174
. 176
177
. 179
. 180
. 182
. 183
. 184
. 185
. 186
. 188
. 190
. 192
. 193
. 194
. 197
. 204
. 206
. 209
.21
. 214
. 215
. 218
. 219
. 220
. 222
. 246
. 247
. 249
. 251
. 252
. 253
. 254
. 256
. 257
. 258
. 260
. 261

ypserv Daemon.
ypset Command
ypupdated Daemon .
ypwhich Command
ypxfr Command

zcat Command .
zdump Command .
zic Command

Appendix A. Command Support for Files Larger than 2 Gigabytes
Commands That Do Not Support Files Larger Than 2 Gigabytes

Appendix B. Functional List of Commands
Communications Coe
Commands List: Message Handler.

Files and Directories .

General Operations . .o

Commands List: Numerical Data

Commands List: Performance Tuning.
Programming Tools

Appendix C. Notices
Trademarks .

Index

. 262
. 263
. 264
. 265
. 267
. 269
. 270
. 271

. 275
. 275

. 277
. 278
. 281
. 290
. 298
. 306
. 306
. 315

. 319
. 320

. 323

Contents

\'}

Vi Commands Reference, Volume 6

About This Book

This book provides end users with complete detailed information about commands for the AIX operating
system. The commands are listed alphabetically and by category, and complete descriptions are given for
commands and their available flags. If applicable, each command listing contains examples. This volume
contains AIX commands that begin with the letters v through z. This publication is also available on the
documentation CD that is shipped with the operating system.

How to Use This Book

A command is a request to perform an operation or run a program. You use commands to tell the
operating system what task you want it to perform. When commands are entered, they are deciphered by
a command interpreter (also known as a shell) and that task is processed.

Some commands can be entered simply by typing one word. It is also possible to combine commands so
that the output from one command becomes the input for another command. This is known as pipelining.

Flags further define the actions of commands. A flag is a modifier used with the command name on the
command line, usually preceded by a dash.

Commands can also be grouped together and stored in a file. These are known as shell procedures or
shell scripts. Instead of executing the commands individually, you execute the file that contains the

commands.

Some commands can be constructed using Web-based System Manager applications or the System
Management Interface Tool (SMIT).

Highlighting

The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items whose
names are predefined by the system. Also identifies graphical objects such as buttons, labels, and
icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace

Identifies examples of specific data values, examples of text similar to what you might see

displayed, examples of portions of program code similar to what you might write as a programmer,
messages from the system, or information you should actually type.

Format

Each command may include any of the following sections:

Purpose A description of the major function of each command.

Syntax A syntax statement showing command line options.

Description A discussion of the command describing in detail its function and use.

Flags A list of command line flags and associated variables with an explanation of
how the flags modify the action of the command.

Parameters A list of command line parameters and their descriptions.

Subcommands A list of subcommands (for interactive commands) that explains their use.

Exit Status A description of the exit values the command returns.

Security Specifies any permissions needed to run the command.

Examples Specific examples of how you can use the command.

Files A list of files used by the command.

Related Information

© Copyright IBM Corp. 1997, 2009

A list of related commands in this book and related discussions in other books.

Vii

Reading Syntax Statements

Syntax statements are a way to represent command syntax and consist of symbols such as brackets ([]),
braces ({ }), and vertical bars (I). The following is a sample of a syntax statement for the unget command:

unget [-rSID][-s][-n] File ...

The following conventions are used in the command syntax statements:

* ltems that must be entered literally on the command line are in bold. These items include the command
name, flags, and literal charactors.

» Items representing variables that must be replaced by a name are in jtalics. These items include
parameters that follow flags and parameters that the command reads, such as Files and Directories.

» Parameters enclosed in brackets are optional.
» Parameters enclosed in braces are required.
» Parameters not enclosed in either brackets or braces are required.

* A vertical bar signifies that you choose only one parameter. For example, [a | b] indicates that you can
choose a, b, or nothing. Similarly, { a | b } indicates that you must choose either a or b.

+ Ellipses (...) signify the parameter can be repeated on the command line.
* The dash (-) represents standard input.

Listing of Installable Software Packages

To list the installable software package (fileset) of an individual command use the Islpp command with the
-w flag. For example, to list the fileset that owns the installp command, enter:

1s1pp -w /usr/sbin/installp

Output similar to the following displays:
File Fileset Type

/usr/sbin/installp bos.rte.install File

To list the fileset that owns all file names that contain installp, enter:
1sTpp -w "*installp=*"

Output similar to the following displays:

File Fileset Type
/usr/sbin/installp bos.rte.install File
/usr/clvm/sbin/Tinstallpv prpg.clvm File
/usr/1pp/bos.sysmgt/nim/methods/c_installp

bos.sysmgt.nim.client File

Running Commands in the Background

If you are going to run a command that takes a long time to process, you can specify that the command
run in the background. Background processing is a useful way to run programs that process slowly. To run
a command in the background, you use the & operator at the end of the command:

Commandé&

Once the process is running in the background, you can continue to work and enter other commands on
your system.

At times, you might want to run a command at a specified time or on a specific date. Using the cron

daemon, you can schedule commands to run automatically. Or, using the at and batch commands, you
can run commands at a later time or when the system load level permits.

Viil Commands Reference, Volume 6

Entering Commands

You typically enter commands following the shell prompt on the command line. The shell prompt can vary.
In the following examples, § is the prompt.

To display a list of the contents of your current directory, you would type 1s and press the Enter key:
$ 1s

When you enter a command and it is running, the operating system does not display the shell prompt.
When the command completes its action, the system displays the prompt again. This indicates that you
can enter another command.

The general format for entering commands is:
Command Flag(s) Parameter

The flag alters the way a command works. Many commands have several flags. For example, if you type
the -I (long) flag following the Is command, the system provides additional information about the contents
of the current directory. The following example shows how to use the -l flag with the Is command:

$ 1s -1

A parameter consists of a string of characters that follows a command or a flag. It specifies data, such as
the name of a file or directory, or values. In the following example, the directory named /usr/bin is a
parameter:

$ 1s -1 /usr/bin

When entering commands, it is important to remember the following:
» Commands are usually entered in lowercase.
» Flags are usually prefixed with a - (minus sign).

* More than one command can be typed on the command line if the commands are separated by a ;
(semicolon).

* Long sequences of commands can be continued on the next line by using the \ (backslash). The
backslash is placed at the end of the first line. The following example shows the placement of the
backslash:

$ cat /usr/ust/mydir/mydata > \
Jusr/usts/yourdir/yourdata

When certain commands are entered, the shell prompt changes. Because some commands are actually
programs (such as the telnet command), the prompt changes when you are operating within the
command. Any command that you issue within a program is known as a subcommand. When you exit the
program, the prompt returns to your shell prompt.

The operating system can operate with different shells (for example, Bourne, C, or Korn) and the
commands that you enter are interpreted by the shell. Therefore, you must know what shell you are using
so that you can enter the commands in the correct format.

Stopping Commands

If you enter a command and then decide to stop that command from running, you can halt the command
from processing any further. To stop a command from processing, press the Interrupt key sequence
(usually Ctrl-C or Alt-Pause). When the process is stopped, your shell prompt returns and you can then
enter another command.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

About This Book X

32-Bit and 64-Bit Support for the Single UNIX Specification

Beginning with Version 5.2, the operating system is designed to support The Open Group’s Single UNIX
Specification Version 3 (UNIX 03) for portability of UNIX-based operating systems. Many new interfaces,
and some current ones, have been added or enhanced to meet this specification, making Version 5.2 even
more open and portable for applications, while remaining compatible with previous releases of AlX.

To determine the proper way to develop a UNIX 03-portable application, you may need to refer to The
Open Group’s UNIX 03 specification, which can be accessed online or downloaded from
http://www.unix.org/ .

Related Information

The following books contain information about or related to commands:
* |AIX 5L Version 5.3 Commands Reference, Volume 1
* [AIX 5L Version 5.3 Commands Reference, Volume 2
* |AIX 5L Version 5.3 Commands Reference, Volume 3
[AIX 5L Version 5.3 Commands Reference, Volume 4

[AIX 5L Version 5.3 Commands Reference, Volume 5

[AIX 5L Version 5.3 Commands Reference, Volume 6

[AIX 5L Version 5.3 Files Reference

« |Printers and printing|

[Installation and migratior]

[AIX 5L Version 5.3 AIX Installation in a Partitioned Environment

[AIX 5L Version 5.3 Network Information Services (NIS and NIS+) Guide|

« |Performance management

[AIX 5L Version 5.3 Performance Tools Guide and Reference

:

[Operating system and device management

[Networks and communication management

[AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 1|
[AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 4
[AIX 5L Version 5.3 Technical Reference: Communications Volume 1|

[AIX 5L Version 5.3 Technical Reference: Communications Volume 4

[AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 1|

[AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 2

« |AIX 5L Version 5.3 Web-based System Manager Administration Guide

« |Performance Toolbox Version 2 and 3 for AIX: Guide and Reference]

X Commands Reference, Volume 6

Alphabetical Listing of Commands

vacation Command

Purpose
Returns a message to the sender that the mail recipient is on vacation.

Syntax
vacation [{[]1 User} 11 [{H] Number[Unit]| User}]

Description

The vacation command returns a message to the sender of a mail message to notify the sender that the
recipient is on vacation. The intended use is in a $HOME/.forward file that allows messages to come to
you while also sending a message back to the sender.

Note: Sendmail version 8.9.3 and subsequent releases have a security enhancement that will ignore the
forward file if either of the following conditions exist:

* The .forward file has group or world writeable permissions
» Any of .forward file’s parent directories have group or world writable permissions

If you think that the vacation program is not working because the .forward file is being ignored,
check the permissions. If you must have group or world writeable permissions on any of the parent
directories of the .forward file, then set the DontBlameSendmail option in the sendmail
configuration file with the appropriate values.

The vacation command expects a SHOME/.vacation.msg file containing a message to be sent back to
each sender. If this file does not exist, the vacation command looks for /usr/share/lib/vacation.def, a
systemwide default vacation message file. It should be an entire message, including any desired headers,
such as From or Subject. By default, this message is sent only once a week to each person who sends
mail to you. Use the -f flag to change the frequency intervals at which the message is sent. The names of
the people who send messages are kept in the files SHOME/.vacation.pag and $HOME/.vacation.dir.
These files are created when the vacation command is initialized for your user ID using theE (uppercase
i) flag.

If the -l flag is not specified, the vacation command reads the first line from the standard input for a From
line to determine the sender. If no text is available from standard input, the command returns an error
message. All properly formatted incoming mail should have a From line. No message is sent if the From
header line indicates that the message is from Postmaster, MAILER-DAEMON, or if the initial From line
includes the string-REQUEST@ or if a Precedence: bulk or Precedence: junk line is included in the header.

Flags

-l Initializes the $HOME/.vacation.pag and $HOME/.vacation.dir files. Execute the
vacation command using this flag before you modify your SHOME/.forward file.

© Copyright IBM Corp. 1997, 2009 1

-fNumber [Unit] Specifies the frequency interval at which the vacation message is sent. The Number

parameter is an integer value and the Unit parameter specifies a time unit. The Unit
parameter can be one of the following:

s Seconds
m Minutes
h Hours

d Days

w Weeks

Note: The -f flag cannot be used with the -l flag.

Examples

1.

Before you use the vacation command to return a message to the sender saying that you are on
vacation, you must initialize the SHOME/.vacation.pag and $HOME/.vacation.dir files. To initialize
these files, type:

vacation

2. Modify the .forward file. For example, Mark types the following statement in the .forward file:
mark, |"/usr/bin/vacation mark"

The sender receives the message that is in the $SHOME/.vacation.msg file, or if the file does not exist,
the default message found in the /usr/share/lib/vacation.def file. If neither of these files exist, no
automatic replies are sent to the sender of the mail message and no error message is generated. If
either of these files exist, the sender receives one vacation message from mark per week, regardless
of how many messages are sent to mark from the sender.

3. If the following entry is contained in your .forward file,
mark, |"/usr/bin/vacation -f10d mark"

The sender receives one vacation message from mark every ten days, regardless of how many
messages are sent to mark from the sender.

4. To create a vacation message that is different from the default vacation message, create the file
$HOME/.vacation.msg and add your message to this file. The following is an example of a vacation
message:

From: mark@odin.valhalla (Mark Smith)
Subject: I am on vacation.
Delivered-By-The-Graces-0f: the Vacation program
I am on vacation until October 1. If you have something urgent,
please contact Jim Terry <terry@zeus.valhalla>.
--mark

5. To cancel the vacation message, remove the .forward file, .vacation.dir file, .vacation.pag file, and
.vacation.msg file from your SHOME (login) directory:
rm .forward .vacation.dir .vacation.pag .vacation.msg

Files

[SHOME/.forward| Contains the names of people who you want your mail to be

forwarded to.

lusr/share/lib/vacation.def Contains the systemwide default vacation message.

$HOME/.vacation.dir Contains the names of people who have sent mail to you while

the vacation command was being used.
$HOME/.vacation.msg Contains your personalized vacation message.

2 Commands Reference, Volume 6

$HOME/.vacation.pag Contains the names of people who have sent mail to you while
the vacation command was being used.
lusr/bin/vacation Contains the vacation command.

Related Information

The command, command.
The [forward]file.

Mail applications| and [Forwarding maill [Sending a vacation message notice|in Networks and
communication management.

in Operating system and device management.

val Command (SCCS)

Purpose
Validates SCCS files.

Syntax
val [[s]1 [[rlsiD | [FmName | [[yiType] File ...

Description

The val command reads the specified file to determine if it is a Source Code Control System (SCCS) file
meeting the characteristics specified by the accompanying flags. If you specify a - (minus) for the File
value, the val program reads standard input and interprets each line of standard input as val flags and the
name of an SCCS file. An end-of-file character terminates input.

The val command displays messages to standard output for each file processed.
Flags
Each flag or group of flags applies independently to each named file. The flags can appear in any order.

-mName Compares the Name value with the SCCS 31 identification keyword in the specified file. For identification
keyword information, see thecommand.

-r SID Specifies the SID of the file to be validated. The SID must be valid and unambiguous.
-S Suppresses the error message normally written to standard output.
-y Type Specifies a type to compare with the SCCS identification keyword in the specified file.

Exit Status

The val command returns 0 if successful for all files; otherwise, it returns an 8-bit code that is a disjunction
of the possible errors. It is interpreted as a bit string in which set bits (from left to right) are interpreted as
follows:

0x80 Missing file argument.

0x40 Unknown or duplicate option.
0x20 Corrupted SCCS file.

0x10 Cannot open file or file not SCCS.
0x08 SID is invalid or ambiguous.

0x04 SID does not exist.

0x02 , Y mismatch.

Alphabetical Listing of Commands 3

0x01 31, m mismatch.

Note: The val command can process two or more files on a given command line and can process
multiple command lines (when reading standard input). In these cases, an aggregate code is
returned; a logical OR of the codes generated for each command line and file processes.

Example
To determine if file s.test.c is an SCCS text file, enter:
val -ytext s.test.c

Related Information

List of SCCS Commands|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

The command, command, @ command, @ command.
The file format.

[Source Code Control System (SCCS) Overview| in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

varyoffvg Command

Purpose
Deactivates a volume group.

Syntax
varyoffvg [[s]] VolumeGroup

Description

The varyoffvg command deactivates the volume group specified by the VolumeGroup parameter along
with its associated logical volumes. The logical volumes first must be closed. For example, if the logical
volume contains a file system, it must be unmounted.

To activate the volume group, use the [varyonvg|command.

Note: To use this command, you must either have root user authority or be a member of the system
group.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:

smit varyoffvg

Note: A volume group that has a [paging space|volume on it cannot be varied off while the paging space
is active. Before deactivating a volume group with an active paging space volume, ensure that the

paging space is not activated automatically at system initialization, and then reboot the system.

Flag

-S Puts the volume group into System Management mode, so that only logical volume commands can be used on
the volume group. In this mode, no logical volume can be opened or accessed by users.

4 Commands Reference, Volume 6

Exit Status

This command returns the following exit values:

0 Successful completion.
>0 An error occurred.
Examples

1. To deactivate volume group vg03, enter:
varyoffvg vgo3
2. To deactivate volume group vg02, but allow logical volume commands to continue to take effect, enter:

varyoffvg vg02

Logical volumes within the volume group cannot be opened, but logical volume commands continue to
take effect.

File

lusr/sbin/varyoffvg Contains the varyoffvg command.

Related Information
The command, command, command, command.

The |System management interface toollin Operating system and device management explains the
structure, main menus, and tasks that are done with SMIT.

The |Logical volumes| in Operating system and device management explains the Logical Volume Manager,
physical volumes, logical volumes, volume groups, organization, ensuring data integrity, and allocation
characteristics.

varyonvg Command

Purpose
Activates a volume group.

Syntax
varyonvg [Fbl1[Fd1[H|1 [[M] LTGSize 1 [Fn|11Fe|1[[-d11Fs|1TH1Ful1 VolumeGroup

Description

The varyonvg command activates the volume group specified by the VolumeGroup parameter and all
associated logical volumes. A volume group that is activated is available for use. When a volume group is
activated, physical partitions are synchronized if they are not current. Physical volumes that are in the
PVMISSING state and that have been replaced will be returned to the PVACTIVE state by the varyonvg
command.

Note: If a physical volume is part of a dump device, the varyonvg command cannot return it to the
PVACTIVE state. To run the command effectively, temporarily change the dump device.

A list of all physical volumes with their status is displayed to standard output whenever there is some
discrepancy between the Device Configuration Database and the information stored in the Logical Volume

Alphabetical Listing of Commands 5

Manager. The volume group may or may not be varied on. You must carefully examine the list and take
proper action depending on each reported status to preserve your system integrity.

While varying on in concurrent mode, if the varyon process detects that there are logical volumes which
are not previously known to the system, their definitions are imported. The permissions and ownership of
the new device special files are duplicated to those of the volume group special file. If you have changed
the permissions and/or ownership of the device special files of the logical volume on the node it was
created, you will need to perform the same changes on this node.

Note: Classic Concurrent mode is not supported in AIX 5.3.

If the volume group cannot be varied on due to a loss of the majority of physical volumes, a list of all
physical volumes with their status is displayed. To varyon the volume group in this situation, you will need
to use the force option.

The varyonvg will fail to varyon the volume group if a majority of the physical volumes are not accessible
(no Quorum). This condition is true even if the quorum checking is disabled. Disabling the quorum
checking will only ensure that the volume group stays varied on even in the case of loss of quorum.

The volume group will not varyon if there are any physical volumes in PV_MISSING state and the quorum
checking is disabled. This condition is true even if there are a quorum of disks available. To varyon on in
this situation either use the force option or set an environment variable MISSINGPV_VARYON to TRUE (set
this value in /etc/environment if the volume group needs to be varied with missing disks at the boot time).

In the above cases (using force varyon option and using MISSINGPV_VARYON variable), you take full
responsibility for the volume group integrity.

Note: To use this command, you must either have root user authority or be a member of the system
group.

You can use the System Management Interface Tool (SMIT) to run this command. To use SMIT, enter:
smit varyonvg

Flags

-b Breaks disk reservations on disks locked as a result of a normal varyonvg command. Use
this flag on a volume group that is already varied on.

Notes:
1. This flag unlocks all disks in a given volume group.

2. The -b flag opens the disks in the volume group using SC_FORCED_OPEN flag. For
SCSI and FC disks this forces open all luns on the target address that this disk resides
on. Volume Groups should therefore not share target addresses when using this varyon
option.

3. The -b flag can cause a system hang if used on a volume group that contains an active
paging space.

-C Varies the volume group on Enhanced Concurrent mode. This is only possible if the volume
group is Concurrent Capable or Enhanced Concurrent Capable and the system has the
HACMP™ product loaded and available. If neither is true, the volume group fails the varyon.
Note: Enhanced Concurrent volume groups use Group Services. Group Services must be
configured prior to activating a volume group in this mode.

-f Allows a volume group to be made active that does not currently have a quorum of
available disks. All disk that cannot be brought to an active state will be put in a removed
state. At least one disk must be available for use in the volume group. The -f flag (used to
override quorum loss) is ignored if the volume group has not lost quorum. If a disk is put
into removed state, use the chpv -v a PVname command to bring the disk back to active
state.

6 Commands Reference, Volume 6

-M LTGSize Statically sets the LTGSize of the volume group. Valid values for LTGSize include 4K, 8K,
16K, 32K, 64K, 128K, 1M, 2M, 4M, 8M, 16M, 32M, and 128M. If any disk in the volume
group is not configured with a max transfer of LTGSize or greater, the varyonvg will fail.

-n Disables the synchronization of the stale physical partitions within the VolumeGroup.
-p All physical volumes must be available to use the varyonvg command.
-r Varies on the volume group in read-only mode. This mode prevents:

= Write operations to logical volumes
* LVM meta-data updates
» Stale partitions synchronization

Note: Mounting a JFS filesystem on a read-only logical volume is not supported.
Note: All LVM high-level commands that require the LVM meta-data update will fail the
request in this mode.

-s Makes the volume group available in System Management mode only. Logical volume
commands can operate on the volume group, but no logical volumes can be opened for
input or output.

Note: Logical volume commands also cannot read or write to or from logical volumes in a
volume group varied on with the -s flag. Logical volumes that attempt to write to a logical
volume in a volume group varied on with the -s flag (such as chvg or mklvcopy) may
display error messages indicating that they were unable to write to and/or read from the
logical volume.

-t Checks the timestamps in the Device Configuration Database and the Logical Volume
Manager. If there is a discrepancy in the timestamps, the synclvodm command is issued to
synchronize the database.

Note: This check is always done if the Volume Group is varied on in concurrent mode.

-u Varies on a volume group, but leaves the disks that make up the volume group in an
unlocked state. Use this flag as part of the initial varyon of a dormant volume group. This
flag only applies to AlX 4.2 or later.

Attention: The base design of LVM assumes that only one initiator can access a volume group. The
HACMP product does work with LVM in order to synchronize multi-node accesses of a shared
volume group. However, multi-initiator nodes can easily access a volume group with the -b and -u
flags without the use of HACMP. Your must be aware that volume group status information may be
compromised or inexplicably altered as a result of disk protect (locking) being bypassed with these
two flags. If you use the -b and -u flags, data and status output cannot be guaranteed to be
consistent.

Exit Status

This command returns the following exit values:

0 Successful completion.
>0 An error occurred.
Examples

1. To activate volume group vg03, enter:
varyonvg vgo3

2. To activate volume group vg03 without synchronizing partitions that are not current, enter:
varyonvg -n vgo3

Files
lusr/sbin Contains the varyonvg command directory.
/tmp Stores the temporary files while the command is running.

Alphabetical Listing of Commands 7

Related Information
The command, command, [Islv] command, command, [varyoffvg| command.

The [System management interface toollin Operating system and device management explains the
structure, main menus, and tasks that are done with SMIT.

The|LogicaI volumes| in Operating system and device management explains the Logical Volume Manager,
physical volumes, logical volumes, volume groups, organization, ensuring data integrity, and allocation
characteristics.

vc Command

Purpose
Substitutes assigned values for identification keywords.

Syntax
ve [[-a1 [H11Fsl1 (Fdcharacter | [[Keywora=Vvalud ...

Description

The ve command copies lines from standard input to standard output. The flags and keywords on the
command line and control statements in the input modify the resulting output. The ve command replaces
user-declared keywords with the value assigned on the command line. Keywords can be replaced both in
text and in control statements.

Control Statements

A control statement is a single line beginning with a control character (the default control character is a :
(colon)). Control statements provide conditional processing of the input. The allowable types of control
statements are:

:if Condition

Text

:end Writes all the lines between the :if statement and the matching :end to standard
output only if the condition is true. You can nest :if and :end statements.
However, once a condition is false, all remaining nested :if and :end statements
are ignored. See the|'Condition Syntax”|section for the syntax of conditions and
allowable operators.

:dcl Keyword, [Keyword . . .] Declares specified keywords. All keywords must be declared.

:asg Keyword=Value Assigns the specified value to the specified keyword. An :asg statement takes
precedence over keyword assignment on the ve command line. A later :asg
statement overrides all earlier assignments of the associated keyword. The
keywords that are declared but not assigned Values, have null values.

it Text Removes the two leading control characters, replaces keywords with their
respective values, and then copies the line to standard output.

:on or :off Turns on or off keyword replacement on all lines.

:ctl Character Changes the control character to the Character value.

:msg Message Writes a message to standard error output in the form: Message(n): message
where n is number of the input Tine on which the message appeared.

:err Message Writes an error message to standard error. The ve command stops processing

and returns an exit value of 1. The error message is in the form:

ERROR: message
ERROR: err statement on line n (vclb)

8 Commands Reference, Volume 6

Condition Syntax
The items and statements allowed are:

condition ::=0R statement

::=NOR statement
OR statement ::=AND statement

::=AND statement | OR statement
AND statement ::1=expression

::=expression & AND statement
expression ::=(OR statement)

::=value operator value

=or !=or <or>
ASCII string
numeric string

operator value

The available condition operators and their meanings are:

= Equal

1= Not equal

& AND

&l OR

> Greater than

< Less than

() Used for logical groupings

NOT May only occur immediately after the if, and when present, inverts the value of the entire condition.

The > and < (greater-than and less-than) operate only on unsigned integer values; for example, 012 > 12
is false. All other operators take strings as modifiers; for example, 012 | = 12 is true. The precedence of
the operators, from highest to lowest precedence, is as follows:

« =!=> < (all of equal precedence)

.« &

o &l

Parentheses can be used to alter the order of precedence.

Values must be separated from operators or parentheses by at least one blank or tab.

Keyword Replacement

A keyword must begin and end with the same control character used in control statements. A keyword may
be up to nine alphanumeric characters, where the first character must be alphabetic. Keyword values can
be any ASCII string. A numeric keyword Value is an unsigned string of digits. Values cannot contain tabs
or spaces.

Flags

-a Replaces keywords surrounded by control characters with their assigned value in all text lines
(not just those beginning with two control characters).

-cCharacter Uses the Character value as the control character. The Character parameter must specify an
ASCII character.

-S Does not display the warning messages normally displayed to standard error.

-t Ignores all characters from the beginning of a line up to and including the first tab character for

detecting a control statement. If the ve command finds a control character, it ignores all
characters up to and including the tab.

Alphabetical Listing of Commands 9

Exit Status

This command returns the following exit values:

0 Successful completion.
>0 An error occurred.

Examples

1. Examples of Keyword=Value assignments are:
numlines=4
prog=acctg
passd=yes

The ve command removes all control characters and keywords from input text lines marked with two
control characters as it writes the text to standard output.

2. To prevent a control character from being interpreted, precede it with a backslash, as in the following
example:

::the :prog: program includes several of the following\:

The :prog: keyword is replaced by its value, but the \: is passed to standard output as : (colon).

Input lines beginning with a \ (backslash) followed by a control character are not control lines, and are
copied to standard output without the backslash. However, the ve command writes lines beginning with
a backslash and no following control character without any changes (including the initial backslash).

File

lusr/bin/vc Contains the ve command.

Related Information
The command, command, @ command.

[List of SCCS Commands]in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

[Source Code Control System (SCCS) Overview| in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

vgrind Command

Purpose
Formats listings of programs that are easy to read.

Syntax
vgrind][ﬁ] [(Fl11F 1 ([T ([FPlPrintdev 1 (FTivame 1 ([1 [FdlFile 1 [Fh| Header | [FlLanguage 1 [Fslsize 11

File ...

Description

The vgrind command formats (grinds) the program sources specified by the File parameters in an easily
readable style using the troff command. Comments are placed in italics, keywords in boldface, and the
name of the current function is listed down the margin of each page as it is encountered.

10 Commands Reference, Volume 6

The vgrind command runs in either filter mode or regular mode.

In filter mode, the vgrind command acts as a filter in a manner similar to the tbl command. Standard input
is passed directly to standard output except for lines bracketed by the following troff-like macros:

.v§ Starts processing.
.VE Ends processing.

The preceding lines are formatted according to the vgrind command conventions. The output from this
filter can be passed to the troff command for output. There is no particular ordering with the eqgn or tbl
command.

In regular mode, the vgrind command accepts input files, processes them, and passes them in order to
the troff command, the appropriate postprocessor, and then the printer.

In both modes, the vgrind command passes without converting lines, beginning with a decimal point.

The vgrind command supports only ASCII keywords defined in either the standard /usr/share/lib/
vgrindefs language definitions file or any alternately specified file by the -d flag.

Flags

-f Forces filter mode.

-n Forces no keyword bolding.

-t Causes formatted text to go to standard output.

-X Outputs the index file in an easily readable format. The index file itself is produced whenever the
vgrind command is run with the index file in the current directory. The index of function
definitions can then be run off by running the vgrind command with the -x flag and the File
parameter.

-PPrintDev Sends the output to Printdev Printer using the@command. If this flag is not specified, the

PRINTER environment variable is used. If the PRINTER environment variable is not set, the
system default is used.

-TName Creates output for a troff device as specified by the Name parameter. The output is sent through
the appropriate postprocessor. The default is the ibm3816 postprocessor.

- Forces input to be taken from standard input (default if the -f flag is specified).

-dFile Specifies an alternate language definitions file (default is the /usr/share/lib/vgrindefs file).

-h Header Specifies a particular header to put on every output page (default is the file name).

Note: A blank space is required after the -h flag before the Header variable.

Alphabetical Listing of Commands 11

-lILanguage

Specifies the language to use. Currently known languages are:

c C (the default). Function names can be preceded on a line only by spaces, tabs, or an
asterisk. The parenthetical options must also be on the same line.

csh CSH.

p PASCAL. Function names must be displayed on the same line as the function or
procedure keywords.

m MODEL. Function names must be displayed on the same line as the isbeginproc
keyword phrase.

sh SHELL.

r RATFOR.

mod2 MODULA2.

yacc YACC.

isp ISP.

| ICON.

-s Size Specifies a point size to use on output (exactly the same as a@ request).

Files

index

lusr/bin/vgrind
lusr/share/lib/tmac/tmac.vgrind
lusr/share/lib/vfontedpr
lusr/share/lib/vgrindefs

Related Information

The [gprt] command, ftbl] command, command.

The File Format.

Contains the file the where source for the index is
created.

Contains the vgrind command.

Contains the macro package.

Contains the preprocessor.

Contains the language descriptions.

vi or vedit Command

Purpose
Edits files with a full-screen display.

Syntax

{vi | vedit } [[]1 (FR]1 [H7ag 1 [1 [fwivumben [Fyivumber 1 [[-[File 11 [{[#]1]]} { Subcommand } 1

File ...]

Description

The vi command starts a full-screen editor based on the underlying ex editor. Therefore, ex subcommands
can be used within the vi editor. The vedit command starts a version of the vi editor intended for
beginners. In the vedit editor, the report option is set to 1, the showmode option is set, and the novice

option is set, making it a line editor.

You start the vi editor by specifying the name of the file or files to be edited. If you supply more than one
File parameter on the command line, the vi editor edits each file in the specified order. The vi editor on an

12 Commands Reference, Volume 6

existing file displays the name of the file, the number of lines, and the number of characters at the bottom
of the screen. In case of multibyte locales the number of characters need to be interpreted as the number
of bytes.

Since the vi editor is a full-screen editor, you can edit text on a screen-by-screen basis. The vi editor
makes a copy of the file you are editing in an edit buffer, and the contents of the file are not changed until
you save the changes. The position of the cursor on the display screen indicates its position within the file,
and the subcommands affect the file at the cursor position.

vi Editor Limitations
The following list provides the maximum limits of the vi editor. These counts assume single-byte
characters.

e 256 characters per global command list

» 2048 characters in a shell escape command

» 128 characters in a string-valued option

» 30 characters in a tag name

* 128 map macros with 2048 characters total

* 1,048,560 lines silently enforced

* The macro name and the macro text are limited to 100 characters.

Note: The vi editor supports a maximum of 2 GB edit buffer.

vi Editing Modes
The vi editor operates in the following modes:

command mode When you start the vi editor, it is in command mode. You can enter any
subcommand except those designated for use only in the text input mode. The vi
editor returns to command mode when subcommands and other modes end.
Press the Esc key to cancel a subcommand.

text-input mode You use the vi editor in this mode to add text. Enter text input mode with any of
the following subcommands: the subcommand, ﬂ subcommand,
subcommand,msubcommand,@subcommand, @ subcommand,
subcommands (where the x represents the scope of the subcommand),
subcommand, E subcommand, |S| subcommand, and |E|subcommand. After
entering one of these subcommands, you can enter text into the editing buffer. To
return to command mode, press the Esc key for normal exit or press Interrupt
(the Ctrl-C key sequence) to end abnormally.

last-line mode Subcommands with the prefix : (colon), / (slash), ? (question mark), !
(exclamation point), or !! (two exclamation points) read input on a line displayed
at the bottom of the screen. When you enter the initial character, the vi editor
places the cursor at the bottom of the screen, where you enter the remaining
characters of the command. Press the Enter key to run the subcommand, or
press Interrupt (the Ctrl-C key sequence) to cancel it. When the !! prefix is used,
the cursor moves only after both exclamation points are entered. When you use
the : prefix to enter the last-line mode, the vi editor gives special meaning to the
following characters when they are used before commands that specify counts:

% All lines regardless of cursor position
$ Last line
Current line

Note: The history of last line mode subcommands can be navigated using the
Up and Down Arrow keys.

Alphabetical Listing of Commands 13

Customizing the vi Editor
You can customize the vi editor by:

+ [Setting vi editor options|
* [Defining macros|

. :Mapping keys
. ‘Setting abbreviation§|

Setting vi Editor Options: The following list describes the vi editor options you can change with the set
command. The default setting for these options is off. If you turn on one of these toggle options, you can
turn it off again by entering the word no before the option. If you want to discontinue the autowrite vi
option, enter noaw, where no turns off the option and aw specifies the autowrite option.

Note: Do not include parentheses when entering vi options.

vi Option (Abbreviation) Description

autoindent (ai) Indents automatically in to the indentation of the
previous line by using the spacing between tab stops specified by
the shiftwidth option. The default is noai. To back the cursor up to
the previous tab stop, press the Cirl-D key sequence. This option is
not in effect for global commands.

autoprin (ap) Prints the current line after any command that changes the editing
buffer. The default is ap. This option applies only to the last
command in a sequence of commands on a single line and is not in
effect for global commands.

autowrite (aw) Writes the editing buffer to the file automatically before the El
subcommand, the subcommand, the , Ctrl -], and Ctrl -T
key sequences, and theﬂl subcommand if the editing buffer changed
since the Iastsubcommand. The default is noaw.

backtags (bt) Allows the Ctrl-T subcommand to return the file editing position to
the location where the previous Ctrl-] subcommand was issued. If
nobacktags is set, then Ctrl-T is the same as Ctrl-]. The default is
backtags.

beautifying text (bf) Prevents the user from entering control characters in the editing
buffer during text entry (except for tab, new-line, and form-feed
indicators). The default is nobf. This option applies to command
input.

closepunct (cp=) Handles a list of closing punctuation, especially when wrapping text
(wraptype option). Precedes multicharacter punctuation with the
number of characters; for example, cp=3..;)}. The vi command
does not split closing punctuation when wrapping.

directory (dir=) Displays the directory that contains the editing buffer. The default is
dir = /var/tmp.
edcompatible (ed) Retains g (global) and ¢ (confirm) subcommand suffixes during

multiple substitutions and causes the r (read) suffix to work like the
r subcommand. The default is noed.

exrc (exrc) If not set, ignores any .exrc file in the current directory during
initialization, unless the current directory is that named by the
HOME environment variable. The default is noexrc.

hardtabs (ht=) Tells the vi editor the distance between the hardware tab stops on
your display screen. (This option must match the tab setting of the
underlying terminal or terminal emulator.) The default is ht=8.

history (hist=) Sets the limit on last line mode history commands. The initial value
is hist=32. The history size is zero (hist=0) for the tvi command.
ignorecase (ic) Ignores distinction between uppercase and lowercase while

searching for regular expressions. The default is noic.

14 Commands Reference, Volume 6

vi Option (Abbreviation)

linelimit (ll=)

lisp (lisp)

list (list)

magic (magic)

mesg (mesg)

modeline (modeline)

novice

number (nu)
optimize (opt)

paragraphs (para=)

partialchar (pc=)

prompt

readonly (ro)
redraw (redraw)

remap
report (re=)

scroll (scr=)

sections (sect=)

shell (sh=)

Description

Sets the maximum number of lines, as per the -y command-line
option. This option only is effective if used with the .exrc file or the
EXINIT environment variable.

Removes the special meaning of (), {}, [[, and]] and enables the
= (formatted print) operator for s-expressions, so you can edit list
processing (LISP) programs. The default is nolisp.

Displays text with tabs (Al) and the marked end of lines ($). The
default is nolist.

Treats the . (period), [(left bracket), and * (asterisk) characters as
special characters when searching for a pattern. In off mode, only
the () (parentheses) and $ (dollar sign) retain special meanings.
However, you can evoke special meaning in other characters by
preceding them with a \ (backslash). The default is magic.

Turns on write permission to the terminal if set while in visual mode.
This option only is effective if used with the .exrc file or the EXINIT
environment variable. The default is on.

Runs a vi editor command line if found in the first five or the last
five lines of the file. A vi editor command line can be anywhere in a
line. For the vi editor to recognize a command line, the line must
contain a space or a tab followed by the ex: or vi: string. The
command line is ended by a second : (colon). The vi editor tries to
interpret any data between the first and second colon as vi editor
commands. The default is nomodeline.

Indicates whether you are in novice mode. You cannot change the
value by using the set command.

Displays lines prefixed with their line numbers. The default is nonu.
Speeds the operation of terminals that lack cursor addressing. The
default is noopt.

Defines vi macro names that start paragraphs. The default is
para=IPLPPPQPP\ Lipplpipnpbp. Single-letter nroff macros, such
as the .P macro, must include the space as a quoted character if
respecifying a paragraph.

Appears in the last display column where a double-wide character
would not be displayed completely. The default character is - (minus
sign).

Prompts for a new vi editor command when in command mode by
printing a : (colon). The default is on.

Sets permanent read-only mode. The default is noreadonly.
Simulates a smart workstation on a dumb workstation. The default
is nore.

Allows defining macros in terms of other macros. The default is on.
Sets the number of times you can repeat a command before a
message is displayed. For subcommands that produce many
messages, such as global subcommands, the messages are
displayed when the command sequence completes. The default is
report=5.

Sets the number of lines to be scrolled when the user scrolls up or
down. The default is 1/2 of the window size, rounded down.
Defines vi macro names that start sections. The default is
sect=NHSHHH\ HUuhsh+c. Single-letter nroff macros, such as the
.P macro, must include the space as a quoted character if
respecifying a paragraph.

Defines the shell for the ! subcommand or the The
default is the login shell.

Alphabetical Listing of Commands 15

vi Option (Abbreviation)

shiftwidth (sw=)

showmatch (sm)

showmode (smd)
slowopen (slow)
tabstop (ts=)

tags (tags =)

term (term=)

terse (terse)

timeout (to)

ttytype

warn (warn)

window (wi=)

wrapmargin (wm=)

wrapscan (ws)

wraptype (wt=)

writeany (wa)

16 Commands Reference, Volume 6

Description

Sets the distance for the software tab stops used by the autoindent
option, the shift commands (> and <), and the text input
commands (theand Ctrl-T key sequences). This vi option
only affects the indentation at the beginning of a line. The default is
sw=8.

Shows the ((matching left parenthesis) or { (left bracket) as you
type the) (right parenthesis) or } (right bracket). The default is
nosm.

Displays a message to indicate when the vi editor is in input mode.
The default is nosmd.

Postpones updating the display screen during inserts. The default is
noslow.

Sets the distance between tab stops in a displayed file. The default
is ts=8.

Defines the search path for the database file of function names
created using the command. The default is tags=tags\
lusrl/lib/tags.

Sets the type of workstation you are using. The default is
term=$TERM, where $TERM is the value of the TERM shell
variable.

Allows the vi editor to display the short form of messages. The
default is noterse.

Sets a time limit of two seconds on an entry of characters. This limit
allows the characters in a macro to be entered and processed as
separate characters when the timeout option is set. To resume use
of the macro, set the notimeout option. The default is to.

Indicates the tty type for the terminal being used. You cannot
change this value from the vi editor.

Displays a warning message before the ﬂsubcommand executes a
shell command if it is the first time you issued a shell command
after changes were made in the editing buffer but not written to a
file. The default is warn.

Sets the number of lines displayed in one window of text. The
default depends on the baud rate at which you are operating: 600
baud or less, 8 lines; 1200 baud, 16 lines; higher speeds, full
screen minus 1 line.

Sets the margin for automatic word wrapping from one line to the
next. The default is wm=0. A value of 0 turns off word wrapping.
Allows string searches to wrap from the end of the editing buffer to
the beginning. The default is ws.

Indicates the method used to wrap words at the end of a line. The
default value is general. You can specify one of the following four
values:

general
Allows wraps on word breaks as white space between two
characters. This setting is the default.

word Allows wraps on words.
rigid Allows wraps on columns and before closing punctuation.

flexible
Allows wraps on columns, but one character of punctuation
can extend past the margin.
Turns off the checks usually made before a subcommand.
The default is nowa.

To see a list of the vi editor settings that have changed from the default settings, enter set and press the
spacebar. Press the Enter key to return to the command mode.

To see a complete list of the vi editor settings, enter set all. Press the Enter key to return to the
command mode.

To turn on a vi editor option, enter set Option. This command automatically returns you to the command
mode.

To turn on multiple vi editor options, enter set Option Option Option. This command turns on the three
designated vi editor options and returns you to the command mode.

To turn off a vi editor option, enter set noOption. This command automatically returns you to the command
mode.

To change the value of a vi editor option, enter set Option=Value. This command automatically returns
you to the command mode.

You can use the :set subcommand of the vi editor to set options for this editing session only, or to set
options for this editing session and all future editing sessions.

To set or change vi editor options for this editing session only, enter the :set subcommand from the
command line.

To set vi options for all editing sessions, put the :set subcommand in the EXINIT environment variable in
the .profile file (read by the shell on login) or put the set subcommand into a .exrc file. The vi editor first
looks for the EXINIT environment variable and runs its commands. If the EXINIT environment variable
does not exist, the vi editor then looks for the $HOME/.exrc file and runs its commands. Last, and
regardless of any previous results, the vi editor looks for the local .exrc file and runs its commands.

Note: This process is true except with the tvi command (trusted vi). In this instance, the vi editor looks for
and runs only the /etc/.exrc file.

For information about changing an option by setting the EXINIT environment variable, see the description
of environment variables in the file.

The .exrc file can contain subcommands of the form set Option=Value; for example:
set cp=3 . . ;

To include a comment in the .exrc file, use a " (double quotation mark) as the first character in the line.

Defining Macros: If you use a subcommand or sequence of subcommands frequently, you can use the
vi editor to define a macro that issues that subcommand or sequence.

To define a macro, enter the sequence of subcommands into a buffer named with a letter of the alphabet.
The lowercase letters a through z overlay the contents of the buffer, and the uppercase letters A through Z
append text to the previous contents of the buffer, allowing you to build a macro piece by piece.

For example, to define a buffer macro named c that searches for the word corner and makes the third line
after the word corner the current line, enter the following command:

o /corner/+3

Then press the Esc key and enter the following command:

C

where c is the name of the buffer macro.

Alphabetical Listing of Commands 17

To add text to the previous contents of the defined buffer, enter the o viSubcommand, press the Esc key,
and enter "Capitalletter, where the CapitalLetter variable specifies an uppercase letter A through Z. For
example, to build a buffer macro named T that searches for the word corner and allows you to add more
commands, enter the following command:

0 corner

Then press the Esc key and enter the following command:
IIT

where T is the name of the buffer macro. You can repeat this process at any time to add more vi
subcommands to the same buffer.

For example, to add commands that move the cursor to the previous line and delete that line, enter the
following command:

o -dd

where - (minus sign) means to move the cursor up one line, and dd means to delete the current line.
Press the Esc key and enter the following command:

"Tdd

To start the macro, enter @Letter, where the Letter variable specifies the letter name of the buffer macro
you want to use. To use the same macro again, enter @@ (two at symbols). For example, enter @T to start
the T buffer macro and run the search, move cursor, and delete line commands. Enter @@T to start the T
buffer macro again.

The character set used by your system is defined by the collation table. This table affects the performance
of vi macros.

Mapping Keys: You can use the , , and subcommands to map a keystroke to a
command or a sequence of commands. The :map subcommand is used in the command mode. The

:map! and :ab subcommands are used in the text input mode. You can map keys for this editing session
and all future editing sessions or only for the current editing session from either mode.

To map keys for all future editing sessions, put the subcommand into a SHOME/.exrc file. Each time you
start the vi editor, it reads this file. The mapping remains in effect for every editing session.

To map keys for the current editing session only from the command mode, start the subcommand during
the vi editor session. To map keys for the current editing session only from the text input mode, enter the
subcommand on the command line during the vi editor session. The mapping remains in effect only for the
current editing session.

Attention: If you use an IBM 3161 ASCII display station, IBM 3163 ASCII display station, or IBM 3101
ASCII display station, the default key-mapping of the vi editor can cause you to lose data. To see the
default mapping, issue a :map subcommand. Specific problems arise with the Esc-J or Shift-J key
sequence. These key sequences delete all information from the current position of the cursor to the end of
the file. To avoid problems, change this key sequence using a .exrc file.

18 Commands Reference, Volume 6

The :map, :map!, and :ab subcommands are defined and used as follows:

:map

Defines macros in the command mode. The :map subcommand allows you to run a specified command or
sequence of commands by pressing a single key while in the vi editor.

To map keys in the command mode, start the vi editor with an empty editing buffer and do not name a vi
file using the vi command or type anything into the buffer after the vi editor starts. You can use the :map
subcommand to do the following:

» To map a character to a sequence of editing commands, enter:
:map Letter viSubcommand

» To unmap a character previously mapped in command mode, enter:
:unmap Letter

» To display a list of current mappings for the command mode, enter
:map

The following keys are not used by the vi editor, but are available for use with the :map subcommand in

the command mode:

* Letters g, K, q, V,and v

» Control key sequences Ctrl-A, Ctrl-K, Ctrl-O, Ctrl-W, and Ctrl-X

* Symbols _ (underscore), * (asterisk), \ (backslash), and = (equal sign)

Although you can map a key that is already used by the vi editor, the key’s usual function is not available
as long as the map is in effect. Some terminals allow you to map command sequences to function keys. If
you are in LISP mode, the = (equal sign) cannot be used because it is used by the vi editor.

To map the letter v to the sequence of commands that would locate the next occurrence of the word map
and change it to the word MAP, enter the following command:

:map v /map<Ctrl-V><Enter>cwMAP<Ctrl-V><Esc><Ctrl-V><Enter>

The previous example instructs the vi editor to locate the next occurrence of map (/map<Ctrl-V><Enter>),
change map to MAP (cwMAP), end the change-word subcommand (<Ctr1-V><Esc>), and enter the command
(<Ctrl-V><Enter>).

Requirement: To prevent the vi editor from interpreting the Enter key, it must be preceded by the Ctrl-V
key sequence when being mapped. This condition is also true of the Esc, Backspace, and Delete keys.

To map the control characters Ctrl-A, Ctrl-K, and Ctrl-O, simultaneously press the Ctrl key and the letter.
For example, to map the Ctrl-A key sequence to the sequence of commands that saves a file and edits the
next one in a series, enter the following command:

:map <Ctrl-A> :w<Ctrl-V><Enter>:n<Ctrl-V><Enter>

To map the control characters Ctrl-T, Ctrl-W, and Ctrl-X, you must first escape them with the Ctrl-V key
sequence.

Alphabetical Listing of Commands 19

To map the | (pipe symbol), you must first escape it with the two Ctrl-V key sequences, as illustrated by the
following example that maps the character g to the sequence of commands that escapes to the shell,
concatenates the file /etc/motd, and pipes the output to the we command:

:map g :!cat /etc/motd <Ctrl-V><Ctrl-V>| wc<Ctrl-V><Enter>

If your terminal permits you to map function keys, you must reference them with the #number key
sequence to designate the number of the function key that you want to map. In the following example, the
F1 function key is mapped to the sequence of commands that deletes a word and moves the cursor three
words down:

:map #1 dwwww

In order for function key mapping to work, the output of the function key for your terminal type must match
the output defined in the terminfo file. These definitions are denoted by the kfnumber entries, where kf1
represents the F1 function key, kf2 represents the F2 function key, and so on. If the output that you get
when you press the function key does not match this entry, you must use the terminal’s setup mode to
correct the settings to match these terminal database entries before any mapping can occur.

You can also map certain keyboard special keys, such as the Home, End, Page Up, and Page Down keys.
For most terminals, these keys are already mapped in the vi editor. You can verify this mapping by using
the :map subcommand. If these keys are not already mapped, you can use the :map subcommand as
follows:

:map <Ctrl-V><End> G

:map <Ctrl-V><Home> 1G

:map <Ctrl-V><PageUp> <Ctrl-F>

:map <Ctrl-V><PageDown> <Ctrl-B>

To get a listing of all current maps in the command mode, enter the :map subcommand. The preceding
examples are then displayed as follows:

v v /map<Ctr1-M>cwMAP<Ctrl-[>Ctrl-M>
<Ctrl-A> <Ctrl-A> :w<Ctrl-M>:n<Ctrl-M>
g g :lcat /etc/motd | wc <Ctrl-M>

Tip: The Cirl-V and Enter key sequence is displayed as the Ctrl-M key sequence, and the Ctrl-V and Esc
key sequence is displayed as the Cirl-[key sequence.

:map! Maps character strings to single keys while in text input mode. To map keys in the text input mode, start
the vi editor with an empty editing buffer and do not name a vi file using the vi command or type anything
into the buffer after the vi editor starts. You can use the :map! subcommand to do the following:

» To map a letter to one or more vi strings in text input mode, enter:
:map! Letter String
* To unmap a letter previously mapped in text input mode, enter:
:unmap! Letter
» To display a list of existing strings that are mapped to specific keys in text input mode, enter:
:map!
Typing the mapped key while in text input mode produces the specified string. The Ctrl-V and Esc key

sequence puts you into command mode, backs up to the beginning of the current word (bbw), and starts
the ew (change-word) subcommand. For example:

:map! % <Ctrl-V><Esc>bbwcw

When typing text, if you realize that you have mistyped a word, you can change it by pressing the %
(percent) key and retyping the word. You are automatically returned to insert mode.

Important: Be careful when choosing keys to be used for the :map! subcommand. Once keys have been
mapped, they can no longer be input as text without first issuing the :unmap! subcommand.

20 Ccommands Reference, Volume 6

:ab Maps a key or sequence of keys to a string of characters for use in the text input mode. The :ab
subcommand is useful when inputting text that possesses several repetitive phrases, names, or titles.

The following example replaces the word city with the phrase Austin, Texas 78759 whenever it is typed in
text input mode and followed by a white space, period, or comma:

:ab city Austin, Texas 78759

For example, if while inputting text, you type the following:
My current residence is city.

Pressing the Tab key expands the word city to read:
My current residence is Austin, Texas 78759.

The abbreviation is not expanded within a word. For example, if you type My current residence iscity,
the word iscity is not expanded.

If the :map! subcommand is used to map abbreviations for insert mode, then all occurrences of the
abbreviations are expanded regardless of where it occurs. If you used the :map! subcommand for the
preceding example (:map! city Austin, Texas 78759), then whenever you type the word city, regardless
of what precedes or follows, the word will be expanded to Austin, Texas 78759. Therefore, the word
iscity becomes isAustin, Texas 78759.

Important: Be careful when choosing the keys that are used for the :ab subcommand. Once keys are
defined, they can no longer be input as text without first issuing the :unab subcommand.

Setting Abbreviations: The set command has behavior similar to the map! command except that the
set command substitutes the string for the abbreviation only when the abbreviation is a separate word.
You can use the set command of the vi editor to:

» List existing abbreviations
* Remove an abbreviation
» Set (define) an abbreviation

Tip: Start the vi editor with an empty editing buffer. Do not name a vi file using the vi command or type
anything into the buffer after the vi editor starts. Press the Esc key to be sure you are in the
command mode.

To list abbreviations Enter the :ab command to list existing abbreviations.
Press the Enter key to return to command mode.
To remove abbreviations Enter the :anabAbbreviation command to remove an

abbreviation, where the Abbreviation variable specifies
the character string you do not want abbreviated any
more.

Alphabetical Listing of Commands 21

To set (define) an abbreviation Enter the :ab Abbreviation String command to set an

Flags

-cSubcommand

-r[File]

-R

-tTag

-V
-wNumber

-yNumber

+[Subcommand]|

abbreviation, where the Abbreviation variable specifies
the character string being defined as an abbreviation
and the String variable specifies the character string
being abbreviated. The abbreviation can be substituted
for the string only when the abbreviation is a separate
word.

For example, if you enter the :ab kn upper command

and then type acknowledge while in the text input mode,
the set abbreviation string is not started because the kn
string in the word acknowledge is not a separate word.

However, if you type the :ab kn upper command and
then type make the kn 1ine all kncase while in the text
input mode, the result is make the upper line all
uppercase.

Carries out the ex editor subcommand before viewing with vi begins. The cursor moves to
the line affected by the last subcommand to be carried out. When a null operand is
entered, as in -¢’ ’, the vi editor places the cursor on the first line of the file. The -c flag is
incompatible with the + flag. Do not specify both flags at the same time.

Enters the vi editor in LISP mode. In this mode, the vi editor creates indents appropriate for
LISP code, and the (,), {, }, [[, and]] subcommands are modified to act appropriately for
LISP.

Recovers a file after a vi editor or system malfunction. If you do not specify the File
variable, the vi editor displays a list of all saved files.

Sets the readonly option to protect the file against overwriting.

Edits the file containing the Tag variable and positions the vi editor at its definition. To use
this flag, you must first create a database of function names and their locations using the

command.

Enters the vi editor in the verbose mode.

Sets the default window size to the value specified by the Number variable. This flag is
useful when you use the vi editor over a low-speed line.

Overrides the maximum line setting of 1,048,560 with any value greater than 1024. You
should request twice the number of lines that you require because the vi editor uses the
extra lines for buffer manipulation.

Carries out the ex editor subcommand before editing begins. If you do not specify the
Subcommand variable, the cursor is placed on the first line of the file. This + flag is
incompatible with the -¢ flag. Do not specify both flags at the same time.

vi General Subcommand Syntax
Use the following general syntax to enter subcommands:

[Named_Buffer] [Operator] [Number] Object

Tip: Square brackets indicate optional items.

[Named_Buffer]
[Operaton
[Number]
Object

Specifies a temporary text storage area.

Specifies the subcommand or action; instructs the vi editor.

Specifies either the extent of the action or a line address as a whole number.

Specifies what to act on, such as a text object (a character, word, sentence, paragraph,
section, character string) or a text position (a line, position in the current line, screen
position).

22 Commands Reference, Volume 6

Counts before Subcommands
You can put a number in front of many subcommands. The vi editor interprets this number in one of the
following ways:

* Go to the line specified by the Number parameter:

5G
10Z
* Go to the column specified by the Number parameter:
25|
» Scroll the number of lines up or down specified by the Number parameter:
10Ctrl1-U
10Ctrl1-D

vi Editor Subcommands

Use the subcommands to perform these kinds of actions:
+ [Moving the cursor]

.

+ [Manipulating files]

.

Moving the Cursor
Use subcommands to move the cursor within a file in these ways:

+ [Moving within a lin€]

+ [Moving within a line by character position|

+ [Moving to words|

+ [Moving by line position|

+ [Moving to sentences, paragraphs, or sections

« [Moving by redrawing the screen|

+ [Paging and scrolling|

« [Searching for patterns|

« [Marking a specific location in a file and returning|

Moving within a Line: Enter the following subcommands in command mode| You can cancel an
incomplete command by pressing the Esc key. If you need information about the format of vi
subcommands, see ['vi General Subcommand Syntax.”|

Left Arrow or h or Ctrl-H Moves the cursor one character to the left.

Down Arrow or j or Ctrl-J or Ctrl-N Moves the cursor down one line (it remains in
the same column).

Up Arrow or k or Ctrl-P Moves the cursor up one line (it remains in the
same column).

Right Arrow or | Moves the cursor one character to the right.

Moving within a Line by Character Position: Enter the following subcommands in [command mode}
You can cancel an incomplete command by pressing the Esc key. If you need information about the format
of vi subcommands, see|"vi General Subcommand Syntax.’|

Moves the cursor to the first nonblank character.

0 Moves the cursor to the beginning of the line.
$ Moves the cursor to the end of the line.

fx Moves the cursor to the next x character.

Fx Moves the cursor to the last x character.

Alphabetical Listing of Commands 23

tx Moves the cursor to one column before the next x character.

Tx Moves the cursor to one column after the last x character.

; Repeats the last f, F, t, or T subcommand.

, Repeats the last f, F, t, or T subcommand in the opposite direction.
Numben Moves the cursor to the specified column.

Moving to Words: Enter the following subcommands in fcommand model If you need information about
the format of vi subcommands, |'vi General Subcommand Syntax.'|

Mwso®os

Moves the cursor to the next small word.

Moves the cursor to the previous small word.
Moves the cursor to the next end of a small word.
Moves the cursor to the next big word.

Moves the cursor to the previous big word.
Moves the cursor to the next end of a big word.

Moving by Line Position: Enter the following subcommands in[command mode} If you need information
about the format of vi subcommands, see|"vi General Subcommand Syntax.’|

Enter

Moves the cursor to the top line on the screen.

Moves the cursor to the last line on the screen.

Moves the cursor to the middle line on the screen.

Moves the cursor to the next line at its first nonblank character.
Moves the cursor to the previous line at its first nonblank character.
Moves the cursor to the next line at its first nonblank character.

Moving to Sentences, Paragraphs, or Sections: Enter the following subcommands in command mode]
You can cancel an incomplete subcommand by pressing the Esc key. If you need information about the
format of vi subcommands, see |'vi General Subcommand Syntax.’|

(

)
{
}

1
11

Places the cursor at the beginning of the previous sentence, or the previous s-expression if you are in LISP
mode.

Places the cursor at the beginning of the next sentence, or the next s-expression if you are in LISP mode.
Places the cursor at the beginning of the previous paragraph, or at the next list if you are in LISP mode.
Places the cursor at the beginning of the next paragraph, at the next section if you are in C mode, or at the
next list if you are in LISP mode.

Places the cursor at the next section, or function if you are in LISP mode.

Places the cursor at the previous section, or function if you are in LISP mode.

Moving by Redrawing the Screen: Enter the following subcommands in jcommand mode} You can
cancel an incomplete subcommand by pressing the Esc key. If you need information about the format of vi
subcommands, see|'vi General Subcommand Syntax.’|

z Redraws the screen with the current line at the top of the screen.

z- Redraws the screen with the current line at the bottom of the screen.

z. Redraws the screen with the current line at the center of the screen.

|Patternlz- Redraws the screen with the line containing the character string, specified by the Pattern

parameter, at the bottom.

Paging and Scrolling: Enter the following subcommands in [command mode|. You can cancel an
incomplete subcommand by pressing the Esc key. If you need information about the format of vi
subcommands, see|"vi General Subcommand Syntax.’|

24 Commands Reference, Volume 6

Ctrl-U Scrolls up one-half screen.

Ctrl-D Scrolls down one-half screen.
Ctrl-F Scrolls forward one screen.
Ctrl-B Scrolls backward one screen.
Ctrl-E Scrolls the window down one line.
Ctrl-Y Scrolls the window up one line.
z+ Pages up.

zA Pages down.

Searching for Patterns: Enter the following subcommands in command model You can cancel an
incomplete subcommand by pressing the Esc key. If you need information about the format of vi
subcommands, see|"vi General Subcommand Syntax.’|

[NumbenG Places the cursor at the line number specified by the Number parameter or at the last
line if the Number parameter is not specified.

[Pattern Places the cursor at the next line containing the character string specified by the
Pattern parameter.

?Pattern Places the cursor at the next previous line containing the character string specified by
the Pattern parameter.

n Repeats the last search for the text specified by the Pattern parameter in the same
direction.

N Repeats the last search for the text specified by the Pattern parameter in the opposite
direction.

[Patternl+ Number Places the cursor the specified number of lines after the line matching the character
string specified by the Pattern parameter.

?Pattern?-Number Places the cursor the specified number of lines before the line matching the character
string specified by the Pattern parameter.

% Finds the parenthesis or brace that matches the one at current cursor position.

Editing Text

The subcommands for editing enable you to perform the following tasks:
« [Marking a specific location in a file and returning|

+ [Adding text to a filg|

+ [Changing text while in input mode]

« [Changing text from command mode]

+ [Copying and moving text|

« [Restoring and repeating changes|

Marking a Specific Location in a File and Returning: Enter the following subcommands in
You can cancel an incomplete subcommand by pressing the Esc key. If you need information about
the format of vi subcommands, see|'vi General Subcommand Syntax."|

" Moves the cursor to the previous location of the current line.

g Moves the cursor to the beginning of the line containing the previous location of the current line.
mx Marks the current position with the letter specified by the x parameter.

X Moves the cursor to the mark specified by the x parameter.

X Moves the cursor to the beginning of the line containing the mark specified by the x parameter.

Adding Text to a File (Text Input Mode): Enter the following subcommands in lcommand mode] to
change the vi editor into text input mode. If you need information about the format of vi subcommands,
see['vi General Subcommand Syntax.”|

aText Inserts text specified by the Text parameter after the cursor. End by pressing the Esc key.

Alphabetical Listing of Commands 25

AText Adds text specified by the Text parameter to the end of the line. Endby pressing the Esc

key.

iText Inserts text specified by the Text parameter before the cursor. End text input mode|by pressing the Esc
key.

I Text Inserts text specified by the Text parameter before the first nonblank character in the line. End
by pressing the Esc key.

o Adds an empty line below the current line. End|text input mode|by pressing the Esc key.

(0] Adds an empty line above the current line. End [text input mode|by pressing the Esc key.

Changing Text While in Input Mode: Use the following subcommands only while in text input mode}
These commands have different meanings in command mode. If you need information about the format of

vi subcommands, see ['vi General Subcommand Syntax.|

Ctrl-D Goes back to previous autoindent stop.

A Ctrl-D Ends autoindent for this line only.

OCtrl-D Moves cursor back to left margin.

Esc Ends insertion and returns to command state.

Ctrl-H Erases the last character.

Ctrl-Q Enters any character if xon is disabled.

Ctrl-V Enters any character.

Ctrl-w Erases the last small word.

\ Quotes the erase and kill characters.

Ctrl-? Interrupts and ends insert or the Ctrl-D key sequence.

Changing Text from Command Mode: Use the following subcommands in|command mode| An
incomplete subcommand can be canceled by pressing the Esc key. If you need information about the
format of vi subcommands, see|'vi General Subcommand Syntax.’|

C Changes the rest of the line (same as c¢$).

cc Changes a line.

cw Changes a word.

cw Text Changes a word to the text specified by the Text parameter.

D Deletes the rest of the line (same as d$).

dd Deletes a line.

dw Deletes a word.

J Joins lines.

rx Replaces the current character with the character specified by x.
RText Overwrites characters with the text specified by the Text parameter.
s Substitutes characters (same as cl).

S Substitutes lines (same as cc).

u Undoes the previous change.

X Deletes a character at the cursor.

X Deletes a character before the cursor (same as dh).

<< Shifts one line to the left.

<L Shifts all lines from the cursor to the end of the screen to the left.
>> Shifts one line to the right.

>L Shifts all lines from the cursor to the end of the screen to the right.
~ Changes letter at the cursor to the opposite case.

! Indents for LISP.

Copying and Moving Text: Use the following subcommands in|command mode} An incomplete
subcommand can be canceled by pressing the Esc key. If you need information about the format of vi
subcommands, see|"vi General Subcommand Syntax.’|

26 Commands Reference, Volume 6

p Puts back text from the undo buffer after the cursor.
P Puts back text from the undo buffer before the cursor.
"Xp Puts back text from the x buffer.

"xd Deletes text into the x buffer.

y Places the object that follows (for example, w for word) into the undo buffer.
"Xy Places the object that follows into the x buffer, where x is any letter.
Y Places the line in the undo buffer.

Restoring and Repeating Changes: Use the following subcommands in|command model. An incomplete
subcommand can be canceled by pressing the Esc key. If you need information about the format of vi
subcommands, see|"vi General Subcommand Syntax.’|

u Undoes the last change.

Tip: After an undo, the cursor moves to the first non-blank character on the updated current line.
) Restores the current line if the cursor has not left the line since the last change.

Repeats the last change or increments the "np command.

Notes:

1. This subcommand will repeat the last change, including an undo. Therefore, after an undo, repeat performs
an undo rather than repeat the last change.

2. This subcommand is not meant for use with a macro. Enter @ @ (two at signs) to repeat a macro.
”nﬂ Retrieves the nth last delete of a complete line or block of lines.

Manipulating Files
The subcommands for manipulating files allow you to do the tasks outlined in the following sections:

+ [Saving changes to a file|
« [Editing a second filg]

+ [Editing a list of files]

« [Finding file information|

Saving Changes to a File: Use the following subcommands in lcommand mode] If you need information
about the format of vi subcommands, see|"vi General Subcommand Syntax.’|

W Writes the edit buffer contents to the original file. If you are using this subcommand within the@
editor, you do not need to type the : (colon).

:w File Writes the edit buffer contents to the file specified by the File parameter. If you are using this
subcommand within theeditor, you do not need to type the : (colon).

:w! File Overwrites the file specified by the File parameter with the edit buffer contents. If you are using this

subcommand within theeditor, you do not need to type the : (colon).

Editing a Second File: Enter the following subcommands in|lcommand mode|. If you need information
about the format of vi suocommands, see|"vi General Subcommand Syntax.”

:e File Edits the specified file. If you are using this subcommand from the@ editor, you do
not need to type the : (colon).

ze! Re-edits the current file and discards all changes.

:e + File Edits the specified file starting at the end.

:e + Number File Edits the specified file starting at the specified line number.

e # Edits the alternate file. The alternate file is usually the previous file name before

accessing another file with a :e command. However, if changes are pending on the
current file when a new file is called, the new file becomes the alternate file. This
subcommand is the same as the subcommand.

Alphabetical Listing of Commands 27

:r File Reads the file into the editing buffer by adding new lines below the current line. If you
are using this subcommand from the @editor, you do not need to type the : (colon).

:r 1Command Runs the specified command and places its output into the file by adding new lines
below the current cursor position.
:ta Tag Edits a file containing the Tag tag starting at the location of the tag. To use this

subcommand, you must first create a database of function names and their locations
using the [ctagg command. If you are using this subcommand from the [ex] editor, you
do not need to type the : (colon).

Ctrl-] Edits a file containing the tag associated with the current word starting at the location
of the tag. To use this subcommand, you must first create a database of function
names and their locations using the ctags command. Ctrl-T edits a file at the editing
position where the previous Ctrl-] subcommand was issued. If multiple Ctrl-]
subcommands have been issued, then multiple Ctrl-T subcommands can be used to
return to previous editing positions where Ctrl-] subcommands were issued.

Ctrl-A Edits the alternate file. The alternate file is usually the previous current file name.
However, if changes are pending on the current file when a new file is called, the new
file becomes the alternate file. This subcommand is the same as the |:e #
subcommand.

Editing a List of Files: Enter the following subcommands inlcommand modd|. If you need information
about the format of vi subcommands, see|"vi General Subcommand Syntax.'|

n Edits the next file in the list entered on the command line. If you are using this subcommand from the
@ editor, a : (colon) is not needed.

:n Files Specifies a new list of files to edit. If you are using this subcommand from the @ editor, a : (colon) is
not needed.

Finding File Information: Enter the following subcommand in command mode] If you need information
about the format of vi subcommands, see|"vi General Subcommand Syntax’}

Ctrl-G Shows the current file name, current line number, number of lines in the file, and percentage of the way
through the file where the cursor is located.

Other Actions
The vi editor provides the subcommands described in the following sections:

« [Adjusting the screen|
+ [Entering shell commands|
« [Interrupting and ending the vi editor]

Adjusting the Screen: Enter the following subcommands in command mode] An incomplete
subcommand can be canceled by pressing the Esc key. If you need information about the format of vi
subcommands, see|"vi General Subcommand Syntax.’|

Ctrl-L Clears and redraws the screen.
Ctrl-R Redraws the screen and eliminates blank lines marked with @ (at sign).
zNumber Makes the window the specified number of lines long.

Entering Shell Commands: The following subcommands allow you to run a command within the vi
editor. Enter these subcommands in[command model If you need information about the format of vi
subcommands, see|"vi General Subcommand Syntax.’|

:sh Enters the shell to allow you to run more than one command. You can
return to the vi editor by pressing the Ctrl-D key sequence. If you are
using this subcommand within the@ editor, a : (colon) is not needed.

28 Commands Reference, Volume 6

:!Command Runs the specified command and then returns to the vi editor. If you are
using this subcommand within the@ editor, a : (colon) is not needed.

Tip: The # (alternate file), % (current file), and ! (previous command)
special characters are expanded when following a :! subcommand. To
prevent any of these characters from being expanded, use the \

(backslash).
N Repeats the last :!'Command subcommand.
Numben!Command Runs the specified command and replaces the lines specified by

Number with the output of the command. If a number is not specified,
the default value is 1. If the command expects standard input, the
specified lines are used as input.

10bject Command Runs the specified command and replaces the object specified by the
Object parameter with the output of the command. If the command
expects standard input, the specified object is used as input.

Interrupting and Ending the vi Editor: Enter the following subcommands in|command model If you
need information about the format of vi subcommands, see ['vi General Subcommand Syntax.’|

Q Enters the @ editor in command mode.

Y44 Exits the vi editor, saving changes.

:q Quits the vi editor. If you have changed the contents of the editing buffer, the vi editor displays a warning
message and does not quit. If you are using this subcommand from the editor, a : (colon) is not
needed.

q! Quits the vi editor, discarding the editing buffer. If you are using this subcommand from theeditor, a:
(colon) is not needed.

Esc Ends text input or ends an incomplete subcommand.

Ctrl-? Interrupts a subcommand.

Exit Status

The following exit values are returned:

0 Indicates successful completion.
>0 Indicates an error occurred.

Input Files

Input files must be text files or files that are similar to text files except for an incomplete last line that
contains no null characters.

The .exrc files must be text files consisting of ex commands.
The $SHOME/.vi_history file is an auto-generated text file that records the last line mode command history.

By default, the vi editor reads lines from the files to be edited without interpreting any of those lines as any
form of vi editor command.

Related Information
The command, @ command, command, command, M command, command.

The [-profile]file.

Alphabetical Listing of Commands 29

view Command

Purpose
Starts the vi editor in read-only mode.

Syntax
view [FcJsubcommana | (1 [[] Tag | [fwivumber 1 [[]1 1Fq [Fite 11 [[{][Subcommand 111 Fite ...]

Description

The view command starts the vi full-screen editor in read-only mode. The read-only mode is only advisory
to prevent accidental changes to the file. To override read-only mode, use the ! (exclamation point) when
executing a command. The File parameter specifies the name of the file you want to browse. Use vi
subcommands for |moving within the filel Use the [:q| subcommand to exit the view command. If you modify
the file you can save your modifications by pressing the Esc key and wq!.

Flags

-cSubcommand Carries out the ex editor subcommand before viewing with vi begins. When a null operand
is entered, as in -c *’ , the editor places the cursor on the last line of the file.

-l Enters a version of the vi editor with specialized features designed for writing programs in
the LISP language. In this mode, the vi editor indents appropriately for LISP programming,
and the (,), {, }, [[, and]] subcommands are modified to act appropriately for LISP.

-r [File] Recovers a file after an editor or system crash. If you do not specify a File parameter, the
editor displays a list of all saved files.

-tTag Edits the file containing the tag specified by the Tag parameter and positions the editor at

its definition. To use this flag, you must first create a database of function names and their
locations using the command.

-wNumber Sets the default window size to the value specified by the Number parameter. This is useful
when your terminal communicates with the system running the editor over a slow
communications line.

-y Overrides the maximum line setting of 1,048,560 with any value greater than 1024.

+[Subcommand] Carries out the ex editor subcommand specified by the Subcommand parameter before
viewing with vi begins. If you do not specify a subcommand, the cursor is placed on the last
line of the file.

Related Information
The [vi| command, command.

vmh Command

Purpose

Starts a visual interface for use with MH commands.

Syntax

vmh [Fprompi String | [[-vmhproc] CommandsString | Fnovmhprod]]
Description

The vmh command starts a visual interface for use with MH commands. The vmh command implements
the server side of the MH window management protocol and maintains a split-screen interface to any
program that implements the client side of the protocol.

30 Ccommands Reference, Volume 6

The vmh command prompts for commands and sends them to the client side of the protocol. If the
command produces a window with more than one screen of output, the vmh command prompts the user
for a subcommand. The vmh subcommands enable you to display specific portions of the command

output.

vmh Subcommands

Ctrl-L Refreshes the screen.

Space Advances to the next screen.

[Number] Enter Advances the specified number of lines. The default is one line.

[Numben d Advances 10 times the specified number of lines. The default for the Number variable is
1, for a total of 10 lines.

[Numben g Goes to the specified line.

[Numben G Goes to the end of the window. If the Number variable is specified, this command acts
like the g flag.

[Number] u Goes back 10 times the specified number of lines. The default for the Number variable is
1, for a total of 10 lines.

[Numben y Goes back the specified number of lines. The default is one line.

h Displays a help message.

q Ends output.

Flags

-help Lists the command syntax, available switches (toggles), and version

information.

Note: For MH, the name of this flag must be fully spelled out.

-novmhproc Runs the default vmproc without the window management protocol.
-prompt String Uses the specified string as the prompt.
-vmhproc CommandString Specifies the program that implements the client side of the window

management protocol. The default is the msh program.

Profile Entries

The following entries are entered in the UserMhDirectoryl.mh_profile file:

Path: Specifies the user's MH directory.

mshproc: Specifies the program used for the MH shell.
Files

$HOME/.mh_profile Contains the MH user profile.
lusr/bin/vmh Contains the vmh command.

Related Information

The @ command.
The [mh_alias] file format, [mh_profile]file format.

IMail applications|in Networks and communication management.

Alphabetical Listing of Commands

31

vmo Command

Purpose
Manages Virtual Memory Manager tunable parameters.

Syntax
vmo [E IE|] [E{I] { Tunable [= Newvaluel}

vmo [[p|1[-11[[y]1 £d| Tunavle }
vmo [[p| 1[-1]1 ([1[D]
vmo[mllﬂ]

vmo E|[Tunable |
vmo E[Tunable]
vmo El[Tunable]

Note: Multiple -0, -d, -x and -L are allowed.

Description

Note: The vmo command can only be executed by root.

Use the vmo command to configure Virtual Memory Manager tuning parameters. This command sets or
displays current or next boot values for all Virtual Memory Manager tuning parameters. This command can
also make permanent changes or defer changes until the next reboot. Whether the command sets or
displays a parameter is determined by the accompanying flag. The -o flag performs both actions. It can
either display the value of a parameter or set a new value for a parameter.

The Virtual Memory Manager (VMM) maintains a list of free real-memory page frames. These page frames
are available to hold virtual-memory pages needed to satisfy a page fault. When the number of pages on
the free list falls below that specified by the minfree parameter, the VMM begins to steal pages to add to
the free list. The VMM continues to steal pages until the free list has at least the number of pages
specified by the maxfree parameter.

If the number of file pages (permanent pages) in memory is less than the number specified by the
minperm% parameter, the VMM steals frames from either computational or file pages, regardless of
repage rates. If the number of file pages is greater than the number specified by the maxperm%
parameter, the VMM steals frames only from file pages. Between the two, the VMM normally steals only
file pages, but if the repage rate for file pages is higher than the repage rate for computational pages,
computational pages are stolen as well.

You can also modify the thresholds that are used to decide when the system is running out of paging
space. The npswarn parameter specifies the number of paging-space pages available at which the
system begins warning processes that paging space is low. The npskill parameter specifies the number of
paging-space pages available at which the system begins killing processes to release paging space.

Understanding the Effect of Changing Tunable Parameters

Misuse of this command can cause performance degradation or operating-system failure. Before
experimenting with vmo, you should be thoroughly familiar with both [Performance overview of the Virtual|
[Memory Manager|{and [Enhanced JFS file system cache limit with the maxclient parameter|

32 Commands Reference, Volume 6

Before modifying any tunable parameter, you should first carefully read about all its characteristics in the

[Tunable Parameters| section below, and follow any Refer To pointer, in order to fully understand its

purpose.

You must then make sure that the Diagnosis and Tuning sections for this parameter truly apply to your
situation and that changing the value of this parameter could help improve the performance of your

system.

If the Diagnosis and Tuning sections both contain only "N/A", you should probably never change this
parameter unless specifically directed by AIX development.

Flags

-a

-d Tunable

-h [Tunable]

-L [Tunable]

Displays current, reboot (when used in conjunction with -r) or permanent (when used in
conjunction with -p) value for all tunable parameters, one per line in pairs Tunable = Value.
For the permanent option, a value is only displayed for a parameter if its reboot and current
values are equal. Otherwise NONE is displayed as the value.

Resets Tunable to default value. If a Tunable needs to be changed (that is, it is currently not
set to its default value) and is of type Bosboot or Reboot, or if it is of type Incremental and
has been changed from its default value, and -r is not used in combination, it will not be
changed but a warning will be displayed instead.

Resets all tunables to their default value. If tunables needing to be changed are of type
Bosboot or Reboot, or are of type Incremental and have been changed from their default
value, and -r is not used in combination, they won’t be changed but a warning will be
displayed instead.

Displays help about the Tunable parameter if one is specified. Otherwise, displays the vmo
command usage statement.

Lists the characteristics of one or all tunables, one per line, using the following format:

NAME CUR DEF BOOT MIN MAX UNIT TYPE
DEPENDENCIES

memory_frames 128K 128K 4KB pages S

maxfree 1088 1088 130 16 200K 4KB pages D
minfree

memory_frames

minfree 960 960 122 8 200K 4KB pages D
maxfree
memory_frames

where:

CUR = current value
DEF = default value
BOOT = reboot value
MIN = minimal value
MAX = maximum value

UNIT = tunable unit of measure
TYPE = |parameter typel D (for Dynamic), S (for Static), R for Reboot),

B (for Bosboot), M (for Mount), I (for Incremental),
C (for Connect), and d (for Deprecated)
DEPENDENCIES = 1ist of dependent tunable parameters, one per Tine

Alphabetical Listing of Commands 33

-0 Tunable[=Newvalue] displays the value or sets tunable to Newvalue. If a tunable needs to be changed (the
specified value is different than current value), and is of type Bosboot or Reboot, or if it is of
type Incremental and its current value is bigger than the specified value, and -r is not used in
combination, it will not be changed but a warning will be displayed instead.

When -r is used in combination without a new value, the nextboot value for tunable is
displayed. When -p is used in combination without a new value, a value is displayed only if
the current and next boot values for tunable are the same. Otherwise NONE is displayed as the
value.

-p When used in combination with -0, -d or -D, makes changes apply to both current and reboot
values, that is, turns on the updating of the /etc/tunables/nextboot file in addition to the
updating of the current value. These combinations cannot be used on Reboot and Bosboot
type parameters because their current value can’t be changed.

When used with -a or -0 without specifying a new value, values are displayed only if the
current and next boot values for a parameter are the same. Otherwise NONE is displayed as
the value.

-r When used in combination with -0, -d or -D, makes changes apply to reboot values, for
example, turns on the updating of the /etc/tunables/nextboot file. If any parameter of type
Bosboot is changed, the user will be prompted to run bosboot.

When used with -a or -0 without specifying a new value, next boot values for tunables are
displayed instead of current values.

-X [Tunable] Lists characteristics of one or all tunables, one per line, using the following (spreadsheet)
format:

tunable,current,default,reboot,min,max,unit,type,{dtunable }

where:
current = current value
default = default value
reboot = reboot value
min = minimal value
max = maximum value
unit = tunable unit of measure

type = : D (for Dynamic), S (for Static), R (for Reboot),
B (for Bosboot), M (for Mount), I (for Incremental),
C (for Connect), and d (for Deprecated)

dtunable = 1ist of dependent tunable parameters

-y Suppresses the confirmation prompt before running the bosboot command.

Any change (with -0, -d or -D) to a parameter of type Mount will result in a message being displayed to
warn the user that the change is only effective for future mountings.

Any change (with -o, -d or -D flags) to a parameter of type Connect will result in inetd being restarted,
and a message displaying a warning to the user that the change is only effective for future socket
connections.

Any attempt to change (with -o, -d or -D) a parameter of type Bosboot or Reboot without -r, will result in
an error message.

Any attempt to change (with -o, -d or -D but without -r) the current value of a parameter of type
Incremental with a new value smaller than the current value, will result in an error message.

Tunable Parameters Type
All the tunable parameters manipulated by the tuning commands (no, nfso, vmo, ioo, raso, and schedo)
have been classified into these categories:

Dynamic If the parameter can be changed at any time

Static If the parameter can never be changed

34 Ccommands Reference, Volume 6

Reboot If the parameter can only be changed during reboot

Bosboot If the parameter can only be changed by running bosboot and rebooting the machine
Mount If changes to the parameter are only effective for future file systems or directory mounts
Incremental If the parameter can only be incremented, except at boot time

Connect If changes to the parameter are only effective for future socket connections

Deprecated If changing this parameter is no longer supported by the current release of AlX.

For parameters of type Bosboot, whenever a change is performed, the tuning commands automatically
prompt the user to ask if they want to execute the bosboot command. For parameters of type Connect,
the tuning commands automatically restart the inetd daemon.

Note that the current set of parameters managed by the vmo command only includes Static, Dynamic, and
Bosboot types.

Compatibility Mode

When running in pre-AlX 5.2 compatibility mode (controlled by the pre520tune attribute of sys0), reboot
values for parameters, except those of type Bosboot, are not really meaningful because in this mode they
are not applied at boot time. For more information, seeAIX 5.2 compatibility mode|in the Performance
management.

In pre-AlX 5.2 compatibility mode, setting reboot values to tuning parameters continues to be achieved by
imbedding calls to tuning commands in scripts called during the boot sequence. Parameters of type
Reboot can therefore be set without the -r flag, so that existing scripts continue to work.

This mode is automatically turned ON when a machine is migrated to AIX 5.2. For complete installations, it
is turned OFF and the reboot values for parameters are set by applying the content of the

letc/tunables/nextboot file during the reboot sequence. Only in that mode are the -r and -p flags fully
functional. For more information, see in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

Tunable Parameters

cpu_scale_memp Purpose:

Determines the ratio of CPUs per-mempool. For every cpu_scale_memp
CPUs, at least one mempool will be created.

Values:
Default: 8

Range: 1 to 128 (Maximum number of CPUs)

Diagnosis:
N/A

Tuning:
Can be reduced to reduce contention on the mempools. Use in conjunction
with the tuning of the maxperm parameter.

Alphabetical Listing of Commands 35

data_stagger_interval

defps

force_relalias_lite

framesets

Purpose:
Specifies what the staggering is that will be applied to the data section of a
large-page data executable with
LDR_CNTRL=DATA_START_STAGGER=Y. For example, the nth
large-page data process executed on a given MCM has its data section
start at offset (n * data_stagger_interval * 4096) % LGPSIZE.

Values:
Default: OxA1

Range: 0 to (LargePageSize/4096)-1.
Type: Dynamic

Diagnosis:
N/A

Purpose:
Turns on/off Deferred Page Space Allocation (DPSA) policy.

Values:
Default: 1

Range: 0 or 1 (DPSA is on)
Type: Dynamic

Diagnosis:
N/A

Tuning May be useful to turn off DPSA policy if you are concerned about
page-space overcommitment. Having the value on reduces paging space
requirements.

Refer To:
[Choosing between LPSA and DPSA with the vmo command| .

Purpose:
If set to 0, a heuristic will be used, when tearing down an mmap region, to
determine when to avoid locking the source mmapped segment. This is a
scalability trade-off, controlled by relalias_percentage, possibly costing
more compute time used.
Values:
Default: 0

Range: 1 or 0
Diagnosis:

Tuning If set to 1, the source segment lock is avoided whenever possible,
regardless of the value of relalias_percentage. The Default value is 0.

Purpose:
Specifies the number of real memory page sets per memory pool. This
parameter does not exist in UP kernels.
Values:
Default: 2
Range: 1 to 10
Type: Bosboot

Diagnosis:
N/A

Tuning N/A

36 Commands Reference, Volume 6

htabscale

kernel_heap_psize

kernel_psize

Purpose:
On non-lpar machines, the hardware page frame table (PFT) is completely
software controlled and its size is based on the amount of memory being
used. The default is to have 4 PTE’s (PFT entries) for each frame of
memory (sz=(M/4096)*4*16 where size of PTE is 16 bytes).

Values:
Default: -1
Diagnosis:
N/A
Tuning:
The size can be scaled up or down via htabscale. The default value is -1
(PTE to frame ratio of 4:1). Each decrement of htabscale reduces the PFT
size in half. Each increment of htabscale doubles the PFT size.
Purpose:
Sets the default page size to use for the kernel heap. This is an advisory
setting and is only valid on the 64-bit kernel. If pages of the specified size
cannot be allocated, the kernel heap will use pages of a different, smaller
page size. 16M pages should only be used for the kernel heap under high
performance environments.
Values:
Default: 4096
Range: range: 4096 or 16777216
Type: Bosboot
Diagnosis:
N/A
Purpose:
Specifies the page size backing the kernel segment. This setting is only
valid on a 64-bit kernel on POWER4 and later processors. When the kernel
is backed with 16M pages, approximately 240MB of additional pinned
memory is use, but performance is improved.
Values:
Default: 0
Range: range: 0, 4096, 16777216
Type: bosboot
Diagnosis:

N/A

Tuning The kernel determines the best page size if 0 is specified. 4096 and
16777216 specify page sizes in bytes.

Alphabetical Listing of Commands 37

large_page_heap_size Purpose:

When kernel_heap_psize is set to 16M, this tunable sets the maximum
amount of the kernel heap to try to back with 16M pages. After the kernel
heap grows beyond this amount and 16M is selected kernel_heap_psize,
4K pages will be used for the kernel heap. If this tunable is set to 0, it is
ignored, and no maximum is set for the amount of kernel heap that can be
backed with 16M pages. This tunable should only be used in very special
environments where only a portion of the kernel heap needs to be backed
with 16M pages.

Values:
Default: 0
Range: 0 to MAXINT64
Type: Bosboot
Diagnosis:
N/A
lgpg_regions Purpose:

Specifies the number of pages in the large page pool. This parameter does
not exist in 64-bit kernels running on non-POWER4 based machines.

Values:
Default: 0
Range: 0 - number of pages.
Type: Dynamic on DLPAR-capable systems. Bosboot on non-DLPAR
systems.
Diagnosis:

Using large pages improves performance in the case where there are
many TLB misses and large amounts of memory is being accessed.

Tuning Ipgpg_size must also be used in addition to this option.

vmo operations to change the number of large pages on the system may
succeed partially. If a request to increase or decrease the size of the pool
cannot fully succeed (for example, if Igpg_regions is tuned to 0 but there
are large pages in use by applications), the vmo command will add or
remove pages to get as close as possible to the requested number of
pages.

Note: If Igpg_regions is changed with the -p option, the value specified
will hold for the next boot, regardless of how successful the immediate
action was.

Refer To:
[System configuration for large pages|

38 Commands Reference, Volume 6

lgpg_size

low_ps_handling

Irubucket

Purpose:
Specifies the size in bytes of the hardware-supported large pages used for
the implementation of the large page pool. This parameter does not exist in
64-bit kernels running on non-POWER4 based machines.

Values:
Default: 0
Range: 0 or 268435456 (on non-POWER4), or 0 or 16777216 (on
POWERA4).
Type: Dynamic on DLPAR-capable systems. Bosboot on non-DLPAR
systems.

Diagnosis:

Using large pages improves performance in the case where there are
many TLB misses and large amounts of memory is being accessed.

Tuning lgpg_region must of be set to a non-zero value in addition to this
parameter.

Refer To:
[System configuration for large pages|

Purpose:
Specifies the action to change the system behavior in relation to process
termination during low paging space conditions.

Values:
Default: 1
Range: 1 or 2
Type: Dynamic
Diagnosis:

N/A

Tuning System out of paging space and not enough processes are getting killed.
The default (value = 1) behavior is not to kill processes with SIGDANGER
handler. A new behavior (value = 2) will allow the system to kill youngest
processes with the SIGDANGER handler. If no process was found, the
system will kill without the SIGDANGER handler.

Purpose:
Specifies the number of memory frames per bucket. The page-replacement
algorithm divides real memory into buckets of frames. On systems with
multiple memory pools, the Irubucket parameter is per memory pool.

Values:
Default: 131072 frames
Range: 65536 to total number of memory frames
Type: Dynamic

Diagnosis:

N/A

Tuning Tuning this parameter is not recommended on most systems. Instead of
scanning every frame in the system looking for a free frame, the page
replacement algorithm scans through the contents of a bucket and scans
the same bucket for the second pass before going on to the next bucket.

Refer To:
[Reduce memory scanning overhead with Irubucket parameter]

Alphabetical Listing of Commands 39

maxclient%

maxfree

maxperm%

Purpose:
Specifies maximum percentage of RAM that can be used for caching client
pages. Similar to maxperm% but cannot be bigger than maxperm%.

Values:
Default: 90
Range: 1 to 100%.
Type: Dynamic
Diagnosis:

If J2 file pages or NFS pages are causing working storage pages to get
paged out, maxclient can be reduced.

Tuning Decrease the value of maxclient if paging out to paging space is occurring
due to too many J2 client pages or NFS client pages in memory. Increasing
the value can allow more J2 or NFS client pages to be in memory before
page replacement starts.

Refer To:
Maximum caching of file data tuning|and [Enhanced JFS file system cache]
limit with the maxclient parameter

Purpose:
Specifies the number of frames on the free list at which page-stealing is to
stop.
Values:
Default: 1088
Range: 16 to 204800
Type: Dynamic
Diagnosis:
Observe free-list-size changes with vmstat n.
Tuning If vmstat n shows free-list size frequently driven below minfree by
application demands, increase maxfree to reduce calls to replenish the

free list. Setting the value too high causes page replacement to run for a
longer period of time. Value must be at least 8 greater than minfree

Refer To:
[Values for minfree and maxfree parameters}

Purpose:
Specifies the point above which the page-stealing algorithm steals only file
pages.

Values:
Default: total number of memory frames * 0.9
Range: 1 to 100
Type: Dynamic

Diagnosis:
Monitor disk 1/0O with iostat n.

Tuning This value is expressed as a percentage of the total real-memory page
frames in the system. Reducing this value may reduce or eliminate page
replacement of working storage pages caused by high number of file page
accesses. Increasing this value may help NFS servers that are mostly
read-only. For example, if some files are known to be read repetitively, and
I/O rates do not decrease with time from startup, maxperm may be too
low.

Refer To:
[Values for minfree and maxfree parameters]

40 commands Reference, Volume 6

maxpin%

memory_affinity

memplace_data

Purpose:
Specifies the maximum percentage of real memory that can be pinned.
Values:
Default: 80 percent
Range: 1 to 99
Type: Dynamic
Diagnosis:
Cannot pin memory, although free memory is available.
Tuning If this value is changed, the new value should ensure that at least 4 MB of
real memory will be left unpinned for use by the kernel. The maxpin values

must be greater than one and less than 100. Change this parameter only
in extreme situations, such as maximum-load benchmarking.

Purpose:
This parameter has been deprecated starting with the December 2004
update to AIX 5L Version 5.3. The memplace_* parameters can be used
instead to tune memory placement policies for various user memory
objects.

Values:
» Default: 1
* Range: N/A
* Type: Deprecated

Diagnosis:
N/A

Tuning N/A

Purpose:
This parameter is used to specify the default memory placement policy for
data. Data refers to : data of the main executable (initialized data, BSS),
heap, shared library data, and data of object modules loaded at runtime.
Data placement can be set to First Touch (1) or Striped (2).

First Touch means that the memory is allocated in the affinity domain
where it is first accessed. Striped means that the memory is allocated in a
round-robin fashion across the system affinity domains.

Changes only apply to new processes. Memory objects of existing
processes will still have the policies existing at the time the memory object
was created.

Values:
» Default: 1 (First Touch)
* Range: 1.2
* Type: Dynamic

Diagnosis:
N/A

Tuning N/A

Alphabetical Listing of Commands 41

memplace_mapped_file

Values:

Purpose:

This parameter is used to specify the default memory placement policy for
files that are mapped into the address space of a process (such as through
shmat() and mmap()). Default placement of memory mapped files can be
set to First Touch (1) or Striped (2).

First Touch means that the memory is allocated in the affinity domain
where it is first accessed. Striped means that the memory is allocated in a
round-robin fashion across the system affinity domains.

Changes only apply to new processes. Memory objects of existing
processes will still have the policies existing at the time the memory object
was created.

* Default: 2 (Striped)
* Range: 1..2
» Type: Dynamic

Diagnosis:

Tuning
memplace_shm_anon

Values:

N/A
N/A

Purpose:

This parameter is used to specify the default memory placement policy for
anonymous shared memory. Anonymous shared memory refers to working
storage memory, created using shmget() or mmap(), that can be accessed
only by the creating process or its descendants. This memory is not
associated with a name (or key). Default placement of anonymous shared
memory can be set to First Touch (1) or Striped (2).

First Touch means that the memory is allocated in the affinity domain
where it is first accessed. Striped means that the memory is allocated in a
round-robin fashion across the system affinity domains.

Changes only apply to new processes. Memory objects of existing
processes will still have the policies existing at the time the memory object
was created.

» Default: 2 (Striped)
* Range: 1..2
» Type: Dynamic

Diagnosis:

Tuning

42 Commands Reference, Volume 6

N/A
N/A

memplace_shm_named

memplace_stack

Purpose:

This parameter is used to specify the default memory placement policy for
named shared memory. Named shared memory refers to working storage
memory, created using shmget() or shm_open(), which is associated with
a name (or key) that allows more than one process to access it
simultaneously. Default placement of named shared memory can be set to
First Touch (1) or Striped (2).

First Touch means that the memory is allocated in the affinity domain
where it is first accessed. Striped means that the memory is allocated in a
round-robin fashion across the system affinity domains.

Changes only apply to new processes. Memory objects of existing
processes will still have the policies existing at the time the memory object
was created.

Values:
* Default: 2 (Striped)
* Range: 1.2
* Type: Dynamic

Diagnosis:
N/A

Tuning N/A

Purpose:
This parameter is used to specify the default memory placement policy for
the program stack. Stack placement can be set to First Touch (1) or Striped
).
First Touch means that the memory is allocated in the affinity domain
where it is first accessed. Striped means that the memory is allocated in a
round-robin fashion across the system affinity domains.
Changes only apply to new processes. Memory objects of existing
processes will still have the policies existing at the time the memory object
was created.

Values:
» Default: 1 (First Touch)
* Range: 1..2
» Type: Dynamic

Diagnosis:
N/A

Tuning N/A

Alphabetical Listing of Commands 43

memplace_text

Values:

Purpose:

This parameter is used to specify the default memory placement policy for
application text. It applies only to text of the main executable and not to its
dependencies. Text placement can be set to First Touch (1) or Striped (2).

First Touch means that the memory is allocated in the affinity domain
where it is first accessed. Striped means that the memory is allocated in a
round-robin fashion across the system affinity domains.

Changes only apply to new processes. Memory objects of existing
processes will still have the policies existing at the time the memory object
was created.

» Default: 1 (First Touch)
* Range: 1..2
* Type: Dynamic

Diagnosis:

Tuning
memplace_unmapped_file

Values:

N/A
N/A

Purpose:

This parameter is used to specify the default memory placement policy for
unmapped file access, such as through read() or write(). Default
placement of unmapped file access can be set to First Touch (1) or Striped

@).

First Touch means that the memory is allocated in the affinity domain
where it is first accessed. Striped means that the memory is allocated in a
round-robin fashion across the system affinity domains.

Changes only apply to new processes. Memory objects of existing
processes will still have the policies existing at the time the memory object
was created.

» Default: 2 (Striped)
* Range: 1..2
» Type: Dynamic

Diagnosis:

Tuning

44 Ccommands Reference, Volume 6

N/A
N/A

mempools

minfree

minperm%

Purpose:
This parameter has been deprecated. The cpu_scale_memp parameter
can be used instead to partially determine the number of mempools that
are used.
Values:
Default: 1
Range: N/A
Type: Deprecated
Diagnosis:
N/A

Tuning N/A

Refer To:
Memory pools

Purpose:
Specifies the minimum number of frames on the free list at which the VMM
starts to steal pages to replenish the free list.
Values:
Default: 960
Range: 8 to 204800
Type: Dynamic

Diagnosis:
vmstat n

Tuning Page replacement occurs when the number of free frames reaches
minfree. If processes are being delayed by page stealing, increase
minfree to improve response time. The difference between minfree and
maxfree should always be equal to or greater than maxpgahead.

Refer To:
[Values for minfree and maxfree parameters|

Purpose:
Specifies the point below (in percentage of total number of memory
frames) which the page-stealer will steal file or computational pages
regardless of repaging rates.

Values:
Default: 3 percent
Range: 1 to 100.
Type: Dynamic
Diagnosis:

Monitor disk 1/0O with iostat n.

Tuning Can be useful to decrease this parameter if large number of file pages in
memory is causing working storage pages to be replaced. If some files are
known to be read repetitively, and I/O rates do not decrease with time from
startup, minperm may be too low.

Refer To:
[Values for minperm and maxperm parameters}

Alphabetical Listing of Commands 45

nokilluid
Purpose:

User IDs lower than this value are exempt from getting killed due to low
page-space conditions.
Values:
Default: 0 (off)
Range: Any positive integer.
Type: Dynamic
Diagnosis:
N/A
Tuning System out of paging space and system administrator’s processes are
getting killed. Set to 1 in order to protect specific user ID processes from

getting killed due to low page space or ensure there is sufficient paging
space available.

Refer To:
[Values for the npswarn and npskill parameters|

kill
npsid Purpose:

Specifies the number of free paging-space pages at which the operating
system begins killing processes.
Values:
Default: MAX (64, number of paging space pages/128).
Range: 0 to total number of paging space pages on the system .
Type: Dynamic
Diagnosis:
N/A
Tuning Increase the value if you experience processes being killed because of low
paging space.

Refer To:
[Values for the npswarn and npskill parameters|

npsrpgmax Purpose:

Specifies the number of free paging space blocks at which the Operating
System stops freeing disk blocks on pagein of Deferred Page Space
Allocation Policy pages.

Values:
Default: MAX(1024, npswarn*2).
Range: 0 to total number of paging space blocks in the system.
Diagnosis:
N/A
Tuning:
N/A

46 Commands Reference, Volume 6

npsrpgmin Purpose:

Specifies the number of free paging space blocks at which the Operating
System starts freeing disk blocks on pagein of Deferred Page Space
Allocation Policy pages.

Values:
Default: MAX(768, npswarn+(npswarn/2)).
Range: 0 to total number of paging space blocks in the system.
Diagnosis:
N/A
Tuning:
N/A

npsscrubmax
Purpose:

Specifies the number of free paging space blocks at which the Operating
System stops Scrubbing in memory pages to free disk blocks from
Deferred Page Space Allocation Policy pages.

Values:
Default: MAX(1024, npsrpgmax).
Range: 0 to total number of paging space blocks in the system.
Diagnosis:
N/A
Tuning:
N/A

npsscrubmin
P Purpose:

Specifies the number of free paging space blocks at which the Operating
System starts Scrubbing in memory pages to free disk blocks from
Deferred Page Space Allocation Policy pages.

Values:
Default: MAX(768, npsrpgmin).
Range: 0 to total number of paging space blocks in the system.
Diagnosis:
N/A
Tuning:
N/A

npswarn
P Purpose:

Specifies the number of free paging-space pages at which the operating
system begins sending the SIGDANGER signal to processes.
Values:
Default: MAX (512, 4*npskill)
Range: 0 to total number of paging space pages on the system.
Type: Dynamic
Diagnosis:
N/A
Tuning:
Increase the value if you experience processes being killed because of low
paging space.

Refer To:
[Values for the npswarn and npskill parameters|

Alphabetical Listing of Commands 47

num_spec_dataseg

page_steal_method

pagecoloring

Purpose:
Reserve special data segment IDs for use by processes executed with the
environment variable DATA_SEG_SPECIAL=Y. These data segments are
assigned so that the hardware page table entries for pages within these
segments are better distributed in the cache to reduce cache collisions. As
many are reserved as possible up to the requested number. Running vmo
-a after reboot displays the actual number reserved. This parameter is only
supported in 64-bit kernels running on POWER4 based machines.

Values:
Default: 0
Range: 0 or a positive number
Type: Bosboot

Diagnosis:
N/A

Tuning The correct number to reserve depends on the number of processes run
simultaneously with DATA_SEG_SPECIAL=Y and the number of data
segments used by each of these processes.

Purpose:
Selects virtual memory page replacement policies.

Values:
Default: 0
Range: 0 or 1. 0 applies to WLM and non-WLM page replacement. For
0, the pager scans pages by physical address. For 1, the pager scans
pages from lists by class (for WLM) or by mempool (for non-WLM).
Type: Bosboot

Purpose:

Turns on or off page coloring in the VMM. This parameter is not supported
in 64-bit kernels.
Values:
Default: 0 (off)
Range: 0 or 1.
Type: Bosboot

Diagnosis:
N/A

Tuning This parameter is useful for some applications that run on machines that
have a direct mapped cache.

48 Commands Reference, Volume 6

pta_balance_threshold

relalias_percentage

rpgclean

Purpose:
Specifies the point at which a new pta segment will be allocated. This
parameter does not exists in 64-bit kernels.

Values:
Default: pta segment size * 0.5
Range: 1 to 99.
Type: Dynamic

Diagnosis:
System would crash from a dsi (abend code 300) with a stack similar to
the following:

findsrval6s()
shmforkws64 ()
shmforkws ()
procdup()
kforkx()
kfork()

Dump investigation would show that the pta segment is full for the page
which generated the page fault.

Tuning Tuning the pta balancing threshold lower will cause new pta segments to
be allocated earlier, thereby reducing the chance that a pta segment will fill
up and crash the system. If possible, a better solution would be to move to
the 64-bit kernel which does not have this potential problem.

Purpose:
If force_relalias_lite is set to 0, then this specifies the factor used in the
heuristic to decide whether to avoid locking the source mmapped segment

or not.
Diagnosis:
N/A
Tuning:
This is used when tearing down an mmapped region and is a scalability
statement, where avoiding the lock may help system throughput, but, in
some cases, at the cost of more compute time used. If the number of
pages being unmapped is less than this value divided by 100 and
multiplied by the total number of pages in memory in the source mmapped
segment, then the source lock will be avoided. A value of 0O for
relalias_percentage, with force_relalias_lite also set to 0, will cause the
source segment lock to always be taken. The Default value is 0. Effective
values for relalias_percentage will vary by workload, however, a
suggested value is: 200.
Purpose:
Enables or Disables freeing paging space disk blocks of Deferred Page
Space Allocation Policy pages on read accesses to them.
Values:
Default: 0, free paging space disk blocks only on pagein of pages that
are being modified.
Range: 1, free paging space disk blocks on pagein of a page being
modified or accessed (read).
Diagnosis:
N/A
Tuning:
N/A

Alphabetical Listing of Commands 49

rpgcontrol Purpose:

Enables or Disables freeing of paging space disk blocks at pagein of
Deferred Page Space Allocation Policy pages.

Values:
Default: 1, enables freeing of paging space disk blocks when the
number of system free paging space blocks is below npsrpgmin, and
continues until above npsrpgmax.
Range: 0-2,
0 disables freeing of paging space disk blocks on pagein.
2, always enables freeing of paging space disk blocks on pagein,
regardless of thresholds.
Diagnosis:
N/A
scrub
Purpose:
Enables or Disables freeing of paging space disk blocks from pages in
memory for Deferred Page Space Allocation Policy pages.
Values:
Default: 0, disables scrubbing completely.
Range: 0-1,
1 enables scrubbing of in memory paging space disk blocks when the
number of system free paging space blocks is below npsscrubmin,
and continues until above npsscrubmax.
Diagnosis:
Tuning:
scrubclean
Purpose:

Enables or Disables freeing paging space disk blocks of Deferred Page
Space Allocation Policy pages in memory that are not modified.

Values:
Default: 0,
Free paging space disk blocks only for modified pages in memory.
Range: 0-1,
1, Free paging space disk blocks for modified or unmodified pages.
Diagnosis:
Tuning:
soft_min_Igpgs_vmpool Purpose:

When soft_min_Igpgs_vmpool is non-zero, large pages will not be
allocated from a vmpool that has fewer than soft_min_lgpgs_vmpool %
of its large pages free. If all vmpools have less than
soft_min_Ilgpgs_vmpool % of their large pages free, allocations will occur
as normal.
Values:
Default: 0
Range: range: 0 to 90
Type: Dynamic
Diagnosis:
N/A

50 commands Reference, Volume 6

spec_dataseg_int

strict_maxclient

vmm_mpsize_support

Purpose:
Modify the interval between the special data segment IDs reserved with
num_spec_dataseg. This parameter is only supported in 64-bit kernels
running on POWER4 based machines.

Values:
Default: 512
Range: 1 to any positive integer
Type: Bosboot

Diagnosis:

N/A

Tuning Generally, for processes executed with DATA_SEG_SPECIAL=Y, the more
pages of the data segment they all access, the higher this value should be
to optimize performance. Values that are too high, however, limit the
number of special segment IDs that can be reserved. The performance
impact is highly dependent on the hardware architecture as well as the
application behavior and different values may be optimal for different
architectures and different applications.

Purpose:
If set to 1, the maxclient value will be a hard limit on how much of RAM
can be used as a client file cache.

Values:
Default: 1 (on)
Range: 0 or 1.

Diagnosis:
N/A

Tuning:
Set to 0 in order to make the maxclient value a soft limit if client pages
are being paged out when there are sufficient free pages. Use in
conjunction with the tuning of the maxperm and maxclient parameters.

Purpose:
Toggles AlX 64-bit kernel multiple page size support for the extra page
sizes provided by POWER5+ and later machines. This has no effect on
previous support of 4K or large size pages, and on machines with
processors that do not support extra page sizes.

Values:

Default: 1

AlX takes advantage of the extra page sizes supported by the
processor.

Range: 0 or 1

When set to 0,AIX only recognize are 4K page size and the system’s
large page size.

Alphabetical Listing of Commands 51

strict_maxperm

v_pinshm

vm_modlist_threshold

Purpose:
If set to 1, the maxperm value will be a hard limit on how much of RAM
can be used as a persistent file cache.
Values:
Default: 0 (off)
Range: 0 or 1.
Type: Dynamic
Diagnosis:
Excessive page outs to page space caused by too many file pages in
RAM.

Tuning Set to 1 in order to make the maxperm value a hard limit (use in
conjunction with the tuning of the maxperm parameter).

Refer To:
[Persistent file cache limit with the strict_maxperm option|

Purpose:
If set to 1, will allow pinning of shared memory segments.
Values:
Default: 0 (off)
Range: 0 or 1.
Type: Dynamic
Diagnosis:
Change when there is too much overhead in pinning or unpinning of AIO
buffers from shared memory segments.

Tuning Useful only if application also sets SHM_PIN flag when doing a shmget
call and if doing async 1/O from shared memory segments.

Refer To:
[Pinned shared memory for database]

Purpose:
Determines whether to keep track of dirty file pages.

Values:
Default: -1
Range: -2 to any positive integer
Type: Dynamic

Diagnosis:
N/A

Tuning:
Special values:
-2: Never keep track of modified pages. This provides the same behavior
as on a system prior to AIX 5.3
-1: Keep track of all modified pages.
Other values:
>= 0: Keep track of all dirty pages in a file if the number of frames in
memory at full sync time is greater than or equal to
vm_modlist_threshold. This parameter can be modified at any time,
changing the behavior of a running system. In general, a new value will not
be seen until the next full sync for the file. A full sync occurs when the
VW_FULLSYNC flag is used or all pages in the file (from 0 to maxvpn) are
written to disk.

52 Commands Reference, Volume 6

vmm_mpsize_support

wim_page_steal_byclass

wim_memlimit_nonpg

Examples

Purpose:
Toggles AlX 64-bit kernel multiple page size support for the extra page
sizes provided by POWER5+ and later machines. This has no effect on
previous support of 4K or large size pages, and on machines with
processors that do not support extra page sizes.

Values:
Default: 1
AlX takes advantage of the extra page sizes supported by the
processor.
Range: 0 or 1
When set to 0,AlIX only recognize are 4K page size and the system’s
large page size.
Purpose:
Selects Virtual Memory Page Replacement policy when the Workload
Manager (WLM) is on. If set to 1, the WLM scans pages from lists by
Class. If set to 0, the Workload Manager scans pages by Physical Address.
Values:
Default: 1
Range: 0-1
Type: Bosboot
Diagnosis:
N/A
Tuning:
N/A
Purpose:
Selects whether non-pageable page sizes (16 M, 16 G) are included in the
WLM realmem and virtmem counts. If you select 1, then non-pageable
page sizes are included in the realmem and virtmem limits counts. If you
select 0, then only pageable page sizes (4 K, 64 K) are included in the
realmem and virtmem counts. You can change this value only when the
WLM Memory Accounting is off.
Values:
Default: 1
Range: 0-1
Type: Dynamic
Diagnosis:

When non-pageable page sizes are configured on a system, set
wim_memlimit_nonpg to 0 to allow more granular control of the WLM
classes in using the pageable memory.

1. To list the current and reboot value, range, unit, type and dependencies of all tunable parameters
managed by the vmo command, type:

vmo -L

2. To turn on and reserve 16MB large pages on a POWER4 system, type:
vmo -r -0 1gpg_regions=10 -o Tgpg_size=16777216
This command will propose bosboot to the user, and warn that a reboot is necessary before the

change will be effective.

Alphabetical Listing of Commands 53

Note: The -r flag (and subsequent reboot) is not necessary for AIX 5.3 and later releases.
3. To display help on nokilluid, type:
vmo -h nokilluid
4. To turn on v_pinshm after the next reboot, type:
vmo -r -0 v_pinshm=1
5. To permanently reset all vmo tunable parameters to default, type:
vmo -p -D
6. To list the reboot value for all virtual Memory Manager tuning parameters, type:
vmo -r -a
7. To list (spreadsheet format) the current and reboot value, range, unit, type and dependencies of all
tunable parameters managed by the vmo command, type:

vmo -X

Related Information

The command, Echeda command, m command, |nf55| command, |ra55| command, Eunchan§§
command, |!unsavg| command, |!unrestor(_a| command, |tunchecl_<| command, and |tundefaulg| command.

[Performance Overview of the Virtual Memory Manager (VMM) in Performance management

in AIX 5L Version 5.3 Performance Tools Guide and Reference.

IAIX 5.2 compatibility mode|in the Performance management.

vmstat Command

Purpose
Reports virtual memory statistics.

Syntax
vmstat [[-] [Fi10Fs]1CF] 1T (R CFw] [F 11 {[FplI FP]} pagesize | ALL | ALL] [PhysicalVolume ...] |

Interval [Count]]

Description

The vmstat command reports statistics about kernel threads, virtual memory, disks, traps and pocessor
activity. Reports generated by the vmstat command can be used to balance system load activity. These
system-wide statistics (among all processors) are calculated as averages for values expressed as
percentages, and as sums otherwise. The vmstat command might return inconsistent statistics because
the statistics are not read atomically.

If the vmstat command is invoked without flags, the report contains a summary of the virtual memory
activity since system startup. If the -f flag is specified, the vmstat command reports the number of forks
since system startup. The PhysicalVolume parameter specifies the name of the physical volume.

The Interval parameter specifies the amount of time in seconds between each report. If the Interval
parameter is not specified, the vmstat command generates a single report that contains statistics for the
time since system startup and then exits. The Count parameter can only be specified with the Interval
parameter. If the Count parameter is specified, its value determines the number of reports generated and
the number of seconds apart. If the Interval parameter is specified without the Count parameter, reports
are continuously generated. A Count parameter of 0 is not allowed.

54 commands Reference, Volume 6

AlIX 4.3.3 and later contain enhancements to the method used to compute the percentage of processor
time spent waiting on disk 1/O (wio time). The method used in AIX 4.3.2 and earlier versions of the
operating system can, under certain circumstances, give an inflated view of wio time on SMPs.

The method used in AlX 4.3.2 and earlier versions is as follows: At each clock interrupt on each processor
(100 times a second per processor), a determination is made as to which of the four categories
(usr/sys/wio/idle) to place the last 10 ms of time. If the processor was busy in usr mode at the time of the
clock interrupt, then usr gets the clock tick added into its category. If the processor was busy in kernel
mode at the time of the clock interrupt, then the sys category gets the tick. If the processor was not busy,
a check is made to see if any I/O to disk is in progress. If any disk 1/O is in progress, the wio category is
incremented. If no disk I/O is in progress and the processor is not busy, the idle category gets the tick.
The inflated view of wio time results from all idle processors being categorized as wio regardless of the
number of threads waiting on I/O. For example, systems with just one thread doing I/O could report over
90 percent wio time regardless of the number of processors it has. The wio time is reported by the
commands sar (%wio), vmstat (wa) and iostat (% iowait).

The kernel maintains statistics for kernel threads, paging, and interrupt activity, which the vmstat
command accesses through the use of the the perfstat kernel extension. The disk input/output statistics
are maintained by device drivers. For disks, the average transfer rate is determined by using the active
time and number of transfers information. The percent active time is computed from the amount of time
the drive is busy during the report.

Beginning with AIX 5.3, the vmstat command reports the number of physical processors consumed (pc),
and the percentage of entittement consumed (ec), in Micro-Partitioning environments. These metrics will
only be displayed on Micro-Partitioning environments.

Reports generated by the vmstat command contains the following column headings and their description:

kthr: information about kernel thread states.

r Average number of runnable kernel threads over the sampling interval. Runnable refers to threads that are
ready but waiting to run and to those threads already running.
b Average number of kernel threads placed in the VMM wait queue (awaiting resource, awaiting input/output)

over the sampling interval.

Memory: information about the usage of virtual and real memory. Virtual pages are considered active if they
have been accessed. A page is 4096 bytes.

avm Active virtual pages.

fre Size of the free list.
Note: A large portion of real memory is utilized as a cache for file system data. It is not unusual for the size
of the free list to remain small.

Page: information about page faults and paging activity. These are averaged over the interval and given in
units per second.

re Pager input/output list.

pi Pages paged in from paging space.

po Pages paged out to paging space.

fr Pages freed (page replacement).

sr Pages scanned by page-replacement algorithm.
cy Clock cycles by page-replacement algorithm.

Alphabetical Listing of Commands 55

Faults: trap and interrupt rate averages per second over the sampling interval.

in Device interrupts.
sy System calls.
cs Kernel thread context switches.

Cpu: breakdown of percentage usage of processor time.

us User time.

sy System time.

id Processor idle time.

wa Processor idle time during which the system had outstanding disk/NFS /O
request(s). See detailed description above.

pc Number of physical processors consumed. Displayed only if the partition is running
with shared processor.

ec The percentage of entitled capacity consumed. Displayed only if the partition is

running with shared processor. Because the time base over which this data is
computed can vary, the entitled capacity percentage can sometimes exceed 100%.
This excess is noticeable only with small sampling intervals.

Disk: Provides the number of transfers per second to the specified physical volumes that occurred in the
sample interval. The PhysicalVolume parameter can be used to specify one to four names. Transfer
statistics are given for each specified drive in the order specified. This count represents requests to the
physical device. It does not imply an amount of data that was read or written. Several logical requests can
be combined into one physical request. If the PhysicalVolume parameter is used, the physical volume
names are printed at the beginning of command execution.

If the -l flag is specified, an I/O oriented view is presented with the following column changes.

kthr The column p will also be displayed besides columns r and b.
P Number of threads waiting on I/O to raw devices per second.
page New columns fi and fo will be displayed instead of re and ¢y columns.
fi File page-ins per second.
fo File page-outs per second.

If, while the vmstat command is running, there is a change in system configuration that will affect the
output, vmstat prints a warning message about the configuration change. It then continues the output,
after printing the updated system configuration information and the header.

If the -I flag is specified, an additional "large-page” section is displayed with the following columns:
alp Indicates the number of large pages currently in use.

flp Indicates the number of large pages on the large page freelist.

If the -p option is specified, additional lines of VMM statistics are displayed for the specified page sizes.
With -l and -t options, the -p option produces an additional line for the specified page size. This line
contains the following VMM statistics relevant to the specified page size:

* avm
o fre
° re
o fi

» fo

56 Commands Reference, Volume 6

+ pi
+ po

o fr

* sr

< ¢y

Note: The disply of the re, fi, fo, and cy options are affected by the -I option.

These VMM statistics are preceded by a psz column and followed by an siz column. The description of
these two columns follows:

psz Page size (for example, 4K, 64K).

siz Number of frames of the specified page size that exist on the system.

With the -s option, the -p option produces a separate stanza of output that contains only the statistics
relevant to the specified page size. This additional stanza is preceded by a page size header.

The -P option produces the following report for the specified page size:

pgsz Indicates the page size (for example, 4K, 64K).

Memory
Indicates the memory statistics for the specified page sizes.

siz The number of frames of the specified page size that exist on the system.
avm Active virtual pages applicable to the specified page size.
fre Size of the free list for the specified page size.

Page Indicates the relevant page faults and paging activity for the specified page size. The page related
columns re, pi, po, fr, sr, cy, fi, and fo are also applicable to this report.

Flags

Note: If the -f (or -s) flag is entered on the command line, then the system will only accept the -f (or -s)
flag and will ignore other flags. If both -f and -s flags are specified, the system will accept only the
first flag and ignore the second flag.

-f Reports the number of forks since system startup.

-i Displays the number of interrupts taken by each device since system startup.
Note: The -, -t, -w, and -l flags are ignored when they are specified with the -i flag.

-1 Displays 1/O oriented view with the new columns of output, p under heading kthr,and
columns fi and fo under heading page instead of the columns re and cy in the page heading.

-l Displays an additional "large-page” section with the alp and f1p columns.

-p pagesize Appends the VMM statistics for the specified page size to the regular vmstat output.

-P pagesize Displays only the VMM statistics which are relevant for the specified page size.

Alphabetical Listing of Commands 57

-S

Writes to standard output the contents of the sum structure, which contains an absolute count
of paging events since system initialization. The -s flag can only be used with the -v flag.
These events are described as follows:

address translation faults
Incremented for each occurrence of an address translation page fault. I/O may or
may not be required to resolve the page fault. Storage protection page faults (lock
misses) are not included in this count.

page ins
Incremented for each page read in by the virtual memory manager. The count is
incremented for page ins from page space and file space. Along with the page out
statistic, this represents the total amount of real I/O initiated by the virtual memory
manager.

page outs
Incremented for each page written out by the virtual memory manager. The count is
incremented for page outs to page space and for page outs to file space. Along with
the page in statistic, th