
AIX 5L Version 5.3

National Language Support Guide and
Reference

SC23-4902-03

���

AIX 5L Version 5.3

National Language Support Guide and
Reference

SC23-4902-03

���

Note
Before using this information and the product it supports, read the information in Appendix F, “Notices,” on page 241.

Fourth Edition (July 2006)

This edition applies to AIX 5L Version 5.3 and to all subsequent releases of this product until otherwise indicated in
new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to Information Development, Department 04XA-905-6B013, 11501 Burnet Road, Austin, Texas
78758-3400. To send comments electronically, use this commercial Internet address: pserinfo@us.ibm.com. Any
information that you supply may be used without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002, 2006.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book . vii
Highlighting . vii
Case-Sensitivity in AIX. vii
ISO 9000 . vii
Related Publications . vii

Chapter 1. National Language Support Overview . 1
Separation of Messages from Programs . 1
Conversion between Code Sets . 1
Input Method Support . 2
Converters Overview. 2
Using the Message Facility . 2
Setting National Language Support for Devices . 3
Changing the Language Environment . 4
Changing the Default Keyboard Map . 5
ICU4C Libraries . 5

Chapter 2. Locales . 7
Understanding Locale . 7
Understanding Locale Categories . 8
Understanding Locale Environment Variables. 9
Understanding the Character Set Description (charmap) Source File. 11
Understanding the Locale Definition Source File . 11
Multibyte Subroutines . 12
Wide Character Subroutines . 12
Bidirectionality and Character Shaping. 12
Code Set Independence . 12
File Name Matching . 13
Radix Character Handling . 13
Programming Model . 14

Chapter 3. Subroutines for National Language Support 15
Locale Subroutines . 15
Time Formatting Subroutines . 20
Monetary Formatting Subroutines . 21
Multibyte and Wide Character Subroutines . 23
Internationalized Regular Expression Subroutines . 45
Related Information. 48

Chapter 4. Code Sets for National Language Support 49
Single-Byte and Multibyte Code Sets . 50
Unique Code-Point Range . 50
Data Representation . 51
Character Properties . 52
ASCII Characters . 53
Code Set Strategy . 55
Code Set Structure . 55
ISO Code Sets . 57
IBM PC Code Sets . 70
UCS-2 and UTF-8 . 81
Related Information. 83

Chapter 5. Converters Overview for Programming 85

© Copyright IBM Corp. 2002, 2006 iii

Standard Converters . 85
Using the iconv Command . 86
Understanding libiconv . 86
Using Converters . 89
List of Converters . 91
Writing Converters Using the iconv Interface . 113
Related Information . 123

Chapter 6. Input Methods . 125
Input Method Introduction . 125
Input Method Names. 126
Input Method Areas . 126
Input Method Command . 127
Programming Input Methods . 127
Working with Keyboard Mapping . 129
Using Callbacks . 130
Bidirectional Input Method . 133
Cyrillic Input Method (CIM) . 134
Greek Input Method (GIM). 135
Japanese Input Method (JIM) . 137
Korean Input Method (KIM) . 143
Latvian Input Method (LVIM) . 144
Lithuanian Input Method (LTIM) . 144
Thai Input Method (THIM) . 144
Vietnamese Input Method . 145
Simplified Chinese Input Method (ZIM-UCS) . 145
Single-Byte Input Method . 146
Traditional Chinese Input Method (TIM) . 148
Universal Input Method . 149
Reserved Keysyms . 150
Related Information . 151

Chapter 7. Message Facility . 153
Creating a Message Source File . 153
Creating a Message Catalog . 157
Displaying Messages outside of an Application Program. 159
Displaying Messages with an Application Program . 159
Example of Retrieving a Message from a Catalog . 161
Writing Messages . 161

Chapter 8. Culture-Specific Data Handling . 165
Culture-Specific Tables . 165
Culture-Specific Algorithms . 165
Example of Loading a Culture-Specific Module for Arabic Text for an Application 165
Layout (Bidirectional Text and Character Shaping) Overview 167

Appendix A. Supported languages and locales . 171

Appendix B. National Language Support (NLS) Reference. 183
National Language Support Checklist. 183
List of National Language Support Subroutines . 188

Appendix C. Character Maps . 193
ISO Code Sets . 193
IBM Code Sets . 214

iv National Language Support Guide and Reference

Appendix D. NLS Sample Program . 233
Message Source File for foo . 233
Creation of Message Header File for foo . 233
Single Source, Single Path Code-set Independent Version 233
Single Source, Dual-Path Version Optimized for Single-Byte Code Sets 235

Appendix E. Use of the libcur Package . 239

Appendix F. Notices . 241
Trademarks . 242

Index . 243

Contents v

vi National Language Support Guide and Reference

About This Book

This book provides application programmers with complete information about enabling applications for
national language support for the AIX® operating system. It also provides system administrators with
complete information about enabling networked environments for national language support for the AIX
operating system. Programmers and system administrators can use this book to gain knowledge of
national language support guidelines and principles. Topics include locales, code sets, input methods,
subroutines, converters, character mapping, culture-specific information, and the message facility.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items
whose names are predefined by the system. Also identifies graphical objects such as buttons,
labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.
Monospace Identifies examples of specific data values, examples of text similar to what you might see

displayed, examples of portions of program code similar to what you might write as a
programmer, messages from the system, or information you should actually type.

Case-Sensitivity in AIX
Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the
system responds that the command is ″not found.″ Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications
The following books contain information related to National Language Support:

v Keyboard Technical Reference

v AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

v The Unicode Standard at http://unicode.org.

© Copyright IBM Corp. 2002, 2006 vii

viii National Language Support Guide and Reference

Chapter 1. National Language Support Overview

Many system variables are used to establish the language environment of the system. These variables
and their supporting commands, files, and other tools, are referred to as National Language Support
(NLS).

NLS provides commands and Standard C Library subroutines for a single worldwide system base. An
internationalized system has no built-in assumptions or dependencies on language-specific or
cultural-specific conventions such as:

v Code sets

v Character classifications

v Character comparison rules

v Character collation order

v Numeric and monetary formatting

v Date and time formatting

v Message-text language.

All information pertaining to cultural conventions and language is obtained at process run time.

The following capabilities are provided by NLS to maintain a system running in an international
environment:

v “Separation of Messages from Programs”

v “Conversion between Code Sets”

Separation of Messages from Programs
To facilitate translations of messages into various languages and to make the translated messages
available to the program based on a user’s locale, it is necessary to keep messages separate from the
programs and provide them in the form of message catalogs that a program can access at run time. To aid
in this task, commands and subroutines are provided by the message facility. For more information, see
Chapter 7, “Message Facility,” on page 153.

Conversion between Code Sets
A character is any symbol used for the organization, control, or representation of data. A group of such
symbols used to describe a particular language make up a character set. A code set contains the encoding
values for a character set. It is the encoding values in a code set that provide the interface between the
system and its input and output devices.

Historically, the effort was directed at encoding the English alphabet. It was sufficient to use a 7-bit
encoding method for this purpose because the number of English characters is not large. To support larger
alphabets, such as the Asian languages, such as Chinese, Japanese, and Korean, additional code sets
were developed that contained multibyte encodings.

A character is any symbol used for the organization, control, or representation of data. A group of such
symbols for describing a particular language make up a character set. A code set contains the encoding
values for a character set. The encoding values in a code set provide the interface between the system
and its input and output devices.

An internationalized program must accurately read data generated in different code set environments and
process the information accurately. You can use nl_langinfo(CODESET) to obtain the current code set in
a process. The return value is a char pointer that is the name of the code set in the system. Because

© Copyright IBM Corp. 2002, 2006 1

code set names are not standard, programs should not depend on any specific value for this string.
Knowing the current code set can aid in code-set conversion. NLS supplies converters that translate
character encoding values found in different code sets. For more information, see Chapter 5, “Converters
Overview for Programming,” on page 85.

Input Method Support
The input of characters becomes complicated for languages having large character sets. For example, in
Chinese, Korean, and Japanese, where the number of characters is large, it is not possible to provide
one-to-one key mapping for a keystroke to a character. However, a special input method enables the user
to enter phonetic or stroke characters and have them converted into native-language characters. A
keyboard map associated with each keyboard matches sequences of one or more keystrokes with the
appropriate character encoding. For more information, see Chapter 6, “Input Methods,” on page 125.

Converters Overview
National Language Support (NLS) provides a base for internationalization to allow data to be changed
from one code set to another. You might need to convert text files or message catalogs. There are several
standard converters for this purpose.

When a program sends data to another program residing on a remote host, the data can require
conversion from the code set of the source machine to that of the receiver. For example, when
communicating with an IBM® VM system, the system converts its ISO8859-1 data to EBCDIC. Code sets
define character and control function assignments to code points. These coded characters must be
converted when a program receives data in one code set but displays it in another code set.

For more information on converters, see Chapter 5, “Converters Overview for Programming,” on page 85.

Using the Message Facility

To facilitate translation of messages into various languages and to make them available to a program
based on a user’s locale, it is necessary to keep messages separate from the program and provide them
in the form of message catalogs that a program can access at run time. To aid in this task, the Message
Facility provides commands and subroutines. Message source files containing application messages are
created by the programmer and converted to message catalogs. These catalogs are used by the
application to retrieve and display messages, as needed. Message source files can be translated into
other languages and converted to message catalogs without changing and recompiling a program.

The Message Facility includes the following commands for displaying messages with a shell script or from
the command line:

dspcat Displays all or part of a message catalog
dspmsg Displays a selected message from a message catalog

These commands use the NLSPATH environment variable to locate the specified message catalog. The
NLSPATH environment variable lists the directories containing message catalogs. These directories are
searched in the order in which they are listed. For example:
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/prime/%N

The %L and %N special variables are defined as follows:

%L Specifies the locale-specific directory containing message catalogs. The value of the LC_MESSAGES category
or the LANG environment variable is used for the directory name. The LANG, LC_ALL, or LC_MESSAGES
environment variable can be set by the user to the locale for message catalogs.

2 National Language Support Guide and Reference

%N Specifies the name of the catalog to be opened.

If the dspcat command cannot find the message, the default message is displayed. You must enclose the
default message in single-quotation marks if the default message contains %n$ format strings. If the
dspcat command cannot find the message and you do not specify a default message, a system-generated
error message is displayed.

The following example uses the dspcat command to display all messages in the existing msgerrs.cat
message catalog:
/usr/lib/nls/msg/$LANG/msgerrs.cat:
dspcat msgerrs.cat

The following output is displayed:
1:1 Cannot open message catalog %s
Maximum number of catalogs already open
1:2 File %s not executable
2:1 Message %d, Set %d not found

By displaying the contents of the message catalog in this manner, you can find the message ID numbers
assigned to the msgerrs message source file by the mkcatdefs command to replace the symbolic
identifiers. Symbolic identifiers are not readily usable as references for the dspmsg command, but using
the dspcat command as shown can give you the necessary ID numbers.

The following is a simple shell script called runtest that shows how to use the dspmsg command:
if [- x ./test]

./test;
else

dspmsg msgerrs.cat -s 1 2 '%s NOT EXECUTABLE \n' "test";
exit;

Note: If you do not use a full path name, as in the preceding examples, be careful to set the NLSPATH
environment variable so that the dspcat command searches the correct directory for the catalog.
The LC_MESSAGES category or the value of the LANG environment variable also affects the
directory search path.

Setting National Language Support for Devices
NLS uses the locale setting to define its environment. The locale setting is dependent on the user’s
requirements for data processing and language that determines input and output device requirements. The
system administrator is responsible for configuring devices that are in agreement with user locales.

Terminals (tty Devices)
Use the setmaps command to set the terminal and code-set map for a given tty or pty. The setmaps file
format defines the text of the code-set map file and the terminal map file.

The text of a code-set map file is a description of the code set, including the type (single byte or
multibyte), the memory and screen widths (for multibyte code-sets), and the optional converter modules to
push on the stream. The code set map file is located in the /usr/lib/nls/csmap directory and has the same
name as the code set. For more information, see Converter Modules in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

The terminal-map-file rules associate a pattern string with a replacement string. The operating system
uses an input map file to map input from the keyboard to an application and uses an output map file to
map output from an application to the display.

Chapter 1. National Language Support Overview 3

Printers
Virtual printers inherit the default code set of incoming jobs from the LANG entry in the /etc/environment
file. A printer subsystem can support several virtual printers. If more than one virtual printer is supported,
each can have a different code set. The suggested printer subsystem scenarios areas follows:

v The first scenario involves several queues, several virtual printers, and one physical printer. Each virtual
printer has its own code set. The print commands specify which queue to use. The queue in turn
specifies the virtual printer with the appropriate code set. In this scenario, the user needs to know which
queue is attached to which virtual printer and the code set that is associated with each.

v The second scenario is similar to the first, but each virtual printer is attached to a different printer.

v The third scenario involves using the qprt command to specify the code set. In this option, there are
several queues available and one virtual printer. The virtual printer uses the inherited default code set.

Use the qprt command with the -P-x flags to specify the queue and code set. If the -P flag is not
specified, the default queue is used. If the -x flag is not used, the default code set for the virtual printer is
used.

Low-Function Terminals
Low-function terminals (LFTs) support single-byte code-set languages using key maps. An LFT key map
translates a key stroke into a character string in the code set. A list of all available key maps is in the
/usr/lib/nls/loc directory. LFT does not support languages that require multibyte code sets.

The default LFT keyboard setting and associated font setting are based on the language selected during
installation. The possible default code sets are as follows:

v ISO8859-1

v ISO8859-2

v ISO8859-4

v ISO8859-5

v ISO8859-6

v ISO8859-7

v ISO8859-8

v ISO8859-9

v ISO8859-15

You can change the default settings in the following ways:

v To change the default font for next reboot, use the chfont command with the -n flag.

v To change the default keyboard for next reboot, use the chkbd command with the -n flag.

The lsfont and lskbd commands list all the fonts and keyboard maps that are currently available to the
LFT.

The LFT font libraries for all the supported code sets are in the /usr/lpp/fonts directory.

Changing the Language Environment
A number of system operations are affected by the language environment. Some of these operations
include collation, time of day and date representation, numeric representation, monetary representation,
and message translation. The language environment is determined by the value of the LANG environment
variable, and you can change that value with the chlang command. The chlang command can be run
from the command line or from SMIT.

To use the SMIT fast path to change the language environment, type smit chlang on the command line.

4 National Language Support Guide and Reference

Changing the Default Keyboard Map

NLS also enables you to specify the correct keyboard for the language you want to use. The operating
system provides a number of keyboard maps for this purpose. You can change the default keyboard map
for LFT terminals using Web-based System Manager (type wsm, then select Devices), the SMIT fast path,
smit chkbd, or the chkbd command. The change does not go into effect until you restart the system.

Note: Do not assume any particular physical keyboard is in use. Use an input method based on the locale
setting to handle keyboard input.

ICU4C Libraries
Common Component ICU4C stands for International Components for Unicode for C/C++ class libraries, It
provides internationalization utilities for writing global applications in C/C++ programming languages.
ICU4C libraries are being used by numerous products running on AIX operating system.

Chapter 1. National Language Support Overview 5

6 National Language Support Guide and Reference

Chapter 2. Locales

An internationalized system has no built-in assumptions or dependencies on code set, character
classification, character comparison rules, character collation order, monetary formatting, numeric
punctuation, date and time formatting, or the text of messages. A locale is defined by these language and
cultural conventions. An internationalized system processes information correctly for different locations. For
example, in the United States, the date format, 9/6/2002, is interpreted to mean the sixth day of the ninth
month of the year 2002. The United Kingdom interprets the same date format to mean the ninth day of the
sixth month of the year 2002. The formatting of numeric and monetary data is also country-specific, for
example, the U.S. dollar and the U.K. pound.

All locale information must be accessible to programs at run time so that data is processed and displayed
correctly for your cultural conventions and language. This process is called localization. Localization
consists of developing a database containing locale-specific rules for formatting data and an interface to
obtain the rules.

Understanding Locale

A locale comprises the language, territory, and code set combination used to identify a set of language
conventions. These conventions include information on collation, case conversion, and character
classification, the language of message catalogs, date-and-time representation, the monetary symbol, and
numeric representation.

Locale information contained in the locale definition source files must first be converted into a locale
database by the localedef command. The setlocale subroutine can then access this information and set
locale information for applications. To deal with locale data in a logical manner, locale definition source
files are divided into six categories. Each category contains a specific aspect of the locale data. The LC_*
environment variables and the LANG environment variable can be used to specify the desired locale. For
more information on locale categories, see “Understanding Locale Categories” on page 8.

Typical User Scenarios
Users might encounter several NLS-related scenarios on the system. This section lists common scenarios
with suggested actions to be taken.

v User keeps default code set

The user might be satisfied with the default code set for language-territory combinations even where
more than one code set is supported. The user might keep the default code set if the current user
environment uses that code set, or if the user is new and has no code set preference.

The language-territory selected at system installation time is defaulted to the appropriate locale based
on the default code set. The default keyboard mappings, default font, and message catalogs are all
established around the default code set. This scenario requires no special action from the user.

v User changes code set from the default code set

Users of a Latin-1 or Japanese locale might want to migrate their data and NLS environment to a
different (nondefault) code set. This can be done in the following fashion:

– When the user has existing data that requires conversion

Flat text files that require conversion to the preferred code set can be converted through the Users
application in Web-based System Manager, the SMIT Manage the Language Environment menu, or
the iconv utility. User-defined structured files require conversion through user-written conversion
tools that use the iconv library functions to convert the desired text fields within the structured files.

– When the user wants to change to the other code set

Where more than one code set is supported for a language-territory combination, the user may
change to a nondefault locale by using:

© Copyright IBM Corp. 2002, 2006 7

- The Users application in Web-based System Manager

- The SMIT Manage Language Environment menu

- The chlang, chkbd, and chfont commands.

Locale Naming Conventions
Each locale is named by its locale definition source file name. These files are named for the language,
territory, and code set information they describe. The following format is used for naming a locale definition
file:
language[_territory][.codeset][@modifier]

For example, the locale for the Danish language spoken in Denmark using the ISO8859-1 code set is
da_DK.ISO8859-1. The da stands for the Danish language and the DK stands for Denmark. The short form
of da_DK is sufficient to indicate this locale. The same language and territory using the ISO8859–15 code
set is indicated by da_DK.8859–15.

System-defined locale definition files are provided to show the format of locale categories and their
keywords. The /usr/lib/nls/loc directory contains the locale definition files for system-defined locales. The
C, or POSIX, locale defines the ANSI C-defined standard locale inherited by all processes at startup time.
To obtain a list of system-defined locale definition source files, enter the following on the command line:
/usr/lib/nls/lsmle -c

Installation Default Locale
The installation default locale refers to the locale selected at installation. For example, when prompted, a
user can specify the French language as spoken in Canada during the installation process. The code set
automatically defaults to the ISO8859-1 code set. With this information, the system sets the value of the
default locale, specified by the LANG environment variable, to fr_CA (fr for ISO8859-1 French and CA for
Canada). Every process uses this locale unless the LC_* or LANG environment variables are modified.
The default locale can be changed by using the Manage Language Environment menu in SMIT. For more
information see System Management Interface Tool (SMIT) Overview in Operating system and device
management.

The C or POSIX Locale
This locale refers to the ANSI C or POSIX-defined standard for the locale inherited by all processes at
startup time. The C or POSIX locale assumes the 7-bit ASCII character set and defines information for the
six previous categories.

Understanding Locale Categories
A locale category is a particular grouping of language-specific and cultural-convention-specific data. For
instance, data referring to date-and-time formatting, the names of the days of the week, names of the
months, and other time-specific information is grouped into the LC_TIME category. Each category uses a
set of keywords that describe the particulars of that locale subset.

The following standard categories can be defined in a locale definition source file:

LC_COLLATE
Defines character-collation or string-collation information.

LC_CTYPE
Defines character classification, case conversion, and other character attributes.

LC_MESSAGES
Defines the format for affirmative and negative responses.

LC_MONETARY
Defines rules and symbols for formatting monetary numeric information.

8 National Language Support Guide and Reference

LC_NUMERIC
Defines rules and symbols for formatting nonmonetary numeric information.

LC_TIME
Defines a list of rules and symbols for formatting time and date information.

Note: Locale categories can only be modified by editing the locale definition source file. Do not confuse
them with the environment variables of the same name, which can be set from the command line.

Understanding Locale Environment Variables
National Language Support (NLS) uses several environment variables to influence the selection of locales.
You can set the values of these variables to change search paths for locale information:

LANG Specifies the installation default locale.

Note: The LANG environment variable value is established at installation. (This is the locale every
process uses unless the LC_* environment variables are set). The LANG environment
variable can be changed by using the Manage Language Environment menu in SMIT. For
more information about using SMIT, see System Management Interface Tool (SMIT)
Overview in Operating system and device management. The C and POSIX locales are
designed to offer the best performance.

LC_ALL
Overrides the value of the LANG environment variable and the values of any other LC_*
environment variables.

LC_COLLATE
Specifies the locale to use for LC_COLLATE category information. The LC_COLLATE category
determines character-collation or string-collation rules governing the behavior of ranges,
equivalence classes, and multicharacter collating elements.

LC_CTYPE
Specifies the locale to use for LC_CTYPE category information. The LC_CTYPE category
determines character handling rules governing the interpretation of sequences of bytes of text data
characters (that is, single-byte versus multibyte characters), the classification of characters (for
example, alpha, digit, and so on), and the behavior of character classes.

LC__FASTMSG
Specifies that default messages are used for the C and POSIX locales and that NLSPATH are
ignored when LC__FASTMSG is set to true. Otherwise, POSIX compliant message handling will
be performed. The default value will be LC__FASTMSG=true in the /etc/environment file.

LC_MESSAGES
Specifies the locale to use for LC_MESSAGES category information. The LC_MESSAGES
category determines rules governing affirmative and negative responses and the locale (language)
for messages and menus.

Application developers who write applications that do not display multibyte characters on a
terminal should make sure the LC_MESSAGES value is not set to C@lft. If necessary, disable the
setting with the putenv(″LC_MESSAGES=″) subroutine. The result is output that uses translated
message catalogs. C@lft is disabled by login sessions that can display multibyte characters.
Processes launched using cron or inittab retain the C@lft LC_MESSAGES value and use the
setlocale() subroutine to establish the language environment for default messages.

LC_MONETARY
Specifies the locale to use for LC_MONETARY category information. The LC_MONETARY
category determines the rules governing monetary-related formatting.

Chapter 2. Locales 9

LC_NUMERIC
Specifies the locale to use for LC_NUMERIC category information. The LC_NUMERIC category
determines the rules governing nonmonetary numeric formatting.

LC_TIME
Specifies the locale to use for LC_TIME category information. The LC_TIME category determines
the rules governing date and time formatting.

LOCPATH
Specifies the search path for localized information, including binary locale files, input methods, and
code-set converters.

Note: All setuid and setgid programs ignore the LOCPATH environment variable.

NLSPATH
Specifies the search path for locating message catalog files. This environment variable is used by
the Message Facility component of the NLS subsystem. See the catopen subroutine for more
information about expected format of the NLSPATH variable.

The environment variables that affect locale selection can be grouped into three priority classes: high,
medium, and low. Environment variables in the high priority class are:

v LC_ALL

v LC_COLLATE

v LC_CTYPE

Environment variables in the medium priority class are:

v LC_MESSAGES

v LC_MONETARY

v LC_NUMERIC

v LC_TIME

The environment variable in the low priority class is:

v LANG

When a locale is requested by the setlocale subroutine for a particular category or for all categories, the
environment variable settings are queried by their priority level in the following manner:

v If the LC_ALL environment variable is set, all six categories use the locale it specified. For example, if
the LC_ALL environment variable is equal to en_US and the LANG environment variable is equal to
fr_FR, a call to the setlocale subroutine sets each of the six categories to the en_US locale.

v If the LC_ALL environment variable is not set, each individual category uses the locale specified by its
corresponding environment variable. For example, if the LC_ALL environment variable is not set, the
LC_COLLATE environment variable is set to de_DE, and the LC_TIME environment variable is set to
fr_CA, then a call to the setlocale subroutine sets the LC_COLLATE category to de_DE and the
LC_TIME category to fr_CA. Neither environment variable has precedence over the other in this
situation.

v If the LC_ALL environment variable is not set, and a value for a particular LC_* environment variable is
not set, the value of the LANG environment variable determines the setting for that specific category.
For example, if the LC_ALL environment variable is not set, the LC_CTYPE environment variable is set
to en_US, the LC_NUMERIC environment variable is not set, and the LANG environment variable is set
to is_IS, then a call to the setlocale subroutine sets the LC_CTYPE category to en_US and the
LC_NUMERIC category to is_IS. The LANG environment variable specifies the locale for only those
categories not previously determined by an LC_* environment variable.

v If the LC_ALL environment variable is not set, a value for a particular LC_* environment variable is not
set, and the value of the LANG environment variable is not set, the locale for that specific category

10 National Language Support Guide and Reference

defaults to the C locale. For example, if the LC_ALL environment variable is not set, the
LC_MONETARY environment variable is set to sv_SE, the LC_TIME environment variable is not set,
and the LANG environment variable is not set, then a call to the setlocale subroutine sets the
LC_MONETARY category to sv_SE and the LC_TIME category to C.

Environment Variables Precedence Example
The following table shows the current setting of the environment variables and the effect of calling
setlocale(LC_ALL,″″). The last column indicates the locale setting after setlocale(LC_ALL,″″) is called.

Environment Variable and Category
Names Value of Environment Variables

Value of Category After Call To
setlocale(LC_ALL,″″)

LC_COLLATE de_DE de_DE

LC_CTYPE de_DE de_DE

LC_MONETARY en_US en_US

LC_NUMERIC (unset) da_DK

LC_TIME (unset) da_DK

LC_MESSAGES (unset) da_DK

LC_ALL (unset) (not applicable)

LANG da_DK (not applicable)

Understanding the Character Set Description (charmap) Source File
Using the character set description (charmap) source file, you can assign symbolic names to character
encodings.

Developers of character set description (charmap) source files can choose their own symbolic names,
provided that these names do not conflict with the standardized symbolic names that describe the portable
character set.

The charmap file resolves problems with the portability of sources, especially locale definition sources.
The standardized portable character set is constant across all locales. The charmap file provides the
capability to define a common locale definition for multiple code sets. That is, the same locale definition
source can be used for code sets with different encodings of the same extended characters.

A charmap file defines a set of symbols that are used by the locale definition source file to refer to
character encodings. The characters in the portable character set can optionally be included in the
charmap file, but the encodings for these characters should not differ from their default encodings.

The charmap files are located in the /usr/lib/nls/charmap directory.

Understanding the Locale Definition Source File
Unlike environment variables, which can be set from the command line, locales can only be modified by
editing and compiling a locale definition source file.

If a desired locale is not part of the library, a binary version of the locale can be compiled by the localedef
command. Locale behavior of programs is not affected by a locale definition source file unless the file is
first converted by the localedef command, and the locale object is made available to the program. The
localedef command converts source files containing definitions of locales into a run-time format and
copies the run-time version to the file specified on the command line, which usually is a locale name.

Chapter 2. Locales 11

Internationalized commands and subroutines can then access the locale information. For information on
preparing source files to be converted by the localedef command, see Locale Definition Source File
Format in AIX 5L Version 5.3 Files Reference.

Multibyte Subroutines

Multibyte subroutines process characters in file-code form. The names of these subroutines usually start
with the prefix mb. However, some multibyte subroutines do not have this prefix. For example, the strcoll
and strxfrm subroutines process characters in their multibyte form but do not have the mb prefix. The
following standard C subroutines operate on bytes and can be used to handle multibyte data: strcmp,
strcpy, strncmp, strncpy, strcat, and strncat. The standard C search subroutines strchr, strrchr,
strpbrk, strcspn, strrchr, strspn, strstr, and strtok can be used in the following cases:

v Searching or scanning for characters in single-byte code sets

v Searching or scanning for unique code-point range characters in multibyte strings

For more information about multibyte character subroutines, see Chapter 3, “Subroutines for National
Language Support,” on page 15.

Wide Character Subroutines
Wide character subroutines process characters in process-code form. Wide character subroutines usually
start with a wc prefix. However, there are exceptions to this rule. For example, the wide character
classification functions use an isw prefix. To determine if a subroutine is a wide character subroutine,
check if the subroutine prototype defines characters as wchar_t data type or wchar_t data pointer, or else
check whether the subroutine returns a wchar_t data type. There are some exceptions to this rule. For
example, the wide character classification subroutines accept wint_t data type values.

For more information about wide character subroutines, see Chapter 3, “Subroutines for National
Language Support,” on page 15.

Bidirectionality and Character Shaping
An internationalized program may need to handle bidirectionality of text and character shaping.

Bidirectionality (BIDI) occurs when texts of different direction orientation appear together. For example,
English text is read from left to right. Hebrew text is read from right to left. If both English and Hebrew
texts appear on the same line, the text is bidirectional.

Character shaping occurs when the shape of a character is dependent on its position in a line of text. In
some languages, such as Arabic, characters have different shapes depending on their position in a string
and on the surrounding characters.

For more information about bidirectionality and character shaping, see “Layout (Bidirectional Text and
Character Shaping) Overview” on page 167.

Code Set Independence
The system needs certain information about code sets to communicate with the external environment. This
information is hidden by the code set-independent library subroutines (NLS library). These subroutines
pass information to the code set-dependent functions. Because NLS subroutines handle the necessary
code set information, you do not need explicit knowledge of any code set when you write programs that
process characters. This programming technique is called code set independence.

To see a sample program that illustrates internationalization through code-set independent programming,
see Appendix D, “NLS Sample Program,” on page 233.

12 National Language Support Guide and Reference

Determining Maximum Number of Bytes in Code Sets
You can use the MB_CUR_MAX macro to determine the maximum number of bytes in a multibyte
character for the code set in the current locale. The value of this macro is dependent on the current setting
of the LC_CTYPE category. Because the locale can differ between processes, running the MB_CUR_MAX
macro in different processes or at different times may produce different results. The MB_CUR_MAX macro
is defined in the stdlib.h header file.

You can use the MB_LEN_MAX macro to determine the maximum number of bytes in any code set that is
supported by the system. This macro is defined in the limits.h header file.

Determining Character and String Display Widths
The _max_disp_width macro is operating-system-specific, and its use should be avoided in portable
applications. If portability is not important, you can use the _max_disp_width macro to determine the
maximum number of display columns required by a single character in the code set in the current locale.
The value of this macro is dependent on the current setting of the LC_CTYPE category. If the value of this
is 1 (one), all characters in the current code set require only one display column width on output.

When both MB_CUR_MAX and _max_disp_width are set to 1 (one), you can use the strlen subroutine
to determine the display column width needed for a string. When MB_CUR_MAX is greater than one, use
the wcswidth subroutine to find the display column width of the string.

The wcswidth and wcwidth wide-character display-width subroutines do not have corresponding multibyte
functions. The wcswidth subroutine does not indicate how many characters can be displayed in the space
available on a display. The wcwidth subroutine is useful for this purpose. This subroutine must be called
repeatedly on a wide-character string to find out how many characters can be displayed in the available
positions on the display.

Exceptions to Code Set Knowledge: Unique Code-Point Range

Because of the way the supported code sets are organized, there is one exception to the statement: ″No
knowledge of the underlying code set can be assumed in a program.″

When a multibyte character string is searched for any character within the unique code-point range (for
example, the . (period) character), it is not necessary to convert the string to process code form. It is
sufficient to just look for that character (.) by examining each byte. This exception enables the kernel and
utilities to search for the special characters . and / while parsing file names. If a program searches for any
of the characters in the unique code-point range, the standard string functions that operate on bytes (such
as the strchr subroutine), should be used. For a list of the characters in the unique code-point range, see
“ASCII Characters” on page 53.

File Name Matching

POSIX.2 defines the fnmatch subroutine to be used for file name matching. An application can use the
fnmatch subroutine to read a directory and apply a pattern against each entry. For example, the find
utility can use the fnmatch subroutine. The pax utility can use the fnmatch subroutine to process its
pattern operands. Applications that must match strings in a similar fashion can use the fnmatch
subroutine.

Radix Character Handling
Note that the radix character, as obtained by nl_langinfo(RADIXCHAR), is a pointer to a string. It is
possible that a locale may specify this as a multibyte character or as a string of characters. However, in
AIX, a simplifying assumption is made that the RADIXCHAR is a single-byte character.

Chapter 2. Locales 13

Programming Model
The programming model presented here highlights changes you need to make when an existing program
is internationalized or when a new program is developed:

v Provide complete internationalization. Do not assume that characters have any specific properties.
Determine the properties dynamically by using the appropriate interfaces. Do not assume properties of
code sets, except for the ASCII characters with code points in the unique code-point range.

v Make programs code set-independent. Programs should not assume single-byte, double-byte, or
multibyte encoding of any sort. Data can be processed in either process-code or file-code form by using
the appropriate subroutines.

v Provide interaction with the kernel in file-code form only. The kernel does not handle process codes.

v The NLS subroutine library can handle processing based on file-code as well as processing based on
process-code.

Note: Several subroutines based on process-code form do not have corresponding subroutines based
on file-code form. Due to this asymmetry, it may be necessary to convert strings to process-code
form and invoke the appropriate process-code subroutines.

v Some libraries may not provide processing in process-code form. An application needing these libraries
must use file-codes when invoking functions from them.

v Programs can process characters either in process-code form or file-code form. It is possible to write
code set-independent programs using both methods.

14 National Language Support Guide and Reference

Chapter 3. Subroutines for National Language Support

This chapter guides programmers in using subroutines when developing portable internationalized
programs. Use standard Open Group, ISO/ANSI C, and POSIX functions to maximize portability.

The following topics are covered in this chapter:

v “Locale Subroutines”

v “Time Formatting Subroutines” on page 20

v “Monetary Formatting Subroutines” on page 21

v “Multibyte and Wide Character Subroutines” on page 23

v “Internationalized Regular Expression Subroutines” on page 45

Note: Do not use the layout subroutines in the libi18n.a library unless the application is doing
presentation types of services. Most applications deal with logically ordered text.

Locale Subroutines
Programs that perform locale-dependent processing, including user messages, must call the setlocale
subroutine at the beginning of the program. This call is the first executable statement in the main program.
Programs that do not call the setlocale subroutine in this way inherit the C or POSIX locale. Such
programs perform as in the C locale, regardless of the setting of the LC_* and LANG environment
variables.

Other subroutines are provided to determine the current settings for locale data formatting. For more
information about these subroutines, see “Setting the Locale.”

The locale of a process determines the way that character collation, character classification, date and time
formatting, numeric punctuation, monetary punctuation, and message output are handled. The following
section describes how to set and access information about the current locale in a program using National
Language Support (NLS).

Setting the Locale
Every internationalized program must set the current locale using the setlocale subroutine. This
subroutine allows a process to change or query the current locale by accessing locale databases.

When a process is started, its current locale is set to the C or POSIX locale. A program that depends on
locale data not defined in the C or POSIX locale must invoke the setlocale subroutine in the following
manner before using any of the locale-specific information:
setlocale(LC_ALL, "");

Accessing Locale Information
The following subroutines provide access to information defined in the current locale as determined by the
most recent call to the setlocale subroutine:

localeconv
Provides access to locale information defined in the LC_MONETARY and LC_NUMERIC
categories of the current locale. The localeconv subroutine retrieves information about these
categories, places the information in a structure of type lconv as defined in the locale.h file, and
returns a pointer to this structure.

nl_langinfo
Returns a pointer to a null-terminated string containing information defined in the LC_CTYPE,
LC_MESSAGES, LC_MONETARY, LC_NUMERIC, and LC_TIME categories of the current locale.

© Copyright IBM Corp. 2002, 2006 15

rpmatch
Tests for positive and negative responses, which are specified in the LC_MESSAGES category of
the current locale. Responses can be regular expressions, as well as simple strings. The rpmatch
subroutine is not an industry-standard subroutine, portable applications should not assume that
this subroutine is available.

The localeconv and nl_langinfo subroutines do not provide access to all LC_* categories.

The current locale setting for a category can be obtained by: setlocale(Category, (char*)0). The return
value is a string specifying the current locale for Category. The following example determines the current
locale setting for the LC_CTYPE category:
char *ctype_locale; ctype_locale = setlocale(LC_CTYPE, (char*)0);

Examples
v The following example uses the setlocale subroutine to change the locale from the default C locale to

the locale specified by the environment variables, consistent with the hierarchy of the locale
environment variables:
#include <locale.h>
main()
{

char *p;

p = setlocale(LC_ALL, "");

/*
** The program will have the locale as set by the
** LC_* and LANG variables.
*/

}

v The following example uses the setlocale subroutine to obtain the current locale setting for the
LC_COLLATE category:
#include <stdio.h>
#include <locale.h>

main()
{

char *p;

/* set the current locale to what is specified */
p = setlocale(LC_ALL, "");
/* The current locale settings for all the
** categories is pointed to by p
*/

/*
** Find the current setting for the
** LC_COLLATE category
*/
p = setlocale(LC_COLLATE, NULL);
/*
** p points to a string containing the current locale
** setting for the LC_COLLATE category.
*/

}

v The following example uses the setlocale subroutine to obtain the current locale setting and saves it for
later use. This action allows the program to temporarily change the locale to a new locale. After
processing is complete, the locale can be returned to its original state.

16 National Language Support Guide and Reference

#include <stdio.h>
#include <locale.h>
#include <string.h>

#define NEW_LOCALE "MY_LOCALE"

main()
{

char *p, *save_locale;

p = setlocale(LC_ALL, "");
/*
** Initiate locale. p points to the current locale
** setting for all the categories
*/

save_locale = (char *)malloc(strlen(p) +1);
strcpy(save_locale, p);

/* Save the current locale setting */
p = setlocale(LC_ALL, NEW_LOCALE);

/* Change to new locale */

/*
** Do processing ...
*/

/* Change back to old locale */
p = setlocale(LC_ALL, save_locale); /* Restore old locale */

free(save_locale); /* Free the memory */
}

v The following example uses the setlocale subroutine to set the LC_MESSAGES category to the locale
determined by the environment variables. All other categories remain set to the C locale.
#include <locale.h>

main()
{

char *p;

/*
** The program starts in the C locale for all categories.
*/

p = setlocale(LC_MESSAGES, "");

/*
** At this time the LC_COLLATE, LC_CTYPE, LC_NUMERIC,
** LC_MONETARY, LC_TIME will be in the C locale.
** LC_MESSAGES will be set to the current locale setting
** as determined by the environment variables.
*/

}

v The following example uses the localeconv subroutine to obtain the decimal-point setting for the
current locale:
#include <locale.h>

main()
{

struct lconv *ptr;
char *decimal;

(void)setlocale(LC_ALL, "");
ptr = localeconv();
/*
** Access the data obtained. For example,

Chapter 3. Subroutines for National Language Support 17

** obtain the current decimal point setting.
*/
decimal = ptr->decimal_point;

}

v The following example uses the nl_langinfo subroutine to obtain the date and time format for the
current locale:
#include <langinfo.h>
#include <locale.h>
main()
{

char *ptr;
(void)setlocale(LC_ALL, "");
ptr = nl_langinfo(D_T_FMT);

}

v The following example uses the nl_langinfo subroutine to obtain the radix character for the current
locale:
#include <langinfo.h>
#include <locale.h>

main()
{

char *ptr;
(void)setlocale(LC_ALL, ""); /* Set the program's locale */
ptr = nl_langinfo(RADIXCHAR); /* Obtain the radix character*/

}

v The following example uses the nl_langinfo subroutine to obtain the setting of the currency symbol for
the current locale:
#include <langinfo.h>
#include <locale.h>

main()
{

char *ptr;
(void)setlocale(LC_ALL, ""); /* Set the program's locale */
ptr = nl_langinfo(CRNCYSTR); /* Obtain the currency string*/
/* The currency string will be "-$" in the U. S. locale. */

}

v The following example uses the rpmatch subroutine to obtain the setting of affirmative and negative
response strings for the current locale:

The affirmative and negative responses as specified in the locale database are no longer simple strings;
they can be regular expressions. For example, the yesexpr can be the following regular expression,
which will accept an upper or lower case letter y, followed by zero or more alphabetic characters; or the
character O followed by K. Thus, yesexpr may be the following regular expression:
([yY][:alpha:]*|OK)

The standards do not contain a subroutine to retrieve and compare this information. You can use the
AIX-specific rpmatch(const char *response) subroutine.
#include <stdio.h>
#include <langinfo.h>
#include <locale.h>
#include <regex.h>

int rpmatch(const char *);
/*
** Returns 1 if yes response, 0 if no response,
** -1 otherwise
*/

main()
{

int ret;
char *resp;

18 National Language Support Guide and Reference

(void)setlocale(LC_ALL, "");

do {
/*
** Obtain the response to the query for yes/no strings.
** The string pointer resp points to this response.
** Check if the string is yes.
*/

ret = rpmatch(resp);

if(ret == 1){
/* Response was yes. */
/* Process accordingly. */
}else if(ret == 0){
/* Response was negative. */
/* Process negative response. */
}else if(ret<0){
/* No match with yes/no occurred. */
continue;
}

}while(ret <0);
}

v The following example provides a method of implementing the rpmatch subroutine. Note that most
applications should use the rpmatch subroutine in libc. The following implementation of the rpmatch
subroutine is for illustration purposes only.

Note that nl_langinfo(YESEXPR) and nl_langinfo(NOEXPR) are used to obtain the regular
expressions for the affirmative and negative responses respectively.
#include <langinfo.h>
#include <regex.h>
/*
** rpmatch() performs comparison of a string to a regular expression
** using the POSIX.2 defined regular expression compile and match
** functions. The first argument is the response from the user and the
** second string is the current locale setting of the regular expression.
*/
int rpmatch(const char *string)

{
int status;
int retval;
regex_t re;
char *pattern;

pattern = nl_langinfo(YESEXPR);
/* Compile the regular expression pointed to by pattern. */
if((status = regcomp(&re, pattern, REG_EXTENDED | REG_NOSUB)) != 0){

retval = -2; /*-2 indicates yes expr compile error */
return(retval);

}
/* Match the string with the compiled regular expression. */
status = regexec(&re, string, (size_t)0, (regmatch_t *)NULL, 0);
if(status == 0){

retval = 1; /* Yes match found */
}else{ /* Check for negative response */

pattern = nl_langinfo(NOEXPR);
if((status = regcomp(&re, pattern,

REG_EXTENDED | REG_NOSUB)) != 0){
retval = -3;/*-3 indicates no compile error */
return(retval);

}
status = regexec(&re, string, (size_t)0,

(regmatch_t *)NULL, 0);
if(status == 0)

Chapter 3. Subroutines for National Language Support 19

retval = 0;/* Negative response match found */
}else

retval = -1; /* The string did not match yes or no
response */

regfree(&re);
return(retval);

}

Time Formatting Subroutines
Programs that need to format time into wide character code strings can use the wcsftime subroutine.
Programs that need to convert multibyte strings into an internal time format can use the strptime
subroutine.

In addition to the strftime subroutine defined in the C programming language standard, X/Open Portability
Guide Issue 4 defines the following time formatting subroutines:

wcsftime
Formats time into wide character code strings

strptime
Converts a multibyte string into an internal time format

Examples
v The following example uses the wcsftime subroutine to format time into a wide character string:

#include <stdio.h>
#include <langinfo.h>
#include <locale.h>
#include <time.h>

main()
{

wchar_t timebuf[BUFSIZE];
time_t clock = time((time_t*) NULL);
struct tim *tmptr = localetime(&clock);

(void)setlocale(LC_ALL, "");

wcsftime(
timebuf, /* Time string output buffer */
BUFSIZ, /*Maximum size of output string */
nl_langinfo(D_T_FMT), /* Date/time format */
tmptr /* Pointer to tm structure */

);

printf("%S\n", timebuf);
}

v The following example uses the strptime subroutine to convert a formatted time string to internal
format:
#include <langinfo.h>
#include <locale.h>
#include <time.h>

main(int argc, char **argv)
{

struct tm tm;

(void)setlocale(LC_ALL, "");

if (argc != 2) {
... /* Error handling */

}

20 National Language Support Guide and Reference

if (strptime(
argv[1], /* Formatted time string */
nl_langinfo(D_T_FMT), /* Date/time format */
&tm /* Address of tm structure */

) == NULL) {
... /* Error handling */

}
else {

... /* Other Processing */
}

}

Monetary Formatting Subroutines
Programs that need to specify or access monetary quantities can call the strfmon subroutine.

Although the C programming language standard in conjunction with POSIX provides a means of specifying
and accessing monetary information, these standards do not define a subroutine that formats monetary
quantities. The XPG4 strfmon subroutine provides the facilities to format monetary quantities. No defined
subroutine converts a formatted monetary string into a numeric quantity suitable for arithmetic. Applications
that need to do arithmetic on monetary quantities may do so after processing the locale-dependent
monetary string into a number. The culture-specific monetary formatting information is specified by the
LC_MONETARY category. An application can obtain information pertaining to the monetary format and the
currency symbol by calling the localeconv subroutine.

Euro Currency Support
The strfmon subroutine uses the information from the locale’s LC_MONETARY category to determine the
correct monetary format for the given language/territory. Locales can handle both the traditional national
currencies by using the @preeuro modifier, as well as the common European currency (euro). Each
European country that uses the euro will have an additional LC_MONETARY definition with the @preeuro
modifier appended. This alternate format is invoked when specified through the locale environment
variables, or with the setlocale subroutine.

To use the French locale, UTF-8 codeset environment, and euro as the monetary unit, set:
LANG=FR_FR

To use the French locale, UTF-8 codeset environment, and French francs as the monetary unit, set:
LANG=FR_FR
LC_MONETARY=FR_FR@preeuro

Users should not attempt to set LANG=FR_FR@preeuro, because the @preeuro variant for locale
categories other than LC_MONETARY is undefined.

Examples
v The following example uses the strfmon subroutine and accepts a format specification and an input

value. The input value is formatted according to the input format specification.
#include <monetary.h>
#include <locale.h>
#include <stdio.h>

main(int argc, char **argv)
{

char bfr[256], format[256];
int match; ssize_t size;
float value;

(void) setlocale(LC_ALL, "");

Chapter 3. Subroutines for National Language Support 21

if (argc != 3){
... /* Error handling */

}
match = sscanf(argv[1], "%f", &value);
if (!match) {

... /* Error handling */
}
match = sscanf(argv[2], "%s", format);
if (!match) {

... /*Error handling */
}
size = strfmon(bfr, 256, format, value);
if (size == -1) {

... /* Error handling */
}
printf ("Formatted monetary value is: %s\n", bfr);

}

The following table provides examples of other possible conversion specifications and the outputs for
12345.67 and -12345.67 in a U.S. English locale:

Conversion Specification Output Description

%n $12,345.67 -$12,345.67 Default formatting

%15n $12,345.67 -$12,345.67 Right justifies within a 15-character
field.

%#6n $ 12,345.67 -$ 12,345.67 Aligns columns for values up to
999,999.

%=*#8n $****12,345.67 -$****12,345.67 Specifies a fill character.

%=0#8n $000012,345.67 -$000012,345.67 Fill characters do not use grouping.

%^#6n $ 12345.67 -$ 12345.67 Disables the thousands separator.

%^#6.0n $ 12346 -$ 12346 Rounds off to whole units.

%^#6.3n $ 12345.670 -$ 12345.670 Increases the precision.

%(#6n $ 12,345.67 ($ 12,345.67) Uses an alternate positive or negative
style.

%!(#6n 12,345.67 (12,345.67) Disables the currency symbol.

v The following example converts a monetary value into a numeric value. The monetary string is pointed
to by input, and the result of converting it into numeric form is stored in the string pointed to by output.
Assume that input and output are initialized.
char *input; /* the input multibyte string containing the monetary string */
char *output; /* the numeric string obtained from the input string */
wchar_t src_string[SIZE], dest_string[SIZE];
wchar_t *monetary, *numeric;
wchar_t mon_decimal_point, radixchar;
wchar_t wc;
localeconv *lc;

/* Initialize input and output to point to valid buffers as appropriate. */
/* Convert the input string to process code form*/
retval = mbstowcs(src_string, input, SIZE);
/* Handle error returns */

monetary = src_string;
numeric = dest_string;
lc = localeconv();

/* obtain the LC_MONETARY and LC_NUMERIC info */

/* Convert the monetary decimal point to wide char form */
retval = mbtowc(&mon_decimal_point, lc->mon_decimal_point,

MB_CUR_MAX);

22 National Language Support Guide and Reference

/* Handle any error case */

/* Convert the numeric decimal point to wide char form */
retval = mbtowc(&radixchar, lc->decimal_point, MB_CUR_MAX);
/* Handle error case */
/* Assuming the string is converted first into wide character
** code form via mbstowcs, monetary points to this string.
*/
/* Pick up the numeric information from the wide character
** string and copy it into a temp buffer.
*/

while(wc = *monetary++){
if(iswdigit(wc))

*numeric++ = wc;
else if(wc == mon_decimal_point)

*numeric++=radixchar;
}
*numeric = 0;

/* dest_string has the numeric value of the monetary quantity. */
/* Convert the numeric quantity into multibyte form */
retval = wcstombs(output, dest_string, SIZE);
/* Handle any error returns */
/* Output contains a numeric value suitable for atof conversion. */

Multibyte and Wide Character Subroutines
The external representation of data is referred to as the file code representation of a character. When file
code data is created in files or transferred between a computer and its I/O devices, a single character may
be represented by one or several bytes. For processing strings of such characters, it is more efficient to
convert these codes into a uniform-length representation. This converted form is intended for internal
processing of characters. The internal representation of data is referred to as the process code or wide
character code representation of the character.

NLS internationalization of programs is a blend of multibyte and wide character subroutines. A multibyte
subroutine uses multibyte character sets. A wide character subroutine uses wide character sets. Multibyte
subroutines have an mb prefix. Wide character subroutines have a wc prefix. The corresponding
string-handling subroutines are indicated by the mbs and wcs prefixes, respectively. Deciding when to use
multibyte or wide character subroutines can be made only after careful analysis.

This section contains the following major subsections that discuss multibyte and wide character code
subroutines:

v “Wide Character Classification Subroutines” on page 28

v “Multibyte and Wide Character String Collation Subroutines” on page 32

v “Multibyte and Wide Character String Comparison Subroutines” on page 34

v “Multibyte and Wide Character String Collation Subroutines” on page 32

v “Wide Character String Search Subroutines” on page 37

v “Working with the Wide Character Constant” on page 45

Multibyte Code and Wide Character Code Conversion Subroutines
The internationalized environment of NLS blends multibyte and wide character subroutines. The decision
of when to use wide character or multibyte subroutines can be made only after careful analysis.

If a program primarily uses multibyte subroutines, it may be necessary to convert the multibyte character
codes to wide character codes before certain wide character subroutines can be used. If a program uses
wide character subroutines, data may need to be converted to multibyte form when invoking subroutines.
Both methods have drawbacks, depending on the program in use and the availability of standard
subroutines to perform the required processing. For instance, the wide character display-column-width
subroutine has no corresponding standard multibyte subroutine.

Chapter 3. Subroutines for National Language Support 23

If a program can process its characters in multibyte form, this method should be used instead of
converting the characters to wide character form.

Attention: The conversion between multibyte and wide character code depends on the current locale
setting. Do not exchange wide character codes between two processes, unless you have knowledge that
each locale that might be used handles wide character codes in a consistent fashion. With the exception
of locales based on the IBM-eucTW codeset, AIX locales use the Unicode character value as a wide
character code.

Multibyte Code to Wide Character Code Conversion Subroutines
The following subroutines are used when converting from multibyte code to wide character code:

mblen
Determines the length of a multibyte character. Do not use p++ to increment a pointer in a
multibyte string. Use the mblen subroutine to determine the number of bytes that compose a
character.

mbstowcs
Converts a multibyte string to a wide character string.

mbtowc
Converts a multibyte character to a wide character.

Wide Character Code to Multibyte Code Conversion Subroutines
The following subroutines are used when converting from wide character code to multibyte character code:

wcslen
Determines the number of wide characters in a wide character string.

wcstombs
Converts a wide character string to a multibyte character string.

wctomb
Converts a wide character to a multibyte character.

Examples
v The following example uses the mbtowc subroutine to convert a character in multibyte character code

to wide character code:
main()
{

char *s;
wchar_t wc;
int n;

(void)setlocale(LC_ALL,"");

/*
** s points to the character string that needs to be
** converted to a wide character to be stored in wc.
*/
n = mbtowc(&wc, s, MB_CUR_MAX);

if (n == -1){
/* Error handle */

}
if (n == 0){

/* case of name pointing to null */
}

/*

24 National Language Support Guide and Reference

** wc contains the process code for the multibyte character
** pointed to by s.
*/

}

v The following example uses the wctomb subroutine to convert a character in wide character code to
multibyte character code:
#include <stdlib.h>
#include <limits.h> /* for MB_LEN_MAX */
#include <stdlib.h> /* for wchar_t */

main()
{

char s[MB_LEN_MAX}; /* system wide maximum number of
** bytes in a multibyte character r. */

wchar_t wc;
int n;

(void)setlocale(LC_ALL,"");

/*
** wc is the wide character code to be converted to
** multibyte character code.
*/
n = wctomb(s, wc);

if(n == -1){
/* pwcs does not point to a valid wide character */

}
/*
** n has the number of bytes contained in the multibyte
** character stored in s.
*/

}

v The following example uses the mblen subroutine to find the byte length of a character in multibyte
character code:
#include <stdlib.h>
#include <locale.h>

main
{

char *name = "h";
int n;

(void)setlocale(LC_ALL,"");

n = mblen(name, MB_CUR_MAX);
/*
** The count returned in n is the multibyte length.
** It is always less than or equal to the value of
** MB_CUR_MAX in stdlib.h
*/
if(n == -1){

/* Error Handling */
}

}

v The following example obtains a previous character position in a multibyte string. If you need to
determine the previous character position, starting from a current character position (not a random byte
position), step through the buffer starting at the beginning. Use the mblen subroutine until the current
character position is reached, and save the previous character position to obtain the needed character
position.
char buf[]; /* contains the multibyte string */
char *cur, /* points to the current character position */
char *prev, /* points to previous multibyte character */

Chapter 3. Subroutines for National Language Support 25

char *p; /* moving pointer */

/* initialize the buffer and pointers as needed */
/* loop through the buffer until the moving pointer reaches
** the current character position in the buffer, always
** saving the last character position in prev pointer */
p = prev = buf;

/* cur points to a valid character somewhere in buf */
while(p< cur){

prev = p;
if((i=mblen(p, mbcurmax))<=0){

/* invalid multibyte character or null */
/* You can have a different error handling
** strategy */
p++; /* skip it */

}else {
p += i;

}
}
/* prev will point to the previous character position */

/* Note that if(prev == cur), then it means that there was
** no previous character. Also, if all bytes up to the
** current character are invalid, it will treat them as
** all valid single-byte characters and this may not be what
** you want. One may change this to handle another method of
** error recovery. */

v The following example uses of the mbstowcs subroutine to convert a multibyte string to wide character
string:
#include <stdlib.h>
#include <locale.h>

main()
{

char *s;
wchar_t *pwcs;
size_t retval, n;

(void)setlocale(LC_ALL, "");

n = strlen(s) + 1; /*string length + terminating null */

/* Allocate required wchar array */
pwcs = (wchar_t *)malloc(n * sizeof(wchar_t));
retval = mbstowcs(pwcs, s, n);
if(retval == -1){

/* Error handle */
}
/*
** pwcs contains the wide character string.
*/

}

v The following example illustrates the problems with using the mbstowcs subroutine on a large block of
data for conversion to wide character form. When it encounters a multibyte that is not valid, the
mbstowcs subroutine returns a value of -1 but does not specify where the error occurred. Therefore,
the mbtowc subroutine must be used repeatedly to convert one character at a time to wide character
code.

Note: Processing in this manner can considerably slow program performance.
During the conversion of single-byte code sets, there is no possibility for partial multibytes. However,
during the conversion of multibyte code sets, partial multibytes are copied to a save buffer. During the
next call to the read subroutine, the partial multibyte is prefixed to the rest of the byte sequence.

26 National Language Support Guide and Reference

Note: A null-terminated wide character string is obtained. Optional error handling can be done if an
instance of an invalid byte sequence is found.

#include <stdio.h>
#include <locale.h>
#include <stdlib.h>

main(int argc, char *argv[])
{

char *curp, *cure;
int bytesread, bytestoconvert, leftover;
int invalid_multibyte, mbcnt, wcnt;
wchar_t *pwcs;
wchar_t wbuf[BUFSIZ+1];
char buf[BUFSIZ+1];
char savebuf[MB_LEN_MAX];
size_t mb_cur_max;
int fd;

/*
** MB_LEN_MAX specifies the system wide constant for
** the maximum number of bytes in a multibyte character.
*/

(void)setlocale(LC_ALL, "");
mb_cur_max = MB_CUR_MAX;

fd = open(argv[1], 0);
if(fd < 0){

/* error handle */
}

leftover = 0;
if(mb_cur_max==1){ /* Single byte code sets case */

for(;;){
bytesread = read(fd, buf, BUSIZ);
if(bytesread <= 0)

break;
mbstowcs(wbuf, buf, bytesread+1);
/* Process using the wide character buffer */

}
/* File processed ... */

exit(0); /* End of program */

}else{ /* Multibyte code sets */
leftover = 0;

for(;;) {
if(leftover)

strncpy(buf, savebuf ,leftover);
bytesread=read(fd,buf+leftover, BUFSIZ-leftover);
if(bytesread <= 0)

break;

buf[leftover+bytesread] = '\0';
/* Null terminate string */

invalid_multibyte = 0;
bytestoconvert = leftover+bytesread;
cure= buf+bytestoconvert;
leftover=0;
pwcs = wbuf;

/* Stop processing when invalid mbyte found. */
curp= buf;

for(;curp<cure;){
mbcnt = mbtowc(pwcs,curp, mb_cur_max);
if(mbcnt>0){

Chapter 3. Subroutines for National Language Support 27

curp += mbcnt;
pwcs++;
continue;

}else{
/* More data needed on next read*/
if (cure-curp<mb_cur_max){

leftover=cure-curp;
strncpy(savebuf,curp,leftover);
/* Null terminate before partial mbyte */
*curp=0;
break;

}else{
/*Invalid multibyte found */

invalid_multibyte =1;
break;

}
}

}
if(invalid_multibyte){ /*error handle */
}
/* Process the wide char buffer */

}
}

}

v The following example uses the wcstombs and wcslen subroutines to convert a wide character string
to multibyte form:
#include <stdlib.h>
#include <locale.h>

main()
{

wchar_t *pwcs; /* Source wide character string */
char *s; /* Destination multibyte character string */
size_t n;
size_t retval;

(void)setlocale(LC_ALL, "");
/*
** Calculate the maximum number of bytes needed to
** store the wide character buffer in multibyte form in the
** current code page and malloc() the appropriate storage,
** including the terminating null.
*/
s = (char *) malloc(wcslen(pwcs) * MB_CUR_MAX + 1);
retval= wcstombs(s, pwcs, n);
if(retval == -1) {

/* Error handle */
/* s points to the multibyte character string. */

}

Wide Character Classification Subroutines
The majority of wide character classification subroutines are similar to traditional character classification
subroutines, except that wide character classification subroutines operate on a wchar_t data type
argument passed as a wint_t data type argument.

Generic Wide Character Classification Subroutines
In the internationalized environment of National Language Support, you need the ability to create new
character class properties. For example, several properties are defined for Japanese characters that are
not applicable to the English language. As more languages are supported, a framework enabling
applications to deal with a varying number of character properties is needed. The wctype and iswctype

28 National Language Support Guide and Reference

subroutines allow handling of character classes in a general fashion. These subroutines are used to allow
for both user-defined and language-specific character classes.

The action of wide character classification subroutines is affected by the definitions in the LC_CTYPE
category for the current locale.

To create new character classifications for use with the wctype and iswctype subroutines, create a new
character class in the LC_CTYPE category and generate the locale using the localedef command. A user
application obtains this locale data with the setlocale subroutine. The program can then access the new
classification subroutines by using the wctype subroutine to get the wctype_t property handle. It then
passes to the iswctype subroutine both the property handle and the wide character code of the character
to be tested.

The following subroutines are used for wide character classification:

wctype
Obtains handle for character property classification.

iswctype
Tests for character property.

Standard Wide Character Classification Subroutines
The isw* subroutines determine various aspects of a standard wide character classification. The isw*
subroutines also work with single-byte code sets. Use the isw* subroutines in preference to the wctype
and iswctype subroutines. Use the wctype and iswctype subroutines only for extended character class
properties (for example, Japanese language properties).

When using the wide character functions to convert the case in several blocks of data, the application
must convert characters from multibyte to wide character code form. Because this can affect performance
in single-byte code set locales, consider providing two conversion paths in your application. The traditional
path for single-byte code set locales would convert case using the isupper,islower, toupper, and tolower
subroutines. The alternate path for multibyte code set locales would convert multibyte characters to wide
character code form and convert case using the iswupper, iswlower, towupper and towlower
subroutines. When converting multibyte characters to wide character code form, an application needs to
handle special cases where a multibyte character may split across successive blocks.

The following is a list of standard wide character classification subroutines:

iswalnum
Tests for alphanumeric character classification.

iswalpha
Tests for alphabetic character classification.

iswcntrl
Tests for control character classification.

iswdigit
Tests for digit character classification.

iswgraph
Tests for graphic character classification.

iswlower
Tests for lowercase character classification.

iswprint
Tests for printable character classification.

iswpunct
Tests for punctuation character classification.

Chapter 3. Subroutines for National Language Support 29

iswspace
Tests for space character classification.

iswupper
Tests for uppercase character classification.

iswxdigit
Tests for hexadecimal-digit character classification.

Wide Character Case Conversion Subroutines
The following subroutines convert cases for wide characters. The action of wide character case conversion
subroutines is affected by the definition in the LC_CTYPE category for the current locale.

towlower
Converts an uppercase wide character to a lowercase wide character.

towupper
Converts a lowercase wide character to an uppercase wide character.

Example
The following example uses the wctype subroutine to test for the NEW_CLASS character classification:
#include <ctype.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wint_t wc;
int retval;
wctype_t chandle;

(void)setlocale(LC_ALL,"");
/*
** Obtain the character property handle for the NEW_CLASS
** property.
*/
chandle = wctype("NEW_CLASS") ;
if(chandle == (wctype_t)0){

/* Invalid property. Error handle. */
}
/* Let wc be the wide character code for a character */
/* Test if wc has the property of NEW_CLASS */
retval = iswctype(wc, chandle);
if(retval > 0) {

/*
** wc has the property NEW_CLASS.
*/

}else if(retval == 0) {
/*
** The character represented by wc does not have the
** property NEW_CLASS.
*/

}
}

Wide Character Display Column Width Subroutines
When characters are displayed or printed, the number of columns occupied by a character may differ. For
example, a Kanji character (Japanese language) may occupy more than one column position. The number
of display columns required by each character is part of the National Language Support locale database.
The LC_CTYPE category defines the number of columns needed to display a character.

No standard multibyte display-column-width subroutines exist. For portability, convert multibyte codes to
wide character codes and use the required wide character display-width subroutines. However, if the

30 National Language Support Guide and Reference

__max_disp_width macro (defined in the stdlib.h file) is set to 1 and a single-byte code set is in use,
then the display-column widths of all characters (except tabs) in the code set are the same, and are equal
to 1. In this case, the strlen (string) subroutine gives the display column width of the specified string, as
shown in the following example:
#include <stdlib.h>

int display_column_width; /* number of display columns */
char *s; /* character string */
....
if((MB_CUR_MAX == 1) && (__max_disp_width == 1)){

display_column_width = strlen(s);
/* s is a string pointer */

}

The following subroutines find the display widths for wide character strings:

wcswidth
Determines the display width of a wide character string.

wcwidth
Determines the display width of a wide character.

Examples
v The following example uses the wcwidth subroutine to find the display column width of a wide

character:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wint_t wc;
int retval;

(void)setlocale(LC_ALL, "");

/*
** Let wc be the wide character whose display width is
** to be found.
*/
retval = wcwidth(wc);
if(retval == -1){

/*
** Error handling. Invalid or nonprintable
** wide character in wc.
*/

}
}

v The following example uses the wcswidth subroutine to find the display column width of a wide
character string:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs;
int retval;
size_t n;

(void)setlocale(LC_ALL, "");
/*
** Let pwcs point to a wide character null
** terminated string.

Chapter 3. Subroutines for National Language Support 31

** Let n be the number of wide characters
** whose display column width is to be determined.
*/
retval = wcswidth(pwcs, n);
if(retval == -1){

/*
** Error handling. Invalid wide or nonprintable
** character ode encountered in the wide
** character string pwcs.
*/

}
}

Multibyte and Wide Character String Collation Subroutines
Strings can be compared in the following ways:

v Using the ordinal (binary) values of the characters.

v Using the weights associated with the characters for each locale, as determined by the LC_COLLATE
category.

National Language Support (NLS) uses the second method.

Collation is a locale-specific property of characters. A weight is assigned to each character to indicate its
relative order for sorting. A character may be assigned more than one weight. Weights are prioritized as
primary, secondary, tertiary, and so forth. The maximum number of weights assigned each character is
system-defined.

A process inherits the C locale or POSIX locale at its startup time. When the setlocale (LC_ALL, ″ ″)
subroutine is called, a process obtains its locale based on the LC_* and LANG environment variables. The
following subroutines are affected by the LC_COLLATE category and determine how two strings will be
sorted in any given locale.

Note: Collation-based string comparisons take a long time because of the processing involved in
obtaining the collation values. Perform such comparisons only when necessary. If you need to
determine whether two wide character strings are equal, do not use the wcscoll and wcsxfrm
subroutines; use the wcscmp subroutine instead.

The following subroutines compare multibyte character strings:

strcoll
Compares the collation weights of multibyte character strings.

strxfrm
Converts a multibyte character string to values representing character collation weights.

The following subroutines compare wide character strings:

wcscoll
Compares the collation weights of wide character strings.

wcsxfrm
Converts a wide character string to values representing character collation weights.

Examples
v The following example uses the wcscoll subroutine to compare two wide character strings based on

their collation weights:
#include <stdio.h>
#include <string.h>
#include <locale.h>
#include <stdlib.h>

32 National Language Support Guide and Reference

extern int errno;

main()
{

wchar_t *pwcs1, *pwcs2;
size_t n;

(void)setlocale(LC_ALL, "");

/* set it to zero for checking errors on wcscoll */
errno = 0;
/*
** Let pwcs1 and pwcs2 be two wide character strings to
** compare.
*/
n = wcscoll(pwcs1, pwcs2);

/*
** If errno is set then it indicates some
** collation error.
*/

if(errno != 0){
/* error has occurred... handle error ...*/

}
}

v The following example uses the wcsxfrm subroutine to compare two wide character strings based on
collation weights:

Note: Determining the size n (where n is a number) of the transformed string, when using the wcsxfrm
subroutine, can be accomplished in one of the following ways:

– For each character in the wide character string, the number of bytes for possible collation values
cannot exceed the COLL_WEIGHTS_MAX * sizeof(wchar_t) value. This value, multiplied by the
number of wide character codes, gives the buffer length needed. To the buffer length add 1 for the
terminating wide character null. This strategy may slow down performance.

– Estimate the byte-length needed. If the previously obtained value is not enough, increase it. This
may not satisfy all strings but gives maximum performance.

– Call the wcsxfrm subroutine twice: first to find the value of n, and a second time to transform the
string using this n value. This strategy slows down performance because the wcsxfrm subroutine is
called twice. However, it yields a precise value for the buffer size needed to store the transformed
string.

The method you choose depends on the characteristics of the strings used in the program and the
performance objectives of the program.
#include <stdio.h>
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs1, *pwcs2, *pwcs3, *pwcs4;
size_t n, retval;

(void)setlocale(LC_ALL, "");
/*
** Let the string pointed to by pwcs1 and pwcs3 be the
** wide character arrays to store the transformed wide
** character strings. Let the strings pointed to by pwcs2
** and pwcs4 be the wide character strings to compare based
** on the collation values of the wide characters in these
** strings.
** Let n be large enough (say,BUFSIZ) to transform the two
** wide character strings specified by pwcs2 and pwcs4.

Chapter 3. Subroutines for National Language Support 33

**
** Note:
** In practice, it is best to call wcsxfrm if the wide
** character string is to be compared several times to
** different wide character strings.
*/

do {
retval = wcsxfrm(pwcs1, pwcs2, n);
if(retval == (size_t)-1){

/* error has occurred. */
/* Process the error if needed */
break;

}

if(retval >= n){
/*
** Increase the value of n and use a bigger buffer pwcs1.
*/
}

}while (retval >= n);

do {
retval = wcsxfrm(pwcs3, pwcs4, n);
if (retval == (size_t)-1){

/* error has occurred. */
/* Process the error if needed */
break;

if(retval >= n){
/*Increase the value of n and use a bigger buffer pwcs3.*/
}

}while (retval >= n);
retval = wcscmp(pwcs1, pwcs3);
/* retval has the result */

}

Multibyte and Wide Character String Comparison Subroutines
The strcmp and strncmp subroutines determine if the contents of two multibyte strings are equivalent. If
your application needs to know how the two strings differ lexically, use the multibyte and wide character
string collation subroutines.

The following NLS subroutines compare wide character strings:

wcscmp Compares two wide character strings.
wcsncmp Compares a specific number of wide character strings.

Example
The following example uses the wcscmp subroutine to compare two wide character strings:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs1, *pwcs2;
int retval;

(void)setlocale(LC_ALL, "");
/*
** pwcs1 and pwcs2 point to two wide character
** strings to compare.
*/

34 National Language Support Guide and Reference

retval = wcscmp(pwcs1, pwcs2);
/* pwcs1 contains a copy of the wide character string
** in pwcs2
*/

}

Wide Character String Conversion Subroutines
The following NLS subroutines convert wide character strings to double, long, and unsigned long integers:

wcstod Converts a wide character string to a double-precision floating point.
wcstol Converts a wide character string to a signed long integer.
wcstoul Converts a wide character string to an unsigned long integer.

Before calling the wcstod, wcstoul, or wcstol subroutine, the errno global variable must be set to 0. Any
error that occurs as a result of calling these subroutines can then be handled correctly.

Examples
v The following example uses the wcstod subroutine to convert a wide character string to a

double-precision floating point:
#include <stdlib.h>
#include <locale.h>
#include <errno.h>

extern int errno;

main()
{

wchar_t *pwcs, *endptr;
double retval;

(void)setlocale(LC_ALL, "");
/*
** Let pwcs point to a wide character null terminated
** string containing a floating point value.
*/
errno = 0; /* set errno to zero */
retval = wcstod(pwcs, &endptr);

if(errno != 0){
/* errno has changed, so error has occurred */

if(errno == ERANGE){
/* correct value is outside range of
** representable values. Case of overflow
** error
*/

if((retval == HUGE_VAL) ||
(retval == -HUGE_VAL)){
/* Error case. Handle accordingly. */

}else if(retval == 0){
/* correct value causes underflow */
/* Handle appropriately */

}
}

}
/* retval contains the double. */

}

v The following example uses the wcstol subroutine to convert a wide character string to a signed long
integer:

Chapter 3. Subroutines for National Language Support 35

#include <stdlib.h>
#include <locale.h>
#include <errno.h>
#include <stdio.h>

extern int errno;

main()
{

wchar_t *pwcs, *endptr;
long int retval;

(void)setlocale(LC_ALL, "");
/*
** Let pwcs point to a wide character null terminated
** string containing a signed long integer value.
*/
errno = 0; /* set errno to zero */
retval = wcstol(pwcs, &endptr, 0);

if(errno != 0){
/* errno has changed, so error has occurred */

if(errno == ERANGE){
/* correct value is outside range of
** representable values. Case of overflow
** error
*/

if((retval == LONG_MAX) || (retval == LONG_MIN)){
/* Error case. Handle accordingly. */

}else if(errno == EINVAL){
/* The value of base is not supported */
/* Handle appropriately */

}
}

}
/* retval contains the long integer. */

}

v The following example uses the wcstoul subroutine to convert a wide character string to an unsigned
long integer:
#include <stdlib.h>
#include <locale.h>
#include <errno.h>

extern int errno;

main()
{

wchar_t *pwcs, *endptr;
unsigned long int retval;

(void)setlocale(LC_ALL, "");

/*
** Let pwcs point to a wide character null terminated
** string containing an unsigned long integer value.
*/
errno = 0; /* set errno to zero */
retval = wcstoul(pwcs, &endptr, 0);

if(errno != 0){
/* error has occurred */
if(retval == ULONG_MAX || errno == ERANGE){

/*
** Correct value is outside of

36 National Language Support Guide and Reference

** representable value. Handle appropriately
*/

}else if(errno == EINVAL){
/* The value of base is not representable */
/* Handle appropriately */

}
}
/* retval contains the unsigned long integer. */

}

Wide Character String Copy Subroutines
The following NLS subroutines copy wide character strings:

wcscpy Copies a wide character string to another wide character string.
wcsncpy Copies a specific number of characters from a wide character string to another wide character string.
wcscat Appends a wide character string to another wide character string.
wcsncat Appends a specific number of characters from a wide character string to another wide character string.

Example
The following example uses the wcscpy subroutine to copy a wide character string into a wide character
array:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs1, *pwcs2;
size_t n;

(void)setlocale(LC_ALL, "");
/*
** Allocate the required wide character array.
*/
pwcs1 = (wchar_t *)malloc((wcslen(pwcs2) +1)*sizeof(wchar_t));
wcscpy(pwcs1, pwcs2);
/*
** pwcs1 contains a copy of the wide character string in pwcs2
*/

}

Wide Character String Search Subroutines
The following NLS subroutines are used to search for wide character strings:

wcschr Searches for the first occurrence of a wide character in a wide character string.
wcsrchr Searches for the last occurrence of a wide character in a wide character string.
wcspbrk Searches for the first occurrence of a several wide characters in a wide character string.
wcsspn Determines the number of wide characters in the initial segment of a wide character string.
wcscspn Searches for a wide character string.
wcswcs Searches for the first occurrence of a wide character string within another wide character string.
wcstok Breaks a wide character string into a sequence of separate wide character strings.

Examples
v The following example uses the wcschr subroutine to locate the first occurrence of a wide character in

a wide character string:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

Chapter 3. Subroutines for National Language Support 37

main()
{

wchar_t *pwcs1, wc, *pws;
int retval;

(void)setlocale(LC_ALL, "");

/*
** Let pwcs1 point to a wide character null terminated string.
** Let wc point to the wide character to search for.
**
*/
pws = wcschr(pwcs1, wc);
if (pws == (wchar_t)NULL){

/* wc does not occur in pwcs1 */
}else{

/* pws points to the location where wc is found */
}

}

v The following example uses the wcsrchr subroutine to locate the last occurrence of a wide character in
a wide character string:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs1, wc, *pws;
int retval;

(void)setlocale(LC_ALL, "");
/*
** Let pwcs1 point to a wide character null terminated string.
** Let wc point to the wide character to search for.
**
*/
pws = wcsrchr(pwcs1, wc);
if (pws == (wchar_t)NULL){

/* wc does not occur in pwcs1 */
}else{

/* pws points to the location where wc is found */
}

}

v The following example uses the wcspbrk subroutine to locate the first occurrence of several wide
characters in a wide character string:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs1, *pwcs2, *pws;

(void)setlocale(LC_ALL, "");

/*
** Let pwcs1 point to a wide character null terminated string.
** Let pwcs2 be initialized to the wide character string
** that contains wide characters to search for.
*/
pws = wcspbrk(pwcs1, pwcs2);

if (pws == (wchar_t)NULL){
/* No wide character from pwcs2 is found in pwcs1 */

38 National Language Support Guide and Reference

}else{
/* pws points to the location where a match is found */

}
}

v The following example uses the wcsspn subroutine to determine the number of wide characters in the
initial segment of a wide character string segment:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs1, *pwcs2;
size_t count;

(void)setlocale(LC_ALL, "");
/*
** Let pwcs1 point to a wide character null terminated string.
** Let pwcs2 be initialized to the wide character string
** that contains wide characters to search for.
*/
count = wcsspn(pwcs1, pwcs2);
/*
** count contains the length of the segment.
*/

}

v The following example uses the wcscspn subroutine to determine the number of wide characters not in
a wide character string segment:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs1, *pwcs2;
size_t count;

(void)setlocale(LC_ALL, "");

/*
** Let pwcs1 point to a wide character null terminated string.
** Let pwcs2 be initialized to the wide character string
** that contains wide characters to search for.
*/
count = wcscspn(pwcs1, pwcs2);
/*
** count contains the length of the segment consisting
** of characters not in pwcs2.
*/

}

v The following example uses the wcswcs subroutine to locate the first occurrence of a wide character
string within another wide character string:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs1, *pwcs2, *pws;

(void)setlocale(LC_ALL, "");
/*
** Let pwcs1 point to a wide character null terminated string.
** Let pwcs2 be initialized to the wide character string

Chapter 3. Subroutines for National Language Support 39

** that contains wide characters sequence to locate.
*/
pws = wcswcs(pwcs1, pwcs2);
if (pws == (wchar_t)NULL){

/* wide character sequence pwcs2 is not found in pwcs1 */
}else{

/*
** pws points to the first occurrence of the sequence
** specified by pwcs2 in pwcs1.
*/

}
}

v The following example uses the wcstok subroutine to tokenize a wide character string:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs1 = L"?a???b,,,#c";
wchar_t *pwcs;

(void)setlocale(LC_ALL, "");
pwcs = wcstok(pwcs1, L"?");
/* pws points to the token: L"a" */
pwcs = wcstok((wchar_t *)NULL, L",");
/* pws points to the token: L"??b" */
pwcs = wcstok((wchar_t *)NULL, L"#,");
/* pws points to the token: L"c" */

}

Wide Character Input/Output Subroutines
NLS provides subroutines for both formatted and unformatted I/O.

Formatted Wide Character I/O
The printf and scanf subroutines allow for the formatting of wide characters. The printf and scanf
subroutines have two additional format specifiers for wide character handling: %C and %S. The %C and
%S format specifiers allow I/O on a wide character and a wide character string, respectively. They are
similar to the %c and %s format specifiers, which allow I/O on a multibyte character and string.

The multibyte subroutines accept a multibyte array and output a multibyte array. To convert multibyte
output from a multibyte subroutine to a wide character string, use the mbstowcs subroutine.

Unformatted Wide Character I/O
Unformatted wide character I/O subroutines are used when a program requires code set-independent I/O
for characters from multibyte code sets. For example, use the fgetwc or getwc subroutine to input a
multibyte character. If the program uses the getc subroutine to input a multibyte character, the program
must call the getc subroutine once for each byte in the multibyte character.

Wide character input subroutines read multibyte characters from a stream and convert them to wide
characters. The conversion is done as if the subroutines call the mbtowc and mbstowcs subroutines.

Wide character output subroutines convert wide characters to multibyte characters and write the result to
the stream. The conversion is done as if the subroutines call the wctomb and wcstombs subroutines.

The LC_CTYPE category of the current locale affects the behavior of wide character I/O subroutines.

Reading and Processing an Entire File: If a program must go through an entire file that must be
handled in wide character code form, use one of the following ways:

40 National Language Support Guide and Reference

v In the case of multibyte characters, use either the read or fread subroutine to convert a block of text
data into a buffer. Convert one character at a time in this buffer using the mbtowc subroutine. Handle
special cases of multibyte characters crossing block boundaries. For multibyte code sets, do not use the
mbstowcs subroutine on this buffer. On an invalid or a partial multibyte character sequence, the
mbstowcs subroutine returns -1 without indicating how far it successfully converted the data. You can
use the mbstowcs subroutine with single-byte code sets because you will not run into a partial-byte
sequence problem with single-byte code sets.

v Use the fgetws subroutine to obtain a line from the file. If the returned wide character string contains a
wide character <new-line>, then a complete line is obtained. If there is no <new-line> wide character,
the line is longer than expected, and more calls to the fgetws subroutine are needed to obtain the
complete line. If the program can efficiently process one line at a time, this approach is recommended.

v If the fgets subroutine is used to read a multibyte file to obtain one line at a time, a split multibyte
character may result. Handle this condition just as in the case of the read subroutine breaking up a
multibyte character across successive reads. If you can guarantee that the input line length is not more
than a set limit, a buffer of that size (plus 1 for null) can be used, thereby avoiding the possibility of a
split multibyte character. If the program can efficiently process one line at a time, this approach may be
used. Because of the possibility of split bytes in the buffer, use the fgetws subroutine in preference to
the fgets subroutine for multibyte characters.

v Use the fgetwc subroutine on the file to read one wide character code at a time. If a file is large, the
function call overhead becomes large and reduces the value of this method.

The decision of which of these methods to use should be made on a per program basis. The fgetsw
subroutine option is recommended, as it is capable of optimum performance and the program does not
have to handle the special cases.

Input Subroutines: The wint_t data type is required to represent the wide character code value as well
as the end-of-file (EOF) marker. For example, consider the case of the fgetwc subroutine, which returns a
wide character code value:

wchar_t fgetwc(); If the wchar_t data type is defined as a char value, the y-umlaut symbol cannot be
distinguished from the end-of-file (EOF) marker in the ISO8859-1 code set. The
0xFF code point is a valid character (y umlaut). Hence, the return value cannot be
the wchar_t data type. A data type is needed that can hold both the EOF marker
and all the code points in a code set.

int fgetwc(); On some machines, the int data type is defined to be 16 bits. When the wchar_t
data type is larger than 16 bits, the int value cannot represent all the return values.

The wint_t data type is therefore needed to represent the fgetwc subroutine return value. The wint_t data
type is defined in the wchar.h file.

The following subroutines are used for wide character input:

fgetwc Gets next wide character from a stream.
fgetws Gets a string of wide characters from a stream.
getwc Gets next wide character from a stream.
getwchar Gets next wide character from standard input.
getws Gets a string of wide characters from a standard input.
ungetwc Pushes a wide character onto a stream.

Output Subroutines: The following subroutines are used for wide character output:

fputwc Writes a wide character to an output stream.
fputws Writes a wide character string to an output stream.
putwc Writes a wide character to an output stream.
putwchar Writes a wide character to standard output.

Chapter 3. Subroutines for National Language Support 41

putws Writes a wide character string to standard output.

Examples
v The following example uses the fgetwc subroutine to read wide character codes from a file:

#include <stdio.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wint_t retval;
FILE *fp;
wchar_t *pwcs;

(void)setlocale(LC_ALL, "");

/*
** Open a stream.
*/
fp = fopen("file", "r");

/*
** Error Handling if fopen was not successful.
*/
if(fp == NULL){

/* Error handler */
}else{

/*
** pwcs points to a wide character buffer of BUFSIZ.
*/
while((retval = fgetwc(fp)) != WEOF){

*pwcs++ = (wchar_t)retval;
/* break when buffer is full */

}
}
/* Process the wide characters in the buffer */

}

v The following example uses the getwchar subroutine to read wide characters from standard input:
#include <stdio.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wint_t retval;
FILE *fp;
wchar_t *pwcs;

(void)setlocale(LC_ALL, "");

index = 0;
while((retval = getwchar()) != WEOF){

/* pwcs points to a wide character buffer of BUFSIZ. */
*pwcs++ = (wchar_t)retval;
/* break on buffer full */

}
/* Process the wide characters in the buffer */

}

v The following example uses the ungetwc subroutine to push a wide character onto an input stream:
#include <stdio.h>
#include <locale.h>
#include <stdlib.h>

42 National Language Support Guide and Reference

main()
{

wint_t retval;
FILE *fp;

(void)setlocale(LC_ALL, "");
/*
** Open a stream.
*/
fp = fopen("file", "r");

/*
** Error Handling if fopen was not successful.
*/
if(fp == NULL){

/* Error handler */

else{
retval = fgetwc(fp);
if(retval != WEOF){

/*
** Peek at the character and return it to the stream.
*/
retval = ungetwc(retval, fp);
if(retval == EOF){

/* Error on ungetwc */
}

}
}

}

v The following example uses the fgetws subroutine to read a file, one line at a time:
#include <stdio.h>
#include <locale.h>
#include <stdlib.h>

main()
{

FILE *fp;
wchar_t *pwcs;

(void)setlocale(LC_ALL, "");

/*
** Open a stream.
*/
fp = fopen("file", "r");

/*
** Error Handling if fopen was not successful.
*/
if(fp == NULL){

/* Error handler */
}else{

/* pwcs points to wide character buffer of BUFSIZ. */
while(fgetws(pwcs, BUFSIZ, fp) != (wchar_t *)NULL){

/*
** pwcs contains wide characters with null
** termination.
*/

}
}

}

v The following example uses the fputwc subroutine to write wide characters to an output stream:

Chapter 3. Subroutines for National Language Support 43

#include <stdio.h>
#include <locale.h>
#include <stdlib.h>

main()
{

int index, len;
wint_t retval;
FILE *fp;
wchar_t *pwcs;

(void)setlocale(LC_ALL, "");

/*
** Open a stream.
*/
fp = fopen("file", "w");

/*
** Error Handling if fopen was not successful.
*/
if(fp == NULL){

/* Error handler */
}else{

/* Let len indicate number of wide chars to output.
** pwcs points to a wide character buffer of BUFSIZ.
*/
for(index=0; index < len; index++){

retval = fputwc(*pwcs++, fp);
if(retval == WEOF)

break; /* write error occurred */
/* errno is set to indicate the error. */

}
}

}

v The following example uses the fputws subroutine to write a wide character string to a file:
#include <stdio.h>
#include <locale.h>
#include <stdlib.h>

main()
{

int retval;
FILE *fp;
wchar_t *pwcs;

(void)setlocale(LC_ALL, "");

/*
** Open a stream.
*/
fp = fopen("file", "w");

/*
** Error Handling if fopen was not successful.
*/
if(fp == NULL){

/* Error handler */

}else{
/*
** pwcs points to a wide character string
** to output to fp.
*/
retval = fputws(pwcs, fp);
if(retval == -1){

44 National Language Support Guide and Reference

/* Write error occurred */
/* errno is set to indicate the error */

}
}

}

Working with the Wide Character Constant
Use the L constant for ASCII characters only. For ASCII characters, the L constant value is numerically the
same as the code point value of the character. For example, L’a’ is same as a. The L constant obtains
the wchar_t value of an ASCII character for assignment purposes. A wide character constant is introduced
by the L specifier. For example:
wchar_t wc = L'x' ;

A wide character code corresponding to the character x is stored in wc. The C compiler converts the
character x using the mbtowc or mbstowcs subroutine as appropriate. This conversion to wide characters
is based on the current locale setting at compile time. Because ASCII characters are part of all supported
code sets and the wide character representation of all ASCII characters is the same in all locales, L’x’
results in the same value across all code sets. However, if the character x is non-ASCII, the program may
not work when it is run on a different code set than used at compile time. This limitation impacts some
programs that use switch statements using the wide character constant representation.

wchar.h Header File
The wchar.h header file declares information that is necessary for programming with multibyte and wide
character subroutines. The wchar.h header file declares the wchar_t, wctype_t, and wint_t data types,
as well as several functions for testing wide characters. Because the number of characters implemented
as wide characters exceeds that of basic characters, it is not possible to classify all wide characters into
the existing classes used for basic characters. Therefore, it is necessary to provide a way of defining
additional classes specific to some locale. The action of these subroutines is affected by the current locale.

The wchar.h header file also declares subroutines for manipulating wide character strings (that is,
wchar_t data type arrays). Array length is always determined in terms of the number of wchar_t elements
in an array. A null wide character code ends an array. A pointer to a wchar_t data type array or void array
always points to the initial element of the array.

Note: If the number of wchar_t elements in an array exceeds the defined array length, unpredictable
results can occur.

Internationalized Regular Expression Subroutines
Programs that contain internationalized regular expressions can use the regcomp, regexec, regerror,
regfree, and fnmatch subroutines.

The following subroutines are available for use with internationalized regular expressions.

regcomp
Compiles a specified basic or extended regular expression into an executable string.

regexec
Compares a null-terminated string with a compiled basic or extended regular expression that must
have been previously compiled by a call to the regcomp subroutine.

regerror
Provides a mapping from error codes returned by the regcomp and regexec subroutines to
printable strings.

regfree
Frees any memory allocated by the regcomp subroutine associated with the compiled basic or

Chapter 3. Subroutines for National Language Support 45

extended regular expression. The expression is no longer treated as a compiled basic or extended
regular expression after it is given to the regfree subroutine.

fnmatch
Checks a specified string to see if it matches a specified pattern. You can use the fnmatch
subroutine in an application that reads a dictionary to find which entries match a given pattern. You
also can use the fnmatch subroutine to match path names to patterns.

Examples
v The following example compiles an internationalized regular expression and matches a string using this

compiled expression. A match is found for the first pattern, but no match is found for the second pattern.
#include <locale.h>
#include <regex.h>

#define BUFSIZE 256

main()
{

char *p;

char *pattern[] = {
"hello[0-9]*",
"1234"

};

char *string = "this is a test string hello112 and this is test";
/* This is the source string for matching */

int retval;
regex_t re;
char buf[BUFSIZE];

int i;

setlocale(LC_ALL, "");

for(i = 0;i <2; i++){
retval = match(string, pattern[i], &re);
if(retval == 0){

printf("Match found \n");
}else{

regerror(retval, &re, buf, BUFSIZE);
printf("error = %s\n", buf);

}
}
regfree(&re);

}

int match(char *string, char *pattern, regex_t *re)
{

int status;

if((status=regcomp(re, pattern, REG_EXTENDED))!= 0)
return(status);

status = regexec(re, string, 0, NULL, 0);
return(status);

}

v The following example finds all substrings in a line that match a pattern. The numbers 11 and 2001 are
matched. Every digit that is matched counts as one match. There are six such matches corresponding
to the six digits supplied in the string.

46 National Language Support Guide and Reference

#include <locale.h>
#include <regex.h>

#define BUFSIZE 256

main()
{

char *p;

char *pattern = "[0-9]";
char *string = "Today is 11 Feb 2001 ";

int retval;
regex_t re;
char buf[BUFSIZE];
regmatch_t pmatch[100];
int status;
char *ps;

int eflag;

setlocale(LC_ALL, "");

/* Compile the pattern */

if((status = regcomp(&re, pattern, REG_EXTENDED))!= 0){
regerror(status, &re, buf, 120);
exit(2);

}

ps = string;
printf("String to match=%s\n", ps);
eflag = 0;

/* extract all the matches */
while(status = regexec(&re, ps, 1, pmatch, eflag)== 0){

printf("match found at: %d, string=%s\n",
pmatch[0].rm_so, ps +pmatch[0].rm_so);

ps += pmatch[0].rm_eo;
printf("\nNEXTString to match=%s\n", ps);
eflag = REG_NOTBOL;

}
regfree(&re);

}

v The following example uses the fnmatch subroutine to read a directory and match file names with a
pattern.
#include <locale.h>
#include <fnmatch.h>
#include <sys/dir.h>

main(int argc, char *argv[])
{

char *pattern;
DIR *dir;
struct dirent *entry;
int ret;

setlocale(LC_ALL, "");

dir = opendir(".");

pattern = argv[1];

Chapter 3. Subroutines for National Language Support 47

if(dir != NULL){
while((entry = readdir(dir)) != NULL){

ret = fnmatch(pattern, entry->d_name,
FNM_PATHNAME|FNM_PERIOD);

if(ret == 0){
printf("%s\n", entry->d_name);

}else if(ret == FNM_NOMATCH){
continue ;

}else{
printf("error file=%s\n",

entry->d_name);
}

}
closedir(dir);

}
}

Related Information
Chapter 3, “Subroutines for National Language Support,” on page 15 provides information about wide
character and multibyte subroutines.

For more information about using locales, see Chapter 2, “Locales,” on page 7.

Character Set Description (charmap) source file format, Locale Definition source file format.

For specific information about locale categories and their keywords, see the LC_COLLATE category,
LC_CTYPE category, LC_MESSAGES category, LC_MONETARY category, LC_NUMERIC category, and
LC_TIME category.

Chapter 3, “Subroutines for National Language Support,” on page 15 provides information about wide
character and multibyte subroutines.

The strfmon subroutine.

Chapter 3, “Subroutines for National Language Support,” on page 15 provides information about wide
character and multibyte subroutines.

The LC_COLLATE category of the locale definition file in AIX 5L Version 5.3 Files Reference.

The LC_CTYPE category of the locale definition file in AIX 5L Version 5.3 Files Reference.

The localedef command in AIX 5L Version 5.3 Commands Reference, Volume 3

“List of Wide Character Subroutines” on page 189 and “List of Multibyte Character Subroutines” on page
189

The getc subroutine, printf subroutines, in AIX 5L Version 5.3 Technical Reference: Base Operating
System and Extensions Volume 1; and read subroutine, scanf subroutines, setlocale subroutine, strlen
subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 2.

48 National Language Support Guide and Reference

Chapter 4. Code Sets for National Language Support

The internationalization of AIX is based on the assumption that all code sets can be divided into any
number of character sets.

The following topics are covered in this section:

v “ASCII Characters” on page 53

v “Code Set Strategy” on page 55

v “Code Set Structure” on page 55

v “ISO Code Sets” on page 57

v “IBM PC Code Sets” on page 70

To understand code sets, it is necessary to first understand character sets. A character set is a collection
of predefined characters based on the specific needs of one or more languages without regard to the
encoding values used to represent the characters. The choice of which code set to use depends on the
user’s data processing requirements. A particular character set can be encoded using different encoding
schemes. For example, the ASCII character set defines the set of characters found in the English
language. The Japanese Industrial Standard (JIS) character set defines the set of characters used in the
Japanese language. Both the English and Japanese character sets can be encoded using different code
sets.

The ISO2022 standard defines a coded character set as a set of precise rules that defines a character set
and the one-to-one relationship between each character and its bit pattern. A code set defines the bit
patterns that the system uses to identify characters.

A code page is similar to a code set with the limitation that a code-page specification is based on a
16-column by 16-row matrix. The intersection of each column and row defines a coded character.

Consider the following when working with code sets:

v Do not assume the size of all characters to be 8 bits, or 1 byte. Characters may be 1, 2, 3, 4 or more
bytes.

v Do not assume the encoding of any code set.

v Do not hard code names of code sets, locales, or fonts because it can impact portability.

The following code sets are supported:

v Support for industry-standard code sets is provided. The ISO8859 family of code sets provides a range
of single-byte code set support that includes:

– Latin-1

– Latin-2

– Latin-4

– Cyrillic

– Arabic

– Greek

– Hebrew

– Turkish

The following industry-standard code sets are available:

– The IBM-eucJP code set is the industry-standard code set used to support the Japanese locale.

– The IBM-eucKR code set is the industry-standard code set used to support Korean countries.

© Copyright IBM Corp. 2002, 2006 49

– The IBM-eucTW code set is the industry-standard code set used to support Traditional Chinese
countries.

– The IBM-eucCN code set is the industry-standard code set used to support countries using
Simplified Chinese.

– The UTF-8 code set is a Universal Transformation Format of Unicode/ISO10646 used to support
multiple languages at once (including Simplified Chinese, Traditional Chinese, and Chinese
characters used in Japanese and Korean).

v ISO8859-15 standard codeset is a replacement standard for the existing ISO8859-1 codeset that is
currently in use by the western European locales, the United States, and Canada. The need for another
codeset resulted from the introduction of the euro currency unit and the need for European countries to
be able to do business transactions using the euro. In addition, ISO8859-15 contains 7 additional
characters for the French and Finnish languages.

v Support is also provided for the personal computer (PC) based code sets IBM-856, IBM-943, IBM-932,
and IBM-1046. IBM-856 is a single-byte code set used to support Hebrew countries. IBM-943 and
IBM-932 are multibyte code set used to support the Japanese locale. IBM-1046 is a single-byte code
set used to support Arabic countries.

v IBM-1129 is a single-byte code set used to support Vietnamese.

v TIS-620 is a single-byte code set used to support Thai.

v IBM-1124 is a single-byte code set used to support Ukrainian.

v Full Unicode support is provided by the UTF-8 code set for all languages and territories supported by
AIX. The UTF-8 code set is a Universal Transformation Format of Unicode/ISO10646 used to support
multiple languages at once. The UTF-8 code set provides the most complete solution for use in
environments where multiple languages and alphabets must be processed. The Unicode/UTF-8 codeset
also provides full support for the common European currency (euro).

v IBM-1252 codeset support is provided as a compatibility option for users who require a single byte
codeset environment containing the euro currency symbol. The structure of the IBM-1252 codeset is
identical to the industry-standard codeset ISO8859-1, except that additional graphic characters are
added in the ISO control character range from 0x80 through 0x9F. The euro currency symbol is located
at hexadecimal value 0x80 in the IBM-1252 codeset.

Single-Byte and Multibyte Code Sets
A single-byte encoding method is sufficient for representing the English character set because the number
of characters is not large. To support larger alphabets, such as Japanese and Chinese, additional code
sets containing multibyte encodings are necessary. All supported single-byte and multibyte code sets
contain the single-byte ASCII character set. Therefore, programs that handle multibyte code sets must
handle character encodings of one or more bytes.

An example of a single-byte code set is the ISO 8859 family of code sets. Examples of multibyte character
sets are the IBM-eucJP and the IBM-943 code sets. The single-byte code sets have at most 256
characters and the multibyte code sets have more than 256 (without any theoretical limit).

Unique Code-Point Range

None of the supported code sets have bytes 0x00 through 0x3F in any byte of a multibyte character. This
group of code points is called the unique code-point range. Furthermore, these code points always refer to
the same characters as specified for 7-bit ASCII. This is a special property governing all supported code
sets. ASCII Characters in the Unique Code-Point Range (“ASCII Characters” on page 53) lists the
characters in the unique code-point range.

50 National Language Support Guide and Reference

Data Representation
Because the encoding for some characters requires more than one byte, a single character may be
represented by one or several bytes when data is created in files or transferred between a computer and
its I/O devices. This external representation of data is referred to as the file code or multibyte character
code representation of a character.

For processing strings of such characters, it is more efficient to convert file codes into a uniform
representation. This converted form is intended for internal processing of characters. This internal
representation of data is referred to as the process code or wide character code representation of the
character. An understanding of multibyte character and wide character codes is essential to the overall
internationalization strategy.

Multibyte Character Code Data Representation
A multibyte character code is an external representation of data, regardless of whether it is character input
from a keyboard or a file on a disk. Within the same code set, the number of bytes that represent the
multibyte code of a character can vary. You must use NLS functions for character processing to ensure
code set independence.

For example, a code set may specify the following character encodings:
C = 0x43
* = 0x81 0x43
*C = 0x81 0x43& 0x43

A program searching for C, not accounting for multibyte characters, finds the second byte of the *C string
and assumes it found C when in fact it found the second byte of the * (asterisk) character.

Wide Character Code Data Representation
The wide character code was developed so that multibyte characters could be processed more efficiently
internally in the system. A multibyte character representation is converted into a uniform internal
representation (wide character code) so that internally all characters have the same length. Using this
internal form, character processing can be done in a code set-independent fashion. The wide character
code refers to this internal representation of characters.

The wchar_t data type is used to represent the wide character code of a character. The size of the
wchar_t data type is implementation-specific. It is a typedef definition and can be found in the ctype.h,
stddef.h, and stdlib.h files. No program should assume a particular size for the wchar_t data type,
enabling programs to run under implementations that use different sizes for the wchar_t data type.

On AIX 4.3, the wchar_t datatype is implemented as an unsigned short value (16 bits). On AIX 5.1 and
later, the wchar_t datatype is 32–bit in the 64–bit environment and 16–bit in the 32–bit environment. . The
locale methods have been standardized such that in most locales, the value stored in the wchar_t for a
particular character will always be its Unicode data value. For applications which are intended to run only
on AIX, this allows certain applications handle the wchar_t datatype in a consistent fashion, even if the
underlying codeset is unknown. All locales use Unicode for their wide character code values (process
code), except the IBM-eucTW codeset. The IBM-eucTW codeset (LANG =zh_TW) contains many
characters that are not contained in the Unicode standard. Because of this, it is impossible to represent
these characters with a Unicode wide character value. Applications that need to have Unicode based
wchar_t data for Traditional Chinese should use the Zh_TW locale (big5 codeset) instead.

Do not assume that the char data type is either signed or unsigned. This is platform-specific. If the
particular system that is used defines char to be signed, comparisons with full 8-bit quantity will yield
incorrect results. As all the 8-bits are used in encoding a character, be sure to declare char as unsigned
char wherever necessary. Also, note that if a signed char value is used to index an array, it may yield
incorrect results. To make programs portable, define 8-bit characters as unsigned char.

Chapter 4. Code Sets for National Language Support 51

Character Properties
Every character has several language-dependent attributes or properties. These properties are called class
properties. For example, the lowercase letter a in U.S. English has the following properties:

v alphabetic

v hexadecimal digit

v printable

v lowercase

v graphic

Character class properties are specified by the LC_CTYPE category.

Collation-Order Properties
Character ordering or collation refers to the culture-specific ordering of characters. This ordering differs
from that based on the ordinal value of a character in a code set. Collation-based ordering is dependent
on the language. Character collation is specified by the LC_COLLATE category. The term collating
element refers to one or more characters that have a collation value in a specific locale. The Spanish ll
character is an example of a multicharacter collating element.

To sort the characters in any given language in the proper order, a weight is assigned to each character so
that the characters sort as expected. However, a character’s sort value and code-point value are not
necessarily related.

One set of weights is not sufficient to sort strings for all languages. For example, in the case of the
German words b<a-umlaut>ch and bane, if there is only one set of weights, and the weight of the letter a is
less than that of <a-umlaut>, then bane sorts before b<a-umlaut>ch. However, the opposite result is
correct. To satisfy the requirement of this example, two sets of weights, the Primary and Secondary
Weights, are given to each character in the language. In the case of the characters a and <a-umlaut>, they
have the same Primary Weights, but differ in their Secondary Weights. In the German locale, the
Secondary Weight of a is less than that of <a-umlaut>.

The sorting algorithm first compares the two strings based on the Primary Weights of each character. If the
Primary Weight values are the same, the two strings are compared again based on their Secondary
Weights. In this example, the Primary Weights of the first two characters ba and b<a-umlaut> are the
same, but the Primary Weights of the characters that follow (c and n, respectively) differ. As a result of this
comparison, b<a-umlaut>ch is sorted before bane.

Here, the Secondary Weights are not used to collate the strings. However, as in the case of the strings
bach and b<a-umlaut>ch, Secondary Weights must be used to get the proper order. When compared using
Primary Weight values, these two strings are found to be equivalent. To break the tie, the Secondary
Weights of a and <a-umlaut> are used. Because the Secondary Weight of a is less than that of
<a-umlaut>, the string bach sorts before b<a-umlaut>ch.

Characters having the same Primary Weights belong to the same equivalence class. In this example, the
characters a and <a-umlaut> are said to be members of the same equivalence class.

In string collation, each pair of strings is first compared based on Primary Weight. If the two strings are
equal, they are compared again based on their Secondary Weights. If still equal, they are compared again
based on Tertiary Weights up to the limit set by the COLL_WEIGHTS_MAX collating weight limit specified
in the sys/limits.h file.

Code-Set Width
Code-set width refers to the maximum number of bytes required to represent a character as a file code.
This information is specified by the LC_CTYPE category.

52 National Language Support Guide and Reference

Code-Set Display Width
Code-set display width refers to the maximum number of columns required to display a character on a
terminal. This information is specified by the LC_CTYPE category.

ASCII Characters
ASCII is a code set containing 128 code points (0x00 through 0x7F). The ASCII character set contains
control characters, punctuation marks, digits, and the uppercase and lowercase English alphabet. Several
8-bit code sets incorporate ASCII as a proper subset. However, throughout this document, ASCII refers to
7-bit-only code sets. To emphasize this, it is referred to as 7-bit ASCII. The 7-bit ASCII code set is a
proper subset of all supported code sets and is referred to as the portable character set. For more
information, see Chapter 4, “Code Sets for National Language Support,” on page 49.

ASCII Characters in the Unique Code-Point Range

The following table lists the ASCII characters in the unique code-point range. These characters are in the
range 0x00 through 0x3F.

ASCII Characters in the Unique Code-Point Range

Symbolic Name Hex Value Glyph Symbolic Name Hex Value Glyph

nul 00 space 20 blank

soh 01 exclamation-mark 21 !

stx 02 quotation-mark 22 ″

etx 03 number-sign 23 #

eot 04 dollar-sign 24 $

enq 05 percent 25 %

ack 06 ampersand 26 &

alert 07 apostrophe 27 ’

backspace 08 left-parenthesis 28 (

tab 09 right-parenthesis 29)

newline 0A asterisk 2A *

vertical-tab 0B plus-sign 2B +

form-feed 0C comma 2C ,

carriage-return 0D hyphen 2D -

so 0E period 2E .

si 0F slash 2F /

dle 10 zero 30 0

dc1 11 one 31 1

dc2 12 two 32 2

dc3 13 three 33 3

dc4 14 four 34 4

nak 15 five 35 5

syn 16 six 36 6

etb 17 seven 37 7

can 18 eight 38 8

em 19 nine 39 9

Chapter 4. Code Sets for National Language Support 53

ASCII Characters in the Unique Code-Point Range

Symbolic Name Hex Value Glyph Symbolic Name Hex Value Glyph

sub 1A colon 3A :

esc 1B semicolon 3B ;

is1 1C less-than 3C <

is2 1D equal-sign 3D =

is3 1E greater-than 3E >

is4 1F question-mark 3F ?

Other ASCII Characters
The following table lists the 7-bit ASCII characters that are not in the unique code-point range. These
characters are in the range 0x40 through 0x7F.

Other ASCII Characters

Symbolic Name Hex Value Glyph Symbolic Name Hex Value Glyph

commercial-at 40 @ grave-accent 60 `

A 41 A a 61 a

B 42 B b 62 b

C 43 C c 63 c

D 44 D d 64 d

E 45 E e 65 e

F 46 F f 66 f

G 47 G g 67 g

H 48 H h 68 h

I 49 I i 69 i

J 4A J j 6A j

K 4B K k 6B k

L 4C L l 6C l

M 4D M m 6D m

N 4E N n 6E n

O 4F O o 6F o

P 50 P p 70 p

Q 51 Q q 71 q

R 52 R r 72 r

S 53 S s 73 s

T 54 T t 74 t

U 55 U u 75 u

V 56 V v 76 v

W 57 W w 77 w

X 58 X x 78 x

Y 59 Y y 79 y

Z 5A Z z 7A z

54 National Language Support Guide and Reference

Other ASCII Characters

Symbolic Name Hex Value Glyph Symbolic Name Hex Value Glyph

left-bracket 5B [left-brace 7B {

backslash 5C \ vertical-line 7C |

right-bracket 5D] right-brace 7D }

circumflex 5E ^ tilde 7E ~

underscore 5F _ del 7F

Code Set Strategy
Each locale in the system defines which code set it uses and how the characters within the code set are
manipulated. Because multiple locales can be installed on the system, multiple code sets can be used by
different users on the system. While the system can be configured with locales using different code sets,
all system utilities assume that the system is running under a single code set.

Most commands have no knowledge of the underlying code set being used by the locale. The knowledge
of code sets is hidden by the code set-independent library subroutines (NLS library), which pass
information to the code set-dependent subroutines.

Because many programs rely on ASCII, all code sets include the 7-bit ASCII code set as a proper subset.
Because the 7-bit ASCII code set is common to all supported code sets, its characters are sometimes
referred to as the portable character set. The 7-bit ASCII code set is based on the ISO646 definition and
contains the control characters, punctuation characters, digits (0-9), and the English alphabet in uppercase
and lowercase.

Code Set Structure
Each code set is divided into the following principal areas:

Graphic Left (GL) Columns 0-7
Graphic Right (GR) Columns 8-F

The first two columns of each code set are reserved by International Organization for Standardization
(ISO) standards for control characters. The terms C0 and C1 are used to denote the control characters for
the Graphic Left and Graphic Right areas, respectively.

Note: The IBM PC code sets use the C1 control area to encode graphic characters.

The remaining six columns are used to encode graphic characters. Graphic characters are considered to
be printable characters, while the control characters are used by devices and applications to indicate some
special function.

Control Characters

Based on the ISO definition, a control character initiates, modifies, or stops a control operation. A control
character is not a graphic character, but can have graphic representation in some instances. The control
characters in the following table are present in all supported code sets and the encoded values of the
control characters are consistent throughout the code sets.

Name Value Description

NUL 00 Null

Chapter 4. Code Sets for National Language Support 55

Name Value Description

SOH 01 Start of header

STX 02 Start of text

ETX 03 End of text

EOT 04 End of transmission

ENQ 05 Enquiry

ACK 06 Acknowledge

BEL 07 Bell

BS 08 Backspace

HT 09 Horizontal tab

LF 0A Line feed

VT 0B Vertical tab

FF 0C Form feed

CR 0D Carrier return

SO 0E Shift Out

SI 0F Shift In

DLE 10 Data link escape

DC1 11 Device control 1

DC2 12 Device control 2

DC3 13 Device control 3

DC4 14 Device control 4

NAK 15 Not acknowledge

SYN 16 Synchrous idle

ETB 17 End of transmission block

CAN 18 Cancel

EM 1 End of media

SUB 1A Substitute character

ESC 1B Escape character

IS4 1C Info Separator Four

IS3 1D Info Separator Three

IS2 1E Info Separator Two

IS1 1F Info Separator One

Graphic Characters
Each code set can be considered to be divided into one or more character sets, with each character
having a unique coded value. The ISO standard reserves six columns for encoding characters and does
not allow graphic characters to be encoded in the control character columns.

Single-Byte and Multibyte Code Sets
Code sets that use all 8 bits of a byte can support European, Middle Eastern, and other alphabetic
languages. Such code sets are called single-byte code sets. Single-byte code sets have a limit of
encoding 191 characters, not including control characters.

56 National Language Support Guide and Reference

Languages that require more than 191 characters use a mixture of single-byte characters (8 bits) and
multibyte characters (more than 8 bits). The system can support any number of bits to encode a character.

ISO Code Sets
The code sets listed in the following topics are based on definitions set by the International Organization
for Standardization (ISO).

ISO646-IRV
The ″ISO646-IRV code set″ below defines the code set used for information processing based on a 7-bit
encoding. The character set associated with this code set is derived from the ASCII characters.

ISO8859 Family
ISO8859 is a family of single-byte encodings based on and compatible with other ISO, American National
Standards Institute (ANSI), and European Computer Manufacturer’s Association (ECMA) code extension
techniques. The ISO8859 encoding defines a family of code sets with each member containing its own
unique character sets. The 7-bit ASCII code set is a proper subset of each of the code sets in the
ISO8859 family.

While the ASCII code set defines an order for the English alphabet, the Graphic Right (GR) characters are
not ordered according to any specific language. The locale defines the language-specific ordering.

Each code set includes the ASCII character set plus its own unique character set. The ISO8859 encoding
figure shows the ISO8859 general encoding scheme.

Chapter 4. Code Sets for National Language Support 57

Character Encoding Code Point Description Count

000xxxxx 00–1F Controls 32

00100000 20 Space 1

0xxxxxxx 21–7E 7-bit 94

01111111 7F Delete 1

100xxxxx 80–9F Controls 32

10100000 A0 No-break Space 1

1xxxxxxx A1–F 8-bit 96

Code Set ISO8859-1
The following figure summarizes the available symbols and shows the layout of Code Set ISO8859-1. For
a textual representation of this code set, see “ISO8859–1” on page 193.

58 National Language Support Guide and Reference

Code Set ISO8859-2
The following figure summarizes the available symbols and shows the layout of Code Set ISO8859-2. For
a textual representation of this code set, see “ISO8859–2” on page 196.

Chapter 4. Code Sets for National Language Support 59

Code Set ISO8859-4
The following figure summarizes the available symbols and shows the layout of Code Set ISO8859-4. For
a textual representation of this code set, see “ISO8859–4” on page 198.

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0 1 2 3 4 5 6 7 8 9 A B C D E F

First Hexadecimal DigitFirst Hexadecimal Digit

S
e
c
o
n
d

H
e
x
a
d
e
c
im

a
l
D

ig
it

S
e
c
o
n
d

H
e
x
a
d
e
c
im

a
l
D

ig
it

60 National Language Support Guide and Reference

Code Set ISO8859-5
The following figure summarizes the available symbols and shows the layout of Code Set ISO8859-5. For
a textual representation of this code set, see “ISO8859–5” on page 201.

Chapter 4. Code Sets for National Language Support 61

Code Set ISO8859-6
The following figure summarizes the available symbols and shows the layout of Code Set ISO8859-6. For
a textual representation of this code set, see “ISO8859–6” on page 203.

62 National Language Support Guide and Reference

Code Set ISO8859-7
The following figure summarizes the available symbols and layout of Code Set ISO8859-7. This code set
is made up of an ASCII character set plus its own unique character set. For a textual representation of this
code set, see “ISO8859–7” on page 204.

Chapter 4. Code Sets for National Language Support 63

Code Set ISO8859-8
The following figure summarizes the available symbols and shows the layout of Code Set ISO8859-8. For
a textual representation of this code set, see “ISO8859–8” on page 207.

64 National Language Support Guide and Reference

Code Set ISO8859-9
The following figure summarizes the available symbols and layout of Code Set ISO8859-9. This code set
is made up of an ASCII character set plus its own unique character set. For a textual representation of this
code set, see “ISO8859–9” on page 208.

Chapter 4. Code Sets for National Language Support 65

Code Set ISO8859-15
The following figure summarizes the available symbols and shows the layout of Code Set ISO8859-15. For
a textual representation of this code set, see “ISO8859–15” on page 211.

66 National Language Support Guide and Reference

Extended UNIX Code (EUC) Encoding Scheme
The EUC encoding scheme defines a set of encoding rules that can support one to four character sets.
The encoding rules are based on the ISO2022 definition for the encoding of 7-bit and 8-bit data. The EUC
encoding scheme uses control characters to identify some of the character sets. The following table shows
the basic structure of all EUC encoding.

EUC Character Encoding

CS0 0xxxxxxx

CS1 1xxxxxxx
1xxxxxxx 1xxxxxxxx
1xxxxxxx 1xxxxxxxx 1xxxxxxx
...

CS2 10001110 1xxxxxxx
10001110 1xxxxxxx 1xxxxxxxx
10001110 1xxxxxxx 1xxxxxxxx 1xxxxxxxx
...

CS3 10001111 1xxxxxxx
10001111 1xxxxxxx 1xxxxxxxx
10001111 1xxxxxxx 1xxxxxxxx 1xxxxxxxx
...

The term EUC denotes these general encoding rules. A code set based on EUC conforms to the EUC
encoding rules but also identifies the specific character sets associated with the specific instances. For
example, IBM-eucJP for Japanese refers to the encoding of the Japanese Industrial Standard characters
according to the EUC encoding rules.

The first set (CS0) always contains an ISO646 character set. All of the other sets must have the most
significant bit (MSB) set to 1 and can use any number of bytes to encode the characters. In addition, all
characters within a set must have the following:

v Same number of bytes to encode all characters

v Same column display width (number of columns on a fixed-width terminal)

All characters in the third set (CS2) are always preceded with the control character SS2 (single-shift 2,
0x8e). Code sets that conform to EUC do not use the SS2 control character other than to identify the third
set.

All characters in the fourth set (CS3) are always preceded with the control character SS3 (single-shift 3,
0x8f). Code sets that conform to EUC do not use the SS3 control character other than to identify the fourth
set.

IBM-eucJP

The EUC for Japanese is an encoding consisting of single-byte and multibyte characters. The encoding is
based on ISO2022, Japanese Industrial Standard (JIS), and EUC definitions.

The IBM-eucJP code set consists of the following character sets:

JISCII JISX0201 Graphic Left character set
JISX0201.1976 Katakana/Hiragana Graphic Right character set
JISX0208.1983 Kanji level 1 and 2 character sets
IBM-udcJP IBM-user definable characters

Chapter 4. Code Sets for National Language Support 67

The IBM-eucJP code set is also capable of supporting the following:

JISX0212.1990 Supplemental Kanji

The IBM-eucJP code set is encoded as follows:

v CS0 maps JISX0201 Graphic Left characters starting at the 0x00 position.

v CS1 maps the JISX0208 character set starting at the 0xa1xa1 position. The positions 0xf5a1 through
0xfefe (940 characters) in CS1 are reserved as primary user-definable character areas.

v CS2 maps the JISX0201 Graphic Right starting at the 0x8ea1 position.

v CS3 is capable of mapping JISX0212 starting at the 0x8fa1a1 position. The positions 0x8ff5a1 through
0x8ffefe in CS3 (940 characters) are reserved as secondary user-definable character areas. The
positions 0x8feea1 through 0x8ff4fe in CS3 (658 characters) are reserved for future system use.
Therefore, users should not use this area.

IBM-eucCN

The EUC for the Simplified Chinese language is an encoding consisting of characters that contain 1 or 2
bytes. The EUC encoding is based on ISO2022, GB2312 as defined by the People’s Republic of China,
and multibyte character definitions unique to the manufacturer.

The current GB2312 defines 6,763 Simplified Chinese characters and 682 symbols. The IBM-eucCN is
based upon a concept of one plane containing up to 94x94 characters. The encoding values of these
characters range from 0xa1a1 to 0xfefe.

The GB2312 is mapped into the CS1 of EUC. Specifically, the IBM-eucCN consists of the following
character sets:

ISO0646-IRV 7-bit ASCII character set, Graphic Left.
GB2312.1980 Contains 7445 characters. It occupies positions 0xa1a1 to 0xfedf (some user-defined

characters scattered in 0xa1a1 to 0xfedf).
IBM-udcCN Scattered in GB. It occupies positions Oxa1a1 to Oxfedf. The actual values are:

a2a1 -- a2b0 a1e3 -- a2e4 a1ef -- a2f0
a2fd -- a1fe a4f4 -- a4fe a5f7 -- a5fe
a6b9 -- a6c0 a6d9 -- a6fe a7c2 -- a7d0
a7f2 -- a7fe a8bb -- a8c4 a8ea -- a9a3
a9f0 -- affe a7fa -- d7fe f8a1 -- fedf

IBM-sbdCN Scattered in GB. It occupies positions 0xfee0 to 0xfefe.

GB18030

GBK stands for Guo (national) Biao (Standard) Kuo (Extension). GB18030 expands the national ″Industry
GB″ definition to contain all 20, 902 Han Characters defined in Unicode and additional DBCS symbols
defined in Big-5 code (Traditional Chinese PC defacto standard). GB18030 defines all DBCS characters
and symbols in use in mainland China and in Taiwan.

Locale Code Set Description

Zh_CN GB18030 Simplified Chinese, GB18030 Locale

Code Range Words Marks

A1A1-A9FE 846 GB2312, GB12345 (GBK/1)

A840-A9A0 192 Big5, Symbols (GBK/5)

B0A1-F7FE 6768 GB2312 (GBK/2)

68 National Language Support Guide and Reference

Code Range Words Marks

8140-A0FE 6080 GB13000 (GBK/3)

AA40-FEA0 8160 GB13000 (GBK/4)

AAA1-AFFE 564 User defined 1

F8A1-FEFE 658 User defined 2

A140-A7A0 672 User defined 3

IBM-eucTW

The EUC for the Traditional Chinese language is an encoding consisting of characters that contain 1, 2
and 4 bytes. The EUC encoding is based on ISO2022, the Chinese National Standard (CNS) as defined
by Taiwan, and multibyte character definitions unique to the manufacturer.

The current CNS defines 13,501 Chinese characters and 684 symbols. The IBM-eucTW is based upon a
concept of 15 planes, each containing up to 8836 (94x94) characters. The encoding values of these
characters range from 0xa1a1 to 0xfefe. Characters have presently been defined for only 4 of the planes,
with the other planes being reserved for future expansion.

The 15 planes are mapped into the CS1 and CS2 of EUC, with the CS2 of EUC consisting of 14 planes.
Specifically, the IBM-eucTW consists of the following character sets:

ISO646-IRV 7-bit ASCII character set, Graphic Left.
CNS11643.1986-1 Plane 1, containing 6085 characters (5401+684). This plane uses positions

0ax1a1-0xc2c1 and 0xc4a1-0xfdcb.
CNS11643.1986-2 Plane 2, containing 7650 characters. This plane occupies positions

0x8ea2a1a1-0x8ea2f2c4.
CNS11643.1992-3 Plane 4, containing 7298 characters. This plane occupies positions

0x8ea4a1a1-0x8ea4eedc.
IBM-udcTW Plane 12, containing 6204 characters. This plane is reserved for the User Defined

Characters (udc) areas. It occupies the positions 0x8eaca1a1-0x8ea2f2c4.
IBM-sbdTW Plane 13, containing 325 characters. This plane is reserved for symbols unique to

the manufacturer. It occupies positions 0xeada1a1-0x8eada4cb.

Planes 3-11 are expected to occupy positions 0x8ea3xxxx to 0x8eabxxxx. Planes 14-15 are expected to
occupy positions 0x8eaexxxx to 0x8eafxxxx.

Big5

The Traditional Chinese big5 locale, Zh_TW, code set is the most commonly used code set in the PC field
that is used to support countries using Traditional Chinese.

Big5 code set defines 13056 characters and 1004 symbols. It includes 684 symbols in CNS11643.192, as
well as 325 symbols unique to IBM.

Locale Code Set Description

Zh_TW Big5 (IBM-950) Traditional Chinese, Big5 Locale

Code Range for Big5 Locale:

Plan Code Range Description

1 A140H - A3E0H Symbol and Chinese Control Code

Chapter 4. Code Sets for National Language Support 69

Plan Code Range Description

1 A440H - C67EH Commonly Used Characters

2 C940H - F9D5H Less Commonly Used Characters

UDF FA40H - FEFE User-Defined Characters

8E40H - A0FEH User-Defined Characters

8140H - 8DFEH User-Defined Characters

8181H - 8C82H User-Defined Characters

F9D6H - F9F1H User-Defined Characters

Code Set Words Code Range Marks

Commonly Used Area 5841 A140-C67E

Less Commonly Used Area 7652 C940-F9D5

ET Unique Area (1) 308 C6A1-C878

ET Unique Area (2) 7 C8CD-C8D3

IBM Unique Area 251 F286-F9A0 Low-Byte Range 81-A0

User-Defined Area (1) 785 FA40-FEFE

User-Defined Area (2) 2983 8E40-A0FE

User-Defined Area (3) 2041 8140-8DFE

User-Defined Area (4) 354 8181-8C82 Low-Byte Range 81-AQ

User-Defined Area (5) 41 F9D6-F9FE

IBM-eucKR

The EUC for the Korean language is an encoding consisting of single-byte and multibyte characters. The
encoding is based on ISO2022, Korean Standard Code set, and EUC definitions.

The Korean EUC code set consists of the following main character groups:

v ASCII (English)

v Hangul (Korean characters)

The Hangul code set includes Hangul and Hanja (Chinese) characters. One Hangul character can
comprise several consonants and vowels. However, most Hangul words can be expressed in Hanja. Each
Hanja character has its own meaning and is more specific than Hangul.

The IBM-eucKR consists of the following character sets:

ISO646-IRV 7-bit ASCII character set, Graphic Left
KSC5601.1987-0 Korean Graphic Character Set, Graphic Right

IBM PC Code Sets
IBM PC code sets are the code sets originally supported on the IBM PC systems and AIX. The IBM PC
code sets assign graphic characters to the Control One (C1) control area. Applications that depend on
these control characters cannot support these code sets.

The ASCII characters are encoded with the most significant bit (MSB) zero in positions 0x20-0x7e. The
extended Latin 1, combined with the IBM PC unique character sets, make up the extended set of

70 National Language Support Guide and Reference

characters which are encoded in positions 0x80-0xfe. The following table shows the location of the control,
ASCII, and extended characters for the IBM-850 code set.

Character Encoding Code Point Description Count

000xxxxx 00–1F Controls 32

00100000 20 Space 1

0xxxxxxx 21–7E 7-bit 94

01111111 7F Delete 1

1xxxxxxx 80–FE 8-bit 17

11111111 FF All ones 1

The IBM PC unique character set includes the following:

IBM PC Unique Character Set

Symbol Return Code

Florin sign 0x9f

Quarter-hashed 0xb0

Half-hashed 0xb1

Full-hashed 0xb2

Vertical bar 0xb3

Right-side middle 0xb4

Double right-side middle 0xb9

Double vertical bar 0xba

Double upper right-corner box 0xbb

Double lower right-corner box 0xbc

Upper right-corner box 0xbf

Lower left-corner box 0xc0

Bottom-side middle 0xc1

Top-side middle 0xc2

Left-side middle 0xc3

Center-box bar 0xc4

Intersection 0xc5

Double lower left-corner box 0xc8

Double upper left-corner box 0xc9

Double bottom-side middle 0xca

Double top-side middle 0xcb

Double left-side middle 0xcc

Double center-box bar 0xcd

Double intersection 0xce

Small i dotless 0xd5

Lower right-corner box 0xd9

Upper left-corner box 0xda

Bright character cell 0xdb

Chapter 4. Code Sets for National Language Support 71

IBM PC Unique Character Set

Symbol Return Code

Bright character cell - lower half 0xde

Bright character cell - upper half 0xdf

Overbar 0xee

Middle dot, Product dot 0xfa

Vertical solid rectangle 0xfe

IBM-856
The following figure summarizes the available symbols and shows the layout of Code Set IBM-856. For a
textual representation of this code set, see “IBM-856” on page 214.

72 National Language Support Guide and Reference

IBM-921
The following figure summarizes the available symbols and shows the layout of Code Set IBM-921. For a
textual representation of this code set, see “IBM-921” on page 216.

Chapter 4. Code Sets for National Language Support 73

IBM-922
The following figure summarizes the available symbols and shows the layout of Code Set IBM-922. For a
textual representation of this code set, see “IBM-922” on page 219.

74 National Language Support Guide and Reference

IBM-943 and IBM-932
Each of the Japanese IBM PC code sets are an encoding consisting of single-byte and multibyte coded
characters. The encoding is based on the IBM PC code set and places the JIS characters in shifted
positions. This is referred to as Shift-JIS or SJIS.

IBM-943 is a newer code set for the Japanese locale than IBM-932. IBM-943 is a compatible code set for
the Japanese Microsoft® Windows® environment. This code set is known as 1983 ordered shift-JIS. The
differences between IBM-932 and IBM-943 are as follows:

v Previous JIS sequence (1978 ordered) is applied for IBM-932 while newer JIS sequence (1983 ordered)
is applied for IBM-943.

v NEC selected characters are added to IBM-943.

v NEC’s IBM selected characters are added to IBM-943.

The IBM-932 code set consists of the following character sets:

JISCII JISX0201 Graphic Left character set
JISX0201.1976 Katakana/Hiragana Graphic Right character set
JISX0208.1983 Kanji level 1 and 2 character sets
IBM-udcJP IBM user-definable characters

The IBM-943 code set consists of the following character sets:

JISCII JISX0201 Graphic Left character set
JISX0201.1976 Katakana/Hiragana Graphic Right character set
JISX0208.1990 Kanji level 1 and 2 character sets
IBM-udcJP IBM user-definable characters and NEC’s IBM selected characters and NEC selected

characters

The first byte of each character is used to determine the number of bytes for a given character. The values
0x20-0x7e and 0xa1-oxdf are used to encode JISX0201 characters, with exceptions. The positions
0x81-0x9f and 0xe0-0xfc are reserved for use as the first byte of a multibyte character. The JISX0208
characters are mapped to the multibyte values starting at 0x8140. The second byte of a multibyte
character can have any value. The Shift-JIS table shows where these characters are located on the code
set.

Character Encoding Code Point Description Count

000xxxxx 00–1f Controls 32

00100000 20 Space 1

0xxxxxxx 21–7E 7-bit ASCII 94

01111111 7F Delete 1

10000000 80 Undefined 1

100xxxxx 01xxxxxx [81–9F] [40–7E] Double byte 1953

100xxxxx 1xxxxxxx [81–9F] [80–FC] Double byte 3975

10100000 A0 Undefined 1

1xxxxxxx A1–DF 7-bit single byte 63

111xxxxx 01xxxxxx [E0–FC] [40–7E] Double byte 1827

111xxxxx 1xxxxxxx [E0–FC] [80–FC] Double byte 3625

11111101 FD Undefined 1

11111110 FE Undefined 1

Chapter 4. Code Sets for National Language Support 75

Character Encoding Code Point Description Count

11111111 FF Undefined 1

The following table shows the DBCS portion of IBM-943.

Code Point Description

[81–84] [40–7E] and [81–84] [80–F0] JIS X 0208 (Non-Kanji)

[87] [40–7E] and [87] [80–F0] NEC selected characters

[89–98] [40–7E] and [88] [9F-F0], [89–97]
[80–F0], [98] [80–9F]

JIS X0208 (Level-1 Kanji)

[99–9F] [40–7E] and [98] [9F-F0], [99–9F]
[80–F0]

JIS X0208 (Level-2 Kanji)

[E0–EA] [40–7E] and [E0–EA] [80–F0] JIS X0208 (Level-2 Kanji)

[ED–EE] [40–7E] and [ED–EE] [80–F0] NEC IBM selected characters

[F0–F9] [40–7E] and [F0–F9] [80–F0] User-defined characters

[FA] [40–5C] IBM selected characters (non-Kanji)

[FA] [5C-7E], [FB-FC] [40–7E] and [FA-FC]
[80–F0]

IBM selected characters (Kanji)

The following table shows the DBCS portion of IBM-932.

Code Point Description

[81–98] [40–7E] and [81–97] [80–FC], [98] [80–9F] JIS X 0208 (Level-1 Kanji)

[99–9F] [40–7E] and [98] [9F-FC], [99–9F] [80–FC] JIS X 0208 (Level-2 Kanji)

[E0–EF] [40–7E] and [E0–EF] [80–FC] JIS X 0208 (Level-2 Kanji)

[F0–F9] [40–7E] and [F0–F9] [80–FC] User-defined characters

[FA–FC] [40–7E] and [FA–FC] [80–FC] IBM selected characters

76 National Language Support Guide and Reference

IBM-1046
The following figure summarizes the available symbols and shows the layout of Code Set IBM-1046. For a
textual representation of this code set, see “IBM-1046” on page 221.

Chapter 4. Code Sets for National Language Support 77

IBM-1124
The following figure summarizes the available symbols and shows the layout of Code Set IBM-1124. For a
textual representation of this code set, see “IBM-1124” on page 224.

78 National Language Support Guide and Reference

IBM-1129
The following figure summarizes the available symbols and shows the layout of Code Set IBM-1129. For a
textual representation of this code set, see “IBM-1129” on page 227.

Chapter 4. Code Sets for National Language Support 79

TIS-620
The following figure summarizes the available symbols and shows the layout of Code Set TIS-620. For a
textual representation of this code set, see “TIS-620” on page 229.

80 National Language Support Guide and Reference

UCS-2 and UTF-8
AIX provides a set of codesets that address the needs of a particular language or a language group. None
of the codesets represented in the ISO8859 family of codesets, the PC codesets, nor the Extended UNIX®

Code (EUC) codesets allow the mixing of characters from different scripts. With ISO8859-1, you can mix
and represent the Latin 1 characters (languages principally spoken in the U.S., Canada, Western Europe,
and Latin America). ISO8859-2 covers Eastern European languages; ISO8859-5 covers Cyrillic, ISO8859-6
covers Arabic, ISO8859-7 covers Greek, ISO8859-8 covers Hebrew, ISO8859-9 covers Turkish,
IBM-eucJP covers Japanese, IBM-eucKR covers Korean, IBM-eucTW covers Traditional Chinese. The
point is that none of the above codesets covers all of the languages.

The International Organization for Standardization (ISO) addressed the limited language coverage by code
sets by adopting Unicode as the encoding for the 2-octet form of the ISO10646 Universal Multiple-Octet
Coded Character Set (UCS-2). The 32-bit form of ISO10646 is known as UCS-4 for 4-octet form. AIX uses
the 16-bit form of ISO10646 and uses the standard label UCS-2 to describe this encoding.

Although UCS-2 is ideal for an internal process code, it is not suitable for encoding plain text on traditional
byte-oriented systems, such as AIX. Therefore, the external file code is The Open Group’s File System
Safe UCS Transformation Format (FSS-UTF). This transformation format encoding is also known as
UTF-8, and UTF-8 is the label that is used for this encoding on AIX.

ISO10646 UCS-2 (Unicode)
Universal Coded Character Set (UCS) is the name of the ISO10646 standard that defines a single code
for the representation, interchange, processing, storage, entry, and presentation of the written form of all
the major languages of the world.

ISO10646 defines canonical character codes with a length of 32 bits, which provides code numbers for
over 4 billion characters. When used in canonical form to represent text, the coding is referred to as
UCS-4 for Universal Coded Character Set 4-byte form.

The code values from 0x0000 through 0xFFFF of ISO 10646 can be represented by a uniform character
encoding of 16 bits. When used in this form to represent text, these codes are referred to as UCS-2, for
Universal Character Set 2-octet form. This range is also called the Basic Multilingual Plane (BMP) of
ISO10646. The standard is arranged so that the most useful characters, covering all major existing
standards worldwide, are assigned within this range.

The character code values of UCS-2 are identical to those of the Unicode character encoding standard
published by the Unicode Consortium. UCS-2 defines codes for characters used in all major written
languages. In addition to a set of scientific, mathematic, and publishing symbols, UCS-2 covers the
following scripts:

v Arabic

v Armenian

v Bengali

v Bopomofo

v Cyrillic

v Devanagari

v Georgian

v Greek

v Gujarati

v Gurmukhi

v Hangul

v Chinese Hanzi

Chapter 4. Code Sets for National Language Support 81

v Hebrew

v Hiragana

v International Phonetic Alphabet (IPA)

v Katakana

v Japanese Kanji

v Kannada

v Korean Hanja

v Laotian

v Latin

v Malayalam

v Oriya

v Tamil

v Telugu

v Thai

v Tibetan

The ability of AIX to display characters in the scripts mentioned above is limited to the availability of fonts.
AIX provides bitmap fonts for most of the major languages of the world, as well as a Unicode-based
scalable TrueType font.

UCS-2 encodes a number of combining characters, also known as non-spacing marks for floating
diacritics. These characters are necessary in several scripts including Indic, Thai, Arabic, and Hebrew. The
combining characters are used for generating characters in Latin, Cyrillic, and Greek scripts. However, the
presence of combining characters creates the possibility for an alternative coding for the same text.
Although the coding is unambiguous and data integrity is preserved, the processing of text that contains
combining characters is more complex. To provide conformance for applications that choose not to deal
with the combining characters, ISO10646 defines the following implementation levels:

Level 1
Does not allow combining characters.

Level 2
Allows combining marks from Thai, Indic, Hebrew, and Arabic scripts.

Level 3
Allows combining marks, including ones for Latin, Cyrillic, and Greek.

UCS-4 and UTF-32
The Unicode standard is used to define standard character encodings for most of the commonly used
languages in the world. The 2-byte form of this standard is commonly referred to as UCS-2. However,
UCS-2 is only capable of representing a maximum of 65,536 characters as a 2-byte quantity. The 4-byte
form of Unicode is referred to as UCS-4 or UTF-32, and is capable of defining the complete extensions of
Unicode, with a maximum of over 1,000,000 unique characters definable.

UTF-8 (UCS Transformation Format)
The Open Group has developed a transformation format for UCS designed for use in existing file systems.
The intent is that UCS will be the process code for the transformation format, which is usable as a file
code.

UTF-8 has the following properties:

v It is a superset of ASCII, in which the ASCII characters are encoded as single-byte characters with the
same numeric value.

82 National Language Support Guide and Reference

v No ASCII code values occur in multibyte characters, other than those that represent the ASCII
characters.

v The first byte of a character indicates the number of bytes to follow in the multibyte character sequence
and cannot occur anywhere else in the sequence.

The UTF-8 encodes UCS values in the 0 through 0x7FFFFFFF range using multibyte characters with
lengths of 1, 2, 3, 4, 5, and 6 bytes. Single-byte characters are reserved for the ASCII characters in the 0
through 0x7f range. These characters all have the high order bit set to 0. For all character encodings of
more than one byte, the initial byte determines the number of bytes used, and the high-order bit in each
byte is set. Every byte that does not start with the bit combination of 10xxxxxx, where x represents a bit
that may be 0 or 1, is the start of a UCS character sequence. The following table provides UTF-8 multibyte
codes:

Bytes Bits Hex Minimum Hex Maximum Byte Sequence in Binary

1 7 00000000 0000007F 0xxxxxxx

2 11 00000080 000007FF 110xxxxx 10xxxxxx

3 16 00000800 0000FFFF 1110xxxx 10xxxxxx 10xxxxxx

4 21 00010000 001FFFFF 11110xxx 10xxxxxx 10xxxxxx
10xxxxxx

5 26 00200000 03FFFFFF 111110xx 10xxxxxx 10xxxxxx
10xxxxx 10xxxxxx

6 31 04000000 7FFFFFFF 1111110x 10xxxxxx 10xxxxxx
10xxxxxx 10xxxxxx 10xxxxxx

The UCS value is just the concatenation of the x bits in the multibyte encoding. When there are multiple
ways to encode a value (for example, UCS 0), only the shortest encoding is permitted.

The following subset of UTF-8 is used to encode UCS-2:

Bytes Bits Hex Minimum Hex Maximum Byte Sequence in Binary

1 7 00000000 0000007F 0xxxxxxx

2 11 00000080 000007FF 110xxxxx 10xxxxxx

3 16 00000800 0000FFFF 1110xxxx 10xxxxxx 10xxxxxx

This subset of UTF-8 requires a maximum of three (3) bytes.

UTF-16
UTF-16 is the UCS Transformation Format for 16 planes of Group 00. UTF-16 is the ISO/IEC encoding
that is equivalent to the Unicode Standard with the use of surrogates. In UTF-16, each UCS-2 code value
represents itself. Non-BMP code values of ISO/EIC 10646 in planes 1..16 are represented using pairs of
special codes. UTF-16 defines the transformation between the UCS-4 code positions in planes 1 to 16 of
Group 00 and the pairs of special codes, and is identical to the transformation defined in the Unicode
Standard.

Related Information
Low Function Terminal (LFT) Subsystem Overview in AIX 5L Version 5.3 Kernel Extensions and Device
Support Programming Concepts.

Keyboard Overview in Keyboard Technical Reference.

Chapter 4. Code Sets for National Language Support 83

84 National Language Support Guide and Reference

Chapter 5. Converters Overview for Programming

National Language Support (NLS) provides a base for internationalization in which data often can be
changed from one code set to another. Support of several standard converters for this purpose is
provided. This section discusses the following aspects of conversion:

v “Standard Converters”

v “Understanding libiconv” on page 86

v “Using Converters” on page 89

v “List of Converters” on page 91

Data sent by one program to another program residing on a remote host may require conversion from the
code set of the source machine to that of the receiver. For example, when communicating with a VM
system, the workstation converts its ISO8859-1 data to an EBCDIC form.

Code sets define graphic characters and control character assignments to code points. These coded
characters must also be converted when a program obtains data in one code set but displays it in another
code set.

The system provides the following conversion interfaces:

iconv command
Allows you to request a specific conversion by naming the FromCode and ToCode code sets.

libiconv functions
Allows applications to request converters by name. For more information, see “Understanding
libiconv” on page 86.

The system provides ready-to-use libraries of converters. The converter libraries are found in the
/usr/lib/nls/loc/iconv/* and /usr/lib/nls/loc/iconvTable/* directories. Do not define your own converter
unless absolutely necessary.

In addition to code set converters, the converter library also provides a set of network interchange
converters. In a network environment, the code sets of the communications systems and the protocols of
communication determine how the data should be converted.

Interchange converters are used to convert data sent from one system to another. Conversions from one
internal code set to another code set require code set converters. When data must be converted from a
sender’s code set to a receiver’s code set or from 8-bit data to 7-bit data, a uniform interface is required.
The iconv subroutines provide this interface.

Standard Converters
The system supports standard converters for use with the iconv command and subroutines. The following
are code set converter types:

Table converter
Converts single-byte stateless code sets. Performs a table translation from one byte to another
byte. For more information, see “PC, ISO, and EBCDIC Code Set Converters” on page 92.

Algorithmic converter
Performs a conversion that cannot be implemented using a simple single-byte mapping table. All
multibyte converters are implemented using this method. For more information, see “Multibyte
Code Set Converters” on page 96.

The following are interchange converter types:

© Copyright IBM Corp. 2002, 2006 85

7–bit Converts between internal code sets and ISO2022 standard interchange formats (7-bit). For more
information, see “Interchange Converters—7-bit” on page 100.

8–bit Converts between internal code sets and ISO2022 standard interchange formats (8-bit). For more
information, see “Interchange Converters—8-bit” on page 102.

compound text
Converts between compound text and internal code sets. For more information, see “Interchange
Converters—Compound Text” on page 105.

uucode
Provides the same mapping as that defined in the uuencode and uudecode command. For more
information, see “Interchange Converters—uucode” on page 107.

UCS-2 Converts between UCS-2 and other code sets. For more information, see “UCS-2 Interchange
Converters” on page 108.

UCS-4 Converts between UCS-4 and other code sets. For more information, see “UCS-4 and UTF-32” on
page 82.

UTF-8 Converts between UTF-8 and other code sets. For more information, see“UTF-8 Interchange
Converters” on page 110.

UTF-16
Converts between UTF-16 and other code sets. For more information, see“UTF-16” on page 83.

UTF-32
Converts between UTF-32 and other code sets. For more information, see“UCS-4 and UTF-32” on
page 82.

Low-level converters can be used by some of the interchange converters. For a list of these converters,
see “Miscellaneous Converters” on page 112.

Using the iconv Command
Any converter installed in the system can be used through the iconv command, which uses the iconv
library. The iconv command acts as a filter for converting from one code set to another. For example, the
following command filters data from PC Code (IBM-850) to ISO8859-1:
cat File | iconv -f IBM-850 -t ISO8859-1 | tftp -p - host /tmp/fo

The iconv command converts the encoding of characters read from either standard input or the specified
file and then writes the results to standard output.

Understanding libiconv
The iconv application programming interface (API) consists of the following subroutines that accomplish
conversion:

iconv_open
Performs the initialization required to convert characters from the code set specified by the
FromCode parameter to the code set specified by the ToCode parameter. The strings specified are
dependent on the converters installed in the system. If initialization is successful, the converter
descriptor, iconv_t, is returned in its initial state.

iconv Invokes the converter function using the descriptor obtained from the iconv_open subroutine. The
inbuf parameter points to the first character in the input buffer, and the inbytesleft parameter
indicates the number of bytes to the end of the buffer being converted. The outbuf parameter
points to the first available byte in the output buffer, and the outbytesleft parameter indicates the
number of available bytes to the end of the buffer.

86 National Language Support Guide and Reference

For state-dependent encoding, the subroutine is placed in its initial state by a call for which the
inbuf value is a null pointer. Subsequent calls with the inbuf parameter as something other than a
null pointer cause the internal state of the function to be altered as necessary.

iconv_close
Closes the conversion descriptor specified by the cd variable and makes it usable again.

In a network environment, the following factors determine how data should be converted:

v Code sets of the sender and the receiver

v Communication protocol (8-bit or 7-bit data)

The following table outlines the conversion methods and recommends how to convert data in different
situations. See the “Interchange Converters—7-bit” on page 100 and the “Interchange Converters—8-bit”
on page 102 for more information.

Outline of Methods and Recommended Choices

Communication with system using the
same code set

Communication with system using
different code set (or receiver’s code set
is unknown)

Protocol Protocol

Method to choose 7-bit only 8-bit 7-bit only 8-bit

as is Not valid Best choice Not valid Not valid if remote
code set is unknown

fold7 OK OK Best choice OK

fold8 Not valid OK Not valid Best choice

uucode Best choice OK Not valid Not valid

If the sender uses the same code set as the receiver, the following possibilities exist:

v When protocol allows 8-bit data, the data can be sent without conversions.

v When protocol allows only 7-bit data, the 8-bit code points must be mapped to 7-bit values. Use the
iconv interface and one of the following methods:

uucode Provides the same mapping as the uuencode and uudecode commands. This
is the recommended method. For more information, see “Interchange
Converters—uucode” on page 107.

7–bit Converts internal code sets using 7-bit data. This method passes ASCII without
any change. For more information, see “Interchange Converters—7-bit” on page
100.

If the sender uses a code set different from the receiver, there are two possibilities:

v When protocol allows only 7-bit data, use the fold7 method.

v When protocol allows 8-bit data and you know the receiver’s code set, use the iconv interface to convert
the data. If you do not know the receiver’s code set, use the following method:

8–bit Converts internal code sets to standard interchange formats. The 8-bit data is transmitted and
the information is preserved so that the receiver can reconstruct the data in its code set. For
more information, see “Interchange Converters—8-bit” on page 102.

Using the iconv_open Subroutine
The following examples illustrate how to use the iconv_open subroutine in different situations:

Chapter 5. Converters Overview for Programming 87

v When the sender and receiver use the same code sets, and if the protocol allows 8-bit data, you can
send data without converting it. If the protocol allows only 7-bit data, do the following:
Sender:
cd = iconv_open("uucode", nl_langinfo(CODESET));

Receiver:
cd = iconv_open(nl_langinfo(CODESET), "uucode");

v Whne the sender and receiver use different code sets, and if the protocol allows 8-bit data and the
receiver’s code set is unknown, do the following:
Sender:
cd = iconv_open("fold8", nl_langinfo(CODESET));

Receiver:
cd = iconv_open(nl_langinfo(CODESET),"fold8");

If the protocol allows only 7-bit data, do the following:
Sender:
cd = iconv_open("fold7", nl_langinfo(CODESET));

Receiver:
cd = iconv_open(nl_langinfo(CODESET), "fold7");

The iconv_open subroutine uses the LOCPATH environment variable to search for a converter whose
name is in the following form:
iconv/FromCodeSet_ToCodeSet

The FromCodeSet string represents the sender’s code set, and the ToCodeSet string represents the
receiver’s code set. The underscore character separates the two strings.

Note: All setuid and setgid programs ignore the LOCPATH environment variable.

Because the iconv converter is a loadable object module, a different object is required when running in
the 64-bit environment. In the 64-bit environment, the iconv_open routine uses the LOCPATH
environment variable to search for a converter whose name is in the following form:
iconv/FromCodeSet_ToCodeSet__64.

The iconv library automatically chooses whether to load the standard converter object or the 64-bit
converter object. If the iconv_open subroutine does not find the converter, it uses the from,to pair to
search for a file that defines a table-driven conversion. The file contains a conversion table created by the
genxlt command.

The iconvTable converter uses the LOCPATH environment variable to search for a file whose name is in
the following form:
iconvTable/FromCodeSet_ToCodeSet

If the converter is found, it performs a load operation and is initialized. The converter descriptor, iconv_t,
is returned in its initial state.

Converter Programs versus Tables
Converter programs are executable functions that convert data according to a set of rules. Converter
tables are single-byte conversion tables that perform stateless conversions. Programs and tables are in
separate directories, as follows:

/usr/lib/nls/loc/iconv Converter programs

88 National Language Support Guide and Reference

/usr/lib/nls/loc/iconvTable Converter tables

After a converter program is compiled and linked with the libiconv.a library, the program is placed in the
/usr/lib/nls/loc/iconv directory.

To build a table converter, build a source converter table file. Use the genxlt command to compile
translation tables into a format understood by the table converter. The output file is then placed in the
/usr/lib/nls/loc/iconvTable directory.

Unicode and Universal Converters
Unicode (or UCS-2) conversion tables are found in:
$LOCPATH/uconvTable/*CodeSet*

The $LOCPATH/uconv/UCSTBL converter program is used to perform the conversion to and from UCS-2
using the iconv utilities.

A Universal converter program is provided that can be used to convert between any two code sets whose
conversions to and from UCS-2 is defined. Given the following uconv tables:
X -> UCS-2
UCS-2 -> Y

a universal conversion can be defined that maps the following:
X -> UCS-2 -> Y

by use of the $LOCPATH/iconv/Universal_UCS_Conv.

Universal UCS Converter
UCS-2 is a universal 16-bit encoding that can be used as an interchange medium to provide conversion
capability between virtually any code sets. The conversion can be accomplished using the Universal UCS
Converter, which converts between any two code sets XXX and YYY as follows:
XXX <-> UTF-32 <-> YYY

The XXX and YYY conversions must be included in the supported List of UCS-2 Interchange Converters,
and must be installed on the system.

The universal converter is installed as the file /usr/lib/nls/loc/iconv/Universal_UCS_Conv.

The conversion between multibyte and wide character code depends on the current locale setting. Do not
exchange wide character codes between two processes, unless you have knowledge that each locale that
might be used handles wide character codes in a consistent fashion. Most locales for this operating
system use the Unicode character value as a wide character code, except locales based on IBM-eucTW
codesets.

Using Converters
The iconv interface is a set of the following subroutines used to open, perform, and close conversions:

v iconv_open

v iconv

v iconv_close

Chapter 5. Converters Overview for Programming 89

Code Set Conversion Filter Example
The following example shows how you can use these subroutines to create a code set conversion filter
that accepts the ToCode and FromCode parameters as input arguments:
#include <stdio.h>
#include <nl_types.h>
#include <iconv.h>
#include <string.h>
#include <errno.h>
#include <locale.h>

#define ICONV_DONE() (r>=0)
#define ICONV_INVAL() (r<0) && (errno==EILSEQ))
#define ICONV_OVER() (r<0) && (errno==E2BIG))
#define ICONV_TRUNC() (r<0) && (errno==EINVAL))

#define USAGE 1
#define ERROR 2
#define INCOMP 3

char ibuf[BUFSIZ], obuf[BUFSIZ];

extern int errno;

main (argc,argv)
int argc;
char **argv;
{

size_t ileft,oleft;
nl_catd catd;
iconv_t cd;
int r;
char *ip,*op;

setlocale(LC_ALL,"");
catd = catopen (argv[0],0);

if(argc!=3){
fprintf(stderr,
catgets (catd,NL_SETD,USAGE,"usage;conv fromcode tocode\n"));
exit(1);
}

cd=iconv_open(argv[2],argv[1]);

ileft=0;

while(!feof(stdin)) {

/*
* After the next operation,ibuf will
* contain new data plus any truncated
* data left from the previous read.
*/
ileft+=fread(ibuf+ileft,1,BUFSIZ-ileft,stdin);
do {
ip=ibuf;
op=obuf;
oleft=BUFSIZ;

r=iconv(cd,&ip,&ileft,&op,&oleft);

if(ICONV_INVAL()){
fprintf(stderr,

catgets(catd,NL_SETD,ERROR,"invalid input\n"));
exit(2);

}

90 National Language Support Guide and Reference

fwrite(obuf,1,BUFSIZ-oleft,stdout);

if(ICONV_TRUNC() || ICONV_OVER())
/*
*Data remaining in buffer-copy
*it to the beginning
*/

memcpy(ibuf,ip,ileft);

/*
*loop until all characters in the input
*buffer have been converted.
*/
} while(ICONV_OVER());
}

if(ileft!=0){
/*
*This can only happen if the last call
*to iconv() returned ICONV_TRUNC, meaning
*the last data in the input stream was
*incomplete.
*/
fprintf(stderr,catgets(catd,NL_SETD,INCOMP,"input incomplete\n"));
exit(3);
}

iconv_close(cd);
exit(0);
}

Naming Converters
Code set names are in the form CodesetRegistry-CodesetEncoding where:

CodesetRegistry Identifies the registration authority for the encoding. The CodesetRegistry must be
made of characters from the portable code set (usually A-Z and 0-9).

CodesetEncoding Identifies the coded character set defined by the registered authority.

The from,to variable used by the iconv command and iconv_open subroutine identifies a file whose name
should be in the form /usr/lib/nls/loc/iconv/%f_%t or /usr/lib/nls/loc/iconvTable/%f_%t, where:

%f Represents the FromCode set name
%t Represents the ToCode set name

List of Converters
Converters change data from one code set to another. The sets of converters supported with the iconv
library are listed in the following sections. All converters shipped with the BOS Runtime Environment are
located in the /usr/lib/nls/loc/iconv/* or /usr/lib/nls/loc/iconvTable/* directory.

These directories also contain private converters; that is, they are used by other converters. However,
users and programs should only depend on the converters in the following lists.

Any converter shipped with the BOS Runtime Environment and not listed here should be considered
private and subject to change or deletion. Converters supplied by other products can be placed in the
/usr/lib/nls/loc/iconv/* or /usr/lib/nls/loc/iconvTable/* directory.

Chapter 5. Converters Overview for Programming 91

Programmers are encouraged to use registered code set names or code set names associated with an
application. The X Consortium maintains a registry of code set names for reference. See Chapter 4, “Code
Sets for National Language Support,” on page 49 for more information about code sets.

PC, ISO, and EBCDIC Code Set Converters
These converters provide conversion between PC, ISO, and EBCDIC single-byte stateless code sets. The
following types of conversions are supported: PC to/from ISO, PC to/from EBCDIC, and ISO to/from
EBCDIC.

Conversion is provided between compatible code sets such as Latin-1 to Latin-1 and Greek to Greek.
However, conversion between different EBCDIC national code sets is not supported. For information about
converting between incompatible character sets, refer to the “Interchange Converters—7-bit” on page 100
and the “Interchange Converters—8-bit” on page 102.

Conversion tables in the iconvTable directory are created by the genxlt command.

Compatible Code Set Names
The following table lists code set names that are compatible. Each line defines to/from strings that may be
used when requesting a converter.

Note: The PC and ISO code sets are ASCII-based.

Code Set Compatibility

Character Set Languages PC ISO EBCDIC

Latin-1 U.S. English,
Portuguese, Canadian
French

N/A ISO8859-1 IBM-037

Latin-1 Danish, Norwegian N/A ISO8859-1 IBM-277

Latin-1 Finnish, Swedish N/A ISO8859-1 IBM-278

Latin-1 Italian N/A ISO8859-1 IBM-280

Latin-1 Japanese N/A ISO8859-1 IBM-281

Latin-1 Spanish N/A ISO8859-1 IBM-284

Latin-1 U.K. English N/A ISO8859-1 IBM-285

Latin-1 German N/A ISO8859-1 IBM-273

Latin-1 French N/A ISO8859-1 IBM-297

Latin-1 Belgian, Swiss
German

N/A ISO8859-1 IBM-500

Latin-2 Croatian,
Czechoslovakian,
Hungarian, Polish,
Romanian, Serbian
Latin, Slovak, Slovene

IBM-852 ISO88859-2 IBM-870

Cyrillic Bulgarian,
Macedonian, Serbian
Cyrillic, Russian

IBM-855 ISO8859-5 IBM-880 IBM-1025

Cyrillic Russian IBM-866 ISO8859-5 IBM-1025

Hebrew Hebrew IBM-856 IBM-862 ISO8859-8 IBM-424 IBM-803

Turkish Turkish IBM-857 ISO8859-9 IBM-1026

Arabic Arabic IBM-864 IBM-1046 ISO8859-6 IBM-420

Greek Greek IBM-869 ISO8859-7 IBM-875

92 National Language Support Guide and Reference

Code Set Compatibility

Character Set Languages PC ISO EBCDIC

Greek Greek IBM-869 ISO8859-7 IBM-875

Baltic Lithuanian, Latvian,
Estonian

IBM-921 IBM-922 ISO8859-4 IBM-1112 IBM-1122

Note: A character that exists in the source code set but does not exist in the target code set is converted
to a converter-defined substitute character.

Files
The following table describes the inconvTable converters found in the /usr/lib/nls/loc/iconvTable
directory:

iconvTable Converters

Converter Table Description Language

IBM-037_IBM-850 IBM-037 to IBM-850 U.S. English, Portuguese,
Canadian-French

IBM-273_IBM-850 IBM-273 to IBM-850 German

IBM-277_IBM-850 IBM-277 to IBM-850 Danish, Norwegian

IBM-278_IBM-850 IBM-278 to IBM-850 Finnish, Swedish

IBM-280_IBM-850 IBM-280 to IBM-850 Italian

IBM-281_IBM-850 IBM-281 to IBM-850 Japanese-Latin

IBM-284_IBM-850 IBM-284 to IBM-850 Spanish

IBM-285_IBM-850 IBM-285 to IBM-850 U.K. English

IBM-297_IBM-850 IBM-297 to IBM-850 French

IBM-420_IBM_1046 IBM-420 to IBM-1046 Arabic

IBM-424_IBM-856 IBM-424 to IBM-856 Hebrew

IBM-424_IBM-862 IBM-424 to IBM-862 Hebrew

IBM-500_IBM-850 IBM-500 to IBM-850 Belgian, Swiss German

IBM-803_IBM-856 IBM-803 to IBM-856 Hebrew

IBM-803_IBM-862 IBM-803 to IBM-862 Hebrew

IBM-850_IBM-037 IBM-850 to IBM-037 U.S. English, Portuguese,
Canadian-French

IBM-850_IBM-273 IBM-850 to IBM-273 German

IBM-850_IBM-277 IBM-850 to IBM-277 Danish, Norwegian

IBM-850_IBM-278 IBM-850 to IBM-278 Finnish, Swedish

IBM-850_IBM-280 IBM-850 to IBM-280 Italian

IBM-850_IBM-281 IBM-850 to IBM-281 Japanese-Latin

IBM-850_IBM-284 IBM-850 to IBM-284 Spanish

IBM-850_IBM-285 IBM-850 to IBM-285 U.K. English

IBM-850_IBM-297 IBM-850 to IBM-297 French

IBM-850_IBM-500 IBM-850 to IBM-500 Belgian, Swiss German

IBM-856_IBM-424 IBM-856 to IBM-424 Hebrew

IBM-856_IBM-803 IBM-856 to IBM-803 Hebrew

Chapter 5. Converters Overview for Programming 93

iconvTable Converters

Converter Table Description Language

IBM-856_IBM-862 IBM-856 to IBM-862 Hebrew

IBM-862_IBM-424 IBM-862 to IBM-424 Hebrew

IBM-862_IBM-803 IBM-862 to IBM-803 Hebrew

IBM-862_IBM-856 IBM-862 to IBM-856 Hebrew

IBM-864_IBM-1046 IBM-864 to IBM-1046 Arabic

IBM-921_IBM-1112 IBM-921 to IBM-1112 Lithuanian, Latvian

IBM-922_IBM-1122 IBM-922 to IBM-1122 Estonian

IBM-1112_IBM-921 IBM-1121 to IBM-921 Lithuanian, Latvian

IBM-1122_IBM-922 IBM-1122 to IBM-922 Estonian

IBM-1046_IBM-420 IBM-1046 to IBM-420 Arabic

IBM-1046_IBM-864 IBM-1046 to IBM-864 Arabic

IBM-037_ISO8859-1 IBM-037 to ISO8859-1 U.S. English, Portuguese, Canadian
French

IBM-273_ISO8859-1 IBM-273 to ISO8859-1 German

IBM-277_ISO8859-1 IBM-277 to ISO8859-1 Danish, Norwegian

IBM-278_ISO8859-1 IBM-278 to ISO8859-1 Finnish, Swedish

IBM-280_ISO8859-1 IBM-280 to ISO8859-1 Italian

IBM-281_ISO8859-1 IBM-281 to ISO8859-1 Japanese-Latin

IBM-284_ISO8859-1 IBM-284 to ISO8859-1 Spanish

IBM-285_ISO8859-1 IBM-285 to ISO8859-1 U.K. English

IBM-297_ISO8859-1 IBM-297 to ISO8859-1 French

IBM-420_ISO8859-6 IBM-420 to ISO8859-6 Arabic

IBM-424_ISO8859-8 IBM-424 to ISO8859-8 Hebrew

IBM-500_ISO8859-1 IBM-500 to ISO8859-1 Belgian, Swiss German

IBM-803_ISO8859-8 IBM-803 to ISO8859-8 Hebrew

IBM-852_ISO8859-2 IBM-852 to ISO8859-2 Croatian, Czechoslovakian,
Hungarian, Polish, Romanian,
Serbian Latin, Slovak, Slovene

IBM-855_ISO8859-5 IBM-855 to ISO8859-5 Bulgarian, Macedonian, Serbian
Cyrillic, Russian

IBM-866_ISO8859-5 IBM-866 to ISO8859-5 Russian

IBM-869_ISO8859-7 IBM-869 to ISO8859-7 Greek

IBM-875_ISO8859-7 IBM-875 to ISO8859-7 Greek

IBM-870_ISO8859-2 IBM-870 to ISO8859-2 Croatian, Czechoslovakian,
Hungarian, Polish, Romanian,
Serbian, Slovak, Slovene

IBM-880_ISO8859-5 IBM-880 to ISO8859-5 Bulgarian, Macedonian, Serbian
Cyrillic, Russian

IBM-1025_ISO8859-5 IBM-1025 to ISO8859-5 Bulgarian, Macedonian, Serbian
Cyrillic, Russian

IBM-857_ISO8859-9 IBM-857 to ISO8859-9 Turkish

IBM-1026_ISO8859-9 IBM-1026 to ISO8859-9 Turkish

94 National Language Support Guide and Reference

iconvTable Converters

Converter Table Description Language

IBM-850_ISO8859-1 IBM-850 to ISO8859-1 Latin

IBM-856_ISO8859-8 IBM-856 to ISO8859-8 Hebrew

IBM-862_ISO8859-8 IBM-862 to ISO8859-8 Hebrew

IBM-864_ISO8859-6 IBM-864 to ISO8859-6 Arabic

IBM-1046_ISO8859-6 IBM-1046 to ISO8859-6 Arabic

ISO8859-1_IBM-850 ISO8859-1 to IBM-850 Latin

ISO8859-6_IBM-864 ISO8859-6 to IBM-864 Arabic

ISO8859-6_IBM-1046 ISO8859-6 to IBM-1046 Arabic

ISO8859-8_IBM-856 ISO8859-8 to IBM-856 Hebrew

ISO8859-8_IBM-862 ISO8859-8 to IBM-862 Hebrew

ISO8859-1_IBM-037 ISO8859-1 to IBM-037 U.S. English, Portuguese, Canadian
French

ISO8859-1_IBM-273 ISO8859-1 to IBM-273 German

ISO8859-1_IBM-277 ISO8859-1 to IBM-277 Danish, Norwegian

ISO8859-1_IBM-278 ISO8859-1 to IBM-278 Finnish, Swedish

ISO8859-1_IBM-280 ISO8859-1 to IBM-280 Italian

ISO8859-1_IBM-281 ISO8859-1 to IBM-281 Japanese-Latin

ISO8859-1_IBM-284 ISO8859-1 to IBM-284 Spanish

ISO8859-1_IBM-285 ISO8859-1 to IBM-285 U.K. English

ISO8859-1_IBM-297 ISO8859-1 to IBM-297 French

ISO8859-1_IBM-500 ISO8859-1 to IBM-500 Belgian, Swiss German

ISO8859-2_IBM-852 ISO8859-2 to IBM-852 Croatian, Czechoslovakian,
Hungarian, Polish, Romanian,
Serbian Latin, Slovak, Slovene

ISO8859-2_IBM-870 ISO8859-2 to IBM-870 Croatian, Czechoslovakian,
Hungarian, Polish, Romanian,
Serbian Latin, Slovak, Slovene

ISO8859-5_IBM-855 ISO8859-5 to IBM-855 Bulgarian, Macedonian, Serbian
Cyrillic, Russian

ISO8859-5_IBM-880 ISO8859-5 to IBM-880 Bulgarian, Macedonian, Serbian
Cyrillic, Russian

ISO8859-5_IBM-1025 ISO8859-5 to IBM-1025 Bulgarian, Macedonian, Serbian
Cyrillic, Russian

ISO8859-6_IBM-420 ISO8859-6 to IBM-420 Arabic

ISO8859-5_IBM-866 ISO8859-5 to IBM-866 Russian

ISO8859-7_IBM-869 ISO8859-7 to IBM-869 Greek

ISO8859-7_IBM-875 ISO8859-7 to IBM-875 Greek

ISO8859-8_IBM-424 ISO8859-8 to IBM-424 Hebrew

ISO8859-8_IBM-803 ISO8859-8 to IBM-803 Hebrew

ISO8859-9_IBM-857 ISO8859-9 to IBM-857 Turkish

ISO8859-9_IBM-1026 ISO8859-9 to IBM-1026 Turkish

Chapter 5. Converters Overview for Programming 95

Multibyte Code Set Converters
Multibyte code-set converters convert characters among the following code sets:

v PC multibyte code sets

v EUC multibyte code sets (ISO-based)

v EBCDIC multibyte code sets

The following table lists code set names that are compatible. Each line defines to/from strings that may be
used when requesting a converter.

Code Set Compatibility

Language PC ISO EBCDIC

Japanese IBM-932 IBM-eucJP IBM-930, IBM-939

Japanese
(MS compatible)

IBM-943 IBM-eucJP IBM-930, IBM-939

Korean IBM-934 IBM-eucKR IBM-933

Traditional Chinese IBM-938, big-5 IBM-eucTW IBM-937

Simplified Chinese IBM-1381 IBM-eucCN IBM-935

1. Conversions between Simplified and Traditional Chinese are provided (IBM-eucTW <—> IBM-eucCN
and big5 <—> IBM-eucCN).

2. UTF-8 is an additional code set. See “UTF-8 Interchange Converters” on page 110 for more
information.

Files
The following list describes the Multibyte Code Set converters that are found in the /usr/lib/nls/loc/iconv
directory.

Converter Description

IBM-eucJP_IBM-932 IBM-eucJP to IBM-932

IBM-eucJP_IBM-943 IBM-eucJP to IBM-943

IBM-eucJP_IBM-930 IBM-eucJP to IBM-930

IBM-eucCN_IBM-936(PC5550) IBM-eucCN to IBM-936(PC5550)

IBM-eucCN_IBM-935 IBM-eucCN to IBM-935

IBM-eucJP_IBM-939 IBM-eucJP to IBM-939

IBM-eucCN_IBM-1381 IBM-eucCN to IBM-1381

IBM-943_IBM-932 IBM-943 to IBM-932

IBM-932_IBM-943 IBM-932 to IBM-943

IBM-930_IBM-932 IBM-930 to IBM-932

IBM-930_IBM-943 IBM-930 to IBM-943

IBM-930_IBM-eucJP IBM-930 to IBM-eucJP

IBM-932_IBM-eucJP IBM-932 to IBM-eucJP

IBM-932_IBM-930 IBM-932 to IBM-930

IBM-943_IBM-eucJP IBM-943 to IBM-eucJP

IBM-943_IBM-930 IBM-943 to IBM-930

IBM-936(PC5550)_IBM-935 IBM-936(PC5550) to IBM-935

IBM-936_IBM-935 IBM-936 to IBM-935

96 National Language Support Guide and Reference

Converter Description

IBM-932_IBM-939 IBM-932 to IBM-939

IBM-939_IBM-932 IBM-939 to IBM-932

IBM-943_IBM-939 IBM-943 to IBM-939

IBM-939_IBM-943 IBM-939 to IBM-943

IBM-935_IBM-936(PC5550) IBM-935 to IBM-936(PC5550)

IBM-935_IBM-936 IBM-935 to IBM-936

IBM-1381_IBM-935 IBM-1381 to IBM-935

IBM-935_IBM-1381 IBM-935 to IBM-1381

IBM-935_IBM-eucCN IBM-935 to IBM-eucCN

IBM-936(PC5550)_IBM-eucCN IBM-936(PC5550) to IBM-eucCN

IBM-eucTW_IBM-eucCN IBM-eucTW to IBM-eucCN

big5_IBM-eucCN big5 to IBM-eucCN

IBM-1381_IBM-eucCN IBM-1381 to IBM-eucCN

IBM-939_IBM-eucJP IBM-939 to IBM-eucJP

IBM-eucKR_IBM-934 IBM-eucKR to IBM-934

IBM-934_IBM-eucKR IBM-934 to IBM-eucKR

IBM-eucKR_IBM-933 IBM-eucKR to IBM-933

IBM-933_IBM-eucKR IBM-933 to IBM-eucKR

IBM-eucTW_IBM-937 IBM-eucTW to IBM-937

IBM-938_IBM-937 IBM-938 to IBM-937

big-5_IBM-937 big-5 to IBM-937

IBM-eucCN_IBM-eucTW IBM-eucCN to IBM-eucTW

IBM-937_IBM-eucTW IBM-937 to IBM-eucTW

IBM-937_IBM-938 IBM-937 to IBM-938

IBM-eucTW_IBM-938 IBM_eucTW to IBM_938

IBM-eucCN_big5 IBM-eucCN to big5

IBM-eucTW_big-5 IBM_eucTW to big-5

IBM-937_big-5 IBM-937 to big-5

CNS11643.1992-3_IBM-eucTW CNS11643.1992-3 to IBM_eucTW

CNS11643.1992-3-GL_IBM-eucTW CNS11643.1992-3-GL to IBM_eucTW

CNS11643.1992-3-GR_IBM-eucTW CNS11643.1992-3-GR to IBM_eucTW

CNS11643.1992-4_IBM-eucTW CNS11643.1992-4 to IBM_eucTW

CNS11643.1992-4-GL_IBM-eucTW CNS11643.1992-4-GL to IBM_eucTW

CNS11643.1992-4-GR_IBM-eucTW CNS11643.1992-4-GR to IBM_eucTW

IBM-eucTW_CNS11643.1992-3 IBM_eucTW to CNS11643.1992-3

IBM-eucTW_CNS11643.1992-3-GL IBM_eucTW to CNS11643.1992-3-GL

IBM-eucTW_CNS11643.1992-3-GR IBM_eucTW to CNS11643.1992-3-GR

IBM-eucTW_CNS11643.1992-4 IBM_eucTW to CNS11643.1992-4

IBM-eucTW_CNS11643.1992-4-GL IBM_eucTW to CNS11643.1992-4-GL

IBM-eucTW_CNS11643.1992-4-GR IBM_eucTW to CNS11643.1992-4-GR

IBM-eucCN_GB2312.1980-1 IBM-eucCN to GB2312.1980-1

Chapter 5. Converters Overview for Programming 97

Converter Description

IBM-eucCN_GB2312.1980-1-GL IBM-eucCN to GB2312.1980-1-GL

IBM-eucCN_GB2312.1980-1-GR IBM-eucCN to GB2312.1980-1-GR

IBM-937_csic IBM-937 to csic

csic_IBM-937 csic to IBM-937

IBM-938_csic IBM-938 to csic

csic_IBM-938 csic to IBM-938

IBM-eucTW_ccdc IBM-eucTW to ccdc

ccdc_IBM-eucTW ccdc to IBM-eucTW

IBM-eucTW_cns IBM-eucTW to cns

cns_IBM-eucTW cnd to IBM-eucTW

IBM-eucTW_csic IBM-eucTW to csic

csic_IBM-eucTW csic to IBM-eucTW

IBM-eucTW_sops IBM-ecuTW to sops

sops_IBM-eucTW sops to IBM-eucTW

IBM-eucTW_tca IBM-eucTW to tca

tca_IBM-eucTW tca to IBM-eucTW

big5_cns big5 to cns

cns_big5 cns to big5

big5_csic big5 to csic

csic_big5 csic to big5

big5_ttc big5 to ttc

ttc_big5 ttc to big5

big5_ttcmin big5 to ttcmin

ttcmin_big5 ttcmin to big5

big5_unicode big5 to unicode

unicode_big5 unicode to big5

big5_wang big5 to wang

wang_big5 wang to big5

ccdc_csic ccdc to csic

csic_ccdc csic to_ccdc

csic_sops csic to sops

sops_csic sops to csic

CNS11643.1986-1_big5 CNS11643.1986-1 to big5

big5_CNS11643.1986-1 big5 to CNS11643.1986-1

CNS11643.1986-1-GR_big5 CNS11643.1986-1-GR to big5

big5_CNS11643.1986-1-GR big5 to CNS11643.1986-1-GR

CNS11643.1986-2_big5 CNS11643.1986-2 to big5

big5_CNS11643.1986-2 big5 to CNS11643.1986-2

CNS11643.1986-2-GR_big5 CNS11643.1986-2-GR to big5

big5_CNS11643.1986-2-GR big5 to CNS11643.1986-2-GR

CNS11643.CT-GR_big5 CNS11643.CT-GR to big5

98 National Language Support Guide and Reference

Converter Description

big5_CNS11643.CT-GR big5 to CNS11643.CT-GR

IBM-sbdTW-GR_big5 IBM-sbdTW-GR to big5

big5_IBM-sbdTW-GR big5 to IBM-sbdTW-GR

IBM-sbdTW.CT-GR_big5 IBM-sbdTW.CT-GR to big5

big5_IBM-sbdTW.CT-GR big5 to IBM-sbdTW.CT-GR

IBM-sbdTW_big5 IBM-sbdTW to big5

big5_IBM-sbdTW big5 to IBM-sbdTW

IBM-udcTW-GR_big5 IBM-udcTW-GR to big5

big5_IBM-udcTW-GR big5 to IBM-udcTW-GR

IBM-udcTW.CT-GR_big5 IBM-udcTW.CT-GR to big5

big5_IBM-udcTW.CT-GR big5 to IBM-udcTW.CT-GR

ISO8859-1_big5 ISO8859 to big5

big5_ISO8859-1 big5 to ISO8859

IBM-sbdTW_big5 IBM-sbdTW to big5

big5_IBM-sbdTW big5 to IBM-sbdTW

big5_ASCII-GR big5 to ASCII-GR

ASCII-GR_big5 ASCII-GR to big5

GBK_big5 GBK to big5

big5_GBK big5 to GBK

GBK_IBM-eucTW GBK to IBM-eucTW

IBM-eucTW_GBK IBM-eucTW to GBK

CNS11643.1986-1_GBK CNS11643.1986-1 to GBK

GBK_CNS11643.1986-1 GBK to CNS11643.1986-1

CNS11643.1986-2_GBK CNS11643.1986-2 to GBK

GBK_CNS11643.1986-2 GBK to CNS11643.1986-2

CNS11643.1986-1-GR_GBK CNS11643.1986-1-GR to GBK

GBK_CNS11643.1986-1-GR GBK to CNS11643.1986-1-GR

CNS11643.1986-2-GR_GBK CNS11643.1986-2-GR to GBK

GBK_CNS11643.1986-2-GR GBK to CNS11643.1986-2-GR

CNS11643.1986-1-GL_GBK CNS11643.1986-1-GL to GBK

GBK_CNS11643.1986-1-GL GBK to CNS11643.1986-1-GL

CNS11643.1986-2-GL_GBK CNS11643.1986-2-GL to GBK

GBK_CNS11643.1986-2-GL GBK to CNS11643.1986-2-GL

CNS11643.CT-GR_GBK CNS11643.CT-GR to GBK

GBK_CNS11643.CT-GR GBK to CNS11643.CT-GR

GB2312.1980.CT-GR_GBK GB2312.1980.CT-GR to GBK

GBK_GB2312.1980.CT-GR GBK to GB2312.1980.CT-GR

GB2312.1980-0_GBK GBK2312.1980-0 to GBK

GBK_GB2312.1980-0 GBK to GBK2312.1980-0

GB2312.1980-0-GR_GBK GB2312.1980-0-GR to GBK

GBK_GB2312.1980-0-GR GBK to GB2312.1980-0-GR

Chapter 5. Converters Overview for Programming 99

Converter Description

GB2312.1980-0-GL_GBK GB2312.1980-0-GL to GBK

GBK_GB2312.1980-0-GL GBK to GB2312.1980-0-GL

ASCII-GR_GBK ASCII-GR to GBK

GBK_ASCII-GR GBK to ASCII-GR

ISO8859-1_GBK ISO8859-1 to GBK

GBK_ISO8859-1 GBK to ISO8859-1

IBM-eucCN_GBK IBM-eucCN to GBK

GBK_IBM-eucCN GBK to IBM-eucCN

Interchange Converters—7-bit
This converter provides conversion between internal code and 7-bit standard interchange formats (fold7).
The fold7 name identifies encodings that can be used to pass text data through 7-bit mail protocols. The
encodings are based on ISO2022. For more information about fold7, see “Understanding libiconv” on page
86.

The fold7 converters convert characters from a code set to a canonical 7-bit encoding that identifies each
character. This type of conversion is useful in networks where clients communicate with different code sets
but use the same character sets. For example:

IBM-850 <—> ISO8859-1 Common Latin characters
IBM-932 <—>IBM-eucJP Common Japanese characters

The following escape sequences designate standard code sets:

Escape Sequence Standard Code Set

01/11 02/04 04/00 GL JIS X0208.1978-0.

01/11 02/04 02/08 04/01 GL left half of GB2312.1980-0.

01/11 02/08 04/02 GL 7-bit ASCII or left half of ISO8859-1.

01/11 02/14 04/01 GL right half of ISO8859-1.

01/11 02/14 04/02 GL right half of ISO8859-2.

01/11 02/14 04/03 GL right half of ISO8859-3.

01/11 02/14 04/04 GL right half of ISO8859-4.

01/11 02/14 04/06 GL right half of ISO8859-7.

01/11 02/14 04/07 GL right half of ISO8859-6.

01/11 02/14 04/08 GL right half of ISO8859-8.

01/11 02/14 04/12 GL right half of ISO8859-5.

01/11 02/14 04/13 GL right half of ISO8859-9.

01/11 02/08 04/09 GL right half of JIS X0201.1976-0.

01/11 02/08 04/10 GL left half of JIS X0201.1976.

01/11 02/04 04/02 GL JIS X0208.1983-0.

01/11 02/04 02/08 04/02 GL JIS X0208.1983-0.

01/11 02/04 02/08 04/00 GL JISX0208.1978-0.

01/11 02/05 02/15 03/01 M L 06/09 06/02 06/13 02/13
03/08 03/05 03/00 00/02

GL right half of IBM-850 unique characters. Characters
common to ISO8859-1 do not use this escape sequence.

100 National Language Support Guide and Reference

Escape Sequence Standard Code Set

01/11 02/05 02/15 03/02 M L 06/09 06/02 06/13 02/13
07/05 06/04 06/03 04/10 05/00 00/02

GL Japanese) IBM-udcJP) user-definable characters.

01/11 02/04 02/08 04/03 GL KSC5601-1987.

01/11 02/04 02/09 03/00 GL CNS11643-1986-1.

01/11 02/04 02/10 03/01 GL CNS11643-1986-2.

01/11 02/05 02/15 03/00 M L 05/05 05/04 04/06 02/13
03/07 00/02

UCS-2 encoded as base64; used only for those
characters not encoded by any of the other 7-bit escape
sequences listed above.

When converting from a code set to fold7, the escape sequence used to designate the code set is chosen
according to the order listed. For example, the JISX0208.1983-0 characters use 01/11 01/04 04/02 as the
designation.

Files
The following list describes the fold7 converters that are found in the /usr/lib/nls/loc/iconv directory:

Converter Description

fold7_IBM-850 Interchange format to IBM-850

fold7_IBM-921 Interchange format to IBM-921

fold7_IBM-922 Interchange format to IBM-922

fold7_IBM-932 Interchange format to IBM-932

fold7_IBM-943 Interchange format to IBM-943

fold7_IBM_1124 Interchange format to IBM-1124

fold7_IBM_1129 Interchange format to IBM-1129

fold7_IBM_eucCN Interchange format to IBM-eucCN

fold7_IBM-eucJP Interchange format to IBM-eucJP

fold7_IBM-eucKR Interchange format to IBM-eucKR

fold7_IBM-eucTW Interchange format to IBM-eucTW

fold7_ISO8859-1 Interchange format to ISO8859-1

fold7_ISO8859-2 Interchange format to ISO8859-2

fold7_ISO8859-3 Interchange format to ISO8859-3

fold7_ISO8859-4 Interchange format to ISO8859-4

fold7_ISO8859-5 Interchange format to ISO8859-5

fold7_ISO8859-6 Interchange format to ISO8859-6

fold7_ISO8859-7 Interchange format to ISO8859-7

fold7_ISO8859-8 Interchange format to ISO8859-8

fold7_ISO8859-9 Interchange format to ISO8859-9

fold7_TIS-620 Interchange format to TIS-620

fold7_UTF-8 Interchange format to UTF-8

fold7_big5 Interchange format to big5

fold7_GBK Interchange format to GBK

IBM-921_fold7 IBM-921 to interchange format

IBM-922_fold7 IBM-922 to interchange format

Chapter 5. Converters Overview for Programming 101

Converter Description

IBM-850_fold7 IBM-850 to interchange format

IBM-932_fold7 IBM-932 to interchange format

IBM-943_fold7 IBM-943 to interchange format

IBM-1124_fold7 IBM-1124 to interchange format

IBM-1129_fold7 IBM-1129 to interchange format

IBM-eucCN_fold7 IBM-eucCN to interchange format

IBM-eucJP_fold7 IBM-eucJP to interchange format

IBM-eucKR_fold7 IBM-eucKR to interchange format

IBM-eucTW_fold7 IBM-eucTW to interchange format

ISO8859-1_fold7 ISO8859-1 to interchange format

ISO8859-2_fold7 ISO8859-2 to interchange format

ISO8859-3_fold7 ISO8859-3 to interchange format

ISO8859-4_fold7 ISO8859-4 to interchange format

ISO8859-5_fold7 ISO8859-5 to interchange format

ISO8859-6_fold7 ISO8859-6 to interchange format

ISO8859-7_fold7 ISO8859-7 to interchange format

ISO8859-8_fold7 ISO8859-8 to interchange format

ISO8859-9_fold7 ISO8859-9 to interchange format

TIS-620_fold7 TIS-620 to interchange format

UTF-8_fold7 UTF-8 to interchange format

big5_fold7 big5 to interchange format

GBK_fold7 GBK to interchange format

Interchange Converters—8-bit
This converter provides conversions between internal code and 8-bit standard interchange formats (fold8).
The fold8 name identifies encodings that can be used to pass text data through 8-bit mail protocols. The
encodings are based on ISO2022. For more information about fold8, see “Understanding libiconv” on page
86.

The fold8 converters convert characters from a specific code set encoding to a canonical 8-bit encoding
that identifies each character. This type of conversion is useful in networks where clients communicate
with different code sets but use the same character sets. For example:

IBM-850 <—> ISO8859-1 Common Latin characters
IBM-932 <—>IBM-eucJP Common Japanese characters

The following escape sequences designate standard code sets.

Escape Sequence Standard Code Set

01/11 02/04 02/09 04/01 GR right half of GB2312.1980-0.

01/11 02/13 04/01 GR right half of ISO8859-1.

01/11 02/13 04/02 GR right half of ISO8859-2.

01/11 02/13 04/03 GR right half of ISO8859-3.

01/11 02/13 04/04 GR right half of ISO8859-4.

102 National Language Support Guide and Reference

Escape Sequence Standard Code Set

01/11 02/13 04/06 GR right half of ISO8859-7.

01/11 02/13 04/07 GR right half of ISO8859-6.

01/11 02/13 04/08 GR right half of ISO8859-8.

01/11 02/13 04/13 GR right half of ISO8859-5.

01/11 02/13 04/13 GR right half of ISO8859-9.

01/11 02/09 04/09 GR right half of JIS X0201.1976-1.

01/11 02/04 02/09 04/02 GR JIS X0208.1983-1.

01/11 02/04 02/09 04/00 GR JISX0208.1978-1.

01/11 02/09 04/02 GR 7-bit ASCII or left half of ISO8859-1.

01/11 02/05 02/15 03/01 M L 04/09 04/02 04/13 02/13
03/08 03/05 03/00 00/02

GR right half of IBM-850 unique characters. Characters
common to ISO8859-1 should not use this escape
sequence.

01/11 02/05 02/15 03/02 M L 04/09 04/02 04/13 02/13
07/05 06/04 06/03 04/10 05/00 00/02

GR right half of Japanese user-definable characters.

01/11 02/08 04/02 GL 7-bit ASCII or left half of ISO8859-1.

01/11 02/14 04/01 GL right half of ISO8859-1.

01/11 02/14 04/02 GL right half of ISO8859-2.

01/11 02/14 04/03 GL right half of ISO8859-3.

01/11 02/14 04/04 GL right half of ISO8859-4.

01/11 02/14 04/06 GL right half of ISO8859-7.

01/11 02/14 04/07 GL right half of ISO8859-6.

01/11 02/14 04/08 GL right half of ISO8859-8.

01/11 02/14 04/12 GL right half of ISO8859-5.

01/11 02/14 04/13 GL right half of ISO8859-9.

01/11 02/08 04/09 GL right half of JIS X0201.1976-0.

01/11 02/08 04/10 GL left half of JIS X0201.1976.

01/11 02/04 02/08 04/02 GL JIS X0208.1983-0.

01/11 02/04 04/02 GL JIS X0208.1983-0.

01/11 02/04 04/00 GL JIS X0208.1978-0.

01/11 02/05 02/15 03/01 M L 06/09 06/02 06/13 02/13
03/08 03/05 03/00 00/02

GL right half of IBM-850 unique characters. Characters
common to ISO8859-1 do not use this escape sequence.

01/11 02/05 02/15 03/02 M L 06/09 06/02 06/13 02/13
07/05 06/04 06/03 04/10 05/00 00/02

GL Japanese (IBM-udcJP) user-definable characters.

01/11 02/04 02/09 04/03 GR KSC5601-1987.

01/11 02/04 02/09 03/00 GR CNS11643-1986-1.

01/11 02/04 02/10 03/01 GR CNS11643-1986-2.

01/11 02/05 02/15 03/02 M L 04/09 04/02 04/13 02/13
07/05 06/04 06/03 05/05 05/08 00/02

GR right half of Traditional Chinese user-definable
characters.

01/11 02/05 02/15 03/02 M L 04/09 04/02 04/13 02/13
07/03 06/02 06/04 05/05 05/08 00/02

GR right half of IBM-850 unique symbols.

01/11 02/04 02/08 04/03 GL KSC5601-1987.

01/11 02/05 02/15 03/02 M L 06/09 06/02 06/13 02/13
07/05 06/04 06/03 05/05 05/08 00/02

GL Traditional Chinese (IBM-udcTW) user-definable
characters.

Chapter 5. Converters Overview for Programming 103

Escape Sequence Standard Code Set

01/11 02/05 02/15 03/02 M L 06/09 06/02 06/13 02/13
07/03 06/02 06/04 05/05 05/08 00/02

GL Traditional Chinese IBM-850 unique symbols
(IBM-shdTW) user-definable characters.

01/11 02/05 02/15 03/00 M L 05/05 05/04 04/06 02/13
03/08 00/02

UCS-2 encoded as UTF-8; used only for those characters
not encoded by any of the above escape sequences
listed above.

When converting from a code set to fold8, the escape sequence used to designate the code set is chosen
according to the order listed. For example, the JISX0208.1983-0 characters use 01/11 02/04 02/08 04/02
as the designation.

Files
The following list describes the fold8 converters found in the /usr/lib/nls/loc/iconv directory:

Converter Description

fold8_IBM-850 Interchange format to IBM-850

fold8_IBM-921 Interchange format to IBM-921

fold8_IBM-922 Interchange format to IBM-922

fold8_IBM-932 Interchange format to IBM-932

fold8_IBM-943 Interchange format to IBM-943

fold8_IBM-1124 Interchange format to IBM-1124

fold8_IBM-1129 Interchange format to IBM-1129

fold8_IBM-eucCN Interchange format to IBM-eucCN

fold8_IBM-eucJP Interchange format to IBM-eucJP

fold8_IBM-eucKR Interchange format to IBM-eucKR

fold8_IBM-eucTW Interchange format to IBM-eucTW

fold8_IBM-eucCN Interchange fromat to IBM-eucCN

fold8_ISO8859-1 Interchange format to ISO8859-1

fold8_ISO8859-2 Interchange format to ISO8859-2

fold8_ISO8859-3 Interchange format to ISO8859-3

fold8_ISO8859-4 Interchange format to ISO8859-4

fold8_ISO8859-5 Interchange format to ISO8859-5

fold8_ISO8859-6 Interchange format to ISO8859-6

fold8_ISO8859-7 Interchange format to ISO8859-7

fold8_ISO8859-8 Interchange format to ISO8859-8

fold8_ISO8859-9 Interchange format to ISO8859-9

fold8_TIS-620 Interchange format to TIS-620

fold8_UTF-8 Interchange format to UTF-8

fold8_big5 Interchange format to big5

fold8_GBK Interchange format to GBK

IBM-921_fold8 IBM-921 to interchange format

IBM-922_fold8 IBM-922 to interchange format

IBM-850_fold8 IBM-850 to interchange format

IBM-932_fold8 IBM-932 to interchange format

104 National Language Support Guide and Reference

Converter Description

IBM-943_fold8 IBM-943 to interchange format

IBM-1124_fold8 IBM-1124 to interchange format

IBM-1129_fold8 IBM-1129 to interchange format

IBM-eucCN_fold8 IBM-eucCN to interchange format

IBM-eucJP_fold8 IBM-eucJP to interchange format

IBM-eucKR_fold8 IBM-eucKR to interchange format

IBM-eucTW_fold8 IBM-eucTW to interchange format

IBM-eucCN_fold8 IBM-eucCN to interchange format

ISO8859-1_fold8 ISO8859-1 to interchange format

ISO8859-2_fold8 ISO8859-2 to interchange format

ISO8859-3_fold8 ISO8859-3 to interchange format

ISO8859-4_fold8 ISO8859-4 to interchange format

ISO8859-5_fold8 ISO8859-5 to interchange format

ISO8859-6_fold8 ISO8859-6 to interchange format

ISO8859-7_fold8 ISO8859-7 to interchange format

ISO8859-8_fold8 ISO8859-8 to interchange format

ISO8859-9_fold8 ISO8859-9 to interchange format

TIS-620_fold8 TIS-620 to interchange format

UTF-8_fold8 UTF-8 to interchange format

big5_fold8 big5 to interchange format

GBK_fold8 GBK to interchange format

Interchange Converters—Compound Text
Compound text interchange converters convert between compound text and internal code sets.

Compound text is an interchange encoding defined by the X Consortium. It is used to communicate text
between X clients. Compound text is based on ISO2022 and can encode most character sets using
standard escape sequences. It also provides extensions for encoding private character sets. The
supported code sets provide a converter to and from compound text. The name used to identify the
compound text encoding is ct.

The following escape sequences are used to designate standard code sets in the order listed below.

01/11 02/05 02/15 03/01 M L 04/09 04/02 04/13 02/13 03/08 03/05 03/00 00/02
GR right half of IBM-850 unique characters. Characters common to ISO8859-1 should not use this
escape sequence.

01/11 02/05 02/15 03/02 M L 04/09 04/02 04/13 02/13 07/05 06/04 06/03 04/10 05/00 00/02
GR right half of Japanese user-definable characters.

01/11 02/05 02/15 03/01 M L 06/09 06/02 06/13 02/13 03/08 03/05 03/00 00/02
GL right half of IBM-850 unique characters. Characters common to ISO8859-1 do not use this
escape sequence.

01/11 02/05 02/15 03/02 M L 06/09 06/02 06/13 02/13 07/05 06/04 06/03 04/10 05/00 00/02
GL Japanese (IBM-udcJP) user-definable characters.

Chapter 5. Converters Overview for Programming 105

Files
The following list describes the compound text converters that are found in the /usr/lib/nls/loc/iconv
directory:

Converter Description

ct_IBM-850 Interchange format to IBM-850

ct_IBM-921 Interchange format to IBM-921

ct_IBM-922 Interchange format to IBM-922

ct_IBM-932 Interchange format to IBM-932

ct_IBM-943 Interchange format to IBM-943

ct_IBM-1124 Interchange format to IBM-1124

ct_IBM-1129 Interchange format to IBM-1129

ct_IBM-eucCN Interchange format to IBM-eucCN

ct_IBM-eucJP Interchange format to IBM-eucJP

ct_IBM-eucKR Interchange format to IBM-eucKR

ct_IBM-eucTW Interchange format to IBM-eucTW

ct_ISO8859-1 Interchange format to ISO8859-1

ct_ISO8859-2 Interchange format to ISO8859-2

ct_ISO8859-3 Interchange format to ISO8859-3

ct_ISO8859-4 Interchange format to ISO8859-4

ct_ISO8859-5 Interchange format to ISO8859-5

ct_ISO8859-6 Interchange format to ISO8859-6

ct_ISO8859-7 Interchange format to ISO8859-7

ct_ISO8859-8 Interchange format to ISO8859-8

ct_ISO8859-9 Interchange format to ISO8859-9

ct_TIS-620 Interchange format to TIS-620

ct_big5 Interchange format to big5

ct_GBK Interchange format to GBK

IBM-850_ct IBM-850 to interchange format

IBM-921_ct IBM-921 to interchange format

IBM-922_ct IBM-922 to interchange format

IBM-932_ct IBM-932 to interchange format

IBM-943_ct IBM-943 to interchange format

IBM-1124_ct IBM-1124 to interchange format

IBM-1129_ct IBM-1129 to interchange format

IBM-eucCN_ct IBM-eucCN to interchange format

IBM-eucJP_ct IBM-eucJP to interchange format

IBM-eucKR_ct IBM-eucKR to interchange format

IBM-eucTW_ct IBM-eucTW to interchange format

ISO8859-1_ct ISO8859-1 to interchange format

ISO8859-2_ct ISO8859-2 to interchange format

ISO8859-3_ct ISO8859-3 to interchange format

ISO8859-4_ct ISO8859-4 to interchange format

106 National Language Support Guide and Reference

Converter Description

ISO8859-5_ct ISO8859-5 to interchange format

ISO8859-6_ct ISO8859-6 to interchange format

ISO8859-7_ct ISO8859-7 to interchange format

ISO8859-8_ct ISO8859-8 to interchange format

ISO8859-9_ct ISO8859-9 to interchange format

TIS-620_ct TIS-620 to interchange format

big5_ct big5 to interchange format

GBK_ct GBK to interchange format

Interchange Converters—uucode
This converter provides the same mapping as the uuencode and uudecode commands.

During conversion from uucode, 62 bytes at a time (including a new-line character trailing the record) are
converted, and generating 45 bytes in outbuf.

Files
The following list describes the uucode converters found in the /usr/lib/nls/loc/iconv directory:

Converter Description

IBM-850_uucode IBM-850 to uucode

IBM-921_uucode IBM-921 to uucode

IBM-922_uucode IBM-922 to uucode

IBM-932_uucode IBM-932 to uucode

IBM-943_uucode IBM-943 to uucode

IBM-1124_uucode IBM-1124 to uucode

IBM-1129_uucode IBM-1129 to uucode

IBM-eucJP_uucode IBM-eucJP to uucode

IBM-eucKR_uucode IBM-eucKR to uucode

IBM-eucTW_uucode IBM-eucTW to uucode

IBM-eucCN_uucode IBM-eucCN to uucode

ISO8859-1_uucode ISO8859-1 to uucode

ISO8859-2_uucode ISO8859-2 to uucode

ISO8859-3_uucode ISO8859-3 to uucode

ISO8859-4_uucode ISO8859-4 to uucode

ISO8859-5_uucode ISO8859-5 to uucode

ISO8859-6_uucode ISO8859-6 to uucode

ISO8859-7_uucode ISO8859-7 to uucode

ISO8859-8_uucode ISO8859-8 to uucode

ISO8859-9_uucode ISO8859-9 to uucode

TIS-620_uucode TIS-620 to uucode

big5_uucode big5 to uucode

GBK_uucode GBK to uucode

uucode_IBM-850 uucode to IBM-850

Chapter 5. Converters Overview for Programming 107

Converter Description

uucode_IBM-921 uucode to IBM-921

uucode_IBM-922 uucode to IBM-922

uucode_IBM-932 uucode to IBM-932

uucode_IBM-943 uucode to IBM-943

uucode_IBM-1124 uucode to IBM-1124

uucode_IBM-1129 uucode to IBM-1129

uucode_IBM-eucCN uucode to IBM-eucCN

uucode_IBM-eucJP uucode to IBM-eucJP

uucode_IBM-eucKR uucode to IBM-eucKR

uucode_IBM-eucTW uucode to IBM-eucTW

uucode_ISO8859-1 uucode to ISO8859-1

uucode_ISO8859-2 uucode to ISO8859-2

uucode_ISO8859-3 uucode to ISO8859-3

uucode_ISO8859-4 uucode to ISO8859-4

uucode_ISO8859-5 uucode to ISO8859-5

uucode_ISO8859-6 uucode to ISO8859-6

uucode_ISO8859-7 uucode to ISO8859-7

uucode_ISO8859-8 uucode to ISO8859-8

uucode_ISO8859-9 uucode to ISO8859-9

uucode_TIS-1124 uucode to TIS-1129

uucode_big5 uucode to big5

uucode_GBK uucode to GBK

UCS-2 Interchange Converters
UCS-2 uses a universal 16-bit encoding. Conversions for each code set are provided in both directions,
between the code set and UCS-2. For more information, see Chapter 4, “Code Sets for National Language
Support,” on page 49.

UCS-2 converters are found in /usr/lib/nls/loc/uconvTable and /usr/lib/nls/loc/uconv directories. The
uconvdef command is used to generate new converters or to customize existing UCS-2 converters.

Converter Description

ISO8859-1 UCS-2 <—> ISO Latin-1

ISO8859-2 UCS-2 <—> ISO Latin-2

ISO8859-3 UCS-2 <—> ISO Latin-3

ISO8859-4 UCS-2 <—> ISO Baltic

ISO8859-5 UCS-2 <—> ISO Cyrillic

ISO8859-6 UCS-2 <—> ISO Arabic

ISO8859-7 UCS-2 <—> ISO Greek

ISO8859-8 UCS-2 <—> ISO Hebrew

ISO8859-9 UCS-2 <—> ISO Turkish

JISX0201.1976-0 UCS-2 <—> Japanese JISX0201-0

108 National Language Support Guide and Reference

Converter Description

JISX0208.1983-0 UCS-2 <—> Japanese JISX0208-0

CNS11643.1986-1 UCS-2 <—> Chinese CNS11643-1

CNS11643.1986-2 UCS-2 <—> Chinese CNS11643-2

KSC5601.1987-0 UCS-2 <—> Korean KSC5601-0

IBM-eucCN UCS-2 <—> Simplified Chinese EUC

IBM-udcCN UCS-2 <—> Simplified Chinese user-defined characters

IBM-sbdCN UCS-2 <—> Simplified Chinese IBM-specific characters

GB2312.1980-0 UCS-2 <—> Simplified Chinese GB

IBM-1381 UCS-2 <—> Simplified Chinese PC data code

IBM-935 UCS-2 <—> Simplified Chinese EBCDIC

IBM-936 UCS-2 <—> Simplified Chinese PC5550

IBM-eucJP UCS-2 <—> Japanese EUC

IBM-eucKR UCS-2 <—> Korean EUC

IBM-eucTW UCS-2 <—> Traditional Chinese EUC

IBM-udcJP UCS-2 <—> Japanese user-defined characters

IBM-udcTW UCS-2 <—> Traditional Chinese user-defined characters

IBM-sbdTW UCS-2 <—> Traditional Chinese IBM-specific characters

UTF-8 UCS-2 <—> UTF-8

IBM-437 UCS-2 <—> USA PC data code

IBM-850 UCS-2 <—> Latin-1 PC data code

IBM-852 UCS-2 <—> Latin-2 PC data code

IBM-857 UCS-2 <—> Turkish PC data code

IBM-860 UCS-2 <—> Portuguese PC data code

IBM-861 UCS-2 <—> Icelandic PC data code

IBM-863 UCS-2 <—> French Canadian PC data code

IBM-865 UCS-2 <—> Nordic PC data code

IBM-869 UCS-2 <—> Greek PC data code

IBM-921 UCS-2 <—> Baltic Multilingual data code

IBM-922 UCS-2 <—> Estonian data code

IBM-932 UCS-2 <—> Japanese PC data code

IBM-943 UCS-2 <—> Japanese PC data code

IBM-934 UCS-2 <—> Korea PC data code

IBM-936 UCS-2 <—> People’s Republic of China PC data code

IBM-938 UCS-2 <—> Taiwanese PC data code

IBM-942 UCS-2 <—> Extended Japanese PC data code

IBM-944 UCS-2 <—> Korean PC data code

IBM-946 UCS-2 <—> People’s Republic of China SAA data code

IBM-948 UCS-2 <—> Traditional Chinese PC data code

IBM-1124 UCS-2 <—> Ukranian PC data code

IBM-1129 UCS-2 <—> Vietnamese PC data code

TIS-620 UCS-2 <—> Thailand PC data code

Chapter 5. Converters Overview for Programming 109

Converter Description

IBM-037 UCS-2 <—> USA, Canada EBCDIC

IBM-273 UCS-2 <—> Germany, Austria EBCDIC

IBM-277 UCS-2 <—> Denmark, Norway EBCDIC

IBM-278 UCS-2 <—> Finland, Sweden EBCDIC

IBM-280 UCS-2 <—> Italy EBCDIC

IBM-284 UCS-2 <—> Spain, Latin America EBCDIC

IBM-285 UCS-2 <—> United Kingdom EBCDIC

IBM-297 UCS-2 <—> France EBCDIC

IBM-500 UCS-2 <—> International EBCDIC

IBM-875 UCS-2 <—> Greek EBCDIC

IBM-930 UCS-2 <—> Japanese Katakana-Kanji EBCDIC

IBM-933 UCS-2 <—> Korean EBCDIC

IBM-937 UCS-2 <—> Traditional Chinese EBCDIC

IBM-939 UCS-2 <—> Japanese Latin-Kanji EBCDIC

IBM-1026 UCS-2 <—> Turkish EBCDIC

IBM-1112 UCS-2 <—> Baltic Multilingual EBCDIC

IBM-1122 UCS-2 <—> Estonian EBCDIC

IBM-1124 UCS-2 <—> Ukranian EBCDIC

IBM-1129 UCS-2 <—> Vietnamese EBCDIC

TIS-620 UCS-2 <—>Thailand EBCDIC

UTF-8 Interchange Converters
UTF-8 is a universal, multibyte encoding described in the “UCS-2 and UTF-8” on page 81. Conversions for
each code set are provided in both directions, between the code set and UTF-8.

UTF-8 conversions are usually done by using the Universal_UCS_Conv and /usr/lib/nls/loc/uconv/UTF-8
converter. For more information, see “UCS-2 Interchange Converters” on page 108.

Converter Description

ISO8859-1 UTF-8 <—> ISO Latin-1

ISO8859-2 UTF-8 <—> ISO Latin-2

ISO8859-3 UTF-8 <—> ISO Latin-3

ISO8859-4 UTF-8 <—> ISO Baltic

ISO8859-5 UTF-8 <—> ISO Cyrillic

ISO8859-6 UTF-8 <—> ISO Arabic

ISO8859-7 UTF-8 <—> ISO Greek

ISO8859-8 UTF-8 <—> ISO Hebrew

ISO8859-9 UTF-8 <—> ISO Turkish

JISX0201.1976-0 UTF-8 <—> Japanese JISX0201-0

JISX0208.1983-0 UTF-8 <—> Japanese JISX0208-0

CNS11643.1986-1 UTF-8 <—> Chinese CNS11643-1

CNS11643.1986-2 UTF-8 <—> Chinese CNS11643-2

110 National Language Support Guide and Reference

Converter Description

KSC5601.1987-0 UTF-8 <—> Korean KSC5601-0

IBM-eucCN UTF-8 <—> Simplified Chinese EUC

IBM-eucJP UTF-8 <—> Japanese EUC

IBM-eucKR UTF-8 <—> Korean EUC

IBM-eucTW UTF-8 <—> Traditional Chinese EUC

IBM-udcJP UTF-8 <—> Japanese user-defined characters

IBM-udcTW UTF-8 <—> Traditional Chinese user-defined characters

IBM-sbdTW UTF-8 <—> Traditional Chinese IBM-specific characters

UCS-2 UTF-8 <—> UCS-2

IBM-437 UTF-8 <—> USA PC data code

IBM-850 UTF-8 <—> Latin-1 PC data code

IBM-852 UTF-8 <—> Latin-2 PC data code

IBM-857 UTF-8 <—> Turkish PC data code

IBM-860 UTF-8 <—> Portuguese PC data code

IBM-861 UTF-8 <—> Icelandic PC data code

IBM-863 UTF-8 <—> French Canadian PC data code

IBM-865 UTF-8 <—> Nordic PC data code

IBM-869 UTF-8 <—> Greek PC data code

IBM-921 UTF-8 <—> Baltic Multilingual data code

IBM-922 UTF-8 <—> Estonian data code

IBM-932 UTF-8 <—> Japanese PC data code

IBM-943 UTF-8 <—> Japanese PC data code

IBM-934 UTF-8 <—> Korea PC data code

IBM-935 UTF-8 <—> Simplified Chinese EBCDIC

IBM-936 UTF-8 <—> People’s Republic of China PC data code

IBM-938 UTF-8 <—> Taiwanese PC data code

IBM-942 UTF-8 <—> Extended Japanese PC data code

IBM-944 UTF-8 <—> Korean PC data code

IBM-946 UTF-8 <—> People’s Republic of China SAA data code

IBM-948 UTF-8 <—> Traditional Chinese PC data code

IBM-1124 UTF-8 <—> Ukrainian PC data code

IBM-1129 UTF-8 <—> Vietnamese PC data code

TIS-620 UTF-8 <—> Thailand PC data code

IBM-037 UTF-8 <—> USA, Canada EBCDIC

IBM-273 UTF-8 <—> Germany, Austria EBCDIC

IBM-277 UTF-8 <—> Denmark, Norway EBCDIC

IBM-278 UTF-8 <—> Finland, Sweden EBCDIC

IBM-280 UTF-8 <—> Italy EBCDIC

IBM-284 UTF-8 <—> Spain, Latin America EBCDIC

IBM-285 UTF-8 <—> United Kingdom EBCDIC

IBM-297 UTF-8 <—> France EBCDIC

Chapter 5. Converters Overview for Programming 111

Converter Description

IBM-500 UTF-8 <—> International EBCDIC

IBM-875 UTF-8 <—> Greek EBCDIC

IBM-930 UTF-8 <—> Japanese Katakana-Kanji EBCDIC

IBM-933 UTF-8 <—> Korean EBCDIC

IBM-937 UTF-8 <—> Traditional Chinese EBCDIC

IBM-939 UTF-8 <—> Japanese Latin-Kanji EBCDIC

IBM-1026 UTF-8 <—> Turkish EBCDIC

IBM-1112 UTF-8 <—> Baltic Multilingual EBCDIC

IBM-1122 UTF-8 <—> Estonian EBCDIC

IBM-1124 UTF-8 <—> Ukranian EBCDIC

IBM-1129 UTF-8 <—> Vietnamese EBCDIC

IBM-1381 UTF-8 <—> Simplified Chinese PC data code

GB18030 UTF-8<—> Simplified Chinese

TIS-620 UTF-8 <—> Thailand EBCDIC

Miscellaneous Converters
A set of low-level converters used by the code set and interchange converters is provided. These
converters are called miscellaneous converters. These low-level converters may be used by some of the
interchange converters. However, the use of these converters is discouraged because they are intended
for support of other converters.

Files
The following list describes the miscellaneous converters found in the /usr/lib/nls/loc/iconv and
/usr/lib/nls/loc/iconvTable directories:

Converter Description

IBM-932_JISX0201.1976-0 IBM-932 to JISX0201.1976-0

IBM-932_JISX0208.1983-0 IBM-932 to JISX0208.1983-0

IBM-932_IBM-udcJP IBM-932 to IBM-udcJP (Japanese user-defined characters)

IBM-943_JISX0201.1976-0 IBM-943 to JISX0201.1976-0

IBM-943_JISX0208.1983-0 IBM-943 to JISX0208.1983-0

IBM-943_IBM-udcJP IBM-943 to IBM-udcJP (Japanese user-defined characters

IBM-eucJP_JISX0201.1976-0 IBM-eucJP to JISX0201.1976-0

IBM-eucJP_JISX0208.1983-0 IBM-eucJP to JISX0208.1983-0

IBM-eucJP_IBM-udcJP IBM-eucJP to IBM-udcJP (Japanese user-defined characters)

IBM-eucKR_KSC5601.1987-0 IBM_eucKR to KSC5601.1987-0

IBM-eucTW_CNS11643.1986-1 IBM-eucTW to CNS11643.1986.1

IBM-eucTW_CNS11643.1986-2 IBM-eucTW to CNS11643.1986-2

IBM-eucCN_GB2312.1980-0 IBM-eucCN to GB2312.1980-0

112 National Language Support Guide and Reference

Writing Converters Using the iconv Interface
This section provides information about the iconv subroutines and structures in preparation for writing
code set converters. Included in this discussion are an overview of the control flow and the order in which
the framework operates, details about writing code set converters, and an example including the code,
header file, and a makefile. This section applies to the iconv framework within AIX.

Under the framework of the iconv_open, iconv and iconv_close subroutines, you can create and use
several different types of converters. Applications can call these subroutines to convert characters in one
code set into characters in a different code set. The access and use of the iconv_open, iconv and
iconv_close subroutines is standardized by X/Open Portability Guide Issue 4.

Code Sets and Converters
Code sets can be classified into two categories: stateful encodings and stateless encodings.

Stateful Code Sets and Converters
The stateful encodings use shift-in and shift-out codes to change state. Shift-out can be used to indicate
the start of host double-byte data in a data stream of characters, and shift-in can be used to indicate the
end of this double-byte character data. When the double-byte data is off, it signals the start of single-byte
character data. An example of such a stateful code set is IBM-930 used mainly on mainframes (hosts).

Converters written to do the conversion of stateful encodings to other code sets tend to be complex
because of the extra processing needed.

Stateless Code Sets and Converters
The stateless code sets are those that can be classified as one of the following types:

v Single-byte code sets, such as ISO8859 family (ISO8859-1, ISO8859-2, and so on)

v Multibyte code sets, such as IBM-eucJP (Japanese), IBM-932 (Shift-JIS).

Note that conversions are meaningful only if the code sets represent the same characters.

The simplest types of code-set conversion can be found in single-byte code set converters, such as the
converter from ISO8859-1 to IBM-850. These single-byte code set converters are based on simple
table-based conversions. The conversion of multibyte character encodings, such as IBM-eucJP to
IBM-932, are in general based on an algorithm and not on tables, because the tables can get lengthy.

Overview of iconv Framework Structures
The iconv framework consists of the iconv_open, iconv and iconv_close subroutines, and is based on a
common core structure that is part of all converters. The core structure is initialized at the load time of the
converter object module. After the loading of the converter is complete, the main entry point, which is
always the instantiate subroutine, is invoked. This initializes the core structure and returns the core
converter descriptor. This is further used during the call to the init subroutine provided by the converter to
allocate the converter-specific structures. This init subroutine returns another converter descriptor that has
a pointer to the core converter descriptor. The init subroutine allocates memory as needed and may
invoke other converters if needed. The init subroutine is the place for any converter-specific initialization,
whereas the instantiate subroutine is a generic entry point.

After the converter descriptor for this converter is allocated and initialized, the next step is to provide the
actual code needed for the exec part of the functionality. If the converter is a table-based converter, the
only need is to provide a source file format that conforms to the input needs of the genxlt utility, which
takes this source table as the input and generates an output file format usable by the iconv framework.

iconv.h File and Structures
The iconv.h file in /usr/include defines the following structures:

Chapter 5. Converters Overview for Programming 113

typedef struct __iconv_rec iconv_rec, *iconv_t;
struct __iconv_rec {

_LC_object_t hdr;
iconv_t (*open)(const char *tocode, const char *fromcode);
size_t (*exec)(iconv_t cd, char **inbuf, size_t *inbytesleft,

char **outbuf, size_t *outbytesleft);
void (*close)(iconv_t cd);

};

The common core structure is as follows (/usr/include/iconv.h):
typedef struct _LC_core_iconv_type _LC_core_iconv_t;
struct _LC_core_iconv_type {

_LC_object_t hdr;
/* implementation initialization */
_LC_core_iconv_t *(*init)();
size_t (*exec)();
void (*close)();

};

Every converter has a static memory area, which contains the _LC_core_iconv_t structure. It is initialized
in the instantiate subroutine provided as part of the converter program.

iconv Control Flow
An application invokes a code set converter by the following call:
iconv_open(char *to_codeset, char *from_codeset)

The to and from code sets are used in selecting the converter by way of the search path defined by the
LOCPATH environment variable. The iconv_open subroutine uses the _lc_load subroutine to load the
object module specified by concatenating the from and to code set names to the iconv_open subroutine.
CONVERTER NAME= "from_codeset" + "_" +"to_codeset"

If the from_codeset is IBM-850 and the to_codeset is ISO8859-1, the converter name is
IBM-850_ISO8859-1.

After loading the converter, its entry point is invoked by the _lc_load loader subroutine. This is the first call
to the converter. The instantiate subroutine then initializes the _LC_core_iconv_t core structure. The
iconv_open subroutine then calls the init subroutine associated with the core structure thus returned. The
init subroutine allocates the converter-specific descriptor structure and initializes it as needed by the
converter. The iconv_open subroutine returns this converter-specific structure. However, the return value
is typecast to iconv_t in the user’s application. Thus, the application does not see the whole of the
converter-specific structure; it sees only the public iconv_t structure. The converter code itself uses the
private converter structure. Applications that use iconv converters should not change the converter
descriptor; the converter descriptor should be used as an opaque structure.

An entry point is declared in every converter so that when the converter is opened by a call to the
iconv_open subroutine, that entry point is automatically invoked. The entry point is the instantiate
subroutine that should be provided in all converters. The entry point is specified in the makefile as follows:
LDENTRY=-einstantiate

When the converter is loaded on a call to the iconv_open subroutine, the instantiate subroutine is
invoked. This subroutine initializes a static core conversion descriptor structure _LC_core_iconv_t cd.

The core conversion descriptor cd contains pointers to the init, _iconv_exec, and _iconv_close
subroutines supplied by the specific converter. The instantiate subroutine returns the core conversion
descriptor to be used later. The _LC_core_iconv_t structure is defined in /usr/include/iconv.h.

When the iconv_open subroutine is called, the following actions occur:

114 National Language Support Guide and Reference

1. The converter is found using the LOCPATH environment variable, the converter is loaded, and the
instantiate subroutine is invoked. On success, it returns the core conversion descriptor.
(_LC_core_iconv_t *cd). The instantiate subroutine provided by the converter is responsible for
initializing the header in the core structure.

2. The iconv_open subroutine then invokes the init subroutine specified in the core conversion
descriptor. The init subroutine provided by the converter is responsible for allocation of memory
needed to hold the converter descriptor needed for this specific converter. For example, the following
might be the structure needed by a stateless converter:
typedef struct _LC_sample_iconv_rec {

LC_core_iconv_t core;

} _LC_sample_iconv_t;

To initialize this, the converter has to do the following in the
init subroutine:

static _LC_sample_iconv_t*
init (_LC_core_iconv_t *core_cd, char* toname,char* fromname)
{

_LC_sample_iconv_t *cd; /* converter descriptor */

/*
** Allocate a converter descriptor
**/
if(!(cd = (_LC_sample_iconv_t *) malloc (

sizeof(_LC_sample_iconv_t))))
return (NULL);

/*
** Copy the core part of converter descriptor which is
** passed in
*/
cd->core = *core_cd;
/*
** Return the converter descriptor
*/
return cd;

}

An application invokes the iconv subroutine to do the actual code set conversions. The iconv subroutine
invokes the exec subroutine in the core structure.

An application invokes the iconv_close subroutine to free any memory allocated for conversions. The
iconv_close subroutine invokes the close subroutine in the core structure.

Writing a Code Set Converter
This section provides information on how to write a converter using the concepts explained so far. Every
converter should define the following subroutines:

v instantiate

v init

v iconv_exec

v iconv_close

The converter-specific structure should have the core iconv structure as its first element. For example:
typedef struct _LC_example_rec {

/* Core should be the first element */
_LC_core_iconv_t core;

/* The rest are converter specific data (optional) */
iconv_t curcd;

Chapter 5. Converters Overview for Programming 115

iconv_t sb_cd;
iconv_t db_cd;
unsigned char *cntl;

} _LC_example_iconv_t;

Another converter structure:
typedef struct _LC_sample_iconv_rec {

_LC_core_iconv_t core;
} _LC_sample_iconv_t;

Algorithm-Based Stateless Converters
Every converter should have the subroutines previously specified. Only the subroutine headers are
provided without details, except for the instantiate subroutine that is common to all converters and should
be coded in the same way.

The following example of an algorithm-based stateless converter is a sample converter of the IBM-850
code set to the ISO8859-1 code set.
#include <stdlib.h>
#include <iconv.h>
#include "850_88591.h"
/*
* Name : _iconv_exec()
*
* This contains actual conversion method.
*/

static size_t _iconv_exec(_LC_sample_iconv_t *cd,
unsigned char** inbuf,
size_t *inbytesleft,
unsigned char** outbuf,
size_t *outbytesleft)

/*
* cd : converter descriptor
* inbuf : input buffer
* outbuf : output buffer
* inbytesleft : number of data(in bytes) in input buffer
* outbytesleft : number of data(in bytes) in output buffer
*/

{
}

/*
* Name : _iconv_close()
*
* Free the allocated converter descriptor
*/

static void _iconv_close(iconv_t cd)
{
}

/*
* Name : init()
*
* This allocates and initializes the converter descriptor.
*/

static _LC_sample_iconv_t *init (_LC_core_iconv_t *core_cd,
char* toname, char* fromname)

{
}

/*
* Name : instantiate()
*
* Core part of a converter descriptor is initialized here.
*/

_LC_core_iconv_t *instantiate(void)

116 National Language Support Guide and Reference

{
static _LC_core_iconv_t cd;

/*
* * Initialize _LC_MAGIC and _LC_VERSION are
** defined in <lc_core.h>. _LC_ICONV and _LC_core_iconv_t
** are defined in <iconv.h>.
*/
cd.hdr.magic = _LC_MAGIC;
cd.hdr.version = _LC_VERSION;
cd.hdr.type_id = _LC_ICONV;
cd.hdr.size = sizeof (_LC_core_iconv_t);

/*
* Set pointers to each method.
*/
cd.init = init;
cd.exec = _iconv_exec;
cd.close = _iconv_close;

/*
* Returns the core part
*/
return &cd;

}

Stateful Converters
Because stateful converters need more information, they provide additional converter-dependent
information. The following example of a stateful converter is a sample converter of IBM-930 to IBM-932
code set.

The host.h file contains the following structure:
typedef struct _LC_host_iconv_rec {

_LC_core_iconv_t core;
iconv_t curcd;
iconv_t sb_cd;
iconv_t db_cd;
unsigned char *cntl;

} _LC_host_iconv_t;

#include <stdlib.h>
#include <sys/types.h>
#include <iconv.h>
#include "host.h"

/*
** The _iconv_exec subroutine to be invoked via cd->exec()
*/
static int _iconv_exec(_LC_host_iconv_t *cd,

unsigned char **inbuf, size_t *inbytesleft,
unsigned char **outbuf, size_t *outbytesleft)

{
unsigned char *in, *out;
int ret_value;

if (!cd){
errno = EBADF; return NULL;

}

if (!inbuf) {
cd->curcd = cd->sb_cd;
return ICONV_DONE;

}

do {

Chapter 5. Converters Overview for Programming 117

if ((ret_value = iconv(cd->curcd, inbuf, inbytesleft, outbuf,
outbytesleft)) != ICONV_INVAL)
return ret_value;

in = *inbuf;
out = *outbuf;
if (in[0] == SO) {

if (cd->curcd == cd->db_cd){
errno = EILSEQ;
return ICONV_INVAL;

}
cd->curcd = cd->db_cd;

}
else if (in[0] == SI) {

if (cd->curcd == cd->sb_cd){
errno = EILSEQ;
return ICONV_INVAL;

}
cd->curcd = cd->sb_cd;

}else if (in[0] <= 0x3f &&
cd->curcd == cd->sb_cd) {
if (*outbytesleft < 1){

errno = E2BIG;
return ICONV_OVER;

}
out[0] = cd->cntl[in[0]];
*outbuf = ++out;
(*outbytesleft)--;

}
else {

errno = EILSEQ; return ICONV_INVAL;
}
*inbuf = ++in;
(*inbytesleft)--;

} while (1);
}

/*
** The iconv_close subroutine is a macro accessing this
** subroutine as set in the core iconv structure.
*/
static void _iconv_close(_LC_host_iconv_t *cd)
{

if (cd) {
if (cd->sb_cd)

iconv_close(cd->sb_cd);
if (cd->db_cd)

iconv_close(cd->db_cd);
free(cd);

}else{
errno = EBADF;

}
}

/*
** The init subroutine to be invoked when iconv_open() is called.
*/
static _LC_host_iconv_t *init(_LC_core_iconv_t *core_cd,

char* toname, char* fromname)
{

_LC_host_iconv_t* cd;
int i;

for (i = 0; 1; i++) {
if (!_iconv_host[i].local)

return NULL;
if (strcmp(toname, _iconv_host[i].local) == 0 &&

strcmp(fromname, _iconv_host[i].host) == 0)

118 National Language Support Guide and Reference

break;
}

if (!(cd = (_LC_host_iconv_t *)
malloc(sizeof(_LC_host_iconv_t))))

return (NULL);

if (!(cd->sb_cd = iconv_open(toname, _iconv_host[i].sbcs))) {
free(cd);
return NULL;

}
if (!(cd->db_cd = iconv_open(toname, _iconv_host[i].dbcs))) {

iconv_close(cd->sb_cd);
free(cd);
return NULL;

}
cd->core = *core_cd;

cd->cntl = _iconv_host[i].fcntl;
cd->curcd = cd->sb_cd;
return cd;

}

/*
** The instantiate() method is called when iconv_open() loads the
** converter by a call to __lc_load().
*/
_LC_core_iconv_t *instantiate(void)
{

static _LC_core_iconv_t
cd;

cd.hdr.magic = _LC_MAGIC;
cd.hdr.version = _LC_VERSION;
cd.hdr.type_id = _LC_ICONV;
cd.hdr.size = sizeof (_LC_core_iconv_t);
cd.init = init;
cd.exec = _iconv_exec;
cd.close = _iconv_close;
return &cd;

}

Examples
v This example provides sample code for a stateless converter that performs an algorithm-based

convertion of the IBM-850 code set to the ISO8859-1 code set. The file name for this example is
850_88591.c.
#include <stdlib.h>
#include <iconv.h>
#include "850_88591.h"

#define DONE 0

/*
* Name : _iconv_exec()
*
* This contains actual conversion method.
*/
static size_t _iconv_exec(_LC_sample_iconv_t *cd,

unsigned char** inbuf, size_t *inbytesleft,
unsigned char** outbuf, size_t *outbytesleft)

/*
* cd : converter descriptor
* inbuf : input buffer
* outbuf : output buffer
* inbytesleft : number of data(in bytes) in input buffer
* outbytesleft : number of data(in bytes) in output buffer

Chapter 5. Converters Overview for Programming 119

*/
{

unsigned char *in; /* point the input buffer */
unsigned char *out; /* point the output buffer */
unsigned char *e_in; /* point the end of input buffer*/
unsigned char *e_out; /* point the end of output buffer*/

/*
* If given converter discripter is invalid,
* it sets the errno and returns the number
* of bytes left to be converted.
*/

if (!cd) {
errno = EBADF;
return *inbytesleft;
}

/*
* If the input buffer does not exist or there
* is no character to be converted, it returns
* 0 (no characters to be converted).
*/
if (!inbuf || !(*inbytesleft))

return DONE;

/*
* Set up pointers and initialize other variables
*/
e_in = (in = *inbuf) + *inbytesleft;
e_out = (out = *outbuf) + *outbytesleft;

/*
* Perform code point conversion until all input
* is consumed.
* When error occurs (i.e. buffer overflow), error
* number is set and exit this loop.
*/

while (in < e_in) {

/*
* If there is not enough space left in output buffer
* to hold the converted data, it stops converting and
* sets the errno to E2BIG.
*/
if (e_out <= out) {

errno = E2BIG;
break;

}

/*
* Convert the input data and store it into the output
* buffer, then advance the pointers which point to the
* buffers.
*/
*out++ = table[*in++];

} /* while */

/*
* Update the pointers to the buffers and
* input /output byte counts
*/
*inbuf = in;

*outbuf = out;
*inbytesleft = e_in - in;
*outbytesleft = e_out - out;

120 National Language Support Guide and Reference

/*
* Reurn the number of bytes left to be converted
* (0 for successful conversion completion)
*/
return *inbytesleft;

}

/*
* Name : _iconv_close()
*
* Free the allocated converter descriptor
*/
static void _iconv_close(iconv_t cd)
{

if (!cd)
free(cd);

else
/*
* If given converter is not valid,
* it sets the errno to EBADF
*/
errno = EBADF;

}

/*
* Name : init()
*
* This allocates and initializes the converter descriptor.
*/
static _LC_sample_iconv_t*
init (_LC_core_iconv_t *core_cd, char* toname, char* fromname)
{

_LC_sample_iconv_t *cd; /* converter descriptor */

/*
* Allocate a converter descriptor
*/

if (!(cd = (_LC_sample_iconv_t *)
malloc(sizeof(_LC_sample_iconv_t))))

return (NULL);

/*
*Copy the core part of converter descriptor which is passed *in
*/

cd->core = *core_cd;

/*
* Return the converter descriptor
*/

return cd;
}

/*
* Name : instantiate()
*
* Core part of a converter descriptor is initialized here.
*/
_LC_core_iconv_t* instantiate(void)
{

static _LC_core_iconv_t cd;

/*
* Initialize
* _LC_MAGIC and _LC_VERSION are defined in <lc_core.h>.
* _LC_ICONV and _LC_core_iconv_t are defined in <iconv.h>.
*/
cd.hdr.magic = _LC_MAGIC;

Chapter 5. Converters Overview for Programming 121

cd.hdr.version = _LC_VERSION;
cd.hdr.type_id = _LC_ICONV;
cd.hdr.size = sizeof (_LC_core_iconv_t);

/*
* Set pointers to each method.
*/

cd.init = init;
cd.exec = _iconv_exec;
cd.close = _iconv_close;

/*
* Returns the core part
*/

return &cd;
}

v This example contains a sample header file named 850_88591.h.
#ifndef _ICONV_SAMPLE_H
#define _ICONV_SAMPLE_H

/*
* Define _LC_sample_iconv_t
*/
typedef struct _LC_sample_iconv_rec {

_LC_core_iconv_t core;
} _LC_sample_iconv_t;

static unsigned char table[] = { /*

| |
| IBM-850 ISO8859-1 |
|_______________________________________|
/* 0x00 */ 0x00,
/* 0x01 */ 0x01,
/* 0x02 */ 0x02,
/* 0x03 */ 0x03,
/* 0x04 */ 0x04,
/* 0x05 */ 0x05,
/* 0x06 */ 0x06,
/* 0x07 */ 0x07,
/* 0x08 */ 0x08,
/* 0x09 */ 0x09,
/* 0x0A */ 0x0A,
/* 0x0B */ 0x0B,
/* 0x0C */ 0x0C,
/* 0x0D */ 0x0D,
.
.
.
/* 0xF3 */ 0xBE,
/* 0xF4 */ 0xB6,
/* 0xF5 */ 0xA7,
/* 0xF6 */ 0xF7,
/* 0xF7 */ 0xB8,
/* 0xF8 */ 0xB0,
/* 0xF9 */ 0xA8,
/* 0xFA */ 0xB7,
/* 0xFB */ 0xB9,
/* 0xFC */ 0xB3,
/* 0xFD */ 0xB2,
/* 0xFE */ 0x1A,
/* 0xFF */ 0xA0,

};
#endif

122 National Language Support Guide and Reference

v This example is a sample makefile.
SHELL = /bin/ksh
CFLAGS = $(COMPOPT) $(INCLUDE) $(DEFINES)
INCLUDE = -I.
COMPOPT =
DEFINES = -D_POSIX_SOURCE -D_XOPEN_SOURCE
CC = /bin/xlc
LD = /bin/ld
RM = /bin/rm

SRC = 850_88591.c
TARGET = 850_88591

ENTRY_POINT = instantiate

$(TARGET) :
cc -e $(ENTRY_POINT) -o $(TARGET) $(SRC) -l iconv

clean :
$(RM) -f $(TARGET)
$(RM) -f *.o

Related Information
“List of National Language Support Subroutines” on page 188.

Chapter 4, “Code Sets for National Language Support,” on page 49 in AIX 5L Version 5.3 Kernel
Extensions and Device Support Programming Concepts.

The iconv command, uuencode and uudecode commands.

The iconv_open subroutine, iconv subroutine, iconv_close subroutine.

“List of National Language Support Subroutines” on page 188.

Chapter 4, “Code Sets for National Language Support,” on page 49 in AIX 5L Version 5.3 Kernel
Extensions and Device Support Programming Concepts.

The iconv command, uuencode and uudecode commands.

The iconv_open subroutine, iconv subroutine, iconv_close subroutine.

Chapter 5. Converters Overview for Programming 123

124 National Language Support Guide and Reference

Chapter 6. Input Methods

For an application to run in the international environment for which National Language Support (NLS)
provides a base, input methods are needed. The Input Method is an application programming interface
(API) that allows you to develop applications independent of a particular language, keyboard, or code set.
Each type of input method has the following features:

Keymaps Set of input method keymaps (imkeymaps) that works with the input method and determines the
supported locales.

Keysyms Set of key symbols (keysyms) that the input method can handle.
Modifiers Set of modifiers or states, each having a mask value, that the input method supports.

Input Method Introduction

An input method is a set of functions that translates key strokes into character strings in the code set
specified by your locale. Input method functions include locale-specific input processing and keyboard
controls (for example, Ctrl, Alt, Shift, Lock, and Alt-Graphic). The input method allows various types of
input, but only keyboard events are dealt with in this chapter.

Your locale determines which input method should be loaded, how the input method runs, and which
devices are used. The input method then defines states and their outcome.

When the input method translates a keystroke into a character string, the translation process takes into
account the keyboard and the code set you are using. You can write your own input method if you do not
have a standard keyboard or if you customize your code set.

Many languages use a small set of symbols or letters to form words. To enter text with a keyboard, you
press keys that correspond to symbols of the alphabet. When a character in your alphabet does not exist
on the keyboard, you must press a combination of keys. Input methods provide algorithms that allow you
to compose such characters.

Some languages use an ideographic writing system. They use a unique symbol, rather than a group of
letters, to represent a word. For instance, the character sets used in mainland China, Japan, Korea, and
Taiwan have more than 5,000 characters. Consequently, more than one byte must be used to represent a
character. Moreover, a single keyboard cannot include all the required ideographic symbols. You need
input methods that can compose multibyte characters.

The /usr/lib/nls/loc directory contains the input methods installed on your system. You can list the
contents of this directory to determine which input methods are available to you. Input method file names
have the format Language_Territory.im. For example, the fr_BE.im file is the input method file for the
French language as used in Belgium.

Through a well-structured protocol, input methods allow applications to support different input without using
locale-specific input processing.

In AIX, the input method is provided in the aixterm. When characters typed from the AIXwindows interface
reach the server, the characters are in the form of key codes. A table provided in the client converts key
codes into keysyms, a predefined set of codes. Any key code generated by a keyboard should have a
keysym. These keysyms are maintained and allocated by the MIT X Consortium. The keysyms are passed
to the client aixterm terminal emulator. In the aixterm, the input keysyms are converted into file codes by
the input method and are then sent to the application. The X server is designed to work with the display
adapter provided in the system hardware. The X server communicates with the X client through sockets.
Thus, the server and the client can reside on different systems in a network, provided they can
communicate with each other. The data from the keyboard enters the X server, and from the server, it is

© Copyright IBM Corp. 2002, 2006 125

passed to the terminal emulator. The terminal emulator passes the data to the application. When data
comes from applications to the display device, it passes through the terminal emulator by sockets to the
server and from the server to the display device.

Input Method Names

The set of input methods available depends on which locales have been installed and what input methods
those locales provide. The name of the input method usually corresponds to the locale. For example, the
Greek Input Method is named el_GR, which is the same as the locale for the Greek language spoken in
Greece.

When there is more than one input method for a locale, any secondary input method is identified by a
modifier that is part of the locale name. For example, the French locale, as spoken in Canada, has three
input methods, the default and two alternative methods. The input method names are:

fr_CA Default input method
fr_CA@im=alt Alternative input method
fr_CA.im__64 64-bit input method

The fr portion of the locale represents the language name (French), and the CA represents the territory
name (Canada). The @im=alt string is the modifier portion of the locale that is used to identify the
alternative input method. All modifier strings are identified by the format @im=Modifier.

Because the input method is a loadable object module, a different object is required when running in the
64-bit environment. In the 64-bit environment, the input method library automatically appends __64 to the
name when searching for the input method. In the preceding example, the name of the input method
would be fr_CA.im__64.

It is possible to name input methods without using the locale name. Because the libIM library does not
restrict names to locale names, the calling application must ensure that the name passed to libIM can be
found. However, applications should request only modifier strings of the form @im=Modifier and that the
user’s request be concatenated with the return string from the setlocale (LC_CTYPE,NULL) subroutine.

Input Method Areas
Complex input methods require direct dialog with users. For example, the Japanese Input Method may
need to show a menu of candidate strings based on the phonetic matches of the keys that you enter. The
feedback of the key strokes appears in one or more areas on the display. The input method areas are as
follows:

Status
Text data and bitmaps can appear in the Status area. The Status area is an extension of the
light-emitting diodes (LEDs) on the keyboard.

Pre-edit
Intermediate text appears in the Pre-edit area for languages that compose before the client
handles the data.

A common feature of input methods is that you press a combination of keys to represent a single
character or set of characters. This process of composing characters from keystrokes is called
pre-editing.

Auxiliary
Menus and dialogs that allow you to customize the input method appear in the Auxiliary area. You
can have multiple Auxiliary areas managed by the input method and independent of the client.

126 National Language Support Guide and Reference

Management for input method areas is based on the division of responsibility between the
application (or toolkit) and the input method. The divisions of responsibility are as follows:

v Applications are responsible for the size and position of the input method area.

v Input methods are responsible for the contents of the input area. The input method area cannot
suggest a placement.

Input Method Command
An Input Method is a set of subroutines that translate key strokes into character strings in the code set
specified by a locale. Input Method subroutines include logic for locale-specific input processing and
keyboard controls (Ctrl, Alt, Shift, Lock, Alt Graphic). The following command allows for the customizing of
input method mapping for the use of input method subroutines:

keycomp
Compiles a keyboard mapping file into an input method keymap file.

Programming Input Methods
The input method is a programming interface that allows applications to run in an international
environment provided through NLS. The input method has the following characteristics:

v Localized input support (defined by locale)

v Multiple keyboard support

v Multibyte character-input processing

Note: Do not assume any particular physical keyboard is in use. Use an input method based on the locale
setting to handle keyboard input.

Initialization

You can use the IMQueryLanguage subroutine to determine if an input method is available without
initializing it. An application (toolkit) initializes a locale-specific input method by calling the IMInitialize
subroutine, which initializes a locale-specific input method editor (IMED). The subroutine uses the
LOCPATH environment variable to search for the input method named by the LANG environment variable.
The LOCPATH environment variable specifies a set of directory names used to search for input methods.

If the input method is found, the IMInitialize subroutine uses the load subroutine to load the input method
and attach the imkeymap file. When the input method is accessed, an object of the type IMFep (input
method front-end processor) is returned. The IMFep should be treated as an opaque structure.

The IMInitialize subroutine links the converter function using the load subroutine. The load subroutine is
similar to the exec subroutine and links the converter program at run-time. Since the IMInitialize
subroutine is called as a library function, it must preserve security for certain programs. When the
IMInitialize subroutine is called from a set root ID program, it ignores the LOCPATH environment variable
and searches for converters only in the /usr/lib/nls/loc/iconv and /etc/nls/loc/iconv directories.

Each IMFep inherits the locale’s code set when the IMInitialize subroutine is called. Consequently, strings
returned by the IMFilter and IMLookupString subroutines are in the locale’s code set. Changing the
locale after the IMInitialize subroutine is called does not affect the code set of the IMFep.

For each IMFep, the application can use the IMCreate subroutine to create one or more IMObject
instances. The IMObject manages its own state and can manage several Input Method Areas (see “Input
Method Areas” on page 126). How each IMObject defines input processing depends on the code set and
keyboard associated with the locale. In the simplest case, a single IMObject is needed if the application is
managing a single dialog with the user. The input method also supports other user interfaces where the
application allows multiple dialogs with the user, and each dialog requires one IMObject.

Chapter 6. Input Methods 127

The difference between an IMFep and IMObject is that the IMFep is a handle that binds the application to
the code of the input method, while the IMObject is a handle that represents an instance of a state of an
input device, such as a keyboard. The IMFep does not represent a state of the input method. Each
IMObject is initialized to a specific input state and is changed according to the sequence of events it
receives.

After the IMObject is created, the application can process key events. The application should pass key
events to the IMObject using the IMFilter and IMLookupString subroutines. These subroutines are
provided to isolate the internal processing of the IMED from the customized key event mapping process.

Input Method Management
The input method provides the following subroutines for maintenance purposes:

IMInitialize Initializes the standard input method for a specified language. Returns a handle to an
IMED associated with the locale. The handle is an opaque structure of type IMFep.

IMQueryLanguage Checks whether the specified language is supported.
IMCreate Creates one instance of a particular input method. This subroutine must be called

before any key event processing is performed.
IMClose Closes the input method.
IMDestroy Destroys an instance of an input method.

Input Method Keymap Management
The input method provides several subroutines to map key events to a string. The mapping is maintained
in an imkeymap file located in the LOCPATH directory. The subroutines used for mapping are as follows:

IMInitializeKeymap Initializes the imkeymap associated with a specified language.
IMFreeKeymap Frees resources allocated by the IMInitializeKeymap subroutine.
IMAIXMapping Translates a pair of key-symbol and state parameters to a string and returns a

pointer to that string.
IMSimpleMapping Translates a pair of key-symbol and state parameters to a string and returns a

pointer to that string.

Key Event Processing
Input processing begins when you press keys on the keyboard. The application must have created an
IMObject before calling these functions:

IMFilter Asks the IMED to indicate if a key event is used internally. If the IMED is
composing a localized string, it maps the key event to that string.

IMLookupString Maps the key event to a localized string.
IMProcessAuxiliary Notifies the input method of input for an auxiliary area.
IMIoctl Performs a variety of control or query operations on the input method.

Callbacks
The IMED communicates directly with the user by using the Input Method-Callback (IM-CB) API to access
the graphic-dependent functions (callbacks) provided by the application. The application attaches the
callbacks, which perform output functions and query information, to the IMObject during initialization. The
application still handles all the input.

The set of callback functions that the IMED uses to communicate with a user must be provided by the
caller. See “Using Callbacks” on page 130 for a discussion of the subroutines defined by the IM-CB API.

128 National Language Support Guide and Reference

Input Method Structures
The major structures used by the input method are as follows:

IMFepRec Contains the front end information
IMObjectRec Contains the common part of input method objects
IMCallback Registers callback subroutines to the IMFep
IMTextInfo Contains information about the text area, primarily the pre-editing string
IMAuxInfo Defines the contents of the auxiliary area and the type of processing requested
IMIndicatorInfo Indicates the current value of the indicators
IMSTR Designates strings that are not null-terminated
IMSTRATT Designates strings that are not null-terminated and their attributes

Working with Keyboard Mapping
The following model shows how input methods are used by applications. Use this information to help you
customize keyboard mapping.

Input processing is divided into three steps:

1. keycode/keystate(raw) - > keysym/modifier(new)

This step is application and environment-dependent. The application is responsible for mapping the
raw key event into a keysym/modifier for input to the input method.

In the AIXwindows environment, the client uses the server’s keysym table, xmodmap, which is
installed at the server, to perform this step. The xmodmap defines the mapping of the Shift, Lock, and
Alt-Graphic keys. The client uses the xmodmap as well as the Shift and Lock modifiers from the X
event to determine the keysym/modifier represented by this event.

For example, if you press the XK_a keysym with a Shift modifier, the xmodmap maps it to the XK_A
keysym. Because you used the Shift key to map the key code to a keysym, the application should
mask the Shift modifier from the original X event. Consequently, the input to the input method would be
the XK_A keysym and no modifier.

In another environment, if the device provides no additional information, the input method receives the
XK_a keysym with the Shift modifier. The input method should perform the same mapping in both cases
and return the letter A.

2. keysym/modifier(new) - > localized string

This step depends on the localized IMED and varies with each locale. It notifies the IMED that a key
event occurred and to ask for an indication that their IMED uses the key event internally. This occurs
when the application calls the IMFilter subroutine.

If the IMED indicates that the key event is used for internal processing, the application ignores the
event. Because the IMED is the first to see the event, this step should be done before the application
interprets the event. The IMED only uses key events that are essential.

If the IMED indicates the event is not used for internal processing, the application performs the next
step.

3. keysym/modifier(new) - > customized string

This step occurs when the application calls the IMLookupString subroutine. The input method keymap
(created by the keycomp command) defines the mapping for this phase. It is the last attempt to map
the key event to a string and allows a user to customize the mapping.

If the keysym/modifier (new) combination is defined in the input method keymap (imkeymap), a string
is returned. Otherwise, the key event is unknown to the input method.

Chapter 6. Input Methods 129

Input Method Keymaps
The input method provides support for user-defined imkeymaps, allowing you to customize input method
mapping. The input methods support imkeymaps for each locale. The file name for imkeymaps is similar to
that of input methods, except that the suffix for imkeymap files is .imkeymap instead of .im.

This example uses the Italian input method to illustrate how you can customize your imkeymap file:

1. Copy the default imkeymap source file to your $HOME directory by typing:
cd $HOME
cp /usr/lib/nls/loc/it_IT.ISO8859-1.imkeymap.src .

2. Edit the imkeymap source file following the default file format by typing:
vi it_IT.ISO8859-1.imkeymap.src

3. Compile the imkeymap source file by typing:
keycomp < it_IT.ISO8859-1.imkeymap.src > it_IT.ISO8859-1.imkeymap

4. Make sure the LOCPATH environment variable specifies $HOME before /usr/lib/nls/loc by typing:
LOCPATH=$HOME:$LOCPATH

Note: All setuid and setgid programs ignore the LOCPATH environment variable.

Inbound and Outbound Mapping
The imkeymaps map a key symbol to a file code set string. The localized imkeymaps found in the
/usr/lib/nls/loc library are defined to include mapping for all of the inbound keys. The imkeymaps provide
the following types of mapping:

Inbound mapping Mapping of a keysym/modifier that generates a target string encoded in the code set
of the locale.

Outbound mapping Mapping of a keysym/modifier that does not generate a target string included in the
code set of the locale.

A special imkeymap, /usr/lib/nls/loc/C@outbound.imkeymap, defines outbound mapping for all
keyboards made by this manufacturer and is primarily intended for use by aixterm. This imkeymap
includes mapping of PF keys, cursor keys, and other special keys commonly used by applications.
Internationalized applications that use standard input and standard output should limit their dependency on
outbound mapping, which does not vary on different keyboards. For example, the Alt-a is defined in the
same way on all keyboards made by this manufacturer. Yet, the Alt-tilde is different depending on the
keyboard used.

The aixterm bases its outbound mapping on the C@outbound imkeymap. Applications that require more
mapping should modify the localized imkeymap source to include the necessary definitions.

Using Callbacks
Applications that use input methods should provide callback functions so that the Input Method Editor
(IMED) can communicate with the user. The type of input method you use determines whether or not
callbacks are necessary. For example, the single-byte input method does not need callbacks, but the
Japanese input method uses them extensively with the pre-edit facility. Pre-editing allows processing of
characters before they are committed to the application.

When you use an input method, only the application can insert or delete pre-edit data and scroll the text.
Consequently, the echo of the keystrokes is achieved by the application at the request of the input method
logic through callbacks.

130 National Language Support Guide and Reference

When you enter a keystroke, the application calls the IMFilter subroutine. Before returning, the input
method can call the echoing callback function for inserting new keystrokes. After a character has been
composed, the IMFilter subroutine returns it, and the keystrokes are deleted.

In several cases, the input method logic has to call back the client. Each of these is defined by a callback
action. The client specifies which callback should be called for each action.

Types of callbacks are described as follows:

v Text drawing

The IMED uses text callbacks to draw any pre-editing text currently being composed. When the
callbacks are needed, the application and the IMED share a single-line buffer, where the editing is
performed. The IMED also provides cursor information that the callbacks then present to the user.

The text callbacks are as follows:

IMTextDraw Asks the application program to draw the text string
IMTextHide Tells the application program to hide the text area
IMTextStart Notifies the application program of the length of the pre-editing space
IMTextCursor Asks the application program to move the text cursor

v Indicator (status)

The IMED uses indicator callbacks to request internal status. The IMIoctl subroutine works with the
IMQueryIndicatorString command to retrieve the text string that provides the internal status. Indicator
callbacks are similar to text callbacks, except that instead of sharing a single-line buffer, a status value
is used.

The indicator callbacks are as follows:

IMIndicatorDraw Tells the application program to draw the status indicator
IMIndicatorHide Tells the application program to hide the status indicator
IMBeep Tells the application program to emit a beep sound

v Auxiliary

The IMED uses auxiliary callbacks to request complex dialogs with the user. Consequently, these
callbacks are more sophisticated than text or indicator callbacks.

The auxiliary callbacks are as follows:

IMAuxCreate Tells the application program to create an auxiliary area
IMAuxDraw Tells the application program to draw an auxiliary area
IMAuxHide Tells the application program to hide an auxiliary area
IMAuxDestroy Tells the application program to destroy an auxiliary area

The IMAuxInfo structure defines the dialog needed by the IMED.

The contents of the auxiliary area are defined by the IMAuxInfo structure, found in the
/usr/include/im.h library.

The IMAuxInfo structure contains the following fields:

IMTitle Defines the title of the auxiliary area. This is a multibyte string. If title.len is 0, no title
displays.

Chapter 6. Input Methods 131

IMMessage Defines a list of messages to be presented. From the applications perspective, the IMMessage
structure should be treated as informative, output-only text. However, some input methods use
the IMMessage structure to conduct a dialog with the user in which the key events received by
way of the IMFilter or IMLookupString subroutine are treated as input to the input method. In
such cases, the input method may treat the IMMessage structure as either a selectable list or a
prompt area. In either case, the application displays only the message contents.

The IMProcessAuxiliary subroutine need not be called if the IMSelection structure contains
no IMPanel structures and the IMButton field is null.

The message.nline indicates the number of messages contained in the IMMessage structure.
Each message is assumed to be a single line. Control characters, such as \t, are not
recognized. The text of each message is defined by the IMSTRATT structure, which consists of
both a multibyte string and an attribute string. Each attribute is mapped one-to-one for each
byte in the text string.

If message.cursor is True, then the IMMessage structure defines a text cursor at location
message.cur_row, message.cur_col. The message.cur_col field is defined in terms of bytes. The
message.maxwidth field contains the maximum width of all text messages defined in terms of
columns.

IMButton Indicates the possible buttons that can be presented to a user. The IMButton field tells the
application which user interface controls should be provided for the end user. The button
member is of type int and may contain the following masks:

IM_OK Present the OK button.

IM_CANCEL
Present the CANCEL button.

IM_ENTER
Present the ENTER button.

IM_RETRY
Present the RETRY button.

IM_ABORT
Present the ABORT button.

IM_YES
Present the YES button.

IM_NO Present the NO button.

IM_HELP
Present the HELP button.

IM_PREV
Present the PREV button.

IM_NEXT
Present the NEXT button.

The application should use the IMProcessAuxiliary subroutine to communicate the button
selection.

132 National Language Support Guide and Reference

IMSelection Defines a list of items, such as ideographs, that an end user can select. This structure is used
when the input method wants to display a large number of items but does not want to control
how the list is presented to the user.

The IMSelection structure is defined as a list of IMPanel structures. Not all applications
support IMSelection structures inside the IMAuxInfo structure. Applications that do support
IMSelection structures should perform the IM_SupportSelection operation using the IMIoctl
subroutine immediately after creation of the IMObject. In addition, not all applications support
multiple IMPanel structures. Therefore, the panel_row and panel_col fields are restricted to a
setting of 1 by all input methods.

Each IMPanel structure consists of a list of IMItem fields that should be treated as a
two-dimensional, row/column list whose dimensions are defined as item_row times item_col. If
item_col is 1, there is only one column. The size of the IMPanel structure is defined in terms
of bytes. Each item within the IMPanel structure is less than or equal to panel->maxwidth.

The application should use the IMProcessAuxiliary subroutine to communicate one or more
user selections. The IM_SELECTED value indicates which item is selected. The IM_CANCEL
value indicates that the user wants to terminate the auxiliary dialog.

hint Used by the input method to provide information about the context of the IMAuxInfo structure.
A value of IM_AtTheEvent indicates that the IMAuxInfo structure is associated with the last
event passed to the input method by either the IMFilter or IMLookupString subroutine. Other
hints are used to distinguish when multiple IMAuxInfo structures are being displayed.

status Used by the input method for internal processing. This field should not be used by applications.

Each IMAuxInfo structure is independent of the others. The method used for displaying the
members is determined by the caller of the input method. The IMAuxInfo structure is used by
the IMAuxDraw callback.

Initializing Callbacks
All callbacks must be identified when you call the IMCreate subroutine. The IMCallback structure contains
the address for each callback function. The caller of the IMCreate subroutine must initialize the
IMCallback structure with the addresses.

The callback functions can be called before the IMCreate subroutine returns control to the caller. Usually,
the IMTextStart callback is called to identify the size of the pre-edit buffer.

Bidirectional Input Method
The Bidirectional Input Method (BIM) is similar to the Single-Byte Input Method except that it is customized
to process the Arabic and Hebrew keyboards. BIM also links the Hebrew and Arabic states to the Latin
states. The Alt+Right Shift keys allow the user to toggle between the Arabic/Hebrew and Latin language
layers. The use of these keys is derived from BIM. The features of BIM are as follows:

v Supports Arabic, Hebrew, and Latin states

v Supports the ISO8859-6, ISO8859-8, IBM-1046, and IBM-856 code sets

v Performs diacritical composing

Keymaps
The following keymaps are supported on BIM:

v ar_AA.ISO8859-6.imkeymap

v ar_AA@alt.ISO8859-6.imkeymap

v Ar_AA.IBM-1046.imkeymap

v Ar_AA@alt.IBM-1046.imkeymap

v iw_IL.ISO8859-8.imkeymap

Chapter 6. Input Methods 133

v iw_IL@alt.ISO8859-8.imkeymap

v Iw_IL.IBM-856.imkeymap

v Iw_IL@alt.IBM-856.imkeymap

Key Settings
The following key settings are supported on BIM:

scr-rev() Reverses the screen orientation and sets the keyboard layer to the default language of the new
orientation.

ltr-lang() Enables the Latin keyboard layer.
rtl-lang() Enables the Arabic/Hebrew keyboard layer.
col-mod() Enables the column heading adjustment, which handles each word as a separate column.
auto-push() Toggles the Autopush mode, which handles mixed left-to-right and right-to-left text. When you

enable the Autopush mode, reversed segments are automatically initiated and terminated
according to the entered character or the selected language layer. Thus, you are relieved of
manually invoking the Push function.

chg-push() Toggles the Push mode. This mode causes the cursor to remain in its position and pushes the
typed characters in the direction opposed to the field direction.

shp-in() Shapes Arabic characters in their initial forms.
shp-is() Shapes Arabic characters in their isolated forms.
shp-p() Shapes Arabic characters in their passthru forms.
shp-asd() Shapes Arabic characters in their automatic forms.
shp-m() Shapes Arabic characters in their middle forms.
shp-f() Shapes Arabic characters in their final forms.

Modifiers
The following modifiers are supported on BIM:

ShiftMask 0x01
LockMask 0x02
ControlMask 0x04
Mod1Mask (Left-Alt) 0x08
Mod2Mask (Right-Alt) 0x10

Cyrillic Input Method (CIM)
The Cyrillic Input Method (CIM) is similar to the Single-Byte Input Method, except that it is customized for
processing the Cyrillic keyboard. The features of CIM are as follows:

v Supports Cyrillic and Latin states.You can toggle between the two states by pressing the Alt key and the
Left or Right Shift key simultaneously.

Note: The Alt-Graphic (Right Alt) key can be used to generate additional characters within each
keyboard layer.

v For the Russian and Bulgarian locales, both 101-key and 102-key keyboard drivers are supported.

v Supports the ISO8859-5 code set.

Keymap
The following keymaps are supported on the CIM:

v bg_BG.ISO8859-5.imkeymap

v mk_MK.ISO8859-5.imkeymap

v sr_SP.ISO8859-5.imkeymap

134 National Language Support Guide and Reference

v ru_RU.ISO8859-5.imkeymap

v be-BY.ISO8859-5.imkeymap

v uk-UA.ISO8859-5.imkeymap

Keysyms
The CIM uses the keysyms in the XK_CYRILLIC, XK_LATIN1, and XK_MISCELLANY groups.

The following reserved keysyms are unique to the input method of this system:

XK_dead_acute 0x180000b4
XK_dead_grave 0x18000060
XK_dead_circumflex 0x1800005e
XK_dead_diaeresis 0x180000a8
XK_dead_tilde 0x1800007e
XK_dead_caron 0x180001b7
XK_dead_breve 0x180001a2
XK_dead_doubleacute 0x180001bd
XK_dead_degree 0x180000b0
XK_dead_abovedot 0x180001ff
XK_dead_macron 0x180000af
XK_dead_cedilla 0x180000b8
XK_dead_ogonek 0x180001b2
XK_dead_accentdiaeresis 0x180007ae

Modifiers
The following modifiers are supported on CIM:

ShiftMask 0x01
LockMask 0x02
ControlMask 0x04
Mod1Mask (Left-Alt) 0x08
Mod2Mask (Right-Alt) 0x10

The following internal modifier is supported on CIM:

Cyrillic Layer 0x20

Greek Input Method (GIM)
The Greek Input Method (GIM) is similar to the Single-Byte Input Method (SIM), but handles both Latin
and Greek character sets, by providing two layers or states of keyboard mappings, which correspond to
the two character sets.

The keyboard is initially in the Latin input state. However, if the left-shift key is pressed while the left-alt
key is held down, the keyboard is put in the Greek input state. The keyboard can be returned to the Latin
state by pressing the right-shift key, while the left-alt key is held down. These are locking shift keys,
because the state is locked when they are pressed.

While in the Greek state, the input method recognizes the following diacritical characters and valid
subsequent characters for diacritical composing as shown in the following table:

Greek Composing Characters

Chapter 6. Input Methods 135

Keysym Valid Composing Characters

dead_acute uppercase and lowercase: alpha, epsilon, eta, iota, omicron, upsilon, omega

dead_diaeresis uppercase and lowercase: iota, upsilon

dead_accentdiaeresis lowercase only: iota, upsilon

In the Latin state, there are no composing diacriticals, and the keys shown in the table above are treated
as simple graphic characters.

The Greek and Single-Byte Input Methods also differ in their handling of illegal diacritical composing
sequences. In such cases, the GIM beeps and returns no characters. The SIM does not beep and returns
both the diacritical character and a graphic character associated with the invalid key.

Note: The Alt-Graphic (right-alt) key can be used to generate additional characters within each
keyboard state.

Keymap
The following keymap is supported on GIM:

v el_GR.ISO8859-7.imkeymap

Keysyms
The GIM uses the keysyms in the XK_LATIN1, XK_GREEK, and XK_MISCELLANY groups.

The following reserved keysyms are unique to the input method of this system.

XK_dead_acute 0x180000b4
XK_dead_grave 0x18000060
XK_dead_circumflex 0x1800005e
XK_dead_diaeresis 0x180000a8
XK_dead_tilde 0x1800007e
XK_dead_caron 0x180001b7
XK_dead_breve 0x180001a2
XK_dead_doubleacute 0x180001bd
XK_dead_degree 0x180000b0
XK_dead_abovedot 0x180001ff
XK_dead_macron 0x180000af
XK_dead_cedilla 0x180000b8
XK_dead_ogonek 0x180001b2
XK_dead_accentdiaeresis 0x180007ae

Modifiers
The following modifiers are supported on GIM:

ShiftMask 0x01
LockMask 0x02
ControlMask 0x04
Mod1Mask (Left-Alt) 0x08
Mod2Mask (Right-Alt) 0x10

The following internal modifier is supported on GIM:

Greek Layer 0x20

136 National Language Support Guide and Reference

Japanese Input Method (JIM)
The Japanese Input Method (JIM) provides Japanese input. The features include the following:

v Supports Romaji to Kana character conversion (RKC).

v Supports Kana to Kanji character conversion (KKC).

v Includes Hankaku (half-width) and Zenkaku (full-width) character input.

v Provides system and user dictionary lookup.

v Provides run-time registration of a word to the user dictionary.

v Requires Callback functions to support:

– Status and Pre-edit drawing

– All candidate menus

– JIS Kutan number input and IBM Kanji number input

v Supports IBM-943, IBM-932 and IBM-eucJP code sets. For internal processing, the JIM uses the
IBM-942 code set. However, the JIM supports any code set, such as IBM-eucJP, that can be converted
from IBM-932.

v Located in the /usr/lib/nls/loc/JP.im file. All other localized input methods are aliases to this file.

The Japanese code sets consist of the following character groups:

v Katakana

v Hiragana

v Kanji

Katakana and Hiragana consist of approximately 50 characters each and form the set of phonetic
characters referred to as Kana. All of the sounds in the Japanese language can be represented in Kana.

Kanji is a set of ideographs. A simple concept can be represented by a single Kanji character, while more
complicated meanings can be formed with strings of Kanji characters. Several thousand Kanji characters
exist.

The Japanese also use the Roman alphabet. Called Romaji, the Roman alphabet consists of 26
characters. It is used mostly in technical and professional environments to represent technical vocabulary
that does not exist in Japanese. A typical sentence is usually a mixture of Katakana, Hiragana, Kanji,
Romaji, numbers, and other characters.

Japanese Character Processing

The Japanese Industrial Standard (JIS) specifies about 7000 Kanji characters processed by computer
systems. Japanese products made by this manufacturer support all of the standard characters, as well as
others. Input of the characters is accomplished through the following:

v Kana-to-Kanji conversion (KKC)

v Romaji-to-Kana conversion (RKC)

The following special keys appear on the 106-key Japanese keyboard to allow for these conversions:

Special Japanese Keys

Key Function Key Name Description of Function

KKC Non-conversion key muhenkan Leaves Kana characters as is.

KKC Conversion key henkan Converts Kana to Kanji.

Chapter 6. Input Methods 137

KKC All Candidates key zenkouho Shows all possible Kanji representatives.

RKC Romaji Mode key romaji Toggles RKC on and off.

Hiragana Shift key hiragana Becomes Hiragana shift state.

Katakana Shift key katakana Becomes Katakana shift state.

Romaji Shift key eisu Becomes Romaji shift state.

Note: Shift states are maintained until you press another shift key. The initial state is Romaji.

Kana-To-Kanji Conversion (KKC) Technology
The Japanese Input Method’s (JIM) KKC technology is based on the fact that every Kanji character or set
of Kanji characters has a phonetic sound or sounds that can be expressed by Katakana or Hiragana
characters.

It is much easier to input Hiragana or Katakana characters than Kanji characters. The JIM analyzes the
phonetic values of the Hiragana and Katakana characters to determine the best Kanji-character equivalent.
Such phonetic analysis depends on the dictionary and tables provided to the JIM.

Input Modes
The JIM has the following modes that can be used to control the input processing:

v Keyboard Mapping

Allows invocation of alphanumeric, Katakana, or Hiragana modes.

v Character Size

Inputs in Zenkaku (full-width) or Hankaku (half-width) mode.

v RKC off/on

Inputs Kana directly or invokes the pre-edit composing mode to input Kana with a combination of
alphabetic characters. The pre-editing facility allows processing of characters before they are committed
to the application.

When the keyboard-mapping mode is alphanumeric and the character size mode is Hankaku, the JIM
maps keys to Romaji characters. This mode combination is known as the ″English″ mode. Pre-editing is
not needed in English mode and cannot be invoked regardless of the RKC mode setting. The other mode
combinations may initiate pre-editing and characters generated in these modes are not ASCII.

The following keys are used to perform Kana-to-Kanji conversion by the JIM.

Keysym Keyboard Mapping

Katakana Katakana shift

Eisu_toggle Alphanumeric shift

Hiragana Hiragana shift

Keysym Character Size

Zenkaku_Hankaku Full-width or Half-width toggle

Hankaku Half-width

Zenkaku Full-width

Keysym RKC on/off

Alt-Hiragana Enables/Disables Romaji-to-Kana conversion

138 National Language Support Guide and Reference

Romaji *The same effect

* Keysyms unique to the manufacturer

The following keys are also used when the JIM is pre-editing a Kanji string.

Keysym Kanji pre-edit

Muhenkan Non-conversion - commit Kana

Henkan Conversion - get next candidate

Kanji Same as Henkan

BunsetsuYomi *Moves back a phrase

MaeKouko *Moves to previous candidate

LeftDouble *Moves cursor two characters left

RightDouble *Moves cursor two characters right

ErInput *Discards the current pre-edit string

Keysym Auxiliary pre-edit

Alt-Henkan All candidates

Touroku Run-time registration

ZenKouho *All candidates (the same effect)

KanjiBangou *Kanji Number Input

HenkanMenu *Changes conversion mode

* Keysyms unique to the manufacturer

Keyboard Mapping
The following keyboard mapping states are possible: Alphanumeric (Romaji), Katakana, and Hiragana.
Each state is invoked by a keysym that acts as a locking shift key. The keysyms are Katakana,
Eisu_toggle, and Hiragana shift.

When one of these keysyms is pressed, keyboard mapping enters the state associated with the key. This
state is maintained until one of the other keysyms is pressed. The initial shift state is Eisu_toggle, which
can be changed by customization.

When you invoke the Hiragana or Katakana state, each key is mapped to a phonetic character within the
respective character set. For example, if you press q, a Hiragana character pronounced ″ta″ is produced
during Hiragana shift state, a Katakana character pronounced ″ta″ is produced during Katakana shift state,
or a Romaji q is produced during Eisu_toggle shift state. On Japanese IBM keyboards, the tops of keys
show all three symbols.

Also, when keyboard mapping is in Hiragana state, the input method is automatically put into a composing
pre-editing mode where each Hiragana character can be converted into a Kanji character. See “Kanji
Pre-edit” on page 140 for more information.

Some keys have two Hiragana or Katakana characters assigned. For example, the 7 key has large and
small Hiragana characters both having the pronunciation ″ya″. These characters are not uppercase and
lowercase equivalents of each other because Kanji, Hiragana, and Katakana do not have uppercase and
lowercase. The small characters are used to express special phonetic sounds. These characters can be
distinguished by using the shift key.

Chapter 6. Input Methods 139

Character Size
A subset of the Japanese character set is represented in both full-width and half-width. Kanji ideographic
characters are usually full-width. The phonetic and ASCII characters have both full-width and half-width
representations. The user controls character size by pressing the Zenkaku_Henkaku keysym, which
toggles between full-width and half-width.

Romaji-To-Kana Conversion (RKC)
For users familiar with alphanumeric keyboards, it is easier to type the phonetic sounds rather than the
Hiragana or Katakana characters. The JIM provides Romaji-to-Kana conversion (RKC), allowing the user
to type in the phonetic sounds of Hiragana or Katakana characters on an alphanumeric keyboard.

Kanji Pre-edit
When operating in Romaji-To-Kana conversion mode, you must follow two steps to produce Kanji
characters. First, the user inputs Hiragana characters by typing their Romaji phonetic characters. In this
step, you produce a Hiragana character by typing 1 to 3 Romaji alphabetic keys that compose the
phonetic sound of the Hiragana character. Second, convert the Hiragana characters to Kanji characters by
pressing the Henkan key. Many Kanji characters may be associated with a single phonetic phrase. The
Henkan key displays the most likely Kanji candidates. Repeated pressing of the Henkan key displays all
the additional candidates.

For example, when you enter the Kanji characters for the phonetic sound ″k-a-n-j-i″, you must do two
things:

1. Set the keyboard mapping to the Hiragana state.

2. Enable Romaji-to-Kana mapping by pressing the Alt-Hiragana key. This action invokes the
alphanumeric keyboard.

You can now press the keys that spell ″kanji″. As each phonetic sound is completed, a Hiragana character
displays.

The Hiragana character is displayed with visual feedback to indicate that the JIM is composing in a
pre-edit state. The character is underlined and shown in reverse video. This feedback facility is known as
a callback. See “Using Callbacks” on page 130 for more information.

To convert the Hiragana character within the pre-edit string to a Kanji character, press the Henkan key.
The most likely candidate associated with the phonetic Hiragana sound displays. Pressing this key
repeatedly shows other candidates.

During the composition process, the pre-edit string is partitioned into segments that can be considered
Kanji words. After a string of kana characters is converted into a candidate, it is treated as one of these
convertible segments. While the pre-edit string is displayed, the JIM uses the cursor key and other keys to
manipulate the string.

To commit the pre-edit string to the program, the user presses the Enter key. In this case, the Enter key
code itself is not sent to the program, only the string.

The Muhenkan keysym can also be used to turn off pre-edit and commit the Hiragana or Katakana
character directly to the program.

The following table depicts the shift state transition and the interaction of the RKC mode key with the shift
states.

Character Encoding Code Points Description Count

000xxxxx 00–1F Controls 32

140 National Language Support Guide and Reference

00100000 20 Space 1

0xxxxxxx 21–7E 7-bit ASCII 94

01111111 7F Delete 1

10000000 80 Undefined 1

100xxxxx 01xxxxxx [81–9F] [40–7E] Double byte 1953

100xxxxx 1xxxxxxx [81–9F] [80–FC] Double byte 3844

10100000 A0 Undefined 1

1xxxxxxx A1–DF 8-bit single byte 63

111xxxxx 01xxxxxx [E0–FC] [40–7E] Double byte 1827

111xxxxx 1xxxxxxx [E0–FC] [80–FC] Double byte 3596

11111101 FD Undefined 1

11111110 FE Undefined 1

11111111 FF All ones 1

The JIM has the following types of auxiliary areas:

v All Candidates menu

v Kanji Number Input dialog

v Conversion Mode menu

v Runtime Registration dialog

A Kana-to-Kanji conversion operation on a string of Hiragana or Katakana characters can yield from one to
a hundred Kanji candidates. At worst, you would have to press the conversion key more than a hundred
times to get the correct Kanji character.

In such cases, it is more convenient to find the correct character by requesting the All Candidates menu
with the ZenKouho or the Alt-Henkan keysym. This menu displays if the current target (a Kanji word that
the cursor is pointing to in the pre-edit area) has several alternative candidates associated with it. The
menu contains multiple candidates for selection. The All Candidates menu disappears when the Reset
keysym is pressed, the Enter key is pressed, or a candidate is selected.

A Kanji Number Input dialog prompts the user to select the Kanji character by entering 3 to 5 digits. The
digits represent the code of the character. Online dictionaries allow a user to search for the code. The
ordering formats for these dictionaries vary. For example, one dictionary lists codes by phonetic sound.
Another dictionary orders codes by the number of strokes used to compose the character. The
KanjiBangou keysym invokes this menu. The menu is terminated with either the Reset or Return keysym.

The HenkanMenu keysym invokes the Conversion Mode menu. Four items are displayed for selection.
The most important items are the word-conversion mode and phrase-conversion mode. Make a selection
by choosing a number and pressing the Return keysym. This menu is terminated when either a selection
is made or the Reset keysym is pressed.

A run-time registration dialog prompts the user to input a Kana string and a Kanji string for registering the
mapping of the strings in the user dictionary. After the pair is registered, the JIM can use it as a conversion
candidate. The menu is terminated with the Escape or Reset keysym.

The presentation of menus depends on the interface environment in which the JIM is operating. For
example, some interfaces support scrolling menus that use the Page Down and Page Up keys.

Chapter 6. Input Methods 141

Keymaps
The following keymaps are supported by the JIM:

v ja_JP.IBM-eucJP.imkeymap

v Ja_JP.IBM-932.imkeymap

v Ja_JP.IBM-943.imkeymap

Keysyms
The JIM uses the keysyms in the XK_KATAKANA, XK_LATIN1, and XK_MISCELLANY groups.

The following reserved keysyms are unique to the input method of this system:

XK_BunsetsuYomi 0x1800ff05 Back a phrase to Yomi

XK_MaeKouho 0x1800ff04 Previous candidate

XK_ZenKouho 0x1800ff01 All candidates.

XK_KanjiBangou 0x1800ff02 Kanji number input.

XK_HenkanMenu 0x1800ff03 Changes conversion mode.

XK_LeftDouble 0x1800ff06 Moves cursor two characters left.

XK_RightDouble 0x1800ff07 Moves cursor two characters right.

XK_LeftPhrase 0x1800ff08 Reserved for future use.

XK_RightPhrase 0x1800ff09 Reserved for future use.

XK_ErInput 0x1800ff0a Discards the current pre-edit string

XK_Resetreset 0x1800ff0b Reset

XK_Kanji Convert Hiragana to Kanji.
XK_Muhenkan Cancels conversion.
XK_Romaji Puts JIM in Romaji input mode.
XK_Hiragana Puts JIM in Hiragana input mode.
XK_Katakana Puts JIM in Katakana input mode.
XK_Zenkaku_Hankaku Toggles between full-width and half-width character input mode.
XK_Touroku Registers a word to the user dictionary.
XK_Eisu_toggle Puts JIM in alphanumeric input mode.

Modifiers
The following modifiers are supported by the JIM:

ShiftMask 0x01
LockMask 0x02
ControlMask 0x04
Mod1Mask (Left-Alt) 0x08
Mod2Mask (Right-Alt) 0x10

The following internal modifiers are supported by the JIM:

Kana 0x20
Romaji 0x40

142 National Language Support Guide and Reference

Korean Input Method (KIM)
The Korean EUC code set consists of the following main character groups:

v ASCII (English)

v Hangul (Korean characters)

The Hangul code set includes Hangul and Hanja (Chinese) characters. One Hangul character can
comprise several consonants and vowels. However, most Hangul words can be expressed in Hanja. Each
Hanja character has its own meaning and is thus more specific than Hangul.

The current Korean standard code set, KSC5601, contains 8224 Hangul, Hanja, and special characters. To
comply with the Korean standard Extended UNIX Code (EUC), this code set is assigned to CS1 of the
EUC.

Input of characters can be accomplished through the following:

v ASCII

ASCII mode is used for entering English characters.

v Hangul

The XK_Hangul key invokes Hangul mode, which must be used to enter Hangul characters. After
Hangul mode is invoked, the KIM composes incoming consonants and vowels according to Hangul
composition rules. A Hangul character is composed of a consonant followed by a vowel. A final
consonant is optional. If incoming characters violate the construct rule, a warning beep is sounded.

There are about 1500 special characters in the standard code set. These characters must be entered
with the Code Input function of the KIM. The Code Input key invokes the Code Input function. When the
Code Input function is invoked, the code point for a desired character can be entered in the Code Input
auxiliary window.

v Hanja

The XK_Hangul_Hanja key invokes the Hanja mode. Hanja characters can only be converted from the
appropriate Hangul character. There are two modes for Hangul-to-Hanja Conversion (HHC):
single-candidate and multi-candidate. In this context, a candidate is a selection of possible character
choices.

In single-candidate mode, the candidates display one by one on the command line. In multi-candidate
mode, up to ten candidates at a time display in an auxiliary window.

When the Hanja conversion mode is employed, any Hangul character can be converted into Hanja
when the Conversion key is pressed. Similarly, any Hanja word can be converted to the appropriate
Hangul word.

Hanja can also be entered with the Code Input function in the same manner used for entering Hangul.

To allow for these conversions, the following special keys appear on the 106-key Korean keyboard.

Special Korean Keys

Key Function Keysym Description of Function

Hangul/English toggle key XK_Hangul Toggles between Hangul and English
modes

Hanja toggle key XK_Hangul_Hanja Toggles Hanja mode on and off

Code Input key XK_Hangul_ Codeinput Invokes the Code Input function,
which allows characters to be entered
by their code points

HHC All-Candidate key XK_Hangul_ MultipleCandidate Invokes the multi-candidate mode

Chapter 6. Input Methods 143

HHC Conversion key XK_Hangul_ Conversion Invokes the single-candidate mode
and also scrolls forward through the
candidates in both single-candidate
and multi-candidate modes

HHC Non-Conversion key XK_Hangul_ NonConversion Scrolls backwards through the
candidates

Latvian Input Method (LVIM)
The Latvian Input Method (LVIM) is similar to the Single-Byte Input Method (SIM), except that it is
customized for processing the Latvian keyboard. The features of LVIM are as follows:

v Supports QWERTY and Ergonomic groups, as two main groups. There are two more supplementary
groups which are accessible through dead keys from both main groups:

– Pressing the left-alt key and left-shift key simultaneously, puts keyboard in the Ergonomic group.

– Pressing the left-alt key and right-shift key simultaneously, puts keyboard in the QWERTY group.

v Supports the IBM-921 code set.

Keymap
The following keymap is supported by the LVIM:

v Lv_LV.IBM-921.imkeymap

Lithuanian Input Method (LTIM)
The Lithuanian Input Method (LTIM) is similar to the Single-Byte Input Method (SIM), except that it is
customized for processing the Lithuanian keyboard. The features of LTIM are as follows:

v Supports Programmed and Lithuanian groups, as two main groups. There are two more supplementary
groups which are accessible through dead keys from both main groups.

– Pressing the left-alt key and left-shift key simultaneously, puts keyboard in the Lithuanian group.

– Pressing the left-alt key and right-shift key simultaneously, puts keyboard in the Programmed group.

v Supports the IBM-921 code set.

Keymap:
The following keymap is supported by the LTIM:

v Lt_LT.IBM-921.imkeymap

Thai Input Method (THIM)
The Thai Input Method is similar to the Single-Byte Input Method (SIM), except that it is customized for
processing the Thai language.

Specifically, it is designed to prevent entry of combinations of Thai characters (consonants, upper/lower
vowels, tone marks) that are not valid in the Thai language. The features of the THIM are as follows:

v Supports Latin and Thai groups, as the two main groups on the keyboard.

– Pressing the left-alt key and left-shift key puts the keyboard in the Thai group.

– Pressing the left-alt key and right-shift key puts the keyboard in the Latin group.

v Supports the TIS-620 codeset.

144 National Language Support Guide and Reference

Keymap
The following keymap is supported by the THIM:

v th_TH.TIS-620.imkeymap

Vietnamese Input Method
The Vienamese Input Method (VNIM) is similar to the Single-Byte Input Method (SIM), except that it is
customized for processing the Vietnamese language.

Specifically, it is designed to prevent entry of combinations of Vietnamese characters (tone marks), that
are not valid in the Vietnamese language. The Vietnamese tone-mark characters can only be entered
immediately after one of the Vietnamese vowels (a, e, i, o, u, y, a-circumflex, e-circumflex, o-circumflex,
a-breve, o-horn, or u-horn).

The VNIM supports a single keyboard layer, including some pre-composed characters and Vietnamese
tone marks.

The VNIM supports the IBM-1129 codeset.

Keymap
The following keymap is supported by the VNIM:

v Vi_VN.IBM-1129.imkeymap

Simplified Chinese Input Method (ZIM-UCS)
The UCS-2 code set consists of almost all character groups. The following character groups exist for the
ZH_CN locale:

v ASCII (English)

v Glyphs

v Chinese, Japanese, and Korean (CJK) Characters (unification characters)

The CJK character set contains 20,992 character positions, but only 20,902 positions are assigned to
Chinese characters.

The pronunciation of simplified Chinese is represented by phonetic symbols called Bopomofo. There are
25 phonetic symbols. Simplified Chinese characters are represented by one to three phonetic symbols.

ZIM-UCS features the following characteristics:

v The following commonly used input methods exist:

Intelligent ABC
An input method based on the phonetic representation of Chinese characters.

Pin Yin Input Method
An input method based on the phonetic representation of Chinese characters. A Chinese
character is divided into one or several phonemes according to its pronunciation.

Wu Bi (Five Strike) Input Method
An input method based on the grapheme representation of Chinese characters. According to the
WuBi grapheme input method, Chinese characters are classified into three levels: stroke, radical
and single-character.

Zheng Ma
An input method based on the grapheme representation of Chinese word.

Chapter 6. Input Methods 145

Biao Xing Ma Input Method
An input method in which a Chinese character is divided into several components,or radicals.
When coding a character, these radicals are presented with the corresponding English letters.

Internal Code Input Method
An input method in accordance with the code table defined in GB18030 (Chinese Internal Code
Specification) and UCS-2 (Unicode System Version 2).

v Half-width and full-width character input. Supports ASCII characters in both single-byte and multibyte
modes.

v Auxiliary window to support all the candidate lists. For example, Intelligent ABC generate a list of
possible characters that contain the same sound symbols (radicals). Users select the desired characters
by pressing the conversion key.

v Over-the-spot pre-editing drawing area. Allows entry of radicals in reverse video area that temporarily
covers the text line. The complete character is sent to the editor by pressing the conversion key.

The UCS-ZIM files are in the /usr/lib/nls/loc directory.

The UCS-ZIM keymap is in the /usr/lib/nls/loc/ZH_CN.UTF-8.imkeymap directory.

Chinese (CJK) Character Processing
UCS-ZIM is invoked by pressing one of the input method keys. Each radical or phonetic symbol is
assigned to a key. The user inputs radicals or phonetic symbols to an over-the-spot pre-editing area. For
internal code input method, a character is generated when the last key is pressed. Other input methods
generate a list of candidates that display in a window. The user chooses the desired character by selecting
the candidate number. Invalid input generates a beep and an error message. The glyphs can be input
using the ABC input method.

Single-Byte Input Method
The Single-Byte Input Method (SIM) is the standard that supports most of the locales. SIM is a mapping
function that supports simple composing defined on workstation keyboards associated with single-byte
locales. SIM supports any keyboard, code set, and language that the keycomp command can describe.
You can customize SIM using imkeymaps. The coded strings returned by the input method depend on the
imkeymap.

Most single-byte locales share one SIM. The SIM features are as follows:

v Supports 101-key and 102-key keyboard mapping.

v Supports Alt-Numpad composing.

When you press the Alt key, the input method composes a character by using the next three numeric
keys pressed. The three numeric keys represent the decimal encoding of the character. For example,
entering the sequence XK_0, XK_9, XK_7 maps to the character a (097).

v Supports the Num-Lock state for the numeric keypad.

v Supports diacritical composing.

The e-umlaut key is an example of diacritical composing. To compose e-umlaut, the user presses the
appropriate diacritical key (umlaut) followed by an alphabetic key (e). The specific set of diacritical keys
in use depend on the locale and keyboard definition. When a space follows a diacritical key, the
diacritical character represented by the key is returned if it is in the locale’s code set.

v Does not require callback functions.

v Located in the /usr/lib/nls/loc/sbcs.im file. Most of the other localized input methods are aliases to this
file.

146 National Language Support Guide and Reference

Keymaps
The following keymaps are used by the SIM:

cs_CZ.ISO8859-2.imkeymap
da_DK.ISO8859-1.imkeymap
de_CH.ISO8859-1.imkeymap
de_DE.ISO8859-1.imkeymap
en_GB.ISO8859-1.imkeymap
en_GB.ISO8859-1@alt.imkeymap
en_US.ISO8859-1.imkeymap
es_ES.ISO8859-1.imkeymap
Et_EE.IBM-922 - imkeymap
pl_PL.ISO8859-2@alt.imkeymap
sq_AL.ISO8859-1.imkeymap
fi_FI.ISO8859-1.imkeymap
fi_FI.ISO8859-1@alt.imkeymap
fr_BE.ISO8859-1.imkeymap
fr_CA.ISO8859-1.imkeymap
fr_CH.ISO8859-1.imkeymap
fr_FR.ISO8859-1.imkeymap
fr_FR.ISO8859-1@alt.imkeymap
hr_HR.ISO8859-2.imkeymap
hu_HU.ISO8859-2.imkeymap
is_IS.ISO8859-1.imkeymap
it_IT.ISO8859-1.imkeymap
it_IT.ISO8859-1@alt.imkeymap
nl_BE.ISO8859-1.imkeymap
nl_NL.ISO8859-1.imkeymap
no_NO.ISO8859-1.imkeymap
pl_PL.ISO8859-2.imkeymap
pt_BR.ISO8859-1.imkeymap
pt_PT.ISO8859-1.imkeymap
ro_RO.ISO8859-2.imkeymap
sh_SP.ISO8859-2.imkeymap
sl_SI.ISO8859-2.imkeymap
sk_SK.ISO8859-2.imkeymap
sv_SE.ISO8859-1.imkeymap
sv_SE.ISO8859-1@alt.imkeymap
tr_TR.ISO8859-1.imkeymap

Reserved Keysyms
The following keysyms are unique to this input method and are described in the /usr/include/X11/
aix_keysym.h file.

XK_dead_acute 0x180000b4
XK_dead_grave 0x18000060
XK_dead_circumflex 0x1800005e
XK_dead_diaeresis 0x180000a8
XK_dead_tilde 0x1800007e
XK_dead_caron 0x180001b7
XK_dead_breve 0x180001a2
XK_dead_doubleacute 0x180001bd
XK_dead_degree 0x180000b0
XK_dead_abovedot 0x180001ff

Chapter 6. Input Methods 147

XK_dead_macron 0x180000af
XK_dead_cedilla 0x180000b8
XK_dead_ogonek 0x180001b2
XK_dead_accentdieresis 0x180007ae

Modifiers
The following modifiers are used by the SIM:

ShiftMask 0x01
LockMask 0x02
ControlMask 0x04
Mod1Mask (Left-Alt) 0x08
Mod2Mask (Right-Alt) 0x10
Mod5Mask (Num Lock) 0x80

Traditional Chinese Input Method (TIM)
The Traditional Chinese code sets consist of the following character groups:

v ASCII (English)

v Traditional Chinese characters

The Traditional Chinese character set contains more than 100,000 characters, but only about 5000 are
frequently used. Each character comprises one to five components known as radicals.

The pronunciation of Traditional Chinese is represented by phonetic symbols called Dsu-Yin or
Bo-Po-Mo-Fo. There are 37 phonetic symbols, as well as four intonation indicators. Chinese characters
are represented by one to three phonetic symbols. The character can include one intonation symbol. The
omission of an intonation symbol implies a fifth intonation accent.

TIM Features
TIM features the following characteristics:

v The following input methods are used:

Tsang-Jye
Supports radicals to generate a character. Most frequently used by data entry personnel.

Simplified Tsang-Jye
Supports wildcard input and radicals. Also allows entry of partial characters.

Phonetic symbols
Inputs a character based on its pronunciation.

Internal Code
Generates characters by EUC hexadecimal, code point input.

Decimal value
Generates characters by decimal value. Can be invoked from any of the input modes.

v Half-width and full-width character input. Supports ASCII characters in both single-byte and multibyte
modes.

v System-defined and user-definable character input.

v Auxiliary window to support all the candidate lists. Simplified Tsang-Jye and phonetic input methods
generate a list of character candidates that contains the same input radicals or sound symbols. Users
select characters by pressing the corresponding number.

148 National Language Support Guide and Reference

v Over-the-spot pre-editing drawing area. Allows entry of radicals in reverse video area that temporarily
covers the text line. The complete character is sent to the editor by pressing the conversion key.

The TIM file is found in the /usr/lib/nls/loc/TW.im directory.

The TIM keymap is found in the /usr/lib/nls/loc/zh_TW.IBM-eucTW.imkeymap directory.

Traditional Chinese Character Processing
TIM is invoked by pressing one of the input-method keys. Each radical or phonetic symbol is assigned to a
key. The user inputs radicals or phonetic symbols to an over-the-spot pre-editing area. For Tsang-Jye and
Internal Code input, a character is generated when the conversion key is pressed. Simplified Tsang-Jye
and Phonetic input generate a list of candidates that display in a window. The user chooses the desired
character by selecting the candidate number. Invalid input generates a beep and an error message.

The following special keys for the Traditional Chinese Input Method are defined on the Traditional Chinese
106-key keyboard.

Special Traditional Chinese Keys

Key Function Keysym Description of Function

Tsang-Jye Shift key XK_Chinese _Tsangjei Invokes both the Tsang-Jye and
Simplified Tsang-Jye input methods.

Phonetic Shift key XK_Chinese _Phonetic Invokes the Phonetic input method.

Half/Full-Width toggle key XK_Chinese _Full_Half Toggles between half-width and
full-width.

Conversion key XK_Convert Converts radical and phonetic
symbols or EUC code symbols into
characters. Displays the candidate list
in an auxiliary window, if needed.

Non-Conversion key XK_Non _Convert Interprets a phonetic symbol as a
character.

English/Numeric key XK_Alph_Num Invokes ASCII mode.

ALT-Tsang-Jye Shift key XK_Internal _Code Invokes Internal Code input method.

ALT plus number keypad Invoke the decimal value input
method.

Related Information
Chapter 6, “Input Methods,” on page 125

“Simplified Chinese Input Method (ZIM-UCS)” on page 145

“ISO Code Sets” on page 57

Universal Input Method
The Universal Input Method is used in the Unicode/UTF-8 locales to provide complete multlingual input
method support. Features of the Universal Input Method are as follows:

v Supports Input Method Switching

– Pressing the Ctrl key and the left Alt and the letter i simultaneously, presents a menu listing the
other available input methods. Selecting an input method from the list remaps the keyboard and
loads the given input method, allowing character entry using the loaded input method.

v Supports Point and Click Character Input

Chapter 6. Input Methods 149

– Pressing the Ctrl key and the left Alt and the letter l simultaneously, presents a menu listing the
various categories of characters contained in the Unicode standard. Selecting a character list
presents a matrix of the available characters from the list. Clicking on a given character will then
send that character through the input method to the application.

– Pressing the Ctrl key and the left Alt and the letter c returns to the application, or if already in the
application, returns to the most recently used character list for point and click character entry.

v Supports the UTF-8 code set.

Keymap
XX_XX.UTF-8.imkeymap

Reserved Keysyms
The keysyms listed are reserved for use by the input methods:

XK_dead_acute 0x180000b4
XK_dead_grave 0x18000060
XK_dead_circumflex 0x1800005e
XK_dead_diaeresis 0x180000a8
XK_dead_tilde 0x1800007e
XK_dead_caron 0x180001b7
XK_dead_breve 0x180001a2
XK_dead_doubleacute 0x180001bd
XK_dead_degree 0x180000b0
XK_dead_abovedot 0x180001ff
XK_dead_macron 0x180000af
XK_dead_cedilla 0x180000b8
XK_dead_ogonek 0x180001b2
XK_dead_accentdieresis 0x180007ae
XK_BunsetsuYomi 0x1800ff05
XK_MaeKouho 0x1800ff04
XK_ZenKouho 0x1800ff01
XK_KanjiBangou 0x1800ff02
XK_HenkanMenu 0x1800ff03
XK_LeftDouble 0x1800ff06
XK_RightDouble 0x1800ff07
XK_LeftPhrase 0x1800ff08
XK_RightPhrase 0x1800ff09
XK_ErInput 0x1800ff0a
XK_Reset 0x1800ff0b

Reserved Keysyms for Traditional Chinese

XK_Full_Size 0xff42
XK_Phonetic 0xff48
XK_Alph_Num 0xaff50
XK_Non_Convert 0xaff52
XK_Convert 0xaff51
XK_Tsang_Jye 0xff47
XK_Internal_Code 0xff4a

150 National Language Support Guide and Reference

Reserved Keysyms for Simplified Chinese (ZIM and ZIM-UCS)

XK_Alph_Num 0xaff47
XK_Non_Convert 0xaff59
XK_Row_Column 0xaff48
XK_PinYin 0xaff49
XK_English_Chinese 0xaff50
XK_ABC 0xaff51
XK_Fivestroke 0xaff62
XK_User-defined 0xaff56
XK_Legend 0xaff55
XK_ABC_Set_Option 0xaff60
XK_Half_full 0xaff53

Related Information
The IMClose subroutine, IMCreate subroutine, IMDestroy subroutine, IMInitialize subroutine,
IMInitializeKeymap subroutine, IMloctl subroutine, IMFilter subroutine, IMLookupString subroutine,
IMProcessAuxiliary subroutine, IMQueryLanguage subroutine.

Chapter 6. Input Methods 151

152 National Language Support Guide and Reference

Chapter 7. Message Facility

To facilitate translations of messages into various languages and make them available to a program based
on a user’s locale, it is necessary to keep messages separate from the program by providing them in the
form of message catalogs that the program can access at run time. To aid in this task, commands and
subroutines are provided by the Message Facility.

Message source files containing application messages are created by the programmer and converted to
message catalogs. The application uses these catalogs to retrieve and display messages, as needed.
Translating message source files into other languages and then converting the files to message catalogs
does not require changing and recompiling a program.

The following information is provided for understanding the Message Facility:

v “Creating a Message Source File”

v “Creating a Message Catalog” on page 157

v “Displaying Messages outside of an Application Program” on page 159

Creating a Message Source File
The Message Facility provides commands and subroutines to retrieve and display program messages
located in externalized message catalogs. A programmer creates a message source file containing
application messages and converts it to a message catalog with the gencat command.

To create a message-text source file, open a file using any text editor. Enter a message identification
number or symbolic identifier. Then enter the message text as shown in the following example:
1 message-text $ (This message is numbered)
2 message-text $ (This message is numbered)
OUTMSG message-text $ (This message has a symbolic identifier \

called OUTMSG)
4 message-text $ (This message is numbered)

Usage Considerations
Consider the following:

v One blank character must exist between the message ID number (or identifier) and the message text.

v A symbolic identifier must begin with an alphabetic character and can contain only letters of the
alphabet, decimal digits, and underscores.

v The first character of a symbolic identifier cannot be a digit.

v The maximum length of a symbolic identifier is 64 bytes.

v Message ID numbers must be assigned in ascending order within a single message set, but need not
be contiguous. 0 (zero) is not a valid message ID number.

v Message ID numbers must be assigned as if intervening symbolic identifiers are also numbered. If, for
example, you had numbered the lines as in the previous example, 1, 2, OUTMSG, and 3, the program
would contain an error, because the mkcatdefs command also assigns numbers to symbolic identifiers,
and would have assigned number 3 to the OUTMSG symbolic identifier.

Note: Symbolic identifiers are specific to the Message Facility. Portability of message source files can
be affected by the use of symbolic identifiers.

Adding Comments to the Message Source File
You can include a comment anywhere in a message source file except within message text. Leave at least
one space or tab (blank) after the $ (dollar sign). The following is an example of a comment:
$ This is a comment.

© Copyright IBM Corp. 2002, 2006 153

Comments do not appear in the message catalog generated from the message source file.

Comments can help developers in the process of maintaining message source files, translators in the
process of translation, and writers in the process of editing and documenting messages. Use comments to
identify what variables, such as %s, %c, and %d, represent. For example, create a note that states whether
the variable refers to a user, file, directory, or flag. Comments also should be used to identify obsolete
messages.

For clarity, you should place a comment line directly beneath the message to which it refers, rather than at
the bottom of the message catalog. Global comments for an entire set can be placed directly below the
$set directive.

Continuing Messages on the Next Line
All text following the blank after the message number is included as message text, up to the end of the
line. Use the escape character \ (backslash) to continue message text on the following line. The \
(backslash) must be the last character on the line as in the following example:
5 This is the text associated with \
message number 5.

These two physical lines define the single-line message:
This is the text associated with message number 5.

Note: The use of more than one blank character after the message number or symbolic identifier is
specific to the Message Facility. Portability of message source files can be affected by the use of
more than one blank.

Including Special Characters in the Message Text
The \ (backslash) can be used to insert special characters into the message text. These special characters
are as follows:

\n Inserts a new-line character.
\t Inserts a horizontal tab character.
\v Inserts a vertical tab character.
\b Inserts a backspace character.
\r Inserts a carriage-return character.
\f Inserts a form-feed character.
\\ Inserts a \ (backslash) character.
\ddd Inserts a single-byte character associated with the octal value represented by the valid octal digits ddd.

Note: One, two, or three octal digits can be specified. However, you must include a leading zero if the
characters following the octal digits are also valid octal digits. For example, the octal value for $ (dollar
sign) is 44. To display $5.00, use \0445.00, and not \445.00, or the 5 will be parsed as part of the octal
value.

\xdd Inserts a single-byte character associated with the hexadecimal value represented by the two valid
hexadecimal digits dd. You must include a leading zero to avoid parsing errors (see the note about \ddd).

\xdddd Inserts a double-byte character associated with the hexadecimal value represented by the four valid
hexadecimal digits dddd. You must include a leading zero to avoid parsing errors (see the note about
\ddd).

Defining a Character to Delimit Message Text
You can use the $quote directive in a message source file to define a character for delimiting message
text. This character should be an ASCII character. The format is:
$quote [character] [comment]

154 National Language Support Guide and Reference

Use the specified character before and after the message text. In the following example, the $quote
directive sets the quote character to _ (underscore), and then disables it before the last message, which
contains quotation marks:
$quote _ Use an underscore to delimit message text
$set MSFAC Message Facility - symbolic identifiers
SYM_FORM _Symbolic identifiers can contain alphanumeric \
characters or the _ (underscore character)\n_
SYM_LEN _Symbolic identifiers can be up to 65 \
characters long \n_
5 _You can mix symbolic identifiers and numbers \n_
$quote
MSG_H Remember to include the _msg_h_ file in your program\n

The last $quote directive in the previous example disables the underscore character.

In the following example, the $quote directive defines ″ (double quotation marks) as the quote character.
The quote character must be the first non-blank character following the message number. Any text
following the next occurrence of the quote character is ignored.
$quote " Use a double quote to delimit message text
$set 10 Message Facility - Quote command messages
1 "Use the $quote directive to define a character \
\n for delimiting message text"
2 "You can include the \"quote\" character in a message \n \
by placing a \\ in front of it"
3 You can include the "quote" character in a message \n \
by having another character as the first nonblank \
\n character after the message ID number
$quote
4 You can disable the quote mechanism by \n \
using the $quote directive without a character \n\
after it

The preceding example illustrates two ways the quote character can be included in message text:

v Place a \ (backslash) in front of the quote character.

v Use some other character as the first non-blank character following the message number. This disables
the quote character only for that message.

The preceding example also shows the following:

v A \ (backslash) is still required to split a quoted message across lines.

v To display a \ (backslash) in a message, place another \ (backslash) in front of it.

v You can format a message with a new-line character by using \n.

v Using the $quote directive with no character argument disables the quote mechanism.

Assigning Message Set Numbers and Message ID Numbers
All message sets require a set number or symbolic identifier. Use the $set directive in a source file to give
a group of messages a number or identifier:
$set n [comment]

The message set number is specified by the value of n, a number between 1 and NL_SETMAX. Instead
of a number, you can use a symbolic identifier. All messages following the $set directive are assigned to
that set number until the next occurrence of a $set directive. The default set number is 1. Set numbers
must be assigned in ascending order, but need not be in series. Empty sets are created for skipped
numbers. However, large gaps in the number sequence can decrease efficiency and performance.
Moreover, performance is not enhanced by using more than one set number in a catalog.

You can also include a comment in the $set directive, as follows:

Chapter 7. Message Facility 155

$set 10 Communication Error Messages

$set OUTMSGS Output Error Messages

Many AIX message sets have a symbolic identifier of the form MS_PROG, where MS represents Message
Set and PROG is the name of the program or utility related to the message set. For example:
$set MS_WC Message Set for the wc Utility

$set MS_XLC1 Message Set 1 for the C For AIX compiler

$set MS_XLC2 Message Set 2 for the C For AIX compiler

Removing Messages from a Catalog
The $delset directive removes all of the messages belonging to a specified set from an existing catalog:
$delset n [comment]

The message set is specified by n. The $delset directive must be placed in the proper set-number order
with respect to any $set directives in the same source file. You can also include a comment in the $delset
directive.

Length of Message Text
The $len directive establishes the maximum display length of message text:
$len [n [comment]]

If n is not specified or if the $len directive is not included, the message text display is set to the
NL_TEXTMAX value. The message-text display length is the maximum number of bytes allowed for a
message. Any subsequent specification of a $len directive overrides a previous specification. The value of
n cannot exceed the NL_TEXTMAX value.

Content of Message Text
Whenever possible, tell users exactly what has happened and what they can do to remedy the situation.
The following example shows how cause and recovery information can improve a message:
Original Message: Bad arg

Revised Message: Specify year as a value between 1 and 9999.

The message Bad arg does not help users much; whereas the message Do not specify more than 2
files on the command line tells users exactly what they must do to make the command work. Similarly,
the message Line too long does not give recovery information to users. The message Line cannot
exceed 20 characters provides the missing information.

Examples of Message Source Files
1. The following example message source file uses numbers for message ID numbers and for message

set numbers:
$ This is a message source file sample.
$ Define the Quote Character.
$quote "
$set 1 This is the set 1 of messages.
1 "The specified file does not have read permission on\n"
2 "The %1$s file and the %2$s file are same\n"
3 "Hello world!\n"
$Define the quote character
$quote '
$set 2 This is the set 2 of messages
1 'fieldef: Cannot open %1$s \n'
2 'Hello world\n'

156 National Language Support Guide and Reference

2. The following example message source file uses symbolic identifiers for message ID numbers and for
message set numbers:
$ This is a message source file sample.
$ Define the Quote Character.
$quote "
$set MS_SET1 This is the set 1 of messages.
MSG_1 "The specified file does not have read permission on\n"
MSG_2 "The %1$s file and the %2$s file are same\n"
MSG_3 "Hello world\n"
$Define the quote character
$quote
$set 2 This is the set 2 of messages.
$EMSG_1 'fieldef: Cannot open %1$s\n'
$EMSG_2 'Hello world!\n'

3. The following examples show how symbolic identifiers can make the specification of a message more
understandable:
catgets(cd, 1, 1, "default message")

catgets(cd, MS_SET1, MSG_1, "default message")

Creating a Message Catalog
The Message Facility provides commands and subroutines to retrieve and display program messages
located in externalized message catalogs. A programmer creates a message source file containing
application messages and converts it to a message catalog. Translating message source files into other
languages and then converting the files to message catalogs does not require changing or recompiling a
program.

To create a message catalog, process your completed message source file with the message facility’s
gencat command. This command can be used in the following ways:

v Use the gencat command to process a message source file containing set numbers, message ID
numbers, and message text. Message source files containing symbolic identifiers cannot be processed
directly by the gencat command. The following example uses the information in the x.msg message
source file to generate a catalog file:
gencat x.cat x.msg

v Use the mkcatdefs command to preprocess a message source file containing symbolic identifiers. The
resulting file is then piped to the gencat command. The mkcatdefs command produces a
SymbolName_msg.h file containing definition statements. These statements equate symbolic identifiers
with set numbers and message ID numbers assigned by the mkcatdefs command. The
SymbolName_msg.h file should be included in programs using these symbolic identifiers. The
mkcatdefs command is specific to AIX. The following example uses the information in the x.msg
message source file to generate the x_msg.h header file:
mkcatdefs x x.msg

v Use the runcat command to automatically process a source file containing symbolic identifiers. The
runcat command invokes the mkcatdefs command and pipes its output to the gencat command. The
runcat command is specific to AIX. The following example uses the information in the x.msg message
source file to generate the x_msg.h header file and the X.cat catalog file:
runcat x x.msg

The preceding example is equivalent to the following example:
mkcatdefs x x.msg | gencat x.cat

If a message catalog with the name specified by the CatalogFile parameter exists, the gencat command
modifies the catalog according to the statements in the message source files. If a message catalog does
not exist, the gencat command creates a catalog file with the name specified by the CatalogFile
parameter.

Chapter 7. Message Facility 157

You can specify any number of message text source files. Multiple files are processed in the sequence
you specify. Each successive source file modifies the catalog. If you do not specify a source file, the
gencat command accepts message source data from standard input.

Catalog Sizing
A message catalog can be virtually any size. The maximum numbers of sets in a catalog, messages in a
catalog, and bytes in a message are defined in the /usr/include/limits.h file by the following macros:

NL_SETMAX Specifies the maximum number of set numbers that can be specified by the $set directive. If the
NL_SETMAX limit is exceeded, the gencat command issues an error message and does not
create or update the message catalog.

NL_MSGMAX Specifies the maximum number of message ID numbers allowed by the system. If the
NL_MSGMAX limit is exceeded, the gencat command issues an error message and does not
create or update the message catalog.

NL_TEXTMAX Specifies the maximum number of bytes a message can contain. If the NL_TEXTMAX limit is
exceeded, the gencat command issues an error message and does not create or update the
message catalog.

Examples
1. This example shows how to create a message catalog from a source file containing message

identification numbers. The following is the text of the hello.msg message source file:
$ file: hello.msg
$set 1 prompts
1 Please, enter your name.
2 Hello, %s \n
$ end of file: hello.msg

To create the hello.cat message catalog from the hello.msg source file, type:
gencat hello.cat hello.msg

2. This example shows how to create a message catalog from a source file with symbolic references. The
following is the text of the hello.msg message source file that contains symbolic references to the
message set and the messages:
$ file: hello.msg
$quote "
$set PROMPTS
PLEASE "Please, enter your name."
HELLO "Hello, %s \n"
$ end of file: hello.msg

The following is the text of the msgerrs.msg message source file that contains error messages that
can be referenced by their symbolic IDs:
$ file: msgerrs.msg
$quote "
$set CAT_ERRORS
MAXOPEN "Cannot open message catalog %s \n \
Maximum number of catalogs already open "
NOT_EX "File %s not executable \n "
$set MSG_ERRORS
NOT_FOUND "Message %1$d, Set %2$d not found \n "
$ end of file: msgerrs.msg

To process the hello.msg and msgerrs message source files, type:
runcat hello hello.msg
runcat msgerrs msgerrs.msg /usr/lib/nls/msg/$LANG/msgerrs.cat

The runcat command invokes the mkcatdefs and gencat commands. The first call to the runcat
command takes the hello.msg source file and uses the second parameter, hello, to produce the
hello.cat message catalog and the hello_msg.h definition file.

158 National Language Support Guide and Reference

The hello_msg.h definition file contains symbolic names for the message catalog and symbolic IDs for
the messages and sets. The symbolic name for the hello.cat message catalog is MF_HELLO. This name
is produced automatically by the mkcatdefs command.

The second call to the runcat command takes the msgerrs.msg source file and uses the first
parameter, msgerrs, to produce the msgerrs_msg.h definition file.

Because the third parameter, /usr/lib/nls/msg/$LANG/msgerrs.cat, is present, the runcat command
uses this parameter for the catalog file name. This parameter is an absolute path name that specifies
exactly where the runcat command must put the file. The symbolic name for the msgerrs.cat catalog
is MF_MSGERRS.

Displaying Messages outside of an Application Program
The following commands allow you to display messages outside of an application program. These
commands are specific to AIX.

dspcat Displays the messages contained in the specified message catalog. The following example displays the
messages located in the x.cat message source file:

dspcat x.cat
dspmsg Displays a single message from a message catalog. The following example displays the message

located in the x.cat message source file that has the ID number of 1 and the set number of 2:

dspmsg x.cat -s 2 1

You can use the dspmsg command in shell scripts when a message must be obtained from a message
catalog.

Displaying Messages with an Application Program
When programming with the Message Facility, you must include the following items in your application
program:

v The CatalogFile_msg.h definition file created by the mkcatdefs or runcat command if you used
symbolic identifiers in the message source file, or the limits.h and nl_types.h files if you did not use
symbolic identifiers

v A call to initialize the locale environment

v A call to open a catalog

v A call to read a message

v A call to display a message

v A call to close the catalog

The following subroutines provide the services necessary for displaying program messages with the
message facility:

setlocale Sets the locale. Specify the LC_ALL or LC_MESSAGES environment variable in the call to the
setlocale subroutine for the preferred message catalog language.

catopen Opens a specified message catalog and returns a catalog descriptor, which you use to retrieve
messages from the catalog.

catgets Retrieves a message from a catalog after a successful call to the catopen subroutine.
printf Converts, formats, and writes to the stdout (standard output) stream.
catclose Closes a specified message catalog.

The following C program, hello, illustrates opening the hello.cat catalog with the catopen subroutine,
retrieving messages from the catalog with the catgets subroutine, displaying the messages with the printf
subroutine, and closing the catalog with the catclose subroutine.

Chapter 7. Message Facility 159

/* program: hello */
#include <nl_types.h>
#include <locale.h>
nl_catd catd;
main()
{
/* initialize the locale */
setlocale (LC_ALL, "");
/* open the catalog */
catd=catopen("hello.cat",NL_CAT_LOCALE);
printf(catgets(catd,1,1,"Hello World!"));
catclose(catd); /* close the catalog */
exit(0);
}

In the previous example, the catopen subroutine refers to the hello.cat message catalog only by file
name. Therefore, you must make sure that the NLSPATH environment variable is set correctly. If the
message catalog is successfully opened by the catopen subroutine, the catgets subroutine returns a
pointer to the specified message in the hello.cat catalog. If the message catalog is not found or the
message does not exist in the catalog, the catgets subroutine returns the Hello World! default string.

Understanding the NLSPATH Environment Variable
The NLSPATH environment variable specifies the directories to search for message catalogs. The
catopen subroutine searches these directories in the order specified when called to locate and open a
message catalog. If the message catalog is not found, the message-retrieving routine returns the
program-supplied default message. See the /etc/environment file for the NLSPATH default path.

Retrieving Program-Supplied Default Messages
All message-retrieving routines return the program-supplied default message text if the desired message
cannot be retrieved for any reason. Program-supplied default messages are generally brief one-line
messages that contain no message numbers in the text. Users who prefer these default messages can set
the LC_MESSAGES category to the C locale or unset the NLSPATH environment variable. When none of
the LC_ALL, LC_MESSAGES, or LANG environment variables are set, the LC_MESSAGES category
defaults to the C locale.

Setting the Language Hierarchy
Multilingual users may specify a language hierarchy for message text. To set the language hierarchy for
the system default or for an individual user, see “Changing the Language Environment” on page 4, or use
SMIT. To use SMIT, to set the language hierarchy, type the SMIT fastpath smit mlang at the command
line.

Select Change / Show Language Hierarchy.

OR

At the command line, type:
smit

Select System Environments.

Select Manage Language Environment.

Select Change / Show Language Hierarchy.

160 National Language Support Guide and Reference

Example of Retrieving a Message from a Catalog
This example has three parts: the message source file, the command used to generate the message
catalog file, and an example program using the message catalog.

1. The following example shows the example.msg message source file:
$quote "
$ every message catalog should have a beginning set number.
$set MS_SET1
MSG1 "Hello world\n"
MSG2 "Good Morning\n"
ERRMSG1 "example: 1000.220 Read permission is denied for the file
%s.\n"
$set MS_SET2
MSG3 "Howdy\n"

2. The following command uses the example.msg message source file to generate the example.h
header file and the example.cat catalog file in the current directory:
runcat example example.msg

3. The following example program uses the example.h header file and accesses the example.cat
catalog file:
#include <locale.h>
#include <nl_types.h>
#include "example_msg.h" /*contains definitions for symbolic

identifiers*/
main()
{

nl_catd catd;
int error;

(void)setlocale(LC_ALL, "");

catd = catopen(MF_EXAMPLE, NL_CAT_LOCALE);
/*
** Get the message number 1 from the first set.
*/
printf(catgets(catd,MS_SET1,MSG1,"Hello world\n"));

/*
** Get the message number 1 from the second set.
*/
printf(catgets(catd, MS_SET2, MSG3,"Howdy\n"));
/*
** Display an error message.
*/
printf(catgets(catd, MS_SET1, ERRMSG1,"example: 100.220

Permission is denied to read the file %s.\n") ,
filename);

catclose(catd);
}

Writing Messages
The following tips help you make messages meaningful and concise:

v Plan for the internationalization of all messages, including messages that are displayed on panels.

v Allow sufficient space for translated messages to be displayed. Translated messages often occupy more
display columns than the original message text. In general, allow about 20% to 30% more space for
translated messages, but in some cases, you might need to allow 100% more space for translated
messages.

v Use message catalogs to externalize any user and error messages. X applications can use resource
files to externalize messages for each locale.

v Provide default messages.

Chapter 7. Message Facility 161

v Make each message in a message source file be a complete entity. Building a message by
concatenating parts makes translation difficult.

v Use the $len directive in the message source file to control the maximum display length of the message
text. (The $len directive is specific to the Message Facility.)

v Use symbolic identifiers to specify the set number and message number. Programs should refer to set
numbers and message numbers by their symbolic identifiers, not by their actual numbers. (The use of
symbolic identifiers is specific to the Message Facility.)

v Facilitate the reordering of sentence clauses by numbering the %s variables. This allows the translator to
reorder the clauses if needed. For example, if a program needs to display the English message: The
file %s is referenced in %s, a program may supply the two strings as follows:
printf(message_pointer, name1, name2)

The English message numbers the %s variables as follows:
The file %1$s is referenced in %2$s\n

The translated equivalent of this message may be:
%2$s contains a reference to file %1$s\n

v Do not use sys_errlist[errno] to obtain an error message. This defeats the purpose of externalizing
messages. The sys_errlist[] is an array of error messages provided only in the English language. Use
strerror(errno) , as it obtains messages from catalogs.

v Do not use sys_siglist[signo] to obtain an error message. This defeats the purpose of externalizing
messages. The sys_siglist[] is an array of error messages provided only in the English language. Use
psignal() , as it obtains messages from catalogs.

v Use the message comments facility to aid in the maintenance and translation of messages.

v In general, create separate message source files and catalogs for messages that apply to each
command or utility.

Describing Command Syntax in Messages
v Show the command syntax in the usage statement. For example, a possible usage statement for the rm

command is:
Usage: rm [-firRe] [--] File ...

v Capitalize the first letter of such words as File, Directory, String, and Number in usage statement
messages.

v Do not abbreviate parameters on the command line. For example, Num spelled out as Number can be
more easily translated.

v Use only the following delimiters in usage statement messages:

[] Encloses an optional parameter.
{} Encloses multiple parameters, one of which is required.
| Separates parameters that cannot both be chosen. For example, [a|b] indicates that you can choose a, b ,

or neither a nor b ; and {a|b} indicates that you must choose a or b .
... Follows a parameter that can be repeated on the command line. Note that there is a space before the

ellipsis.
- Indicates standard input.

v Do not use any delimiters for a required parameter that is the only choice. For example:
banner String

v Put a space character between flags that must be separated on the command line. For example:
unget [-n] [-rSID] [-s] {File|-}

v Do not separate flags that can be used together on the command line. For example:
wc [-cwl] {File ...|-}

162 National Language Support Guide and Reference

v Put flags in alphabetic order when the order of the flags on the command line does not make a
difference. Put lowercase flags before uppercase flags. For example:
get -aAijlmM

v Use your best judgment to determine where you should end lines in the usage statement message. The
following example shows a lengthy usage statement message:

Usage: get [-e|-k] [-c Cutoff] [-i List] [-r SID] [-w String] [-x List] [-b] [-gmnpst] ...

Continue the usage information on a second line, if necessary. For example:
Usage: get [-e|-k] [-c Cutoff] [-i List] [-r SID] [-w String]

[-x List] [-b] [-gmnpst] [-l[p]] File ...

Writing Style for Messages
Clear writing aids in message translation. The following guidelines on the writing style of messages include
terminology, punctuation, mood, voice, tense, capitalization, format, and other usage questions.

v Write concise messages. One-sentence messages are preferable.

v Use complete-sentence format.

v Add articles (a, an, the) when necessary to eliminate ambiguity.

v Capitalize the first word of the sentence, and use a period at the end of the sentence.

v Use the present tense. Do not use future tense in a message. For example, use the sentence:
The cal command displays a calendar.

Instead of:
The cal command will display a calendar.

v Do not use the first person (I or we) in messages.

v Avoid using the second person (you) except in help and interactive text.

v Use active voice. The following example shows how a message written in passive voice can be turned
into an active voice message.
Passive: Month and year must be entered as numbers.
Active: Enter month and year as numbers.

v Use the imperative mood (command phrase) and active verbs such as specify, use, check, choose, and
wait.

v State messages in a positive tone. The following example shows a negative message made more
positive.
Negative: Don't use the f option more than once.
Positive: Use the -f flag only once.

v Use words only in the grammatical categories shown in a dictionary. If a word is shown only as a noun,
do not use it as a verb. For example, do not solution a problem or architect a system.

v Do not use prefixes or suffixes. Translators may not know what words beginning with re-, un-, in-, or
non- mean, and the translations of messages that use prefixes or suffixes may not have the meaning
you intended. Exceptions to this rule occur when the prefix is an integral part of a commonly used word.
For example, the words previous and premature are acceptable; the word nonexistent is not
acceptable.

v Do not use parentheses to show singular or plural, as in error(s), which cannot be translated. If you
must show singular and plural, write error or errors. You may also be able to revise the code so that
different messages are issued depending on whether the singular or plural of a word is required.

v Do not use contractions.

v Do not use quotation marks, both single and double quotation marks. For example, do not use quotation
marks around variables such as %s, %c, and %d or around commands. Users might interpret the
quotation marks literally.

v Do not hyphenate words at the ends of lines.

Chapter 7. Message Facility 163

v Do not use the standard highlighting guidelines in messages, and do not substitute initial or all caps for
other highlighting practices. (Standard highlighting includes such guidelines as boldface for commands,
subroutines, and files; italics for variables and parameters; typewriter or courier font for examples and
displayed text.)

v Do not use the and/or construction. This construction does not exist in other languages. Usually it is
better to say or to indicate that it is not necessary to do both.

v Use the 24-hour clock. Do not use a.m. or p.m. to specify time. For example, write 1:00 p.m. as 1300.

v Avoid acronyms. Only use acronyms that are better known to your audience than their spelled-out
version. To make a plural of an acronym, add a lowercase s without an apostrophe. Verify that the
acronym is not a trademark before using it.

v Do not construct messages from clauses. Use flags or other means within the program to pass on
information so that a complete message may be issued at the proper time.

v Do not use hard-coded text as a variable for a %s string in a message.

v End the last line of the message with \n (indicating a new line). This applies to one-line messages also.

v Begin the second and remaining lines of a message with \t (indicating a tab).

v End all other lines with \n\ (indicating a new line).

v Force a newline on word boundaries where needed so that acceptable message strings display. The
printf subroutine, which often is used to display the message text, disregards word boundaries and
wraps text whenever necessary, sometimes splitting a word in the middle.

v If, for some reason, the message should not end with a newline character, leave writers a comment to
that effect.

v Precede each message with the name of the command that called the message, followed by a colon.
The following example is a message containing a command name:
OPIE "foo: Opening the file."

v Tell the user to Press the ——— key to select a key on the keyboard, including the specific key to press.
For example:
Press the Ctrl-D key

v Do not tell the user to Try again later, unless the system is overloaded. The need to try again should
be obvious from the message.

v Use the word ″parameter″ to describe text on the command line, the word ″value″ to indicate numeric
data, and the words ″command string″ to describe the command with its parameters.

v Do not use commas to set off the one-thousandth place in values. For example, use 1000 instead of
1,000.

v If a message must be set off with an * (asterisk), use two asterisks at the beginning of the message
and two at asterisks at the end of the message. For example:
** Total **

v Use the words ″log in″ and ″log off″ as verbs. For example:
Log in to the system; enter the data; then log off.

v Use the words ″user name,″ ″group name,″ and ″login″ as nouns. For example:
The user is sam.
The group name is staff.
The login directory is /u/sam.

v Do not use the word ″superuser.″ Note that the root user may not have all privileges.

v Use the following frequently occurring standard messages where applicable:

Preferred Standard Message Less Desirable Message
Cannot find or open the file. Can’t open filename.
Cannot find or access the file. Can’t access
The syntax of a parameter is not valid. syntax error

164 National Language Support Guide and Reference

Chapter 8. Culture-Specific Data Handling

Culture-specific data handling may be part of a program, and such a program may supply different data for
different locales. In addition, a program may use different algorithms to process character data based on
the language and culture. For example, recognition of the start and end of a word and the method of
hyphenation of a word across two lines varies depending on the locale. Programs that deal with such
functionality need access to these tables or algorithms based on the current locale setting at run time. You
can handle such programs in the following ways:

v Compile all the algorithms and tables, and load them with the program.

This method makes it difficult to add or modify the algorithms and tables. Whenever a new algorithm or
table is added, the entire program must be relinked.

v Keep the locale-specific algorithms and tables in a file, and load them at run time, depending on the
current locale setting.

This method makes it easier to modify and add algorithms and tables. However, there is no standard
defined way to load algorithms. In AIX, you can achieve this using the load subroutine, but programs
that use the load subroutine might not be portable to other systems.

Culture-Specific Tables
If the culture-specific data can be processed by accessing tables based on the current locale setting, then
this can be accomplished by using the standard file I/O subroutines (fopen, fread, open, read, and so
on). Such tables must be provided in the directory defined in /usr/lpp/Name where Name is the name of
the particular application under the appropriate locale name.

Standard path prefix
/usr/lpp/Name (AIX-specific pathname)

Culture-specific directory
Obtain the current locale for the appropriate category that describes the tables. Concatenate it to
the above prefix.

Access
Use standard file access subroutines (fopen, fread, and so on) as appropriate.

Culture-Specific Algorithms
The culture-specific algorithms reside in the /usr/lpp/Name/%L directory. Here %L represents the current
locale setting for the appropriate category.

Use the load subroutine to access program-specific algorithms from an object module.

Standard path prefix
/usr/lpp/Name

Culture-specific directory
Obtain the current locale for the appropriate category. Concatenate it to the above prefix.

Method
Concatenate the method name to it.

Example of Loading a Culture-Specific Module for Arabic Text for an
Application

Header File
The methods.h include file has one structure as follows:

© Copyright IBM Corp. 2002, 2006 165

struct Methods {
int version;
char *(*hyphen)();
char *(*wordbegin)();
char *(*wordend)();

} ;

Main Program
In this example, the program name is textpr.

The main program determines the module to load and invokes it. Note that the textpr.h include file is used
to specify the path name of the load object. This way, the path name, which is system-specific, can be
changed easily.
#include <stdio.h>
#include <errno.h>
#include "methods.h"
#include "textpr.h" /* contains the pathname where

the load object can be found */

extern int errno;

main()
{

char libpath[PATH_MAX]; /* stores the full pathname of the
load object */

char *prefix_path=PREFIX_PATH; /* from textpr.h */
char *method=METHOD; /* from textpr.h */
int (*func)();
char *path;
/* Methods */
int ver;
char *p;
struct Methods *md;

setlocale(LC_ALL, "");

path = setlocale(LC_CTYPE, 0); /* obtain the locale
for LC_CTYPE category */

/* Construct the full pathname for the */
/* object to be loaded */
strcpy(libpath, prefix_path);
strcat(libpath, path);
strcat(libpath, "/");
strcat(libpath, method);

func = load(conv, 1, libpath); /* load the object */
if(func==NULL){

strerror(errno);
exit(1);

}
/* invoke the loaded module ");
md =(struct Methods *) func(); /* Obtain the methods

structure */
ver = md->version;
/* Invoke the methods as needed */
p = (md->hyphen)();
p = (md->wordbegin)();
p = (md->wordend)();

}

166 National Language Support Guide and Reference

Methods
This module contains culture-specific algorithms. In this example, it provides the Arabic method. The
method.c program follows:
#include "methods.h"

char *Arabic_hyphen(char *);
char *Arabic_wordbegin(char *);
char *Arabic_wordend(char *);

static struct Methods ArabicMethods= {
1,
Arabic_hyphen,
Arabic_wordbegin,
Arabic_wordend

} ;

struct Methods *start_methods()
{

/* startup methods */
return (&ArabicMethods);

}

char *Arabic_hyphen(char *string)
{

/* Arabic hyphen */
return(string);

}
char *Arabic_wordbegin(char *string)
{

/*Arabic word begin */);
return(string);

}
char *Arabic_wordend(char *string)
{

/* Arabic word end */;
return(string);

}

Include File
The textpr include file contains the path name of the module to be loaded.
#define PREFIX_PATH "/usr/lpp/textpr"

/* This is an AIX-specific pathname */

Layout (Bidirectional Text and Character Shaping) Overview
Bidirectional (BIDI) text results when texts of different direction orientation appear together. For example,
English text is read from left to right. Arabic and Hebrew texts are read from right to left. If both English
and Hebrew texts appear on the same line, the text is bidirectional. For further information about
directional text and character shaping, including a list of available publications, see the following web
address:

http://www.opengroup.org

Write bidirectional text according to the following guidelines:

v Arabic and Hebrew words are written from right to left. (A character string is considered a word for the
purposes of sequencing in an alphanumeric environment.)

v Numbers and English quotations are written from left to right.

v Digits and their punctuation marks are written from left to right.

Chapter 8. Culture-Specific Data Handling 167

Bidirectional script is read from right to left and from top to bottom.

If the embedded text is contained in one line, the text is written from left to right and embedded in the
bidirectional text. However, if the embedded text is split between two or more lines, the correct order must
be maintained in the left-to-right portions to allow top-to-bottom reading.

For example, right-to-left text embedded in left-to-right text that is contained in one line is written as
follows:
THERE IS txet lanoitceridib deddebme IN THIS SENTENCE.

Right-to-left text embedded in left-to-right text that is split between two lines is written as follows:
THERE IS senil owt neewteb tilps si taht txet lanoitceridib deddebme IN THIS SENTENCE.

Both texts maintain readability even though the embedded text is split.

Data Streams
Bidirectional text environments use the following data streams:

Visual Data Streams The system organizes characters in the sequence in which they are
presented on the screen.

If a visual data stream is presented from left to right, the first character of the
data stream is on the left side of the viewport (screen, window, line, field, and
so on). If the same data stream is presented on a right-to-left viewport, the
initial character of the data stream is on the right.

If a language of opposite writing orientation is embedded in the visual data
stream, the sequence of each text is preserved when the viewport orientation
is reversed. For example, (the lowercase text represents bidirectional text) if
the keystroke order is :

THERE IS bidirectional text IN THIS SENTENCE.

then the visual data stream is:

THERE IS txet lanoitceridib IN THIS SENTENCE.

This visual data stream’s presentation on a left-to-right viewport is
left-justified, as follows:

THERE IS txet lanoitceridib IN THIS SENTENCE.
-------> <----------------- ---------------->

The arrows indicate reading direction.

If you change the viewport orientation to right-to-left, the visual data stream is
reversed, right-justified, and unreadable, as follows:

.ECNETNES SIHT NI bidirectional text SI EREHT
<---------------- -----------------> <-------

Thus, if English text is embedded in Arabic or Hebrew text, both texts are in
proper reading order only on a left-to-right viewport. The same is true for
Arabic or Hebrew embedded in English. Reversing the viewport orientation
makes both texts unreadable.

168 National Language Support Guide and Reference

Logical Data Streams The system organizes characters in a readable sequence. The bidirectional
presentation-management functions arrange text strings in a readable order.

If a logical data stream is presented on a left-to-right viewport, the initial
character of the data stream is presented on the left side. If the same data
stream is presented on a right-to-left viewport, the initial character of the data
stream is presented on the right side, though it is still presented in a readable
order.

If a language of opposite writing orientation is embedded in the logical data
stream, the orientations of each text are preserved by the bidirectional
presentation-management functions. For example, if the keystroke order is:

THERE IS bidirectional text IN THIS SENTENCE.

then the logical data stream is the same. For example:

THERE IS bidirectional text IN THIS SENTENCE.

This logical data stream’s presentation on a left-to-right viewport (left-justified)
is as follows:

THERE IS txet lanoitceridib IN THIS SENTENCE.
-------> <----------------- ---------------->

The logical data stream’s presentation on a right-to-left viewport
(right-justified) is as follows:

IN THIS SENTENCE. txet lanoitceridib THERE IS
----------------> <----------------- ------->

The logical data stream is readable on both viewport orientations.

Cursor Movement
Cursor movement on a screen containing bidirectional text is as follows:

Visual The cursor moves from its current position left or right to the next character, or up or down to the next
row. For example, if the cursor is located at the end of the first left-to-right part of a mixed sentence:

THERE IS_txet lanoitceridib IN THIS SENTENCE.

then, moving the cursor visually to the right causes it to move one character to the right, as follows:

THERE IS txet lanoitceridib IN THIS SENTENCE.

The cursor moves without regard to the contents of the text.
Logical The cursor moves from its current position to the next or previous character in the data stream. The

character may be adjacent to the cursor’s position, elsewhere in the same line, or on another line on
the screen. Logical cursor movement requires scanning the data stream to find the next logical
character. For example, if the cursor is located at the end of the first left-to-right part of a mixed
sentence:

THERE IS_txet lanoitceridib IN THIS SENTENCE.

then, moving the cursor logically to the next character causes the data stream to be scanned to find
the next logical character. The cursor moves to the next logical part of the sentence, as follows:

THERE IS txet lanoitceridib_IN THIS SENTENCE.

The cursor moves according to content.

Character Shaping
Character shaping occurs when the shape of a character is dependent on its position in a line of text. In
some languages, such as Arabic, characters have different shapes depending on their position in a string
and on the surrounding characters.

Chapter 8. Culture-Specific Data Handling 169

The following characteristics determine character shaping in Arabic script:

v The written language has no equivalent to capital letters.

v The characters have different shapes, depending on their position in a string and on the surrounding
characters.

v The written language is cursive. Most characters of a word are connected, as in English handwriting.

v Joined characters can form nonspacing characters. Additionally, a character can have a vowel or
diacritic mark written over or under it.

v Characters can vary in length, resulting in an output of two coded shapes.

Methods of Character Shaping
Implement character shaping separately from other system components. However, character shaping
should be accessible as a utility by other system components. The system may use character shaping in
the following ways:

v As the user enters data into the computer, the system uses character shaping to shape the characters.
The system stores these characters in their shaped format.

This method avoids the need to use character shaping every time these characters are displayed. This
method is meant for static data such as menus and help. This method requires preprocessing for
correct sorting, searching, or indexing of the characters.

The characters may need reshaping after processing for proper presentation.

v As the user enters data into the computer, the system stores the characters in their unshaped format.

This method allows for sorting, searching or indexing of the characters. However, the system must use
character shaping every time the characters are displayed.

Base shapes are isolated shapes that were not generated by character shaping. Use base shapes during
editing, searching for character strings, or other text operations. Use shaping only when the text is
displayed or printed. If characters are stored in their shaped form, the system must deshape them before
sorting, collating, searching, or indexing. Character shapes that are not shape-determined according to
their position in a string are needed for specific character-handling applications, as well as for
communication with different coding environments.

Contextual Character Shaping
In general, contextual character shaping is the selection of the required shape of a character in a given
font depending on its position in a word and its surrounding characters. The following shapes are possible:

Isolated A character that is connected to neither a preceding nor succeeding character
Final A character that is connected to a preceding character but not with a succeeding character
Initial A character connected to a succeeding character but not with a preceding character
Middle A character connected to both a preceding and succeeding character

A character may also have any of the following characteristics:

v Connecting to a preceding character

v Connecting to a succeeding character

v Allowing surrounding characters’ connections to pass through it

Acronyms, part numbers, and graphic characters do not need contextual character shaping. To properly
enter these characters, turn off the contextual character shaping and use a specific keyboard interface for
exact selection of the desired shape. Tag these characters by field, line, or control character for later
presentation.

170 National Language Support Guide and Reference

Appendix A. Supported languages and locales

This topic includes the following kinds of tables:

v Table 1 Supported languages

v Individual tables for each supported language

v Table 48 on page 181 Locales that are no longer supported

The following table identifies which languages are supported on AIX and the languages in which the AIX
documentation is translated. If the language is not listed in the first column, the language is not supported.
The second column indicates whether documentation is translated in that language.

Table 1. Supported languages

Language Translated

C No

Arabic No

Albanian No

Byelorussian No

Bulgarian No

Catalan Yes

Chinese Yes

Chinese No

Croatian No

Czech Yes

Danish No

Dutch No

English No

Estonian No

Finnish No

French Yes

German Yes

Greek No

Hebrew No

Hungarian Yes

Icelandic No

Indic No

Italian Yes

Japanese Yes

Kazakh No

Korean Yes

Indonesian No

Latvian No

Lithuanian No

Macedonian No

© Copyright IBM Corp. 2002, 2006 171

Table 1. Supported languages (continued)

Language Translated

Malay No

Norwegian No

Polish Yes

Romanian No

Russian Yes

Serbian Cyrillic No

Serbian Latin No

Slovak Yes

Slovene No

Spanish Yes

Swedish No

Thai No

Turkish No

Ukrainian No

Vietnamese No

Table 2. C language

Codeset Language Country or category Locale

ISO8859-1 C (POSIX)

Table 3. Arabic language

Codeset Language Country or category Locale

ISO8859-6 Arabic ISO ar_AA

UTF-8 Arabic ISO AR_AA

IBM-1046 Arabic PC Ar_AA

ISO8859-6 Arabic UAE ar_AE

UTF-8 Arabic UAE AR_AE

ISO8859-6 Arabic Algeria ar_DZ

UTF-8 Arabic Algeria AR_DZ

ISO8859-6 Arabic Bahrain ar_BH

UTF-8 Arabic Bahrain AR_BH

ISO8859-6 Arabic Egypt ar_EG

UTF-8 Arabic Egypt AR_EG

ISO8859-6 Arabic Jordan ar_JO

UTF-8 Arabic Jordan AR_JO

ISO8859-6 Arabic Kuwait ar_KW

UTF-8 Arabic Kuwait AR_KW

ISO8859-6 Arabic Lebanon ar_LB

UTF-8 Arabic Lebanon AR_LB

ISO8859-6 Arabic Morocco ar_MA

172 National Language Support Guide and Reference

Table 3. Arabic language (continued)

Codeset Language Country or category Locale

UTF-8 Arabic Morocco AR_MA

ISO8859-6 Arabic Oman ar_OM

UTF-8 Arabic Oman AR_OM

ISO8859-6 Arabic Qatar ar_QA

UTF-8 Arabic Qatar AR_QA

ISO8859-6 Arabic Saudi Arabia ar_SA

UTF-8 Arabic Saudi Arabia AR_SA

ISO8859-6 Arabic Syria ar_SY

UTF-8 Arabic Syria AR_SY

ISO8859-6 Arabic Tunisia ar_TN

UTF-8 Arabic Tunisia AR_TN

ISO8859-6 Arabic Yemen ar_YE

UTF-8 Arabic Yemen AR_YE

Table 4. Albanian language

Codeset Language Country or category Locale

ISO8859-1 Albanian Albania sq_AL

ISO8859-15 Albanian Albania sq_AL.8859-15

UTF-8 Albanian Albania SQ_AL

Table 5. Byelorussian language

Codeset Language Country or category Locale

ISO8859-5 Byelorussian Byelor be_BY

UTF-8 Byelorussian Byelor BE_BY

Table 6. Bulgarian language

Codeset Language Country or category Locale

ISO8859-5 Bulgarian Bulgaria bg_BG

UTF-8 Bulgarian Bulgaria BG_BG

Table 7. Catalan language

Codeset Language Country or category Locale

IBM-1252 Catalan Spain ca_ES.IBM-1252

ISO8859-1 Catalan Spain ca_ES

ISO8859-15 Catalan Spain ca_ES.8859-15

UTF-8 Catalan Spain CA_ES

IBM-850 Catalan Spain Ca_ES

Table 8. Chinese language — translated

Codeset Language Country or category Locale

IBM-eucTW Chinese Traditional zh_TW

Appendix A. Supported languages and locales 173

Table 8. Chinese language — translated (continued)

Codeset Language Country or category Locale

UTF-8 Chinese Traditional ZH_TW

big5 Chinese big5 Zh_TW

IBM-eucCN Chinese Simplified EUC zh_CN

UTF-8 Chinese Simplified UTF ZH_CN

GBK/GB18030 Chinese Simplified GBK/GB18030 Zh_CN

Table 9. Chinese language — non-translated

Codeset Language Country or category Locale

UTF-8 Chinese Simplified - Hong Kong ZH_HK

UTF-8 Chinese Simplified - Singapore ZH_SG

Table 10. Croatian language

Codeset Language Country or category Locale

ISO8859-2 Croatian Croatia hr_HR

UTF-8 Croatian Croatia HR_HR

Table 11. Czech language

Codeset Language Country or category Locale

ISO8859-2 Czech Czech Republic cs_CZ

UTF-8 Czech Czech Republic CS_CZ

Table 12. Danish language

Codeset Language Country or category Locale

ISO8859-1 Danish Denmark da_DK

ISO8859-15 Danish Denmark da_DK.8859-15

UTF-8 Danish Denmark DA_DK

Table 13. Dutch language

Codeset Language Country or category Locale

IBM-1252 Dutch Belgium nl_BE.IBM-1252

ISO8859-1 Dutch Belgium nl_BE

ISO8859-15 Dutch Belgium nl_BE.8859-15

UTF-8 Dutch Belgium NL_BE

IBM-1252 Dutch Netherlands nl_NL.IBM-1252

ISO8859-1 Dutch Netherlands nl_NL

ISO8859-15 Dutch Netherlands nl_NL.8859-15

UTF-8 Dutch Netherlands NL_NL

Table 14. English language

Codeset Language Country or category Locale

ISO8859-15 English Australia en_AU.8859-15

174 National Language Support Guide and Reference

Table 14. English language (continued)

Codeset Language Country or category Locale

UTF-8 English Australia EN_AU

ISO8859-15 English Belgium en_BE.8859-15

UTF-8 English Belgium EN_BE

ISO8859-15 English Canada en_CA.8859-15

UTF-8 English Canada EN_CA

IBM-1252 English Great Britain en_GB.IBM-1252

ISO8859-1 English Great Britain en_GB

ISO8859-15 English Great Britain en_GB.8859-15

UTF-8 English Great Britain EN_GB

ISO8859-15 English Hong Kong en_HK

UTF-8 English Hong Kong EN_HK

ISO8859-15 English Ireland en_IE.8859-15

UTF-8 English Ireland EN_IE

ISO8859-15 English India en_IN.8859-15

UTF-8 English India EN_IN

ISO8859-15 English New Zealand en_NZ.8859-15

UTF-8 English New Zealand EN_NZ

ISO8859-15 English Philippines en_PH

UTF-8 English Philippines EN_PH

ISO8859-15 English Singapore en_SG

UTF-8 English Singapore EN_SG

ISO8859-1 English United States en_US

ISO8859-15 English United States en_US.8859-15

UTF-8 English United States EN_US

ISO8859-15 English South Africa en_ZA.8859-15

UTF-8 English South Africa EN_ZA

Table 15. Estonian language

Codeset Language Country or category Locale

IBM-922 Estonian Estonia Et_EE

ISO8859-4 Estonian Estonia et_EE

UTF-8 Estonian Estonia ET_EE

Table 16. Finnish language

Codeset Language Country or category Locale

IBM-1252 Finnish Finland fi_FI.IBM-1252

ISO8859-1 Finnish Finland fi_FI

ISO8859-15 Finnish Finland fi_FI.8859-15

UTF-8 Finnish Finland FI_FI

Appendix A. Supported languages and locales 175

Table 17. French language

Codeset Language Country or category Locale

IBM-1252 French Belgium fr_BE.IBM-1252

ISO8859-1 French Belgium fr_BE

ISO8859-15 French Belgium fr_BE.8859-15

UTF-8 French Belgium FR_BE

ISO8859-1 French Canada fr_CA

ISO8859-15 French Canada fr_CA.8859-15

UTF-8 French Canada FR_CA

IBM-1252 French France fr_FR.IBM-1252

ISO8859-1 French France fr_FR

ISO8859-15 French France fr_FR.8859-15

UTF-8 French France FR_FR

ISO8859-1 French Luxembourg fr_LU.8859-15

ISO8859-1 French Luxembourg FR_LU

ISO8859-1 French Switzerland fr_CH

ISO8859-15 French Switzerland fr_CH.8859-15

UTF-8 French Switzerland FR_CH

Table 18. German language

Codeset Language Country or category Locale

ISO8859-15 German Austria de_AT.8859-15

UTF-8 German Austria DE_AT

ISO8859-1 German Switzerland de_CH

ISO8859-15 German Switzerland de_CH.8859-15

UTF-8 German Switzerland DE_CH

IBM-1252 German Germany de_DE.IBM-1252

ISO8859-1 German Germany de_DE

ISO8859-15 German Germany de_DE.8859-15

UTF-8 German Germany DE_DE

ISO8859-15 German Luxembourg de_LU.8859-15

UTF-8 German Luxembourg DE_LU

Table 19. Greek language

Codeset Language Country or category Locale

ISO8859–7 Greek Greece el_GR

UTF-8 Greek Greece EL_GR

Table 20. Hebrew language

Codeset Language Country or category Locale

ISO8859-8 Hebrew ISO iw_IL

UTF-8 Hebrew Israel HE_IL

176 National Language Support Guide and Reference

Table 20. Hebrew language (continued)

Codeset Language Country or category Locale

IBM-856 Hebrew PC Iw_IL

Table 21. Hungarian language

Codeset Language Country or category Locale

ISO8859-2 Hungarian Hungary hu_HU

UTF-8 Hungarian Hungary HU_HU

Table 22. Icelandic language

Codeset Language Country or category Locale

ISO8859-1 Icelandic Iceland is_IS

ISO8859-15 Icelandic Iceland is_IS.8859-15

UTF-8 Icelandic Iceland IS_IS

Table 23. Indic languages

Codeset Language Country or category Locale

UTF-8 Assamese India AS_IN

UTF-8 Bengali India BN_IN

UTF-8 Gujarati India GU_IN

UTF-8 Hindi India HI_IN

UTF-8 Kannada India KN_IN

UTF-8 Malayalam India ML_IN

UTF-8 Marathi India MR_IN

UTF-8 Oriya India OR_IN

UTF-8 Punjabi India PA_IN

UTF-8 Tamil India TA_IN

UTF-8 Telugu India TE_IN

Table 24. Italian language

Codeset Language Country or category Locale

IBM-1252 Italian Italy it_IT.IBM-1252

ISO8859-1 Italian Italy it_IT

ISO8859-15 Italian Italy it_IT.8859-15

UTF-8 Italian Italy IT_IT

ISO8859-15 Italian Switzerland it_CH.8859-15

UTF-8 Italian Switzerland IT_CH

Table 25. Japanese language

Codeset Language Country or category Locale

IBM-eucJP Japanese EUC ja_JP

UTF-8 Japanese Japan JA_JP

IBM-943 Japanese PC Ja_JP

Appendix A. Supported languages and locales 177

Table 26. Kazakh language

Codeset Language Country or category Locale

UTF-8 Kazakh Kazakhstan KK_KZ

Table 27. Korean language

Codeset Language Country or category Locale

IBM-eucKR Korean Korea ko_KR

UTF-8 Korean Korea KO_KR

Table 28. Indonesian language

Codeset Language Country or category Locale

ISO8859-15 Indonesian Indonesia id_ID

UTF-8 Indonesian Indonesia ID_ID

Table 29. Latvian language

Codeset Language Country or category Locale

IBM-921 Latvian Latvia Lv_LV

ISO8859-4 Latvian Latvia lv_LV

UTF-8 Latvian Latvia LV_LV

Table 30. Lithuanian language

Codeset Language Country or category Locale

IBM-921 Lithuanian Lithuanian Lt_LT

ISO8859-4 Lithuanian Lithuanian lt_LT

UTF-8 Lithuanian Lithuanian LT_LT

Table 31. Macedonian language

Codeset Language Country or category Locale

ISO8859-5 Macedonian Macedonia mk_MK

UTF-8 Macedonian Macedonia MK_MK

Table 32. Malay language

Codeset Language Country or category Locale

ISO8859-15 Malay Malaysian ms_MY

UTF-8 Malay Malaysian MS_MY

Table 33. Norwegian language

Codeset Language Country or category Locale

ISO8859-1 Norwegian Norway no_NO

ISO8859-15 Norwegian Norway no_NO.8859-15

UTF-8 Norwegian Norway NO_NO

178 National Language Support Guide and Reference

Table 34. Polish language

Codeset Language Country or category Locale

ISO8859-2 Polish Poland pl_PL

UTF-8 Polish Poland PL_PL

Table 35. Portuguese language

Codeset Language Country or category Locale

ISO8859-1 Portuguese Brazil pt_BR

ISO8859-15 Portuguese Brazil pt_BR.8859-15]

UTF-8 Portuguese Brazil PT_BR

IBM-1252 Portuguese Portugal pt_PT.IBM-1252

ISO8859-1 Portuguese Portugal pt_PT

ISO8859-15 Portuguese Portugal pt_PT.8859-15

UTF-8 Portuguese Portugal PT_PT

Table 36. Romanian language

Codeset Language Country or category Locale

ISO8859-2 Romanian Romania ro_RO

UTF-8 Romanian Romania RO_RO

Table 37. Russian language

Codeset Language Country or category Locale

ISO8859-5 Russian Russia ru_RU

UTF-8 Russian Russia RU_RU

Table 38. Serbian Cyrillic language

Codeset Language Country or category Locale

ISO8859-5 Serbian Serbia sr_SP

UTF-8 Serbian Serbia SR_SP

ISO8859-5 Serbian Yugoslavia sr_YU

UTF-8 Serbian Yugoslavia SR_YU

Table 39. Serbian Latin language

Codeset Language Country or category Locale

ISO8859-2 Serbian Serbia sh_SP

UTF-8 Serbian Serbia SH_SP

ISO8859-2 Serbian Yugoslavia sh_YU

UTF-8 Serbian Yugoslavia SH_YU

Table 40. Slovak language

Codeset Language Country or category Locale

ISO8859-2 Slovak Slovakia sk_SK

UTF-8 Slovak Slovakia SK_SK

Appendix A. Supported languages and locales 179

Table 41. Slovene language

Codeset Language Country or category Locale

ISO8859-2 Slovene Slovenia sl_SI

UTF-8 Slovene Slovenia SL_SI

Table 42. Spanish language

Codeset Language Country or category Locale

ISO8859-15 Spanish Argentina es_AR.8859-15

UTF-8 Spanish Argentina ES_AR

ISO8859-15 Spanish Bolivia es_BO

UTF-8 Spanish Bolivia ES_BO

ISO8859-15 Spanish Chile es_CL.8859-15

UTF-8 Spanish Chile ES_CL

ISO8859-15 Spanish Colombia es_CO.8859-15

UTF-8 Spanish Colombia ES_CO

ISO8859-15 Spanish Costa Rica es_CR

UTF-8 Spanish Costa Rica ES_CR

ISO8859-15 Spanish Dominican Republic es_DO

UTF-8 Spanish Dominican Republic ES_DO

ISO8859-15 Spanish Ecuador es_EC

UTF-8 Spanish Ecuador ES_EC

ISO8859-15 Spanish Guatemala es_GT

UTF-8 Spanish Guatemala ES_GT

ISO8859-15 Spanish Honduras es_HN

UTF-8 Spanish Honduras ES_HN

IBM-1252 Spanish Spain es_ES.IBM-1252

ISO8859-1 Spanish Spain es_ES

ISO8859-15 Spanish Spain es_ES.8859-15

UTF-8 Spanish Spain ES_ES

ISO8859-15 Spanish Mexico es_MX.8859-15

UTF-8 Spanish Mexico ES_MX

ISO8859-15 Spanish Nicaragua es_NI

UTF-8 Spanish Nicaragua ES_NI

ISO8859-15 Spanish Panama es_PA

UTF-8 Spanish Panama ES_PA

ISO8859-15 Spanish Paraguay es_PY

UTF-8 Spanish Paraguay ES_PY

ISO8859-15 Spanish Peru es_PE.8859-15

UTF-8 Spanish Peru ES_PE

ISO8859-15 Spanish Puerto Rico es_PR.8859-15

UTF-8 Spanish Puerto Rico ES_PR

180 National Language Support Guide and Reference

Table 42. Spanish language (continued)

Codeset Language Country or category Locale

ISO8859-15 Spanish United States es_US

UTF-8 Spanish United States ES_US

ISO8859-15 Spanish Uruguay es_UY.8859-15

UTF-8 Spanish Uruguay ES_UY

ISO8859-15 Spanish Venezuela es_VE.8859-15

UTF-8 Spanish Venezuela ES_VE

Table 43. Swedish language

Codeset Language Country or category Locale

ISO8859-1 Swedish Sweden sv_SE

ISO8859-15 Swedish Sweden sv_SE.8859-15

UTF-8 Swedish Sweden SV_SE

Table 44. Thai language

Codeset Language Country or category Locale

TIS-620 Thai Thailand th_TH

UTF-8 Thai Thailand TH_TH

Table 45. Turkish language

Codeset Language Country or category Locale

ISO8859-9 Turkish Turkey tr_TR

UTF-8 Turkish Turkey TR_TR

Table 46. Ukrainian language

Codeset Language Country or category Locale

IBM-1124 Ukrainian Ukraine Uk_UA

UTF-8 Ukrainian Ukraine UK_UA

Table 47. Vietnamese language

Codeset Language Country or category Locale

IBM-1129 Vietnamese Vietnam Vi_VN

UTF-8 Vietnamese Vietnam VI_VN

Table 48. Locales that are no longer supported

Codeset Language Country or category Locale Support Ended

IBM-850 Danish Denmark Da_DK 520

IBM-850 Dutch Belgium Nl_BE 520

IBM-850 Dutch Netherlands Nl_NL 520

IBM-850 English Great Britain En_GB 520

IBM-850 English United States En_US 520

IBM-850 Finnish Finland Fi_FI 520

Appendix A. Supported languages and locales 181

Table 48. Locales that are no longer supported (continued)

Codeset Language Country or category Locale Support Ended

IBM-850 French Belgium Fr_BE 520

IBM-850 French Canada Fr_CA 520

IBM-850 French Switzerland Fr_CH 520

IBM-850 French France Fr_FR 520

IBM-850 German Germany De_DE 520

IBM-850 German Switzerland De_CH 520

IBM-850 Icelandic Iceland Is_IS 520

IBM-850 Italian Italy It_IT 520

IBM-850 Norwegian Norway No_NO 520

IBM-850 Portuguese Portugal Pt_PT 520

IBM-850 Spanish Spain Es_ES 520

IBM-850 Swedish Sweden Sv_SE 520

182 National Language Support Guide and Reference

Appendix B. National Language Support (NLS) Reference

This reference provides the following information:

v “National Language Support Checklist”

v “List of National Language Support Subroutines” on page 188

National Language Support Checklist

The National Language Support (NLS) Checklist provides a way to analyze a program for NLS
dependencies. By going through this list, one can determine what, if any, NLS functions must be
considered. This is useful for both programming and testing. If you identify a set of NLS items that a
program depends on, a test strategy can be developed. This facilitates a common approach to testing all
programs.

All major NLS considerations have been identified. However, this list is not all-encompassing. There may
be other NLS questions that are not listed.

Program Operation Checklist
1. Does the program display translatable messages to the user, either directly or indirectly? An example

of indirect messages are those that are stored in libraries.

If yes:

v Are these messages externalized from the program by way of the message facility subroutines?

v Have you provided message source files for all such messages?

v What is the locale under which the program runs?

– If it runs in the locale determined by the locale environment variables, did you invoke the
setlocale subroutine in the following manner?
setlocale(LC_ALL, "")

Note: See “Setting the Locale” on page 15 for setlocale subroutine examples. The locale
categories, in their predefined hierarchical order, are: LC_ALL, LC_COLLATE,
LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, and LC_TIME. See
“Understanding Locale Environment Variables” on page 9 for more information on the
LC_ALL category.

– If the program runs in the ″C″ locale, except for displaying messages in the locale specified by
the locale environment variables, did you invoke the setlocale subroutine in the following
manner?
setlocale(LC_MESSAGES, "")

v After invoking the setlocale subroutine, did you invoke the catopen subroutine in the following
manner?
catopen(catalog_name, NL_CAT_LOCALE)

v Did you invoke the catopen subroutine with the proper catalog name?

v See the Chapter 7, “Message Facility,” on page 153 for more information about translatable
messages.

2. Does the program compare text strings?

If yes:

v Are the strings compared to check equality only?

If yes:

– Use the strcmp or strncmp subroutine.

– Do not use the strcoll or strxfrm subroutine.

© Copyright IBM Corp. 2002, 2006 183

v Are the strings compared to see which one sorts before the other, as defined in the current locale?

If yes:

– Invoke the setlocale subroutine in the following manner:
setlocale(LC_ALL, "")

– Use the strcoll, strxfrm, wcscoll, or wcsxfrm subroutine.

– Do not use the strcmp or strncmp subroutine.

3. Does the program parse path names of files?

If yes:

v If looking for / (slash), use the strchr subroutine.

v If looking for characters, be aware that the file names can include multibyte characters. In such
cases, invoke the setlocale subroutine in the following manner and then use appropriate search
subroutines:
setlocale(LC_ALL, "")

4. Does the program use system names, such as node names, user names, printer names, and queue
names?

If yes:

v System names can have multibyte characters.

v To identify a multibyte character, first invoke the setlocale subroutine in the following manner and
then use appropriate subroutines in the library.
setlocale(LC_ALL, "")

5. Does the program use character class properties, such as uppercase, lowercase, and alphabetic?

If yes:

v Invoke the setlocale subroutine in the following manner:
setlocale(LC_ALL, "")

v Do not make assumptions about character properties. Always use system subroutines to determine
character properties.

v Are the characters restricted to single-byte code sets?

If yes:

– Use one of the ctype subroutines: isalnum, isalpha, iscntrl, isdigit, isgraph, isprint, isspace,
or isxdigit.

If not, the characters may be multibyte characters:

– Use the iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct,
iswspace, iswupper, or iswxdigit subroutine. See “Wide Character Classification Subroutines”
on page 28 for more information.

6. Does the program convert the case (upper or lower) of characters?

If yes:

v Invoke the setlocale subroutine in the following manner:
setlocale(LC_ALL, "")

v Are the characters restricted to single-byte code sets?

If yes:

– Use these conv subroutines: _tolower, _toupper, tolower, or toupper.

If not, the characters may be multibyte characters:

– Use the towlower or towupper subroutine. See “Wide Character Classification Subroutines” on
page 28 for more information.

7. Does the program keep track of cursor movement on a tty terminal?

If yes:

v Invoke the setlocale subroutine in the following manner:

184 National Language Support Guide and Reference

setlocale(LC_ALL, "")

v You may need to determine the display column width of characters. Use the wcwidth or wcswidth
subroutine.

8. Does the program perform character I/O?

If yes:

v Invoke the setlocale subroutine in the following manner:
setlocale(LC_ALL, "")

v Are the characters restricted to single-byte code sets?

If yes:

– Use following subroutine families:

- fgetc, getc, getchar, getw

- fgets, gets

- fputc, putc, putchar, putw

- printf, scanf

If not:

– Use following subroutine families:

- fgetwc, getwc, getwchar

- fgetws, getws

- fputwc, putwc, putwchar

9. Does the program step through an array of characters?

If yes:

v Is the array limited to single-byte characters only?

If yes:

– Does not require setlocale(LC_ALL, ″″)

– If p is the pointer to this array of single-byte characters, step through this array using p++.

If not:

v Invoke the setlocale subroutine in the following manner:
setlocale(LC_ALL, "")

v Use the mblen or wcslen subroutine.

10. Does the program need to know the maximum number of bytes used to encode a character within the
code set?

If yes:

v Invoke the setlocale subroutine in the following manner:
setlocale(LC_ALL, "")

v Use the MB_CUR_MAX macro.

11. Does the program format date or time numeric quantities?

If yes:

v Invoke the setlocale subroutine in the following manner:
setlocale(LC_ALL, "")

v Use the nl_langinfo or localeconv subroutine to obtain the locale-specific information.

v Use the strftime or strptime subroutine.

v See “Setting the Locale” on page 15 and “Euro Currency Support” on page 21 for more
information.

12. Does the program format numeric quantities?

If yes:

Appendix B. National Language Support (NLS) Reference 185

v Invoke the setlocale subroutine in the following manner:
setlocale(LC_ALL, "")

v Use the nl_langinfo or localeconv subroutine to obtain the locale-specific information.

v Use the following pair of subroutines, as needed: printf, scanf.

13. Does the program format monetary quantities?

If yes:

v Invoke the setlocale subroutine in the following manner:
setlocale(LC_ALL, "")

v Use the nl_langinfo or localeconv subroutine to obtain the locale-specific information.

v Use the strfmon subroutine to format monetary quantities.

v See “Setting the Locale” on page 15 and “Euro Currency Support” on page 21 for more
information.

14. Does the program search for strings or locate characters?

If yes:

v Are you looking for single-byte characters in single-byte text?

– Does not require setlocale(LC_ALL, ″″)

– Use standard libc string subroutines such as the strchr subroutine.

v Are you looking for characters in the range 0x00-0x3F (the unique code-point range)?

– Does not require setlocale(LC_ALL, ″″)

– Use standard libc string subroutines such as the strchr, strcspn, strpbrk, strrchr, strspn,
strstr, strtok, and memchr subroutines.

v Are you looking for characters in the range 0x00-0xFF?

– Invoke the setlocale subroutine in the following manner:
setlocale(LC_ALL, "")

– Two methods are available:

Use the mblen subroutine to skip multibyte characters. Then, on encountering single-byte
characters, check for equality. See checklist item 2.

OR

Convert the search character and the searched string to wide character form, and then use
wide character search subroutines. See “Wide Character String Search Subroutines” on page
37 for more information.

15. Does the program perform regular-expression pattern matching?

If yes:

v Invoke the setlocale subroutine in the following manner:
setlocale(LC_ALL, "")

v Use the regcomp, regexec, or regerror subroutine.

16. Does the program ask the user for affirmative/negative responses?

If yes:

v Invoke the setlocale subroutine in the following manner:
setlocale(LC_ALL, "")

v Put the prompt in the message catalog. Use the catopen and catgets subroutines to retrieve the
catalog and display the prompt.

v Use the rpmatch subroutine to match the user’s response.

v See the Chapter 7, “Message Facility,” on page 153 for more information.

17. Does the program use special box-drawing characters?

If yes:

186 National Language Support Guide and Reference

v Do not use code set-specific box-drawing characters.

v Instead use the box-drawing characters and attributes specified in the terminfo file.

18. Does the program perform culture-specific or locale-specific processing that is not addressed here?

If yes:

v Externalize the culture-specific modules. Do not make them part of the executable program.

v Load the modules at run time using subroutines provided by the system, such as the load
subroutine.

v If the system does not provide such facilities, link them statically but provide them in a modular
fashion.

AIXwindows Checklist
The remaining checklist items are specific to the AIXwindows systems.

1. Does your program use the font set specification in order to be code-set independent in X
applications?

2. Does your client use labels, buttons, or other output-only widgets to display translatable messages? If
yes:

v Invoke the *XtSetLanguageProc subroutine in the following manner:
XtSetLanguageProc(NULL, NULL, NULL);

v Messages can be placed in either message catalogs or localized resource files. See checklist items
1 or 20, respectively.

v To make the widgets code set-independent, specify fonts that use font sets.

3. Does your client use X resource files to define the text of labels, buttons, or text widgets?

If yes:

v Put all resources that need translation in one place.

v Consider using message catalogs for the text strings. See the Chapter 7, “Message Facility,” on
page 153 for more information.

v Do not use translated color names, since color names are restricted to one encoding. The only
portable names are encoded in the portable character set.

v Put language-specific resource files in /usr/lib/X11/%L/app-defaults/%N, where %L is the name of
the locale, such as fr_FR, and %N is the name of the client.

4. Is keyboard input localized by language?

If yes:

v Invoke the *XtSetLanguageProc subroutine in the following manner:
XtSetLanguageProc(NULL, NULL, NULL);

v Use the XmText or XmTextField widgets for all text input.

Some of the XmText widgets’ arguments are defined in terms of character length instead of byte
length. The cursor position is maintained in character position, not byte position.

v Are you using the XmDrawingArea widget to do localized input?

– Use the input method subroutines to do input processing in different languages. See the
Chapter 6, “Input Methods,” on page 125 and the IMAuxDraw Callback subroutine for more
information.

5. Does your client present lists or labels consisting of localized text from user files rather than from X
resource files?

If yes:

v Invoke the *XtSetLanguageProc subroutine in the following manner:
XtSetLanguageProc(NULL, NULL, NULL);

v Use the XmStringCreateSimple subroutine to create the XmString data type for localized text. The
XmStringCreate subroutine can be used, but XmSTRING_DEFAULT_CHARSET is preferable.

Appendix B. National Language Support (NLS) Reference 187

v To make the widgets code-set independent, specify fonts by using font sets. Font resources (for
example, *fontList: instead) in the app-defaults files should use the upper case and class form
rather than the lower case form (for example, *FontList: instead). This allow the desktop style
manager to affect the application font selection.

6. Does your program do any presentation operations (Xlib drawing, printing, formatting, or editing) on
bidirectional text?

If yes:

v Use the XmText or XmTextField in the Xm (Motif) library. These widgets are enabled for
bidirectional text. See ″Layout (Bidirectional) Support in Xm (Motif) Library″ in AIX 5L Version 5.3
AIXwindows Programming Guide for more information.

v If the Xm library can not be used, use the layout subroutines to perform any re-ordering and shaping
on the text.

v Store and communicate the text in the implicit (logical) form. Some utilities (for example, aixterm)
support the visual form of bidirectional text, but most NLS subroutines can not process the visual
form of bidirectional text.

If the response to all the above items is no, then the program probably has no NLS dependencies. In this
case, you may not need the locale-setting subroutine setlocale and the catalog facility subroutines
catopen and catgets.

List of National Language Support Subroutines

The National Language Support (NLS) subroutines are used for handling locale-specific information,
manipulating wide characters and multibyte characters, and using regular expressions.

For more information about NLS subroutines, see Chapter 3, “Subroutines for National Language Support,”
on page 15.

List of Locale Subroutines
The following subroutines are provided to obtain and process locale-specific data:

localeconv Retrieves locale-dependent conventions of a program locale.
nl_langinfo Returns information on language or cultural area in a program locale.
rpmatch Determines whether a response is affirmative or negative in the current locale.
setlocale Changes or queries a program’s current locale.

For more NLS subroutines see “List of National Language Support Subroutines.”

List of Time and Monetary Formatting Subroutines

strfmon Formats monetary strings according to the current locale.
strftime Formats time and date according to the current locale.
strptime Converts a character string to a time value according to the current locale.
wcsftime Converts time and date into a wide character string according to the current locale.

For more information about NLS subroutines see Chapter 3, “Subroutines for National Language Support,”
on page 15.

For more NLS subroutines see “List of National Language Support Subroutines.”

188 National Language Support Guide and Reference

List of Multibyte Character Subroutines

mblen Determines the length of a multibyte character.
mbstowcs Converts a multibyte character string to a wide character string.
mbtowc Converts a multibyte character to a wide character.

For more information about multibyte character subroutines see Chapter 3, “Subroutines for National
Language Support,” on page 15.

For more NLS subroutines see “List of National Language Support Subroutines” on page 188.

List of Wide Character Subroutines
The following subroutines process characters in process-code form:

fgetwc Gets a wide character or word from an input stream.
fgetws Gets a wide character string from a stream.
fputwc Writes a wide character or a word to a stream.
fputws Writes a wide character string to a stream.
getwc Gets a wide character or word from an input stream.
getwchar Gets a wide character or word from an input stream.
getws Gets a wide character string from a stream.
iswalnum Determines if the wide character is alphanumeric.
iswalpha Determines if the wide character is alphabetic.
iswcntrl Determines if the wide character is a control character.
iswctype Determines the property of a wide character.
iswdigit Determines if the wide character is a digit.
iswgraph Determines if the wide character (excluding ″space characters″) is a printing character.
iswlower Determines if the wide character is lowercase.
iswprint Determines if the wide character (including ″space characters″) is a printing character.
iswpunct Determines if the wide character is a punctuation character.
iswspace Determines if the wide character is a blank space.
iswupper Determines if the wide character is uppercase.
iswxdigit Determines if the wide character is a hexadecimal digit.
putwc Writes a wide character or a word to a stream.
putwchar Writes a wide character or a word to a stream.
putws Writes a wide character string to a stream.
strcoll Compares two strings based on their collation weights in the current locale.
strxfrm Transforms a string into locale collation values.
towlower Converts an uppercase wide character to a lowercase wide character.
towupper Converts a lowercase wide character to an uppercase wide character.
ungetwc Pushes a wide character onto a stream.
wcsid Returns the charsetID of a wide character.
wcscat Concatenates wide character strings.
wcschr Searches for a wide character.
wcscmp Compares wide character strings.
wcscoll Compares the collation weights of wide character strings.
wcscpy Copies a wide character string.
wcscspn Searches for a wide character string.
wcslen Determines the number of characters in a wide character string.
wcsncat Concatenates a specified number of wide characters.
wcsncmp Compares a specified number of wide characters.
wcsncpy Copies a specified number of wide characters.
wcspbrk Locates the first occurrence of wide characters in a wide character string.
wcsrchr Locates the last occurrence of wide characters in a wide character string.

Appendix B. National Language Support (NLS) Reference 189

wcsspn Returns the number of wide characters in the initial segment of a string.
wcstod Converts a wide character string to a double-precision floating point value.
wcstok Breaks a wide character string into a sequence of separate wide character strings.
wcstol Converts a wide character string to a long integer value.
wcstombs Converts a sequence of wide characters to a sequence of multibyte characters.
wcstoul Converts a wide character string to an unsigned, long integer value.
wcswcs Locates the first occurrence of a wide character sequence in a wide character string.
wcswidth Determines the display width of a wide character string.
wcsxfrm Converts a wide character string to values representing character collation weights.
wctomb Converts a wide character to a multibyte character.
wctype Gets a handle for valid property names as defined in the current locale.
wcwidth Determines the display width of a wide character.

For more information about wide character subroutines see Chapter 3, “Subroutines for National Language
Support,” on page 15.

For more NLS subroutines see “List of National Language Support Subroutines” on page 188.

List of Layout Library Subroutines
The following subroutines of the Layout library (libi18n.a) transform bidirectional and context-dependent
text to different formats:

layout_object_create Initializes a layout context.
layout_object_free Frees a LayoutObject structure.
layout_object_editshape Edits the shape of the context text.
layout_object_getvalue Queries the current layout values of a LayoutObject structure.
layout_object_setvalue Sets the layout values of a LayoutObject structure.
layout_object_shapeboxchars Shapes box characters.
layout_object_transform Transforms the text according to the current layout values of a

LayoutObject structure.

For more information about Layout library subroutines see Chapter 3, “Subroutines for National Language
Support,” on page 15.

For more NLS subroutines see “List of National Language Support Subroutines” on page 188.

List of Message Facility Subroutines
The Message Facility consists of standard defined subroutines and commands, and manufacturer
value-added extensions to support externalized message catalogs. These catalogs are used by an
application to retrieve and display messages, as needed. The following Message Facility subroutines get
messages for an application:

catopen Opens a catalog.
catgets Gets a messages from a catalog.
catclose Closes a catalog.
strerror Maps an error number to an error-message string appropriate for the current locale.

For more information about multibyte character subroutines see Chapter 3, “Subroutines for National
Language Support,” on page 15.

For more NLS subroutines see “List of National Language Support Subroutines” on page 188.

190 National Language Support Guide and Reference

List of Converter Subroutines
In an internationalized environment, it is often necessary to convert data from one code set to another.
The following converter subroutines are supported for this purpose:

iconv_open Performs the initialization required to convert characters from the code set specified by the
FromCode parameter to the code set specified by the ToCode parameter.

iconv Invokes the converter function using the descriptor obtained from the iconv_open subroutine.
iconv_close Closes the conversion descriptor specified by the cd variable and makes it usable again.
ccsidtocs Returns the code-set name of the corresponding coded character set IDs (CCSID).
cstoccsid Returns the CCSID of the corresponding code-set name.

For more information about multibyte character subroutines see Chapter 3, “Subroutines for National
Language Support,” on page 15.

For more NLS subroutines see “List of National Language Support Subroutines” on page 188.

List of Input Method Subroutines
The Input Method is a set of subroutines that translate key strokes into character strings in the code set
specified by a locale. The Input Method subroutines include logic for locale-specific input processing and
keyboard controls (for example, Ctrl, Alt, Shift, Lock, and Alt-Graphic). The following subroutines support
this Input Method:

IMAIXMapping Translates a pair of KeySymbol and State parameters to a string and returns a
pointer to that string.

IMAuxCreate Tells the application program to create an auxiliary area.
IMAuxDestroy Notifies the callback to destroy any knowledge of the auxiliary area.
IMAuxDraw Tells the application program to draw the auxiliary area.
IMAuxHide Tells the application program to hide the auxiliary area.
IMBeep Tells the application program to emit a beep sound.
IMClose Closes the input method.
IMCreate Creates one instance of a particular input method.
IMDestroy Destroys an input method instance.
IMFilter Checks whether a keyboard event is used by the input method for its internal

processing.
IMFreeKeymap Frees resources allocated by the IMInitialzieKeymap subroutine.
IMIndicatorDraw Tells the application program to draw the indicator.
IMIndicatorHide Tells the application program to hide the indicator.
IMInitialize Initializes the input method for a particular language.
IMInitializeKeymap Initializes the input method for a particular language.
IMIoctl Performs a variety of control or query operations on the input method.
IMLookupString Maps a keyboard-symbol/state pair to a string defined by the user.
IMProcessAuxiliary Notifies the input method of input for an auxiliary area.
IMQueryLanguage Checks to see if the specified language is supported.
IMSimpleMapping Translates a pair of KeySymbol and State parameters to a string a returns a

pointer to that string.
IMTextCursor Sets the new display cursor position.
IMTextDraw Asks the application program to draw the next string.
IMTextHide Tells the application program to hide the text area.
IMTextStart Notifies the application program of the length of the pre-editing space.
IMTextStart Notifies the application program of the length of the pre-editing space.

Appendix B. National Language Support (NLS) Reference 191

List of Regular Expression Subroutines
The following subroutines handle regular expressions:

regcomp Compiles a regular expression for comparison by the regexec subroutine.

For more information about multibyte character subroutines see Chapter 3, “Subroutines for National
Language Support,” on page 15.

For more NLS subroutines see “List of National Language Support Subroutines” on page 188.

192 National Language Support Guide and Reference

Appendix C. Character Maps

This appendix contains textual representations of the following character maps discussed in Chapter 4,
“Code Sets for National Language Support,” on page 49:

v “ISO Code Sets”

v “IBM Code Sets” on page 214

ISO Code Sets
The following ISO code sets are described:

v “ISO8859–1”

v “ISO8859–2” on page 196

v “ISO8859–4” on page 198

v “ISO8859–5” on page 201

v “ISO8859–6” on page 203

v “ISO8859–7” on page 204

v “ISO8859–8” on page 207

v “ISO8859–9” on page 208

v “ISO8859–15” on page 211

ISO8859–1
Table 49. ISO8859–1 Code set

Symbolic Name Hex Value

no break space A0

inverted exclamation mark A1

cent sign A2

pound sign A3

currency sign A4

yen sign A5

broken bar A6

section sign A7

diaeresis A8

copyright sign A9

feminine ordinal indicator AA

left-pointing double angle quotation mark AB

not sign AC

soft hyphen AD

registered sign AE

macron AF

degree sign B0

plus-minus sign B1

superscript two B2

superscript three B3

© Copyright IBM Corp. 2002, 2006 193

Table 49. ISO8859–1 Code set (continued)

Symbolic Name Hex Value

acute accent B4

micro sign B5

pilcrow sign B6

middle dot B7

cedilla B8

superscript one B9

masculine ordinal indicator BA

right-pointing double angle quotation mark BB

vulgar fraction one quarter BC

vulgar fraction one half BD

vulgar fraction three quarters BE

inverted question mark BF

latin capital letter A with grave C0

latin capital letter A with acute C1

latin capital letter A with circumflex C2

latin capital letter A with tilde C3

latin capital letter A with diaeresis C4

latin capital letter A with ring above C5

latin capital letter AE C6

latin capital letter C with cedilla C7

latin capital letter E with grave C8

latin capital letter E with acute C9

latin capital letter E with circumflex CA

latin capital letter E with diaeresis CB

latin capital letter I with grave CC

latin capital letter I with acute CD

latin capital letter I with circumflex CE

latin capital letter I with diaeresis CF

latin capital letter eth D0

latin capital letter n with tilde D1

latin capital letter O with grave D2

latin capital letter O with acute D3

latin capital letter O with circumflex D4

latin capital letter O with tilde D5

latin capital letter O with diaeresis D6

multiplication sign D7

latin capital letter O with stroke D8

latin capital letter U with grave D9

latin capital letter U with acute DA

latin capital letter U with circumflex DB

194 National Language Support Guide and Reference

Table 49. ISO8859–1 Code set (continued)

Symbolic Name Hex Value

latin capital letter U with diaeresis DC

latin capital letter Y with acute DD

latin capital letter thorn DE

latin small letter sharp S DF

latin small letter A with grave E0

latin small letter A with acute E1

latin small letter A with circumflex E2

latin small letter A with tilde E3

latin small letter A with diaeresis E4

latin small letter A with ring above E5

latin small letter AE E6

latin small letter C with cedilla E7

latin small letter E with grave E8

latin small letter E with acute E9

latin small letter E with circumflex EA

latin small letter E with diaeresis EB

latin small letter I with grave EC

latin small letter I with acute ED

latin small letter I with circumflex EE

latin small letter I with diaeresis EF

latin small letter eth F0

latin small letter n with tilde F1

latin small letter O with grave F2

latin small letter O with acute F3

latin small letter O with circumflex F4

latin small letter O with tilde F5

latin small letter O with diaeresis F6

division sign F7

latin small letter O with stroke F8

latin small letter U with grave F9

latin small letter U with acute FA

latin small letter U with circumflex FB

latin small letter U with diaeresis FC

latin small letter Y with acute FD

latin small letter thorn FE

latin small letter y with diaeresis FF

Appendix C. Character Maps 195

ISO8859–2
Table 50. ISO8859–2 Code set

Symbolic Name Hex Value

no break space A0

latin capital letter A with ogonek A1

bleve A2

capital letter L with stroke A3

currency sign A4

latin capital letter L with caron A5

latin capital letter S with acute A6

section sign A7

diaeresis A8

latin capital letter S with caron A9

latin capital letter S with cedilla AA

latin capital letter T with caron AB

latin capital letter Z with acute AC

soft hyphen AD

latin capital letter Z with caron AE

latin capital letter Z with dot above AF

degree sign B0

latin small letter A with ogenek B1

ogenek B2

latin small letter L with stroke B3

acute accent B4

latin small letter L with caron B5

latin small letter S with acute B6

caron B7

cedilla B8

latin small letter S with caron B9

latin small letter S with cedilla BA

latin small letter T with caron BB

latin small letter Z with acute BC

double acute accent BD

latin small letter Z with caron BE

latin small letter Z with dot above BF

latin capital letter R with acute C0

latin capital letter A with acute C1

latin capital letter A with circumflex C2

latin capital letter A with breve C3

latin capital letter A with diaeresis C4

latin capital letter L with acute C5

196 National Language Support Guide and Reference

Table 50. ISO8859–2 Code set (continued)

Symbolic Name Hex Value

latin capital letter C with acute C6

latin capital letter C with cedilla C7

latin capital letter C with caron C8

latin capital letter E with acute C9

latin capital letter E with ogonek CA

latin capital letter E with diaeresis CB

latin capital letter E with caron CC

latin capital letter I with acute CD

latin capital letter I with circumflex CE

latin capital letter D with caron CF

latin capital letter D with stroke D0

latin capital letter N with acute D1

latin capital letter N with caron D2

latin capital letter O with acute D3

latin capital letter O with circumflex D4

latin capital letter O with double acute D5

latin capital letter O with diaeresis D6

multiplication sign D7

latin capital letter R with caron D8

latin capital letter U with ring above D9

latin capital letter U with acute DA

latin capital letter U with double acute DB

latin capital letter U with diaeresis DC

latin capital letter Y with acute DD

latin capital letter T with cedilla DE

latin small letter sharp S DF

latin small letter R with acute E0

latin small letter A with acute E1

latin small letter A with circumflex E2

latin small letter A with breve E3

latin small letter A with diaeresis E4

latin small letter L with acute E5

latin small letter C with acute E6

latin small letter C with cedilla E7

latin small letter C with caron E8

latin small letter E with acute E9

latin small letter E with ogonek EA

latin small letter E with diaeresis EB

latin small letter E with caron EC

latin small letter I with acute ED

Appendix C. Character Maps 197

Table 50. ISO8859–2 Code set (continued)

Symbolic Name Hex Value

latin small letter I with circumflex EE

latin small letter D with caron EF

latin small letter D with stroke F0

latin small letter N with acute F1

latin small letter N with caron F2

latin small letter O with acute F3

latin small letter O with circumflex F4

latin small letter O with double acute F5

latin small letter O with diaeresis F6

division sign F7

latin small letter R with caron F8

latin small letter U with ring above F9

latin small letter U with acute FA

latin small letter U with double acute FB

latin small letter U with diaeresis FC

latin small letter Y with acute FD

latin small letter T with cedilla FE

dot above FF

ISO8859–4
Table 51. ISO8859–4 Code set

Symbolic Name Hex Value

no break space A0

latin capital letter A with ogonek A1

latin small letter kra A2

latin capital letter R with cedilla A3

currency sign A4

latin capital letter I with tilde A5

latin capital letter L with cedilla A6

section sign A7

diaeresis A8

latin capital letter S with caron A9

latin capital letter E with macron AA

latin capital letter G with cedilla AB

latin capital letter T with stroke AC

soft hyphen AD

latin capital letter Z with caron AE

macron AF

degree sign B0

198 National Language Support Guide and Reference

Table 51. ISO8859–4 Code set (continued)

Symbolic Name Hex Value

latin small letter A with ogonek B1

ogonek B2

latin small letter R with cedilla B3

acute accent B4

latin small letter I tilde B5

latin small letter L with cedilla B6

caron B7

cedilla B8

latin small letter S with caron B9

latin small letter E with macron BA

latin small letter G with cedilla BB

latin small letter T with stroke BC

latin capital letter eng BD

latin small letter Z with caron BE

latin small letter eng BF

latin capital letter A with macron C0

latin capital letter A with acute C1

latin capital letter A with circumflex C2

latin capital letter A with tilde C3

latin capital letter A with diaeresis C4

latin capital letter A with ring above C5

latin capital letter ae C6

latin capital letter I with ogonek C7

latin capital letter C with caron C8

latin capital letter E with acute C9

latin capital letter E with ogonek CA

latin capital letter E with diaeresis CB

latin capital letter E with dot above CC

latin capital letter I with acute CD

latin capital letter I with circumflex CE

latin capital letter I with macron CF

latin capital letter D with stroke D0

latin capital letter N with cedilla D1

latin capital letter O with macron D2

latin capital letter K with cedilla D3

latin capital letter O with circumflex D4

latin capital letter O with tilde D5

latin capital letter O with diaeresis D6

multiplication sign D7

latin capital letter O with stroke D8

Appendix C. Character Maps 199

Table 51. ISO8859–4 Code set (continued)

Symbolic Name Hex Value

latin capital letter U with ogonek D9

latin capital letter U with acute DA

latin capital letter U with circumflex DB

latin capital letter U with diaeresis DC

latin capital letter U with tilde DD

latin capital letter U with macron DE

latin small letter sharp S DF

latin small letter A with macron E0

latin small letter A with acute E1

latin small letter A with circumflex E2

latin small letter A with tilde E3

latin small letter A with diaeresis E4

latin small letter A with ring above E5

latin small letter ae E6

latin small letter I with ogonek E7

latin small letter C with caron E8

latin small letter E with acute E9

latin small letter E with ogonek EA

latin small letter E with diaeresis EB

latin small letter E with dot above EC

latin small letter I with acute ED

latin small letter I with circumflex EE

latin small letter I with macron EF

latin small letter D with stroke F0

latin small letter N with cedilla F1

latin small letter O with macron F2

latin small letter K with cedilla F3

latin small letter O with circumflex F4

latin small letter O with tilde F5

latin small letter O with diaeresis F6

division sign F7

latin small letter O with stroke F8

latin small letter U with ogonek F9

latin small letter U with acute FA

latin small letter U with circumflex FB

latin small letter U with diaeresis FC

latin small letter U with tilde FD

latin small letter U with macron FE

dot above FF

200 National Language Support Guide and Reference

ISO8859–5
Table 52. ISO8859–5 Code set

Symbolic Name Hex Value

no break space A0

cyrillic capital letter io A1

cyrillic capital letter dje A2

cyrillic capital letter gje A3

cyrillic capital letter ukrainian ie A4

cyrillic capital letter dze A5

cyrillic capital letter byelorussian-ukrainian I A6

cyrillic capital letter yi A7

cyrillic capital letter je A8

cyrillic capital letter lje A9

cyrillic capital letter nje AA

cyrillic capital letter tshe AB

cyrillic capital letter kje AC

soft hyphen AD

cyrillic capital letter short U AE

cyrillic capital letter dzhe AF

cyrillic capital letter A B0

cyrillic capital letter be B1

cyrillic capital letter ve B2

cyrillic capital letter ghe B3

cyrillic capital letter de B4

cyrillic capital letter ie B5

cyrillic capital letter zhe B6

cyrillic capital letter ze B7

cyrillic capital letter I B8

cyrillic capital letter short I B9

cyrillic capital letter ka BA

cyrillic capital letter el BB

cyrillic capital letter em BC

cyrillic capital letteren BD

cyrillic capital letter O BE

cyrillic capital letter pe BF

cyrillic capital letter er C0

cyrillic capital letter es C1

cyrillic capital letter te C2

cyrillic capital letter U C3

cyrillic capital letter ef C4

cyrillic capital letter ha C5

Appendix C. Character Maps 201

Table 52. ISO8859–5 Code set (continued)

Symbolic Name Hex Value

cyrillic capital letter tse C6

cyrillic capital letter che C7

cyrillic capital letter sha C8

cyrillic capital letter shcha C9

cyrillic capital letter hard sign CA

cyrillic capital letter yeru CB

cyrillic capital letter soft sign CC

cyrillic capital letter E CD

cyrillic capital letter tu CE

cyrillic capital letter ya CF

cyrillic small letter A D0

cyrillic small letter be D1

cyrillic small letter ve D2

cyrillic small letter ghe D3

cyrillic small letter de D4

cyrillic small letter ie D5

cyrillic small letter zhe D6

cyrillic small letter ze D7

cyrillic small letter I D8

cyrillic small letter short I D9

cyrillic small letter ka DA

cyrillic small letter el DB

cyrillic small letter em DC

cyrillic small letter en DD

cyrillic small letter O DE

cyrillic small letter pe DF

cyrillic small letter er E0

cyrillic small letter es E1

cyrillic small letter te E2

cyrillic small letter U E3

cyrillic small letter ef E4

cyrillic small letter ha E5

cyrillic small letter tse E6

cyrillic small letter che E7

cyrillic small letter sha E8

cyrillic small letter shcha E9

cyrillic small letter hard sign EA

cyrillic small letter yeru EB

cyrillic small letter soft sign EC

cyrillic small letter E ED

202 National Language Support Guide and Reference

Table 52. ISO8859–5 Code set (continued)

Symbolic Name Hex Value

cyrillic small letter yu EE

cyrillic small letter ta EF

numero sign F0

cyrillic small letter io F1

cyrillic small letter dje F2

cyrillic small letter gje F3

cyrillic small letter ukrainian ie F4

cyrillic small letter dze F5

cyrillic small letter byelorussian-ukrainian I F6

cyrillic small letter yi F7

cyrillic small letter je F8

cyrillic small letter lje F9

cyrillic small letter nje FA

cyrillic small letter tshe FB

cyrillic small letter kje FC

selection sign FD

cyrillic small letter short U FE

cyrillic small letter dzhe FF

ISO8859–6
Table 53. ISO8859–6

Symbolic Name Hex Value

no-break space A0

currency sign A4

Arabic comma AC

soft hyphen AD

Arabic semicolon BB

Arabic question mark BF

Arabic letter hamza C1

Arabic letter alef with madda above C2

Arabic letter alef with hamza above C3

Arabic letter waw with hamza above C4

Arabic letter alef with hamza below C5

Arabic letter yeh with hamza above C6

Arabic letter alef C7

Arabic letter beh C8

Arabic letter teh marbuta C9

Arabic letter teh CA

Arabic letter theh CB

Appendix C. Character Maps 203

Table 53. ISO8859–6 (continued)

Symbolic Name Hex Value

Arabic letter jeem CC

Arabic letter hah CD

Arabic letter khah CE

Arabic letter dal CF

Arabic letter thal D0

Arabic letter reh D1

Arabic letter zain D2

Arabic letter seen D3

Arabic letter sheen D4

Arabic letter sad D5

Arabic letter dad D6

Arabic letter tah D7

Arabic letter zah D8

Arabic letter ain D9

Arabic letter ghain DA

Arabic letter tatweel E0

Arabic letter feh E1

Arabic letter qaf E2

Arabic letter kaf E3

Arabic letter lam E4

Arabic letter meem E5

Arabic letter noon E6

Arabic letter heh E7

Arabic letter waw E8

Arabic letter alef maksura E9

Arabic letter yeh EA

Arabic letter fathatan EB

Arabic letter dammatan EC

Arabic letter kasratan ED

Arabic letter fatha EE

Arabic letter damma EF

Arabic letter kasra F0

Arabic letter shadda F1

Arabic letter sukun F2

ISO8859–7
Table 54. ISO8859–7 Code set

Symbolic Name Hex Value

no break space A0

204 National Language Support Guide and Reference

Table 54. ISO8859–7 Code set (continued)

Symbolic Name Hex Value

left single quotation mark A1

right single quotation mark A2

puond sign A3

euro sign A4

broken bar A6

section sign A7

diaeresis A8

copyright sign A9

left-pointing double angle quotation mark AB

not sign AC

soft hyphen AD

horizontal bar AF

degree sign B0

plus-minus sign B1

superscript two B2

superscript three B3

greek tonos B4

greek dialytika tonos B5

greek capital letter alpha with tonos B6

middle dot B7

greek capital letter epsilon with tonos B8

greek capital letter eta with tonos B9

greek capital letter iota with tonos BA

right-pointing double angle quotation mark BB

greek capital letter omicron with tonos BC

vulgar fraction one half BD

greek capital letter upsilon with tonos BE

greek capital letter omega with tonos BF

greek small letter iota with dialytika and tonos C0

greek capital letter alpha C1

greek capital letter beta C2

greek capital letter gamma C3

greek capital letter delta C4

greek capital letter epsilon C5

greek capital letter zeta C6

greek capital letter eta C7

greek capital letter theta C8

greek capital letter iota C9

greek capital letter kappa CA

greek capital letter lambda CB

Appendix C. Character Maps 205

Table 54. ISO8859–7 Code set (continued)

Symbolic Name Hex Value

greek capital letter mu CC

greek capital letter nu CD

greek capital letter xi CE

greek capital letter omicron CF

greek capital letter pi D0

greek capital letter rho D1

greek capital letter sigma D3

greek capital letter tau D4

greek capital letter upsilon D5

greek capital letter phi D6

greek capital letter chi D7

greek capital letter psi D8

greek capital letter omega D9

greek capital letter iota with dialytika DA

greek capital letter upsilon with dialytika DB

greek small letter alpha with tonos DC

greek small letter epsilon with tonos DD

greek small letter eta with tonos DE

greek small letter iota with tonos DF

greek small letter upsilon with dialytika and tonos E0

greek small letter alpha E1

greek small letter beta E2

greek small letter gamma E3

greek small letter delta E4

greek small letter epsilon E5

greek small letter zeta E6

greek small letter eta E7

greek small letter theta E8

greek small letter iota E9

greek small letter kappa EA

greek small letter lambda EB

greek small letter mu EC

greek small letter nu ED

greek small letter xi EE

greek small letter omicron EF

greek small letter pi F0

greek small letter rho F1

greek small letter final sigma F2

greek small letter sigma F3

greek small letter tau F4

206 National Language Support Guide and Reference

Table 54. ISO8859–7 Code set (continued)

Symbolic Name Hex Value

greek small letter upsilon F5

greek small letter phi F6

greek small letter chi F7

greek small letter psi F8

greek small letter omega F9

greek small letter iota with dialytika FA

greek small letter upsilon with dialytika FB

greek small letter omicron with tonos FC

greek small letter upsilon with tonos FD

greek small letter omega with tonos FE

ISO8859–8
Table 55. ISO8859–8 Code set

Symbolic Name Hex Value

no-break space A0

cent sign A2

pound sign A3

currency sign A4

yen sign A5

broken bar A6

section sign A7

diaeresis A8

copyright sign A9

multiplication sign AA

left-pointing double angle quotation mark AB

not sign AC

soft hyphen AD

registered sign AE

overline AF

degree sign B0

plus-minus sign B1

superscript two B2

superscript three B3

acute accent B4

micro sign B5

pilcrow sign B6

middle dot B7

cedilla B8

superscript one B9

Appendix C. Character Maps 207

Table 55. ISO8859–8 Code set (continued)

Symbolic Name Hex Value

division sign BA

right-pointing double angle quotation mark BB

vulgar fraction one quarter BC

vulgar fraction one half BD

vilgar fraction three quarters BE

double low line DF

hebrew letter alef EO

hebrew letter bet E1

hebrew letter gimel E2

hebrew letter dalet E3

hebrew letter he E4

hebrew letter vav E5

hebrew letter zayin E6

hebrew letter het E7

hebrew letter tet E8

hebrew letter yod E9

hebrew letter final kaf EA

hebrew letter kaf EB

hebrew letter lamed EC

hebrew letter final mem ED

hebrew letter mem EE

hebrew letter final nun EF

hebrew letter nun F0

hebrew letter samekh F1

hebrew letter ayin F2

hebrew letter final pe F3

hebrew letter pe F4

hebrew letter final tsadi F5

hebrew letter tsadi F6

hebrew letter qof F7

hebrew letter resh F8

hebrew letter shin F9

hebrew letter tav FA

ISO8859–9
Table 56. ISO8859–9 Code set

Symbolic Name Hex Value

no-break space A0

inverted exclamation mark A1

208 National Language Support Guide and Reference

Table 56. ISO8859–9 Code set (continued)

Symbolic Name Hex Value

cent sign A2

pound sign A3

currency sign A4

yen sign A5

broken bar A6

section sign A78

diaeresis A8

copyright sign A9

feminine ordinal indicator AA

left-pointing double quotation mark AB

not sign AC

sofy hyphen AD

registered sign AE

macron AF

degree sign B0

plus-minus sign B1

superscript two B2

superscript three B3

acute accent B4

micro sign B5

pilcrow sign B6

middle dot B7

cedilla B8

superscript one B9

masculine ordinal indicator BA

right pointing double angle quotation mark BB

vulgar fraction one quarter BC

vulgar fraction one half BD

vulgar fraction three quarters BE

inverted question mark BF

latin capital letter A with grave C0

latin capital letter A with acute C1

latin capital letter A with circumflex C2

latin capital letter A with tilde C3

latin capital letter A with diaeresis C4

latin capital letter A with ring above C5

latin capital letter AE C6

latin capital letter C with cedilla C7

latin capital letter E with grave C8

latin capital letter E with acute C9

Appendix C. Character Maps 209

Table 56. ISO8859–9 Code set (continued)

Symbolic Name Hex Value

latin capital letter E with circumflex CA

latin capital letter E with diaeresis CB

latin capital letter I with grave CC

latin capital letter I with acute CD

latin capital letter I with circumflex CE

latin capital letter I with diaeresis CF

latin capital letter G with breve D0

latin capital letter N with tilde D1

latin capital letter O with grave D2

latin capital letter O with acute D3

latin capital letter O with circumflex D4

latin capital letter O with tilde D5

latin capital letter O with diaeresis D6

multiplication sign D7

latin capital letter O with stroke D8

latin capital letter U with grave D9

latin capital letter U with acute DA

latin capital letter U with circumflex DB

latin capital letter U with diaeresis DC

latin capital letter I with dot above DD

latin capital letter S with cedilla DE

latin small letter sharp S DF

latin small letter A with grave E0

latin small letter A with acute E1

latin small letter A with circumflex E2

latin small letter A with tilde E3

latin small letter A with diaeresis E4

latin small letter A with ring above E5

latin small letter AE E6

latin small letter C with cedilla E7

latin small letter E with grave E8

latin small letter E with acute E9

latin small letter E with circumflex EA

latin small letter E with diseresis EB

latin small letter I with grave EC

latin small letter I with acute ED

latin small letter I with circumflex EE

latin small letter I with diaeresis EF

latin small letter G with breve F0

latin small letter N with tilde F1

210 National Language Support Guide and Reference

Table 56. ISO8859–9 Code set (continued)

Symbolic Name Hex Value

latin small letter O with grave F2

latin small letter O with acute F3

latin small letter O with circumflex F4

latin small letter O with tilde F5

latin small letter O with diaeresis F6

division sign F7

latin small letter O with stroke F8

latin small letter U with grave F9

latin small letter U with acute FA

latin small letter U with circumflex FB

latin small letter U with diaeresis FC

latin small letter dotless I FD

latin small letter S with cedilla FE

latin small letter Y with diaeresis FF

ISO8859–15
Table 57. ISO8859–1 Code set

Symbolic Name Hex Value

no-break space A0

inverted exclamation mark A1

cent sign A2

pound sign A3

euro sign A4

yen sign A5

latin capital letter S with caron A6

section sign A7

letin small letter S with caron A8

copyright sign A9

feminine ordinal indicator AA

left-pointing double angle quotation mark AB

not sign AC

soft hyphen AD

registered sign AE

macron AF

degree sign B0

plus-minus sign B1

superscript two B2

superscript three B3

latin capital letter Z with caron B4

Appendix C. Character Maps 211

Table 57. ISO8859–1 Code set (continued)

Symbolic Name Hex Value

micro sign B5

pilcrow sign B6

middle dot B7

latin small letter Z with caron B8

superscript one B9

masculine ordinal indicator BA

right-pointing bouble angle quotation marks BB

latin capital ligature oe BC

latin small ligature oe BD

latin capital letter Y with diaeresis BE

inverted question mark BF

latin capital letter A with grave C0

latin capital letter A with acute C1

latin capital letter A with circumflex C2

latin capital letter A with tilde C3

latin capital letter A with diaeresis C4

latin capital letter A with ring above C5

latin capital letter AE C6

latin capital letter C with cedilla C7

latin capital letter E with grave C8

latin capital letter E with acute C9

latin capital letter W with circumflex CA

latin capital letter E with diaeresis CB

latin capital letter I with grave CC

latin capital letter I with acute CD

latin capital letter I with circumflex CE

latin capital letter I with diaeresis CF

latin capital letter eth D0

latin capital letter N with tilde D1

latin capital letter O with grave D2

latin capital letter O with acute D3

latin capital letter O with circumflex D4

latin capital letter O with tilde D5

latin capital letter O with diaeresis D6

multiplication sign D7

latin capital letter O with stroke D8

latin capital letter U with grave D9

latin capital letter U with acute DA

latin capital letter U with circumflex DB

latin capital letter U with diaeresis DC

212 National Language Support Guide and Reference

Table 57. ISO8859–1 Code set (continued)

Symbolic Name Hex Value

latin capital letter Y with acute DD

latin capital letter thorn DE

latin small letter sharp S DF

latin small letter A with grave EO

latin small letter A with acute E1

latin small letter A with circumflex E2

latin small letter A with tilde E3

latin small letter A with diaeresis E4

latin small letter A with ring above E5

latin small letter AE E6

latin small letter C with cedilla E7

latin small letter E with grave E8

latin small letter E with acute E9

latin small letter E with circumflex EA

latin small letter E with diaeresis EB

latin small letter I with grave EC

latin small letter I with acute ED

latin small letter I with circumflex EE

latin small letter I with diaeresis EF

latin small letter eth F0

latin small letter N with tilde F1

latin small letter O with grave F2

latin small letter O with acute F3

latin small letter O with circumflex F4

latin small letter O with tilde F5

latin small letter O with diaeresis F6

division sign F7

latin small letter O with stroke F8

latin small letter U with grave F9

latin small letter U with acute FA

latin small letter U with circumflex FB

latin small letter U with diaeresis FC

latin small letter Y with acute FD

latin small letter thorn FE

latin small letter Y with diaeresis FF

Appendix C. Character Maps 213

IBM Code Sets
The following IBM PC code sets are described:

v “IBM-856”

v “IBM-921” on page 216

v “IBM-922” on page 219

v “IBM-1046” on page 221

v “IBM-1124” on page 224

v “IBM-1129” on page 227

v “TIS-620” on page 229

IBM-856
Table 58. IBM–856 Code set

Symbolic Name Hex Value

hebrew letter alef 80

hebrew letter bet 81

hebrew letter gimel 82

hebrew letter dalet 83

hebrew letter he 84

hebrew letter vav 85

hebrew letter zayin 86

hebrew letter het 87

hebrew letter tet 88

hebrew letter yod 89

hebrew letter final kaf 8A

hebrew letter kaf 8B

hebrew letter lamed 8C

hebrew letter final mem 8D

hebrew letter mem 8E

hebrew letter final nun 8F

hebrew letter nun 90

hebrew letter samekh 91

hebrew letter ayin 92

hebrew letter final pe 93

hebrew letter pe 94

hebrew letter final tsadi 95

hebrew letter tsadi 96

hebrew letter qof 97

hebrew letter resh 98

hebrew letter shin 99

hebrew letter tav 9A

pound sign 9C

multiplication sign 9E

214 National Language Support Guide and Reference

Table 58. IBM–856 Code set (continued)

Symbolic Name Hex Value

registered sign A9

not sign AA

vulgar fraction one half AB

vulgar fraction one quarter AC

left pointing double angle quotation mark AE

right pointing double angle quotation mark AF

light shade B0

medium shade B1

dark shade B2

box drawings light vertical B3

box drawings light vertical and left B4

copyright sign B8

box drawings double vertival and left B9

box drawings double vertical BA

box drawings double down and left BB

box drawings double up and left BC

cent sign BD

yen sign BE

box drawings light down and left BF

box drawings light up and right C0

box drawings light up and horizontal C1

box drawings light down and horizontal C2

box drawings light vertical and right C3

box drawings light horizontal C4

box drawings light vertical and horizontal C5

box drawings double up and right C8

box drawings double down and right C9

box drawings double up and horizontal CA

box drawings double down and horizontal CB

box drawings double vertical and right CC

box drawings double horizontal CD

box drawings double vertical and horizontal CE

currency sign CF

box drawings light up and left D9

box drawings light down and right DA

full block DB

lower half block DC

broken bar DD

upper half block DF

micro sign E6

Appendix C. Character Maps 215

Table 58. IBM–856 Code set (continued)

Symbolic Name Hex Value

overline EE

acute accent EF

soft hyphen F0

plus-minus sign F1

double low line F2

vulgar fraction three quarters F3

pilcrow sign F4

section sign F5

division sign F6

cedilla F7

degree sign F8

diaeresis F9

middle dot FA

superscript one FB

superscript three FC

superscript two FD

black square FE

no-break space FF

IBM-921
Table 59. IBM–921 Code set

Symbolic Name Hex Value

no-break space A0

right double quotation mark A1

cent sign A2

pound sign A3

euro sign A4

double low-9 quotation mark A5

broken bar A6

section sign A7

latin capital letter O with stroke A8

copyright sign A9

latin capital letter R with cedilla AA

left-pointing double angle quotation mark AB

not sign AC

soft hyphen AD

registered sign AE

latin capital letter AE AF

degree sign B0

216 National Language Support Guide and Reference

Table 59. IBM–921 Code set (continued)

Symbolic Name Hex Value

plus-minus sign B1

superscript two B2

superscript three B3

left double quotation mark B4

micro sign B5

pilcrow sign B6

middle dot B7

latin small letter O with stroke B8

superscript one B9

latin small letter R with cedilla BA

right-pointing double angle quotation mark BB

vulgar fraction one quarter BC

vulgar fraction one half BD

vulgar fraction three quarters BE

latin small letter AE BF

latin capital letter A with ogonek C0

latin capital letter I with ogonek C1

latin capital letter A with macron C2

latin capital letter C with acute C3

latin capital letter A with diaeresis C4

latin capital letter A with ring above C5

latin capital letter E with ogonek C6

latin capital letter E with macron C7

latin capital letter C with caron C8

latin capital letter E with acute C9

latin capital letter Z with acute CA

latin capital letter E with dot above CB

latin capital letter G with cedilla CC

latin capital letter K with cedilla CD

latin capital letter I with macron CE

latin capital letter L with cedilla CF

latin capital letter S with caron D0

latin capital letter N with acute D1

latin capital letter N with cedilla D2

latin capital letter O with acute D3

latin capital letter O with macron D4

latin capital letter O with tilde D5

latin capital letter O with diaeresis D6

multiplication sign D7

latin capital letter U with ogonek D8

Appendix C. Character Maps 217

Table 59. IBM–921 Code set (continued)

Symbolic Name Hex Value

latin capital letter L with stroke D9

latin capital letter S with acute DA

latin capital letter U with macron DB

latin capital letter U with diaeresis DC

latin capital letter Z with dot above DD

latin capital letter Z with caron DE

latin small letter sharp S DF

latin small letter A with ogonek E0

latin small letter I with ogonek E1

latin small letter A with macron E2

latin small letter C with acute E3

latin small letter A with diaeresis E4

latin small letter A with ring above E5

latin small letter E with ogonek E6

latin small letter E with macron E7

latin small letter C with caron E8

latin small letter E with acute E9

latin small letter Z with acute EA

latin small letter E with dot above EB

latin small letter G with cedilla EC

latin small letter K with cedilla ED

latin small letter I with macron EE

latin small letter L with cedilla EF

latin small letter S with caron F0

latin small letter N with acute F1

latin small letter N with cedilla F2

latin small letter O with acute F3

latin small letter O with macron F4

latin small letter O with tilde F5

latin small letter O with diaeresis F6

division sign F7

latin small letter U with ogonek F8

latin small letter L with stroke F9

latin small letter S with acute FA

latin small letter U with macron FB

latin small letter U with diaeresis FC

latin small letter Z with dot above FD

latin small letter Z with caron FE

right single quotation mark FF

218 National Language Support Guide and Reference

IBM-922
Table 60. IBM–922 Code set

Symbolic Name Hex Value

no break space A0

inverted exclamation mark A1

cent sign A2

pound sign A3

euro sign A4

yenb sign A5

broken bar A6

section sign A7

diaeresis A8

copyright sign A9

feminine ordinal indicator AA

left-pointing double angle quotation mark AB

not sign AC

soft hyphen AD

registered sign AE

macron AF

degree sign B0

plus-minus sign B1

superscript two B2

superscript three B3

acute accent B4

micro sign B5

pilcrow sign B6

middle dot B7

cedilla B8

superscript one B9

masculine ordinal indicator BA

right-pointing double angle quotation mark BB

vulgar fraction one quarter BC

vulgar fraction one half BD

vulgar fraction three quarters BE

inverted question mark BF

latin capital letter A with grave C0

latin capital letter A with acute C1

latin capital letter A with circumflex C2

latin capital letter A with tilde C3

latin capital letter A with diaeresis C4

latin capital letter A with ring above C5

Appendix C. Character Maps 219

Table 60. IBM–922 Code set (continued)

Symbolic Name Hex Value

latin capital letter AE C6

latin capital letter C with cedilla C7

latin capital letter E with grave C8

latin capital letter E with acute C9

latin capital letter E with circumflex CA

latin capital letter E with diaeresis CB

latin capital letter I with grave CC

latin capital letter I with acute CD

latin capital letter I with circumflex CE

latin capital letter I with diaeresis CF

latin capital letter S with caron D0

latin capital letter N with tilde D1

latin capital letter O with grave D2

latin capital letter O with acute D3

latin capital letter O with circumflex D4

latin capital letter O with tilde D5

latin capital letter O with diaeresis D6

multiplication sign D7

latin capital letter O with stroke D8

latin capital letter U with grave D9

latin capital letter U with acute DA

latin capital letter U with circuflex DB

latin capital letter U with diaeresis DC

latin capital letter Y with acute DD

latin capital letter Z with caron DE

latin small letter sharp S DF

latin small letter A with grave E0

latin small letter A with acute E1

latin small letter A with circumflex E2

latin small letter A with tilde E3

latin small letter A with diaeresis E4

latin small letter A with ring above E5

latin small letter AE E6

latin small letter C with cedilla E7

latin small letter E with grave E8

latin small letter E with acute E9

latin small letter E with circumflex EA

latin small letter E with diaeresis EB

latin small letter I with grave EC

latin small letter I with acute ED

220 National Language Support Guide and Reference

Table 60. IBM–922 Code set (continued)

Symbolic Name Hex Value

latin small letter I with curcumflex EE

latin small letter I with diaeresis EF

latin small letter S with caron F0

latin small letter N with tilde F1

latin small letter O with grave F2

latin small letter O with acute F3

latin small letter O with circumflex F4

latin small letter O with tilde F5

latin small letter O with diaeresis F6

division sign F7

latin small letter O with stroke F8

latin small letter U with grave F9

latin small letter U with acute FA

latin small letter U with circumflex FB

latin small letter U with diaeresis FC

latin small letter Y with acute FD

latin small letter Z with caron FE

latin small letter Y with diaeresis FF

IBM-1046
Table 61. IBM–1046 Code set

Symbolic Name Hex Value

arabic letter alef with hamza below final form 80

multiplication sign 81

division sign 82

arabic letter seen first part of final form 83

arabic letter sheen first part of final form 84

arabic letter sad first part of final form 85

arabic letter dadfirst part of final form 86

arabic tatweel with fathatan above 87

full block 89

box drawings light vertical 8A

box drawings light horizontal 8B

box drawings light down and left 8C

box drawings light down and right 8D

box drawings light up and right 8E

box drawings light up and left 8F

arabic damma medial form 90

arabic kasra medial form 91

Appendix C. Character Maps 221

Table 61. IBM–1046 Code set (continued)

Symbolic Name Hex Value

arabic shadda medial form 92

arabic sukun medial form 93

arabic fatha medial form 94

arabic letter yeh with hamza above final form 95

arabic letter alef maksura final form 96

arabic letter yeh initial form 97

arabic letter yeh final form 98

arabic letter ghain final form 99

arabic letter ghain initial form 9A

arabic letter ghain medial form 9B

arabic ligature lam with alef with madda above final form 9C

arabic ligature lam with alef with hamza above final form 9D

arabic ligature lam with alef with hamza below final form 9E

arabic ligature lam with alef final form 9f

no-break space A0

arabic letter alef with madda above after lam A1

arabic letter alef with hamza above after lam A2

arabic letter alef with hamza below after lam A3

currency sign A4

arabic letter alef after lam A5

arabic letter yeh with hamza above initial form A6

arabic letter beh with initial form A7

arabic letter teh with initial form A8

arabic letter theh with initial form A9

arabic letter jeem with initial form AA

arabic letter hah with initial form AB

arabic comma AC

soft hyphen AD

arabic letter khan initial form AE

arabic letter seen initial form AF

arabic-indic digit zero B0

arabic-indic digit one B1

arabic-indic digit two B2

arabic-indic digit three B3

arabic-indic digit four B4

arabic-indic digit five B5

arabic-indic digit six B6

arabic-indic digit seven B7

arabic-indic digit eight B8

arabic-indic digit nine B9

222 National Language Support Guide and Reference

Table 61. IBM–1046 Code set (continued)

Symbolic Name Hex Value

arabic letter sheen initial form BA

arabic semicolon BB

arabic letter sad initial form BC

arabic letter dad initial form BD

arabic letter ain initial form BE

arabic question mark BF

arabic letter ain initial form C0

arabic letter hamza C1

arabic letter alef with madda above C2

arabic letter alef with hamza above C3

arabic letter waw with hamza above C4

arabic letter alef with hamza below C5

arabic letter yeh with hamza above C6

arabic letter alef C7

arabic letter beh C8

arabic letter teh marbuta C9

arabic letter teh CA

arabic letter theh CB

arabic letter jeem CC

arabic letter hah CD

arabic letter khah CE

arabic letter dal CF

arabic letter thal D0

arabic letter reh D1

arabic letter zain D2

arabic letter seen D3

arabic letter sheen D4

arabic letter sad D5

arabic letter dad D6

arabic letter tah D7

arabic letter zah D8

arabic letter ain D9

arabic letter ghain DA

arabic letter ain medial form DB

arabic letter alef with madda above final form DC

arabic letter alef with hamza above final form DD

arabic letter alef with final form DE

arabic letter feh initial form DF

arabic tatweel E0

arabic letter feh E1

Appendix C. Character Maps 223

Table 61. IBM–1046 Code set (continued)

Symbolic Name Hex Value

arabic letter qaf E2

arabic letter kaf E3

arabic letter lam E4

arabic letter meem E5

arabic letter noon E6

arabic letter heh E7

arabic letter waw E8

arabic letter alef maksura E9

arabic letter yeh EA

arabic fathatan EB

arabic dammatan EC

arabic kasratan ED

arabic fatha EE

arabic damma EF

arabic kasra F0

arabic shadda F1

arabic sukun F2

arabic letter qar initial form F3

arabic letter kaf initial form F4

arabic letter lam initial form F5

arabic kasseh F6

arabic ligature lam with alef with madda above isolated form F7

arabic ligature lam with alef with hamza above isolated form F8

arabic ligature lam with alef with madda below isolated form F9

arabic ligature lam with alef isolated form FA

arabic letter meem initial form FB

arabic letter noon initial form FC

arabic letter heh initial form FD

arabic letter heh final form FE

euro sign FF

IBM-1124
Table 62. IBM–1124 Code set

Symbolic Name Hex Value

no-break space A0

cyrillic capital letter io A1

cyrillic capital letter dje A2

cyrillic capital letter ghe with upturn A3

cyrillic capital letter ukrainian ie A4

224 National Language Support Guide and Reference

Table 62. IBM–1124 Code set (continued)

Symbolic Name Hex Value

cyrillic capital letter dze A5

cyrillic capital letter byelorussian-ukranian i A6

cyrillic capital letter yi A7

cyrillic capital letter je A8

cyrillic capital letter lje A9

cyrillic capital letter nje AA

cyrillic capital letter tshe AB

cyrillic capital letter kje AC

soft hyphen AD

cyrillic capital letter short U AE

cyrillic capital letter dzhe AF

cyrillic capital letter A B0

cyrillic capital letter be B1

cyrillic capital letter ve B2

cyrillic capital letter ghe B3

cyrillic capital letter de B4

cyrillic capital letter ie B5

cyrillic capital letter zhe B6

cyrillic capital letter ze B7

cyrillic capital letter I B8

cyrillic capital letter short I B9

cyrillic capital letter ka BA

cyrillic capital letter el BB

cyrillic capital letter em BC

cyrillic capital letter en BD

cyrillic capital letter O BE

cyrillic capital letter pe BF

cyrillic capital letter er C0

cyrillic capital letter es C1

cyrillic capital letter te C2

cyrillic capital letter U C3

cyrillic capital letter ef C4

cyrillic capital letter ha C5

cyrillic capital letter tse C6

cyrillic capital letter che C7

cyrillic capital letter sha C8

cyrillic capital letter shcha C9

cyrillic capital letter hard sign CA

cyrillic capital letter yeru CB

cyrillic capital letter soft sign CC

Appendix C. Character Maps 225

Table 62. IBM–1124 Code set (continued)

Symbolic Name Hex Value

cyrillic capital letter E CD

cyrillic capital letter yu CE

cyrillic capital letter ya CF

cyrillic small letter A D0

cyrillic small letter be D1

cyrillic small letter ve D2

cyrillic small letter ghe D3

cyrillic small letter de D4

cyrillic small letter ie D5

cyrillic small letter zhe D6

cyrillic small letter ze D7

cyrillic small letter I D8

cyrillic small letter short I D9

cyrillic small letter ka DA

cyrillic small letter el DB

cyrillic small letter em DC

cyrillic small letter en DD

cyrillic small letter O DE

cyrillic small letter pe DF

cyrillic small letter er E0

cyrillic small letter es E1

cyrillic small letter te E2

cyrillic small letter u E3

cyrillic small letter ef E4

cyrillic small letter ha E5

cyrillic small letter tse E6

cyrillic small letter che E7

cyrillic small letter sha E8

cyrillic small letter shcha E9

cyrillic small letter hard sign EA

cyrillic small letter yeru EB

cyrillic small letter soft sign EC

cyrillic small letter E ED

cyrillic small letter yu EE

cyrillic small letter ya EF

numero sign F0

cyrillic small letter io F1

cyrillic small letter dje F2

cyrillic small letter ghe with upturn F3

cyrillic small letter ukrainian ie F4

226 National Language Support Guide and Reference

Table 62. IBM–1124 Code set (continued)

Symbolic Name Hex Value

cyrillic small letter dze F5

cyrillic small letter byelorussian-ukrainian F6

cyrillic small letter yi F7

cyrillic small letter je F8

cyrillic small letter lje F9

cyrillic small letter nje FA

cyrillic small letter tshe FB

cyrillic small letter kje FC

section sign FD

cyrillic small letter short u FE

cyrillic small letter dzhe FF

IBM-1129
Table 63. IBM–1129 Code set

Symbolic Name Hex Value

no-break space A0

inverted exclamation mark A1

cent sign A2

pound sign A3

euro sign A4

yen sign A5

broken bar A6

section sign A7

latin small ligature OE A8

copyright sign A9

feminine ordinal indicator AA

left pointing double angle quotation mark AB

not sign AC

soft hyphen AD

registered sign AE

macron AF

degree sign B0

plus-minus sign B1

superscript two B2

superscript three B3

latin capital Y with diaeresis B4

micro sign B5

pilcrow sign B6

middle dot B7

Appendix C. Character Maps 227

Table 63. IBM–1129 Code set (continued)

Symbolic Name Hex Value

latin capital ligature OE B8

superscript one B9

masculine ordinal indicator BA

right pointing double angle quotation mark BB

vulgar fraction one quarter BC

vulgar fraction one half BD

vulgar fraction three quarters BE

inverted question mark BF

latin capital letter A with grave C0

latin capital letter A with acute C1

latin capital letter A with circumflex C2

latin capital letter A with breve C3

latin capital letter A with diaeresis C4

latin capital letter A with ring above C5

latin capital letter AE C6

latin capital letter C with cedilla C7

latin capital letter E with grave C8

latin capital letter E with acute C9

latin capital letter E with circumflex CA

latin capital letter E with diaeresis CB

combining grave accent CC

latin capital letter I with acute CD

latin capital letter I with circumflex CE

latin capital letter I with diaeresis CF

latin capital letter D with stroke D0

latin capital letter N with tilde D1

combining hook above D2

latin capital letter O with acute D3

latin capital letter O with circumflex D4

latin capital letter O with horn D5

latin capital letter O with diaeresis D6

multiplication sign D7

latin capital letter O with stroke D8

latin capital letter U with grave D9

latin capital letter U with acute DA

latin capital letter U with circuflex DB

latin capital letter U with diaeresis DC

latin capital letter U with horn DD

combining tilde DE

latin small letter sharp S DF

228 National Language Support Guide and Reference

Table 63. IBM–1129 Code set (continued)

Symbolic Name Hex Value

latin small letter A with grave E0

latin small letter A with acute E1

latin small letter A with circumflex E2

latin small letter A with breve E3

latin small letter A with diaeresis E4

latin small letter A with ring above E5

latin small letter AE E6

latin small letter C with cedilla E7

latin small letter E with grave E8

latin small letter E with acute E9

latin small letter E with circumflex EA

latin small letter E with diaeresis EB

combining acute accent EC

latin small letter I with acute ED

latin small letter I with circumflex EE

latin small letter I with diaeresis EF

latin small letter D with stroke F0

latin small letter N with tilde F1

combining dot below F2

latin small letter O with acute F3

latin small letter O with circumflex F4

latin small letter O with horn F5

latin small letter O with diaeresis F6

division sign F7

latin small letter O with stroke F8

latin small letter U with grave F9

latin small letter U with acute FA

latin small letter U with circumflex FB

latin small letter U with diaeresis FC

latin small letter U with horn FD

dong sign FE

latin small letter Y with diaeresis FF

TIS-620
Table 64. TIS–620 Code set

Symbolic Name Hex Value

thai character ko kai A1

thai character kho khai A2

thai character kho khuat A3

Appendix C. Character Maps 229

Table 64. TIS–620 Code set (continued)

Symbolic Name Hex Value

thai character kho khwai A4

thai character kho khon A5

thai character kho rakhang A6

thai character ngo ngu A7

thai character cho chan A8

thai character cho ching A9

thai character cho chang AA

thai character so so AB

thai character cho choe AC

thai character yo ying AD

thai character do chada AE

thai character to patak AF

thai character tho than B0

thai character tho nangmontho B1

thai character tho phuthao B2

thai character no nen B3

thai character do dek B4

thai character to tao B5

thai character tho thung B6

thai character tho thahan B7

thai character tho thong B8

thai character no nu B9

thai character bo baimai BA

thai character po pla BB

thai character pho phung BC

thai character fo fa BD

thai character pho phan BE

thai character fo fan BF

thai character pho samphao C0

thai character mo ma C1

thai character yo yak C2

thai character ro rua C3

thai character ru C4

thai character lo ling C5

thai character lu C6

thai character wo waen C7

thai character so sala C8

thai character so rusi C9

thai character so sua CA

thai character ho hip CB

230 National Language Support Guide and Reference

Table 64. TIS–620 Code set (continued)

Symbolic Name Hex Value

thai character lo chula CC

thai character o ang CD

thai character ho nokhuk CE

thai character paiyannoi CF

thai character sara a D0

thai character mai han-akat D1

thai character sara aa D2

thai character sara am D3

thai character sara i D4

thai character sara ii D5

thai character sara ue D6

thai character sara uee D7

thai character sara u D8

thai character uu D9

thai character phinthu DA

thai currency symbol baht DF

thai character sara e E0

thai character sara ae E1

thai character sara O E2

thai character sara ai maimuan E3

thai character sara ai maimalai E4

thai character lakkhangyao E5

thai character maiyamok E6

thai character maitaikhu E7

thai character mai ek E8

thai character mai tho E9

thai character mai tri EA

thai character mai chattawa EB

thai character thanthakhat EC

thai character nikhahit ED

thai character yamakkan EE

thai character fongman EF

thai digit zero F0

thai digit one F1

thai digit two F2

thai digit three F3

thai digit four F4

thai digit five F5

thai digit six F6

thai digit seven F7

Appendix C. Character Maps 231

Table 64. TIS–620 Code set (continued)

Symbolic Name Hex Value

thai digit eight F8

thai digit nine F9

that character angkhankhu FA

thai character khomut FB

232 National Language Support Guide and Reference

Appendix D. NLS Sample Program

This appendix contains a sample program fragment, foo.c, which illustrates internationalization through
code set independent programming.

Message Source File for foo
A sample message source file for the foo utility is given here. Note we defined only one set and three
messages in this catalog for illustration purposes only. A typical catalog contains several such messages.

The following is the message source file for foo, foo.msg.
$quote "
$set MS_FOO
CANTOPEN "foo: cannot open %s\n"
BYTECNT "number of bytes: %d\n"
CHARCNT "number of characters: %d

Creation of Message Header File for foo
To generate the run-time catalog, use the runcat command as follows:
runcat foo foo.msg

This generates the foo_msg.h header file, as shown in the following section. Note that the set mnemonic
is MS_FOO and the message mnemonics are CANTOPEN, BYTECNT, and CHARCNT. These mnemonics are used
in the programs in this appendix.
/*
** The header file: foo_msg.h is as follows:
*/

#ifndef _H_FOO_MSG
#define _H_FOO_MSG
#include <limits.h>
#include <nl_types.h>
#define MF_FOO "foo.cat"

/* The following was generated from wc.msg. */

/* definitions for set MS_FOO */
#define MS_FOO 1

#define CANTOPEN 1
#define BYTECNT 2
#define CHARCNT 3

#endif

Single Source, Single Path Code-set Independent Version
The term single source single path refers to one path in a single application to be used to process both
single-byte and multibyte code sets. The single source single path method eliminates all ifdefs for
internationalization. All characters are handled the same way, whether they are members of single-byte or
multibyte code sets.

Single source single path is desirable, but it can degrade performance. Thus, it is not recommended for all
programs. There may be some programs that do not suffer any performance degradation when they are
fully internationalized; in those cases, use the single source single path method.

© Copyright IBM Corp. 2002, 2006 233

The following fully internationalized version of the foo utility supports all code sets through single source
single path, code-set independent programming:
/*
* COMPONENT_NAME:
*
* FUNCTIONS: foo
*
* The following code shows how to count the number of bytes and
* the number of characters in a text file.
*
* This example is for illustration purposes only. Performance
* improvements may still be possible.
*
*/

#include <stdio.h>
#include <ctype.h>
#include <locale.h>
#include <stdlib.h>
#include "foo_msg.h"

#define MSGSTR(Num,Str) catgets(catd,MS_FOO,Num,Str)

/*
* NAME: foo
*
* FUNCTION: Counts the number of characters in a file.
*
*/

main(argc,argv)
int argc;
char **argv;
{

int bytesread, /* number of bytes read */
bytesprocessed;

int leftover;

int i;
int mbcnt; /* number of bytes in a character */
int f; /* File descriptor */
int mb_cur_max;
int bytect; /* name changed from charct... */
int charct; /* for real character count */
char *curp, *cure; /* current and end pointers into

** buffer */
char buf[BUFSIZ+1];

nl_catd catd;

wchar_t wc;

/* Obtain the current locale */
(void) setlocale(LC_ALL,"");

/* after setting the locale, open the message catalog */
catd = catopen(MF_FOO,NL_CAT_LOCALE);

/* Parse the arguments if any */

/*
** Obtain the maximum number of bytes in a character in the
** current locale.
*/
mb_cur_max = MB_CUR_MAX;
i = 1;

234 National Language Support Guide and Reference

/* Open the specified file and issue error messages if any */
f = open(argv[i],0);
if(f<0){

fprintf(stderr,MSGSTR(CANTOPEN, /*MSG*/
"foo: cannot open %s\n"), argv[i]); /*MSG*/
exit(2);

}

/* Initialize the variables for the count */
bytect = 0;
charct = 0;

/* Start count of bytes and characters */

leftover = 0;

for(;;) {
bytesread = read(f,buf+leftover, BUFSIZ-leftover);
/* issue any error messages here, if needed */
if(bytesread <= 0)

break;

buf[leftover+bytesread] = '\0';
/* Protect partial reads */

bytect += bytesread;
curp=buf;
cure = buf + bytesread+leftover;
leftover=0; /* No more leftover */

for(; curp<cure ;){
/* Convert to wide character */
mbcnt= mbtowc(&wc, curp, mb_cur_max);
if(mbcnt <= 0){

mbcnt = 1;
}else if (cure - curp >=mb_cur_max){

wc = *curp;
mbcnt =1;

}else{
/* Needs more data */
leftover= cure - curp;
strcpy(buf, curp, leftover);
break;

}
curp +=mbcnt;
charct++;

}
}

/* print number of chars and bytes */
fprintf(stderr,MSGSTR(BYTECNT, "number of bytes:%d\n"),

bytect);
fprintf(stderr,MSGSTR(CHARCNT, "number of characters:%d\n"),

charct);
close(f);
exit(0);

Single Source, Dual-Path Version Optimized for Single-Byte Code Sets
The term single source dual path refers to two paths in a single application where one of the paths is
chosen at run time depending on the current locale setting, which indicates whether the code set in use is
single-byte or multibyte.

Appendix D. NLS Sample Program 235

If a program can retain its performance and not increase its executable file size too much, the single
source dual path method is the preferred choice. You should evaluate the increase in the executable file
size on a per command or utility basis.

In the single byte dual-path method, the MB_CUR_MAX macro specifies the maximum number of bytes in
a multibyte character in the current locale. This should be used to determine at run time whether the
processing path to be chosen is the single-byte or the multibyte path. Use a boolean flag to indicate the
path to be chosen, for example:
int mbcodeset ;
/* After setlocale(LC_ALL,"") is done, determine the path to
** be chosen.
*/
if(MB_CUR_MAX == 1)

mbcodeset = 0;
else mbcodeset = 1;

This way, the current code set is checked to see if it is a multibyte code set and if so, the flag mbcodeset is
set appropriately. Testing this flag has less performance impact than testing the MB_CUR_MAX macro
several times.
if(mbcodeset){

/* Multibyte code sets (also supports single-byte
** code sets)
*/
/* Use multibyte or wide character processing
functions */

}else{
/* single-byte code sets */
/* Process accordingly */

}

The preceeding approach is appropriate if internationalization affects a small proportion of a module.
Excessive tests for providing dual paths may degrade performance. Provide the test at a level that
precludes frequent testing for this case.

The following version of the foo utility produces one object, yet at run time, the appropriate path is chosen
based on the code set to optimize performance for that code set. Note that we distinguish between
single-byte and multibyte code sets only.
/*
* COMPONENT_NAME:
*
* FUNCTIONS: foo
*
* The following code shows how to count the number of bytes and
* the number of characters in a text file.
*
* This example is for illustration purposes only. Performance
* improvements may still be possible.
*
*/

#include <stdio.h>
#include <ctype.h>
#include <locale.h>
#include <stdlib.h>
#include "foo_msg.h"

#define MSGSTR(Num,Str) catgets(catd,MS_FOO,Num,Str)

/*
* NAME: foo
*
* FUNCTION: Counts the number of characters in a file.

236 National Language Support Guide and Reference

*
*/

main(argc,argv)
int argc;
char **argv;
{

int bytesread, /* number of bytes read */
bytesprocessed;

int leftover;

int i;
int mbcnt; /* number of bytes in a character */
int f; /* File descriptor */
int mb_cur_max;
int bytect; /* name changed from charct... */
int charct; /* for real character count */
char *curp, *cure; /* current and end pointers into buffer */
char buf[BUFSIZ+1];

nl_catd catd;

wchar_t wc;

/* flag to indicate if current code set is a
** multibyte code set
*/
int multibytecodeset;

/* Obtain the current locale */
(void) setlocale(LC_ALL,"");

/* after setting the locale, open the message catalog */
catd = catopen(MF_FOO,NL_CAT_LOCALE);

/* Parse the arguments if any */

/*
** Obtain the maximum number of bytes in a character in the
** current locale.
*/
mb_cur_max = MB_CUR_MAX;

if(mb_cur_max >1)
multibytecodeset = 1;

else
multibytecodeset = 0;

i = 1;

/* Open the specified file and issue error messages if any */
f = open(argv[i],0);
if(f<0){

fprintf(stderr,MSGSTR(CANTOPEN, /*MSG*/
"foo: cannot open %s\n"), argv[i]); /*MSG*/
exit(2);

}

/* Initialize the variables for the count */
bytect = 0;
charct = 0;

/* Start count of bytes and characters */

leftover = 0;

if(multibytecodeset){

Appendix D. NLS Sample Program 237

/* Full internationalzation */
/* Handles supported multibyte code sets */
for(;;) {

bytesread = read(f,buf+leftover,
BUFSIZ-leftover);

/* issue any error messages here, if needed */
if(bytesread <= 0)

break;

buf[leftover+bytesread] = '\0';
/* Protect partial reads */

bytect += bytesread;
curp=buf;

cure = buf + bytesread+leftover;
leftover=0; /* No more leftover */

for(; curp<cure ;){
/* Convert to wide character */
mbcnt= mbtowc(&wc, curp, mb_cur_max);
if(mbcnt <= 0){

mbcnt = 1;
}else if (cure - curp >=mb_cur_max){

wc = *curp;
mbcnt =1;

}else{
/* Needs more data */
leftover= cure - curp;
strcpy(buf, curp, leftover);
break;

}
curp +=mbcnt;
charct++;

}
}

}else {

/* Code specific to single-byte code sets that
** avoids conversion to widechars and thus optimizes
** performance for single-byte code sets.
*/

for(;;) {
bytesread = read(f,buf, BUFSIZ);
/* issue any error messages here, if needed */
if(bytesread <= 0)

break;

bytect += bytesread;
charct += bytesread;

}

}

/* print number of chars and bytes */
fprintf(stderr,MSGSTR(BYTECNT, "number of bytes:%d\n"),

bytect);
fprintf(stderr,MSGSTR(CHARCNT, "number of characters:%d\n"),

charct);
close(f);
exit(0);

238 National Language Support Guide and Reference

Appendix E. Use of the libcur Package

Programs that use the libcur package (extension to AT&T’s libcurses package) need to make the following
changes:

1. Remove the assumption that the number of bytes need to represent a character in a code set also
represents the display column width of the character. Use the wcwidth subroutine to determine the
number of display columns needed by the wide character code of a character.

2. NLSCHAR is redefined to be wchar_t.

3. The win->_y [y][x] has wchar_t encodings.

4. Programs should not assume any particular encodings on the wchar_t.

5. Programs should use the addstr, waddstr, mvaddstr, and mvwaddstr subroutines rather than the
addch family of subroutines. All string arguments are in multibyte form.

6. The addch and waddch subroutines accept a wchar_t encoding of the character. Programs that use
these subroutines should ensure that wchar_t are used in calling these functions. The (x,y) are
incremented by the number of columns occupied by the wchar_t passed to these subroutines.

7. The delch, wdelch, mvdelch, and mvwdelch subroutines support delete and backspace on
multibyte characters depending on the current position of (x,y). If the current (x,y) column position
points to either the first or second column of a two-column character, the delch subroutine deletes
both columns and shifts the rest of the line by the number of columns deleted.

8. The insch, winsch, mvinsch, and mvwinsch subroutines can be used to insert a wchar_t encoding
of a character at the current (x,y) position. The line is shifted by the number of columns needed by
the wchar_t.

9. The libcur package is modified to support box drawing characters as defined in the terminfo
database and not assume the graphic characters in the IBM-850 code set. The libcur package
supports drawing of primary and alternate box characters as defined in the box_chars_1 and
box_chars_2 entries in the terminfo database. To use this, programs should be modified in the
following fashion:
Drawing Primary box characters:

wcolorout(win, Bxa);
cbox(win);
wcolorend(win);

or,
wcolorout(win, Bxa);
drawbox(win, y,x, height, width);
wcolorend(win);

Drawing Alternate box characters:

wcolorout(win, Bya)
cboxalt(win);
wcolorend(win);

or,

wcolorout(win, Bya);
drawbox(win, y, x, height, width);
wcolorend(win);

Bxa and Bya refer to the primary and alternate attributes defined in the terminfo database.

The following macros are added in the cur01.h file:

© Copyright IBM Corp. 2002, 2006 239

cboxalt(win)

drawboxalt(win, y,x, height, width)

10. Programs that need to support input of multibyte characters should not set _extended to TRUE by a
call to extended(TRUE). When the _extended flag is true, the wgetch subroutine returns wchar_t
encodings of the character. With multibyte characters, this encoding of wchar_t may conflict with
predefined values for escape sequences or function keys. Avoid this conflict when using multibyte
code sets by setting extended to off (extended(FALSE)) before input. (The default is TRUE.)

Programs that do multibyte character input should do the following:
Input routine:

Example:

int c, count;
char buf[];

extended(FALSE); /* obtain one byte at a time */
count =0;
while(1){

c = wgetch(); /* get one byte at a time */
buf[count++] = c;
if(count <=MB_CUR_MAX)

if(mblen(buf, count) != -1)
break; /* character found* /

else
/*Error. No character can be found */
/* Handle this case appropriately */
break;

}
/* buf contains the input multibyte sequence */
/* Now handle PF keys, or any escape sequence here */

11. The inch, winch, mvinch, and mvwinch subroutines return the wchar_t at the current (x,y) position.
Note that in the case of a double column width character, if the (x,y) point is at the first column, the
wchar_t code of the double column width character is returned. If the (x,y) point is at the second
column, WEOF is returned.

240 National Language Support Guide and Reference

Appendix F. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Dept. LRAS/Bldg. 003
11400 Burnet Road
Austin, TX 78758-3498
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

© Copyright IBM Corp. 2002, 2006 241

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Trademarks
The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

AIX

IBM

Microsoft and Windows are trademarks of the Microsoft Corporation in the United States and other
countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be the trademarks or service marks of others.

242 National Language Support Guide and Reference

Index

Special characters
_max_disp_width macro 30

use of 13

A
Albanian 173
Arabic 172
ASCII

definition 53
ascii characters

unique code-point range 186
ASCII characters

list of 53
ASCII code set 53
auxiliary area 126

B
BIDI 12
bidirectional data streams

logical 169
visual 168

Bidirectional Input Method 133
features 133
Key Settings 134
keymap 133
modifiers 134

bidirectional text and character shaping 167
bidirectionality (BIDI) 168, 169

definition 12
Bulgarian 173
Byelorussian 173
byte size of characters

determining 13
example 236

C
C 172, 173, 174, 175, 176, 177, 178, 179, 180, 181
C locale 15, 16, 17

definition 8
callbacks 130

auxiliary 131
initializing 133
input method 128
status 131
text drawing 131

Catalan 173
catclose subroutine 159
catgets subroutine 159, 160
catopen subroutine 159, 160
changing the locale

example 16
char data type 41
character

definition 1

character (continued)
previous character in a buffer 25

character class properties
description 52

character conversion 29
character processing

Japanese 137
character set 1
character set description (charmap) source file 11
character shaping 12, 169
characters

ASCII
list of 53

determining display width 13
charmap (character set description) file 11
Chinese

input method 148
not translated 174
translated 173

code set
definition 1
display width 52, 53
obtaining current 1
width 52

code set independence 12, 51
code sets 49

ASCII 53
Big5 69
determining byte size of characters 13

example 236
IBM PC 70

IBM-921 73
IBM-922 74
IBM-932 75

IBM-1046 50, 77
IBM-1124 50, 78
IBM-1129 50, 79
IBM-1252 50
IBM-856 50, 72
IBM-932 50
IBM-943 50, 75
IBM-eucJP 50
IBM-eucKR 70
IBM-eucTW 69
implementation strategy 55
ISO 193

GB18030 68
IBM-eucCN 68
IBM-eucJP 67
ISO646-IRV 57
ISO8859-1 57, 58

ISO8859 family 50
ISO8859-1 59
ISO8859-15 50, 66
ISO8859-4 60
ISO8859-5 61
ISO8859-6 62
ISO8859-7 63

© Copyright IBM Corp. 2002, 2006 243

code sets (continued)
ISO8859-8 64
ISO8859-9 65
structure

control characters 55
extended UNIX code (EUC) 67
general format 55
graphic characters 56
single-byte and multibyte 56

TID-620 80
TIS-620 50
UCS-2 81
UTF-8 50, 81

code-set 96
codeset

Albanian 173
Arabic 172
Bulgarian 173
Byelorussian 173
C 172
Catalan 173
Chinese

not translated 174
translated 173

Croatian 174
Czech 174
Danish 174
Dutch 174
English 174
Estonian 175
Finnish 175
French 176
German 176
Greek 176
Hebrew 176
Hungarian 177
Icelandic 177
Indic 177
Indonesian 178
Italian 177
Japanese 177
Kazakh 178
Korean 178
Latvian 178
Lithuanian 178
Macedonian 178
Malay 178
Norwegian 178
Polish 179
Portuguese 179
Romanian 179
Russian 179
Serbian Cyrillic 179
Serbian Latin 179
Slovak 179
Slovene 180
Spanish 180
Swedish 181
Thai 181
Turkish 181
Ukrainian 181

codeset (continued)
Vietnamese 181

collation
definition 52
primary weight 52
secondary weight 52

collation subroutines
multibyte character

strcoll 32
strxfrm 32

wide character
understanding 32
wcscoll 32
wcsxfrm 32, 33

collation weight
definition 52

commands
dspcat 159
dspmsg 159
input method 127
keycomp 127

comparing
wide character string collation values

example 32, 33
wide character strings

example 34
comparison subroutines

wide character
understanding 34
wcscmp 32, 34
wcsncmp 34

conversion subroutines
wide character

understanding 35
wcstod 35
wcstol 35
wcstoul 35, 36

conversion technology
kana-to-kanji 138

converters 85
description 1
list 91
miscellaneous 112
overview 2
overview for programming 85
standard 85
subroutines 191
UCS-2 interchange 108
UTF-8 interchange 110

converting
multibyte string to wide character string

example 26
multibyte to wide character

example 24
wide character

to double 35
to signed long integer 35
to unsigned long integer 36

wide character string to multibyte character string
example 28

244 National Language Support Guide and Reference

converting (continued)
wide character string to multibyte string

example 26
wide character to multibyte

example 25
copy subroutines

wide character
understanding 37
wcscat 37
wcscpy 37
wcsncat 37
wcsncpy 37

copying
wide characters

example 37
Croatian 174
ctype.h file 51
culture-specific data processing 165
currency symbol 21
currency symbol, euro 21
cursor movement

bidirectionality (BIDI) 169
Cyrillic Input Method 134

internal modifier 135
keymap 134
keysyms 135
modifiers 135
reserved keysyms 135

Czech 174

D
Danish 174
data processing

culture-specific 165
data streams

bidirectionality (BIDI) 168
data types

multibyte subroutines 45
wchar_t data type 45
wctype_t data type 45
wide character subroutines 45
wint_t data type 45

devices 3
low-function terminals 4
printers 4
terminals 3

display column width
wide character subroutines

understanding 30
wcswidth 31
wcwidth 31

display width
of characters and strings 13

drawing alternate box characters 239
drawing primary box characters 239
dspcat command 159
dspmsg command 159
Dutch 174

E
English 174
environment variables

LANG 9
LC_ALL 9
LC_COLLATE 9
LC_CTYPE 9
LC_FASTMSG 9
LC_MESSAGES 9
LC_MONETARY 9
LC_NUMERIC 10
LC_TIME 10
LOCPATH 10
NLSPATH 10
overview 9

EQUIV_CLASS_MAX limit 52
equivalence class

definition 52
tertiary 52

Estonian 175
euro 21

IBM-1252 code set 50
ISO8859-15 codeset 50, 66
UTF-8 code set 50

F
fgets subroutine 41
fgetwc subroutine 40, 41
fgetwc()

use of 41
fgetws subroutine 41
file code

definition 23, 51
file name matching

use of fnmatch subroutine 13
finding

multibyte character byte length
example 25

the number of wide characters in a wide character
string

example 39
the number of wide characters not in a wide

character string
example 39

wide character display column width
example 31

wide character string display column width
example 31

Finnish 175
fnmatch subroutine

use of 13
fread subroutine 41
French 176

G
gencat command 157, 158
German 176
get_wctype subroutine 29

Index 245

getc subroutine 40
getwc subroutine 40
Greek 176
Greek Input Method 135

internal modifier 136
keymap 136
keysyms 136
modifiers 136
reserved keysyms 136

H
header files

multibyte subroutines 45
wide character subroutines 45

Hebrew 176
Hungarian 177

I
I/O subroutines

wide character
fgetwc 41, 42
fgetws 41, 43
formatted 40
fputwc 41, 43
fputws 41, 44
getc 40
getwc 40
getwchar 41, 42
getws 41
putwc 41
putwchar 41
putws 42
understanding 40
unformatted 40
ungetwc 41, 42

IBM-1046 code set 50
IBM-1046 codeset 77
IBM-1124 code set 50
IBM-1124 codeset 78
IBM-1129 code set 50
IBM-1129 codeset 79
IBM-1252 code set 50
IBM-856 code set 50
IBM-856 codeset 72
IBM-921 codeset 73
IBM-922 codeset 74
IBM-932 code set 50
IBM-943 code set 50, 75
IBM-eucJP code set 50
Icelandic 177
iconv interface

writing converters with 113
iconvTable converters

list of conversions performed by IconvTable
converter 92

ICU4C 5
inbound mapping 130
Indic 177
Indonesian 178

input method
areas 126
Bidirectional 133
callbacks 128
Cyrillic 134
Greek 135
initialization 127
introduction 125
Japanese 137
key event processing 128
keymaps 128
Korean 143
Latvian 144
Lithuanian 144
management 128
naming conventions 126
overview 125
programming 127
single-byte 146
structures 129
Tradional Chinese 148
universal 149

input method command 127
input method subroutines 191
input methods

callbacks 130
Thai 144
Vietnamese 145

int data type 41
interchange converters

7-bit 100
8-bit 102
compound text 105
uucode 107

internationalization
code sets 49

internationalized regular expression subroutines 45
is_wctype subroutine 29
islower subroutine 29
ISO8859 family of code sets 50
ISO8859-15 code set 66
ISO8859-15 codeset 50
ISO8859-2 codeset 59
ISO8859-4 codeset 60
ISO8859-5 codeset 61
ISO8859-6 codeset 62
ISO8859-7 codeset 63
ISO8859-8 codeset 64
ISO8859-9 code set 65
isupper subroutine 29
iswalnum subroutine 29
iswalpha subroutine 29
iswcntrl subroutine 29
iswdigit subroutine 29
iswgraph subroutine 29
iswlower subroutine 29
iswprint subroutine 29
iswpunct subroutine 29
iswspace subroutine 29
iswupper subroutine 30
iswxdigit subroutine 30

246 National Language Support Guide and Reference

Italian 177

J
Japanese 177
Japanese Input Method 137

internal modifiers 142
keymaps 142
keysyms 142
modifiers 142
reserved keysyms 142

K
Kazakh 178
key maps 4
keyboard map

changing default 5
keyboard mapping 129

Japanese 139
keycomp 127
keymaps 130
Korean 178
Korean Input Method 143

L
LANG 9
LANG environment variable 32, 160
language

Arabic 172
C 172, 173, 174, 175, 176, 177, 178, 179, 180, 181

language environment
changing 4

languages, not supported 181
languages, supported 171, 172, 173, 174, 175, 176,

177, 178, 179, 180, 181
Latvian 178
Latvian Input Method 144

keymaps 144
layout library subroutines 190
layout overview 167
LC_* categories 16
LC_* environment variables 32
LC_ALL 9
LC_ALL environment variable 159, 160
LC_COLLATE 9
LC_COLLATE category 16, 32, 52
LC_CTYPE 9
LC_CTYPE category 29, 30, 40, 52, 53
LC_FASTMSG 9
LC_MESSAGES 9
LC_MESSAGES category 17, 160
LC_MESSAGES environment variable 2, 3, 159, 160
LC_MONETARY 9
LC_MONETARY category 21
LC_NUMERIC 10
LC_TIME 10
libcur 239
libiconv 86
Lithuanian 178

Lithuanian (continued)
input method 144

load system call 165
local

user scenarios 7
locale

accessing information about 15
Arabic 172
bidirectionality

data streams 168, 169
definition 12

C 172, 173, 174, 175, 176, 177, 178, 179, 180, 181
categories 8
changing

example 16
character shaping 12, 169
default at installation 8
definition 7
definition source files 11
environment variables 9
naming conventions 8
obtaining currency symbol

example 18
obtaining current values

example 16
obtaining LC_MESSAGES values

example 18
obtaining LC_MONETARY values

example 17, 18
obtaining LC_NUMERIC values

example 17
obtaining LC_TIME values

example 18
overview 7
saving current values

example 16
setting 15
setting LC_* categories

example 17
understanding 7

locale definition source file 11
locale subroutines 188

introducing 15
localeconv 15, 17
nl_langinfo 15, 18
rpmatch 16, 18
setlocale 15, 16, 17, 32, 159

locale.h file 15
localeconv subroutine 15, 17, 21
locales supported 171
locating

first of several wide characters in a wide character
string

example 38
first wide character in a wide character string

example 37
last wide character in a wide character string

example 38
the first wide character string in a wide character

string
example 39

Index 247

LOCPATH 10
low-function terminals

fonts 4

M
Macedonian 178
Malay 178
mapping

inbound 130
outbound 130

MB_CUR_MAX
example 236
use of 13

MB_LEN_MAX macro
use of 13

mblen subroutine 24, 25
mbstowcs subroutine 24, 26, 40
mbstowcs()

use of 41
mbtowc subroutine 24, 26, 40
message catalog

creating 157
sizing 158
using 160

message facility
creating a message catalog 157
displaying messages 159
overview 153
retrieving default messages 160
separating messages from programs 1
setting the language hierarchy 160
sizing a message catalog 158
using 2
using a message catalog 160

Message Facility 153
message facility commands

gencat 157, 158
mkcatdefs 153, 157, 158, 159
runcat 157, 158, 159

message facility subroutines 190
catclose 159
catgets 159, 160
catopen 159, 160

message source file
$delset directive 156
$len directive 156
$quote directive 154, 155
$set directive 155, 156, 158
adding comments to 153
assigning message ID numbers 155
assigning message set numbers 155
continuing messages 154
creating 153
defining message length 156
example 153
removing messages 156
special characters 154
usage 153

messages
concatenating parts 162

messages (continued)
writing style in 163

mkcatdefs command 153, 157, 158, 159
monetary formatting subroutines 21
multibyte

list of code-set converters 96
multibyte character code 51

definition 51
multibyte character string

collation subroutines
strcoll 32
strxfrm 32

multibyte character subroutines 189
multibyte code set

support 1
Multibyte code set

definition 50
multibyte function

what is 12
multibyte string to wide character string conversion

example 26
multibyte subroutines 23

definition 23
introducing 23

multibyte to wide character conversion
example 24

multibyte to wide character conversion subroutines 24
mblen 24, 25
mbstowcs 24, 26, 40
mbtowc 24, 26, 40
understanding 23

N
naming conventions

locale 8
national language support 49
National Language Support (NLS)

changing language environment 4
changing the default keyboard map 5
checklist 183
converters

overview 2
environment variables 9
iconv command

using 86
list of subroutines 188
locale 7
locale categories 8
locale definition source files 11
message facility

using 2
overview 1
subroutines 15

nl_langinfo
for obtaining code set 1

nl_langinfo subroutine 15, 18
NL_MSGMAX variable 158
NL_SETMAX 155
NL_SETMAX variable 158
NL_TEXTMAX variable 156, 158

248 National Language Support Guide and Reference

NLS 49
see National Language Support 4

nls commands
dspcat 159
dspmsg 159

NLS for devices 3
NLS sample program 233
NLSPATH 10
NLSPATH environment variable 2, 3
NLSPATH environmnet variable 160
Norwegian 178

O
obtaining

currency symbol
example 18

current locale
example 16

LC_MESSAGES values
example 18

LC_MONETARY values
example 18

LC_TIME values
example 18

outbound mapping 130

P
PC, ISO, and EBCDIC Code Set Converters 92
Polish 179
portable character set

definition 53
Portuguese 179
POSIX locale 8, 15
pre-edit area 126
primary weight

collation 52
printf subroutine 159
printf subroutine family 40
process code

definition 23
programming input method 127
psignal()

use of 162

R
Radix character

handling 13
read subroutine 26, 41
regular expression subroutines 192
Romanian 179
rpmatch subroutine 16, 18
rpmatch, details 19
runcat command 157, 158, 159
Russian 179

S
saving

current locale
example 16

scanf subroutine family 40
search subroutines

wide character
understanding 37
wcschr 37
wcscspn 37, 39
wcspbrk 37, 38
wcsrchr 37, 38
wcsspn 37, 39
wcstok 37, 40
wcswcs 37, 39

secondary weight
collation 52

Serbian Cyrillic 179
Serbian Latin 179
setlocale subroutine 15, 16, 17, 32, 159
setting

LC_* categories
example 17

Single Byte Input Method
keymaps 147
modifiers 148
reserved keysyms 147

Single Source Dual Path
definition 235
example 235

Single Source Single Path
definition 233
example 233

Single-byte code set
definition 50

Single-Byte Input Method 146
Slovak 179
Slovene 180
Spanish 180
status area 126
stddef.h file 51
stdlib.h file 30, 51
strcoll subroutine 32
strerror()

use of 162
strfmon subroutine 21
strings

determining display width 13
strlen subroutine 30
strptime subroutine 20
strxfrm subroutine 32
subroutines

localeconv 15
multibyte and wide character 23
multibyte character 189
rpmatch 16
setlocale 15
time and monetary formatting 188
time formatting 20
wide character 189

support code set 49

Index 249

supported languages 171
Albanian 173
Arabic 172
Bulgarian 173
Byelorussian 173
C 172
Catalan 173
Chinese

not translated 174
translated 173

Croatian 174
Czech 174
Danish 174
Dutch 174
English 174
Estonian 175
Finnish 175
French 176
German 176
Greek 176
Hebrew 176
Hungarian 177
Icelandic 177
Indic 177
Indonesian 178
Italian 177
Japanese 177
Kazakh 178
Korean 178
Latvian 178
Lithuanian 178
Macedonian 178
Malay 178
Norwegian 178
Polish 179
Portuguese 179
Romanian 179
Russian 179
Serbian Cyrillic 179
Serbian Latin 179
Slovak 179
Slovene 180
Spanish 180
Swedish 181
Thai 181
Turkish 181
Ukrainian 181
Vietnamese 181

Swedish 181
sys/limits.h file 52

T
testing

wide character classification
example 30

text
bidirectional

logical data stream example 169
visual data stream example 168

Thai 181

Thai Input Method 144
keymaps 145

time and monetary formatting subroutines 188
time formatting subroutines 20
TIS-620 code set 50
TIS-620 codeset 80
tokenizing

wide character string
example 40

tolower subroutine 29
toupper subroutine 29
towlower subroutine 29, 30
towupper subroutine 29, 30
Turkish 181

U
UCS-2 code set 81
Ukrainian 181
understanding local 7
unique code point range

character list 53
exception 13
search for 13

unique code-point range 14, 50, 186
universal input method 149
UTF-8 code set 50, 81

V
Vietnamese 181
Vietnamese Input Method (VNIM) 145

keymap 145

W
wchar_t

definition 51
wchar_t data type 12, 28, 41, 45
wchar.h file 41, 45
wcscat subroutine 37
wcschr subroutine 37
wcscmp subroutine 32, 34
wcscoll subroutine 32
wcscpy subroutine 37
wcscspn subroutine 37, 39
wcsftime subroutine 20
wcslen subroutine 24, 28
wcsncat subroutine 37
wcsncmp subroutine 34
wcsncpy subroutine 37
wcspbrk subroutine 37, 38
wcsrchr subroutine 37, 38
wcsspn subroutine 37, 39
wcstod subroutine 35
wcstok subroutine 37, 40
wcstol subroutine 35
wcstombs subroutine 24, 28, 40
wcstoul subroutine 35, 36
wcswcs subroutine 37, 39
wcsxfrm subroutine 32, 33

250 National Language Support Guide and Reference

wctomb subroutine 24, 25, 40
wctype_t data type 45
wide character

classification subroutines
case conversion 29, 30
generic 28, 29
standard 29, 30
understanding 28

display column width subroutines
understanding 30
wcswidth 31
wcwidth 31

I/O subroutines
fgetwc 41, 42
fgetws 41
formatted 40
fputwc 41, 43
fputws 41, 44
getc 40
getwc 40
getwchar 41, 42
getws 41
putwc 41
putwchar 41
putws 42
understanding 40
unformatted 40
ungetwc 41, 42

wide character classification testing
example 30

wide character code
concept 51
definition 23, 51

wide character constant
use of

restrictions 45
wide character function

description of 12
wide character string

collation subroutines
understanding 32
wcscoll 32
wcsxfrm 32, 33

comparison subroutines
understanding 34
wcscmp 32, 34
wcsncmp 34

conversion subroutines
understanding 35
wcstod 35
wcstol 35
wcstoul 35, 36

copy subroutines
understanding 37
wcscat 37
wcscpy 37
wcsncat 37
wcsncpy 37

search subroutines
understanding 37
wcschr 37

wide character string (continued)
search subroutines (continued)

wcscspn 37, 39
wcspbrk 37, 38
wcsrchr 37, 38
wcsspn 37, 39
wcstok 37, 40
wcswcs 37, 39

wide character string to multibyte character string
conversion

example 28
wide character string to multibyte string conversion

example 26
wide character subroutines 23, 189

definition 23
introducing 23

wide character to multibyte conversion
example 25

wide character to multibyte conversion subroutines 24
understanding 23
wcslen 24, 28
wcstombs 24, 28, 40
wctomb 24, 25, 40

width of characters and strings
display 13

wint_t data type 12, 28, 41, 45
writing a code set converter 115
writing converters using the iconv interface 113

Index 251

252 National Language Support Guide and Reference

Readers’ Comments — We’d Like to Hear from You

AIX 5L Version 5.3
National Language Support Guide and Reference

Publication No. SC23-4902-03

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM
business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the
personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send your comments via e-mail to: pserinfo@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
SC23-4902-03

SC23-4902-03

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department 04XA-905-6B013
11501 Burnet Road
Austin, TX 78758-3400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in U.S.A.

SC23-4902-03

	Contents
	About This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	Related Publications

	Chapter 1. National Language Support Overview
	Separation of Messages from Programs
	Conversion between Code Sets
	Input Method Support
	Converters Overview
	Using the Message Facility
	Setting National Language Support for Devices
	Terminals (tty Devices)
	Printers
	Low-Function Terminals

	Changing the Language Environment
	Changing the Default Keyboard Map
	ICU4C Libraries

	Chapter 2. Locales
	Understanding Locale
	Typical User Scenarios
	Locale Naming Conventions
	Installation Default Locale
	The C or POSIX Locale

	Understanding Locale Categories
	Understanding Locale Environment Variables
	Environment Variables Precedence Example

	Understanding the Character Set Description (charmap) Source File
	Understanding the Locale Definition Source File
	Multibyte Subroutines
	Wide Character Subroutines
	Bidirectionality and Character Shaping
	Code Set Independence
	Determining Maximum Number of Bytes in Code Sets
	Determining Character and String Display Widths
	Exceptions to Code Set Knowledge: Unique Code-Point Range

	File Name Matching
	Radix Character Handling
	Programming Model

	Chapter 3. Subroutines for National Language Support
	Locale Subroutines
	Setting the Locale
	Accessing Locale Information
	Examples

	Time Formatting Subroutines
	Examples

	Monetary Formatting Subroutines
	Euro Currency Support
	Examples

	Multibyte and Wide Character Subroutines
	Multibyte Code and Wide Character Code Conversion Subroutines
	Wide Character Classification Subroutines
	Wide Character Display Column Width Subroutines
	Multibyte and Wide Character String Collation Subroutines
	Multibyte and Wide Character String Comparison Subroutines
	Wide Character String Conversion Subroutines
	Wide Character String Copy Subroutines
	Wide Character String Search Subroutines
	Wide Character Input/Output Subroutines
	Working with the Wide Character Constant
	wchar.h Header File

	Internationalized Regular Expression Subroutines
	Examples

	Related Information

	Chapter 4. Code Sets for National Language Support
	Single-Byte and Multibyte Code Sets
	Unique Code-Point Range
	Data Representation
	Multibyte Character Code Data Representation
	Wide Character Code Data Representation

	Character Properties
	Collation-Order Properties
	Code-Set Width
	Code-Set Display Width

	ASCII Characters
	ASCII Characters in the Unique Code-Point Range
	Other ASCII Characters

	Code Set Strategy
	Code Set Structure
	Control Characters
	Graphic Characters
	Single-Byte and Multibyte Code Sets

	ISO Code Sets
	ISO646-IRV
	ISO8859 Family
	Code Set ISO8859-1
	Code Set ISO8859-2
	Code Set ISO8859-4
	Code Set ISO8859-5
	Code Set ISO8859-6
	Code Set ISO8859-7
	Code Set ISO8859-8
	Code Set ISO8859-9
	Code Set ISO8859-15
	Extended UNIX Code (EUC) Encoding Scheme
	IBM-eucJP
	IBM-eucCN
	GB18030
	IBM-eucTW
	Big5
	IBM-eucKR

	IBM PC Code Sets
	IBM-856
	IBM-921
	IBM-922
	IBM-943 and IBM-932
	IBM-1046
	IBM-1124
	IBM-1129
	TIS-620

	UCS-2 and UTF-8
	ISO10646 UCS-2 (Unicode)
	UCS-4 and UTF-32
	UTF-8 (UCS Transformation Format)
	UTF-16

	Related Information

	Chapter 5. Converters Overview for Programming
	Standard Converters
	Using the iconv Command
	Understanding libiconv
	Using the iconv_open Subroutine
	Converter Programs versus Tables
	Unicode and Universal Converters
	Universal UCS Converter

	Using Converters
	Code Set Conversion Filter Example
	Naming Converters

	List of Converters
	PC, ISO, and EBCDIC Code Set Converters
	Multibyte Code Set Converters
	Interchange Converters—7-bit
	Interchange Converters—8-bit
	Interchange Converters—Compound Text
	Interchange Converters—uucode
	UCS-2 Interchange Converters
	UTF-8 Interchange Converters
	Miscellaneous Converters

	Writing Converters Using the iconv Interface
	Code Sets and Converters
	Overview of iconv Framework Structures
	Writing a Code Set Converter
	Examples

	Related Information

	Chapter 6. Input Methods
	Input Method Introduction
	Input Method Names
	Input Method Areas
	Input Method Command
	Programming Input Methods
	Initialization
	Input Method Management
	Input Method Keymap Management
	Key Event Processing
	Callbacks
	Input Method Structures

	Working with Keyboard Mapping
	Input Method Keymaps
	Inbound and Outbound Mapping

	Using Callbacks
	Initializing Callbacks

	Bidirectional Input Method
	Keymaps
	Key Settings
	Modifiers

	Cyrillic Input Method (CIM)
	Keymap
	Keysyms
	Modifiers

	Greek Input Method (GIM)
	Keymap
	Keysyms
	Modifiers

	Japanese Input Method (JIM)
	Japanese Character Processing
	Kana-To-Kanji Conversion (KKC) Technology
	Input Modes
	Keyboard Mapping
	Character Size
	Romaji-To-Kana Conversion (RKC)
	Kanji Pre-edit
	Keymaps
	Keysyms
	Modifiers

	Korean Input Method (KIM)
	Latvian Input Method (LVIM)
	Keymap

	Lithuanian Input Method (LTIM)
	Keymap:

	Thai Input Method (THIM)
	Keymap

	Vietnamese Input Method
	Keymap

	Simplified Chinese Input Method (ZIM-UCS)
	Chinese (CJK) Character Processing

	Single-Byte Input Method
	Keymaps
	Reserved Keysyms
	Modifiers

	Traditional Chinese Input Method (TIM)
	TIM Features
	Traditional Chinese Character Processing
	Related Information

	Universal Input Method
	Keymap

	Reserved Keysyms
	Reserved Keysyms for Traditional Chinese
	Reserved Keysyms for Simplified Chinese (ZIM and ZIM-UCS)

	Related Information

	Chapter 7. Message Facility
	Creating a Message Source File
	Usage Considerations
	Adding Comments to the Message Source File
	Continuing Messages on the Next Line
	Including Special Characters in the Message Text
	Defining a Character to Delimit Message Text
	Assigning Message Set Numbers and Message ID Numbers
	Removing Messages from a Catalog
	Length of Message Text
	Content of Message Text
	Examples of Message Source Files

	Creating a Message Catalog
	Catalog Sizing
	Examples

	Displaying Messages outside of an Application Program
	Displaying Messages with an Application Program
	Understanding the NLSPATH Environment Variable
	Retrieving Program-Supplied Default Messages
	Setting the Language Hierarchy

	Example of Retrieving a Message from a Catalog
	Writing Messages
	Describing Command Syntax in Messages
	Writing Style for Messages

	Chapter 8. Culture-Specific Data Handling
	Culture-Specific Tables
	Culture-Specific Algorithms
	Example of Loading a Culture-Specific Module for Arabic Text for an Application
	Header File
	Main Program
	Methods
	Include File

	Layout (Bidirectional Text and Character Shaping) Overview
	Data Streams
	Cursor Movement
	Character Shaping

	Appendix A. Supported languages and locales
	Appendix B. National Language Support (NLS) Reference
	National Language Support Checklist
	Program Operation Checklist
	AIXwindows Checklist

	List of National Language Support Subroutines
	List of Locale Subroutines
	List of Time and Monetary Formatting Subroutines
	List of Multibyte Character Subroutines
	List of Wide Character Subroutines
	List of Layout Library Subroutines
	List of Message Facility Subroutines
	List of Converter Subroutines
	List of Input Method Subroutines
	List of Regular Expression Subroutines

	Appendix C. Character Maps
	ISO Code Sets
	ISO8859–1
	ISO8859–2
	ISO8859–4
	ISO8859–5
	ISO8859–6
	ISO8859–7
	ISO8859–8
	ISO8859–9
	ISO8859–15

	IBM Code Sets
	IBM-856
	IBM-921
	IBM-922
	IBM-1046
	IBM-1124
	IBM-1129
	TIS-620

	Appendix D. NLS Sample Program
	Message Source File for foo
	Creation of Message Header File for foo
	Single Source, Single Path Code-set Independent Version
	Single Source, Dual-Path Version Optimized for Single-Byte Code Sets

	Appendix E. Use of the libcur Package
	Appendix F. Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Readers’ Comments — We′d Like to Hear from You

