AIX 5L Performance
Tools Handbook

~
Use the AIX 5L performance monitoring
and tuning tools efficiently

Understand the performance of
your AIX system

~ Know how to interpret
the statistics

Thomas Braunbeck
Stuart Lane

Bjérn Rodén

Nigel Trickett
Diana Gfroerer

ibm.com/redbooks REd bﬂﬂks

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

AIX 5L Performance Tools Handbook

September 2001

SG24-6039-00

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Special notices” on page 933.

First Edition (September 2001)
This edition applies to AIX 5L for Power Version 5.1.

Comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834

11400 Burnet Road

Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures xxi
Tables e xXiii
Preface XXV
The team that wrote thisredbook. XXVi
Special notice. XXVii
IBMtrademarks XXVii
Comments welcome. Xxviii
Chapter 1. Introduction to AIX performance monitoring and tuning 1
1.1 CPU performance. 2
1.1.1 Initialadvice 3
1.1.2 Processesandthreads 3
Processes e 3
Threads 3

1.1.3 Process and thread priorities 3
Thread agingot 5

1.1.4 Schedulingpolicies 5
1.1.5 Run queUes. e 6
1.1.6 Timeslices e 6
1.1.7 Mode switching e 6
1.1.8 SMP performance. 7
CachecoherenCyot 7
Processor affinity 7
LOCKING. . . o e 8

1.2 Memory performance 10
1.2.1 Initialadvice 10
1.2.2 Memory segments.t e 10
Thefree list 11

Page replacement 11
Memory load control mechanism. 12
Paging space 13
Memory leaks. e 14
Shared memory 15

© Copyright IBM Corp. 2001 iii

1.3 Disk /O performance 15

1.3.1 Initialadvice 15
1.3.2 Disk subsystem designapproach 16
1.3.3 Bandwidth related performance considerations 17
1.83.4 Diskdesigno 18
Disk accesstimes 19

Disks per adapterbusorloop 19
Physical disk buffers 20

1.3.5 Logical Volume Manager (LVM) concepts 22
Use of LVMPpoliCies.o e 22

Log logicalvolume e 27
JES2inlinelog 28
Paging space. 28
Recommendations for performance optimization 28

1.4 Network performance. 29
1.4.1 TCP/IP Protocolsot i 31
1.4.2 Networktunables i 32
Network buffertuning. 34

Other network tunable considerations 35

Basic network adaptersettings 37
Resetting network tunables to theirdefault 40
Chapter 2. Gettingstarted 43
21 Toolsandfilesets. 44
2.2 Tools by resource matrix 47
2.3 Performance tuning approach 49
2.3.1 CPUboundsystem. i 50
2.3.2 Memory bound system 52
2.3.3 DiskI/Oboundsystem 53
2.3.4 Network I/Oboundsystem 55
Chapter 3. Multi resource monitoring and tuning tools. 57
1 20 T (o | o 59
.11 Syntax . .o 59
Flags . ..o 60

3.1.2 Information on measurementand sampling 62
3.1.3 Examples 63
.2 d0stat . .. 67
32,1 SyNtaXx . . o 68
3.2.2 Information on measurementand sampling 69
3.2.3 Examples 70
System throughputreport 70

tty and CPU utilizationreport. 74

Disk utilizationreport 74

iv AIX 5L Performance Tools Handbook

Adapter throughputreport 76

3.3 NetPMON. . .. 77
3.3 Syntax. ... 77
3.3.2 Information on measurementand sampling 79
3.3.3 Examples 80

3.4 Performance Diagnostic Tool (PDT) 89
B4 SyNtax . .. 90
3.4.2 Information on measurementand sampling 90
3.4.3 Examples 91

How to edit the configurationfiles 92
How to use reports generated by PDT. 95
How to create a PDT reportmanually 98
How to run PDT collection manually 98

3.5 per M 98

3.5.1 Syntax. ... 99
Flags . ..o e 99
Parameters 99

3.5.2 Information on measurementand sampling 99

3.5.3 Building and submittingatestcase 103
Preparing forperfpmr. 104
Downloading perfpmr. 104
Installing perfpmr 104
Running perfpmr 106
Uploadingthetestcase 107

3.5.4 Examples 108

BB PO it 109

3.6.1 Syntax. 109

Flags ..o e 110
3.6.2 Information on measurementand sampling 112
3.6.3 Examples 113
Displaying the top 10 CPU consuming processes. 113
Displaying the processes in order of being penalized 115
Displaying the processes in order of priority 115
Displaying the processes in order of nicevalue. 116
Displaying the processes in orderoftime 116
Displaying the processes in order of real memoryuse 117
Displaying the processesinorderof I/O 118
Displaying WLM classesc.iiii . 118
Viewingthreads 118

T U 120

3.7 SyNtaX . . o 120
Flags ..o e 120

Contents VvV

3.7.2 Information on measurementand sampling 122

3.7.3 Examples 123
3.8 schedtune 144
3.8.1 Syntax e 145
Flags ... e 145
3.8.2 Information on calculating tunable values. 147
Schedulerpolicies 147
CPU 147
MEemMOrY .. e 150
3.8.3 Recommendations and precautions 151
3.8.4 Examples 152
3.9 H0PaS . .. 158
B.9.1 Syntax. ... 158
3.9.2 Information on measurementand sampling 160
3.9.3 Common uses of thetopascommand 160
CPU utilization statistics. 160
Network interface statistics 160
Disk drive statistics 161
Process statistics 161
Eventand queue statistics. 161
File and tty statistics. 161
Paging statistics. 162
Memory statistics 162
NFS statistics. 162
3.9.4 Examples e 165
310 HrUSS. . o o 168
3101 Syntax. ..o 168
Flags ... 168
3.10.2 Information on measurement and sampling 173
3.10.3 Examples 175
HOWto USE trUSSo oo e 175
How to use the summaryoutput 176
How to monitor running processesouuvuee. .. 178
How to analyze file descriptor /O L 180
How to combine differentflags. 182
How to check program parameters 183
How to check program environment variables. 183
How to track child processes 184
311 vmstat 186
3111 Syntax. ..o 187
Flags ..o e 187
Parameters 187

vi AIX 5L Performance Tools Handbook

3.11.2 Information on measurement and sampling 188

3.11.3 Examples 188
Virtual memory activity. 188

Forks report e 195
Interrupts report 195

Sum structure report 197

/O Report . . e 200

312 vmtune 201
.12 Syntax. ... 202
Flags ..o e 203
3.12.2 Calculatingtunablevalues 206
Sequential read-ahead. 206

The page replacement algorithm. 208
Pinningmemory. e 209
Sequential write-behind 210
Random write-behind. 210
Thesyncddaemon 211

I/O tuning parameters 211
Filesystemcaching i 212
Paging parameters. 213

Large page parameters i e 213
JFS2and NFSclientpages. 213
3.12.3 Recommendations and precautions 214
3.12.4 Examples 214
Chapter 4. CPU performancetools 221
4.1 alstat 222
411 SYNtaX . . o 223
Flags ..o 223
Parameters 223

4.1.2 Information on measurement and sampling 223
4.1.3 Examples 223
4.1.4 Detecting and resolving alignment 225
4.2 bindintcpu 225
421 SYNtaX . ..o 226
Parameters 226

422 Examples 226
4.3 biNdprocessor. 228
4.3 SYNtaX . ..o e 228
Flags ..o 228
Parameters 229

Contents Vii

4.3.2 Information on measurement and sampling 229

4.3.3 Examples 229
4.4 emstat 232
44 SYNtaX . ..o e 232
4.4.2 Information on measurement and sampling 233
4.4.3 Examples 233
4.4.4 Detecting and resolving emulation 235
T o o o) 235
451 SyNtaX e 236
Flags ... e 236
Parameters 237

4.5.2 Information on measurement and sampling 237
Profiling with the fork and exec subroutines 238

453 Examples 238
Profiling when the source code isavailable. 238

4.6 NICE . ottt 245
4.8.1 SYNtaX . ..ot e 246
Flags ... e 246
Parameters 246

4.6.2 Information on measurement and sampling 247
4.6.3 Examples 247
How to degrade the priority of aprocess....................... 248

How to improve the priority of aprocess 248

A o o o) 249
470 SYNtaX . . oo e 249
Flags ... e 249
Parameters 250

4.7.2 Information on measurement and sampling 250
4.7.3 Examples 251
The pprof.cpureport e 251

The pprof.startreport. 254

The pprof.namecpureport.. 256

The pprof.famindreport 257

The pprof.famcpureport 260

4.8 Prof o 261
4.8.1 SYNtaXt e 261
Flags ... e 262
Parameters 263

4.8.2 Information on measurement and sampling 263
4.8.3 Examples 264
The cwhet.profreport. 264

4.9 FeNICE . . . ot 266
491 SYNtaX . ..o 266
Flags ..o e 266

viii AIX 5L Performance Tools Handbook

Parameters 266

4.9.2 Information on measurement and sampling 267
4.9.3 Examples 267
410 tiMe . oo 268
4.10.1 Syntax . ..o 268
Flags ... 269
Parameters 269
4.10.2 Information on measurement and sampling 269
4.10.3 Examples e 269
4171 HIMeX .o 270
4110 Syntax . ..o 270
Flags .. o e 270
Parameters 270
4.11.2 Information on measurement and sampling 271
411.3 Examples e 271
42 AProf . 275
4121 SyNtaXx . ..ot 275
Flags ... e 276
4.12.2 Information on measurement and sampling 278
4123 Examples e 279
The summary report. 280
Profiling an application. 285
Profiling an application already running on the system 288

Micro profiling an application 289

Using tprof to detect a resource bottleneck 290

Trace hook 234 used by tprof 298
Chapter 5. Memory performancetools 301
Bl IPCS o 302
5.1l SyNtaX . . .o e 302
Flags ... e 302

5.1.2 Information on measurement and sampling 303
5.1.3 Examples 303
How to check which processes use shared memory.............. 305

How to remove an unused shared memory segment 307

How to use a shared memorysegment. 308

How to check which processes use semaphores 312

B2 IMISS . o o 314
B5.2.1 SyntaX. 314
Flags ... e 314
Parameters e 316

Contents X

5.2.2 Information on measurement and sampling 316

5.2.3 Recommendations and precautions 317
5.2.4 Examples 317
Changing the simulated memory size 318
Displaying the simulated memory size. 318
Resetting the simulated memory size 318
Testing an executable runtime withrmss 318
5.8 SVMON . . 320
B5.3.1 Syntax. e 320
Flags ... e 321
Parameters 324
5.3.2 Information on measurement and sampling 324
SegMeENES . . e 325
5.3.3 Examples 326
How to determine which processes use most real memory......... 327
How to determine which processes use most paging space. 327
How to find out what segments are most utilized. 328
How to find out what files a process or command isusing 328
How to analyze the globalreport 333
How to analyze the userreports 335
How to analyze processes reports., 349
How to analyze the commandreports 358
How to analyze segment utilization 371
How to analyze detailed reports. 380
How to analyze framereports 382
Chapter 6. Disk I/O performancetools 387
6.1 filemon 388
B.1.1 Syntax. e 388
Flags ..o e 388
6.1.2 Information on measurementand sampling 389
General notes on interpreting thereports 390
6.1.3 Examples 392
How to stat monitoring 392
How to use the differentreports. 392
How to analyze the physical volumereports 394
How to analyze the filereport 398
How to analyze the logical volume report 401
How to analyze the virtual memory segmentsreport. 405
6.2 fileplace 409
B.2.1 SyNtaXx e 409
Flags ..o e 409
Parameters 410

X AIX 5L Performance Tools Handbook

6.2.2 Information on measurementand sampling 410

6.2.3 Examples 411
How to analyze the logical report. 412

How to analyze the physicalreport 413

How to analyze the indirect block report 417

How to analyze the volumereport o, 418
Sparsely allocated files 422

6.3 Islv, Ispv,and Isvg 429
6.3.1 Islvsyntax 430
Flags ..o e 430
Parameters 430

B.3.2 ISPV Syntaxt 430
Flags ..o e 431
Parameters 431

6.3.3 ISV SyNtax 432
Flags ..o e 432
Parameters 432

6.3.4 Information on measurementand sampling 433
6.3.5 Examples 433
Howtouselslv. 441
HOWto USE ISPV . . . oo oo e 442
Howtouse Isvgo e 443

How to acquire more disk information 444

6.4 Ivmstat 445
B.4.1 Syntax 446
Flags ... e 446
Parameters 446

6.4.2 Information on measurementand sampling 447
6.4.3 Examples 447
Howtouselvmstat. 448

How to monitor all logical volumes in a volume group. 451

How to monitor a single logical volume 453

How to summarize 1/O utilization per physical partition 455
Chapter 7. Network performancetools........................... 457
7.1 atmstat. 459
T SYNtaX . . o 459
Flags .. o e 459
Parameters e 459

7.1.2 Information on measurement and sampling 459
7.1.3 Exampleso e 460
7.2 entstat 465
7.2 SYNtaX . . oo e 466
Flags ... e 466

Contents Xi

Parameters e 466

7.2.2 Information on measurement and sampling 466
7.23 Examples 467
7.3 estat. . . 471
7.3 SYNtaX . . o 471
Flags ..o e 471
Parameters 471

7.3.2 Information on measurement and sampling 471
7.3.3 EXamples 472
7.4 fddistat. 474
T4 SYNtaX . ..o 474
Flags ..o e 474
Parameters e 475

7.4.2 Information on measurement and sampling 475
7.4.3 Examples 476
7.5 dpfilter. .o 479
7.5 SyNtaX . ..o 480
Flags ... e 480
Parameters 480

7.5.2 Information on measurement and sampling 480
Protocols and headertype options 481

7.5.3 EXamples e 481
How to trace TCP/IP traffic it 481

7.6 IPrePOIt. .« e 488
781 SYNtaX . ..o 489
Flags ..o e 489
Parameters 489

7.6.2 Information on measurement and sampling 490
7.6.3 Examples 490
How to use ipreport withtcpdump 490

How to use ipreport withiptrace. 491

.7 PIrace . . 494
.70 SYNtaX . . o e 495
Flags ... e 495
Parameters e 496
TCP/IP protocol and servicestables 496

7.7.2 Information on measurement and sampling 497
7.7.3 EXamples 498
TCP packets e 499

UDP packets e 500

UDP domain name server requests and responses 501

7.8 netstat 502
7.8.1 SYNtaX . ..o e 503
Flags ..o e 504

Xii AlIX 5L Performance Tools Handbook

Parameters 505

7.8.2 Information on measurement and sampling 506
7.8.3 Examples 507
The network interfaces. 507
The network routing 510
Kernel malloc statistics 512
Statistics for each protocol. 515
Communications subsystems statistics 522
The state ofallsockets i 523
The network buffercache 525
7.9 NSO L. 527
791 SYNtaX . ..o e 527
Flags ... e 527
OPIONS. . o 528
7.9.2 Information on measurement and sampling 536
7.9.3 Examples 536
710 nfsstat 541
71001 Syntax . ..o e 541
Flags .. o e 541
7.10.2 Information on measurement and sampling 542
7.10.3 Examples 542
NFS server RPC statistics i 543
NFS server NFS statistics 544
NFS client RPC statistics. 545
NFS client NFS statistics i 547
Statistics on mounted filesystems. o o 548

7% I £ 549
71 Syntax . ..o e 549
Flags .. o e 549
7.11.2 Information on measurement and sampling 550
Streams Tunable Attributes 563
7113 Examples e 565
742 tCpAUMD . . . e 571
7120 Syntax . ..o e 571
Flags .. o e 571
Parameters 573
7.12.2 Information on measurement and sampling 573
EXPressions e 574
TCP/IP protocol and servicestables 578
ICMP message typetable 579
Packetheaderformats. 580
7123 Examples e 583
How to use tcpdump with ipreport 584
Howtomonitor TCP. e 584

Contents Xiii

How to monitor UDP packets. 589

How to monitor all packets. 592

How to interpret link-level headers. 593

How to monitor ARP packets. 594

HOW to USE eXPressions.ttt e 596

743 tokstat 602
7131 Syntax . ..o e 602
Flags ..o 602
Parameters 603
7.13.2 Information on measurement and sampling 603
7133 Examples e 604
A4 Pt . 608
T4 Syntax . ..o 608
Flags ... e 608
Parameters 609
7.14.2 Information on measurement and sampling 609
7143 Examples e 610
How to display all stored tracerecords 611

How to display source and destination addresses. 612

How to display packet-sequencing information 612

How to display timers at each pointinthetrace 613
Chapter 8. Tracetools. i, 615
8.1 CUM. . . 616
8.1.1 Syntax. e 616
Flags ... e 616

8.1.2 Information on measurementand sampling 618
8.1.3 Examples 619
Overview of the reports generated by curt. 620

The defaultreport. 622
Report generated withthe -bflag. 633
Report generated withthe -cflag. 634
Report generated withthe -eflag. L. 634
Report generated withthe -sflag. 636
Report generated withthe -tflag o .. 636
Report generated withthe -rflag.. 639

Xiv AIX 5L Performance Tools Handbook

8.2 geNKeX . . . 640

8.2.1 Syntax. 640
8.2.2 Information on measurementand sampling 640
8.2.3 Examples 640
8.3 genkld . .. 641
8.3.1 Syntax. 642
8.3.2 Information on measurementand sampling 642
8.3.3 Examples 642
8.4 genld 643
8.4.1 Syntax. e 643
8.4.2 Information on measurementand sampling 643
8.4.3 Examples 643
8.5 gennames 644
8.5.1 Syntax. 644
Flags .. o e 644
Parameters 645

8.5.2 Information on measurementand sampling 645
8.5.3 Examples 646
The name to address mapping i, 646

The list of loaded kernel extensions. 647

The list of loaded shared libraries 648

The list of loaded processes, 648
Physical and logical volume and file system information. 649

8.6 locktrace 651
8.6.1 Syntax. 651
Flags .. o e 651

8.6.2 Information on measurementand sampling 651
8.6.3 Examples 652
8.7 splat. 653
B.7.1 Syntax. e 653
Flags ... e 654
Parameters 655

8.7.2 Information on measurementand sampling 656
SOUICE . . ot 657
Address-to-name resolutioninsplat 658

8.7.3 Examples 659
Execution summary 659
PThread synchronizerreports i 674

8.8 StripNM 682
8.8.1 Syntax. 682
Flags ... e 682
Parameter e 683

Contents XV

8.8.3 Examples 683
8.9 frace. 685
8.9.1 Syntax. 686
Flags ... e 686
Subcommands. 690
SIgNalS . . 690
Files . o 690
8.9.2 Information on measurementand sampling 691
Operation Modest e 691
8.9.3 Terminology used fortrace 692
Trace HOOKS. 692
HOOK ID .. . 692
Trace daemont e 692
Trace buffer e 692
Trace logfile 693
8.9.4 Waystostartandstoptrace........... 694
Using SMIT to stop and starttrace 694
Running trace interactively. 695
Running trace asynchronously. 695
Running trace an entire system for 10 seconds. 696
Tracing to a specificlogfile 696
Tracinga commandt e 696
Tracing using one set of buffersperCPU 696
8.9.5 Examples 697
Checking return times fromtrace. 697
Sequential Readsand Writes 701
8.10 treNm . .. 702
8.10.1 Syntax.o 702
Flags ..o e 702
Parameters e 703
8.10.2 Information on measurement and sampling 703
8.10.3 Examples 703
8. 11 trCrpt .. 704
8.11.1 Syntax.o 704
Flags ..o e 704
Parameters e 708
Information on measurement and sampling. 708
8.11.2 Examples 708
Combiningtrace buffers. 709

XVi AIX 5L Performance Tools Handbook

Chapter 9. APIs for performance monitoring 711

9.1 Perfstat APl 712
9.1.1 Compilingandlinking i 712
9.1.2 Subroutines. 712

perfstat_Cpu 713
perfstat_cpu_total 716
perfstat_memory_total L 719
perfstat_disk. 721
perfstat_disk_total 724
perfstat_netinterface 725
perfstat_netinterface_total 729
9.1.3 Examples 731
Makefile 735

9.2 System Performance Measurement Interface (SPMI)............ 736
9.2.1 Compilingandlinking i 737
9.2.2 SPMldataorganization. i 737
9.2.3 Subroutines. 738

Spmilnit . . L. 739
SpmiCreateStatSet 740
SpmiPathGetCx 740
SpmiPathAddSetStat. 741
SpmiFirstVals. 741
SpmiGetValue 742
SpmiNextVals e 742
SpmiFreeStatSet 743
SPMIEXIt. . .. 743
9.2.4 Example 744
Hard coded metricsot e 744
Reading metrics fromfile. i 749
Traversing and displaying the SPMI hierarchy 754
Makefile 757

9.3 Performance Monitor (PM) APIL. 758
9.3.1 Performance Monitor dataaccess 759
9.3.2 Compilingandlinking 760
9.3.3 Subroutines. 761
9.3.4 Examples 761

9.4 Resource Monitoring and Control (RMC) 766
.41 SyNtaXxot e 767

Resource Monitoring and Control Commands. 767
Event Response Resource Manager commands 767
9.4.2 Information on measurementand sampling 768
9.4.3 Examples 770
How to verify thatthe RMC is active 770
How to examine resource classes and resources 771

Contents XVii

How to write an event response script. 774

How to createacondition 777

How to create a response to a conditionevent 778

How to associate a response with a condition. 778

How to activate monitoring of a condition 779

How will the condition/response event generation be done. 781

How to stop monitoring a condition 782

How to remove a response definition. 782

How to remove acondition 783

9.5 Miscellaneous performance monitoring subroutines 783
9.5.1 Compilingandlinking 783
9.5.2 Subroutines. 783
SYS_PaAMMM . e 784
vmgetinfo 787
SWAPANY . o oot et e 791

rStat .. 792
QetPIOCS . . . oo 794
wim_get_info 797
wim_get_bio_stats. 799

9.5.3 Example 802
Chapter 10. WLM performancetools............................. 807
WLM Tools and their purposes 808

101 wimstat. 808
10101 Syntaxo 809
Flags .. o e 809
Parameters 810
10.1.2 Information on measurement and sampling 810
10.1.3 EXamples 811
10.2 wimmon /wimperf 818
10.2.1 Syntax Xxmwimo 818
Flags .. o e 818
10.2.2 Syntax xmirend 819
Flags ..o 819
10.2.3 Information about the xmwIim and xmtrend daemons. 820
Startingthedaemons. 820
10.2.4 Information on measurement and sampling 822
10.2.5 Exploring the graphical windows. 822
The WLM_Console menuot 824

The Selectmenu e 829
Chapter 11. Performance Toolbox Version3for AIX 839
Additional tools. 839

xviii AIX 5L Performance Tools Handbook

11.1 Introduction 841

11,2 xmperf .. 842
11.2.1 Syntax. . ..o e 842
Flags ... e 843
Parameters 845
11.2.2 Information on measurement and sampling 845
Display requirements 846
Starting xmperf. 846
11.2.3 EXamples 853
11.3 BDmonitor o 860
11.3.1 Syntax. . ..o 860
Flags ... e 861
11.3.2 Information on measurement and sampling 864
11.3.3 EXamples 866
11.4 JazZiZOo 869
11.4.1 Syntaxxmirend. 869
Flags ... e 869
11.4.2 Syntax jazizo. 870
Flags ... e 870
11.4.3 Information on measurement and sampling 870
Exploring the jazizowindows L. 871
Appendix A. Source codeexamples 885
perfstat_dude.c. 886
SPMI_AUAR.C. . e 895
SPMIi_data.Co 899
spmi_file.C ... 905
SPMI_traVerSE.C . . o e 908
dudestat.C. e 911
CWNBL C . . e 914
Appendix B. Tracehooks i, 921
AIX 5L trace hoOKS 922
Related publications 929
IBM RedboOoksS 929
Other resourCes it 929
Referenced Web sites 930
HowtogetIBM Redbooks 931
IBM Redbooks collections. 931

Contents XiX

XX

Special notices

Abbreviations and acronyms

AIX 5L Performance Tools Handbook

Figures

1-1 Physical Partition mapping. 23
3-1 Sequentialread-ahead. 207
7-1 Schematic flow during TCPopen. 587
7-2 Schematic flow during TCPclose 589
8-1 Lockstates. 667
8-2 Thetracefacility... 693
10-1 |Initial screen when wimperf and wimmon are started 823
10-2 The WLM_Console tabdownmenu. 824
10-3 The open log option from the tabdownbar. 825
10-4 The WLM table visual report 826
10-5 The CPU, memory and disk /O tabdownmenu................. 826
10-6 The bar-graph style visualreport. 828
10-7 The order of the snapshot visual report colored bulbs. 828
10-8 The snapshotvisualreport. i 829
10-9 Theselecttabdownmenu........... 829
10-10 The time window for setting trend periods 830
10-11 The table visual report with trend values shown 831
10-12 The bar graph style report showingatrend..................... 832
10-13 The snapshot visual report showingthetrend................... 833
10-14 Advanced option under the Selected tabdownmenu............. 834
10-15 The Advanced Menu options shown in graphical form 835
10-16 The class/tier option from the selected tab down menu. 837
10-17 The snapshot report showing only the Red WLMclass. 837
11-1 The initial xmperf window. 846
11-2 The mini monitorwindow 847
11-3 Aged datamovedtotheleft......, 848
11-4 The utilitiestabdownmenu 849
11-5 The analysistabdownmenus............... 850
11-6 Thecontrolstabdownmenuo, 850
11-7 The Recordingtabdownmenu 850
11-8 The console recordingoptions. 851
11-9 Cautionary window when recording an instrument 851
11-10 The Console Recording tab down menu’s End Recording option 851
11-11 Options under the initial xmperf window File tab downmenu 852
11-12 The Select Play-back Filewindow 852
11-13 The Play-Back window. 853
11-14 Naming the user definedconsole 854
11-15 Editthe console window i 854

© Copyright IBM Corp. 2001 XXi

11-16 Dynamic Data Supplier Statistics window 855

11-17 The Change Properties of a Value window 856
11-18 The final console monitoring CPU idle time. 857
11-19 The Edit Console tabdownmenu 858
11-20 The Modify Instrument menuoptions. 858
11-21 The Style and Stacking menuoption. 859
11-22 Menu options from the Edit Value tab down display 859
11-23 An example of a CPU usage instrument 860
11-24 Initial 3dmon screen. 864
11-25 3D window from 3dmon showing the statisticofahost............ 865
11-26 CPU statistics displayed by 3dmon after modifying 3dmon.cf..... .. 867
11-27 3dmon graph showing disk activity for multiple hosts 868
11-28 The jazizo opening Window i 872
11-29 The Filetabdownmenu 872
11-30 The Open Recording File window injazizo 873
11-31 Metric Selection window i, 874
11-32 The metric selection window showing metric selections 875
11-33 The Time Selectionwindow. 876
11-34 The stop and start hourtabdownmenus 876
11-35 Adjusting the month in the jazizo Time Selection window 877
11-36 Adjusting the day in the jazizo Time Selection window 878
11-37 The jazizowindow 879
11-38 The jazizo Edittabdownmenu 879
11-39 The Graph Selection window of the jazizo program 880
11-40 The trend of the metric can be displayed by jazizo 881
11-41 The View tabdownmenu 881
11-42 The Reporttabdownmenu 882
11-43 Tabular statistical output that can be obtained from jazizo 882
11-44 The File tab down menu when closingjazizo 883

XXii AIX 5L Performance Tools Handbook

© Copyright IBM Corp. 2001

Terms used in describing disk device block operations. 18
Latencies for disk accesstimes. 19
TCP/IP layers and protocol examples 32
Network tunables minimum values for best performance 34
Other basic network tunables 35
Commands/tools, pathnames and filesets. 44
Performance tools by resource matrix., 47
Current effective priority calculated where -risfour. 153
Current effective priority calculated where -ris16. 154
The CPU decay factor using the default schedtune -d value of 16 ... 155
The CPU decay factor using a schedtune -d valueof 31........... 155
Machine faults 170
SIgNalS . . 171
ipfilter header types and options 481
ipreport source tag.o 483
grep -v M fetc/protocols. 496
Selection from /etc/services. 497
Suggested minimum buffer and MTU sizes for adapters. 568
grep -v M fetc/protocols. 578
Selection from /etc/services. 578
Some ICMP message types 579
Minimum trace hooks required forcurt 618
Trace hooks required forsplat. 656
Interface types from if_types.h. oL 728
Columnexplanation. 748
Outputofwlinstat-v 813

xxiii

XXiV AIX 5L Performance Tools Handbook

Preface

This redbook takes an insightful look at the performance monitoring and tuning
tools that are provided with AIX 5L. It discusses the usage of the tools as well as
the interpretation of the results by using a large number of examples.

This redbook is meant as a reference for system administrators and AIX
technical support professionals so they can use the performance tools in an
efficient manner and interpret the outputs when analyzing an AIX system’s
performance.

Chapter 1, “Introduction to AIX performance monitoring and tuning” on page 1
and Chapter 2, “Getting started” on page 43 introduce the reader to the process
of AIX performance analysis. The individual performance tools discussed in this
book are mainly organized into chapters according to the resources that they
provide statistics for:

» Tools that show statistics for multiple resources can be found in Chapter 3,
“Multi resource monitoring and tuning tools” on page 57.

» Tools that are used to monitor the CPU resource are located in Chapter 4,
“CPU performance tools” on page 221.

» Tools that provide statistics on system memory are discussed in Chapter 5,
“Memory performance tools” on page 301.

» Disk I/O performance can be monitored with the tools introduced in
Chapter 6, “Disk 1/0O performance tools” on page 387.

» The network monitoring tools are contained in Chapter 7, “Network
performance tools” on page 457.

» Explanations of AIX trace and trace related tools are located in Chapter 8,
“Trace tools” on page 615. Trace tools can usually be used to monitor all
system resources.

» Chapter 9, “APlIs for performance monitoring” on page 711 explains how to
use the various performance APIs that are available for AlX.

» Workload Manager (WLM) performance monitoring tools can be found in
Chapter 10, “WLM performance tools” on page 807. These tools also provide
statistics on multiple resources, but they only gather information when AIX
WLM is turned on.

» The book is concluded with an overview of the AIX Performance Toolbox in
Chapter 11, “Performance Toolbox Version 3 for AIX” on page 839.

© Copyright IBM Corp. 2001 XXV

The team that wrote this redbook

XXvi

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Diana Gfroerer is an International Technical Support Specialist for IBM @server
pSeries and AIX Performance at the International Technical Support
Organization, Austin Center. She writes extensively and teaches IBM classes
worldwide on all areas of AIX, with a focus on performance and tuning. Before
joining the ITSO in 1999, Diana Gfroerer worked in AIX pre-sales Technical
Support in Munich, Germany, and led the Region Central, EMEA, and World
Wide Technical Skill Communities for AIX and PC Interoperability.

Thomas Braunbeck is a Support Professional in Germany. He has 12 years of
experience in AIX and seven years of experience in PSSP and related software.
He holds a degree in Computer Science.

Stuart Lane is an RS/6000 IT Specialist in South Africa. He has three years
experience with AIX and the RS/6000. His areas of expertise include RS/6000
systems, RS/6000 SP systems, and SCO Unixware.

Bjorn Roden is an AIX expert from Sweden working as a technical manager and
chief programmer for the largest IBM Business Partner in Sweden (Pulsen
Systems). He has 11 years of experience with AIX and SP. He is currently
certified as AIX Advanced Technical Expert, Mid-Range Storage Technical
Specialist, SP Specialist, HACMP Specialist, TSM Specialist, and Webserver
Specialist.

Nigel Trickett is a Software Support Specialist at IBM New Zealand. He has
worked with Unix since 1984 and has had several roles since then, including
hardware and software support and systems administration. He joined IBM in
1995. Nigel Trickett's primary responsibilities are to resolve performance issues
with AIX and to analyze system dumps. He also works on many types of software
issues. Nigel holds a New Zealand Certificate of Computer Technology.

Thanks to the following people for their invaluable contributions to this project:

International Technical Support Organization, Austin Center
Richard Cutler, Budi Darmawan, Ernest A. Keenan

IBM Austin

Matt Accapadi, Larry Brenner, Bill Britton, William Brown, Dean Burdick,
Saravanan Devendran, Herman Dierks, Loel Graber, Randy Heisch,
Somasundaram Krishnasamy, Bruce Mealey, Augie Mena Ill, Greg R.

AIX 5L Performance Tools Handbook

Mewhinney, Dirk Michel, Stephen Nasypany, Jane Ouyang, Carl Ponder,
Anthony Ramirez, Ruben Ramirez, Jim Shaffer, Dave Sheffield, Luc Smolders,
Bill Topliss, Vasu Vallabhaneni, Venkat Venkatsubra, Paul Wadehra, Brian
Waldecker

IBM India
Vivek H. M., Subhrata Parichha, Amar A. Shah

IBM Israel
Gadi Haber

IBM Poughkeepsie
Joseph Chaky, Michael Schmidt

Special notice

This publication is intended to help system administrators and AIX technical
support professionals to use and interpret the AIX 5L performance tools. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by AIX 5L. See the PUBLICATIONS
section of the IBM Programming Announcement for AIX 5L for more information
about what publications are considered to be product documentation.

IBM trademarks

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

3890 AlIX

AIX 5L AS/400
AT Balance
CT Current
DB2 Domino

e (logo)® @ Early
ESCON IBM ®
Notes Nways
PAL PowerPC
PowerPC 604 pSeries
PTX Redbooks
Redbooks Logo (€@ RISC System/6000
RS/6000 Sequent
SP XT

Preface XXVii

Comments welcome

Your comments are important to us!
We want our IBM Redbooks to be as helpful as possible. Send us your
comments about this or other Redbooks in one of the following ways:
» Use the online Contact us review redbook form found at:

ibm. com/redbooks
» Send your comments in an Internet note to:

redbook@us. ibm.com

» Mail your comments to the address on page ii.

xxviii AlIX 5L Performance Tools Handbook

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Introduction to AIX
performance monitoring and
tuning

The performance of a computer system is based on human expectations and the
ability of the computer system to fulfill these expectations. The objective for
performance tuning is to make expectations and fulfillment match. The path to
achieving this objective is a balance between appropriate expectations and
optimizing the available system resources. The performance tuning process
demands great skill, knowledge, and experience, and cannot be performed by
only analyzing statistics, graphs, and figures. The human aspect of perceived
performance must not be neglected if results are to be achieved. Performance
tuning will also usually have to take into consideration problem determination
aspects as well as pure performance issues.

Expectations can often be classified as either:

Throughput expectations Throughput is a measure of the amount of work
performed over a period of time.

Response time expectations Response time is the elapsed time between
when a request is submitted and when the
response from that request is returned.

© Copyright IBM Corp. 2001 1

The performance tuning process can be initiated for a number of reasons:

» To achieve optimal performance in a newly installed system

» To resolve performance problems resulting from the design (sizing) phase

» To resolve performance problems occurring in the runtime (production) phase

Performance tuning on a newly installed system will usually involve setting some
base parameters for the operating system and applications. The sections in this
chapter describe the characteristics of different system resources and provide
some advice regarding their base tuning parameters if applicable.

Limitations originating from the sizing phase will either limit the possibility of
tuning, or incur greater cost to overcome them. The system may not meet the
original performance expectations because of unrealistic expectations, physical
problems in the computer environment, or human error in the design or
implementation of the system. In the worst case adding or replacing hardware
might be necessary. It is therefore highly advised to be particularly careful when
sizing a system to allow enough capacity for unexpected system loads. In other
words, do not design the system to be 100 percent busy from the start of the
project. More information on system sizing can be found in the redbook
Understanding IBM @server pSeries Performance and Sizing, SG24-4810.

When a system in a productive environment still meets the performance
expectations for which it was initially designed, but the demands and needs of
the utilizing organization has outgrown the system’s basic capacity, performance
tuning is performed to avoid and/or delay the cost of adding or replacing
hardware.

Remember that many performance related issues can be traced back to
operations performed by somebody with limited experience and knowledge that
unintentionally ended up restricting some vital logical or physical resource of the
system.

1.1 CPU performance

2

This section gives an overview of the operations of the kernel and CPU. An
understanding of the way processes and threads operate within the AIX
environment is required to successfully monitor and tune AlX for peak CPU
throughput.

Systems that experience performance problems are sometimes constrained not
by the limitations of hardware, but by the way applications are written or the way
the operating system is tuned. Threads that are waiting on locks can cause a
significant degradation in performance.

AIX 5L Performance Tools Handbook

1.1.1 Initial advice

We recommend that you not make any changes to the CPU scheduling
parameters until you have had experience with the actual workload. In some
cases the workload throughput can benefit from adjusting the scheduling
thresholds. Please see Section 3.8, “schedtune” on page 144 for more details on
how to monitor and change these values and parameters.

For more information about CPU scheduling, refer to:

» AIX 5L Version 5.1 System Management Concepts: Operating System and
Devices

» AIX 5L Version 5.1 Performance Management Guide

1.1.2 Processes and threads

The following sections explain the differences between threads and processes.

Processes

A process is an activity within the system that is started with a command, a shell
script, or another process.

Threads

A thread is an independent flow of control that operates within the same address
space as other independent flows of controls within a process. A kernel thread is
a single sequential flow of control.

Kernel threads are owned by a process. A process has one or more kernel
threads. The advantage of threads is that you can have multiple threads running
in parallel on different CPUs on a Symmetrical Multiprocessor System (SMP).

Applications can be designed to have user level threads that are scheduled to
work by the application or by the pthreads scheduler in libpthreads. Multiple
threads of control allow an application to service requests from multiple users at
the same time. Application threads can be mapped to kernel threads in a 1:1 or
an n:1 relation.

1.1.3 Process and thread priorities

The kernel maintains the priority of the threads. A thread’s priority can range from
zero to 255. A zero priority is the most favored and 255 is the least favored. The
priority of fixed priority threads does not change during the life of the thread,
while non-fixed priority threads can have their maximum priority changed with the
nice or the renice commands. The kernel calculates the priority for non-fixed

Chapter 1. Introduction to AIX performance monitoring and tuning 3

4

priority threads using a formula that includes, among other values, the minimum
priority for a user thread (40), the nice value for the process that contains the
thread (20 by default, see Section 4.6, “nice” on page 245), and its CPU penalty
(see “Displaying the processes in order of being penalized” on page 115). The
CPU usage increases by one after each clock interrupt (every 10 ms) and will
increment up to 120. This prevents high CPU usage threads from monopolizing
the CPU. Once every second the scheduler decrements the CPU usage value for
all the threads, thereby giving the penalized threads access to the CPU again.

The nice value of a process can by set with the nice or renice command, and
will not change unless changed again by those commands. The default nice
value is 20. For threads running the default SCHED_OTHER policy (see
Section 1.1.4, “Scheduling policies” on page 5), the threads’ priority will change
based on the nice value and the CPU usage.

Formula to recalculate thread priority
The nice value can be changed to have more of an effect on the priority of
threads running on the system.

The following factors are used for thread priority calculation:
base priority The base or minimum priority of a thread is 40.

nice value The nice value defaults to 20 for foreground processes,
and 24 for background processes.

p_nice The niced priority is calculated as follows:
p_nice = base priority + nice value

C The recent CPU usage has a value of 0 at thread
initialization. The CPU usage increments by 1 for the
currently running thread when a clock interrupt occurs.

/32 The CPU penalty factor. The default for ris 16. This value
can be tuned with the schedtune command.

X_nice The “extra nice” value.
If the niced priority for a thread (p_nice) is larger than 60,
then the following formula applies:
X_nice = p_nice * 2 - 60
If the niced priority for a thread (p_nice) is equal or less
than 60, the following formula applies:
X_hice = p_nice

X The xnice factor is calculated in the following way:
X = (x_nice + 4)/ 64

The thread priority is finally calculated based on the following formula:

Recalculated priority

AIX 5L Performance Tools Handbook

= (recent CPU usage * CPU penalty factor * xnice factor) + extra nice value
=(C *r/32 * X) + x_nice

Smaller values of r will make the nice value have more of an impact on the
system.

Thread aging

When a thread is created, the CPU usage value is zero. As the thread
accumulates more time on the CPU, the usage increments. This can be shown
with the ps command, looking at the C column of the output (see “Displaying the
processes in order of being penalized” on page 115). Every second the
scheduler ages the thread using the following formula:

CPU usage=CPU usage*(d/32)
Where d is the decay value as set by schedtune -d

After the calculation has been done, the thread’s priority is recalculated using the
formula described in “Formula to recalculate thread priority” on page 4

If -d of schedtune is set to 32, the thread usage will not decrease. The default of
16 will allow the thread usage to decrease, giving it more time on the CPU.

1.1.4 Scheduling policies

The following scheduling policies apply to AlX:

SCHED_RR The thread is time-sliced at a fixed priority. If the thread is
still running when the time slice expires, the thread is
moved to the end of the queue of dispatchable threads.
The queue the thread will be moved to depends on its
priority. Only root can schedule using this policy.

SCHED_OTHER This policy only applies to non-fixed priority threads that
run with a time slice. The priority gets recalculated at
every clock interrupt. This is the default scheduling policy.

SCHED_FIFO This is a non-preemptive scheduling scheme except for
higher priority threads. Threads run to completion unless
they are blocked or relinquish the CPU of their own
accord. Only fixed priority threads use this scheduling
policy. Only root can change the scheduling policy of
threads to use SCHED_FIFO.

SCHED_FIFO2 Fixed priority threads use this scheduling policy. The
thread is put at the head of the run queue if it was only
asleep for a short period of time.

Chapter 1. Introduction to AIX performance monitoring and tuning 5

SCHED_FIFOS3 Fixed priority threads use this scheduling policy. The
thread is put at the head of the run queue whenever it
becomes runnable, but it can be preempted by a higher
priority thread.

1.1.5 Run queues

Each CPU has a dedicated run queue. A run queue is a list of runnable threads,
sorted by thread priority value. There are 256 thread priorities (zero to 255).
There is also an additional global run queue where new threads are placed.

When the CPU is ready to dispatch a thread, the global run queue is checked
before the other run queues are checked. When a thread finishes its time slice on
the CPU, it is placed back on the runqueue of the CPU it was running on. This
helps AIX to maintain processor affinity. To improve the performance of threads
that are running with SCHED_OTHER policy and are interrupt driven, you can
set the environmental variable called RT_GRQ to ON. This will place the thread
on the global run queue. Fixed priority threads will be placed on the global run
queue if you run schedtune -F1.

1.1.6 Time slices

The CPUs on the system are shared amongst all the threads by giving each
thread a certain slice of time to run. The default time slice of one clock tick

(10 ms) can be changed using schedtune -t. Sometimes increasing the time
slice improves system throughput due to reduced context switching. The vmstat
and sar commands show the amount of context switching. If you see a high
value of context switches, then increasing the time slice can improve
performance. This parameter should, however, only be used after a thorough
analysis.

1.1.7 Mode switching

6

There are two modes that a CPU operates in. They are kernel mode and user
mode. In user mode, programs have read and write access to the user data in the
process private region. They can also read the user text and shared text regions,
and have access to the shared data regions using shared memory functions.
Programs also have access to kernel services by using system calls.

Programs that operate in kernel mode include interrupt handlers, kernel
processes and kernel extensions. Code operating in this mode has read and
write access to the global kernel address space and to the kernel data in the
process region when executing within the context of a process. User data within
the process address space must be accessed using kernel services.

AIX 5L Performance Tools Handbook

When a user program access system calls, it does so in kernel mode. The
concept of user and kernel modes is important to understand when interpreting
the output of commands such as vmstat and sar.

1.1.8 SMP performance

In a Symmetrical Multiprocessor (SMP) system, all of the processors are
identical and perform identical functions. These functions are:

» Any processor can run any thread on the system. This means that a process
or thread ready to run can be dispatched to any processor, except the
processes or threads bound to a specific processor using the bindprocessor
command.

» Any processor can handle an external interrupt except interrupt levels bound
to a specific processor using the bindintcpu command. Some SMP systems
use a first fit interrupt handling in which an interrupt always gets directed to
CPUO. If there are multiple interrupts at a time, the second interrupt is
directed to CPU1, the third interrupt to CPU2, and so on. A process bound to
CPUO using the bindprocessor command may not get the necessary CPU
time to run with best performance in this case.

» All processors can initiate /0O operations to any 1/O device.

Cache coherency

All processors work with the same virtual and real address space, and share the
same real memory. However, each processor may have its own cache, holding a
small subset of system memory. To guarantee cache coherency the processors
use a snooping logic. Each time a word in the cache of a processor is changed,
this processor sends a broadcast message over the bus. The processors are
“snooping” on the bus, and if they receive a broadcast message about a modified
word in the cache of another processor, they need to verify if they hold this
changed address in their cache. If they do, they invalidate this entry in their
cache. The broadcast messages increases the load on the bus, and invalidated
cache entries increase the number of cache misses. Both reduce the theoretical
overall system performance, but hardware systems are designed to minimize the
impact of the cache coherency mechanism.

Processor affinity

If a thread is running on a CPU and gets interrupted and redispatched, the thread
is placed back on the same CPU (if possible) because the processor’s cache
may still have lines that belong to the thread. If it is dispatched to a different CPU,
the thread may have to get its information from main memory. Alternatively, it can
wait until the CPU where it was previously running is available, which may result
in a long delay.

Chapter 1. Introduction to AIX performance monitoring and tuning 7

8

AIX automatically tries to encourage processor affinity by having one run queue
per CPU. Processor affinity can also be forced by binding a thread to a processor
with the bindprocessor command. A thread that is bound to a processor can run
only on that processor, regardless of the status of the other processors in the
system. Binding a process to a CPU must be done with care, as you may reduce
performance for that process if the CPU to which it is bound is busy and there are
other idle CPUs in the system.

Locking

Access to I/O devices and real memory is serialized by hardware. Besides the
physical system resources, such as I/O devices and real memory, there are
logical system resources, such as shared kernel data, that are used by all
processes and threads. As these processes and threads are able to run on any
processor, a method to serialize access to these logical system resources is
needed. The same applies for parallelized user code.

The primary method to implement resource access serialization is the usage of
locks. A process or thread has to obtain a lock prior to accessing the shared
resource. The process or thread has to release this lock after the access is
completed. Lock and unlock functions are used to obtain and release these
locks. The lock and unlock operations are atomic operations, and are
implemented so neither interrupts nor threads running on other processors affect
the outcome of the operation. If a requested lock is already held by another
thread, the requesting thread has to wait until the lock becomes available. There
are two different ways for a thread to wait for a lock:

Spin locks

A spin lock is suitable for a lock held only for a very short time. The thread
waiting on the lock enters a tight loop wherein it repeatedly checks for the
availability of the requested lock. No useful work is done by the thread at this
time, and the processor time used is counted as time spent in system (kernel)
mode. To prevent a thread from spinning forever, it may be converted into a
sleeping lock. An upper limit for the number of times to loop can be set using:

» The schedtune -s n command
The parameter n is the number of times to spin on a kernel lock before
sleeping. The default value of the n parameter for multiprocessor systems is
16384, and 1 (one) for uniprocessor systems. Please refer to Section 3.8,
“schedtune” on page 144 for more details on the schedtune command.

» The SPINLOOPTIME=n environment variable
The value of n is the number of times to spin on a user lock before sleeping.
This environment variables applies to the locking provided by libpthreads.a.

» The YIELDLOOPTIME=n environment variable
Controls the number of times to yield the processor before blocking on a busy

AIX 5L Performance Tools Handbook

user lock. The processor is yielded to another kernel thread, assuming there
is another runnable kernel thread with sufficient priority. This environment
variables applies to the locking provided by libpthreads.a.

Sleeping locks

A sleeping lock is suitable for a lock held for a longer time. A thread requesting
such a lock is put to sleep if the lock is not available. The thread is put back to the
run queue if the lock becomes available. There in an additional overhead for
context switching and dispatching for sleeping locks.

AIX provides two types of locks, which are:

Read-write lock
Multiple readers of the data are allowed, but write access is mutually exclusive.
The read-write lock has three states:

» Exclusive write
» Shared read
» Unlocked

Mutual exclusion lock

Only one thread can access the data at a time. Others threads, even if they want
only to read the data, have to wait. The mutual exclusion (mutex) lock has two
states:

» Locked
» Unlocked

Both types of locks can be spin locks or sleeping locks.

Programmers in a multiprocessor environment need to decide on the number of
locks for shared data. If there is a single lock then lock contention (threads
waiting on a lock) can occur often. If this is the case, more locks will be required.
However, this can be more expensive because CPU time must be spent locking
and unlocking, and there is a higher risk for a deadlock.

As locks are necessary to serialize access to certain data items, the heavy usage
of the same data item by many threads may cause severe performance
problems. “Using tprof to detect a resource bottleneck” on page 290 shows an
example of such a problem caused by a user level application.

Please refer to the AIX 5L Version 5.1 Performance Management Guide for
further information to multiprocessing.

Chapter 1. Introduction to AIX performance monitoring and tuning 9

1.2 Memory performance

In a multiuser, multiprocessor environment, the careful control of system
resources is paramount. System memory, whether paging space or real memory,
not carefully managed can result in poor performance and even program and
application failure. The AIX operating system uses the Virtual Memory Manager
(VMM) to control real memory and paging space on the system.

1.2.1 Initial advice

We recommend that you do not make any VMM changes until you have had
experience with the actual workload. Note that many parameters of the VMM can
be monitored and tuned with the vmtune command, described in Section 3.12,
“vmtune” on page 201.

To know more about how the VMM works, refer to:

» AIX 5L Version 5.1 System Management Concepts: Operating System and
Devices

» AIX 5L Version 5.1 Performance Management Guide

1.2.2 Memory segments

10

A segment is 256 MB of contiguous virtual memory address space into which an
object can be mapped. Virtual memory segments are partitioned into fixed sizes
known as pages. Each page is 4096 bytes (4 KB) in size. A page in a segment
can be in real memory or on disk where it is stored until it is needed. Real
memory is divided into 4096 byte (4 KB) page frames.

Simply put, the function of the VMM is to manage the allocation of real memory
page frames and to resolve references from a program to virtual memory pages.
Typically, this happens when pages are not currently in memory or do not exist
when a process makes the first reference to a page of its data segment.

The amount of virtual memory used can exceed the size of the real memory of a
system. The function of the VMM from a performance point of view is to:

» Minimize the processor use and disk bandwidth resulting from paging

» Minimize the response degradation from paging for a process

AIX 5L Performance Tools Handbook

Virtual memory segments can be of three types:
» Persistent segments

Persistent segments are used to hold file data from the local filesystems.
Because pages of a persistent segment have a permanent disk storage
location, the VMM writes the page back to that location when the page has
been changed if it can no longer be kept in memory. When a persistent page
is opened for deferred update, changes to the file are not reflected on
permanent storage until an fsync subroutine operation is performed. If no
fsync subroutine operation is performed, the changes are discarded when the
file is closed. No I/O occurs when a page of a persistent segment is selected
for placement on the free list if that page has not been modified. If the page is
referenced again later, it is read back in.

» Working segments

These segments are transitory and only exist during use by a process.
Working segments have no permanent storage location and are hence stored
in paging space when real memory pages need to be freed.

» Client segments

These segments are saved and restored over the network to their permanent
locations on a remote file system rather than being paged out to the local
system. CD-ROM page-ins and compressed pages are classified as client
segments. JFS2 pages are also mapped into client segments.

The free list

The VMM maintains a list of free memory pages available to satisfy a page fault.
This list is known as the free list. The VMM uses a page replacement algorithm.
This algorithm is used to determine which pages in virtual memory will have their
page frames reassigned to the free list.

Page replacement

When the number of pages in the free list becomes low, the page stealer is
invoked. The page stealer is a mechanism that moves through the Page Frame
Table (PFT) looking for pages to steal. The PFT contains flags that indicate which
pages have been referenced and which have been modified.

If the page stealer finds a page in the PFT that has been referenced, then it will
not steal the page, but rather will reset the reference flag. The next time that the
page stealer passes this page in the PFT, if it has not been referenced, it will be
stolen. Pages that are not referenced when the page stealer passes them the
first time are stolen.

Chapter 1. Introduction to AIX performance monitoring and tuning 11

12

When the modify flag is set on a page that has not been referenced, it indicates
to the page stealer that the page has been modified since it was placed in
memory. In this instance, a page out is called before the page is stolen. Pages
that are part of a working segment are written to paging space, while pages of
persistent segments are written to their permanent locations on disk.

There are two types of page fault, a new page fault, where the page is referenced
for the first time and a repage fault, where pages have already been paged out
before. The stealer keeps track of the pages paged out, by using a history buffer
that contains the IDs of the most recently paged out pages. The history buffer
also serves the purpose of maintaining a balance between pages of persistent
segments and pages of working segments that get paged out to disk. The size of
the history buffer is dependent on the amount of memory in the system; a
memory size of 512 MB requires a 128 KB history buffer.

When a process terminates, its working storage is released and pages of
memory are freed up and put back on the free list. Files that have been opened
by the process can, however, remain in memory.

On an SMP system, the Irud kernel process is responsible for page replacement.
This process is dispatched to a CPU when the minfree parameter threshold is
reached. See “The page replacement algorithm” on page 208 for more details on
the vmtune command and the minfree and maxfree parameters. In the
uniprocessor environment, page replacement is handled directly within the scope
of the thread running.

The page replacement algorithm is most effective when the number of repages is
low. The perfect replacement algorithm would eliminate repage faults completely
and would steal pages that are not going to be referenced again.

Memory load control mechanism

If the number of active virtual memory pages exceeds the amount of real
memory pages, paging space is used for those pages that cannot be kept in real
memory. If an application accesses a page that was paged out, the VMM loads
this page from the paging space into real memory. If the number of free real
memory pages is low at this time, the VMM also needs to free another page in
real memory before loading the accessed page from paging space. If the VMM
only finds computational pages to free, the VMM is forced to page out those
pages to paging space. In the worst case the VMM always needs to page out a
page to paging space before loading another page from paging space into
memory. This condition is called thrashing. In a thrashing condition processes
encounter a page fault almost as soon as they are dispatched. None of the
processes make any significant progress and the performance of the system
deteriorates.

AIX 5L Performance Tools Handbook

The operating system has a memory load control mechanism that detects when
the thrashing condition is about to start. Once thrashing is detected, the system
starts to suspend active processes and delay the start of any new processes.
The memory load control mechanism is disabled by default on systems with
more than 128 MB of memory. For more information on the load control
mechanism and the schedtune command, please refer to “Memory” on page 150.

Paging space

The operating system supports three paging space allocation policies:
» Late Paging Space Allocation (LPSA)

» Early Paging Space Allocation (EPSA)

» Deferred Paging Space Allocation (DPSA)

The late paging space allocation policy (LPSA)

With the LPSA, a paging slot is only allocated to a page of virtual memory when
that page is first touched. The risk involved with this policy is that when the
process touches the file, there may not be sufficient pages left in paging space.

The early paging space allocation policy (EPSA)

This policy allocates the appropriate number of pages of paging space at the
time that the virtual memory address range is allocated. This policy ensures that
processes do not get killed when the paging space of the system gets low. To
enable EPSA, set the environment variable PSALLOC=early. Setting this policy
ensures that when the process needs to page out, pages will be available. The
recommended paging space size when adopting the EPSA policy is at least four
times the size of real memory.

The deferred paging space allocation policy (DPSA)

This is the default policy in AIX 5L Version 5.1. The allocation of paging space is
delayed until it is necessary to page out, so no paging space is wasted with this
policy. Only once a page of memory is required to be paged out will the paging
space be allocated. This paging space is reserved for that page until the process
releases it or the process terminates. This method saves huge amounts of
paging space. To disable this policy, the vmtune command’s defps parameter
can be set to 0 (zero) with vmtune -d 0. If the value is set to zero then the late
paging space allocation policy is used.

Tuning paging space thresholds

When paging space becomes depleted, the operating system attempts to
release resources by first warning processes to release paging space, and then
by killing the processes. The vmtune command is used to set the thresholds at
which this activity will occur. The vmtune command’s parameters that affect
paging are:

Chapter 1. Introduction to AIX performance monitoring and tuning 13

14

npswarn The operating system sends the SIGDANGER signal to all active
processes when the amount of paging space left on the system
goes below this threshold. A process can either ignore the signal or
it can release memory pages using the disclaim() subroutine.

npskill The operating system will begin killing processes when the amount
of paging space left on the system goes below this threshold.
When the npskill threshold is reached, the operating system
sends a SIGKILL signal to the youngest process. Processes that
are handling a SIGDANGER signal and processes that are using
the EPSA policy are exempt from being killed.

nokilluid By setting the value of the nokilluid value to 1 (one), the root
processes will be exempt from being killed when the npskill
threshold is reached. User identifications (UIDs) lower than the
number specified by this parameter are not killed when the npskill
parameter threshold is reached.

For more information on the setting these parameters, please refer to
Section 3.12, “vmtune” on page 201.

When a process cannot be forked due to a lack of paging space, the scheduler
will make five attempts to fork the process before giving up and putting the
process to sleep. The scheduler delays ten clock ticks between each retry. By
default, each clock tick is 10 ms. This results in 100 ms between retries. The
schedtune command has a -f flag that can be used to change the number of
times the scheduler will retry a fork.

To monitor the amount of paging space, use the 1sps command. It is
recommended that the -s flag be issued rather than the -a flag of the 1sps
command because the former includes pages in paging space reserved by the
EPSA policy.

Memory leaks

Systems have been known to run out of paging space because of memory leaks
in long running programs that are interactive applications. A memory leak is a
program error where the program repeatedly allocates memory, uses it, and then
neglects to free it. The svmon command is useful in detecting memory leaks. Use
the svmon command with the -i flag to look for processes or groups of processes
whose working segments are continually growing. For more information on the
svmon command, please refer to Section 5.3, “svmon” on page 320.

AIX 5L Performance Tools Handbook

Shared memory

Memory segments can be shared between processes. Using shared memory
avoids buffering and system call overhead. Applications reduce the overhead of
read and write system calls by manipulating pointers in these memory segments.
Both files and data in shared segments can be shared by multiple processes and
threads, but the synchronization between processes or threads needs to be done
at the application level.

By default, each shared memory segment or region has an address space of 256
MB, and the maximum number of shared memory segments that the process can
access at the same time is limited to 11. Using extended shared memory
increases this number to more than 11 segments and allows shared memory
regions to be any size from 1 byte up to 256 MB. Extended shared memory is
available to processes that have the variable EXTSHM set to ON (that is,
EXTSHM=ON in their process environment). The restrictions of extended shared
memory are:

» /O is restricted in the same way as for memory regions.
» Raw /O is not supported.

» They cannot be used as I/O buffers where the unpinning of buffers occurs in
an interrupt handler.

» They cannot be pinned using the plock() subroutine.

1.3 Disk I/O performance
A lot of attention is required when the disk subsystem is designed and
implemented. For example, you will need to consider the following:
» Bandwidth of disk adapters and system bus
» Placement of logical volumes on the disks
» Configuration of disk layouts
» Operating system settings, for example striping or mirroring
» Performance implementation of other technologies, such as SSA

1.3.1 Initial advice

We recommend that you do not make any changes to the default disk 1/0
parameters until you have had experience with the actual workload. Note,
however, that you should always monitor the 1/0 workload and will very probably
need to balance the physical and logical volume layout after runtime experience.

Chapter 1. Introduction to AIX performance monitoring and tuning 15

There are two performance limiting aspects of the disk 1/0O subsystem that need
to be considered:

» Physical limitations
» Logical limitations

A poorly performing disk I/O subsystem will usually severely penalize overall
system performance.

Physical limitations concern the throughput of the interconnecting hardware.
Logical limitations concern limiting both the physical bandwidth and the resource
serialization and locking mechanisms built into the data access software'. Note
that many logical limitations on the disk I/O subsystem can be monitored and
tuned with the vmtune command. See Section 3.12, “vmtune” on page 201 for
details.

For further information refer to
» AIX 5L Version 5.1 Performance Management Guide

» AIX 5L Version 5.1 System Management Concepts: Operating System and
Devices

» AIX 5L Version 5.1 System Management Guide: Operating System and
Devices

» RS/6000 SP System Performance Tuning Update, SG24-5340

1.3.2 Disk subsystem design approach

For many systems, the overall performance of an application is bound by the
speed at which data can be accessed from disk and the way the application
reads and writes data to the disks. Designing and configuring a disk storage
subsystem for performance is a complex task that must be carefully thought out
during the initial design stages of the implementation. Some of the factors that
must be considered include:

» Performance versus availability

A decision must be made early on as to which is more important; I/O
performance of the application or application integrity and availability.
Increased data availability often comes at the cost of decreased system
performance and vice versa. Increased availability may also result in larger
amounts of disk space being required.

1 Usually to ensure data integrity and consistency (such as file system access and mirror consistency updating).

16 AIX 5L Performance Tools Handbook

» Application workload type

The 1/O workload characteristics of the application should be fairly well
understood prior to implementing the disk subsystem. Different workload
types most often require different disk subsystem configuration in order to
provide acceptable I/O performance.

» Required disk subsystem throughput

The 1/0O performance requirements of the application should be defined up
front, as they will play a large part in dictating both the physical and logical
configuration of the disk subsystem.

» Required disk space

Prior to designing the disk subsystem, the disk space requirements of the
application should be well understood.

» Cost

While not a performance related concern, overall cost of the disk subsystem

most often plays a large part in dictating the design of the system. Generally
speaking, a higher performance system costs more than a lower performance
one.

1.3.3 Bandwidth related performance considerations

The bandwidth of a communication link, such as a disk adapter or bus,
determines the maximum speed at which data can be transmitted over the link.
When describing the capabilities of a particular disk subsystem component,
performance numbers are typically expressed in maximum or peak throughput,
which often do not realistically describe the true performance that will be realized
in a real world setting. In addition, each component will most likely have different
bandwidths, which can create bottlenecks in the overall design of the system.
The bandwidth of each of the following components must be taken into
consideration when designing the disk subsystem:

» Disk devices

The latest SCSI and SSA disk drives have maximum sustained data transfer
rates of 14-20 MB per second. Again, the real world expected rate will most
likely be lower depending on the data location and the 1/0 workload
characteristics of the application. Applications that perform a large amount of
sequential disk reads or writes will be able to achieve higher data transfer
rates than those that perform primarily random 1/O operations.

Chapter 1. Introduction to AIX performance monitoring and tuning 17

1.3.4 Disk design

18

» Disk adapters

The disk adapter can become a bottleneck depending on the number of disk
devices that are attached and their use. While the SCSI-2 specification allows
for a maximum data transfer rate of 20 MB/sec, adapters based on the
UltraSCSI specification are capable of providing bandwidth of up to 40
MB/sec. The SCSI bus used for data transfer is an arbitrated bus. In other
words, only one initiator or device can be sending data at any one time. This
means the theoretical maximum transfer rate is unlikely to be sustained. By
comparison, the IBM SSA adapters use a non-arbitrated loop protocol, which
also supports multiple concurrent peer-to-peer data transfers on the loop. The

current SSA adapters are capable of supporting maximum theoretical data
transfer rates of 160 MB/sec.

» System bus

The system bus architecture used can further limit the overall bandwidth of
the disk subsystem. Just as the bandwidth of the disk devices is limited by the
bandwidth of the disk adapter to which they are attached, the speed of the
disk adapter is limited by the bandwidth of the system bus. The industry
standard PCI bus is limited to a theoretical maximum of either 132 MB/sec.
(32-bit @ 33MHz) or 528 MB/sec (64-bit @ 66MHz).

A disk consists of a set of flat, circular rotating platters. Each platter has one or
two sides on which data is stored. Platters are read by a set of non-rotating, but
positionable, read or read/write heads that move together as a unit. The following
terms are used when discussing disk device block operations (Table 1-1).

Table 1-1 Terms used in describing disk device block operations.

Term

Description

Sector

An addressable subdivision of a track used to record one block of a
program or data. On a disk, this is a contiguous, fixed-size block. Every
sector of every disk is exactly 512 bytes.

Track

A circular path on the surface of a disk on which information is recorded and
from which recorded information is read; a contiguous set of sectors. A
track corresponds to the surface area of a single platter swept out by a
single head while the head remains stationary.

Head

A head is a positionable entity that can read and write data from a given
track located on one side of a platter. Usually a disk has a small set of
heads that move from track to track as a unit.

AIX 5L Performance Tools Handbook

Term Description

Cylinder The tracks of a disk that can be accessed without repositioning the heads.
If a disk has n number of vertically aligned heads, a cylinder has n number
of vertically aligned tracks.

Disk access times

The three components that make up the access time of a disk are described in
Table 1-2.

Table 1-2 Latencies for disk access times.

Latency Description

Seek A seek is the physical movement of the head at the end of the disk arm
from one track to another. The time for a seek is the time needed for the
disk arm to accelerate, to travel over the tracks to be skipped, to
decelerate and finally to settle down and wait for the vibrations to stop
while hovering over the target track. The total time the seeks take is
variable. The average seek time is used to measure the disk capabilities.

Rotational This is the time that the disk arm has to wait while the disk is rotating
underneath until the target sector approaches. Rotational latency is, for
all practical purposes except sequential reading, a random function with
values uniformly between zero and the time required for a full revolution
of the disk. The average rotational latency is taken as the time of a half
revolution. To determine the average latency, you must know the number
of revolutions per minute (RPM) of the drive. By converting the
revolutions per minutes to revolutions per second and dividing by 2, we
get the average rotational latency.

Transfer The data transfer time is determined by the time it takes for the requested
data block to move through the read/write arm. It is linear with respect to
the block size. The average disk access time is the sum of the averages
for seek time and rotational latency plus the data transfer time (normally
given for a 512-byte block). The average disk access time generally
overestimates the time necessary to access a disk; typical disk access
time is 70 percent of the average.

Disks per adapter bus or loop

Discussions of disk, logical volume, and file system performance sometimes lead
to the conclusion that the more drives you have on your system, the better the
disk 1/O performance. This is not always true because there is a limit to the
amount of data that can be handled by a disk adapter, which can become a
bottleneck. If all your disk drives are on one disk adapter and your hot file
systems are on separate physical volumes, you might benefit from using multiple
disk adapters. Performance improvement will depend on the type of access.

Chapter 1. Introduction to AIX performance monitoring and tuning 19

20

Using the proper number of disks per adapter is essential. For both SCSI and
SSA adapters the maximum number of disks per bus or loop should not exceed
four if maximum throughput is needed and can be utilized by the applications.
For SCSI the limiting factor is the bus, and for SSA it is the adapter.

The major performance issue for disk drives is usually application-related; that is,
whether large numbers of small accesses will be made (random), or smaller
numbers of large accesses (sequential). For random access, performance will
generally be better using larger numbers of smaller capacity drives. The opposite
situation exists for sequential access (use faster drives or use striping with larger
number of drives).

Physical disk buffers

The Logical Volume Manager (LVM) uses a construct called a pbuf'to control a
pending disk I/O. A single pbuf is used for each I/O request, regardless of the
number of pages involved. AIX creates extra pbufs when a new physical volume
is added to the system. When striping is used, you need more pbufs because
one /O operation causes I/O operations to more disks and, therefore, more
pbufs. When striping and mirroring is used, even more pbufs are required.
Running out of pbufs reduces performance considerably because the 1/0
process is suspended until pbufs are available again. Increasing the number of
pbufs is done with vmtune command (see Section , “I/O tuning parameters” on
page 211); however, pbufs are pinned so that allocating many pbufs will increase
the use of memory.

A special note should be given to adjusting the number of physical buffers on
systems with many disks attached or available with the vmtune command. The
number of physical buffer (pbufs) per active disk should be twice the queue depth
of the disk or 32, whatever is greater. The default maximum number of pbufs
should not exceed a total of 65536.

The following script (Example 1-1) extracts the information for each disk and
calculates a recommendation for setting the -B flag for vmtune (hd_pbuf_cnt).
The script does not take into account multiple Serial Storage Architecture (SSA)
pdisks or hdisks using vpath. It uses the algorithm shown in Example 1-2 on
page 21.

Note: The following script cannot be used for disks with multiple connections.

Example 1-1 vmtune_calc_puf.sh

1 #!/bin/ksh
2 integer max_pbuf_count=65535
3 integer hd_pbuf_cnt=128

AIX 5L Performance Tools Handbook

4 integer current_hd_pbuf_cnt=$(vmtune |awk 'BEGIN{count=0}count=="1"{print
$6;exit} /hd_pbuf_cnt/{count=1}")

5 1sdev -Cc disk -Fname|

6 while read disk;do

7 integer queue_depth=$(1sattr -E1 $disk -aqueue_depth -Fvalue)
8 ((pbuf_to_add=queue_depth*2))

9 if ((pbuf_to_add < 32));then

10 pbuf_to_add=32

11 fi

12 if (((hd_pbuf_cnt+pbuf_to_add) > max_pbuf_count));then

13 ((pbuf_to_add=max_pbuf_count-hd_pbuf_cnt))

14 fi

15 ((hd_pbuf_cnt+=pbuf_to_add))

16 done

17 if ((current_hd_pbuf_cnt < hd_pbuf_cnt));then

18 print "Run vmtune -B$hd_pbuf _cnt to change from $current_hd pbuf_cnt to
$hd_pbuf_cnt"

19 else

20 print "The current hd_pbuf_cnt ($current_hd_pbuf_cnt) is OK"
21 fi

The following algorithm (Example 1-2) is used for setting pbufs:
Example 1-2 Algorithm used for setting pbufs

max_pbuf_count = 65535
hd_pbuf_cnt 128
for each disk {
pbuf_to_add = queue_depth * 2
if (pbuf_to_add < 32)
pbuf_to_add = 32
if ((hd_pbuf_cnt + pbuf_to_add) > max_pbuf_count)
pbuf_to_add = max_pbuf_count - hd_pbuf_cnt
hd_pbuf_cnt += pbuf_to_add

Note that there are more buffers that might need to be increased on a large
server system. On a large server systems you should always monitor the
utilization with the vmtune command and adjust the parameter values
appropriately. See “I/O tuning parameters” on page 211 for more detail on how to
monitor and change these values and parametersZ.

2 Note that file system buffers for LVM require that the change is made before the filesystem is mounted.

Chapter 1. Introduction to AIX performance monitoring and tuning 21

1.3.5 Logical Volume Manager (LVM) concepts

22

Many modern UNIX operating systems implement the concept of a Logical
Volume Manager (LVM) that can be used to logically manage the distribution of
data on physical disk devices. The AIX LVM is a set of operating system
commands, library subroutines, and other tools used to control physical disk
resources by providing a simplified logical view of the available storage space.
Unlike other LVM offerings, the AIX LVM is an integral part of the base AlX
operating system provided at no additional cost.

Within the LVM, each disk or Physical Volume (PV) belongs to a Volume Group
(VG). A volume group is a collection of 1 to 32 physical volumes (1 to 128 in the
case of a big volume group), which can vary in capacity and performance. A
physical volume can belong to only one volume group at a time. A maximum of
255 volume groups can be defined per system.

When a volume group is created, the physical volumes within the volume group
are partitioned into contiguous, equal-sized units of disk space known as
physical partitions (PP). Physical partitions are the smallest unit of allocatable
storage space in a volume group. The physical partition size is determined at
volume group creation, and all physical volumes that are placed in the volume
group inherit this size. The physical partition size can range from 1 MB to

1024 MB, but must be a power of two. If not specified, the default physical
partition size in AIX is 4 MB for disks up to 4 GB, but must be larger for disks
greater than 4 GB due to the fact that the LVM, by default, will only track up to
1016 physical partitions per disk (unless you use the -t option with mkvg, which
reduces the maximum number of physical volumes in the volume group). In AlX
5L Version 5.1, the minimum PP size needed is determined by the operating
system if the default size of 4 MB is specified.

Use of LVM policies

Deciding on the physical layout of an application is one of the most important
decisions to be made when designing a system for optimal performance. The
physical location of the data files is critical to ensuring that no single disk, or
group of disks, becomes a bottleneck in the 1/0 performance of the application. In
order to minimize their impact on disk performance, heavily accessed files should
be placed on separate disks, ideally under different disk adapters. There are
several ways to ensure even data distribution among disks and adapters,
including operating system level data striping, hardware data striping on a
Redundant Array of Independent Disks (RAID), and manually distributing the
application data files among the available disks.

The disk layout on a server system is usually very important to determine the
possible performance that can be achieved from disk 1/O.

AIX 5L Performance Tools Handbook

The AIX LVM provides a number of facilities or policies for managing both the
performance and availability characteristics of logical volumes. The policies that
have the greatest impact on performance are Intra-disk allocation, inter-disk
allocation, I/O scheduling, and write-verify policies.

Intra-disk allocation policy

The intra-disk allocation policy determines the actual physical location of the
physical partitions on disk. A disk is logically divided into the following five
concentric areas as follows (Figure 1-1).

» Outer edge

» Outer middle
» Center
» Inner middle
» Inner edge
-
(Outer) Edge Inner Edge
(Outer) Middle Inner Middle
Center

Figure 1-1 Physical Partition mapping

Due to the physical movement of the disk actuator, the outer and inner edges
typically have the largest average seek times and are a poor choice for
application data that is frequently accessed. The center region provides the
fastest average seek times and is the best choice for paging space or
applications that generate a significant amount of random 1/O activity. The outer
and inner middle regions provide better average seek times than the outer and
inner edges, but worse seek times than the center region.

As a general rule, when designing a logical volume strategy for performance, the
most performance critical data should be placed as close to the center of the disk
as possible. There are, however, two notable exceptions:

Chapter 1. Introduction to AIX performance monitoring and tuning 23

24

1. Applications that perform a large amount of sequential reads or writes
experience higher throughput when the data is located on the outer edge of
the disk due to the fact that there are more data blocks per track on the outer
edge of the disk than the other disk regions.

2. Logical volumes with Mirrored Write Consistency (MWC) enabled should also
be located at the outer edge of the disk, as this is where the MWC cache
record is located

When the disks are setup in a RAID5 configuration, the intra-disk allocation
policy will not have any benefits to performance.

Inter-disk allocation policy

The inter-disk allocation policy is used to specify the number of disks that contain
the physical partitions of a logical volume. The physical partitions for a given
logical volume can reside on one or more disks in the same volume group
depending on the setting of the Range option. The range option can be set using
smitty mklv command and changing the RANGE of physical volumes menu
option.

» The maximum range setting attempts to spread the physical partitions of a
logical volume across as many physical volumes as possible in order to
decrease the average access time for the logical volume.

» The minimum range setting attempts to place all of the physical partitions of a
logical volume on the same physical disk. If this cannot be done, it will attempt
to place the physical partitions on as few disks as possible. The minimum
setting is used for increased availability only, and should not be used for
frequently accessed logical volumes. If a non-mirrored logical volume is
spread across more than one drive, the loss of any of the physical drives will
result in data loss. In other words, a non-mirrored logical volume spread
across two drives will be twice as likely to experience a loss of data as one
that resides on only one drive.

The physical partitions of a given logical volume can be mirrored to increase data
availability. The location of the physical partition copies is determined by the
setting of the Strict option with the smitty mklv command called Allocate each
logical partition copy. When Strict = y, each physical partition copy is placed
on a different physical volume. When Strict = n, the copies can be on the same
physical volume or different volumes. When using striped and mirrored logical
volumes in AlX 4.3.3 and above, there is an additional partition allocation policy
known as superstrict. When Strict = s, partitions of one mirror cannot share the
same disk as partitions from a second or third mirror, further reducing the
possibility of data loss due to a single disk failure.

AIX 5L Performance Tools Handbook

In order to determine the data placement strategy for a mirrored logical volume,
the settings for both the Range and Strict options must be carefully considered.
As an example, consider a mirrored logical volume with range setting of
minimum and a strict setting of yes. The LVM would attempt to place all of the
physical partitions associated with the primary copy on one physical disk, with
the mirrors residing on either one or two additional disks, depending on the
number of copies of the logical volume (2 or 3). If the strict setting were changed
to no, all of the physical partitions corresponding to both the primary and mirrors
would be located on the same physical disk.

1/O-scheduling policy

The default for logical volume mirroring is that the copies should use different
disks. This is both for performance and data availability. With copies residing on
different disks, if one disk is extremely busy, then a read request can be
completed using the other copy residing on a less busy disk. Different I/O
scheduling policies can be set for logical volumes. The different /O scheduling
policies are as follows:

Sequential The sequential policy results in all reads being issued to
the primary copy. Writes happen serially, first to the
primary disk; only when that is completed is the second
write initiated to the secondary disk.

Parallel The parallel policy balances reads between the disks. On
each read, the system checks whether the primary is
busy. If it is not busy, the read is initiated on the primary. If
the primary is busy, the system checks the secondary. If it
is not busy, the read is initiated on the secondary. If the
secondary is busy, the read is initiated on the copy with
the least number of outstanding 1/Os. Writes are initiated
concurrently.

Parallel/sequential The parallel/sequential policy always initiates reads on
the primary copy. Writes are initiated concurrently.

Parallel/round robin The parallel/round robin policy is similar to the parallel
policy except that instead of always checking the primary
copy first, it alternates between the copies. This results in
equal utilization for reads even when there is never more
than one I/0O outstanding at a time. Writes are initiated
concurrently.

Chapter 1. Introduction to AIX performance monitoring and tuning 25

Write-verify policy

When the write-verify policy is enabled, all write operations are validated by
immediately performing a follow-up read operation of the previously written data.
An error message will be returned if the read operation is not successful. The use
of write-verify enhances the integrity of the data, but can drastically degrade the
performance of disk writes.

Mirror write consistency (MWC)

The Logical Volume Device Driver (LVDD) always ensures data consistency
among mirrored copies of a logical volume during normal I/O processing. For
every write to a logical volume, the LvDD® generates a write request for every
mirror copy. If a logical volume is using mirror write consistency, then requests
for this logical volume are held within the scheduling layer until the MWC cache
blocks can be updated on the target physical volumes. When the MWC cache
blocks have been updated, the request proceeds with the physical data write
operations. If the system crashes in the middle of processing, a mirrored write
(before all copies are written) MWC will make logical partitions consistent after a
reboot.

MWC Record The MWC record consists of one disk sector. It identifies which
logical partitions may be inconsistent if the system is not shut
down correctly.

MWC Check The MWC Check (MWCC) is a method used by the LVDD to
track the last 62 distinct Logical Track Groups (LTGs) written to
disk*. MWCC only makes mirrors consistent when the volume
group is varied back online after a crash by examining the last 62
writes to mirrors, picking one mirror, and propagating that data to
the other mirrors. MWCC does not keep track of the latest data; it
only keeps track of LTGs currently being written. Therefore,
MWC does not guarantee that the latest data will be propagated
to all the mirrors. It is the application above LVM that has to
determine the validity of the data after a crash.

There are three different states for the MWC:

Disabled (offfy MWOC is not used for the mirrored logical volume. To maintain
consistency after a system crash, the logical volumes file system
must be manually mounted after reboot, but only after the syncvg
command has been used to synchronize the physical partitions
that belong to the mirrored logical partition.

Active MWOC is used for the mirrored logical volume and the LVDD will
keep the MWC record synchronized on disk. Because every

3 The scheduler layer (part of the bottom half of LVDD) schedules physical requests for logical operations and handles
mirroring and the MWC cache.
4 By default, an LTG is 32 4 KB pages (128 KB). AIX 5L supports LTG sizes of 128 KB, 256 KB, 512 KB, and 1024 KB.

26 AIX 5L Performance Tools Handbook

update will require a repositioning of the disk write head to
update the MWC record, it can cause a performance problem.
When the volume group is varied back on-line after a system
crash, this information is used to make the logical partitions
consistent again.

Passive MWOC is used for the mirrored logical volume but the LVDD will
not keep the MWC record synchronized on disk. Synchronization
of the physical partitions that belong to the mirrored logical
partition will be updated after IPL. This synchronization is
performed as a background task (syncvg). The passive state of
MWC only applies to big volume groups. Big volume groups can
accommodate up to 128 physical volumes and 512 logical
volumes. To create a big volume group, use the mkvg -B
command. To change a regular volume group to a big volume
group, use the chvg -B command.

The type of mirror consistency checking is important for maintaining data
accuracy even when using MWC. MWC ensures data consistency, but not
necessarily data accuracy.

Log logical volume

The log logical volume should be placed on a different physical volume from the
most active file system. Placing it on a disk with the lowest I/O utilization will
increase parallel resource usage. A separate log can be used for each file
system. However, special consideration should be taken if multiple logs must be
placed on the same physical disk, which should be avoided if possible.

The general rule to determine the appropriate size for the JFS log logical volume
is to have 4 MB of JFS log for each 2 GB of file system space. The JFS log is
limited to a maximum size of 256 MB.

Note that when the size of the log logical volume is changed, the 1ogform
command must be run to reinitialize the log before the new space can be used.

nointegrity

The mount option nointegrity bypasses the use of a log logical volume for the
file system mounted with this option. This can provide better performance as long
as the administrator knows that the fsck command might have to be run on the
file system if the system goes down without a clean shutdown.

mount -o nointegrity /filesystem

To make the change permanent, either add the option to the options field in
/etc/filesystems manually or do it with the chfs command as follows (in this case
for the /filesystem file system):

Chapter 1. Introduction to AIX performance monitoring and tuning 27

chfs -a options=nointegrity,rw /filesystem

JFS2 inline log

In AIX 5L, log logical volumes can be either of JFS or JFS2 types, and are used
for JFS and JFS2 file systems respectively. The JFS2 file system type allows the
use of a inline journaling log. This log section is allocated within the JFS2 itself.

Paging space

If paging space is needed in a system, performance and throughput will always
suffer. The obvious conclusion is to eliminate paging to paging space as much as
possible by having enough real memory available for applications when they
need it. Paging spaces are accessed in a round robin fashion, and the data
stored in the logical volumes is of no use to the system after a reboot/Initial
Program Load (IPL).

The current default paging-space-slot-allocation method, Deferred Page Space
Allocation (DPSA), delays allocation of paging space until it is necessary to page
out the page.

Some rules of thumb when it comes to allocating paging space logical volumes
are:

» Use the disk(s) that are least utilized

» Do not allocate more than one paging space logical volume per physical disk
» Avoid sharing the same disk with log logical volumes

» If possible, make all paging spaces the same size

Because the data in a page logical volume cannot be reused after a reboot (IPL),

the Mirror Write Consistency (MWC) is disabled for mirrored paging space logical
volumes when the logical volume is created.

Recommendations for performance optimization

As with any other area of system design, when deciding on the LVM policies, a
decision must be made as to which is more important; performance or
availability. The following LVM policy guidelines should be followed when
designing a disk subsystem for performance:

» When using LVM mirroring:
— Use a parallel write-scheduling policy.

— Allocate each logical partition copy on a separate physical disk by using
the Strict option of the inter-disk allocation policy.

» Disable write-verify.

28 AIX 5L Performance Tools Handbook

» Allocate heavily accessed logical volumes near the center of the disk.

» Use an intra-disk allocation policy of maximum in order to spread the physical
partitions of the logical volume across as many physical disks as possible.

1.4 Network performance

Tuning network utilization is a complex and sometimes very difficult task. You
need to know how applications communicate and how the network protocols
work on AlX and other systems involved in the communication. The only general
recommendation for network tuning is that interface specific network options
(ISNO) should be used and buffer utilization should be monitored. Some basic
network tunables for improving throughput can be found in Table 1-4 on page 34.
Please note that with network tuning, indiscriminately using buffers that are too
large can reduce performance.

To learn more about how the different protocols work refer to:

» Section 7.11, “no” on page 549

» Section 7.9, “nfso” on page 527

» AIX 5L Version 5.1 Performance Management Guide

» AIX 5L Version 5.1 System Management Guide: Communications and
Networks

» AIX 5L Version 5.1 System Management Guide: Operating System and
Devices

» TCP/IP Tutorial and Technical Overview, GG24-3376

» RS/6000 SP System Performance Tuning Update, SG24-5340

» http://www.rs6000.ibm.com/support/sp/perf

» Appropriate Request For Comment (RFC) at http://www.rfc-editor.org/

There are also excellent books available on the subject, but a good starting point
is RFC 1180 A TCP/IP Tutorial.

A short overview of the TCP/IP protocols can be found in Section 1.4.1, “TCP/IP
protocols” on page 31. Information on the network tunables, including network
adapter tunables, is provided in Section 1.4.2, “Network tunables” on page 32.

Chapter 1. Introduction to AIX performance monitoring and tuning 29

30

The knowledge of the network topology used is necessary to understand and
detect possible performance bottlenecks on the network. This includes
information about the routers and gateways used, the Maximum Transfer Unit
(MTU) used on the network path between the systems, and the current load on
the networks used. This information should be well documented, and access to
these documents needs to be guaranteed at any time.

AlX offers a wide range of tools to monitor networks, network adapters, network
interfaces, and system resources used by the network software. These tools are
covered in detail in Chapter 7., “Network performance tools” on page 457. Use
these tools to gather information about your network environment when
everything is functioning correctly. This information will be very useful in case a
network performance problem arises, because a comparison between the
monitored information of the poor performing network and the earlier well
performing network helps to detect the problem source. The information
gathered should include:

» Configuration information from the server and client systems
A change in the system configuration can be the cause of a performance
problem. Sometimes such a change may be done by accident and finding the
changed configuration parameter to correct it can be very difficult. The snap
-a command can be used to gather system configuration informations. Please
refer to the AIX 5L Version 5.1 Commands Reference, SBOF-1877 for more
information on the snap command.

» The system load on the server system
Poor performance on a client system is not necessarily a network problem. If
case the server system is short on local resources, such as CPU or memory,
it may be unable to answer the client’s request in the expected time. The
perfpmr tool can be used to gather this information. Please refer to
Section 3.5, “perfpmr” on page 98 for more information.

» The system load on the client system
The same considerations for the server system apply to the client system. A
shortage of local resources, such as CPU or memory, can slow down the
client’s network operation. The perfpmr tool can be used to gather this
information; please refer to Section 3.5, “perfpmr” on page 98 for more
information.

» The load on the network
The network usually is a resource shared by many systems. Poor
performance between two systems connected to the network may be caused
by an overloaded network, and this overload could be caused by other
systems connected to the network. There are no native tools in AlX to gather
information about the load on the network itself. Tools such as Sniffer,
DatagLANce Network Analyzer, and Nways Workgroup Manager are able to
provide such information. Detailed information on the network management

AIX 5L Performance Tools Handbook

products IBM offers can be found at
http://www.networking.ibm.com/netprod.html.

However, tools such as ping or traceroute can be used to gather turnaround
times for data on the network. The ftp command can be used to transfer a
large amount of data between two systems using /dev/zero as input and
/dev/null as output, and registering the throughput. This is done by opening
an ftp connection, changing to binary mode, and then executing the ftp sub
command:

put “| dd if=/dev/zero bs=32k count=10000" /dev/null

This command transfers 10000 * 32 KB over the network.

The commands atmstat, estat, entstat, fddistat, and tokstat can be used
to gather throughput data for a specific network interface. The first step would
be to generate a load on the network interface. The above ftp example doing
a put by using dd can be used. Without the count=10000 the ftp put
command will run until it is interrupted. While ftp is transferring data the
command sequence:

entstat -r en2;sleep 100;entstat en2>/tmp/entstat.en2

can be used to reset the statistics for the network interface, in our case en2
(entstat -r en2), wait 100 seconds (sleep 100), and then gather the
statistics for the interface (entstat en2>/tmp/entstat.en2). Please refer to
Section 7.1, “atmstat” on page 459, Section 7.3, “estat” on page 471,
Section 7.2, “entstat” on page 465, Section 7.4, “fddistat” on page 474, and
Section 7.13, “tokstat” on page 602 for details on these commands.

» Output of network monitoring commands on both the server and client
The output of the commands should be part of the data gathered by the
perfpmr tool. However, the perfpmr tool may change, so it is advised to
control the data gathered by perfpmr to ensure the outputs of the netstat and
nfsstat commands are included.

1.4.1 TCP/IP protocols

Application programs send data by using one of the Internet Transport Layer
Protocols, either the User Datagram Protocol (UDP) or the Transmission Control
Protocol (TCP). These protocols receive the data from the application, divide it
into smaller pieces called packets, add a destination address, and then pass the
packets along to the next protocol layer, the Internet Network layer.

The Internet Network layer encloses the packet in an Internet Protocol (IP)
datagram, adds the datagram header and trailer, decides where to send the
datagram (either directly to a destination or else to a gateway), and passes the
datagram on to the Network Interface layer.

The Network Interface layer accepts IP datagrams and transmits them as frames
over a specific network hardware, such as Ethernet or token-ring networks.

Chapter 1. Introduction to AIX performance monitoring and tuning 31

For more detailed information on the TCP/IP protocol, please review AIX 5L
Version 5.1 System Management Guide: Communications and Networks, and
TCP/IP Tutorial and Technical Overview, GG24-3376.

To interpret the data created by programs such as the iptrace and tcpdump

commands, formatted by ipreport, and summarized with ipfilter, you need to

understand how the TCP/IP protocols work together. Table 1-3 is a short top

down reminder.

Table 1-3 TCP/IP layers and protocol examples

TCP/IP Layer

Protocol Examples

Application

Telnet, FTP, SMTP, LPD

Transport

TCP, UDP

Internet Network

IP, ICMP, IGMP, ARP, RARP

Network Interface Ethernet, Token-Ring, ATM, FDDI, SP
Switch
Hardware Physical network

1.4.2 Network tunables

In most cases you need to adjust some network tunables on server systems.
Most of these settings concern different network protocol buffers. You can set
these buffer sizes system wide with the no command (please refer to

Section 7.11, “no” on page 549), or use the Interface Specific Network Options5
(ISNO) for each network adapter. For more detail on ISNO see AIX 5L Version
5.1 System Management Guide: Communications and Networks and AlX 5L
Version 5.1 Commands Reference, SBOF-1877. The change will only apply to
the specific network adapter if you have enabled ISNO with the no command as
in the following example:

no -0 use_isno=1

Using ISNO to tune each network adapter for best performance is the preferred
way, if different network adapter types with a big difference of MTU sizes are
used in the system (for example with ethernet adapters using an MTU of 1500
and an ATM adapter using an MTU of 65527 installed).

5 There are five ISNO parameters for each supported interface; rfc1323, tcp_nodelay, tcp_sendspace, tcp_recvspace,
and tcp_mssdf1t. When set, the values for these parameters override the system-wide parameters of the same names
that had been set with the no command. When ISNO options are not set for a particular interface, system-wide options are
used. Options set by an application for a particular socket using the setsockopt subroutine override the ISNO options and
system-wide options set by using the chdev, ifconfig, and no commands.

AIX 5L Performance Tools Handbook

Please document the current values before making any changes, especially if
you use ISNO to change the individual interfaces. The following example shows
how to use the 1sattr command to check the current settings for an network
interface, in this case token-ring:

Example 1-3 Using Isattr to check adapter settings
1sattr -H -E1 tr0 -F"attribute value"

attribute value

mtu 1492

mtu_4 1492
mtu_16 1492
mtu_100 1492
remmtu 576
netaddr 10.3.2.164
state up

arp on

allcast on

hwloop off
netmask 255.255.255.0
security none
authority

broadcast

netaddr6

alias6

prefixlen

alias4

rfcl323 0

tcp_nodelay
tcp_sendspace 16384
tcp_recvspace 16384
tcp_mssdflt

The highlighted part in the output above indicates the ISNO options. Before
applying ISNO settings to interfaces by using the chdev command, you can use
ifconfig to set them on each adapter. Should you for some reason need to reset
them and are unable to log in to the system, the values will not be permanent and
will not be activated after IPLS.

6 For this reason it is not recommended to set ISNO values using ifconfig in any system startup scripts that are started
by init.

Chapter 1. Introduction to AIX performance monitoring and tuning 33

Network buffer tuning

The values in Table 1-4 are settings that have proved to give the highest network
throughput for each network type. A general rule is to set the TCP buffer sizes to
10 times the MTU size, but as can be seen in the following table, this is not
always true for all network types.

Table 1-4 Network tunables minimum values for best performance

Device Speed | MTU tcp tcp? sb_max rfc
Mbit sendspace recvspace 1323

Ethernet 10 1500 16384 16384 32768 0
Ethernet 100 1500 16384 16384 32768 0
Ethernet 1000 1500 131072 65536 131072 0
Ethernet 1000 9000 131072 65536 262144 0
Ethernet 1000 9000 262144 131072 262144 1
ATM 155 1500 16384 16384 131072 0
ATM 155 9180 65536 65536 131072 1
ATM 155 65527 | 655360 655360 1310720 1
FDDI 100 4352 45056 45056 90012 0
SPSW - 65520 | 262144 262144 1310720 1
SPSW2 - 65520 | 262144 262144 1310720 1
HiPPI - 65536 | 655360 655360 1310720 1
HiPS - 65520 | 655360 655360 1310720 1
ESCON - 4096 40960 40960 81920 0
Token 4 1492 16384 16384 32768 0
Ring

Token 16 1492 16384 16384 32768 0
Ring

Token 16 4096 40960 40960 81920 0
Ring

Token 16 8500 65536 65536 131072 0
Ring

34 AIX 5L Performance Tools Handbook

a. If an application sends only a small amount of data and then waits for a re-
sponse, the performance may degrade if the buffers are too large, especially
when using large MTU sizes. It might be necessary to either tune the sizes further
or disable the Nagle algorithm by setting tcp_nagle_Timit to 0 (zero).

Other network tunable considerations

Table 1-5 shows some other network tunables that should be considered and
other ways to calculate some of the above values.

Table 1-5 Other basic network tunables

no parameter

Comment

thewall

Use the default or if network errors occur?, set manually to a
higher value. no -o thewall shows the current setting.

tcp_pmtu_discover

Disable Path Maximum Transfer Unit (PMTU) discovery by
setting this option to 0 (zero) if the server communicates with
more than 64 other systemsb. This option allows TCP to
dynamically find the largest size packet to send through the
network , which will be as big as the smallest MTU size in the
network.

sb_max

Could be set to slightly less than thewall, or at two to four
times the size of the largest value for tcp_sendspace,
tcp_recvspace, udp_sendspace, and udp_recvspace.

This parameter controls how much buffer space is consumed
by buffers that are queued to a senders socket or to a
receivers socket. A socket is just a queuing point, and
represents the file descriptor for a TCP session.
tcp_sendspace, tcp_recvspce, udp_sendspace, and
udp_recvspace parameters cannot be set larger than
sb_max.

The system accounts for socket buffers used based on the
size of the buffer, not on the contents of the buffer. For
example, if an Ethernet driver receives 500 bytes into a 2048
byte buffer and then this buffer is placed on the applications
socket awaiting the application reading it, the system
considers 2048 bytes of buffer to be used. It is common for
device drivers to receive buffers into a buffer that is large
enough to receive the adapter’s maximum size packet. This
often results in wasted buffer space, but it would require more
CPU cycles to copy the data to smaller buffers. Because the
buffers often are not 100 percent full of data, it is best to have
sb_max to be at least twice as large as the TCP or UDP
receive space. In some cases for UDP it should be much
larger.

Once the total buffers on the socket reach the sb_max limit,
no more buffers will be allowed to be queued to that socket.

Chapter 1. Introduction to AIX performance monitoring and tuning

35

36

no parameter

Comment

tcp_sendspace

This parameter mainly controls how much buffer space in the
kernel (mbuf's) will be used to buffer data that the application
sends. Once this limit is reached, the sending application will
be suspended until TCP sends some of the data, and then the
application process will be resumed to continue sending.

tcp_recvspace

This parameter has two uses. First, it controls how much
buffer space may be consumed by receive buffers. Second,
TCP uses this value to inform the remote TCP how large it
can set its transmit window to. This becomes the "TCP
Window size". TCP will never send more data than the
receiver has buffer space to receive the data into. This is the
method by which TCP bases its flow control of the data to the
receiver.

udp_sendspace

Always less than udp_recvspace, but never greater than
65536 because UDP transmits a packet as soon as it gets
any data and IP has an upper limit of 65536 bytes per packet.

udp_recvspace

Always greater than udp_sendspace and sized to handle as
many simultaneous UDP packets as can be expected per
UDP socket. For single parent/multiple child configurations,
set udp_recvspace to udp_sendspace times the maximum
number of child nodes if UDP is used, or at least 10 times
udp_sendspace.

tcp_mssdfit

This setting is used for determining MTU sizes when
communicating with remote networks. If not changed and
MTU discovery is not able to determine a proper size,
communication degradation® may occur.

The default value for this option is 512 bytes and is based on
the convention that all routers should support 576 byte
packets. Calculate a proper size by using the following
formula; MTU - (IP + TCP header)d.

ipgmaxlen

Could be set to 512 when using file sharing with applications
such as GPFS.

tcp_nagle_limit

Could be set to 0 to disable the Nagle Algorithm when using
large buffers.

fasttimo

Could be set to 50 if transfers take a long time due to delayed
ACKs.

AIX 5L Performance Tools Handbook

no parameter Comment

rfc1323 This option allows TCP to use a larger window size, at the
expense of a larger TCP protocol header. This allows TCP to
have a 4GB window size. For adapters that support a 64K
MTU (frame size), you must use RFC1323 to gain the best
possible TCP performance.

a. It is set automatically by calculating the amount of memory available.

b. In a heterogeneous environment the value determined by MTU discovery can
be way off.

c. When setting this value, make sure that all routing equipment between the
sender and receiver can handle the MTU size; otherwise they will fragment the
packets.

d. The size depends on the original MTU size and if RFC1323 is enabled or not.
If RFC1323 is enabled, then the IP and TCP header is 52 bytes, if RFC1323 is
not enabled, the IP and TCP header is 40 bytes.

To document all network interfaces and important device settings, you can
manually check all interface device drivers with the 1sattr command as is shown
in Example 1-4.

Basic network adapter settings

Network adapters should be set to utilize the maximum transfer capability of the
current network given available system memory. On large server systems7 you
might need to set the maximum values allowed for network device driver queues
if you use Ethernet or token-ring network adapters. However, note that each
queue entry will occupy memory at least as large as the MTU size for the
adapter.

To find out the maximum possible setting for a device, use the 1sattr command
as shown in the following examples. First find out the attribute names of the
device driver buffers/queues that the adapter uses®. Example 1-4 is for an
Ethernet network adapter interface using the 1sattr command:

Example 1-4 Using Isattr on an Ethernet network adapter interface
1sattr -E1 entO

busmem 0x1ffac000 Bus memory address False
busintr 5 Bus interrupt Tevel False
intr_priority 3 Interrupt priority False
rx_que_size 512 Receive queue size False
tx_que_size 8192 Software transmit queue size True
jumbo_frames no Transmit jumbo frames True

media_speed Auto_Negotiation Media Speed (10/100/1000 Base-T Ethernet) True

7 Web servers and database servers with thousands of concurrent client connections are examples of the type of large
servers we are referring to.

8 The attribute names can vary between different network adapters for different network types as well as between
different adapters for the same network type.

Chapter 1. Introduction to AIX performance monitoring and tuning 37

use_alt_addr no Enable alternate ethernet address True

alt_addr 0x000000000000 Alternate ethernet address True
trace_flag 0 Adapter firmware debug trace flag True
copy_bytes 2048 Copy packet if this many or less bytes True
tx_done_ticks 1000000 Clock ticks before TX done interrupt True
tx_done_count 64 TX buffers used before TX done interrupt True
receive_ticks 50 Clock ticks before RX interrupt True
receive_bds 6 RX packets before RX interrupt True
receive_proc 16 RX buffers before adapter updated True
rxdesc_count 1000 RX buffers processed per RX interrupt True
stat_ticks 1000000 Clock ticks before statistics updated True
rx_checksum yes Enable hardware receive checksum True
flow_ctrl yes Enable Transmit and Receive Flow Control True
slih_hog 10 Interrupt events processed per interrupt True

Example 1-5 shows what it might look like on a token-ring network adapter
interface using the 1sattr command.

Example 1-5 Using Isatir on a token-ring network adapter interface

1sattr -E1 tokO

busio 0x7fffc00 Bus I/0 address False
busintr 3 Bus interrupt level False
xmt_que_size 16384 TRANSMIT queue size True
rx_que_size 512 RECEIVE queue size True
ring_speed 16 RING speed True
attn_mac no Receive ATTENTION MAC frame True
beacon_mac no Receive BEACON MAC frame True
use_alt_addr no Enable ALTERNATE TOKEN RING address True
alt_addr 0x ALTERNATE TOKEN RING address True
full_duplex yes Enable FULL DUPLEX mode True

To find out the maximum possible setting for a device attribute, use the 1sattr
command with the -R option on each of the adapters queue attributes as in
Example 1-6.

Example 1-6 Using Isattr to find out attribute ranges for a network adapter interface

1sattr -R1 ent0 -a tx_que_size
512...16384 (+1)

#1sattr -R1 ent0 -a rx_que_size
512

1sattr -R1 tok0 -a xmt_que_size
32...16384 (+1)

1sattr -R1 tok0 -a rx_que_size
32...512 (+1)

38 AIX 5L Performance Tools Handbook

In the example output above, for the Ethernet adapter the maximum values for
tx_que_size and rx_que_size are 16384 and 512. For the token-ring adapter the
maximum values in the example output above for xmt_que_size and rx_que_size
is are also 16384 and 512. When only one value is shown it means that there is
only one value to use that cannot be changed. When a dotted line separates
values (...) it means an interval between the values surrounding the dotted line in
increments shown at the end of the line within parenthesis, such as in the
example above (+1), which means by increments of one.

To change the values so that they will be used the next time the device driver is
loaded, use the chdev command as shown in Example 1-7.

Example 1-7 Using chdev to change a network adapter interface attributes®

chdev -1 ent0 -a tx_que_size=16384 -a rx_que_size=512 -P
ent0 changed

chdev -1 tok0 -a xmt_que_size=16384 -a rx_que_size=512 -P
tok0 changed

The commands atmstat, entstat, fddistat, and tokstat can be used to monitor
the use of transmit buffers for a specific network adapter. Please refer to
Section 7.1, “atmstat” on page 459, Section 7.2, “entstat” on page 465,

Section 7.4, “fddistat” on page 474, and Section 7.13, “tokstat” on page 602 for
more details on these commands.

The MTU sizes for a network adapter interface can be examined by using the
1sattr command and the mtu attribute as in Example 1-8, which shows the tr0
network adapter interface.

Example 1-8 Using Isattr to examine the possible MTU sizes
1sattr -R -a mtu -1 tr0
60...17792 (+1)

The minimum MTU size for Token-Ring is 60 bytes and the maximum size is just
over 17 KB. Example 1-9 shows the allowable MTU sizes for Ethernet (en0).

Example 1-9 Using Isattr to examine the possible MTU sizes
1sattr -R -a mtu -1 en0
60...9000 (+1)

Note that 9000 as a maximum MTU size is only valid for Gigabit Ethernet; 1500
is still the maximum for 10/100 Ethernet.

9 Neither of the changes in Example 1-7 will be effective until after the next IPL because the -P flag was used.

Chapter 1. Introduction to AIX performance monitoring and tuning 39

Resetting network tunables to their default

Should you need to set all no tunables back to their default value, the following
commands are one way to do it:

#no -a | awk '{print $1}' | xargs -t -i no -d {}

no -o extendednetstats=

0

Attention: The default value for the network option extendednetstats is 1
(one) to enable the collection of extended network statistics. Normally these
extended network statistics should be disabled using the command no -o
extendednetstats=0. Please refer to Section 7.8, “netstat” on page 502 and

Section 7.11, “no” on page 549 for more information on the effects of the

extendednetstats option.

Some high-speed adapters have ISNO parameters set by default in the ODM
database. Please review the AIX 5L Version 5.1 System Management Guide:
Communications and Networks for individual adapters default values, or use the
1sattr command with the -D option as in Example 1-10.

Example 1-10 Using Isattr to list default values for a network adapter

1sattr -HD -1 ent0
attribute deflt

busmem 0
busintr

intr_priority 3
rx_que_size 512
tx_que_size 8192
jumbo_frames no
media_speed Auto_Negotiation
use_alt_addr no
alt_addr 0x000000000000
trace_flag 0
copy_bytes 2048
tx_done_ticks 1000000
tx_done_count 64
receive_ticks 50
receive_bds 6
receive_proc 16
rxdesc_count 1000
stat_ticks 1000000
rx_checksum yes
flow_ctrl yes
slih_hog 10

description user_settable

Bus memory address

Bus interrupt level

Interrupt priority

Receive queue size

Software transmit queue size

Transmit jumbo frames

Media Speed (10/100/1000 Base-T Ethernet)
Enable alternate ethernet address
Alternate ethernet address

Adapter firmware debug trace flag

Copy packet if this many or less bytes
Clock ticks before TX done interrupt

TX buffers used before TX done interrupt
Clock ticks before RX interrupt

RX packets before RX interrupt

RX buffers before adapter updated

RX buffers processed per RX interrupt
Clock ticks before statistics updated
Enable hardware receive checksum

Enable Transmit and Receive Flow Control
Interrupt events processed per interrupt

False
False
False
False
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True

40 AIX 5L Performance Tools Handbook

The values in the def1t column in the example above shows the default values

for each attribute. Example 1-11 shows how to use it on a Ethernet network

adapter interface.

Example 1-11 Using Isattr to list default values for a network interface

1sattr -HD -1 en0
deflt description

attribute

mtu

remmtu
netaddr

state

arp

netmask
security
authority
broadcast
netaddr6
aliasé6
prefixlen
alias4
rfcl323
tcp_nodelay
tcp_sendspace
tcp_recvspace
tep_mssdflt

1500 Maximum IP Packet Size for This Device True
576 Maximum IP Packet Size for REMOTE Networks True
Internet Address True
down Current Interface Status True
on Address Resolution Protocol (ARP) True
Subnet Mask True
none Security Level True
Authorized Users True
Broadcast Address True
N/A True
N/A True
N/A True
N/A True
N/A True
N/A True
N/A True
N/A True
N/A True

user_settable

Default values should be listed in the def1t column for each attribute. If no value
is shown, it means that there is no default setting.

Chapter 1. Introduction to AIX performance monitoring and tuning

41

42 AIX 5L Performance Tools Handbook

Getting started

This chapter is intended as a starting point. It contains listings of all the common
and most useful AIX tools for resolving and monitoring performance issues. The
quick lookup tables in this chapters are intended to assist the user in finding the
required command for monitoring a certain system resource, and also to provide
the user with which AIX fileset a certain tool belongs to.

When facing a performance problem on a system, an approach must be chosen
in order to analyze and resolve the problem. topas is an AIX performance
monitoring tool that gives an overview of all the system resources and can
therefore very well be used as a starting point for performance analysis.

Section 2.3, “Performance tuning approach” on page 49 shows the user the
recommended approach to resolving a performance problem, starting with topas,
and guides the user through the performance analysis task.

© Copyright IBM Corp. 2001 43

2.1 Tools and filesets

The intention of this section is to give you an list of all the performance tools
discussed in this book together with the path that is used to call the command

and the fileset the tool is part of.

Many of the performance tools are located in filesets that obviously would
contain them, such as bos.perf.tools or perfagent.tools. However, some of them
are located in filesets that are not quite as obvious. Common examples are
vmtune or schedtune, which are both part of the bos.adt.samples fileset. You will
often find that this fileset is not installed on a system because it does not

obviously contain performance tools.

Table 2-1 lists the tools discussed in this book, their full path name, and their
fileset information.

Table 2-1 Commands/tools, pathnames and filesets

Command / Tool

Full path name

Fileset name / URL

3dmon /usr/bin/3dmon perfmgr.network

alstat /usr/bin/alstat bos.perf.tools

atmstat /usr/bin/atmstat devices.common.IBM.atm.rte
bindintcpu /usr/sbin/bindintcpu devices.chrp.base.rte

bindprocessor

/usr/sbin/bindprocessor

bos.mp

curt - ftp://software.ibm.com/
emstat /usr/bin/emstat bos.perf.tools

entstat /usr/bin/entstat devices.common.IBM.ethernet.rte
estat lusr/lpp/ssp/css/css SSp.css

fddistat /usr/bin/fddistat devices.common.IBM.fddi.rte
fdpr /usr/bin/fdpr perfagent.tools

filemon /usr/bin/filemon bos.perf.tools

fileplace lusr/bin/fileplace bos.perf.tools

genkex /usr/bin/genkex bos.perf.tools

genkld /ust/bin/genkld bos.perf.tools

genld /ust/bin/genld bos.perf.tools

gennames /usr/bin/gennames bos.perf.tools

44 AIX 5L Performance Tools Handbook

Command / Tool

Full path name

Fileset name / URL

gprof /usr/bin/gprof bos.adt.prof

iostat /ust/bin/iostat bos.acct

ipcs /usr/bin/ipcs bos.rte.control
ipfilter /ust/bin/ipfilter bos.perf.tools
ipreport /ust/sbin/ipreport bos.net.tcp.server
iptrace /usr/sbin/iptrace bos.net.tcp.server

jazizo (PTX)

/ust/bin/jazizo

perfmgr.analysis.jazizo

locktrace /usr/bin/locktrace bos.perf.tools

Islv /ust/sbin/Islv bos.rte.lvm

Ispv /usr/sbin/Ispv bos.rte.lvm

Isvg /usr/sbin/Isvg bos.rte.lvm
lvmstat /ust/sbin/lvmstat bos.rte.lvm
netpmon /ust/bin/netpmon bos.perf.tools
netstat /ust/bin/netstat bos.net.tcp.client
nfso /ust/sbin/nfso bos.net.nfs.client
nfsstat /ust/sbin/nfsstat bos.net.nfs.client
nice /ust/bin/nice bos.rte.control

no /ust/sbin/no bos.net.tcp.client
PDT /usr/sbin/perf/diag_tool bos.perf.diag_tool
perfomr - ftp://software.ibm.com/
Perfstat API - bos.perf.libperfstat
PM API - bos.pmapi.lib
pprof /usr/bin/pprof bos.perf.tools

prof /usr/bin/prof bos.adt.prof

ps lusr/bin/ps bos.rte.control
renice /ust/bin/renice bos.rte.control
RMC - rsct.”

Chapter 2. Getting started

45

Command / Tool

Full path name

Fileset name / URL

rmss /usr/bin/rmss bos.perf.tools

sar /usr/sbin/sar bos.acct

schedtune /usr/samples/kernel/schedtune bos.adt.samples

splat - ftp://software.ibm.com/
SPMI API - perfagent.tools, perfagent.server
stripnm /ust/bin/stripnm bos.perf.tools

svmon /usr/bin/svmon bos.perf.tools

tcpdump /usr/sbin/tcpdump bos.net.tcp.server

time /ust/bin/time bos.rte.misc_cmds

timex /ust/bin/timex bos.acct

tokstat /usr/bin/tokstat devices.common.IBM.tokenring.rte
topas /usr/bin/topas bos.perf.tools

tprof /ust/bin/tprof bos.perf.tools

trace /usr/bin/trace bos.sysmgt.trace

trcnm /usr/bin/trcnm bos.sysmgt.trace

trerpt Jusr/bin/trcrpt bos.sysmgt.trace

trpt /ust/sbin/trpt bos.net.tcp.server

truss usr/bin/truss bos.sysmgt.serv_aid
vmstat /usr/bin/vmstat bos.acct

vmtune /usr/samples/kernel/vmtune bos.adt.samples

wimmon /usr/bin/wimmon perfagent.tools

wimperf /usr/bin/wimperf perfmgr.analysis.jazizo
wimstat /ust/sbin/wimstat bos.rte.control

xmperf (PTX)

/usr/bin/xmperf

perfmgr.network

46 AIX 5L Performance Tools Handbook

2.2 Tools by resource matrix

This section contains a table of the AIX monitoring and tuning tools (Table 2-2)
and what system resources (CPU, Memory, Disk 1/O, Network 1/0) they obtain
statistics for. Tools that are used by trace, that post-process the trace output, or
that are directly related to trace are listed in the Trace tools column. Tools that
are useful for application development are listed in the Application Development
column.

Table 2-2 Performance tools by resource matrix

Command CPU | Memory | Disk | Network | Trace | Application
1/0 /0 tools | Development

alstat X

atmstat x

bindintcpu X

bindprocessor X

curt X X

emstat X

entstat X

estat X

fddistat X

fdpr X

filemon X X

fileplace X

genkex X

genkld X

genld X

gennames X

gprof X X

iostat X X

ipcs X X

ipfilter X

Chapter 2. Getting started 47

48

Command CPU | Memory | Disk | Network | Trace | Application
1/0 /0 tools | Development

ipreport X

iptrace X

locktrace X X

Islv X

Ispv X

Isvg X

lvmstat X

netpmon X X X

netstat X

nfso X

nfsstat X

nice X

no X

PDT X X X X

perfpmr X X X X X

Perfstat API X X X X

PM API X X

pprof X X

prof X X

ps X X

PTX X X X X X

renice X

RMC X X X X

rmss X

sar X X X X

schedtune X X

AIX 5L Performance Tools Handbook

Command

CPU

Memory

Disk
1/0

Network
I/0

Trace
tools

Application
Development

splat

X

SPMI API

stripnm

svmon

tcpdump

time

timex

tokstat

topas

tprof

trace

trcnm

trerpt

trpt

truss

vmstat

vmtune

wimmon

wimperf

wimstat

2.3 Performance tuning approach

In this section the initial approach to solve a performance problem is shown. To
determine which of the monitored performance values are high in a particular
environment, it is necessary to gather the performance data on the system in a
well performing state. This baseline performance information is very useful in
case of a later occurrence or a performance problem on the system. The perfpmr

Chapter 2. Getting started 49

command can be used to gather this information. However, a screen snapshot of
topas provides a brief overview of all the major performance data that makes it
easier to compare the values gathered on the well performing system to the
values shown if performance is low.

Note: In the following sections we rate the values of the topas output such as
a high number of system calls. High, in this context, means that the value
shown on the topas output of the currently not well performing system
compared to the value of the baseline performance data is high.

However, the values shown in the outputs of topas in the following sections do
not necessary reflect a performance problem. The outputs in our examples
are only used to highlight the fields of interest.

In any case all four major resources, (CPU, memory, disk 1/0, and network)
need to be checked when the performance of a system is analyzed.

2.3.1 CPU bound system

The output of topas in Example 2-1 shows the fields that are used to decide if the
system is CPU bound.

Example 2-1 topas output with highlighted CPU statistics

Topas Monitor for host: wlmhost EVENTS/QUEUES FILE/TTY
Fri May 11 11:28:06 2001 Interval: 2 Cswitch 64 Readch 353
Syscall 211 Writech 7836
Kernel 0.6 | | Reads 16 Rawin 0
User 99.3 | #HHHHHHHIHIB AR ARAERERE] Writes 6 Ttyout 0
Wait 0.0 | | Forks 0 Igets 0
Idle 0.0 | | Execs 0 Namei 8
Runqueue 4.0 Dirblk 0
Network KBPS I-Pack O0-Pack KB-In KB-Out Waitqueue 0.0
tro 8.3 6.1 9.2 0.3 8.0
100 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
Faults 0 Real,MB 511
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 46.5
hdisk0 0.0 2.0 0.0 0.0 2.0 Pgspln 0 % Noncomp 53.6
hdiskl 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 49.6
Pageln 0
WLM-Class (Active) CPU% Mem% Disk-I/0% PageOut 0 PAGING SPACE
Unmanaged 0 23 0 Sios 0 Size,MB 1024
Unclassified 0 0 0 % Used 13.1
NFS (calls/sec) % Free 86.8
Name PID CPU% PgSp Class ServerV2 0
dc 43564 25.0 0.3 System ClientV2 0 Press:
dc 21566 25.0 0.3 System ServerV3 0 "h" for help

50 AIX 5L Performance Tools Handbook

dc
dc

41554 25.0
2

5 0.3
23658 24.2 0.3

v
S

Ps ClientV3 0 "g" to quit
ystem

The fields of interest are:

Kernel

User

Cswitch

Syscall

Forks

Execs

Runqueue

PID

The CPU time spent in system (kernel) mode. The tprof or trace
commands can be used for further problem determination why the
system spends more time than normal in system mode.

The CPU time spent in user mode. If the consumption is much
higher than shown in the baseline, a user process may be looping.
The output of topas may show this process in the process part
(PID field for process ID). In case there are many active processes
on the system and more than one looping user process, the tprof
or trace command can be used to find these looping processes.

The number of context switches per second. This may vary.
However, if this value is high, then the CPU system time should be
higher than normal too. The trace command can be used for
further investigation on the context switches.

The number of system calls per second. If this value is higher than
usual, the CPU system time should be higher than normal too. The
tprof or trace commands can be used for further investigation on
the system calls.

The number of fork system calls per second. Please see Execs
below.

The number of exec system calls per second. If the number of fork
or exec system calls is high, then the CPU system time should be
higher than normal too. A looping shell script that executes a
number of commands may be the cause for the high fork and exec
system calls. It may not be easy to find this shell script using the ps
command. The AIX trace facility can be used for further
investigation.

The number of processes ready to run. If this number is high, either
the number of programs run on the system increased (the load put
on the system by the users), or there are less CPUs to run the
programs. The sar -P ALL command should be used to see how
all CPUs are used.

The process ID. Useful in case of a run away process that causes
CPU user time to be high. If there is a process using an unusual
high amount of CPU time, the tprof -t command can be used to
gather information on this process. If it is a runaway process, killing
this process will reduce the high CPU usage and may solve the
performance problem.

Chapter 2. Getting started 51

2.3.2 Memory bound system

The following output of topas (Example 2-2) shows the fields that are used to
decide if the system is memory bound.

Example 2-2 topas output with highlighted memory statistics

Topas Monitor for host: wimhost EVENTS/QUEUES FILE/TTY
Fri May 11 11:28:06 2001 Interval: 2 Cswitch 64 Readch 353
Syscall 211 Writech 7836
Kernel 0.6 | | Reads 16 Rawin 0
User 99.3 | #EHEHHHEH] Writes 6 Ttyout 0
Wait 0.0 | | Forks 0 Igets 0
Idle 0.0 | | Execs 0 Namei 8
Runqueue 4.0 Dirblk 0
Network KBPS I-Pack O0-Pack KB-In KB-Out Waitqueue 0.0
tro 8.3 6.1 9.2 0.3 8.0
100 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
Faults 0 Real,MB 511
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 46.5
hdisk0 0.0 2.0 0.0 0.0 2.0 PgspIn 0 % Noncomp 53.6
hdiskl 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 49.6
Pageln 0
WLM-Class (Active) CPU% Mem% Disk-1/0% PageOut 0 PAGING SPACE
Unmanaged 0 23 0 Sios 0 Size,MB 1024
Unclassified 0 0 0 % Used 13.1
NFS (calls/sec) % Free 86.8
Name PID CPU% PgSp Class ServerV2 0
dc 43564 25.0 0.3 System ClientV2 0 Press:
dc 21566 25.0 0.3 System ServerV3 0 "h" for help
dc 41554 25.0 0.3 VPs ClientV3 0 "qg" to quit
dc 23658 24.2 0.3 System
Steals This is the number of page steals per second by the VMM. If the

system needs real memory, the VMM scans for the least
referenced pages to free them. The vmstat command provides a
statistic about the number of pages scanned. If a page to be stolen
contains changed data, this page need to be written back to disk.
Please refer to PgspOut below. If the Steals value gets high, further
investigation is necessary. There could be a memory leak in the
system or an application. The ps command can be used for a brief
monitoring of memory usage of processes. The svmon command
can be used to gather more detailed memory usage information on
the processes suspected to leak memory.

Pgspln This is the number of paging space page ins per second. These
are previously stolen pages read back from disk into real memory.

PgspOut This is the number of paging space page outs per second. If a
page is selected to be stolen and the data in this page is changed,

52 AIX 5L Performance Tools Handbook

% Used

then the page need to be written to paging space (a unchanged
page does not need to be written back).

The amount of used paging space. A good balanced system
should not page; at least the page outs should be 0 (zero).
Because of memory fragmentation, the amount of paging space
used will increase on a newly started system over time (it should
be notable for the first few days). However, if the amount of paging
space used increases constantly, a memory leak may be the
cause, and further investigations using ps and svmon are
necessary. The load on the disks holding the paging space will
increase if paging space ins (read from disk) and paging space

outs (write to disk) increase.

2.3.3 Disk I/0 bound system

The following output of topas shows the fields which are used to decide if the
system is disk 1/0O bound (Example 2-3).

Example 2-3 topas output with highlighted disk I/O statistics

Topas Monitor for host: wlmhost EVENTS/QUEUES
Fri May 11 11:28:06 2001 Interval: 2 Cswitch 64
Syscall 211
Kernel 0.6 | | Reads 16
User 99.3 | #EHHHHHEHBE] Writes 6
Wait 0.0 | | Forks 0
Idle 0.0 | | Execs 0
Runqueue 4.0
Network KBPS I-Pack 0-Pack KB-In KB-Out Waitqueue 0.0
tro 8.3 6.1 9.2 0.3 8.0
100 0.0 0.0 0.0 0.0 0.0 PAGING
Faults 0
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0
hdisk0 0.0 2.0 0.0 0.0 2.0 Pgspln 0
hdiskl 0.0 0.0 0.0 0.0 0.0 PgspOut 0
Pageln 0
WLM-Class (Active) CPU% Mem% Disk-1/0% PageOut 0
Unmanaged 0 23 0 Sios 0
Unclassified 0 0 0
NFS (calls/sec)
Name PID CPU% PgSp Class ServerV2
dc 43564 25.0 0.3 System ClientV2
dc 21566 25.0 0.3 System ServerV3
dc 41554 25.0 0.3 VPs ClientV3
dc 23658 24.2 0.3 System

o O o o

FILE/TTY

Readch 353
Writech 7836
Rawin 0
Ttyout 0
Igets 0
Namei 8
Dirblk 0
MEMORY

Real,MB 511
% Comp 46.5
% Noncomp 53.6
% Client 49.6

PAGING SPACE

Size,MB 1024
% Used 13.1
% Free 86.8
Press:
"h" for help
"q" to quit

Chapter 2. Getting started 53

54

Wait

Disk

Busy%

KBPS

TPS
KB-Read

KB-Writ

The CPU idle time during which the system had at least one
outstanding I/O to disk (whether local or remote) and
asynchronous /O is not in use. An I/O causes the process to block
(or sleep) until the 1/0 is complete.

The name of the physical device.

The percentage of time that the disk drive was active. A high busy
percentage could be caused by random disk access. The disk’s
throughput may be low even if the percentage busy value is high. If
this number is high for one or multiple devices, the iostat
command can be used to gather more precise information. In case
of paging activity the disk holding the paging logical volumes are
more used than normal and the cause for the higher paging activity
should be investigated. The flemon command can be used to
gather informations on the logical volume accessed to keep the
disks busy and the process accessing the logical volume. The
fileplace command can be used to gather information about the
accessed files. All this information can be used to redesign the
layout of the logical volume and the file system. The trace
command can be used to gather information about the
application’s access pattern to the data on disk, which may be
useful in case a redesign of the application is possible.

The total throughput of the disk in kilobytes per second. This value
is the sum of KB-Read and KB-Writ. If this value is high, the iostat,
filemon, and fileplace commands can be used to gather detailed
data. A redesign of the logical volume or volume group may be
necessary to improve 1/O throughput.

The number of transfers per second or I/O requests to a disk drive.

The number of kilobytes read per second. Please refer to the field
KBPS. The system’s total number of read system calls per second is
shown in the Reads field. The system’s total number of read
characters per second is shown in the Readch field. Both Reads and
Readch can be used to estimate the data block size transferred per
read.

The number of kilobytes written per second. Please refer to the
field KBPS. The system total number of write system calls per
second is shown in the Writes field. The system total number of
written characters per second is shown in the Writech field. Both
Writes and Writech can be used to estimate the data block size
transferred per write.

AIX 5L Performance Tools Handbook

2.3.4 Network I/0 bound system

The following output of topas shows the fields which are used to decide if the
system is network 1/0O bound (Example 2-4).

Example 2-4 topas output with highlighted network I/O and nfs statistics

Topas Monitor for host: wimhost EVENTS/QUEUES FILE/TTY
Fri May 11 11:28:06 2001 Interval: 2 Cswitch 64 Readch 353
Syscall 211 Writech 7836
Kernel 0.6 | | Reads 16 Rawin 0
User 99.3 | #EHEHHHEH] Writes 6 Ttyout 0
Wait 0.0 | | Forks 0 Igets 0
Idle 0.0 | | Execs 0 Namei 8
Runqueue 4.0 Dirblk 0
Network KBPS I-Pack 0-Pack KB-In KB-Out Waitqueue 0.0
tr0 8.3 6.1 9.2 0.3 8.0
100 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
Faults 0 Real,MB 511
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 46.5
hdisk0 0.0 2.0 0.0 0.0 2.0 Pgspln 0 % Noncomp 53.6
hdiskl 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 49.6
Pageln 0
WLM-Class (Active) CPU% Mem% Disk-1/0% PageOut 0 PAGING SPACE
Unmanaged 0 23 0 Sios 0 Size,MB 1024
Unclassified 0 0 0 % Used 13.1
NFS (calls/sec) % Free 86.8
Name PID CPU% PgSp Class ServerV2 0
dc 43564 25.0 0.3 System ClientV2 0 Press:
dc 21566 25.0 0.3 System ServerV3 0 "h" for help
dc 41554 25.0 0.3 VPs ClientV3 0 "g" to quit
dc 23658 24.2 0.3 System
The fields of interest are:
Network performance
Interf Shows the network interface.
KBPS Transferred amount of data over the interface in KB per second.

This is the sum of KB-In and KB-0ut. If this is lower than expected,
further investigation is necessary. Network related resource
bottlenecks such as CPU, disk 1/0, memory could be the cause.
Tools and procedures to put maximum load on the network and
reach the maximum possible transfer rates should be in place. The
ftp put command shown in Section 1.4, “Network performance”
on page 29 can be used. The netstat command as well as the
interface statistics commands atmstat, entstat, estat, fddistat,
and tokstat can be used to monitor network resources on the local

Chapter 2. Getting started 55

56

system. The netpmon command provides detailed usage statistics
for all network related functions of the system. However, a
monitoring of the remote systems as well as the network may be
necessary to detect possible throughput limiting problems there.

I-Pack Received packets per second. With the value of received bytes per
second (KB-In) the average packet size can be calculated.

0-Pack Sent packets per second. With the value of sent bytes per second
(KB-0ut) the average packet size can be calculated.

KB-In Amount of data received on the interface per second.

KB-In Amount of data sent on the interface per second.

Note: Detecting the root cause of a low network throughput is not easy. A
shortage of resources on the local system can be the cause, such as a mbuf
low condition (netstat -m), a busy CPU so the execution of network code is
not performed at the necessary speed, or slow disk I/O unable to deliver the
necessary data fast enough. Test tools and procedures that use only a small
amount of local resources to produce a high network load can help to detect
problems on the network or the remote systems.

NFS performance

topas shows only the number of NFS server and client calls for both NFS V2 and
NFS V3.

This data can only provide a quick overview of the NFS usage. The nfsstat
command should be used to get more details about the NFS operations used
and to gather RPC statistics.

AIX 5L Performance Tools Handbook

Multi resource monitoring
and tuning tools

This chapter describes tools for monitoring and tuning multiple system
resources. The commands listed are not specific to CPU, disk, memory, or
network resources. They may be used across one or more of those resources.
Some of the commands may report on CPU, the Virtual Memory Manager
(VMM), and disk I/O, while others may report statistics on CPU and network
activities. Please refer to the sections referenced below for specific information
on the individual tools.

» Monitoring tools:

— The iostat command described in Section 3.2, “iostat” on page 67 is used
to monitor system input/output device loading by observing the time the
physical disks are active in relation to their average transfer rates. It also
reports on CPU use.

— The netpmon command described in Section 3.3, “netpmon” on page 77 is
used to monitor a trace of system events on network activity and
performance and the CPU consumption of network activities.

— The PDT tool described in Section 3.4, “Performance Diagnostic Tool
(PDT)” on page 89 attempts to identify performance problems
automatically by collecting and integrating a wide range of performance,
configuration, and availability data.

© Copyright IBM Corp. 2001 57

58

— The perfpmr command described in Section 3.5, “perfpmr” on page 98 is a
set of utilities that builds a test case by running many of the commands
featured in this redbook. The test case contains the necessary information
to assist in analyzing performance issues.

— The ps command described in Section 3.6, “ps” on page 109 is used to
produce a list of processes on the system with specific information about,
for instance, the CPU use of these processes.

— The sar command described in Section 3.7, “sar” on page 120 is used to
report on CPU use, I/0, and other system activities.

— The topas command described in Section 3.9, “topas” on page 158 is
used to monitor a broad spectrum of system resources such as CPU use,
CPU events and queues, memory and paging use, disk performance,
network performance, and NFS statistics. It also reports system resource
consumption by processes assigned to different Workload Manager
(WLM) classes.

— The truss command described in Section 3.10, “truss” on page 168 is
used to track a process's system calls, received signals, and incurred
machine faults.

— The vmstat command described in Section 3.11, “vmstat” on page 186 is
used to report statistics about kernel threads, virtual memory, disks, and
CPU activity.

» Tuning tools:

— The fdpr command described in Section 3.1, “fdpr” on page 59 is used for
improving execution time and real memory use of user level application
programs and libraries.

— The schedtune command described in Section 3.8, “schedtune” on
page 144 is used to set criteria of thrashing, process suspension, time
slices, and the length of time that threads can spin on locks.

— The vmtune command described in Section 3.12, “vmtune” on page 201 is
used to change the characteristics of the Virtual Memory Manager (VMM)
such as page replacement, persistent file reads and writes, file system
buffer structures (bufstructs), Logical Volume Manager (LVM) buffers, raw
input/output, paging space, parameters, page deletes, and memory
pinned parameters.

AIX 5L Performance Tools Handbook

3.1 fdpr

The fdpr command is a performance tuning utility for improving execution time
and real memory use of user level application programs and libraries. The fdpr
command can perform different actions to achieve these goals, such as removing
unnecessary instructions and reordering of code and data.

fdpr resides in /usr/bin and is part of the perfagent.tools fileset, which is
installable from the AIX base installation media.

3.1.1 Syntax

The syntax of the fdpr command is as follows:
Most common use:
fdpr -p ProgramFile -x Command

The fdpr command builds an optimized executable program in three distinct

phases:

» Phase 1: Create an instrumented executable program.

» Phase 2: Run the instrumented program and create the profile data.

» Phase 3: Generate the optimized executable program file.

If not specified, all three phases are run. This is equal to the -123 flags.

Syntax to use with phase 1 and 3 flags:

fdpr -p ProgramFile [-M Segnum] [-o OutputFile] [-armember amList]
[OptimizationFlags] [-map] [-disasm] [-profcount] [-v] -s [-1]|-3]
[-x Command]

Syntax to use with phase 2 flag:

fdpr -p ProgramFile [-M Segnum] [-o OutputFile] [-armember amList]
[OptimizationFlags] [-map] [-disasm] [-profcount] [-v]
[-s[-2|-12]-23]] -x Command

The OptimizationFlags are:

[[-Rn] | [-RO|-R1|-R2|-R3]] [-nI] [-tb] [-pc] [-pp] [-bt] [-toc] [-03]

[-nop] [-opt_fdpr_glue] [-inline] [-i_resched] [-killed_regs] [-RD]
[-tocload | -aggressive tocload] [-regs_release] [-ret_prologs]

Chapter 3. Multi resource monitoring and tuning tools 59

60

Flags
-1, -2, -3

-M SegNum

-nl

-0 QutFile

-p ProgramFile

-armember amList

-Rn

-RO,-R1,-R2, -R3

-tb

_pc

AIX 5L Performance Tools Handbook

Specifies the phase to run. The default is to run all three
phases (-123). The -s flag must be used when running
separate phases so that the succeeding phases can
access the required intermediate files. The phases must
be run in order (for example, -1, then -2, then -3, or -1,
then -23).

Specifies where to map shared memory for profiling. The
default is 0x30000000. Specify an alternate shared
memory address if the program to be reordered or any of
the command strings invoked with the -x flag use
conflicting shared memory addresses. Typical
alternative values are 0x40000000, 0x50000000, ... up
to 0xC0000000).

Does not permit branch reversing.

Specifies the name of the output file from the optimizer.
The default is ProgramFile.fdpr

Contains the name of the executable program file,
shared object file, or shared library containing shared
objects/executables to optimize. This program must be
an unstripped executable.

Lists archive members to be optimized within a shared
archive file specified by the -p flag. If -armember is not
specified, all members of the archive file are optimized.
The entries in amList should be separated by spaces.

Copies input to output instead of invoking the optimizer.
The -Rn flag cannot be used with the -R0, -R1, -R2, or
-R3 flags.

Specifies the level of optimization. -R3 is the most
aggressive optimization. The default is -R0. Please refer
to AIX 5L Version 5.1 Commands Reference,
SBOF-1877 for more information on the optimization
levels.

Forces the restructuring of traceback tables in reordered
code. If -tb is omitted, traceback tables are
automatically included only for C++ applications using a
try and catch mechanism.

Preserves CSECT boundaries. Effective only with -R1
and -R3.

-pp
-toc
-bt

-03

-inline

-nop
-opt_fdpr_glue
-killed_regs

-regs_release

-tocload

-aggressive_tocload

-RD

-i_resched

-ret_prologs

-map

-disasm

-profcount

-S

Preserves procedures' boundaries. Effective only with
-R1 and -R3.

Enable TOC pointer modifications. Effective only with
-R0 and -R2.

Enables branch table modifications. Effective only with
-R0O and -R2.

Switches on the following optimization flags:

-nop, -opt_fdpr_glue, -inline, -i_resched,
-killed_regs, -RD, -aggressive_tocload,
-regs_release, -ret_prologs.

Performs inlining of hot functions.

Removes NOP instructions from reordered code.
Optimizes hot BBs in FDPR glue during code reordering.

Avoids storing instructions for registers within callee
functions' prologs that are later killed by the calling
function.

Eliminates store/restore instructions in the function's
prolog/epilog for non-frequently used registers within the
function.

Replaces an indirect load instruction via the TOC with an
add immediate instruction.

Performs the -tocload optimization, and reduces the
TOC size by removing redundant TOC entries.

Performs static data reordering in the .data and .bss
sections.

Performs instruction rescheduling after code reordering.

Optimizes functions prologs that terminate with a
conditional branch instruction directly to the function's
epilog.

Prints a map of basic blocks with their respective old ->
new addresses into a suffixed .map file.

Prints the disassembled version of the input program
into a suffixed .dis file.

Prints the profiling counters into a suffixed .counters file.

Specifies that temporary files created by the fdpr
command cannot be removed. This flag must be used
when running fdpr in separate phases.

Chapter 3. Multi resource monitoring and tuning tools 61

-v Enables verbose output.

-x Command Specifies the command used for invoking the
instrumented program. All the arguments after the -x
flag are used for the invocation. The -x flag is required
when the -s flag is used with the -2 flag.

Attention: The fdpr command applies advanced optimization techniques to a
program that may result in unexpected behaviors. Programs that are
reordered using fdpr should be used with caution. The programs should be
retested with the same test suite used to test the original program in order to
verify expected functionality. The reordered program is not supported by IBM.

3.1.2 Information on measurement and sampling

62

The fdpr command builds an optimized executable by applying advanced
optimization techniques using three distinct phases to optimize the source
executable. These three phases are:

» In phase one, fdpr creates an instrumented executable program.
The source executable is saved as __ProgramFile.save, and a new and
instrumented version, named __ProgramFile.instr, is built.

» In Phase two, fdpr runs the instrumented version of the executable, and
profiling data is collected. This profiling data is stored in the file named
__ProgramFile.prof. The executable needs to be run with typical input data to
reflect normal use and to enable fdpr to find the code parts to improve.

» In Phase three, fdpr uses the profiled information collected in phase two to
reorder the executable. This reordering includes tasks such as:

— Packing together highly executed code sequences

— Recoding conditional branches to improve hardware branch prediction

— Moving less used code sections out of line

— Inlining of hot functions

— Removing NOP instructions from reordered code
The compiler flag -qfdpr can be used to have the compiler add additional
informations into the executable that assist fdpr in reordering the executable.
However, if the -qfdpr compiler flag is used, only those object modules compiled
with this flag are reordered by fdpr. The reordered executable generated by fdpr
provides a certain degree of debugging capability. Please refer to AIX 5L Version

5.1 Commands Reference, SBOF-1877 for more information on the fdpr
command.

AIX 5L Performance Tools Handbook

3.1.3 Examples

Following simple C program is used to show the code reordering done by fdpr

(Example 3-1).

Example 3-1 C program used to show code reordering by fdpr

#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>

main(argc, argv, envp)
int argc;
char **argv;
char **envp;

int x;
x=atoi(argv[1]);
if (x) {
printf ("then part\n");
} else {
fprintf (stderr, "else part\n");
} /* endif */
exit (0);

This program converts the parameter passed to it into an integer and, depending

on the value, the then or else part of the i f instruction is executed. For easy

identification of the then and else part in the assembler code, a printfin the then

part and a fprintf'in the else part is used. The code is compiled using:

cc -qfdpr -qlist c.c

The resulting assembler code is as follows (Example 3-2).

Example 3-2 C compiler generated assembler code

0x10000340 (main) 7¢c0802a6 mflr rO

0x10000344 (main+0x4) 93elfffc st r31,-4(rl)
0x10000348 (main+0x8) 90010008 st r0,0x8(r1)
0x1000034c (main+0xc) 9421ffb0 stu rl1,-80(rl)
0x10000350 (main+0x10) 83e2003c 1 r31,0x3c(r2)
0x10000354 (main+0x14) 90610068 st r3,0x68(rl)
0x10000358 (main+0x18) 9081006¢c st r4,0x6c(rl)
0x1000035c (main+0x1lc) 90a10070 st r5,0x70(rl)
0x10000360 (main+0x20) 8061006c 1 r3,0x6c(rl)
0x10000364 (main+0x24) 80630004 1 r3,0x4(r3)
0x10000368 (main+0x28) 48000079 bl 0x100003e0 (atoi)
0x1000036¢ (main+0x2c) 80410014 1 r2,0x14(rl)
0x10000370 (main+0x30) 2c030000 cmpi cr0,r3,0x0

Chapter 3. Multi resource monitoring and tuning tools

63

0x10000374 (main+0x34) 90610040 st r3,0x40(rl)

0x10000378 (main+0x38) 41820014 beq 0x1000038c (main+0x4c)
0x1000037c¢ (main+0x3c) 63e30000 oril r3,r31,0x0

0x10000380 (main+0x40) 48000089 bl 0x10000408 (printf)
0x10000384 (main+0x44) 80410014 1 r2,0x14(rl)

0x10000388 (main+0x48) 48000018 b 0x100003a0 (main+0x60)
0x1000038c (main+0x4c) 80620048 1 r3,0x48(r2)

0x10000390 (main+0x50) 389f000c cal r4,0xc(r31)

0x10000394 (main+0x54) 38630040 cal r3,0x40(r3)

0x10000398 (main+0x58) 48000099 bl 0x10000430 (fprintf)
0x1000039c (main+0x5c) 80410014 1 r2,0x14(rl)

0x100003a0 (main+0x60) 38600000 141 r3,0x0

0x100003a4 (main+0x64) 480000b5 bl 0x10000458 (exit)
0x100003a8 (main+0x68) 80410014 1 r2,0x14(rl)

0x100003ac (main+0x6c) 38600000 141 r3,0x0

0x100003b0 (main+0x70) 80010058 1 r0,0x58(rl)

0x100003b4 (main+0x74) 7c0803a6 mtir rO

0x100003b8 (main+0x78) 38210050 cal r1,0x50(rl)

0x100003bc (main+0x7c) 83elfffc 1 r31,-4(rl)

0x100003¢c0 (main+0x80) 4e800020 br

The above code shows the branch used in the i f instruction to jump into the else
part (beq 0x1000038c (main+0x4c)). The then part follows and ends at
instruction b 0x100003a0 (main+0x60). The else part then starts at main+0x4c.

The following shell script is used to instrument the program (Example 3-3).

Example 3-3 Shell script c.sh used to instrument the program with fdpr
#/usr/bin/ksh
let x=0
while [$x -1t 1000]
do
./a.out $x 2>/dev/null 1>/dev/null
let x=x+1
done

The program a.out is called and the loop counter $x is passed as the parameter.
This way the else part of the example program gets executed only once and the
then part gets executed 999 times.

The following fdpr command is used to optimize the program a.out:

fdpr -p a.out -R3 -x ./c.sh

64 AIX 5L Performance Tools Handbook

The generated and reordered code in the fdpr output file a.out.fdpr is shown in
Example 3-4.

Example 3-4 Reordered example program

0x100001d0
0x100001d4
0x100001d8
0x100001dc
0x100001e0
0x100001e4
0x100001e8
0x100001ec
0x1000010
0x100001f4
0x100001f8
0x100001fc
0x10000200
0x10000204
0x10000208
0x1000020c
0x10000210
0x10000214
0x10000218
0x1000021c
0x10000220

(... lines omitted ...

0x1000026¢
0x10000270
0x10000274
0x10000278
0x1000027c
0x10000280

(... lines omitted ...

0x100003cc
0x100003d0
0x100003d4
0x100003d8
0x100003dc
0x100003e0
0x100003e4

(main) 7c0802a6

(main+0x4) 93elfffc
(main+0x8) 90010008
(main+0xc) 9421ffb0

(main+0x10)
(main+0x14)
(main+0x18)
(main+0x1c)
(main+0x20)
(main+0x24)
(main+0x28)
(main+0x2c)
(main+0x30)
(main+0x34)
(main+0x38)
(main+0x3c)
(main+0x40)
(main+0x44)
(main+0x48)
(main+0x4c)
(main+0x50)

83e2003c
90610068
9081006c
90a10070
8061006¢
80630004
4800002d
80410014
2c030000
90610040
41820064
63e30000
48000045
80410014
38600000
48000021
480001ac

)

(main[1] [fdpr])
(main[1] [fdpr]+0x4) 389f000c
(main[1] [fdpr]+0x8) 38630040
(main[1] [fdpr]+0xc) 4800000d
(main[1] [fdpr]+0x10) 80410014
(main[1] [fdpr]+0x14) 4bffff98

)

(main[2] [fdpr])
(main[2] [fdpr]+0x4) 38600000
(main[2] [fdpr]+0x8) 80010058
(main[2] [fdpr]+0xc) 7c0803a6
(main[2] [fdpr]+0x10) 38210050
(main[2] [fdpr]+0x14) 83elfffc
(main[2] [fdpr]+0x18) 4e800020

mflr
st
st
stu
1
st
st
st
1
1
bl
1
cmpi
st
beq
oril
bl
1
141
bl
b

80620048

80410014

r0

r31,-4(rl)

r0,0x8(r1)

rl,-80(r1)

r31,0x3c(r2)

r3,0x68(rl)

rd,0x6c(rl)

r5,0x70(rl)

r3,0x6c(rl)

r3,0x4(r3)

0x10000224 (atoi)
r2,0x14(rl)

cr0,r3,0x0

r3,0x40(rl)

0x1000026¢ (main[1] [fdpr])
r3,r31,0x0

0x10000254 (printf)
r2,0x14(rl)

r3,0x0

0x1000023c (exit)
0x100003cc (main[2] [fdpr])

1 r3,0x48(r2)
cal r4,0xc(r31)
cal r3,0x40(r3)
b1 0x10000284 (fprintf)
1 r2,0x14(r1)

b 0x10000218 (main+0x48)

1 r2,0x14(rl)

1i1 r3,0x0
1 r0,0x58(rl)
mtir r0

cal rl1,0x50(rl)
1 r31,-4(rl)
br

Chapter 3. Multi resource monitoring and tuning tools

65

66

The function main is split in three parts. The then part of the if instruction is in
the first part of main. There is not much of a performance gain for our example
program. However, to show the importance of the data used to run the program
during instrumentation, the following shell script is used for another
instrumentation and optimization run by fdpr (Example 3-5).

Example 3-5 Alternate shell script c.sh2 to instrument the program

#1/usr/bin/ksh

let x=1

while [$x -1t 1000]

do
./a.out 0 2>/dev/null 1>/dev/null
let x=x+1

done

.Ja.out 1

The above shell scriptruns ./a.out 0999 times and ./a.out 1 only once. Using
the above shell script with the fdpr command to instrument the small C program
shown in Example 3-1 on page 63, by the command

fdpr -p a.out -R3 -x ./c.sh2

results in the following reordered code (Example 3-6).

Example 3-6 Reordered example program, the alternate version

0x100001d0 (main) 7¢c0802a6 mflr rO

0x100001d4 (main+0x4) 93elfffc st r31,-4(rl)

0x100001d8 (main+0x8) 90010008 st r0,0x8(r1)

0x100001dc (main+0xc) 9421ffb0 stu rl1,-80(rl)

0x100001e0 (main+0x10) 83e2003c 1 r31,0x3c(r2)
0x100001e4 (main+0x14) 90610068 st r3,0x68(rl)
0x100001e8 (main+0x18) 9081006¢c st r4,0x6c(rl)
0x100001ec (main+0x1lc) 90a10070 st r5,0x70(rl)
0x100001f0 (main+0x20) 8061006c 1 r3,0x6c(rl)
0x100001f4 (main+0x24) 80630004 1 r3,0x4(r3)
0x100001f8 (main+0x28) 48000035 bl 0x1000022c (atoi)
0x100001fc (main+0x2c) 80410014 1 r2,0x14(rl)
0x10000200 (main+0x30) 2c030000 cmpi cr0,r3,0x0
0x10000204 (main+0x34) 90610040 st r3,0x40(rl)
0x10000208 (main+0x38) 4082006c bne 0x10000274 (main[1] [fdpr])
0x1000020c (main+0x3c) 80620048 1 r3,0x48(r2)
0x10000210 (main+0x40) 389f000c cal r4,0xc(r31)
0x10000214 (main+0x44) 38630040 cal r3,0x40(r3)
0x10000218 (main+0x48) 48000045 b1 0x1000025¢ (fprintf)
0x1000021c (main+0x4c) 80410014 1 r2,0x14(rl)
0x10000220 (main+0x50) 38600000 141 r3,0x0

0x10000224 (main+0x54) 48000021 bl 0x10000244 (exit)
0x10000228 (main+0x58) 480001a4 b 0x100003cc (main[2] [fdpr])

(... lines omitted ...)

AIX 5L Performance Tools Handbook

0x10000274 (main[1] [fdpr]) 63e30000 oril r3,r31,0x0

0x10000278 (main[1] [fdpr]+0x4) 4800000d b1 0x10000284 (printf)
0x1000027¢ (main[1] [fdpr]+0x8) 80410014 1 r2,0x14(rl)
0x10000280 (main[1] [fdpr]+Oxc) 4bffffal b 0x10000220 (main+0x50)

(... lines omitted ...)

0x100003cc (main[2] [fdpr]) 80410014 1 r2,0x14(rl1)
0x100003d0 (main[2] [fdpr]+0x4) 38600000 1i1 r3,0x0
0x100003d4 (main[2] [fdpr]+0x8) 80010058 1 r0,0x58(rl)
0x100003d8 (main[2] [fdpr]+0xc) 7c0803a6 mtir r0
0x100003dc (main[2] [fdpr]+0x10) 38210050 cal rl,0x50(rl)
0x100003e0 (main[2] [fdpr]+0x14) 83elfffc 1 r3l,-4(rl)
0x100003e4 (main[2] [fdpr]+0x18) 4e800020 br

The else part of the i f instruction is now kept in the first part of main and the then
part is moved away because the else part got executed 999 times during
instrumentation and the then part was executed only once.

The user of fdpr should always keep in mind that the performance gain fdpr can
provide depends on the way the program is run during instrumentation.

3.2 iostat

The iostat command is used for monitoring system input/output device loading
by observing the time the physical disks are active in relation to their average
transfer rates. The iostat command generates reports that can be used to
determine an imbalanced system configuration to better balance the input/output
load between physical disks and adapters.

The primary purpose of the iostat tool is to detect I/0O bottlenecks by monitoring
the disk utilization (% tm_act field). iostat can also be used to identify CPU
problems, assist in capacity planning, and provide insight into solving 1/0
problems. Armed with both vmstat and iostat, you can capture the data required
to identify performance problems related to CPU, memory, and 1/0 subsystems.

iostat resides in /usr/bin and is part of the bos.acct fileset, which is installable
from the AIX base installation media.

Chapter 3. Multi resource monitoring and tuning tools 67

3.2.1 Syntax

68

The syntax of the iostat command is as follows:

jostat [-a] [-s] [-t] [-d] [Drives] [Interval [Count]]
Flags

-a Displays the adapter throughput report.

-s Displays the system throughput report.

-t Displays only the tty and cpu use reports.

-d Displays only the disk utilization report

The -t and the -d flags are mutually exclusive.

The -s and -a flags can both be specified to display both the system and adapter
throughput reports.

If the -a flag is specified with the -t flag, the tty and CPU report is displayed,
followed by the adapter throughput report. Disk utilization reports of the disks
connected to the adapters will not be displayed after the adapter throughput
report.

If the -a flag is specified with the -d flag, tty and CPU report will not be displayed.
If the Drives parameter is specified, the disk utilization report of the specified
Physical volume will be printed under the corresponding adapter to which it
belongs.

Parameters

Interval Specifies the update period (in seconds)
Count Specifies the number of iterations
Drives hdisk0, hdisk1, and so forth

Disk names are as displayed by the 1spv command. RAID disks will
appear as one logical hdisk.

The Interval parameter specifies the amount of time in seconds between each
report. The first report contains statistics for the time since system startup (boot).
Each subsequent report contains statistics collected during the interval since the
previous report. The Count parameter can be specified in conjunction with the
Interval parameter. If the Count parameter is specified, the value of count
determines the number of reports generated at Interval seconds apart. If the
Interval parameter is specified without the Count parameter, the command
generates reports continuously.

AIX 5L Performance Tools Handbook

If the Drives parameter is specified, one or more alphabetic or alphanumeric
physical volumes can be specified. If the Drives parameter is specified, the tty
and CPU reports are displayed and the disk report contains statistics for the
specified drives. If a specified logical drive name is not found, the report lists the
specified name and displays the message Disk is not Found.

If no logical drive names are specified, the report contains statistics for all
configured disks and CD-ROMSs. If no drives are configured on the system, no
disk report is generated. The first character in the Drives parameter cannot be
numeric.

3.2.2 Information on measurement and sampling

The iostat command generates four types of reports:
» tty and CPU utilization

» Disk utilization

» System throughput

» Adapter throughput

Note: The first line of this report should be ignored, as it is an average since
the last system reboot.

Each subsequent sample in the report covers the time since the previous
sample. All statistics are reported each time the iostat command is run. The
report consists of a tty and CPU header row followed by a row of tty and CPU
statistics. CPU statistics are calculated system-wide as averages among all
processors.

iostat keeps a history of activity of disk input/output shown in “Enabling disk
input/output statistics” on page 75. Information about the disks and which disks
are attached to which adapters are stored in the Object Database Manager
(ODM).

Measurement is done as specified by the parameters in the command line issued
by the user.

Chapter 3. Multi resource monitoring and tuning tools 69

3.2.3 Examples

70

The following sections show reports generated by iostat:

System throughput report

This report is generated if the -s flag is specified and provides statistics for the
entire system. It has the following format shown in Example 3-7.

Kbps, tps, Kb_read, and Kb_wrtn are as defined in Section 3.2.3, “Examples” on
page 70 but for this report they are accumulated totals for the entire system.

Example 3-7 System throughput report

iostat -s
tty: tin tout avg-cpu: % user % Sys % idle % iowait
0.0 0.0 33.0 11.8 10.1 45.1
System: wlmhost
Kbps tps Kb_read Kb_wrtn

2774.1 367.1 18156 9592
Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 92.4 451.9 100.9 1000 3520
hdiskl 88.2 447.9 100.2 964 3516
hdisk3 76.7 1090.7 94.7 9632 1278
hdiskb 0.0 0.0 0.0 0 0
hdiské 0.0 0.0 0.0 0 0
hdisk8 0.0 0.0 0.0 0 0
hdisk9 0.0 0.0 0.0 0 0
hdisk2 74.1 783.6 71.3 6560 1278
hdisk10 0.0 0.0 0.0 0 0
hdisk7 0.0 0.0 0.0 0 0
cd0 0.0 0.0 0.0 0 0
The following values are displayed:
tin Shows the total number of characters read by the system for all ttys.
tout Shows the total number of characters written by the system to all

ttys.

You will see few input characters and many output characters. On the
other hand, applications such as vi result in a smaller difference
between the number of input and output characters. Analysts using
modems for asynchronous file transfer may notice the number of
input characters exceeding the number of output characters.
Naturally, this depends on whether the files are being sent or
received relative to the measured system.

AIX 5L Performance Tools Handbook

%

user

Sys

idle

Because the processing of input and output characters consumes
CPU resource, look for a correlation between increased TTY activity
and CPU utilization. If such a relationship exists, evaluate ways to
improve the performance of the TTY subsystem. Steps that could be
taken to include changing the application program, modifying TTY
port parameters during file transfer, or perhaps upgrading to a faster
or more efficient asynchronous communications adapter.

Shows the percentage of CPU utilization that occurred while
executing at the user level (application).

The % user column shows the percentage of CPU resource spent in
user mode. A UNIX process can execute in user or system mode.
When in user mode, a process executes within its own code and
does not require kernel resources. On a Symmetrical Multi Processor
system (SMP), the % user is averaged across all CPUs.

Shows the percentage of CPU utilization that occurred while
executing at the system level (kernel). On a Symmetrical Multi
Processor system (SMP), the % sys is averaged across all CPUs.

The % sys column shows the percentage of CPU resource spent in
system mode. This includes CPU resource consumed by kernel
processes (kprocs) and others that need access to kernel resources.
For example, the reading or writing of a file requires kernel resources
to open the file, seek a specific location, and read or write data. A
UNIX process accesses kernel resources by issuing system calls. A
high number of system calls in relation to user utilization can be
caused by applications inefficiently performing disk 1/O or
misbehaving shell scripts such as a shell script stuck in a loop, which
can generate a large number of system calls. If you encounter this,
look for penalized processes. Run the ps -eaf command and look
under the € column for processes that are penalized. Refer to
“Displaying the processes in order of being penalized” on page 115
for more information.

Typically, the CPU is pacing (the system is CPU bound) if the sum of
user and system time exceeds 90 percent of CPU resource on a
single-user system or 80 percent on a multi-user system. This
condition could mean that the CPU is the limiting factor in system
performance

A factor when evaluating CPU performance is the size of the run
queue (provided by the vmstat command, see “Virtual memory
activity” on page 188). In general, as the run queue increases, users
will notice degradation (an increase) in response time.

Shows the percentage of time that the CPU or CPUs were idle and
the system did not have an outstanding disk 1/O request. The % idle

Chapter 3. Multi resource monitoring and tuning tools 71

column shows the percentage of CPU time spent idle, or waiting,
without pending local disk I/O. If there are no processes on the run
queue, the system dispatches a special kernel process called
wait.On an SMP system, the % idle is averaged across all CPUs.

% iowait Shows the percentage of time that the CPU or CPUs were idle during
which the system had an outstanding disk 1/0 request. On an SMP
system, the % iowait is averaged across all CPUs.

The iowait state is different from the idle state in that at least one
process is waiting for local disk I/O requests to complete. Unless the
process is using asynchronous I/O, an I/O request to disk causes the
calling process to block (or sleep) until the request is completed.
Once a process's I/0 request completes, it is placed on the run
queue. On systems running a primary application, a high 1/0 wait
percentage may be related to workload. In this case, there may be no
way to overcome the problem.

When you see a high iowait percentage, you need to investigate the
I/O subsystem to try to eliminate any potential bottlenecks. It could
be that you are short of memory, in which case the disk(s) containing
paging space may be busy while paging and you are likely to see a
higher run queue as threads are waiting for the CPU. An inefficient
I/O subsystem configuration, or an application handling Input/Output
inefficiently can also result in higher %iowait.

A %iowait percentage is not necessarily a bad thing. For example, if
you are copying a file, you will want to see the disk as busy as
possible. In this scenario, a higher %tm_act with good disk throughput
would be desirable over a disk that is only 50 %tm_act.

If an application is writing sequential files, then the write behind
algorithm will write pages to disk. With large sequential writes, the
%iowait will be higher, but the busy disk does not block the
application because the application has already written to memory.
The application is free to continue processing and is not waiting on
the disk. Similarly, when sequential reads are performed, the %iowait
can increase as the pages are read in, but this does not effect the
application because only the pages that are already read into
memory are made available to the application and read ahead is not
dependant on the application.

Understanding the 1/O bottleneck and improving the efficiency of the
I/O subsystem requires more data than iostat can provide.
However, typical solutions might include:

» Limiting the number of active logical volumes and file systems
placed on a particular physical disk. The idea is to balance file 1/O
evenly across all physical disk drives.

72 AIX 5L Performance Tools Handbook

% tm_act

Kbps

tps

Kb_read
Kb_wrtn

» Spreading a logical volume across multiple physical disks. This is
useful when a number of different files are being accessed. Use
the 1s1v -m command to see how volume groups are placed on
physical disks.

» Creating multiple Journaled File System (JFS) logs for a volume
group and assigning them to specific file systems (this is beneficial
for applications that create, delete, or modify a large number of
files, particularly temporary files).

» Backing up and restoring file systems to reduce fragmentation.
Fragmentation causes the drive to seek excessively and can be a
large portion of overall response time.

» Adding additional drives and rebalancing the existing /0
subsystem

Indicates the percentage of time the physical disk was active
(bandwidth utilization for the drive). The % tm_act column shows the
percentage of time the volume was active. This is the primary
indicator of a bottleneck. Any % tm_act over 70 percent may be
considered a potential bottleneck.

A drive is active during data transfer and command processing, such
as seeking to a new location. The disk-use percentage is directly
proportional to resource contention and inversely proportional to
performance. As disk use increases, performance decreases and the
time it takes for the system to respond to user requests increases. In
general, when a disk's use (% tm_act) exceeds 70 percent,
processes may be waiting longer than necessary for 1/0O to complete
because most UNIX processes block (or sleep) while waiting for their
I/O requests to complete.

Indicates the amount of data transferred (read or written) to the drive
in KB per second.

Indicates the number of transfers per second that were issued to the
physical disk. A transfer is an 1/0O request at the device driver level to
the physical disk. As physical I/0O (read or write, to or from the disk) is
expensive in terms of performance, in order to reduce the amount of
physical I/O to the disk(s), multiple logical requests (reads and writes
from the application) can be combined into a single physical /0. A
transfer is of an indeterminate size.

The total number of KB read.
The total number of KB written.

Kb_read and Kb_wrtn combined should not exceed 70 percent of the
disk or adapter’s throughput to avoid saturation.

Chapter 3. Multi resource monitoring and tuning tools 73

74

If the -s flag is specified, a system-header row is displayed followed by a line of
statistics for the entire system. The hostname of the system is printed in the
system-header row.

If iostat -sisrun as is, then the statistics since boot time are displayed.

If you run ioestat specifying an interval, for example iostat -s 5 to display
statistics every five seconds, or you run iostat specifying an interval and a
count, for example iostat -s 2 5 to display five reports of statistics every two
seconds, then the first report will represent the 1/O activity since boot time and
the subsequent reports will reflect the amount of 1/0 on the system over the last
interval.

What the report is telling us

The above report shows 45.1 percent jowait. This should be further
investigated. By looking at% tm_act, we know we are having performance hits on
hdisk0, hdiskl, hdisk2, and hdisk3. This is because % tm_act is above 70
percent. We need to run filemon (refer to “How to analyze the physical volume
reports” on page 394) to see why the disks are busy. For example, some files
may have a lot of I/O, or disks may be seeking. vmstat (refer to “Virtual memory
activity” on page 188) may report high paging.

tty and CPU utilization report

The first report generated by the iostat command is the tty and CPU utilization
report. The CPU values are global averages among all processors. The 1/0 wait
state is defined system-wide and not per processor.

This information is updated at regular intervals by the kernel (typically 60 times
per second). The tty report provides a collective account of characters per
second received from all terminals on the system as well as the collective count
of characters output per second to all terminals on the system (Example 3-8).

Example 3-8 tty and CPU Ultilization report

iostat -t
tty: tin tout avg-cpu: % user % Sys % idle % iowait
0.4 170.5 0.3 0.9 94.5 4.3

Disk utilization report

The following report generated by the iostat command is the disk utilization
report. The disk report provides statistics on a per physical disk basis. Statistics
for CD-ROM devices are also reported.

AIX 5L Performance Tools Handbook

A disk header column is displayed followed by a column of statistics for each disk
that is configured. If the Drives parameter is specified, only those names
specified are displayed (Example 3-9).

Example 3-9 Disk Utilization report

iostat -d

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 92.4 451.9 100.9 1000 3520
hdiskl 88.2 447.9 100.2 964 3516
hdisk3 76.7 1090.7 94.7 9632 1278
hdiskb 0.0 0.0 0.0 0 0
hdiské 0.0 0.0 0.0 0 0
hdisk8 0.0 0.0 0.0 0 0
hdisk9 0.0 0.0 0.0 0 0
hdisk2 74.1 783.6 71.3 6560 1278
hdisk10 0.0 0.0 0.0 0 0
hdisk7 0.0 0.0 0.0 0 0
cd0 0.0 0.0 0.0 0 0

If iostat -dis run as is, then the statistics since boot time are displayed.

If you run iestat specifying an interval, for example iostat -d 5 to display
statistics every five seconds, or you run iostat specifying an interval and a
count, for example iostat -d 2 5 to display five reports of statistics every two
seconds, then the first report will represent the 1/O activity since boot time and
the subsequent reports will reflect the amount of 1/0 on the system over the last
interval.

Enabling disk input/output statistics

To improve performance, the collection of disk input/output statistics may have
been disabled. For large system configurations where a large number of disks is
configured, the system can be configured to avoid collecting physical disk
input/output statistics when the iostat command is not executing. If the system
is configured in this manner, then the first disk report displays the message Disk
History Since Boot Not Available instead of the disk statistics. Subsequent
interval reports generated by the iostat command contain disk statistics
collected during the report interval. Any tty and CPU statistics after boot are
unaffected. If a system management command is used to re-enable disk
statistics keeping. The first iostat command report displays activity from the
interval starting at the point that disk input/output statistics were enabled.

To enable the collection of this data, enter:

chdev -1 sys0 -a iostat=true

Chapter 3. Multi resource monitoring and tuning tools 75

76

To display the current settings, enter:
1sattr -E -1 sys0 -a iostat

If disk input/output statistics are enabled, the 1sattr command will display:

jostat true Continuously maintain DISK I/0 history True

If disk input/output statistics are disabled, the 1sattr command will display:

jostat false Continuously maintain DISK I/0 history True.

Note: Some system resource is consumed in maintaining disk I/O history for
the iostat command.

Adapter throughput report

If the -a flag is specified, an adapter-header row is displayed followed by a line
of statistics for the adapter. This will be followed by a disk-header row and the
statistics of all the disks/CD-ROMSs connected to the adapter. Such reports are
generated for all the disk adapters connected to the system (Example 3-10).
Each adapter statistic reflects the performance of all the disks attached to it.

Example 3-10 Adapter throughput report

iostat -a
tty: tin tout avg-cpu: % user % Sys % idle % iowait
0.4 184.8 0.3 1.0 94.3 4.4

Adapter: Kbps tps Kb_read Kb_wrtn

scsi0 44.0 7.1 4791970 4113651

Disks: % tm_act Kbps tps Kb_read Kb_wrtn

hdiskl 0.0 0.5 0.1 94446 1660

hdisk0 2.2 41.7 6.5 4318692 4111991

cd0 0.1 1.9 0.5 378832 0

Adapter: Kbps tps Kb_read Kb_wrtn

scsil 150.0 15.9 18565412 11776612

Disks: % tm_act Kbps tps Kb_read Kb_wrtn

hdisk2 4.5 81.9 7.3 10712746 5845132

hdisk3 6.5 68.1 8.6 7852666 5931480

If iostat -aisrun as is, then the statistics since boot time are displayed.

AIX 5L Performance Tools Handbook

If you run ioestat specifying an interval, for example iostat -a 5 to display
statistics every five seconds, or you run iostat specifying an interval and a
count, for example iostat -a 2 5 to display five reports of statistics every two
seconds, then the first report will represent the 1/O activity since boot time and
the subsequent reports will reflect the amount of 1/0 on the system over the last
interval.

Tip: It is useful to run iostat when your system is under load and performing
normally. This will give you a base line to determine future performance
problems with the disk, CPU, and tty subsystems.

You should run iostat again when:

» Your system is experiencing performance problems.

» You make hardware or software changes to the disk subsystem.

» You make changes to the AIX Operating System, such as installing
upgrades, and changing the disk tuning parameters using vmtune.

» You make changes to your application.

3.3 netpmon

The netpmon command is used to monitor a trace of system events on network
activity and performance. The netpmon command reports on network activity over
the monitoring period.

Note: The netpmon command does not work with NFS 3 and is only supported
on POWER based platforms.

The netpmon command resides in /usr/bin and is part of the bos.perf.tools fileset,
which is installable from the AlX base installation media.

3.3.1 Syntax
The syntax of the netpmon command is as follows:

netpmon [-o File] [-d] [-Tn] [-P]1 [-t]1 [-v] [-0ReportType
...] [-1 Trace_File -n Gennames_File]

Chapter 3. Multi resource monitoring and tuning tools 77

78

-i Trace_File

-n Gennames_File

-0 File

-0 ReportType ...

AIX 5L Performance Tools Handbook

Starts the netpmon command, but defers tracing until the
trcon command has been executed by the user. By
default, tracing is started immediately.

Reads trace records from the file Trace_File produced
with the trace command instead of a live system. The
trace file must be rewritten first in raw format using the
trcpt -r command. This flag cannot be used without the
-n flag.

Reads necessary mapping information from the file
Gennames_File produced by the gennames command.
This flag is mandatory when the -i flag is used.

Writes the reports to the specified File instead of to
standard output.

Produces the specified report types. Valid report type
values are:

cpu CPU use

dd Network device-driver 1/O

so Internet socket call 1/0

nfs NFS I/0

all All of the above, which is the default value.

Pins monitor process in memory. This flag causes the
netpmon text and data pages to be pinned in memory for
the duration of the monitoring period. This flag can be
used to ensure that the real-time netpmon process does
not run out of memory space when running in a
memory-constrained environment.

Prints CPU reports on a per thread basis.

Sets the kernel's trace buffer size to n bytes. The default
size is 64000 bytes. The buffer size can be increased to
accommodate larger bursts of events, if any (a typical
event record size is on the order of 30 bytes).

Note: The trace driver in the kernel uses double buffering, so actually two
buffers of size n bytes will be allocated. These buffers are pinned in memory,
so they are not subject to paging.

-v Prints extra information in the report. All processes and
all accessed remote files are included in the report
instead of only the 20 most active processes and files.

3.3.2 Information on measurement and sampling

Once netpmon is started, it runs in the background until it is stopped by issuing
the trcstop command. The netpmon command will report on network related
activity over the monitoring period. If the default settings are used, the trace
command will automatically be invoked immediately by the netpmon command.
Alternately, netpmon has an option to switch the trace on at a later time using the
trcon command. When the trace is stopped by issuing the trcstop command,
the netpmon command will output its report and exit. Reports are either displayed
on standard output by default, or can be redirected to a file.

The netpmon command monitors a trace of a specific number of trace hooks. The
trace hooks are, amongst others, NFS, cstokdd, and ethchandd. When the
netpmon command is issued with the -v flag, the trace hooks used by netpmon are
listed. Alternatively, you can run the trcevgrp -1 netpmon command to receive a
list of trace hooks that are used by netpmon. For a full listing of trace hooks,
please refer to “Trace Hooks” on page 692.

The netpmon command can also be used in offline mode on a previously
generated trace. In this instance, a file generated by the gennames command is
required. Refer to the Section 8.5, “gennames” on page 644. The gennames file
should be created immediately after the trace has been stopped. The level of
detail of socket information in the offline mode is limited.

Reports are generated for the CPU use, the network device driver I/O, internet
socket calls, and Network File System (NFS) I/O information.

CPU use The netpmon command reports on the CPU use by
threads and interrupt handlers. The command
differentiates between CPU use on network related
activity and other CPU use.

Network Device Driver I/O The netpmon command monitors I/O statistics
through network adapters.

Chapter 3. Multi resource monitoring and tuning tools 79

Internet Socket Calls The netpmon command monitors the read, recy,
recvfrom, write, send, and sendto subroutines on the
internet socket. Per process reports on the following
protocols are created.

» Internet Control Message Protocol (ICMP)
» Transmission Control Protocol (TCP)
» User Datagram Protocol (UDP)

NFS I/0 The netpmon command monitors read and write
subroutines on client NFS files, Remote Procedure
Calls (RPC) requests on NFS clients, and NFS
server read and write requests.

Note: Only one trace can be run on a system at a time. If an attempt is made
to run a second trace, the following error message will be displayed:

0454-072 The trace daemon is currently active. Only one trace session
may be active at a time.

If network intensive applications are being monitored, the netpmon command may
not be able to capture all the data. This occurs when the trace buffers are full.
The following message is displayed:

Trace kernel buffer overflowed

The size of the trace buffer can be increased by using the -T flag. Using the
offline mode is the most reliable way to limit buffer overflows. This is because
trace is much more efficient in processing and logging than the trace-based
utilities (filemon, netpmon, and tprof) are at generating complex reports.

In memory constrained environments, the -P flag can be used to pin the text and
data pages of the netpmon process in memory so it cannot be swapped out.

3.3.3 Examples

80

In the test scenario, a file of approximately 100 MB was transferred between two
servers. The /home file system of the one server is remotely mounted to the
other server via NFS. This scenario has been set up to obtain trace results for
the copy operation between the servers. The following command was used to
obtain the netpmon information (Example 3-11 on page 81).

AIX 5L Performance Tools Handbook

Example 3-11 The netpmon command used to monitor NFS transfers

netpmon -o nmonl.out -0 nfs

Enter the "trcstop" command to complete netpmon processing

Once the netpmon command is running, start the network activity to be monitored.
Once the network activity that is being monitored is completed, run the trcstop
command to stop the trace (Example 3-12).

Example 3-12 Stopping netomon

trcstop

[netpmon: Reporting started]

[netpmon: Reporting completed]

[netpmon: 534.921 secs in measured interval]

The output that was generated by the netpmon command in Example 3-11 can be
seen in Example 3-13. This output only shows the NFS statistics because the -0
nfs flag and argument was used. The RPC statistics as well as the total calls are
displayed for the server wimhost.

Example 3-13 The netpmon command oufput data for NFS

Fri May 25 19:08:12 2001
System: AIX serverl Node: 5 Machine: 000BC6FD4CO00

Server Calls/s
wimhost 31.02
Total (all servers) 31.02

SERVER: wlmhost
calls: 16594
call times (msec): avg 108.450 min 1.090 max 2730.069 sdev 102.420

Chapter 3. Multi resource monitoring and tuning tools 81

COMBINED (A11 Servers)
calls: 16594
call times (msec): avg 108.450 min 1.090 max 2730.069 sdev 102.420

Example 3-14 shows the netpmon command providing a full compliment of report
types. When the -0 flag is not issued, the default of a1l is assumed.

Example 3-14 netpmon command providing a full listing on all report types

serverl> netpmon -0 nmonZ2.out -v
Enter the "trcstop" command to complete netpmon processing

/usr/sbin/trace -a -T 256000 -0 - -j
000,000,001,002,003,005,006,106,10C,139,134,135,100,200,102,103,101,104,465,
467 ,46A,00A,163,19C,256,255,262,26A,26B,32D,32E,2A7,2A8,351,352,320,321,30A,
30B,330,331,334,335,2C3,2C4,2A4,2A5,2E6,2E7 ,2DA,2DB,2EA,2EB,252,216,211,107,
212,215,213

Moving this process to the background.

The following script generates network traffic.

ftp wimhost

Connected to wlmhost.

220 wimhost FTP server (Version 4.1 Sun Apr 8 07:45:00 CDT 2001) ready.

Name (wlmhost:root): root

331 Password required for root.

Password:

230 User root logged in.

ftp> cd /home/nmon

250 CWD command successful.

ftp> mput big*

mput big.? y

200 PORT command successful.

150 Opening data connection for big..

226 Transfer complete.

107479040 bytes sent in 68.91 seconds (1523 Kbytes/s)

local: big. remote: big.

ftp>

trcstop

[netpmon: Reporting started]

[netpmon: Reporting completed]

[netpmon: 1545.477 secs in measured interval]

82 AIX 5L Performance Tools Handbook

The full listing for the netpmon command is shown for the duration of the ftp
transfer operation in Example 3-14 on page 82. It has been broken up into
sections for clarity. The sections are broken up into process statistics, First Level
Interrupt Handler (FLIH) and Second Level Interrupt Handler (SLIH) statistics,
network device driver statistics, TCP socket call statistics, and detailed statistics.

Process statistics
Example 3-15 below shows the process statistics for the netpmon command’s full
report.

Example 3-15 The netpmon command verbose output showing process information

Sun May 27 11:46:52 2001
System: AIX serverl Node: 5 Machine: 000BC6FD4C00

trace -a -T 256000 -0 - -j
000,000,001,002,003,005,006,106,10C,139,134,135,100,200,102,
103,101,104,465,467,46A,00A,163,19C,256,255,262,26A,26B,32D,32E,2A7,2A8,351,
352,320,321,30A,30B,330,331,334,335,2C3,2C4,2A4,2A5,2E6,2E7 ,2DA,2DB, 2EA, 2EB,
252,216,211,107,212,215,213
TIME: 0.000000000 TRACE ON pid 7254 tid 0x82a9

channel 990982013
TIME: 120.467389060 TRACE OFF

...(Tines omitted)...

Process CPU use Statistics:

Network
Process PID CPU Time CPU % CPU %
ypbind 10580 17.9523 3.726 0.000
ftp 19060 12.6495 2.625 1.146
netpmon 17180 2.5410 0.527 0.000
UNKNOWN 16138 0.5125 0.106 0.000
syncd 6468 0.2858 0.059 0.000
dtgreet 4684 0.2294 0.048 0.000
UNKNOWN 18600 0.1940 0.040 0.000
UNKNOWN 5462 0.1929 0.040 0.000
wimsched 2580 0.1565 0.032 0.000
gil 2322 0.1057 0.022 0.022
aixterm 16050 0.0915 0.019 0.005
swapper 0 0.0468 0.010 0.000
X 5244 0.0428 0.009 0.000
Trud 1548 0.0404 0.008 0.000
trcstop 19062 0.0129 0.003 0.000
init 1 0.0112 0.002 0.000
ksh 18068 0.0080 0.002 0.000
rpc.lockd 11872 0.0070 0.001 0.000
nfsd 10326 0.0064 0.001 0.001
netpmon 14922 0.0034 0.001 0.000
netm 2064 0.0032 0.001 0.001

Chapter 3. Multi resource monitoring and tuning tools 83

rmcd 15744 0.0028 0.001 0.000
IBM. FSrmd 14714 0.0027 0.001 0.000
snmpd 4444 0.0023 0.000 0.000
trace 19058 0.0019 0.000 0.000
xmgc 1806 0.0015 0.000 0.000
sendmail 6236 0.0010 0.000 0.000
cron 9822 0.0009 0.000 0.000
hostmibd 8514 0.0007 0.000 0.000
IBM.AuditRMd 16516 0.0007 0.000 0.000
IBM. ERrmd 5080 0.0006 0.000 0.000
sysTogd 6974 0.0005 0.000 0.000
PM 13932 0.0004 0.000 0.000
UNKNOWN 7254 0.0004 0.000 0.000
UNKNOWN 5460 0.0003 0.000 0.000
UNKNOWN 5464 0.0003 0.000 0.000
rtcmd 9032 0.0001 0.000 0.000
shdaemon 15480 0.0001 0.000 0.000
Total (all processes) 35.1103 7.286 1.175
Idle time 459.0657 95.268

In Example 3-15 on page 83, the trace command that produced the output is
shown. The command was asynchronous as can be seen by the use of the -a
flag. The buffer size was increased to 256 KB with the -T flag and, more
importantly, the output was redirected to the standard output by using the -o -
flag. The list of trace hooks follow the -j flag. For more information on the trace
command flags, please refer to the trace command’s “Syntax” on page 686

Under the heading Process CPU use Statistics, the following headings can be

seen:
Process This is the name of the process that is being monitored.
PID The process identification number.

CPU Time The total CPU time used.

CPU % The CPU time as a percentage of total time.

Network CPU % The percentage of CPU time spent on executing network

related tasks.

84 AIX 5L Performance Tools Handbook

In Example 3-15 on page 83, the -v flag was used, so more than 20 processes
are displayed. At the bottom of the Process CPU use Statistics output, the
Total CPU and total IdTe time is displayed. It can be seen from the process
statistics that the ftp transfer used 12.6 seconds of CPU time. The total CPU
time as seen from the bottom of the process statistics table is 494 seconds. This
equates to 2.6 percent of the CPU total time spent executing this command.

FLIH and SLIH CPU statistics
Example 3-16 shows a report of the FLIH and SLIH CPU use statistics. The
report is an extract from the full netpmon report.

Example 3-16 The full netomon report showing FLIH and SLIH statistics
First Level Interrupt Handler CPU use Statistics:

Network
FLIH CPU Time CPU % CPU %
PPC decrementer 1.8355 0.381 0.000
external device 0.9127 0.189 0.185
data page fault 0.0942 0.020 0.000
queued interrupt 0.0286 0.006 0.000
instruction page fault 0.0061 0.001 0.000
Total (all FLIHs) 2.8770 0.597 0.186
Second Level Interrupt Handler CPU use Statistics:

Network
SLIH CPU Time CPU % CPU %
cstokdd 2.7421 0.569 0.569
s_scsiddpin 0.0045 0.001 0.000
gxentdd 0.0026 0.001 0.001
unix 0.0001 0.000 0.000
Total (all SLIHs) 2.7494 0.571 0.570

Additional information on first and second level interrupt handlers is shown in the
report. The statistics that are displayed under these headings is:

FLIH The description of the first level interrupt handler.

SLIH The description of the second level interrupt handler.

Chapter 3. Multi resource monitoring and tuning tools 85

86

CPU Time The total amount of time used by the interrupt handler.

CPU % This is the CPU time used by this interrupt handler as a
percentage of total CPU time.

Network CPU % This is the percentage of total time that this interrupt handler
executed for a network related process.

At the bottom of the first and second level interrupt handler reports, the total
amount of CPU use for the specific level of interrupt handler is displayed. Note
that in the SLIH column, the statistics for cstokdd are displayed. This is the time
that the CPU spent handling interrupts from the token ring adapter. The token
ring adapter may have had traffic other than the ftp transfer data. Hence these
CPU use statistics can not be regarded as the statistics for the ftp transfer.

Network device driver statistics
Example 3-17 shows the network device driver statistics extracted from the
netpmon commands full verbose output.

Example 3-17 Extract of the full nefpmon output showing device driver statistics

Network Device-Driver Statistics (by Device):

----------- Xmit ----------- -—------ ReCvV ---------
Device Pkts/s Bytes/s Util QLen Pkts/s Bytes/s Demux
token ring 0 617.00 930607 0.0%21.810 310.32 19705 0.0142

In Example 3-17, the Network Device Driver Statistics (by Device) are shown. In
the case of the ftp data transfer, the connection to the remote system was via
token ring. Note that there could be other traffic over token ring that could affect
the values, so they cannot be assumed to be the values for the ftp transfer
alone. The description for the headings are as follows:

Device The name of the device. In this instance token ring 0.

Xmit Pkts/s The number of packets per second transmitted through the
device.

Xmit Bytes/s The number of bytes per second transmitted through the
device.

Xmit Util The percentage of time that this device was busy.

Xmit Qlen The number of requests waiting to be transmitted, averaged

over the time period.

AIX 5L Performance Tools Handbook

Recv Pkts/s The number of packets per second received by this device.
Recv Bytes/s The number of bytes per second received by this device.

Recv Demux The percentage of time spent in the demux layer as a
percentage of total time.

TCP socket call statistics
Example 3-18 is an extract from the full verbose output of the netpmon command.
The extract shows the TCP socket call statistics.

Example 3-18 An extract from the full netpmon report showing socket call statistics
TCP Socket Call Statistics (by Process):

------ Read ----- ----- Write -----
Process PID Calls/s Bytes/s Calls/s Bytes/s
ftp 19060 0.30 1202 13.51 892186
aixterm 16050 0.81 26 2.27 142
Total (all processes) 1.10 1227 15.78 892328

A socket report is also provided under the heading Detailed TCP Socket Call
Statistics (by Process). The details for the ftp transfer are shown in the first
line of this report. Use the process identification (PID) to identify the correct ftp
transfer. Note that over the same monitoring period, there could be more than
one ftp transfer running. The following fields are displayed in this report:

Process This is the name of the process.
PID This is the process identification number.
Read Calls/s This is the number of read, recv, and recvfrom subroutines

made per second by this process on sockets of this type.

Read Bytes/s The number of bytes per second requested by the read,
recv, and recvfrom subroutine calls.

Write Calls/s The number of write, send, and sendto subroutine calls per
second made by this process on this socket type

Write Bytes/s The number of bytes per second written to this process to
sockets of this protocol type.

Chapter 3. Multi resource monitoring and tuning tools 87

88

Detailed statistics
Example 3-19 shows the detailed netpmon statistics, which are an extract from
the netpmon full report.

Example 3-19 An extract from the nefpmon full report showing detailed statistics

Detailed Second Level Interrupt Handler CPU use Statistics:

SLIH: cstokdd
count: 43184
cpu time (msec): avg 0.063 min 0.008 max 0.603 sdev 0.028

SLIH: s_scsiddpin
count: 221
cpu time (msec): avg 0.020 min 0.009 max 0.044 sdev 0.009

SLIH: gxentdd

count: 122

cpu time (msec): avg 0.021 min 0.011 max 0.024 sdev 0.002
SLIH: unix
count: 12

cpu time (msec): avg 0.010 min 0.003 max 0.013 sdev 0.003

COMBINED (A11 SLIHs)
count: 43539
cpu time (msec): avg 0.063 min 0.003 max 0.603 sdev 0.028

DEVICE: token ring 0
recv packets: 37383
recv sizes (bytes): avg 63.5 min 50 max 1514 sdev 44.1
recv times (msec): avg 0.008 min 0.005 max 0.048 sdev 0.003
demux times (msec): avg 0.046 min 0.005 max 0.569 sdev 0.024
xmit packets: 74328
xmit sizes (bytes): avg 1508.3 min 50 max 1514 sdev 89.0
xmit times (msec): avg 35.348 min 0.130 max 7837.976 sdev 164.951

Detailed TCP Socket Call Statistics (by Process):

PROCESS: ftp PID: 19060
reads: 36
read sizes (bytes): avg 4021.3 min 4000 max 4096 sdev 39.9

AIX 5L Performance Tools Handbook

read times (msec): avg 5.616 min 0.030 max 72.955 sdev 15.228
writes: 1628

write sizes (bytes): avg 66019.2 min 6 max 66346 sdev 4637.1

write times (msec): avg 38.122 min 0.115 max 542.537 sdev 14.785

PROCESS: aixterm PID: 16050

reads: 97
read sizes (bytes): avg 32.0 min 32 max 32 sdev 0.0
read times (msec): avg 0.030 min 0.021 max 0.087 sdev 0.009
writes: 273
write sizes (bytes): avg 62.8 min 28 max 292 sdev 55.7

write times (msec): avg 0.092 min 0.052 max 0.209 sdev 0.030

PROTOCOL: TCP (A11 Processes)

reads: 133
read sizes (bytes): avg 1111.8 min 32 max 4096 sdev 1772.6
read times (msec): avg 1.542 min 0.021 max 72.955 sdev 8.302
writes: 1901
write sizes (bytes): avg 56547.3 min 6 max 66346 sdev 23525.1

write times (msec): avg 32.661 min 0.052 max 542.537 sdev 19.107

Note that the values in the detailed report show the average, minimum,
maximum, and standard deviation values for the process, FLIH and SLIH,
network device driver, and TCP socket call statistics over the monitored period.

3.4 Performance Diagnostic Tool (PDT)

The Performance Diagnostic Tool (PDT) package attempts to identify
performance problems automatically by collecting and integrating a wide range
of performance, configuration, and availability data. The data is regularly
evaluated to identify and anticipate common performance problems. PDT
assesses the current state of a system and tracks changes in workload and
performance.

PDT data collection and reporting are easily enabled, and no further
administrator activity is required.

Note: If no other structured way is used to monitor and analyze system
performance, enable PDT and archive the reports.

While many common system performance problems are of a specific nature,
PDT also attempts to apply some general concepts of well-performing systems
to its search for problems. Some of these concepts are:

Chapter 3. Multi resource monitoring and tuning tools 89

» Balanced use of resources

» Operation within bounds

» Identified workload trends

» Error free operation

» Changes investigated

» Appropriate setting of system parameters

The PDT programs reside in /usr/sbin/perf/diag_tool, and are part of the

bos.perf.diag_tool fileset, which is installable from the AIX base installation
media.

3.4.1 Syntax

To start the PDT configuration, enter:
/usr/sbin/perf/diag_tool/pdt_config

The pdt_config is a menu driven program. Refer to the Example 3.4.3 on
page 91 for its use.

/usr/sbin/perf/diag_tool/Driver_

The master script, Driver_, only takes one parameter; the name of the collection
profile for which activity is being initiated. This name is used to select which _.sh
files to run. For example, if Driver_ is executed with §1=daily, then only those
.sh files listed with a 'daily' frequency are run. Check the respective control files
to see which . sh files are driven by which profile names.

daily collection routines for those _.sh files that belong to the
daily profile. Normally this is only information gathering.

daily2 collection routines for those _.sh files that belong to the
daily2 profile. Normally this is only reporting on
previously collected information.

offweekly collection routines for those _.sh files that belong to the
offweekly profile.

3.4.2 Information on measurement and sampling

The PDT package consists of a set of shell scripts that invoke AIX commands.
When enabled, the collection and reporting scripts will run under the adm user.

90 AIX 5L Performance Tools Handbook

The master script, Driver_, will be stared by PDT:cron;Daemons:cron;cron;
Monday through Friday at 9:00 and 10:00 in the morning and every Sunday at
21:00 unless changed manually by editing the crontab entries. Each time the
Driver_ script is started it runs with different parameters.

3.4.3 Examples

To start PDT, run the following command and use the menu driven configuration
program to perform the basic setup:

/usr/sbin/perf/diag_tool/pdt_config

When you run it, follow the menus. Example 3-20 is taken from the main menu.

Example 3-20 PDT customization menu

PDT customization menu

1) show current PDT report recipient and severity level
2) modify/enable PDT reporting

3) disable PDT reporting
4) modify/enable PDT collection
5) disable PDT collection

6) de-install PDT
7) exit pdt_config
Please enter a number:

First check the current setting by selecting 1 in Example 3-21.
Example 3-21 PDT current setting

current PDT report recipient and severity Tevel
root 3

PDT customization menu

1) show current PDT report recipient and severity level
2) modify/enable PDT reporting

3) disable PDT reporting
4) modify/enable PDT collection
5) disable PDT collection

6) de-install PDT
7) exit pdt_config
Please enter a number:

This states level 3 reports are to be made and sent to the root user on the local
system. To check if root has a mail alias defined, run the following command:

grep “root /etc/aliases

Chapter 3. Multi resource monitoring and tuning tools 91

92

If nothing is returned, the mail should be delivered to the local node. If there is a
return value, use the command below to determine the destination address:

grep “root /etc/aliases
root:pdt@collector.itso.ibm.com,"|/usr/bin/cat >>/tmp/log"

The above example shows that mail for the root users is routed to another user
on another host, in this case the user pdt on host collector.itso.ibm.com, and
the mail will also be appended to the /tmp/log file.

By default, the Driver_ program reports are generated with severity level 1 with
only the most serious problems identified. Severity levels 2 and 3 are more
detailed. By default, the reports are mailed to the adm user, but can be changed
to root or not sent at all.

The configuration program will update the adm user’s crontab file. Check the
changes made by using the cronadm command as in Example 3-22.

Example 3-22 Checking the PDT crontab entry

cronadm cron -1 adm[grep diag_tool

0 9**1-5 /usr/sbin/perf/diag_tool/Driver_ daily

0 10 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily2
021 **6 /usr/sbin/perf/diag_tool/Driver_ offweekly

It could also be done by using grep on the crontab file as shown in
Example 3-23.

Example 3-23 Another way of checking the PDT crontab entry

grep diag_tool /var/spool/cron/crontabs/adm

0 9**1-5 /usr/sbin/perf/diag_tool/Driver_ daily

0 10 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily2
021 **6 /usr/shin/perf/diag_tool/Driver_ offweekly

The daily parameter makes the Driver_ program collect data and store it in the
/var/perf/tmp directory. The programs that do the actual collecting are specified
in the /var/perf/cfg/diag_tool/.collection.control file. These programs are also
located in the /usr/sbin/perf/diag_tool directory.

The daily2 parameter makes the Driver_ program create a report from the
/var/perf/tmp data files and emails it to the recipient specified in the
/Nvar/perf/cfg/diag_tool/.reporting.list file. The PDT_REPORT is the formatted
version and the .SM_RAW_REPORT is the unformatted report file.

How to edit the configuration files
There are some configuration files for PDT that need to be edited to better reflect
the needs of a specific system.

AIX 5L Performance Tools Handbook

How to find PDT files and directories

PDT analyzes files and directories for systematic growth in size. It examines only
those files and directories listed in the file /var/perf/cfg/diag_tool/ files. The
format of the .files file is one file or directory name per line. The default content of
this file is as follows (Example 3-24).

Example 3-24 files file
/usr/adm/wtmp
/var/spool/qdaemon/
/var/adm/ras/

/tmp/

You can use an editor’ to modify this file to track files and directories that are
important to your system.

How to monitor hosts

PDT tracks the average ECHO_REQUEST delay to hosts whose names are listed in
the /var/perficfg/diag_tool/.nodes file. This file is not shipped with PDT (which
means that no host analysis is performed by default), but may be created by the
administrator. The file should contain a hostname or ip address for each host that
is to be monitored (pinged). Each line in the .nodes file should only contain either
a hostname or ip address. In our following example we will monitor the
connection to the Domain Name Server (DNS). Example 3-25 shows how to
check which nameserver a DNS client is using by examining the /etc/resolv.conf
file.

Example 3-25 ./etc/resolv.conf file
awk '/nameserver/{print $2}' /etc/resolv.conf
9.12.0.30

To monitor the nameserver shown in the example above, the .nodes file could
contain the IP address on a separate line as in Example 3-26.

Example 3-26 .nodes file
cat .nodes
9.12.0.30

How to change thresholds

The file /var/perf/cfg/diag_tool/.thresholds contains the thresholds used in
analysis and reporting. These thresholds, listed below, have an effect on PDT
report organization and content. Example 3-27 is the content of the default file.

Example 3-27 .thresholds default file
grep -v ™ .thresholds

1 Or just append filenames with: print filename >> .files

Chapter 3. Multi resource monitoring and tuning tools 93

DISK_STORAGE_BALANCE 800
PAGING_SPACE_BALANCE 4
NUMBER_OF_BALANCE 1
MIN_UTIL 3

FS_UTIL_LIMIT 90
MEMORY_FACTOR .9
TREND_THRESHOLD .01
EVENT_HORIZON 30

The settings above are the default values. The thresholds are:

DISK_STORAGE_BALANCE

PAGING_SPACE_BALANCE

NUMBER_OF BALANCE

MIN_UTIL

FS_UTIL_LIMIT

MEMORY_FACTOR

TREND_THRESHOLD

94 AIX 5L Performance Tools Handbook

The SCSI controllers having the largest and smallest
disk storage are identified. This is a static size, not the
amount allocated or free.The default value is 800. Any
integer value between zero (0) and 10000 is valid.

The paging spaces having the largest and the smallest
areas are identified. The default value is 4. Any integer
value between zero (0) and 100 is accepted. This
threshold is presently not used in analysis and
reporting.

The SCSI controllers having the greatest and least
number of disks attached are identified. The default
value is one (1). It can be set to any integer value from
zero (0) to 10000.

Applies to process utilization. Changes in the top three
CPU consumers are only reported if the new process
had a utilization in excess of MIN_UTIL. The default
value is 3. Any integer value from zero (0) to 100 is
valid.

Applies to journaled file system utilization. Any integer
value between zero (0) and 100 is accepted.

The objective is to determine if the total amount of
memory is adequately backed up by paging space.
The formula is based on experience and actually
compares MEMORY_FACTOR * memory with the average
used paging space. The current default is .9. By
decreasing this number, a warning is produced more
frequently. Increasing this number eliminates the
message altogether. It can be set anywhere between
.001 and 100.

Used in all trending assessments. It is applied after a
linear regression is performed on all available
historical data. This technique basically draws the best

line among the points. The slope of the fitted line must
exceed the Tast_value * TREND_THRESHOLD. The
objective is to try to ensure that a trend, however
strong its statistical significance, has some practical
significance. The threshold can be set anywhere
between 0.00001 and 100000.

EVENT_HORIZON Also used in trending assessments. For example, in
the case of file systems, if there is a significant (both
statistical and practical) trend, the time until the file
system is 100 percent full is estimated. The default
value is 30, and it can be any integer value between
zero (0) and 100000.

How to use reports generated by PDT
The following default configured level 3 report is an indication of what will be
delivered by E-mail every day (Example 3-28).

Example 3-28 PDT sample E-mail report
Performance Diagnostic Facility 1.0

Report printed: Tue May 8 10:00:00 2001

Host name: wimhost

Range of analysis includes measurements
from: Hour 9 on Tuesday, May 8th, 2001
to: Hour 9 on Tuesday, May 8th, 2001

Notice: To disable/modify/enable collection or reporting
execute the pdt_config script as root

I/0 CONFIGURATION
- Note: volume hdiskl has 8144 MB available for allocation
while volume hdiskO has 5696 MB available

PAGING CONFIGURATION

- Physical Volume hdisk2 (type: SCSI) has no paging space defined

- Physical Volume hdisk3 (type: SCSI) has no paging space defined

- Physical Volume hdiskl (type: SCSI) has no paging space defined

- A1l paging spaces have been defined on one Physical volume (hdiskO0)

I1/0 BALANCE
- Phys. volume hdisk0 is not busy
volume hdisk0O, mean util. = 0.00 %
- Phys. volume hdiskl is not busy

Chapter 3. Multi resource monitoring and tuning tools 95

96

o

volume hdiskl, mean util. = 0.00
- Phys. volume hdisk2 is not busy
volume hdisk2, mean util. = 0.00
- Phys. volume hdisk3 is not busy
volume hdisk3, mean util. = 0.00

o

o

PROCESSES

- First appearance of 20250 (j2pg) on top-3 memory list
(memory % = 5.00)

- First appearance of 7258 (rtcmd) on top-3 memory list
(memory % = 5.00)

- First appearance of 2322 (gil) on top-3 memory list
(memory % = 5.00)

FILE SYSTEMS

- File system hd2 (/usr) is nearly full at 94 %

- File system 1v04 (/work/fsl) is nearly full at 10
- File system 1v05 (/work/fs2) is nearly full at 10

0%
0

9
%

SYSTEM HEALTH
- Current process state breakdown:
99.00 [100.0 %] : active
99.00 = TOTAL
[based on 1 measurement consisting of 10 2-second samples]

-------------------- Summary ----------mmm e
This is a severity Tevel 3 report
No further details available at severity levels > 3

The PDT_REPORT, at level 3, will have the following report sections:

Alerts

Upward Trends
Downward Trends
System Health
Other

Summary

vVvyYvyvyYyypy

And subsections such as the following:

I/0 CONFIGURATION
PAGING CONFIGURATION
I/0 BALANCE
PROCESSES

FILE SYSTEMS

VIRTUAL MEMORY

vVvyvyvyyy

AIX 5L Performance Tools Handbook

This is the raw information from the .SM_RAW_REPORT file that is used for creating

the PDT_REPORT file (Example 3-29).
Example 3-29 .SM_RAW_REPORT file

H 1 [Performance Diagnostic Facility 1.0
H1 |

H1 | Report printed: Tue May 8 10:00:00 2001
H1 |
H 1 | Host name: wimhost

H 1 | Range of analysis includes measurements

Hil | from: Hour 9 on Tuesday, May 8th, 2001
H1 | to: Hour 9 on Tuesday, May 8th, 2001
H1 |

...(Tines omitted)...

The following script shows you how to extract report subsections from the

PDT_REPORT file (Example 3-30). In this example it displays all subsections in turn.

Example 3-30 Script to extract subsections

#!/bin/ksh

set -A tab "I/O CONFIGURATION" "PAGING CONFIGURATION" "I/O BALANCE" \
"PROCESSES" "FILE SYSTEMS" "VIRTUAL MEMORY"

for string in "${tab[@]}";do
grep -p "$string" /var/perf/tmp/PDT_*
done

This is a sample output from the script above using the same data as in
Example 3-28 on page 95 (Example 3-31).

Example 3-31 Output from extract subsection script

I/0 CONFIGURATION
- Note: volume hdiskl has 8144 MB available for allocation
while volume hdiskO has 5696 MB available

PAGING CONFIGURATION

- Physical Volume hdisk2 (type: SCSI) has no paging space defined

- Physical Volume hdisk3 (type: SCSI) has no paging space defined

- Physical Volume hdiskl (type: SCSI) has no paging space defined

- A1l paging spaces have been defined on one Physical volume (hdiskO0)

Chapter 3. Multi resource monitoring and tuning tools

97

1/0 BALANCE

- Phys. volume hdisk0 is not busy
volume hdisk0O, mean util. = 0.00

- Phys. volume hdiskl is not busy
volume hdiskl, mean util. = 0.00

- Phys. volume hdisk2 is not busy
volume hdisk2, mean util. = 0.00

- Phys. volume hdisk3 is not busy
volume hdisk3, mean util. = 0.00

A

°

A

A

PROCESSES

- First appearance of 20250 (j2pg) on top-3 memory list
(memory % = 5.00)

- First appearance of 7258 (rtcmd) on top-3 memory list
(memory % = 5.00)

- First appearance of 2322 (gil) on top-3 memory list
(memory % = 5.00)

FILE SYSTEMS

- File system hd2 (/usr) is nearly full at 94 %

- File system 1v04 (/work/fsl) is nearly full at 10
- File system 1v05 (/work/fs2) is nearly full at 10

How to create a PDT report manually

As an alternative to using the periodic report, any user can request a current
report from the existing data by executing
/usr/sbin/perf/diag_tool/pdt_report #, where # is a severity number from
one (1) to three (3). The report is produced with the given severity (if none is
provided, it defaults to one) and is written to standard output. Generating a report
in this way does not cause any change to the /var/perf/tmp/PDT_REPORT files.

How to run PDT collection manually

In some cases you might want to run the collection manually or by other means
than using cron. You simply run the Driver_ script with options as in the cronfile.
The following example will perform the basic collection:

/usr/sbin/perf/diag_tool/Driver_ daily

3.5 perfpmr

perfpmr is a set of utilities that build a testcase containing the necessary
information to assist in analyzing performance issues. It is primarily designed to
assist IBM software support, but is also useful as a documentation tool for your
system.

98 AIX 5L Performance Tools Handbook

As perfpmr is updated frequently, it is not distributed on AIX media. It can be
downloaded from ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr

3.5.1 Syntax

The syntax of the perfpmr command is as follows:

perfpmr.sh monitor_seconds [delay_seconds] [-c] [-n] [-p] [-s]

Flags

-c Used if configuration information is not required

-n Used if netstat or nfsstat is not required

-p Used if pprof collection is not required while moni tor. sh is running
-s Used if svmon outout is not required

Parameters

monitor_seconds

delay_seconds

Collection period in seconds. The minimum monitor_seconds
is 60 seconds.

Wait before starting collection period (in seconds). The
default value for delay_seconds is 0.

Use perfpmr.sh 600 for a standard collection period of 600 seconds.

3.5.2 Information on measurement and sampling

Unless you run the shell scripts separately, perfpmr.sh 600 will execute the
following shell scripts to obtain a testcase. You can also run these scripts on their
own. Please refer to “Running perfpmr” on page 106 for details.

config.sh

emstat.sh time

filemon.sh time

hd_pbuf_cnt.sh

iostat.sh time

Collects configuration information into a report called
config.sum.

Builds a report called emstat.int on emulated
instructions. The time parameter must be greater or
equal to 60.

Builds a report called filemon.sum on file I/0O. The time
parameter does not have any restrictions.

Produces information on the number of waits on
Logical Volume Manager (LVM).

Builds two reports on I/O statistics; a summary report
called iostat.sum, and an interval report called

Chapter 3. Multi resource monitoring and tuning tools 99

100

iptrace.sh time

monitor.sh time

AIX 5L Performance Tools Handbook

iostat.int. The time parameter must be greater or equal
to 60.

Builds a raw Internet Protocol (IP) trace report on
network I/O called iptrace.raw. You can convert the
iptrace.raw file to a readable ipreport file called
iptrace.int using command iptrace.sh -r

The time parameter does not have any restrictions.

The syntax is: monitor.sh time [-n] [-p] [-s]

-n Flag used if netstat or nfsstat is not required.
-p Flag used if pprof is not required.
-s Flag used if svmon is not required.

monitor.sh creates the following reports:

Isps.after Contains 1sps -a and 1sps -s output
aftermonitor.sh was run. Used to
report on paging space use.

Isps.before Contains 1sps -a and 1sps -s output
before monitor.sh was run. Used to
report on paging space use.

nfsstat.int Contains nfsstat -mand nfsstat
-csnr output before and after
monitor.sh was run. Used to report
on Network File System use and
configuration.

monitor.int Contains samples by interval using ps
-efk (showing active processes
before and after monitor.sh was run).
It also contains sadc, sar -A, iostat,
vmstat, and emstat output.

monitor.sum Contains samples by summary using
ps -efk (showing changes in ps
output for active processes before and
aftermonitor.sh was run). It also
contains sadc, sar -A, iostat,
vmstat, and emstat outputs.

pprof.trace.raw Contains the raw trace for pprof.

psb.elfk Contains a modified ps -elk output
before monitor.sh was run.

svmon.after Contains svmon -G and svmon -Pns
output and top segments use by
process with the svmon -S command

netstat.sh [-r] time

nfsstat.sh time

perfpmr.sh time

pprof.sh time

after monitor.sh was run. Used to
report on memory use.

svmon.before Contains svmon -G and svmon -Pns
output and top segment use by
process with the svmon -S command
before monitor.sh was run. Used to
report on memory use.

vmstati.after ~ Contains vmstat -i output after
monitor.sh was run. Used to report
on 1/O device interrupts.

vmstati.before Contains vmstat -i output before
monitor.sh was run. Used to report
on 1/O device interrupts.

vmtunea.after Contains vmtune -a output after
monitor.sh was run. Used to report
on memory use.

vmtunea.before Contains vmtune -a output before
monitor.sh was run. Used to report
on memory use.

Builds a report on network configuration and use
called netstat.int containing tokstat -d of the
token-ring interfaces, entstat -d of the ethernet
interfaces, netstat -in, netstat -m, netstat -rn,
netstat -rs, netstat -s, netstat -D, and netstat
-an before and after monitor.sh was run. You can
reset the ethernet and token-ring statistics and re-run
this report by running netstat.sh -r 60. The time
parameter must be greater or equal to 60.

Builds a report on NFS configuration and use called
netstat.int containing nfsstat -m, and nfsstat -csnr
before and after nfsstat.sh was run. The time
parameter must be greater or equal to 60.

Generates all the reports listed here. The time
parameter must be greater or equal to 60. Refer to
section “Parameters” on page 99 for the syntax.

Builds a file called pprof.trace.raw that can be
formatted with the pprof.sh -r command. Refer to
Section 4.7.3, “Examples” on page 251 for more
details. The time parameter does not have any
restrictions.

Chapter 3. Multi resource monitoring and tuning tools 101

ps.sh time

sar.sh time

tcpdump.sh int.time

tprof.sh time

trace.sh time

vmstat.sh time

102 AIX 5L Performance Tools Handbook

Builds reports on process status (ps). ps.sh creates
the following files:

psa.elfk A ps -elfklisting after ps.sh was run.
psb.elfk A ps -elfklisting before ps.sh was run.

ps.int Active processes before and after ps.sh was
run.

ps.sum A summary report of the changes between
when ps.sh started and finished. This is
useful for determining what processes are
consuming resources.

The time parameter must be greater or equal to 60.

Builds reports on sar. sar.sh creates the following
files:

sar.int Output of commands sadc 10 7 and sar -A

sar.sum A sar summary over the period sar.sh was
run

The time parameter must be greater or equal to 60.

int. is the name of the interface, for example tr0 is
token-ring. Creates a raw trace file of a TCP/IP dump
called tcpdump.raw. To produce a readable
tcpdump.int file, use the command tcpdump.sh -r. The
time parameter does not have any restrictions.

Creates a tprof summary report called tprof.sum.
Used for analyzing memory use of processes and
threads. You can also specify a program to profile by
specifying the command tprof.sh -p program 60.
This command allows you to profile the executable
called program for 60 seconds. The time parameter
does not have any restrictions.

Creates the raw trace files (trace*) from which an
ASCII trace report can be generated using the trcrpt
command or by running trace.sh -r. This command
will create a file called trace.int that contains the
readable trace. Used for analyzing performance
problems. The time parameter does not have any
restrictions.

Builds reports on vmstat; a vmstat interval report
called vmstat.int, and a vmstat summary report called

vmstat.sum. The time parameter must be greater or
equal to 60.

Due to the volume of data trace collects, the trace will only run for five seconds
(by default), so it is possible that it will not be running when the performance
problems occur on your system, especially if your performance problems occur
for short periods. In this case, it would be advisable to run the trace by itself for a
period of 15 seconds when the problem is present. The command to run a trace
for fifteen seconds is trace.sh 15

An RS/6000 SP can produce a testcase of 135 MB, with 100 MB just for the
traces. This size can vary considerably depending on system load. If you run the
trace on the same system with the same workload for 15 seconds, then you
could expect the trace files to be approximately 300 MB in size.

One raw trace file per CPU is produced. The files are called trace.raw-0,
trace.raw-1, and so forth for each CPU. An additional raw trace file called
trace.raw is also generated. This is a master file that has information that ties in
the other CPU specific traces. To merge the trace files together to form one raw
trace file, run the following commands:

trcrpt -C all -r trace.raw > trace.r

rm trace.raw*

3.5.3 Building and submitting a testcase

You may be asked by IBM to supply a testcase for a performance problem or you
may wish to run perfpmr.sh for your own requirements (for example, to produce
a base line for detecting future performance problems). In either case,
perfpmr.sh is the tool to collect performance data. Even if your performance
problem is attributed to one component of your system, for example, the network,
perfpmr.sh is still the way to send a testcase because it contains other
information that is required for problem determination. Additional information for
problem determination may be requested by IBM software support.

Note: IBM releases Maintenance Levels for AIX. These are a collection of
Program Temporary Fixes (PTFs) used to upgrade the operating system to
the latest level, but remaining within your current release. Often these, along
with the current version of micro-code for the disks and adapters, have
performance enhancement fixes. You may therefore wish to load these.

There are five stages to build and send a testcase. These steps must be
completed when you are logged in as root. The steps are listed as follows:

» Prepare to download perfpmr

Chapter 3. Multi resource monitoring and tuning tools 103

» Download perfpmr
» Install perfpmr
» Run perfpmr

» Upload the testcase

Preparing for perfpmr
The following filesets should be installed before running perfpmr. sh:

» bos.acct

» bos.sysmgt.trace
» perfagent.tools

» bos.net.tcp.server
» bos.adt.include

» bos.adt.samples

Downloading perfpmr

perfpmr is downloadable from
ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr

Using a browser, download the version that is applicable to your version of AlX.
The file size should be under 1 MB.

Important: Always download a new copy of perfpmr in case of changes. Do
not use an existing pre-downloaded copy.

If you have downloaded perfpmr to a PC then transfer it to the system in binary
mode using ftp, placing it in an empty directory.

Installing perfpmr
Uncompress and extract the file with the tar command. The current directory will
be populated with the following files:

Install
PROBLEM.INFO
README
config.sh

curt

emstat.sh
filemon.sh
getevars
hd_pbuf_cnt.sh
iostat.sh

v

VVYyVYyVYVYVYVYYVYY

104 AIX 5L Performance Tools Handbook

VYYVYYYYYYYYVYVYVYVYVYVYYY

iptrace.sh
Isc

memfill
monitor.sh
netstat.sh
nfsstat.sh
perfpmr.sh
pprof.sh
ps.sh
sar.sh
setpri
smmap
splat
tcpdump.sh
tprof.sh
trace.sh
utld
vmstat.sh
why

In the directory you will notice files ending in .sh. These are shell scripts that may
be run separately. Normally these shell scripts are run automatically by running
perfpmr.sh. Please read the README file to find any additional steps that may

be applicable to your system.

Install perfpmr by running ./Install. This will replace the following files in the
/usr/bin directory with symbolic links to the files in the directory where you
installed perfpmr:

VYVYYYYYYYYYYVYVYVYVYYY

config.sh
curt
emstat.sh
filemon.sh
getevars
hd_pbuf_cnt.sh
iostat.sh
iptrace.sh
Isc
monitor.sh
netstat.sh
nfsstat.sh
perfpmr.sh
pprof.sh
ps.sh
sar.sh
setpri

Chapter 3. Multi resource monitoring and tuning tools

105

106

tcpdump.sh
tprof.sh
trace.sh
utld
vmstat.sh

vVvyyvyyvyy

The output of the installation procedure will be similar to that shown in
Example 3-32.

Example 3-32 Perfpmr installation screen

./Install

(C) COPYRIGHT International Business Machines Corp., 2000

PERFPMR Installation started...

PERFPMR Installation completed.

Running perfpmr
There are two scenarios to consider when running perfpmr.

If your system is performing poorly for long periods of time and you can predict
when it runs slow, then you can run ./perfpmr.sh 600

In some situations, a system may perform normally but will run slow at various
times of the day. If you run perfpmr.sh 600 then there is a chance that perfpmr
might not have captured the performance slow-down. In this case you could run
the scripts manually when the system is slow and use a longer time-out period,
for example, a trace.sh 15 will perform a trace for 15 seconds instead of the
default five seconds. We would still need a perfpmr.sh 600 to be initially run
before running individual scripts. This will ensure that all the data and
configuration has been captured.

Attention: If you are using HACMP, then you may want to extend the Dead
Man Switch (DMS) time-out or shutdown HACMP prior to collecting perfpmr
data to avoid accidental failovers.

perfpmr.sh creates the following files on a system with four CPUs:

» perfpmr.int
config.sum
crontab_|
etc_security_limits

vYyy

AIX 5L Performance Tools Handbook

errpt_a
getevars.out
__tmp.k
__tmp.s
__tmp.u
tprof.sum

w.int

__ldmap
__trc_rpt2
filemon.sum
iptrace.raw
monitor.int
monitor.sum
vmtunea.after
Isps.after
vmstati.after
pprof.trace.raw
netstat.int
psa.elfk
nfsstat.int
psb.elfk
Isps.before
vmstati.before
vmtunea.before
gennames.out
trace.fmt
trace.nm
trace.crash.inode
trace.maj_min2lv
trace.raw-0
trace.raw-1
trace.raw-2
trace.raw-3
trace.raw

VY Y Y Y Y Y VY Y Y Y YY Y VY Y YYYYVYVYYYVYVYVYVYVYVYVYYVYYyYY

Tip: After you have installed perfpmr you can run it at any time to make sure
that all the files described above are captured. By doing this, you can be
confident that you will get a full testcase.

Uploading the testcase

The directory will also contain a file called PROBLEM.INFO that must be
completed. Bundle the files together using the tar command and upload the file
to IBM as documented in the README files.

Chapter 3. Multi resource monitoring and tuning tools 107

3.5.4 Examples

Example 3-33 is an example of running perfpmr.sh 600.
Example 3-33 Running perfomr.sh

perfpmr.sh 600
C) COPYRIGHT International Business Machines Corp., 2000

PERFPMR: perfpmr.sh Version 433 2000/06/06
PERFPMR: Parameters passed to perfpmr.sh: 600
PERFPMR: Data collection started in foreground (renice -n -20)

TRACE.SH: Starting trace for 5 seconds

TRACE.SH: Data collection started

TRACE.SH: Data collection stopped

TRACE.SH: Trace stopped

TRACE.SH: Trcnm data is in file trace.nm
TRACE.SH: /etc/trcfmt saved in file trace.fmt
TRACE.SH: Binary trace data is in file trace.raw

MONITOR: Capturing initial 1sps and vmstat data
MONITOR: Starting system monitors for 600 seconds.
MONITOR: Waiting for measurement period to end....

MONITOR: Capturing final Tsps and vmstat data

MONITOR: Generating reports....

MONITOR: Network reports are in netstat.int and nfsstat.int
MONITOR: Monitor reports are in monitor.int and monitor.sum

IPTRACE: Starting iptrace for 10 seconds....
0513-059 The iptrace Subsystem has been started. Subsystem PID is 28956.
0513-044 The iptrace Subsystem was requested to stop.

IPTRACE: iptrace collected....

IPTRACE: Binary iptrace data is in file iptrace.raw

FILEMON: Starting filesystem monitor for 60 seconds....
FILEMON: tracing started

FILEMON: tracing stopped

FILEMON: Generating report....

TPROF: Starting tprof for 60 seconds....

TPROF: Sample data collected....

TPROF: Generating reports in background (renice -n 20)
TPROF: Tprof report is in tprof.sum

CONFIG.SH: Generating SW/HW configuration

WLM is running
CONFIG.SH: Report is in file config.sum

108 AIX 5L Performance Tools Handbook

3.6 ps

PERFPMR: Data collection complete.

Tip: It is useful to run perfpmr when your system is under load and performing
normally. This will give you a base line to determine future performance
problems.

You should run perfpmr again when:
» Your system is experiencing performance problems.
» You make hardware changes to the system.

» You make any changes to your network configuration.

» You make changes to the AIX Operating System, for example, when you
install upgrades or tune AlX.

» You make changes to your application.

The Process Status (ps) command produces a list of processes on the system
that can be used to determine how long a process has been running, how much
CPU resource processes are using, and if processes are being penalized by the
system. It will also show how much memory processes are using, how much 1/O
a process is performing, the priority and nice values for process, and who
created the process.

ps resides in /usr/bin and is part of the bos.rte.commands fileset, which is
installed by default from the AlX base installation media.

3.6.1 Syntax

The syntax of the ps command is as follows:

X/Open Standards

ps [-ARNaedfkim] [-n namelist] [-F Format] [-o
specifier[=header],...][-p proclist][-G|-g grouplist] [-t termlist]
[-U]|-u userlist] [-c classlist]

Berkeley Standards

ps[allcll[ellew]l[ew][g]l[n]l[UI[w]l[x]1TL[T1]
s|u|v]I[tTty] [ProcessNumber]

Chapter 3. Multi resource monitoring and tuning tools 109

110

Flags
The following flags are all preceded by a - (minus sign):

-A Writes information about all processes to standard output.

-a Writes information about all processes except the session leaders
and processes not associated with a terminal to standard output.

-c Clist Displays only information about processes assigned to the
Workload Management (WLM) classes listed in the C1ist variable.
The Clist variable is either a comma separated list of class
names or a list of class names enclosed in double quotation marks
(" "), that are separated from one another by a comma or by one or
more spaces, or both.

-d Writes information to standard output about all processes except
the session leaders.

-e Writes information to standard output about all processes except
the kernel processes.

-F Format This flag is equivalent to the -o Format flag.
-f Generates a full listing.

-G Glist Writes information to standard output only about processes that
are in the process groups listed for the Glist variable. The Glist
variable is either a comma-separated list of process group
identifiers or a list of process group identifiers enclosed in double
quotation marks (" ") and separated from one another by a comma,
or by one or more spaces.

-g Glist This flag is equivalent to the -G Glist flag.

-k Lists kernel processes.
-1 Generates a long listing.
-m Lists kernel threads as well as processes. Output lines for

processes are followed by an additional output line for each kernel
thread. This flag does not display thread-specific fields (bnd,
scount, sched, thcount, and tid) unless the appropriate -o Format
flag is specified.

-N Gathers no thread statistics. With this flag, ps simply reports those
statistics that can be obtained by not traversing through the
threads chain for the process.

-n NameList Specifies an alternative system name-list file in place of the default.
This flag is not used by AlX.

-o Format Displays information in the format specified by the Format variable.
Multiple field specifiers can be specified for the Format variable.

AIX 5L Performance Tools Handbook

-p Plist

-t Tlist

-R
-U Ulist

-u Ulist

The Format variable is either a comma-separated list of field
specifiers or a list of field specifiers enclosed within a set of " "
(double-quotation marks) and separated from one another by a
comma, one or more spaces, or both. Each field specifier has a
default header. The default header can be overridden by
appending an = (equal sign) followed by the user-defined text for
the header. The fields are written in the order specified on the
command line in column format. The field widths are specified by
the system to be at least as wide as the default or user-defined
header text. If the header text is null, (such as if -o user=is
specified), the field width is at least as wide as the default header
text. If all header fields are null, no header line is written.

Displays only information about processes with the process
numbers specified for the P1ist variable. The P1ist variable is
either a comma separated list of Process ID (PID) numbers, or a list
of process ID numbers enclosed in double quotation marks (" ")
and separated from one another by a comma, one or more spaces,
or both.

Displays only information about processes associated with the
workstations listed in the T1ist variable. The T1ist variable is
either a comma separated list of workstation identifiers, or a list of
workstation identifiers enclosed in double quotation marks (" ") and
separated from one another by a comma, one or more spaces, or
both.

Reviewed for future use.

Displays only information about processes with the user ID
numbers or login names specified in the Ulist variable. The Ulist
variable is either a comma-separated list of user IDs, or a list of
user IDs enclosed in double quotation marks (" ") and separated
from one another by a comma and one or more spaces. In the
listing, the ps command displays the numerical user ID unless the
-f flag is used, in which case the command displays the login
name. See also the u flag.

This flag is equivalent to the -U Ulist flag.

The following options are not preceded by a - (minus sign):

a

Displays information about all processes with terminals (ordinarily
only the user's own processes are displayed).

Displays the command name, as stored internally in the system for
purposes of accounting, rather than the command parameters,
which are kept in the process address space.

Chapter 3. Multi resource monitoring and tuning tools 111

ew

eww

tty

Displays the environment as well as the parameters to the
command, up to a limit of 80 characters.

Wraps display from the e flag one extra line.
Wraps display from the e flag as many times as necessary.
Displays all processes.

Displays a long listing of the F, S, UID, PID, PPID, C, PRI, NI, ADDR, SZ,
PSS, WCHAN, TTY, TIME, and CMD fields.

Displays numerical output. In a long listing, the WCHAN field is
printed numerically rather than symbolically. In a user listing, the
USER field is replaced by a UID field.

Displays the size (SS1Z) of the kernel stack of each process (for
use by system maintainers) in the basic output format. This value is
always 0 (zero) for a multi-threaded process.

Displays processes whose controlling tty is the value of the tty
variable, which should be specified as printed by the ps command;
that is, O for terminal /dev/ttyO0, Ift0 for /dev/Ift0, and pts/2 for
/dev/pts/2.

Displays user-oriented output. This includes the USER, PID, %CPU,
%MEM, SZ, RSS, TTY, STAT, STIME, TIME, and COMMAND fields.

Displays the PGIN, SIZE, RSS, LIM, TSIZ, TRS, %CPU, and %MEM fields.

Specifies a wide-column format for output (132 columns rather
than 80). If repeated, (for example, ww), uses arbitrarily wide output.
This information is used to decide how much of long commands to
print.

Displays processes with no terminal.

3.6.2 Information on measurement and sampling

112

The ps command is useful for determining the following:

>

>

>

How long a process has been running on the system

How much CPU resource a process is using

If processes are being penalized by the system

How much memory a process is using

How much I/O a process is performing

The priority and nice values for the process

Who created the process

AIX 5L Performance Tools Handbook

3.6.3 Examples

The following examples can be used for analyzing performance problems using
ps:

Displaying the top 10 CPU consuming processes

The following commands are useful for determining the top 10 processes that are
consuming the most CPU. The aux flags of the ps command display USER, PID,
%CPU, %MEM, SZ, RSS, TTY, STAT, STIME, TIME, and COMMAND fields. The sort
-rn +2 is a reverse order numeric sort of the third column (in this case %CPU). The
head -10 (-10 is optional as the head command defaults to 10) displays only the
first 10 processes (Example 3-34).

Example 3-34 Displaying the top 10 CPU consuming processes
ps aux | head -1 ; ps aux | sort -rn +2 | head -10

USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 516 24.3 3.0 8 11772 - A May 11 8537:19 wait
root 1290 24.2 3.0 8 11772 - A May 11 8517:36 wait
root 774 24.2 3.0 8 11772 - A May 11 8515:55 wait
root 1032 24.1 3.0 8 11772 - A May 11 8488:15 wait
root 26640 2.6 3.0 32 11784 - A 09:22:34 67:26 nfsd
root 25828 1.7 0.0 1172 1196 - A 14:08:48 23:51 xmwim
root 10836 0.3 3.0 16 11780 - A May 11 115:40 kbiod
root 1548 0.1 3.0 12 11776 - A May 11 21:11 Trud
root 36656 0.0 0.0 1064 908 pts/14 A May 16 0:08 -ksh
root 36408 0.0 0.0 1612 348 - A May 16 0:00 telnetd -a

The wait processes listed in the above report show that this system is mainly
idle. There are four wait processes, one for each CPU. You can determine how
many processors your system has by running the 1sdev -Cc processor
command.

In Example 3-35, a test program called cpu was started and, as can be
observed, processes 31758, 14328 and 33194 used more CPU than wait. The
report displays the %CPU column sorted in reverse numerical order. %CPU
represents the percentage of time the process was actually consuming CPU
resource in relation to the life of the process.

Example 3-35 Displaying the top 10 CPU consuming processes

ps aux | head -1 ; ps aux | sort -rn +2 | head

USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 31758 24.7 2.0 4156 4152 pts/8 A 13:58:33 4:53 cpu 5

root 14328 24.5 2.0 4156 4152 pts/8 A 13:58:33 4:50 cpu 5
root 33194 24.3 2.0 4156 4152 pts/8 A 13:58:33 4:47 cpu 5
root 516 24.2 5.0 8 11536 - A May 11 9573:27 wait
root 1290 24.1 5.0 8 11536 - A May 11 9528:52 wait
root 774 24.1 5.0 8 11536 - A May 11 9521:18 wait

Chapter 3. Multi resource monitoring and tuning tools 113

root 1032 24.0 5.0 8 11536 - A May 11 9494:31 wait

root 31256 11.2 2.0 4156 4152 pts/8 A 13:58:33 2:13 cpu 5
root 25924 11.2 2.0 4208 4204 pts/8 A 13:58:33 2:13 cpu 5
root 31602 1.6 0.0 1172 944 pts/10 A 10:37:21 13:29 xmwim

Displaying the top ten memory consuming processes

The following command line is useful for determining the percentage of real
memory (size of working segment and the code-segment combined together)
used by the process. The report displays the %MEM column sorted in reverse
numerical order (Example 3-36).

Example 3-36 Displaying the top 10 memory consuming processes using RSS

ps aux | head -1 ; ps aux | sort -rn +3 | head

USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 26640 2.6 3.0 32 11784 - A 09:22:34 67:26 nfsd
root 24564 0.0 3.0 32 11780 - A May 15 0:06 rpc.lockd
root 19386 0.0 3.0 16 11772 - A May 16 0:00 cdpg
root 13418 0.0 3.0 16 11780 - A May 11 0:01 PM
root 10836 0.3 3.0 16 11780 - A May 11 115:40 kbiod
root 10580 0.0 3.0 20 11784 - A May 11 0:00 rtcmd
root 9306 0.0 3.0 152 11908 - A May 11 0:00 j2pg
root 7244 0.0 3.0 16 11772 - A May 11 0:00 jfsz
root 5420 0.0 3.0 40 11772 - A May 11 0:00 dog
root 3372 0.0 3.0 16 11772 - A May 11 0:00 Tvmbb

Another way to determine memory use is to use the command line in

Example 3-37. The SZ represents the virtual size in kilobytes of the data section
of the process. This is sometimes displayed as SIZE by other flags). This number
is equal to the number of working-segment pages of the process that have been
touched (that is, the number of paging-space slots that have been allocated)
times four. File pages are excluded. If some working-segment pages are
currently paged out, this number is larger than the amount of real memory being

used.

The report displays the SZ column sorted in reverse numerical order.

Example 3-37 Displaying the top 10 memory consuming processes using SZ

ps —ea]f [head -1 3 ps -ealf | sort -rn +9 | head

F S UID PID PPID C PRI NI ADDR Sz WCHAN STIME TTY TIME CMD
240001 A root 4712 5944 0 181 20 f19e 6836 30b50f10 May 20 - 4:58 /usr/1pp/X11/bin/X -WjfP7a
240001 A root 27146 3418 0 181 20 a4d7 5296 * 13:10:57 - 0:05 /usr/sbin/rsct/bin/IBM.FSrmd
200001 A root 33744 24018 0 181 20 c739 3856 May 22 pts/5 17:02 xmperf
240001 A root 17042 3418 0 181 20 53ca 3032 May 20 - 3:01 /usr/opt/ifor/bin/i411md -b -n
200001 A root 19712 26494 5 183 24 412a 2880 May 21 pts/9 27:32 xmperf
40001 A root 17548 17042 0 181 20 7bcf 2644 309ceed8 May 20 - 0:00 /usr/opt/ifor/bin/i411md -b -n
240401 A root 28202 4238 0 181 20 418a 2452 May 21 - 0:09 dtwm
240001 A root 16048 3418 0 181 20 4baa 2356 * May 22 - 0:03 /usr/sbin/rsct/bin/IBM.HostRMd
240001 A root 4238 6196 0 181 20 9172 2288 May 21 - 0:10 /usr/dt/bin/dtsession
240001 A root 17296 3418 0 181 20 fbdf 2160 * May 20 - 0:00 /usr/sbin/rsct/bin/IBM.ERrmd

114 AIX 5L Performance Tools Handbook

Displaying the processes in order of being penalized

The following command line is useful for determining which processes are being
penalized by the Virtual Memory Manager. See Section 1.1.3, “Process and
thread priorities” on page 3 for details on penalizing processes. The maximum
value for the C column is 120. The report displays the C column sorted in reverse
numerical order (Example 3-38).

Example 3-38 Displaying the processes in order of being penalized

ps -eakl | head -1 ; ps -eakl | sort -rn +5
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

303 A 0 1290 0 120 255 -- b016 8 - 8570:28 wait
303 A 0 1032 0 120 255 -- a815 8 - 8540:22 wait
303A 0 774 0 120 255 -- a014 8 - 8568:09 wait
303 A 0 516 0 120 255 -- 9813 8 - 8590:49 wait
303A 0 0 0 120 16 -- 9012 12 - 3:53 swapper
240001 A 0 25828 1 34 187 24 2040 1172 30bf6fd8 - 27:25 xmwlm
200001 A 0 36434 25250 4 181 20 da3e 460 pts/4 0:00 ps
240001 A 0 25250 29830 2 181 20 59ef 1020 pts/4 0:01 ksh
200001 A 0 36682 25250 2 181 20 69c9 300 30b4abfc pts/4 0:00 sort
200001 A 0 34898 25250 2 181 20 4bba 236 3098fce0 pts/4 0:00 head

...(Tines omitted)...

Ignoring the wait processes, which will always show 120, the xmwim process is
being penalized by the CPU. When this occurs, the process is awarded less CPU
time, thereby stopping xmwim from monopolizing the CPU and giving more time to
the other processes.

Displaying the processes in order of priority

The following command line is useful for listing processes by order of the CPU
priority (Example 3-39). The report displays the PRI column sorted in numerical
order. Refer to Section 4.6, “nice” on page 245 for details on priority.

Example 3-39 Displaying the processes in order of priority
ps -eakl | sort -n +6 | head
F S UID PID PPID C PRI NI ADDR Sz WCHAN TTY TIME CMD

303A 0 0 0 120 16 -- 9012 12 - 3:54 swapper

303 A 0 1548 0 0 16 -- d8lb 12 - 21:11 Trud

303 A 0 2580 0 0 16 -- b036 16 849970 - 4:23 wimsched
40201 A 0 5420 1 0 17 20 8130 40 * - 0:00 dog

303 A 0 2064 0 0 36 --9833 16 - 0:10 netm

303 A 0 2322 0 0 37 -- a034 64 * - 1:37 gil
40303 A 0 9306 0 0 38 --f27e 152 * - 0:00 j2pg
40303 A 0 7244 0 0 50 -- 2284 16 - 0:00 jfsz

303 A 0 1806 0 0 60 --502a 16 35028158 - 0:04 xmgc

Chapter 3. Multi resource monitoring and tuning tools 115

116

The above report shows that swapper, 1rud, and wimsched have the highest
priority.

Displaying the processes in order of nice value

The following command line is useful for determining processes by order of nice
value (Example 3-40). The report displays the NI column sorted in numerical
order. Refer to Section 4.6, “nice” on page 245 for details on priority. The report
displays the NI column sorted in reverse numerical order.

Example 3-40 Displaying the processes in order of nice value

ps -eakl | sort -n +7
F SUID PID PPID C PRI NI ADDR Sz WCHAN TTY TIME CMD

33A 0 0 0 120 16 -- 9012 12 - 0:28 swapper
33A 0 516 0 120 255 -- 9813 8 - 1462:08 wait
33A 0 774 0 120 255 -- a0l4 8 - 1352:04 wait
303 A 0 1032 0 120 255 -- a815 8 - 1403:23 wait
303 A 0 1290 0 120 255 -- b0l16 8 - 1377:28 wait
303 A 0 1548 0 1 16 -- d8lb 12 - 1:50 Trud
303 A 0 1806 0 0 60 -- 502a 16 30066198 - 0:00 xmgc
..(Tines omitted)...
40303 A 0 5972 0 0 38 -- fa7f 152 * - 0:00 j2pg
40001 A 0 3918 4930 0 60 20 91b2 944 - 0:00 dtlogin
..(Tines omitted)...
40001 A 0 4930 1 0 60 20 a995 424 - 0:00 dtlogin
10005 Z 0 29762 27922 1 68 24 0:00 <defunct>
200001 A 0 20804 19502 1 68 24 4b2b 804 30b35fd8 pts/2 2:39 xmtrend
200001 A 0 22226 26070 86 116 24 b6b4 572 pts/10 3:01 dc
200001 A 0 27922 25812 85 115 24 782e 572 pts/10 4:40 dc
200001 A 0 28904 23776 2 69 24 46ca 268 pts/8 3:14 seen+done
200001 A 0 30446 23776 2 69 24 7ecd 268 pts/8 3:09 seen+done
200001 A 0 30964 23776 3 68 24 66ce 268 pts/8 3:12 seen+done
200001 A 0 31218 23776 3 69 24 96d0 268 pts/8 2:58 seen+done

...(lines omitted)...

In the above report, the NI values will sometimes be displayed as --. This is
because the processes do not have a nice value as they are running at a fixed
priority.

Displaying the processes in order of time

The following command line is useful for determining processes by order of CPU
time (Example 3-41). This is the total accumulated CPU time for the life of the
process. The report displays the TIME column sorted in reverse numerical order.

Example 3-41 Displaying the processes in order of time

ps vx | head -1 ; ps vx | grep -v PID | sort -rn +3 | head -10
PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
516 - A 9417:11 0 8 11780 XX 0 11772 24.3 2.0 wait
1290 9374:49 0 8 11780 XX 0 11772 24.2 2.0 wait

- A
774 - A 9367:13 0 8 11780 XX 0 11772 24.2 2.0 wait

AIX 5L Performance Tools Handbook

1032 - A 9342:08 0 8 11780 XX 0 11772 24.1 2.0 wait
10836 - A 115:40 106 16 11788 32768 0 11772 0.3 2.0 kbiod
26640 - A 67:26 25972 32 11796 32768 0 11772 1.1 2.0 nfsd

1548 - A 21:11 0 12 11784 XX 0 11772 0.1 2.0 lrud

6476 - A 16:18 2870 316 184 XX 2 4 0.0 0.0 /usr/shin
16262 - A 6:24 4074 1112 1320 32768 1922 724 0.0 0.0 /usr/opt/

2580 - A 4:33 0 16 11780 XX 0 11772 0.0 2.0 wimsched

The above report shows that wait has accumulated the most CPU time. If we
were to run our test program called CPU as in Example 3-35 on page 113 which
creates a CPU bottleneck, then the wait process would still feature at the top of
the report because the test system is normally idle and the wait processes would
therefore have accumulated the most time.

Displaying the processes in order of real memory use

The following command line is useful for determining processes by order of RSS
value (Example 3-42). The RSS value is the size of working segment and the code
segment combined together in memory in 1 KB units). The report displays the
RSS column sorted in reverse numerical order.

Example 3-42 Displaying the processes in order of RSS
ps vx | head -1 ; ps vx | grep -v PID | sort -rn +6 | head -10
PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND

34958 pts/6 A 1:29 20 87976 88004 32768 21 28 0.6 17.0 java wimp
9306 - A 0:00 174 152 11916 32768 0 11772 0.0 2.0 j2pg

2322 - A 1:43 0 64 11832 XX 0 11772 0.0 2.0 gil
26640 - A 67:26 25972 32 11796 32768 0 11772 1.1 2.0 nfsd
10580 - A 0:00 8 20 11792 32768 0 11772 0.0 2.0 rtcmd
24564 - A 0:06 1 32 11788 32768 0 11772 0.0 2.0 rpc.lockd
13418 - A 0:01 0 16 11788 32768 0 11772 0.0 2.0 PM

10836 - A 115:40 106 16 11788 32768 0 11772 0.3 2.0 kbiod
2064 - A 0:11 120 16 11788 XX 0 11772 0.0 2.0 netm

1806 - A 0:04 12 16 11788 XX 0 11772 0.0 2.0 xmgc

The above report shows that the process java wimp is using the most memory.

Important: Because the values in the RSS column contain shared working
memory, you cannot add the entries in the RSS column for all the processes to
ascertain the amount of memory used on your system. For example, the ksh
process can consume about 1 KB of memory and each user can be running at
least one ksh but this does not mean that for 300 users logged in, all ksh
processes will be using a minimum of 300 KB of memory. This is because ksh
uses share memory, enabling all the ksh processes to access the same
memory. Refer to Section 5.1, “ipcs” on page 302 for details on memory use.

Chapter 3. Multi resource monitoring and tuning tools 117

118

Displaying the processes in order of I/O

The following command line is useful for determining processes by order of PGIN
value (Example 3-43). PGIN represents the number of page ins caused by page
faults. Because all AIX I/O is classified as page faults, this value represents the
measure of all I/O volume.

The report displays the PGIN column sorted in reverse numerical order.
Example 3-43 Displaying the processes in order of PGIN

ps vx | head -1 ; ps vx | grep -v PID | sort -rn +4 | head -10
PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND

26640 - A 67:26 25972 32 11796 32768 0 11772 1.1 2.0 nfsd

16262 - A 6:25 4074 1112 1320 32768 1922 724 0.0 0.0 /usr/opt/
6476 - A 16:19 2870 316 184 XX 2 4 0.0 0.0 /usr/shin
5176 - A 3:20 1970 3448 788 xx 2406 196 0.0 0.0 /usr/lpp/
12202 - A 1:00 1394 2152 640 32768 492 44 0.0 0.0 dtwm

15506 - A 0:23 1025 16260 5200 32768 58 48 0.0 1.0 /usr/sbin
6208 - A 0:40 910 2408 532 32768 99 12 0.0 0.0 /usr/dt/b
5954 - A 0:05 789 2844 324 32768 179 0 0.0 0.0 /usr/shin
16778 - A 0:00 546 724 648 32768 1922 340 0.0 0.0 /usr/opt/
8290 - A 0:04 420 740 592 32768 75 76 0.0 0.0 /usr/sbin

The above report shows that the nfsd process is producing the most I/O.

Displaying WLM classes

Example 3-44 shows how Workload Manager (WLM) classes can be displayed.
In WLM, you can categorize processes into classes. When you run the ps
command with the -0 class option, you will see the class displayed.

Example 3-44 Displaying WLM classes

ps -a -o pid,user,class,pcpu,pmem,args

PID USER CLASS %CPU %MEM COMMAND
...(Tines omitted)...
20026 root System
21078 root System
...(Tines omitted)...

0.0 ps -a -0 pid,user,class,pcpu,pmem,arg

0.0
0.0 0.0 wimstat 1 100

Viewing threads

The ps command allows you to get information relating to the threads running for
a particular process. For example, if we wanted to ascertain that particular
threads are bound to a CPU, we could use the command in Example 3-45 on
page 119. Threads are bound using the bindprocessor command. Refer to
Section 4.3, “bindprocessor” on page 228 for more details.

AIX 5L Performance Tools Handbook

Example 3-46 demonstrates how to use ps to see if threads are bound to a CPU.
As each processor has a wait process that is bound to each active CPU on the
system, we will use the wait process as an example.

To check how many CPUs are installed on our system we can use the following
command.

Example 3-45 Determining the number of installed processors
1sdev -Cc processor

procO Available 00-00 Processor

procl Available 00-01 Processor

proc2 Available 00-02 Processor

proc3 Available 00-03 Processor

From the above output, we know that there will be four wait processes (assuming
all CPUs are enabled). We can determine the Process IDs (PID) of the wait
processes using the following command.

Example 3-46 Determining the PID of wait processes
ps vg | head -1 ; ps vg | grep -w wait
PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND

516 - A 1397:04 0 8 12548 XX 0 12540 21.2 3.0 wait
774 - A 1393:52 0 8 12548 XX 0 12540 21.2 3.0 wait
1032 - A 1392:39 0 8 12548 XX 0 12540 21.1 3.0 wait
1290 - A 1395:14 0 8 12548 XX 0 12540 21.2 3.0 wait

The output tells us that wait processes PIDs are 516,774,1032, and 1290. We can
therefore determine if the threads are actually bound as we would expect by
using the command line in Example 3-47.

Example 3-47 Wait processes bound to CPUs
ps -mo THREAD -p 516,774,1032,1290

USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAN
root 516 0 - A 120 255 1 - 303 - 0 wait

- - - 517 R 120 255 1 - 3000 - 0-
root 774 0 - A 120 255 1 - 303 - 1 wait

- - - 775 R 120 255 1 - 3000 - 1-
root 1032 0 - A 120 255 1 - 303 - 2 wait

- - - 1033 R 120 255 1 - 3000 - 2 -
root 1290 0 - A 120 255 1 - 303 - 3 wait

- - - 1291 R 120 255 1 - 3000 - 3 -

The above example shows that the wait processes are indeed bound to CPUs.
Each of the wait processes has an associated thread. In AIX (starting from
version 4), with the exception of init, Process IDs (PIDs) have even numbers
and Threads IDs (TIDs) have odd numbers.

Chapter 3. Multi resource monitoring and tuning tools 119

3.7 sar

The sar command collects, reports, and saves system activity information.

If an input file is not specified sar calls the sadc command to access system data.
Two shell scripts (/usr/1ib/sa/sal and /usr/1ib/sa/sa2) can be run by the cron
command and provide daily statistics and reports. Sample stanzas are included
(but commented out) in the /var/spool/cron/crontabs/adm crontab file to specify
when the cron daemon should run the shell scripts. Collection of data in this
manner is useful to characterize system use over a period of time and determine
peak use hours.

Note: The sar command itself can generate a considerable number of reads
and writes depending on the interval at which it is run. Run the sar statistics
without the workload to understand the sar command's contribution to your
total statistics.

sar resides in /usr/sbin and is part of the bos.perf.tools fileset, which is installable
from the AIX base installation media.

3.7.1 Syntax

The syntax of the sar command is as follows:

sar [{-A|[-al[-b]1[-c][-d]l[-k][-m][-ql
[-r]1[-w]l[-VI[-v]I[-w]ll-yl}]1]

[-P ProcessorIdentifier, ... | ALL] [-ehh [:mm [:ss 1]]
[-fFile] [-iSeconds] [-oFile] [-shh [:mm [:ss] 1 1]
[Interval [Number]]

Flags
-A Without the -P flag, using the -A flag is equivalent to

specifying -abcdkmqruvwy. When used with the -P flag, the
-A is equivalent to specifying -acmuw.

-a Reports use of file access routines specifying how many
times per second several of the file access routines have
been called. When used with the -P flag, the information is
provided for each specified processor. Otherwise it is
provided only system-wide.

-b Reports buffer activity for transfers, accesses, and cache
(kernel block buffer cache) hit ratios per second. Access to
most files bypasses kernel block buffering and therefore
does not generate these statistics. However, if a program

120 AIX 5L Performance Tools Handbook

-d
-e hh[:mm[:ss]]

opens a block device or a raw character device for I/O,
traditional access mechanisms are used, making the
generated statistics meaningful.

Reports system calls. When used with the -P flag, the
information is provided for each specified processor;
otherwise, it is provided only system-wide.

Reports activity for each block device.

Sets the ending time of the report. The default ending time
is 18:00.

-f File Extracts records from File (created by -o File flag). The
default value of the File parameter is the current daily data
file, /var/adm/sa/sadd.

-i Seconds Selects data records at intervals as close as possible to
the number specified by the Seconds parameter.
Otherwise, the sar command reports all seconds found in
the data file.

-k Reports kernel process activity.

-m Reports message (sending and receiving) and semaphore
(creating, using, or destroying) activities per second. When
used with the -P flag, the information is provided for each
specified processor. Otherwise it is provided only
system-wide.

-0 File Saves the readings in the file in binary form. Each reading
is in a separate record, and each record contains a tag
identifying the time of the reading.

-P ProcessorIdentifier, ... | ALL
Reports per-processor statistics for the specified processor
or processors. Specifying the ALL keyword reports
statistics for each individual processor, and globally for all
processors of the flags that specify the statistics to be
reported, only the -a, -c, -m, -u, and -w flags are
meaningful with the -P flag.

-q Reports queue statistics.

-r Reports paging statistics.

-s hh[:mm[:ss]]

Sets the starting time of the data, causing the sar
command to extract records time-tagged at, or following,
the time specified. The default starting time is 08:00.

Reports per processor or system-wide statistics. When
used with the -P flag, the information is provided for each

Chapter 3. Multi resource monitoring and tuning tools 121

-y

specified processor; otherwise, it is provided only
system-wide. Because the -u flag information is expressed
as percentages, the system-wide information is simply the
average of each individual processor's statistics. Also, the
I/O wait state is defined system-wide and not per
processor.

Reads the files created by sar on other operating system
versions. This flag can only be used with the -f flag.

Reports status of the process, kernel-thread, inode, and
file tables.

Reports system switching activity. When used with the -P
flag, the information is provided for each specified
processor; otherwise, it is provided only system-wide.

Reports tty device activity per second.

3.7.2 Information on measurement and sampling

The sar command only formats input generated by the sadc command?. The
sadc command acquires statistics mainly from the Perfstat kernel extension (kex)
(see Section 9.1, “Perfstat API” on page 712). The operating system contains a
number of counters that are incremented as various system actions occur. The
various system counters include:

» System unit utilization counters

» Buffer use counters

» Disk and tape I/O activity counters

» tty device activity counters

» Switching and subroutine counters

» File access counters

» Queue activity counters

» Interprocess communication counters

The sadc command samples system data a specified number of times at a
specified interval measured in seconds. It writes in binary format to the specified
output file or to stdout. When neither the measuring interval nor the interval
number are specified, a dummy record, which is used at system startup to mark
the time when the counter restarts from zero (0), will be written.

2 The sadc command is the data collector for sar.

122

AIX 5L Performance Tools Handbook

3.7.3 Examples

When starting to look for a potential performance bottleneck, we need to find out
more about how the system uses CPU, memory, and I/O. For these resource
areas we can use the sar command.

How to monitor one CPU at a time
Example 3-48 shows the use of the sar command with the -P # flag to find out
more about a utilization of a specific CPU.

Example 3-48 Individual CPUs can be monitored separately
sar -P 3 10 3

AIX bolshoi 1 5 00040B1F4C00 05/20/01

17:47:52 cpu %usr %sys swio %idle
17:48:02 3 16 31 6 47
17:48:12 3 10 19 7 65
17:48:22 3 32 57 4 7
Average 3 20 35 5 40

In the output above we ran the sar command for CPU number four (in the output
above this is shown as CPU number three)3 with 10 second intervals for three
reports. In average the CPU spent 20 percent in user mode, 35 percent in system
mode, and during 5 percent of the system idle time there were outstanding 1/0
requests to disk or NFS file systems.

You may also monitor CPUs together by separating the CPU number by a
comma (,), as in Example 3-49 where we monitor CPUs 0, 1, 2, and 3.

Example 3-49 Individual CPUs can be monitored together
sar -P 0,1,2,3 10 2

AIX bolshoi 1 5 00040B1F4C00 05/20/01

17:46:33 cpu %usr %sys swio %idle
17:46:43 0 29 71 0 0
1 39 61 0 0
2 35 65 0 0
3 36 64 0 0
17:46:53 0 19 51 1 29
1 45 47 0 8
2 15 53 1 31
3 27 40 1 32
17:47:03 0 18 46 1 36

3 The CPU numbers reported by sar are the logical/physical CPU - 1. The range is 0...N-1 CPUs.

Chapter 3. Multi resource monitoring and tuning tools 123

1 22 43 0 34

2 20 49 1 30
3 41 42 1 16
Average 0 22 56 1 22
1 35 50 0 14
2 23 56 1 20
3 35 48 1 16

In the output above you see that the load was fairly evenly spread among the
four CPUs. For more information on the sar output columns in the example
above, please see “How to monitor the processor utilization” on page 138.

How to monitor all CPUs
Example 3-50 shows the use of the sar command with the -P ALL flag to find out
more about the utilization of all CPUs.

Example 3-50 CPU utilization per CPU or system wide statistics

sar -P ALL 10 3

AIX bolshoi 1 5 00040B1F4C00 05/20/01

17:48:33 cpu susr %sys swio %idle
17:48:43 0 24 75 0 1
1 34 64 1 2
2 37 60 0 2
3 31 68 0 2
- 32 66 0 2
17:48:55 0 37 51 1 12
1 27 39 1 33
2 19 46 1 35
3 25 43 1 31
- 27 45 1 28
17:49:06 0 27 73 0 0
1 36 64 0 0
2 33 67 0 0
3 40 60 0 0
- 34 66 0 0
Average 0 30 65 0 5
1 32 55 1 12
2 29 57 0 13
3 32 56 0 12
- 31 58 0 11

124 AIX 5L Performance Tools Handbook

The last line of each timestamp in the output above, and the average part of the

report, shows the average for all CPUs; it is denoted by a dash (-). For more

information on the sar output columns in the example above, please see “How to

monitor the processor utilization” on page 138.

How to combine reports with different flags

sar allows most of the report flags to be combined. The -A flag is a report with
the abcdkmqruvwy or acmuw flags combined, depending on if the -P flag is used as
well. This is illustrated in Example 3-51 using the -abckmqruvwy flags with one (1)

sampling, not using the block device 1/O report.

Example 3-51 Using sar -abckmqruvwy

sar -abckmqruvwy 1
AIX bolshoi 1 5 00040B1F4C00 05/20/01

18:24:13 iget/s lookuppn/s dirblk/s

bread/s 1read/s %rcache bwrit/s Twrit/s %wcache pread/s pwrit/s
scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s

ksched/s kproc-ov kexit/s
msg/s sema/s

rung-sz %runocc Swpq-sz %Swpocc
slots cycle/s fault/s odio/s

susr %Sys swio %idle
proc-sz inod-sz file-sz thrd-sz
cswch/s

rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s

18:24:14 8 1585 0
0 0 0 0 0 0
43575 1352 545 313.67 313.67 1753704
0 0 0
0.00 0.00
1.0 100
117421 0.00 15483.93 8.63
1 25 0 74
39/262144 279/358278 188/853 47/524288
1943
0 0 816 0 0 0

When using too many flags together, the output will become more difficult to read

as is evident from even the short measurement shown in the output above.
Example 3-52 on page 126 shows the sar -A report, which is similar to the
output above but includes the block device 1/O report.

Chapter 3. Multi resource monitoring and tuning tools 125

Example 3-52 Using sar -A

sar -A 1
AIX bolshoi 1 5 00040B1F4C00 05/20/01

18:25:20 iget/s Tlookuppn/s dirblk/s
bread/s 1read/s %rcache bwrit/s Twrit/s %wcache pread/s pwrit/s
scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
device %busy avque r+w/s blks/s avwait avserv

ksched/s kproc-ov kexit/s

msg/s sema/s
rung-sz %runocc Swpg-Sz %Swpocc

slots cycle/s fault/s odio/s

susr %Sys swio %idle
proc-sz inod-sz file-sz thrd-sz
cswch/s

rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s

18:25:21 345 10067 2327
0 0 0 0 0 0 0 0
80720 15088 965 402.77 395.38 10975227 612103
hdisk0 0 0.0 1 9 0.0 0.0
hdiskl 0 0.0 0 0 0.0 0.0
hdisk12 5 0.0 65 295 0.0 0.0
hdisk3 5 0.0 64 292 0.0 0.0
hdisk2 5 0.0 65 296 0.0 0.0
hdisk9 0 0.0 0 0 0.0 0.0
hdisk16 5 0.0 64 293 0.0 0.0
hdisk15 5 0.0 65 296 0.0 0.0
hdisk7 5 0.0 64 293 0.0 0.0
hdisk8 0 0.0 7 39 0.0 0.0
hdisk4 5 0.0 64 293 0.0 0.0
hdisk17 1 0.0 24 98 0.0 0.0
hdiskll 0 0.0 1 28 0.0 0.0
hdiské 2 0.0 33 133 0.0 0.0
hdisk14 5 0.0 64 292 0.0 0.0
hdisk5 5 0.0 64 293 0.0 0.0
hdisk13 5 0.0 65 297 0.0 0.0
hdisk10 0 0.0 0 1 0.0 0.0
2 0 2
0.00 0.00
55.0 100
117353 0.00 21257.27 1545.50
10 48 2 39
177/262144 525/358278 517/853 185/524288
2552
0 0 920 0 0 0

126 AIX 5L Performance Tools Handbook

How to collect statistics by using cron

To enable statistical collection for use with sar, enable the adm user’s crontab by
removing the comment, lines starting with hash (#), from the program lines as
shown in Example 3-53 below.

Example 3-53 System default crontab entries for the adm user
cronadm cron -1 adm
...(Tines omitted)...

SYSTEM ACTIVITY REPORTS

8am-5pm activity reports every 20 mins during weekdays.

activity reports every an hour on Saturday and Sunday.

6pm-7am activity reports every an hour during weekdays.

Daily summary prepared at 18:05.
ff===
0 8-17 * * 1-5 /usr/1ib/sa/sal 1200 3 &

0* * * 0,6 /usr/lib/sa/sal &

0 18-7 * * 1-5 /usr/1lib/sa/sal &

5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 3600 -ubcwyaqvm &

The first line will run the sal command for 1200 seconds (20 minutes) three (3)
times every hour Monday (1) through Friday (5) between 8 am and 5 pm (17).
The second line will also run the sal command, but only on Saturdays (6) and
Sundays (0) and then only once every hour. The third line will run the sal
command every hour from Monday (1) through Friday (5), between 6 pm (18) and
7 am. And finally the fourth line runs the sa2 command every Monday (1) through
Friday (5) at five (5) minutes past six (18) pm . The sal commands will create
binary files in the /var/adm/sa directory and the sa2 command will create an
ASCII report in the same directory. The files will be named saDD, where DD stands
for the day of month, so on the 21st the file name will be sa2l.

In addition to commenting out the lines in the crontab file for the adm user as
shown in Example 3-53 on page 127, a dummy record must be inserted into the
standard system activity daily data file in the /var/adm/sa directory, at the time of
system start by uncommenting the corresponding sadc lines in the /etc/rc
script. The following command shows how to do that:

/usr/bin/su - adm -c /usr/1ib/sa/sadc /usr/adm/sa/sa date +%d"
For 24x7 operations, it is better to just collect the statistical information in binary

format, and when needed use sar to create reports from the binary files. The
next command shows how to enable the statistical collection only:

0 ** ** /usr/lib/sa/sal 1200 3 &

Chapter 3. Multi resource monitoring and tuning tools 127

To create reports from the files created in the /var/adm/sa directory, run the sar
command with the -f flag, as shown in Example 3-54.

Example 3-54 Using sar with the -f flag

sar -f /var/adm/sa/sa23

AIX wimhost 1 5 000BC6AD4C00 05/23/01

00:00:01 susr %Sys swio %idle
00:20:01 2 1 0 97
00:40:01 2 1 0 97
01:00:01 2 1 0 97
01:20:01 2 1 0 98
Average 2 1 0 97

By using the -s and -e flags with the sar command the starting time (-s) and
ending time (-e) can be specified and the report will show the recorded statistics
between the starting and ending time only, as shown in Example 3-55.

Example 3-55 Using sar with the -f, -s and -e flags

sar -f /var/adm/sa/sa23 -s00:00 -e01:00
AIX wimhost 1 5 000BC6AD4C00 05/23/01

00:00:01 %usr %Sys %wio %idle

00:20:01 2 1 0 97
00:40:01 2 1 0 97
Average 2 1 0 97

The output above only reports statistics between 00:00 and 01:00 from the file
created on the 23" of the month.

Note: if collection and analysis of the workload should be performed for more
than a month, you need to save the binary statistical collection files from the
/var/adm/sa directory elsewhere and rename them with the year and month in
addition to the day. The sa2 command will remove files older than seven days
when it is run. The sal command will overwrite existing files with the same day
number in the ~var/adm/sa directory.

To use a customized sal script that names the binary statistical collection files
with year and month instead of only by day, create a script such as the one in
Example 3-56 on page 129 and run it with cron instead of the sal command
(here called sal.custom).

128 AIX 5L Performance Tools Handbook

Example 3-56 The sa1.custom script
expand -4 sal.custom|n]

1 DATE="date +%d~

2 NEWDATE="date +%Y%m%d~

3 ENDIR=/usr/1ib/sa

4 DFILE=/var/adm/sa/sa$DATE
5

6

7

8

NEWDFILE=/var/adm/sa/sa$NEWDATE

cd $ENDIR

if [$# =0]; then

$ENDIR/sadc 1 1 $NEWDFILE

9 else
10 $ENDIR/sadc $* $NEWDFILE
11 fi
12 1n -s $NEWDFILE $DFILE >/dev/null 2>&1

The sal.custom script above will create files named saYYYYMMDD instead of only
saDD. It will also create a symbolic link from the saYYYYMMDD file to a file named
saDD. By doing this, other commands that expect to find a saDD file in the
/var/adm/sa directory will still do so. These files are also easy to save to a
backup server because they can be retrieved by using their filename and thus
are unique, and you will not risk loosing them, if for instance the backup “class
for these files does not permit enough versions to save the number of saDD files
that are required.

»d

How to monitor the use of file access system routines
Example 3-57 shows the use of the sar command with the -a flag to find out
more about how the system is accessing directory information about files.

Example 3-57 Using sar -a
sar -a 10 3

AIX bolshoi 1 5 00040B1F4C00 05/20/01

18:06:31 iget/s lookuppn/s dirblk/s

18:06:41 1441 22212 6534
18:06:51 412 6415 2902
18:07:01 1353 20375 5268
Average 1072 16377 4913

In the output above we see that there are 1072 calls per second for inode lookup
routines, 16377 lookups per second to find a file entry using a pathname (low
level file system routine), and 4913 512-byte directory reads per second to find a
file name (2.4 MBs read).

4 Class in this context refers to a collection of rules and file specifications that specify what, when, and how to backup
files.

Chapter 3. Multi resource monitoring and tuning tools 129

The sar -a report has the following format:

dirblk/s Number of 512-byte blocks read per second by the
directory search routine to locate a directory entry for a
specific file.

iget/s Calls per second to any of several inode® lookup routines

that support multiple file system types. The iget routines
return a pointer to the inode structure of a file or device.

Tookuppn/s Calls per second to the directory search routine that finds
the address of a vnode® given a path name.

The next output shows how the different CPUs used the file access system

routines (Example 3-58).

Example 3-58 Using sar -a
sar -aP ALL 10 3

AIX bolshoi 1 5 00040B1F4C00 05/20/01

18:07:36 cpu 1iget/s lookuppn/s dirblk/s

18:07:46 0 29 693 81
1 56 569 181
2 34 667 162
3 40 604 118
- 162 2564 554
18:07:56 0 124 1882 556
1 141 2163 682
2 137 2257 614
3 117 2046 546
- 520 8367 2400
18:08:06 0 77 1090 276
1 118 1525 383
2 67 1041 275
3 68 1229 312
- 327 4855 1238
Average 0 77 1222 305
1 105 1419 415
2 79 1322 350
3 75 1293 325
- 336 5261 1397

5 An inode is an index node reference number (inode number), which is the file system internal representation of a file.
The inode number identifies the file, not the file name.

6 A vnode is either created or used again for every reference made to a file by path name. When a user attempts to open
or create a file, if the VFS containing the file already has a vnode representing that file, a use count in the vnode is
incremented and the existing vnode is used. Otherwise, a new vnode is created.

130 AIX 5L Performance Tools Handbook

The last line of each timestamp and the average part of the report show the
average for all CPUs. They are denoted by a dash (-).

How to monitor buffer activity for transfers, access, and caching
Example 3-59 shows the use of the sar command with the -b flag to find out
more about buffer activity and utilization.

Example 3-59 Using sar -b

sar -b 10 3
AIX wimhost 1 5 000BC6AD4C00 05/20/01

17:13:18 bread/s 1read/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s

17:13:28 1 284 100 0 0 0 0 0
17:13:38 1 283 100 0 0 0 0 0
17:13:48 1 283 100 0 0 0 0 0
Average 1 283 100 0 0 0 0 0

In our above example the read cache efficiency is 100 * (283 - 1) /283 or 99.64
(approximately 100 percent as shown in the output above).

The sar -b report has the following format:

bread/s, bwrit/s Reports the number of block 1/0O operations per second.
These 1/Os are generally performed by the kernel to
manage the block buffer cache area, as discussed in the
description of the Tread/s and Twrit/s values.

Tread/s, Twrit/s Reports the number of logical I/O requests per second.
When a logical read or write to a block device is
performed, a logical transfer size of less than a full block
size may be requested. The system accesses the
physical device units of complete blocks and buffers these
blocks in the kernel buffers that have been set aside for
this purpose (the block I/O cache area). This cache area
is managed by the kernel, so that multiple logical reads
and writes to the block device can access previously
buffered data from the cache and require no real I/O to
the device. Application read and write requests to the
block device are reported statistically as logical reads and
writes. The block I/O performed by the kernel to the block
device in management of the cache area is reported as
block reads and block writes.

pread/s, pwrit/s Reports the number of I/O operations on raw devices per
second. Requested /O to raw character devices is not

Chapter 3. Multi resource monitoring and tuning tools 131

132

buffered as it is for block devices. The I/O is performed to
the device directly.

%rcache, %wcache Reports caching effectiveness (cache hit percentage).
This percentage is calculated as:

100 * (l1reads - breads) / lreads

How to monitor system calls
Example 3-60 shows the use of the sar command with the -c flag to find out
more about system call statistics.

Example 3-60 Using sar -c

sar -c 10 3

AIX bolshoi 1 5 00040B1F4C00 05/20/01

18:04:30 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
18:04:40 30776 9775 841 95.42 95.22 2626011 1319494
18:04:50 52742 14190 1667 168.81 168.33 4208049 2781644
18:05:00 83248 25785 2334 266.34 265.57 6251254 3632468

Average 55592 16584 1614 176.87 176.39 4362015 2578121

From the output above we see that the system did approximately 177 fork system
calls for creating new processes. The system also performed ten times as many
read system calls per second than write system calls, but only read 1.7 times
more data (4362015 / 2578121 = 1.69) than it wrote during the measurement
time. However the average transfer size for the read system calls was
approximately 260 bytes (4362015 / 16584 = 263.02) and the average transfer
size for the write system calls was approximately 1600 bytes (2578121 / 1614 =
1597.34).

The sar -c report has the following format:

exec/s Reports the total number of exec system calls

fork/s Reports the total number of fork system calls
sread/s Reports the total number of read system calls
swrit/s Reports the total number of write system calls
rchar/s Reports the total number of characters transferred by

read system calls

wchar/s Reports the total number of characters transferred by
write system calls

scall/s Reports the total number of system calls

AIX 5L Performance Tools Handbook

The output in Example 3-61 shows how the different CPUs were utilized by

system calls.

Example 3-61 Using sar -c

sar -cPALL 10 3

AIX bolshoi 1 5 00040B1F4C00

18:05:05 cpu scall/s sread/s

18:05:15

18:05:25

18:05:35

Average

0

WN RO 1T WN

WN -~ O

18276
17527
16942
18786
71420
23951
18926
19277
21008
83076
20795
21442
17528
18983
78535

21006
19299
17917
19591
77676

6313
3898
3211
4589
17914
11926
4965
6462
6788
30068
7932
4615
3939
3310
19718

8722
4493
4539
4894
22566

05/20/01
swrit/s for
399 53,
474 64.
578 63.
507 66.
1965 248.
601 42.
658 62.
545 67.
640 75.
2440 248.
426 55.
718 62.
504 77.
648 78.
2286 273.
475 50.
617 63.
542 69.
598 73.
2230 256.

k/s
66
65
17
83
22
08
67
51
40
44
35
14
17
04
23

36
15
28
43
63

exe

66.
58.
56.
66.
247.
56.
61.
61.
68.
248.
67.
67.
66.
71.
272.

63.
62.
61.
68.
256.

c/s
50
89
56
13
64
63
39
37
80
24
92
39
21
46
84

69
56
38
80
24

rchar/s

706060
2714377
1196307
1161274
5856025
1933828
1341808
1094918
1164796
5515219

805022
2425419
1122280
1375725
5692685

1148012
2159898
1137801
1234002
5688003

wchar/s
459381
827040
1042826
870102
3217526
796038
1133376
833909
951693
3709782
500341
1292411
873226
1176041
3823642

585170
1084462
916592
999354
3583571

The last line of each timestamp and the average part of the report show the

average for all CPUs; they are denoted by a dash (-).

How to monitor activity for each block device

Example 3-62 shows the use of the sar command with the -d flag to find out

more about block device utilization.

Example 3-62 Using sar -d

sar -d 10 3

AIX bolshoi 1 5 00040B1F4C00

17:58:08

17:58:18

device

hdisk0
hdiskl
hdisk12

%busy

0
0
3

05/20/01

avque

o O o
o O o

Chapter 3. Multi resource monitoring and tuning tools

r+w/s

1
0
39

bTks

8
0
176

/s avwait

0.
0.
0.

0
0
0

o O o
o O o

avserv

133

hdisk3 3 0.0 38 174 0.0 0.0
hdisk2 3 0.0 39 177 0.0 0.0
hdisk9 0 0.0 0 0 0.0 0.0
hdiskl16 3 0.0 38 175 0.0 0.0
hdiskl5 3 0.0 38 176 0.0 0.0
hdisk7 3 0.0 38 175 0.0 0.0
hdisk8 0 0.0 4 23 0.0 0.0
hdisk4 3 0.0 38 174 0.0 0.0
hdiskl7 1 0.0 14 58 0.0 0.0
hdiskll 0 0.0 1 16 0.0 0.0
hdisk6 1 0.0 19 79 0.0 0.0
hdisk14 3 0.0 38 174 0.0 0.0
hdisk5 3 0.0 38 175 0.0 0.0
hdisk13 3 0.0 39 177 0.0 0.0
hdisk10 0 0.0 0 0 0.0 0.0
...(Tines omitted)...

Average hdisk0 0 0.0 1 10 0.0 0.0
hdiskl 0 0.0 0 0 0.0 0.0
hdisk12 15 0.0 171 764 0.0 0.0
hdisk3 15 0.0 160 721 0.0 0.0
hdisk?2 15 0.0 168 750 0.0 0.0
hdisk9 0 0.0 0 0 0.0 0.0
hdisk16 16 0.0 169 759 0.0 0.0
hdisk15 15 0.0 170 760 0.0 0.0
hdisk7 16 0.0 168 753 0.0 0.0
hdisk8 0 0.0 10 62 0.0 0.0
hdisk4 15 0.0 167 753 0.0 0.0
hdiskl7 5 0.0 61 247 0.0 0.0
hdiskll 0 0.0 4 74 0.0 0.0
hdisk6 7 0.0 89 358 0.0 0.0
hdiskl4 15 0.0 168 752 0.0 0.0
hdisk5 15 0.0 167 750 0.0 0.0
hdiskl13 15 0.0 171 767 0.0 0.0
hdisk10 0 0.0 0 1 0.0 0.0

In the output above, there are two different utilization patterns, one with a fairly
even I/O load and one with very little I/O (eight disks) during our measurement.

The sar -d report has the following format:

%busy Reports the portion of time the device was busy servicing a
transfer request
avque The average number of requests in the queue
g
r+w/s Number of read and write requests per second

134 AIX 5L Performance Tools Handbook

blks/s Number of bytes transferred in 512-byte blocks per second

avwait The average time each request waits in the queue before it is
serviced
avserv The average time taken for servicing a request

How to monitor kernel process activity
Example 3-63 shows the use of the sar command with the -k flag to find out
more about kernel process activity.

Example 3-63 Using sar -k
sar -k 10 3

AIX wimhost 1 5 000BC6AD4C00 05/18/01

22:57:45 ksched/s kproc-ov kexit/s

22:57:55 0 0 0
22:58:05 0 0 0
22:58:15 0 0 0
Average 0 0 0

The sar -k report has the following format:

kexit/s Reports the number of kernel processes terminating per
second.
kproc-ov/s Reports the number of times kernel processes could not

be created because of enforcement of process threshold
limit per second.

ksched/s Reports the number of kernel processes assigned to
tasks per second.

A kernel process (kproc) exists only in the kernel protection domain. It is created
using the creatp and initp kernel services. Refer to “Understanding Kernel
Threads" in AIX 5L Version 5.1 Kernel Extensions and Device Support
Programming Concepts and “Using Kernel Processes” in AIX 5L Version 5.1
Technical Reference: Kernel and Subsystems, Volume 1.

How to monitor the message and semaphore activities
Example 3-64 shows the use of the sar command with the -m flag to find out
more about message and semaphore utilization.

Example 3-64 Using sar -m
sar -m 10 3

AIX wimhost 1 5 000BC6AD4C00 05/28/01

Chapter 3. Multi resource monitoring and tuning tools 135

17:03:45 msg/s sema/s
17:03:50 0.00 2744.71
17:03:55 0.00 2748.94
17:04:00 0.00 2749.15

Average 0.00 2747.60

Message queues and semaphores are some of the ways for processes or
threads to communicate with each other in a system, Inter Process
Communication (IPC).

The sar -m report has the following format:

msg/s Reports the number of IPC message primitives per
second.

sema/s Reports the number of IPC semaphore primitives per
second.

To follow up on processes using IPC messages and semaphores use the ipcs
command, see Section 5.1, “ipcs” on page 302 for more information on how to do
it. Example 3-65 shows messages and semaphores were used by the different
CPUs.

Example 3-65 Using sar -m

sar -mPALL 10 3
AIX wimhost 1 5 000BC6AD4C00 05/28/01

17:04:49 cpu msg/s sema/s
17:04:54 0 0.00 638.17
.00 706.14
.00 712.38
.00 694.84
.00 2746.03
.00 639.11
.00 708.95
.00 712.35
.00 699.20
.00 2754.35
.00 640.93
.00 704.97
.00 710.16
.00 689.15
.00 2739.90

W N =

17:04:59

W N = O

17:05:04

W NN O

(=2 = — I — T — i — I~ I~ B — I — I — I — I — I —]

.00 639.40
.00 706.68
.00 711.63
.00 694.39

Average

o o oo

136 AIX 5L Performance Tools Handbook

- 0.00 2746.76

The last line of each timestamp and the average part of the report show the
average for all CPUs; they are denoted by a dash (-).

How to monitor the kernel scheduling queue statistics
Example 3-66 shows the use of the sar command with the -q flag to find out
more about kernel scheduling queues:

Example 3-66 Using sar -q

sar -q 10 3
AIX bolshoi 1 5 00040B1F4C00 05/20/01

18:02:02 rung-sz %runocc swpq-sz %SwpoccC
18:02:12 23.8 100 2.9 70

18:02:22 35.0 100 8.0 100
18:02:32 13.0 100 3.0 30
Average 23.9 97 5.5 65

The example output above tells us that the run queue had approximately 24
threads ready to run, on average, and that the runqueue was occupied 97
percent of the time by threads ready to run during the measurement interval.

If the system is idle the output would appear as in Example 3-67.
Example 3-67 Using sar -q

sar -q 2 4
AIX bolshoi 1 5 00040B1F4C00 05/20/01

16:44:35 rung-sz %runocc Swpg-sz %SWpocC
16:44:37
16:44:39
16:44:41
16:44:43

Average

A blank value in any column indicates that the associated queue is empty.

The sar -q report has the following format:

rung-sz Reports the average number of kernel threads in the run

queue (the r column reported by vmstat is the actual
value)

Chapter 3. Multi resource monitoring and tuning tools

137

138

%runocc Reports the percentage of the time the run queue is
occupied

SWpq-sz Reports the average number of kernel threads waiting for
resources or I/O (the b column reported by vmstat is the
actual value)

%swpocc Reports the percentage of the time the swap queue is
occupied

How to monitor the paging statistics
Example 3-68 shows the use of the sar command with the -r flag to find out
more about the paging statistics.

Example 3-68 Using sar -r

sar -r 10 3

AIX bolshoi 1 5 00040B1F4C00 05/20/01
17:57:16 slots cycle/s fault/s odio/s
17:57:26 117419 0.00 15898.29 2087.03
17:57:36 117419 0.00 6051.20 1858.52
17:57:46 117419 0.00 13186.44 1220.44

Average 117419 0 11718 1722

The output above shows that there was approximately 460 MB of free space on
the paging spaces in the system (117419 * 4096 / 1024 / 1024 = 458) during our
measurement interval.

The sar -r report has the following format:

cycle/s Reports the number of page replacement cycles per
second (equivalent to the cy column reported by vmstat).

fault/s Reports the number of page faults per second. This is not
a count of page faults that generate 1/0 because some
page faults can be resolved without 1/0.

sTots Reports the number of free pages on the paging spaces.
odio/s Reports the number of non-paging disk I/Os per second.

How to monitor the processor utilization
Example 3-69 shows the use of the sar command with the -u flag to find out
more about the processor utilization.

Example 3-69 Using sar -u

sar -u 10 3

AIX 5L Performance Tools Handbook

AIX bolshoi 1 5 00040B1F4C00 05/20/01

17:54:58 susr %sys swio %idle
17:55:08 30 57 1 12
17:55:18 29 57 1 12
17:55:28 26 43 1 29
Average 29 53 1 18

The output above shows that the system spent 29 percent in user mode, 53
percent in system mode, and during 1 percent of the system idle time there were
outstanding I/0 requests to disk or NFS file systems and 18 percent waiting for
threads to run.

The output in Example 3-70 shows how the different CPUs were utilized.

Example 3-70 Using sar -u
sar -uPALL 10 3
AIX bolshoi 1 5 00040B1F4C00 05/20/01

17:55:49 cpu susr %Sys %wio %idle
17:55:59 0 38 51 1 9
1 27 43 1 29
2 24 45 1 31
3 25 46 0 29
- 28 46 1 25
17:56:09 0 26 74 0 0
1 40 60 0 0
2 33 67 0 0
3 40 60 0 0
- 35 65 0 0
17:56:19 0 12 38 1 50
1 18 37 1 44
2 56 33 1 10
3 13 37 1 48
- 26 36 1 37
Average 0 25 54 1 20
1 28 47 1 24
2 38 48 0 14
3 26 48 0 26
- 30 49 1 21

The last line of each timestamp and the average part of the report show the
average for all CPUs; they are denoted by a dash (-). The output above shows
that the system load was fairly evenly distributed among the CPUs.

Chapter 3. Multi resource monitoring and tuning tools 139

140

The sar -u report has the following format:

%idle

%Sys

susr

%Wio

Reports the percentage of time the CPU(s) were idle with
no outstanding disk I/O requests (equivalent to the id
column reported by vmstat).

Reports the percentage of time the CPU(s) spent in
execution at the system (or kernel) level (equivalent to the
sy column reported by vmstat).

Reports the percentage of time the CPU(s) spent in
execution at the user (or application) level (equivalent to
the us column reported by vmstat).

Reports the percentage of time the CPU(s) were idle
during which the system had outstanding disk/NFS 1/0
request(s). Equivalent to the wa column reported by
vmstat.

How to monitor tty device activity
Example 3-71 shows the use of the sar command with the -y flag to find out
more about the tty device utilization.

Example 3-71 Using sar -y

sar -y 10 3

AIX wimhost 1 5 000BC6AD4C00

05/18/01

23:01:17 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s

23:01:27 2
23:01:37 1
23:01:47 1
Average 2

0 51 0 0 0
0 446 0 0 0
0 360 0 0 0
0 286 0 0 0

The output above shows that this system only wrote 286 characters to terminal
devices, on average, during our measurement interval. Terminal devices can be
directly attached through the tty devices (/dev/ity) or through PTY device drivers
(/dev/pty or /dev/pts) for network connections with terminal emulation.

The sar -y report has the following format:

canch/s

mdmin/s

outch/s

AIX 5L Performance Tools Handbook

Reports tty canonical input queue characters per second.
This field is always zero (0) for AIX Version 4 and later
versions.

Reports tty modem interrupts per second.

Reports tty output queue characters per second (similar
to the tout column, but per second, reported by iostat).

rawch/s Reports tty input queue characters per second (similar to
the tin column, but per second, reported by iostat).

revin/s Reports tty receive interrupts per second.
xmtin/s Reports tty transmit interrupts per second.

How to monitor kernel tables
Example 3-72 shows the use of the sar command with the -v flag to find out
more about the kernel table utilization:

Example 3-72 Using sar -v

sar -v 10 3
AIX bolshoi 1 5 00040B1F4C00 05/20/01

17:52:58 proc-sz inod-sz file-sz thrd-sz

17:53:08 248/262144 641/358248 709/853 256/524288
17:53:18 227/262144 632/358248 642/853 235/524288
17:53:28 42/262144 282/358248 192/853 50/524288

The output above tells us that during the sampling interval between 17:53:18 and
17:53:28, there were 42 processes in the system process table, there were 192
file entry table entries occupied (the currently maximum size of the file entry table
is 853 entries since the last Initial Program Load (IPL)), 282 inodes are in use,
and 50 threads occupied the thread table.

The sar -v report has the following format:

file-sz Reports the number of entries in the kernel file table. The
column is divided into two parts:

file-size The number of open files in the
system (the currently used size of the
file entry table). Note that a file may
be open multiple times (multiple file
opens for one inode).
file-size-max The maximum number of files that
have been open since IPL (high
watermark).
The file entry table is allocated dynamically, so the
file-size-max value signifies a file entry table with
file-size-max entries available, and only file-size
entries used.

inod-sz Reports the number of entries in the kernel inode table.
The column is divided into two parts:

Chapter 3. Multi resource monitoring and tuning tools 141

142

inode-size The current number of active (open)
inodes.

inode-size-max The maximum number of inodes
allowed. This value is calculated at
system boot time based on the
amount of memory in the system

proc-sz Reports the number of entries in the kernel process table.
The column is divided into two parts:

proc-size The current number of processes
running on the system.

proc-size-max The maximum number of processes
allowed. Maximum value depends
on whether it is a 32-bit or 64-bit
system (NPROC).

thrd-sz Reports the number of entries in the kernel thread table.
The column is divided into two parts:

thread-size The current number of active
threads.

thread-size-max The maximum number of threads
allowed. Maximum value depends
on whether it is a 32-bit or 64-bit
system (NTHREAD).

The current limits for some of the kernel tables (per process) can be found using
the shell built in function ulimit, as Example 3-73 shows.

Example 3-73 Using ulimit

ulimit -a

time (seconds) unlimited
file(blocks) 2097151
data(kbytes) 131072
stack(kbytes) 32768
memory (kbytes) 32768

coredump (blocks) 2097151
nofiles(descriptors) 2000

How to monitor system context switching activity
Example 3-74 shows the use of the sar command with the -w flag to find out
more about context switching between threads.

Example 3-74 Using sar -w

sar -w 10 3

AIX wimhost 1 5 000BC6AD4C00 05/18/01

AIX 5L Performance Tools Handbook

23:00:46 cswch/s
23:00:56 516
23:01:06 599
23:01:16 307

Average 474

The output above shows that there were 474 context switches per second in the

system on average during our measurement interval.

The sar -w report has the following format:

cswch/s Reports the number of context switches per second
(equivalent to the cs column reported by vmstat).

The output in Example 3-75 shows the number of context switches per second

for the different CPUs.

Example 3-75 Using sar -w
sar -wP ALL 10 3

AIX wimhost 1 5 000BC6AD4C00 05/18/01

23:04:18 cpu cswch/s
23:04:28 0 212
140
152
125
625
186
119
111
82
494
66
60
52
30
210

w N =

23:04:38

W N = O

23:04:48

W N~ O

0 154
1 106
2 106
3 79
- 443

Average

Chapter 3. Multi resource monitoring and tuning tools 143

The last line of each timestamp and the average part of the report show the
average for all CPUs. They are denoted by a dash (-).

3.8 schedtune

With schedtune, AIX provides a set of parameters that influence its memory load
control mechanism. Some of these parameters can be adjusted to tailor the
system for a specific type of workload. The schedtune command is used to
display and change the parameters used in detecting whether system memory is
over committed, and therefore is thrashing (see “Thrashing” on page 150). The
schedtune command can also be used to change the penalty and decay factors
of processes running on the system. Using the schedtune command, the root
user has the ability to:

» Decide which criteria will be used to determine thrashing. Refer to
“Thrashing” on page 150

» Decide which criteria is used to suspend processes.

» Decide how long to wait after thrashing has stopped to reactivate processes
that were previously suspended.

» Decide the minimum number of processes that are exempt from being
suspended.

» Tune the scheduling priority formulas.

» Change the number of time slices.

» Decide what length of time to spin on a lock.

» Reset the schedtune values back to the defaults.

Note: All changes made using schedtune will be lost after a reboot. In order to
ensure that the desired schedtune values are set at boot time, insert the
appropriate schedtune command in the /etc/inittab file. An example of the
/etc/inittab file is shown in Example 3-81 on page 156

schedtune resides in /usr/samples/kernel and is part of the bos.adt.samples fileset,
which is installable from the AlX base installation media.

144 AIX 5L Performance Tools Handbook

Important: The schedtune command is operating system version specific.
Only use the correct version of schedtune for the version of the operating
system being used. Failure to do this may result in the inconsistent results and
the operating system may become inoperative. Some versions of the
schedtune command incorporate new functions specific for the appropriate
operating system.

3.8.1 Syntax

The syntax of the schedtune command is as follows:

schedtune [-D] | [-h n][-p n][-w n][-m n][-e n][-f n][-r n][-d n]

[-t n][-s n]l[-c n][-a n][-b n][-F n]

Flags
-D

-h n

Restores the default values.

Part of the system wide criterion used to determine when
process suspension begins and ends. On systems with less than
128 MB of system memory, the value of the n parameter is set to
six by default. On systems where the system memory is greater
than 128 MB, the value is set to 0 (zero). This is the same value
for disabling the load control mechanism. See “Memory” on
page 150.

Part of the per process criterion used to determine which
processes to suspend. The default value for the n parameter is 4
(four).

The number of seconds to wait after thrashing ends before
adding a process back into the run queue. The default for the n
parameter is 1 (one).

The minimum multi programing level. The default value for the n
parameter is 2 (two).

A recently resumed suspended process is eligible for
resuspension when it has been active for n seconds. The default
for the n parameter is 2 (two).

The number of clock ticks to delay before retrying a failed fork
call. Each time slice is 10 ms. The system retries up to five times.
The default value for the n parameter is 10.

Chapter 3. Multi resource monitoring and tuning tools 145

146

The rate at which to accumulate CPU use. The value of the n
parameter can be any whole number from zero to 32. The default
is 16.

The factor used to decay CPU use. The value of the n parameter
can be any whole number from zero to 32. The default is 16.

The number of 10 ms time slices (SCHED_RR only). The default
value for the n parameter is one. The SCHED_RR policy is a
round-robin based scheduling policy. For more information on
scheduler policies, refer to “Scheduler policies” on page 147.

The number of times to spin on a lock before sleeping. The
default value of the n parameter for multiprocessor systems is
16384, and one for uniprocessor systems.

The number used in determining and adjusting the clock
adjustments per tick in the correction range -1 to +1 seconds.
The range is from 1 (one) to 100. The default value is 100. This
value is used to adjust a drift in the clock.

The number of context switches after which the SCHED_FIFO2
policy no longer favors a thread. The default value for the n
parameter is seven. The SCHED_FIFO2 policy allows a thread
that sleeps for a relatively short amount of time to be requeued to
the head, rather than the tail, of its priority run queue. For more
information on scheduler policies, refer to “Scheduler policies” on
page 147.

Idle migration barrier is b/16 of the load average. This is the
value that determines when the thread can migrate to another
processor. The default value for the n parameter is four. The
range is from zero to 100.

Keep fixed priority threads in the global run queue. The default
value for the n parameter is zero, which disables this function.
Setting the value to one will enable the function. The global run
queue is used for fixed high priority threads or for newly created
threads that cannot be dispatched immediately due to lack of an
idle CPU. When any CPU on the system becomes available, a
thread on the global run queue is dispatched to it if that thread
has a better priority than a thread on this CPU’s local run queue.

AIX 5L Performance Tools Handbook

3.8.2 Information on calculating tunable values

This section provides information on tuning memory and CPU with the schedtune
command.

Scheduler policies
The different scheduler policies used by AlIX are shown in the following list.

SCHED_OTHER This is the default AIX scheduling policy. This scheduler
policy only applies to threads with a non-fixed priority. A
threads priority is recalculated after each clock interrupt.

SCHED_RR This policy only applies to threads running with a fixed
priority. Threads are time sliced. Once the time slice expires,
the thread is moved to the back of the queue of threads of
this same priority.

SCHED_FIFO This scheduler policy applies to fixed priority threads owned
by the root user only. A thread runs until completion unless
blocked or unless it gives up the CPU voluntarily.

SCHED_FIF02 This scheduler policy allows a thread that sleeps for a short
period of time to resume at the head of the queue rather than
the tail of the queue. The length of time the thread sleeps is
determined by the schedtune -a affinity value.

SCHED_FIFO3 With this scheduler policy, whenever a thread becomes
runnable, it moves to the head of its run queue.

CPU

This section deals with tuning the schedtune parameters that affect the CPU. In
Example 3-76, the schedtune command parameters that have an effect on the
CPU are highlighted.

Example 3-76 The schedtune CPU flags
/usr/samples/kernel/schedtune

THRASH SUSP FORK SCHED
-h -p -m -w -e -f -d -r -t -s
SYS PROC MULTI ~ WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE MAXSPIN
0 4 2 1 2 10 16 16 1 16384

CLOCK SCHED_FIFOZ2 IDLE MIGRATION FIXED_PRI

-C -a -b -F
%usDELTA AFFINITY_LIM BARRIER/16 GLOBAL(1)
100 7 4 0

Chapter 3. Multi resource monitoring and tuning tools 147

148

In order to correctly tune the schedtune parameters, it is necessary to understand
the nature of the workload that is running on the system, such as if the processes
are CPU intensive or interactive.

Prioritizing

The schedtune -r flag determines the current effective priority of a process. The
following calculation indicates the relationship between the -r flag and the
current effective priority:

cp=bp +nv+ (C*r/32)
The variables of the calculation can be described as follows:

bp The base priority value given to a process. When it
starts, this value is typically set to 40.

nv The nice value is a value set at process creation
time or by using the nice command (see Section 4.6,
“nice” on page 245). The default value is 20, and the
value can range from zero to 40.

C This is the number of CPU clock ticks the process
has accumulated. If this value reaches 120 and the
thread is still running, then the value stops
incrementing but the thread is allowed to keep
running. Each clock tick is 10ms.

r This value is set using the schedtune -r command
and ranges from zero to 32.

The following command sets the CPU penalty factor to a value of four:

/usr/samples/kernel/schedtune -r 4
The default value for the -r flag is 16.

To see the effect of the -r flag on the current effective priority, see Example 3-79
on page 153.

Aging of a thread

The schedtune -d flag sets the CPU decay factor. Once every second, the
swapper process of the system will wake up and age all CPU threads on the
system. The formula for calculating aging is as follows:

Cnew =C *d/32

AIX 5L Performance Tools Handbook

Cnew The newly calculated CPU use value in units of clock ticks
C The previous CPU use value in units of clock ticks
d The value set by schedtune -d

The C value is the accumulated CPU use value. This value is multiplied by the
CPU decay factor of (the value of schedtune -d/32). By default the schedtune -d
value is 16. This implies that every second when the swapper wakes, the CPU
use is halved. Processes that are CPU intensive will benefit when the CPU
decay factor is low, while setting the value of -d to a high value will favor the
interactive processes. The -d flag has a range from zero to 32.

Time slice

The default time slice is one clock tick. One clock tick equates to 10 ms. The time
slice value can be changed using schedtune -t. Context switching sometimes
decreases as the value of time slice is increased using the schedtune -t option.

Fixed priority threads

The schedtune command can be used to force all fixed priority threads to be
placed on the global run queue. The global run queue is examined for runnable
threads before the individual processor’s run queues are examined. A thread that
is on the global run queue will be dispatched to a CPU prior to threads on the
CPU’s run queue when that CPU becomes available if that thread has a better
priority than the threads on the CPU’s local run queue. The syntax for this is as
follows:

/usr/samples/kernel/schedtune -F 1

Fork retries

The -f option of the schedtune command determines the length of time that must
elapse before retrying a failed fork() call. If a fork() subroutine fails due to a lack
of paging space, then the system will wait until the specified number of clock
ticks have elapsed before retrying. The default value is 10. Because the duration
of one clock tick is 10 ms, the system will wait 100 ms by default.

Lock tuning

When a thread needs to acquire a lock, if that lock is held by another thread on
another CPU, then the thread will spin on the lock for a length of time before it
goes to sleep and puts itself on an event run queue waiting for the lock to be
released. The value of the MAXSPIN parameter determines how many iterations
the thread will check the lock word to see if the lock is available. On SMP
systems, this value is defaulted to 16384 as in the example below. In the case of
an upgrade to a faster system, it should be realized that the duration for spinning
on a lock will be less than on a slower system for the same MAXSPIN value. The
spin on a lock parameter MAXSPIN can be changed using the schedtune
command’s -s flag.

Chapter 3. Multi resource monitoring and tuning tools 149

150

Memory

This section deals with the schedtune command values that affect memory. The
schedtune command parameters that effect memory are highlighted in
Example 3-77.

Example 3-77 The schedtune command’s memory related parameters

/usr/samples/kernel/schedtune -e 1

THRASH SUSP FORK SCHED
-h -p -m -w -e -f -d -r -t -s
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED R TIMESLICE MAXSPIN
6 6 10 2 1 10 16 16 1 16384

CLOCK SCHED_FIFO2 IDLE MIGRATION FIXED_PRI

-C -a -b -F
%usDELTA AFFINITY_LIM BARRIER/16 GLOBAL(1)
100 7 4 0

The load control mechanism is used to suspend processes when the available
memory is over committed. Pages are stolen as they are needed from Least
Recently Used (LRU) pages. Pages from the suspended processes are the most
likely to be stolen. The intention of memory load control is to smooth out
infrequent peaks in memory demand to minimize the chance of thrashing taking
place. It is not intended as a mechanism to cure systems that have inadequate
memory. Certain processes are exempt from being suspended, such as kernel
processes and processes with a fixed priority below 60.

Thrashing
Using the output of the vmstat command as referenced in Section 3.11, “vmstat”
on page 186, the system is said to be thrashing when:

po/fr > 1/h
po Number of page writes.
fr Number of page steals.
h The schedtune -h value.

Note: On systems with a memory size greater than 128 MB, the size of the
schedtune -h value by default is 0 (zero). On systems where the memory is
less than 128 MB, the default value is set to 6 (six). When the -h flag is set to
0 (zero), then the load control mechanism is disabled.

AIX 5L Performance Tools Handbook

On a server with 128 MB of memory or less with the default settings, the system
is thrashing when the ratio of page writes to page steals is greater than one to
six. The value of h in the equation above, which can be changed by the
schedtune -h flag, therefore has the function of determining at which point the
system is said to be thrashing.

If the algorithm detects that memory is over committed, then the values
associated with the -m, -p, -w, -e, flags are used. If the load control mechanism
is disabled, then these flags are ignored.

-m This flag defines the lower limit of the number of active
processes. Active processes are defined as those that are
runnable and waiting for page 1/0. Suspended processes
and processes waiting for events are not considered
active processes. The default value is 2 (two). To
increase this value defeats the object of the load control
mechanism’s ability to suspend processes. To decrease
this value means that less processes are active when the
mechanism starts suspending processes. In large
systems, setting this value above the default may result in
better performance.

-p This flag is used to determine which processes will be
suspended depending on the rate of thrashing of that
individual process. The default value is set to four and
implies that the process can be suspended when the ratio
of repages to page faults is greater than 4 (four).

-w This flag sets the time delay after which the process can
become active again after the system is no longer
thrashing. The default value is 1 (one) second. Setting
this value high will result in an unnecessarily poor
response time from suspended processes.

-e This flag is used to exempt a recently suspended process
form being suspended again for a period of time. The
default value is 2 (two) seconds.

3.8.3 Recommendations and precautions

The following section provides suggestions and precautions when using the
schedtune command.

Important: The schedtune command should be used with caution. The use of
inappropriate values can seriously impair the performance of the system.
Always keep a record of the current value settings before making changes.

Chapter 3. Multi resource monitoring and tuning tools 151

Setting the CPU decay factor -d to a low value will force the current effective
priority value of the process down. A CPU intensive process therefore will
achieve more CPU time at the expense of the interactive process types. When
the -d flag is set high, then CPU intensive processes are less favored because
the priority value will decay less the longer that it runs. The interactive type
processes will be favored in this case. It is therefore important to understand the
nature of the processes that are running on the system before adjusting this
value.

When the value of the -r flag is set high, the nice value, as set by the nice
command, has less effect on the process, which means that CPU intensive
processes that have been running for some time will have a lower priority than
interactive processes.

The smaller the value of the -h flag, the closer to thrashing the system gets
before process suspension starts. Conversely, if the value is set too high,
processes may become suspended needlessly.

It is not recommended that the -m flag is set lower than 2 (two). Even though this
is permitted, the result is that only one or less user processes will be permitted
when suspension starts.

Setting the value of the -w flag high results in unnecessarily poor response times
from suspended processes. The system’s processors could be idle while the
suspended processes wait for the delay set by the -w flag. Ultimately, this will
result in poor performance.

3.8.4 Examples

152

The schedtune command used without any flags will display the current
schedtune settings as shown in Example 3-78.

Example 3-78 Using the schedtune command to display the current values

/usr/samples/kernel/schedtune

THRASH SUSP FORK SCHED
-h -p -m -w -e -f -d -r -t -s
SYS PROC MULTI ~ WAIT GRACE TICKS SCHED_D SCHED R TIMESLICE MAXSPIN
0 4 2 1 2 10 16 16 1 16384

CLOCK SCHED_FIFO2 IDLE MIGRATION FIXED_PRI

-C -a -b -F
%usDELTA AFFINITY_LIM BARRIER/16 GLOBAL(1)
100 7 4 0

AIX 5L Performance Tools Handbook

When the CPU penalty factor schedtune -r is large, the nice value assigned to a
thread has less effect. When the CPU penalty factor is small, the nice value
assigned to the thread has more effect. This is shown in the following example.
In Example 3-79, the -r value is set to 4 (four). The nice value has a low impact
on the value of the current effective priority as can be seen in Table 3-1.

Example 3-79 CPU penalty factor of four using the schedtune command
/usr/samples/kernel/schedtune -r 4

THRASH SUSP FORK SCHED
-h -p -m -w -e -f -d -r -t -s
SYS PROC MULTI ~ WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE MAXSPIN
0 4 2 1 2 10 16 [} 1 16384

CLOCK SCHED_FIFO2 IDLE MIGRATION FIXED_PRI

-C -a -b -F
%usDELTA AFFINITY_LIM BARRIER/16 GLOBAL(1)
100 7 4 0

The result of changing the -r flag to 4 (four) is tabulated below. Values are
obtained from the calculation shown below:

cp=bp +nv+ (C*r/32)

=40 + 20 + (100 * 4/32)

=72
Table 3-1 Current effective priority calculated where -r is four

Time Current schedtune -r Clock ticks
effective flag consumed
priority (count)

0 (initial value) | 60 4 0

10 ms 60 4 1

20 ms 60 4 2

30 ms 60 4 3

40 ms 60 4 4

1000 ms 72 4 100

Chapter 3. Multi resource monitoring and tuning tools 153

154

In Example 3-80, the -r flag is set to 16, the nice value has less effect on the
current effective priority of the thread as can be seen in Table 3-2 on page 154.

Example 3-80 CPU penalty factor of sixteen using the schedtune command

./schedtune -r 16

THRASH SUSP FORK SCHED
-h -p -m -w -e -f -d -r -t -s
SYS PROC MULTI ~ WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE MAXSPIN
0 4 2 1 2 10 16 16 1 16384

CLOCK SCHED_FIFO2 IDLE MIGRATION FIXED_PRI

-C -a -b -F
%usDELTA AFFINITY_LIM BARRIER/16 GLOBAL(1)
100 7 4 0

With the default value of 16, the current effective priority will be as in Table 3-2.
Values are obtained from the calculation shown below:

cp=bp +nv+ (C*r/32)

= 40 + 20 + (100 * 16/32)

=110
Table 3-2 Current effective priority calculated where -r is 16

Time Current schedtune -r Clock ticks
effective flag consumed
priority (count)

0 60 16 0

10 ms 60 16 1

20 ms 61 16 2

30 ms 61 16 3

40 ms 62 16 4

1000 ms 110 16 100

Priority is limited to a value of 126. Even though the calculation allows for the
value to exceed this limit, the kernel will cap it at this value.

In the next example, the effect of the CPU decay factor can be seen. In Table 3-3,
the swapper wakes up at 1000 ms and sets the value of CPU use count to 50.
The current effective priority is significantly affected by the CPU decay factor.

AIX 5L Performance Tools Handbook

Cnew =C *d/32

=100 * 16/32
=50
Table 3-3 The CPU decay factor using the default schedtune -d value of 16
Time Current schedtune -r Clock ticks schedtune -d
effective flag consumed flag
priority (count)
990 ms 72 4 99 16
1000 ms 72 4 100 16
1010 ms 66 4 50 16
1020 ms 67 4 60 16

When the schedtune -d value is set to 31 as in Table 3-4, then the impact of the
CPU decay factor has less effect on the current effective priority value. With the
decay factor set in this way, interactive type threads are favored over CPU
intensive threads.

Cnew =C *d/32

=100 * 31/32
=97
Table 3-4 The CPU decay factor using a schedtune -d value of 31
Time Current schedtune -r Clock ticks schedtune -d
effective flag consumed flag
priority (count)
990 ms 72 4 99 31
1000 ms 72 4 100 31
1010 ms 72 4 96 31
1020 ms 72 4 97 31

The changes made using the schedtune command will be lost on a reboot, so it is
necessary to set the schedtune values at boot time by modifying the /etc/inittab
file as demonstrated in Example 3-81.

Example 3-81 The /etc/inittab modified showing an entry for the schedtune command
: @(#)49 1.28.2.7 src/bos/etc/inittab/inittab, cmdoper, bos41l, 9430C41la 7/26
/94 16:27:45

Chapter 3. Multi resource monitoring and tuning tools 155

COMPONENT_NAME: CMDOPER
ORIGINS: 3, 27

(C) COPYRIGHT International Business Machines Corp. 1989, 1993
A11 Rights Reserved
Licensed Materials - Property of IBM

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

: Note - initdefault and sysinit should be the first and second entry.

init:2:initdefault:

brc::sysinit:/sbin/rc.boot 3 >/dev/console 2>&1 # Phase 3 of system boot

powerfail::powerfail:/etc/rc.powerfail 2>&1 | alog -tboot > /dev/console # Power
Failure Detection

rc:2:wait:/etc/rc 2>81 | alog -tboot > /dev/console # Multi-User checks
fbcheck:2:wait:/usr/sbin/fbcheck 2>&1 | alog -tboot > /dev/console # run /etc/fi
rstboot

srcmstr:2:respawn:/usr/sbin/srcmstr # System Resource Controller
fbcheck:2:wait:/usr/sbin/fbcheck 2>&1 | alog -tboot > /dev/console # run /etc/fi
rstboot

srcmstr:2:respawn:/usr/sbin/srcmstr # System Resource Controller
rcsna:2:wait:/etc/rc.sna > /dev/console 2>&1 # Start sna daemons
rctcpip:2:wait:/etc/rc.tcpip > /dev/console 2>&1 # Start TCP/IP daemons
ihshttpd:2:wait:/usr/HTTPServer/bin/httpd > /dev/console 2>&1 # Start HTTP daemon
rcnfs:2:wait:/etc/rc.nfs > /dev/console 2>&1 # Start NFS Daemons
ihsadmin:2:wait:/usr/HTTPServer/bin/adminctl start > /dev/console 2>&1 # Start H

TTP admin daemon

nim:2:wait:/usr/bin/startsrc -g nim >/dev/console 2>&1

vmtune:2:once:/usr/samples/kernel/vmtune -P 30 -p 5 -c 4 -W 128 -R 16

schedt:2:once:/usr/samples/kernel/schedtune -s 65536

mcs0:2:wait:/etc/mecsO load # RC script

rcx25:2:wait:/etc/rc.net.x25 > /dev/console 2>&1 # Load X.25 translation table

cron:2:respawn:/usr/sbin/cron

piobe:2:wait:/usr/1ib/1pd/pio/etc/pioinit >/dev/null 2>&1 # pb cleanup

gdaemon:2:wait:/usr/bin/startsrc -sqdaemon

writesrv:2:wait:/usr/bin/startsrc -swritesrv

uprintfd:2:respawn:/usr/sbin/uprintfd

logsymp:2:once:/usr/1ib/ras/logsymptom # for system dumps

diagd:2:once:/usr/1pp/diagnostics/bin/diagd >/dev/console 2>&1

hcon:2:once:/etc/rc.hcon

1pd:2:once:/usr/bin/startsrc -s 1pd

156 AIX 5L Performance Tools Handbook

Example 3-82 uses the schedtune -s command to improve system performance
where there is lock contention. The default value might be too low for an SMP
system.

Example 3-82 Use of the spin on lock, maxspin option, schedtune -s
/usr/samples/kernel/schedtune

THRASH SUSP FORK SCHED
-h -p -m -w -e -f -d -r -t -s
SYS PROC MULTI ~ WAIT GRACE TICKS SCHED_D SCHED R TIMESLICE MAXSPIN
0 4 2 1 2 10 16 16 1 16384

CLOCK SCHED_FIFO2 IDLE MIGRATION FIXED_PRI

-C -a -b -F
%usDELTA AFFINITY_LIM BARRIER/16 GLOBAL(1)
100 7 4 1

If there is inode lock contention on, for example, database files within a logical
volume, this can be reduced by an increase in the MAXSPIN parameter, provided
that CPU use is not too high. Faster CPUs spin on a lock for a shorter period of
time than slower CPUs because of MAXSPIN will be used up quicker.

As can be seen above, the default value for spin on a lock is 16384 on SMP
systems. This value is usually too low, and should be set about four times the
default value. Run the command in the example below to increase the value.
Example 3-83 shows the schedtune output after the change.

Example 3-83 The new maxspin value
/usr/samples/kernel/schedtune -s 65536

THRASH SUSP FORK SCHED
-h -p -m -w -e -f -d -r -t -s
SYS PROC MULTI ~ WAIT GRACE TICKS SCHED_D SCHED R TIMESLICE MAXSPIN
0 4 2 1 2 10 16 16 1 65536

CLOCK SCHED_FIFO2 IDLE MIGRATION FIXED_PRI

-C -a -b -F
%usDELTA AFFINITY_LIM BARRIER/16 GLOBAL(1)
100 7 4 1

Chapter 3. Multi resource monitoring and tuning tools 157

3.9 topas

The topas command is a performance monitoring tool that is ideal for broad
spectrum performance analysis. The command is capable of reporting on local
system statistics such as CPU use, CPU events and queues, memory and
paging use, disk performance, network performance, and NFS statistics. It can
report on the top hot processes of the system as well as reporting on Workload
Manager (WLM) hot classes. The WLM class information is only displayed when
WLM is active. The topas command defines hot processes as those processes
that use a large amount of CPU time. The topas command does not have an
option for logging information. All information is real time.

Note: In order to obtain a meaningful output from the topas command, the
screen or graphics window must support a minimum of 80 characters by 24
lines. If the display is smaller than this, then parts of the output become
illegible.

The topas command requires the perfagent.tools fileset to be installed on the
system. The topas command resides in /usr/bin and is part of the bos.perf.tools
fileset that is obtained from the AIX base installable media.

3.9.1 Syntax

158

The syntax of the topas command is as follows.
topas [-d number_of_monitored_hot_disks] [-h]
[-i monitoring_interval_in_seconds]
[-n number_of_monitored_hot_network_interfaces]
[-p number_of_monitored_hot_processes]
[-w number_of_monitored_hot_WLM classes]
[-c number_of monitored_hot CPUs 1 [-P | -W]
The description of the flags is listed below.

-d This flag specifies the number of disks to be displayed and
monitored. The default value of two is used by the command if
this value is omitted from the command line. In order that no disk
information is displayed, the value of zero must be used. If the
number of disks selected by this flag exceeds the number of
physical disks in the system, then only the physically present
disks will be displayed. Because of the limited space available,
only the number of disks that fit into the display window are

AIX 5L Performance Tools Handbook

shown. The disks by default are listed in descending order of
kilobytes read and written per second KBPS. This can be
changed by moving the cursor to an alternate disk heading (for
example, Busy%).

This flag is used to display the topas help.

This flag sets the data collection interval and is given in seconds.
The default value is two.

This flag is used to set the number of network interfaces to be
monitored. The default is two. The number of interfaces that can
be displayed is determined by the available display area. No
network interface information will be displayed if the value is set
to zero.

This flag is used to display the top hot processes on the system.
The default value of 20 is used if the flag is omitted from the
command line. To omit top process information from the
displayed output, the value of this flag must be set to zero. If
there is no requirement to determine the top hot processes on
the system, then this flag should be set to zero as this function is
the main contributor of the total overhead of the topas command
on the system.

This flag specifies the number of WLM classes to be monitored.
The default value of two is assumed if this value is omitted. The
classes are displayed as display space permits. If this value is
set to zero, then no information on WLM classes will be
displayed. If the WLM daemons are not active on the system,
then this flag may be omitted. Setting this flag to a value greater
than the number of available WLM classes results in only the
available classes being displayed.

This flag is used to display the top hot processes on the system
in greater detail than is displayed with the -p flag. Any of the
columns can be used to determine the order of the list of
processes. To change the order, simply move the cursor to the
appropriate heading.

This flag splits the full screen display. The top half of the display
shows the top hot WLM classes in detail, and the lower half of
the screen displays the top hot processes of the top hot WLM
class.

Chapter 3. Multi resource monitoring and tuning tools 159

3.9.2 Information on measurement and sampling

The topas command makes use of the System Performance Measurement
Interface (SPMI) Application Program Interface (API) for obtaining its
information. By using the SPMI API, the system overhead is kept to a minimum.
The topas command uses the perfstat library call to access the perfstat kernel
extensions.

In instances where the topas command is determining values for system calls,
CPU clicks, and context switches, the appropriate counter is incremented by the
kernel and the mean value is determined over the interval period set by the -i
flag. Other values such as free memory are merely snapshots at the interval
time.

The sample interval can be selected by the user by using the -1 flag option. If this
flag is omitted in the command line, then the default of two seconds is used.

3.9.3 Common uses of the topas command

160

Example 3-84 on page 162 shows the standard topas command and its output.
The system host name is displayed on the left hand side on the top line of the
screen. The line below shows the time and date as well as the sample interval
used for measurement.

CPU utilization statistics

CPU utilization is graphically and numerically displayed below the date and time
and is split up into a percentage of idle, wait, user, and kernel time.

Idle time The percentage of time where the processor is not performing any
tasks.

Wait time The percentage of time where the CPU is waiting for the response
of an input output device such as a disk or network adapter.

User time The percentage of time where the CPU is executing a program in
user mode.

Kernel time The percentage of time where the CPU is running in kernel mode.

Network interface statistics
The following network statistics are available over the monitoring period.

Network The name of the interface adapter.

KPBS Reports the total throughput of the interface in kilobytes per
second.

I-Pack Reports the number of packets received per second.

0-Pack Reports the number of packets sent per second.

KB-In Reports the number of kilobytes received per second.

KB-Out Reports the number of kilobytes sent per second.

AIX 5L Performance Tools Handbook

Disk drive statistics
The following disk drive statistics are available.

Disk
Busy%
KBPS

TPS

KB-Read
KB-Writ

The name of the disk drive.

Reports the percentage of time that the disk drive was active.
Reports the total throughput of the disk in kilobytes per second.
This value is the sum of KB-Read and KB-Writ.

Reports the number of transfers per second or I/O requests to a
disk drive.

Reports the number of kilobytes read per second.

Reports the number of kilobytes written per second.

Process statistics
The top hot processes are displayed with the following headings.

Name

PID

CPU%
PgSp

Owner

The name of the process. Where the number of characters in the
process name exceeds nine, the name will be truncated. No
pathname details for the process are displayed.

Shows the process identification number for the process. This is
useful when a process needs to be stopped.

Reports on the CPU time utilized by this process.

Reports on the paging space that has been allocated to this
process.

Displays the owner of the process.

Event and queue statistics
This part of the report is on the to right-hand side of the topas display screen and
reports on select system global events and queues over the sampling interval.

Cswitch
Syscall
Reads
Writes
Forks
Exec
Runqueue

Waitqueue

Reports the number of context switches per second.

Reports the total number of system calls per second.

Reports the number of read system calls per second.

Reports the number of write system calls per second.

Reports the number of fork system calls per second.

Reports the number of exec system calls per second.

Reports the average number of threads that were ready to run,
but were waiting for a processor to become available.

Reports the average number of threads waiting for paging to
complete.

File and tty statistics
The file and tty part of the topas screen is located on the extreme right-hand side
at the top. The reported items are listed below.

Readch

Writech

Reports the number of bytes read through the read system call
per second.

Reports the number of bytes written through the write system call
per second.

Chapter 3. Multi resource monitoring and tuning tools 161

Rawin Reports the number of bytes read in from a tty device per second.

Ttyout Reports the number of bytes written to a tty device per second.

Igets Reports on the number of calls per second to the inode lookup
routines.

Namei Reports the number of calls per second to the path lookup routine.

DirbTk Reports on the number of directory blocks scanned per second by

the directory search routine.

Paging statistics

There are two parts of the paging statistics reported by topas. The first part is
total paging statistics. This simply reports the total amount of paging available on
the system and the percentages free and used. The second part provides a
breakdown of the paging activity. The reported items and their meanings are
listed below.

Faults Reports the number of faults.

Steals Reports the number of 4 KB pages of memory stolen by the
Virtual Memory Manager per second.

PgspIn Reports the number of 4 KB pages read in from the paging space
per second.

PgspOut Reports the number of 4 KB pages written to the paging space per
second.

Pageln Reports the number of 4 KB pages read per second.

PageQut Reports the number of 4 KB pages written per second.

Sios Reports the number of input/output requests per second issued

by the Virtual Memory Manager.

Memory statistics
The memory statistics are listed below.

Real Shows the actual physical memory of the system in megabytes.
%Comp Reports real memory allocated to computational pages.
%Noncomp Reports real memory allocated to non-computational pages.
%Client Reports on the amount of memory that is currently used to cache

remotely mounted files.

NFS statistics
Statistics for client and server calls per second are displayed.

Example 3-84 shows the topas command and its output.

Example 3-84 The default topas display

topas -il -p2 -d2 -n2

Topas Monitor for host: wlmhost EVENTS/QUEUES FILE/TTY
Thu May 3 16:05:08 2001 Interval: 15 Cswitch 60 Readch 127.6K

Kernel 0.4

Syscall 1652 Writech 4520
| | Reads 892 Rawin 0

162 AIX 5L Performance Tools Handbook

User 0.2
Wait 0.9
Idle 98.3

Network KBPS

tro 0.3
100 0.0
Disk Busy%
hdisk0 4.8
hdiskl 0.0
Name

Dctrl
syncd

I-Pack 0-Pack

2.6
0.0

KBPS
27.8
0.0

PID CPU% PgSp Owner

| Writes 3
| Forks 0
FHEFEHE | Execs 0
Runqueue 0.0
KB-In KB-Out Waitqueue 0.0
0.4 0.1 0.2

0.0 0.0 0.0 PAGING
Faults 27
TPS KB-Read KB-Writ Steals 0
6.4 2.7 25.1 Pgspln 0
0.0 0.0 0.0 PgspOut 0
Pageln 0
PageQut 5
Sios 5

34642 0.4
5724 0.2 0.3 root

1.2 root

NFS (calls/sec)
ServerV2
ClientV2
ServerV3
ClientV3

o O o o

Ttyout 0
Igets 0
Namei 57
Dirblk 0

MEMORY
Real,MB 5
% Comp 21.
% Noncomp 5.
% Client 0

PAGING SPACE

Size,MB 1024
% Used 9.2
% Free 90.7
Press:
"h" for help
"q" to quit

There are subcommands available once the topas screen is displayed. These
subcommands and their functions are explained below.

a

Always reverts to the default topas screen as shown in

Example 3-84 on page 162.

This option toggles the CPU display between off, cumulative, and

busiest CPU.

This option toggles the disk display between off, total disk

activity, and busiest disks.

When the cursor is moved over a WLM class name and this key
is pressed, then the top processes of this class are displayed in

the WLM window.

Provides online help.

This option toggles the network display between off, cumulative,

and busiest interface.

This option toggles the top hot process list on and off.

Chapter 3. Multi resource monitoring and tuning tools

163

P This option toggles between the full top process screen, which is
the same as the -P option from the topas command line. The full
processor screen is shown in Example 3-85. The top 20
processes are displayed showing the following information.

USER The user name

PID The process identification

PPID Parent process identification

PRI Priority given to the process

NI The nice value for the process

TIME The accumulative CPU time

CPU% The percentage of time that the CPU has been busy

with this process during the sample period
COMMAND The name of the process

Example 3-85 The full process topas screen

Topas Monitor for host: wlmhost Interval: 2 Thu May 3 16:13:58 2001
DATA TEXT PAGE PGFAULTS

USER PID PPID PRI NI RES RES SPACE TIME CPU% I/0 OTH COMMAND
root 5724 1 60 20 44 1 79 2:32 3.0 0 3 syncd
root 2322 0 37 41 15 3024 16 0:21 0.5 0 0 gil
root 1806 0 60 41 4 3024 4 0:00 0.0 0 0 xmgc
root 2064 0 36 41 4 3024 4 0:01 0.0 0 0 netm
root 1548 0 16 41 3 3024 3 20:08 0.0 0 0 Trud
root 2580 0 16 41 2 3024 4 0:00 0.0 0 0 wimsched
root 3432 8256 60 20 24 42 192 0:00 0.0 0 0 telnetd
root 3678 1 60 20 51 13 192 0:00 0.0 0 0 errdemon
root 3882 0 60 20 2 3024 4 0:00 0.0 0 0 Tvmbb
root 4208 7534 60 20 44 57 139 0:00 0.0 0 0 ksh
root 4430 6712 60 20 145 40 279 0:03 0.0 0 0 sendmail
root 4678 1 17 20 2 3024 10 0:00 0.0 0 0 dog
root 4924 5994 60 20 426 158 816 1:05 0.0 0 0 X
root 5186 16308 60 20 265 74 496 0:08 0.0 0 0 dtwm
root 5456 6712 60 20 75 13 153 0:01 0.0 0 0 dhcpcd
root 1 0 60 20 53 7 197 0:07 0.0 0 0 init
root 5994 1 60 20 3 0 81 0:00 0.0 0 0 dtlogin
root 6248 6712 60 20 50 0 444 0:00 0.0 0 0 IBM.ERrmd
root 6712 1 60 20 52 0 160 0:00 0.0 0 0 srcmstr
root 6990 6712 60 20 69 5 139 0:01 0.0 0 0
syslogd

q This option is used to exit the topas performance tool.

164 AIX 5L Performance Tools Handbook

r This option is used to refresh the screen.
w This option toggles the WLM section of the display on and off.

W This option toggles the full WLM display on and off
(Example 3-86).

Example 3-86 Typical display from using the W subcommand

Topas Monitor for host: wimhost Interval: 2 Fri May 11 11:20:43 2001
WLM-Class (Active) CPU% Mem?% Disk-1/0%
System 3 93 0
dbl.subl 0 0 0
dbl.Shared 0 0 0
dbl.Default 0 0 0
dbl 0 0 0
Shared 0 4 0
Default 0 1 0
Unmanaged 0 23 0
Unclassified 0 0 0

DATA TEXT PAGE PGFAULTS
USER PID PPID PRI NI RES RES SPACE TIME CPU% I/0 OTH COMMAND
bob 36098 39942 174 20 100 10 100 0:13100.0 0 0 dc
root 15616 34578 217 20 130 8 334 1:51 1.0 0 0 topas
root 1806 0 60 41 4 2822 4 0:02 0.0 0 0 xmgc
root 2064 0 36 41 4 2822 4 0:13 0.0 0 0 netm
root 2322 0 37 41 15 2822 16 2:05 0.0 0 0 gil
root 2580 0 16 41 2 2822 4 9:44 0.0 0 0 wimsched
root 3396 10396 217 20 0 0 0 0:00 0.0 0 0
root 3678 1217 20 2 0 309 0:00 0.0 0 0 errdemon
root 3882 0 217 20 2 2822 4 0:00 0.0 0 0 Tvmbb
root 4210 7536 217 20 62 0 358 0:00 0.0 0 0 dtterm
root 4430 6712 217 20 145 42 279 0:13 0.0 0 0 sendmail

3.9.4 Examples

Some common uses of the topas command are given below (Example 3-87).

Example 3-87 Excessive CPU %user use indicated by topas

Topas Monitor for host: wlmhost EVENTS/QUEUES FILE/TTY

Fri May 11 11:28:06 2001 Interval: 2 Cswitch 64 Readch 353
Syscall 211 Writech 7836

Kernel 0.6 | | Reads 16 Rawin 0

User 99.3 | #HHFHHHEHHEEREHIA AR Writes 6 Ttyout 0

Wait 0.0 | | Forks 0 Igets 0

Idle 0.0 | | Execs 0 Namei 8
Runqueue 4.0 Dirblk 0

Chapter 3. Multi resource monitoring and tuning tools 165

Network KBPS I-Pack O0-Pack KB-In KB-Out Waitqueue 0.0
tr0 8.3 6.1 9.2 0.3 8.0
100 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
Faults 0 Real,MB 511
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 46.5
hdisk0 0.0 2.0 0.0 0.0 2.0 Pgspln 0 % Noncomp 53.6
hdiskl 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 49.6
Pageln 0
WLM-Class (Active) CPU% Mem% Disk-1/0% PageOut 0 PAGING SPACE
Unmanaged 0 23 0 Sios 0 Size,MB 1024
Unclassified 0 0 0 % Used 13.1
NFS (calls/sec) % Free 86.8
Name PID CPU% PgSp Class ServerV2 0
dc 43564 25.0 0.3 System ClientV2 0 Press:
dc 21566 25.0 0.3 System ServerV3 0 "h" for help
dc 41554 25.0 0.3 VPs ClientV3 0 "g" to quit
dc 23658 24.2 0.3 System

In Example 3-87 on page 165 it can be seen that the CPU percentage user is
excessively high. This would typically indicate that one or more processes are
hogging CPU time. The next step to analyzing the problem would be to press the
P subcommand key for a full list of top hot processes. Example 3-88 below shows

this output.
Example 3-88 Full process display screen show s processes hogging CPU time.
Topas Monitor for host: wimhost Interval: 2 Fri May 11 11:34:44 2001

DATA TEXT PAGE PGFAULTS

USER PID PPID PRI NI RES RES SPACE TIME CPU% I/0 OTH COMMAND
root 35754 29076 221 20 98 10 98 0:21100.0 0 0 dc
bob 25738 39942 172 20 98 10 98 0:18100.0 0 13 dc
root 19566 20560 221 20 98 10 98 0:19 99.5 0 13 dc
root 21966 23358 221 20 98 10 98 0:20 99.0 0 0 dc
root 2580 0 16 41 2 2826 4 9:45 0.5 0 0 wimsched
root 25558 6712 217 20 59 17 264 7:26 0.5 0 0 i411md
root 25206 20016 217 20 9446 9 9480 0:28 0.5 0 0 java
root 3678 1217 20 3 0 309 0:00 0.0 0 0 errdemon
root 3882 0 217 20 2 2826 4 0:00 0.0 0 0 Tvmbb
root 4210 7536 217 20 62 0 358 0:00 0.0 0 0 dtterm
root 4430 6712 217 20 145 42 279 0:13 0.0 0 0 sendmail
root 4678 1 17 20 2 2826 10 0:00 0.0 0 0 dog
root 4924 5994 217 20 605 176 822 25:15 0.0 0 0 X
root 5186 16308 217 20 366 89 532 0:38 0.0 0 0 dtwm
root 5456 6712 217 20 75 13 157 0:10 0.0 0 0 dhcpcd
root 5724 1217 20 44 1 79 22:05 0.0 0 0 syncd
root 5994 1217 20 3 0 81 0:00 0.0 0 0 dtlogin
root 6248 6712 217 20 214 19 479 0:04 0.0 0 0 IBM.ERrmd

166 AIX 5L Performance Tools Handbook

root 6712 1217 20 52 0 186
root 6990 6712 217 20 66 4 139

0 0 srcmstr
0 0 syslogd

It can be seen that the first four processes are responsible for maximum CPU
use. In this case, the CPUs were performing calculations that clocked up the
CPU time. These four processes could also be seen on the default topas display.

Example 3-89 shows topas CPU statistics obtained on a server with 22 CPUs
and 68 GB of real memory. As can be seen, the CPU wait time is high. The CPU
wait value was consistently at this level. This indicates that the CPU is spending
a large amount of time waiting for an 1/0 operation to complete. This could
indicate such problems as insufficient available real memory space resulting in
excessive paging, or even a hardware problem on a disk. Further investigation is
required to determine exactly where the problem is. The topas command can be
regarded as the starting point to resolving most performance problems. As an
example, it might be useful to check the amount of paging activity on the system.
The topas command also provide hard disk and network adapter statistics that
can be useful for finding 1/0 bottlenecks. These topas statistics should be
examined to determine if a single disk or adapter is responsible for the
abnormally high CPU wait time.

Example 3-89 topas used to initially diagnose the source of a bottleneck

Kernel 12.2 |###

User 9.3 |###

Wait 30.3 | ###sEEERE

Idle 48.0 | ####EEEFEFIIEEE 41

In Example 3-90, topas is used to monitor a system. The CPU percentage wait
is over 16 percent and has consistently been at this level or higher. Looking at the
disk output, it can be seen that hdisk2 is close to 100 percent busy and has a
high transfer rate. The other disks on the system are not at all busy. If this
condition persisted, this scenario might suggest that a better distribution of data
across the disks is required. It is recommended, however, that a further
investigation be performed using a tool such as filemon. For further information
on the filemon command, please refer to Section 6.1, “flemon” on page 388.

Example 3-90 Monitoring disk problems with topas

Topas Monitor for host: wlmhost EVENTS/QUEUES FILE/TTY

Fri May 11 13:30:34 2001 Interval: 2 Cswitch 69 Readch 8701.3K
Syscall 5263 Writech 8671.2K

Kernel 8.7 |### | Reads 362 Rawin 0

User 0.6 | | Writes 3847 Ttyout 0

Wait 16.4 |####4 | Forks 0 Igets 0

Chapter 3. Multi resource monitoring and tuning tools 167

Idle 74.1 | ## 44 RERFEFERIEF RS | Execs 0 Namei 33

Runqueue 0.0 Dirblk 0
Network KBPS I-Pack O0-Pack KB-In KB-Out Waitqueue 1.0
tro 1.3 2.4 1.4 0.0 1.3
100 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY

Faults 1 Real,MB 511
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 29.1
hdisk2 99.9 1440.7 133.4 0.0 1440.7 Pgspln 0 % Noncomp 70.9
hdisk0 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 69.7
hdiskl 0.0 0.0 0.0 0.0 0.0 Pageln 0

PageQut 613 PAGING SPACE
Name PID CPU% PgSp Owner Sios 902 Size,MB 1024
read_writ 39130 7.9 0.2 root % Used 20.2
topas 15618 1.2 1.2 root NFS (calls/sec) % Free 79.7
X 4924 0.0 3.2 root ServerV2 0
java 48006 0.0 37.8 root ClientV2 0 Press:
Jjava 25206 0.0 37.0 root ServerV3 0 "h" for help
aixterm 34938 0.0 0.8 root ClientV3 0 "g" to quit
wimsched 2580 0.0 0.0 root
3.10 truss

3.10.1 Synt

168

The truss command tracks a process's system calls, received signals, and
incurred machine faults. The application to be examined is either specified on the
command line of the truss command, or truss can be attached to one or more
already running processes.

truss resides in /usr/bin and is part of the bos.sysmgt.serv_aid fileset, which is
installable from the AIX base installation media.

ax

The syntax of the truss command is as follows:

truss [-f] [-c] [-al [-e]l [-i]1 [{ -t | -x} [!] Syscall [...]]
[-s [!] Signal [...1 1 [-m['] Fault [...]J1 [{-r| -w} [!]
file descriptor [...]] [-o Outfile] {Command| -p pid [. . .1}

Flags
-a Displays the parameter strings that are passed in

each executed system call.

AIX 5L Performance Tools Handbook

-m [!] Fault

-0 Outfile

-p

-r [!] file descriptor

Counts tracked system calls, faults, and signals
rather than displaying the results line by line. A
summary report is produced after the tracked
command terminates or when truss is interrupted. If
the -f flag is also used, the counts include all
tracked Syscalls, Faults, and Signals for child
processes.

Displays the environment strings that are passed in
each executed system call.

Follows all children created by the fork system call
and includes their signals, faults, and system calls in
the output. Normally only the first-level command or
process is tracked. When the -f flag is specified, the
process id is included with each line of output to
show which process executed the system call or
received the signal.

Keeps interruptible sleeping system calls from being
displayed. Certain system calls on terminal devices
or pipes, such as open and kread, can sleep for
indefinite periods and are interruptible. Normally,
truss reports such sleeping system calls if they
remain asleep for more than one second. The
system call is then reported a second time when it
completes. The -1 flag causes such system calls to
be reported only upon completion.

Machine faults to track or exclude. Listed machine
faults must be separated from each other by a
comma. Faults may be specified by name or number
(see the sys/procfs.h header file or Table 3-5 on
page 170). If the list begins with the "!" symbol, the
specified faults are excluded from being displayed
with the output. The default is -mall.

Designates the file to be used for the output. By
default, the output goes to standard error.

Interprets the parameters to truss as a list of
process ids (PIDs) of existing processes rather than
as a command to be executed. truss takes control
of each process and begins tracing it, provided that
the user id and group id of the process match those
of the user, or that the user is a privileged user.

Displays the full contents of the I/O buffer for each
read on any of the specified file descriptors. The

Chapter 3. Multi resource monitoring and tuning tools 169

170

-s [!] Signal

-t [!] Syscall

-w [!] file descriptor

-x [!] Syscall

output is formatted 32 bytes per line, and shows
each byte either as an ASCII character (preceded by
one blank) or as a two-character C language escape
sequence for control characters, such as horizontal
tab (\t) and newline (\n). If ASCII interpretation is not
possible, the byte is shown in two-character
hexadecimal representation. The first 16 bytes of the
I/O buffer for each tracked read are shown, even in
the absence of the -r flag. The default is -r!lall.

Permits listing Signals to examine or exclude.
Those signals specified in a list (separated by a
comma) are tracked. The output reports the receipt
of each specified signal even if the signal is being
ignored, but not blocked, by the process. Blocked
signals are not received until the process releases
them. Signals may be specified by name or number
(see sys/signal.h or Table 3-6 on page 171). If the list
begins with the "!" symbol, the listed signals are
excluded from being displayed with the output. The
default is -s all.

Includes or excludes system calls from the tracked
process. System calls to be tracked must be
specified in a list and separated by commas. If the
list begins with an "!1" symbol, the specified system
calls are excluded from the output. The default is
-tall.

Displays the contents of the I/O buffer for each write
on any of the listed file descriptors (see -r for more
details). The default is -wlall.

Displays data from the specified parameters of
tracked system calls in raw format, usually
hexadecimal rather than symbolically. The default is
-x!all.

The -m flag allows tracking of machine faults. Machine fault numbers are
analogous to signal numbers. These correspond to hardware faults. Table 3-5
describes the numbers or names to use with the -m flag to specify machine faults.

Table 3-5 Machine faults

Symbolic fault Fault id | Fault description
name
FLTILL 1 lllegal instruction

AIX 5L Performance Tools Handbook

Symbolic fault Fault id | Fault description

name

FLTPRIV 2 Privileged instruction

FLTBPT 3 Breakpoint instruction

FLTTRACE 4 Trace trap (single-step)
FLTACCESS 5 Memory access (for example alignment)
FLTBOUNDS 6 Memory bounds (invalid address)
FLTIOVF 7 Integer overflow

FLTIZDIV 8 Integer zero divide

FLTFPE 9 Floating-point exception
FLTSTACK 10 Unrecoverable stack fault
FLTPAGE 11 Recoverable page fault (no signal)

Table 3-6 describes the numbers or names to use with the -s flag to specify
signals.

Table 3-6 Signals

Symbolic signal Signal id Signal description

name

SIGHUP 1 Hangup, generated when terminal disconnects
SIGINT 2 Interrupt, generated from terminal special char
SIGQUIT 3 Quit, generated from terminal special char
SIGILL 4 lllegal instruction (not reset when caught)
SIGTRAP 5 Trace trap

SIGABRT 6 Abort process

SIGEMT 7 EMT instruction

SIGFPE 8 Floating point exception

SIGKILL 9 Kill

SIGBUS 10 Bus error (specification exception)

SIGSEGV 11 Segmentation violation

SIGSYS 12 Bad argument to system call

Chapter 3. Multi resource monitoring and tuning tools

171

172

Symbolic signal Signal id Signal description

name

SIGPIPE 13 Write on a pipe with no one to read it
SIGALRM 14 Alarm clock timeout

SIGTERM 15 Software termination signal

SIGURG 16 Urgent condition on I/0 channel

SIGSTOP 17 Stop

SIGTSTP 18 Interactive stop

SIGCONT 19 Continue

SIGCHLD 20 Sent to parent on child stop or exit

SIGTTIN 21 Background read attempted from control terminal
SIGTTOU 22 Background write attempted to control terminal
SIGIO 23 1/0O possible, or completed

SIGXCPU 24 CPU time limit exceeded

SIGXFSZ 25 File size limit exceeded

SIGMSG 27 Input data is in the ring buffer

SIGWINCH 28 Window size changed

SIGPWR 29 Power-fail restart

SIGUSR1 30 User defined signal 1

SIGUSR2 31 User defined signal 2

SIGPROF 32 Profiling time alarm

SIGDANGER 33 System crash imminent; free up some page space
SIGVTALRM 34 Virtual time alarm

SIGMIGRATE 35 Migrate process

SIGPRE 36 Programming exception

SIGVIRT 37 AlX virtual time alarm

SIGALRM1 38 m:n condition variables

SIGWAITING 39 m:n scheduling

AIX 5L Performance Tools Handbook

Symbolic signal Signal id Signal description

name

SIGCPUFAIL 59 Predictive de-configuration of processors
SIGKAP 60 Keep alive poll from native keyboard
SIGGRANT SIGKAP Monitor mode granted
SIGRETRACT 61 Monitor mode should be relinguished
SIGSOUND 62 Sound control has completed
SIGSAK 63 Secure attention key

SIGIOINT SIGURG Printer to backend error signal
SIGAIO SIGIO Base LAN I/O

SIGPTY SIGIO PTY I/O

SIGIOT SIGABRT | Abort (terminate) process

SIGCLD SIGCHLD | Old death of child signal

SIGLOST SIGIOT Old BSD signal

SIGPOLL SIGIO Another 1/0O event

3.10.2 Information on measurement and sampling

The truss command executes a specified command, or attaches to listed
process IDs, and produces a report of the system calls, received signals, and
machine faults a process incurs. Each line of the output report is either the Fault
or Signal name, or the Syscall name with parameters and return values.

The subroutines defined in system libraries are not necessarily the exact system
calls made to the kernel. The truss command does not report these subroutines,
but, rather, the underlying system calls they make. When possible, system call
parameters are displayed symbolically using definitions from relevant system
header files. For path name pointer parameters, truss displays the string being
pointed to. By default, undefined system calls are displayed with their name, all
eight possible arguments, and the return value in hexadecimal format.

truss retrieves a lot of the information about processes from the /proc
filesystem. The /proc filesystem is a pseudo device that will return information
from the kernel structures depending on the structure of the files that are read.

Chapter 3. Multi resource monitoring and tuning tools 173

At the top level, the /proc file system contains entries, each of which names an
existing process in the system. The names of entries in this directory are process
ID (pid) numbers. These entries are directories. The files in these PID directories
are mostly read-only. In addition, if a process becomes a zombie’, most of its
associated /proc files disappear from the directory structure.

The /proc files contain data that presents the state of processes and threads in
the system. This state is constantly changing while the system is operating. To
lessen the load on system performance caused by reading /proc files, the /proc
filesystem does not stop system activity while gathering the data for those files. A
single read of a /proc file generally returns a coherent and fairly accurate
representation of process or thread state. However, because the state changes
as the process or thread runs, multiple reads of /proc files may return
representations that show different data and therefore appear to be inconsistent
with each other.

An atomic representation is a representation of the process or thread at a single
and discrete point in time. If you want an atomic snapshot of process or thread
state, stop the process and thread before reading the state. There is no
guarantee that the data is an atomic snapshot for successive reads of /proc files
for a running process. In addition, a representation is not guaranteed to be
atomic for any I/O applied to the address space (as) file. The contents of any
process address space might be simultaneously modified by a thread of that
process or any other process in the system.

Important: Multiple structure definitions are used to describe the /proc files. A
/proc file may contain additional information other than the definitions
presented here. In future releases of the operating system, these structures
may grow by the addition of fields at the end of the structures.

The following are the files and directories that exist for each process in the /proc

filesystem:

/proc/pid Directory for the process PID
/proc/pid/status Status of process PID

/proc/pid/ctl Control file for process PID
/proc/pid/psinfo Process status info for process PID
/proc/pid/as Address space of process PID
/proc/pid/map Address space map info for process PID
/proc/pid/object Directory for objects for process PID

7 A zombie process is a process whose parent process does not acknowledge its death. That is, does not execute the
wait system call when the child dies. Eventually all dead child processes will be acknowledged by init because init is all
user processes’ last parent. The PPID field, which can be seen with the ps command, shows which process is the parent.

174 AIX 5L Performance Tools Handbook

/proc/pid/sigact Signal actions for process PID
/proc/pid/sysent System call information for process PID
/proc/pid/lwp/tid Directory for thread TID
proc/pid/lwp/tid/Iwpstatus Status of thread TID
/proc/pid/lwp/tid/lwpctl Control file for thread TID
/proc/pid/lwp/tid/lwpsinfo Process status info for thread TID

3.10.3 Examples

The truss command can generate large amounts of output, so you need to
reduce the number of system calls you are tracing, or attach truss to a running
process only for a limited amount of time.

How to use truss

One way to use truss is to start by checking the general application flow, then
use a summary output as provided with the -c flag. To pinpoint the most
important system calls in the application flow, indicate these specifically with the
-t flag. Example 3-91 shows the flow of using the date command.

Example 3-91 Using truss with the date command
truss date
execve("/usr/bin/date", 0x2FF22B94, 0x2FF22B9C) argc: 1

sbrk (0x00000000) = 0x20001C78
brk (0x20011C80) =0
getuidx(4) = 0x00000000
getuidx(2) = 0x00000000
getuidx(1) = 0x00000000
getgidx(4) =0

getgidx(2) =0

getgidx (1) =0

__Toadx(0x01000080, Ox2FF1E810, 0x00003E80, Ox2FF227A0, 0x00000000, 0x00000000,
0x80000000, Ox7F7F7F7F) = 0xD0075130

...(Tines omitted)...

__Toadx(0x07080000, OxFOACD284, OxFFFFFFFF, 0x200125B8, 0x00000000, 0x6000D01A,
0x60003B0B, 0x00000000) = 0x2001334C

access("/usr/1ib/n1s/msg/en_US/date.cat", 0) =0

_getpid() = 40936
kioctl (1, 22528, 0x00000000, 0x00000000)
kwrite(1, 0xFOBOC2B8, 29) =29
kfcnt1(1, F_GETFL, OxFOBOA968) =
kfcnt1(2, F_GETFL, OxFOBOA968) =
_exit(0)

Tue May 8 18:13:32 CDT 2001

0

2
2

Chapter 3. Multi resource monitoring and tuning tools 175

176

From the above example, we can see that after the program has been loaded
and the initial setup has been performed, the date program’s use of subroutines
gets translated into kioct1 for the collection of the current time, and the display
of the date uses a kwrite system call.

How to use the summary output

In the following example we ran dd and used truss to do a summary report on
what dd is doing when it reads and writes. This is especially interesting because
dd splits itself with the fork system call and has a child process. First we use the
-c flag only as is shown in Example 3-92.

Example 3-92 Using truss with the dd command

truss -c dd if=/dev/zero of=/dev/null bs=512 count=1024
1024+0 records in.
1024+0 records out.

signals --------—---

SIGCHLD 1

total: 1

syscall seconds calls errors
kfork .00 1
execve .00 1
__loadx .01 12

_exit .00 1
kwaitpid .00 1
_sigaction .00 10

close .00 6

kwrite .04 1034

kread .03 2051

1seek .00 5
_getpid .00 3
getuidx .00 3

kioctl .00 4 4
open .00 3

statx .00 3
getgidx .00 3

shmctl .00 6 6
shmdt .00 3

shmat .00 3

shmget .00 3

brk .00 1

sbrk .00 1
_pause .00 1 1
pipe .00 3

access .00 1

kfentl .00 3

sys totals: .16 3166 11

AIX 5L Performance Tools Handbook

usr time: .02
elapsed: .18

As can be seen in the above example, dd performs a fork, and the number of
system calls during its execution is 3166. However by including the child
processes (-f) in the calculation, we get a different result from the same run as
shown in Example 3-93.

Example 3-93 Using truss with the dd command

truss -fc dd if=/dev/zero of=/dev/null bs=512 count=1024
1024+0 records in.

1024+0 records out.

signals --------—---

SIGCHLD 1

total: 1

syscall seconds calls errors
kfork .00 1
execve .00 1
__loadx .01 12

_exit .00 2
kwaitpid .00 1
_sigaction .00 13

close .00 12

kwrite .04 3089

kread .03 3077

1seek .00 5
_getpid .00 3
getuidx .00 3

kioctl .00 4 4
open .01 3

statx .00 3
getgidx .00 3

shmctl .00 9 6
shmdt .00 6

shmat .00 6

shmget .00 3

brk .00 1

sbrk .00 1
_pause .00 1 1
pipe .00 3

access .00 1

kfentl .00 5

sys totals: .10 6268 11
usr time: .00

elapsed: .10

Chapter 3. Multi resource monitoring and tuning tools 177

In the above example, we see that the total number of system calls made on
behalf of the dd program was in fact 6268 because we included all processes that
were necessary for it to perform its task in the statistical output. Because these
two samples were run on a AIX system with other loads at the same time, you
can disregard the reported time statistics as they are not important here.

How to monitor running processes

In Example 3-94 we track a process that is running. The process is known and it
performs random seeks on one file and random seeks on the other file, then it
reads a block from one file and writes it to the other, changing blocksizes and file
to read from and write to randomly.

Example 3-94 Extract of sample read_write.c program
expand -4 read_write.c[nl
...(Tines omitted)...

90 while (1) {

91 bindex = (random()%12);

92 j = random()%2;

93 if (1seek(fd[j],(random()%FILE_SIZE), SEEK SET) < 0) {
94 perror("1seek 1");

95 exit(-1);

96 }

97 if (1seek(fd[j==0?1:0], (random()%FILE_SIZE), SEEK SET) < 0) {
98 perror("1seek 2");

99 exit(-1);

100 }

101 if (read(fd[j],buf,bsize[bindex]) <= 0) {

102 perror("read");

103 exit(-1);

104 }

105 if (write(fd[j==0?1:0],buf,bsize[bindex]) <= 0) {

106 perror("write");

107 exit(-1);

108 }

...(Tine omitted)...

When using truss to track the running process, we can see the seeks, reads,
and writes as in the following extracted example output (Example 3-95). The
running process name is read_write.

Example 3-95 Using truss on a running pr009338

ps -Fpid,args|grep read write[awk '!/grep/{print $1}'
19534

truss -t lseek,kread,kwrite -p 19534|n1

1 1seek(3, 919890044, 0) = 919890044

8 Instead of two lines to run the command we could use one: truss -t Iseek,kread,kwrite -p $(ps -Fpid,args | grep
read_write | awk 'V/grep/{print $1}') | nl

178 AIX 5L Performance Tools Handbook

2 l1seek(4, 757796945, 0) = 757796945

3 kread(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 64) = 64

4 kwrite(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 64) = 64

5 Tseek(4, 906212625, 0) = 906212625

6 1seek(3, 332914556, 0) = 332914556

7 kread(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 128) = 128

8 kwrite(3, "\0\0\0\0\0\0\0\0\0\0\0\O".., 128) = 128
9 Tseek(4, 241598273, 0) = 241598273

10 1seek(3, 848068334, 0) = 848068334

11 kread(4, "\0\0\0\0\0\0\0\0\0\0\0\O".., 131072) = 131072
12 kwrite(3, "\0\0\0\0\0\0\0\0\0\0\0O\0".., 131072) = 131072
13 1seek(3, 717721518, 0) = 717721518

14 1seek(4, 314891145, 0) = 314891145

15 kread(3, "\0\0\0\0\0\0\0\0\0\0\0\O".., 131072) = 131072
16 kwrite(4, "\0\0\0\0\0O\0\0\0\0\0\0O\O".., 131072) = 131072
17 1seek(3, 1016755287, 0) 1016755287

18 1seek(4, 922527047, 0) 922527047

19 kread(3, "\0\0\0\0\0\0\0\0\0\0O\O\O".., 512) = 512

20 kwrite(4, "\0\0\0\0\0\0\0\0\0\0\0\O".., 512) = 512
21 Tseek(4, 476810507, 0) = 476810507

22 1seek(3, 117563634, 0) = 117563634

23 kread(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 512) = 512

24 kwrite(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 512) = 512
25 Tseek(4, 624368317, 0) = 624368317

26 1seek(3, 980376023, 0) = 980376023

27 kread(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1024) = 1024

28 kwrite(3, "\0\0\0\0\0\0\0\0\0\0\O\O".., 1024) = 1024
...(Tines omitted)...

In lines 1 and 2 in the truss output above, you see the 1seek subroutine with the
first parameter being the file descriptor used in the program, the second
parameter is the byte offset in the file, and the third is the seek operation. This
corresponds to the source lines 93 and 97 that call the 1seek system call. On line
3 the kread is tracked with the first parameter being the file descriptor, the
second parameter the read buffer sent to the program (in this case all hex 0), and
the third parameter being the buffer size (block size), in this case 64 bytes. This
corresponds with the read system call on line 101 in the source program. On line
4 in the output you see the path for the kwrite, which translates into line 105 in
the source program. The first parameter is the file descriptor, the second
parameter is the write buffer and the third is the buffer size to write (block size)
which is also 64 bytes as it was for the read system call.

Chapter 3. Multi resource monitoring and tuning tools 179

When you follow the truss output report, you notice that the 1seek system calls
position the file pointers at different offsets in the two files before the read and
write commence. You can also see that the buffer sizes (block sizes) used will
vary (in the output shown above they vary between 64, 128, 131072, 512, and
1024 bytes).

To be noted is that depending on which system calls truss tracks, and how the
program is written, the output format can vary. The following example code
(Example 3-96) and truss output (Example 3-97) shows how it might look if you
use fprintf to write output from a program.

Example 3-96 Sample program for fprintf

1 #include <stdio.h>

2 main()

3 4

4 fprintf(stderr,"this is from %s, %s %s %s\n","fprintf","yes","it","is");
5 }

To track the program with truss:

truss -o truss.out -tkwrite fprintftest

truss will give an output similar to the one in Example 3-97.

Example 3-97 truss output for fprintf

expand truss.out]|nl

1 kwrite(2, "this is from".., 13) =13
2 kwrite(2, " fprintf", 7) =7

3 kwrite(2, ", ", 2) =2

4 kwrite(2, "y e s", 3) =3

5 kwrite(2, " ", 1) =1

6 kwrite(2, " i t", 2) =2

7 kwrite(2, " ", 1) =1

8 kwrite(2, " i s", 2) =2

9 kwrite(2, "\n", 1) =1

How to analyze file descriptor I/O

With truss you can also track what a program is reading and writing; that is, you
can actually track the content of the read and write buffers. Instead of including
debug statements in a program that shows input and output buffers (read and
write), you can use truss instead.

Read file descriptors
The following small program reads 24 bytes from the process file descriptor 0
(standard input) on line 4 below (Example 3-98 on page 181).

180 AIX 5L Performance Tools Handbook

Example 3-98 Sample read program (readit)
1 main ()

2 |

3 char buf[24];

4

5

read(0,buf,sizeof (buf));

The truss output (formatted with the expand and n1 commands) will look similar
to the output shown below (Example 3-99).

Example 3-99 truss output from the sample read program (readit)

echo "hello world\c"[truss -r0 readit 2>&1]expand|n]

1 execve("./readit", 0x2FF22B9C, Ox2FF22BA4) argc: 1
2 kread(0, Ox2FF22B30, 24) =11

3 hello worild

4 kfcnt1(1, F_GETFL, 0xF06C2968) =1

5 kfent1(2, F_GETFL, 0xF06C2968) =1

6 _exit(0)

The command line writes the sentence “hel1o wor1d” to standard input (s¢din) of
the truss/readit pipe. truss will track file descriptor 0 (stdin) with the -r flag and
we direct the output from truss (from stderr or file descriptor 2) to stdin for the
next pipe to the expand and n1 commands (for formatting of the output only). On
line 2 of the truss output you see the kread system call that is created by the
read on line 4 in Example 3-98. The first parameter to kread is file descriptor 0,
the second is the read buffer address, and the third is the number of bytes to
read. On the end of the line is the return code from the kread system call, which
is 11 (this is the actual number of bytes read). On line 3 you see the content of
the read buffer containing our “hello world” string®.

Write file descriptors

The following small program writes a string of bytes (the number of bytes to write
is determined by the length of the string in this case) to the process file descriptor
1 (standard output) on line 4 below (Example 3-100).

Example 3-100 Sample write program

1 main ()

2

3 char *buf = "abcdefghijkIimnopgrstuvxyz0123456789\0";
4 write(1,buf,strlen(buf));

5 }

9 The echo command would normally add a newline (\n) to the end of a string, but since we added \c at the end of the
string, it did not.

Chapter 3. Multi resource monitoring and tuning tools 181

The truss output (formatted with the expand and n1 commands) will look similar
to the output shown below (Example 3-101).

Example 3-101 truss output from the sample write program
truss -wl writeit 2>&1 >/dev/null]expand|ni

1 execve("./writeit", 0x2FF22B9C, Ox2FF22BA4) argc: 1

2 kwrite(l, 0x200004F8, 35) =35

3 abcdefghijklmnopqrstuvxyz0123456
4 789
5
6
7

kfcnt1(1, F_GETFL, O0xF06C2968)
kfcnt1(2, F_GETFL, O0xF06C2968)
_exit(0)

67108865
1

truss will track file descriptor 1 (stdout) with the -w flag, and we direct the output
from truss (from stderr or file descriptor 2) to stdin for the next pipe to the expand
and n1 commands (for formatting of the output only). Note that we discard the
output from the writeit program itself (>/dev/nu11). On line 2 of the truss
output, you see the kwrite system call that is created by the read on line 4 in
Example 3-101. The first parameter to kwri te is file descriptor 1, the second is
the write buffer address (0x200004F8), and the third parameter is the number of
bytes to write (35). On the end of the line is the return code from the kwrite
system call, which is 35; this is the actual number of bytes written. On line 3 and
4 you see the content of the write buffer containing our string that was declared
on line 3 in the source program in the Example 3-101°.

How to combine different flags

Example 3-102 shows how to use truss by combining different flags to track our
sample write program. We use the -t flag to only track the kwrite system call,
the -w flag will show detailed output from the write buffers to all file descriptors
(al1), and the -x flag will show us the raw data of the options to the kwrite
system call (in hex).

Example 3-102 truss output using combined flags for the writeit sample program
truss -xkwrite -tkwrite -wall writeit 2>&1 >/dev/null]expand|[nl

1 kwrite(0x00000001, 0x200004F8, 0x00000023) = 0x00000023
2 abcdefghijklmnopgrstuvxyz0123456
3 789

On line 1 of the truss output you see the kwrite system call that is created by
the read on line 4 in the Example 3-101 on page 182. The first parameter to
kwrite is file descriptor 1 (in hex 0x00000001), the second is the write buffer
address (in hex 0x200004F8), and the third parameter is the number of bytes to
write (in hex 0x00000023). On the end of the line is the return code from the

10 The \0 in the bufferstring is just to make sure that the end of the string ends with binary zero, which indicates the end of
a byte string in the C programming language.

182 AIX 5L Performance Tools Handbook

kwrite system call, which is 35 (in hex 0x00000023); this is the actual number
of bytes written. On line 2 and 3 you see the content of the write buffer containing
our string that was declared on line 3 in the source program in the

Example 3-101 on page 182.

How to check program parameters

To check the parameters passed to the program when it was started, you can
use the -a flag with truss. This can be done if you start a program and track it
with truss, but you can do it on a running process as well. In Example 3-103 we
use truss to track the system calls that are used to load a program.

Example 3-103 Using truss to track the exec system calls

truss -a -texecl,execle,execlp,execv,execve,execvp,exect -p 1
psargs: /etc/init

~CPstatus: process is not stopped

Because the process we tracked was init with process id 1, truss reported that
the process was not stopped when we discontinued the tracking by using
CTRL-C to stop truss. The output shown after psargs: are the parameters that
the program got when it was started with one of the exec subroutines. In this
case it was only the program name itself, which is always the first parameter
(/etc/init).

How to check program environment variables

To check the environment variables that are set for a program when it is started,
you can use the -e flag with truss. This can be done if you start a program and
track it with truss. If you only want to see the environment in the truss output,
you need to include the exec system call that the process uses. In

Example 3-104 it is the execve system call that is used by the date command.

Example 3-104 Using truss to display the environment of a process

truss -e -texecve date 2>&1 >/dev/null]expand|nl

1 execve("/usr/bin/date", 0x2FF22B94, 0x2FF22B9C) argc: 1

2 envp: _=/usr/bin/truss LANG=en_US LOGIN=root VISUAL=vi

3
PATH=/usr/bin:/etc:/usr/sbin:/usr/uch:/usr/bin/X11:/sbin:/usr/javal30/jre/bin:/
usr/javal30/bin:/usr/vac/bin:/usr/samples/kernel:/usr/vac/bin:.:

4 LC__FASTMSG=true CGI_DIRECTORY=/var/docsearch/cgi-bin EDITOR=vi

5 LOGNAME=root MAIL=/usr/spool/mail/root LOCPATH=/usr/1ib/nls/loc

6 PS1=root@wImhost:$PWD: DOCUMENT_SERVER_MACHINE_NAME=T1ocalhost

7 USER=root AUTHSTATE=compat DEFAULT_BROWSER=netscape

8 SHELL=/usr/bin/ksh ODMDIR=/etc/objrepos DOCUMENT_SERVER_PORT=49213
9 HOME=/ TERM=ansi MAILMSG=[YOU HAVE NEW MAIL]

10 ITECONFIGSRV=/etc/IMNSearch PWD=/home/roden/src

11 DOCUMENT_DIRECTORY=/usr/docsearch/htm1 TZ=CST6CDT

12 PROJECTDIR=/home/roden ENV=//.kshrc

Chapter 3. Multi resource monitoring and tuning tools 183

13 ITECONFIGCL=/etc/IMNSearch/clients ITE_DOC_SEARCH_INSTANCE=search
14 A__z=! LOGNAME
15 NLSPATH=/usr/1ib/n1s/msg/%L/%N:/usr/1ib/n1s/msg/%L/%N.cat

We discard the output from the date command and format the output with the
expand and n1 command. The environment variables are displayed between line
2 and 15 in the output above. To monitor a running process environment use the
ps command as in Example 3-105 that uses the current shells PID (§$) (refer to
Section 3.6, “ps” on page 109 for more details).

Example 3-105 Using ps to check another process environment

ps euww $$

USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND

root 34232 0.0 0.0 1020 1052 pts/15 A 11:21:18 0:00 -ksh TERM=vt220
AUTHSTATE=compat SHELL=/usr/bin/ksh HOME=/ USER=root
PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin:/usr/javal30/jre/bin:/
usr/javal30/bin:/usr/vac/bin TZ=CST6CDT LANG=en_US LOCPATH=/usr/1ib/nls/loc
LC__FASTMSG=true ODMDIR=/etc/objrepos ITECONFIGSRV=/etc/IMNSearch
ITECONFIGCL=/etc/IMNSearch/clients ITE_DOC_SEARCH_INSTANCE=search
DEFAULT_BROWSER=netscape DOCUMENT_SERVER_MACHINE_NAME=localhost
DOCUMENT_SERVER_PORT=49213 CGI_DIRECTORY=/var/docsearch/cgi-bin
DOCUMENT_DIRECTORY=/usr/docsearch/html LOGNAME=root LOGIN=root
NLSPATH=/usr/1ib/n1s/msg/%L/%N:/usr/1ib/n1s/msg/%L/%N.cat

How to track child processes

Another way to use truss is to track the interaction between a parent process
and child processes. Example 3-106 shows how to monitor a running process
(/usr/sbin/inetd) and, while doing the tracking, opening a telnet session.

Example 3-106 Using truss to track child processes

truss -a -f -tkfork,execv -p 6716
6716: psargs: /usr/shin/inetd

6716: kfork() = 29042
29042: kfork() = 26546
26546: kfork() = 20026
26546: (sleeping...)

26546: kfork() = 20028
26546: kfork() = 20030

26546: (sleeping...)
~CPstatus: process is not stopped

Pstatus: process is not stopped

Pstatus: process is not stopped

184 AIX 5L Performance Tools Handbook

The left column shows the process id that each output belongs to. The lines that
start with 6716 are the parent process (inetd) because we used -p 6716 to start
the tracking from this process id. On the far right in the output is the return code
from the system call, and for kfork it is the process id of the spawned child (the
parent part of kfork will get a return code of zero). The next child with process id
29042 is the telnet daemon, as can be seen by using the ps command as in the
following sample output (Example 3-107).

Example 3-107 Using ps to search for process id
ps -eFpid,args|grep 29042][grep -v grep
29042 telnetd -a

The telnet daemon performs a fork system call as well (after authenticating the
login user) and the next child is 26546, which is the authenticated users’ login
shell as can be seen by using the ps command (Example 3-108).

Example 3-108 Using ps to search for process id
ps -eFpid,args|grep 26546][grep -v grep
26546 -ksh

We can see in the truss output that the login shell (ksh) is forking as well, which
is one of the primary things that shells do. To illustrate a point about shells, let us
track it while we run some commands. We ran the ps, 1s, date, and sleep
commands one after the other in our login shell, and truss shows us that the
shell did a fork system call every time as can be seen in the output in

Example 3-109.

Example 3-109 Using truss to track ksh with ps, Is, date, and sleep
truss -a -f -tkfork,execv -p 26546
26546: psargs: -ksh

26546: kfork() = 29618
26546: kfork() = 29620
26546: kfork() = 29622
26546: kfork() = 29624

26546: (sleeping...)
~CPstatus: process is not stopped

In the example above, process id 29618 is the ps command, process id 29620 is
the 1s command, process id 29622 is the date command, and process id 29624 is
the sleep command.

The following example shows us how many forks are done by running the make
command to compile one program with the cc compiler from the same shell
(Example 3-110 on page 186).

Chapter 3. Multi resource monitoring and tuning tools 185

Example 3-110 Using truss to track ksh with make

truss -a -f -tkfork,execv -p 26546
26546: psargs: -ksh

26546: kfork() = 26278
26278: kfork() = 29882
29882: kfork() = 28388
29882: kfork() = 28390
29882: kfork() = 28392
28392: kfork() = 29342
26546 (sleeping...)

~CPstatus: process is not stopped

It took six processes to compile one program by using make and cc. By using the
summary output with the -c flag to truss, it will nicely summarize it for us as
Example 3-111 shows.

Example 3-111 Using truss to track ksh with make and use summarized output

truss -c -a -f -tkfork,execv -p 26546

psargs: -ksh

~CPstatus: process is not stopped

syscall seconds calls errors
kfork .00 6

sys totals: .00 6 0
usr time: .00

elapsed: .00

The above output confirms that ksh/make process tree did six fork system calls to
handle the make command for this compile.

3.11 vmstat

186

The vmstat command is very useful for reporting statistics about kernel threads,
virtual memory, disks, and CPU activity. Reports generated by the vmstat
command can be used to balance system load activity. These system-wide
statistics (among all processors) are calculated as averages for values
expressed as percentages, or otherwise, as sums.

vmstat resides in /usr/bin and is part of the bos.acct fileset, which is installable
from the AIX base installation media.

AIX 5L Performance Tools Handbook

3.11.1 Syntax

The syntax of the vmstat command is as follows:

vmstat [-fsilt] [Drives] [Interval [Count]]

Flags

-f Reports the number of forks since system startup.

-s Writes to standard output the contents of the sum structure, which
contains an absolute count of paging events since system
initialization. The -s option is exclusive of the other vmstat command
options. These events are described in Section 3.11.3, “Examples”
on page 188.

-i Displays the number of interrupts taken by each device since system
startup.

-1 Displays an I/O oriented view with the new columns, p under heading
kthr, and columns fi and fo under heading page instead of the
columns re and cy in the page heading.

-t Prints the time stamp next to each line of output of vmstat. The

time-stamp is displayed in the HH:MM:SS format. The time stamp will
not be printed if the -f, -s, or -1 flags are specified.

Both the -f and -s flags can be entered on the command line, but the system will
only accept the first flag specified and override the second flag.

If the vmstat command is invoked without flags, the report contains a summary of
the virtual memory activity since system startup. If the -f flag is specified, the
vmstat command reports the number of forks since system startup. The Drives
parameter specifies the name of the physical volume.

Parameters
Drives hdisk0, hdisk1, and so forth

Disk names are as displayed by the 1spv command. RAID disks will
appear as one logical hdisk.

Interval Specifies the update period (in seconds).

Count Specifies the number of iterations.

The Interval parameter specifies the amount of time in seconds between each
report. The first report contains statistics for the time since system startup.
Subsequent reports contain statistics collected during the interval since the

previous report. If the Interval parameter is not specified, the vmstat command
generates a single report and then exits. The Count parameter can only be

Chapter 3. Multi resource monitoring and tuning tools 187

specified with the Interval parameter. If the Count parameter is specified, its
value determines the number of reports generated and the number of seconds
apart. If the Interval parameter is specified without the Count parameter, reports
are continuously generated. A Count parameter of 0 is not allowed.

3.11.2 Information on measurement and sampling

The kernel maintains statistics for kernel threads, paging, and interrupt activity,
which the vmstat command accesses through the use of the knlist subroutine
and the /dev/kmem pseudo-device driver. The disk input/output statistics are
maintained by device drivers. For disks, the average transfer rate is determined
by using the active time and number of transfers information. The percent active
time is computed from the amount of time the drive is busy during the report.
The vmstat command generates five types of reports:

» Virtual memory activity

» Forks

» Interrupts

» Sum structure

» Input/Output

3.11.3 Examples

188

This section shows examples and descriptions of the vmstat reports.

Virtual memory activity

vmstat writes the virtual memory activity to standard output. It is a very useful
report because it gives a good summary of the system resources on a single line
(Example 3-112).

Example 3-112 Virtual memory report

vmstat 2 5
kthr memory page faults cpu

r b awm fre re pi po fr sr cy in sy cs us sy id wa

0 051696 49447 0 O O 6 36 0104 188 65 0 197 2
0 051698 49445 0 0 0 O 0 04721028 326 0 199 O
0 05169949444 0 0 0 O 0 0471 990 327 0 199 O
0 051700 49443 0 0 0 O 0 0473 992 330 0 199 O
0 051701 49442 0 0 0 O 0 0469 986329 0 099 O

AIX 5L Performance Tools Handbook

Note: The first line of this report should be ignored because it is an average
since the last system reboot.

The reported fields are described as follows:
kthr Kernel thread state changes per second over the sampling interval.

r Run queue. Average number of threads on the run queues per
second. These threads are only waiting for CPU time, and are ready
to run. Each thread has a priority ranging from zero to 127. Each
CPU has a run queue for each priority; therefore there are 128 run
queues for each CPU. Threads are placed on the appropriate run
queue. Refer to Section 1.1.3, “Process and thread priorities” on
page 3 for more information on thread priorities. The run queue
reported by vmstat is across all run queues and all CPUs. Each CPU
has its own run queue. The maximum you should see this value
increase to is based on the following formula:

5 X (Nproc - Nping)

(where Ny is the number of active processors and
Nping is the number of active processors bound to
processes with the bindprocessor command.

Note: A high number on the run queue does not necessarily translate to a
performance slow-down because the threads on the run queue may not
require much processor time and will therefore be quick to run, thereby
clearing the run queue quickly.

b Average number of threads on block queue per second. These
threads are waiting for resource or I/O. Threads are also located in
the wait queue (wa) when scheduled, but are waiting for one of their
threads pages to be paged in.

Note: On an SMP system there will always be one thread on the block queue.
If compressed file systems are used, then there will be an additional thread on
the block queue.

memory Information about the use of virtual and real memory. Virtual pages
are considered active if they have been accessed. A page is 4096
bytes.

avm Active Virtual Memory. avm indicates the number of virtual pages
accessed.

Note: avm is not an indication of available memory.

Chapter 3. Multi resource monitoring and tuning tools 189

fre Free list. This indicates the size of the free list. A large portion of real
memory is utilized as a cache for file system data. It is not unusual
for the size of the free list to remain small. The VMM maintains this
free list. The free list entries point to buffers of 4 K pages that are
readily available when required. The minimum number of pages are
defined by minfree. See “The page replacement algorithm” on
page 208 for more information. The default value is 120. If the
number of the free list drops below that defined by minfree, then the
VMM steals pages until maxfree+8 is reached. Terminating
applications release their memory, and those frames are added back
to the free list. Persistent pages (files) are not added back to the free
list. They remain in memory until the VMM steals their pages.
Persistent pages are also freed when their corresponding file is
deleted. A small value of fre could cause the system to start
thrashing due to over committed memory.

Note: Due to the way the VMM handles persistent pages, fre does not
indicate the amount of free unused memory.

Page Information about page faults and paging activity. These are
averaged over the interval and given in units per second.

re Reclaims. The number of reclaims per second. During a page fault,
when the page is on the free list and has not been reassigned, this is
considered a reclaim because no new I/O request has been initiated.
It also includes the pages last requested by the VMM for which 1/0O
has not been completed or those prefetched by VMM’s read-ahead
mechanism but hidden from the faulting segment.

Note: As from AIX Version 4, reclaims are no longer supported as the
algorithm is costly in terms of performance. Normally the delivered value will
be zero.

pi Page In. Indicates pages that have been paged to paging space and
are paged into memory when required by way of a page fault.
Normally you would not want to see more than five sustained pages
per second (as a rule of thumb) reported by vmstat as paging
(particularly page in (pi)) effects performance. A system that is
paging data in from paging space results in slower performance
because the CPU has to wait for data before processing the thread.

Note: pi is important for performance tuning. A high value may indicate a
shortage of memory or indicate a need for performance tuning. See vmtune for
more information.

po Page Out. The number of pages per second to paging space. These
pages are paged out to paging space by the VMM when more

190 AIX 5L Performance Tools Handbook

fr

sr

memory is required. They will stay in paging space and be paged in if
required. A terminating process will disclaim its pages held in paging
space and pages will also be freed when the process gives up the
CPU (is preempted). po does not necessarily indicate thrashing, but if
you are experiencing high paging out (po) then it may be necessary
to investigate the application vmtune parameters minfree and max
free, and the environmental variable PSALLOC. Refer to
http://www.rs6000.ibm.com/cgi-bin/ds_form for an overview of
Performance Overview of the Virtual Memory Manager (VMM)

Pages freed. When the VMM requires memory, VMM’s
page-replacement algorithm is employed to scan the Page Frame
Table (PFT) to determine which pages to steal. If a page has not
been referenced since the last scan, it can be stolen. If there has
been no I/O for that page then the page can be stolen without being
written to disk, thus minimizing the effect on performance.

Pages scanned. Represents pages scanned by the
page-replacement algorithm. When page stealing occurs (when fre
of vmstat goes below minfree of vmtune), then the pages in memory

are scanned to determine which pages can be stolen.,

Note: Look for a large ratio of fr to sr (fr:sr). This could indicate over
committed memory. A high ratio shows the page stealer has to work hard to
find memory to steal.

Example 3-113 shows high pi and po indicating high paging. Note that the wa
column is high, indicating we are waiting on the disk 1/O, probably for paging.
Note the ratio of fr:sr as the page stealers are looking for memory to steal and
the number of threads on the b queue waiting for data to be paged in. Also note
how wa is reduced when the page stealers have completed stealing memory, and
how the fre column increases as a result of page stealing.

Example 3-113 An example of high paging

kthr memory page faults cpu

r b avm fre re pi po fr sr cy in sy cs us sy id wa
2 3298565 163 0 14 58 2047 8594 0 971 217296 1286 23 26 17 34
2 2298824 124 0 29 20 251 352 0 800 248079 1039 22 28 22 29
1 7300027 293 0 15 6206 266 O 1150 91086 479 7 14 9 69
0 13300233 394 0 1 0127 180 0 894 6412 276 2 2 096
0 14 300453 543 0 4 0 45 82 0 793 5976 258 1 2 097
0 14 301488 329 0 2 2116 179 0 803 6806 282 1 3 096
0 14 302207 435 0 5 4112 159 0 821 12349 402 2 3 009
3 9301740 2240 0 70 9 289 508 0 963 187874 1089 19 31 6 44
1 4271719 30561 0 39 0 O 0 0 827 203604 1217 21 31 19 30
3 2269996 30459 0 16 0 O 0 0 764 182351 1387 18 25 34 23

Chapter 3. Multi resource monitoring and tuning tools

191

192

cy This refers to the page replacement algorithm. The value refers to the
number of times the page replacement algorithm does a complete
cycle through memory looking for pages to steal. If you have a value
greater than zero, then you are experiencing severe memory
shortages.

The page stealer steals memory until maxfree is reached (please see
“The page replacement algorithm” on page 208 for more details).
This usually occurs before the memory has been completely
scanned, hence the value will stay at zero. However if the page
stealer is still looking for memory to steal and the memory has
already been scanned, then the cy value will increment to one. Each
scan will increment cy until maxfree has been satisfied, at which time
page stealing will stop and cy will be reset to zero.

You are more likely to see the cy value increment when there is a
small amount of physical installed memory, as it takes a shorter time
for memory to be completely scanned and you are also more likely to
be short of memory.

Faults Trap and interrupt rate averages per second over the sampling
interval.

in Interrupts. Number of device or hardware interrupts per second
observed in the interval. An example of an interrupt would be the 10
ms clock interrupt or a disk I/O completion. Due to the clock interrupt,
the minimum value you see is 100.

sy Number of system calls per second. These are resources
provided by the kernel for the user processes and data exchange
between the process and the kernel. This reported value can vary
depending on workloads and on how the application is written, so it is
not possible to determine a value for this. Any value of 10,000 and
more should be investigated.

Tip: You should run vmstat when your system is busy and performing to
expectations so you can determine the average number of system calls for
your system.

cs Kernel thread context switches per second. A CPU’s resource is
divided into 10 ms time slices and a thread will run for the full 10 ms
or until it gives up the CPU (is preempted). When another thread gets
control of the CPU, the previous threads contexts and working
environments must be saved and the new threads contexts and
working environment must be restored. AIX handles this efficiently.
Any significant increase in context switches should be investigated.
See “Time slice” on page 149 for details about the timeslice
parameter.

AIX 5L Performance Tools Handbook

cpu

us

Sy

Breakdown of percentage use of CPU time.

User time. This indicates the amount of time a program is in user
mode. Programs can run in either user mode or system mode. In
user mode, the program does not require the resources of the kernel
to manage memory, set variables, or perform computations.

System time indicates the amount of time a program is in system
mode; that is, processes using kernel processes (kprocs) and others
that are using kernel resources. Processes requiring the use of
kernel services must switch to service mode to gain access to the
services, for example to open a file or read/write data.

Note: A CPU bottleneck could occur if us and sy combined together add up to
approximately 80 percent or more.

id

wa

CPU idle time. This indicates the percentage of time the CPU is idle
without pending 1/0. When the CPU is idle, it has nothing on the run
queue. When there is a high aggregate value for id, it means there
was nothing for the CPU to do and there were no pending I/Os. A
process called wait is bound to every CPU on the system. When the
CPU is idle, and there are no local I/Os pending, any pending I/O to a
Network File System (NFS) is charged to id.

CPU wait. CPU idle time during which the system had at least one
outstanding I/O to disk (whether local or remote) and asynchronous
I/O was not in use. An I/O causes the process to block (or sleep) until
the 1/0 is complete. Upon completion, it is placed on the run queue. A
wa of over 25 percent could indicate a need to investigate the disk I/O
subsystem for ways to improve throughput, for example load
balancing. Refer to Section 6.2, “fileplace” on page 409 for
information on placement of files.

us, sy, id, wa are averages over all the processors. /0O wait is a
global statistic and is not processor specific.

vmstat marks an idle CPU as wait I/O (wio) if an outstanding I/O was started on
that CPU. With this method, vmstat will report lower wio times when more
processors are installed, just a few threads are doing I/O, and the system is
otherwise idle. For example, a system with four CPUs and one thread doing I/O
will report a maximum of 25 percent wio time. A system with 12 CPUs and one

Chapter 3. Multi resource monitoring and tuning tools 193

194

thread doing I/0 will report a maximum of eight percent wio time. Network File
System (NFS) client reads/writes go through the Virtual Memory Manager
(VMM), and the time that NFS block I/0O daemons (biods) spend in the VMM
waiting for an I/O to complete is reported as I/O wait time.

Important: wa occurs when the CPU has nothing to do and is waiting for at
least one I/O request. Therefore, wa does not necessarily indicate a
performance bottleneck.

Example 3-114 Virtual memory report

kthr memory page faults Cpu

r b avm fre re pi po fr sr cy in sy cs us sy id wa
4 13 2678903 254 0 0 0 7343 29427 0 6111 104034 17964 22 18 18 42
6 14 2678969 250 0 O 0 7025 26692 0 6253 216943 17678 29 28 10 33
8 13 2678969 244 0 0 0 6625 28218 0 6295 273936 17639 32 29 9 30
8 13 2678969 252 0 0 0 5731 23555 0 5828 264980 16325 35 26 8 31
8 13 2678970 256 0 0 0 6571 35508 0 6209 278478 18161 34 29 8 28
6 13 2678970 246 0 0 0 7527 58083 0 6658 214601 20039 31 26 10 33
10 13 2679402 197 0 0 0 7882 54975 0 6482 285458 18026 40 31 5 25
8 16 2679431 249 0 0 0 9535 40808 0 6582 283539 16851 39 32 5 24
10 13 2679405 255 0 0 0 8328 41459 0 6256 264752 15318 39 32 5 24
9 15 2678982 255 0 0 0 8240 36591 0 6300 244263 17771 32 29 8 31

Example 3-114, you can observe the following:

>

>

The block queue is high.

There is no paging. If paging was occurring on the system you can tune
minfree and maxfree. See Section 3.12.3, “Recommendations and
precautions” on page 214 for details.

As can be seen by the fr:sr ratio, the page stealers are working hard to find
memory, and, as pi is zero, the memory is being stolen successfully without
the need for paging.

There is a lot of context switching, so tuning time slices with schedtune could
be beneficial. See “Time slice” on page 149 for more details.

us+sy does not exceed 80 percent, so the system is not CPU bound

There is I/0O wait (wa) when the system is not idle. Tuning the disk I1/O or NFS
(if the system has NFS) could be beneficial. Looking for lock contention in file
systems could also be beneficial. Look for busy file I/O with the filemon
command. See “How to analyze the physical volume reports” on page 394 for
more details.

AIX 5L Performance Tools Handbook

To comment on any other columns in the report, you would need to have a base
line when the system was performing normally.

Forks report

Writes to standard output the number of forks since the last system start up (a
fork is the creation of a new process). You would not usually want to see more
than three forks per second. Use the sar -P ALL -c 5 2 command to monitor
the number of forks per second. See “How to monitor system calls” on page 132
for more details.

You can monitor the number if forks per second by running this command every
minute and making sure the change between the outputs does not exceed 180
(Example 3-115).

Example 3-115 Forks report
vmstat -f

34770 forks

Interrupts report

Writes to standard output the number of interrupts per device since the last
system start up. Subsequent iterations of vmstat within the same command, as
in Example 3-116, produce the number of interrupts for the previous iteration.

The following example produces an interrupt report with a delay of two seconds,
three times.

Example 3-116 Interrupt report
vmstat -i 2 3

priority level type count module(handler)
0 15 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bc18)
0 15 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bc18)
0 15 hardware 0 /usr/lib/drivers/planar_pal_chrp(195f770)
0 254 hardware 12093 i_hwassist_int(1c9468)
3 1 hardware 106329 /usr/lib/drivers/pci/s_scsiddpin(198bb10)
3 3 hardware 651315 /usr/1lib/drivers/pci/cstokdd(1a99104)
3 10 hardware 9494 /usr/lib/drivers/pci/s_scsiddpin(198bb10)
4 1 hardware 402 /usr/1ib/drivers/isa/kbddd_chrp(lac0710)
4 12 hardware 1540 /usr/lib/drivers/isa/msedd_chrp(1ac6890)
priority level type count module(handler)
0 15 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bc18)

0 15 hardware 0 /usr/1lib/drivers/pci/s_scsiddpin(198bc18)
0 15 hardware 0 /usr/lib/drivers/planar_pal_chrp(195f770)
0 254 hardware 0 i_hwassist_int(1c9468)

3 1 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bb10)
3 3 hardware 11 /usr/1ib/drivers/pci/cstokdd(1a99104)

3 10 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bb10)

Chapter 3. Multi resource monitoring and tuning tools 195

196

4 1
4 12
priority level
0 15
0 15
0 15
0 254
3 1
3 3
3 10
4 1
4 12

hardware 0 /usr/lib/drivers/isa/kbddd_chrp(1ac0710)
hardware 0 /usr/lib/drivers/isa/msedd_chrp(1ac6890)
type count module(handler)

hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bc18)
hardware 0 /usr/1lib/drivers/pci/s_scsiddpin(198bc18)
hardware 0 /usr/1lib/drivers/planar_pal_chrp(195f770)
hardware 0 i_hwassist_int(1c9468)

hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bb10)
hardware 7 /usr/1ib/drivers/pci/cstokdd(1a99104)
hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bb10)
hardware 0 /usr/lib/drivers/isa/kbddd_chrp(1lac0710)
hardware 0 /usr/lib/drivers/isa/msedd_chrp(1ac6890)

The reported fields are as follows:

priority

Tevel

type

This refers to the interrupt priority as defined in
/usr/include/sys/intr.h The priorities range from zero to 11,
where zero means fully disabled and 11 means fully enabled
(anyone can interrupt the CPU). The lower the priority number,
the higher the priority. If the CPU is currently in interrupt mode
at priority 10, then if a priority three interrupt occurs on that
CPU, then the interrupt handler for priority 10 is pre-empted. If
for example a CPU is at priority zero or one and a priority nine
interrupt comes in, then the priority nine interrupt will get
queued and only gets processed after the previous interrupt
has finished its processing.

The priority can be important as higher priority interrupts
may stop the CPU from servicing other lower priority interrupts
for other services, for example, the streams drivers that handle
ethernet traffic may not be serviced, which may in turn fill the
network buffers causing other problems. The problem is
compounded if the higher priority thread stays running on the
CPU for a long time. Normally, high priority interrupts are
serviced within a short time frame to prevent this happening,
but it is not always possible to overcome this because the
priority is not tunable. In this case, on an SMP system, you
could bind specific interrupts to specific CPUs using the
bindintcpu command. Refer to Section 4.2, “bindintcpu” on
page 225 for more details. This would ensure the interrupts
were serviced within the required time frame.

The level refers to the bus interrupt level that you can see on a
device when doing an 1sattr -E1 <device> command. The
Tevel is not a tunable parameter. It is set by IBM development.

Indicates the type of interface.

AIX 5L Performance Tools Handbook

count The count is the number of interrupts for that device/interrupt
handler.

module (handler) The device driver software

There are no recommendations for analyzing the interrupt report. You need to be
aware of how many interrupts to expect on your system. If you notice a higher
number than usual, then you will need to investigate the device as shown in
module (handler) further.

Sum structure report

Writes to standard output the contents of the sum structure, which contains an
absolute count of paging events since system initialization (Example 3-117). The
-s option is exclusive of the other vmstat command options.

Example 3-117 Sum structure report
vmstat -s

18379397 total address trans. faults
8004558 page ins
5294063 page outs
87355 paging space page ins
699899 paging space page outs
0 total reclaims
6139830 zero filled pages faults
3481200 executable filled pages faults
61905822 pages examined by clock
493 revolutions of the clock hand
11377921 pages freed by the clock
315896 backtracks
0 lock misses
7178736 free frame waits
3 extend XPT waits
3665717 pending I/0 waits
12920977 start I/0s
7766830 iodones
81362747 cpu context switches
134805028 device interrupts
0 software interrupts
0 traps
253117680 syscalls

This report is not generally used for resolving performance issues. It is, however,
useful for determining the how much paging and the type of paging during
benchmarking.

These events are described as follows:

Chapter 3. Multi resource monitoring and tuning tools 197

address translation faults

page ins

page outs

paging space page ins

paging space page outs

total reclaims

zero-filled page faults

executable-filled page faults

pages examined by the clock

198 AIX 5L Performance Tools Handbook

Incremented for each occurrence of an
address translation page fault. I/O may or
may not be required to resolve the page
fault. Storage protection page faults (lock
misses) are not included in this count.

Incremented for each page read in by VMM.
The count is incremented for page ins from
paging space and file space. Along with the
page out statistic, this represents the total
amount of real I/O initiated by the VMM.

Incremented for each page written out by
the VMM. The count is incremented for page
outs to page space and for page outs to file
space. Along with the page referenced, this
represents the total amount of real I/O
initiated by VMM.

Incremented for VMM initiated page ins from
paging space only.

Incremented for VMM initiated page outs to
paging space only.

Incremented when an address translation
fault can be satisfied without initiating a new
I/O request. This can occur if the page has
been previously requested by VMM, but the
I/O has not yet completed, or if the page was
pre-fetched by VMM's read-ahead algorithm
but was hidden from the faulting segment, or
if the page has been put on the free list and
has not yet been reused.

Incremented if the page fault is to working
storage and can be satisfied by assigning a
frame and zero-filling it.

Incremented for each instruction page fault.

VMM uses a clock-algorithm to implement a
pseudo Least Recently Used (LRU) page
replacement scheme. Pages are aged by
being examined by the clock. This count is
incremented for each page examined by the
clock.

revolutions of the clock hand

pages freed by the clock

backtracks

lock misses

free frame waits

extend XPT waits

pending I/0 waits

start I/0s

iodones

CPU context switches

device interrupts

software interrupts

traps

syscalls

Incremented for each VMM clock revolution
(that is, after each complete scan of
memory).

Incremented for each page the clock
algorithm selects to free from real memory.

Incremented for each page fault that occurs
while resolving a previous page fault (the
new page fault must be resolved first and
then initial page faults can be backtracked).

VMM enforces locks for concurrency by
removing addressability to a page. A page
fault can occur due to a lock miss, and this
count is incremented for each such
occurrence.

Incremented each time a process is waited
by VMM while free frames are gathered.

Incremented each time a process is waited
by VMM due to a commit in progress for the
segment being accessed.

Incremented each time a process is waited
by VMM for a page-in 1/0 to complete.

Incremented for each read or write 1/O
request initiated by VMM. This count should
equal the sum of page-ins and page-outs.

Incremented at the completion of each VMM
I/O request.

Incremented for each CPU context switch
(dispatch of a new process).

Incremented on each hardware interrupt.

Incremented on each software interrupt. A
software interrupt is a machine instruction
similar to a hardware interrupt that saves
some state and branches to a service
routine. System calls are implemented with
software interrupt instructions that branch to
the system call handler routine.

Not maintained by the operating system.
Incremented for each system call.

Chapter 3. Multi resource monitoring and tuning tools 199

200

I/0 Report

Writes to standard output the I/O activity since system start up (Example 3-118).
Example 3-118 1/O report

vmstat -It 2 10

kthr memory page faults cpu time
r b p awm fre fi fo pi po fr sr in sy cs us sy id wa hr mi se
0 0 051694 49443 6 3 0 O 8 48106 199 64 0 196 3 17:43:55
0 0 051697 49440 0 O O O O 0 469 991 332 0 099 0 17:43:57
0 0 05169849439 0 0 O 0 O 0 468 980 320 0 1 99 0 17:43:59
0 0 051699 49438 0 0 0O 0 O 0 468 989 327 0 0 99 0 17:44:01
0 0 051700 49437 0 O O O O 0470 992 331 0 099 0 17:44:03
0 0 051702 49435 0 0 O O O 0471 989 327 0 199 0 17:44:05
0 0 051703 49434 0 0 O O O 0469 993 329 0 099 0 17:44:08
0 0 051704 49433 0 0 O O O 0471 969 320 0 0 99 0 17:44:10
0 0 05170549432 0 0 O O O 0 468 986 325 0 199 0 17:44:12
0 0 051706 49431 0 O O O O 0470 995331 0 099 0 17:44:14

Note: The first line of this report should be ignored because it is an average
since the last system reboot.

Refer to “Virtual memory activity” on page 188 for an explanation of report fields
not listed here.

The reported fields are described as follows:

p Number of threads waiting on actual physical I/O (raw logical
volumes (as opposed to files within a file system)

fi File page-ins per second

fo File page-outs per second

hr The hour that the last sample completed

mi The minute that the last sample completed

AIX 5L Performance Tools Handbook

se

The second that the last sample completed

Tip: It is useful to run vmstat when your system is under load and performing
normally. This will give you a base line to determine future performance
problems.

You should run vmstat again when:

'S

'S

'S

Your system is experiencing performance problems.
You make hardware or software changes to the system.
You make changes to the AIX Operating System; for example, when

installing upgrades or changing the disk tuning parameters using vmtune or

schedtune.
You make changes to your application.

Your average workload changes; for example, when you add or remove
users.

3.12 vmtune

The vmtune command is responsible for the displaying and adjusting of the
parameters used by the Virtual Memory Manager (VMM) and other AIX
components. The root user on a system can dynamically change kernel
parameters including the following:

>

>

>

VMM page replacement

Persistent file reads and writes

File system buffer structures (bufstructs)
LVM buffers

Raw input/output

Paging space parameters

Page deletes

Memory pinning parameters

Chapter 3. Multi resource monitoring and tuning tools

201

Note: All changes made using vmtune will be lost after a reboot. In order to
ensure that the changed vmtune values are set at boot time, insert the
appropriate vmtune command in the /etc/inittab file. An example of the
/etc/inittab file is shown in Example 3-121 on page 214. This is with the
exception of the -C -m -v -g -L flags of the vmtune command. These flags
require a bosboot and a reboot, and must not be inserted into the /etc/inittab
file. In addition, the -b option should be executed before the filesystems are
mounted.

AIX 5L Version 5.1 supports both the 32-bit kernel as well as the 64-bit kernel.
Because of this, there is a vmtune and a vmtune64 command, where vmtune64
supports the 64-bit kernel and vmtune supports the 32-bit kernel. If the vmtune
command is executed on a system running the 64-bit kernel, the system
automatically forks/execs the vmtune64 program.

The vmtune command resides in /usr/samples/kernel and is part of the
bos.adt.samples fileset, which is installable from the AIX base installation media.

Important: The vmtune command is operating system version specific. Using
the incorrect version of the vmtune command can result in the operating
system becoming inoperable or inconsistent results. Later versions of the
operating system also support new options that are unavailable on older
versions.

3.12.1 Syntax

202

The syntax of the vmtune command is as follows:

vmtune [-a] [-b Numfsbuf] [-B Numpbuf] [-c Nmclust] [-C 0 | 1]
[-d0 |1] [-fMinFree] [-F MaxFree] [-g LargePageSize]

[-h 0] 171T[-kNpskill] [-1 LruBucket] [-L LargePages]

[-M MaxPin] [-n uid] [-N Pd_Npages] [-p minperm] [-P MaxPerm]
[-r MinPgAhead] [-R MaxPgAhead] [-s SyncReleaseInodelock]

[-S0]| 1] [-tmaxclient][-u 1vm_Bufcnt] [-U unixfile]

[-w NpsWarn] [-W MaxRandWrt] [-v framesets]

AIX 5L Performance Tools Handbook

Flags

-b Numfsbuf
-B Numpbuf

-c Nmclust

-C[o0] 1]

(=N

[0]1]

-f MinFree

-F MaxFree

-g LargePageSize

Displays the current statistic counters.
Specifies the number of file system bufstructs.
Specifies the number of pbufs used by LVM.

Specifies the number of 16 KB clusters processed
by write behind. The default value is 1.

Enables page coloring for specific hardware
platforms. When enabled, real memory is carefully
assigned to virtual memory. On a system with a
direct-mapped cache and certain workloads, this can
provide more constant system performance. A value
of 1 enables page coloring, and a value of 0 disables
it (default is disabled). The boshoot command must
be run and the system rebooted if this option is
changed.

Enables and disables deferred paging space
allocation. By default, disk blocks for paging space
are not allocated until pageout is actually required.
This option allows this behavior to change so that
the disk block is allocated when the memory is
referenced. A value of 1 enables deferred paging
space allocation (default), and a value of 0 disables
it.

Specifies the minimum number of frames on the free
list. This number can range from 8 to 819200.

Specifies the number of frames on the free list at
which page stealing is to stop. This number can
range from 16 to 819200 but must be greater than
the number specified by the MinFree parameter by at
least the value of MaxPgAhead.

Specifies the size in bytes of the
hardware-supported large pages used for the
implementation for the shmget() system call with the
SHM_LGPAGE flag. This must be enabled with a
non-zero value for the -L flag, the bosboot command
must be run, and the system rebooted for this
change to take affect.

Chapter 3. Multi resource monitoring and tuning tools 203

204

-h [0 1]

-k NpsKill

-1 LruBucket

-L LargePages

-m mempools

-M MaxPin

-n uid

AIX 5L Performance Tools Handbook

Specifies that maxperm (-P) should be a hard limit.
By default it is a soft limit and numperm is allowed to
grow beyond maxperm as long as there is free real
memory available.

Specifies the number of free paging-space pages at
which AIX begins killing processes.

Specifies the size (in 4 KB pages) of the Least
Recently Used (LRU) page-replacement bucket
size. This is the number of page frames that will be
examined for page replacement before starting over
at the beginning of this set of page frames to
examine the pages again. If not enough pages are
found that can be stolen, LRU proceeds to the next
bucket of pages. The default value is 512 MB, and
the minimum is 256 MB. Tuning this option is not
recommended.

Specifies the number of large pages to reserve for
implementing the shmget() system call with the
SHM_LGPAGE flag. For this change to take effect,
you must specify the vmtune command’s -g flag, run
the bosboot command, and reboot the system.

Specifies the number of memory pools. Making -m 0
(zero) will restore mempools to default value. The
bosboot command must be run and the system
rebooted if this option is changed.

Specifies the maximum percentage of real memory
that can be pinned. The default value is 80. This
value should not be set to a very low value because
the kernel may need to pin memory at times.

Specifies that processes with a user ID less than uid
should not be killed when paging space is low.
Setting this to 1 (one) would prevent root processes
from being killed.

Pd_Npages

minperm

MaxPerm

MinPgAhead

MaxPgAhead

SyncReleaseInodelock

[0]1]

maxclient

Specifies the number of pages that should be
deleted in one chunk from RAM when a file is
deleted. The default value is the largest possible file
size divided by the page size (currently 4096). If the
largest possible file size is 2 GB, then Pd_Npages is
524288 by default. Tuning this option is really only
useful for real-time applications.

Specifies the point below which file pages are
protected from the repage algorithm. This value is a
percentage of the total real-memory page frames in
the system. The specified value must be greater
than or equal to 1 (one).

Specifies the point above which the page stealing
algorithm steals only file pages. This value is
expressed as a percentage of the total real-memory
page frames in the system. The specified value must
be greater than or equal to 1 (one).

Specifies the number of pages with which sequential
read-ahead starts. This value can range from 0
(zero) through 4096. It should be a power of two.

Specifies the maximum number of pages to be read
ahead. This value can range from 0 (zero) through
4096. It should be a power of two, and should be
greater than or equal to MinPgAhead.

Enables the code that minimizes the time spent
holding inode locks during sync by flushing dirty
pages before calling _commit.
SyncReleaseInodelock is a boolean variable; zero to
disable and a positive integer to enable. The default
is 0 (zero).

Enables the SHM_PIN flag on shmget() system call.
By default this flag is ignored.

Specifies the maximum percentage of RAM that can
be used for caching client pages. Client pages
include those pages used for NFS client pages,
compressed pages, and pages in the JFS2 buffer
cache. This value is a hard limit, and page
replacement on client pages will begin if the limit is
reached.

Chapter 3. Multi resource monitoring and tuning tools 205

-u Tvm_Bufent Specifies the number of Logical Volume Manager
(LVM) buffers for raw physical 1/0s. The default
value is 9 (nine). The possible values can range
between 1 (one) and 64.

-U unixfile Specifies the name of the AlX file to patch for the -m,
-v and -C flags. The default is /usr/lib/boot/unix_mp.

-v framesets Specifies the number of framesets (real memory free
lists) per memory pool. The boshoot command must
be run and the system rebooted if this option is
changed. This option must be used to set the
number of framesets to 1 if page coloring is enabled
(-C 1).

-w NpsWarn Specifies the number of free paging-space pages at
which the operating system begins sending the
SIGDANGER signal to processes.

-W MaxRandWrt Specifies a threshold (in 4 KB pages) for random
writes to accumulate in RAM before these pages are
sync'd to disk via a write-behind algorithm. This
threshold is on a per file basis.

3.12.2 Calculating tunable values

206

The default vmtune values may differ on different machine configurations as well
as on different AIX releases. The machine’s workload and the effects of the
vmtune tunables should be considered before changing anything.

Sequential read-ahead

The minpgahead (-r) value is the value at which sequential read-ahead begins.
The value can range from 0 (zero) to 4096, and must be a power of two. The
default value is 2 (two).

maxpgahead (-R) is the maximum number of pages that can be read ahead. The
value of maxpgahead can be in the range of zero to 4096. The value must be
equal to or greater than minpgahead. The default value is 8 (eight).

Figure 3-1 on page 207 shows an illustration of sequential read ahead. Each of
the blocks in the diagram represents a 4 KB page. These pages are numbered
zero through 23. The steps of sequential read-ahead are described under the
labels A through F. The labels A through F also indicate the sequence of page

AIX 5L Performance Tools Handbook

reads. Pages are read ahead when the VMM detects a sequential pattern. Read
ahead is triggered again when the first page in a group of previously read ahead
pages is accessed by the application. In the example, minpgahead is set to 2
(two) while maxpgahead is set to 8 (eight).

=eguential Read-Ahead

P
] (TTTOTTTIL (I - - - -
FPage # 0123 4 P 15 1k 3

Figure 3-1 Sequential read-ahead

A The first page of the file is read in by the program. After this
operation, VMM makes no assumptions as to whether the file access
is random or sequential.

B When page number one is the next page read in by the program,
VMM assumes that access is sequential. VMM schedules
minpgahead pages to be read in as well. Therefore the access at point
B in the figure above results in three pages being read.

C When the program accesses page two next, VMM doubles the value
of page ahead from two to four and schedules the pages four to
seven to be read.

D When the program accesses page four next, VMM doubles the value
of page ahead from four to eight and pages eight through 15 are
scheduled to be read.

E When the program accesses page eight next, VMM determines that
the read ahead value is equal to maxpgahead and schedules pages 16
through 23 to be read.

F VMM will continue to read maxpgahead pages ahead as long as the
program accesses the first page of the previous read-ahead group.
Sequential read-ahead will be terminated when the program
accesses a page other than the first page of the next read-ahead

group.

Chapter 3. Multi resource monitoring and tuning tools 207

208

The values selected for minpgahead and maxpgahead should be powers of two
because of the doubling algorithm of the VMM. Recommended values are 0
(zero), 1 (one), 2 (two), 4 (four), 8 (eight), 16 (sixteen) and so on. The use of
other values can cause adverse performance and functional effects. Using the
value of zero disables the sequential read-ahead algorithm. Sequential
read-ahead can be disabled in an environment where 1/O is random. In the case
where NFS reads are made on files that are locked. NFS flushes these pages to
disk, so sequential read-ahead is not beneficial.

Note: Due to limitations in the kernel, the maxpgahead value should not exceed
512. The difference between minfree and maxfree should always be equal to
or greater than the value of maxpgahead.

The page replacement algorithm

When the number of pages on the free list is less than minfree (-f), the page
replacement algorithm will attempt to free up memory pages. The algorithm will
continue until the number of pages in the free list exceeds the maxfree (-F)
value.

The value of minfree specifies the minimum number of frames on the free list
before the VMM starts to steal pages. The value can range from eight to 819200.
The default value is dependant on the amount of memory in the system, and is
calculated as the maxfree value less eight. In multiprocessor systems, there may
be a number of memory pools. Each memory pool will have its own minfree and
maxfree value. The values displayed by the vmtune command are the sum of the
minfree and maxfree values of all of the pools.

Memory pools

The -m mempools flag is used to subdivide the memory into pools. The
parameter mempools has a range of 1 (one) to, but not more than, the value of the
number of CPUs in the system. For example, if there are four CPUs in a system,
then the maximum value of mempools is 4 (four). Setting the value to 0 (zero),
restores the default number. In some circumstances, such as when most, but not
all, of the system memory is in use, better performance can be obtained by
setting this value to 1 (one). Setting the -m flag is shown in Example 3-119.

Example 3-119 The output message when the -m flag is used

/usr/samples/kernel/vmtune -m 4

Press enter to save /usr/lib/boot/unix_mp as /usr/1ib/boot/unix_mp.sav:
Number of memory pools has been set to Ox4

A bosboot must be done and the system rebooted.

AIX 5L Performance Tools Handbook

A bosboot is required after changing the mempoo1 parameter. Example 3-120
below shows the boshoot command, which will create a boot image on the
default boot logical volume of the fixed disk from which the system was booted.

Example 3-120 Run the bosboot command after setting the mempool parameter

bosboot -a

bosboot: Boot image is 12822 512 byte blocks.

The maxfree value determines at what point the VMM stops stealing pages. The
value of maxfree can range form 16 to 204800 but must be greater than the value
of minfree. The maxfree value can be determined as follows:

maxfree = lesser of (humber of memory pages / 128) or 128

For many systems, these default values may not be optimal. Assuming that the
system has 512 MB of memory, the minfree and maxfree values are the defaults
of 120 and 128 respectively. When only (4096 * 120) bytes of memory are on the
free list, only then will the page replacement algorithm free pages. This value
equates to less than 0.5 MB of memory and will typically be too low. If the
memory demand continues after the minfree value is reached, then processes
could even be suspended or killed. When the number of free pages equals or
exceeds the value of maxfree, then the algorithm will no longer free pages. This
value is (4096 * 128) bytes, which equates to 0.5 MB. As can be seen,
insufficient pages will have been freed up on a system with 512 MB.

The page replacement algorithm subdivides the entire system real memory into
sections called buckets. The Trubucket (-) parameter specifies the number of
pages per bucket. Instead of the page replacement algorithm checking the entire
real memory of the system for free frames, it will search a bucket at a time. The
page replacement algorithm will search a bucket for free frames and on the
second pass will check the same bucket, and any unreferenced pages will be
stolen. This speeds up the rate at which pages to be stolen are found. The
default value for LruBucket is 131,072 pages, which equates to 512 MB of real
memory.

Pinning memory

The maxpin (-M) value determines the maximum percentage of real memory
pages that can be pinned. The maxpin value must be greater than one and less
than 100. The default value for maxpin is 80 percent. Always ensure that the
kernel and kernel extensions can pin enough memory as needed; as such, it is
not advisable to set the maxpin value to an extremely low number such as one.

Chapter 3. Multi resource monitoring and tuning tools 209

210

The v_pinshm parameter is a boolean value that, if set to 1 (one), will force pages
in shared memory to be pinned by the VMM. This occurs only if the application
set the SHM_PIN flag. If the value is set to O (zero), the default, then shared
memory is not pinned.

Note: Ensure that at least 4 MB of real memory is left unpinned for the kernel
when the maxpin value is changed.

Sequential write-behind

The numclust (-c) value determines the number of 16 KB clusters to be
processed by the VMM sequential write-behind algorithm. The value can be set
as an integer greater than zero. The default value is one. The write-behind
algorithm will write modified pages in memory to disk after the threshold set by
numclust is reached rather than waiting for the syncd daemon to flush the pages
if the write pattern is sequential. The advantages of using the write-behind
algorithm are:

» The algorithm reduces the number of dirty pages in memory.

» It reduces the system overhead because the syncd daemon will have less
pages to write to disk.

» It minimizes disk fragmentation because entire clusters are written to the disk
at a time.

Random write-behind

The maxrandwrt (-W) value specifies the threshold number of pages for random
page writes to accumulate in real memory before being flushed to disk by the
write-behind algorithm. The default value for maxrandwrt is zero, which disables
the random write-behind algorithm. Applications may write randomly to memory
pages. In this instance, the sequential page write-behind algorithm will not be
able to flush dirty memory pages to disk. If the application has written a large
number of pages to memory, then when the syncd daemon flushes memory to
disk, the disk I/O may become excessive. To counter this effect, the random
write-behind algorithm will wait until the number of pages modified for a file
exceeds the maxrandwrt threshold. From this point, all subsequent dirty pages
are scheduled to be written to disk. The pages below the maxrandwrt are flushed
to disk by the syncd daemon.

Note: Not all applications meet the requirements for random and sequential
write-behind. In this instance, the syncd daemon will flush dirty memory pages
to disk.

AIX 5L Performance Tools Handbook

The syncd daemon

The default value of the sync_release_ilock (-s) is 0 (zero). With this value at
zero, the inode lock will be held and the data is flushed and committed, and only
then is the lock released. If the value is set to a non zero value, then the syncd
daemon will flush all the dirty memory pages to disk without using the inode lock.
The lock is then used to commit the data. This minimizes the time that the inode
lock is held during the sync operation. This is a boolean variable; setting it to O
(zero) disables it and any other non zero value enables it. A performance
improvement may be achieved if the sync_release_ilock parameter is set to a
value of 1 (one) on systems where there is a large amount of memory and a
large number of page updates. These type of systems typically have high /0O
peaks when the syncd daemon flushes memory.

I/O tuning parameters

The numfsbufs (-b) value specifies the number of file system buffer structures.
This value must be greater than 0 (zero). If there are insufficient free buffer
structures, the VMM will put the process on a the wait list before starting I/O. To
determine if the value of numfsbufs is too low, use the vmtune -a command and
monitor the fsbufwaitcount value displayed. This value is incremented each
time an I/O operation has to wait for a file system buffer structures.

Note: When the numfsbufs value is changed, it is necessary to unmount and
mount the file system again for the changes to take affect.

The 1vm_bufcnt (-u) value specifies the number of LVM buffers for raw 1/0.
This value can range from 1 (one) to 64 and has a default of 9 (nine). Extremely
large volumes of I/O are required to cause a bottleneck at the LVM layer. The
number of “uphysio” buffers can be increased to overcome this bottleneck. Each
uphysio buffer is 128 KB. If I/O operations are larger than 128 KB * 9, then a
value larger than the default value of nine should be used.

The pd_npages (-N) value determines number of pages that should be deleted in
one chunk from real memory when a file is deleted (that is, the pages are deleted
in a single VMM critical section with interrupts disabled to INTPAGER). By
default, all pages of a file can be removed from memory in one critical section if
the file was deleted from disk. To ensure fast response time for real-time
applications, this value can be reduced so that only a smaller chunk of pages are
deleted before returning from the critical section.

Chapter 3. Multi resource monitoring and tuning tools 211

212

The hd_pbuf_cnt (-B) value determines the number of pbufs assigned to the
LVM. This value is sometimes referred to the as Numpbuf. pbufs are pinned
memory buffers used to hold I/O requests that are pending at the LVM layer.
When changing this value, the new value must be higher than the previously set
value. The value can only be reset by a reboot.

Note: If the value of hd_pbuf_cnt is set too high, the only way to reset the
value is with a reboot. The value cannot be set lower than the current value.

File system caching

The AIX operating system will leave pages that have been read or written to in
memory. If these file pages are requested again, then this saves an I/O
operation. The minperm and maxperm values control the level of this file system
caching. The thresholds set by maxperm and minperm can be considered as the
following:

» If the percentage of file pages in memory exceeds maxperm, only file pages
are taken by the page replacement algorithm.

» If the percentage of file pages in memory is less than minperm, both file pages
and computational pages are taken by the page replacement algorithm.

» If the percentage of file pages in memory is in the range between minperm and
maxperm, the page replacement algorithm steals only the file pages unless the
number of file repages is higher than the number of computational repages.

Computational pages can be defined as working storage segments and program
text segments. File pages are defined as all other page types usually persistent
and client pages.

In some instances, the application may cache pages itself. Therefore there is no
need for the file system to cache pages as well. In this case, the values of minperm
and maxperm can be set low. For more information on adjusting these values, refer
to Example 3-124 on page 217 and Example 3-125 on page 218.

The strict_maxperm (-h) value, when set to 1 (one), will cause the maxperm
parameter to be a hard limit. This parameter is very useful where double
buffering occurs, for instance in the case of a database on a JFS file system. The
database may be doing its own caching while the VMM may be caching the
same pages. When this value is set to 0 (zero), the maxperm value is only
required when page replacements occur.

The numperm value that is displayed by the vmtune command represents the
number of non-text persistent or file pages. This value is not tunable. This is the
percentage of pages in memory that are classified as file pages.

AIX 5L Performance Tools Handbook

Paging parameters

The defps (-d) parameter is used to enable or disable the Deferred Page
Space Allocation (DPSA) policy. Setting this parameter to a value of 1 (one) will
enable DPSA and setting it to 0 (zero) will disable it. The DPSA policy can be
disabled to prevent paging space from becoming overcommitted. With DPSA,
the disk block allocation of paging space is delayed until it is necessary to page
out the page, which results in no wasted paging space allocation. Paging space
can, however, be wasted when a page in real memory needs to be paged out
and then paged back in. That paging space will be reserved for this process until
either the page is no longer required by the process or the process exits.

If defps is disabled, the Late Paging Space Allocation (LPSA) policy is used.
Using the LPSA, paging space is only allocated if memory pages are touched
(modified somehow). The paging space pages are, however not assigned to a
process until the memory pages are paged out. A process might find no paging
space available if another processes uses all the paging space because paging
space was not allocated.

Large page parameters

The 1gpg_regions (-L) value specifies the number of large pages to reserve.
This is required when the shmget() call uses the SHM_LGPAGE flag. The
application has to support SHM_LGPAGE when calling shmget(). This will
improve performance when there are many Translation Look-Aside Buffer (TLB)
misses and large amounts of memory are being accessed.

The 1gpg_size (-g) parameter sets the size in bytes of the hardware dependant
large pages, used for the implementation of the shmget() system call. The
1gpg_size and 1gpg_regions parameters will both need to be set to enable this
function.

JFS2 and NFS client pages

A new maxclient (-t) option is available in AIX 5L Version 5.1. This option is
tunable using the vmtune -t command. This value determines at which point the
page replacement algorithm will start to free client pages. The value is a
percentage of total memory. This value is important for JFS2 and NFS where
client pages are used. The vmtune output displays the following client page
information:

» The number of client pages

» The number of compressed pages

» The percentage of memory occupied by compressed pages
» The number of remote pages scheduled to be paged out

Chapter 3. Multi resource monitoring and tuning tools 213

3.12.3 Recommendations and precautions

Do not attempt to use an incorrect version of the vmtune command on an
operating system. Invoking the incorrect version of the vmtune command can
result in the operating system failing. The functionality of the vmtune command
also varies between versions of the operating system.

Setting the value for minfree too high can result in excessive paging because
premature stealing of pages occurs to satisfy the required size of the memory
free list. Always ensure that the difference between the maxfree value and the
minfree value is equal to or greater than the maxpgahead value. On SMP systems
the value of the maxfree and minfree as displayed by vmtune are the sum of the
maxfree and minfree values for all of the memory pools. It is recommended that
the vmstat command be used to determine the correct value for minfree. See
Section 3.11, “vmstat” on page 186 for more information.

When changing the value of the maxpin value, ensure that there is always at
least 4 MB of memory available for the kernel.

3.12.4 Examples

Example 3-121 shows how the /etc/inittab file can be modified to include the
vmtune command.

Example 3-121 The /etc/inittab file showing an entry for the vmtune command

. 0(#)49 1.28.2.7 src/bos/etc/inittab/inittab, cmdoper, bos411, 9430C41la 7/26
/94 16:27:45

COMPONENT_NAME: CMDOPER
ORIGINS: 3, 27

(C) COPYRIGHT International Business Machines Corp. 1989, 1993
A11 Rights Reserved
Licensed Materials - Property of IBM

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

: Note - initdefault and sysinit should be the first and second entry.

init:2:initdefault:

brc::sysinit:/sbin/rc.boot 3 >/dev/console 2>&1 # Phase 3 of system boot

powerfail::powerfail:/etc/rc.powerfail 2>&1 | alog -tboot > /dev/console # Power
Failure Detection

rc:2:wait:/etc/rc 2>81 | alog -tboot > /dev/console # Multi-User checks
fbcheck:2:wait:/usr/sbin/fbcheck 2>&1 | alog -tboot > /dev/console # run /etc/fi
rstboot

214 AIX 5L Performance Tools Handbook

srcmstr:2:respawn:/usr/sbin/srcmstr # System Resource Controller
fbcheck:2:wait:/usr/sbin/fbcheck 2>&1 | alog -tboot > /dev/console # run /etc/fi
rstboot

srcmstr:2:respawn:/usr/sbin/srcmstr # System Resource Controller
rcsna:2:wait:/etc/rc.sna > /dev/console 2>&1 # Start sna daemons
rctcpip:2:wait:/etc/rc.tcpip > /dev/console 2>&1 # Start TCP/IP daemons
ihshttpd:2:wait:/usr/HTTPServer/bin/httpd > /dev/console 2>&1 # Start HTTP daemo
n

rcnfs:2:wait:/etc/rc.nfs > /dev/console 2>&1 # Start NFS Daemons
ihsadmin:2:wait:/usr/HTTPServer/bin/adminctl start > /dev/console 2>&1 # Start H
TTP admin daemon

nim:2:wait:/usr/bin/startsrc -g nim >/dev/console 2>&1
vmtune:2:once:/usr/samples/kernel/vmtune -P 30 -p 5 -c 4 -W 128 -R 16
schedt:2:once:/usr/samples/kernel/schedtune -m 8

mcs0:2:wait:/etc/mecsO load # RC script

rcx25:2:wait:/etc/rc.net.x25 > /dev/console 2>&1 # Load X.25 translation table
cron:2:respawn:/usr/sbin/cron

piobe:2:wait:/usr/1ib/Tpd/pio/etc/pioinit >/dev/null 2>&1 # pb cleanup
gdaemon:2:wait:/usr/bin/startsrc -sqdaemon

writesrv:2:wait:/usr/bin/startsrc -swritesrv
uprintfd:2:respawn:/usr/sbin/uprintfd

logsymp:2:once:/usr/1ib/ras/logsymptom # for system dumps
diagd:2:once:/usr/1pp/diagnostics/bin/diagd >/dev/console 2>&1
hcon:2:once:/etc/rc.hcon

1pd:2:once:/usr/bin/startsrc -s 1pd

Example 3-122 shows the output of the vmtune command executed without any
flags. This displays the current values. The new values introduced are maxclient,
compressed, and numclient, and are displayed in the summary at the bottom of
the display. The value for maxclient is also displayed.

Example 3-122 vmtune without any flags displays the current settings
/usr/samples/kernel/vmtune
vmtune: current values:

-p -P -r -R -f -F -N -W
minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
6142 32761 2 8 120 128 524288 0
-M -W -k -C -b -B -u -1 -d

maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt 1vm_bufcnt Trubucket defps
105452 8192 2048 1 186 256 9 131072 1

-s -n -S -L -g -h
sync_release_ilock nokilluid v_pinshm 1gpg_regions 1gpg_size strict_maxperm

0 0 0 0 0 1

Chapter 3. Multi resource monitoring and tuning tools 215

-t
maxclient
104018

number of valid memory pages = 131047 maxperm=25.0% of real memory
maximum pinable=80.5% of real memory minperm=4.7% of real memory

number of file memory pages = 32622 numperm=24.9% of real memory
number of compressed memory pages = 0 compressed=0.0% of real memory
number of client memory pages = 2 numclient=0.0% of real memory

of remote pgs sched-pageout = 0 maxclient=79.4% of real memory

The vmtune -a flag lists the values of various counters. Example 3-123 is a list of
the counters.

Example 3-123 The -a flag displays various system counters

/usr/samples/kernel/vmtune -a

memory frames = 131047
maxpin = 105452
minperm = 26209
maxperm = 104837
maxclient = 104018
numperm = 48200
numclient = 2
numcompress = 0

maxpin % = 80.5
minperm % = 20.0
maxperm % = 80.0

maxclient % = 79.4
numperm % = 36.8
numclient % = 0.0
numcompress % = 0.0
minpgahead = 2

maxpgahead = 8
minfree = 120
maxfree = 128

pd_npages = 524288

maxrandwrt = 0

numclust = 1
npswarn = 8192
npskill = 2048
numfsbufs = 186
hd_pbuf_cnt = 256
lvm_bufcnt = 9
Trubucket = 131072
defps =1

216 AIX 5L Performance Tools Handbook

sync_release_ilock =
nokilluid =
v_pinshm =
strict_maxperm =
hd_pendgblked =
psbufwaitcnt = 540149
fsbufwaitcnt = 7442
rfsbufwaitent = 0
xpagerbufwaitcnt =
lgpg_regions =
lgpg_size =

o = O O o

o O o

In Example 3-123 on page 216 the value of psbufwaitcnt counter indicates the
number of times that the VMM had to wait for a bufstruct on a paging device. A
bufstruct is allocated to each paging space logical volume. The fsbufwaitcnt

counter indicates the number of times that the VMM waits for a JFS bufstruct. If
the fsbufwaitcnt value increases under normal work load conditions, then the

value of numfsbufs should be increased using the vmtune -b option.

The value of rfsbufwaitcnt, shown in the vmtune -a output above, is increased

each time NFS waits for mbufs to be freed. For additional information on

rfsbufwaitcnt, refer to “Options” on page 528 under the nfso command section.

In Example 3-124, the application running on the system is assumed to be
Oracle.

Example 3-124 vmtune minperm and maxperm problem

/usr/samples/kernel/vmtune
vmtune: current values:

-p -P -r -R -f -F -N -W
minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
1023 26209 2 2 120 128 524288 128
-M -W -k -C -b -B -u -1 -d

maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt 1vm_bufcnt Trubucket defps
105452 8192 2048 128 186 1057 64 131072 1

-s -n -S -L -g -h
sync_release_ilock nokilluid v_pinshm 1gpg_regions 1gpg_size strict_maxperm

1 0 0 0 0 1
-t
maxclient

26209

number of valid memory pages = 131047 maxperm=20.0% of real memory

Chapter 3. Multi resource monitoring and tuning tools

217

maximum pinable=80.5% of real memory minperm=5.0% of real memory
number of file memory pages = 26062 numperm=19.9% of real memory
number of compressed memory pages = 0 compressed=0.0% of real memory
number of client memory pages = 20907 numclient=16.0% of real memory
of remote pgs sched-pageout = 0 maxclient=20.0% of real memory

In the example above, the value of maxperm is set to 20 percent. In a system
running Oracle, as an example, file caching occurs. There is, therefore, no
reason for the operating system memory to be used for caching. Some
suggested values for minperm and maxperm are, minperm is set to 1 (one)
percent and maxperm be reduced to about 2 (two) percent. The following
command can be used to achieve this (Example 3-125).

Example 3-125 Changing the minperm and maxperm values

/usr/samples/kernel/vmtune -p 1 -P 2
...(Tines omitted)...
vmtune: new values:

-p -P -r -R -f -F -N -W
minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
1310 2620 2 2 120 128 524288 128
-M -W -k -C -b -B -u -1 -d

maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt 1vm_bufcnt Trubucket defps
105452 8192 2048 128 186 1057 64 131072 1

-s -n -S -L -g -h
sync_release_ilock nokilluid v_pinshm 1gpg_regions 1gpg_size strict_maxperm

1 0 0 0 0 1

-t
maxclient
26209

number of valid memory pages = 131047 maxperm=2.0% of real memory
maximum pinable=80.5% of real memory minperm=1.0% of real memory
number of file memory pages = 26063 numperm=19.9% of real memory
number of compressed memory pages = 0 compressed=0.0% of real memory
number of client memory pages = 20907 numclient=16.0% of real memory
of remote pgs sched-pageout = 0 maxclient=20.0% of real memory

In Example 3-125, the hard limit for maxperm, strict_maxperm, should also be set
to 1 (one). This ensures that the maxperm value is adhered to.

218 AIX 5L Performance Tools Handbook

The following example provides suggestions about vmtune and logical volume

striping. Sequential and random accesses benefit form disk striping. The
following technique for configuring striped disks is recommended.

» Spread the logical volume across as many physical volumes as possible.

» Use as many adapters as possible for the physical volumes.
» Create a separate volume group for striped logical volumes.

» Do not mix striped and non-striped logical volumes in the same physical

volume.

» All physical volumes should be the same size within a set of striped logical

volumes.
» Set the stripe unit size to 64 KB.
» Set the value of minpgahead to 2 (two).
» Set the value of maxpgahead to 16 times the number of disks.

» Ensure that the difference between maxfree and minfree is equal to or
exceeds the value of maxpgahead.

Setting the minpgahead and maxpgahead values as above causes page-ahead to
be done in units of the stripe-unit size, which is 64 KB times the number of disk
drives, resulting in the reading of one stripe unit from each disk drive for each
read-ahead operation. Assuming that three disks are to be striped, the commands

in Example 3-126 will be used to set the vmtune parameters.
Example 3-126 vmtune’s minpgahead and maxpgahead values

/usr/samples/kernel/vmtune -F 168 -R 48
...(Tines omitted)...

vmtune: new values:

-p -P -r -R -f -F -N -W
minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt

26004 104016 2 48 120 168 524288 0

-M -w -k -C -b -B -u -1 -d

maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt 1vm_bufcnt Trubucket defps
104838 8192 2048 1 186 256 9 131072 1

-s -n -S -L -g -h
sync_release_ilock nokilluid v_pinshm 1gpg_regions 1gpg_size strict_maxperm

0 0 0 0 0 0
-t

maxclient
104016

Chapter 3. Multi resource monitoring and tuning tools

219

number of valid memory pages = 131047 maxperm=79.4% of real memory
maximum pinable=80.0% of real memory minperm=19.8% of real memory
number of file memory pages = 94431 numperm=72.1% of real memory
number of compressed memory pages = 0 compressed=0.0% of real memory
number of client memory pages = 90894 numclient=69.4% of real memory
of remote pgs sched-pageout = 0 maxclient=79.4% of real memory

If the striped logical volumes are on raw logical volumes and writes larger than
1.152 MB are anticipated, the value of the 1Tvm_bufcnt parameter should be
increased with the command vmtune -u in order to increase throughput of the
write activity. This value can be increased as shown in Example 3-127.

Example 3-127 Increasing lvm_bufcnt with the vmtune command

/usr/samples/kernel/vmtune -u 10
...(Tines omitted)...
vmtune: new values:

-p -P -r -R -f -F -N -W
minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt

26004 104016 2 48 120 168 524288 0

-M -W -k -C -b -B -u -1 -d

maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt Tvm_bufcnt 1rubucket defps

104838 8192 2048 1 186 256 10 131072 1
-s -n -S -L -g -h
sync_release_ilock nokilluid v_pinshm 1gpg_regions 1gpg_size strict_maxperm
0 0 0 0 0 0

-t
maxclient
104016

number of valid memory pages = 131047 maxperm=79.4% of real memory
maximum pinable=80.0% of real memory minperm=19.8% of real memory
number of file memory pages = 94392 numperm=72.0% of real memory
number of compressed memory pages = 0 compressed=0.0% of real memory
number of client memory pages = 90856 numclient=69.3% of real memory
of remote pgs sched-pageout = 0 maxclient=79.4% of real memory

220 AIX 5L Performance Tools Handbook

CPU performance tools

This chapter describes the tools to monitor the performance relevant data and
statistics for CPU resource. It also contains information on tools that can be used
to tune CPU usage. Further commands that also provide statistics on CPU usage
but that are not listed in this chapter may appear in other chapters of this redbook
such as Chapter 3, “Multi resource monitoring and tuning tools” on page 57 and
Chapter 8, “Trace tools” on page 615.

This chapter contains detailed information on the following CPU monitoring and
tuning tools:
» CPU monitoring tools:

— The alstat command, described in Section 4.1, “alstat” on page 222, is
used to monitor Alignment exception statistics.

— The emstat command, described in Section 4.4, “emstat” on page 232, is
used to monitor Emulation statistics.

— The gprof command, described in Section 4.5, “gprof” on page 235, is
used to profile applications, showing details of time spent in routines.

— The pprof command, described in Section 4.7, “pprof” on page 249, is
used to monitor processes and threads.

— The prof command, described in Section 4.8, “prof’ on page 261, is used
to profile applications, showing details of time spent in routines.

© Copyright IBM Corp. 2001 221

— The time command, described in Section 4.10, “time” on page 268, is
used to report the real time, user time, and system time taken to execute a
command.

— The timex command, described in Section 4.11, “timex” on page 270, is
used report the real time, user time, and system time taken to execute a
command. It also reports on, among other statistics, I/O statistics, context
switches, and run queue status.

— The tprof command, described in Section 4.12, “tprof” on page 275, is
used to profile the system or an application.

» CPU tuning tools:

— The bindintcpu command, described in Section 4.2, “bindintcpu” on
page 225, is used bind an interrupt to a specific CPU.

— The bindprocessor command, described in Section 4.3, “bindprocessor”
on page 228, is used to bind (or unbind) threads to a specific processor.

— The nice command, described in Section 4.6, “nice” on page 245, is used
to adjust the initial priority of a command.

— The renice command, described in Section 4.9, “renice” on page 266, is
used to change the nice value of one or more processes that are running
on a system.

4.1 alstat

222

The alstat command displays alignment exception statistics.

Alignment exceptions may occur when the processor cannot perform a memory
access due to an unsupported memory alignment offset (such as a floating point
double load from an address that is not a multiple of eight). However, some types
of unaligned memory references may be corrected by some processors and do
not generate an alignment exception.

Many of IBM’s competitors’ platforms simply abort your program on alignment
problems. AlX catches these exceptions and “fixes” them so legacy applications
are still able to be run. You may pay a performance price for these operating
system "fixes", and need to correct them permanently so they do not reoccur.

alstat helps you determine if alignment exceptions are a potential performance
problem.

alstat resides in /usr/bin and is part of the bos.perf.tools fileset, which is
installable from the AIX base installation media.

AIX 5L Performance Tools Handbook

alstat and emstat are linked to each other.

4.1.1 Syntax

The syntax of the alstat command is as follows:

alstat [[-e] | [-v]] [interval] [count]

Flags

-e Displays emulation stats

-v Specifies verbose (per CPU stats)
Parameters

Interval Specifies the update period (in seconds)

count Specifies the number of iterations

4.1.2 Information on measurement and sampling

The alstat command displays alignment exception statistics. The default output
displays statistics every second. The sampling interval and number of iterations
can also be specified by the user.

In terms of performance, alignment exceptions are costly. Alignment exceptions
could indicate that an application is not behaving well. Applications causing an
increase in the alstat count are less disciplined in memory model, or perhaps
the data structures do not map well between architectures when the applications
are ported between different architectures. The kernel and the kernel extensions
may also be ported and exhibit alignment problems. alstat looks for structures
and memory allocations that do not fall on eight bytes boundaries.

After identifying a high alignment exception rate, tprof needs to be used to
isolate where the alignment exception is occurring.
4.1.3 Examples

Example 4-1 shows a system with alignment exceptions as displayed by the
alstat command without options. Each interval will be one second long.

Example 4-1 An example of the output of alstat

alstat
Alignment Alignment
SinceBoot Delta
8845591 0
8845591 0

Chapter 4. CPU performance tools 223

224

8845591 0
8845591 0
8845591 0

The above report has the following columns:

Alignment SinceBoot The total number of alignment exceptions since
start-up plus the number for the last interval.

Alignment Delta The number of alignment exceptions for the last
interval.

To display emulation and alignment exception statistics every two seconds for a
total of five times, use the command as in Example 4-2.

Example 4-2 Displaying emulation and alignment statistics per time and interval

alstat -e 2 5

Alignment Alignment Emulation Emulation
SinceBoot Delta SinceBoot Delta
70091846 0 21260604 0
72193861 2102015 23423104 2162500
74292759 2098898 25609796 2186692
76392234 2099475 27772897 2163101
78490284 2098050 29958509 2185612

For a description of emulation, refer to Section 4.4, “emstat” on page 232.

The above report has the following columns:

Emulation SinceBoot The sum of the number of emulated instructions since
start-up plus the number in the previous interval.

Emulation Delta The number of emulated instructions in the previous
interval.

Alignment SinceBoot The sum of the number of alignment exceptions since
start-up plus the number in the previous interval.

Alignment Delta The number of alignment exceptions in the previous
interval.

To display emulation statistics every five seconds for each processor, use the

command shown in Example 4-3.

Example 4-3 Displaying emulation for each processor

alstat -v 5

This produces the following output:

AIX 5L Performance Tools Handbook

Alignment Alignment Alignment Alignment

SinceBoot Delta Delta00 Delta0l
88406295 0 0 0
93697825 5291530 0 5291530
98930330 5232505 5232505 0

102595591 3665261 232697 3432564

102595591 0 0 0

The above report has the following columns:

Alignment SinceBoot The sum of the number of alignment exceptions since
start-up plus number in the last interval.

Alignment Delta The number of alignment exceptions in the previous
interval for all CPUs.

Alignment Delta00 The number of current alignment exceptions in the
previous interval for CPUOQ.

Alignment Delta0Ol The number of current alignment exceptions in the
previous interval for CPU1.

4.1.4 Detecting and resolving alignment

Alignment is usually attributed to legacy applications or libraries, kernels, or
kernel extensions that have been ported to different platforms. alstat indicates
that an alignment problem exists. Once you have used the alstat command to
identify a high alignment exception rate, the best course of action would be to call
IBM Support.

4.2 bindintcpu

The bindintcpu command is used to direct an interrupt from a specific hardware
device, at a specific interrupt level, to a specific CPU number or CPU numbers.
This command is only useful for Symmetrical Multi-Processor (SMP) systems. By
default, the hardware interrupts are distributed to the CPUs, dependent on a
predefined method. The bindintcpu command allows a user with root authority
to override the system predefined method. The bindintcpu command is only
applicable to certain hardware types.

Note: Not all hardware supports one interrupt level binding to multiple CPUs
and an error may therefore result when using bindintcpu on some systems. It
is recommended to only specify one CPU per interrupt level.

Chapter 4. CPU performance tools 225

Once an interrupt level has been directed to a CPU, all interrupts on that level will
be directed to that CPU until directed otherwise by the bindintcpu command.

Note: If an interrupt level is redirected to CPUO, then this interrupt level cannot
be redirected to another CPU by the bindintcpu command until the system
has been rebooted.

The bindintcpu command resides in /usr/sbin and is part of the
devices.chrp.base.rte fileset, which is installable from the AIX base installation
media.

4.2.1 Syntax

The syntax of the bindintcpu command is as follows:

bindintcpu Level CPU [CPU...]

Parameters
Level This is the bus interrupt level.
CPU This is the specific CPU number.

[cpu...] Additional CPU numbers.

4.2.2 Examples

226

The bindintcpu command can be useful for redirecting an interrupt to a specific
processor. If the threads of a process are bound to a specific CPU using the
bindprocessor command, this process could be continually disrupted by an
interrupt from a device. Refer to Section 4.3, “bindprocessor” on page 228 for
more details on the bindprocessor command. This continual interruption can
become a performance issue if the CPU is frequently interrupted. To overcome
this, an interrupt that is continually interrupting a CPU can be redirected to a
specific CPU or CPUs other than the CPU where the threads are bound.
Assuming that the interrupt is from the token ring adapter tok0, the following
procedure can be performed.

To determine the interrupt level for a specific device, the 1sattr command can
be used as in Example 4-4.

Example 4-4 How to determine the interrupt level of an adapter

lsattr -E1 tokO
busio 0x7fffc00 Bus I/0 address False
busintr 3 Bus interrupt level False

AIX 5L Performance Tools Handbook

xmt_que_size 16384 TRANSMIT queue size True

rx_que_size 512 RECEIVE queue size True
ring_speed 16 RING speed True
attn_mac no Receive ATTENTION MAC frame True
beacon_mac no Receive BEACON MAC frame True
use_alt_addr no Enable ALTERNATE TOKEN RING address True
alt_addr 0x ALTERNATE TOKEN RING address True
full_duplex yes Enable FULL DUPLEX mode True

To determine which CPUs are available on the system, the bindprocessor
command can be used as in Example 4-5.

Example 4-5 The bindprocessor command shows available CPUs
bindprocessor -q
The available processors are: 012 3

In order to redirect the interrupt level three to CPU1 on the system, use the
bindintcpu command as in follows:

bindintcpu 3 1

All interrupts from bus interrupt level three will be handled by the processor
CPU1. The other CPUs of the system will no longer be required to service
interrupts from this interrupt level.

An interrupt level can also be redirected to multiple CPUs. With the following
command, the interrupts from bus interrupt level three are redirected to
processors CPU2 and CPUS.

bindintcpu 3 2 3

In Example 4-6, the system has four CPUs. These CPUs are CPUO, CPU1,
CPU2, and CPUS.

Example 4-6 Incorrect CPU number selected in the bindintcou command
bindintcpu 3 3 4
Invalid CPU number 4
Usage: bindintcpu <level> <cpu> [<cpu>...]
Assign interrupt at <level> to be delivered only to the indicated cpu(s).

If a non-existent CPU number is entered, an error message is displayed.

Chapter 4. CPU performance tools 227

The vmstat command can be used as shown in Example 4-7 to obtain interrupt
statistics.

Example 4-7 Use the vmstat command to determine the interrupt statistics

vmstat -i
priority level type count module(handler)
0 15 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(1990598)
15 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(1990598)
15 hardware 0 /usr/1lib/drivers/planar_pal_chrp(195f770)
254 hardware 2294 i_hwassist_int(1c9468)
1 hardware 104997 /usr/lib/drivers/pci/s_scsiddpin(1990490)
3 hardware 525306 /usr/lib/drivers/pci/cstokdd(1a99104)
10 hardware 53133 /usr/lib/drivers/pci/s_scsiddpin(1990490)
1 hardware 18 /usr/1ib/drivers/isa/kbddd_chrp(lac0710)
12 hardware 7 /usr/1ib/drivers/isa/msedd_chrp(1lac6890)

B P wwwo oo

The column heading Tevel shows the interrupt level, and the column heading
count gives the number of interrupts since system startup. For more information,
refer to “vmstat” on page 186.

4.3 bindprocessor

The bindprocessor command is used to bind or unbind the threads of a process
to a processor on a Symmetrical Multi-Processor (SMP) system. When a
process’ threads are bound to a CPU, those threads will only be run on that CPU
unless the process is unbound from the CPU. The available processors can also
be listed using the bindprocessor command. Only a user with root authority can
bind a thread of a process of which it is not the owner to a processor.

bindprocessor resides in /usr/sbin and is part of the bos.mp fileset, which is
installed by default on SMP systems when installing AlX.

4.3.1 Syntax

228

The syntax of the bindprocessor command is as follows:

bindprocessor Process [ProcessorNum] | -q | -u Process

Flags
-q Displays the processors that are available.

-u Process Unbinds the threads of the specified process.

AIX 5L Performance Tools Handbook

Parameters

Process This is the process identification number (PID) for the
process to be bound to a processor.

[ProcessorNum] This is the processor number as specified from the output of
the bindprocessor -q command.

If the parameter ProcessorNum is omitted, then the thread of a process will be
bound to a randomly selected processor.

4.3.2 Information on measurement and sampling

The bindprocessor command uses the bindprocessor kernel service to bind or
unbind a kernel thread to a processor. The bindprocessor kernel service binds a
single thread or all threads of a process to a processor. Bound threads are forced
to run on that processor. Processes are not bound to processors, but rather the
kernel threads of the process are bound. Kernel threads that are bound to the
chosen processor, remain bound until unbound by the bindprocessor command
or until they terminate. New threads that are created using the thread_create
kernel service become bound to the same processor as their creator.

The bincprocessor command uses logical, not physical processor, numbers.

4.3.3 Examples

To display the available processors, the command in Example 4-8 can be used:

Example 4-8 Displaying available processor with the bindprocessor command
bindprocessor -q
The available processors are: 012 3

In Example 4-9, there are four CPU intensive processes consuming all of the
CPU time on all four of the available processors. This scenario may result in a
poor response time for other applications on the system. The example shows a
topas output where there is a high CPU usage on all available CPUs. Refer to
Section 3.9, “topas” on page 158 for more information. The process list at the
bottom of the topas output, shows the processes that are consuming the CPU
time. The process identification numbers (PID) for the processes obtained from
the topas command can be used with the bindprocessor command.

Example 4-9 Topas showing top processes consuming all CPU resources

Topas output shows high CPU usage

Topas Monitor for host: serverl EVENTS/QUEUES FILE/TTY

Mon May 28 17:29:55 2001 Interval: 2 Cswitch 36 Readch 48
Syscall 224 Writech 560

Chapter 4. CPU performance tools

229

CPU User% Kern% Wait% Idle% Reads 1 Rawin 0
cpu2 100.0 0.0 0.0 0.0 Writes 1 Ttyout 0
cpul 100.0 0.0 0.0 0.0 Forks 0 Igets 0
cpu3 100.0 0.0 0.0 0.0 Execs 0 Namei 4
cpul 99.5 0.4 0.0 0.0 Runqueue 4.0 Dirblk 0
Waitqueue 0.0
PAGING MEMORY
Faults 0 Real,MB 511
Steals 0 % Comp 26.0
PgspIn 0 % Noncomp 27.6
PgspOut 0 % Client 0.5
Pageln 0
PageOut 0 PAGING SPACE
Sios 0 Size,MB 512
% Used 1.2
NFS (calls/sec) % Free 98.7
ServerV?2 0
ClientV2 0 Press:
ServerV3 0 "h" for help
ClientV3 0 "g" to quit
The top four processes are displayed
Topas Monitor for host: serverl Interval: 2 Mon May 28 17:36:17 2001
DATA TEXT PAGE PGFAULTS
USER PID PPID PRI NI RES RES SPACE TIME CPU% I/0 OTH COMMAND
root 4472 19850 186 24 103 10 103 1:05100.0 0 0 dc

root 16782 6026 186 24 148 10 148 4:18100.0 0 0 dc
root 21192 22412 186 24 135 10 135 3:00 99.6 0 0 dc
root 17826 14116 186 24 128 10 128 1:29 99.1 0 0 dc

The bindprocessor commands in Example 4-10 are used to bind the threads of
the top processes in Example 4-9 on page 229 to CPU1.

Example 4-10 The bindprocessor command used to bind processes to a CPU

bindprocessor 4472 1

bindprocessor 16782 1
bindprocessor 21192 1
bindprocessor 17826 1

230 AIX 5L Performance Tools Handbook

Example 4-11 shows statistics obtained from the topas command output for CPU
and processes after the bindprocessor command was used to bind the threads
of the top four processes seen in Example 4-9 on page 229 to CPU1. Ultimately
the length of time that the four processes will run for on CPU1 will be longer than
if they were left to run on all four processors.

Example 4-11 The bindprocessor command is used to bind processes onto a processor

Topas Monitor for host:
Mon May 28 17:42:01 2001

CPU

cpul
cpu2
cpu3
cpu0

USER
root
root
root
root

User% Kern% Wait% Idle%
100.0 0.0 0.0 0.0
0.4 1.7 0.0 97.7
0.0 0.0 0.0 100.0
0.0 0.0 0.0 100.0
Topas Monitor for host: serverl Interval:
DATA TEXT PAGE
PID PPID PRI NI RES RES SPACE
4472 19850 123 24 103 10 103
17826 14116 123 24 128 10 128
16782 6026 123 24 135 10 135
21192 22412 123 24 135 10 135

serverl
Interval: 2

EVENTS/QUEUES
Cswitch 145
Syscall 291
Reads 2
Writes
Forks
Execs
Runqueue 4.
Waitqueue 0.

oo oonmN

PAGING
Faults
Steals
PgspIn
PgspOut
Pageln
PageOut
Sios

O O O O o oo

NFS (calls/sec)
ServerV2
ClientV2
ServerV3
ClientV3

o O o o

FILE/TTY

Readch 76
Writech 567
Rawin 0
Ttyout 0
Igets 0
Namei 4
Dirblk 0
MEMORY

Real,MB 511
% Comp 26.1

% Noncomp 27.6
% Client 0.5

PAGING SPACE
Size,MB 512

% Used 1.2
% Free 98.7

Press:
"h" for help

q" to quit

2 Mon May 28 17:43:19 2001

PGFAULTS
TIME CPU% I/0 OTH COMMAND
1:07 25.0 0 0 dc
1:28 25.0 0 12 dc
4:22 25.0 0 0 dc
3:04 25.0 0 0 dc

Chapter 4. CPU performance tools

231

4.4 emstat
The emstat command displays emulation exception statistics.

Emulation exceptions can occur when some legacy applications or libraries,
which contain instructions that have been deleted from older processor
architectures, are executed on newer processors.

These instructions may cause illegal instruction program exceptions. The
operating system kernel has emulation routines that catch these exceptions and
emulate the older instruction(s) to maintain program functionality, potentially at
the expense of program performance. The emulation exception count since the
last time the machine was rebooted and the count in the current interval are
displayed.

Emulation can cause a severe degradation in performance and an emulated
instruction may cause in the order of hundreds of instructions to be generated to
emulate it. Section 4.4.4, “Detecting and resolving emulation” on page 235
shows what can be done to resolve emulation problems.

The user can optionally display alignment exception statistics or individual
processor emulation statistics. For details on alignment, please refer to
Section 4.1, “alstat” on page 222. The default output displays statistics every
second. The sampling interval and number of iterations can also be specified.

If a system is under-performing after applications are transferred or ported to a
new system, then emulation and alignment should be checked.

Tip: When diagnosing performance problems, you should always check for
emulated instructions, as they can cause the performance of the system to
degrade.

emstat resides in /usr/bin and is part of the bos.perf.tools fileset, which is
installable from the AIX base installation media.

emstat and alstat are linked to each other.

4.4.1 Syntax

The syntax of the emstat command is as follows:

emstat [[-a] | [-v]] [interval] [count]

Flags

232 AIX 5L Performance Tools Handbook

-a Displays alignment stats
-v Specifies verbose (per CPU stats)

Parameters

interval Specifies the update period (in seconds)
count Specifies the number of iterations

4.4.2 Information on measurement and sampling

Instructions that have been removed from earlier architectures are caught by the
operating system and those instructions are emulated. The emulated exceptions
count is reported by the emstat command. The default output displays statistics
every second. The sampling interval and number of iterations can also be
specified by the user.

The first line of the emstat output is the total number of emulations detected
since the system was rebooted. The counters are stored in per processor
structures.

An average rate of more than 1000 emulated instructions per second may cause
a performance degradation. Values in the region of 100,000 or more per second
will certainly cause performance problems.

4.4.3 Examples

Example 4-12 shows a system with emulation as displayed by the emstat
command with no options. This will display emulations once per second.

Example 4-12 An example of the output of emstat

emstat

emstat total count emstat interval count
3236560 3236560
3236580 20
3236618 38
3236656 38
3236676 20
3236714 38
3236752 38
3236772 20
3236810 38
3236848 38

emstat total count emstat interval count
3236868 20
3236906 38
3236944 38

Chapter 4. CPU performance tools 233

3236964 20
3237002 38
3237040 38

The above report has the following columns:

emstat total count The total number of emulated instructions since
start-up plus that of the last interval.

emstat interval count The first line of the report is the total number of
emulated instructions since start-up. Subsequent
lines show the number of emulations in the last
interval.

To display emulation and alignment exception statistics every two seconds a total
of five times, use the command shown in Example 4-13.

Example 4-13 Displaying emulation and alignment statistics per time and interval

emstat -a 2 5

Alignment Alignment Emulation Emulation
SinceBoot Delta SinceBoot Delta
21260604 0 70091846 0
23423104 2162500 72193861 2102015
25609796 2186692 74292759 2098898
27772897 2163101 76392234 2099475
29958509 2185612 78490284 2098050

The above report has the following columns:

Alignment SinceBoot The sum of the number of alignment exceptions
since start-up plus that of the last interval.

Alignment Delta The number of alignment exceptions in the last
interval.

Emulation SinceBoot The sum of the number of emulated instructions
since start-up plus that of the last interval.

Emulation Delta The number of emulated instructions in the last
interval.

To display emulation statistics every five seconds for each processor, use the
command in Example 4-14.

Example 4-14 Displaying emulation for each processor

emstat -v 5

Emulation Emulation Emulation Emulation

234 AIX 5L Performance Tools Handbook

SinceBoot Delta Delta00 Delta0l

88406295 0 0 0
93697825 5291530 0 5291530
98930330 5232505 5232505 0
102595591 3665261 232697 3432564
102595591 0 0 0

The above report has the following columns:

Emulation SinceBoot The sum of the number of emulated instructions since
start-up plus that of the last interval.

Emulation Delta The number of emulated instructions in the previous
interval for all CPUs

Emulation Delta00 The number of emulated instructions in the previous
interval for cpuO.

Emulation DeltaOl The number of emulated instructions in the previous
interval for cput.

4.4.4 Detecting and resolving emulation

Emulation is usually attributed to legacy applications or libraries that contain
instructions that have been deleted from older processor architectures.

Emulation occurs when programs have been compiled for specific chips, such as
a program compiled for the 601 processor will produce emulation problems on a
604 based processor because the 604 chip has to emulate instructions for the
601 processor to maintain program functionality. To maintain functionality across
the processors, a program needs to be compiled for common architecture with
-garch=com as flags for the cc compiler, or alternatively the program may be
compiled for a specific chip set. If you are a software vendor, then you can
compile with a common architecture to avoid having multiple ports of the same
code.

4.5 gprof

The gprof command produces an execution profile of C, Pascal, FORTRAN, or
COBOL programs (with or without the source). The effect of called routines is
incorporated into the profile of each caller. gprof is useful in identifying how a
program consumes CPU resource. To find out which functions (routines) in the
program are using the CPU, you can profile the program with the gprof
command. gprof is a subset of the prof command.

Chapter 4. CPU performance tools 235

gprof is useful for determining the following:

» Shows how much CPU time a program uses
» Helps to identify active areas of a program

» Profiles a program by routine

» Profiles parent-child

gprof resides in /usr/ccs/bin/gprof, is linked from /usr/bin, and is part of the
bos.acct fileset, which is installable from the AIX base installation media.

A similar profiler, named xprofiler, providing a Graphical User Interface (GUI) is
available as part of the IBM Parallel Environment for AIX. The xprofiler can be
used to profile both serial and parallel applications. From the xprofiler GUI, the
same command line flags as for gprof can be used.

The xprofiler command resides in /usr/Ipp/ppe.xprofiler/bin, is linked to
/usr/bin, and is part of the ppe.xprofiler fileset, which is installable from the IBM
Parallel Environment installation media.

4.5.1 Syntax

The syntax of the gprof command is as follows:

gprof [-b][-s][-z][-e Name][-E Name][-f Name] [-F Name] [-L PathName]
[gmon.out ...]

Flags

-b Suppresses the printing of a description of each field in the
profile. This is very useful once you learn what the descriptions
for each field are.

-E Name Suppresses the printing of the graph profile entry for routine Name
and its descendants, similar to the -e flag, but excludes the time
spent by routine Name and its descendants from the total and
percentage time computations.

-e Name Suppresses the printing of the graph profile entry for routine Name
and all its descendants (unless they have other ancestors that
are not suppressed). More than one -e flag can be given. Only
one routine can be specified with each -e flag.

-F Name Prints the graph profile entry of the routine Name and its
descendants similar to the -f flag, but uses only the times of the
printed routines in total time and percentage computations. More
than one -F flag can be given. Only one routine can be specified
with each -F flag. The -F flag overrides the -E flag.

236 AIX 5L Performance Tools Handbook

-f Name Prints the graph profile entry of the specified routine Name and its
descendants. More than one -f flag can be given. Only one
routine can be specified with each -f flag.

-L PathName Uses an alternate pathname for locating shared objects.

-s Produces the gmon.sum profile file, which represents the sum of
the profile information in all the specified profile files. This
summary profile file may be given to subsequent executions of
the gprof command (using the -s flag) to accumulate profile data
across several runs of an a.out file.

-z Displays routines that have zero usage (as indicated by call
counts and accumulated time).

Parameters

Name Suppresses reporting or displays profile of the Name routine.
PathName Pathname for locating shared objects.

gmon.out Call graph profile file.

4.5.2 Information on measurement and sampling

The profile data is taken from the call graph profile file (gmon.out by default)
created by programs compiled with the cc command using the -pg flags. These
flags also link in versions of library routines compiled for profiling, and reads the
symbol table in the named object file (a.out by default), correlating it with the call
graph profile file. If more than one profile file is specified, the gprof command
output shows the sum of the profile information in the given profile files.

The -pg flag causes the compiler to insert a call to the mcount subroutine into the
object code generated for each recompiled function of your program. During
program execution, each time a parent calls a child function the child calls the
mcount subroutine to increment a distinct counter for that.

Note: Symbols from C++ object files have their names demangled before they
are used.

The gprof command produces three items:

» A listing showing the functions sorted according to the time they represent,
including the time of their call-graph descendents (see “Detailed function
report” on page 239). Below each function entry are its (direct) call-graph
children, with an indication of how their times are propagated to this function.
A similar display above the function shows how the time of the function and
the time of its descendents are propagated to its (direct) call-graph parents.

Chapter 4. CPU performance tools 237

» A flat profile (see “Flat profile” on page 241) similar to that provided by the
prof command. See Section 4.8, “prof” on page 261. This listing gives total
execution times and call counts for each of the functions in the program,
sorted by decreasing time. The times are then propagated along the edges of
the call graph. Cycles are discovered, and calls into a cycle are made to
share the time of the cycle. Cycles are also shown, with an entry for the cycle
as a whole and a listing of the members of the cycle and their contributions to
the time and call counts of that cycle.

» A summary of cross references found during profiling (see “Listing of cross
references” on page 243).

Profiling with the fork and exec subroutines

Profiling using the gprof command is problematic if your program runs the fork or
exec subroutine on multiple, concurrent processes. Profiling is an attribute of the
environment of each process, so if you are profiling a process that forks a new
process, the child is also profiled. However, both processes write a gmon.out file
in the directory from which you run the parent process, overwriting one of them.
tprof is recommended for multiple-process profiling. See Section 4.12, “tprof’ on
page 275 for more details.

If you must use the gprof command, one way around this problem is to call the
chdir subroutine to change the current directory of the child process. Then, when
the child process exits, its gmon.out file is written to the new directory.

4.5.3 Examples

238

This section shows an example of the gprof command in use. Two scenarios are
shown:

» Where the source code of the program we wish to profile is available.
» Where the source code of the program we wish to profile is unavailable.

Profiling when the source code is available
The following example uses the source file cwhet.c, which is a standard

benchmarking program. The source code is displayed in “spmi_dude.c” on
page 895.
The first step is to compile the cwhet.c source code into a binary using:

cc -o cwhet -pg -1m cwhet.c

Then create the gmon.out file (which will be used by gprof) by running cwhet:
cwhet

AIX 5L Performance Tools Handbook

Then run gprof on the executable using:

gprof cwhet > cwhet.gprof

Detailed function report
Now the cwhet.gprof file can be examined. Lines in the report have been
removed to keep the report to a presentable size (Example 4-15).

Example 4-15 Output of gprof run on cwhet with source

cat cwhet.gprof
...(Tines omitted)...
granularity: Each sample hit covers 4 bytes. Time: 9.37 seconds

called/total parents
index %time self descendents called+self name index
called/total children
2.94 3.52 1/1 .__start [2]
[1] 68.9 2.94 3.52 1 .main [1]
1.13 0.00 8990000/8990000 .mod8 [4]
0.86 0.00 6160000/6160000 .mod9 [5]
0.38 0.00 930000/930000 .Tog [6]
0.34 0.00 1920000/1920000 .cos [7]
0.28 0.00 930000/930000 .exp [8]
0.23 0.00 640000/640000 .atan [9]
0.22 0.00 140000/140000 .mod3 [10]
0.07 0.00 640000/640000 .sin [15]
0.00 0.01 10/10 .pout [18]
6.6s <spontaneous>
[2] 68.9 0.00 6.46 .__start [2]
2.94 3.52 1/1 .main [1]
0.00 0.00 1/1 .exit [34]

...(Tines omitted)...

In the above example, look at the first index [1] in the left-hand column. This

shows the .main function is the current function. It was started by . start (the

parent function is above the current function), and it, in turn, calls .mod8 and

.mod9 (the child functions are beneath the current function). All time of .main is

propagated to . start (inthis case 2.94 ms). The self and descendents

columns of the children of the current function should add up to the descendents’

entry for the current function.

Chapter 4. CPU performance tools

239

240

The following descriptions apply to the report in Example 4-15 on page 239:

The sum of self and descendents is the major sort for this listing. The following
fields are included:

index The index of the function in the call graph listing, as
an aid to locating it.

Stime The percentage of the total time of the program
accounted for by this function and its descendents.

self The number of seconds spent in this function itself.

descendents The number of seconds spent in the descendents of this
function on behalf of this function.

called The number of times this function is called (other than
recursive calls).

self The number of times this function calls itself recursively.

name The name of the function, with an indication of its

membership in a cycle, if any.

index The index of the function in the call graph listing, as an
aid to locating it.

The following parent listings are included:

self! The number of seconds of this function's self time that is
due to calls from this parent.

descendents’ The number of seconds of this function's descendent time
that is due to calls from this parent.

called? The number of times this function is called by this parent.
This is the numerator of the fraction that divides up the
function's time to its parents.

total’ The number of times this function was called by all of its
parents. This is the denominator of the propagation
fraction.

parents The name of this parent, with an indication of the
parent's membership in a cycle, if any.

index The index of this parent in the call graph listing, as an aid
in locating it.

The following children listings are included:

self! The number of seconds of this child's self time which is
due to being called by this function.

AIX 5L Performance Tools Handbook

descendent’ The number of seconds of this child's descendent's time,
which is due to being called by this function.

called? The number of times this child is called by this function.
This is the numerator of the propagation fraction for this
child.

total’ The number of times this child is called by all functions.
This is the denominator of the propagation fraction.

children The name of this child, and an indication of its
membership in a cycle, if any.

index The index of this child in the call graph listing, as an aid to
locating it.

cycle Tistings The cycle as a whole is listed with the same fields as a

function entry. Below it are listed the members of the
cycle, and their contributions to the time and call counts of
the cycle.

Flat profile
The flat profile sample is the second part of the cwhet.gprof report.
Example 4-16 is a flat file produced by the gprof command.

Example 4-16 Flat profile report of profiled cwhet.c

cat cwhet.gprof

...(Tines omitted)...

granularity: Each sample hit covers 4 bytes. Time: 9.37 seconds

% cumulative self self total
time seconds seconds calls ms/call ms/call name
31.4 2.94 2.94 1 2940.00 6460.00 .main [1]
25.1 5.29 2.35 .__mcount [3]
12.1 6.42 1.13 8990000 0.00 0.00 .mod8 [4]

9.2 7.28 0.86 6160000 0.00 0.00 .mod9 [5]

4.1 7.66 0.38 930000 0.00 0.00 .log [6]

3.6 8.00 0.34 1920000 0.00 0.00 .cos [7]

3.0 8.28 0.28 930000 0.00 0.00 .exp [8]

2.5 8.51 0.23 640000 0.00 0.00 .atan [9]

2.3 8.73 0.22 140000 0.00 0.00 .mod3 [10]

1.8 8.90 0.17 .gincrementl [11]
1.5 9.04 0.14 .gincrement [12]
1.4 9.17 0.13 .__stack_pointer [13]
1.2 9.28 0.11 .sqrt [14]

0.7 9.35 0.07 640000 0.00 0.00 .sin [15]

1 This field is omitted for parents (or children) in the same cycle as the function. If the function (or child) is a member of a
cycle, the propagated times and propagation denominator represent the self time and descendent time of the cycle as a
whole.

2 Static-only parents and children are indicated by a call count of zero.

Chapter 4. CPU performance tools 241

242

0.1 9.36 0.01 10 1.00 1.00 .n1_langinfo [17]

0.1 9.37 0.01 .compare_and_swap.GL [20]

0.0 9.37 0.00 40 0.00 0.00 .mf2x2 [21]

0.0 9.37 0.00 40 0.00 0.00 .myecvt [22]

0.0 9.37 0.00 10 0.00 0.00 ._nl_langinfo_std [23]

0.0 9.37 0.00 10 0.00 1.00 ._doprnt [16]

0.0 9.37 0.00 10 0.00 1.00 .pout [18]

0.0 9.37 0.00 10 0.00 1.00 .printf [19]

0.0 9.37 0.00 3 0.00 0.00 .splay [24]

0.0 9.37 0.00 2 0.00 0.00 .free [25]

0.0 9.37 0.00 2 0.00 0.00 .free_y [26]

0.0 9.37 0.00 1 0.00 0.00 ._ flsbuf [27]

0.0 9.37 0.00 1 0.00 0.00 .__ioctl [28]

0.0 9.37 0.00 1 0.00 0.00 ._findbuf [29]

0.0 9.37 0.00 1 0.00 0.00 ._flshuf [30]

0.0 9.37 0.00 1 0.00 0.00 ._wrtchk [31]

0.0 9.37 0.00 1 0.00 0.00 . xflshuf [32]

0.0 9.37 0.00 1 0.00 0.00 .catopen [33]

0.0 9.37 0.00 1 0.00 0.00 .exit [34]

0.0 9.37 0.00 1 0.00 0.00 .expand_catname [35]

0.0 9.37 0.00 1 0.00 0.00 .getenv [36]

0.0 9.37 0.00 1 0.00 0.00 .ioctl [37]

0.0 9.37 0.00 1 0.00 0.00 .isatty [38]

0.0 9.37 0.00 1 0.00 0.00 .moncontrol [39]

0.0 9.37 0.00 1 0.00 0.00 .monitor [40]

0.0 9.37 0.00 1 0.00 0.00 .pre_ioctl [41]

0.0 9.37 0.00 1 0.00 0.00 .saved_cate