

ibm.com/redbooks

AIX 5L Performance
Tools Handbook

Thomas Braunbeck
Stuart Lane

Björn Rodén
Nigel Trickett

Diana Gfroerer

Use the AIX 5L performance monitoring
and tuning tools efficiently

Understand the performance of
your AIX system

Know how to interpret
the statistics

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

AIX 5L Performance Tools Handbook

September 2001

International Technical Support Organization

SG24-6039-00

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (September 2001)

This edition applies to AIX 5L for Power Version 5.1.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Special notices” on page 933.

Contents

Figures . xxi

Tables . xxiii

Preface . xxv
The team that wrote this redbook. xxvi
Special notice .xxvii
IBM trademarks .xxvii
Comments welcome. xxviii

Chapter 1. Introduction to AIX performance monitoring and tuning 1
1.1 CPU performance. 2

1.1.1 Initial advice . 3
1.1.2 Processes and threads . 3

Processes . 3
Threads . 3

1.1.3 Process and thread priorities . 3
Thread aging . 5

1.1.4 Scheduling policies . 5
1.1.5 Run queues. 6
1.1.6 Time slices . 6
1.1.7 Mode switching . 6
1.1.8 SMP performance . 7

Cache coherency . 7
Processor affinity . 7
Locking. 8

1.2 Memory performance . 10
1.2.1 Initial advice . 10
1.2.2 Memory segments. 10

The free list . 11
Page replacement . 11
Memory load control mechanism . 12
Paging space . 13
Memory leaks. 14
Shared memory . 15
© Copyright IBM Corp. 2001 iii

1.3 Disk I/O performance . 15
1.3.1 Initial advice . 15
1.3.2 Disk subsystem design approach . 16
1.3.3 Bandwidth related performance considerations 17
1.3.4 Disk design . 18

Disk access times . 19
Disks per adapter bus or loop . 19
Physical disk buffers . 20

1.3.5 Logical Volume Manager (LVM) concepts . 22
Use of LVM policies . 22
Log logical volume . 27
JFS2 inline log . 28
Paging space . 28
Recommendations for performance optimization 28

1.4 Network performance . 29
1.4.1 TCP/IP protocols . 31
1.4.2 Network tunables . 32

Network buffer tuning . 34
Other network tunable considerations . 35
Basic network adapter settings . 37
Resetting network tunables to their default . 40

Chapter 2. Getting started . 43
2.1 Tools and filesets . 44
2.2 Tools by resource matrix . 47
2.3 Performance tuning approach . 49

2.3.1 CPU bound system . 50
2.3.2 Memory bound system . 52
2.3.3 Disk I/O bound system . 53
2.3.4 Network I/O bound system . 55

Chapter 3. Multi resource monitoring and tuning tools. 57
3.1 fdpr . 59

3.1.1 Syntax . 59
Flags . 60

3.1.2 Information on measurement and sampling 62
3.1.3 Examples . 63

3.2 iostat . 67
3.2.1 Syntax . 68
3.2.2 Information on measurement and sampling 69
3.2.3 Examples . 70

System throughput report . 70
tty and CPU utilization report . 74
Disk utilization report . 74
iv AIX 5L Performance Tools Handbook

Adapter throughput report . 76
3.3 netpmon . 77

3.3.1 Syntax . 77
3.3.2 Information on measurement and sampling 79
3.3.3 Examples . 80

3.4 Performance Diagnostic Tool (PDT) . 89
3.4.1 Syntax . 90
3.4.2 Information on measurement and sampling 90
3.4.3 Examples . 91

How to edit the configuration files . 92
How to use reports generated by PDT. 95
How to create a PDT report manually . 98
How to run PDT collection manually . 98

3.5 perfpmr . 98
3.5.1 Syntax . 99

Flags . 99
Parameters . 99

3.5.2 Information on measurement and sampling 99
3.5.3 Building and submitting a testcase . 103

Preparing for perfpmr. 104
Downloading perfpmr. 104
Installing perfpmr . 104
Running perfpmr . 106
Uploading the testcase . 107

3.5.4 Examples . 108
3.6 ps . 109

3.6.1 Syntax . 109
Flags . 110

3.6.2 Information on measurement and sampling 112
3.6.3 Examples . 113

Displaying the top 10 CPU consuming processes 113
Displaying the processes in order of being penalized 115
Displaying the processes in order of priority . 115
Displaying the processes in order of nice value. 116
Displaying the processes in order of time . 116
Displaying the processes in order of real memory use 117
Displaying the processes in order of I/O . 118
Displaying WLM classes . 118
Viewing threads . 118

3.7 sar . 120
3.7.1 Syntax . 120

Flags . 120
 Contents v

3.7.2 Information on measurement and sampling 122
3.7.3 Examples . 123

3.8 schedtune . 144
3.8.1 Syntax . 145

Flags . 145
3.8.2 Information on calculating tunable values . 147

Scheduler policies . 147
CPU . 147
Memory . 150

3.8.3 Recommendations and precautions . 151
3.8.4 Examples . 152

3.9 topas . 158
3.9.1 Syntax . 158
3.9.2 Information on measurement and sampling 160
3.9.3 Common uses of the topas command . 160

CPU utilization statistics. 160
Network interface statistics . 160
Disk drive statistics . 161
Process statistics . 161
Event and queue statistics . 161
File and tty statistics. 161
Paging statistics . 162
Memory statistics . 162
NFS statistics . 162

3.9.4 Examples . 165
3.10 truss . 168

3.10.1 Syntax . 168
Flags . 168

3.10.2 Information on measurement and sampling 173
3.10.3 Examples . 175

How to use truss . 175
How to use the summary output . 176
How to monitor running processes . 178
How to analyze file descriptor I/O . 180
How to combine different flags. 182
How to check program parameters . 183
How to check program environment variables 183
How to track child processes . 184

3.11 vmstat . 186
3.11.1 Syntax . 187

Flags . 187
Parameters . 187
vi AIX 5L Performance Tools Handbook

3.11.2 Information on measurement and sampling 188
3.11.3 Examples . 188

Virtual memory activity . 188
Forks report . 195
Interrupts report . 195
Sum structure report . 197
I/O Report . 200

3.12 vmtune . 201
3.12.1 Syntax . 202

Flags . 203
3.12.2 Calculating tunable values . 206

Sequential read-ahead. 206
The page replacement algorithm . 208
Pinning memory . 209
Sequential write-behind . 210
Random write-behind . 210
The syncd daemon . 211
I/O tuning parameters . 211
File system caching . 212
Paging parameters. 213
Large page parameters . 213
JFS2 and NFS client pages . 213

3.12.3 Recommendations and precautions . 214
3.12.4 Examples . 214

Chapter 4. CPU performance tools . 221
4.1 alstat . 222

4.1.1 Syntax . 223
Flags . 223
Parameters . 223

4.1.2 Information on measurement and sampling 223
4.1.3 Examples . 223
4.1.4 Detecting and resolving alignment . 225

4.2 bindintcpu . 225
4.2.1 Syntax . 226

Parameters . 226
4.2.2 Examples . 226

4.3 bindprocessor. 228
4.3.1 Syntax . 228

Flags . 228
Parameters . 229
 Contents vii

4.3.2 Information on measurement and sampling 229
4.3.3 Examples . 229

4.4 emstat . 232
4.4.1 Syntax . 232
4.4.2 Information on measurement and sampling 233
4.4.3 Examples . 233
4.4.4 Detecting and resolving emulation . 235

4.5 gprof . 235
4.5.1 Syntax . 236

Flags . 236
Parameters . 237

4.5.2 Information on measurement and sampling 237
Profiling with the fork and exec subroutines . 238

4.5.3 Examples . 238
Profiling when the source code is available . 238

4.6 nice . 245
4.6.1 Syntax . 246

Flags . 246
Parameters . 246

4.6.2 Information on measurement and sampling 247
4.6.3 Examples . 247

How to degrade the priority of a process . 248
How to improve the priority of a process . 248

4.7 pprof . 249
4.7.1 Syntax . 249

Flags . 249
Parameters . 250

4.7.2 Information on measurement and sampling 250
4.7.3 Examples . 251

The pprof.cpu report . 251
The pprof.start report . 254
The pprof.namecpu report . 256
The pprof.famind report . 257
The pprof.famcpu report . 260

4.8 prof . 261
4.8.1 Syntax . 261

Flags . 262
Parameters . 263

4.8.2 Information on measurement and sampling 263
4.8.3 Examples . 264

The cwhet.prof report . 264
4.9 renice . 266

4.9.1 Syntax . 266
Flags . 266
viii AIX 5L Performance Tools Handbook

Parameters . 266
4.9.2 Information on measurement and sampling 267
4.9.3 Examples . 267

4.10 time . 268
4.10.1 Syntax . 268

Flags . 269
Parameters . 269

4.10.2 Information on measurement and sampling 269
4.10.3 Examples . 269

4.11 timex . 270
4.11.1 Syntax . 270

Flags . 270
Parameters . 270

4.11.2 Information on measurement and sampling 271
4.11.3 Examples . 271

4.12 tprof . 275
4.12.1 Syntax . 275

Flags . 276
4.12.2 Information on measurement and sampling 278
4.12.3 Examples . 279

The summary report. 280
Profiling an application. 285
Profiling an application already running on the system 288
Micro profiling an application . 289
Using tprof to detect a resource bottleneck . 290
Trace hook 234 used by tprof . 298

Chapter 5. Memory performance tools . 301
5.1 ipcs . 302

5.1.1 Syntax . 302
Flags . 302

5.1.2 Information on measurement and sampling 303
5.1.3 Examples . 303

How to check which processes use shared memory 305
How to remove an unused shared memory segment 307
How to use a shared memory segment . 308
How to check which processes use semaphores 312

5.2 rmss . 314
5.2.1 Syntax . 314

Flags . 314
Parameters . 316
 Contents ix

5.2.2 Information on measurement and sampling 316
5.2.3 Recommendations and precautions . 317
5.2.4 Examples . 317

Changing the simulated memory size . 318
Displaying the simulated memory size. 318
Resetting the simulated memory size . 318
Testing an executable run time with rmss . 318

5.3 svmon . 320
5.3.1 Syntax . 320

Flags . 321
Parameters . 324

5.3.2 Information on measurement and sampling 324
Segments . 325

5.3.3 Examples . 326
How to determine which processes use most real memory. 327
How to determine which processes use most paging space 327
How to find out what segments are most utilized. 328
How to find out what files a process or command is using 328
How to analyze the global report . 333
How to analyze the user reports . 335
How to analyze processes reports . 349
How to analyze the command reports . 358
How to analyze segment utilization . 371
How to analyze detailed reports. 380
How to analyze frame reports . 382

Chapter 6. Disk I/O performance tools . 387
6.1 filemon . 388

6.1.1 Syntax . 388
Flags . 388

6.1.2 Information on measurement and sampling 389
General notes on interpreting the reports . 390

6.1.3 Examples . 392
How to start monitoring . 392
How to use the different reports . 392
How to analyze the physical volume reports . 394
How to analyze the file report . 398
How to analyze the logical volume report . 401
How to analyze the virtual memory segments report 405

6.2 fileplace . 409
6.2.1 Syntax . 409

Flags . 409
Parameters . 410
x AIX 5L Performance Tools Handbook

6.2.2 Information on measurement and sampling 410
6.2.3 Examples . 411

How to analyze the logical report . 412
How to analyze the physical report . 413
How to analyze the indirect block report . 417
How to analyze the volume report . 418
Sparsely allocated files . 422

6.3 lslv, lspv, and lsvg . 429
6.3.1 lslv syntax . 430

Flags . 430
Parameters . 430

6.3.2 lspv Syntax . 430
Flags . 431
Parameters . 431

6.3.3 lsvg syntax . 432
Flags . 432
Parameters . 432

6.3.4 Information on measurement and sampling 433
6.3.5 Examples . 433

How to use lslv . 441
How to use lspv . 442
How to use lsvg . 443
How to acquire more disk information . 444

6.4 lvmstat . 445
6.4.1 Syntax . 446

Flags . 446
Parameters . 446

6.4.2 Information on measurement and sampling 447
6.4.3 Examples . 447

How to use lvmstat. 448
How to monitor all logical volumes in a volume group 451
How to monitor a single logical volume . 453
How to summarize I/O utilization per physical partition 455

Chapter 7. Network performance tools . 457
7.1 atmstat . 459

7.1.1 Syntax . 459
Flags . 459
Parameters . 459

7.1.2 Information on measurement and sampling 459
7.1.3 Examples . 460

7.2 entstat . 465
7.2.1 Syntax . 466

Flags . 466
 Contents xi

Parameters . 466
7.2.2 Information on measurement and sampling 466
7.2.3 Examples . 467

7.3 estat . 471
7.3.1 Syntax . 471

Flags . 471
Parameters . 471

7.3.2 Information on measurement and sampling 471
7.3.3 Examples . 472

7.4 fddistat . 474
7.4.1 Syntax . 474

Flags . 474
Parameters . 475

7.4.2 Information on measurement and sampling 475
7.4.3 Examples . 476

7.5 ipfilter . 479
7.5.1 Syntax . 480

Flags . 480
Parameters . 480

7.5.2 Information on measurement and sampling 480
Protocols and header type options . 481

7.5.3 Examples . 481
How to trace TCP/IP traffic . 481

7.6 ipreport. 488
7.6.1 Syntax . 489

Flags . 489
Parameters . 489

7.6.2 Information on measurement and sampling 490
7.6.3 Examples . 490

How to use ipreport with tcpdump . 490
How to use ipreport with iptrace. 491

7.7 iptrace . 494
7.7.1 Syntax . 495

Flags . 495
Parameters . 496
TCP/IP protocol and services tables . 496

7.7.2 Information on measurement and sampling 497
7.7.3 Examples . 498

TCP packets . 499
UDP packets . 500
UDP domain name server requests and responses 501

7.8 netstat . 502
7.8.1 Syntax . 503

Flags . 504
xii AIX 5L Performance Tools Handbook

Parameters . 505
7.8.2 Information on measurement and sampling 506
7.8.3 Examples . 507

The network interfaces. 507
The network routing . 510
Kernel malloc statistics . 512
Statistics for each protocol . 515
Communications subsystems statistics . 522
The state of all sockets . 523
The network buffer cache . 525

7.9 nfso . 527
7.9.1 Syntax . 527

Flags . 527
Options. 528

7.9.2 Information on measurement and sampling 536
7.9.3 Examples . 536

7.10 nfsstat . 541
7.10.1 Syntax . 541

Flags . 541
7.10.2 Information on measurement and sampling 542
7.10.3 Examples . 542

NFS server RPC statistics . 543
NFS server NFS statistics . 544
NFS client RPC statistics . 545
NFS client NFS statistics . 547
Statistics on mounted file systems . 548

7.11 no. 549
7.11.1 Syntax . 549

Flags . 549
7.11.2 Information on measurement and sampling 550

Streams Tunable Attributes . 563
7.11.3 Examples . 565

7.12 tcpdump . 571
7.12.1 Syntax . 571

Flags . 571
Parameters . 573

7.12.2 Information on measurement and sampling 573
Expressions . 574
TCP/IP protocol and services tables . 578
ICMP message type table . 579
Packet header formats. 580

7.12.3 Examples . 583
How to use tcpdump with ipreport . 584
How to monitor TCP. 584
 Contents xiii

How to monitor UDP packets . 589
How to monitor all packets . 592
How to interpret link-level headers. 593
How to monitor ARP packets . 594
How to use expressions. 596

7.13 tokstat . 602
7.13.1 Syntax . 602

Flags . 602
Parameters . 603

7.13.2 Information on measurement and sampling 603
7.13.3 Examples . 604

7.14 trpt . 608
7.14.1 Syntax . 608

Flags . 608
Parameters . 609

7.14.2 Information on measurement and sampling 609
7.14.3 Examples . 610

How to display all stored trace records . 611
How to display source and destination addresses. 612
How to display packet-sequencing information 612
How to display timers at each point in the trace 613

Chapter 8. Trace tools . 615
8.1 curt. 616

8.1.1 Syntax . 616
Flags . 616

8.1.2 Information on measurement and sampling 618
8.1.3 Examples . 619

Overview of the reports generated by curt . 620
The default report. 622
Report generated with the -b flag. 633
Report generated with the -c flag. 634
Report generated with the -e flag. 634
Report generated with the -s flag. 636
Report generated with the -t flag . 636
Report generated with the -r flag . 639
xiv AIX 5L Performance Tools Handbook

8.2 genkex . 640
8.2.1 Syntax . 640
8.2.2 Information on measurement and sampling 640
8.2.3 Examples . 640

8.3 genkld . 641
8.3.1 Syntax . 642
8.3.2 Information on measurement and sampling 642
8.3.3 Examples . 642

8.4 genld . 643
8.4.1 Syntax . 643
8.4.2 Information on measurement and sampling 643
8.4.3 Examples . 643

8.5 gennames . 644
8.5.1 Syntax . 644

Flags . 644
Parameters . 645

8.5.2 Information on measurement and sampling 645
8.5.3 Examples . 646

The name to address mapping . 646
The list of loaded kernel extensions. 647
The list of loaded shared libraries . 648
The list of loaded processes . 648
Physical and logical volume and file system information 649

8.6 locktrace . 651
8.6.1 Syntax . 651

Flags . 651
8.6.2 Information on measurement and sampling 651
8.6.3 Examples . 652

8.7 splat . 653
8.7.1 Syntax . 653

Flags . 654
Parameters . 655

8.7.2 Information on measurement and sampling 656
Source . 657
Address-to-name resolution in splat . 658

8.7.3 Examples . 659
Execution summary . 659
PThread synchronizer reports . 674

8.8 stripnm . 682
8.8.1 Syntax . 682

Flags . 682
Parameter . 683
 Contents xv

8.8.2 Information on measurement and sampling 683
8.8.3 Examples . 683

8.9 trace. 685
8.9.1 Syntax . 686

Flags . 686
Subcommands . 690
Signals . 690
Files . 690

8.9.2 Information on measurement and sampling 691
Operation modes . 691

8.9.3 Terminology used for trace . 692
Trace Hooks. 692
Hook ID . 692
Trace daemon . 692
Trace buffer . 692
Trace log file . 693

8.9.4 Ways to start and stop trace . 694
Using SMIT to stop and start trace . 694
Running trace interactively. 695
Running trace asynchronously. 695
Running trace an entire system for 10 seconds. 696
Tracing to a specific log file . 696
Tracing a command . 696
Tracing using one set of buffers per CPU . 696

8.9.5 Examples . 697
Checking return times from trace. 697
Sequential Reads and Writes . 701

8.10 trcnm . 702
8.10.1 Syntax . 702

Flags . 702
Parameters . 703

8.10.2 Information on measurement and sampling 703
8.10.3 Examples . 703

8.11 trcrpt . 704
8.11.1 Syntax . 704

Flags . 704
Parameters . 708
Information on measurement and sampling. 708

8.11.2 Examples . 708
Combining trace buffers . 709
xvi AIX 5L Performance Tools Handbook

Chapter 9. APIs for performance monitoring . 711
9.1 Perfstat API . 712

9.1.1 Compiling and linking . 712
9.1.2 Subroutines . 712

perfstat_cpu . 713
perfstat_cpu_total . 716
perfstat_memory_total . 719
perfstat_disk. 721
perfstat_disk_total . 724
perfstat_netinterface . 725
perfstat_netinterface_total . 729

9.1.3 Examples . 731
Makefile . 735

9.2 System Performance Measurement Interface (SPMI) 736
9.2.1 Compiling and linking . 737
9.2.2 SPMI data organization . 737
9.2.3 Subroutines . 738

SpmiInit . 739
SpmiCreateStatSet . 740
SpmiPathGetCx . 740
SpmiPathAddSetStat . 741
SpmiFirstVals . 741
SpmiGetValue . 742
SpmiNextVals . 742
SpmiFreeStatSet . 743
SpmiExit . 743

9.2.4 Example . 744
Hard coded metrics . 744
Reading metrics from file . 749
Traversing and displaying the SPMI hierarchy 754
Makefile . 757

9.3 Performance Monitor (PM) API . 758
9.3.1 Performance Monitor data access . 759
9.3.2 Compiling and linking . 760
9.3.3 Subroutines . 761
9.3.4 Examples . 761

9.4 Resource Monitoring and Control (RMC) . 766
9.4.1 Syntax . 767

Resource Monitoring and Control Commands 767
Event Response Resource Manager commands 767

9.4.2 Information on measurement and sampling 768
9.4.3 Examples . 770

How to verify that the RMC is active . 770
How to examine resource classes and resources 771
 Contents xvii

How to write an event response script . 774
How to create a condition . 777
How to create a response to a condition event 778
How to associate a response with a condition 778
How to activate monitoring of a condition . 779
How will the condition/response event generation be done. 781
How to stop monitoring a condition . 782
How to remove a response definition. 782
How to remove a condition . 783

9.5 Miscellaneous performance monitoring subroutines 783
9.5.1 Compiling and linking . 783
9.5.2 Subroutines . 783

sys_parm . 784
vmgetinfo . 787
swapqry . 791
rstat . 792
getprocs . 794
wlm_get_info . 797
wlm_get_bio_stats . 799

9.5.3 Example . 802

Chapter 10. WLM performance tools . 807
WLM Tools and their purposes . 808

10.1 wlmstat. 808
10.1.1 Syntax . 809

Flags . 809
Parameters . 810

10.1.2 Information on measurement and sampling 810
10.1.3 Examples . 811

10.2 wlmmon / wlmperf . 818
10.2.1 Syntax xmwlm . 818

Flags . 818
10.2.2 Syntax xmtrend . 819

Flags . 819
10.2.3 Information about the xmwlm and xmtrend daemons 820

Starting the daemons. 820
10.2.4 Information on measurement and sampling 822
10.2.5 Exploring the graphical windows. 822

The WLM_Console menu . 824
The Select menu . 829

Chapter 11. Performance Toolbox Version 3 for AIX 839
Additional tools. 839
xviii AIX 5L Performance Tools Handbook

11.1 Introduction . 841
11.2 xmperf . 842

11.2.1 Syntax . 842
Flags . 843
Parameters . 845

11.2.2 Information on measurement and sampling 845
Display requirements . 846
Starting xmperf. 846

11.2.3 Examples . 853
11.3 3D monitor . 860

11.3.1 Syntax . 860
Flags . 861

11.3.2 Information on measurement and sampling 864
11.3.3 Examples . 866

11.4 jazizo . 869
11.4.1 Syntax xmtrend . 869

Flags . 869
11.4.2 Syntax jazizo . 870

Flags . 870
11.4.3 Information on measurement and sampling 870

Exploring the jazizo windows . 871

Appendix A. Source code examples . 885
perfstat_dude.c . 886
spmi_dude.c . 895
spmi_data.c . 899
spmi_file.c . 905
spmi_traverse.c . 908
dudestat.c . 911
cwhet.c . 914

Appendix B. Trace hooks . 921
AIX 5L trace hooks . 922

Related publications . 929
IBM Redbooks . 929

Other resources . 929
Referenced Web sites . 930
How to get IBM Redbooks . 931

IBM Redbooks collections. 931
 Contents xix

Special notices . 933

Abbreviations and acronyms . 935

Index . 939
xx AIX 5L Performance Tools Handbook

Figures

1-1 Physical Partition mapping. 23
3-1 Sequential read-ahead. 207
7-1 Schematic flow during TCP open. 587
7-2 Schematic flow during TCP close . 589
8-1 Lock states. 667
8-2 The trace facility . 693
10-1 Initial screen when wlmperf and wlmmon are started 823
10-2 The WLM_Console tab down menu. 824
10-3 The open log option from the tab down bar . 825
10-4 The WLM table visual report . 826
10-5 The CPU, memory and disk I/O tab down menu 826
10-6 The bar-graph style visual report . 828
10-7 The order of the snapshot visual report colored bulbs 828
10-8 The snapshot visual report. 829
10-9 The select tab down menu . 829
10-10 The time window for setting trend periods . 830
10-11 The table visual report with trend values shown 831
10-12 The bar graph style report showing a trend . 832
10-13 The snapshot visual report showing the trend 833
10-14 Advanced option under the Selected tab down menu 834
10-15 The Advanced Menu options shown in graphical form 835
10-16 The class/tier option from the selected tab down menu. 837
10-17 The snapshot report showing only the Red WLM class. 837
11-1 The initial xmperf window. 846
11-2 The mini monitor window . 847
11-3 Aged data moved to the left . 848
11-4 The utilities tab down menu . 849
11-5 The analysis tab down menus . 850
11-6 The controls tab down menu . 850
11-7 The Recording tab down menu . 850
11-8 The console recording options. 851
11-9 Cautionary window when recording an instrument 851
11-10 The Console Recording tab down menu’s End Recording option 851
11-11 Options under the initial xmperf window File tab down menu 852
11-12 The Select Play-back File window . 852
11-13 The Play-Back window. 853
11-14 Naming the user defined console . 854
11-15 Edit the console window . 854
© Copyright IBM Corp. 2001 xxi

11-16 Dynamic Data Supplier Statistics window . 855
11-17 The Change Properties of a Value window . 856
11-18 The final console monitoring CPU idle time . 857
11-19 The Edit Console tab down menu . 858
11-20 The Modify Instrument menu options. 858
11-21 The Style and Stacking menu option . 859
11-22 Menu options from the Edit Value tab down display 859
11-23 An example of a CPU usage instrument . 860
11-24 Initial 3dmon screen . 864
11-25 3D window from 3dmon showing the statistic of a host 865
11-26 CPU statistics displayed by 3dmon after modifying 3dmon.cf 867
11-27 3dmon graph showing disk activity for multiple hosts 868
11-28 The jazizo opening window . 872
11-29 The File tab down menu . 872
11-30 The Open Recording File window in jazizo . 873
11-31 Metric Selection window . 874
11-32 The metric selection window showing metric selections 875
11-33 The Time Selection window . 876
11-34 The stop and start hour tab down menus . 876
11-35 Adjusting the month in the jazizo Time Selection window 877
11-36 Adjusting the day in the jazizo Time Selection window 878
11-37 The jazizo window . 879
11-38 The jazizo Edit tab down menu . 879
11-39 The Graph Selection window of the jazizo program 880
11-40 The trend of the metric can be displayed by jazizo 881
11-41 The View tab down menu . 881
11-42 The Report tab down menu . 882
11-43 Tabular statistical output that can be obtained from jazizo 882
11-44 The File tab down menu when closing jazizo 883
xxii AIX 5L Performance Tools Handbook

Tables

1-1 Terms used in describing disk device block operations. 18
1-2 Latencies for disk access times. . 19
1-3 TCP/IP layers and protocol examples . 32
1-4 Network tunables minimum values for best performance 34
1-5 Other basic network tunables . 35
2-1 Commands/tools, pathnames and filesets . 44
2-2 Performance tools by resource matrix . 47
3-1 Current effective priority calculated where -r is four. 153
3-2 Current effective priority calculated where -r is 16. 154
3-3 The CPU decay factor using the default schedtune -d value of 16 . . . 155
3-4 The CPU decay factor using a schedtune -d value of 31. 155
3-5 Machine faults . 170
3-6 Signals . 171
7-1 ipfilter header types and options . 481
7-2 ipreport source tag . 483
7-3 grep -v ^# /etc/protocols. 496
7-4 Selection from /etc/services . 497
7-5 Suggested minimum buffer and MTU sizes for adapters. 568
7-6 grep -v ^# /etc/protocols. 578
7-7 Selection from /etc/services . 578
7-8 Some ICMP message types . 579
8-1 Minimum trace hooks required for curt . 618
8-2 Trace hooks required for splat . 656
9-1 Interface types from if_types.h . 728
9-2 Column explanation . 748
10-1 Output of wlnstat -v . 813
© Copyright IBM Corp. 2001 xxiii

xxiv AIX 5L Performance Tools Handbook

Preface

This redbook takes an insightful look at the performance monitoring and tuning
tools that are provided with AIX 5L. It discusses the usage of the tools as well as
the interpretation of the results by using a large number of examples.

This redbook is meant as a reference for system administrators and AIX
technical support professionals so they can use the performance tools in an
efficient manner and interpret the outputs when analyzing an AIX system’s
performance.

Chapter 1, “Introduction to AIX performance monitoring and tuning” on page 1
and Chapter 2, “Getting started” on page 43 introduce the reader to the process
of AIX performance analysis. The individual performance tools discussed in this
book are mainly organized into chapters according to the resources that they
provide statistics for:

� Tools that show statistics for multiple resources can be found in Chapter 3,
“Multi resource monitoring and tuning tools” on page 57.

� Tools that are used to monitor the CPU resource are located in Chapter 4,
“CPU performance tools” on page 221.

� Tools that provide statistics on system memory are discussed in Chapter 5,
“Memory performance tools” on page 301.

� Disk I/O performance can be monitored with the tools introduced in
Chapter 6, “Disk I/O performance tools” on page 387.

� The network monitoring tools are contained in Chapter 7, “Network
performance tools” on page 457.

� Explanations of AIX trace and trace related tools are located in Chapter 8,
“Trace tools” on page 615. Trace tools can usually be used to monitor all
system resources.

� Chapter 9, “APIs for performance monitoring” on page 711 explains how to
use the various performance APIs that are available for AIX.

� Workload Manager (WLM) performance monitoring tools can be found in
Chapter 10, “WLM performance tools” on page 807. These tools also provide
statistics on multiple resources, but they only gather information when AIX
WLM is turned on.

� The book is concluded with an overview of the AIX Performance Toolbox in
Chapter 11, “Performance Toolbox Version 3 for AIX” on page 839.
© Copyright IBM Corp. 2001 xxv

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Diana Gfroerer is an International Technical Support Specialist for IBM ^
pSeries and AIX Performance at the International Technical Support
Organization, Austin Center. She writes extensively and teaches IBM classes
worldwide on all areas of AIX, with a focus on performance and tuning. Before
joining the ITSO in 1999, Diana Gfroerer worked in AIX pre-sales Technical
Support in Munich, Germany, and led the Region Central, EMEA, and World
Wide Technical Skill Communities for AIX and PC Interoperability.

Thomas Braunbeck is a Support Professional in Germany. He has 12 years of
experience in AIX and seven years of experience in PSSP and related software.
He holds a degree in Computer Science.

Stuart Lane is an RS/6000 IT Specialist in South Africa. He has three years
experience with AIX and the RS/6000. His areas of expertise include RS/6000
systems, RS/6000 SP systems, and SCO Unixware.

Bjorn Roden is an AIX expert from Sweden working as a technical manager and
chief programmer for the largest IBM Business Partner in Sweden (Pulsen
Systems). He has 11 years of experience with AIX and SP. He is currently
certified as AIX Advanced Technical Expert, Mid-Range Storage Technical
Specialist, SP Specialist, HACMP Specialist, TSM Specialist, and Webserver
Specialist.

Nigel Trickett is a Software Support Specialist at IBM New Zealand. He has
worked with Unix since 1984 and has had several roles since then, including
hardware and software support and systems administration. He joined IBM in
1995. Nigel Trickett's primary responsibilities are to resolve performance issues
with AIX and to analyze system dumps. He also works on many types of software
issues. Nigel holds a New Zealand Certificate of Computer Technology.

Thanks to the following people for their invaluable contributions to this project:

International Technical Support Organization, Austin Center
Richard Cutler, Budi Darmawan, Ernest A. Keenan

IBM Austin
Matt Accapadi, Larry Brenner, Bill Britton, William Brown, Dean Burdick,
Saravanan Devendran, Herman Dierks, Loel Graber, Randy Heisch,
Somasundaram Krishnasamy, Bruce Mealey, Augie Mena III, Greg R.
xxvi AIX 5L Performance Tools Handbook

Mewhinney, Dirk Michel, Stephen Nasypany, Jane Ouyang, Carl Ponder,
Anthony Ramirez, Ruben Ramirez, Jim Shaffer, Dave Sheffield, Luc Smolders,
Bill Topliss, Vasu Vallabhaneni, Venkat Venkatsubra, Paul Wadehra, Brian
Waldecker

IBM India
Vivek H. M., Subhrata Parichha, Amar A. Shah

IBM Israel
Gadi Haber

IBM Poughkeepsie
Joseph Chaky, Michael Schmidt

Special notice
This publication is intended to help system administrators and AIX technical
support professionals to use and interpret the AIX 5L performance tools. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by AIX 5L. See the PUBLICATIONS
section of the IBM Programming Announcement for AIX 5L for more information
about what publications are considered to be product documentation.

IBM trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

3890
AIX 5L
AT
CT
DB2
e (logo)®
ESCON
Notes
PAL
PowerPC 604
PTX
Redbooks Logo
RS/6000
SP

AIX
AS/400
Balance
Current
Domino
Early
IBM ®
Nways
PowerPC
pSeries
Redbooks
RISC System/6000
Sequent
XT
 Preface xxvii

Comments welcome
Your comments are important to us!

We want our IBM Redbooks to be as helpful as possible. Send us your
comments about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.
xxviii AIX 5L Performance Tools Handbook

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction to AIX
performance monitoring and
tuning

The performance of a computer system is based on human expectations and the
ability of the computer system to fulfill these expectations. The objective for
performance tuning is to make expectations and fulfillment match. The path to
achieving this objective is a balance between appropriate expectations and
optimizing the available system resources. The performance tuning process
demands great skill, knowledge, and experience, and cannot be performed by
only analyzing statistics, graphs, and figures. The human aspect of perceived
performance must not be neglected if results are to be achieved. Performance
tuning will also usually have to take into consideration problem determination
aspects as well as pure performance issues.

Expectations can often be classified as either:

Throughput expectations Throughput is a measure of the amount of work
performed over a period of time.

Response time expectations Response time is the elapsed time between
when a request is submitted and when the
response from that request is returned.

1

© Copyright IBM Corp. 2001 1

The performance tuning process can be initiated for a number of reasons:

� To achieve optimal performance in a newly installed system

� To resolve performance problems resulting from the design (sizing) phase

� To resolve performance problems occurring in the runtime (production) phase

Performance tuning on a newly installed system will usually involve setting some
base parameters for the operating system and applications. The sections in this
chapter describe the characteristics of different system resources and provide
some advice regarding their base tuning parameters if applicable.

Limitations originating from the sizing phase will either limit the possibility of
tuning, or incur greater cost to overcome them. The system may not meet the
original performance expectations because of unrealistic expectations, physical
problems in the computer environment, or human error in the design or
implementation of the system. In the worst case adding or replacing hardware
might be necessary. It is therefore highly advised to be particularly careful when
sizing a system to allow enough capacity for unexpected system loads. In other
words, do not design the system to be 100 percent busy from the start of the
project. More information on system sizing can be found in the redbook
Understanding IBM ^ pSeries Performance and Sizing, SG24-4810.

When a system in a productive environment still meets the performance
expectations for which it was initially designed, but the demands and needs of
the utilizing organization has outgrown the system’s basic capacity, performance
tuning is performed to avoid and/or delay the cost of adding or replacing
hardware.

Remember that many performance related issues can be traced back to
operations performed by somebody with limited experience and knowledge that
unintentionally ended up restricting some vital logical or physical resource of the
system.

1.1 CPU performance
This section gives an overview of the operations of the kernel and CPU. An
understanding of the way processes and threads operate within the AIX
environment is required to successfully monitor and tune AIX for peak CPU
throughput.

Systems that experience performance problems are sometimes constrained not
by the limitations of hardware, but by the way applications are written or the way
the operating system is tuned. Threads that are waiting on locks can cause a
significant degradation in performance.
2 AIX 5L Performance Tools Handbook

1.1.1 Initial advice
We recommend that you not make any changes to the CPU scheduling
parameters until you have had experience with the actual workload. In some
cases the workload throughput can benefit from adjusting the scheduling
thresholds. Please see Section 3.8, “schedtune” on page 144 for more details on
how to monitor and change these values and parameters.

For more information about CPU scheduling, refer to:

� AIX 5L Version 5.1 System Management Concepts: Operating System and
Devices

� AIX 5L Version 5.1 Performance Management Guide

1.1.2 Processes and threads
The following sections explain the differences between threads and processes.

Processes
A process is an activity within the system that is started with a command, a shell
script, or another process.

Threads
A thread is an independent flow of control that operates within the same address
space as other independent flows of controls within a process. A kernel thread is
a single sequential flow of control.

Kernel threads are owned by a process. A process has one or more kernel
threads. The advantage of threads is that you can have multiple threads running
in parallel on different CPUs on a Symmetrical Multiprocessor System (SMP).

Applications can be designed to have user level threads that are scheduled to
work by the application or by the pthreads scheduler in libpthreads. Multiple
threads of control allow an application to service requests from multiple users at
the same time. Application threads can be mapped to kernel threads in a 1:1 or
an n:1 relation.

1.1.3 Process and thread priorities
The kernel maintains the priority of the threads. A thread’s priority can range from
zero to 255. A zero priority is the most favored and 255 is the least favored. The
priority of fixed priority threads does not change during the life of the thread,
while non-fixed priority threads can have their maximum priority changed with the
nice or the renice commands. The kernel calculates the priority for non-fixed
 Chapter 1. Introduction to AIX performance monitoring and tuning 3

priority threads using a formula that includes, among other values, the minimum
priority for a user thread (40), the nice value for the process that contains the
thread (20 by default, see Section 4.6, “nice” on page 245), and its CPU penalty
(see “Displaying the processes in order of being penalized” on page 115). The
CPU usage increases by one after each clock interrupt (every 10 ms) and will
increment up to 120. This prevents high CPU usage threads from monopolizing
the CPU. Once every second the scheduler decrements the CPU usage value for
all the threads, thereby giving the penalized threads access to the CPU again.

The nice value of a process can by set with the nice or renice command, and
will not change unless changed again by those commands. The default nice
value is 20. For threads running the default SCHED_OTHER policy (see
Section 1.1.4, “Scheduling policies” on page 5), the threads’ priority will change
based on the nice value and the CPU usage.

Formula to recalculate thread priority
The nice value can be changed to have more of an effect on the priority of
threads running on the system.

The following factors are used for thread priority calculation:

base priority The base or minimum priority of a thread is 40.

nice value The nice value defaults to 20 for foreground processes,
and 24 for background processes.

p_nice The niced priority is calculated as follows:
p_nice = base priority + nice value

C The recent CPU usage has a value of 0 at thread
initialization. The CPU usage increments by 1 for the
currently running thread when a clock interrupt occurs.

r/32 The CPU penalty factor. The default for r is 16. This value
can be tuned with the schedtune command.

x_nice The “extra nice” value.
If the niced priority for a thread (p_nice) is larger than 60,
then the following formula applies:
x_nice = p_nice * 2 - 60
If the niced priority for a thread (p_nice) is equal or less
than 60, the following formula applies:
x_nice = p_nice

X The xnice factor is calculated in the following way:
X = (x_nice + 4) / 64

The thread priority is finally calculated based on the following formula:

Recalculated priority
4 AIX 5L Performance Tools Handbook

= (recent CPU usage * CPU penalty factor * xnice factor) + extra nice value

= (C * r/32 * X) + x_nice

Smaller values of r will make the nice value have more of an impact on the
system.

Thread aging
When a thread is created, the CPU usage value is zero. As the thread
accumulates more time on the CPU, the usage increments. This can be shown
with the ps command, looking at the C column of the output (see “Displaying the
processes in order of being penalized” on page 115). Every second the
scheduler ages the thread using the following formula:

CPU usage=CPU usage*(d/32)
Where d is the decay value as set by schedtune -d

After the calculation has been done, the thread’s priority is recalculated using the
formula described in “Formula to recalculate thread priority” on page 4

If -d of schedtune is set to 32, the thread usage will not decrease. The default of
16 will allow the thread usage to decrease, giving it more time on the CPU.

1.1.4 Scheduling policies
The following scheduling policies apply to AIX:

SCHED_RR The thread is time-sliced at a fixed priority. If the thread is
still running when the time slice expires, the thread is
moved to the end of the queue of dispatchable threads.
The queue the thread will be moved to depends on its
priority. Only root can schedule using this policy.

SCHED_OTHER This policy only applies to non-fixed priority threads that
run with a time slice. The priority gets recalculated at
every clock interrupt. This is the default scheduling policy.

SCHED_FIFO This is a non-preemptive scheduling scheme except for
higher priority threads. Threads run to completion unless
they are blocked or relinquish the CPU of their own
accord. Only fixed priority threads use this scheduling
policy. Only root can change the scheduling policy of
threads to use SCHED_FIFO.

SCHED_FIFO2 Fixed priority threads use this scheduling policy. The
thread is put at the head of the run queue if it was only
asleep for a short period of time.
 Chapter 1. Introduction to AIX performance monitoring and tuning 5

SCHED_FIFO3 Fixed priority threads use this scheduling policy. The
thread is put at the head of the run queue whenever it
becomes runnable, but it can be preempted by a higher
priority thread.

1.1.5 Run queues
Each CPU has a dedicated run queue. A run queue is a list of runnable threads,
sorted by thread priority value. There are 256 thread priorities (zero to 255).
There is also an additional global run queue where new threads are placed.

When the CPU is ready to dispatch a thread, the global run queue is checked
before the other run queues are checked. When a thread finishes its time slice on
the CPU, it is placed back on the runqueue of the CPU it was running on. This
helps AIX to maintain processor affinity. To improve the performance of threads
that are running with SCHED_OTHER policy and are interrupt driven, you can
set the environmental variable called RT_GRQ to ON. This will place the thread
on the global run queue. Fixed priority threads will be placed on the global run
queue if you run schedtune -F1.

1.1.6 Time slices
The CPUs on the system are shared amongst all the threads by giving each
thread a certain slice of time to run. The default time slice of one clock tick
(10 ms) can be changed using schedtune -t. Sometimes increasing the time
slice improves system throughput due to reduced context switching. The vmstat
and sar commands show the amount of context switching. If you see a high
value of context switches, then increasing the time slice can improve
performance. This parameter should, however, only be used after a thorough
analysis.

1.1.7 Mode switching
There are two modes that a CPU operates in. They are kernel mode and user
mode. In user mode, programs have read and write access to the user data in the
process private region. They can also read the user text and shared text regions,
and have access to the shared data regions using shared memory functions.
Programs also have access to kernel services by using system calls.

Programs that operate in kernel mode include interrupt handlers, kernel
processes and kernel extensions. Code operating in this mode has read and
write access to the global kernel address space and to the kernel data in the
process region when executing within the context of a process. User data within
the process address space must be accessed using kernel services.
6 AIX 5L Performance Tools Handbook

When a user program access system calls, it does so in kernel mode. The
concept of user and kernel modes is important to understand when interpreting
the output of commands such as vmstat and sar.

1.1.8 SMP performance
In a Symmetrical Multiprocessor (SMP) system, all of the processors are
identical and perform identical functions. These functions are:

� Any processor can run any thread on the system. This means that a process
or thread ready to run can be dispatched to any processor, except the
processes or threads bound to a specific processor using the bindprocessor
command.

� Any processor can handle an external interrupt except interrupt levels bound
to a specific processor using the bindintcpu command. Some SMP systems
use a first fit interrupt handling in which an interrupt always gets directed to
CPU0. If there are multiple interrupts at a time, the second interrupt is
directed to CPU1, the third interrupt to CPU2, and so on. A process bound to
CPU0 using the bindprocessor command may not get the necessary CPU
time to run with best performance in this case.

� All processors can initiate I/O operations to any I/O device.

Cache coherency
All processors work with the same virtual and real address space, and share the
same real memory. However, each processor may have its own cache, holding a
small subset of system memory. To guarantee cache coherency the processors
use a snooping logic. Each time a word in the cache of a processor is changed,
this processor sends a broadcast message over the bus. The processors are
“snooping” on the bus, and if they receive a broadcast message about a modified
word in the cache of another processor, they need to verify if they hold this
changed address in their cache. If they do, they invalidate this entry in their
cache. The broadcast messages increases the load on the bus, and invalidated
cache entries increase the number of cache misses. Both reduce the theoretical
overall system performance, but hardware systems are designed to minimize the
impact of the cache coherency mechanism.

Processor affinity
If a thread is running on a CPU and gets interrupted and redispatched, the thread
is placed back on the same CPU (if possible) because the processor’s cache
may still have lines that belong to the thread. If it is dispatched to a different CPU,
the thread may have to get its information from main memory. Alternatively, it can
wait until the CPU where it was previously running is available, which may result
in a long delay.
 Chapter 1. Introduction to AIX performance monitoring and tuning 7

AIX automatically tries to encourage processor affinity by having one run queue
per CPU. Processor affinity can also be forced by binding a thread to a processor
with the bindprocessor command. A thread that is bound to a processor can run
only on that processor, regardless of the status of the other processors in the
system. Binding a process to a CPU must be done with care, as you may reduce
performance for that process if the CPU to which it is bound is busy and there are
other idle CPUs in the system.

Locking
Access to I/O devices and real memory is serialized by hardware. Besides the
physical system resources, such as I/O devices and real memory, there are
logical system resources, such as shared kernel data, that are used by all
processes and threads. As these processes and threads are able to run on any
processor, a method to serialize access to these logical system resources is
needed. The same applies for parallelized user code.

The primary method to implement resource access serialization is the usage of
locks. A process or thread has to obtain a lock prior to accessing the shared
resource. The process or thread has to release this lock after the access is
completed. Lock and unlock functions are used to obtain and release these
locks. The lock and unlock operations are atomic operations, and are
implemented so neither interrupts nor threads running on other processors affect
the outcome of the operation. If a requested lock is already held by another
thread, the requesting thread has to wait until the lock becomes available. There
are two different ways for a thread to wait for a lock:

Spin locks
A spin lock is suitable for a lock held only for a very short time. The thread
waiting on the lock enters a tight loop wherein it repeatedly checks for the
availability of the requested lock. No useful work is done by the thread at this
time, and the processor time used is counted as time spent in system (kernel)
mode. To prevent a thread from spinning forever, it may be converted into a
sleeping lock. An upper limit for the number of times to loop can be set using:

� The schedtune -s n command
The parameter n is the number of times to spin on a kernel lock before
sleeping. The default value of the n parameter for multiprocessor systems is
16384, and 1 (one) for uniprocessor systems. Please refer to Section 3.8,
“schedtune” on page 144 for more details on the schedtune command.

� The SPINLOOPTIME=n environment variable
The value of n is the number of times to spin on a user lock before sleeping.
This environment variables applies to the locking provided by libpthreads.a.

� The YIELDLOOPTIME=n environment variable
Controls the number of times to yield the processor before blocking on a busy
8 AIX 5L Performance Tools Handbook

user lock. The processor is yielded to another kernel thread, assuming there
is another runnable kernel thread with sufficient priority. This environment
variables applies to the locking provided by libpthreads.a.

Sleeping locks
A sleeping lock is suitable for a lock held for a longer time. A thread requesting
such a lock is put to sleep if the lock is not available. The thread is put back to the
run queue if the lock becomes available. There in an additional overhead for
context switching and dispatching for sleeping locks.

AIX provides two types of locks, which are:

Read-write lock
Multiple readers of the data are allowed, but write access is mutually exclusive.
The read-write lock has three states:

� Exclusive write

� Shared read

� Unlocked

Mutual exclusion lock
Only one thread can access the data at a time. Others threads, even if they want
only to read the data, have to wait. The mutual exclusion (mutex) lock has two
states:

� Locked

� Unlocked

Both types of locks can be spin locks or sleeping locks.

Programmers in a multiprocessor environment need to decide on the number of
locks for shared data. If there is a single lock then lock contention (threads
waiting on a lock) can occur often. If this is the case, more locks will be required.
However, this can be more expensive because CPU time must be spent locking
and unlocking, and there is a higher risk for a deadlock.

As locks are necessary to serialize access to certain data items, the heavy usage
of the same data item by many threads may cause severe performance
problems. “Using tprof to detect a resource bottleneck” on page 290 shows an
example of such a problem caused by a user level application.

Please refer to the AIX 5L Version 5.1 Performance Management Guide for
further information to multiprocessing.
 Chapter 1. Introduction to AIX performance monitoring and tuning 9

1.2 Memory performance
In a multiuser, multiprocessor environment, the careful control of system
resources is paramount. System memory, whether paging space or real memory,
not carefully managed can result in poor performance and even program and
application failure. The AIX operating system uses the Virtual Memory Manager
(VMM) to control real memory and paging space on the system.

1.2.1 Initial advice
We recommend that you do not make any VMM changes until you have had
experience with the actual workload. Note that many parameters of the VMM can
be monitored and tuned with the vmtune command, described in Section 3.12,
“vmtune” on page 201.

To know more about how the VMM works, refer to:

� AIX 5L Version 5.1 System Management Concepts: Operating System and
Devices

� AIX 5L Version 5.1 Performance Management Guide

1.2.2 Memory segments
A segment is 256 MB of contiguous virtual memory address space into which an
object can be mapped. Virtual memory segments are partitioned into fixed sizes
known as pages. Each page is 4096 bytes (4 KB) in size. A page in a segment
can be in real memory or on disk where it is stored until it is needed. Real
memory is divided into 4096 byte (4 KB) page frames.

Simply put, the function of the VMM is to manage the allocation of real memory
page frames and to resolve references from a program to virtual memory pages.
Typically, this happens when pages are not currently in memory or do not exist
when a process makes the first reference to a page of its data segment.

The amount of virtual memory used can exceed the size of the real memory of a
system. The function of the VMM from a performance point of view is to:

� Minimize the processor use and disk bandwidth resulting from paging

� Minimize the response degradation from paging for a process
10 AIX 5L Performance Tools Handbook

Virtual memory segments can be of three types:

� Persistent segments

Persistent segments are used to hold file data from the local filesystems.
Because pages of a persistent segment have a permanent disk storage
location, the VMM writes the page back to that location when the page has
been changed if it can no longer be kept in memory. When a persistent page
is opened for deferred update, changes to the file are not reflected on
permanent storage until an fsync subroutine operation is performed. If no
fsync subroutine operation is performed, the changes are discarded when the
file is closed. No I/O occurs when a page of a persistent segment is selected
for placement on the free list if that page has not been modified. If the page is
referenced again later, it is read back in.

� Working segments

These segments are transitory and only exist during use by a process.
Working segments have no permanent storage location and are hence stored
in paging space when real memory pages need to be freed.

� Client segments

These segments are saved and restored over the network to their permanent
locations on a remote file system rather than being paged out to the local
system. CD-ROM page-ins and compressed pages are classified as client
segments. JFS2 pages are also mapped into client segments.

The free list
The VMM maintains a list of free memory pages available to satisfy a page fault.
This list is known as the free list. The VMM uses a page replacement algorithm.
This algorithm is used to determine which pages in virtual memory will have their
page frames reassigned to the free list.

Page replacement
When the number of pages in the free list becomes low, the page stealer is
invoked. The page stealer is a mechanism that moves through the Page Frame
Table (PFT) looking for pages to steal. The PFT contains flags that indicate which
pages have been referenced and which have been modified.

If the page stealer finds a page in the PFT that has been referenced, then it will
not steal the page, but rather will reset the reference flag. The next time that the
page stealer passes this page in the PFT, if it has not been referenced, it will be
stolen. Pages that are not referenced when the page stealer passes them the
first time are stolen.
 Chapter 1. Introduction to AIX performance monitoring and tuning 11

When the modify flag is set on a page that has not been referenced, it indicates
to the page stealer that the page has been modified since it was placed in
memory. In this instance, a page out is called before the page is stolen. Pages
that are part of a working segment are written to paging space, while pages of
persistent segments are written to their permanent locations on disk.

There are two types of page fault, a new page fault, where the page is referenced
for the first time and a repage fault, where pages have already been paged out
before. The stealer keeps track of the pages paged out, by using a history buffer
that contains the IDs of the most recently paged out pages. The history buffer
also serves the purpose of maintaining a balance between pages of persistent
segments and pages of working segments that get paged out to disk. The size of
the history buffer is dependent on the amount of memory in the system; a
memory size of 512 MB requires a 128 KB history buffer.

When a process terminates, its working storage is released and pages of
memory are freed up and put back on the free list. Files that have been opened
by the process can, however, remain in memory.

On an SMP system, the lrud kernel process is responsible for page replacement.
This process is dispatched to a CPU when the minfree parameter threshold is
reached. See “The page replacement algorithm” on page 208 for more details on
the vmtune command and the minfree and maxfree parameters. In the
uniprocessor environment, page replacement is handled directly within the scope
of the thread running.

The page replacement algorithm is most effective when the number of repages is
low. The perfect replacement algorithm would eliminate repage faults completely
and would steal pages that are not going to be referenced again.

Memory load control mechanism
If the number of active virtual memory pages exceeds the amount of real
memory pages, paging space is used for those pages that cannot be kept in real
memory. If an application accesses a page that was paged out, the VMM loads
this page from the paging space into real memory. If the number of free real
memory pages is low at this time, the VMM also needs to free another page in
real memory before loading the accessed page from paging space. If the VMM
only finds computational pages to free, the VMM is forced to page out those
pages to paging space. In the worst case the VMM always needs to page out a
page to paging space before loading another page from paging space into
memory. This condition is called thrashing. In a thrashing condition processes
encounter a page fault almost as soon as they are dispatched. None of the
processes make any significant progress and the performance of the system
deteriorates.
12 AIX 5L Performance Tools Handbook

The operating system has a memory load control mechanism that detects when
the thrashing condition is about to start. Once thrashing is detected, the system
starts to suspend active processes and delay the start of any new processes.
The memory load control mechanism is disabled by default on systems with
more than 128 MB of memory. For more information on the load control
mechanism and the schedtune command, please refer to “Memory” on page 150.

Paging space
The operating system supports three paging space allocation policies:

� Late Paging Space Allocation (LPSA)

� Early Paging Space Allocation (EPSA)

� Deferred Paging Space Allocation (DPSA)

The late paging space allocation policy (LPSA)
With the LPSA, a paging slot is only allocated to a page of virtual memory when
that page is first touched. The risk involved with this policy is that when the
process touches the file, there may not be sufficient pages left in paging space.

The early paging space allocation policy (EPSA)
This policy allocates the appropriate number of pages of paging space at the
time that the virtual memory address range is allocated. This policy ensures that
processes do not get killed when the paging space of the system gets low. To
enable EPSA, set the environment variable PSALLOC=early. Setting this policy
ensures that when the process needs to page out, pages will be available. The
recommended paging space size when adopting the EPSA policy is at least four
times the size of real memory.

The deferred paging space allocation policy (DPSA)
This is the default policy in AIX 5L Version 5.1. The allocation of paging space is
delayed until it is necessary to page out, so no paging space is wasted with this
policy. Only once a page of memory is required to be paged out will the paging
space be allocated. This paging space is reserved for that page until the process
releases it or the process terminates. This method saves huge amounts of
paging space. To disable this policy, the vmtune command’s defps parameter
can be set to 0 (zero) with vmtune -d 0. If the value is set to zero then the late
paging space allocation policy is used.

Tuning paging space thresholds
When paging space becomes depleted, the operating system attempts to
release resources by first warning processes to release paging space, and then
by killing the processes. The vmtune command is used to set the thresholds at
which this activity will occur. The vmtune command’s parameters that affect
paging are:
 Chapter 1. Introduction to AIX performance monitoring and tuning 13

npswarn The operating system sends the SIGDANGER signal to all active
processes when the amount of paging space left on the system
goes below this threshold. A process can either ignore the signal or
it can release memory pages using the disclaim() subroutine.

npskill The operating system will begin killing processes when the amount
of paging space left on the system goes below this threshold.
When the npskill threshold is reached, the operating system
sends a SIGKILL signal to the youngest process. Processes that
are handling a SIGDANGER signal and processes that are using
the EPSA policy are exempt from being killed.

nokilluid By setting the value of the nokilluid value to 1 (one), the root
processes will be exempt from being killed when the npskill
threshold is reached. User identifications (UIDs) lower than the
number specified by this parameter are not killed when the npskill
parameter threshold is reached.

For more information on the setting these parameters, please refer to
Section 3.12, “vmtune” on page 201.

When a process cannot be forked due to a lack of paging space, the scheduler
will make five attempts to fork the process before giving up and putting the
process to sleep. The scheduler delays ten clock ticks between each retry. By
default, each clock tick is 10 ms. This results in 100 ms between retries. The
schedtune command has a -f flag that can be used to change the number of
times the scheduler will retry a fork.

To monitor the amount of paging space, use the lsps command. It is
recommended that the -s flag be issued rather than the -a flag of the lsps
command because the former includes pages in paging space reserved by the
EPSA policy.

Memory leaks
Systems have been known to run out of paging space because of memory leaks
in long running programs that are interactive applications. A memory leak is a
program error where the program repeatedly allocates memory, uses it, and then
neglects to free it. The svmon command is useful in detecting memory leaks. Use
the svmon command with the -i flag to look for processes or groups of processes
whose working segments are continually growing. For more information on the
svmon command, please refer to Section 5.3, “svmon” on page 320.
14 AIX 5L Performance Tools Handbook

Shared memory
Memory segments can be shared between processes. Using shared memory
avoids buffering and system call overhead. Applications reduce the overhead of
read and write system calls by manipulating pointers in these memory segments.
Both files and data in shared segments can be shared by multiple processes and
threads, but the synchronization between processes or threads needs to be done
at the application level.

By default, each shared memory segment or region has an address space of 256
MB, and the maximum number of shared memory segments that the process can
access at the same time is limited to 11. Using extended shared memory
increases this number to more than 11 segments and allows shared memory
regions to be any size from 1 byte up to 256 MB. Extended shared memory is
available to processes that have the variable EXTSHM set to ON (that is,
EXTSHM=ON in their process environment). The restrictions of extended shared
memory are:

� I/O is restricted in the same way as for memory regions.

� Raw I/O is not supported.

� They cannot be used as I/O buffers where the unpinning of buffers occurs in
an interrupt handler.

� They cannot be pinned using the plock() subroutine.

1.3 Disk I/O performance
A lot of attention is required when the disk subsystem is designed and
implemented. For example, you will need to consider the following:

� Bandwidth of disk adapters and system bus

� Placement of logical volumes on the disks

� Configuration of disk layouts

� Operating system settings, for example striping or mirroring

� Performance implementation of other technologies, such as SSA

1.3.1 Initial advice
We recommend that you do not make any changes to the default disk I/O
parameters until you have had experience with the actual workload. Note,
however, that you should always monitor the I/O workload and will very probably
need to balance the physical and logical volume layout after runtime experience.
 Chapter 1. Introduction to AIX performance monitoring and tuning 15

There are two performance limiting aspects of the disk I/O subsystem that need
to be considered:

� Physical limitations

� Logical limitations

A poorly performing disk I/O subsystem will usually severely penalize overall
system performance.

Physical limitations concern the throughput of the interconnecting hardware.
Logical limitations concern limiting both the physical bandwidth and the resource
serialization and locking mechanisms built into the data access software1. Note
that many logical limitations on the disk I/O subsystem can be monitored and
tuned with the vmtune command. See Section 3.12, “vmtune” on page 201 for
details.

For further information refer to

� AIX 5L Version 5.1 Performance Management Guide

� AIX 5L Version 5.1 System Management Concepts: Operating System and
Devices

� AIX 5L Version 5.1 System Management Guide: Operating System and
Devices

� RS/6000 SP System Performance Tuning Update, SG24-5340

1.3.2 Disk subsystem design approach
For many systems, the overall performance of an application is bound by the
speed at which data can be accessed from disk and the way the application
reads and writes data to the disks. Designing and configuring a disk storage
subsystem for performance is a complex task that must be carefully thought out
during the initial design stages of the implementation. Some of the factors that
must be considered include:

� Performance versus availability

A decision must be made early on as to which is more important; I/O
performance of the application or application integrity and availability.
Increased data availability often comes at the cost of decreased system
performance and vice versa. Increased availability may also result in larger
amounts of disk space being required.

1 Usually to ensure data integrity and consistency (such as file system access and mirror consistency updating).
16 AIX 5L Performance Tools Handbook

� Application workload type

The I/O workload characteristics of the application should be fairly well
understood prior to implementing the disk subsystem. Different workload
types most often require different disk subsystem configuration in order to
provide acceptable I/O performance.

� Required disk subsystem throughput

The I/O performance requirements of the application should be defined up
front, as they will play a large part in dictating both the physical and logical
configuration of the disk subsystem.

� Required disk space

Prior to designing the disk subsystem, the disk space requirements of the
application should be well understood.

� Cost

While not a performance related concern, overall cost of the disk subsystem
most often plays a large part in dictating the design of the system. Generally
speaking, a higher performance system costs more than a lower performance
one.

1.3.3 Bandwidth related performance considerations
The bandwidth of a communication link, such as a disk adapter or bus,
determines the maximum speed at which data can be transmitted over the link.
When describing the capabilities of a particular disk subsystem component,
performance numbers are typically expressed in maximum or peak throughput,
which often do not realistically describe the true performance that will be realized
in a real world setting. In addition, each component will most likely have different
bandwidths, which can create bottlenecks in the overall design of the system.
The bandwidth of each of the following components must be taken into
consideration when designing the disk subsystem:

� Disk devices

The latest SCSI and SSA disk drives have maximum sustained data transfer
rates of 14-20 MB per second. Again, the real world expected rate will most
likely be lower depending on the data location and the I/O workload
characteristics of the application. Applications that perform a large amount of
sequential disk reads or writes will be able to achieve higher data transfer
rates than those that perform primarily random I/O operations.
 Chapter 1. Introduction to AIX performance monitoring and tuning 17

� Disk adapters

The disk adapter can become a bottleneck depending on the number of disk
devices that are attached and their use. While the SCSI-2 specification allows
for a maximum data transfer rate of 20 MB/sec, adapters based on the
UltraSCSI specification are capable of providing bandwidth of up to 40
MB/sec. The SCSI bus used for data transfer is an arbitrated bus. In other
words, only one initiator or device can be sending data at any one time. This
means the theoretical maximum transfer rate is unlikely to be sustained. By
comparison, the IBM SSA adapters use a non-arbitrated loop protocol, which
also supports multiple concurrent peer-to-peer data transfers on the loop. The
current SSA adapters are capable of supporting maximum theoretical data
transfer rates of 160 MB/sec.

� System bus

The system bus architecture used can further limit the overall bandwidth of
the disk subsystem. Just as the bandwidth of the disk devices is limited by the
bandwidth of the disk adapter to which they are attached, the speed of the
disk adapter is limited by the bandwidth of the system bus. The industry
standard PCI bus is limited to a theoretical maximum of either 132 MB/sec.
(32-bit @ 33MHz) or 528 MB/sec (64-bit @ 66MHz).

1.3.4 Disk design
A disk consists of a set of flat, circular rotating platters. Each platter has one or
two sides on which data is stored. Platters are read by a set of non-rotating, but
positionable, read or read/write heads that move together as a unit. The following
terms are used when discussing disk device block operations (Table 1-1).

Table 1-1 Terms used in describing disk device block operations.

Term Description

Sector An addressable subdivision of a track used to record one block of a
program or data. On a disk, this is a contiguous, fixed-size block. Every
sector of every disk is exactly 512 bytes.

Track A circular path on the surface of a disk on which information is recorded and
from which recorded information is read; a contiguous set of sectors. A
track corresponds to the surface area of a single platter swept out by a
single head while the head remains stationary.

Head A head is a positionable entity that can read and write data from a given
track located on one side of a platter. Usually a disk has a small set of
heads that move from track to track as a unit.
18 AIX 5L Performance Tools Handbook

Disk access times
The three components that make up the access time of a disk are described in
Table 1-2.

Table 1-2 Latencies for disk access times.

Disks per adapter bus or loop
Discussions of disk, logical volume, and file system performance sometimes lead
to the conclusion that the more drives you have on your system, the better the
disk I/O performance. This is not always true because there is a limit to the
amount of data that can be handled by a disk adapter, which can become a
bottleneck. If all your disk drives are on one disk adapter and your hot file
systems are on separate physical volumes, you might benefit from using multiple
disk adapters. Performance improvement will depend on the type of access.

Cylinder The tracks of a disk that can be accessed without repositioning the heads.
If a disk has n number of vertically aligned heads, a cylinder has n number
of vertically aligned tracks.

Term Description

Latency Description

Seek A seek is the physical movement of the head at the end of the disk arm
from one track to another. The time for a seek is the time needed for the
disk arm to accelerate, to travel over the tracks to be skipped, to
decelerate and finally to settle down and wait for the vibrations to stop
while hovering over the target track. The total time the seeks take is
variable. The average seek time is used to measure the disk capabilities.

Rotational This is the time that the disk arm has to wait while the disk is rotating
underneath until the target sector approaches. Rotational latency is, for
all practical purposes except sequential reading, a random function with
values uniformly between zero and the time required for a full revolution
of the disk. The average rotational latency is taken as the time of a half
revolution. To determine the average latency, you must know the number
of revolutions per minute (RPM) of the drive. By converting the
revolutions per minutes to revolutions per second and dividing by 2, we
get the average rotational latency.

Transfer The data transfer time is determined by the time it takes for the requested
data block to move through the read/write arm. It is linear with respect to
the block size. The average disk access time is the sum of the averages
for seek time and rotational latency plus the data transfer time (normally
given for a 512-byte block). The average disk access time generally
overestimates the time necessary to access a disk; typical disk access
time is 70 percent of the average.
 Chapter 1. Introduction to AIX performance monitoring and tuning 19

Using the proper number of disks per adapter is essential. For both SCSI and
SSA adapters the maximum number of disks per bus or loop should not exceed
four if maximum throughput is needed and can be utilized by the applications.
For SCSI the limiting factor is the bus, and for SSA it is the adapter.

The major performance issue for disk drives is usually application-related; that is,
whether large numbers of small accesses will be made (random), or smaller
numbers of large accesses (sequential). For random access, performance will
generally be better using larger numbers of smaller capacity drives. The opposite
situation exists for sequential access (use faster drives or use striping with larger
number of drives).

Physical disk buffers
The Logical Volume Manager (LVM) uses a construct called a pbuf to control a
pending disk I/O. A single pbuf is used for each I/O request, regardless of the
number of pages involved. AIX creates extra pbufs when a new physical volume
is added to the system. When striping is used, you need more pbufs because
one I/O operation causes I/O operations to more disks and, therefore, more
pbufs. When striping and mirroring is used, even more pbufs are required.
Running out of pbufs reduces performance considerably because the I/O
process is suspended until pbufs are available again. Increasing the number of
pbufs is done with vmtune command (see Section , “I/O tuning parameters” on
page 211); however, pbufs are pinned so that allocating many pbufs will increase
the use of memory.

A special note should be given to adjusting the number of physical buffers on
systems with many disks attached or available with the vmtune command. The
number of physical buffer (pbufs) per active disk should be twice the queue depth
of the disk or 32, whatever is greater. The default maximum number of pbufs
should not exceed a total of 65536.

The following script (Example 1-1) extracts the information for each disk and
calculates a recommendation for setting the -B flag for vmtune (hd_pbuf_cnt).
The script does not take into account multiple Serial Storage Architecture (SSA)
pdisks or hdisks using vpath. It uses the algorithm shown in Example 1-2 on
page 21.

Example 1-1 vmtune_calc_puf.sh

1 #!/bin/ksh
2 integer max_pbuf_count=65535
3 integer hd_pbuf_cnt=128

Note: The following script cannot be used for disks with multiple connections.
20 AIX 5L Performance Tools Handbook

4 integer current_hd_pbuf_cnt=$(vmtune |awk 'BEGIN{count=0}count=="1"{print
$6;exit} /hd_pbuf_cnt/{count=1}')
5 lsdev -Cc disk -Fname|
6 while read disk;do
7 integer queue_depth=$(lsattr -El $disk -aqueue_depth -Fvalue)
8 ((pbuf_to_add=queue_depth*2))
9 if ((pbuf_to_add < 32));then
10 pbuf_to_add=32
11 fi
12 if (((hd_pbuf_cnt+pbuf_to_add) > max_pbuf_count));then
13 ((pbuf_to_add=max_pbuf_count-hd_pbuf_cnt))
14 fi
15 ((hd_pbuf_cnt+=pbuf_to_add))
16 done
17 if ((current_hd_pbuf_cnt < hd_pbuf_cnt));then
18 print "Run vmtune -B$hd_pbuf_cnt to change from $current_hd_pbuf_cnt to
$hd_pbuf_cnt"
19 else
20 print "The current hd_pbuf_cnt ($current_hd_pbuf_cnt) is OK"
21 fi

The following algorithm (Example 1-2) is used for setting pbufs:

Example 1-2 Algorithm used for setting pbufs
max_pbuf_count = 65535
hd_pbuf_cnt 128
for each disk {

pbuf_to_add = queue_depth * 2
if (pbuf_to_add < 32)

pbuf_to_add = 32
if ((hd_pbuf_cnt + pbuf_to_add) > max_pbuf_count)

pbuf_to_add = max_pbuf_count - hd_pbuf_cnt
hd_pbuf_cnt += pbuf_to_add

}

Note that there are more buffers that might need to be increased on a large
server system. On a large server systems you should always monitor the
utilization with the vmtune command and adjust the parameter values
appropriately. See “I/O tuning parameters” on page 211 for more detail on how to
monitor and change these values and parameters2.

2 Note that file system buffers for LVM require that the change is made before the filesystem is mounted.
 Chapter 1. Introduction to AIX performance monitoring and tuning 21

1.3.5 Logical Volume Manager (LVM) concepts
Many modern UNIX operating systems implement the concept of a Logical
Volume Manager (LVM) that can be used to logically manage the distribution of
data on physical disk devices. The AIX LVM is a set of operating system
commands, library subroutines, and other tools used to control physical disk
resources by providing a simplified logical view of the available storage space.
Unlike other LVM offerings, the AIX LVM is an integral part of the base AIX
operating system provided at no additional cost.

Within the LVM, each disk or Physical Volume (PV) belongs to a Volume Group
(VG). A volume group is a collection of 1 to 32 physical volumes (1 to 128 in the
case of a big volume group), which can vary in capacity and performance. A
physical volume can belong to only one volume group at a time. A maximum of
255 volume groups can be defined per system.

When a volume group is created, the physical volumes within the volume group
are partitioned into contiguous, equal-sized units of disk space known as
physical partitions (PP). Physical partitions are the smallest unit of allocatable
storage space in a volume group. The physical partition size is determined at
volume group creation, and all physical volumes that are placed in the volume
group inherit this size. The physical partition size can range from 1 MB to
1024 MB, but must be a power of two. If not specified, the default physical
partition size in AIX is 4 MB for disks up to 4 GB, but must be larger for disks
greater than 4 GB due to the fact that the LVM, by default, will only track up to
1016 physical partitions per disk (unless you use the -t option with mkvg, which
reduces the maximum number of physical volumes in the volume group). In AIX
5L Version 5.1, the minimum PP size needed is determined by the operating
system if the default size of 4 MB is specified.

Use of LVM policies
Deciding on the physical layout of an application is one of the most important
decisions to be made when designing a system for optimal performance. The
physical location of the data files is critical to ensuring that no single disk, or
group of disks, becomes a bottleneck in the I/O performance of the application. In
order to minimize their impact on disk performance, heavily accessed files should
be placed on separate disks, ideally under different disk adapters. There are
several ways to ensure even data distribution among disks and adapters,
including operating system level data striping, hardware data striping on a
Redundant Array of Independent Disks (RAID), and manually distributing the
application data files among the available disks.

The disk layout on a server system is usually very important to determine the
possible performance that can be achieved from disk I/O.
22 AIX 5L Performance Tools Handbook

The AIX LVM provides a number of facilities or policies for managing both the
performance and availability characteristics of logical volumes. The policies that
have the greatest impact on performance are Intra-disk allocation, inter-disk
allocation, I/O scheduling, and write-verify policies.

Intra-disk allocation policy
The intra-disk allocation policy determines the actual physical location of the
physical partitions on disk. A disk is logically divided into the following five
concentric areas as follows (Figure 1-1).

� Outer edge
� Outer middle
� Center
� Inner middle
� Inner edge

Figure 1-1 Physical Partition mapping

Due to the physical movement of the disk actuator, the outer and inner edges
typically have the largest average seek times and are a poor choice for
application data that is frequently accessed. The center region provides the
fastest average seek times and is the best choice for paging space or
applications that generate a significant amount of random I/O activity. The outer
and inner middle regions provide better average seek times than the outer and
inner edges, but worse seek times than the center region.

As a general rule, when designing a logical volume strategy for performance, the
most performance critical data should be placed as close to the center of the disk
as possible. There are, however, two notable exceptions:

(Outer) Edge

(Outer) Middle

Center

Inner Edge

Inner Middle
 Chapter 1. Introduction to AIX performance monitoring and tuning 23

1. Applications that perform a large amount of sequential reads or writes
experience higher throughput when the data is located on the outer edge of
the disk due to the fact that there are more data blocks per track on the outer
edge of the disk than the other disk regions.

2. Logical volumes with Mirrored Write Consistency (MWC) enabled should also
be located at the outer edge of the disk, as this is where the MWC cache
record is located

When the disks are setup in a RAID5 configuration, the intra-disk allocation
policy will not have any benefits to performance.

Inter-disk allocation policy
The inter-disk allocation policy is used to specify the number of disks that contain
the physical partitions of a logical volume. The physical partitions for a given
logical volume can reside on one or more disks in the same volume group
depending on the setting of the Range option. The range option can be set using
smitty mklv command and changing the RANGE of physical volumes menu
option.

� The maximum range setting attempts to spread the physical partitions of a
logical volume across as many physical volumes as possible in order to
decrease the average access time for the logical volume.

� The minimum range setting attempts to place all of the physical partitions of a
logical volume on the same physical disk. If this cannot be done, it will attempt
to place the physical partitions on as few disks as possible. The minimum
setting is used for increased availability only, and should not be used for
frequently accessed logical volumes. If a non-mirrored logical volume is
spread across more than one drive, the loss of any of the physical drives will
result in data loss. In other words, a non-mirrored logical volume spread
across two drives will be twice as likely to experience a loss of data as one
that resides on only one drive.

The physical partitions of a given logical volume can be mirrored to increase data
availability. The location of the physical partition copies is determined by the
setting of the Strict option with the smitty mklv command called Allocate each
logical partition copy. When Strict = y, each physical partition copy is placed
on a different physical volume. When Strict = n, the copies can be on the same
physical volume or different volumes. When using striped and mirrored logical
volumes in AIX 4.3.3 and above, there is an additional partition allocation policy
known as superstrict. When Strict = s, partitions of one mirror cannot share the
same disk as partitions from a second or third mirror, further reducing the
possibility of data loss due to a single disk failure.
24 AIX 5L Performance Tools Handbook

In order to determine the data placement strategy for a mirrored logical volume,
the settings for both the Range and Strict options must be carefully considered.
As an example, consider a mirrored logical volume with range setting of
minimum and a strict setting of yes. The LVM would attempt to place all of the
physical partitions associated with the primary copy on one physical disk, with
the mirrors residing on either one or two additional disks, depending on the
number of copies of the logical volume (2 or 3). If the strict setting were changed
to no, all of the physical partitions corresponding to both the primary and mirrors
would be located on the same physical disk.

I/O-scheduling policy
The default for logical volume mirroring is that the copies should use different
disks. This is both for performance and data availability. With copies residing on
different disks, if one disk is extremely busy, then a read request can be
completed using the other copy residing on a less busy disk. Different I/O
scheduling policies can be set for logical volumes. The different I/O scheduling
policies are as follows:

Sequential The sequential policy results in all reads being issued to
the primary copy. Writes happen serially, first to the
primary disk; only when that is completed is the second
write initiated to the secondary disk.

Parallel The parallel policy balances reads between the disks. On
each read, the system checks whether the primary is
busy. If it is not busy, the read is initiated on the primary. If
the primary is busy, the system checks the secondary. If it
is not busy, the read is initiated on the secondary. If the
secondary is busy, the read is initiated on the copy with
the least number of outstanding I/Os. Writes are initiated
concurrently.

Parallel/sequential The parallel/sequential policy always initiates reads on
the primary copy. Writes are initiated concurrently.

Parallel/round robin The parallel/round robin policy is similar to the parallel
policy except that instead of always checking the primary
copy first, it alternates between the copies. This results in
equal utilization for reads even when there is never more
than one I/O outstanding at a time. Writes are initiated
concurrently.
 Chapter 1. Introduction to AIX performance monitoring and tuning 25

Write-verify policy
When the write-verify policy is enabled, all write operations are validated by
immediately performing a follow-up read operation of the previously written data.
An error message will be returned if the read operation is not successful. The use
of write-verify enhances the integrity of the data, but can drastically degrade the
performance of disk writes.

Mirror write consistency (MWC)
The Logical Volume Device Driver (LVDD) always ensures data consistency
among mirrored copies of a logical volume during normal I/O processing. For
every write to a logical volume, the LVDD3 generates a write request for every
mirror copy. If a logical volume is using mirror write consistency, then requests
for this logical volume are held within the scheduling layer until the MWC cache
blocks can be updated on the target physical volumes. When the MWC cache
blocks have been updated, the request proceeds with the physical data write
operations. If the system crashes in the middle of processing, a mirrored write
(before all copies are written) MWC will make logical partitions consistent after a
reboot.

MWC Record The MWC record consists of one disk sector. It identifies which
logical partitions may be inconsistent if the system is not shut
down correctly.

MWC Check The MWC Check (MWCC) is a method used by the LVDD to
track the last 62 distinct Logical Track Groups (LTGs) written to
disk4. MWCC only makes mirrors consistent when the volume
group is varied back online after a crash by examining the last 62
writes to mirrors, picking one mirror, and propagating that data to
the other mirrors. MWCC does not keep track of the latest data; it
only keeps track of LTGs currently being written. Therefore,
MWC does not guarantee that the latest data will be propagated
to all the mirrors. It is the application above LVM that has to
determine the validity of the data after a crash.

There are three different states for the MWC:

Disabled (off) MWC is not used for the mirrored logical volume. To maintain
consistency after a system crash, the logical volumes file system
must be manually mounted after reboot, but only after the syncvg
command has been used to synchronize the physical partitions
that belong to the mirrored logical partition.

Active MWC is used for the mirrored logical volume and the LVDD will
keep the MWC record synchronized on disk. Because every

3 The scheduler layer (part of the bottom half of LVDD) schedules physical requests for logical operations and handles
mirroring and the MWC cache.
4 By default, an LTG is 32 4 KB pages (128 KB). AIX 5L supports LTG sizes of 128 KB, 256 KB, 512 KB, and 1024 KB.
26 AIX 5L Performance Tools Handbook

update will require a repositioning of the disk write head to
update the MWC record, it can cause a performance problem.
When the volume group is varied back on-line after a system
crash, this information is used to make the logical partitions
consistent again.

Passive MWC is used for the mirrored logical volume but the LVDD will
not keep the MWC record synchronized on disk. Synchronization
of the physical partitions that belong to the mirrored logical
partition will be updated after IPL. This synchronization is
performed as a background task (syncvg). The passive state of
MWC only applies to big volume groups. Big volume groups can
accommodate up to 128 physical volumes and 512 logical
volumes. To create a big volume group, use the mkvg -B
command. To change a regular volume group to a big volume
group, use the chvg -B command.

The type of mirror consistency checking is important for maintaining data
accuracy even when using MWC. MWC ensures data consistency, but not
necessarily data accuracy.

Log logical volume
The log logical volume should be placed on a different physical volume from the
most active file system. Placing it on a disk with the lowest I/O utilization will
increase parallel resource usage. A separate log can be used for each file
system. However, special consideration should be taken if multiple logs must be
placed on the same physical disk, which should be avoided if possible.

The general rule to determine the appropriate size for the JFS log logical volume
is to have 4 MB of JFS log for each 2 GB of file system space. The JFS log is
limited to a maximum size of 256 MB.

Note that when the size of the log logical volume is changed, the logform
command must be run to reinitialize the log before the new space can be used.

nointegrity
The mount option nointegrity bypasses the use of a log logical volume for the
file system mounted with this option. This can provide better performance as long
as the administrator knows that the fsck command might have to be run on the
file system if the system goes down without a clean shutdown.

mount -o nointegrity /filesystem

To make the change permanent, either add the option to the options field in
/etc/filesystems manually or do it with the chfs command as follows (in this case
for the /filesystem file system):
 Chapter 1. Introduction to AIX performance monitoring and tuning 27

chfs -a options=nointegrity,rw /filesystem

JFS2 inline log
In AIX 5L, log logical volumes can be either of JFS or JFS2 types, and are used
for JFS and JFS2 file systems respectively. The JFS2 file system type allows the
use of a inline journaling log. This log section is allocated within the JFS2 itself.

Paging space
If paging space is needed in a system, performance and throughput will always
suffer. The obvious conclusion is to eliminate paging to paging space as much as
possible by having enough real memory available for applications when they
need it. Paging spaces are accessed in a round robin fashion, and the data
stored in the logical volumes is of no use to the system after a reboot/Initial
Program Load (IPL).

The current default paging-space-slot-allocation method, Deferred Page Space
Allocation (DPSA), delays allocation of paging space until it is necessary to page
out the page.

Some rules of thumb when it comes to allocating paging space logical volumes
are:

� Use the disk(s) that are least utilized

� Do not allocate more than one paging space logical volume per physical disk

� Avoid sharing the same disk with log logical volumes

� If possible, make all paging spaces the same size

Because the data in a page logical volume cannot be reused after a reboot (IPL),
the Mirror Write Consistency (MWC) is disabled for mirrored paging space logical
volumes when the logical volume is created.

Recommendations for performance optimization
As with any other area of system design, when deciding on the LVM policies, a
decision must be made as to which is more important; performance or
availability. The following LVM policy guidelines should be followed when
designing a disk subsystem for performance:

� When using LVM mirroring:

– Use a parallel write-scheduling policy.

– Allocate each logical partition copy on a separate physical disk by using
the Strict option of the inter-disk allocation policy.

� Disable write-verify.
28 AIX 5L Performance Tools Handbook

� Allocate heavily accessed logical volumes near the center of the disk.

� Use an intra-disk allocation policy of maximum in order to spread the physical
partitions of the logical volume across as many physical disks as possible.

1.4 Network performance
Tuning network utilization is a complex and sometimes very difficult task. You
need to know how applications communicate and how the network protocols
work on AIX and other systems involved in the communication. The only general
recommendation for network tuning is that interface specific network options
(ISNO) should be used and buffer utilization should be monitored. Some basic
network tunables for improving throughput can be found in Table 1-4 on page 34.
Please note that with network tuning, indiscriminately using buffers that are too
large can reduce performance.

To learn more about how the different protocols work refer to:

� Section 7.11, “no” on page 549

� Section 7.9, “nfso” on page 527

� AIX 5L Version 5.1 Performance Management Guide

� AIX 5L Version 5.1 System Management Guide: Communications and
Networks

� AIX 5L Version 5.1 System Management Guide: Operating System and
Devices

� TCP/IP Tutorial and Technical Overview, GG24-3376

� RS/6000 SP System Performance Tuning Update, SG24-5340

� http://www.rs6000.ibm.com/support/sp/perf

� Appropriate Request For Comment (RFC) at http://www.rfc-editor.org/

There are also excellent books available on the subject, but a good starting point
is RFC 1180 A TCP/IP Tutorial.

A short overview of the TCP/IP protocols can be found in Section 1.4.1, “TCP/IP
protocols” on page 31. Information on the network tunables, including network
adapter tunables, is provided in Section 1.4.2, “Network tunables” on page 32.
 Chapter 1. Introduction to AIX performance monitoring and tuning 29

The knowledge of the network topology used is necessary to understand and
detect possible performance bottlenecks on the network. This includes
information about the routers and gateways used, the Maximum Transfer Unit
(MTU) used on the network path between the systems, and the current load on
the networks used. This information should be well documented, and access to
these documents needs to be guaranteed at any time.

AIX offers a wide range of tools to monitor networks, network adapters, network
interfaces, and system resources used by the network software. These tools are
covered in detail in Chapter 7., “Network performance tools” on page 457. Use
these tools to gather information about your network environment when
everything is functioning correctly. This information will be very useful in case a
network performance problem arises, because a comparison between the
monitored information of the poor performing network and the earlier well
performing network helps to detect the problem source. The information
gathered should include:

� Configuration information from the server and client systems
A change in the system configuration can be the cause of a performance
problem. Sometimes such a change may be done by accident and finding the
changed configuration parameter to correct it can be very difficult. The snap
-a command can be used to gather system configuration informations. Please
refer to the AIX 5L Version 5.1 Commands Reference, SBOF-1877 for more
information on the snap command.

� The system load on the server system
Poor performance on a client system is not necessarily a network problem. If
case the server system is short on local resources, such as CPU or memory,
it may be unable to answer the client’s request in the expected time. The
perfpmr tool can be used to gather this information. Please refer to
Section 3.5, “perfpmr” on page 98 for more information.

� The system load on the client system
The same considerations for the server system apply to the client system. A
shortage of local resources, such as CPU or memory, can slow down the
client’s network operation. The perfpmr tool can be used to gather this
information; please refer to Section 3.5, “perfpmr” on page 98 for more
information.

� The load on the network
The network usually is a resource shared by many systems. Poor
performance between two systems connected to the network may be caused
by an overloaded network, and this overload could be caused by other
systems connected to the network. There are no native tools in AIX to gather
information about the load on the network itself. Tools such as Sniffer,
DatagLANce Network Analyzer, and Nways Workgroup Manager are able to
provide such information. Detailed information on the network management
30 AIX 5L Performance Tools Handbook

products IBM offers can be found at
http://www.networking.ibm.com/netprod.html.
However, tools such as ping or traceroute can be used to gather turnaround
times for data on the network. The ftp command can be used to transfer a
large amount of data between two systems using /dev/zero as input and
/dev/null as output, and registering the throughput. This is done by opening
an ftp connection, changing to binary mode, and then executing the ftp sub
command:
put “| dd if=/dev/zero bs=32k count=10000” /dev/null
This command transfers 10000 * 32 KB over the network.
The commands atmstat, estat, entstat, fddistat, and tokstat can be used
to gather throughput data for a specific network interface. The first step would
be to generate a load on the network interface. The above ftp example doing
a put by using dd can be used. Without the count=10000 the ftp put
command will run until it is interrupted. While ftp is transferring data the
command sequence:
entstat -r en2;sleep 100;entstat en2>/tmp/entstat.en2
can be used to reset the statistics for the network interface, in our case en2
(entstat -r en2), wait 100 seconds (sleep 100), and then gather the
statistics for the interface (entstat en2>/tmp/entstat.en2). Please refer to
Section 7.1, “atmstat” on page 459, Section 7.3, “estat” on page 471,
Section 7.2, “entstat” on page 465, Section 7.4, “fddistat” on page 474, and
Section 7.13, “tokstat” on page 602 for details on these commands.

� Output of network monitoring commands on both the server and client
The output of the commands should be part of the data gathered by the
perfpmr tool. However, the perfpmr tool may change, so it is advised to
control the data gathered by perfpmr to ensure the outputs of the netstat and
nfsstat commands are included.

1.4.1 TCP/IP protocols
Application programs send data by using one of the Internet Transport Layer
Protocols, either the User Datagram Protocol (UDP) or the Transmission Control
Protocol (TCP). These protocols receive the data from the application, divide it
into smaller pieces called packets, add a destination address, and then pass the
packets along to the next protocol layer, the Internet Network layer.

The Internet Network layer encloses the packet in an Internet Protocol (IP)
datagram, adds the datagram header and trailer, decides where to send the
datagram (either directly to a destination or else to a gateway), and passes the
datagram on to the Network Interface layer.

The Network Interface layer accepts IP datagrams and transmits them as frames
over a specific network hardware, such as Ethernet or token-ring networks.
 Chapter 1. Introduction to AIX performance monitoring and tuning 31

For more detailed information on the TCP/IP protocol, please review AIX 5L
Version 5.1 System Management Guide: Communications and Networks, and
TCP/IP Tutorial and Technical Overview, GG24-3376.

To interpret the data created by programs such as the iptrace and tcpdump
commands, formatted by ipreport, and summarized with ipfilter, you need to
understand how the TCP/IP protocols work together. Table 1-3 is a short top
down reminder.

Table 1-3 TCP/IP layers and protocol examples

1.4.2 Network tunables
In most cases you need to adjust some network tunables on server systems.
Most of these settings concern different network protocol buffers. You can set
these buffer sizes system wide with the no command (please refer to
Section 7.11, “no” on page 549), or use the Interface Specific Network Options5
(ISNO) for each network adapter. For more detail on ISNO see AIX 5L Version
5.1 System Management Guide: Communications and Networks and AIX 5L
Version 5.1 Commands Reference, SBOF-1877. The change will only apply to
the specific network adapter if you have enabled ISNO with the no command as
in the following example:

no -o use_isno=1

Using ISNO to tune each network adapter for best performance is the preferred
way, if different network adapter types with a big difference of MTU sizes are
used in the system (for example with ethernet adapters using an MTU of 1500
and an ATM adapter using an MTU of 65527 installed).

TCP/IP Layer Protocol Examples

Application Telnet, FTP, SMTP, LPD

Transport TCP, UDP

Internet Network IP, ICMP, IGMP, ARP, RARP

Network Interface Ethernet, Token-Ring, ATM, FDDI, SP
Switch

Hardware Physical network

5 There are five ISNO parameters for each supported interface; rfc1323, tcp_nodelay, tcp_sendspace, tcp_recvspace,
and tcp_mssdflt. When set, the values for these parameters override the system-wide parameters of the same names
that had been set with the no command. When ISNO options are not set for a particular interface, system-wide options are
used. Options set by an application for a particular socket using the setsockopt subroutine override the ISNO options and
system-wide options set by using the chdev, ifconfig, and no commands.
32 AIX 5L Performance Tools Handbook

Please document the current values before making any changes, especially if
you use ISNO to change the individual interfaces. The following example shows
how to use the lsattr command to check the current settings for an network
interface, in this case token-ring:

Example 1-3 Using lsattr to check adapter settings
lsattr -H -El tr0 -F"attribute value"
attribute value

mtu 1492
mtu_4 1492
mtu_16 1492
mtu_100 1492
remmtu 576
netaddr 10.3.2.164
state up
arp on
allcast on
hwloop off
netmask 255.255.255.0
security none
authority
broadcast
netaddr6
alias6
prefixlen
alias4
rfc1323 0
tcp_nodelay
tcp_sendspace 16384
tcp_recvspace 16384
tcp_mssdflt

The highlighted part in the output above indicates the ISNO options. Before
applying ISNO settings to interfaces by using the chdev command, you can use
ifconfig to set them on each adapter. Should you for some reason need to reset
them and are unable to log in to the system, the values will not be permanent and
will not be activated after IPL6.

6 For this reason it is not recommended to set ISNO values using ifconfig in any system startup scripts that are started
by init.
 Chapter 1. Introduction to AIX performance monitoring and tuning 33

Network buffer tuning
The values in Table 1-4 are settings that have proved to give the highest network
throughput for each network type. A general rule is to set the TCP buffer sizes to
10 times the MTU size, but as can be seen in the following table, this is not
always true for all network types.

Table 1-4 Network tunables minimum values for best performance

Device Speed
Mbit

MTU tcp
sendspace

tcpa

recvspace
sb_max rfc

1323

Ethernet 10 1500 16384 16384 32768 0

Ethernet 100 1500 16384 16384 32768 0

Ethernet 1000 1500 131072 65536 131072 0

Ethernet 1000 9000 131072 65536 262144 0

Ethernet 1000 9000 262144 131072 262144 1

ATM 155 1500 16384 16384 131072 0

ATM 155 9180 65536 65536 131072 1

ATM 155 65527 655360 655360 1310720 1

FDDI 100 4352 45056 45056 90012 0

SPSW - 65520 262144 262144 1310720 1

SPSW2 - 65520 262144 262144 1310720 1

HiPPI - 65536 655360 655360 1310720 1

HiPS - 65520 655360 655360 1310720 1

ESCON - 4096 40960 40960 81920 0

Token
Ring

4 1492 16384 16384 32768 0

Token
Ring

16 1492 16384 16384 32768 0

Token
Ring

16 4096 40960 40960 81920 0

Token
Ring

16 8500 65536 65536 131072 0
34 AIX 5L Performance Tools Handbook

Other network tunable considerations
Table 1-5 shows some other network tunables that should be considered and
other ways to calculate some of the above values.

Table 1-5 Other basic network tunables

a. If an application sends only a small amount of data and then waits for a re-
sponse, the performance may degrade if the buffers are too large, especially
when using large MTU sizes. It might be necessary to either tune the sizes further
or disable the Nagle algorithm by setting tcp_nagle_limit to 0 (zero).

no parameter Comment

thewall Use the default or if network errors occura, set manually to a
higher value. no -o thewall shows the current setting.

tcp_pmtu_discover Disable Path Maximum Transfer Unit (PMTU) discovery by
setting this option to 0 (zero) if the server communicates with
more than 64 other systemsb. This option allows TCP to
dynamically find the largest size packet to send through the
network , which will be as big as the smallest MTU size in the
network.

sb_max Could be set to slightly less than thewall, or at two to four
times the size of the largest value for tcp_sendspace,
tcp_recvspace, udp_sendspace, and udp_recvspace.
This parameter controls how much buffer space is consumed
by buffers that are queued to a senders socket or to a
receivers socket. A socket is just a queuing point, and
represents the file descriptor for a TCP session.
tcp_sendspace, tcp_recvspce, udp_sendspace, and
udp_recvspace parameters cannot be set larger than
sb_max.
The system accounts for socket buffers used based on the
size of the buffer, not on the contents of the buffer. For
example, if an Ethernet driver receives 500 bytes into a 2048
byte buffer and then this buffer is placed on the applications
socket awaiting the application reading it, the system
considers 2048 bytes of buffer to be used. It is common for
device drivers to receive buffers into a buffer that is large
enough to receive the adapter’s maximum size packet. This
often results in wasted buffer space, but it would require more
CPU cycles to copy the data to smaller buffers. Because the
buffers often are not 100 percent full of data, it is best to have
sb_max to be at least twice as large as the TCP or UDP
receive space. In some cases for UDP it should be much
larger.
Once the total buffers on the socket reach the sb_max limit,
no more buffers will be allowed to be queued to that socket.
 Chapter 1. Introduction to AIX performance monitoring and tuning 35

tcp_sendspace This parameter mainly controls how much buffer space in the
kernel (mbuf's) will be used to buffer data that the application
sends. Once this limit is reached, the sending application will
be suspended until TCP sends some of the data, and then the
application process will be resumed to continue sending.

tcp_recvspace This parameter has two uses. First, it controls how much
buffer space may be consumed by receive buffers. Second,
TCP uses this value to inform the remote TCP how large it
can set its transmit window to. This becomes the "TCP
Window size". TCP will never send more data than the
receiver has buffer space to receive the data into. This is the
method by which TCP bases its flow control of the data to the
receiver.

udp_sendspace Always less than udp_recvspace, but never greater than
65536 because UDP transmits a packet as soon as it gets
any data and IP has an upper limit of 65536 bytes per packet.

udp_recvspace Always greater than udp_sendspace and sized to handle as
many simultaneous UDP packets as can be expected per
UDP socket. For single parent/multiple child configurations,
set udp_recvspace to udp_sendspace times the maximum
number of child nodes if UDP is used, or at least 10 times
udp_sendspace.

tcp_mssdflt This setting is used for determining MTU sizes when
communicating with remote networks. If not changed and
MTU discovery is not able to determine a proper size,
communication degradationc may occur.
The default value for this option is 512 bytes and is based on
the convention that all routers should support 576 byte
packets. Calculate a proper size by using the following
formula; MTU - (IP + TCP header)d.

ipqmaxlen Could be set to 512 when using file sharing with applications
such as GPFS.

tcp_nagle_limit Could be set to 0 to disable the Nagle Algorithm when using
large buffers.

fasttimo Could be set to 50 if transfers take a long time due to delayed
ACKs.

no parameter Comment
36 AIX 5L Performance Tools Handbook

To document all network interfaces and important device settings, you can
manually check all interface device drivers with the lsattr command as is shown
in Example 1-4.

Basic network adapter settings
Network adapters should be set to utilize the maximum transfer capability of the
current network given available system memory. On large server systems7 you
might need to set the maximum values allowed for network device driver queues
if you use Ethernet or token-ring network adapters. However, note that each
queue entry will occupy memory at least as large as the MTU size for the
adapter.

To find out the maximum possible setting for a device, use the lsattr command
as shown in the following examples. First find out the attribute names of the
device driver buffers/queues that the adapter uses8. Example 1-4 is for an
Ethernet network adapter interface using the lsattr command:

Example 1-4 Using lsattr on an Ethernet network adapter interface
lsattr -El ent0
busmem 0x1ffac000 Bus memory address False
busintr 5 Bus interrupt level False
intr_priority 3 Interrupt priority False
rx_que_size 512 Receive queue size False
tx_que_size 8192 Software transmit queue size True
jumbo_frames no Transmit jumbo frames True
media_speed Auto_Negotiation Media Speed (10/100/1000 Base-T Ethernet) True

rfc1323 This option allows TCP to use a larger window size, at the
expense of a larger TCP protocol header. This allows TCP to
have a 4GB window size. For adapters that support a 64K
MTU (frame size), you must use RFC1323 to gain the best
possible TCP performance.

a. It is set automatically by calculating the amount of memory available.
b. In a heterogeneous environment the value determined by MTU discovery can
be way off.
c. When setting this value, make sure that all routing equipment between the
sender and receiver can handle the MTU size; otherwise they will fragment the
packets.
d. The size depends on the original MTU size and if RFC1323 is enabled or not.
If RFC1323 is enabled, then the IP and TCP header is 52 bytes, if RFC1323 is
not enabled, the IP and TCP header is 40 bytes.

7 Web servers and database servers with thousands of concurrent client connections are examples of the type of large
servers we are referring to.
8 The attribute names can vary between different network adapters for different network types as well as between
different adapters for the same network type.

no parameter Comment
 Chapter 1. Introduction to AIX performance monitoring and tuning 37

use_alt_addr no Enable alternate ethernet address True
alt_addr 0x000000000000 Alternate ethernet address True
trace_flag 0 Adapter firmware debug trace flag True
copy_bytes 2048 Copy packet if this many or less bytes True
tx_done_ticks 1000000 Clock ticks before TX done interrupt True
tx_done_count 64 TX buffers used before TX done interrupt True
receive_ticks 50 Clock ticks before RX interrupt True
receive_bds 6 RX packets before RX interrupt True
receive_proc 16 RX buffers before adapter updated True
rxdesc_count 1000 RX buffers processed per RX interrupt True
stat_ticks 1000000 Clock ticks before statistics updated True
rx_checksum yes Enable hardware receive checksum True
flow_ctrl yes Enable Transmit and Receive Flow Control True
slih_hog 10 Interrupt events processed per interrupt True

Example 1-5 shows what it might look like on a token-ring network adapter
interface using the lsattr command.

Example 1-5 Using lsattr on a token-ring network adapter interface
lsattr -El tok0
busio 0x7fffc00 Bus I/O address False
busintr 3 Bus interrupt level False
xmt_que_size 16384 TRANSMIT queue size True
rx_que_size 512 RECEIVE queue size True
ring_speed 16 RING speed True
attn_mac no Receive ATTENTION MAC frame True
beacon_mac no Receive BEACON MAC frame True
use_alt_addr no Enable ALTERNATE TOKEN RING address True
alt_addr 0x ALTERNATE TOKEN RING address True
full_duplex yes Enable FULL DUPLEX mode True

To find out the maximum possible setting for a device attribute, use the lsattr
command with the -R option on each of the adapters queue attributes as in
Example 1-6.

Example 1-6 Using lsattr to find out attribute ranges for a network adapter interface
lsattr -Rl ent0 -a tx_que_size
512...16384 (+1)
#lsattr -Rl ent0 -a rx_que_size
512
lsattr -Rl tok0 -a xmt_que_size
32...16384 (+1)
lsattr -Rl tok0 -a rx_que_size
32...512 (+1)
38 AIX 5L Performance Tools Handbook

In the example output above, for the Ethernet adapter the maximum values for
tx_que_size and rx_que_size are 16384 and 512. For the token-ring adapter the
maximum values in the example output above for xmt_que_size and rx_que_size
is are also 16384 and 512. When only one value is shown it means that there is
only one value to use that cannot be changed. When a dotted line separates
values (...) it means an interval between the values surrounding the dotted line in
increments shown at the end of the line within parenthesis, such as in the
example above (+1), which means by increments of one.

To change the values so that they will be used the next time the device driver is
loaded, use the chdev command as shown in Example 1-7.

Example 1-7 Using chdev to change a network adapter interface attributes9

chdev -l ent0 -a tx_que_size=16384 -a rx_que_size=512 -P
ent0 changed

chdev -l tok0 -a xmt_que_size=16384 -a rx_que_size=512 -P
tok0 changed

The commands atmstat, entstat, fddistat, and tokstat can be used to monitor
the use of transmit buffers for a specific network adapter. Please refer to
Section 7.1, “atmstat” on page 459, Section 7.2, “entstat” on page 465,
Section 7.4, “fddistat” on page 474, and Section 7.13, “tokstat” on page 602 for
more details on these commands.

The MTU sizes for a network adapter interface can be examined by using the
lsattr command and the mtu attribute as in Example 1-8, which shows the tr0
network adapter interface.

Example 1-8 Using lsattr to examine the possible MTU sizes
lsattr -R -a mtu -l tr0
60...17792 (+1)

The minimum MTU size for Token-Ring is 60 bytes and the maximum size is just
over 17 KB. Example 1-9 shows the allowable MTU sizes for Ethernet (en0).

Example 1-9 Using lsattr to examine the possible MTU sizes
lsattr -R -a mtu -l en0
60...9000 (+1)

Note that 9000 as a maximum MTU size is only valid for Gigabit Ethernet; 1500
is still the maximum for 10/100 Ethernet.

9 Neither of the changes in Example 1-7 will be effective until after the next IPL because the -P flag was used.
 Chapter 1. Introduction to AIX performance monitoring and tuning 39

Resetting network tunables to their default
Should you need to set all no tunables back to their default value, the following
commands are one way to do it:

no -a | awk '{print $1}' | xargs -t -i no -d {}

no -o extendednetstats=0

Some high-speed adapters have ISNO parameters set by default in the ODM
database. Please review the AIX 5L Version 5.1 System Management Guide:
Communications and Networks for individual adapters default values, or use the
lsattr command with the -D option as in Example 1-10.

Example 1-10 Using lsattr to list default values for a network adapter
lsattr -HD -l ent0
attribute deflt description user_settable

busmem 0 Bus memory address False
busintr Bus interrupt level False
intr_priority 3 Interrupt priority False
rx_que_size 512 Receive queue size False
tx_que_size 8192 Software transmit queue size True
jumbo_frames no Transmit jumbo frames True
media_speed Auto_Negotiation Media Speed (10/100/1000 Base-T Ethernet) True
use_alt_addr no Enable alternate ethernet address True
alt_addr 0x000000000000 Alternate ethernet address True
trace_flag 0 Adapter firmware debug trace flag True
copy_bytes 2048 Copy packet if this many or less bytes True
tx_done_ticks 1000000 Clock ticks before TX done interrupt True
tx_done_count 64 TX buffers used before TX done interrupt True
receive_ticks 50 Clock ticks before RX interrupt True
receive_bds 6 RX packets before RX interrupt True
receive_proc 16 RX buffers before adapter updated True
rxdesc_count 1000 RX buffers processed per RX interrupt True
stat_ticks 1000000 Clock ticks before statistics updated True
rx_checksum yes Enable hardware receive checksum True
flow_ctrl yes Enable Transmit and Receive Flow Control True
slih_hog 10 Interrupt events processed per interrupt True

Attention: The default value for the network option extendednetstats is 1
(one) to enable the collection of extended network statistics. Normally these
extended network statistics should be disabled using the command no -o
extendednetstats=0. Please refer to Section 7.8, “netstat” on page 502 and
Section 7.11, “no” on page 549 for more information on the effects of the
extendednetstats option.
40 AIX 5L Performance Tools Handbook

The values in the deflt column in the example above shows the default values
for each attribute. Example 1-11 shows how to use it on a Ethernet network
adapter interface.

Example 1-11 Using lsattr to list default values for a network interface
lsattr -HD -l en0
attribute deflt description user_settable

mtu 1500 Maximum IP Packet Size for This Device True
remmtu 576 Maximum IP Packet Size for REMOTE Networks True
netaddr Internet Address True
state down Current Interface Status True
arp on Address Resolution Protocol (ARP) True
netmask Subnet Mask True
security none Security Level True
authority Authorized Users True
broadcast Broadcast Address True
netaddr6 N/A True
alias6 N/A True
prefixlen N/A True
alias4 N/A True
rfc1323 N/A True
tcp_nodelay N/A True
tcp_sendspace N/A True
tcp_recvspace N/A True
tcp_mssdflt N/A True

Default values should be listed in the deflt column for each attribute. If no value
is shown, it means that there is no default setting.
 Chapter 1. Introduction to AIX performance monitoring and tuning 41

42 AIX 5L Performance Tools Handbook

Chapter 2. Getting started

This chapter is intended as a starting point. It contains listings of all the common
and most useful AIX tools for resolving and monitoring performance issues. The
quick lookup tables in this chapters are intended to assist the user in finding the
required command for monitoring a certain system resource, and also to provide
the user with which AIX fileset a certain tool belongs to.

When facing a performance problem on a system, an approach must be chosen
in order to analyze and resolve the problem. topas is an AIX performance
monitoring tool that gives an overview of all the system resources and can
therefore very well be used as a starting point for performance analysis.
Section 2.3, “Performance tuning approach” on page 49 shows the user the
recommended approach to resolving a performance problem, starting with topas,
and guides the user through the performance analysis task.

2

© Copyright IBM Corp. 2001 43

2.1 Tools and filesets
The intention of this section is to give you an list of all the performance tools
discussed in this book together with the path that is used to call the command
and the fileset the tool is part of.

Many of the performance tools are located in filesets that obviously would
contain them, such as bos.perf.tools or perfagent.tools. However, some of them
are located in filesets that are not quite as obvious. Common examples are
vmtune or schedtune, which are both part of the bos.adt.samples fileset. You will
often find that this fileset is not installed on a system because it does not
obviously contain performance tools.

Table 2-1 lists the tools discussed in this book, their full path name, and their
fileset information.

Table 2-1 Commands/tools, pathnames and filesets

Command / Tool Full path name Fileset name / URL

3dmon /usr/bin/3dmon perfmgr.network

alstat /usr/bin/alstat bos.perf.tools

atmstat /usr/bin/atmstat devices.common.IBM.atm.rte

bindintcpu /usr/sbin/bindintcpu devices.chrp.base.rte

bindprocessor /usr/sbin/bindprocessor bos.mp

curt - ftp://software.ibm.com/

emstat /usr/bin/emstat bos.perf.tools

entstat /usr/bin/entstat devices.common.IBM.ethernet.rte

estat /usr/lpp/ssp/css/css ssp.css

fddistat /usr/bin/fddistat devices.common.IBM.fddi.rte

fdpr /usr/bin/fdpr perfagent.tools

filemon /usr/bin/filemon bos.perf.tools

fileplace /usr/bin/fileplace bos.perf.tools

genkex /usr/bin/genkex bos.perf.tools

genkld /usr/bin/genkld bos.perf.tools

genld /usr/bin/genld bos.perf.tools

gennames /usr/bin/gennames bos.perf.tools
44 AIX 5L Performance Tools Handbook

gprof /usr/bin/gprof bos.adt.prof

iostat /usr/bin/iostat bos.acct

ipcs /usr/bin/ipcs bos.rte.control

ipfilter /usr/bin/ipfilter bos.perf.tools

ipreport /usr/sbin/ipreport bos.net.tcp.server

iptrace /usr/sbin/iptrace bos.net.tcp.server

jazizo (PTX) /usr/bin/jazizo perfmgr.analysis.jazizo

locktrace /usr/bin/locktrace bos.perf.tools

lslv /usr/sbin/lslv bos.rte.lvm

lspv /usr/sbin/lspv bos.rte.lvm

lsvg /usr/sbin/lsvg bos.rte.lvm

lvmstat /usr/sbin/lvmstat bos.rte.lvm

netpmon /usr/bin/netpmon bos.perf.tools

netstat /usr/bin/netstat bos.net.tcp.client

nfso /usr/sbin/nfso bos.net.nfs.client

nfsstat /usr/sbin/nfsstat bos.net.nfs.client

nice /usr/bin/nice bos.rte.control

no /usr/sbin/no bos.net.tcp.client

PDT /usr/sbin/perf/diag_tool bos.perf.diag_tool

perfpmr - ftp://software.ibm.com/

Perfstat API - bos.perf.libperfstat

PM API - bos.pmapi.lib

pprof /usr/bin/pprof bos.perf.tools

prof /usr/bin/prof bos.adt.prof

ps /usr/bin/ps bos.rte.control

renice /usr/bin/renice bos.rte.control

RMC - rsct.*

Command / Tool Full path name Fileset name / URL
 Chapter 2. Getting started 45

rmss /usr/bin/rmss bos.perf.tools

sar /usr/sbin/sar bos.acct

schedtune /usr/samples/kernel/schedtune bos.adt.samples

splat - ftp://software.ibm.com/

SPMI API - perfagent.tools, perfagent.server

stripnm /usr/bin/stripnm bos.perf.tools

svmon /usr/bin/svmon bos.perf.tools

tcpdump /usr/sbin/tcpdump bos.net.tcp.server

time /usr/bin/time bos.rte.misc_cmds

timex /usr/bin/timex bos.acct

tokstat /usr/bin/tokstat devices.common.IBM.tokenring.rte

topas /usr/bin/topas bos.perf.tools

tprof /usr/bin/tprof bos.perf.tools

trace /usr/bin/trace bos.sysmgt.trace

trcnm /usr/bin/trcnm bos.sysmgt.trace

trcrpt /usr/bin/trcrpt bos.sysmgt.trace

trpt /usr/sbin/trpt bos.net.tcp.server

truss /usr/bin/truss bos.sysmgt.serv_aid

vmstat /usr/bin/vmstat bos.acct

vmtune /usr/samples/kernel/vmtune bos.adt.samples

wlmmon /usr/bin/wlmmon perfagent.tools

wlmperf /usr/bin/wlmperf perfmgr.analysis.jazizo

wlmstat /usr/sbin/wlmstat bos.rte.control

xmperf (PTX) /usr/bin/xmperf perfmgr.network

Command / Tool Full path name Fileset name / URL
46 AIX 5L Performance Tools Handbook

2.2 Tools by resource matrix
This section contains a table of the AIX monitoring and tuning tools (Table 2-2)
and what system resources (CPU, Memory, Disk I/O, Network I/O) they obtain
statistics for. Tools that are used by trace, that post-process the trace output, or
that are directly related to trace are listed in the Trace tools column. Tools that
are useful for application development are listed in the Application Development
column.

Table 2-2 Performance tools by resource matrix

Command CPU Memory Disk
I/O

Network
I/O

Trace
tools

Application
Development

alstat x

atmstat x

bindintcpu x

bindprocessor x

curt x x

emstat x

entstat x

estat x

fddistat x

fdpr x

filemon x x

fileplace x

genkex x

genkld x

genld x

gennames x

gprof x x

iostat x x

ipcs x x

ipfilter x
 Chapter 2. Getting started 47

ipreport x

iptrace x

locktrace x x

lslv x

lspv x

lsvg x

lvmstat x

netpmon x x x

netstat x

nfso x

nfsstat x

nice x

no x

PDT x x x x

perfpmr x x x x x

Perfstat API x x x x

PM API x x

pprof x x

prof x x

ps x x

PTX x x x x x

renice x

RMC x x x x

rmss x

sar x x x x

schedtune x x

Command CPU Memory Disk
I/O

Network
I/O

Trace
tools

Application
Development
48 AIX 5L Performance Tools Handbook

2.3 Performance tuning approach
In this section the initial approach to solve a performance problem is shown. To
determine which of the monitored performance values are high in a particular
environment, it is necessary to gather the performance data on the system in a
well performing state. This baseline performance information is very useful in
case of a later occurrence or a performance problem on the system. The perfpmr

splat x x x

SPMI API x x x x

stripnm

svmon x

tcpdump x

time x

timex x

tokstat x

topas x x x x

tprof x x x

trace x x x x x

trcnm x

trcrpt x

trpt x x

truss x

vmstat x x x

vmtune x

wlmmon x x x x

wlmperf x x x x

wlmstat x x x x

Command CPU Memory Disk
I/O

Network
I/O

Trace
tools

Application
Development
 Chapter 2. Getting started 49

command can be used to gather this information. However, a screen snapshot of
topas provides a brief overview of all the major performance data that makes it
easier to compare the values gathered on the well performing system to the
values shown if performance is low.

2.3.1 CPU bound system
The output of topas in Example 2-1 shows the fields that are used to decide if the
system is CPU bound.

Example 2-1 topas output with highlighted CPU statistics
Topas Monitor for host: wlmhost EVENTS/QUEUES FILE/TTY
Fri May 11 11:28:06 2001 Interval: 2 Cswitch 64 Readch 353
 Syscall 211 Writech 7836
Kernel 0.6 | | Reads 16 Rawin 0
User 99.3 |############################| Writes 6 Ttyout 0
Wait 0.0 | | Forks 0 Igets 0
Idle 0.0 | | Execs 0 Namei 8
 Runqueue 4.0 Dirblk 0
Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 0.0
tr0 8.3 6.1 9.2 0.3 8.0
lo0 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
 Faults 0 Real,MB 511
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 46.5
hdisk0 0.0 2.0 0.0 0.0 2.0 PgspIn 0 % Noncomp 53.6
hdisk1 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 49.6
 PageIn 0
WLM-Class (Active) CPU% Mem% Disk-I/O% PageOut 0 PAGING SPACE
Unmanaged 0 23 0 Sios 0 Size,MB 1024
Unclassified 0 0 0 % Used 13.1
 NFS (calls/sec) % Free 86.8
Name PID CPU% PgSp Class ServerV2 0
dc 43564 25.0 0.3 System ClientV2 0 Press:
dc 21566 25.0 0.3 System ServerV3 0 "h" for help

Note: In the following sections we rate the values of the topas output such as
a high number of system calls. High, in this context, means that the value
shown on the topas output of the currently not well performing system
compared to the value of the baseline performance data is high.

However, the values shown in the outputs of topas in the following sections do
not necessary reflect a performance problem. The outputs in our examples
are only used to highlight the fields of interest.

In any case all four major resources, (CPU, memory, disk I/O, and network)
need to be checked when the performance of a system is analyzed.
50 AIX 5L Performance Tools Handbook

dc 41554 25.0 0.3 VPs ClientV3 0 "q" to quit
dc 23658 24.2 0.3 System

The fields of interest are:

Kernel The CPU time spent in system (kernel) mode. The tprof or trace
commands can be used for further problem determination why the
system spends more time than normal in system mode.

User The CPU time spent in user mode. If the consumption is much
higher than shown in the baseline, a user process may be looping.
The output of topas may show this process in the process part
(PID field for process ID). In case there are many active processes
on the system and more than one looping user process, the tprof
or trace command can be used to find these looping processes.

Cswitch The number of context switches per second. This may vary.
However, if this value is high, then the CPU system time should be
higher than normal too. The trace command can be used for
further investigation on the context switches.

Syscall The number of system calls per second. If this value is higher than
usual, the CPU system time should be higher than normal too. The
tprof or trace commands can be used for further investigation on
the system calls.

Forks The number of fork system calls per second. Please see Execs
below.

Execs The number of exec system calls per second. If the number of fork
or exec system calls is high, then the CPU system time should be
higher than normal too. A looping shell script that executes a
number of commands may be the cause for the high fork and exec
system calls. It may not be easy to find this shell script using the ps
command. The AIX trace facility can be used for further
investigation.

Runqueue The number of processes ready to run. If this number is high, either
the number of programs run on the system increased (the load put
on the system by the users), or there are less CPUs to run the
programs. The sar -P ALL command should be used to see how
all CPUs are used.

PID The process ID. Useful in case of a run away process that causes
CPU user time to be high. If there is a process using an unusual
high amount of CPU time, the tprof -t command can be used to
gather information on this process. If it is a runaway process, killing
this process will reduce the high CPU usage and may solve the
performance problem.
 Chapter 2. Getting started 51

2.3.2 Memory bound system
The following output of topas (Example 2-2) shows the fields that are used to
decide if the system is memory bound.

Example 2-2 topas output with highlighted memory statistics
Topas Monitor for host: wlmhost EVENTS/QUEUES FILE/TTY
Fri May 11 11:28:06 2001 Interval: 2 Cswitch 64 Readch 353
 Syscall 211 Writech 7836
Kernel 0.6 | | Reads 16 Rawin 0
User 99.3 |############################| Writes 6 Ttyout 0
Wait 0.0 | | Forks 0 Igets 0
Idle 0.0 | | Execs 0 Namei 8
 Runqueue 4.0 Dirblk 0
Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 0.0
tr0 8.3 6.1 9.2 0.3 8.0
lo0 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
 Faults 0 Real,MB 511
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 46.5
hdisk0 0.0 2.0 0.0 0.0 2.0 PgspIn 0 % Noncomp 53.6
hdisk1 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 49.6
 PageIn 0
WLM-Class (Active) CPU% Mem% Disk-I/O% PageOut 0 PAGING SPACE
Unmanaged 0 23 0 Sios 0 Size,MB 1024
Unclassified 0 0 0 % Used 13.1
 NFS (calls/sec) % Free 86.8
Name PID CPU% PgSp Class ServerV2 0
dc 43564 25.0 0.3 System ClientV2 0 Press:
dc 21566 25.0 0.3 System ServerV3 0 "h" for help
dc 41554 25.0 0.3 VPs ClientV3 0 "q" to quit
dc 23658 24.2 0.3 System

Steals This is the number of page steals per second by the VMM. If the
system needs real memory, the VMM scans for the least
referenced pages to free them. The vmstat command provides a
statistic about the number of pages scanned. If a page to be stolen
contains changed data, this page need to be written back to disk.
Please refer to PgspOut below. If the Steals value gets high, further
investigation is necessary. There could be a memory leak in the
system or an application. The ps command can be used for a brief
monitoring of memory usage of processes. The svmon command
can be used to gather more detailed memory usage information on
the processes suspected to leak memory.

PgspIn This is the number of paging space page ins per second. These
are previously stolen pages read back from disk into real memory.

PgspOut This is the number of paging space page outs per second. If a
page is selected to be stolen and the data in this page is changed,
52 AIX 5L Performance Tools Handbook

then the page need to be written to paging space (a unchanged
page does not need to be written back).

% Used The amount of used paging space. A good balanced system
should not page; at least the page outs should be 0 (zero).
Because of memory fragmentation, the amount of paging space
used will increase on a newly started system over time (it should
be notable for the first few days). However, if the amount of paging
space used increases constantly, a memory leak may be the
cause, and further investigations using ps and svmon are
necessary. The load on the disks holding the paging space will
increase if paging space ins (read from disk) and paging space
outs (write to disk) increase.

2.3.3 Disk I/O bound system
The following output of topas shows the fields which are used to decide if the
system is disk I/O bound (Example 2-3).

Example 2-3 topas output with highlighted disk I/O statistics
Topas Monitor for host: wlmhost EVENTS/QUEUES FILE/TTY
Fri May 11 11:28:06 2001 Interval: 2 Cswitch 64 Readch 353
 Syscall 211 Writech 7836
Kernel 0.6 | | Reads 16 Rawin 0
User 99.3 |############################| Writes 6 Ttyout 0
Wait 0.0 | | Forks 0 Igets 0
Idle 0.0 | | Execs 0 Namei 8
 Runqueue 4.0 Dirblk 0
Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 0.0
tr0 8.3 6.1 9.2 0.3 8.0
lo0 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
 Faults 0 Real,MB 511
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 46.5
hdisk0 0.0 2.0 0.0 0.0 2.0 PgspIn 0 % Noncomp 53.6
hdisk1 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 49.6
 PageIn 0
WLM-Class (Active) CPU% Mem% Disk-I/O% PageOut 0 PAGING SPACE
Unmanaged 0 23 0 Sios 0 Size,MB 1024
Unclassified 0 0 0 % Used 13.1
 NFS (calls/sec) % Free 86.8
Name PID CPU% PgSp Class ServerV2 0
dc 43564 25.0 0.3 System ClientV2 0 Press:
dc 21566 25.0 0.3 System ServerV3 0 "h" for help
dc 41554 25.0 0.3 VPs ClientV3 0 "q" to quit
dc 23658 24.2 0.3 System
 Chapter 2. Getting started 53

Wait The CPU idle time during which the system had at least one
outstanding I/O to disk (whether local or remote) and
asynchronous I/O is not in use. An I/O causes the process to block
(or sleep) until the I/O is complete.

Disk The name of the physical device.

Busy% The percentage of time that the disk drive was active. A high busy
percentage could be caused by random disk access. The disk’s
throughput may be low even if the percentage busy value is high. If
this number is high for one or multiple devices, the iostat
command can be used to gather more precise information. In case
of paging activity the disk holding the paging logical volumes are
more used than normal and the cause for the higher paging activity
should be investigated. The filemon command can be used to
gather informations on the logical volume accessed to keep the
disks busy and the process accessing the logical volume. The
fileplace command can be used to gather information about the
accessed files. All this information can be used to redesign the
layout of the logical volume and the file system. The trace
command can be used to gather information about the
application’s access pattern to the data on disk, which may be
useful in case a redesign of the application is possible.

KBPS The total throughput of the disk in kilobytes per second. This value
is the sum of KB-Read and KB-Writ. If this value is high, the iostat,
filemon, and fileplace commands can be used to gather detailed
data. A redesign of the logical volume or volume group may be
necessary to improve I/O throughput.

TPS The number of transfers per second or I/O requests to a disk drive.

KB-Read The number of kilobytes read per second. Please refer to the field
KBPS. The system’s total number of read system calls per second is
shown in the Reads field. The system’s total number of read
characters per second is shown in the Readch field. Both Reads and
Readch can be used to estimate the data block size transferred per
read.

KB-Writ The number of kilobytes written per second. Please refer to the
field KBPS. The system total number of write system calls per
second is shown in the Writes field. The system total number of
written characters per second is shown in the Writech field. Both
Writes and Writech can be used to estimate the data block size
transferred per write.
54 AIX 5L Performance Tools Handbook

2.3.4 Network I/O bound system
The following output of topas shows the fields which are used to decide if the
system is network I/O bound (Example 2-4).

Example 2-4 topas output with highlighted network I/O and nfs statistics
Topas Monitor for host: wlmhost EVENTS/QUEUES FILE/TTY
Fri May 11 11:28:06 2001 Interval: 2 Cswitch 64 Readch 353
 Syscall 211 Writech 7836
Kernel 0.6 | | Reads 16 Rawin 0
User 99.3 |############################| Writes 6 Ttyout 0
Wait 0.0 | | Forks 0 Igets 0
Idle 0.0 | | Execs 0 Namei 8
 Runqueue 4.0 Dirblk 0
Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 0.0
tr0 8.3 6.1 9.2 0.3 8.0
lo0 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
 Faults 0 Real,MB 511
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 46.5
hdisk0 0.0 2.0 0.0 0.0 2.0 PgspIn 0 % Noncomp 53.6
hdisk1 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 49.6
 PageIn 0
WLM-Class (Active) CPU% Mem% Disk-I/O% PageOut 0 PAGING SPACE
Unmanaged 0 23 0 Sios 0 Size,MB 1024
Unclassified 0 0 0 % Used 13.1
 NFS (calls/sec) % Free 86.8
Name PID CPU% PgSp Class ServerV2 0
dc 43564 25.0 0.3 System ClientV2 0 Press:
dc 21566 25.0 0.3 System ServerV3 0 "h" for help
dc 41554 25.0 0.3 VPs ClientV3 0 "q" to quit
dc 23658 24.2 0.3 System

The fields of interest are:

Network performance

Interf Shows the network interface.

KBPS Transferred amount of data over the interface in KB per second.
This is the sum of KB-In and KB-Out. If this is lower than expected,
further investigation is necessary. Network related resource
bottlenecks such as CPU, disk I/O, memory could be the cause.
Tools and procedures to put maximum load on the network and
reach the maximum possible transfer rates should be in place. The
ftp put command shown in Section 1.4, “Network performance”
on page 29 can be used. The netstat command as well as the
interface statistics commands atmstat, entstat, estat, fddistat,
and tokstat can be used to monitor network resources on the local
 Chapter 2. Getting started 55

system. The netpmon command provides detailed usage statistics
for all network related functions of the system. However, a
monitoring of the remote systems as well as the network may be
necessary to detect possible throughput limiting problems there.

I-Pack Received packets per second. With the value of received bytes per
second (KB-In) the average packet size can be calculated.

O-Pack Sent packets per second. With the value of sent bytes per second
(KB-Out) the average packet size can be calculated.

KB-In Amount of data received on the interface per second.

KB-In Amount of data sent on the interface per second.

NFS performance

topas shows only the number of NFS server and client calls for both NFS V2 and
NFS V3.

This data can only provide a quick overview of the NFS usage. The nfsstat
command should be used to get more details about the NFS operations used
and to gather RPC statistics.

Note: Detecting the root cause of a low network throughput is not easy. A
shortage of resources on the local system can be the cause, such as a mbuf
low condition (netstat -m), a busy CPU so the execution of network code is
not performed at the necessary speed, or slow disk I/O unable to deliver the
necessary data fast enough. Test tools and procedures that use only a small
amount of local resources to produce a high network load can help to detect
problems on the network or the remote systems.
56 AIX 5L Performance Tools Handbook

Chapter 3. Multi resource monitoring
and tuning tools

This chapter describes tools for monitoring and tuning multiple system
resources. The commands listed are not specific to CPU, disk, memory, or
network resources. They may be used across one or more of those resources.
Some of the commands may report on CPU, the Virtual Memory Manager
(VMM), and disk I/O, while others may report statistics on CPU and network
activities. Please refer to the sections referenced below for specific information
on the individual tools.

� Monitoring tools:

– The iostat command described in Section 3.2, “iostat” on page 67 is used
to monitor system input/output device loading by observing the time the
physical disks are active in relation to their average transfer rates. It also
reports on CPU use.

– The netpmon command described in Section 3.3, “netpmon” on page 77 is
used to monitor a trace of system events on network activity and
performance and the CPU consumption of network activities.

– The PDT tool described in Section 3.4, “Performance Diagnostic Tool
(PDT)” on page 89 attempts to identify performance problems
automatically by collecting and integrating a wide range of performance,
configuration, and availability data.

3

© Copyright IBM Corp. 2001 57

– The perfpmr command described in Section 3.5, “perfpmr” on page 98 is a
set of utilities that builds a test case by running many of the commands
featured in this redbook. The test case contains the necessary information
to assist in analyzing performance issues.

– The ps command described in Section 3.6, “ps” on page 109 is used to
produce a list of processes on the system with specific information about,
for instance, the CPU use of these processes.

– The sar command described in Section 3.7, “sar” on page 120 is used to
report on CPU use, I/O, and other system activities.

– The topas command described in Section 3.9, “topas” on page 158 is
used to monitor a broad spectrum of system resources such as CPU use,
CPU events and queues, memory and paging use, disk performance,
network performance, and NFS statistics. It also reports system resource
consumption by processes assigned to different Workload Manager
(WLM) classes.

– The truss command described in Section 3.10, “truss” on page 168 is
used to track a process's system calls, received signals, and incurred
machine faults.

– The vmstat command described in Section 3.11, “vmstat” on page 186 is
used to report statistics about kernel threads, virtual memory, disks, and
CPU activity.

� Tuning tools:

– The fdpr command described in Section 3.1, “fdpr” on page 59 is used for
improving execution time and real memory use of user level application
programs and libraries.

– The schedtune command described in Section 3.8, “schedtune” on
page 144 is used to set criteria of thrashing, process suspension, time
slices, and the length of time that threads can spin on locks.

– The vmtune command described in Section 3.12, “vmtune” on page 201 is
used to change the characteristics of the Virtual Memory Manager (VMM)
such as page replacement, persistent file reads and writes, file system
buffer structures (bufstructs), Logical Volume Manager (LVM) buffers, raw
input/output, paging space, parameters, page deletes, and memory
pinned parameters.
58 AIX 5L Performance Tools Handbook

3.1 fdpr
The fdpr command is a performance tuning utility for improving execution time
and real memory use of user level application programs and libraries. The fdpr
command can perform different actions to achieve these goals, such as removing
unnecessary instructions and reordering of code and data.

fdpr resides in /usr/bin and is part of the perfagent.tools fileset, which is
installable from the AIX base installation media.

3.1.1 Syntax
The syntax of the fdpr command is as follows:

Most common use:

fdpr -p ProgramFile -x Command

The fdpr command builds an optimized executable program in three distinct
phases:

� Phase 1: Create an instrumented executable program.

� Phase 2: Run the instrumented program and create the profile data.

� Phase 3: Generate the optimized executable program file.

If not specified, all three phases are run. This is equal to the -123 flags.

Syntax to use with phase 1 and 3 flags:

fdpr -p ProgramFile [-M Segnum] [-o OutputFile] [-armember amList]
[OptimizationFlags] [-map] [-disasm] [-profcount] [-v] -s [-1|-3]
[-x Command]

Syntax to use with phase 2 flag:

fdpr -p ProgramFile [-M Segnum] [-o OutputFile] [-armember amList]
[OptimizationFlags] [-map] [-disasm] [-profcount] [-v]
[-s[-2|-12|-23]] -x Command

The OptimizationFlags are:

[[-Rn]|[-R0|-R1|-R2|-R3]] [-nI] [-tb] [-pc] [-pp] [-bt] [-toc] [-O3]
[-nop] [-opt_fdpr_glue] [-inline] [-i_resched] [-killed_regs] [-RD]
[-tocload | -aggressive_tocload] [-regs_release] [-ret_prologs]
 Chapter 3. Multi resource monitoring and tuning tools 59

Flags
-1, -2, -3 Specifies the phase to run. The default is to run all three

phases (-123). The -s flag must be used when running
separate phases so that the succeeding phases can
access the required intermediate files. The phases must
be run in order (for example, -1, then -2, then -3, or -1,
then -23).

-M SegNum Specifies where to map shared memory for profiling. The
default is 0x30000000. Specify an alternate shared
memory address if the program to be reordered or any of
the command strings invoked with the -x flag use
conflicting shared memory addresses. Typical
alternative values are 0x40000000, 0x50000000, ... up
to 0xC0000000).

-nI Does not permit branch reversing.

-o OutFile Specifies the name of the output file from the optimizer.
The default is ProgramFile.fdpr

-p ProgramFile Contains the name of the executable program file,
shared object file, or shared library containing shared
objects/executables to optimize. This program must be
an unstripped executable.

-armember amList Lists archive members to be optimized within a shared
archive file specified by the -p flag. If -armember is not
specified, all members of the archive file are optimized.
The entries in amList should be separated by spaces.

-Rn Copies input to output instead of invoking the optimizer.
The -Rn flag cannot be used with the -R0, -R1, -R2, or
-R3 flags.

-R0,-R1,-R2, -R3 Specifies the level of optimization. -R3 is the most
aggressive optimization. The default is -R0. Please refer
to AIX 5L Version 5.1 Commands Reference,
SBOF-1877 for more information on the optimization
levels.

-tb Forces the restructuring of traceback tables in reordered
code. If -tb is omitted, traceback tables are
automatically included only for C++ applications using a
try and catch mechanism.

-pc Preserves CSECT boundaries. Effective only with -R1
and -R3.
60 AIX 5L Performance Tools Handbook

-pp Preserves procedures' boundaries. Effective only with
-R1 and -R3.

-toc Enable TOC pointer modifications. Effective only with
-R0 and -R2.

-bt Enables branch table modifications. Effective only with
-R0 and -R2.

-03 Switches on the following optimization flags:
-nop, -opt_fdpr_glue, -inline, -i_resched,
-killed_regs, -RD, -aggressive_tocload,
-regs_release, -ret_prologs.

-inline Performs inlining of hot functions.

-nop Removes NOP instructions from reordered code.

-opt_fdpr_glue Optimizes hot BBs in FDPR glue during code reordering.

-killed_regs Avoids storing instructions for registers within callee
functions' prologs that are later killed by the calling
function.

-regs_release Eliminates store/restore instructions in the function's
prolog/epilog for non-frequently used registers within the
function.

-tocload Replaces an indirect load instruction via the TOC with an
add immediate instruction.

-aggressive_tocload Performs the -tocload optimization, and reduces the
TOC size by removing redundant TOC entries.

-RD Performs static data reordering in the .data and .bss
sections.

-i_resched Performs instruction rescheduling after code reordering.

-ret_prologs Optimizes functions prologs that terminate with a
conditional branch instruction directly to the function's
epilog.

-map Prints a map of basic blocks with their respective old ->
new addresses into a suffixed .map file.

-disasm Prints the disassembled version of the input program
into a suffixed .dis file.

-profcount Prints the profiling counters into a suffixed .counters file.

-s Specifies that temporary files created by the fdpr
command cannot be removed. This flag must be used
when running fdpr in separate phases.
 Chapter 3. Multi resource monitoring and tuning tools 61

-v Enables verbose output.

-x Command Specifies the command used for invoking the
instrumented program. All the arguments after the -x
flag are used for the invocation. The -x flag is required
when the -s flag is used with the -2 flag.

3.1.2 Information on measurement and sampling
The fdpr command builds an optimized executable by applying advanced
optimization techniques using three distinct phases to optimize the source
executable. These three phases are:

� In phase one, fdpr creates an instrumented executable program.
The source executable is saved as __ProgramFile.save, and a new and
instrumented version, named __ProgramFile.instr, is built.

� In Phase two, fdpr runs the instrumented version of the executable, and
profiling data is collected. This profiling data is stored in the file named
__ProgramFile.prof. The executable needs to be run with typical input data to
reflect normal use and to enable fdpr to find the code parts to improve.

� In Phase three, fdpr uses the profiled information collected in phase two to
reorder the executable. This reordering includes tasks such as:

– Packing together highly executed code sequences

– Recoding conditional branches to improve hardware branch prediction

– Moving less used code sections out of line

– Inlining of hot functions

– Removing NOP instructions from reordered code

The compiler flag -qfdpr can be used to have the compiler add additional
informations into the executable that assist fdpr in reordering the executable.
However, if the -qfdpr compiler flag is used, only those object modules compiled
with this flag are reordered by fdpr. The reordered executable generated by fdpr
provides a certain degree of debugging capability. Please refer to AIX 5L Version
5.1 Commands Reference, SBOF-1877 for more information on the fdpr
command.

Attention: The fdpr command applies advanced optimization techniques to a
program that may result in unexpected behaviors. Programs that are
reordered using fdpr should be used with caution. The programs should be
retested with the same test suite used to test the original program in order to
verify expected functionality. The reordered program is not supported by IBM.
62 AIX 5L Performance Tools Handbook

3.1.3 Examples
Following simple C program is used to show the code reordering done by fdpr
(Example 3-1).

Example 3-1 C program used to show code reordering by fdpr
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>

main(argc, argv, envp)
 int argc;
 char **argv;
 char **envp;
{
 int x;
 x=atoi(argv[1]);
 if (x) {
 printf ("then part\n");
 } else {
 fprintf (stderr, "else part\n");
 } /* endif */
 exit (0);
}

This program converts the parameter passed to it into an integer and, depending
on the value, the then or else part of the if instruction is executed. For easy
identification of the then and else part in the assembler code, a printf in the then
part and a fprintf in the else part is used. The code is compiled using:

cc -qfdpr -qlist c.c

The resulting assembler code is as follows (Example 3-2).

Example 3-2 C compiler generated assembler code
0x10000340 (main) 7c0802a6 mflr r0
0x10000344 (main+0x4) 93e1fffc st r31,-4(r1)
0x10000348 (main+0x8) 90010008 st r0,0x8(r1)
0x1000034c (main+0xc) 9421ffb0 stu r1,-80(r1)
0x10000350 (main+0x10) 83e2003c l r31,0x3c(r2)
0x10000354 (main+0x14) 90610068 st r3,0x68(r1)
0x10000358 (main+0x18) 9081006c st r4,0x6c(r1)
0x1000035c (main+0x1c) 90a10070 st r5,0x70(r1)
0x10000360 (main+0x20) 8061006c l r3,0x6c(r1)
0x10000364 (main+0x24) 80630004 l r3,0x4(r3)
0x10000368 (main+0x28) 48000079 bl 0x100003e0 (atoi)
0x1000036c (main+0x2c) 80410014 l r2,0x14(r1)
0x10000370 (main+0x30) 2c030000 cmpi cr0,r3,0x0
 Chapter 3. Multi resource monitoring and tuning tools 63

0x10000374 (main+0x34) 90610040 st r3,0x40(r1)
0x10000378 (main+0x38) 41820014 beq 0x1000038c (main+0x4c)
0x1000037c (main+0x3c) 63e30000 oril r3,r31,0x0
0x10000380 (main+0x40) 48000089 bl 0x10000408 (printf)
0x10000384 (main+0x44) 80410014 l r2,0x14(r1)
0x10000388 (main+0x48) 48000018 b 0x100003a0 (main+0x60)
0x1000038c (main+0x4c) 80620048 l r3,0x48(r2)
0x10000390 (main+0x50) 389f000c cal r4,0xc(r31)
0x10000394 (main+0x54) 38630040 cal r3,0x40(r3)
0x10000398 (main+0x58) 48000099 bl 0x10000430 (fprintf)
0x1000039c (main+0x5c) 80410014 l r2,0x14(r1)
0x100003a0 (main+0x60) 38600000 lil r3,0x0
0x100003a4 (main+0x64) 480000b5 bl 0x10000458 (exit)
0x100003a8 (main+0x68) 80410014 l r2,0x14(r1)
0x100003ac (main+0x6c) 38600000 lil r3,0x0
0x100003b0 (main+0x70) 80010058 l r0,0x58(r1)
0x100003b4 (main+0x74) 7c0803a6 mtlr r0
0x100003b8 (main+0x78) 38210050 cal r1,0x50(r1)
0x100003bc (main+0x7c) 83e1fffc l r31,-4(r1)
0x100003c0 (main+0x80) 4e800020 br

The above code shows the branch used in the if instruction to jump into the else
part (beq 0x1000038c (main+0x4c)). The then part follows and ends at
instruction b 0x100003a0 (main+0x60). The else part then starts at main+0x4c.

The following shell script is used to instrument the program (Example 3-3).

Example 3-3 Shell script c.sh used to instrument the program with fdpr
#/usr/bin/ksh
let x=0
while [$x -lt 1000]
do
 ./a.out $x 2>/dev/null 1>/dev/null
 let x=x+1
done

The program a.out is called and the loop counter $x is passed as the parameter.
This way the else part of the example program gets executed only once and the
then part gets executed 999 times.

The following fdpr command is used to optimize the program a.out:

fdpr -p a.out -R3 -x ./c.sh
64 AIX 5L Performance Tools Handbook

The generated and reordered code in the fdpr output file a.out.fdpr is shown in
Example 3-4.

Example 3-4 Reordered example program
0x100001d0 (main) 7c0802a6 mflr r0
0x100001d4 (main+0x4) 93e1fffc st r31,-4(r1)
0x100001d8 (main+0x8) 90010008 st r0,0x8(r1)
0x100001dc (main+0xc) 9421ffb0 stu r1,-80(r1)
0x100001e0 (main+0x10) 83e2003c l r31,0x3c(r2)
0x100001e4 (main+0x14) 90610068 st r3,0x68(r1)
0x100001e8 (main+0x18) 9081006c st r4,0x6c(r1)
0x100001ec (main+0x1c) 90a10070 st r5,0x70(r1)
0x100001f0 (main+0x20) 8061006c l r3,0x6c(r1)
0x100001f4 (main+0x24) 80630004 l r3,0x4(r3)
0x100001f8 (main+0x28) 4800002d bl 0x10000224 (atoi)
0x100001fc (main+0x2c) 80410014 l r2,0x14(r1)
0x10000200 (main+0x30) 2c030000 cmpi cr0,r3,0x0
0x10000204 (main+0x34) 90610040 st r3,0x40(r1)
0x10000208 (main+0x38) 41820064 beq 0x1000026c (main[1] [fdpr])
0x1000020c (main+0x3c) 63e30000 oril r3,r31,0x0
0x10000210 (main+0x40) 48000045 bl 0x10000254 (printf)
0x10000214 (main+0x44) 80410014 l r2,0x14(r1)
0x10000218 (main+0x48) 38600000 lil r3,0x0
0x1000021c (main+0x4c) 48000021 bl 0x1000023c (exit)
0x10000220 (main+0x50) 480001ac b 0x100003cc (main[2] [fdpr])

 (... lines omitted ...)

0x1000026c (main[1] [fdpr]) 80620048 l r3,0x48(r2)
0x10000270 (main[1] [fdpr]+0x4) 389f000c cal r4,0xc(r31)
0x10000274 (main[1] [fdpr]+0x8) 38630040 cal r3,0x40(r3)
0x10000278 (main[1] [fdpr]+0xc) 4800000d bl 0x10000284 (fprintf)
0x1000027c (main[1] [fdpr]+0x10) 80410014 l r2,0x14(r1)
0x10000280 (main[1] [fdpr]+0x14) 4bffff98 b 0x10000218 (main+0x48)

 (... lines omitted ...)

0x100003cc (main[2] [fdpr]) 80410014 l r2,0x14(r1)
0x100003d0 (main[2] [fdpr]+0x4) 38600000 lil r3,0x0
0x100003d4 (main[2] [fdpr]+0x8) 80010058 l r0,0x58(r1)
0x100003d8 (main[2] [fdpr]+0xc) 7c0803a6 mtlr r0
0x100003dc (main[2] [fdpr]+0x10) 38210050 cal r1,0x50(r1)
0x100003e0 (main[2] [fdpr]+0x14) 83e1fffc l r31,-4(r1)
0x100003e4 (main[2] [fdpr]+0x18) 4e800020 br
 Chapter 3. Multi resource monitoring and tuning tools 65

The function main is split in three parts. The then part of the if instruction is in
the first part of main. There is not much of a performance gain for our example
program. However, to show the importance of the data used to run the program
during instrumentation, the following shell script is used for another
instrumentation and optimization run by fdpr (Example 3-5).

Example 3-5 Alternate shell script c.sh2 to instrument the program
#!/usr/bin/ksh
let x=1
while [$x -lt 1000]
do
 ./a.out 0 2>/dev/null 1>/dev/null
 let x=x+1
done
./a.out 1

The above shell script runs ./a.out 0 999 times and ./a.out 1 only once. Using
the above shell script with the fdpr command to instrument the small C program
shown in Example 3-1 on page 63, by the command
fdpr -p a.out -R3 -x ./c.sh2
results in the following reordered code (Example 3-6).

Example 3-6 Reordered example program, the alternate version
0x100001d0 (main) 7c0802a6 mflr r0
0x100001d4 (main+0x4) 93e1fffc st r31,-4(r1)
0x100001d8 (main+0x8) 90010008 st r0,0x8(r1)
0x100001dc (main+0xc) 9421ffb0 stu r1,-80(r1)
0x100001e0 (main+0x10) 83e2003c l r31,0x3c(r2)
0x100001e4 (main+0x14) 90610068 st r3,0x68(r1)
0x100001e8 (main+0x18) 9081006c st r4,0x6c(r1)
0x100001ec (main+0x1c) 90a10070 st r5,0x70(r1)
0x100001f0 (main+0x20) 8061006c l r3,0x6c(r1)
0x100001f4 (main+0x24) 80630004 l r3,0x4(r3)
0x100001f8 (main+0x28) 48000035 bl 0x1000022c (atoi)
0x100001fc (main+0x2c) 80410014 l r2,0x14(r1)
0x10000200 (main+0x30) 2c030000 cmpi cr0,r3,0x0
0x10000204 (main+0x34) 90610040 st r3,0x40(r1)
0x10000208 (main+0x38) 4082006c bne 0x10000274 (main[1] [fdpr])
0x1000020c (main+0x3c) 80620048 l r3,0x48(r2)
0x10000210 (main+0x40) 389f000c cal r4,0xc(r31)
0x10000214 (main+0x44) 38630040 cal r3,0x40(r3)
0x10000218 (main+0x48) 48000045 bl 0x1000025c (fprintf)
0x1000021c (main+0x4c) 80410014 l r2,0x14(r1)
0x10000220 (main+0x50) 38600000 lil r3,0x0
0x10000224 (main+0x54) 48000021 bl 0x10000244 (exit)
0x10000228 (main+0x58) 480001a4 b 0x100003cc (main[2] [fdpr])

 (... lines omitted ...)
66 AIX 5L Performance Tools Handbook

0x10000274 (main[1] [fdpr]) 63e30000 oril r3,r31,0x0
0x10000278 (main[1] [fdpr]+0x4) 4800000d bl 0x10000284 (printf)
0x1000027c (main[1] [fdpr]+0x8) 80410014 l r2,0x14(r1)
0x10000280 (main[1] [fdpr]+0xc) 4bffffa0 b 0x10000220 (main+0x50)

 (... lines omitted ...)

0x100003cc (main[2] [fdpr]) 80410014 l r2,0x14(r1)
0x100003d0 (main[2] [fdpr]+0x4) 38600000 lil r3,0x0
0x100003d4 (main[2] [fdpr]+0x8) 80010058 l r0,0x58(r1)
0x100003d8 (main[2] [fdpr]+0xc) 7c0803a6 mtlr r0
0x100003dc (main[2] [fdpr]+0x10) 38210050 cal r1,0x50(r1)
0x100003e0 (main[2] [fdpr]+0x14) 83e1fffc l r31,-4(r1)
0x100003e4 (main[2] [fdpr]+0x18) 4e800020 br

The else part of the if instruction is now kept in the first part of main and the then
part is moved away because the else part got executed 999 times during
instrumentation and the then part was executed only once.

The user of fdpr should always keep in mind that the performance gain fdpr can
provide depends on the way the program is run during instrumentation.

3.2 iostat
The iostat command is used for monitoring system input/output device loading
by observing the time the physical disks are active in relation to their average
transfer rates. The iostat command generates reports that can be used to
determine an imbalanced system configuration to better balance the input/output
load between physical disks and adapters.

The primary purpose of the iostat tool is to detect I/O bottlenecks by monitoring
the disk utilization (% tm_act field). iostat can also be used to identify CPU
problems, assist in capacity planning, and provide insight into solving I/O
problems. Armed with both vmstat and iostat, you can capture the data required
to identify performance problems related to CPU, memory, and I/O subsystems.

iostat resides in /usr/bin and is part of the bos.acct fileset, which is installable
from the AIX base installation media.
 Chapter 3. Multi resource monitoring and tuning tools 67

3.2.1 Syntax
The syntax of the iostat command is as follows:

iostat [-a] [-s] [-t] [-d] [Drives] [Interval [Count]]

Flags

-a Displays the adapter throughput report.

-s Displays the system throughput report.

-t Displays only the tty and cpu use reports.

-d Displays only the disk utilization report

The -t and the -d flags are mutually exclusive.

The -s and -a flags can both be specified to display both the system and adapter
throughput reports.

If the -a flag is specified with the -t flag, the tty and CPU report is displayed,
followed by the adapter throughput report. Disk utilization reports of the disks
connected to the adapters will not be displayed after the adapter throughput
report.

If the -a flag is specified with the -d flag, tty and CPU report will not be displayed.
If the Drives parameter is specified, the disk utilization report of the specified
Physical volume will be printed under the corresponding adapter to which it
belongs.

Parameters

Interval Specifies the update period (in seconds)

Count Specifies the number of iterations

Drives hdisk0, hdisk1, and so forth

Disk names are as displayed by the lspv command. RAID disks will
appear as one logical hdisk.

The Interval parameter specifies the amount of time in seconds between each
report. The first report contains statistics for the time since system startup (boot).
Each subsequent report contains statistics collected during the interval since the
previous report. The Count parameter can be specified in conjunction with the
Interval parameter. If the Count parameter is specified, the value of count
determines the number of reports generated at Interval seconds apart. If the
Interval parameter is specified without the Count parameter, the command
generates reports continuously.
68 AIX 5L Performance Tools Handbook

If the Drives parameter is specified, one or more alphabetic or alphanumeric
physical volumes can be specified. If the Drives parameter is specified, the tty
and CPU reports are displayed and the disk report contains statistics for the
specified drives. If a specified logical drive name is not found, the report lists the
specified name and displays the message Disk is not Found.

If no logical drive names are specified, the report contains statistics for all
configured disks and CD-ROMs. If no drives are configured on the system, no
disk report is generated. The first character in the Drives parameter cannot be
numeric.

3.2.2 Information on measurement and sampling
The iostat command generates four types of reports:

� tty and CPU utilization

� Disk utilization

� System throughput

� Adapter throughput

Each subsequent sample in the report covers the time since the previous
sample. All statistics are reported each time the iostat command is run. The
report consists of a tty and CPU header row followed by a row of tty and CPU
statistics. CPU statistics are calculated system-wide as averages among all
processors.

iostat keeps a history of activity of disk input/output shown in “Enabling disk
input/output statistics” on page 75. Information about the disks and which disks
are attached to which adapters are stored in the Object Database Manager
(ODM).

Measurement is done as specified by the parameters in the command line issued
by the user.

Note: The first line of this report should be ignored, as it is an average since
the last system reboot.
 Chapter 3. Multi resource monitoring and tuning tools 69

3.2.3 Examples
The following sections show reports generated by iostat:

System throughput report
This report is generated if the -s flag is specified and provides statistics for the
entire system. It has the following format shown in Example 3-7.

Kbps, tps, Kb_read, and Kb_wrtn are as defined in Section 3.2.3, “Examples” on
page 70 but for this report they are accumulated totals for the entire system.

Example 3-7 System throughput report
iostat -s
tty: tin tout avg-cpu: % user % sys % idle % iowait
 0.0 0.0 33.0 11.8 10.1 45.1

System: wlmhost
Kbps tps Kb_read Kb_wrtn

2774.1 367.1 18156 9592

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 92.4 451.9 100.9 1000 3520
hdisk1 88.2 447.9 100.2 964 3516
hdisk3 76.7 1090.7 94.7 9632 1278
hdisk5 0.0 0.0 0.0 0 0
hdisk6 0.0 0.0 0.0 0 0
hdisk8 0.0 0.0 0.0 0 0
hdisk9 0.0 0.0 0.0 0 0
hdisk2 74.1 783.6 71.3 6560 1278
hdisk10 0.0 0.0 0.0 0 0
hdisk7 0.0 0.0 0.0 0 0
cd0 0.0 0.0 0.0 0 0

The following values are displayed:

tin Shows the total number of characters read by the system for all ttys.

tout Shows the total number of characters written by the system to all
ttys.

You will see few input characters and many output characters. On the
other hand, applications such as vi result in a smaller difference
between the number of input and output characters. Analysts using
modems for asynchronous file transfer may notice the number of
input characters exceeding the number of output characters.
Naturally, this depends on whether the files are being sent or
received relative to the measured system.
70 AIX 5L Performance Tools Handbook

Because the processing of input and output characters consumes
CPU resource, look for a correlation between increased TTY activity
and CPU utilization. If such a relationship exists, evaluate ways to
improve the performance of the TTY subsystem. Steps that could be
taken to include changing the application program, modifying TTY
port parameters during file transfer, or perhaps upgrading to a faster
or more efficient asynchronous communications adapter.

% user Shows the percentage of CPU utilization that occurred while
executing at the user level (application).

The % user column shows the percentage of CPU resource spent in
user mode. A UNIX process can execute in user or system mode.
When in user mode, a process executes within its own code and
does not require kernel resources. On a Symmetrical Multi Processor
system (SMP), the % user is averaged across all CPUs.

% sys Shows the percentage of CPU utilization that occurred while
executing at the system level (kernel). On a Symmetrical Multi
Processor system (SMP), the % sys is averaged across all CPUs.

The % sys column shows the percentage of CPU resource spent in
system mode. This includes CPU resource consumed by kernel
processes (kprocs) and others that need access to kernel resources.
For example, the reading or writing of a file requires kernel resources
to open the file, seek a specific location, and read or write data. A
UNIX process accesses kernel resources by issuing system calls. A
high number of system calls in relation to user utilization can be
caused by applications inefficiently performing disk I/O or
misbehaving shell scripts such as a shell script stuck in a loop, which
can generate a large number of system calls. If you encounter this,
look for penalized processes. Run the ps -eaf command and look
under the C column for processes that are penalized. Refer to
“Displaying the processes in order of being penalized” on page 115
for more information.

Typically, the CPU is pacing (the system is CPU bound) if the sum of
user and system time exceeds 90 percent of CPU resource on a
single-user system or 80 percent on a multi-user system. This
condition could mean that the CPU is the limiting factor in system
performance

A factor when evaluating CPU performance is the size of the run
queue (provided by the vmstat command, see “Virtual memory
activity” on page 188). In general, as the run queue increases, users
will notice degradation (an increase) in response time.

% idle Shows the percentage of time that the CPU or CPUs were idle and
the system did not have an outstanding disk I/O request. The % idle
 Chapter 3. Multi resource monitoring and tuning tools 71

column shows the percentage of CPU time spent idle, or waiting,
without pending local disk I/O. If there are no processes on the run
queue, the system dispatches a special kernel process called
wait.On an SMP system, the % idle is averaged across all CPUs.

% iowait Shows the percentage of time that the CPU or CPUs were idle during
which the system had an outstanding disk I/O request. On an SMP
system, the % iowait is averaged across all CPUs.

The iowait state is different from the idle state in that at least one
process is waiting for local disk I/O requests to complete. Unless the
process is using asynchronous I/O, an I/O request to disk causes the
calling process to block (or sleep) until the request is completed.
Once a process's I/O request completes, it is placed on the run
queue. On systems running a primary application, a high I/O wait
percentage may be related to workload. In this case, there may be no
way to overcome the problem.

When you see a high iowait percentage, you need to investigate the
I/O subsystem to try to eliminate any potential bottlenecks. It could
be that you are short of memory, in which case the disk(s) containing
paging space may be busy while paging and you are likely to see a
higher run queue as threads are waiting for the CPU. An inefficient
I/O subsystem configuration, or an application handling Input/Output
inefficiently can also result in higher %iowait.

A %iowait percentage is not necessarily a bad thing. For example, if
you are copying a file, you will want to see the disk as busy as
possible. In this scenario, a higher %tm_act with good disk throughput
would be desirable over a disk that is only 50 %tm_act.

If an application is writing sequential files, then the write behind
algorithm will write pages to disk. With large sequential writes, the
%iowait will be higher, but the busy disk does not block the
application because the application has already written to memory.
The application is free to continue processing and is not waiting on
the disk. Similarly, when sequential reads are performed, the %iowait
can increase as the pages are read in, but this does not effect the
application because only the pages that are already read into
memory are made available to the application and read ahead is not
dependant on the application.

Understanding the I/O bottleneck and improving the efficiency of the
I/O subsystem requires more data than iostat can provide.
However, typical solutions might include:

� Limiting the number of active logical volumes and file systems
placed on a particular physical disk. The idea is to balance file I/O
evenly across all physical disk drives.
72 AIX 5L Performance Tools Handbook

� Spreading a logical volume across multiple physical disks. This is
useful when a number of different files are being accessed. Use
the lslv -m command to see how volume groups are placed on
physical disks.

� Creating multiple Journaled File System (JFS) logs for a volume
group and assigning them to specific file systems (this is beneficial
for applications that create, delete, or modify a large number of
files, particularly temporary files).

� Backing up and restoring file systems to reduce fragmentation.
Fragmentation causes the drive to seek excessively and can be a
large portion of overall response time.

� Adding additional drives and rebalancing the existing I/O
subsystem

% tm_act Indicates the percentage of time the physical disk was active
(bandwidth utilization for the drive). The % tm_act column shows the
percentage of time the volume was active. This is the primary
indicator of a bottleneck. Any % tm_act over 70 percent may be
considered a potential bottleneck.

A drive is active during data transfer and command processing, such
as seeking to a new location. The disk-use percentage is directly
proportional to resource contention and inversely proportional to
performance. As disk use increases, performance decreases and the
time it takes for the system to respond to user requests increases. In
general, when a disk's use (% tm_act) exceeds 70 percent,
processes may be waiting longer than necessary for I/O to complete
because most UNIX processes block (or sleep) while waiting for their
I/O requests to complete.

Kbps Indicates the amount of data transferred (read or written) to the drive
in KB per second.

tps Indicates the number of transfers per second that were issued to the
physical disk. A transfer is an I/O request at the device driver level to
the physical disk. As physical I/O (read or write, to or from the disk) is
expensive in terms of performance, in order to reduce the amount of
physical I/O to the disk(s), multiple logical requests (reads and writes
from the application) can be combined into a single physical I/O. A
transfer is of an indeterminate size.

Kb_read The total number of KB read.

Kb_wrtn The total number of KB written.

Kb_read and Kb_wrtn combined should not exceed 70 percent of the
disk or adapter’s throughput to avoid saturation.
 Chapter 3. Multi resource monitoring and tuning tools 73

If the -s flag is specified, a system-header row is displayed followed by a line of
statistics for the entire system. The hostname of the system is printed in the
system-header row.

If iostat -s is run as is, then the statistics since boot time are displayed.

If you run iostat specifying an interval, for example iostat -s 5 to display
statistics every five seconds, or you run iostat specifying an interval and a
count, for example iostat -s 2 5 to display five reports of statistics every two
seconds, then the first report will represent the I/O activity since boot time and
the subsequent reports will reflect the amount of I/O on the system over the last
interval.

What the report is telling us
The above report shows 45.1 percent iowait. This should be further
investigated. By looking at % tm_act, we know we are having performance hits on
hdisk0, hdisk1, hdisk2, and hdisk3. This is because % tm_act is above 70
percent. We need to run filemon (refer to “How to analyze the physical volume
reports” on page 394) to see why the disks are busy. For example, some files
may have a lot of I/O, or disks may be seeking. vmstat (refer to “Virtual memory
activity” on page 188) may report high paging.

tty and CPU utilization report
The first report generated by the iostat command is the tty and CPU utilization
report. The CPU values are global averages among all processors. The I/O wait
state is defined system-wide and not per processor.

This information is updated at regular intervals by the kernel (typically 60 times
per second). The tty report provides a collective account of characters per
second received from all terminals on the system as well as the collective count
of characters output per second to all terminals on the system (Example 3-8).

Example 3-8 tty and CPU Utilization report
iostat -t

tty: tin tout avg-cpu: % user % sys % idle % iowait
 0.4 170.5 0.3 0.9 94.5 4.3

Disk utilization report
The following report generated by the iostat command is the disk utilization
report. The disk report provides statistics on a per physical disk basis. Statistics
for CD-ROM devices are also reported.
74 AIX 5L Performance Tools Handbook

A disk header column is displayed followed by a column of statistics for each disk
that is configured. If the Drives parameter is specified, only those names
specified are displayed (Example 3-9).

Example 3-9 Disk Utilization report
iostat -d

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 92.4 451.9 100.9 1000 3520
hdisk1 88.2 447.9 100.2 964 3516
hdisk3 76.7 1090.7 94.7 9632 1278
hdisk5 0.0 0.0 0.0 0 0
hdisk6 0.0 0.0 0.0 0 0
hdisk8 0.0 0.0 0.0 0 0
hdisk9 0.0 0.0 0.0 0 0
hdisk2 74.1 783.6 71.3 6560 1278
hdisk10 0.0 0.0 0.0 0 0
hdisk7 0.0 0.0 0.0 0 0
cd0 0.0 0.0 0.0 0 0

If iostat -d is run as is, then the statistics since boot time are displayed.

If you run iostat specifying an interval, for example iostat -d 5 to display
statistics every five seconds, or you run iostat specifying an interval and a
count, for example iostat -d 2 5 to display five reports of statistics every two
seconds, then the first report will represent the I/O activity since boot time and
the subsequent reports will reflect the amount of I/O on the system over the last
interval.

Enabling disk input/output statistics
To improve performance, the collection of disk input/output statistics may have
been disabled. For large system configurations where a large number of disks is
configured, the system can be configured to avoid collecting physical disk
input/output statistics when the iostat command is not executing. If the system
is configured in this manner, then the first disk report displays the message Disk
History Since Boot Not Available instead of the disk statistics. Subsequent
interval reports generated by the iostat command contain disk statistics
collected during the report interval. Any tty and CPU statistics after boot are
unaffected. If a system management command is used to re-enable disk
statistics keeping. The first iostat command report displays activity from the
interval starting at the point that disk input/output statistics were enabled.

To enable the collection of this data, enter:

chdev -l sys0 -a iostat=true
 Chapter 3. Multi resource monitoring and tuning tools 75

To display the current settings, enter:

lsattr -E -l sys0 -a iostat

If disk input/output statistics are enabled, the lsattr command will display:

iostat true Continuously maintain DISK I/O history True

If disk input/output statistics are disabled, the lsattr command will display:

iostat false Continuously maintain DISK I/O history True.

Adapter throughput report
If the -a flag is specified, an adapter-header row is displayed followed by a line
of statistics for the adapter. This will be followed by a disk-header row and the
statistics of all the disks/CD-ROMs connected to the adapter. Such reports are
generated for all the disk adapters connected to the system (Example 3-10).
Each adapter statistic reflects the performance of all the disks attached to it.

Example 3-10 Adapter throughput report
iostat -a
tty: tin tout avg-cpu: % user % sys % idle % iowait
 0.4 184.8 0.3 1.0 94.3 4.4

Adapter: Kbps tps Kb_read Kb_wrtn
scsi0 44.0 7.1 4791970 4113651

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk1 0.0 0.5 0.1 94446 1660
hdisk0 2.2 41.7 6.5 4318692 4111991
cd0 0.1 1.9 0.5 378832 0

Adapter: Kbps tps Kb_read Kb_wrtn
scsi1 150.0 15.9 18565412 11776612

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk2 4.5 81.9 7.3 10712746 5845132
hdisk3 6.5 68.1 8.6 7852666 5931480

If iostat -a is run as is, then the statistics since boot time are displayed.

Note: Some system resource is consumed in maintaining disk I/O history for
the iostat command.
76 AIX 5L Performance Tools Handbook

If you run iostat specifying an interval, for example iostat -a 5 to display
statistics every five seconds, or you run iostat specifying an interval and a
count, for example iostat -a 2 5 to display five reports of statistics every two
seconds, then the first report will represent the I/O activity since boot time and
the subsequent reports will reflect the amount of I/O on the system over the last
interval.

3.3 netpmon
The netpmon command is used to monitor a trace of system events on network
activity and performance. The netpmon command reports on network activity over
the monitoring period.

The netpmon command resides in /usr/bin and is part of the bos.perf.tools fileset,
which is installable from the AIX base installation media.

3.3.1 Syntax
The syntax of the netpmon command is as follows:

netpmon [-o File] [-d] [-T n] [-P] [-t] [-v] [-O ReportType
...] [-i Trace_File -n Gennames_File]

Tip: It is useful to run iostat when your system is under load and performing
normally. This will give you a base line to determine future performance
problems with the disk, CPU, and tty subsystems.

You should run iostat again when:

� Your system is experiencing performance problems.

� You make hardware or software changes to the disk subsystem.

� You make changes to the AIX Operating System, such as installing
upgrades, and changing the disk tuning parameters using vmtune.

� You make changes to your application.

Note: The netpmon command does not work with NFS 3 and is only supported
on POWER based platforms.
 Chapter 3. Multi resource monitoring and tuning tools 77

-d Starts the netpmon command, but defers tracing until the
trcon command has been executed by the user. By
default, tracing is started immediately.

-i Trace_File Reads trace records from the file Trace_File produced
with the trace command instead of a live system. The
trace file must be rewritten first in raw format using the
trcpt -r command. This flag cannot be used without the
-n flag.

-n Gennames_File Reads necessary mapping information from the file
Gennames_File produced by the gennames command.
This flag is mandatory when the -i flag is used.

-o File Writes the reports to the specified File instead of to
standard output.

-O ReportType ... Produces the specified report types. Valid report type
values are:

cpu CPU use

dd Network device-driver I/O

so Internet socket call I/O

nfs NFS I/O

all All of the above, which is the default value.

-P Pins monitor process in memory. This flag causes the
netpmon text and data pages to be pinned in memory for
the duration of the monitoring period. This flag can be
used to ensure that the real-time netpmon process does
not run out of memory space when running in a
memory-constrained environment.

-t Prints CPU reports on a per thread basis.

-T n Sets the kernel's trace buffer size to n bytes. The default
size is 64000 bytes. The buffer size can be increased to
accommodate larger bursts of events, if any (a typical
event record size is on the order of 30 bytes).
78 AIX 5L Performance Tools Handbook

-v Prints extra information in the report. All processes and
all accessed remote files are included in the report
instead of only the 20 most active processes and files.

3.3.2 Information on measurement and sampling
Once netpmon is started, it runs in the background until it is stopped by issuing
the trcstop command. The netpmon command will report on network related
activity over the monitoring period. If the default settings are used, the trace
command will automatically be invoked immediately by the netpmon command.
Alternately, netpmon has an option to switch the trace on at a later time using the
trcon command. When the trace is stopped by issuing the trcstop command,
the netpmon command will output its report and exit. Reports are either displayed
on standard output by default, or can be redirected to a file.

The netpmon command monitors a trace of a specific number of trace hooks. The
trace hooks are, amongst others, NFS, cstokdd, and ethchandd. When the
netpmon command is issued with the -v flag, the trace hooks used by netpmon are
listed. Alternatively, you can run the trcevgrp -l netpmon command to receive a
list of trace hooks that are used by netpmon. For a full listing of trace hooks,
please refer to “Trace Hooks” on page 692.

The netpmon command can also be used in offline mode on a previously
generated trace. In this instance, a file generated by the gennames command is
required. Refer to the Section 8.5, “gennames” on page 644. The gennames file
should be created immediately after the trace has been stopped. The level of
detail of socket information in the offline mode is limited.

Reports are generated for the CPU use, the network device driver I/O, internet
socket calls, and Network File System (NFS) I/O information.

CPU use The netpmon command reports on the CPU use by
threads and interrupt handlers. The command
differentiates between CPU use on network related
activity and other CPU use.

Network Device Driver I/O The netpmon command monitors I/O statistics
through network adapters.

Note: The trace driver in the kernel uses double buffering, so actually two
buffers of size n bytes will be allocated. These buffers are pinned in memory,
so they are not subject to paging.
 Chapter 3. Multi resource monitoring and tuning tools 79

Internet Socket Calls The netpmon command monitors the read, recv,
recvfrom, write, send, and sendto subroutines on the
internet socket. Per process reports on the following
protocols are created.

� Internet Control Message Protocol (ICMP)

� Transmission Control Protocol (TCP)

� User Datagram Protocol (UDP)

NFS I/O The netpmon command monitors read and write
subroutines on client NFS files, Remote Procedure
Calls (RPC) requests on NFS clients, and NFS
server read and write requests.

If network intensive applications are being monitored, the netpmon command may
not be able to capture all the data. This occurs when the trace buffers are full.
The following message is displayed:

Trace kernel buffer overflowed

The size of the trace buffer can be increased by using the -T flag. Using the
offline mode is the most reliable way to limit buffer overflows. This is because
trace is much more efficient in processing and logging than the trace-based
utilities (filemon, netpmon, and tprof) are at generating complex reports.

In memory constrained environments, the -P flag can be used to pin the text and
data pages of the netpmon process in memory so it cannot be swapped out.

3.3.3 Examples
In the test scenario, a file of approximately 100 MB was transferred between two
servers. The /home file system of the one server is remotely mounted to the
other server via NFS. This scenario has been set up to obtain trace results for
the copy operation between the servers. The following command was used to
obtain the netpmon information (Example 3-11 on page 81).

Note: Only one trace can be run on a system at a time. If an attempt is made
to run a second trace, the following error message will be displayed:

0454-072 The trace daemon is currently active. Only one trace session
 may be active at a time.
80 AIX 5L Performance Tools Handbook

Example 3-11 The netpmon command used to monitor NFS transfers
netpmon -o nmon1.out -O nfs

Enter the "trcstop" command to complete netpmon processing

Once the netpmon command is running, start the network activity to be monitored.
Once the network activity that is being monitored is completed, run the trcstop
command to stop the trace (Example 3-12).

Example 3-12 Stopping netpmon

trcstop
[netpmon: Reporting started]
[netpmon: Reporting completed]
[netpmon: 534.921 secs in measured interval]

The output that was generated by the netpmon command in Example 3-11 can be
seen in Example 3-13. This output only shows the NFS statistics because the -O
nfs flag and argument was used. The RPC statistics as well as the total calls are
displayed for the server wlmhost.

Example 3-13 The netpmon command output data for NFS
Fri May 25 19:08:12 2001
System: AIX server1 Node: 5 Machine: 000BC6FD4C00

==

NFS Client RPC Statistics (by Server):

Server Calls/s

wlmhost 31.02
--
Total (all servers) 31.02

==

Detailed NFS Client RPC Statistics (by Server):

SERVER: wlmhost
calls: 16594
 call times (msec): avg 108.450 min 1.090 max 2730.069 sdev 102.420
 Chapter 3. Multi resource monitoring and tuning tools 81

COMBINED (All Servers)
calls: 16594
 call times (msec): avg 108.450 min 1.090 max 2730.069 sdev 102.420

Example 3-14 shows the netpmon command providing a full compliment of report
types. When the -O flag is not issued, the default of all is assumed.

Example 3-14 netpmon command providing a full listing on all report types
server1> netpmon -o nmon2.out -v

Enter the "trcstop" command to complete netpmon processing

/usr/sbin/trace -a -T 256000 -o - -j
000,000,001,002,003,005,006,106,10C,139,134,135,100,200,102,103,101,104,465,
467,46A,00A,163,19C,256,255,262,26A,26B,32D,32E,2A7,2A8,351,352,320,321,30A,
30B,330,331,334,335,2C3,2C4,2A4,2A5,2E6,2E7,2DA,2DB,2EA,2EB,252,216,211,107,
212,215,213
Moving this process to the background.
The following script generates network traffic.
ftp wlmhost
Connected to wlmhost.
220 wlmhost FTP server (Version 4.1 Sun Apr 8 07:45:00 CDT 2001) ready.
Name (wlmhost:root): root
331 Password required for root.
Password:
230 User root logged in.
ftp> cd /home/nmon
250 CWD command successful.
ftp> mput big*
mput big.? y
200 PORT command successful.
150 Opening data connection for big..
226 Transfer complete.
107479040 bytes sent in 68.91 seconds (1523 Kbytes/s)
local: big. remote: big.
ftp>
trcstop
[netpmon: Reporting started]

[netpmon: Reporting completed]

[netpmon: 1545.477 secs in measured interval]
82 AIX 5L Performance Tools Handbook

The full listing for the netpmon command is shown for the duration of the ftp
transfer operation in Example 3-14 on page 82. It has been broken up into
sections for clarity. The sections are broken up into process statistics, First Level
Interrupt Handler (FLIH) and Second Level Interrupt Handler (SLIH) statistics,
network device driver statistics, TCP socket call statistics, and detailed statistics.

Process statistics
Example 3-15 below shows the process statistics for the netpmon command’s full
report.

Example 3-15 The netpmon command verbose output showing process information
Sun May 27 11:46:52 2001
System: AIX server1 Node: 5 Machine: 000BC6FD4C00

trace -a -T 256000 -o - -j
000,000,001,002,003,005,006,106,10C,139,134,135,100,200,102,
103,101,104,465,467,46A,00A,163,19C,256,255,262,26A,26B,32D,32E,2A7,2A8,351,
352,320,321,30A,30B,330,331,334,335,2C3,2C4,2A4,2A5,2E6,2E7,2DA,2DB,2EA,2EB,
252,216,211,107,212,215,213
TIME: 0.000000000 TRACE ON pid 7254 tid 0x82a9
 channel 990982013
TIME: 120.467389060 TRACE OFF
...(lines omitted)...
Process CPU use Statistics:

 Network
Process PID CPU Time CPU % CPU %
--
ypbind 10580 17.9523 3.726 0.000
ftp 19060 12.6495 2.625 1.146
netpmon 17180 2.5410 0.527 0.000
UNKNOWN 16138 0.5125 0.106 0.000
syncd 6468 0.2858 0.059 0.000
dtgreet 4684 0.2294 0.048 0.000
UNKNOWN 18600 0.1940 0.040 0.000
UNKNOWN 5462 0.1929 0.040 0.000
wlmsched 2580 0.1565 0.032 0.000
gil 2322 0.1057 0.022 0.022
aixterm 16050 0.0915 0.019 0.005
swapper 0 0.0468 0.010 0.000
X 5244 0.0428 0.009 0.000
lrud 1548 0.0404 0.008 0.000
trcstop 19062 0.0129 0.003 0.000
init 1 0.0112 0.002 0.000
ksh 18068 0.0080 0.002 0.000
rpc.lockd 11872 0.0070 0.001 0.000
nfsd 10326 0.0064 0.001 0.001
netpmon 14922 0.0034 0.001 0.000
netm 2064 0.0032 0.001 0.001
 Chapter 3. Multi resource monitoring and tuning tools 83

rmcd 15744 0.0028 0.001 0.000
IBM.FSrmd 14714 0.0027 0.001 0.000
snmpd 4444 0.0023 0.000 0.000
trace 19058 0.0019 0.000 0.000
xmgc 1806 0.0015 0.000 0.000
sendmail 6236 0.0010 0.000 0.000
cron 9822 0.0009 0.000 0.000
hostmibd 8514 0.0007 0.000 0.000
IBM.AuditRMd 16516 0.0007 0.000 0.000
IBM.ERrmd 5080 0.0006 0.000 0.000
syslogd 6974 0.0005 0.000 0.000
PM 13932 0.0004 0.000 0.000
UNKNOWN 7254 0.0004 0.000 0.000
UNKNOWN 5460 0.0003 0.000 0.000
UNKNOWN 5464 0.0003 0.000 0.000
rtcmd 9032 0.0001 0.000 0.000
shdaemon 15480 0.0001 0.000 0.000
--
Total (all processes) 35.1103 7.286 1.175
Idle time 459.0657 95.268

In Example 3-15 on page 83, the trace command that produced the output is
shown. The command was asynchronous as can be seen by the use of the -a
flag. The buffer size was increased to 256 KB with the -T flag and, more
importantly, the output was redirected to the standard output by using the -o -
flag. The list of trace hooks follow the -j flag. For more information on the trace
command flags, please refer to the trace command’s “Syntax” on page 686

Under the heading Process CPU use Statistics, the following headings can be
seen:

Process This is the name of the process that is being monitored.

PID The process identification number.

CPU Time The total CPU time used.

CPU % The CPU time as a percentage of total time.

Network CPU % The percentage of CPU time spent on executing network
related tasks.
84 AIX 5L Performance Tools Handbook

In Example 3-15 on page 83, the -v flag was used, so more than 20 processes
are displayed. At the bottom of the Process CPU use Statistics output, the
Total CPU and total Idle time is displayed. It can be seen from the process
statistics that the ftp transfer used 12.6 seconds of CPU time. The total CPU
time as seen from the bottom of the process statistics table is 494 seconds. This
equates to 2.6 percent of the CPU total time spent executing this command.

FLIH and SLIH CPU statistics
Example 3-16 shows a report of the FLIH and SLIH CPU use statistics. The
report is an extract from the full netpmon report.

Example 3-16 The full netpmon report showing FLIH and SLIH statistics
First Level Interrupt Handler CPU use Statistics:

 Network
FLIH CPU Time CPU % CPU %
--
PPC decrementer 1.8355 0.381 0.000
external device 0.9127 0.189 0.185
data page fault 0.0942 0.020 0.000
queued interrupt 0.0286 0.006 0.000
instruction page fault 0.0061 0.001 0.000
--
Total (all FLIHs) 2.8770 0.597 0.186

==

Second Level Interrupt Handler CPU use Statistics:
--
 Network
SLIH CPU Time CPU % CPU %
--
cstokdd 2.7421 0.569 0.569
s_scsiddpin 0.0045 0.001 0.000
gxentdd 0.0026 0.001 0.001
unix 0.0001 0.000 0.000
--
Total (all SLIHs) 2.7494 0.571 0.570

Additional information on first and second level interrupt handlers is shown in the
report. The statistics that are displayed under these headings is:

FLIH The description of the first level interrupt handler.

SLIH The description of the second level interrupt handler.
 Chapter 3. Multi resource monitoring and tuning tools 85

CPU Time The total amount of time used by the interrupt handler.

CPU % This is the CPU time used by this interrupt handler as a
percentage of total CPU time.

Network CPU % This is the percentage of total time that this interrupt handler
executed for a network related process.

At the bottom of the first and second level interrupt handler reports, the total
amount of CPU use for the specific level of interrupt handler is displayed. Note
that in the SLIH column, the statistics for cstokdd are displayed. This is the time
that the CPU spent handling interrupts from the token ring adapter. The token
ring adapter may have had traffic other than the ftp transfer data. Hence these
CPU use statistics can not be regarded as the statistics for the ftp transfer.

Network device driver statistics
Example 3-17 shows the network device driver statistics extracted from the
netpmon commands full verbose output.

Example 3-17 Extract of the full netpmon output showing device driver statistics
Network Device-Driver Statistics (by Device):

 ----------- Xmit ----------- -------- Recv ---------
Device Pkts/s Bytes/s Util QLen Pkts/s Bytes/s Demux
--
token ring 0 617.00 930607 0.0%21.810 310.32 19705 0.0142

In Example 3-17, the Network Device Driver Statistics (by Device) are shown. In
the case of the ftp data transfer, the connection to the remote system was via
token ring. Note that there could be other traffic over token ring that could affect
the values, so they cannot be assumed to be the values for the ftp transfer
alone. The description for the headings are as follows:

Device The name of the device. In this instance token ring 0.

Xmit Pkts/s The number of packets per second transmitted through the
device.

Xmit Bytes/s The number of bytes per second transmitted through the
device.

Xmit Util The percentage of time that this device was busy.

Xmit Qlen The number of requests waiting to be transmitted, averaged
over the time period.
86 AIX 5L Performance Tools Handbook

Recv Pkts/s The number of packets per second received by this device.

Recv Bytes/s The number of bytes per second received by this device.

Recv Demux The percentage of time spent in the demux layer as a
percentage of total time.

TCP socket call statistics
Example 3-18 is an extract from the full verbose output of the netpmon command.
The extract shows the TCP socket call statistics.

Example 3-18 An extract from the full netpmon report showing socket call statistics
TCP Socket Call Statistics (by Process):
--
 ------ Read ----- ----- Write -----
Process PID Calls/s Bytes/s Calls/s Bytes/s
--
ftp 19060 0.30 1202 13.51 892186
aixterm 16050 0.81 26 2.27 142
--
Total (all processes) 1.10 1227 15.78 892328

A socket report is also provided under the heading Detailed TCP Socket Call
Statistics (by Process). The details for the ftp transfer are shown in the first
line of this report. Use the process identification (PID) to identify the correct ftp
transfer. Note that over the same monitoring period, there could be more than
one ftp transfer running. The following fields are displayed in this report:

Process This is the name of the process.

PID This is the process identification number.

Read Calls/s This is the number of read, recv, and recvfrom subroutines
made per second by this process on sockets of this type.

Read Bytes/s The number of bytes per second requested by the read,
recv, and recvfrom subroutine calls.

Write Calls/s The number of write, send, and sendto subroutine calls per
second made by this process on this socket type

Write Bytes/s The number of bytes per second written to this process to
sockets of this protocol type.
 Chapter 3. Multi resource monitoring and tuning tools 87

Detailed statistics
Example 3-19 shows the detailed netpmon statistics, which are an extract from
the netpmon full report.

Example 3-19 An extract from the netpmon full report showing detailed statistics

Detailed Second Level Interrupt Handler CPU use Statistics:

SLIH: cstokdd
count: 43184
 cpu time (msec): avg 0.063 min 0.008 max 0.603 sdev 0.028

SLIH: s_scsiddpin
count: 221
 cpu time (msec): avg 0.020 min 0.009 max 0.044 sdev 0.009

SLIH: gxentdd
count: 122
 cpu time (msec): avg 0.021 min 0.011 max 0.024 sdev 0.002

SLIH: unix
count: 12
 cpu time (msec): avg 0.010 min 0.003 max 0.013 sdev 0.003

COMBINED (All SLIHs)
count: 43539
 cpu time (msec): avg 0.063 min 0.003 max 0.603 sdev 0.028

==

Detailed Network Device-Driver Statistics:
--

DEVICE: token ring 0
recv packets: 37383
 recv sizes (bytes): avg 63.5 min 50 max 1514 sdev 44.1
 recv times (msec): avg 0.008 min 0.005 max 0.048 sdev 0.003
 demux times (msec): avg 0.046 min 0.005 max 0.569 sdev 0.024
xmit packets: 74328
 xmit sizes (bytes): avg 1508.3 min 50 max 1514 sdev 89.0
 xmit times (msec): avg 35.348 min 0.130 max 7837.976 sdev 164.951

Detailed TCP Socket Call Statistics (by Process):

PROCESS: ftp PID: 19060
reads: 36
 read sizes (bytes): avg 4021.3 min 4000 max 4096 sdev 39.9
88 AIX 5L Performance Tools Handbook

 read times (msec): avg 5.616 min 0.030 max 72.955 sdev 15.228

writes: 1628
 write sizes (bytes): avg 66019.2 min 6 max 66346 sdev 4637.1
 write times (msec): avg 38.122 min 0.115 max 542.537 sdev 14.785

PROCESS: aixterm PID: 16050
reads: 97
 read sizes (bytes): avg 32.0 min 32 max 32 sdev 0.0
 read times (msec): avg 0.030 min 0.021 max 0.087 sdev 0.009
writes: 273
 write sizes (bytes): avg 62.8 min 28 max 292 sdev 55.7
 write times (msec): avg 0.092 min 0.052 max 0.209 sdev 0.030

PROTOCOL: TCP (All Processes)
reads: 133
 read sizes (bytes): avg 1111.8 min 32 max 4096 sdev 1772.6
 read times (msec): avg 1.542 min 0.021 max 72.955 sdev 8.302
writes: 1901
 write sizes (bytes): avg 56547.3 min 6 max 66346 sdev 23525.1
 write times (msec): avg 32.661 min 0.052 max 542.537 sdev 19.107

Note that the values in the detailed report show the average, minimum,
maximum, and standard deviation values for the process, FLIH and SLIH,
network device driver, and TCP socket call statistics over the monitored period.

3.4 Performance Diagnostic Tool (PDT)
The Performance Diagnostic Tool (PDT) package attempts to identify
performance problems automatically by collecting and integrating a wide range
of performance, configuration, and availability data. The data is regularly
evaluated to identify and anticipate common performance problems. PDT
assesses the current state of a system and tracks changes in workload and
performance.

PDT data collection and reporting are easily enabled, and no further
administrator activity is required.

While many common system performance problems are of a specific nature,
PDT also attempts to apply some general concepts of well-performing systems
to its search for problems. Some of these concepts are:

Note: If no other structured way is used to monitor and analyze system
performance, enable PDT and archive the reports.
 Chapter 3. Multi resource monitoring and tuning tools 89

� Balanced use of resources

� Operation within bounds

� Identified workload trends

� Error free operation

� Changes investigated

� Appropriate setting of system parameters

The PDT programs reside in /usr/sbin/perf/diag_tool, and are part of the
bos.perf.diag_tool fileset, which is installable from the AIX base installation
media.

3.4.1 Syntax
To start the PDT configuration, enter:

/usr/sbin/perf/diag_tool/pdt_config

The pdt_config is a menu driven program. Refer to the Example 3.4.3 on
page 91 for its use.

/usr/sbin/perf/diag_tool/Driver_

The master script, Driver_, only takes one parameter; the name of the collection
profile for which activity is being initiated. This name is used to select which _.sh
files to run. For example, if Driver_ is executed with $1=daily, then only those
.sh files listed with a 'daily' frequency are run. Check the respective control files
to see which .sh files are driven by which profile names.

daily collection routines for those _.sh files that belong to the
daily profile. Normally this is only information gathering.

daily2 collection routines for those _.sh files that belong to the
daily2 profile. Normally this is only reporting on
previously collected information.

offweekly collection routines for those _.sh files that belong to the
offweekly profile.

3.4.2 Information on measurement and sampling
The PDT package consists of a set of shell scripts that invoke AIX commands.
When enabled, the collection and reporting scripts will run under the adm user.
90 AIX 5L Performance Tools Handbook

The master script, Driver_, will be stared by PDT:cron;Daemons:cron;cron;
Monday through Friday at 9:00 and 10:00 in the morning and every Sunday at
21:00 unless changed manually by editing the crontab entries. Each time the
Driver_ script is started it runs with different parameters.

3.4.3 Examples
To start PDT, run the following command and use the menu driven configuration
program to perform the basic setup:

/usr/sbin/perf/diag_tool/pdt_config

When you run it, follow the menus. Example 3-20 is taken from the main menu.

Example 3-20 PDT customization menu

________________PDT customization menu__________________

1) show current PDT report recipient and severity level
2) modify/enable PDT reporting
3) disable PDT reporting
4) modify/enable PDT collection
5) disable PDT collection
6) de-install PDT
7) exit pdt_config
Please enter a number:

First check the current setting by selecting 1 in Example 3-21.

Example 3-21 PDT current setting
current PDT report recipient and severity level
root 3

________________PDT customization menu__________________

1) show current PDT report recipient and severity level
2) modify/enable PDT reporting
3) disable PDT reporting
4) modify/enable PDT collection
5) disable PDT collection
6) de-install PDT
7) exit pdt_config
Please enter a number:

This states level 3 reports are to be made and sent to the root user on the local
system. To check if root has a mail alias defined, run the following command:

grep ^root /etc/aliases
 Chapter 3. Multi resource monitoring and tuning tools 91

If nothing is returned, the mail should be delivered to the local node. If there is a
return value, use the command below to determine the destination address:

grep ^root /etc/aliases
root:pdt@collector.itso.ibm.com,"|/usr/bin/cat >>/tmp/log"

The above example shows that mail for the root users is routed to another user
on another host, in this case the user pdt on host collector.itso.ibm.com, and
the mail will also be appended to the /tmp/log file.

By default, the Driver_ program reports are generated with severity level 1 with
only the most serious problems identified. Severity levels 2 and 3 are more
detailed. By default, the reports are mailed to the adm user, but can be changed
to root or not sent at all.

The configuration program will update the adm user’s crontab file. Check the
changes made by using the cronadm command as in Example 3-22.

Example 3-22 Checking the PDT crontab entry
cronadm cron -l adm|grep diag_tool
0 9 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily
0 10 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily2
0 21 * * 6 /usr/sbin/perf/diag_tool/Driver_ offweekly

It could also be done by using grep on the crontab file as shown in
Example 3-23.

Example 3-23 Another way of checking the PDT crontab entry
grep diag_tool /var/spool/cron/crontabs/adm
0 9 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily
0 10 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily2
0 21 * * 6 /usr/sbin/perf/diag_tool/Driver_ offweekly

The daily parameter makes the Driver_ program collect data and store it in the
/var/perf/tmp directory. The programs that do the actual collecting are specified
in the /var/perf/cfg/diag_tool/.collection.control file. These programs are also
located in the /usr/sbin/perf/diag_tool directory.

The daily2 parameter makes the Driver_ program create a report from the
/var/perf/tmp data files and emails it to the recipient specified in the
/var/perf/cfg/diag_tool/.reporting.list file. The PDT_REPORT is the formatted
version and the .SM_RAW_REPORT is the unformatted report file.

How to edit the configuration files
There are some configuration files for PDT that need to be edited to better reflect
the needs of a specific system.
92 AIX 5L Performance Tools Handbook

How to find PDT files and directories
PDT analyzes files and directories for systematic growth in size. It examines only
those files and directories listed in the file /var/perf/cfg/diag_tool/.files. The
format of the .files file is one file or directory name per line. The default content of
this file is as follows (Example 3-24).

Example 3-24 .files file
/usr/adm/wtmp
/var/spool/qdaemon/
/var/adm/ras/
/tmp/

You can use an editor1 to modify this file to track files and directories that are
important to your system.

How to monitor hosts
PDT tracks the average ECHO_REQUEST delay to hosts whose names are listed in
the /var/perf/cfg/diag_tool/.nodes file. This file is not shipped with PDT (which
means that no host analysis is performed by default), but may be created by the
administrator. The file should contain a hostname or ip address for each host that
is to be monitored (pinged). Each line in the .nodes file should only contain either
a hostname or ip address. In our following example we will monitor the
connection to the Domain Name Server (DNS). Example 3-25 shows how to
check which nameserver a DNS client is using by examining the /etc/resolv.conf
file.

Example 3-25 ./etc/resolv.conf file
awk '/nameserver/{print $2}' /etc/resolv.conf
9.12.0.30

To monitor the nameserver shown in the example above, the .nodes file could
contain the IP address on a separate line as in Example 3-26.

Example 3-26 .nodes file
cat .nodes
9.12.0.30

How to change thresholds
The file /var/perf/cfg/diag_tool/.thresholds contains the thresholds used in
analysis and reporting. These thresholds, listed below, have an effect on PDT
report organization and content. Example 3-27 is the content of the default file.

Example 3-27 .thresholds default file
grep -v ^# .thresholds

1 Or just append filenames with: print filename >> .files
 Chapter 3. Multi resource monitoring and tuning tools 93

DISK_STORAGE_BALANCE 800
PAGING_SPACE_BALANCE 4
NUMBER_OF_BALANCE 1
MIN_UTIL 3
FS_UTIL_LIMIT 90
MEMORY_FACTOR .9
TREND_THRESHOLD .01
EVENT_HORIZON 30

The settings above are the default values. The thresholds are:

DISK_STORAGE_BALANCE The SCSI controllers having the largest and smallest
disk storage are identified. This is a static size, not the
amount allocated or free.The default value is 800. Any
integer value between zero (0) and 10000 is valid.

PAGING_SPACE_BALANCE The paging spaces having the largest and the smallest
areas are identified. The default value is 4. Any integer
value between zero (0) and 100 is accepted. This
threshold is presently not used in analysis and
reporting.

NUMBER_OF_BALANCE The SCSI controllers having the greatest and least
number of disks attached are identified.The default
value is one (1). It can be set to any integer value from
zero (0) to 10000.

MIN_UTIL Applies to process utilization. Changes in the top three
CPU consumers are only reported if the new process
had a utilization in excess of MIN_UTIL. The default
value is 3. Any integer value from zero (0) to 100 is
valid.

FS_UTIL_LIMIT Applies to journaled file system utilization. Any integer
value between zero (0) and 100 is accepted.

MEMORY_FACTOR The objective is to determine if the total amount of
memory is adequately backed up by paging space.
The formula is based on experience and actually
compares MEMORY_FACTOR * memory with the average
used paging space. The current default is .9. By
decreasing this number, a warning is produced more
frequently. Increasing this number eliminates the
message altogether. It can be set anywhere between
.001 and 100.

TREND_THRESHOLD Used in all trending assessments. It is applied after a
linear regression is performed on all available
historical data. This technique basically draws the best
94 AIX 5L Performance Tools Handbook

line among the points. The slope of the fitted line must
exceed the last_value * TREND_THRESHOLD. The
objective is to try to ensure that a trend, however
strong its statistical significance, has some practical
significance. The threshold can be set anywhere
between 0.00001 and 100000.

EVENT_HORIZON Also used in trending assessments. For example, in
the case of file systems, if there is a significant (both
statistical and practical) trend, the time until the file
system is 100 percent full is estimated. The default
value is 30, and it can be any integer value between
zero (0) and 100000.

How to use reports generated by PDT
The following default configured level 3 report is an indication of what will be
delivered by E-mail every day (Example 3-28).

Example 3-28 PDT sample E-mail report
Performance Diagnostic Facility 1.0

 Report printed: Tue May 8 10:00:00 2001

 Host name: wlmhost
 Range of analysis includes measurements
 from: Hour 9 on Tuesday, May 8th, 2001
 to: Hour 9 on Tuesday, May 8th, 2001

 Notice: To disable/modify/enable collection or reporting
 execute the pdt_config script as root

------------------------ Alerts ---------------------

 I/O CONFIGURATION
 - Note: volume hdisk1 has 8144 MB available for allocation
 while volume hdisk0 has 5696 MB available

 PAGING CONFIGURATION
 - Physical Volume hdisk2 (type: SCSI) has no paging space defined
 - Physical Volume hdisk3 (type: SCSI) has no paging space defined
 - Physical Volume hdisk1 (type: SCSI) has no paging space defined
 - All paging spaces have been defined on one Physical volume (hdisk0)

 I/O BALANCE
 - Phys. volume hdisk0 is not busy
 volume hdisk0, mean util. = 0.00 %
 - Phys. volume hdisk1 is not busy
 Chapter 3. Multi resource monitoring and tuning tools 95

 volume hdisk1, mean util. = 0.00 %
 - Phys. volume hdisk2 is not busy
 volume hdisk2, mean util. = 0.00 %
 - Phys. volume hdisk3 is not busy
 volume hdisk3, mean util. = 0.00 %

 PROCESSES
 - First appearance of 20250 (j2pg) on top-3 memory list
 (memory % = 5.00)
 - First appearance of 7258 (rtcmd) on top-3 memory list
 (memory % = 5.00)
 - First appearance of 2322 (gil) on top-3 memory list
 (memory % = 5.00)

 FILE SYSTEMS
 - File system hd2 (/usr) is nearly full at 94 %
 - File system lv04 (/work/fs1) is nearly full at 100 %
 - File system lv05 (/work/fs2) is nearly full at 100 %

----------------------- System Health ---------------

 SYSTEM HEALTH
 - Current process state breakdown:
 99.00 [100.0 %] : active
 99.00 = TOTAL
 [based on 1 measurement consisting of 10 2-second samples]

-------------------- Summary -------------------------
 This is a severity level 3 report
 No further details available at severity levels > 3

The PDT_REPORT, at level 3, will have the following report sections:

� Alerts
� Upward Trends
� Downward Trends
� System Health
� Other
� Summary

And subsections such as the following:

� I/O CONFIGURATION
� PAGING CONFIGURATION
� I/O BALANCE
� PROCESSES
� FILE SYSTEMS
� VIRTUAL MEMORY
96 AIX 5L Performance Tools Handbook

This is the raw information from the .SM_RAW_REPORT file that is used for creating
the PDT_REPORT file (Example 3-29).

Example 3-29 .SM_RAW_REPORT file
H 1 | Performance Diagnostic Facility 1.0
H 1 |

H 1 | Report printed: Tue May 8 10:00:00 2001

H 1 |

H 1 | Host name: wlmhost

H 1 | Range of analysis includes measurements

H 1 | from: Hour 9 on Tuesday, May 8th, 2001

H 1 | to: Hour 9 on Tuesday, May 8th, 2001
H 1 |
...(lines omitted)...

The following script shows you how to extract report subsections from the
PDT_REPORT file (Example 3-30). In this example it displays all subsections in turn.

Example 3-30 Script to extract subsections
#!/bin/ksh

set -A tab "I/O CONFIGURATION" "PAGING CONFIGURATION" "I/O BALANCE" \
 "PROCESSES" "FILE SYSTEMS" "VIRTUAL MEMORY"

for string in "${tab[@]}";do
 grep -p "$string" /var/perf/tmp/PDT_*
done

This is a sample output from the script above using the same data as in
Example 3-28 on page 95 (Example 3-31).

Example 3-31 Output from extract subsection script
I/O CONFIGURATION
 - Note: volume hdisk1 has 8144 MB available for allocation
 while volume hdisk0 has 5696 MB available

 PAGING CONFIGURATION
 - Physical Volume hdisk2 (type: SCSI) has no paging space defined
 - Physical Volume hdisk3 (type: SCSI) has no paging space defined
 - Physical Volume hdisk1 (type: SCSI) has no paging space defined
 - All paging spaces have been defined on one Physical volume (hdisk0)
 Chapter 3. Multi resource monitoring and tuning tools 97

 I/O BALANCE
 - Phys. volume hdisk0 is not busy
 volume hdisk0, mean util. = 0.00 %
 - Phys. volume hdisk1 is not busy
 volume hdisk1, mean util. = 0.00 %
 - Phys. volume hdisk2 is not busy
 volume hdisk2, mean util. = 0.00 %
 - Phys. volume hdisk3 is not busy
 volume hdisk3, mean util. = 0.00 %

 PROCESSES
 - First appearance of 20250 (j2pg) on top-3 memory list
 (memory % = 5.00)
 - First appearance of 7258 (rtcmd) on top-3 memory list
 (memory % = 5.00)
 - First appearance of 2322 (gil) on top-3 memory list
 (memory % = 5.00)

 FILE SYSTEMS
 - File system hd2 (/usr) is nearly full at 94 %
 - File system lv04 (/work/fs1) is nearly full at 100 %
 - File system lv05 (/work/fs2) is nearly full at 100 %

How to create a PDT report manually
As an alternative to using the periodic report, any user can request a current
report from the existing data by executing
/usr/sbin/perf/diag_tool/pdt_report #, where # is a severity number from
one (1) to three (3). The report is produced with the given severity (if none is
provided, it defaults to one) and is written to standard output. Generating a report
in this way does not cause any change to the /var/perf/tmp/PDT_REPORT files.

How to run PDT collection manually
In some cases you might want to run the collection manually or by other means
than using cron. You simply run the Driver_ script with options as in the cronfile.
The following example will perform the basic collection:

/usr/sbin/perf/diag_tool/Driver_ daily

3.5 perfpmr
perfpmr is a set of utilities that build a testcase containing the necessary
information to assist in analyzing performance issues. It is primarily designed to
assist IBM software support, but is also useful as a documentation tool for your
system.
98 AIX 5L Performance Tools Handbook

As perfpmr is updated frequently, it is not distributed on AIX media. It can be
downloaded from ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr

3.5.1 Syntax
The syntax of the perfpmr command is as follows:

perfpmr.sh monitor_seconds [delay_seconds] [-c] [-n] [-p] [-s]

Flags
-c Used if configuration information is not required

-n Used if netstat or nfsstat is not required

-p Used if pprof collection is not required while monitor.sh is running

-s Used if svmon outout is not required

Parameters
monitor_seconds Collection period in seconds. The minimum monitor_seconds

is 60 seconds.

delay_seconds Wait before starting collection period (in seconds). The
default value for delay_seconds is 0.

Use perfpmr.sh 600 for a standard collection period of 600 seconds.

3.5.2 Information on measurement and sampling
Unless you run the shell scripts separately, perfpmr.sh 600 will execute the
following shell scripts to obtain a testcase. You can also run these scripts on their
own. Please refer to “Running perfpmr” on page 106 for details.

config.sh Collects configuration information into a report called
config.sum.

emstat.sh time Builds a report called emstat.int on emulated
instructions. The time parameter must be greater or
equal to 60.

filemon.sh time Builds a report called filemon.sum on file I/O. The time
parameter does not have any restrictions.

hd_pbuf_cnt.sh Produces information on the number of waits on
Logical Volume Manager (LVM).

iostat.sh time Builds two reports on I/O statistics; a summary report
called iostat.sum, and an interval report called
 Chapter 3. Multi resource monitoring and tuning tools 99

iostat.int. The time parameter must be greater or equal
to 60.

iptrace.sh time Builds a raw Internet Protocol (IP) trace report on
network I/O called iptrace.raw. You can convert the
iptrace.raw file to a readable ipreport file called
iptrace.int using command iptrace.sh -r
The time parameter does not have any restrictions.

monitor.sh time The syntax is: monitor.sh time [-n] [-p] [-s]

-n Flag used if netstat or nfsstat is not required.
-p Flag used if pprof is not required.
-s Flag used if svmon is not required.

monitor.sh creates the following reports:

lsps.after Contains lsps -a and lsps -s output
after monitor.sh was run. Used to
report on paging space use.

lsps.before Contains lsps -a and lsps -s output
before monitor.sh was run. Used to
report on paging space use.

nfsstat.int Contains nfsstat -m and nfsstat
-csnr output before and after
monitor.sh was run. Used to report
on Network File System use and
configuration.

monitor.int Contains samples by interval using ps
-efk (showing active processes
before and after monitor.sh was run).
It also contains sadc, sar -A, iostat,
vmstat, and emstat output.

monitor.sum Contains samples by summary using
ps -efk (showing changes in ps
output for active processes before and
after monitor.sh was run). It also
contains sadc, sar -A, iostat,
vmstat, and emstat outputs.

pprof.trace.raw Contains the raw trace for pprof.

psb.elfk Contains a modified ps -elk output
before monitor.sh was run.

svmon.after Contains svmon -G and svmon -Pns
output and top segments use by
process with the svmon -S command
100 AIX 5L Performance Tools Handbook

after monitor.sh was run. Used to
report on memory use.

svmon.before Contains svmon -G and svmon -Pns
output and top segment use by
process with the svmon -S command
before monitor.sh was run. Used to
report on memory use.

vmstati.after Contains vmstat -i output after
monitor.sh was run. Used to report
on I/O device interrupts.

vmstati.before Contains vmstat -i output before
monitor.sh was run. Used to report
on I/O device interrupts.

vmtunea.after Contains vmtune -a output after
monitor.sh was run. Used to report
on memory use.

vmtunea.before Contains vmtune -a output before
monitor.sh was run. Used to report
on memory use.

netstat.sh [-r] time Builds a report on network configuration and use
called netstat.int containing tokstat -d of the
token-ring interfaces, entstat -d of the ethernet
interfaces, netstat -in, netstat -m, netstat -rn,
netstat -rs, netstat -s, netstat -D, and netstat
-an before and after monitor.sh was run. You can
reset the ethernet and token-ring statistics and re-run
this report by running netstat.sh -r 60. The time
parameter must be greater or equal to 60.

nfsstat.sh time Builds a report on NFS configuration and use called
netstat.int containing nfsstat -m, and nfsstat -csnr
before and after nfsstat.sh was run. The time
parameter must be greater or equal to 60.

perfpmr.sh time Generates all the reports listed here. The time
parameter must be greater or equal to 60. Refer to
section “Parameters” on page 99 for the syntax.

pprof.sh time Builds a file called pprof.trace.raw that can be
formatted with the pprof.sh -r command. Refer to
Section 4.7.3, “Examples” on page 251 for more
details. The time parameter does not have any
restrictions.
 Chapter 3. Multi resource monitoring and tuning tools 101

ps.sh time Builds reports on process status (ps). ps.sh creates
the following files:

psa.elfk A ps -elfk listing after ps.sh was run.

psb.elfk A ps -elfk listing before ps.sh was run.

ps.int Active processes before and after ps.sh was
run.

ps.sum A summary report of the changes between
when ps.sh started and finished. This is
useful for determining what processes are
consuming resources.

The time parameter must be greater or equal to 60.

sar.sh time Builds reports on sar. sar.sh creates the following
files:

sar.int Output of commands sadc 10 7 and sar -A

sar.sum A sar summary over the period sar.sh was
run

The time parameter must be greater or equal to 60.

tcpdump.sh int.time int. is the name of the interface, for example tr0 is
token-ring. Creates a raw trace file of a TCP/IP dump
called tcpdump.raw. To produce a readable
tcpdump.int file, use the command tcpdump.sh -r. The
time parameter does not have any restrictions.

tprof.sh time Creates a tprof summary report called tprof.sum.
Used for analyzing memory use of processes and
threads. You can also specify a program to profile by
specifying the command tprof.sh -p program 60.
This command allows you to profile the executable
called program for 60 seconds. The time parameter
does not have any restrictions.

trace.sh time Creates the raw trace files (trace*) from which an
ASCII trace report can be generated using the trcrpt
command or by running trace.sh -r. This command
will create a file called trace.int that contains the
readable trace. Used for analyzing performance
problems. The time parameter does not have any
restrictions.

vmstat.sh time Builds reports on vmstat; a vmstat interval report
called vmstat.int, and a vmstat summary report called
102 AIX 5L Performance Tools Handbook

vmstat.sum. The time parameter must be greater or
equal to 60.

Due to the volume of data trace collects, the trace will only run for five seconds
(by default), so it is possible that it will not be running when the performance
problems occur on your system, especially if your performance problems occur
for short periods. In this case, it would be advisable to run the trace by itself for a
period of 15 seconds when the problem is present. The command to run a trace
for fifteen seconds is trace.sh 15

An RS/6000 SP can produce a testcase of 135 MB, with 100 MB just for the
traces. This size can vary considerably depending on system load. If you run the
trace on the same system with the same workload for 15 seconds, then you
could expect the trace files to be approximately 300 MB in size.

One raw trace file per CPU is produced. The files are called trace.raw-0,
trace.raw-1, and so forth for each CPU. An additional raw trace file called
trace.raw is also generated. This is a master file that has information that ties in
the other CPU specific traces. To merge the trace files together to form one raw
trace file, run the following commands:

trcrpt -C all -r trace.raw > trace.r

rm trace.raw*

3.5.3 Building and submitting a testcase
You may be asked by IBM to supply a testcase for a performance problem or you
may wish to run perfpmr.sh for your own requirements (for example, to produce
a base line for detecting future performance problems). In either case,
perfpmr.sh is the tool to collect performance data. Even if your performance
problem is attributed to one component of your system, for example, the network,
perfpmr.sh is still the way to send a testcase because it contains other
information that is required for problem determination. Additional information for
problem determination may be requested by IBM software support.

There are five stages to build and send a testcase. These steps must be
completed when you are logged in as root. The steps are listed as follows:

� Prepare to download perfpmr

Note: IBM releases Maintenance Levels for AIX. These are a collection of
Program Temporary Fixes (PTFs) used to upgrade the operating system to
the latest level, but remaining within your current release. Often these, along
with the current version of micro-code for the disks and adapters, have
performance enhancement fixes. You may therefore wish to load these.
 Chapter 3. Multi resource monitoring and tuning tools 103

� Download perfpmr

� Install perfpmr

� Run perfpmr

� Upload the testcase

Preparing for perfpmr
The following filesets should be installed before running perfpmr.sh:

� bos.acct

� bos.sysmgt.trace

� perfagent.tools

� bos.net.tcp.server

� bos.adt.include

� bos.adt.samples

Downloading perfpmr
perfpmr is downloadable from
ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr

Using a browser, download the version that is applicable to your version of AIX.
The file size should be under 1 MB.

If you have downloaded perfpmr to a PC then transfer it to the system in binary
mode using ftp, placing it in an empty directory.

Installing perfpmr
Uncompress and extract the file with the tar command. The current directory will
be populated with the following files:

� Install
� PROBLEM.INFO
� README
� config.sh
� curt
� emstat.sh
� filemon.sh
� getevars
� hd_pbuf_cnt.sh
� iostat.sh

Important: Always download a new copy of perfpmr in case of changes. Do
not use an existing pre-downloaded copy.
104 AIX 5L Performance Tools Handbook

� iptrace.sh
� lsc
� memfill
� monitor.sh
� netstat.sh
� nfsstat.sh
� perfpmr.sh
� pprof.sh
� ps.sh
� sar.sh
� setpri
� smmap
� splat
� tcpdump.sh
� tprof.sh
� trace.sh
� utld
� vmstat.sh
� why

In the directory you will notice files ending in .sh. These are shell scripts that may
be run separately. Normally these shell scripts are run automatically by running
perfpmr.sh. Please read the README file to find any additional steps that may
be applicable to your system.

Install perfpmr by running ./Install. This will replace the following files in the
/usr/bin directory with symbolic links to the files in the directory where you
installed perfpmr:

� config.sh
� curt
� emstat.sh
� filemon.sh
� getevars
� hd_pbuf_cnt.sh
� iostat.sh
� iptrace.sh
� lsc
� monitor.sh
� netstat.sh
� nfsstat.sh
� perfpmr.sh
� pprof.sh
� ps.sh
� sar.sh
� setpri
 Chapter 3. Multi resource monitoring and tuning tools 105

� tcpdump.sh
� tprof.sh
� trace.sh
� utld
� vmstat.sh

The output of the installation procedure will be similar to that shown in
Example 3-32.

Example 3-32 Perfpmr installation screen
./Install

(C) COPYRIGHT International Business Machines Corp., 2000

 PERFPMR Installation started...

 PERFPMR Installation completed.

Running perfpmr
There are two scenarios to consider when running perfpmr.

If your system is performing poorly for long periods of time and you can predict
when it runs slow, then you can run ./perfpmr.sh 600

In some situations, a system may perform normally but will run slow at various
times of the day. If you run perfpmr.sh 600 then there is a chance that perfpmr
might not have captured the performance slow-down. In this case you could run
the scripts manually when the system is slow and use a longer time-out period,
for example, a trace.sh 15 will perform a trace for 15 seconds instead of the
default five seconds. We would still need a perfpmr.sh 600 to be initially run
before running individual scripts. This will ensure that all the data and
configuration has been captured.

perfpmr.sh creates the following files on a system with four CPUs:

� perfpmr.int
� config.sum
� crontab_l
� etc_security_limits

Attention: If you are using HACMP, then you may want to extend the Dead
Man Switch (DMS) time-out or shutdown HACMP prior to collecting perfpmr
data to avoid accidental failovers.
106 AIX 5L Performance Tools Handbook

� errpt_a
� getevars.out
� __tmp.k
� __tmp.s
� __tmp.u
� tprof.sum
� w.int
� __ldmap
� __trc_rpt2
� filemon.sum
� iptrace.raw
� monitor.int
� monitor.sum
� vmtunea.after
� lsps.after
� vmstati.after
� pprof.trace.raw
� netstat.int
� psa.elfk
� nfsstat.int
� psb.elfk
� lsps.before
� vmstati.before
� vmtunea.before
� gennames.out
� trace.fmt
� trace.nm
� trace.crash.inode
� trace.maj_min2lv
� trace.raw-0
� trace.raw-1
� trace.raw-2
� trace.raw-3
� trace.raw

Uploading the testcase
The directory will also contain a file called PROBLEM.INFO that must be
completed. Bundle the files together using the tar command and upload the file
to IBM as documented in the README files.

Tip: After you have installed perfpmr you can run it at any time to make sure
that all the files described above are captured. By doing this, you can be
confident that you will get a full testcase.
 Chapter 3. Multi resource monitoring and tuning tools 107

3.5.4 Examples
Example 3-33 is an example of running perfpmr.sh 600.

Example 3-33 Running perfpmr.sh
perfpmr.sh 600
C) COPYRIGHT International Business Machines Corp., 2000

 PERFPMR: perfpmr.sh Version 433 2000/06/06
 PERFPMR: Parameters passed to perfpmr.sh: 600
 PERFPMR: Data collection started in foreground (renice -n -20)

 TRACE.SH: Starting trace for 5 seconds
 TRACE.SH: Data collection started
 TRACE.SH: Data collection stopped
 TRACE.SH: Trace stopped
 TRACE.SH: Trcnm data is in file trace.nm
 TRACE.SH: /etc/trcfmt saved in file trace.fmt
 TRACE.SH: Binary trace data is in file trace.raw

 MONITOR: Capturing initial lsps and vmstat data
 MONITOR: Starting system monitors for 600 seconds.
 MONITOR: Waiting for measurement period to end....

 MONITOR: Capturing final lsps and vmstat data
 MONITOR: Generating reports....
 MONITOR: Network reports are in netstat.int and nfsstat.int
 MONITOR: Monitor reports are in monitor.int and monitor.sum

 IPTRACE: Starting iptrace for 10 seconds....
0513-059 The iptrace Subsystem has been started. Subsystem PID is 28956.
0513-044 The iptrace Subsystem was requested to stop.
 IPTRACE: iptrace collected....
 IPTRACE: Binary iptrace data is in file iptrace.raw

 FILEMON: Starting filesystem monitor for 60 seconds....
 FILEMON: tracing started
 FILEMON: tracing stopped
 FILEMON: Generating report....

 TPROF: Starting tprof for 60 seconds....
 TPROF: Sample data collected....
 TPROF: Generating reports in background (renice -n 20)
 TPROF: Tprof report is in tprof.sum

 CONFIG.SH: Generating SW/HW configuration
WLM is running
 CONFIG.SH: Report is in file config.sum
108 AIX 5L Performance Tools Handbook

PERFPMR: Data collection complete.

3.6 ps
The Process Status (ps) command produces a list of processes on the system
that can be used to determine how long a process has been running, how much
CPU resource processes are using, and if processes are being penalized by the
system. It will also show how much memory processes are using, how much I/O
a process is performing, the priority and nice values for process, and who
created the process.

ps resides in /usr/bin and is part of the bos.rte.commands fileset, which is
installed by default from the AIX base installation media.

3.6.1 Syntax
The syntax of the ps command is as follows:

X/Open Standards

ps [-ARNaedfklm] [-n namelist] [-F Format] [-o
specifier[=header],...][-p proclist][-G|-g grouplist] [-t termlist]
[-U|-u userlist] [-c classlist]

Berkeley Standards

ps [a] [c] [e] [ew] [eww] [g] [n] [U] [w] [x] [l |
s | u | v] [t Tty] [ProcessNumber]

Tip: It is useful to run perfpmr when your system is under load and performing
normally. This will give you a base line to determine future performance
problems.

You should run perfpmr again when:

� Your system is experiencing performance problems.

� You make hardware changes to the system.

� You make any changes to your network configuration.

� You make changes to the AIX Operating System, for example, when you
install upgrades or tune AIX.

� You make changes to your application.
 Chapter 3. Multi resource monitoring and tuning tools 109

Flags
The following flags are all preceded by a - (minus sign):

-A Writes information about all processes to standard output.

-a Writes information about all processes except the session leaders
and processes not associated with a terminal to standard output.

-c Clist Displays only information about processes assigned to the
Workload Management (WLM) classes listed in the Clist variable.
The Clist variable is either a comma separated list of class
names or a list of class names enclosed in double quotation marks
(" "), that are separated from one another by a comma or by one or
more spaces, or both.

-d Writes information to standard output about all processes except
the session leaders.

-e Writes information to standard output about all processes except
the kernel processes.

-F Format This flag is equivalent to the -o Format flag.

-f Generates a full listing.

-G Glist Writes information to standard output only about processes that
are in the process groups listed for the Glist variable. The Glist
variable is either a comma-separated list of process group
identifiers or a list of process group identifiers enclosed in double
quotation marks (" ") and separated from one another by a comma,
or by one or more spaces.

-g Glist This flag is equivalent to the -G Glist flag.

-k Lists kernel processes.

-l Generates a long listing.

-m Lists kernel threads as well as processes. Output lines for
processes are followed by an additional output line for each kernel
thread. This flag does not display thread-specific fields (bnd,
scount, sched, thcount, and tid) unless the appropriate -o Format
flag is specified.

-N Gathers no thread statistics. With this flag, ps simply reports those
statistics that can be obtained by not traversing through the
threads chain for the process.

-n NameList Specifies an alternative system name-list file in place of the default.
This flag is not used by AIX.

-o Format Displays information in the format specified by the Format variable.
Multiple field specifiers can be specified for the Format variable.
110 AIX 5L Performance Tools Handbook

The Format variable is either a comma-separated list of field
specifiers or a list of field specifiers enclosed within a set of " "
(double-quotation marks) and separated from one another by a
comma, one or more spaces, or both. Each field specifier has a
default header. The default header can be overridden by
appending an = (equal sign) followed by the user-defined text for
the header. The fields are written in the order specified on the
command line in column format. The field widths are specified by
the system to be at least as wide as the default or user-defined
header text. If the header text is null, (such as if -o user= is
specified), the field width is at least as wide as the default header
text. If all header fields are null, no header line is written.

-p Plist Displays only information about processes with the process
numbers specified for the Plist variable. The Plist variable is
either a comma separated list of Process ID (PID) numbers, or a list
of process ID numbers enclosed in double quotation marks (" ")
and separated from one another by a comma, one or more spaces,
or both.

-t Tlist Displays only information about processes associated with the
workstations listed in the Tlist variable. The Tlist variable is
either a comma separated list of workstation identifiers, or a list of
workstation identifiers enclosed in double quotation marks (" ") and
separated from one another by a comma, one or more spaces, or
both.

-R Reviewed for future use.

-U Ulist Displays only information about processes with the user ID
numbers or login names specified in the Ulist variable. The Ulist
variable is either a comma-separated list of user IDs, or a list of
user IDs enclosed in double quotation marks (" ") and separated
from one another by a comma and one or more spaces. In the
listing, the ps command displays the numerical user ID unless the
-f flag is used, in which case the command displays the login
name. See also the u flag.

-u Ulist This flag is equivalent to the -U Ulist flag.

The following options are not preceded by a - (minus sign):

a Displays information about all processes with terminals (ordinarily
only the user's own processes are displayed).

c Displays the command name, as stored internally in the system for
purposes of accounting, rather than the command parameters,
which are kept in the process address space.
 Chapter 3. Multi resource monitoring and tuning tools 111

e Displays the environment as well as the parameters to the
command, up to a limit of 80 characters.

ew Wraps display from the e flag one extra line.

eww Wraps display from the e flag as many times as necessary.

g Displays all processes.

l Displays a long listing of the F, S, UID, PID, PPID, C, PRI, NI, ADDR, SZ,
PSS, WCHAN, TTY, TIME, and CMD fields.

n Displays numerical output. In a long listing, the WCHAN field is
printed numerically rather than symbolically. In a user listing, the
USER field is replaced by a UID field.

s Displays the size (SSIZ) of the kernel stack of each process (for
use by system maintainers) in the basic output format. This value is
always 0 (zero) for a multi-threaded process.

t tty Displays processes whose controlling tty is the value of the tty
variable, which should be specified as printed by the ps command;
that is, 0 for terminal /dev/tty0, lft0 for /dev/lft0, and pts/2 for
/dev/pts/2.

u Displays user-oriented output. This includes the USER, PID, %CPU,
%MEM, SZ, RSS, TTY, STAT, STIME, TIME, and COMMAND fields.

v Displays the PGIN, SIZE, RSS, LIM, TSIZ, TRS, %CPU, and %MEM fields.

w Specifies a wide-column format for output (132 columns rather
than 80). If repeated, (for example, ww), uses arbitrarily wide output.
This information is used to decide how much of long commands to
print.

x Displays processes with no terminal.

3.6.2 Information on measurement and sampling
The ps command is useful for determining the following:

� How long a process has been running on the system

� How much CPU resource a process is using

� If processes are being penalized by the system

� How much memory a process is using

� How much I/O a process is performing

� The priority and nice values for the process

� Who created the process
112 AIX 5L Performance Tools Handbook

3.6.3 Examples
The following examples can be used for analyzing performance problems using
ps:

Displaying the top 10 CPU consuming processes
The following commands are useful for determining the top 10 processes that are
consuming the most CPU. The aux flags of the ps command display USER, PID,
%CPU, %MEM, SZ, RSS, TTY, STAT, STIME, TIME, and COMMAND fields. The sort
-rn +2 is a reverse order numeric sort of the third column (in this case %CPU). The
head -10 (-10 is optional as the head command defaults to 10) displays only the
first 10 processes (Example 3-34).

Example 3-34 Displaying the top 10 CPU consuming processes
ps aux | head -1 ; ps aux | sort -rn +2 | head -10
USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 516 24.3 3.0 8 11772 - A May 11 8537:19 wait
root 1290 24.2 3.0 8 11772 - A May 11 8517:36 wait
root 774 24.2 3.0 8 11772 - A May 11 8515:55 wait
root 1032 24.1 3.0 8 11772 - A May 11 8488:15 wait
root 26640 2.6 3.0 32 11784 - A 09:22:34 67:26 nfsd
root 25828 1.7 0.0 1172 1196 - A 14:08:48 23:51 xmwlm
root 10836 0.3 3.0 16 11780 - A May 11 115:40 kbiod
root 1548 0.1 3.0 12 11776 - A May 11 21:11 lrud
root 36656 0.0 0.0 1064 908 pts/14 A May 16 0:08 -ksh
root 36408 0.0 0.0 1612 348 - A May 16 0:00 telnetd -a

The wait processes listed in the above report show that this system is mainly
idle. There are four wait processes, one for each CPU. You can determine how
many processors your system has by running the lsdev -Cc processor
command.

In Example 3-35, a test program called cpu was started and, as can be
observed, processes 31758, 14328 and 33194 used more CPU than wait. The
report displays the %CPU column sorted in reverse numerical order. %CPU
represents the percentage of time the process was actually consuming CPU
resource in relation to the life of the process.

Example 3-35 Displaying the top 10 CPU consuming processes
ps aux | head -1 ; ps aux | sort -rn +2 | head
USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 31758 24.7 2.0 4156 4152 pts/8 A 13:58:33 4:53 cpu 5
root 14328 24.5 2.0 4156 4152 pts/8 A 13:58:33 4:50 cpu 5
root 33194 24.3 2.0 4156 4152 pts/8 A 13:58:33 4:47 cpu 5
root 516 24.2 5.0 8 11536 - A May 11 9573:27 wait
root 1290 24.1 5.0 8 11536 - A May 11 9528:52 wait
root 774 24.1 5.0 8 11536 - A May 11 9521:18 wait
 Chapter 3. Multi resource monitoring and tuning tools 113

root 1032 24.0 5.0 8 11536 - A May 11 9494:31 wait
root 31256 11.2 2.0 4156 4152 pts/8 A 13:58:33 2:13 cpu 5
root 25924 11.2 2.0 4208 4204 pts/8 A 13:58:33 2:13 cpu 5
root 31602 1.6 0.0 1172 944 pts/10 A 10:37:21 13:29 xmwlm

Displaying the top ten memory consuming processes
The following command line is useful for determining the percentage of real
memory (size of working segment and the code-segment combined together)
used by the process. The report displays the %MEM column sorted in reverse
numerical order (Example 3-36).

Example 3-36 Displaying the top 10 memory consuming processes using RSS
ps aux | head -1 ; ps aux | sort -rn +3 | head
USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 26640 2.6 3.0 32 11784 - A 09:22:34 67:26 nfsd
root 24564 0.0 3.0 32 11780 - A May 15 0:06 rpc.lockd
root 19386 0.0 3.0 16 11772 - A May 16 0:00 cdpg
root 13418 0.0 3.0 16 11780 - A May 11 0:01 PM
root 10836 0.3 3.0 16 11780 - A May 11 115:40 kbiod
root 10580 0.0 3.0 20 11784 - A May 11 0:00 rtcmd
root 9306 0.0 3.0 152 11908 - A May 11 0:00 j2pg
root 7244 0.0 3.0 16 11772 - A May 11 0:00 jfsz
root 5420 0.0 3.0 40 11772 - A May 11 0:00 dog
root 3372 0.0 3.0 16 11772 - A May 11 0:00 lvmbb

Another way to determine memory use is to use the command line in
Example 3-37. The SZ represents the virtual size in kilobytes of the data section
of the process. This is sometimes displayed as SIZE by other flags). This number
is equal to the number of working-segment pages of the process that have been
touched (that is, the number of paging-space slots that have been allocated)
times four. File pages are excluded. If some working-segment pages are
currently paged out, this number is larger than the amount of real memory being
used.

The report displays the SZ column sorted in reverse numerical order.

Example 3-37 Displaying the top 10 memory consuming processes using SZ
ps -ealf | head -1 ; ps -ealf | sort -rn +9 | head
 F S UID PID PPID C PRI NI ADDR SZ WCHAN STIME TTY TIME CMD
 240001 A root 4712 5944 0 181 20 f19e 6836 30b50f10 May 20 - 4:58 /usr/lpp/X11/bin/X -WjfP7a
 240001 A root 27146 3418 0 181 20 a4d7 5296 * 13:10:57 - 0:05 /usr/sbin/rsct/bin/IBM.FSrmd
 200001 A root 33744 24018 0 181 20 c739 3856 May 22 pts/5 17:02 xmperf
 240001 A root 17042 3418 0 181 20 53ca 3032 May 20 - 3:01 /usr/opt/ifor/bin/i4llmd -b -n
 200001 A root 19712 26494 5 183 24 412a 2880 May 21 pts/9 27:32 xmperf
 40001 A root 17548 17042 0 181 20 7bcf 2644 309ceed8 May 20 - 0:00 /usr/opt/ifor/bin/i4llmd -b -n
 240401 A root 28202 4238 0 181 20 418a 2452 May 21 - 0:09 dtwm
 240001 A root 16048 3418 0 181 20 4baa 2356 * May 22 - 0:03 /usr/sbin/rsct/bin/IBM.HostRMd
 240001 A root 4238 6196 0 181 20 9172 2288 May 21 - 0:10 /usr/dt/bin/dtsession
 240001 A root 17296 3418 0 181 20 fbdf 2160 * May 20 - 0:00 /usr/sbin/rsct/bin/IBM.ERrmd
114 AIX 5L Performance Tools Handbook

Displaying the processes in order of being penalized
The following command line is useful for determining which processes are being
penalized by the Virtual Memory Manager. See Section 1.1.3, “Process and
thread priorities” on page 3 for details on penalizing processes. The maximum
value for the C column is 120. The report displays the C column sorted in reverse
numerical order (Example 3-38).

Example 3-38 Displaying the processes in order of being penalized
ps -eakl | head -1 ; ps -eakl | sort -rn +5
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 303 A 0 1290 0 120 255 -- b016 8 - 8570:28 wait
 303 A 0 1032 0 120 255 -- a815 8 - 8540:22 wait
 303 A 0 774 0 120 255 -- a014 8 - 8568:09 wait
 303 A 0 516 0 120 255 -- 9813 8 - 8590:49 wait
 303 A 0 0 0 120 16 -- 9012 12 - 3:53 swapper
 240001 A 0 25828 1 34 187 24 2040 1172 30bf6fd8 - 27:25 xmwlm
 200001 A 0 36434 25250 4 181 20 da3e 460 pts/4 0:00 ps
 240001 A 0 25250 29830 2 181 20 59ef 1020 pts/4 0:01 ksh
 200001 A 0 36682 25250 2 181 20 69c9 300 30b4a6fc pts/4 0:00 sort
 200001 A 0 34898 25250 2 181 20 4b6a 236 3098fce0 pts/4 0:00 head
...(lines omitted)...

Ignoring the wait processes, which will always show 120, the xmwlm process is
being penalized by the CPU. When this occurs, the process is awarded less CPU
time, thereby stopping xmwlm from monopolizing the CPU and giving more time to
the other processes.

Displaying the processes in order of priority
The following command line is useful for listing processes by order of the CPU
priority (Example 3-39). The report displays the PRI column sorted in numerical
order. Refer to Section 4.6, “nice” on page 245 for details on priority.

Example 3-39 Displaying the processes in order of priority
ps -eakl | sort -n +6 | head
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 303 A 0 0 0 120 16 -- 9012 12 - 3:54 swapper
 303 A 0 1548 0 0 16 -- d81b 12 - 21:11 lrud
 303 A 0 2580 0 0 16 -- b036 16 849970 - 4:23 wlmsched
 40201 A 0 5420 1 0 17 20 8130 40 * - 0:00 dog
 303 A 0 2064 0 0 36 -- 9833 16 - 0:10 netm
 303 A 0 2322 0 0 37 -- a034 64 * - 1:37 gil
 40303 A 0 9306 0 0 38 -- f27e 152 * - 0:00 j2pg
 40303 A 0 7244 0 0 50 -- 2284 16 - 0:00 jfsz
 303 A 0 1806 0 0 60 -- 502a 16 35028158 - 0:04 xmgc
 Chapter 3. Multi resource monitoring and tuning tools 115

The above report shows that swapper, lrud, and wlmsched have the highest
priority.

Displaying the processes in order of nice value
The following command line is useful for determining processes by order of nice
value (Example 3-40). The report displays the NI column sorted in numerical
order. Refer to Section 4.6, “nice” on page 245 for details on priority. The report
displays the NI column sorted in reverse numerical order.

Example 3-40 Displaying the processes in order of nice value
ps -eakl | sort -n +7
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 303 A 0 0 0 120 16 -- 9012 12 - 0:28 swapper
 303 A 0 516 0 120 255 -- 9813 8 - 1462:08 wait
 303 A 0 774 0 120 255 -- a014 8 - 1352:04 wait
 303 A 0 1032 0 120 255 -- a815 8 - 1403:23 wait
 303 A 0 1290 0 120 255 -- b016 8 - 1377:28 wait
 303 A 0 1548 0 1 16 -- d81b 12 - 1:50 lrud
 303 A 0 1806 0 0 60 -- 502a 16 30066198 - 0:00 xmgc
...(lines omitted)...
 40303 A 0 5972 0 0 38 -- fa7f 152 * - 0:00 j2pg
 40001 A 0 3918 4930 0 60 20 91b2 944 - 0:00 dtlogin
...(lines omitted)...
 40001 A 0 4930 1 0 60 20 a995 424 - 0:00 dtlogin
 10005 Z 0 29762 27922 1 68 24 0:00 <defunct>
 200001 A 0 20804 19502 1 68 24 4b2b 804 30b35fd8 pts/2 2:39 xmtrend
 200001 A 0 22226 26070 86 116 24 b6b4 572 pts/10 3:01 dc
 200001 A 0 27922 25812 85 115 24 782e 572 pts/10 4:40 dc
 200001 A 0 28904 23776 2 69 24 46ca 268 pts/8 3:14 seen+done
 200001 A 0 30446 23776 2 69 24 7ecd 268 pts/8 3:09 seen+done
 200001 A 0 30964 23776 3 68 24 66ce 268 pts/8 3:12 seen+done
 200001 A 0 31218 23776 3 69 24 96d0 268 pts/8 2:58 seen+done
...(lines omitted)...

In the above report, the NI values will sometimes be displayed as --. This is
because the processes do not have a nice value as they are running at a fixed
priority.

Displaying the processes in order of time
The following command line is useful for determining processes by order of CPU
time (Example 3-41). This is the total accumulated CPU time for the life of the
process. The report displays the TIME column sorted in reverse numerical order.

Example 3-41 Displaying the processes in order of time
ps vx | head -1 ; ps vx | grep -v PID | sort -rn +3 | head -10
 PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
 516 - A 9417:11 0 8 11780 xx 0 11772 24.3 2.0 wait
 1290 - A 9374:49 0 8 11780 xx 0 11772 24.2 2.0 wait
 774 - A 9367:13 0 8 11780 xx 0 11772 24.2 2.0 wait
116 AIX 5L Performance Tools Handbook

 1032 - A 9342:08 0 8 11780 xx 0 11772 24.1 2.0 wait
10836 - A 115:40 106 16 11788 32768 0 11772 0.3 2.0 kbiod
26640 - A 67:26 25972 32 11796 32768 0 11772 1.1 2.0 nfsd
 1548 - A 21:11 0 12 11784 xx 0 11772 0.1 2.0 lrud
 6476 - A 16:18 2870 316 184 xx 2 4 0.0 0.0 /usr/sbin
16262 - A 6:24 4074 1112 1320 32768 1922 724 0.0 0.0 /usr/opt/
 2580 - A 4:33 0 16 11780 xx 0 11772 0.0 2.0 wlmsched

The above report shows that wait has accumulated the most CPU time. If we
were to run our test program called CPU as in Example 3-35 on page 113 which
creates a CPU bottleneck, then the wait process would still feature at the top of
the report because the test system is normally idle and the wait processes would
therefore have accumulated the most time.

Displaying the processes in order of real memory use
The following command line is useful for determining processes by order of RSS
value (Example 3-42). The RSS value is the size of working segment and the code
segment combined together in memory in 1 KB units). The report displays the
RSS column sorted in reverse numerical order.

Example 3-42 Displaying the processes in order of RSS
ps vx | head -1 ; ps vx | grep -v PID | sort -rn +6 | head -10
 PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
34958 pts/6 A 1:29 20 87976 88004 32768 21 28 0.6 17.0 java wlmp
 9306 - A 0:00 174 152 11916 32768 0 11772 0.0 2.0 j2pg
 2322 - A 1:43 0 64 11832 xx 0 11772 0.0 2.0 gil
26640 - A 67:26 25972 32 11796 32768 0 11772 1.1 2.0 nfsd
10580 - A 0:00 8 20 11792 32768 0 11772 0.0 2.0 rtcmd
24564 - A 0:06 1 32 11788 32768 0 11772 0.0 2.0 rpc.lockd
13418 - A 0:01 0 16 11788 32768 0 11772 0.0 2.0 PM
10836 - A 115:40 106 16 11788 32768 0 11772 0.3 2.0 kbiod
 2064 - A 0:11 120 16 11788 xx 0 11772 0.0 2.0 netm
 1806 - A 0:04 12 16 11788 xx 0 11772 0.0 2.0 xmgc

The above report shows that the process java wlmp is using the most memory.

Important: Because the values in the RSS column contain shared working
memory, you cannot add the entries in the RSS column for all the processes to
ascertain the amount of memory used on your system. For example, the ksh
process can consume about 1 KB of memory and each user can be running at
least one ksh but this does not mean that for 300 users logged in, all ksh
processes will be using a minimum of 300 KB of memory. This is because ksh
uses share memory, enabling all the ksh processes to access the same
memory. Refer to Section 5.1, “ipcs” on page 302 for details on memory use.
 Chapter 3. Multi resource monitoring and tuning tools 117

Displaying the processes in order of I/O
The following command line is useful for determining processes by order of PGIN
value (Example 3-43). PGIN represents the number of page ins caused by page
faults. Because all AIX I/O is classified as page faults, this value represents the
measure of all I/O volume.

The report displays the PGIN column sorted in reverse numerical order.

Example 3-43 Displaying the processes in order of PGIN
ps vx | head -1 ; ps vx | grep -v PID | sort -rn +4 | head -10
 PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
 26640 - A 67:26 25972 32 11796 32768 0 11772 1.1 2.0 nfsd
 16262 - A 6:25 4074 1112 1320 32768 1922 724 0.0 0.0 /usr/opt/
 6476 - A 16:19 2870 316 184 xx 2 4 0.0 0.0 /usr/sbin
 5176 - A 3:20 1970 3448 788 xx 2406 196 0.0 0.0 /usr/lpp/
 12202 - A 1:00 1394 2152 640 32768 492 44 0.0 0.0 dtwm
 15506 - A 0:23 1025 16260 5200 32768 58 48 0.0 1.0 /usr/sbin
 6208 - A 0:40 910 2408 532 32768 99 12 0.0 0.0 /usr/dt/b
 5954 - A 0:05 789 2844 324 32768 179 0 0.0 0.0 /usr/sbin
 16778 - A 0:00 546 724 648 32768 1922 340 0.0 0.0 /usr/opt/
 8290 - A 0:04 420 740 592 32768 75 76 0.0 0.0 /usr/sbin

The above report shows that the nfsd process is producing the most I/O.

Displaying WLM classes
Example 3-44 shows how Workload Manager (WLM) classes can be displayed.
In WLM, you can categorize processes into classes. When you run the ps
command with the -o class option, you will see the class displayed.

Example 3-44 Displaying WLM classes
ps -a -o pid,user,class,pcpu,pmem,args
 PID USER CLASS %CPU %MEM COMMAND
...(lines omitted)...
20026 root System 0.0 0.0 ps -a -o pid,user,class,pcpu,pmem,arg
21078 root System 0.0 0.0 wlmstat 1 100
...(lines omitted)...

Viewing threads
The ps command allows you to get information relating to the threads running for
a particular process. For example, if we wanted to ascertain that particular
threads are bound to a CPU, we could use the command in Example 3-45 on
page 119. Threads are bound using the bindprocessor command. Refer to
Section 4.3, “bindprocessor” on page 228 for more details.
118 AIX 5L Performance Tools Handbook

Example 3-46 demonstrates how to use ps to see if threads are bound to a CPU.
As each processor has a wait process that is bound to each active CPU on the
system, we will use the wait process as an example.

To check how many CPUs are installed on our system we can use the following
command.

Example 3-45 Determining the number of installed processors
lsdev -Cc processor
proc0 Available 00-00 Processor
proc1 Available 00-01 Processor
proc2 Available 00-02 Processor
proc3 Available 00-03 Processor

From the above output, we know that there will be four wait processes (assuming
all CPUs are enabled). We can determine the Process IDs (PID) of the wait
processes using the following command.

Example 3-46 Determining the PID of wait processes
ps vg | head -1 ; ps vg | grep -w wait
 PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
 516 - A 1397:04 0 8 12548 xx 0 12540 21.2 3.0 wait
 774 - A 1393:52 0 8 12548 xx 0 12540 21.2 3.0 wait
 1032 - A 1392:39 0 8 12548 xx 0 12540 21.1 3.0 wait
 1290 - A 1395:14 0 8 12548 xx 0 12540 21.2 3.0 wait

The output tells us that wait processes PIDs are 516,774,1032, and 1290. We can
therefore determine if the threads are actually bound as we would expect by
using the command line in Example 3-47.

Example 3-47 Wait processes bound to CPUs
ps -mo THREAD -p 516,774,1032,1290
 USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAN
 root 516 0 - A 120 255 1 - 303 - 0 wait
 - - - 517 R 120 255 1 - 3000 - 0 -
 root 774 0 - A 120 255 1 - 303 - 1 wait
 - - - 775 R 120 255 1 - 3000 - 1 -
 root 1032 0 - A 120 255 1 - 303 - 2 wait
 - - - 1033 R 120 255 1 - 3000 - 2 -
 root 1290 0 - A 120 255 1 - 303 - 3 wait
 - - - 1291 R 120 255 1 - 3000 - 3 -

The above example shows that the wait processes are indeed bound to CPUs.
Each of the wait processes has an associated thread. In AIX (starting from
version 4), with the exception of init, Process IDs (PIDs) have even numbers
and Threads IDs (TIDs) have odd numbers.
 Chapter 3. Multi resource monitoring and tuning tools 119

3.7 sar
The sar command collects, reports, and saves system activity information.

If an input file is not specified sar calls the sadc command to access system data.
Two shell scripts (/usr/lib/sa/sa1 and /usr/lib/sa/sa2) can be run by the cron
command and provide daily statistics and reports. Sample stanzas are included
(but commented out) in the /var/spool/cron/crontabs/adm crontab file to specify
when the cron daemon should run the shell scripts. Collection of data in this
manner is useful to characterize system use over a period of time and determine
peak use hours.

sar resides in /usr/sbin and is part of the bos.perf.tools fileset, which is installable
from the AIX base installation media.

3.7.1 Syntax
The syntax of the sar command is as follows:

sar [{ -A | [-a] [-b] [-c] [-d][-k] [-m] [-q]
[-r] [-u] [-V] [-v] [-w] [-y] }]
[-P ProcessorIdentifier, ... | ALL] [-ehh [:mm [:ss]]]
[-fFile] [-iSeconds] [-oFile] [-shh [:mm [:ss]]]
[Interval [Number]]

Flags
-A Without the -P flag, using the -A flag is equivalent to

specifying -abcdkmqruvwy. When used with the -P flag, the
-A is equivalent to specifying -acmuw.

-a Reports use of file access routines specifying how many
times per second several of the file access routines have
been called. When used with the -P flag, the information is
provided for each specified processor. Otherwise it is
provided only system-wide.

-b Reports buffer activity for transfers, accesses, and cache
(kernel block buffer cache) hit ratios per second. Access to
most files bypasses kernel block buffering and therefore
does not generate these statistics. However, if a program

Note: The sar command itself can generate a considerable number of reads
and writes depending on the interval at which it is run. Run the sar statistics
without the workload to understand the sar command's contribution to your
total statistics.
120 AIX 5L Performance Tools Handbook

opens a block device or a raw character device for I/O,
traditional access mechanisms are used, making the
generated statistics meaningful.

-c Reports system calls. When used with the -P flag, the
information is provided for each specified processor;
otherwise, it is provided only system-wide.

-d Reports activity for each block device.

-e hh[:mm[:ss]] Sets the ending time of the report. The default ending time
is 18:00.

-f File Extracts records from File (created by -o File flag). The
default value of the File parameter is the current daily data
file, /var/adm/sa/sadd.

-i Seconds Selects data records at intervals as close as possible to
the number specified by the Seconds parameter.
Otherwise, the sar command reports all seconds found in
the data file.

-k Reports kernel process activity.

-m Reports message (sending and receiving) and semaphore
(creating, using, or destroying) activities per second. When
used with the -P flag, the information is provided for each
specified processor. Otherwise it is provided only
system-wide.

-o File Saves the readings in the file in binary form. Each reading
is in a separate record, and each record contains a tag
identifying the time of the reading.

-P ProcessorIdentifier, ... | ALL

Reports per-processor statistics for the specified processor
or processors. Specifying the ALL keyword reports
statistics for each individual processor, and globally for all
processors of the flags that specify the statistics to be
reported, only the -a, -c, -m, -u, and -w flags are
meaningful with the -P flag.

-q Reports queue statistics.

-r Reports paging statistics.

-s hh[:mm[:ss]] Sets the starting time of the data, causing the sar
command to extract records time-tagged at, or following,
the time specified. The default starting time is 08:00.

-u Reports per processor or system-wide statistics. When
used with the -P flag, the information is provided for each
 Chapter 3. Multi resource monitoring and tuning tools 121

specified processor; otherwise, it is provided only
system-wide. Because the -u flag information is expressed
as percentages, the system-wide information is simply the
average of each individual processor's statistics. Also, the
I/O wait state is defined system-wide and not per
processor.

-V Reads the files created by sar on other operating system
versions. This flag can only be used with the -f flag.

-v Reports status of the process, kernel-thread, inode, and
file tables.

-w Reports system switching activity. When used with the -P
flag, the information is provided for each specified
processor; otherwise, it is provided only system-wide.

-y Reports tty device activity per second.

3.7.2 Information on measurement and sampling
The sar command only formats input generated by the sadc command2. The
sadc command acquires statistics mainly from the Perfstat kernel extension (kex)
(see Section 9.1, “Perfstat API” on page 712). The operating system contains a
number of counters that are incremented as various system actions occur. The
various system counters include:

� System unit utilization counters

� Buffer use counters

� Disk and tape I/O activity counters

� tty device activity counters

� Switching and subroutine counters

� File access counters

� Queue activity counters

� Interprocess communication counters

The sadc command samples system data a specified number of times at a
specified interval measured in seconds. It writes in binary format to the specified
output file or to stdout. When neither the measuring interval nor the interval
number are specified, a dummy record, which is used at system startup to mark
the time when the counter restarts from zero (0), will be written.

2 The sadc command is the data collector for sar.
122 AIX 5L Performance Tools Handbook

3.7.3 Examples
When starting to look for a potential performance bottleneck, we need to find out
more about how the system uses CPU, memory, and I/O. For these resource
areas we can use the sar command.

How to monitor one CPU at a time
Example 3-48 shows the use of the sar command with the -P # flag to find out
more about a utilization of a specific CPU.

Example 3-48 Individual CPUs can be monitored separately
sar -P 3 10 3

AIX bolshoi 1 5 00040B1F4C00 05/20/01

17:47:52 cpu %usr %sys %wio %idle
17:48:02 3 16 31 6 47
17:48:12 3 10 19 7 65
17:48:22 3 32 57 4 7

Average 3 20 35 5 40

In the output above we ran the sar command for CPU number four (in the output
above this is shown as CPU number three)3 with 10 second intervals for three
reports. In average the CPU spent 20 percent in user mode, 35 percent in system
mode, and during 5 percent of the system idle time there were outstanding I/O
requests to disk or NFS file systems.

You may also monitor CPUs together by separating the CPU number by a
comma (,), as in Example 3-49 where we monitor CPUs 0, 1, 2, and 3.

Example 3-49 Individual CPUs can be monitored together
sar -P 0,1,2,3 10 2

AIX bolshoi 1 5 00040B1F4C00 05/20/01

17:46:33 cpu %usr %sys %wio %idle
17:46:43 0 29 71 0 0
 1 39 61 0 0
 2 35 65 0 0
 3 36 64 0 0
17:46:53 0 19 51 1 29
 1 45 47 0 8
 2 15 53 1 31
 3 27 40 1 32
17:47:03 0 18 46 1 36

3 The CPU numbers reported by sar are the logical/physical CPU - 1. The range is 0...N-1 CPUs.
 Chapter 3. Multi resource monitoring and tuning tools 123

 1 22 43 0 34
 2 20 49 1 30
 3 41 42 1 16

Average 0 22 56 1 22
 1 35 50 0 14
 2 23 56 1 20
 3 35 48 1 16

In the output above you see that the load was fairly evenly spread among the
four CPUs. For more information on the sar output columns in the example
above, please see “How to monitor the processor utilization” on page 138.

How to monitor all CPUs
Example 3-50 shows the use of the sar command with the -P ALL flag to find out
more about the utilization of all CPUs.

Example 3-50 CPU utilization per CPU or system wide statistics
sar -P ALL 10 3

AIX bolshoi 1 5 00040B1F4C00 05/20/01

17:48:33 cpu %usr %sys %wio %idle
17:48:43 0 24 75 0 1
 1 34 64 1 2
 2 37 60 0 2
 3 31 68 0 2
 - 32 66 0 2
17:48:55 0 37 51 1 12
 1 27 39 1 33
 2 19 46 1 35
 3 25 43 1 31
 - 27 45 1 28
17:49:06 0 27 73 0 0
 1 36 64 0 0
 2 33 67 0 0
 3 40 60 0 0
 - 34 66 0 0

Average 0 30 65 0 5
 1 32 55 1 12
 2 29 57 0 13
 3 32 56 0 12
 - 31 58 0 11
124 AIX 5L Performance Tools Handbook

The last line of each timestamp in the output above, and the average part of the
report, shows the average for all CPUs; it is denoted by a dash (-). For more
information on the sar output columns in the example above, please see “How to
monitor the processor utilization” on page 138.

How to combine reports with different flags
sar allows most of the report flags to be combined. The -A flag is a report with
the abcdkmqruvwy or acmuw flags combined, depending on if the -P flag is used as
well. This is illustrated in Example 3-51 using the -abckmqruvwy flags with one (1)
sampling, not using the block device I/O report.

Example 3-51 Using sar -abckmqruvwy
sar -abckmqruvwy 1

AIX bolshoi 1 5 00040B1F4C00 05/20/01

18:24:13 iget/s lookuppn/s dirblk/s
 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
 ksched/s kproc-ov kexit/s
 msg/s sema/s
 runq-sz %runocc swpq-sz %swpocc
 slots cycle/s fault/s odio/s
 %usr %sys %wio %idle
 proc-sz inod-sz file-sz thrd-sz
 cswch/s
 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s

18:24:14 8 1585 0
 0 0 0 0 0 0 0 0
 43575 1352 545 313.67 313.67 1753704 95040
 0 0 0
 0.00 0.00
 1.0 100
 117421 0.00 15483.93 8.63
 1 25 0 74
 39/262144 279/358278 188/853 47/524288
 1943
 0 0 816 0 0 0

When using too many flags together, the output will become more difficult to read
as is evident from even the short measurement shown in the output above.
Example 3-52 on page 126 shows the sar -A report, which is similar to the
output above but includes the block device I/O report.
 Chapter 3. Multi resource monitoring and tuning tools 125

Example 3-52 Using sar -A
sar -A 1

AIX bolshoi 1 5 00040B1F4C00 05/20/01

18:25:20 iget/s lookuppn/s dirblk/s
 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
 device %busy avque r+w/s blks/s avwait avserv
 ksched/s kproc-ov kexit/s
 msg/s sema/s
 runq-sz %runocc swpq-sz %swpocc
 slots cycle/s fault/s odio/s
 %usr %sys %wio %idle
 proc-sz inod-sz file-sz thrd-sz
 cswch/s
 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s

18:25:21 345 10067 2327
 0 0 0 0 0 0 0 0
 80720 15088 965 402.77 395.38 10975227 612103
 hdisk0 0 0.0 1 9 0.0 0.0
 hdisk1 0 0.0 0 0 0.0 0.0
 hdisk12 5 0.0 65 295 0.0 0.0
 hdisk3 5 0.0 64 292 0.0 0.0
 hdisk2 5 0.0 65 296 0.0 0.0
 hdisk9 0 0.0 0 0 0.0 0.0
 hdisk16 5 0.0 64 293 0.0 0.0
 hdisk15 5 0.0 65 296 0.0 0.0
 hdisk7 5 0.0 64 293 0.0 0.0
 hdisk8 0 0.0 7 39 0.0 0.0
 hdisk4 5 0.0 64 293 0.0 0.0
 hdisk17 1 0.0 24 98 0.0 0.0
 hdisk11 0 0.0 1 28 0.0 0.0
 hdisk6 2 0.0 33 133 0.0 0.0
 hdisk14 5 0.0 64 292 0.0 0.0
 hdisk5 5 0.0 64 293 0.0 0.0
 hdisk13 5 0.0 65 297 0.0 0.0
 hdisk10 0 0.0 0 1 0.0 0.0

 2 0 2
 0.00 0.00
 55.0 100
 117353 0.00 21257.27 1545.50
 10 48 2 39
 177/262144 525/358278 517/853 185/524288
 2552
 0 0 920 0 0 0
126 AIX 5L Performance Tools Handbook

How to collect statistics by using cron
To enable statistical collection for use with sar, enable the adm user’s crontab by
removing the comment, lines starting with hash (#), from the program lines as
shown in Example 3-53 below.

Example 3-53 System default crontab entries for the adm user
cronadm cron -l adm
...(lines omitted)...
#===
SYSTEM ACTIVITY REPORTS
8am-5pm activity reports every 20 mins during weekdays.
activity reports every an hour on Saturday and Sunday.
6pm-7am activity reports every an hour during weekdays.
Daily summary prepared at 18:05.
#===
0 8-17 * * 1-5 /usr/lib/sa/sa1 1200 3 &
0 * * * 0,6 /usr/lib/sa/sa1 &
0 18-7 * * 1-5 /usr/lib/sa/sa1 &
5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 3600 -ubcwyaqvm &

The first line will run the sa1 command for 1200 seconds (20 minutes) three (3)
times every hour Monday (1) through Friday (5) between 8 am and 5 pm (17).
The second line will also run the sa1 command, but only on Saturdays (6) and
Sundays (0) and then only once every hour. The third line will run the sa1
command every hour from Monday (1) through Friday (5), between 6 pm (18) and
7 am. And finally the fourth line runs the sa2 command every Monday (1) through
Friday (5) at five (5) minutes past six (18) pm . The sa1 commands will create
binary files in the /var/adm/sa directory and the sa2 command will create an
ASCII report in the same directory. The files will be named saDD, where DD stands
for the day of month, so on the 21st the file name will be sa21.

In addition to commenting out the lines in the crontab file for the adm user as
shown in Example 3-53 on page 127, a dummy record must be inserted into the
standard system activity daily data file in the /var/adm/sa directory, at the time of
system start by uncommenting the corresponding sadc lines in the /etc/rc
script. The following command shows how to do that:

/usr/bin/su - adm -c /usr/lib/sa/sadc /usr/adm/sa/sa`date +%d`

For 24x7 operations, it is better to just collect the statistical information in binary
format, and when needed use sar to create reports from the binary files. The
next command shows how to enable the statistical collection only:

0 * * * * /usr/lib/sa/sa1 1200 3 &
 Chapter 3. Multi resource monitoring and tuning tools 127

To create reports from the files created in the /var/adm/sa directory, run the sar
command with the -f flag, as shown in Example 3-54.

Example 3-54 Using sar with the -f flag
sar -f /var/adm/sa/sa23

AIX wlmhost 1 5 000BC6AD4C00 05/23/01

00:00:01 %usr %sys %wio %idle
00:20:01 2 1 0 97
00:40:01 2 1 0 97
01:00:01 2 1 0 97
01:20:01 2 1 0 98

Average 2 1 0 97

By using the -s and -e flags with the sar command the starting time (-s) and
ending time (-e) can be specified and the report will show the recorded statistics
between the starting and ending time only, as shown in Example 3-55.

Example 3-55 Using sar with the -f, -s and -e flags
sar -f /var/adm/sa/sa23 -s00:00 -e01:00

AIX wlmhost 1 5 000BC6AD4C00 05/23/01

00:00:01 %usr %sys %wio %idle
00:20:01 2 1 0 97
00:40:01 2 1 0 97

Average 2 1 0 97

The output above only reports statistics between 00:00 and 01:00 from the file
created on the 23rd of the month.

To use a customized sa1 script that names the binary statistical collection files
with year and month instead of only by day, create a script such as the one in
Example 3-56 on page 129 and run it with cron instead of the sa1 command
(here called sa1.custom).

Note: if collection and analysis of the workload should be performed for more
than a month, you need to save the binary statistical collection files from the
/var/adm/sa directory elsewhere and rename them with the year and month in
addition to the day. The sa2 command will remove files older than seven days
when it is run. The sa1 command will overwrite existing files with the same day
number in the /var/adm/sa directory.
128 AIX 5L Performance Tools Handbook

Example 3-56 The sa1.custom script
expand -4 sa1.custom|nl
1 DATE=`date +%d`
2 NEWDATE=`date +%Y%m%d`
3 ENDIR=/usr/lib/sa
4 DFILE=/var/adm/sa/sa$DATE
5 NEWDFILE=/var/adm/sa/sa$NEWDATE
6 cd $ENDIR
7 if [$# = 0]; then
8 $ENDIR/sadc 1 1 $NEWDFILE
9 else
10 $ENDIR/sadc $* $NEWDFILE
11 fi
12 ln -s $NEWDFILE $DFILE >/dev/null 2>&1

The sa1.custom script above will create files named saYYYYMMDD instead of only
saDD. It will also create a symbolic link from the saYYYYMMDD file to a file named
saDD. By doing this, other commands that expect to find a saDD file in the
/var/adm/sa directory will still do so. These files are also easy to save to a
backup server because they can be retrieved by using their filename and thus
are unique, and you will not risk loosing them, if for instance the backup “class”4
for these files does not permit enough versions to save the number of saDD files
that are required.

How to monitor the use of file access system routines
Example 3-57 shows the use of the sar command with the -a flag to find out
more about how the system is accessing directory information about files.

Example 3-57 Using sar -a
sar -a 10 3

AIX bolshoi 1 5 00040B1F4C00 05/20/01

18:06:31 iget/s lookuppn/s dirblk/s
18:06:41 1441 22212 6534
18:06:51 412 6415 2902
18:07:01 1353 20375 5268

Average 1072 16377 4913

In the output above we see that there are 1072 calls per second for inode lookup
routines, 16377 lookups per second to find a file entry using a pathname (low
level file system routine), and 4913 512-byte directory reads per second to find a
file name (2.4 MBs read).

4 Class in this context refers to a collection of rules and file specifications that specify what, when, and how to backup
files.
 Chapter 3. Multi resource monitoring and tuning tools 129

The sar -a report has the following format:

dirblk/s Number of 512-byte blocks read per second by the
directory search routine to locate a directory entry for a
specific file.

iget/s Calls per second to any of several inode5 lookup routines
that support multiple file system types. The iget routines
return a pointer to the inode structure of a file or device.

lookuppn/s Calls per second to the directory search routine that finds
the address of a vnode6 given a path name.

The next output shows how the different CPUs used the file access system
routines (Example 3-58).

Example 3-58 Using sar -a
sar -aP ALL 10 3

AIX bolshoi 1 5 00040B1F4C00 05/20/01

18:07:36 cpu iget/s lookuppn/s dirblk/s
18:07:46 0 29 693 81
 1 56 569 181
 2 34 667 162
 3 40 604 118
 - 162 2564 554
18:07:56 0 124 1882 556
 1 141 2163 682
 2 137 2257 614
 3 117 2046 546
 - 520 8367 2400
18:08:06 0 77 1090 276
 1 118 1525 383
 2 67 1041 275
 3 68 1229 312
 - 327 4855 1238

Average 0 77 1222 305
 1 105 1419 415
 2 79 1322 350
 3 75 1293 325
 - 336 5261 1397

5 An inode is an index node reference number (inode number), which is the file system internal representation of a file.
The inode number identifies the file, not the file name.
6 A vnode is either created or used again for every reference made to a file by path name. When a user attempts to open
or create a file, if the VFS containing the file already has a vnode representing that file, a use count in the vnode is
incremented and the existing vnode is used. Otherwise, a new vnode is created.
130 AIX 5L Performance Tools Handbook

The last line of each timestamp and the average part of the report show the
average for all CPUs. They are denoted by a dash (-).

How to monitor buffer activity for transfers, access, and caching
Example 3-59 shows the use of the sar command with the -b flag to find out
more about buffer activity and utilization.

Example 3-59 Using sar -b
sar -b 10 3

AIX wlmhost 1 5 000BC6AD4C00 05/20/01

17:13:18 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
17:13:28 1 284 100 0 0 0 0 0
17:13:38 1 283 100 0 0 0 0 0
17:13:48 1 283 100 0 0 0 0 0

Average 1 283 100 0 0 0 0 0

In our above example the read cache efficiency is 100 * (283 - 1) / 283 or 99.64
(approximately 100 percent as shown in the output above).

The sar -b report has the following format:

bread/s, bwrit/s Reports the number of block I/O operations per second.
These I/Os are generally performed by the kernel to
manage the block buffer cache area, as discussed in the
description of the lread/s and lwrit/s values.

lread/s, lwrit/s Reports the number of logical I/O requests per second.
When a logical read or write to a block device is
performed, a logical transfer size of less than a full block
size may be requested. The system accesses the
physical device units of complete blocks and buffers these
blocks in the kernel buffers that have been set aside for
this purpose (the block I/O cache area). This cache area
is managed by the kernel, so that multiple logical reads
and writes to the block device can access previously
buffered data from the cache and require no real I/O to
the device. Application read and write requests to the
block device are reported statistically as logical reads and
writes. The block I/O performed by the kernel to the block
device in management of the cache area is reported as
block reads and block writes.

pread/s, pwrit/s Reports the number of I/O operations on raw devices per
second. Requested I/O to raw character devices is not
 Chapter 3. Multi resource monitoring and tuning tools 131

buffered as it is for block devices. The I/O is performed to
the device directly.

%rcache, %wcache Reports caching effectiveness (cache hit percentage).
This percentage is calculated as:

100 * (lreads - breads) / lreads

How to monitor system calls
Example 3-60 shows the use of the sar command with the -c flag to find out
more about system call statistics.

Example 3-60 Using sar -c
sar -c 10 3

AIX bolshoi 1 5 00040B1F4C00 05/20/01

18:04:30 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
18:04:40 30776 9775 841 95.42 95.22 2626011 1319494
18:04:50 52742 14190 1667 168.81 168.33 4208049 2781644
18:05:00 83248 25785 2334 266.34 265.57 6251254 3632468

Average 55592 16584 1614 176.87 176.39 4362015 2578121

From the output above we see that the system did approximately 177 fork system
calls for creating new processes. The system also performed ten times as many
read system calls per second than write system calls, but only read 1.7 times
more data (4362015 / 2578121 = 1.69) than it wrote during the measurement
time. However the average transfer size for the read system calls was
approximately 260 bytes (4362015 / 16584 = 263.02) and the average transfer
size for the write system calls was approximately 1600 bytes (2578121 / 1614 =
1597.34).

The sar -c report has the following format:

exec/s Reports the total number of exec system calls

fork/s Reports the total number of fork system calls

sread/s Reports the total number of read system calls

swrit/s Reports the total number of write system calls

rchar/s Reports the total number of characters transferred by
read system calls

wchar/s Reports the total number of characters transferred by
write system calls

scall/s Reports the total number of system calls
132 AIX 5L Performance Tools Handbook

The output in Example 3-61 shows how the different CPUs were utilized by
system calls.

Example 3-61 Using sar -c
sar -cPALL 10 3

AIX bolshoi 1 5 00040B1F4C00 05/20/01

18:05:05 cpu scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
18:05:15 0 18276 6313 399 53.66 66.50 706060 459381
 1 17527 3898 474 64.65 58.89 2714377 827040
 2 16942 3211 578 63.17 56.56 1196307 1042826
 3 18786 4589 507 66.83 66.13 1161274 870102
 - 71420 17914 1965 248.22 247.64 5856025 3217526
18:05:25 0 23951 11926 601 42.08 56.63 1933828 796038
 1 18926 4965 658 62.67 61.39 1341808 1133376
 2 19277 6462 545 67.51 61.37 1094918 833909
 3 21008 6788 640 75.40 68.80 1164796 951693
 - 83076 30068 2440 248.44 248.24 5515219 3709782
18:05:35 0 20795 7932 426 55.35 67.92 805022 500341
 1 21442 4615 718 62.14 67.39 2425419 1292411
 2 17528 3939 504 77.17 66.21 1122280 873226
 3 18983 3310 648 78.04 71.46 1375725 1176041
 - 78535 19718 2286 273.23 272.84 5692685 3823642

Average 0 21006 8722 475 50.36 63.69 1148012 585170
 1 19299 4493 617 63.15 62.56 2159898 1084462
 2 17917 4539 542 69.28 61.38 1137801 916592
 3 19591 4894 598 73.43 68.80 1234002 999354
 - 77676 22566 2230 256.63 256.24 5688003 3583571

The last line of each timestamp and the average part of the report show the
average for all CPUs; they are denoted by a dash (-).

How to monitor activity for each block device
Example 3-62 shows the use of the sar command with the -d flag to find out
more about block device utilization.

Example 3-62 Using sar -d
sar -d 10 3

AIX bolshoi 1 5 00040B1F4C00 05/20/01

17:58:08 device %busy avque r+w/s blks/s avwait avserv

17:58:18 hdisk0 0 0.0 1 8 0.0 0.0
 hdisk1 0 0.0 0 0 0.0 0.0
 hdisk12 3 0.0 39 176 0.0 0.0
 Chapter 3. Multi resource monitoring and tuning tools 133

 hdisk3 3 0.0 38 174 0.0 0.0
 hdisk2 3 0.0 39 177 0.0 0.0
 hdisk9 0 0.0 0 0 0.0 0.0
 hdisk16 3 0.0 38 175 0.0 0.0
 hdisk15 3 0.0 38 176 0.0 0.0
 hdisk7 3 0.0 38 175 0.0 0.0
 hdisk8 0 0.0 4 23 0.0 0.0
 hdisk4 3 0.0 38 174 0.0 0.0
 hdisk17 1 0.0 14 58 0.0 0.0
 hdisk11 0 0.0 1 16 0.0 0.0
 hdisk6 1 0.0 19 79 0.0 0.0
 hdisk14 3 0.0 38 174 0.0 0.0
 hdisk5 3 0.0 38 175 0.0 0.0
 hdisk13 3 0.0 39 177 0.0 0.0
 hdisk10 0 0.0 0 0 0.0 0.0

...(lines omitted)...

Average hdisk0 0 0.0 1 10 0.0 0.0
 hdisk1 0 0.0 0 0 0.0 0.0
 hdisk12 15 0.0 171 764 0.0 0.0
 hdisk3 15 0.0 160 721 0.0 0.0
 hdisk2 15 0.0 168 750 0.0 0.0
 hdisk9 0 0.0 0 0 0.0 0.0
 hdisk16 16 0.0 169 759 0.0 0.0
 hdisk15 15 0.0 170 760 0.0 0.0
 hdisk7 16 0.0 168 753 0.0 0.0
 hdisk8 0 0.0 10 62 0.0 0.0
 hdisk4 15 0.0 167 753 0.0 0.0
 hdisk17 5 0.0 61 247 0.0 0.0
 hdisk11 0 0.0 4 74 0.0 0.0
 hdisk6 7 0.0 89 358 0.0 0.0
 hdisk14 15 0.0 168 752 0.0 0.0
 hdisk5 15 0.0 167 750 0.0 0.0
 hdisk13 15 0.0 171 767 0.0 0.0
 hdisk10 0 0.0 0 1 0.0 0.0

In the output above, there are two different utilization patterns, one with a fairly
even I/O load and one with very little I/O (eight disks) during our measurement.

The sar -d report has the following format:

%busy Reports the portion of time the device was busy servicing a
transfer request

avque The average number of requests in the queue

r+w/s Number of read and write requests per second
134 AIX 5L Performance Tools Handbook

blks/s Number of bytes transferred in 512-byte blocks per second

avwait The average time each request waits in the queue before it is
serviced

avserv The average time taken for servicing a request

How to monitor kernel process activity
Example 3-63 shows the use of the sar command with the -k flag to find out
more about kernel process activity.

Example 3-63 Using sar -k
sar -k 10 3

AIX wlmhost 1 5 000BC6AD4C00 05/18/01

22:57:45 ksched/s kproc-ov kexit/s
22:57:55 0 0 0
22:58:05 0 0 0
22:58:15 0 0 0

Average 0 0 0

The sar -k report has the following format:

kexit/s Reports the number of kernel processes terminating per
second.

kproc-ov/s Reports the number of times kernel processes could not
be created because of enforcement of process threshold
limit per second.

ksched/s Reports the number of kernel processes assigned to
tasks per second.

A kernel process (kproc) exists only in the kernel protection domain. It is created
using the creatp and initp kernel services. Refer to “Understanding Kernel
Threads“ in AIX 5L Version 5.1 Kernel Extensions and Device Support
Programming Concepts and “Using Kernel Processes“ in AIX 5L Version 5.1
Technical Reference: Kernel and Subsystems, Volume 1.

How to monitor the message and semaphore activities
Example 3-64 shows the use of the sar command with the -m flag to find out
more about message and semaphore utilization.

Example 3-64 Using sar -m
sar -m 10 3

AIX wlmhost 1 5 000BC6AD4C00 05/28/01

 Chapter 3. Multi resource monitoring and tuning tools 135

17:03:45 msg/s sema/s
17:03:50 0.00 2744.71
17:03:55 0.00 2748.94
17:04:00 0.00 2749.15

Average 0.00 2747.60

Message queues and semaphores are some of the ways for processes or
threads to communicate with each other in a system, Inter Process
Communication (IPC).

The sar -m report has the following format:

msg/s Reports the number of IPC message primitives per
second.

sema/s Reports the number of IPC semaphore primitives per
second.

To follow up on processes using IPC messages and semaphores use the ipcs
command, see Section 5.1, “ipcs” on page 302 for more information on how to do
it. Example 3-65 shows messages and semaphores were used by the different
CPUs.

Example 3-65 Using sar -m
sar -mPALL 10 3
AIX wlmhost 1 5 000BC6AD4C00 05/28/01

17:04:49 cpu msg/s sema/s
17:04:54 0 0.00 638.17
 1 0.00 706.14
 2 0.00 712.38
 3 0.00 694.84
 - 0.00 2746.03
17:04:59 0 0.00 639.11
 1 0.00 708.95
 2 0.00 712.35
 3 0.00 699.20
 - 0.00 2754.35
17:05:04 0 0.00 640.93
 1 0.00 704.97
 2 0.00 710.16
 3 0.00 689.15
 - 0.00 2739.90

Average 0 0.00 639.40
 1 0.00 706.68
 2 0.00 711.63
 3 0.00 694.39
136 AIX 5L Performance Tools Handbook

 - 0.00 2746.76

The last line of each timestamp and the average part of the report show the
average for all CPUs; they are denoted by a dash (-).

How to monitor the kernel scheduling queue statistics
Example 3-66 shows the use of the sar command with the -q flag to find out
more about kernel scheduling queues:

Example 3-66 Using sar -q
sar -q 10 3

AIX bolshoi 1 5 00040B1F4C00 05/20/01

18:02:02 runq-sz %runocc swpq-sz %swpocc
18:02:12 23.8 100 2.9 70
18:02:22 35.0 100 8.0 100
18:02:32 13.0 100 3.0 30

Average 23.9 97 5.5 65

The example output above tells us that the run queue had approximately 24
threads ready to run, on average, and that the runqueue was occupied 97
percent of the time by threads ready to run during the measurement interval.

If the system is idle the output would appear as in Example 3-67.

Example 3-67 Using sar -q
sar -q 2 4

AIX bolshoi 1 5 00040B1F4C00 05/20/01

16:44:35 runq-sz %runocc swpq-sz %swpocc
16:44:37
16:44:39
16:44:41
16:44:43

Average

A blank value in any column indicates that the associated queue is empty.

The sar -q report has the following format:

runq-sz Reports the average number of kernel threads in the run
queue (the r column reported by vmstat is the actual
value)
 Chapter 3. Multi resource monitoring and tuning tools 137

%runocc Reports the percentage of the time the run queue is
occupied

swpq-sz Reports the average number of kernel threads waiting for
resources or I/O (the b column reported by vmstat is the
actual value)

%swpocc Reports the percentage of the time the swap queue is
occupied

How to monitor the paging statistics
Example 3-68 shows the use of the sar command with the -r flag to find out
more about the paging statistics.

Example 3-68 Using sar -r
sar -r 10 3

AIX bolshoi 1 5 00040B1F4C00 05/20/01

17:57:16 slots cycle/s fault/s odio/s
17:57:26 117419 0.00 15898.29 2087.03
17:57:36 117419 0.00 6051.20 1858.52
17:57:46 117419 0.00 13186.44 1220.44

Average 117419 0 11718 1722

The output above shows that there was approximately 460 MB of free space on
the paging spaces in the system (117419 * 4096 / 1024 / 1024 = 458) during our
measurement interval.

The sar -r report has the following format:

cycle/s Reports the number of page replacement cycles per
second (equivalent to the cy column reported by vmstat).

fault/s Reports the number of page faults per second. This is not
a count of page faults that generate I/O because some
page faults can be resolved without I/O.

slots Reports the number of free pages on the paging spaces.

odio/s Reports the number of non-paging disk I/Os per second.

How to monitor the processor utilization
Example 3-69 shows the use of the sar command with the -u flag to find out
more about the processor utilization.

Example 3-69 Using sar -u
sar -u 10 3
138 AIX 5L Performance Tools Handbook

AIX bolshoi 1 5 00040B1F4C00 05/20/01

17:54:58 %usr %sys %wio %idle
17:55:08 30 57 1 12
17:55:18 29 57 1 12
17:55:28 26 43 1 29

Average 29 53 1 18

The output above shows that the system spent 29 percent in user mode, 53
percent in system mode, and during 1 percent of the system idle time there were
outstanding I/O requests to disk or NFS file systems and 18 percent waiting for
threads to run.

The output in Example 3-70 shows how the different CPUs were utilized.

Example 3-70 Using sar -u
sar -uPALL 10 3
AIX bolshoi 1 5 00040B1F4C00 05/20/01

17:55:49 cpu %usr %sys %wio %idle
17:55:59 0 38 51 1 9
 1 27 43 1 29
 2 24 45 1 31
 3 25 46 0 29
 - 28 46 1 25
17:56:09 0 26 74 0 0
 1 40 60 0 0
 2 33 67 0 0
 3 40 60 0 0
 - 35 65 0 0
17:56:19 0 12 38 1 50
 1 18 37 1 44
 2 56 33 1 10
 3 13 37 1 48
 - 26 36 1 37

Average 0 25 54 1 20
 1 28 47 1 24
 2 38 48 0 14
 3 26 48 0 26
 - 30 49 1 21

The last line of each timestamp and the average part of the report show the
average for all CPUs; they are denoted by a dash (-). The output above shows
that the system load was fairly evenly distributed among the CPUs.
 Chapter 3. Multi resource monitoring and tuning tools 139

The sar -u report has the following format:

%idle Reports the percentage of time the CPU(s) were idle with
no outstanding disk I/O requests (equivalent to the id
column reported by vmstat).

%sys Reports the percentage of time the CPU(s) spent in
execution at the system (or kernel) level (equivalent to the
sy column reported by vmstat).

%usr Reports the percentage of time the CPU(s) spent in
execution at the user (or application) level (equivalent to
the us column reported by vmstat).

%wio Reports the percentage of time the CPU(s) were idle
during which the system had outstanding disk/NFS I/O
request(s). Equivalent to the wa column reported by
vmstat.

How to monitor tty device activity
Example 3-71 shows the use of the sar command with the -y flag to find out
more about the tty device utilization.

Example 3-71 Using sar -y
sar -y 10 3

AIX wlmhost 1 5 000BC6AD4C00 05/18/01

23:01:17 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s
23:01:27 2 0 51 0 0 0
23:01:37 1 0 446 0 0 0
23:01:47 1 0 360 0 0 0

Average 2 0 286 0 0 0

The output above shows that this system only wrote 286 characters to terminal
devices, on average, during our measurement interval. Terminal devices can be
directly attached through the tty devices (/dev/tty) or through PTY device drivers
(/dev/pty or /dev/pts) for network connections with terminal emulation.

The sar -y report has the following format:

canch/s Reports tty canonical input queue characters per second.
This field is always zero (0) for AIX Version 4 and later
versions.

mdmin/s Reports tty modem interrupts per second.

outch/s Reports tty output queue characters per second (similar
to the tout column, but per second, reported by iostat).
140 AIX 5L Performance Tools Handbook

rawch/s Reports tty input queue characters per second (similar to
the tin column, but per second, reported by iostat).

revin/s Reports tty receive interrupts per second.

xmtin/s Reports tty transmit interrupts per second.

How to monitor kernel tables
Example 3-72 shows the use of the sar command with the -v flag to find out
more about the kernel table utilization:

Example 3-72 Using sar -v
sar -v 10 3

AIX bolshoi 1 5 00040B1F4C00 05/20/01

17:52:58 proc-sz inod-sz file-sz thrd-sz
17:53:08 248/262144 641/358248 709/853 256/524288
17:53:18 227/262144 632/358248 642/853 235/524288
17:53:28 42/262144 282/358248 192/853 50/524288

The output above tells us that during the sampling interval between 17:53:18 and
17:53:28, there were 42 processes in the system process table, there were 192
file entry table entries occupied (the currently maximum size of the file entry table
is 853 entries since the last Initial Program Load (IPL)), 282 inodes are in use,
and 50 threads occupied the thread table.

The sar -v report has the following format:

file-sz Reports the number of entries in the kernel file table. The
column is divided into two parts:

file-size The number of open files in the
system (the currently used size of the
file entry table). Note that a file may
be open multiple times (multiple file
opens for one inode).

file-size-max The maximum number of files that
have been open since IPL (high
watermark).

The file entry table is allocated dynamically, so the
file-size-max value signifies a file entry table with
file-size-max entries available, and only file-size
entries used.

inod-sz Reports the number of entries in the kernel inode table.
The column is divided into two parts:
 Chapter 3. Multi resource monitoring and tuning tools 141

inode-size The current number of active (open)
inodes.

inode-size-max The maximum number of inodes
allowed. This value is calculated at
system boot time based on the
amount of memory in the system

proc-sz Reports the number of entries in the kernel process table.
The column is divided into two parts:

proc-size The current number of processes
running on the system.

proc-size-max The maximum number of processes
allowed. Maximum value depends
on whether it is a 32-bit or 64-bit
system (NPROC).

thrd-sz Reports the number of entries in the kernel thread table.
The column is divided into two parts:

thread-size The current number of active
threads.

thread-size-max The maximum number of threads
allowed. Maximum value depends
on whether it is a 32-bit or 64-bit
system (NTHREAD).

The current limits for some of the kernel tables (per process) can be found using
the shell built in function ulimit, as Example 3-73 shows.

Example 3-73 Using ulimit
ulimit -a
time(seconds) unlimited
file(blocks) 2097151
data(kbytes) 131072
stack(kbytes) 32768
memory(kbytes) 32768
coredump(blocks) 2097151
nofiles(descriptors) 2000

How to monitor system context switching activity
Example 3-74 shows the use of the sar command with the -w flag to find out
more about context switching between threads.

Example 3-74 Using sar -w
sar -w 10 3

AIX wlmhost 1 5 000BC6AD4C00 05/18/01
142 AIX 5L Performance Tools Handbook

23:00:46 cswch/s
23:00:56 516
23:01:06 599
23:01:16 307

Average 474

The output above shows that there were 474 context switches per second in the
system on average during our measurement interval.

The sar -w report has the following format:

cswch/s Reports the number of context switches per second
(equivalent to the cs column reported by vmstat).

The output in Example 3-75 shows the number of context switches per second
for the different CPUs.

Example 3-75 Using sar -w
sar -wP ALL 10 3

AIX wlmhost 1 5 000BC6AD4C00 05/18/01

23:04:18 cpu cswch/s
23:04:28 0 212
 1 140
 2 152
 3 125
 - 625
23:04:38 0 186
 1 119
 2 111
 3 82
 - 494
23:04:48 0 66
 1 60
 2 52
 3 30
 - 210

Average 0 154
 1 106
 2 106
 3 79
 - 443
 Chapter 3. Multi resource monitoring and tuning tools 143

The last line of each timestamp and the average part of the report show the
average for all CPUs. They are denoted by a dash (-).

3.8 schedtune
With schedtune, AIX provides a set of parameters that influence its memory load
control mechanism. Some of these parameters can be adjusted to tailor the
system for a specific type of workload. The schedtune command is used to
display and change the parameters used in detecting whether system memory is
over committed, and therefore is thrashing (see “Thrashing” on page 150). The
schedtune command can also be used to change the penalty and decay factors
of processes running on the system. Using the schedtune command, the root
user has the ability to:

� Decide which criteria will be used to determine thrashing. Refer to
“Thrashing” on page 150

� Decide which criteria is used to suspend processes.

� Decide how long to wait after thrashing has stopped to reactivate processes
that were previously suspended.

� Decide the minimum number of processes that are exempt from being
suspended.

� Tune the scheduling priority formulas.

� Change the number of time slices.

� Decide what length of time to spin on a lock.

� Reset the schedtune values back to the defaults.

schedtune resides in /usr/samples/kernel and is part of the bos.adt.samples fileset,
which is installable from the AIX base installation media.

Note: All changes made using schedtune will be lost after a reboot. In order to
ensure that the desired schedtune values are set at boot time, insert the
appropriate schedtune command in the /etc/inittab file. An example of the
/etc/inittab file is shown in Example 3-81 on page 156
144 AIX 5L Performance Tools Handbook

3.8.1 Syntax
The syntax of the schedtune command is as follows:

schedtune [-D] | [-h n][-p n][-w n][-m n][-e n][-f n][-r n][-d n]

[-t n][-s n][-c n][-a n][-b n][-F n]

Flags
-D Restores the default values.

-h n Part of the system wide criterion used to determine when
process suspension begins and ends. On systems with less than
128 MB of system memory, the value of the n parameter is set to
six by default. On systems where the system memory is greater
than 128 MB, the value is set to 0 (zero). This is the same value
for disabling the load control mechanism. See “Memory” on
page 150.

-p n Part of the per process criterion used to determine which
processes to suspend. The default value for the n parameter is 4
(four).

-w n The number of seconds to wait after thrashing ends before
adding a process back into the run queue. The default for the n
parameter is 1 (one).

-m n The minimum multi programing level. The default value for the n
parameter is 2 (two).

-e n A recently resumed suspended process is eligible for
resuspension when it has been active for n seconds. The default
for the n parameter is 2 (two).

-f n The number of clock ticks to delay before retrying a failed fork
call. Each time slice is 10 ms. The system retries up to five times.
The default value for the n parameter is 10.

Important: The schedtune command is operating system version specific.
Only use the correct version of schedtune for the version of the operating
system being used. Failure to do this may result in the inconsistent results and
the operating system may become inoperative. Some versions of the
schedtune command incorporate new functions specific for the appropriate
operating system.
 Chapter 3. Multi resource monitoring and tuning tools 145

-r n The rate at which to accumulate CPU use. The value of the n
parameter can be any whole number from zero to 32. The default
is 16.

-d n The factor used to decay CPU use. The value of the n parameter
can be any whole number from zero to 32. The default is 16.

-t n The number of 10 ms time slices (SCHED_RR only). The default
value for the n parameter is one. The SCHED_RR policy is a
round-robin based scheduling policy. For more information on
scheduler policies, refer to “Scheduler policies” on page 147.

-s n The number of times to spin on a lock before sleeping. The
default value of the n parameter for multiprocessor systems is
16384, and one for uniprocessor systems.

-c n The number used in determining and adjusting the clock
adjustments per tick in the correction range -1 to +1 seconds.
The range is from 1 (one) to 100. The default value is 100. This
value is used to adjust a drift in the clock.

-a n The number of context switches after which the SCHED_FIFO2
policy no longer favors a thread. The default value for the n
parameter is seven. The SCHED_FIFO2 policy allows a thread
that sleeps for a relatively short amount of time to be requeued to
the head, rather than the tail, of its priority run queue. For more
information on scheduler policies, refer to “Scheduler policies” on
page 147.

-b n Idle migration barrier is b/16 of the load average. This is the
value that determines when the thread can migrate to another
processor. The default value for the n parameter is four. The
range is from zero to 100.

-F n Keep fixed priority threads in the global run queue. The default
value for the n parameter is zero, which disables this function.
Setting the value to one will enable the function. The global run
queue is used for fixed high priority threads or for newly created
threads that cannot be dispatched immediately due to lack of an
idle CPU. When any CPU on the system becomes available, a
thread on the global run queue is dispatched to it if that thread
has a better priority than a thread on this CPU’s local run queue.
146 AIX 5L Performance Tools Handbook

3.8.2 Information on calculating tunable values
This section provides information on tuning memory and CPU with the schedtune
command.

Scheduler policies
The different scheduler policies used by AIX are shown in the following list.

SCHED_OTHER This is the default AIX scheduling policy. This scheduler
policy only applies to threads with a non-fixed priority. A
threads priority is recalculated after each clock interrupt.

SCHED_RR This policy only applies to threads running with a fixed
priority. Threads are time sliced. Once the time slice expires,
the thread is moved to the back of the queue of threads of
this same priority.

SCHED_FIFO This scheduler policy applies to fixed priority threads owned
by the root user only. A thread runs until completion unless
blocked or unless it gives up the CPU voluntarily.

SCHED_FIFO2 This scheduler policy allows a thread that sleeps for a short
period of time to resume at the head of the queue rather than
the tail of the queue. The length of time the thread sleeps is
determined by the schedtune -a affinity value.

SCHED_FIFO3 With this scheduler policy, whenever a thread becomes
runnable, it moves to the head of its run queue.

CPU
This section deals with tuning the schedtune parameters that affect the CPU. In
Example 3-76, the schedtune command parameters that have an effect on the
CPU are highlighted.

Example 3-76 The schedtune CPU flags
/usr/samples/kernel/schedtune

 THRASH SUSP FORK SCHED
-h -p -m -w -e -f -d -r -t -s
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE MAXSPIN
 0 4 2 1 2 10 16 16 1 16384

 CLOCK SCHED_FIFO2 IDLE MIGRATION FIXED_PRI
 -c -a -b -F
%usDELTA AFFINITY_LIM BARRIER/16 GLOBAL(1)
 100 7 4 0
 Chapter 3. Multi resource monitoring and tuning tools 147

In order to correctly tune the schedtune parameters, it is necessary to understand
the nature of the workload that is running on the system, such as if the processes
are CPU intensive or interactive.

Prioritizing
The schedtune -r flag determines the current effective priority of a process. The
following calculation indicates the relationship between the -r flag and the
current effective priority:

cp = bp + nv + (C * r/32)

The variables of the calculation can be described as follows:

bp The base priority value given to a process. When it
starts, this value is typically set to 40.

nv The nice value is a value set at process creation
time or by using the nice command (see Section 4.6,
“nice” on page 245). The default value is 20, and the
value can range from zero to 40.

C This is the number of CPU clock ticks the process
has accumulated. If this value reaches 120 and the
thread is still running, then the value stops
incrementing but the thread is allowed to keep
running. Each clock tick is 10ms.

r This value is set using the schedtune -r command
and ranges from zero to 32.

The following command sets the CPU penalty factor to a value of four:

/usr/samples/kernel/schedtune -r 4

The default value for the -r flag is 16.

To see the effect of the -r flag on the current effective priority, see Example 3-79
on page 153.

Aging of a thread
The schedtune -d flag sets the CPU decay factor. Once every second, the
swapper process of the system will wake up and age all CPU threads on the
system. The formula for calculating aging is as follows:

Cnew = C * d/32
148 AIX 5L Performance Tools Handbook

Cnew The newly calculated CPU use value in units of clock ticks

C The previous CPU use value in units of clock ticks

d The value set by schedtune -d

The C value is the accumulated CPU use value. This value is multiplied by the
CPU decay factor of (the value of schedtune -d/32). By default the schedtune -d
value is 16. This implies that every second when the swapper wakes, the CPU
use is halved. Processes that are CPU intensive will benefit when the CPU
decay factor is low, while setting the value of -d to a high value will favor the
interactive processes. The -d flag has a range from zero to 32.

Time slice
The default time slice is one clock tick. One clock tick equates to 10 ms. The time
slice value can be changed using schedtune -t. Context switching sometimes
decreases as the value of time slice is increased using the schedtune -t option.

Fixed priority threads
The schedtune command can be used to force all fixed priority threads to be
placed on the global run queue. The global run queue is examined for runnable
threads before the individual processor’s run queues are examined. A thread that
is on the global run queue will be dispatched to a CPU prior to threads on the
CPU’s run queue when that CPU becomes available if that thread has a better
priority than the threads on the CPU’s local run queue. The syntax for this is as
follows:

/usr/samples/kernel/schedtune -F 1

Fork retries
The -f option of the schedtune command determines the length of time that must
elapse before retrying a failed fork() call. If a fork() subroutine fails due to a lack
of paging space, then the system will wait until the specified number of clock
ticks have elapsed before retrying. The default value is 10. Because the duration
of one clock tick is 10 ms, the system will wait 100 ms by default.

Lock tuning
When a thread needs to acquire a lock, if that lock is held by another thread on
another CPU, then the thread will spin on the lock for a length of time before it
goes to sleep and puts itself on an event run queue waiting for the lock to be
released. The value of the MAXSPIN parameter determines how many iterations
the thread will check the lock word to see if the lock is available. On SMP
systems, this value is defaulted to 16384 as in the example below. In the case of
an upgrade to a faster system, it should be realized that the duration for spinning
on a lock will be less than on a slower system for the same MAXSPIN value. The
spin on a lock parameter MAXSPIN can be changed using the schedtune
command’s -s flag.
 Chapter 3. Multi resource monitoring and tuning tools 149

Memory
This section deals with the schedtune command values that affect memory. The
schedtune command parameters that effect memory are highlighted in
Example 3-77.

Example 3-77 The schedtune command’s memory related parameters
/usr/samples/kernel/schedtune -e 1

 THRASH SUSP FORK SCHED
-h -p -m -w -e -f -d -r -t -s
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE MAXSPIN
 6 6 10 2 1 10 16 16 1 16384

 CLOCK SCHED_FIFO2 IDLE MIGRATION FIXED_PRI
 -c -a -b -F
%usDELTA AFFINITY_LIM BARRIER/16 GLOBAL(1)
 100 7 4 0

The load control mechanism is used to suspend processes when the available
memory is over committed. Pages are stolen as they are needed from Least
Recently Used (LRU) pages. Pages from the suspended processes are the most
likely to be stolen. The intention of memory load control is to smooth out
infrequent peaks in memory demand to minimize the chance of thrashing taking
place. It is not intended as a mechanism to cure systems that have inadequate
memory. Certain processes are exempt from being suspended, such as kernel
processes and processes with a fixed priority below 60.

Thrashing
Using the output of the vmstat command as referenced in Section 3.11, “vmstat”
on page 186, the system is said to be thrashing when:

po/fr > 1/h

po Number of page writes.

fr Number of page steals.

h The schedtune -h value.

Note: On systems with a memory size greater than 128 MB, the size of the
schedtune -h value by default is 0 (zero). On systems where the memory is
less than 128 MB, the default value is set to 6 (six). When the -h flag is set to
0 (zero), then the load control mechanism is disabled.
150 AIX 5L Performance Tools Handbook

On a server with 128 MB of memory or less with the default settings, the system
is thrashing when the ratio of page writes to page steals is greater than one to
six. The value of h in the equation above, which can be changed by the
schedtune -h flag, therefore has the function of determining at which point the
system is said to be thrashing.

If the algorithm detects that memory is over committed, then the values
associated with the -m, -p, -w, -e, flags are used. If the load control mechanism
is disabled, then these flags are ignored.

-m This flag defines the lower limit of the number of active
processes. Active processes are defined as those that are
runnable and waiting for page I/O. Suspended processes
and processes waiting for events are not considered
active processes. The default value is 2 (two). To
increase this value defeats the object of the load control
mechanism’s ability to suspend processes. To decrease
this value means that less processes are active when the
mechanism starts suspending processes. In large
systems, setting this value above the default may result in
better performance.

-p This flag is used to determine which processes will be
suspended depending on the rate of thrashing of that
individual process. The default value is set to four and
implies that the process can be suspended when the ratio
of repages to page faults is greater than 4 (four).

-w This flag sets the time delay after which the process can
become active again after the system is no longer
thrashing. The default value is 1 (one) second. Setting
this value high will result in an unnecessarily poor
response time from suspended processes.

-e This flag is used to exempt a recently suspended process
form being suspended again for a period of time. The
default value is 2 (two) seconds.

3.8.3 Recommendations and precautions
The following section provides suggestions and precautions when using the
schedtune command.

Important: The schedtune command should be used with caution. The use of
inappropriate values can seriously impair the performance of the system.
Always keep a record of the current value settings before making changes.
 Chapter 3. Multi resource monitoring and tuning tools 151

Setting the CPU decay factor -d to a low value will force the current effective
priority value of the process down. A CPU intensive process therefore will
achieve more CPU time at the expense of the interactive process types. When
the -d flag is set high, then CPU intensive processes are less favored because
the priority value will decay less the longer that it runs. The interactive type
processes will be favored in this case. It is therefore important to understand the
nature of the processes that are running on the system before adjusting this
value.

When the value of the -r flag is set high, the nice value, as set by the nice
command, has less effect on the process, which means that CPU intensive
processes that have been running for some time will have a lower priority than
interactive processes.

The smaller the value of the -h flag, the closer to thrashing the system gets
before process suspension starts. Conversely, if the value is set too high,
processes may become suspended needlessly.

It is not recommended that the -m flag is set lower than 2 (two). Even though this
is permitted, the result is that only one or less user processes will be permitted
when suspension starts.

Setting the value of the -w flag high results in unnecessarily poor response times
from suspended processes. The system’s processors could be idle while the
suspended processes wait for the delay set by the -w flag. Ultimately, this will
result in poor performance.

3.8.4 Examples
The schedtune command used without any flags will display the current
schedtune settings as shown in Example 3-78.

Example 3-78 Using the schedtune command to display the current values
/usr/samples/kernel/schedtune

 THRASH SUSP FORK SCHED
-h -p -m -w -e -f -d -r -t -s
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE MAXSPIN
 0 4 2 1 2 10 16 16 1 16384

 CLOCK SCHED_FIFO2 IDLE MIGRATION FIXED_PRI
 -c -a -b -F
%usDELTA AFFINITY_LIM BARRIER/16 GLOBAL(1)
 100 7 4 0
152 AIX 5L Performance Tools Handbook

When the CPU penalty factor schedtune -r is large, the nice value assigned to a
thread has less effect. When the CPU penalty factor is small, the nice value
assigned to the thread has more effect. This is shown in the following example.
In Example 3-79, the -r value is set to 4 (four). The nice value has a low impact
on the value of the current effective priority as can be seen in Table 3-1.

Example 3-79 CPU penalty factor of four using the schedtune command
/usr/samples/kernel/schedtune -r 4

 THRASH SUSP FORK SCHED
-h -p -m -w -e -f -d -r -t -s
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE MAXSPIN
 0 4 2 1 2 10 16 4 1 16384

 CLOCK SCHED_FIFO2 IDLE MIGRATION FIXED_PRI
 -c -a -b -F
%usDELTA AFFINITY_LIM BARRIER/16 GLOBAL(1)
 100 7 4 0

The result of changing the -r flag to 4 (four) is tabulated below. Values are
obtained from the calculation shown below:

cp = bp + nv + (C * r/32)

 = 40 + 20 + (100 * 4/32)

 = 72

Table 3-1 Current effective priority calculated where -r is four

Time Current
effective
priority

schedtune -r
flag

Clock ticks
consumed
(count)

0 (initial value) 60 4 0

10 ms 60 4 1

20 ms 60 4 2

30 ms 60 4 3

40 ms 60 4 4

1000 ms 72 4 100
 Chapter 3. Multi resource monitoring and tuning tools 153

In Example 3-80, the -r flag is set to 16, the nice value has less effect on the
current effective priority of the thread as can be seen in Table 3-2 on page 154.

Example 3-80 CPU penalty factor of sixteen using the schedtune command
./schedtune -r 16

 THRASH SUSP FORK SCHED
-h -p -m -w -e -f -d -r -t -s
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE MAXSPIN
 0 4 2 1 2 10 16 16 1 16384

 CLOCK SCHED_FIFO2 IDLE MIGRATION FIXED_PRI
 -c -a -b -F
%usDELTA AFFINITY_LIM BARRIER/16 GLOBAL(1)
 100 7 4 0

With the default value of 16, the current effective priority will be as in Table 3-2.
Values are obtained from the calculation shown below:

cp = bp + nv + (C * r/32)

 = 40 + 20 + (100 * 16/32)

 = 110

Table 3-2 Current effective priority calculated where -r is 16

Priority is limited to a value of 126. Even though the calculation allows for the
value to exceed this limit, the kernel will cap it at this value.

In the next example, the effect of the CPU decay factor can be seen. In Table 3-3,
the swapper wakes up at 1000 ms and sets the value of CPU use count to 50.
The current effective priority is significantly affected by the CPU decay factor.

Time Current
effective
priority

schedtune -r
flag

Clock ticks
consumed
(count)

0 60 16 0

10 ms 60 16 1

20 ms 61 16 2

30 ms 61 16 3

40 ms 62 16 4

1000 ms 110 16 100
154 AIX 5L Performance Tools Handbook

Cnew = C * d/32

= 100 * 16/32

= 50

Table 3-3 The CPU decay factor using the default schedtune -d value of 16

When the schedtune -d value is set to 31 as in Table 3-4, then the impact of the
CPU decay factor has less effect on the current effective priority value. With the
decay factor set in this way, interactive type threads are favored over CPU
intensive threads.

Cnew = C * d/32

= 100 * 31/32

= 97

Table 3-4 The CPU decay factor using a schedtune -d value of 31

The changes made using the schedtune command will be lost on a reboot, so it is
necessary to set the schedtune values at boot time by modifying the /etc/inittab
file as demonstrated in Example 3-81.

Example 3-81 The /etc/inittab modified showing an entry for the schedtune command
: @(#)49 1.28.2.7 src/bos/etc/inittab/inittab, cmdoper, bos411, 9430C411a 7/26
/94 16:27:45

Time Current
effective
priority

schedtune -r
flag

Clock ticks
consumed
(count)

schedtune -d
flag

990 ms 72 4 99 16

1000 ms 72 4 100 16

1010 ms 66 4 50 16

1020 ms 67 4 60 16

Time Current
effective
priority

schedtune -r
flag

Clock ticks
consumed
(count)

schedtune -d
flag

990 ms 72 4 99 31

1000 ms 72 4 100 31

1010 ms 72 4 96 31

1020 ms 72 4 97 31
 Chapter 3. Multi resource monitoring and tuning tools 155

:
: COMPONENT_NAME: CMDOPER
:
: ORIGINS: 3, 27
:
: (C) COPYRIGHT International Business Machines Corp. 1989, 1993
: All Rights Reserved
: Licensed Materials - Property of IBM
:
: US Government Users Restricted Rights - Use, duplication or
: disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
:
: Note - initdefault and sysinit should be the first and second entry.
:
init:2:initdefault:
brc::sysinit:/sbin/rc.boot 3 >/dev/console 2>&1 # Phase 3 of system boot
powerfail::powerfail:/etc/rc.powerfail 2>&1 | alog -tboot > /dev/console # Power
 Failure Detection
rc:2:wait:/etc/rc 2>&1 | alog -tboot > /dev/console # Multi-User checks
fbcheck:2:wait:/usr/sbin/fbcheck 2>&1 | alog -tboot > /dev/console # run /etc/fi
rstboot
srcmstr:2:respawn:/usr/sbin/srcmstr # System Resource Controller
fbcheck:2:wait:/usr/sbin/fbcheck 2>&1 | alog -tboot > /dev/console # run /etc/fi
rstboot
srcmstr:2:respawn:/usr/sbin/srcmstr # System Resource Controller
rcsna:2:wait:/etc/rc.sna > /dev/console 2>&1 # Start sna daemons
rctcpip:2:wait:/etc/rc.tcpip > /dev/console 2>&1 # Start TCP/IP daemons
ihshttpd:2:wait:/usr/HTTPServer/bin/httpd > /dev/console 2>&1 # Start HTTP daemon
rcnfs:2:wait:/etc/rc.nfs > /dev/console 2>&1 # Start NFS Daemons
ihsadmin:2:wait:/usr/HTTPServer/bin/adminctl start > /dev/console 2>&1 # Start H
TTP admin daemon
nim:2:wait:/usr/bin/startsrc -g nim >/dev/console 2>&1
vmtune:2:once:/usr/samples/kernel/vmtune -P 30 -p 5 -c 4 -W 128 -R 16
schedt:2:once:/usr/samples/kernel/schedtune -s 65536
mcs0:2:wait:/etc/mcs0 load # RC script
rcx25:2:wait:/etc/rc.net.x25 > /dev/console 2>&1 # Load X.25 translation table
cron:2:respawn:/usr/sbin/cron
piobe:2:wait:/usr/lib/lpd/pio/etc/pioinit >/dev/null 2>&1 # pb cleanup
qdaemon:2:wait:/usr/bin/startsrc -sqdaemon
writesrv:2:wait:/usr/bin/startsrc -swritesrv
uprintfd:2:respawn:/usr/sbin/uprintfd
logsymp:2:once:/usr/lib/ras/logsymptom # for system dumps
diagd:2:once:/usr/lpp/diagnostics/bin/diagd >/dev/console 2>&1
hcon:2:once:/etc/rc.hcon
lpd:2:once:/usr/bin/startsrc -s lpd
156 AIX 5L Performance Tools Handbook

Example 3-82 uses the schedtune -s command to improve system performance
where there is lock contention. The default value might be too low for an SMP
system.

Example 3-82 Use of the spin on lock, maxspin option, schedtune -s
/usr/samples/kernel/schedtune

 THRASH SUSP FORK SCHED
-h -p -m -w -e -f -d -r -t -s
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE MAXSPIN
 0 4 2 1 2 10 16 16 1 16384

 CLOCK SCHED_FIFO2 IDLE MIGRATION FIXED_PRI
 -c -a -b -F
%usDELTA AFFINITY_LIM BARRIER/16 GLOBAL(1)
 100 7 4 1

If there is inode lock contention on, for example, database files within a logical
volume, this can be reduced by an increase in the MAXSPIN parameter, provided
that CPU use is not too high. Faster CPUs spin on a lock for a shorter period of
time than slower CPUs because of MAXSPIN will be used up quicker.

As can be seen above, the default value for spin on a lock is 16384 on SMP
systems. This value is usually too low, and should be set about four times the
default value. Run the command in the example below to increase the value.
Example 3-83 shows the schedtune output after the change.

Example 3-83 The new maxspin value
/usr/samples/kernel/schedtune -s 65536

 THRASH SUSP FORK SCHED
-h -p -m -w -e -f -d -r -t -s
SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE MAXSPIN
 0 4 2 1 2 10 16 16 1 65536

 CLOCK SCHED_FIFO2 IDLE MIGRATION FIXED_PRI
 -c -a -b -F
%usDELTA AFFINITY_LIM BARRIER/16 GLOBAL(1)
 100 7 4 1
 Chapter 3. Multi resource monitoring and tuning tools 157

3.9 topas
The topas command is a performance monitoring tool that is ideal for broad
spectrum performance analysis. The command is capable of reporting on local
system statistics such as CPU use, CPU events and queues, memory and
paging use, disk performance, network performance, and NFS statistics. It can
report on the top hot processes of the system as well as reporting on Workload
Manager (WLM) hot classes. The WLM class information is only displayed when
WLM is active. The topas command defines hot processes as those processes
that use a large amount of CPU time. The topas command does not have an
option for logging information. All information is real time.

The topas command requires the perfagent.tools fileset to be installed on the
system. The topas command resides in /usr/bin and is part of the bos.perf.tools
fileset that is obtained from the AIX base installable media.

3.9.1 Syntax
The syntax of the topas command is as follows.

topas [-d number_of_monitored_hot_disks] [-h]

[-i monitoring_interval_in_seconds]

[-n number_of_monitored_hot_network_interfaces]

[-p number_of_monitored_hot_processes]

[-w number_of_monitored_hot_WLM classes]

[-c number_of_monitored_hot_CPUs] [-P | -W]

The description of the flags is listed below.

-d This flag specifies the number of disks to be displayed and
monitored. The default value of two is used by the command if
this value is omitted from the command line. In order that no disk
information is displayed, the value of zero must be used. If the
number of disks selected by this flag exceeds the number of
physical disks in the system, then only the physically present
disks will be displayed. Because of the limited space available,
only the number of disks that fit into the display window are

Note: In order to obtain a meaningful output from the topas command, the
screen or graphics window must support a minimum of 80 characters by 24
lines. If the display is smaller than this, then parts of the output become
illegible.
158 AIX 5L Performance Tools Handbook

shown. The disks by default are listed in descending order of
kilobytes read and written per second KBPS. This can be
changed by moving the cursor to an alternate disk heading (for
example, Busy%).

-h This flag is used to display the topas help.

-i This flag sets the data collection interval and is given in seconds.
The default value is two.

-n This flag is used to set the number of network interfaces to be
monitored. The default is two. The number of interfaces that can
be displayed is determined by the available display area. No
network interface information will be displayed if the value is set
to zero.

-p This flag is used to display the top hot processes on the system.
The default value of 20 is used if the flag is omitted from the
command line. To omit top process information from the
displayed output, the value of this flag must be set to zero. If
there is no requirement to determine the top hot processes on
the system, then this flag should be set to zero as this function is
the main contributor of the total overhead of the topas command
on the system.

-w This flag specifies the number of WLM classes to be monitored.
The default value of two is assumed if this value is omitted. The
classes are displayed as display space permits. If this value is
set to zero, then no information on WLM classes will be
displayed. If the WLM daemons are not active on the system,
then this flag may be omitted. Setting this flag to a value greater
than the number of available WLM classes results in only the
available classes being displayed.

-P This flag is used to display the top hot processes on the system
in greater detail than is displayed with the -p flag. Any of the
columns can be used to determine the order of the list of
processes. To change the order, simply move the cursor to the
appropriate heading.

-W This flag splits the full screen display. The top half of the display
shows the top hot WLM classes in detail, and the lower half of
the screen displays the top hot processes of the top hot WLM
class.
 Chapter 3. Multi resource monitoring and tuning tools 159

3.9.2 Information on measurement and sampling
The topas command makes use of the System Performance Measurement
Interface (SPMI) Application Program Interface (API) for obtaining its
information. By using the SPMI API, the system overhead is kept to a minimum.
The topas command uses the perfstat library call to access the perfstat kernel
extensions.

In instances where the topas command is determining values for system calls,
CPU clicks, and context switches, the appropriate counter is incremented by the
kernel and the mean value is determined over the interval period set by the -i
flag. Other values such as free memory are merely snapshots at the interval
time.

The sample interval can be selected by the user by using the -i flag option. If this
flag is omitted in the command line, then the default of two seconds is used.

3.9.3 Common uses of the topas command
Example 3-84 on page 162 shows the standard topas command and its output.
The system host name is displayed on the left hand side on the top line of the
screen. The line below shows the time and date as well as the sample interval
used for measurement.

CPU utilization statistics
CPU utilization is graphically and numerically displayed below the date and time
and is split up into a percentage of idle, wait, user, and kernel time.

Idle time The percentage of time where the processor is not performing any
tasks.

Wait time The percentage of time where the CPU is waiting for the response
of an input output device such as a disk or network adapter.

User time The percentage of time where the CPU is executing a program in
user mode.

Kernel time The percentage of time where the CPU is running in kernel mode.

Network interface statistics
The following network statistics are available over the monitoring period.

Network The name of the interface adapter.
KPBS Reports the total throughput of the interface in kilobytes per

second.
I-Pack Reports the number of packets received per second.
O-Pack Reports the number of packets sent per second.
KB-In Reports the number of kilobytes received per second.
KB-Out Reports the number of kilobytes sent per second.
160 AIX 5L Performance Tools Handbook

Disk drive statistics
The following disk drive statistics are available.

Disk The name of the disk drive.
Busy% Reports the percentage of time that the disk drive was active.
KBPS Reports the total throughput of the disk in kilobytes per second.

This value is the sum of KB-Read and KB-Writ.
TPS Reports the number of transfers per second or I/O requests to a

disk drive.
KB-Read Reports the number of kilobytes read per second.
KB-Writ Reports the number of kilobytes written per second.

Process statistics
The top hot processes are displayed with the following headings.

Name The name of the process. Where the number of characters in the
process name exceeds nine, the name will be truncated. No
pathname details for the process are displayed.

PID Shows the process identification number for the process. This is
useful when a process needs to be stopped.

CPU% Reports on the CPU time utilized by this process.
PgSp Reports on the paging space that has been allocated to this

process.
Owner Displays the owner of the process.

Event and queue statistics
This part of the report is on the to right-hand side of the topas display screen and
reports on select system global events and queues over the sampling interval.

Cswitch Reports the number of context switches per second.
Syscall Reports the total number of system calls per second.
Reads Reports the number of read system calls per second.
Writes Reports the number of write system calls per second.
Forks Reports the number of fork system calls per second.
Exec Reports the number of exec system calls per second.
Runqueue Reports the average number of threads that were ready to run,

but were waiting for a processor to become available.
Waitqueue Reports the average number of threads waiting for paging to

complete.

File and tty statistics
The file and tty part of the topas screen is located on the extreme right-hand side
at the top. The reported items are listed below.

Readch Reports the number of bytes read through the read system call
per second.

Writech Reports the number of bytes written through the write system call
per second.
 Chapter 3. Multi resource monitoring and tuning tools 161

Rawin Reports the number of bytes read in from a tty device per second.
Ttyout Reports the number of bytes written to a tty device per second.
Igets Reports on the number of calls per second to the inode lookup

routines.
Namei Reports the number of calls per second to the path lookup routine.
Dirblk Reports on the number of directory blocks scanned per second by

the directory search routine.

Paging statistics
There are two parts of the paging statistics reported by topas. The first part is
total paging statistics. This simply reports the total amount of paging available on
the system and the percentages free and used. The second part provides a
breakdown of the paging activity. The reported items and their meanings are
listed below.

Faults Reports the number of faults.
Steals Reports the number of 4 KB pages of memory stolen by the

Virtual Memory Manager per second.
PgspIn Reports the number of 4 KB pages read in from the paging space

per second.
PgspOut Reports the number of 4 KB pages written to the paging space per

second.
PageIn Reports the number of 4 KB pages read per second.
PageOut Reports the number of 4 KB pages written per second.
Sios Reports the number of input/output requests per second issued

by the Virtual Memory Manager.

Memory statistics
The memory statistics are listed below.

Real Shows the actual physical memory of the system in megabytes.
%Comp Reports real memory allocated to computational pages.
%Noncomp Reports real memory allocated to non-computational pages.
%Client Reports on the amount of memory that is currently used to cache

remotely mounted files.

NFS statistics
Statistics for client and server calls per second are displayed.

Example 3-84 shows the topas command and its output.

Example 3-84 The default topas display
topas -i1 -p2 -d2 -n2

Topas Monitor for host: wlmhost EVENTS/QUEUES FILE/TTY
Thu May 3 16:05:08 2001 Interval: 15 Cswitch 60 Readch 127.6K
 Syscall 1652 Writech 4520
Kernel 0.4 | | Reads 892 Rawin 0
162 AIX 5L Performance Tools Handbook

User 0.2 | | Writes 3 Ttyout 0
Wait 0.9 | | Forks 0 Igets 0
Idle 98.3 |############################| Execs 0 Namei 57
 Runqueue 0.0 Dirblk 0
Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 0.0
tr0 0.3 2.6 0.4 0.1 0.2
lo0 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
 Faults 27 Real,MB 511
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 21.5
hdisk0 4.8 27.8 6.4 2.7 25.1 PgspIn 0 % Noncomp 5.6
hdisk1 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 0.5
 PageIn 0
Name PID CPU% PgSp Owner PageOut 5 PAGING SPACE
Dctrl 34642 0.4 1.2 root Sios 5 Size,MB 1024
syncd 5724 0.2 0.3 root % Used 9.2
 NFS (calls/sec) % Free 90.7
 ServerV2 0
 ClientV2 0 Press:
 ServerV3 0 "h" for help
 ClientV3 0 "q" to quit

There are subcommands available once the topas screen is displayed. These
subcommands and their functions are explained below.

a Always reverts to the default topas screen as shown in
Example 3-84 on page 162.

c This option toggles the CPU display between off, cumulative, and
busiest CPU.

d This option toggles the disk display between off, total disk
activity, and busiest disks.

f When the cursor is moved over a WLM class name and this key
is pressed, then the top processes of this class are displayed in
the WLM window.

h Provides online help.

n This option toggles the network display between off, cumulative,
and busiest interface.

p This option toggles the top hot process list on and off.
 Chapter 3. Multi resource monitoring and tuning tools 163

P This option toggles between the full top process screen, which is
the same as the -P option from the topas command line. The full
processor screen is shown in Example 3-85. The top 20
processes are displayed showing the following information.

USER The user name

PID The process identification

PPID Parent process identification

PRI Priority given to the process

NI The nice value for the process

TIME The accumulative CPU time

CPU% The percentage of time that the CPU has been busy
with this process during the sample period

COMMAND The name of the process

Example 3-85 The full process topas screen
Topas Monitor for host: wlmhost Interval: 2 Thu May 3 16:13:58 2001

 DATA TEXT PAGE PGFAULTS
USER PID PPID PRI NI RES RES SPACE TIME CPU% I/O OTH COMMAND
root 5724 1 60 20 44 1 79 2:32 3.0 0 3 syncd
root 2322 0 37 41 15 3024 16 0:21 0.5 0 0 gil
root 1806 0 60 41 4 3024 4 0:00 0.0 0 0 xmgc
root 2064 0 36 41 4 3024 4 0:01 0.0 0 0 netm
root 1548 0 16 41 3 3024 3 20:08 0.0 0 0 lrud
root 2580 0 16 41 2 3024 4 0:00 0.0 0 0 wlmsched
root 3432 8256 60 20 24 42 192 0:00 0.0 0 0 telnetd
root 3678 1 60 20 51 13 192 0:00 0.0 0 0 errdemon
root 3882 0 60 20 2 3024 4 0:00 0.0 0 0 lvmbb
root 4208 7534 60 20 44 57 139 0:00 0.0 0 0 ksh
root 4430 6712 60 20 145 40 279 0:03 0.0 0 0 sendmail
root 4678 1 17 20 2 3024 10 0:00 0.0 0 0 dog
root 4924 5994 60 20 426 158 816 1:05 0.0 0 0 X
root 5186 16308 60 20 265 74 496 0:08 0.0 0 0 dtwm
root 5456 6712 60 20 75 13 153 0:01 0.0 0 0 dhcpcd
root 1 0 60 20 53 7 197 0:07 0.0 0 0 init
root 5994 1 60 20 3 0 81 0:00 0.0 0 0 dtlogin
root 6248 6712 60 20 50 0 444 0:00 0.0 0 0 IBM.ERrmd
root 6712 1 60 20 52 0 160 0:00 0.0 0 0 srcmstr
root 6990 6712 60 20 69 5 139 0:01 0.0 0 0
syslogd

q This option is used to exit the topas performance tool.
164 AIX 5L Performance Tools Handbook

r This option is used to refresh the screen.

w This option toggles the WLM section of the display on and off.

W This option toggles the full WLM display on and off
(Example 3-86).

Example 3-86 Typical display from using the W subcommand
Topas Monitor for host: wlmhost Interval: 2 Fri May 11 11:20:43 2001
WLM-Class (Active) CPU% Mem% Disk-I/O%
System 3 93 0
db1.sub1 0 0 0
db1.Shared 0 0 0
db1.Default 0 0 0
db1 0 0 0
Shared 0 4 0
Default 0 1 0
Unmanaged 0 23 0
Unclassified 0 0 0
==
 DATA TEXT PAGE PGFAULTS
USER PID PPID PRI NI RES RES SPACE TIME CPU% I/O OTH COMMAND
bob 36098 39942 174 20 100 10 100 0:13100.0 0 0 dc
root 15616 34578 217 20 130 8 334 1:51 1.0 0 0 topas
root 1806 0 60 41 4 2822 4 0:02 0.0 0 0 xmgc
root 2064 0 36 41 4 2822 4 0:13 0.0 0 0 netm
root 2322 0 37 41 15 2822 16 2:05 0.0 0 0 gil
root 2580 0 16 41 2 2822 4 9:44 0.0 0 0 wlmsched
root 3396 10396 217 20 0 0 0 0:00 0.0 0 0
root 3678 1 217 20 2 0 309 0:00 0.0 0 0 errdemon
root 3882 0 217 20 2 2822 4 0:00 0.0 0 0 lvmbb
root 4210 7536 217 20 62 0 358 0:00 0.0 0 0 dtterm
root 4430 6712 217 20 145 42 279 0:13 0.0 0 0 sendmail

3.9.4 Examples
Some common uses of the topas command are given below (Example 3-87).

Example 3-87 Excessive CPU %user use indicated by topas
Topas Monitor for host: wlmhost EVENTS/QUEUES FILE/TTY
Fri May 11 11:28:06 2001 Interval: 2 Cswitch 64 Readch 353
 Syscall 211 Writech 7836
Kernel 0.6 | | Reads 16 Rawin 0
User 99.3 |############################| Writes 6 Ttyout 0
Wait 0.0 | | Forks 0 Igets 0
Idle 0.0 | | Execs 0 Namei 8
 Runqueue 4.0 Dirblk 0
 Chapter 3. Multi resource monitoring and tuning tools 165

Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 0.0
tr0 8.3 6.1 9.2 0.3 8.0
lo0 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
 Faults 0 Real,MB 511
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 46.5
hdisk0 0.0 2.0 0.0 0.0 2.0 PgspIn 0 % Noncomp 53.6
hdisk1 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 49.6
 PageIn 0
WLM-Class (Active) CPU% Mem% Disk-I/O% PageOut 0 PAGING SPACE
Unmanaged 0 23 0 Sios 0 Size,MB 1024
Unclassified 0 0 0 % Used 13.1
 NFS (calls/sec) % Free 86.8
Name PID CPU% PgSp Class ServerV2 0
dc 43564 25.0 0.3 System ClientV2 0 Press:
dc 21566 25.0 0.3 System ServerV3 0 "h" for help
dc 41554 25.0 0.3 VPs ClientV3 0 "q" to quit
dc 23658 24.2 0.3 System

In Example 3-87 on page 165 it can be seen that the CPU percentage user is
excessively high. This would typically indicate that one or more processes are
hogging CPU time. The next step to analyzing the problem would be to press the
P subcommand key for a full list of top hot processes. Example 3-88 below shows
this output.

Example 3-88 Full process display screen show s processes hogging CPU time.
Topas Monitor for host: wlmhost Interval: 2 Fri May 11 11:34:44 2001

 DATA TEXT PAGE PGFAULTS
USER PID PPID PRI NI RES RES SPACE TIME CPU% I/O OTH COMMAND
root 35754 29076 221 20 98 10 98 0:21100.0 0 0 dc
bob 25738 39942 172 20 98 10 98 0:18100.0 0 13 dc
root 19566 20560 221 20 98 10 98 0:19 99.5 0 13 dc
root 21966 23358 221 20 98 10 98 0:20 99.0 0 0 dc
root 2580 0 16 41 2 2826 4 9:45 0.5 0 0 wlmsched
root 25558 6712 217 20 59 17 264 7:26 0.5 0 0 i4llmd
root 25206 20016 217 20 9446 9 9480 0:28 0.5 0 0 java
root 3678 1 217 20 3 0 309 0:00 0.0 0 0 errdemon
root 3882 0 217 20 2 2826 4 0:00 0.0 0 0 lvmbb
root 4210 7536 217 20 62 0 358 0:00 0.0 0 0 dtterm
root 4430 6712 217 20 145 42 279 0:13 0.0 0 0 sendmail
root 4678 1 17 20 2 2826 10 0:00 0.0 0 0 dog
root 4924 5994 217 20 605 176 822 25:15 0.0 0 0 X
root 5186 16308 217 20 366 89 532 0:38 0.0 0 0 dtwm
root 5456 6712 217 20 75 13 157 0:10 0.0 0 0 dhcpcd
root 5724 1 217 20 44 1 79 22:05 0.0 0 0 syncd
root 5994 1 217 20 3 0 81 0:00 0.0 0 0 dtlogin
root 6248 6712 217 20 214 19 479 0:04 0.0 0 0 IBM.ERrmd
166 AIX 5L Performance Tools Handbook

root 6712 1 217 20 52 0 186 0:00 0.0 0 0 srcmstr
root 6990 6712 217 20 66 4 139 0:09 0.0 0 0 syslogd

It can be seen that the first four processes are responsible for maximum CPU
use. In this case, the CPUs were performing calculations that clocked up the
CPU time. These four processes could also be seen on the default topas display.

Example 3-89 shows topas CPU statistics obtained on a server with 22 CPUs
and 68 GB of real memory. As can be seen, the CPU wait time is high. The CPU
wait value was consistently at this level. This indicates that the CPU is spending
a large amount of time waiting for an I/O operation to complete. This could
indicate such problems as insufficient available real memory space resulting in
excessive paging, or even a hardware problem on a disk. Further investigation is
required to determine exactly where the problem is. The topas command can be
regarded as the starting point to resolving most performance problems. As an
example, it might be useful to check the amount of paging activity on the system.
The topas command also provide hard disk and network adapter statistics that
can be useful for finding I/O bottlenecks. These topas statistics should be
examined to determine if a single disk or adapter is responsible for the
abnormally high CPU wait time.

Example 3-89 topas used to initially diagnose the source of a bottleneck

Kernel 12.2 |###
User 9.3 |###
Wait 30.3 |#########
Idle 48.0 |############### 41

In Example 3-90, topas is used to monitor a system. The CPU percentage wait
is over 16 percent and has consistently been at this level or higher. Looking at the
disk output, it can be seen that hdisk2 is close to 100 percent busy and has a
high transfer rate. The other disks on the system are not at all busy. If this
condition persisted, this scenario might suggest that a better distribution of data
across the disks is required. It is recommended, however, that a further
investigation be performed using a tool such as filemon. For further information
on the filemon command, please refer to Section 6.1, “filemon” on page 388.

Example 3-90 Monitoring disk problems with topas
Topas Monitor for host: wlmhost EVENTS/QUEUES FILE/TTY
Fri May 11 13:30:34 2001 Interval: 2 Cswitch 69 Readch 8701.3K
 Syscall 5263 Writech 8671.2K
Kernel 8.7 |### | Reads 362 Rawin 0
User 0.6 | | Writes 3847 Ttyout 0
Wait 16.4 |##### | Forks 0 Igets 0
 Chapter 3. Multi resource monitoring and tuning tools 167

Idle 74.1 |##################### | Execs 0 Namei 33
 Runqueue 0.0 Dirblk 0
Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 1.0
tr0 1.3 2.4 1.4 0.0 1.3
lo0 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
 Faults 1 Real,MB 511
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 29.1
hdisk2 99.9 1440.7 133.4 0.0 1440.7 PgspIn 0 % Noncomp 70.9
hdisk0 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 69.7
hdisk1 0.0 0.0 0.0 0.0 0.0 PageIn 0
 PageOut 613 PAGING SPACE
Name PID CPU% PgSp Owner Sios 902 Size,MB 1024
read_writ 39130 7.9 0.2 root % Used 20.2
topas 15618 1.2 1.2 root NFS (calls/sec) % Free 79.7
X 4924 0.0 3.2 root ServerV2 0
java 48006 0.0 37.8 root ClientV2 0 Press:
java 25206 0.0 37.0 root ServerV3 0 "h" for help
aixterm 34938 0.0 0.8 root ClientV3 0 "q" to quit
wlmsched 2580 0.0 0.0 root

3.10 truss
The truss command tracks a process's system calls, received signals, and
incurred machine faults. The application to be examined is either specified on the
command line of the truss command, or truss can be attached to one or more
already running processes.

truss resides in /usr/bin and is part of the bos.sysmgt.serv_aid fileset, which is
installable from the AIX base installation media.

3.10.1 Syntax
The syntax of the truss command is as follows:

truss [-f] [-c] [-a] [-e] [-i] [{ -t | -x} [!] Syscall [...]]
[-s [!] Signal [...]] [-m [!] Fault [...]] [{ -r | -w} [!]
file descriptor [...]] [-o Outfile] {Command| -p pid [. . .]}

Flags
-a Displays the parameter strings that are passed in

each executed system call.
168 AIX 5L Performance Tools Handbook

-c Counts tracked system calls, faults, and signals
rather than displaying the results line by line. A
summary report is produced after the tracked
command terminates or when truss is interrupted. If
the -f flag is also used, the counts include all
tracked Syscalls, Faults, and Signals for child
processes.

-e Displays the environment strings that are passed in
each executed system call.

-f Follows all children created by the fork system call
and includes their signals, faults, and system calls in
the output. Normally only the first-level command or
process is tracked. When the -f flag is specified, the
process id is included with each line of output to
show which process executed the system call or
received the signal.

-i Keeps interruptible sleeping system calls from being
displayed. Certain system calls on terminal devices
or pipes, such as open and kread, can sleep for
indefinite periods and are interruptible. Normally,
truss reports such sleeping system calls if they
remain asleep for more than one second. The
system call is then reported a second time when it
completes. The -i flag causes such system calls to
be reported only upon completion.

-m [!] Fault Machine faults to track or exclude. Listed machine
faults must be separated from each other by a
comma. Faults may be specified by name or number
(see the sys/procfs.h header file or Table 3-5 on
page 170). If the list begins with the "!" symbol, the
specified faults are excluded from being displayed
with the output. The default is -mall.

-o Outfile Designates the file to be used for the output. By
default, the output goes to standard error.

-p Interprets the parameters to truss as a list of
process ids (PIDs) of existing processes rather than
as a command to be executed. truss takes control
of each process and begins tracing it, provided that
the user id and group id of the process match those
of the user, or that the user is a privileged user.

-r [!] file descriptor Displays the full contents of the I/O buffer for each
read on any of the specified file descriptors. The
 Chapter 3. Multi resource monitoring and tuning tools 169

output is formatted 32 bytes per line, and shows
each byte either as an ASCII character (preceded by
one blank) or as a two-character C language escape
sequence for control characters, such as horizontal
tab (\t) and newline (\n). If ASCII interpretation is not
possible, the byte is shown in two-character
hexadecimal representation. The first 16 bytes of the
I/O buffer for each tracked read are shown, even in
the absence of the -r flag. The default is -r!all.

-s [!] Signal Permits listing Signals to examine or exclude.
Those signals specified in a list (separated by a
comma) are tracked. The output reports the receipt
of each specified signal even if the signal is being
ignored, but not blocked, by the process. Blocked
signals are not received until the process releases
them. Signals may be specified by name or number
(see sys/signal.h or Table 3-6 on page 171). If the list
begins with the "!" symbol, the listed signals are
excluded from being displayed with the output. The
default is -s all.

-t [!] Syscall Includes or excludes system calls from the tracked
process. System calls to be tracked must be
specified in a list and separated by commas. If the
list begins with an "!" symbol, the specified system
calls are excluded from the output. The default is
-tall.

-w [!] file descriptor Displays the contents of the I/O buffer for each write
on any of the listed file descriptors (see -r for more
details). The default is -w!all.

-x [!] Syscall Displays data from the specified parameters of
tracked system calls in raw format, usually
hexadecimal rather than symbolically. The default is
-x!all.

The -m flag allows tracking of machine faults. Machine fault numbers are
analogous to signal numbers. These correspond to hardware faults. Table 3-5
describes the numbers or names to use with the -m flag to specify machine faults.

Table 3-5 Machine faults

Symbolic fault
name

Fault id Fault description

FLTILL 1 Illegal instruction
170 AIX 5L Performance Tools Handbook

Table 3-6 describes the numbers or names to use with the -s flag to specify
signals.

Table 3-6 Signals

FLTPRIV 2 Privileged instruction

FLTBPT 3 Breakpoint instruction

FLTTRACE 4 Trace trap (single-step)

FLTACCESS 5 Memory access (for example alignment)

FLTBOUNDS 6 Memory bounds (invalid address)

FLTIOVF 7 Integer overflow

FLTIZDIV 8 Integer zero divide

FLTFPE 9 Floating-point exception

FLTSTACK 10 Unrecoverable stack fault

FLTPAGE 11 Recoverable page fault (no signal)

Symbolic signal
name

Signal id Signal description

SIGHUP 1 Hangup, generated when terminal disconnects

SIGINT 2 Interrupt, generated from terminal special char

SIGQUIT 3 Quit, generated from terminal special char

SIGILL 4 Illegal instruction (not reset when caught)

SIGTRAP 5 Trace trap

SIGABRT 6 Abort process

SIGEMT 7 EMT instruction

SIGFPE 8 Floating point exception

SIGKILL 9 Kill

SIGBUS 10 Bus error (specification exception)

SIGSEGV 11 Segmentation violation

SIGSYS 12 Bad argument to system call

Symbolic fault
name

Fault id Fault description
 Chapter 3. Multi resource monitoring and tuning tools 171

SIGPIPE 13 Write on a pipe with no one to read it

SIGALRM 14 Alarm clock timeout

SIGTERM 15 Software termination signal

SIGURG 16 Urgent condition on I/O channel

SIGSTOP 17 Stop

SIGTSTP 18 Interactive stop

SIGCONT 19 Continue

SIGCHLD 20 Sent to parent on child stop or exit

SIGTTIN 21 Background read attempted from control terminal

SIGTTOU 22 Background write attempted to control terminal

SIGIO 23 I/O possible, or completed

SIGXCPU 24 CPU time limit exceeded

SIGXFSZ 25 File size limit exceeded

SIGMSG 27 Input data is in the ring buffer

SIGWINCH 28 Window size changed

SIGPWR 29 Power-fail restart

SIGUSR1 30 User defined signal 1

SIGUSR2 31 User defined signal 2

SIGPROF 32 Profiling time alarm

SIGDANGER 33 System crash imminent; free up some page space

SIGVTALRM 34 Virtual time alarm

SIGMIGRATE 35 Migrate process

SIGPRE 36 Programming exception

SIGVIRT 37 AIX virtual time alarm

SIGALRM1 38 m:n condition variables

SIGWAITING 39 m:n scheduling

Symbolic signal
name

Signal id Signal description
172 AIX 5L Performance Tools Handbook

3.10.2 Information on measurement and sampling
The truss command executes a specified command, or attaches to listed
process IDs, and produces a report of the system calls, received signals, and
machine faults a process incurs. Each line of the output report is either the Fault
or Signal name, or the Syscall name with parameters and return values.

The subroutines defined in system libraries are not necessarily the exact system
calls made to the kernel. The truss command does not report these subroutines,
but, rather, the underlying system calls they make. When possible, system call
parameters are displayed symbolically using definitions from relevant system
header files. For path name pointer parameters, truss displays the string being
pointed to. By default, undefined system calls are displayed with their name, all
eight possible arguments, and the return value in hexadecimal format.

truss retrieves a lot of the information about processes from the /proc
filesystem. The /proc filesystem is a pseudo device that will return information
from the kernel structures depending on the structure of the files that are read.

SIGCPUFAIL 59 Predictive de-configuration of processors

SIGKAP 60 Keep alive poll from native keyboard

SIGGRANT SIGKAP Monitor mode granted

SIGRETRACT 61 Monitor mode should be relinguished

SIGSOUND 62 Sound control has completed

SIGSAK 63 Secure attention key

SIGIOINT SIGURG Printer to backend error signal

SIGAIO SIGIO Base LAN I/O

SIGPTY SIGIO PTY I/O

SIGIOT SIGABRT Abort (terminate) process

SIGCLD SIGCHLD Old death of child signal

SIGLOST SIGIOT Old BSD signal

SIGPOLL SIGIO Another I/O event

Symbolic signal
name

Signal id Signal description
 Chapter 3. Multi resource monitoring and tuning tools 173

At the top level, the /proc file system contains entries, each of which names an
existing process in the system. The names of entries in this directory are process
ID (pid) numbers. These entries are directories. The files in these PID directories
are mostly read-only. In addition, if a process becomes a zombie7, most of its
associated /proc files disappear from the directory structure.

The /proc files contain data that presents the state of processes and threads in
the system. This state is constantly changing while the system is operating. To
lessen the load on system performance caused by reading /proc files, the /proc
filesystem does not stop system activity while gathering the data for those files. A
single read of a /proc file generally returns a coherent and fairly accurate
representation of process or thread state. However, because the state changes
as the process or thread runs, multiple reads of /proc files may return
representations that show different data and therefore appear to be inconsistent
with each other.

An atomic representation is a representation of the process or thread at a single
and discrete point in time. If you want an atomic snapshot of process or thread
state, stop the process and thread before reading the state. There is no
guarantee that the data is an atomic snapshot for successive reads of /proc files
for a running process. In addition, a representation is not guaranteed to be
atomic for any I/O applied to the address space (as) file. The contents of any
process address space might be simultaneously modified by a thread of that
process or any other process in the system.

The following are the files and directories that exist for each process in the /proc
filesystem:

/proc/pid Directory for the process PID

/proc/pid/status Status of process PID

/proc/pid/ctl Control file for process PID

/proc/pid/psinfo Process status info for process PID

/proc/pid/as Address space of process PID

/proc/pid/map Address space map info for process PID

/proc/pid/object Directory for objects for process PID

7 A zombie process is a process whose parent process does not acknowledge its death. That is, does not execute the
wait system call when the child dies. Eventually all dead child processes will be acknowledged by init because init is all
user processes’ last parent. The PPID field, which can be seen with the ps command, shows which process is the parent.

Important: Multiple structure definitions are used to describe the /proc files. A
/proc file may contain additional information other than the definitions
presented here. In future releases of the operating system, these structures
may grow by the addition of fields at the end of the structures.
174 AIX 5L Performance Tools Handbook

/proc/pid/sigact Signal actions for process PID

/proc/pid/sysent System call information for process PID

/proc/pid/lwp/tid Directory for thread TID

proc/pid/lwp/tid/lwpstatus Status of thread TID

/proc/pid/lwp/tid/lwpctl Control file for thread TID

/proc/pid/lwp/tid/lwpsinfo Process status info for thread TID

3.10.3 Examples
The truss command can generate large amounts of output, so you need to
reduce the number of system calls you are tracing, or attach truss to a running
process only for a limited amount of time.

How to use truss
One way to use truss is to start by checking the general application flow, then
use a summary output as provided with the -c flag. To pinpoint the most
important system calls in the application flow, indicate these specifically with the
-t flag. Example 3-91 shows the flow of using the date command.

Example 3-91 Using truss with the date command
truss date
execve("/usr/bin/date", 0x2FF22B94, 0x2FF22B9C) argc: 1
sbrk(0x00000000) = 0x20001C78
brk(0x20011C80) = 0
getuidx(4) = 0x00000000
getuidx(2) = 0x00000000
getuidx(1) = 0x00000000
getgidx(4) = 0
getgidx(2) = 0
getgidx(1) = 0
__loadx(0x01000080, 0x2FF1E810, 0x00003E80, 0x2FF227A0, 0x00000000, 0x00000000,
0x80000000, 0x7F7F7F7F) = 0xD0075130
...(lines omitted)...
__loadx(0x07080000, 0xF0ACD284, 0xFFFFFFFF, 0x200125B8, 0x00000000, 0x6000D01A,
0x60003B0B, 0x00000000) = 0x2001334C
access("/usr/lib/nls/msg/en_US/date.cat", 0) = 0
_getpid() = 40936
kioctl(1, 22528, 0x00000000, 0x00000000) = 0
kwrite(1, 0xF0B0C2B8, 29) = 29
kfcntl(1, F_GETFL, 0xF0B0A968) = 2
kfcntl(2, F_GETFL, 0xF0B0A968) = 2
_exit(0)
Tue May 8 18:13:32 CDT 2001
 Chapter 3. Multi resource monitoring and tuning tools 175

From the above example, we can see that after the program has been loaded
and the initial setup has been performed, the date program’s use of subroutines
gets translated into kioctl for the collection of the current time, and the display
of the date uses a kwrite system call.

How to use the summary output
In the following example we ran dd and used truss to do a summary report on
what dd is doing when it reads and writes. This is especially interesting because
dd splits itself with the fork system call and has a child process. First we use the
-c flag only as is shown in Example 3-92.

Example 3-92 Using truss with the dd command
truss -c dd if=/dev/zero of=/dev/null bs=512 count=1024
1024+0 records in.
1024+0 records out.
signals ------------
SIGCHLD 1
total: 1

syscall seconds calls errors
kfork .00 1
execve .00 1
__loadx .01 12
_exit .00 1
kwaitpid .00 1
_sigaction .00 10
close .00 6
kwrite .04 1034
kread .03 2051
lseek .00 5
_getpid .00 3
getuidx .00 3
kioctl .00 4 4
open .00 3
statx .00 3
getgidx .00 3
shmctl .00 6 6
shmdt .00 3
shmat .00 3
shmget .00 3
brk .00 1
sbrk .00 1
_pause .00 1 1
pipe .00 3
access .00 1
kfcntl .00 3
 ---- --- ---
sys totals: .16 3166 11
176 AIX 5L Performance Tools Handbook

usr time: .02
elapsed: .18

As can be seen in the above example, dd performs a fork, and the number of
system calls during its execution is 3166. However by including the child
processes (-f) in the calculation, we get a different result from the same run as
shown in Example 3-93.

Example 3-93 Using truss with the dd command
truss -fc dd if=/dev/zero of=/dev/null bs=512 count=1024
1024+0 records in.
1024+0 records out.
signals ------------
SIGCHLD 1
total: 1

syscall seconds calls errors
kfork .00 1
execve .00 1
__loadx .01 12
_exit .00 2
kwaitpid .00 1
_sigaction .00 13
close .00 12
kwrite .04 3089
kread .03 3077
lseek .00 5
_getpid .00 3
getuidx .00 3
kioctl .00 4 4
open .01 3
statx .00 3
getgidx .00 3
shmctl .00 9 6
shmdt .00 6
shmat .00 6
shmget .00 3
brk .00 1
sbrk .00 1
_pause .00 1 1
pipe .00 3
access .00 1
kfcntl .00 5
 ---- --- ---
sys totals: .10 6268 11
usr time: .00
elapsed: .10
 Chapter 3. Multi resource monitoring and tuning tools 177

In the above example, we see that the total number of system calls made on
behalf of the dd program was in fact 6268 because we included all processes that
were necessary for it to perform its task in the statistical output. Because these
two samples were run on a AIX system with other loads at the same time, you
can disregard the reported time statistics as they are not important here.

How to monitor running processes
In Example 3-94 we track a process that is running. The process is known and it
performs random seeks on one file and random seeks on the other file, then it
reads a block from one file and writes it to the other, changing blocksizes and file
to read from and write to randomly.

Example 3-94 Extract of sample read_write.c program
expand -4 read_write.c|nl
...(lines omitted)...
90 while (1) {
91 bindex = (random()%12);
92 j = random()%2;
93 if (lseek(fd[j],(random()%FILE_SIZE), SEEK_SET) < 0) {
94 perror("lseek 1");
95 exit(-1);
96 }
97 if (lseek(fd[j==0?1:0],(random()%FILE_SIZE), SEEK_SET) < 0) {
98 perror("lseek 2");
99 exit(-1);
100 }
101 if (read(fd[j],buf,bsize[bindex]) <= 0) {
102 perror("read");
103 exit(-1);
104 }
105 if (write(fd[j==0?1:0],buf,bsize[bindex]) <= 0) {
106 perror("write");
107 exit(-1);
108 }
...(line omitted)...

When using truss to track the running process, we can see the seeks, reads,
and writes as in the following extracted example output (Example 3-95). The
running process name is read_write.

Example 3-95 Using truss on a running process8

ps -Fpid,args|grep read_write|awk '!/grep/{print $1}'
19534
truss -t lseek,kread,kwrite -p 19534|nl
1 lseek(3, 919890044, 0) = 919890044

8 Instead of two lines to run the command we could use one: truss -t lseek,kread,kwrite -p $(ps -Fpid,args | grep
read_write | awk '!/grep/{print $1}') | nl
178 AIX 5L Performance Tools Handbook

2 lseek(4, 757796945, 0) = 757796945
3 kread(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 64) = 64
4 kwrite(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 64) = 64
5 lseek(4, 906212625, 0) = 906212625
6 lseek(3, 332914556, 0) = 332914556
7 kread(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 128) = 128
8 kwrite(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 128) = 128
9 lseek(4, 241598273, 0) = 241598273
10 lseek(3, 848068334, 0) = 848068334
11 kread(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 131072) = 131072
12 kwrite(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 131072) = 131072
13 lseek(3, 717721518, 0) = 717721518
14 lseek(4, 314891145, 0) = 314891145
15 kread(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 131072) = 131072
16 kwrite(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 131072) = 131072
17 lseek(3, 1016755287, 0) = 1016755287
18 lseek(4, 922527047, 0) = 922527047
19 kread(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 512) = 512
20 kwrite(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 512) = 512
21 lseek(4, 476810507, 0) = 476810507
22 lseek(3, 117563634, 0) = 117563634
23 kread(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 512) = 512
24 kwrite(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 512) = 512
25 lseek(4, 624368317, 0) = 624368317
26 lseek(3, 980376023, 0) = 980376023
27 kread(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1024) = 1024
28 kwrite(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1024) = 1024
...(lines omitted)...

In lines 1 and 2 in the truss output above, you see the lseek subroutine with the
first parameter being the file descriptor used in the program, the second
parameter is the byte offset in the file, and the third is the seek operation. This
corresponds to the source lines 93 and 97 that call the lseek system call. On line
3 the kread is tracked with the first parameter being the file descriptor, the
second parameter the read buffer sent to the program (in this case all hex 0), and
the third parameter being the buffer size (block size), in this case 64 bytes. This
corresponds with the read system call on line 101 in the source program. On line
4 in the output you see the path for the kwrite, which translates into line 105 in
the source program. The first parameter is the file descriptor, the second
parameter is the write buffer and the third is the buffer size to write (block size)
which is also 64 bytes as it was for the read system call.
 Chapter 3. Multi resource monitoring and tuning tools 179

When you follow the truss output report, you notice that the lseek system calls
position the file pointers at different offsets in the two files before the read and
write commence. You can also see that the buffer sizes (block sizes) used will
vary (in the output shown above they vary between 64, 128, 131072, 512, and
1024 bytes).

To be noted is that depending on which system calls truss tracks, and how the
program is written, the output format can vary. The following example code
(Example 3-96) and truss output (Example 3-97) shows how it might look if you
use fprintf to write output from a program.

Example 3-96 Sample program for fprintf
1 #include <stdio.h>
2 main()
3 {
4 fprintf(stderr,"this is from %s, %s %s %s\n","fprintf","yes","it","is");
5 }

To track the program with truss:

truss -o truss.out -tkwrite fprintftest

truss will give an output similar to the one in Example 3-97.

Example 3-97 truss output for fprintf
expand truss.out|nl
1 kwrite(2, " t h i s i s f r o m".., 13) = 13
2 kwrite(2, " f p r i n t f", 7) = 7
3 kwrite(2, " , ", 2) = 2
4 kwrite(2, " y e s", 3) = 3
5 kwrite(2, " ", 1) = 1
6 kwrite(2, " i t", 2) = 2
7 kwrite(2, " ", 1) = 1
8 kwrite(2, " i s", 2) = 2
9 kwrite(2, "\n", 1) = 1

How to analyze file descriptor I/O
With truss you can also track what a program is reading and writing; that is, you
can actually track the content of the read and write buffers. Instead of including
debug statements in a program that shows input and output buffers (read and
write), you can use truss instead.

Read file descriptors
The following small program reads 24 bytes from the process file descriptor 0
(standard input) on line 4 below (Example 3-98 on page 181).
180 AIX 5L Performance Tools Handbook

Example 3-98 Sample read program (readit)
1 main ()
2 {
3 char buf[24];
4 read(0,buf,sizeof(buf));
5 }

The truss output (formatted with the expand and nl commands) will look similar
to the output shown below (Example 3-99).

Example 3-99 truss output from the sample read program (readit)
echo "hello world\c"|truss -r0 readit 2>&1|expand|nl
1 execve("./readit", 0x2FF22B9C, 0x2FF22BA4) argc: 1
2 kread(0, 0x2FF22B30, 24) = 11
3 h e l l o w o r l d
4 kfcntl(1, F_GETFL, 0xF06C2968) = 1
5 kfcntl(2, F_GETFL, 0xF06C2968) = 1
6 _exit(0)

The command line writes the sentence “hello world” to standard input (stdin) of
the truss/readit pipe. truss will track file descriptor 0 (stdin) with the -r flag and
we direct the output from truss (from stderr or file descriptor 2) to stdin for the
next pipe to the expand and nl commands (for formatting of the output only). On
line 2 of the truss output you see the kread system call that is created by the
read on line 4 in Example 3-98. The first parameter to kread is file descriptor 0,
the second is the read buffer address, and the third is the number of bytes to
read. On the end of the line is the return code from the kread system call, which
is 11 (this is the actual number of bytes read). On line 3 you see the content of
the read buffer containing our “hello world” string9.

Write file descriptors
The following small program writes a string of bytes (the number of bytes to write
is determined by the length of the string in this case) to the process file descriptor
1 (standard output) on line 4 below (Example 3-100).

Example 3-100 Sample write program
1 main ()
2 {
3 char *buf = "abcdefghijklmnopqrstuvxyz0123456789\0";
4 write(1,buf,strlen(buf));
5 }

9 The echo command would normally add a newline (\n) to the end of a string, but since we added \c at the end of the
string, it did not.
 Chapter 3. Multi resource monitoring and tuning tools 181

The truss output (formatted with the expand and nl commands) will look similar
to the output shown below (Example 3-101).

Example 3-101 truss output from the sample write program
truss -w1 writeit 2>&1 >/dev/null|expand|nl
1 execve("./writeit", 0x2FF22B9C, 0x2FF22BA4) argc: 1
2 kwrite(1, 0x200004F8, 35) = 35
3 a b c d e f g h i j k l m n o p q r s t u v x y z 0 1 2 3 4 5 6
4 7 8 9
5 kfcntl(1, F_GETFL, 0xF06C2968) = 67108865
6 kfcntl(2, F_GETFL, 0xF06C2968) = 1
7 _exit(0)

truss will track file descriptor 1 (stdout) with the -w flag, and we direct the output
from truss (from stderr or file descriptor 2) to stdin for the next pipe to the expand
and nl commands (for formatting of the output only). Note that we discard the
output from the writeit program itself (>/dev/null). On line 2 of the truss
output, you see the kwrite system call that is created by the read on line 4 in
Example 3-101. The first parameter to kwrite is file descriptor 1, the second is
the write buffer address (0x200004F8), and the third parameter is the number of
bytes to write (35). On the end of the line is the return code from the kwrite
system call, which is 35; this is the actual number of bytes written. On line 3 and
4 you see the content of the write buffer containing our string that was declared
on line 3 in the source program in the Example 3-10110.

How to combine different flags
Example 3-102 shows how to use truss by combining different flags to track our
sample write program. We use the -t flag to only track the kwrite system call,
the -w flag will show detailed output from the write buffers to all file descriptors
(all), and the -x flag will show us the raw data of the options to the kwrite
system call (in hex).

Example 3-102 truss output using combined flags for the writeit sample program
truss -xkwrite -tkwrite -wall writeit 2>&1 >/dev/null|expand|nl
1 kwrite(0x00000001, 0x200004F8, 0x00000023) = 0x00000023
2 a b c d e f g h i j k l m n o p q r s t u v x y z 0 1 2 3 4 5 6
3 7 8 9

On line 1 of the truss output you see the kwrite system call that is created by
the read on line 4 in the Example 3-101 on page 182. The first parameter to
kwrite is file descriptor 1 (in hex 0x00000001), the second is the write buffer
address (in hex 0x200004F8), and the third parameter is the number of bytes to
write (in hex 0x00000023). On the end of the line is the return code from the

10 The \0 in the bufferstring is just to make sure that the end of the string ends with binary zero, which indicates the end of
a byte string in the C programming language.
182 AIX 5L Performance Tools Handbook

kwrite system call, which is 35 (in hex 0x00000023); this is the actual number
of bytes written. On line 2 and 3 you see the content of the write buffer containing
our string that was declared on line 3 in the source program in the
Example 3-101 on page 182.

How to check program parameters
To check the parameters passed to the program when it was started, you can
use the -a flag with truss. This can be done if you start a program and track it
with truss, but you can do it on a running process as well. In Example 3-103 we
use truss to track the system calls that are used to load a program.

Example 3-103 Using truss to track the exec system calls
truss -a -texecl,execle,execlp,execv,execve,execvp,exect -p 1
psargs: /etc/init
^CPstatus: process is not stopped

Because the process we tracked was init with process id 1, truss reported that
the process was not stopped when we discontinued the tracking by using
CTRL-C to stop truss. The output shown after psargs: are the parameters that
the program got when it was started with one of the exec subroutines. In this
case it was only the program name itself, which is always the first parameter
(/etc/init).

How to check program environment variables
To check the environment variables that are set for a program when it is started,
you can use the -e flag with truss. This can be done if you start a program and
track it with truss. If you only want to see the environment in the truss output,
you need to include the exec system call that the process uses. In
Example 3-104 it is the execve system call that is used by the date command.

Example 3-104 Using truss to display the environment of a process
truss -e -texecve date 2>&1 >/dev/null|expand|nl
1 execve("/usr/bin/date", 0x2FF22B94, 0x2FF22B9C) argc: 1
2 envp: _=/usr/bin/truss LANG=en_US LOGIN=root VISUAL=vi
3
PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin:/usr/java130/jre/bin:/
usr/java130/bin:/usr/vac/bin:/usr/samples/kernel:/usr/vac/bin:.:
4 LC__FASTMSG=true CGI_DIRECTORY=/var/docsearch/cgi-bin EDITOR=vi
5 LOGNAME=root MAIL=/usr/spool/mail/root LOCPATH=/usr/lib/nls/loc
6 PS1=root@wlmhost:$PWD: DOCUMENT_SERVER_MACHINE_NAME=localhost
7 USER=root AUTHSTATE=compat DEFAULT_BROWSER=netscape
8 SHELL=/usr/bin/ksh ODMDIR=/etc/objrepos DOCUMENT_SERVER_PORT=49213
9 HOME=/ TERM=ansi MAILMSG=[YOU HAVE NEW MAIL]
10 ITECONFIGSRV=/etc/IMNSearch PWD=/home/roden/src
11 DOCUMENT_DIRECTORY=/usr/docsearch/html TZ=CST6CDT
12 PROJECTDIR=/home/roden ENV=//.kshrc
 Chapter 3. Multi resource monitoring and tuning tools 183

13 ITECONFIGCL=/etc/IMNSearch/clients ITE_DOC_SEARCH_INSTANCE=search
14 A__z=! LOGNAME
15 NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat

We discard the output from the date command and format the output with the
expand and nl command. The environment variables are displayed between line
2 and 15 in the output above. To monitor a running process environment use the
ps command as in Example 3-105 that uses the current shells PID ($$) (refer to
Section 3.6, “ps” on page 109 for more details).

Example 3-105 Using ps to check another process environment
ps euww $$
USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 34232 0.0 0.0 1020 1052 pts/15 A 11:21:18 0:00 -ksh TERM=vt220
AUTHSTATE=compat SHELL=/usr/bin/ksh HOME=/ USER=root
PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin:/usr/java130/jre/bin:/
usr/java130/bin:/usr/vac/bin TZ=CST6CDT LANG=en_US LOCPATH=/usr/lib/nls/loc
LC__FASTMSG=true ODMDIR=/etc/objrepos ITECONFIGSRV=/etc/IMNSearch
ITECONFIGCL=/etc/IMNSearch/clients ITE_DOC_SEARCH_INSTANCE=search
DEFAULT_BROWSER=netscape DOCUMENT_SERVER_MACHINE_NAME=localhost
DOCUMENT_SERVER_PORT=49213 CGI_DIRECTORY=/var/docsearch/cgi-bin
DOCUMENT_DIRECTORY=/usr/docsearch/html LOGNAME=root LOGIN=root
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat

How to track child processes
Another way to use truss is to track the interaction between a parent process
and child processes. Example 3-106 shows how to monitor a running process
(/usr/sbin/inetd) and, while doing the tracking, opening a telnet session.

Example 3-106 Using truss to track child processes
truss -a -f -tkfork,execv -p 6716
6716: psargs: /usr/sbin/inetd
6716: kfork() = 29042
29042: kfork() = 26546
26546: kfork() = 20026
26546: (sleeping...)
26546: kfork() = 20028
26546: kfork() = 20030
26546: (sleeping...)
^CPstatus: process is not stopped
Pstatus: process is not stopped
Pstatus: process is not stopped
184 AIX 5L Performance Tools Handbook

The left column shows the process id that each output belongs to. The lines that
start with 6716 are the parent process (inetd) because we used -p 6716 to start
the tracking from this process id. On the far right in the output is the return code
from the system call, and for kfork it is the process id of the spawned child (the
parent part of kfork will get a return code of zero). The next child with process id
29042 is the telnet daemon, as can be seen by using the ps command as in the
following sample output (Example 3-107).

Example 3-107 Using ps to search for process id
ps -eFpid,args|grep 29042|grep -v grep
29042 telnetd -a

The telnet daemon performs a fork system call as well (after authenticating the
login user) and the next child is 26546, which is the authenticated users’ login
shell as can be seen by using the ps command (Example 3-108).

Example 3-108 Using ps to search for process id
ps -eFpid,args|grep 26546|grep -v grep
26546 -ksh

We can see in the truss output that the login shell (ksh) is forking as well, which
is one of the primary things that shells do. To illustrate a point about shells, let us
track it while we run some commands. We ran the ps, ls, date, and sleep
commands one after the other in our login shell, and truss shows us that the
shell did a fork system call every time as can be seen in the output in
Example 3-109.

Example 3-109 Using truss to track ksh with ps, ls, date, and sleep
truss -a -f -tkfork,execv -p 26546
26546: psargs: -ksh
26546: kfork() = 29618
26546: kfork() = 29620
26546: kfork() = 29622
26546: kfork() = 29624
26546: (sleeping...)
^CPstatus: process is not stopped

In the example above, process id 29618 is the ps command, process id 29620 is
the ls command, process id 29622 is the date command, and process id 29624 is
the sleep command.

The following example shows us how many forks are done by running the make
command to compile one program with the cc compiler from the same shell
(Example 3-110 on page 186).
 Chapter 3. Multi resource monitoring and tuning tools 185

Example 3-110 Using truss to track ksh with make
truss -a -f -tkfork,execv -p 26546
26546: psargs: -ksh
26546: kfork() = 26278
26278: kfork() = 29882
29882: kfork() = 28388
29882: kfork() = 28390
29882: kfork() = 28392
28392: kfork() = 29342
26546: (sleeping...)
^CPstatus: process is not stopped

It took six processes to compile one program by using make and cc. By using the
summary output with the -c flag to truss, it will nicely summarize it for us as
Example 3-111 shows.

Example 3-111 Using truss to track ksh with make and use summarized output
truss -c -a -f -tkfork,execv -p 26546
psargs: -ksh
^CPstatus: process is not stopped
syscall seconds calls errors
kfork .00 6
 ---- --- ---
sys totals: .00 6 0
usr time: .00
elapsed: .00

The above output confirms that ksh/make process tree did six fork system calls to
handle the make command for this compile.

3.11 vmstat
The vmstat command is very useful for reporting statistics about kernel threads,
virtual memory, disks, and CPU activity. Reports generated by the vmstat
command can be used to balance system load activity. These system-wide
statistics (among all processors) are calculated as averages for values
expressed as percentages, or otherwise, as sums.

vmstat resides in /usr/bin and is part of the bos.acct fileset, which is installable
from the AIX base installation media.
186 AIX 5L Performance Tools Handbook

3.11.1 Syntax
The syntax of the vmstat command is as follows:

vmstat [-fsiIt] [Drives] [Interval [Count]]

Flags
-f Reports the number of forks since system startup.

-s Writes to standard output the contents of the sum structure, which
contains an absolute count of paging events since system
initialization. The -s option is exclusive of the other vmstat command
options. These events are described in Section 3.11.3, “Examples”
on page 188.

-i Displays the number of interrupts taken by each device since system
startup.

-I Displays an I/O oriented view with the new columns, p under heading
kthr, and columns fi and fo under heading page instead of the
columns re and cy in the page heading.

-t Prints the time stamp next to each line of output of vmstat. The
time-stamp is displayed in the HH:MM:SS format. The time stamp will
not be printed if the -f, -s, or -i flags are specified.

Both the -f and -s flags can be entered on the command line, but the system will
only accept the first flag specified and override the second flag.

If the vmstat command is invoked without flags, the report contains a summary of
the virtual memory activity since system startup. If the -f flag is specified, the
vmstat command reports the number of forks since system startup. The Drives
parameter specifies the name of the physical volume.

Parameters
Drives hdisk0, hdisk1, and so forth

Disk names are as displayed by the lspv command. RAID disks will
appear as one logical hdisk.

Interval Specifies the update period (in seconds).

Count Specifies the number of iterations.

The Interval parameter specifies the amount of time in seconds between each
report. The first report contains statistics for the time since system startup.
Subsequent reports contain statistics collected during the interval since the
previous report. If the Interval parameter is not specified, the vmstat command
generates a single report and then exits. The Count parameter can only be
 Chapter 3. Multi resource monitoring and tuning tools 187

specified with the Interval parameter. If the Count parameter is specified, its
value determines the number of reports generated and the number of seconds
apart. If the Interval parameter is specified without the Count parameter, reports
are continuously generated. A Count parameter of 0 is not allowed.

3.11.2 Information on measurement and sampling
The kernel maintains statistics for kernel threads, paging, and interrupt activity,
which the vmstat command accesses through the use of the knlist subroutine
and the /dev/kmem pseudo-device driver. The disk input/output statistics are
maintained by device drivers. For disks, the average transfer rate is determined
by using the active time and number of transfers information. The percent active
time is computed from the amount of time the drive is busy during the report.

The vmstat command generates five types of reports:

� Virtual memory activity

� Forks

� Interrupts

� Sum structure

� Input/Output

3.11.3 Examples
This section shows examples and descriptions of the vmstat reports.

Virtual memory activity
vmstat writes the virtual memory activity to standard output. It is a very useful
report because it gives a good summary of the system resources on a single line
(Example 3-112).

Example 3-112 Virtual memory report
vmstat 2 5
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
 0 0 51696 49447 0 0 0 6 36 0 104 188 65 0 1 97 2
 0 0 51698 49445 0 0 0 0 0 0 472 1028 326 0 1 99 0
 0 0 51699 49444 0 0 0 0 0 0 471 990 327 0 1 99 0
 0 0 51700 49443 0 0 0 0 0 0 473 992 330 0 1 99 0
 0 0 51701 49442 0 0 0 0 0 0 469 986 329 0 0 99 0
188 AIX 5L Performance Tools Handbook

The reported fields are described as follows:

kthr Kernel thread state changes per second over the sampling interval.

r Run queue. Average number of threads on the run queues per
second. These threads are only waiting for CPU time, and are ready
to run. Each thread has a priority ranging from zero to 127. Each
CPU has a run queue for each priority; therefore there are 128 run
queues for each CPU. Threads are placed on the appropriate run
queue. Refer to Section 1.1.3, “Process and thread priorities” on
page 3 for more information on thread priorities. The run queue
reported by vmstat is across all run queues and all CPUs. Each CPU
has its own run queue. The maximum you should see this value
increase to is based on the following formula:

5 x (Nproc - Nbind)
(where Nproc is the number of active processors and
Nbind is the number of active processors bound to
processes with the bindprocessor command.

b Average number of threads on block queue per second. These
threads are waiting for resource or I/O. Threads are also located in
the wait queue (wa) when scheduled, but are waiting for one of their
threads pages to be paged in.

memory Information about the use of virtual and real memory. Virtual pages
are considered active if they have been accessed. A page is 4096
bytes.

avm Active Virtual Memory. avm indicates the number of virtual pages
accessed.

Note: The first line of this report should be ignored because it is an average
since the last system reboot.

Note: A high number on the run queue does not necessarily translate to a
performance slow-down because the threads on the run queue may not
require much processor time and will therefore be quick to run, thereby
clearing the run queue quickly.

Note: On an SMP system there will always be one thread on the block queue.
If compressed file systems are used, then there will be an additional thread on
the block queue.

Note: avm is not an indication of available memory.
 Chapter 3. Multi resource monitoring and tuning tools 189

fre Free list. This indicates the size of the free list. A large portion of real
memory is utilized as a cache for file system data. It is not unusual
for the size of the free list to remain small. The VMM maintains this
free list. The free list entries point to buffers of 4 K pages that are
readily available when required. The minimum number of pages are
defined by minfree. See “The page replacement algorithm” on
page 208 for more information. The default value is 120. If the
number of the free list drops below that defined by minfree, then the
VMM steals pages until maxfree+8 is reached. Terminating
applications release their memory, and those frames are added back
to the free list. Persistent pages (files) are not added back to the free
list. They remain in memory until the VMM steals their pages.
Persistent pages are also freed when their corresponding file is
deleted. A small value of fre could cause the system to start
thrashing due to over committed memory.

Page Information about page faults and paging activity. These are
averaged over the interval and given in units per second.

re Reclaims. The number of reclaims per second. During a page fault,
when the page is on the free list and has not been reassigned, this is
considered a reclaim because no new I/O request has been initiated.
It also includes the pages last requested by the VMM for which I/O
has not been completed or those prefetched by VMM’s read-ahead
mechanism but hidden from the faulting segment.

pi Page In. Indicates pages that have been paged to paging space and
are paged into memory when required by way of a page fault.
Normally you would not want to see more than five sustained pages
per second (as a rule of thumb) reported by vmstat as paging
(particularly page in (pi)) effects performance. A system that is
paging data in from paging space results in slower performance
because the CPU has to wait for data before processing the thread.

po Page Out. The number of pages per second to paging space. These
pages are paged out to paging space by the VMM when more

Note: Due to the way the VMM handles persistent pages, fre does not
indicate the amount of free unused memory.

Note: As from AIX Version 4, reclaims are no longer supported as the
algorithm is costly in terms of performance. Normally the delivered value will
be zero.

Note: pi is important for performance tuning. A high value may indicate a
shortage of memory or indicate a need for performance tuning. See vmtune for
more information.
190 AIX 5L Performance Tools Handbook

memory is required. They will stay in paging space and be paged in if
required. A terminating process will disclaim its pages held in paging
space and pages will also be freed when the process gives up the
CPU (is preempted). po does not necessarily indicate thrashing, but if
you are experiencing high paging out (po) then it may be necessary
to investigate the application vmtune parameters minfree and max
free, and the environmental variable PSALLOC. Refer to
http://www.rs6000.ibm.com/cgi-bin/ds_form for an overview of
Performance Overview of the Virtual Memory Manager (VMM)

fr Pages freed. When the VMM requires memory, VMM’s
page-replacement algorithm is employed to scan the Page Frame
Table (PFT) to determine which pages to steal. If a page has not
been referenced since the last scan, it can be stolen. If there has
been no I/O for that page then the page can be stolen without being
written to disk, thus minimizing the effect on performance.

sr Pages scanned. Represents pages scanned by the
page-replacement algorithm. When page stealing occurs (when fre
of vmstat goes below minfree of vmtune), then the pages in memory
are scanned to determine which pages can be stolen.,

Example 3-113 shows high pi and po indicating high paging. Note that the wa
column is high, indicating we are waiting on the disk I/O, probably for paging.
Note the ratio of fr:sr as the page stealers are looking for memory to steal and
the number of threads on the b queue waiting for data to be paged in. Also note
how wa is reduced when the page stealers have completed stealing memory, and
how the fre column increases as a result of page stealing.

Example 3-113 An example of high paging
kthr memory page faults cpu
----- ----------- ------------------------ ------------ ---------------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
 2 3 298565 163 0 14 58 2047 8594 0 971 217296 1286 23 26 17 34
 2 2 298824 124 0 29 20 251 352 0 800 248079 1039 22 28 22 29
 1 7 300027 293 0 15 6 206 266 0 1150 91086 479 7 14 9 69
 0 13 300233 394 0 1 0 127 180 0 894 6412 276 2 2 0 96
 0 14 300453 543 0 4 0 45 82 0 793 5976 258 1 2 0 97
 0 14 301488 329 0 2 2 116 179 0 803 6806 282 1 3 0 96
 0 14 302207 435 0 5 4 112 159 0 821 12349 402 2 3 0 95
 3 9 301740 2240 0 70 9 289 508 0 963 187874 1089 19 31 6 44
 1 4 271719 30561 0 39 0 0 0 0 827 203604 1217 21 31 19 30
 3 2 269996 30459 0 16 0 0 0 0 764 182351 1387 18 25 34 23

Note: Look for a large ratio of fr to sr (fr:sr). This could indicate over
committed memory. A high ratio shows the page stealer has to work hard to
find memory to steal.
 Chapter 3. Multi resource monitoring and tuning tools 191

cy This refers to the page replacement algorithm. The value refers to the
number of times the page replacement algorithm does a complete
cycle through memory looking for pages to steal. If you have a value
greater than zero, then you are experiencing severe memory
shortages.

The page stealer steals memory until maxfree is reached (please see
“The page replacement algorithm” on page 208 for more details).
This usually occurs before the memory has been completely
scanned, hence the value will stay at zero. However if the page
stealer is still looking for memory to steal and the memory has
already been scanned, then the cy value will increment to one. Each
scan will increment cy until maxfree has been satisfied, at which time
page stealing will stop and cy will be reset to zero.

You are more likely to see the cy value increment when there is a
small amount of physical installed memory, as it takes a shorter time
for memory to be completely scanned and you are also more likely to
be short of memory.

Faults Trap and interrupt rate averages per second over the sampling
interval.

in Interrupts. Number of device or hardware interrupts per second
observed in the interval. An example of an interrupt would be the 10
ms clock interrupt or a disk I/O completion. Due to the clock interrupt,
the minimum value you see is 100.

sy Number of system calls per second. These are resources
provided by the kernel for the user processes and data exchange
between the process and the kernel. This reported value can vary
depending on workloads and on how the application is written, so it is
not possible to determine a value for this. Any value of 10,000 and
more should be investigated.

cs Kernel thread context switches per second. A CPU’s resource is
divided into 10 ms time slices and a thread will run for the full 10 ms
or until it gives up the CPU (is preempted). When another thread gets
control of the CPU, the previous threads contexts and working
environments must be saved and the new threads contexts and
working environment must be restored. AIX handles this efficiently.
Any significant increase in context switches should be investigated.
See “Time slice” on page 149 for details about the timeslice
parameter.

Tip: You should run vmstat when your system is busy and performing to
expectations so you can determine the average number of system calls for
your system.
192 AIX 5L Performance Tools Handbook

cpu Breakdown of percentage use of CPU time.

us User time. This indicates the amount of time a program is in user
mode. Programs can run in either user mode or system mode. In
user mode, the program does not require the resources of the kernel
to manage memory, set variables, or perform computations.

sy System time indicates the amount of time a program is in system
mode; that is, processes using kernel processes (kprocs) and others
that are using kernel resources. Processes requiring the use of
kernel services must switch to service mode to gain access to the
services, for example to open a file or read/write data.

id CPU idle time. This indicates the percentage of time the CPU is idle
without pending I/O. When the CPU is idle, it has nothing on the run
queue. When there is a high aggregate value for id, it means there
was nothing for the CPU to do and there were no pending I/Os. A
process called wait is bound to every CPU on the system. When the
CPU is idle, and there are no local I/Os pending, any pending I/O to a
Network File System (NFS) is charged to id.

wa CPU wait. CPU idle time during which the system had at least one
outstanding I/O to disk (whether local or remote) and asynchronous
I/O was not in use. An I/O causes the process to block (or sleep) until
the I/O is complete. Upon completion, it is placed on the run queue. A
wa of over 25 percent could indicate a need to investigate the disk I/O
subsystem for ways to improve throughput, for example load
balancing. Refer to Section 6.2, “fileplace” on page 409 for
information on placement of files.

us, sy, id, wa are averages over all the processors. I/O wait is a
global statistic and is not processor specific.

vmstat marks an idle CPU as wait I/O (wio) if an outstanding I/O was started on
that CPU. With this method, vmstat will report lower wio times when more
processors are installed, just a few threads are doing I/O, and the system is
otherwise idle. For example, a system with four CPUs and one thread doing I/O
will report a maximum of 25 percent wio time. A system with 12 CPUs and one

Note: A CPU bottleneck could occur if us and sy combined together add up to
approximately 80 percent or more.
 Chapter 3. Multi resource monitoring and tuning tools 193

thread doing I/O will report a maximum of eight percent wio time. Network File
System (NFS) client reads/writes go through the Virtual Memory Manager
(VMM), and the time that NFS block I/O daemons (biods) spend in the VMM
waiting for an I/O to complete is reported as I/O wait time.

Example 3-114 Virtual memory report
kthr memory page faults cpu
----- ----------- ---------------------------- ----------------- -----------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
 4 13 2678903 254 0 0 0 7343 29427 0 6111 104034 17964 22 18 18 42
 6 14 2678969 250 0 0 0 7025 26692 0 6253 216943 17678 29 28 10 33
 8 13 2678969 244 0 0 0 6625 28218 0 6295 273936 17639 32 29 9 30
 8 13 2678969 252 0 0 0 5731 23555 0 5828 264980 16325 35 26 8 31
 8 13 2678970 256 0 0 0 6571 35508 0 6209 278478 18161 34 29 8 28
 6 13 2678970 246 0 0 0 7527 58083 0 6658 214601 20039 31 26 10 33
10 13 2679402 197 0 0 0 7882 54975 0 6482 285458 18026 40 31 5 25
 8 16 2679431 249 0 0 0 9535 40808 0 6582 283539 16851 39 32 5 24
10 13 2679405 255 0 0 0 8328 41459 0 6256 264752 15318 39 32 5 24
 9 15 2678982 255 0 0 0 8240 36591 0 6300 244263 17771 32 29 8 31

Example 3-114, you can observe the following:

� The block queue is high.

� There is no paging. If paging was occurring on the system you can tune
minfree and maxfree. See Section 3.12.3, “Recommendations and
precautions” on page 214 for details.

� As can be seen by the fr:sr ratio, the page stealers are working hard to find
memory, and, as pi is zero, the memory is being stolen successfully without
the need for paging.

� There is a lot of context switching, so tuning time slices with schedtune could
be beneficial. See “Time slice” on page 149 for more details.

� us+sy does not exceed 80 percent, so the system is not CPU bound

� There is I/O wait (wa) when the system is not idle. Tuning the disk I/O or NFS
(if the system has NFS) could be beneficial. Looking for lock contention in file
systems could also be beneficial. Look for busy file I/O with the filemon
command. See “How to analyze the physical volume reports” on page 394 for
more details.

Important: wa occurs when the CPU has nothing to do and is waiting for at
least one I/O request. Therefore, wa does not necessarily indicate a
performance bottleneck.
194 AIX 5L Performance Tools Handbook

To comment on any other columns in the report, you would need to have a base
line when the system was performing normally.

Forks report
Writes to standard output the number of forks since the last system start up (a
fork is the creation of a new process). You would not usually want to see more
than three forks per second. Use the sar -P ALL -c 5 2 command to monitor
the number of forks per second. See “How to monitor system calls” on page 132
for more details.

You can monitor the number if forks per second by running this command every
minute and making sure the change between the outputs does not exceed 180
(Example 3-115).

Example 3-115 Forks report
vmstat -f
 34770 forks

Interrupts report
Writes to standard output the number of interrupts per device since the last
system start up. Subsequent iterations of vmstat within the same command, as
in Example 3-116, produce the number of interrupts for the previous iteration.

The following example produces an interrupt report with a delay of two seconds,
three times.

Example 3-116 Interrupt report
vmstat -i 2 3
priority level type count module(handler)
 0 15 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bc18)
 0 15 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bc18)
 0 15 hardware 0 /usr/lib/drivers/planar_pal_chrp(195f770)
 0 254 hardware 12093 i_hwassist_int(1c9468)
 3 1 hardware 106329 /usr/lib/drivers/pci/s_scsiddpin(198bb10)
 3 3 hardware 651315 /usr/lib/drivers/pci/cstokdd(1a99104)
 3 10 hardware 9494 /usr/lib/drivers/pci/s_scsiddpin(198bb10)
 4 1 hardware 402 /usr/lib/drivers/isa/kbddd_chrp(1ac0710)
 4 12 hardware 1540 /usr/lib/drivers/isa/msedd_chrp(1ac6890)
priority level type count module(handler)
 0 15 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bc18)
 0 15 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bc18)
 0 15 hardware 0 /usr/lib/drivers/planar_pal_chrp(195f770)
 0 254 hardware 0 i_hwassist_int(1c9468)
 3 1 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bb10)
 3 3 hardware 11 /usr/lib/drivers/pci/cstokdd(1a99104)
 3 10 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bb10)
 Chapter 3. Multi resource monitoring and tuning tools 195

 4 1 hardware 0 /usr/lib/drivers/isa/kbddd_chrp(1ac0710)
 4 12 hardware 0 /usr/lib/drivers/isa/msedd_chrp(1ac6890)
priority level type count module(handler)
 0 15 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bc18)
 0 15 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bc18)
 0 15 hardware 0 /usr/lib/drivers/planar_pal_chrp(195f770)
 0 254 hardware 0 i_hwassist_int(1c9468)
 3 1 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bb10)
 3 3 hardware 7 /usr/lib/drivers/pci/cstokdd(1a99104)
 3 10 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bb10)
 4 1 hardware 0 /usr/lib/drivers/isa/kbddd_chrp(1ac0710)
 4 12 hardware 0 /usr/lib/drivers/isa/msedd_chrp(1ac6890)

The reported fields are as follows:

priority This refers to the interrupt priority as defined in
/usr/include/sys/intr.h The priorities range from zero to 11,
where zero means fully disabled and 11 means fully enabled
(anyone can interrupt the CPU). The lower the priority number,
the higher the priority. If the CPU is currently in interrupt mode
at priority 10, then if a priority three interrupt occurs on that
CPU, then the interrupt handler for priority 10 is pre-empted. If
for example a CPU is at priority zero or one and a priority nine
interrupt comes in, then the priority nine interrupt will get
queued and only gets processed after the previous interrupt
has finished its processing.

The priority can be important as higher priority interrupts
may stop the CPU from servicing other lower priority interrupts
for other services, for example, the streams drivers that handle
ethernet traffic may not be serviced, which may in turn fill the
network buffers causing other problems. The problem is
compounded if the higher priority thread stays running on the
CPU for a long time. Normally, high priority interrupts are
serviced within a short time frame to prevent this happening,
but it is not always possible to overcome this because the
priority is not tunable. In this case, on an SMP system, you
could bind specific interrupts to specific CPUs using the
bindintcpu command. Refer to Section 4.2, “bindintcpu” on
page 225 for more details. This would ensure the interrupts
were serviced within the required time frame.

level The level refers to the bus interrupt level that you can see on a
device when doing an lsattr -El <device> command. The
level is not a tunable parameter. It is set by IBM development.

type Indicates the type of interface.
196 AIX 5L Performance Tools Handbook

count The count is the number of interrupts for that device/interrupt
handler.

module(handler) The device driver software

There are no recommendations for analyzing the interrupt report. You need to be
aware of how many interrupts to expect on your system. If you notice a higher
number than usual, then you will need to investigate the device as shown in
module(handler) further.

Sum structure report
Writes to standard output the contents of the sum structure, which contains an
absolute count of paging events since system initialization (Example 3-117). The
-s option is exclusive of the other vmstat command options.

Example 3-117 Sum structure report
vmstat -s
 18379397 total address trans. faults
 8004558 page ins
 5294063 page outs
 87355 paging space page ins
 699899 paging space page outs
 0 total reclaims
 6139830 zero filled pages faults
 3481200 executable filled pages faults
 61905822 pages examined by clock
 493 revolutions of the clock hand
 11377921 pages freed by the clock
 315896 backtracks
 0 lock misses
 7178736 free frame waits
 3 extend XPT waits
 3665717 pending I/O waits
 12920977 start I/Os
 7766830 iodones
 81362747 cpu context switches
 134805028 device interrupts
 0 software interrupts
 0 traps
 253117680 syscalls

This report is not generally used for resolving performance issues. It is, however,
useful for determining the how much paging and the type of paging during
benchmarking.

These events are described as follows:
 Chapter 3. Multi resource monitoring and tuning tools 197

address translation faults Incremented for each occurrence of an
address translation page fault. I/O may or
may not be required to resolve the page
fault. Storage protection page faults (lock
misses) are not included in this count.

page ins Incremented for each page read in by VMM.
The count is incremented for page ins from
paging space and file space. Along with the
page out statistic, this represents the total
amount of real I/O initiated by the VMM.

page outs Incremented for each page written out by
the VMM. The count is incremented for page
outs to page space and for page outs to file
space. Along with the page referenced, this
represents the total amount of real I/O
initiated by VMM.

paging space page ins Incremented for VMM initiated page ins from
paging space only.

paging space page outs Incremented for VMM initiated page outs to
paging space only.

total reclaims Incremented when an address translation
fault can be satisfied without initiating a new
I/O request. This can occur if the page has
been previously requested by VMM, but the
I/O has not yet completed, or if the page was
pre-fetched by VMM's read-ahead algorithm
but was hidden from the faulting segment, or
if the page has been put on the free list and
has not yet been reused.

zero-filled page faults Incremented if the page fault is to working
storage and can be satisfied by assigning a
frame and zero-filling it.

executable-filled page faults Incremented for each instruction page fault.

pages examined by the clock VMM uses a clock-algorithm to implement a
pseudo Least Recently Used (LRU) page
replacement scheme. Pages are aged by
being examined by the clock. This count is
incremented for each page examined by the
clock.
198 AIX 5L Performance Tools Handbook

revolutions of the clock hand Incremented for each VMM clock revolution
(that is, after each complete scan of
memory).

pages freed by the clock Incremented for each page the clock
algorithm selects to free from real memory.

backtracks Incremented for each page fault that occurs
while resolving a previous page fault (the
new page fault must be resolved first and
then initial page faults can be backtracked).

lock misses VMM enforces locks for concurrency by
removing addressability to a page. A page
fault can occur due to a lock miss, and this
count is incremented for each such
occurrence.

free frame waits Incremented each time a process is waited
by VMM while free frames are gathered.

extend XPT waits Incremented each time a process is waited
by VMM due to a commit in progress for the
segment being accessed.

pending I/O waits Incremented each time a process is waited
by VMM for a page-in I/O to complete.

start I/Os Incremented for each read or write I/O
request initiated by VMM. This count should
equal the sum of page-ins and page-outs.

iodones Incremented at the completion of each VMM
I/O request.

CPU context switches Incremented for each CPU context switch
(dispatch of a new process).

device interrupts Incremented on each hardware interrupt.

software interrupts Incremented on each software interrupt. A
software interrupt is a machine instruction
similar to a hardware interrupt that saves
some state and branches to a service
routine. System calls are implemented with
software interrupt instructions that branch to
the system call handler routine.

traps Not maintained by the operating system.

syscalls Incremented for each system call.
 Chapter 3. Multi resource monitoring and tuning tools 199

I/O Report
Writes to standard output the I/O activity since system start up (Example 3-118).

Example 3-118 I/O report
vmstat -It 2 10
 kthr memory page faults cpu time
-------- ----------- ------------------------ ------------ ----------- --------
 r b p avm fre fi fo pi po fr sr in sy cs us sy id wa hr mi se
 0 0 0 51694 49443 6 3 0 0 8 48 106 199 64 0 1 96 3 17:43:55
 0 0 0 51697 49440 0 0 0 0 0 0 469 991 332 0 0 99 0 17:43:57
 0 0 0 51698 49439 0 0 0 0 0 0 468 980 320 0 1 99 0 17:43:59
 0 0 0 51699 49438 0 0 0 0 0 0 468 989 327 0 0 99 0 17:44:01
 0 0 0 51700 49437 0 0 0 0 0 0 470 992 331 0 0 99 0 17:44:03
 0 0 0 51702 49435 0 0 0 0 0 0 471 989 327 0 1 99 0 17:44:05
 0 0 0 51703 49434 0 0 0 0 0 0 469 993 329 0 0 99 0 17:44:08
 0 0 0 51704 49433 0 0 0 0 0 0 471 969 320 0 0 99 0 17:44:10
 0 0 0 51705 49432 0 0 0 0 0 0 468 986 325 0 1 99 0 17:44:12
 0 0 0 51706 49431 0 0 0 0 0 0 470 995 331 0 0 99 0 17:44:14

Refer to “Virtual memory activity” on page 188 for an explanation of report fields
not listed here.

The reported fields are described as follows:

p Number of threads waiting on actual physical I/O (raw logical
volumes (as opposed to files within a file system)

fi File page-ins per second

fo File page-outs per second

hr The hour that the last sample completed

mi The minute that the last sample completed

Note: The first line of this report should be ignored because it is an average
since the last system reboot.
200 AIX 5L Performance Tools Handbook

se The second that the last sample completed

3.12 vmtune
The vmtune command is responsible for the displaying and adjusting of the
parameters used by the Virtual Memory Manager (VMM) and other AIX
components. The root user on a system can dynamically change kernel
parameters including the following:

� VMM page replacement

� Persistent file reads and writes

� File system buffer structures (bufstructs)

� LVM buffers

� Raw input/output

� Paging space parameters

� Page deletes

� Memory pinning parameters

Tip: It is useful to run vmstat when your system is under load and performing
normally. This will give you a base line to determine future performance
problems.

You should run vmstat again when:

� Your system is experiencing performance problems.

� You make hardware or software changes to the system.

� You make changes to the AIX Operating System; for example, when
installing upgrades or changing the disk tuning parameters using vmtune or
schedtune.

� You make changes to your application.

� Your average workload changes; for example, when you add or remove
users.
 Chapter 3. Multi resource monitoring and tuning tools 201

AIX 5L Version 5.1 supports both the 32-bit kernel as well as the 64-bit kernel.
Because of this, there is a vmtune and a vmtune64 command, where vmtune64
supports the 64-bit kernel and vmtune supports the 32-bit kernel. If the vmtune
command is executed on a system running the 64-bit kernel, the system
automatically forks/execs the vmtune64 program.

The vmtune command resides in /usr/samples/kernel and is part of the
bos.adt.samples fileset, which is installable from the AIX base installation media.

3.12.1 Syntax
The syntax of the vmtune command is as follows:

vmtune [-a] [-b Numfsbuf] [-B Numpbuf] [-c Nmclust] [-C 0 | 1]
[-d 0 |1] [-f MinFree] [-F MaxFree] [-g LargePageSize]

[-h 0 | 1] [-k NpsKill] [-l LruBucket] [-L LargePages]

[-M MaxPin] [-n uid] [-N Pd_Npages] [-p minperm] [-P MaxPerm]

[-r MinPgAhead] [-R MaxPgAhead] [-s SyncReleaseInodeLock]

[-S 0 | 1] [-t maxclient][-u lvm_Bufcnt] [-U unixfile]

[-w NpsWarn] [-W MaxRandWrt] [-v framesets]

Note: All changes made using vmtune will be lost after a reboot. In order to
ensure that the changed vmtune values are set at boot time, insert the
appropriate vmtune command in the /etc/inittab file. An example of the
/etc/inittab file is shown in Example 3-121 on page 214. This is with the
exception of the -C -m -v -g -L flags of the vmtune command. These flags
require a bosboot and a reboot, and must not be inserted into the /etc/inittab
file. In addition, the -b option should be executed before the filesystems are
mounted.

Important: The vmtune command is operating system version specific. Using
the incorrect version of the vmtune command can result in the operating
system becoming inoperable or inconsistent results. Later versions of the
operating system also support new options that are unavailable on older
versions.
202 AIX 5L Performance Tools Handbook

Flags
-a Displays the current statistic counters.

-b Numfsbuf Specifies the number of file system bufstructs.

-B Numpbuf Specifies the number of pbufs used by LVM.

-c Nmclust Specifies the number of 16 KB clusters processed
by write behind. The default value is 1.

-C [0 | 1] Enables page coloring for specific hardware
platforms. When enabled, real memory is carefully
assigned to virtual memory. On a system with a
direct-mapped cache and certain workloads, this can
provide more constant system performance. A value
of 1 enables page coloring, and a value of 0 disables
it (default is disabled). The bosboot command must
be run and the system rebooted if this option is
changed.

-d [0 | 1] Enables and disables deferred paging space
allocation. By default, disk blocks for paging space
are not allocated until pageout is actually required.
This option allows this behavior to change so that
the disk block is allocated when the memory is
referenced. A value of 1 enables deferred paging
space allocation (default), and a value of 0 disables
it.

-f MinFree Specifies the minimum number of frames on the free
list. This number can range from 8 to 819200.

-F MaxFree Specifies the number of frames on the free list at
which page stealing is to stop. This number can
range from 16 to 819200 but must be greater than
the number specified by the MinFree parameter by at
least the value of MaxPgAhead.

-g LargePageSize Specifies the size in bytes of the
hardware-supported large pages used for the
implementation for the shmget() system call with the
SHM_LGPAGE flag. This must be enabled with a
non-zero value for the -L flag, the bosboot command
must be run, and the system rebooted for this
change to take affect.
 Chapter 3. Multi resource monitoring and tuning tools 203

-h [0 | 1] Specifies that maxperm (-P) should be a hard limit.
By default it is a soft limit and numperm is allowed to
grow beyond maxperm as long as there is free real
memory available.

-k NpsKill Specifies the number of free paging-space pages at
which AIX begins killing processes.

-l LruBucket Specifies the size (in 4 KB pages) of the Least
Recently Used (LRU) page-replacement bucket
size. This is the number of page frames that will be
examined for page replacement before starting over
at the beginning of this set of page frames to
examine the pages again. If not enough pages are
found that can be stolen, LRU proceeds to the next
bucket of pages. The default value is 512 MB, and
the minimum is 256 MB. Tuning this option is not
recommended.

-L LargePages Specifies the number of large pages to reserve for
implementing the shmget() system call with the
SHM_LGPAGE flag. For this change to take effect,
you must specify the vmtune command’s -g flag, run
the bosboot command, and reboot the system.

-m mempools Specifies the number of memory pools. Making -m 0
(zero) will restore mempools to default value. The
bosboot command must be run and the system
rebooted if this option is changed.

-M MaxPin Specifies the maximum percentage of real memory
that can be pinned. The default value is 80. This
value should not be set to a very low value because
the kernel may need to pin memory at times.

-n uid Specifies that processes with a user ID less than uid
should not be killed when paging space is low.
Setting this to 1 (one) would prevent root processes
from being killed.
204 AIX 5L Performance Tools Handbook

-N Pd_Npages Specifies the number of pages that should be
deleted in one chunk from RAM when a file is
deleted. The default value is the largest possible file
size divided by the page size (currently 4096). If the
largest possible file size is 2 GB, then Pd_Npages is
524288 by default. Tuning this option is really only
useful for real-time applications.

-p minperm Specifies the point below which file pages are
protected from the repage algorithm. This value is a
percentage of the total real-memory page frames in
the system. The specified value must be greater
than or equal to 1 (one).

-P MaxPerm Specifies the point above which the page stealing
algorithm steals only file pages. This value is
expressed as a percentage of the total real-memory
page frames in the system. The specified value must
be greater than or equal to 1 (one).

-r MinPgAhead Specifies the number of pages with which sequential
read-ahead starts. This value can range from 0
(zero) through 4096. It should be a power of two.

-R MaxPgAhead Specifies the maximum number of pages to be read
ahead. This value can range from 0 (zero) through
4096. It should be a power of two, and should be
greater than or equal to MinPgAhead.

-s SyncReleaseInodeLock Enables the code that minimizes the time spent
holding inode locks during sync by flushing dirty
pages before calling _commit.
SyncReleaseInodeLock is a boolean variable; zero to
disable and a positive integer to enable. The default
is 0 (zero).

-S [0 | 1] Enables the SHM_PIN flag on shmget() system call.
By default this flag is ignored.

-t maxclient Specifies the maximum percentage of RAM that can
be used for caching client pages. Client pages
include those pages used for NFS client pages,
compressed pages, and pages in the JFS2 buffer
cache. This value is a hard limit, and page
replacement on client pages will begin if the limit is
reached.
 Chapter 3. Multi resource monitoring and tuning tools 205

-u lvm_Bufcnt Specifies the number of Logical Volume Manager
(LVM) buffers for raw physical I/Os. The default
value is 9 (nine). The possible values can range
between 1 (one) and 64.

-U unixfile Specifies the name of the AIX file to patch for the -m,
-v and -C flags. The default is /usr/lib/boot/unix_mp.

-v framesets Specifies the number of framesets (real memory free
lists) per memory pool. The bosboot command must
be run and the system rebooted if this option is
changed. This option must be used to set the
number of framesets to 1 if page coloring is enabled
(-C 1).

-w NpsWarn Specifies the number of free paging-space pages at
which the operating system begins sending the
SIGDANGER signal to processes.

-W MaxRandWrt Specifies a threshold (in 4 KB pages) for random
writes to accumulate in RAM before these pages are
sync'd to disk via a write-behind algorithm. This
threshold is on a per file basis.

3.12.2 Calculating tunable values
The default vmtune values may differ on different machine configurations as well
as on different AIX releases. The machine’s workload and the effects of the
vmtune tunables should be considered before changing anything.

Sequential read-ahead
The minpgahead (-r) value is the value at which sequential read-ahead begins.
The value can range from 0 (zero) to 4096, and must be a power of two. The
default value is 2 (two).

maxpgahead (-R) is the maximum number of pages that can be read ahead. The
value of maxpgahead can be in the range of zero to 4096. The value must be
equal to or greater than minpgahead. The default value is 8 (eight).

Figure 3-1 on page 207 shows an illustration of sequential read ahead. Each of
the blocks in the diagram represents a 4 KB page. These pages are numbered
zero through 23. The steps of sequential read-ahead are described under the
labels A through F. The labels A through F also indicate the sequence of page
206 AIX 5L Performance Tools Handbook

reads. Pages are read ahead when the VMM detects a sequential pattern. Read
ahead is triggered again when the first page in a group of previously read ahead
pages is accessed by the application. In the example, minpgahead is set to 2
(two) while maxpgahead is set to 8 (eight).

Figure 3-1 Sequential read-ahead

A The first page of the file is read in by the program. After this
operation, VMM makes no assumptions as to whether the file access
is random or sequential.

B When page number one is the next page read in by the program,
VMM assumes that access is sequential. VMM schedules
minpgahead pages to be read in as well. Therefore the access at point
B in the figure above results in three pages being read.

C When the program accesses page two next, VMM doubles the value
of page ahead from two to four and schedules the pages four to
seven to be read.

D When the program accesses page four next, VMM doubles the value
of page ahead from four to eight and pages eight through 15 are
scheduled to be read.

E When the program accesses page eight next, VMM determines that
the read ahead value is equal to maxpgahead and schedules pages 16
through 23 to be read.

F VMM will continue to read maxpgahead pages ahead as long as the
program accesses the first page of the previous read-ahead group.
Sequential read-ahead will be terminated when the program
accesses a page other than the first page of the next read-ahead
group.
 Chapter 3. Multi resource monitoring and tuning tools 207

The values selected for minpgahead and maxpgahead should be powers of two
because of the doubling algorithm of the VMM. Recommended values are 0
(zero), 1 (one), 2 (two), 4 (four), 8 (eight), 16 (sixteen) and so on. The use of
other values can cause adverse performance and functional effects. Using the
value of zero disables the sequential read-ahead algorithm. Sequential
read-ahead can be disabled in an environment where I/O is random. In the case
where NFS reads are made on files that are locked. NFS flushes these pages to
disk, so sequential read-ahead is not beneficial.

The page replacement algorithm
When the number of pages on the free list is less than minfree (-f), the page
replacement algorithm will attempt to free up memory pages. The algorithm will
continue until the number of pages in the free list exceeds the maxfree (-F)
value.

The value of minfree specifies the minimum number of frames on the free list
before the VMM starts to steal pages. The value can range from eight to 819200.
The default value is dependant on the amount of memory in the system, and is
calculated as the maxfree value less eight. In multiprocessor systems, there may
be a number of memory pools. Each memory pool will have its own minfree and
maxfree value. The values displayed by the vmtune command are the sum of the
minfree and maxfree values of all of the pools.

Memory pools
The -m mempools flag is used to subdivide the memory into pools. The
parameter mempools has a range of 1 (one) to, but not more than, the value of the
number of CPUs in the system. For example, if there are four CPUs in a system,
then the maximum value of mempools is 4 (four). Setting the value to 0 (zero),
restores the default number. In some circumstances, such as when most, but not
all, of the system memory is in use, better performance can be obtained by
setting this value to 1 (one). Setting the -m flag is shown in Example 3-119.

Example 3-119 The output message when the -m flag is used
/usr/samples/kernel/vmtune -m 4
Press enter to save /usr/lib/boot/unix_mp as /usr/lib/boot/unix_mp.sav:
Number of memory pools has been set to 0x4
A bosboot must be done and the system rebooted.

Note: Due to limitations in the kernel, the maxpgahead value should not exceed
512. The difference between minfree and maxfree should always be equal to
or greater than the value of maxpgahead.
208 AIX 5L Performance Tools Handbook

A bosboot is required after changing the mempool parameter. Example 3-120
below shows the bosboot command, which will create a boot image on the
default boot logical volume of the fixed disk from which the system was booted.

Example 3-120 Run the bosboot command after setting the mempool parameter
bosboot -a

bosboot: Boot image is 12822 512 byte blocks.

The maxfree value determines at what point the VMM stops stealing pages. The
value of maxfree can range form 16 to 204800 but must be greater than the value
of minfree. The maxfree value can be determined as follows:

maxfree = lesser of (number of memory pages / 128) or 128

For many systems, these default values may not be optimal. Assuming that the
system has 512 MB of memory, the minfree and maxfree values are the defaults
of 120 and 128 respectively. When only (4096 * 120) bytes of memory are on the
free list, only then will the page replacement algorithm free pages. This value
equates to less than 0.5 MB of memory and will typically be too low. If the
memory demand continues after the minfree value is reached, then processes
could even be suspended or killed. When the number of free pages equals or
exceeds the value of maxfree, then the algorithm will no longer free pages. This
value is (4096 * 128) bytes, which equates to 0.5 MB. As can be seen,
insufficient pages will have been freed up on a system with 512 MB.

The page replacement algorithm subdivides the entire system real memory into
sections called buckets. The lrubucket (-l) parameter specifies the number of
pages per bucket. Instead of the page replacement algorithm checking the entire
real memory of the system for free frames, it will search a bucket at a time. The
page replacement algorithm will search a bucket for free frames and on the
second pass will check the same bucket, and any unreferenced pages will be
stolen. This speeds up the rate at which pages to be stolen are found. The
default value for LruBucket is 131,072 pages, which equates to 512 MB of real
memory.

Pinning memory
The maxpin (-M) value determines the maximum percentage of real memory
pages that can be pinned. The maxpin value must be greater than one and less
than 100. The default value for maxpin is 80 percent. Always ensure that the
kernel and kernel extensions can pin enough memory as needed; as such, it is
not advisable to set the maxpin value to an extremely low number such as one.
 Chapter 3. Multi resource monitoring and tuning tools 209

The v_pinshm parameter is a boolean value that, if set to 1 (one), will force pages
in shared memory to be pinned by the VMM. This occurs only if the application
set the SHM_PIN flag. If the value is set to 0 (zero), the default, then shared
memory is not pinned.

Sequential write-behind
The numclust (-c) value determines the number of 16 KB clusters to be
processed by the VMM sequential write-behind algorithm. The value can be set
as an integer greater than zero. The default value is one. The write-behind
algorithm will write modified pages in memory to disk after the threshold set by
numclust is reached rather than waiting for the syncd daemon to flush the pages
if the write pattern is sequential. The advantages of using the write-behind
algorithm are:

� The algorithm reduces the number of dirty pages in memory.

� It reduces the system overhead because the syncd daemon will have less
pages to write to disk.

� It minimizes disk fragmentation because entire clusters are written to the disk
at a time.

Random write-behind
The maxrandwrt (-W) value specifies the threshold number of pages for random
page writes to accumulate in real memory before being flushed to disk by the
write-behind algorithm. The default value for maxrandwrt is zero, which disables
the random write-behind algorithm. Applications may write randomly to memory
pages. In this instance, the sequential page write-behind algorithm will not be
able to flush dirty memory pages to disk. If the application has written a large
number of pages to memory, then when the syncd daemon flushes memory to
disk, the disk I/O may become excessive. To counter this effect, the random
write-behind algorithm will wait until the number of pages modified for a file
exceeds the maxrandwrt threshold. From this point, all subsequent dirty pages
are scheduled to be written to disk. The pages below the maxrandwrt are flushed
to disk by the syncd daemon.

Note: Ensure that at least 4 MB of real memory is left unpinned for the kernel
when the maxpin value is changed.

Note: Not all applications meet the requirements for random and sequential
write-behind. In this instance, the syncd daemon will flush dirty memory pages
to disk.
210 AIX 5L Performance Tools Handbook

The syncd daemon
The default value of the sync_release_ilock (-s) is 0 (zero). With this value at
zero, the inode lock will be held and the data is flushed and committed, and only
then is the lock released. If the value is set to a non zero value, then the syncd
daemon will flush all the dirty memory pages to disk without using the inode lock.
The lock is then used to commit the data. This minimizes the time that the inode
lock is held during the sync operation. This is a boolean variable; setting it to 0
(zero) disables it and any other non zero value enables it. A performance
improvement may be achieved if the sync_release_ilock parameter is set to a
value of 1 (one) on systems where there is a large amount of memory and a
large number of page updates. These type of systems typically have high I/O
peaks when the syncd daemon flushes memory.

I/O tuning parameters
The numfsbufs (-b) value specifies the number of file system buffer structures.
This value must be greater than 0 (zero). If there are insufficient free buffer
structures, the VMM will put the process on a the wait list before starting I/O. To
determine if the value of numfsbufs is too low, use the vmtune -a command and
monitor the fsbufwaitcount value displayed. This value is incremented each
time an I/O operation has to wait for a file system buffer structures.

The lvm_bufcnt (-u) value specifies the number of LVM buffers for raw I/O.
This value can range from 1 (one) to 64 and has a default of 9 (nine). Extremely
large volumes of I/O are required to cause a bottleneck at the LVM layer. The
number of “uphysio” buffers can be increased to overcome this bottleneck. Each
uphysio buffer is 128 KB. If I/O operations are larger than 128 KB * 9, then a
value larger than the default value of nine should be used.

The pd_npages (-N) value determines number of pages that should be deleted in
one chunk from real memory when a file is deleted (that is, the pages are deleted
in a single VMM critical section with interrupts disabled to INTPAGER). By
default, all pages of a file can be removed from memory in one critical section if
the file was deleted from disk. To ensure fast response time for real-time
applications, this value can be reduced so that only a smaller chunk of pages are
deleted before returning from the critical section.

Note: When the numfsbufs value is changed, it is necessary to unmount and
mount the file system again for the changes to take affect.
 Chapter 3. Multi resource monitoring and tuning tools 211

The hd_pbuf_cnt (-B) value determines the number of pbufs assigned to the
LVM. This value is sometimes referred to the as Numpbuf. pbufs are pinned
memory buffers used to hold I/O requests that are pending at the LVM layer.
When changing this value, the new value must be higher than the previously set
value. The value can only be reset by a reboot.

File system caching
The AIX operating system will leave pages that have been read or written to in
memory. If these file pages are requested again, then this saves an I/O
operation. The minperm and maxperm values control the level of this file system
caching. The thresholds set by maxperm and minperm can be considered as the
following:

� If the percentage of file pages in memory exceeds maxperm, only file pages
are taken by the page replacement algorithm.

� If the percentage of file pages in memory is less than minperm, both file pages
and computational pages are taken by the page replacement algorithm.

� If the percentage of file pages in memory is in the range between minperm and
maxperm, the page replacement algorithm steals only the file pages unless the
number of file repages is higher than the number of computational repages.

Computational pages can be defined as working storage segments and program
text segments. File pages are defined as all other page types usually persistent
and client pages.

In some instances, the application may cache pages itself. Therefore there is no
need for the file system to cache pages as well. In this case, the values of minperm
and maxperm can be set low. For more information on adjusting these values, refer
to Example 3-124 on page 217 and Example 3-125 on page 218.

The strict_maxperm (-h) value, when set to 1 (one), will cause the maxperm
parameter to be a hard limit. This parameter is very useful where double
buffering occurs, for instance in the case of a database on a JFS file system. The
database may be doing its own caching while the VMM may be caching the
same pages. When this value is set to 0 (zero), the maxperm value is only
required when page replacements occur.

The numperm value that is displayed by the vmtune command represents the
number of non-text persistent or file pages. This value is not tunable. This is the
percentage of pages in memory that are classified as file pages.

Note: If the value of hd_pbuf_cnt is set too high, the only way to reset the
value is with a reboot. The value cannot be set lower than the current value.
212 AIX 5L Performance Tools Handbook

Paging parameters
The defps (-d) parameter is used to enable or disable the Deferred Page
Space Allocation (DPSA) policy. Setting this parameter to a value of 1 (one) will
enable DPSA and setting it to 0 (zero) will disable it. The DPSA policy can be
disabled to prevent paging space from becoming overcommitted. With DPSA,
the disk block allocation of paging space is delayed until it is necessary to page
out the page, which results in no wasted paging space allocation. Paging space
can, however, be wasted when a page in real memory needs to be paged out
and then paged back in. That paging space will be reserved for this process until
either the page is no longer required by the process or the process exits.

If defps is disabled, the Late Paging Space Allocation (LPSA) policy is used.
Using the LPSA, paging space is only allocated if memory pages are touched
(modified somehow). The paging space pages are, however not assigned to a
process until the memory pages are paged out. A process might find no paging
space available if another processes uses all the paging space because paging
space was not allocated.

Large page parameters
The lgpg_regions (-L) value specifies the number of large pages to reserve.
This is required when the shmget() call uses the SHM_LGPAGE flag. The
application has to support SHM_LGPAGE when calling shmget(). This will
improve performance when there are many Translation Look-Aside Buffer (TLB)
misses and large amounts of memory are being accessed.

The lgpg_size (-g) parameter sets the size in bytes of the hardware dependant
large pages, used for the implementation of the shmget() system call. The
lgpg_size and lgpg_regions parameters will both need to be set to enable this
function.

JFS2 and NFS client pages
A new maxclient (-t) option is available in AIX 5L Version 5.1. This option is
tunable using the vmtune -t command. This value determines at which point the
page replacement algorithm will start to free client pages. The value is a
percentage of total memory. This value is important for JFS2 and NFS where
client pages are used. The vmtune output displays the following client page
information:

� The number of client pages

� The number of compressed pages

� The percentage of memory occupied by compressed pages

� The number of remote pages scheduled to be paged out
 Chapter 3. Multi resource monitoring and tuning tools 213

3.12.3 Recommendations and precautions
Do not attempt to use an incorrect version of the vmtune command on an
operating system. Invoking the incorrect version of the vmtune command can
result in the operating system failing. The functionality of the vmtune command
also varies between versions of the operating system.

Setting the value for minfree too high can result in excessive paging because
premature stealing of pages occurs to satisfy the required size of the memory
free list. Always ensure that the difference between the maxfree value and the
minfree value is equal to or greater than the maxpgahead value. On SMP systems
the value of the maxfree and minfree as displayed by vmtune are the sum of the
maxfree and minfree values for all of the memory pools. It is recommended that
the vmstat command be used to determine the correct value for minfree. See
Section 3.11, “vmstat” on page 186 for more information.

When changing the value of the maxpin value, ensure that there is always at
least 4 MB of memory available for the kernel.

3.12.4 Examples
Example 3-121 shows how the /etc/inittab file can be modified to include the
vmtune command.

Example 3-121 The /etc/inittab file showing an entry for the vmtune command
: @(#)49 1.28.2.7 src/bos/etc/inittab/inittab, cmdoper, bos411, 9430C411a 7/26
/94 16:27:45
:
: COMPONENT_NAME: CMDOPER
:
: ORIGINS: 3, 27
:
: (C) COPYRIGHT International Business Machines Corp. 1989, 1993
: All Rights Reserved
: Licensed Materials - Property of IBM
:
: US Government Users Restricted Rights - Use, duplication or
: disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
:
: Note - initdefault and sysinit should be the first and second entry.
:
init:2:initdefault:
brc::sysinit:/sbin/rc.boot 3 >/dev/console 2>&1 # Phase 3 of system boot
powerfail::powerfail:/etc/rc.powerfail 2>&1 | alog -tboot > /dev/console # Power
 Failure Detection
rc:2:wait:/etc/rc 2>&1 | alog -tboot > /dev/console # Multi-User checks
fbcheck:2:wait:/usr/sbin/fbcheck 2>&1 | alog -tboot > /dev/console # run /etc/fi
rstboot
214 AIX 5L Performance Tools Handbook

srcmstr:2:respawn:/usr/sbin/srcmstr # System Resource Controller
fbcheck:2:wait:/usr/sbin/fbcheck 2>&1 | alog -tboot > /dev/console # run /etc/fi
rstboot
srcmstr:2:respawn:/usr/sbin/srcmstr # System Resource Controller
rcsna:2:wait:/etc/rc.sna > /dev/console 2>&1 # Start sna daemons
rctcpip:2:wait:/etc/rc.tcpip > /dev/console 2>&1 # Start TCP/IP daemons
ihshttpd:2:wait:/usr/HTTPServer/bin/httpd > /dev/console 2>&1 # Start HTTP daemo
n
rcnfs:2:wait:/etc/rc.nfs > /dev/console 2>&1 # Start NFS Daemons
ihsadmin:2:wait:/usr/HTTPServer/bin/adminctl start > /dev/console 2>&1 # Start H
TTP admin daemon
nim:2:wait:/usr/bin/startsrc -g nim >/dev/console 2>&1
vmtune:2:once:/usr/samples/kernel/vmtune -P 30 -p 5 -c 4 -W 128 -R 16
schedt:2:once:/usr/samples/kernel/schedtune -m 8
mcs0:2:wait:/etc/mcs0 load # RC script
rcx25:2:wait:/etc/rc.net.x25 > /dev/console 2>&1 # Load X.25 translation table
cron:2:respawn:/usr/sbin/cron
piobe:2:wait:/usr/lib/lpd/pio/etc/pioinit >/dev/null 2>&1 # pb cleanup
qdaemon:2:wait:/usr/bin/startsrc -sqdaemon
writesrv:2:wait:/usr/bin/startsrc -swritesrv
uprintfd:2:respawn:/usr/sbin/uprintfd
logsymp:2:once:/usr/lib/ras/logsymptom # for system dumps
diagd:2:once:/usr/lpp/diagnostics/bin/diagd >/dev/console 2>&1
hcon:2:once:/etc/rc.hcon
lpd:2:once:/usr/bin/startsrc -s lpd

Example 3-122 shows the output of the vmtune command executed without any
flags. This displays the current values. The new values introduced are maxclient,
compressed, and numclient, and are displayed in the summary at the bottom of
the display. The value for maxclient is also displayed.

Example 3-122 vmtune without any flags displays the current settings
/usr/samples/kernel/vmtune
vmtune: current values:
 -p -P -r -R -f -F -N -W
minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
 6142 32761 2 8 120 128 524288 0

 -M -w -k -c -b -B -u -l -d
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt lrubucket defps

105452 8192 2048 1 186 256 9 131072 1

 -s -n -S -L -g -h
sync_release_ilock nokilluid v_pinshm lgpg_regions lgpg_size strict_maxperm

 0 0 0 0 0 1
 Chapter 3. Multi resource monitoring and tuning tools 215

 -t
maxclient
 104018

number of valid memory pages = 131047 maxperm=25.0% of real memory
maximum pinable=80.5% of real memory minperm=4.7% of real memory
number of file memory pages = 32622 numperm=24.9% of real memory
number of compressed memory pages = 0 compressed=0.0% of real memory
number of client memory pages = 2 numclient=0.0% of real memory
of remote pgs sched-pageout = 0 maxclient=79.4% of real memory

The vmtune -a flag lists the values of various counters. Example 3-123 is a list of
the counters.

Example 3-123 The -a flag displays various system counters
/usr/samples/kernel/vmtune -a

 memory frames = 131047
 maxpin = 105452
 minperm = 26209
 maxperm = 104837
 maxclient = 104018
 numperm = 48200
 numclient = 2
 numcompress = 0
 maxpin % = 80.5
 minperm % = 20.0
 maxperm % = 80.0
 maxclient % = 79.4
 numperm % = 36.8
 numclient % = 0.0
 numcompress % = 0.0
 minpgahead = 2
 maxpgahead = 8
 minfree = 120
 maxfree = 128
 pd_npages = 524288
 maxrandwrt = 0
 numclust = 1
 npswarn = 8192
 npskill = 2048
 numfsbufs = 186
 hd_pbuf_cnt = 256
 lvm_bufcnt = 9
 lrubucket = 131072
 defps = 1
216 AIX 5L Performance Tools Handbook

 sync_release_ilock = 0
 nokilluid = 0
 v_pinshm = 0
 strict_maxperm = 1
 hd_pendqblked = 0
 psbufwaitcnt = 540149
 fsbufwaitcnt = 7442
 rfsbufwaitcnt = 0
 xpagerbufwaitcnt = 0
 lgpg_regions = 0
 lgpg_size = 0

In Example 3-123 on page 216 the value of psbufwaitcnt counter indicates the
number of times that the VMM had to wait for a bufstruct on a paging device. A
bufstruct is allocated to each paging space logical volume. The fsbufwaitcnt
counter indicates the number of times that the VMM waits for a JFS bufstruct. If
the fsbufwaitcnt value increases under normal work load conditions, then the
value of numfsbufs should be increased using the vmtune -b option.

The value of rfsbufwaitcnt, shown in the vmtune -a output above, is increased
each time NFS waits for mbufs to be freed. For additional information on
rfsbufwaitcnt, refer to “Options” on page 528 under the nfso command section.

In Example 3-124, the application running on the system is assumed to be
Oracle.

Example 3-124 vmtune minperm and maxperm problem
/usr/samples/kernel/vmtune
vmtune: current values:
 -p -P -r -R -f -F -N -W
minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
 1023 26209 2 2 120 128 524288 128

 -M -w -k -c -b -B -u -l -d
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt lrubucket defps

105452 8192 2048 128 186 1057 64 131072 1

 -s -n -S -L -g -h
sync_release_ilock nokilluid v_pinshm lgpg_regions lgpg_size strict_maxperm

 1 0 0 0 0 1

 -t
maxclient
 26209

number of valid memory pages = 131047 maxperm=20.0% of real memory
 Chapter 3. Multi resource monitoring and tuning tools 217

maximum pinable=80.5% of real memory minperm=5.0% of real memory
number of file memory pages = 26062 numperm=19.9% of real memory
number of compressed memory pages = 0 compressed=0.0% of real memory
number of client memory pages = 20907 numclient=16.0% of real memory
of remote pgs sched-pageout = 0 maxclient=20.0% of real memory

In the example above, the value of maxperm is set to 20 percent. In a system
running Oracle, as an example, file caching occurs. There is, therefore, no
reason for the operating system memory to be used for caching. Some
suggested values for minperm and maxperm are, minperm is set to 1 (one)
percent and maxperm be reduced to about 2 (two) percent. The following
command can be used to achieve this (Example 3-125).

Example 3-125 Changing the minperm and maxperm values
/usr/samples/kernel/vmtune -p 1 -P 2
...(lines omitted)...
vmtune: new values:
 -p -P -r -R -f -F -N -W
minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
 1310 2620 2 2 120 128 524288 128

 -M -w -k -c -b -B -u -l -d
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt lrubucket defps

105452 8192 2048 128 186 1057 64 131072 1

 -s -n -S -L -g -h
sync_release_ilock nokilluid v_pinshm lgpg_regions lgpg_size strict_maxperm

 1 0 0 0 0 1

 -t
maxclient
 26209

number of valid memory pages = 131047 maxperm=2.0% of real memory
maximum pinable=80.5% of real memory minperm=1.0% of real memory
number of file memory pages = 26063 numperm=19.9% of real memory
number of compressed memory pages = 0 compressed=0.0% of real memory
number of client memory pages = 20907 numclient=16.0% of real memory
of remote pgs sched-pageout = 0 maxclient=20.0% of real memory

In Example 3-125, the hard limit for maxperm, strict_maxperm, should also be set
to 1 (one). This ensures that the maxperm value is adhered to.
218 AIX 5L Performance Tools Handbook

The following example provides suggestions about vmtune and logical volume
striping. Sequential and random accesses benefit form disk striping. The
following technique for configuring striped disks is recommended.

� Spread the logical volume across as many physical volumes as possible.

� Use as many adapters as possible for the physical volumes.

� Create a separate volume group for striped logical volumes.

� Do not mix striped and non-striped logical volumes in the same physical
volume.

� All physical volumes should be the same size within a set of striped logical
volumes.

� Set the stripe unit size to 64 KB.

� Set the value of minpgahead to 2 (two).

� Set the value of maxpgahead to 16 times the number of disks.

� Ensure that the difference between maxfree and minfree is equal to or
exceeds the value of maxpgahead.

Setting the minpgahead and maxpgahead values as above causes page-ahead to
be done in units of the stripe-unit size, which is 64 KB times the number of disk
drives, resulting in the reading of one stripe unit from each disk drive for each
read-ahead operation. Assuming that three disks are to be striped, the commands
in Example 3-126 will be used to set the vmtune parameters.

Example 3-126 vmtune’s minpgahead and maxpgahead values
/usr/samples/kernel/vmtune -F 168 -R 48
...(lines omitted)...

vmtune: new values:
 -p -P -r -R -f -F -N -W
minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
 26004 104016 2 48 120 168 524288 0

 -M -w -k -c -b -B -u -l -d
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt lrubucket defps

104838 8192 2048 1 186 256 9 131072 1

 -s -n -S -L -g -h
sync_release_ilock nokilluid v_pinshm lgpg_regions lgpg_size strict_maxperm

 0 0 0 0 0 0

 -t
maxclient
 104016
 Chapter 3. Multi resource monitoring and tuning tools 219

number of valid memory pages = 131047 maxperm=79.4% of real memory
maximum pinable=80.0% of real memory minperm=19.8% of real memory
number of file memory pages = 94431 numperm=72.1% of real memory
number of compressed memory pages = 0 compressed=0.0% of real memory
number of client memory pages = 90894 numclient=69.4% of real memory
of remote pgs sched-pageout = 0 maxclient=79.4% of real memory

If the striped logical volumes are on raw logical volumes and writes larger than
1.152 MB are anticipated, the value of the lvm_bufcnt parameter should be
increased with the command vmtune -u in order to increase throughput of the
write activity. This value can be increased as shown in Example 3-127.

Example 3-127 Increasing lvm_bufcnt with the vmtune command
/usr/samples/kernel/vmtune -u 10
...(lines omitted)...
vmtune: new values:
 -p -P -r -R -f -F -N -W
minperm maxperm minpgahead maxpgahead minfree maxfree pd_npages maxrandwrt
 26004 104016 2 48 120 168 524288 0

 -M -w -k -c -b -B -u -l -d
maxpin npswarn npskill numclust numfsbufs hd_pbuf_cnt lvm_bufcnt lrubucket defps

104838 8192 2048 1 186 256 10 131072 1

 -s -n -S -L -g -h
sync_release_ilock nokilluid v_pinshm lgpg_regions lgpg_size strict_maxperm

 0 0 0 0 0 0

 -t
maxclient
 104016

number of valid memory pages = 131047 maxperm=79.4% of real memory
maximum pinable=80.0% of real memory minperm=19.8% of real memory
number of file memory pages = 94392 numperm=72.0% of real memory
number of compressed memory pages = 0 compressed=0.0% of real memory
number of client memory pages = 90856 numclient=69.3% of real memory
of remote pgs sched-pageout = 0 maxclient=79.4% of real memory
220 AIX 5L Performance Tools Handbook

Chapter 4. CPU performance tools

This chapter describes the tools to monitor the performance relevant data and
statistics for CPU resource. It also contains information on tools that can be used
to tune CPU usage. Further commands that also provide statistics on CPU usage
but that are not listed in this chapter may appear in other chapters of this redbook
such as Chapter 3, “Multi resource monitoring and tuning tools” on page 57 and
Chapter 8, “Trace tools” on page 615.

This chapter contains detailed information on the following CPU monitoring and
tuning tools:

� CPU monitoring tools:

– The alstat command, described in Section 4.1, “alstat” on page 222, is
used to monitor Alignment exception statistics.

– The emstat command, described in Section 4.4, “emstat” on page 232, is
used to monitor Emulation statistics.

– The gprof command, described in Section 4.5, “gprof” on page 235, is
used to profile applications, showing details of time spent in routines.

– The pprof command, described in Section 4.7, “pprof” on page 249, is
used to monitor processes and threads.

– The prof command, described in Section 4.8, “prof” on page 261, is used
to profile applications, showing details of time spent in routines.

4

© Copyright IBM Corp. 2001 221

– The time command, described in Section 4.10, “time” on page 268, is
used to report the real time, user time, and system time taken to execute a
command.

– The timex command, described in Section 4.11, “timex” on page 270, is
used report the real time, user time, and system time taken to execute a
command. It also reports on, among other statistics, I/O statistics, context
switches, and run queue status.

– The tprof command, described in Section 4.12, “tprof” on page 275, is
used to profile the system or an application.

� CPU tuning tools:

– The bindintcpu command, described in Section 4.2, “bindintcpu” on
page 225, is used bind an interrupt to a specific CPU.

– The bindprocessor command, described in Section 4.3, “bindprocessor”
on page 228, is used to bind (or unbind) threads to a specific processor.

– The nice command, described in Section 4.6, “nice” on page 245, is used
to adjust the initial priority of a command.

– The renice command, described in Section 4.9, “renice” on page 266, is
used to change the nice value of one or more processes that are running
on a system.

4.1 alstat
The alstat command displays alignment exception statistics.

Alignment exceptions may occur when the processor cannot perform a memory
access due to an unsupported memory alignment offset (such as a floating point
double load from an address that is not a multiple of eight). However, some types
of unaligned memory references may be corrected by some processors and do
not generate an alignment exception.

Many of IBM’s competitors’ platforms simply abort your program on alignment
problems. AIX catches these exceptions and “fixes” them so legacy applications
are still able to be run. You may pay a performance price for these operating
system "fixes", and need to correct them permanently so they do not reoccur.

alstat helps you determine if alignment exceptions are a potential performance
problem.

alstat resides in /usr/bin and is part of the bos.perf.tools fileset, which is
installable from the AIX base installation media.
222 AIX 5L Performance Tools Handbook

alstat and emstat are linked to each other.

4.1.1 Syntax
The syntax of the alstat command is as follows:

alstat [[-e] | [-v]] [interval] [count]

Flags
-e Displays emulation stats

-v Specifies verbose (per CPU stats)

Parameters
Interval Specifies the update period (in seconds)

count Specifies the number of iterations

4.1.2 Information on measurement and sampling
The alstat command displays alignment exception statistics. The default output
displays statistics every second. The sampling interval and number of iterations
can also be specified by the user.

In terms of performance, alignment exceptions are costly. Alignment exceptions
could indicate that an application is not behaving well. Applications causing an
increase in the alstat count are less disciplined in memory model, or perhaps
the data structures do not map well between architectures when the applications
are ported between different architectures. The kernel and the kernel extensions
may also be ported and exhibit alignment problems. alstat looks for structures
and memory allocations that do not fall on eight bytes boundaries.

After identifying a high alignment exception rate, tprof needs to be used to
isolate where the alignment exception is occurring.

4.1.3 Examples
Example 4-1 shows a system with alignment exceptions as displayed by the
alstat command without options. Each interval will be one second long.

Example 4-1 An example of the output of alstat
alstat

Alignment Alignment
 SinceBoot Delta
 8845591 0
 8845591 0
 Chapter 4. CPU performance tools 223

 8845591 0
 8845591 0
 8845591 0

The above report has the following columns:

Alignment SinceBoot The total number of alignment exceptions since
start-up plus the number for the last interval.

Alignment Delta The number of alignment exceptions for the last
interval.

To display emulation and alignment exception statistics every two seconds for a
total of five times, use the command as in Example 4-2.

Example 4-2 Displaying emulation and alignment statistics per time and interval
alstat -e 2 5

Alignment Alignment Emulation Emulation
SinceBoot Delta SinceBoot Delta
70091846 0 21260604 0
72193861 2102015 23423104 2162500
74292759 2098898 25609796 2186692
76392234 2099475 27772897 2163101
78490284 2098050 29958509 2185612

For a description of emulation, refer to Section 4.4, “emstat” on page 232.

The above report has the following columns:

Emulation SinceBoot The sum of the number of emulated instructions since
start-up plus the number in the previous interval.

Emulation Delta The number of emulated instructions in the previous
interval.

Alignment SinceBoot The sum of the number of alignment exceptions since
start-up plus the number in the previous interval.

Alignment Delta The number of alignment exceptions in the previous
interval.

To display emulation statistics every five seconds for each processor, use the
command shown in Example 4-3.

Example 4-3 Displaying emulation for each processor
alstat -v 5

 This produces the following output:
224 AIX 5L Performance Tools Handbook

 Alignment Alignment Alignment Alignment
 SinceBoot Delta Delta00 Delta01
 88406295 0 0 0
 93697825 5291530 0 5291530
 98930330 5232505 5232505 0
 102595591 3665261 232697 3432564
 102595591 0 0 0

The above report has the following columns:

Alignment SinceBoot The sum of the number of alignment exceptions since
start-up plus number in the last interval.

Alignment Delta The number of alignment exceptions in the previous
interval for all CPUs.

Alignment Delta00 The number of current alignment exceptions in the
previous interval for CPU0.

Alignment Delta01 The number of current alignment exceptions in the
previous interval for CPU1.

4.1.4 Detecting and resolving alignment
Alignment is usually attributed to legacy applications or libraries, kernels, or
kernel extensions that have been ported to different platforms. alstat indicates
that an alignment problem exists. Once you have used the alstat command to
identify a high alignment exception rate, the best course of action would be to call
IBM Support.

4.2 bindintcpu
The bindintcpu command is used to direct an interrupt from a specific hardware
device, at a specific interrupt level, to a specific CPU number or CPU numbers.
This command is only useful for Symmetrical Multi-Processor (SMP) systems. By
default, the hardware interrupts are distributed to the CPUs, dependent on a
predefined method. The bindintcpu command allows a user with root authority
to override the system predefined method. The bindintcpu command is only
applicable to certain hardware types.

Note: Not all hardware supports one interrupt level binding to multiple CPUs
and an error may therefore result when using bindintcpu on some systems. It
is recommended to only specify one CPU per interrupt level.
 Chapter 4. CPU performance tools 225

Once an interrupt level has been directed to a CPU, all interrupts on that level will
be directed to that CPU until directed otherwise by the bindintcpu command.

The bindintcpu command resides in /usr/sbin and is part of the
devices.chrp.base.rte fileset, which is installable from the AIX base installation
media.

4.2.1 Syntax
The syntax of the bindintcpu command is as follows:

bindintcpu Level CPU [CPU...]

Parameters
Level This is the bus interrupt level.

CPU This is the specific CPU number.

[CPU...] Additional CPU numbers.

4.2.2 Examples
The bindintcpu command can be useful for redirecting an interrupt to a specific
processor. If the threads of a process are bound to a specific CPU using the
bindprocessor command, this process could be continually disrupted by an
interrupt from a device. Refer to Section 4.3, “bindprocessor” on page 228 for
more details on the bindprocessor command. This continual interruption can
become a performance issue if the CPU is frequently interrupted. To overcome
this, an interrupt that is continually interrupting a CPU can be redirected to a
specific CPU or CPUs other than the CPU where the threads are bound.
Assuming that the interrupt is from the token ring adapter tok0, the following
procedure can be performed.

To determine the interrupt level for a specific device, the lsattr command can
be used as in Example 4-4.

Example 4-4 How to determine the interrupt level of an adapter
lsattr -El tok0
busio 0x7fffc00 Bus I/O address False
busintr 3 Bus interrupt level False

Note: If an interrupt level is redirected to CPU0, then this interrupt level cannot
be redirected to another CPU by the bindintcpu command until the system
has been rebooted.
226 AIX 5L Performance Tools Handbook

xmt_que_size 16384 TRANSMIT queue size True
rx_que_size 512 RECEIVE queue size True
ring_speed 16 RING speed True
attn_mac no Receive ATTENTION MAC frame True
beacon_mac no Receive BEACON MAC frame True
use_alt_addr no Enable ALTERNATE TOKEN RING address True
alt_addr 0x ALTERNATE TOKEN RING address True
full_duplex yes Enable FULL DUPLEX mode True

To determine which CPUs are available on the system, the bindprocessor
command can be used as in Example 4-5.

Example 4-5 The bindprocessor command shows available CPUs
bindprocessor -q
The available processors are: 0 1 2 3

In order to redirect the interrupt level three to CPU1 on the system, use the
bindintcpu command as in follows:

bindintcpu 3 1

All interrupts from bus interrupt level three will be handled by the processor
CPU1. The other CPUs of the system will no longer be required to service
interrupts from this interrupt level.

An interrupt level can also be redirected to multiple CPUs. With the following
command, the interrupts from bus interrupt level three are redirected to
processors CPU2 and CPU3.

bindintcpu 3 2 3

In Example 4-6, the system has four CPUs. These CPUs are CPU0, CPU1,
CPU2, and CPU3.

Example 4-6 Incorrect CPU number selected in the bindintcpu command
bindintcpu 3 3 4
Invalid CPU number 4
Usage: bindintcpu <level> <cpu> [<cpu>...]
 Assign interrupt at <level> to be delivered only to the indicated cpu(s).

If a non-existent CPU number is entered, an error message is displayed.
 Chapter 4. CPU performance tools 227

The vmstat command can be used as shown in Example 4-7 to obtain interrupt
statistics.

Example 4-7 Use the vmstat command to determine the interrupt statistics
vmstat -i
priority level type count module(handler)
 0 15 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(1990598)
 0 15 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(1990598)
 0 15 hardware 0 /usr/lib/drivers/planar_pal_chrp(195f770)
 0 254 hardware 2294 i_hwassist_int(1c9468)
 3 1 hardware 104997 /usr/lib/drivers/pci/s_scsiddpin(1990490)
 3 3 hardware 525306 /usr/lib/drivers/pci/cstokdd(1a99104)
 3 10 hardware 53133 /usr/lib/drivers/pci/s_scsiddpin(1990490)
 4 1 hardware 18 /usr/lib/drivers/isa/kbddd_chrp(1ac0710)
 4 12 hardware 7 /usr/lib/drivers/isa/msedd_chrp(1ac6890)

The column heading level shows the interrupt level, and the column heading
count gives the number of interrupts since system startup. For more information,
refer to “vmstat” on page 186.

4.3 bindprocessor
The bindprocessor command is used to bind or unbind the threads of a process
to a processor on a Symmetrical Multi-Processor (SMP) system. When a
process’ threads are bound to a CPU, those threads will only be run on that CPU
unless the process is unbound from the CPU. The available processors can also
be listed using the bindprocessor command. Only a user with root authority can
bind a thread of a process of which it is not the owner to a processor.

bindprocessor resides in /usr/sbin and is part of the bos.mp fileset, which is
installed by default on SMP systems when installing AIX.

4.3.1 Syntax
The syntax of the bindprocessor command is as follows:

bindprocessor Process [ProcessorNum] | -q | -u Process

Flags
-q Displays the processors that are available.

-u Process Unbinds the threads of the specified process.
228 AIX 5L Performance Tools Handbook

Parameters
Process This is the process identification number (PID) for the

process to be bound to a processor.

[ProcessorNum] This is the processor number as specified from the output of
the bindprocessor -q command.

If the parameter ProcessorNum is omitted, then the thread of a process will be
bound to a randomly selected processor.

4.3.2 Information on measurement and sampling
The bindprocessor command uses the bindprocessor kernel service to bind or
unbind a kernel thread to a processor. The bindprocessor kernel service binds a
single thread or all threads of a process to a processor. Bound threads are forced
to run on that processor. Processes are not bound to processors, but rather the
kernel threads of the process are bound. Kernel threads that are bound to the
chosen processor, remain bound until unbound by the bindprocessor command
or until they terminate. New threads that are created using the thread_create
kernel service become bound to the same processor as their creator.

The bincprocessor command uses logical, not physical processor, numbers.

4.3.3 Examples
To display the available processors, the command in Example 4-8 can be used:

Example 4-8 Displaying available processor with the bindprocessor command
bindprocessor -q
The available processors are: 0 1 2 3

In Example 4-9, there are four CPU intensive processes consuming all of the
CPU time on all four of the available processors. This scenario may result in a
poor response time for other applications on the system. The example shows a
topas output where there is a high CPU usage on all available CPUs. Refer to
Section 3.9, “topas” on page 158 for more information. The process list at the
bottom of the topas output, shows the processes that are consuming the CPU
time. The process identification numbers (PID) for the processes obtained from
the topas command can be used with the bindprocessor command.

Example 4-9 Topas showing top processes consuming all CPU resources
Topas output shows high CPU usage
Topas Monitor for host: server1 EVENTS/QUEUES FILE/TTY
Mon May 28 17:29:55 2001 Interval: 2 Cswitch 36 Readch 48
 Syscall 224 Writech 560
 Chapter 4. CPU performance tools 229

CPU User% Kern% Wait% Idle% Reads 1 Rawin 0
cpu2 100.0 0.0 0.0 0.0 Writes 1 Ttyout 0
cpu1 100.0 0.0 0.0 0.0 Forks 0 Igets 0
cpu3 100.0 0.0 0.0 0.0 Execs 0 Namei 4
cpu0 99.5 0.4 0.0 0.0 Runqueue 4.0 Dirblk 0
 Waitqueue 0.0

 PAGING MEMORY
 Faults 0 Real,MB 511
 Steals 0 % Comp 26.0
 PgspIn 0 % Noncomp 27.6
 PgspOut 0 % Client 0.5
 PageIn 0
 PageOut 0 PAGING SPACE
 Sios 0 Size,MB 512
 % Used 1.2
 NFS (calls/sec) % Free 98.7
 ServerV2 0
 ClientV2 0 Press:
 ServerV3 0 "h" for help
 ClientV3 0 "q" to quit
The top four processes are displayed
Topas Monitor for host: server1 Interval: 2 Mon May 28 17:36:17 2001

 DATA TEXT PAGE PGFAULTS
USER PID PPID PRI NI RES RES SPACE TIME CPU% I/O OTH COMMAND
root 4472 19850 186 24 103 10 103 1:05100.0 0 0 dc
root 16782 6026 186 24 148 10 148 4:18100.0 0 0 dc
root 21192 22412 186 24 135 10 135 3:00 99.6 0 0 dc
root 17826 14116 186 24 128 10 128 1:29 99.1 0 0 dc

The bindprocessor commands in Example 4-10 are used to bind the threads of
the top processes in Example 4-9 on page 229 to CPU1.

Example 4-10 The bindprocessor command used to bind processes to a CPU
bindprocessor 4472 1
bindprocessor 16782 1
bindprocessor 21192 1
bindprocessor 17826 1
230 AIX 5L Performance Tools Handbook

Example 4-11 shows statistics obtained from the topas command output for CPU
and processes after the bindprocessor command was used to bind the threads
of the top four processes seen in Example 4-9 on page 229 to CPU1. Ultimately
the length of time that the four processes will run for on CPU1 will be longer than
if they were left to run on all four processors.

Example 4-11 The bindprocessor command is used to bind processes onto a processor
Topas Monitor for host: server1 EVENTS/QUEUES FILE/TTY
Mon May 28 17:42:01 2001 Interval: 2 Cswitch 145 Readch 76
 Syscall 291 Writech 567
CPU User% Kern% Wait% Idle% Reads 2 Rawin 0
cpu1 100.0 0.0 0.0 0.0 Writes 2 Ttyout 0
cpu2 0.4 1.7 0.0 97.7 Forks 0 Igets 0
cpu3 0.0 0.0 0.0 100.0 Execs 0 Namei 4
cpu0 0.0 0.0 0.0 100.0 Runqueue 4.0 Dirblk 0
 Waitqueue 0.0

 PAGING MEMORY
 Faults 0 Real,MB 511
 Steals 0 % Comp 26.1
 PgspIn 0 % Noncomp 27.6
 PgspOut 0 % Client 0.5
 PageIn 0
 PageOut 0 PAGING SPACE
 Sios 0 Size,MB 512
 % Used 1.2
 NFS (calls/sec) % Free 98.7
 ServerV2 0
 ClientV2 0 Press:
 ServerV3 0 "h" for help
 ClientV3 0 "q" to quit

Topas Monitor for host: server1 Interval: 2 Mon May 28 17:43:19 2001

 DATA TEXT PAGE PGFAULTS
USER PID PPID PRI NI RES RES SPACE TIME CPU% I/O OTH COMMAND
root 4472 19850 123 24 103 10 103 1:07 25.0 0 0 dc
root 17826 14116 123 24 128 10 128 1:28 25.0 0 12 dc
root 16782 6026 123 24 135 10 135 4:22 25.0 0 0 dc
root 21192 22412 123 24 135 10 135 3:04 25.0 0 0 dc
 Chapter 4. CPU performance tools 231

4.4 emstat
The emstat command displays emulation exception statistics.

Emulation exceptions can occur when some legacy applications or libraries,
which contain instructions that have been deleted from older processor
architectures, are executed on newer processors.

These instructions may cause illegal instruction program exceptions. The
operating system kernel has emulation routines that catch these exceptions and
emulate the older instruction(s) to maintain program functionality, potentially at
the expense of program performance. The emulation exception count since the
last time the machine was rebooted and the count in the current interval are
displayed.

Emulation can cause a severe degradation in performance and an emulated
instruction may cause in the order of hundreds of instructions to be generated to
emulate it. Section 4.4.4, “Detecting and resolving emulation” on page 235
shows what can be done to resolve emulation problems.

The user can optionally display alignment exception statistics or individual
processor emulation statistics. For details on alignment, please refer to
Section 4.1, “alstat” on page 222. The default output displays statistics every
second. The sampling interval and number of iterations can also be specified.

If a system is under-performing after applications are transferred or ported to a
new system, then emulation and alignment should be checked.

emstat resides in /usr/bin and is part of the bos.perf.tools fileset, which is
installable from the AIX base installation media.

emstat and alstat are linked to each other.

4.4.1 Syntax
The syntax of the emstat command is as follows:

emstat [[-a] | [-v]] [interval] [count]

Flags

Tip: When diagnosing performance problems, you should always check for
emulated instructions, as they can cause the performance of the system to
degrade.
232 AIX 5L Performance Tools Handbook

-a Displays alignment stats

-v Specifies verbose (per CPU stats)

Parameters

interval Specifies the update period (in seconds)

count Specifies the number of iterations

4.4.2 Information on measurement and sampling
Instructions that have been removed from earlier architectures are caught by the
operating system and those instructions are emulated. The emulated exceptions
count is reported by the emstat command. The default output displays statistics
every second. The sampling interval and number of iterations can also be
specified by the user.

The first line of the emstat output is the total number of emulations detected
since the system was rebooted. The counters are stored in per processor
structures.

An average rate of more than 1000 emulated instructions per second may cause
a performance degradation. Values in the region of 100,000 or more per second
will certainly cause performance problems.

4.4.3 Examples
Example 4-12 shows a system with emulation as displayed by the emstat
command with no options. This will display emulations once per second.

Example 4-12 An example of the output of emstat
emstat

emstat total count emstat interval count
 3236560 3236560
 3236580 20
 3236618 38
 3236656 38
 3236676 20
 3236714 38
 3236752 38
 3236772 20
 3236810 38
 3236848 38
emstat total count emstat interval count
 3236868 20
 3236906 38
 3236944 38
 Chapter 4. CPU performance tools 233

 3236964 20
 3237002 38
 3237040 38
...

The above report has the following columns:

emstat total count The total number of emulated instructions since
start-up plus that of the last interval.

emstat interval count The first line of the report is the total number of
emulated instructions since start-up. Subsequent
lines show the number of emulations in the last
interval.

To display emulation and alignment exception statistics every two seconds a total
of five times, use the command shown in Example 4-13.

Example 4-13 Displaying emulation and alignment statistics per time and interval
emstat -a 2 5

 Alignment Alignment Emulation Emulation
 SinceBoot Delta SinceBoot Delta
 21260604 0 70091846 0
 23423104 2162500 72193861 2102015
 25609796 2186692 74292759 2098898
 27772897 2163101 76392234 2099475
 29958509 2185612 78490284 2098050

The above report has the following columns:

Alignment SinceBoot The sum of the number of alignment exceptions
since start-up plus that of the last interval.

Alignment Delta The number of alignment exceptions in the last
interval.

Emulation SinceBoot The sum of the number of emulated instructions
since start-up plus that of the last interval.

Emulation Delta The number of emulated instructions in the last
interval.

To display emulation statistics every five seconds for each processor, use the
command in Example 4-14.

Example 4-14 Displaying emulation for each processor
emstat -v 5

Emulation Emulation Emulation Emulation
234 AIX 5L Performance Tools Handbook

 SinceBoot Delta Delta00 Delta01
 88406295 0 0 0
 93697825 5291530 0 5291530
 98930330 5232505 5232505 0
 102595591 3665261 232697 3432564
 102595591 0 0 0

The above report has the following columns:

Emulation SinceBoot The sum of the number of emulated instructions since
start-up plus that of the last interval.

Emulation Delta The number of emulated instructions in the previous
interval for all CPUs

Emulation Delta00 The number of emulated instructions in the previous
interval for cpu0.

Emulation Delta01 The number of emulated instructions in the previous
interval for cpu1.

4.4.4 Detecting and resolving emulation
Emulation is usually attributed to legacy applications or libraries that contain
instructions that have been deleted from older processor architectures.

Emulation occurs when programs have been compiled for specific chips, such as
a program compiled for the 601 processor will produce emulation problems on a
604 based processor because the 604 chip has to emulate instructions for the
601 processor to maintain program functionality. To maintain functionality across
the processors, a program needs to be compiled for common architecture with
-qarch=com as flags for the cc compiler, or alternatively the program may be
compiled for a specific chip set. If you are a software vendor, then you can
compile with a common architecture to avoid having multiple ports of the same
code.

4.5 gprof
The gprof command produces an execution profile of C, Pascal, FORTRAN, or
COBOL programs (with or without the source). The effect of called routines is
incorporated into the profile of each caller. gprof is useful in identifying how a
program consumes CPU resource. To find out which functions (routines) in the
program are using the CPU, you can profile the program with the gprof
command. gprof is a subset of the prof command.
 Chapter 4. CPU performance tools 235

gprof is useful for determining the following:

� Shows how much CPU time a program uses

� Helps to identify active areas of a program

� Profiles a program by routine

� Profiles parent-child

gprof resides in /usr/ccs/bin/gprof, is linked from /usr/bin, and is part of the
bos.acct fileset, which is installable from the AIX base installation media.

A similar profiler, named xprofiler, providing a Graphical User Interface (GUI) is
available as part of the IBM Parallel Environment for AIX. The xprofiler can be
used to profile both serial and parallel applications. From the xprofiler GUI, the
same command line flags as for gprof can be used.

The xprofiler command resides in /usr/lpp/ppe.xprofiler/bin, is linked to
/usr/bin, and is part of the ppe.xprofiler fileset, which is installable from the IBM
Parallel Environment installation media.

4.5.1 Syntax
The syntax of the gprof command is as follows:

gprof [-b][-s][-z][-e Name][-E Name][-f Name][-F Name][-L PathName]
[gmon.out ...]

Flags
-b Suppresses the printing of a description of each field in the

profile. This is very useful once you learn what the descriptions
for each field are.

-E Name Suppresses the printing of the graph profile entry for routine Name
and its descendants, similar to the -e flag, but excludes the time
spent by routine Name and its descendants from the total and
percentage time computations.

-e Name Suppresses the printing of the graph profile entry for routine Name
and all its descendants (unless they have other ancestors that
are not suppressed). More than one -e flag can be given. Only
one routine can be specified with each -e flag.

-F Name Prints the graph profile entry of the routine Name and its
descendants similar to the -f flag, but uses only the times of the
printed routines in total time and percentage computations. More
than one -F flag can be given. Only one routine can be specified
with each -F flag. The -F flag overrides the -E flag.
236 AIX 5L Performance Tools Handbook

-f Name Prints the graph profile entry of the specified routine Name and its
descendants. More than one -f flag can be given. Only one
routine can be specified with each -f flag.

-L PathName Uses an alternate pathname for locating shared objects.

-s Produces the gmon.sum profile file, which represents the sum of
the profile information in all the specified profile files. This
summary profile file may be given to subsequent executions of
the gprof command (using the -s flag) to accumulate profile data
across several runs of an a.out file.

-z Displays routines that have zero usage (as indicated by call
counts and accumulated time).

Parameters
Name Suppresses reporting or displays profile of the Name routine.

PathName Pathname for locating shared objects.

gmon.out Call graph profile file.

4.5.2 Information on measurement and sampling
The profile data is taken from the call graph profile file (gmon.out by default)
created by programs compiled with the cc command using the -pg flags. These
flags also link in versions of library routines compiled for profiling, and reads the
symbol table in the named object file (a.out by default), correlating it with the call
graph profile file. If more than one profile file is specified, the gprof command
output shows the sum of the profile information in the given profile files.

The -pg flag causes the compiler to insert a call to the mcount subroutine into the
object code generated for each recompiled function of your program. During
program execution, each time a parent calls a child function the child calls the
mcount subroutine to increment a distinct counter for that.

The gprof command produces three items:

� A listing showing the functions sorted according to the time they represent,
including the time of their call-graph descendents (see “Detailed function
report” on page 239). Below each function entry are its (direct) call-graph
children, with an indication of how their times are propagated to this function.
A similar display above the function shows how the time of the function and
the time of its descendents are propagated to its (direct) call-graph parents.

Note: Symbols from C++ object files have their names demangled before they
are used.
 Chapter 4. CPU performance tools 237

� A flat profile (see “Flat profile” on page 241) similar to that provided by the
prof command. See Section 4.8, “prof” on page 261. This listing gives total
execution times and call counts for each of the functions in the program,
sorted by decreasing time. The times are then propagated along the edges of
the call graph. Cycles are discovered, and calls into a cycle are made to
share the time of the cycle. Cycles are also shown, with an entry for the cycle
as a whole and a listing of the members of the cycle and their contributions to
the time and call counts of that cycle.

� A summary of cross references found during profiling (see “Listing of cross
references” on page 243).

Profiling with the fork and exec subroutines
Profiling using the gprof command is problematic if your program runs the fork or
exec subroutine on multiple, concurrent processes. Profiling is an attribute of the
environment of each process, so if you are profiling a process that forks a new
process, the child is also profiled. However, both processes write a gmon.out file
in the directory from which you run the parent process, overwriting one of them.
tprof is recommended for multiple-process profiling. See Section 4.12, “tprof” on
page 275 for more details.

If you must use the gprof command, one way around this problem is to call the
chdir subroutine to change the current directory of the child process. Then, when
the child process exits, its gmon.out file is written to the new directory.

4.5.3 Examples
This section shows an example of the gprof command in use. Two scenarios are
shown:

� Where the source code of the program we wish to profile is available.

� Where the source code of the program we wish to profile is unavailable.

Profiling when the source code is available
The following example uses the source file cwhet.c, which is a standard
benchmarking program. The source code is displayed in “spmi_dude.c” on
page 895.

The first step is to compile the cwhet.c source code into a binary using:

cc -o cwhet -pg -lm cwhet.c

Then create the gmon.out file (which will be used by gprof) by running cwhet:

cwhet
238 AIX 5L Performance Tools Handbook

Then run gprof on the executable using:

gprof cwhet > cwhet.gprof

Detailed function report
Now the cwhet.gprof file can be examined. Lines in the report have been
removed to keep the report to a presentable size (Example 4-15).

Example 4-15 Output of gprof run on cwhet with source
cat cwhet.gprof
...(lines omitted)...
granularity: Each sample hit covers 4 bytes. Time: 9.37 seconds

 called/total parents
index %time self descendents called+self name index
 called/total children

 2.94 3.52 1/1 .__start [2]
[1] 68.9 2.94 3.52 1 .main [1]
 1.13 0.00 8990000/8990000 .mod8 [4]
 0.86 0.00 6160000/6160000 .mod9 [5]
 0.38 0.00 930000/930000 .log [6]
 0.34 0.00 1920000/1920000 .cos [7]
 0.28 0.00 930000/930000 .exp [8]
 0.23 0.00 640000/640000 .atan [9]
 0.22 0.00 140000/140000 .mod3 [10]
 0.07 0.00 640000/640000 .sin [15]
 0.00 0.01 10/10 .pout [18]

6.6s <spontaneous>
[2] 68.9 0.00 6.46 .__start [2]
 2.94 3.52 1/1 .main [1]
 0.00 0.00 1/1 .exit [34]
...(lines omitted)...

In the above example, look at the first index [1] in the left-hand column. This
shows the .main function is the current function. It was started by .__start (the
parent function is above the current function), and it, in turn, calls .mod8 and
.mod9 (the child functions are beneath the current function). All time of .main is
propagated to .__start (in this case 2.94 ms). The self and descendents
columns of the children of the current function should add up to the descendents’
entry for the current function.
 Chapter 4. CPU performance tools 239

The following descriptions apply to the report in Example 4-15 on page 239:

The sum of self and descendents is the major sort for this listing. The following
fields are included:

index The index of the function in the call graph listing, as
an aid to locating it.

%time The percentage of the total time of the program
accounted for by this function and its descendents.

self The number of seconds spent in this function itself.

descendents The number of seconds spent in the descendents of this
function on behalf of this function.

called The number of times this function is called (other than
recursive calls).

self The number of times this function calls itself recursively.

name The name of the function, with an indication of its
membership in a cycle, if any.

index The index of the function in the call graph listing, as an
aid to locating it.

The following parent listings are included:

self1 The number of seconds of this function's self time that is
due to calls from this parent.

descendents1 The number of seconds of this function's descendent time
that is due to calls from this parent.

called2 The number of times this function is called by this parent.
This is the numerator of the fraction that divides up the
function's time to its parents.

total1 The number of times this function was called by all of its
parents. This is the denominator of the propagation
fraction.

parents The name of this parent, with an indication of the
parent's membership in a cycle, if any.

index The index of this parent in the call graph listing, as an aid
in locating it.

The following children listings are included:

self1 The number of seconds of this child's self time which is
due to being called by this function.
240 AIX 5L Performance Tools Handbook

descendent1 The number of seconds of this child's descendent's time,
which is due to being called by this function.

called2 The number of times this child is called by this function.
This is the numerator of the propagation fraction for this
child.

total1 The number of times this child is called by all functions.
This is the denominator of the propagation fraction.

children The name of this child, and an indication of its
membership in a cycle, if any.

index The index of this child in the call graph listing, as an aid to
locating it.

cycle listings The cycle as a whole is listed with the same fields as a
function entry. Below it are listed the members of the
cycle, and their contributions to the time and call counts of
the cycle.

Flat profile
The flat profile sample is the second part of the cwhet.gprof report.
Example 4-16 is a flat file produced by the gprof command.

Example 4-16 Flat profile report of profiled cwhet.c
cat cwhet.gprof
...(lines omitted)...
granularity: Each sample hit covers 4 bytes. Time: 9.37 seconds

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 31.4 2.94 2.94 1 2940.00 6460.00 .main [1]
 25.1 5.29 2.35 .__mcount [3]
 12.1 6.42 1.13 8990000 0.00 0.00 .mod8 [4]
 9.2 7.28 0.86 6160000 0.00 0.00 .mod9 [5]
 4.1 7.66 0.38 930000 0.00 0.00 .log [6]
 3.6 8.00 0.34 1920000 0.00 0.00 .cos [7]
 3.0 8.28 0.28 930000 0.00 0.00 .exp [8]
 2.5 8.51 0.23 640000 0.00 0.00 .atan [9]
 2.3 8.73 0.22 140000 0.00 0.00 .mod3 [10]
 1.8 8.90 0.17 .qincrement1 [11]
 1.5 9.04 0.14 .qincrement [12]
 1.4 9.17 0.13 .__stack_pointer [13]
 1.2 9.28 0.11 .sqrt [14]
 0.7 9.35 0.07 640000 0.00 0.00 .sin [15]

1 This field is omitted for parents (or children) in the same cycle as the function. If the function (or child) is a member of a
cycle, the propagated times and propagation denominator represent the self time and descendent time of the cycle as a
whole.
2 Static-only parents and children are indicated by a call count of zero.
 Chapter 4. CPU performance tools 241

 0.1 9.36 0.01 10 1.00 1.00 .nl_langinfo [17]
 0.1 9.37 0.01 .compare_and_swap.GL [20]
 0.0 9.37 0.00 40 0.00 0.00 .mf2x2 [21]
 0.0 9.37 0.00 40 0.00 0.00 .myecvt [22]
 0.0 9.37 0.00 10 0.00 0.00 .__nl_langinfo_std [23]
 0.0 9.37 0.00 10 0.00 1.00 ._doprnt [16]
 0.0 9.37 0.00 10 0.00 1.00 .pout [18]
 0.0 9.37 0.00 10 0.00 1.00 .printf [19]
 0.0 9.37 0.00 3 0.00 0.00 .splay [24]
 0.0 9.37 0.00 2 0.00 0.00 .free [25]
 0.0 9.37 0.00 2 0.00 0.00 .free_y [26]
 0.0 9.37 0.00 1 0.00 0.00 .__flsbuf [27]
 0.0 9.37 0.00 1 0.00 0.00 .__ioctl [28]
 0.0 9.37 0.00 1 0.00 0.00 ._findbuf [29]
 0.0 9.37 0.00 1 0.00 0.00 ._flsbuf [30]
 0.0 9.37 0.00 1 0.00 0.00 ._wrtchk [31]
 0.0 9.37 0.00 1 0.00 0.00 ._xflsbuf [32]
 0.0 9.37 0.00 1 0.00 0.00 .catopen [33]
 0.0 9.37 0.00 1 0.00 0.00 .exit [34]
 0.0 9.37 0.00 1 0.00 0.00 .expand_catname [35]
 0.0 9.37 0.00 1 0.00 0.00 .getenv [36]
 0.0 9.37 0.00 1 0.00 0.00 .ioctl [37]
 0.0 9.37 0.00 1 0.00 0.00 .isatty [38]
 0.0 9.37 0.00 1 0.00 0.00 .moncontrol [39]
 0.0 9.37 0.00 1 0.00 0.00 .monitor [40]
 0.0 9.37 0.00 1 0.00 0.00 .pre_ioctl [41]
 0.0 9.37 0.00 1 0.00 0.00 .saved_category_name [42]
 0.0 9.37 0.00 1 0.00 0.00 .setlocale [43]
...(lines omitted)...

The above example shows the profile, which is less complex than the call-graph
profile It is very similar to the output of prof. See Section 4.8, “prof” on page 261.
The primary columns of interest are the self seconds and the calls columns, as
these reflect the CPU seconds spent in each function and the number of times
each function was called. The next columns to look at are self ms/call, which is
the amount of CPU time used by the body of the function itself, and total
ms/call, meaning time in the body of the function plus any descendent functions
called.

To enhance performance you would normally investigate the functions at the top
of the report. You should also consider how many calls are made to the function.
Sometimes it may be easier to make slight improvements to a frequently called
function than to make extensive changes to a piece of code called once.

The following descriptions apply to the above flat profile report in Example 4-16
on page 241:
242 AIX 5L Performance Tools Handbook

% time The percentage of the total running time of the program
used by this function.

cumulative seconds A running sum of the number of seconds accounted for by
this function and those listed above it.

self seconds The number of seconds accounted for by this function
alone. This is the major sort for this listing.

calls The number of times this function was invoked, if this
function is profiled. Otherwise this column remains blank.

self ms/call The average number of milliseconds spent in this
function per call, if this function is profiled, Otherwise this
column remains blank.

total ms/call The average number of milliseconds spent in this
function and its descendents per call, if this function is
profiled. Otherwise this column remains blank.

name The name of the function. This is the minor sort for this
listing. The index shows the location of the function in the
gprof listing. If the index is in parenthesis it shows where it
would appear in the gprof listing if it were to be printed.

Listing of cross references
A cross reference index, as shown in Example 4-17, is the last item produced
summarizing the cross-references found during profiling

Example 4-17 Cross-references index report of profiled cwhet.c
cat cwhet.gprof
...(lines omitted)...
Index by function name

 [27] .__flsbuf [34] .exit [39] .moncontrol
 [28] .__ioctl [8] .exp [40] .monitor
 [3] .__mcount [35] .expand_catname [22] .myecvt
 [23] .__nl_langinfo_std [25] .free [17] .nl_langinfo
 [13] .__stack_pointer [26] .free_y [18] .pout
 [16] ._doprnt [36] .getenv [41] .pre_ioctl
 [29] ._findbuf [37] .ioctl [19] .printf
 [30] ._flsbuf [38] .isatty [12] .qincrement
 [31] ._wrtchk [6] .log [11] .qincrement1
 [32] ._xflsbuf [1] .main [42] .saved_category_nam
 [9] .atan [21] .mf2x2 [43] .setlocale
 [33] .catopen [10] .mod3 [15] .sin
 [20] .compare_and_swap.G [4] .mod8 [24] .splay
 [7] .cos [5] .mod9 [14] .sqrt
...(lines omitted)...
 Chapter 4. CPU performance tools 243

The above report is an alphabetical listing of the cross references found during
profiling.

Profiling when the source code is unavailable

If you do not have the source code for your program (in this case cwhet.c, which
can be seen in “spmi_dude.c” on page 895) then you can profile using the gprof
command without recompiling, but you will still need the object for cwhet. You
must, be able to relink your program modules with the appropriate compiler
command (for example, cc for C program source files). If you do not recompile,
you do not get call frequency counts, although the flat profile is still useful without
them. The following sequence explains how to perform the profiling:

The first step is to compile cwhet.c source into a binary using:

cc -pg -lm cwhet.o -L/lib -L/usr/lib -o cwhet

Then create the gmon.out (which will be used by gprof) by running cwhet as
follows:

cwhet > cwhet.out

Then run gprof on the executable using:

gprof cwhet > cwhet.gprof

You will get the following error which can be ignored:

Warning: mon.out file has no call counts. Program possibly not compiled
with profiled libraries.

Now the cwhet.gprof file can be examined. Lines in the report have been
removed to keep the report to a presentable size (Example 4-18).

Example 4-18 Report of profiled cwhet.c without call counts
cat cwhet.gprof
... (lines omitted)...

granularity: Each sample hit covers 4 bytes. Time: 6.05 seconds

 called/total parents
index %time self descendents called+self name index
 called/total children

6.6s <spontaneous>
[1] 52.4 3.17 0.00 .main [1]

244 AIX 5L Performance Tools Handbook

6.6s <spontaneous>
[2] 15.7 0.95 0.00 .mod8 [2]

6.6s <spontaneous>
[3] 8.9 0.54 0.00 .mod9 [3]

... (lines omitted)...

% cumulative self self total
 time seconds seconds calls ms/call ms/call name
 52.4 3.17 3.17 .main [1]
 15.7 4.12 0.95 .mod8 [2]
 8.9 4.66 0.54 .mod9 [3]
 4.8 4.95 0.29 .log [4]
 4.6 5.23 0.28 .cos [5]
 4.0 5.47 0.24 .exp [6]
 3.1 5.66 0.19 .mod3 [7]
 3.1 5.85 0.19 .sqrt [8]
 2.6 6.01 0.16 .atan [9]
 0.7 6.05 0.04 .sin [10]
^L
Index by function name

 [9] .atan [1] .main [10] .sin
 [5] .cos [7] .mod3 [8] .sqrt

[6] .exp [2] .mod8
 [4] .log [3] .mod9
~

In the above example, look at the first index [1] in the left-hand column. This
shows the .main function is the current function. It, in turn, calls .mod8 and .mod9
(the child functions are beneath the current function).

As can be seen by comparing the above example with the one generated in
Example 4-15 on page 239, where the source code was available, the report
does not produce statistics on the average number of milliseconds spent in a
function per call and its descendents’ per call.

4.6 nice
The nice command allows a user to adjust the dispatching priority of a
command. Non-root authorized users can only degrade the priority of their
commands. A user with root authority can improve the priority of a command as
well. A process, by default, has a nice value of 20. Numerically increasing this
 Chapter 4. CPU performance tools 245

value results in less favorable or degraded dispatching of the threads in a
process. Therefore, to request degraded service you would increase the nice
value to anywhere from 21 to 39 by specifying an increment value between 0
(zero) and 19. To decrease the nice value anywhere downward of 20, the
increment value would be -1 (one) to -20.

The nice command resides in /usr/bin and is part of the bos.rte.control fileset,
which is installed by default from the AIX base installation media.

4.6.1 Syntax
The syntax of the nice command is as follows:

nice [-Increment| -n Increment] Command [Argument ...]

Flags
-Increment Moves a command's priority up or down. You can specify a

positive or negative number. Positive increment values
degrade priority. Negative increment values improve priority.
Only users with root authority can specify a negative
increment. If you specify an increment value that would cause
the nice value to exceed the range of 0 (zero) to 39, the nice
value is set to the value of the limit that was exceeded.

-n Increment This flag is equivalent to the -Increment flag.

The -n flag and the - flag are synonymous.

Parameters
Increment A decimal integer in the range of -1 to -20 is used to improve

the priority of a command. A decimal integer in the range of 0
(zero) to 19 is used to degrade the priority of a command.

Command This is the actual command that will run with the modified nice
value.

Argument ... This is the argument of the command that will be running with
the modified nice value.
246 AIX 5L Performance Tools Handbook

4.6.2 Information on measurement and sampling
The nice command changes the value of the priority of a thread by changing the
nice value of its process, which is used to determine the overall priority of that
thread. A child process will inherit the nice value from the parent process. The
nice value can be viewed using the ps command’s -l flag. See Section 3.6, “ps”
on page 109. The nice values are displayed under the column heading NI.
Threads with numerically lower nice values tend to run ahead of those with
higher values.

The priority of a thread is not only determined by the nice value, but also by the
schedtune parameters if they have been set. Specifically, the schedtune flags -d,
the decay value of a thread, and the -r penalty factor of a thread can affect the
priority of a thread. Please refer to “CPU” on page 147 for more information on
the schedtune command.

Background processes that are run from the korn shell (ksh) will automatically
have four added to their nice value. If, for example, a thread were to be run with
its default nice value in background mode, then the nice value would actually be
24.

When a thread is running with the default AIX scheduler policy SCHED_OTHER,
the priority changes as a function of the nice value that is set and the CPU usage
of that thread. As the CPU usage increases for this thread, the priority value
increases until it reaches a maximum value. The thread, therefore, becomes less
favored to run again as CPU usage increases. See Section 3.8, “schedtune” on
page 144 for definitions of the scheduling types.

4.6.3 Examples
The nice value of a user process that is started in the foreground is 20 by default
as can be seen in Example 4-19 on page 248.

Note: Only users with root authority can change the priority of a command to
an improved value (lower value of nice). Any attempt by any other user to do
this results in the value remaining unchanged.

Tip: Section 1.1.3, “Process and thread priorities” on page 3 explains how
process priorities are calculated on AIX.
 Chapter 4. CPU performance tools 247

Example 4-19 Default nice value
ps -l
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 240001 A 0 18892 14224 2 61 20 af15 1012 pts/3 0:00 ksh
 200001 A 0 20646 18892 4 62 20 a714 444 pts/3 0:00 ps

The priority of a process is listed in the PRI column of the ps output. As shown in
Example 4-19 on page 248 the priority of the ps command is calculated to be 62.
Because the process is reporting on itself, it has already used some CPU time,
so the priority has been degraded by two. At the instance of launch the process’
priority was 60.

If the process is launched in the background, the nice value is 24 by default as
demonstrated in Example 4-20.

Example 4-20 Default nice value, background
ps -l &
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
240001 A 0 18892 14224 1 60 20 af15 1012 7030ae44 pts/3 0:01 ksh

 200001 A 0 23462 18892 4 70 24 9f13 448 pts/3 0:00 ps

Due to the increased nice value, the priority of the background process (70) is
lower than the priority of the previously launched foreground process (62). A
higher numerical value means lower priority.

How to degrade the priority of a process
The priority of the process can be degraded by increasing the nice value. To
increase the nice value by 10, enter:

nice -10 ps -l

As we can see in Example 4-21, the priority of the process is degraded and is
now 82 (higher numerical value means lower priority).

Example 4-21 Increasing the nice value
nice -10 ps -l
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 240001 A 0 18892 14224 1 60 20 af15 1012 pts/3 0:00 ksh
 200001 A 0 21648 18892 4 82 30 770e 540 pts/3 0:00 ps

How to improve the priority of a process
The priority of a process can be improved by decreasing the nice value. To
decrease the nice value by 10, enter:

nice --10 ps -l
248 AIX 5L Performance Tools Handbook

Example 4-22 shows the output of the command. The priority of the process is
improved and is now 51 (lower numerical value means higher priority).

Example 4-22 Decreasing the nice value
root@wlmhost:/: nice --10 ps -l
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 200001 A 0 13904 18892 3 51 10 3706 512 pts/3 0:00 ps
 240001 A 0 18892 14224 0 60 20 af15 1012 pts/3 0:01 ksh

4.7 pprof
The pprof command reports on all kernel threads running within an interval using
the trace utility.

pprof is useful to determine the CPU usage for processes and their associated
threads.

pprof resides in /usr/bin and is part of the bos.perf.tools fileset, which is
installable from the AIX base installation media.

4.7.1 Syntax
The syntax of the pprof command is as follows:

pprof { <time> | -I <pprof.flow file> | -i <tracefile> | -d } [-s]
[-n] [-f] [-p] [-T <size>] [-v]

Flags
-I Generate reports from a previously generated pprof.flow

-i Generate reports from a previously generated tracefile

-d Waits for the user to execute trcon and trcstop commands
from the command line

-T Sets trace kernel buffer size (default 32000 bytes)

-v Verbose mode (print extra details)

-n Just generate pprof.namecpu

-f Just generate pprof.famcpu and pprof.famind

-p Just generate pprof.cpu

-s Just generate pprof.start

-w Just generate pprof.flow
 Chapter 4. CPU performance tools 249

Parameters
time Amount of seconds to trace the system

pprof.flow file The name of the previously generated pprof.flow file

tracefile The name of the previously generated trace file

size Kernel buffer size (default 32000 bytes)

4.7.2 Information on measurement and sampling
The pprof command reports on all kernel threads running within an interval using
the trace utility. The raw process information is saved to pprof.flow, and five
reports are generated. The trace hooks used by pprof are 000, 001, 002, 003,
005, 006, 135, 106, 10C, 134, 139, 465, 467, and 00A. See Appendix B, “Trace
hooks” on page 921 for details of the trace hooks used.

The trace is automatically started and stopped by pprof if you are not
postprocessing an existing trace file.

The following types of reports are produced by pprof:

� pprof.cpu

Lists all kernel level threads sorted by actual CPU time. Contains:

– Process Name
– Process ID
– Parent Process ID
– Process State at Beginning and End
– Thread ID
– Parent Thread ID
– Actual CPU Time
– Start Time
– Stop Time
– The difference between the Stop time and the Start time

� pprof.start

Lists all kernel threads sorted by start time. Contains:

– Process Name
– Process ID
– Parent Process ID
– Process State Beginning and End
– Thread ID
– Parent Thread ID
– Actual CPU Time
– Start Time
– Stop Time
250 AIX 5L Performance Tools Handbook

– The difference between the Stop time and the Start time

� pprof.namecpu

Lists information about each type of kernel thread (all executable with the
same name). Contains:

– Process Name
– Number of Threads
– CPU Time
– % of Total CPU Time

� pprof.famind

Lists all processes grouped by families (processes with a common ancestor).
Child process names are indented with respect to the parent. Contains:

– Start Time
– Stop Time
– Actual CPU Time
– Process ID
– Parent Process ID
– Thread ID
– Parent Thread ID
– Process State at Beginning and End
– Level
– Process Name

� pprof.famcpu

Lists the information for all families (processes with a common ancestor). The
Process Name and Process ID for the family is not necessarily the ancestor.
Contains:

– Start Time
– Process Name
– Process ID
– Number of Threads
– Total CPU Time

4.7.3 Examples
To profile the CPU(s) of a system for 60 seconds, use the command pprof 60 .
This command will generate the reports shown in this section.

The pprof.cpu report
Example 4-23 on page 252 shows the pprof.cpu file produced when running the
pprof 60 command.
 Chapter 4. CPU performance tools 251

Example 4-23 The pprof.cpu report
cat pprof.cpu

 Pprof CPU Report

 Sorted by Actual CPU Time

 From: Tue May 29 16:39:12 2001
 To: Tue May 29 16:40:12 2001

E = Exec'dF = Forked
X = ExitedA = Alive (when traced started or stopped)
C = Thread Created

 Pname PID PPID BE TID PTID ACC_time STT_time STP_time STP-STT
========= ===== ===== === ===== ===== ======== ======== ======== ========
 dc 25294 19502 AA 39243 0 32.876 0.005 60.516 60.511
 dc 26594 26070 AA 45947 0 29.544 0.020 60.521 60.501
 cpu 27886 29420 AA 48509 0 29.370 0.011 60.532 60.521
 cpu 29156 29420 AA 49027 0 29.119 0.000 60.529 60.529
 cpu 28134 29420 AA 40037 0 28.629 0.008 60.532 60.525
 cpu 29420 26326 AA 47483 0 26.157 0.015 60.526 60.511
 dc 25050 21710 AA 36785 0 24.466 0.005 60.504 60.499
 cpu 28646 29420 AA 48767 0 17.772 0.013 60.514 60.501
 dc 26834 25812 AA 46187 0 17.654 0.023 60.494 60.471
seen+done 28904 23776 EA 48005 40515 0.932 29.510 60.533 31.023
 X 4224 4930 AA 5493 0 0.849 0.210 44.962 44.751
 xmtrend 20804 19502 AA 31173 0 0.754 0.305 59.665 59.360
seen+done 30964 23776 EA 50575 40515 0.749 33.780 60.533 26.753
seen+done 31218 23776 EA 50829 40515 0.635 36.328 60.533 24.205
 aixterm 24786 5510 AA 40257 0 0.593 0.215 42.394 42.179
seen+done 30446 23776 EA 49799 40515 0.544 35.124 60.513 25.389
 java 22376 23036 AA 33523 0 0.358 42.416 44.957 2.541
 netm 1548 0 AA 1549 0 0.144 41.582 60.533 18.952
 syncd 5690 1 AA 7239 0 0.135 0.275 0.498 0.223
 java 22376 23036 AA 37949 0 0.129 0.091 60.310 60.219
 i4llmd 17552 9034 AA 5979 0 0.121 0.069 60.450 60.381
 swapper 0 0 AA 3 0 0.052 0.238 59.757 59.520
 UNKNOWN 30708 -1 EA 50061 0 0.050 16.318 57.781 41.463
 dtwm 23240 5510 AA 43097 0 0.050 12.229 43.481 31.252
...(lines omitted)...
 gil 2322 0 AA 3355 0 0.022 0.100 60.359 60.259
 trcstop 30188 -1 EA 49541 0 0.020 60.510 60.534 0.024
 ls 28902 23776 EX 48003 40515 0.020 19.240 19.272 0.032
 ksh 28904 23776 FE 48005 40515 0.016 29.470 29.510 0.040
 ksh 30446 23776 FE 49799 40515 0.015 35.099 35.123 0.024
 ksh 30964 23776 FE 50575 40515 0.015 33.759 33.780 0.021
 ksh 31218 23776 FE 50829 40515 0.015 36.309 36.328 0.019
 UNKNOWN 28386 -1 CA 50313 48253 0.012 0.001 57.780 57.780
 init 1 0 AA 259 0 0.011 0.010 49.379 49.369
 UNKNOWN 30962 -1 EX 50573 0 0.010 0.488 0.510 0.022
ttsession 20172 1 AA 42333 0 0.008 42.354 42.465 0.111
252 AIX 5L Performance Tools Handbook

rpc.lockd 8016 1 AA 19609 0 0.007 0.475 60.277 59.802
 sadc 18272 22170 AX 33265 0 0.007 49.282 49.309 0.028
 trace 30444 30186 AX 49797 0 0.007 0.001 0.005 0.004
 nfsd 10068 1 AA 16777 0 0.006 0.069 60.148 60.079
 ksh 28902 23776 FE 48003 40515 0.006 19.230 19.238 0.008
 j2pg 5972 0 AA 11875 0 0.005 30.123 58.400 28.277
 j2pg 5972 0 AA 11123 0 0.004 29.963 57.532 27.569
 j2pg 5972 0 AA 9291 0 0.004 30.875 60.234 29.359
 j2pg 5972 0 AA 8533 0 0.004 30.063 57.722 27.659
...(lines omitted)...
 pprof 29930 26326 AA 49283 0 0.000 0.000 0.000 0.000
 ========
 242.116

The following values are displayed for the above report:

Pname The name of the process.

PID The Process Id as it would appear with the ps command.

PPID The Parent Process Id, that is, which process it belongs to.

BE The BE field relates to Beginning and End (BE) of profiling. It is the
state of the thread when profiling with pprof began (B) and when
profiling ended (E). The following options are applicable to this
field:

E The thread was exec’d

F The process was forked

X The process exited

A The process was alive (when traced started or stopped)

C The thread was created

TID The Thread Id.

PTID The Parent Thread Id, that is, which thread it belongs to.

ACC_time The actual CPU time in milliseconds (msec).

STT_time The process starting time in milliseconds (msec).

STP_time The process stop time in milliseconds (msec).

STP-STT The process stop time less the process start time.

The above report lists all kernel level threads sorted by actual CPU time. It shows
the processes called dc and cpu were consuming the most CPU time. By looking
at the process ID, 25294, we can see that the STP-STT is 60.511 ms and the
ACC_time is 32.876 ms, indicating that since the process started, 50 percent of
that time has been used running on the CPU. The report also shows that (BE=AA)
the thread was active both at the beginning of the trace and at the end.
 Chapter 4. CPU performance tools 253

The most important fields in this report are ACC_time and STP-STT. If the CPU time
(ACC_TIME) was high in proportion to the length of time the thread was running
(STP-STT), as is this case for the dc and cpu processes in the above example,
then the process should be investigated further with the gprof command to look
at the amount of CPU time the functions of the process are using. This will help in
any diagnosis to improve performance of the process. Refer to Section 4.5,
“gprof” on page 235 for more details.

In the report above, you will see that some of the processes names are listed as
UNKNOWN and the PPID is -1. This is because pprof reports on all kernel threads
running within an interval using the trace utility. If some processes had exec'd or
the thread had been created before trace utility started, their processes' name
and PPID would not be caught in thread record hash tables that are read by
pprof. In this case, pprof would assign -1 as PPID to those processes.

The pprof.start report
Example 4-24 shows the pprof.start file produced when running the pprof 60
command.

Example 4-24 The pprof.start report
cat pprof.start

 Pprof START TIME Report

 Sorted by Start Time

 From: Tue May 29 16:39:12 2001
 To: Tue May 29 16:40:12 2001

E = Exec'dF = Forked
X = ExitedA = Alive (when traced started or stopped)
C = Thread Created

 Pname PID PPID BE TID PTID ACC_time STT_time STP_time STP-STT
============ ====== ====== == ====== ====== ======== ======== ======== =======
 cpu 29156 29420 AA 49027 0 29.119 0.000 60.529 60.529
 pprof 29930 26326 AA 49283 0 0.000 0.000 0.000 0.000
 UNKNOWN 29672 -1 EA 47739 0 0.000 0.001 0.005 0.004
 UNKNOWN 28386 -1 EA 48253 0 0.000 0.001 0.001 0.000
 UNKNOWN 28386 -1 CA 50313 48253 0.012 0.001 57.780 57.780
 trace 30444 30186 AX 49797 0 0.007 0.001 0.005 0.004
 dc 25050 21710 AA 36785 0 24.466 0.005 60.504 60.499
 dc 25294 19502 AA 39243 0 32.876 0.005 60.516 60.511
 cpu 28134 29420 AA 40037 0 28.629 0.008 60.532 60.525
 init 1 0 AA 259 0 0.011 0.010 49.379 49.369
 cpu 27886 29420 AA 48509 0 29.370 0.011 60.532 60.521
 cpu 28646 29420 AA 48767 0 17.772 0.013 60.514 60.501
 cpu 29420 26326 AA 47483 0 26.157 0.015 60.526 60.511
254 AIX 5L Performance Tools Handbook

 dc 26594 26070 AA 45947 0 29.544 0.020 60.521 60.501
 dc 26834 25812 AA 46187 0 17.654 0.023 60.494 60.471
 nfsd 10068 1 AA 16777 0 0.006 0.069 60.148 60.079
 i4llmd 17552 9034 AA 5979 0 0.121 0.069 60.450 60.381
 java 22376 23036 AA 37949 0 0.129 0.091 60.310 60.219
 gil 2322 0 AA 3355 0 0.022 0.100 60.359 60.259
 gil 2322 0 AA 2839 0 0.025 0.175 60.147 59.972
 X 4224 4930 AA 5493 0 0.849 0.210 44.962 44.751
 aixterm 24786 5510 AA 40257 0 0.593 0.215 42.394 42.179
 ksh 23776 24786 AA 40515 0 0.046 0.220 39.129 38.909
 gil 2322 0 AA 2581 0 0.024 0.230 60.379 60.149
 swapper 0 0 AA 3 0 0.052 0.238 59.757 59.520
 gil 2322 0 AA 3097 0 0.024 0.240 59.939 59.699
 syncd 5690 1 AA 7239 0 0.135 0.275 0.498 0.223
 UNKNOWN 30960 -1 EX 50571 0 0.000 0.275 0.285 0.009
 xmtrend 20804 19502 AA 31173 0 0.754 0.305 59.665 59.360
 rpc.lockd 8016 1 AA 19609 0 0.007 0.475 60.277 59.802
 UNKNOWN 30962 -1 EX 50573 0 0.010 0.488 0.510 0.022
 rtcmd 8258 0 AA 15997 0 0.000 0.587 30.587 30.000
 netm 2064 0 AA 2065 0 0.002 0.895 59.407 58.512
 IBM.ERrmd 17302 9034 AA 21421 0 0.000 2.370 52.927 50.557
 PM 13676 1 AA 20643 0 0.000 4.936 55.446 50.509
 snmpd 7746 9034 AA 14707 0 0.034 6.948 8.029 1.082
 nfsd 10068 1 AA 17035 0 0.000 7.453 7.453 0.000
IBM.AuditRMd 17034 9034 AA 28123 0 0.001 7.470 58.019 50.549
 nfsd 10068 1 AA 17289 0 0.000 7.537 38.046 30.509
 rmcd 6464 9034 AA 8013 0 0.001 7.689 7.689 0.000
 rmcd 6464 9034 AA 8787 0 0.000 7.690 58.243 50.552
 gil 1806 0 AA 1807 0 0.000 8.019 38.528 30.509
 sendmail 9832 9034 AA 10323 0 0.001 11.026 11.027 0.001
 dtwm 23240 5510 AA 43097 0 0.050 12.229 43.481 31.252
 i4llmd 5204 17552 AA 26071 0 0.000 14.930 14.930 0.000
 UNKNOWN 30708 -1 EA 50061 0 0.050 16.318 57.781 41.463
 rpc.lockd 8016 1 AA 19351 0 0.000 17.272 17.272 0.000
 rpc.lockd 8016 1 AA 19093 0 0.000 17.354 47.863 30.509
 ksh 28902 23776 FE 48003 40515 0.006 19.230 19.238 0.008
 ls 28902 23776 EX 48003 40515 0.020 19.240 19.272 0.032
 ksh 28904 23776 FE 48005 40515 0.016 29.470 29.510 0.040
 seen+done 28904 23776 EA 48005 40515 0.932 29.510 60.533 31.023
 j2pg 5972 0 AA 12653 0 0.004 29.630 56.762 27.132
 j2pg 5972 0 AA 12407 0 0.004 29.793 57.401 27.608
 j2pg 5972 0 AA 7551 0 0.004 29.871 57.479 27.608
...(lines omitted)...
 ========
 242.116

The above report lists all kernel level threads sorted by start time. The report
shows the process and thread status at the beginning of the trace.

For a description of the report fields and analysis, please refer to Example 4-23
on page 252.
 Chapter 4. CPU performance tools 255

The pprof.namecpu report
Example 4-25 shows the pprof.namecpu file produced when running the pprof
60 command.

Example 4-25 The pprof.namecpu report
cat pprof.namecpu

 Pprof PROCESS NAME Report

 Sorted by CPU Time

 From: Tue May 29 16:39:12 2001
 To: Tue May 29 16:40:12 2001

 Pname #ofThreads CPU_Time %
 ======== ========== ======== ========
 cpu 5 131.047 54.126
 dc 4 104.540 43.178
 seen+done 4 2.860 1.181
 X 1 0.849 0.351
 xmtrend 1 0.754 0.311
 aixterm 2 0.594 0.245
 java 3 0.489 0.202
 netm 2 0.146 0.060
 syncd 1 0.135 0.056
 i4llmd 2 0.121 0.050
 ksh 6 0.113 0.047
 gil 5 0.095 0.039
 UNKNOWN 7 0.073 0.030
 j2pg 17 0.068 0.028
 swapper 1 0.052 0.021
 dtwm 1 0.050 0.021
 snmpd 1 0.034 0.014
 trcstop 1 0.020 0.008
 ls 1 0.020 0.008
 init 1 0.011 0.005
 ttsession 1 0.008 0.003
 trace 1 0.007 0.003
 sadc 1 0.007 0.003
 rpc.lockd 3 0.007 0.003
 nfsd 3 0.006 0.002
 bsh 1 0.004 0.002
 dtstyle 1 0.002 0.001
 IBM.AuditRMd 1 0.001 0.000
 cron 1 0.001 0.000
 rmcd 2 0.001 0.000
 sendmail 1 0.001 0.000
256 AIX 5L Performance Tools Handbook

 PM 1 0.000 0.000
 pprof 1 0.000 0.000
 IBM.ERrmd 1 0.000 0.000
 rtcmd 1 0.000 0.000
 hostmibd 1 0.000 0.000
 ========== ======== ========
 87 242.116 100.000

The above report lists information about each type of kernel thread. It contains
the following fields:

Pname The name of the process

#ofThreads The number of threads created by the process

CPU_Time The amount of CPU time consumed by the thread

% The percentage of CPU time consumed by the thread

The above report shows the processes cpu and dc are using the most CPU time.
Each line of the report represents all the processes called Pname on the system.
For example, there were five threads called cpu and those five threads are
combined to show as one in the above report. The number of threads per
process is shown in the above report under the #ofThreads column.

The pprof.famind report
Example 4-26 shows the pprof.famind file produced when running the pprof 60
command.

Example 4-26 The pprof.famind report
cat pprof.famind

 Pprof PROCESS FAMILY Report - Indented

 Sorted by Family and Start Time

 From: Tue May 29 16:39:12 2001
 To: Tue May 29 16:40:12 2001

E = Exec'dF = Forked
X = ExitedA = Alive (when traced started or stopped)
C = Thread Created

 STT STP ACC PID PPID TID PTID BE LV PNAME
 ======= ======= ======= ===== ===== ===== ===== == == ==============

 0.010 49.379 0.011 1 0 259 0 AA 0 init
 0.238 59.757 0.052 0 0 3 0 AA 0 swapper
 Chapter 4. CPU performance tools 257

 0.000 60.529 29.119 29156 29420 49027 0 AA 2 .. cpu
 0.008 60.532 28.629 28134 29420 40037 0 AA 2 .. cpu
 0.011 60.532 29.370 27886 29420 48509 0 AA 2 .. cpu
 0.013 60.514 17.772 28646 29420 48767 0 AA 2 .. cpu
 0.015 60.526 26.157 29420 26326 47483 0 AA 1 . cpu

 0.000 0.000 0.000 29930 26326 49283 0 AA 2 .. pprof

 0.001 0.005 0.000 29672 -1 47739 0 EA 2 .. UNKNOWN

 0.001 0.001 0.000 28386 -1 48253 0 EA 2 .. UNKNOWN
 0.001 57.780 0.012 28386 -1 50313 48253 CA 2 ..- UNKNOWN

 0.001 0.005 0.007 30444 30186 49797 0 AX 2 .. trace

 0.005 60.504 24.466 25050 21710 36785 0 AA 2 .. dc

 0.005 60.516 32.876 25294 19502 39243 0 AA 2 .. dc

 0.020 60.521 29.544 26594 26070 45947 0 AA 2 .. dc

 0.023 60.494 17.654 26834 25812 46187 0 AA 2 .. dc

 0.069 60.148 0.006 10068 1 16777 0 AA 2 .. nfsd
 7.453 7.453 0.000 10068 1 17035 0 AA 2 .. nfsd
 7.537 38.046 0.000 10068 1 17289 0 AA 2 .. nfsd

 0.069 60.450 0.121 17552 9034 5979 0 AA 2 .. i4llmd
 14.930 14.930 0.000 5204 17552 26071 0 AA 3 ... i4llmd

 0.091 60.310 0.129 22376 23036 37949 0 AA 2 .. java
 42.410 44.948 0.002 22376 23036 36885 0 AA 2 .. java
 42.416 44.957 0.358 22376 23036 33523 0 AA 2 .. java

 0.100 60.359 0.022 2322 0 3355 0 AA 2 .. gil
 0.175 60.147 0.025 2322 0 2839 0 AA 2 .. gil
 0.230 60.379 0.024 2322 0 2581 0 AA 2 .. gil
 0.240 59.939 0.024 2322 0 3097 0 AA 2 .. gil

 0.210 44.962 0.849 4224 4930 5493 0 AA 2 .. X

The above report includes the following fields:

STT The process start time.

STP The process stop time.

ACC The actual CPU time.

PID The Process ID as it would appear with the ps command.

PPID The Parent Process ID; that is, which process it belongs to.
258 AIX 5L Performance Tools Handbook

TID The Thread ID.

PTID The Parent Thread ID; that is, which thread it belongs to.

BE The field relates to Beginning and End (BE) of profiling. It is the
state of the thread when profiling with pprof began (B) and when
profiling ended (E). The following options are applicable to this
field:

E The thread was Exec’d

F The process was Forked

X The process Exited

A The process was alive (when trace started or stopped)

C The thread was Created

LV The following apply to the run level (LV):

0-9 Tells the init command to place the system in one of the run
levels 0-9. When the init command requests a change to
run levels 0-9, it kills all processes at the current run levels
and then restarts any processes associated with the new run
levels.

0-1 Reserved for future used of the operating system.

2 Contains all of the terminal processes and daemons
that are run in the multiuser environment. In the
multiuser environment, the /etc/inittab file is set up so
that the init command creates a process for each
terminal on the system. The console device driver is
also set to run at all run levels so the system can be
operated with only the console active.

3-9 Can be defined according to the user's preferences.

More information about run levels can be located at
http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/cmds/aix
cmds5/telinit.htm.

PNAME The name of the process.

The above report shows the processes sorted by their ancestors (parents) and
process name. It is useful for determining which processes have forked other
processes. By looking at the ACC column, you can ascertain how much CPU time
was consumed by the process.
 Chapter 4. CPU performance tools 259

The pprof.famcpu report
Example 4-27 shows the pprof.famcpu file produced when running the pprof 60
command.

Example 4-27 The pprof.famcpu report
cat pprof.famcpu

 Pprof PROCESS FAMILY SUMMARY Report

 Sorted by CPU Time

 From: Tue May 29 16:39:12 2001
 To: Tue May 29 16:40:12 2001

 Stt-Time Pname PID #Threads Tot-Time
 ======== ==================== ===== ======== ========
 0.0000 cpu 29156 5 131.047
 0.0051 dc 25294 1 32.876
 0.0201 dc 26594 1 29.544
 0.0048 dc 25050 1 24.466
 0.0226 dc 26834 1 17.654
 0.2151 aixterm 24786 12 3.584
 0.2101 X 4224 1 0.849
 0.3051 xmtrend 20804 1 0.754
 0.0912 java 22376 3 0.489
 41.5815 netm 1548 1 0.144
 0.2751 syncd 5690 1 0.135
 0.0690 i4llmd 17552 2 0.121
 0.1001 gil 2322 4 0.095
 29.6299 j2pg 5972 17 0.070
 0.2376 swapper 0 1 0.052
 16.3183 UNKNOWN 30708 1 0.050
 12.2293 dtwm 23240 1 0.050
 6.9476 snmpd 7746 1 0.034
 60.5083 UNKNOWN 30188 2 0.022
 0.0006 UNKNOWN 28386 2 0.012
 0.0101 init 1 1 0.011
 49.2815 sadc 18272 2 0.010
 0.4880 UNKNOWN 30962 1 0.010
 42.3540 ttsession 20172 1 0.008
 0.4748 rpc.lockd 8016 3 0.007
 0.0009 trace 30444 1 0.007
 0.0690 nfsd 10068 3 0.006
 0.8952 netm 2064 1 0.002
 42.3864 dtstyle 4844 1 0.002
260 AIX 5L Performance Tools Handbook

 7.6887 rmcd 6464 2 0.001
 11.0259 sendmail 9832 1 0.001
 48.1527 cron 11370 1 0.001
 42.3944 aixterm 16872 1 0.001
 7.4702 IBM.AuditRMd 17034 1 0.001
 8.0185 gil 1806 1 0.000
 2.3701 IBM.ERrmd 17302 1 0.000
 37.2309 hostmibd 10582 1 0.000
 4.9364 PM 13676 1 0.000
 0.2752 UNKNOWN 30960 1 0.000
 0.5870 rtcmd 8258 1 0.000
 0.0005 UNKNOWN 29672 1 0.000
 0.0001 pprof 29930 1 0.000
 ======== ========

 87 242.116

The above reports lists the processes with a common ancestor. It shows the
processes sorted by their ancestors (parents). It is useful for determining how
many threads per process are running and how much CPU time the threads are
consuming.

The following fields are listed:

Stt-Time The process starting time

Pname The name of the process

PID The Process ID as it would appear with the ps command

#Threads Number of threads created by the process

Tot-Time The process stop time less the process start time

4.8 prof
The prof command displays object file profile data. This is useful for determining
where in an executable most of the time is spent. The prof command interprets
profile data collected by the monitor subroutine for the object file Program (a.out
by default).

prof resides in /usr/ccs/bin, is linked from /usr/bin, and is part of the bos.adt.prof
fileset, which is installable from the AIX base installation media.

4.8.1 Syntax
The syntax of the prof command is as follows:
 Chapter 4. CPU performance tools 261

prof [-t | -c | -a | -n] [-o | -x] [-g] [-z] [-h] [-s]
[-S] [-v][-L PathName] [Program] [-m MonitorData ...]

Flags
The mutually exclusive flags -a, -c, -n, and -t determine how the prof command
sorts the output lines:

-a Sorts by increasing symbol address

-c Sorts by decreasing number of calls

-n Sorts lexically by symbol name

-t Sorts by decreasing percentage of total time (default)

The mutually exclusive flags o and x specify how to display the address of each
symbol monitored.

-o Displays each address in octal, along with the symbol name

-x Displays each address in hexadecimal, along with the symbol
name

Use the following flags in any combination:

-g Includes non-global symbols (static functions).

-h Suppresses the heading normally displayed on the report. This
is useful if the report is to be processed further.

-L PathName Uses alternate path name for locating shared objects.

-m MonitorData Takes profiling data from MonitorData instead of mon.out.

-s Produces a summary file called mon.sum. This is useful when
more than one profile file is specified.

-S Displays a summary of monitoring parameters and statistics on
standard error.

Note: The prof command can still run successfully if you use more than one
of the flags -a, -c, -n, and -t in the same command. The prof command
accepts the first of these flags it encounters on the command line and ignores
the others.

Note: The prof command can still run successfully if you use both the -o
and -x flags in the same command. The prof command accepts the first of
these two flags it encounters on the command line and ignores the other
one.
262 AIX 5L Performance Tools Handbook

-v Suppresses all printing and sends a graphic version of the
profile to standard output for display by the plot filters. When
plotting, low and high numbers (by default zero and 100) can
be given to cause a selected percentage of the profile to be
plotted with accordingly higher resolution.

-z Includes all symbols in the profile range, even if associated
with zero calls and zero time.

Parameters
PathName Specifies the alternate path name for locating shared objects.

Refer to the -L flag.

Program The name of the object file name to profile.

MonitorData Takes profiling data from MonitorData instead of mon.out.

4.8.2 Information on measurement and sampling
prof reads the symbol table in the object file Program and correlates it with the
profile file (mon.out by default). The prof command displays, for each external
text symbol, the percentage of execution time spent between the address of that
symbol and the address of the next, the number of times that function was called,
and the average number of milliseconds per call.

To tally the number of calls to a function, you must have compiled the file using
the cc command with the -p flag. The -p flag causes the compiler to insert a call
to the mcount subroutine into the object code generated for each recompiled
function of your program. While the program runs, each time a parent calls a
child function the child calls the mcount subroutine to increment a distinct counter
for that parent-child pair. Programs not recompiled with the -p flag do not have
the mcount subroutine inserted and therefore keep no record of which function
called them.

The -p flag also arranges for the object file to include a special profiling startup
function that calls the monitor subroutine when the program begins and ends.
The call to the monitor subroutine when the program ends, actually writes the
mon.out file. Therefore, only programs that explicitly exit or return from the main
program cause the mon.out file to be produced.

Note: Symbols from C++ object files have their names demangled before they
are used.
 Chapter 4. CPU performance tools 263

The location and names of the objects loaded are stored in the mon.out file. If
you do not select any flags, prof will use these names. You must specify a
program or use the -L option to access other objects.

4.8.3 Examples
The examples in this section use the cwhet.c program that is shown in
“spmi_dude.c” on page 895.

The first step to create the following examples explaining prof, is to compile the
cwhet.c source into a binary using:

cc -o cwhet -p -lm cwhet.c

The -p flag of the cc compiler creates profiling support.

Then run cwhet:

cwhet

Running cwhet creates mon.out that prof will use for post processing in the
command below.

Run prof on the executable using:

prof -xg -s > cwhet.prof

The above command will create two files:

cwhet.prof The cwhet.prof file, as specified in the command line, is shown in
the example below.

mon.sum This is a summary report.

The cwhet.prof report
Example 4-28 shows the cwhet.prof file produced when running prof.

Example 4-28 The cwhet.prof report
cat cwhet.prof
Address Name Time Seconds Cumsecs #Calls msec/call

Note: Imported external routine calls, such as a call to a shared library routine,
have an intermediate call to local glink code that sets up the call to the actual
routine. If the timer clock goes off while running this code, time is charged to a
routine called routine.gl, where routine is the routine being called. For
example, if the timer goes off while in the glink code to call the printf
subroutine, time is charged to the printf.gl routine.
264 AIX 5L Performance Tools Handbook

1000085c .main 35.6 2.86 2.86 1 2860.
10001518 .__mcount 19.9 1.60 4.46
100005e0 .mod8 13.6 1.09 5.55 8990000 0.0001
10000548 .mod9 11.3 0.91 6.46 6160000 0.0001
10002800 .exp 4.6 0.37 6.83 930000 0.0004
10001ed8 .cos 3.9 0.31 7.14 1920000 0.0002
10002448 .log 3.6 0.29 7.43 930000 0.0003
10000680 .mod3 2.7 0.22 7.65 140000 0.0016
10002b30 .sqrt 2.0 0.16 7.81
10002198 .atan 1.9 0.15 7.96 640000 0.0002
10001c50 .sin 0.9 0.07 8.03 640000 0.0001
100007a0 .pout 0.0 0.00 8.03 10 0.0
d2c923e8 .__nl_langinfo_std 0.0 0.00 8.03 10 0.0
d2c9e008 .free 0.0 0.00 8.03 2 0.0
d2ca1fe8 .isatty 0.0 0.00 8.03 1 0.0
d2ca253c .__ioctl 0.0 0.00 8.03 1 0.0
d2ca29c0 .ioctl 0.0 0.00 8.03 1 0.0
d2ca4008 ._flsbuf 0.0 0.00 8.03 1 0.0
d2ca49c4 ._findbuf 0.0 0.00 8.03 1 0.0
d2ca4c10 ._xflsbuf 0.0 0.00 8.03 1 0.0
d2ca4e9c ._wrtchk 0.0 0.00 8.03 1 0.0
d2ca5348 .__flsbuf 0.0 0.00 8.03 1 0.0
d2cacacc .free_y 0.0 0.00 8.03 2 0.0
d2cae14c .exit 0.0 0.00 8.03 1 0.0
d2caf7d4 .monitor 0.0 0.00 8.03 1 0.0
d2cb0684 .moncontrol 0.0 0.00 8.03 1 0.0
d2cb1714 .catopen 0.0 0.00 8.03 1 0.0
d2cb4064 .setlocale 0.0 0.00 8.03 1 0.0
d2cb781c .printf 0.0 0.00 8.03 10 0.0
d2cb7bb0 ._doprnt 0.0 0.00 8.03 10 0.0
d2cbf138 .nl_langinfo 0.0 0.00 8.03 10 0.0
d2cc0208 .mf2x2 0.0 0.00 8.03 40 0.0
d2cca2bc .getenv 0.0 0.00 8.03 1 0.0

In the above example, we can see that most of the calls are to the .mod9 and
.mod9 routines. To increase performance, you could look at the .mod9 and .mod9
routines to see if they could be rewritten more efficiently.

The following columns are reported:

Address The virtual address where the function is located.

Name The name of the function

Time The percentage of the total running time of the time program
used by this function.

Seconds The number of seconds accounted for by this function alone.
 Chapter 4. CPU performance tools 265

Cumsecs A running sum of the number of seconds accounted for by this
function.

#Calls The number of times this function was invoked, if this function is
profiled.

msec/call The average number of milliseconds spent in this function and
its descendents per call, if this function is profiled.

4.9 renice
The renice command is used to change the nice value of one or more processes
that are running on a system. The renice command can also change the nice
values of a specific process group.

The renice command resides in /usr/bin and is part of the bos.rte.control fileset,
which is installed by default from the AIX base installation media.

4.9.1 Syntax
The syntax of the renice command is as follows:

renice [-n Increment] [-g | -p | -u] ID ...

Flags
-g Interprets all IDs as unsigned decimal integer process group

IDs.

-n Increment Specifies the number to add to the nice value of the process.
The value of Increment can only be a decimal integer from -20
to 20. Positive increment values degrade priority. Negative
increment values require appropriate privileges and improve
priority.

-p Interprets all IDs as unsigned integer process IDs. The -p flag
is the default if you specify no other flags.

-u Interprets all IDs as user name or numerical user IDs.

Parameters
ID Where the -p option is used, this will be the value of the

process identification number (PID). In the case where the -g
flag is used, the value of ID will be the process group
identification number (PGID). Lastly, where the -u flag is used,
this value denotes the user identification number (UID).
266 AIX 5L Performance Tools Handbook

Alternately, when using the -u flag, the user’s name can also
be used as the argument.

Increment A decimal integer in the range of -1 to -20 is used to improve
the priority of a command. A decimal integer in the range of 0
(zero) to 20 is used to degrade the priority of a command.

4.9.2 Information on measurement and sampling
The priority of a thread that is currently running on the system can be changed by
using the renice command to change the nice value for the process that
contains the thread. The nice value can be displayed by using the ps command’s
-l flag. See Example 4-29 on page 267 for a detailed output of the ps -l
command. Any user can use the renice command on any of that user’s running
processes to decrease the nice value. A user with root authority can increase or
decrease the nice value of any process.

For detailed information on how thread priorities are calculated on AIX refer to
Section 1.1.3, “Process and thread priorities” on page 3.

4.9.3 Examples
The following examples show the use of the -n Increment flag used by a user
with root authority.

By running ps -l it can be seen that the thread with PID 18220 (sleep) is
initially running with a nice value of 24 (Example 4-29). This is a typical value for
a thread spawned from the korn shell that is running in the background.

Example 4-29 The effect of the nice value on priority
ps -lu fred
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 240001 A 207 17328 19766 0 67 20 d2fe 1016 70023a44 pts/7 0:00 ksh
 200001 A 207 18220 17328 0 68 24 f31b 236 30bf65d8 pts/7 0:00 sleep

In the next step, the renice command is used to increase the nice value of the
process by 10 and therefore degrade its priority (Example 4-30).

Example 4-30 Degrading a thread’s priority using renice

renice -n 10 -p 18220
ps -lu fred
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 240001 A 207 17328 19766 0 67 20 d2fe 1016 70023a44 pts/7 0:00 ksh
 200001 A 207 18220 17328 0 88 34 f31b 236 30bf65d8 pts/7 0:00 sleep
 Chapter 4. CPU performance tools 267

After this, the nice value is displayed as 34. The root user then invokes the
renice command again using an increment value of -20 (Example 4-31).

Example 4-31 Improving a thread‘s priority using renice

renice -n -20 -p 18220
ps -lu fred
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 240001 A 207 17328 19766 0 67 20 d2fe 1016 70023a44 pts/7 0:00 ksh
 200001 A 207 18220 17328 0 54 14 f31b 236 30bf65d8 pts/7 0:00 sleep

The result is that the nice value for this thread now decreases to 14 and the
priority of the thread improves.

Refer to Section 1.1.3, “Process and thread priorities” on page 3 for detailed
information on calculating a thread’s priority.

4.10 time
The time command reports the real time, the user time, and the system time
taken to execute a command. The output of the time command is sent to
standard error. This time command can be useful for determining the length of
time a command takes to execute. To use this tool effectively, it is necessary to
have a second report generated on the system for comparison. It is also
important to take into consideration the workload on the system at the time the
command is run.

The time command resides in /usr/bin and is part of the bos.rte.misc_cmds
fileset, which is installed by default from the AIX base installation media.

4.10.1 Syntax
The syntax of the time command is as follows:

/usr/bin/time [-p] Command [Argument ...]

Attention: The time command mentioned here is found in /usr/bin. If the time
command is executed without the pathname, then the shell’s own time
command will be executed.
268 AIX 5L Performance Tools Handbook

Flags
-p Writes the timing output to standard error. Seconds are

expressed as a floating-point number with at least one
digit following the radix character.

Parameters
Command The command that will be timed by the time command.

Argument The arguments of the command that will be timed by the
time command.

4.10.2 Information on measurement and sampling
The time command simply counts the CPU ticks from when the command that
was entered as an argument is started until that command completes.

4.10.3 Examples
In Example 4-32 the time command is used to determine the length of time to
calculate 9999999.

Example 4-32 Using the time command to determine the duration of a calculation
/usr/bin/time bc <<! >/dev/null
> 999^9999
> !
real 0m27.55s
user 0m27.24s
sys 0m0.28s

The result shows that the CPU took 27.55 seconds of real time to calculate the
answer. The output of the command has purposely been redirected to /dev/null
so that the answer to the calculation is not displayed. The time values are
displayed because the time command forces its output to standard error, which
is the screen display. The time results are split into 0.28 seconds of system time
and 27.24 seconds of user time.

System time This is the time that the CPU spent in kernel mode.

User time This is the time the CPU spent in user mode.

Real time This is the elapsed time.
 Chapter 4. CPU performance tools 269

On symmetrical multiprocessor (SMP) systems, the real time reported can be
less than the sum of the user and system times. The reason that this can occur is
that the process threads can be executed over multiple CPUs. The user time
displayed by the time command in this case is derived from the sum of all the
CPU user times. In the same way, the system time as displayed by the time
command is derived from the sum of all the CPU system times.

4.11 timex
The timex command reports the real time, user time, and system time to execute
a command. Additionally, the timex command has the capability of reporting
various statistics for the command being executed. The timex command can
output the same information that can be obtained from the sar command by
using the -s flag. The output of the timex command is sent to standard error.

The timex command resides in /usr/bin and is part of the bos.acct fileset, which
is installable from the AIX base installation media.

4.11.1 Syntax
The syntax of the timex command is as follows:

timex [-o] [-p] [-s] Command

Flags
-o Reports the total number of blocks read or written, and total

characters.

-p Lists process accounting records for a command and all its
children. The number of blocks read or written and the number of
characters transferred are reported. The -p flag takes the f, h, k,
m, r, and t arguments defined in the acctcom command to modify
other data items.

-s Reports total system activity during the execution of the
command. All the data items listed in the sar command are
reported.

Parameters
Command The command that the timex command will time and determine

process statistics for.
270 AIX 5L Performance Tools Handbook

4.11.2 Information on measurement and sampling
The timex -s command uses the sar command to acquire additional statistics.
The output of the timex command, when used with the -s flag, produces a report
similar to the output obtained from the sar command with various flags. For
further information, please refer to Section 3.7, “sar” on page 120. Because the
sar command is intrusive, the timex -s command is also intrusive. The data
reported by the timex -s command may not precisely reflect the behavior of a
program in an unmonitored system. Using the time or timex commands to
measure the user or system time of a string of commands, connected by pipes,
entered on the command line is not recommended. A potential problem is that
syntax oversights can cause the time or timex commands to measure only one
of the commands and no error will be indicated. The syntax is technically correct,
however the time or timex command may not measure the entire command.

4.11.3 Examples
Example 4-33 shows the format of the timex -s command.

Example 4-33 The timex command showing the sar like output with the -s flag

timex -s bc <<! >/dev/null
> 999^9999
> !

real 27.33
user 27.20
sys 0.12

AIX wlmhost 1 5 000BC6AD4C00 05/07/01

08:12:44 %usr %sys %wio %idle
08:13:11 23 0 0 76

08:12:44 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
08:13:11 0 0 0 0 0 0 0 0

08:12:44 slots cycle/s fault/s odio/s
08:13:11 241210 0.00 10.52 0.00

08:12:44 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s
08:13:11 0 0 0 0 0 0

08:12:44 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
08:13:11 1786 77 960 0.09 0.13 265227 1048
 Chapter 4. CPU performance tools 271

08:12:44 cswch/s
08:13:11 280

08:12:44 iget/s lookuppn/s dirblk/s
08:13:11 0 8 0

08:12:44 runq-sz %runocc swpq-sz %swpocc
08:13:11 1.0 100

08:12:44 proc-sz inod-sz file-sz thrd-sz
08:13:11 90/262144 473/42034 655/853 166/524288

08:12:44 msg/s sema/s
08:13:11 0.00 0.00

The following fields hold the information that sar displays when used with the -a
flag. This information pertains to the use of file system access routines:

dirblk/s Number of 512-byte blocks read by the
directory search routine to locate a directory
entry for a specific file.

iget/s Calls to any of several inode lookup routines
that support multiple file system types. The
iget routines return a pointer to the inode
structure of a file or device.

lookuppn/s Calls to the directory search routine that finds
the address of a vnode given a path name.

The following fields from the timex -s report show the sar -b equivalent
information. The information pertains to buffer activity for transfers, access and
caching:

bread/s, bwrit/s Reports the number of block I/O operations.
These I/Os are generally performed by the
kernel to manage the block buffer cache area,
as discussed in the description of the lread/s
value.

lread/s, lwrit/s Reports the number of logical I/O requests.
When a logical read or write to a block device
is performed, a logical transfer size of less
than a full block size may be requested. The
system accesses the physical device units of
complete blocks and buffers these blocks in
272 AIX 5L Performance Tools Handbook

the kernel buffers that have been set aside for
this purpose (the block I/O cache area). This
cache area is managed by the kernel so that
multiple logical reads and writes to the block
device can access previously buffered data
from the cache and require no real I/O to the
device. Application read and write requests to
the block device are reported statistically as
logical reads and writes. The block I/O
performed by the kernel to the block device in
management of the cache area is reported as
block reads and block writes.

pread/s, pwrit/s Reports the number of I/O operations on raw
devices. Requested I/O to raw character
devices is not buffered, as it is for block
devices. The I/O is performed to the device
directly.

%rcache, %wcache Reports caching effectiveness (cache hit
percentage). This percentage is calculated as:
[100x(lreads - breads)/ lreads].

The following fields displayed by timex -s command are the equivalent to the
sar -c command. The information is not processor specific:

exec/s, fork/s Reports the total number of fork and exec
system calls.

sread/s, swrit/s Reports the total number of read/write system
calls.

rchar/s, wchar/s Reports the total number of characters
transferred by read/write system calls.

scall/s Reports the total number of system calls.

The following fields of the timex -s command show the same information as the
sar -m command. The fields show the message and semaphore information for
the process:

msg/s Reports the number of IPC message
primitives.

sema/s Reports the number of IPC semaphore
primitives.

The following fields are the timex -s commands equivalent to the sar -q output.
The queue statistics for the process are displayed:
 Chapter 4. CPU performance tools 273

runq-sz Reports the average number of kernel threads
in the run queue.

%runocc Reports the percentage of the time the run
queue is occupied.

swpq-sz Reports the average number of kernel threads
waiting to be paged in.

%swpocc Reports the percentage of the time the swap
queue is occupied.

The following timex -s output fields show paging statistics. The output is similar
to that from the sar -r command. However, information displayed is for the
process executed as the timex -s argument:

cycle/s Reports the number of page replacement
cycles per second.

fault/s Reports the number of page faults per second.
This is not a count of page faults that generate
I/O because some page faults can be resolved
without I/O.

slots Reports the number of free pages on the
paging spaces.

odio/s Reports the number of non paging disk I/Os
per second.

The following fields of the timex -s command are the process equivalent of the
sar -u command. The fields display CPU usage:

%usr Reports the percentage of time the CPU or
CPUs spent in execution at the user (or
application) level.

%sys Reports the percentage of time the CPU or
CPUs spent in execution at the system (or
kernel) level.

%wio Reports the percentage of time the CPU(s)
was idle while the system had outstanding
disk/NFS I/O requests.

%idle Reports the percentage of time the CPU or
CPUs were idle with no outstanding disk I/O
requests.

The following fields show the status of the kernel process, kernel thread, inode,
and file tables. This output from the timex command is the equivalent of the sar
-v command except that the timex output is process specific:
274 AIX 5L Performance Tools Handbook

file-sz, inod-sz, proc-sz , thrd-sz Reports the number of entries in use for each
table.

The following timex -s field shows the system switch activity and is the process
equivalent of the sar -w command:

pswch/s Reports the number of context switches per
second.

The following fields of the timex -s command are the process equivalent of the
sar - y command. The fields show tty device activity per second for the process:

canch/s Reports tty canonical input queue characters.
This field is always 0 (zero) for AIX Version 4
and later versions.

mdmin/s Reports tty modem interrupts.

outch/s Reports tty output queue characters.

rawch/s Reports tty input queue characters.

revin/s Reports tty receive interrupts.

xmtin/s Reports tty transmit interrupts.

4.12 tprof
The tprof command is a profiling tool that can be used to profile the whole
system or a single application. No source code and no recompiling or relinking of
the application is necessary to profile it except for micro profiling, which requires
the application source to be recompiled using the compiler’s -g flag. Profiling at
the source code line level is called micro profiling. The reports generated by
tprof can be used to find the most used subroutines in the system or in an
application.

tprof resides in /usr/bin and is part of the bos.perf.tools fileset, which is
installable from the AIX base installation media.

4.12.1 Syntax
The syntax of the tprof command is as follows:

tprof [-m] [-v] { -k [-e] | -s | -j Java Class | -p Program |
-t Process_ID | [-x Command] | [-i Trace_File
[-n Gennames_File] [-C { all | List }]]}
 Chapter 4. CPU performance tools 275

Flags
-C all | List Creates per CPU reports and a cumulative report if the

trace daemon was also executed with the -C flag.
Multi-CPU trace file processing is only available in offline
mode. CPU numbers should be separated with a comma
if you give a list (for example, 0,1,2).
The -C flag must be given in conjunction with the -i and
-n flag.

-e Profiles the kernel extension if kernel profiling, using the
-k flag, is specified.
If the -m flag is used in conjunction with the -e flag, then
micro profiling on the kernel extension is performed.

-i Trace_File Input trace file for offline processing.
The -i and -x flags may not be specified at the same
time.

-k Profiles the kernel.

-m Enables micro profiling.
To perform micro profiling, the program needs to be
compiled with the -g flag and the source files must be in
the current directory. Java applications will not be micro
profiled.

-j Java Class Profiles the specified Java Class.

-n Gennames_File Specifies a Gennames_File to be used in conjunction with
the -i flag.
Do not specify a Gennames_File with the -n flag without
providing a trace input file with the -i flag. Refer to
Section 8.5, “gennames” on page 644 for more
information on the gennames command.

-p Program Profiles the user program.
If the -m flag is used in conjunction with -p flag, then micro
profiling on the user program is performed. The -j and -p
flags are mutually exclusive.

-s Profiles shared libraries.
If the -m flag is used in conjunction with -s flag, then micro
profiling on the shared libraries is performed.

-t Process_Id Profiles the process whose process ID matches the
specified Process_Id.

-v Specifies verbose mode. If micro profiling of shared
libraries or kernel extensions is enabled, the -v flag
produces a warning message if the executable or object
276 AIX 5L Performance Tools Handbook

file is not compiled with -g flag, or if tprof is not able to
read the executable or object file.

-x Command Allows the execution of an arbitrary Command. Profiling is
activated if one of the flags -s, -k or -p is specified.
If you do not enter a path with the specified command,
then the -x flag searches your PATH environment variable
to find the command because it uses the system() system
call to run the command. To guarantee that the correct
command runs, always specify the path to the command.
When the program name (-p flag) and the command
name (-x flag) are the same and do not have full or
relative paths specified, then the tprof command
automatically adds the path information by searching the
environment PATH variable.

The reports created by the tprof command are stored in the current directory. All
files generated by tprof are prefixed by __ (two underscores). The command rm
__* (two underscores and an asterisk) can be used to remove all files generated
by tprof if no other file in the directory starts with a file name is prefixed by __
(two underscores). It is advised to create a temporary directory and copy or link
the necessary files into it to run tprof without affecting the original files.
Following reports are generated by the tprof command:

� The summary report
This summary report is always produced. The file name ends with the suffix
.all. If a monitoring program monitor using the -p Program flag, this summary
report is named __prof.all. If the -p Program flag is specified, the summary
report is named __Program.all.
The summary report contains an estimate of the amount of CPU time spent in
the monitored program that was executing while the tprof command was
monitoring the system. This report also contains an estimate of the amount of
CPU time spent in each subprogram of the monitored program. The amount
of time the CPU was idle as well as the amount of time spent in the kernel is
also part of this summary report.

� __h.Program
If micro profiling is enabled, this file contains the hot profile for the monitored
program specified by the -p Program flag. It shows for each line of the
monitored program the number of time ticks spent.

� __t.Function.Program
If micro profiling is enabled, one file named __t.Function.Program for each
function of the monitored Program is created. These files contain for each
function the program source including the number of time ticks accumulated
for each line.
 Chapter 4. CPU performance tools 277

4.12.2 Information on measurement and sampling
In the AIX operating system, a decrementer interrupt is issued whenever a timer
expires on one of the processors. There is at least one timer per processor
active. The granularity of this timer is 10 milliseconds, and it is used to run a
housekeeping kernel routine. However, if high resolution timers are used, a
decrementer interrupt is issued each time a high resolution timer expires. This
will increase the number of decrementer interrupts per second. This results in
di/sec = (#CPUs * 100) + et Decrementer interrupts, with:

di/sec Decrementer interrupts per second

#CPU Number of processors

et Decrementer interrupts issued by expired high resolution
timers

The tprof command uses this decrementer interrupt to record the Process ID
(PID) and the address of the instruction executing when the interrupt occurs.
Using these data pairs (PID + Address), the tprof command can charge CPU
time to processes, threads, subroutines, and source code lines. Please refer to
Example 4-46 on page 298 for an example of the trace data used by tprof.
Source code line profiling is called micro profiling. Except for micro profiling, no
recompile or relink of the program to monitor is necessary.

The tprof command gathers a sample each time the decrementer interrupt is
issued. This may not be sufficiently accurate for short running programs.
However, the accuracy is sufficient for programs running several minutes or
longer.

The tprof command uses the AIX trace facility. Only one user can use the AIX
trace facility at a time. Thus, only one tprof command can be active in the
system at a time.

The tprof command can be used in offline mode. That means data collection
can be performed, and data processing can be done later on any AIX system.
The trace, gennames, and trcrpt commands are used to collect the necessary
data for tprof offline processing. Please refer to Example 4-35 on page 279 for
an example for tprof offline processing.
278 AIX 5L Performance Tools Handbook

4.12.3 Examples
Example 4-34 shows the usage of the tprof command to profile the system by
using tprof -k -s -e -x sleep 30 to create the summary report for the whole
system. This report includes profile information for kernel (-k), shared library
(-s), and kernel extensions (-e). The -x sleep 30 is used to control the sample
time of the tprof command, 30 seconds in this case.

Example 4-34 Running tprof to profile the system
root@DBServer:/home/root# tprof -k -s -e -x sleep 30
Starting Trace now
Thu May 24 18:41:15 2001
System: AIX DBServer Node: 5 Machine: 000BC6AD4C00
Starting sleep 30
Trace is done now
 * Samples from __trc_rpt2
 * Reached second section of __trc_rpt2
root@DBServer:/home/root#

The above example shows the screen output during the execution of the tprof
command, and shows that trace is started, followed by the sleep 30 command.
After the sleep command completed, the trace is stopped and the post
processing of the tprof command is performed. The result is the file __prof.all in
the current directory.

To perform the same profiling as in Example 4-34 on page 279, but to use offline
processing, a trace collecting data on the trace hook 234 needs to be running.
Then the program to profile runs; the sleep 30 command in our case. The trace
is stopped after the program completes, gennames is used to gather the
necessary name to address mapping information for offline processing, the trace
is stopped, and the raw trace data is formatted. Example 4-35 shows a shell
script that performs all the necessary steps.

Example 4-35 Gather the data to run tprof in off-line mode
#!/usr/bin/ksh
trace -af -T 10000000 -L 10000000 -o trace.out -J tprof
sleep 30
trcoff
gennames >gennames.out
trcstop
trcrpt -r trace.out > trace.rpt
 Chapter 4. CPU performance tools 279

The files needed for the tprof command to perform the offline processing are
gennames.out and trace.rpt. These files can be transferred to another system
for processing, or can be used to run tprof at a later time on the local system. To
process the data offline to get the same report as in Example 4-34 on page 279,
use the command:

tprof -i trace.rpt -n gennames.out -k -s -e

The resulting file __prof.all will be placed in the current directory.

The summary report
The summary report is always created by the tprof command. This report may
contain detailed information on time ticks accumulated in kernel routines (-k),
kernel extension (-e), and shared libraries (-s). All parts of a full summary report
are shown and discussed in the following examples.

The first part of the summary report is always created and contains the process
summary report. Example 4-36 shows the process summary from the file
__prof.all.

Example 4-36 The process summary in the __prof.all file

 Process PID TID Total Kernel User Shared Other
 ======= === === ===== ====== ==== ====== =====
 eatbig 19128 33557 3461 207 3254 0 0
 eatbig 18418 32437 3322 182 3140 0 0
 eatbig 18894 28671 3266 197 3069 0 0
 lrud 1548 1549 1784 1784 0 0 0
 wait 516 517 952 952 0 0 0
 blacknt 23746 34131 541 507 7 27 0
 wait 1290 1291 340 340 0 0 0
 topas 17070 25815 41 26 0 15 0
 seen+done 18584 32777 18 17 0 1 0
 seen+done 17580 30199 17 17 0 0 0
 seen+done 20390 28397 15 14 1 0 0
 seen+done 21682 34579 15 15 0 0 0
 seen+done 19916 33033 13 13 0 0 0
 seen+done 5060 29065 12 12 0 0 0
 seen+done 21992 32539 11 11 0 0 0

 (... lines omitted ...)

 ksh 17290 28901 1 1 0 0 0
 ksh 23746 34131 1 1 0 0 0
 sleep 20692 34869 1 1 0 0 0
 ======= === === ===== ====== ==== ====== =====
 Total 13907 4368 9479 60 0
280 AIX 5L Performance Tools Handbook

 Process FREQ Total Kernel User Shared Other
 ======= === ===== ====== ==== ====== =====
 eatbig 3 10049 586 9463 0 0
 lrud 1 1784 1784 0 0 0
 wait 3 1295 1295 0 0 0
 blacknt 1 541 507 7 27 0
 seen+done 9 117 115 1 1 0

 (... lines omitted ...)

 sleep 1 1 1 0 0 0
 ======= === ===== ====== ==== ====== =====
 Total 40 13907 4368 9479 60 0

 Total System Ticks: 13907 (used to calculate function level CPU)

The above example output of the tprof command has three parts. These parts
are:

� The first part shows the threads sorted by the total time ticks accumulated.
The column labels are:

Process The name of the process.

PID The process ID of the process.

TID The thread ID of the thread.

Total The total number of time ticks accumulated by the
thread.

Kernel The number of time ticks accumulated by the thread
while in system (kernel + kernel extensions) mode.

User The number of time ticks accumulated by the thread
while in user mode.

Shared The number of time ticks accumulated by the thread
while executing shared library code.

Other The number of time ticks spend which cannot be
accumulated to Kernel, User, or Shared.

� A summary accumulated by process name sorted by the total accumulated
time ticks. There are three processes named eatbig in the first part of the
output. The number of total time ticks for them in column Total is 3461 + 3322
 Chapter 4. CPU performance tools 281

+ 3266 = 10049, which is shown in this part of the process summary report.
The column labels are:

Process The name of the process.

FREQ The number of times this process ran on the system,
accumulating time ticks. For example, there are nine
processes named seen+done, which accumulated time
ticks during the tprof command was running.

Total The total number of time ticks accumulated by all
processes with that process name.

Kernel The total number of time ticks accumulated in system
(kernel + kernel extension) mode by all processes with
that process name.

User The total number of time ticks accumulated in user
mode by all processes with that process name.

Shared The total number of time ticks accumulated executing
shared library code by all processes with that process
name.

Other The total number of time ticks accumulated that
cannot be linked to Kernel, User, or Shared by all
processes with that process name.

� The number of total time ticks recorded during the run, 13907 in this example.

There are three wait processes that accumulated time ticks. They used a total of
1295 time ticks. This is1295 / 13907 * 100 = 9.31 percent of the total time ticks.
This indicates that only 9.31 percent of the CPU resource was unused in this
system during the measurement interval of tprof.

Example 4-37 shows the time ticks accumulated for the kernel routines from the
file __prof.all.

Example 4-37 Accumulated time ticks in kernel routines
Total Ticks For All Processes (KERNEL) = 4193

 Subroutine Ticks % Source Address Bytes
 ============= ===== ==== ======== ======== ======
 .addrepage 1559 11.2 v_putsubs.c b1120 244
 .waitproc_find_run_queue 946 6.8 dispatch.c 25c88 210
 .slock_ppc 363 2.6 simple_lock.c 1df990 354
(... lines omitted ...)
282 AIX 5L Performance Tools Handbook

In the above example the full path names for the source file name is removed to
fit the output on the page. However, this part of the output is useful to detect
where in the kernel the most time is spent. The columns are:

Subroutine The name of the kernel subroutine.

Ticks The time ticks accumulated to the kernel subroutine.

% The time ticks accumulated to the kernel subroutine in
percent to the total number of ticks accumulated (13907).

Source The name of the source file of the kernel subroutine.

Address The address of the kernel subroutine.

Bytes The size of the kernel subroutine.

There are 1559 time ticks, or 11.2% of the total time ticks, accumulated on kernel
subroutine .addrepage. Without any information on the kernel internals and the
source, it is hard to tell what the function of subroutine .addrepage is. However,
the information about the time ticks accumulated to kernel subroutines is very
useful for AIX support personnel and development for detecting performance
problems.

Example 4-38 shows the time ticks accumulated for the kernel extensions and
the time ticks accumulated in the kernel extensions subroutines from the file
__prof.all.

Example 4-38 Accumulated time ticks in kernel extensions

 Total Ticks For All Processes (KEX) = 175

 Kernel Ext Ticks % Address Bytes
 ============= ===== ==== ======== ======
 /usr/lib/drivers/pci/s_scsiddpin 57 0.4 197a080 16884
 /etc/drivers/scdiskpin 47 0.3 1997d00 ae08
 /etc/drivers/hd_pin_bot 46 0.3 19bd360 2c888
 /usr/lib/drivers/pci/pci_busdd 10 0.1 19621e0 c2b8
 /usr/lib/drivers/netinet 6 0.0 570a000 14afe4
 /usr/lib/drivers/pci/cstokdd 4 0.0 1a80a20 188bc
 /usr/lib/drivers/tok_demux 2 0.0 1a99300 2e98
 /usr/lib/drivers/smt_load 2 0.0 1b1ff00 4800
 /usr/lib/drivers/ptydd 1 0.0 1ade8e0 d9b8

 Profile: /usr/lib/drivers/pci/s_scsiddpin

 Total Ticks For All Processes (/usr/lib/drivers/pci/s_scsiddpin) = 57

 Subroutine Ticks % Source Address Bytes
 ============= ===== ==== ======== ======== ======
 Chapter 4. CPU performance tools 283

 .ssc_issue_cmd 8 0.1 .__s_scsiddpin 1984118 3d0
 .ssc_intr 7 0.1 .__s_scsiddpin 19846a4 a60
 .ssc_free_iovec 6 0.0 .__s_scsiddpin 1985fcc 2dc
 .ssc_good_status 6 0.0 .__s_scsiddpin 19858d0 30c

 (... lines omitted ...)

The first part shows the time ticks accumulated in each kernel extension. The
columns are:

Kernel Ext The full path name of the kernel extension.

Ticks The accumulated time ticks for this kernel extension.

% The time ticks accumulated to the kernel extension in
percent to the total number of ticks accumulated (13907).

Address The address of the kernel extension.

Bytes The size of the kernel extension.

This summary section follows the detailed information showing the time ticks
accumulated in the subroutines of each kernel extension. The columns are:

Subroutine The name of the subroutine.

Ticks The accumulated time ticks for the subroutine.

% The time ticks accumulated to the kernel extension
subroutine in percent to the total number of ticks
accumulated (13907).

Source The source file name of the subroutine.

Address The address of the subroutine.

Bytes The size of the subroutine.

In the Example 4-38 on page 283 the kernel extension
/usr/lib/drivers/pci/s_scsiddpin accumulated 57 time ticks.

The next part of the __perf.all summary shows the accumulated time ticks in
shared library code. This output is similar to the output for the kernel extensions.
Please refer to Example 4-38 on page 283 for a detailed description of the
output.
284 AIX 5L Performance Tools Handbook

Profiling an application
The tprof command can be used to profile any application. No recompiling or
relinking of the application is necessary. A report similar to the summary report is
generated. However, this report shows only time ticks accumulated for the
application. The time ticks reported in kernel, kernel extensions, and shared
library code are only reported if they were recorded for the profiled application.

Example 4-39 shows the command used to run tprof to profile an application,
and the process summary report created.

Example 4-39 Process summary report for one application
tprof -k -s -e -p /usr/bin/dd -x /usr/bin/dd if=/dev/zero of=/dev/null bs=1024k count=1024

cat __dd.all

 Process PID TID Total Kernel User Shared Other
 ======= === === ===== ====== ==== ====== =====
 /usr/bin/dd 26858 39877 1653 1647 4 2 0
 /usr/bin/dd 25822 38607 13 13 0 0 0
 ======= === === ===== ====== ==== ====== =====
 Total 1666 1660 4 2 0

 Process FREQ Total Kernel User Shared Other
 ======= === ===== ====== ==== ====== =====
 /usr/bin/dd 2 1666 1660 4 2 0
 ======= === ===== ====== ==== ====== =====
 Total 2 1666 1660 4 2 0

 Total System Ticks: 6846 (used to calculate function level CPU)

 Total Ticks For /usr/bin/dd (USER) = 4

 Subroutine Ticks % Source Address Bytes
 ============= ===== ==== ======== ======== ======
 .setobuf 1 0.0 dd 269c 6c
 .flsh 1 0.0 dd 2f20 d0
 .wbuf 1 0.0 dd 2510 40
 .wpipe 1 0.0 dd 2034 b4

 Total Ticks For /usr/bin/dd (KERNEL) = 1651

 Subroutine Ticks % Source Address Bytes
 ============= ===== ==== ======== ======== ======
 .uiocopyout_ppc 1437 21.0 copyx_ppc.s 1d4720 2a0
 .uiomove 145 2.1 ../src/bos/kernel/ios/uio.c 64e98 438
 Chapter 4. CPU performance tools 285

 .mmread 22 0.3 ../src/bos/kernel/io/mem.c 4793c0 100
 .pcs_glue 5 0.1 vmvcs.s 3d998 c0
 .$PTRGL 4 0.1 ptrgl.s 1cebbc 30
 .e_block_thread 3 0.0 ../src/bos/kernel/proc/sleep2.c 425d8 548
 .jfs_setattr 3 0.0 ../src/bos/kernel/pfs/xix_sattr.c 4bc358 350
 .v_pfend 2 0.0 ../src/bos/kernel/vmm/v_pfend.c baa48 904
 .fifo_read 2 0.0 ../src/bos/kernel/specfs/fifo_vnops.c 4c69cc 334
 .e_sleep_thread 2 0.0 ../src/bos/kernel/proc/sleep2.c 43044 118
 .clock 2 0.0 ../src/bos/kernel/proc/clock.c 1bbcc 1fc
 .sc_ret64 2 0.0 low.s 3f6c 4fc
 .vno_rw 2 0.0 ../src/bos/kernel/lfs/vno_fops.c 469a94 84
 .kwakeup 2 0.0 ../src/bos/kernel/proc/sleep.c 438f0 1c0
 .v_zpage_ppc 2 0.0 zpage_ppc.s 1d3940 90
 ._v_ready 1 0.0 ../src/bos/kernel/proc/v_waitrdy.c 24f24 148
 .spec_rdwr 1 0.0 ../src/bos/kernel/specfs/spec_vnops.c 4c8488 10c
 .iodone 1 0.0 ../src/bos/kernel/ios/bio_pin.c 1eff8 1a0
 .wlm_bio_devstrat 1 0.0 ../src/bos/kernel/specfs/wlm_bio.c 77c1c 324
 .simple_unlock 1 0.0 low.s 9900 18
 .sys_call_ret 1 0.0 low.s 3ab8 200
 .ldata_free 1 0.0 ../src/bos/kernel/alloc/ldata.c d8f68 74
 .kread 1 0.0 ../src/bos/kernel/lfs/rdwr.c 40fdb4 14c
 .lfs_trace 1 0.0 ../src/bos/kernel/lfs/rdwr.c 41038c d4
 .imark 1 0.0 ../src/bos/kernel/pfs/isubs.c 41dc14 318
 .ufdrele 1 0.0 ../src/bos/kernel/lfs/fd.c 449c98 108
 .v_dpfget 1 0.0 ../src/bos/kernel/vmm/32/v_getsubs32.c e1020 2b4
 .v_copypage_ppc_splt 1 0.0 cpage_ppc_splt.s 1d3574 18c
 .wlm_mem_urap 1 0.0 ../src/bos/kernel/vmm/vmwlm.c 39c08 a0
 .sunlock_ppc 1 0.0 ../src/bos/kernel/proc/simple_lock.c 1df898 f8
 .fifo_write 1 0.0 ../src/bos/kernel/specfs/fifo_vnops.c 4c6d00 348

 Total Ticks For /usr/bin/dd (KEX) = 9

 Kernel Ext Ticks % Address Bytes
 ============= ===== ==== ======== ======
 /usr/lib/drivers/pci/s_scsiddpin 3 0.0 197a080 16884
 /usr/lib/drivers/pci/pci_busdd 2 0.0 19621e0 c2b8
 /usr/lib/drivers/netinet 2 0.0 570a000 14afe4
 /usr/lib/drivers/tok_demux 1 0.0 1a99300 2e98
 /etc/drivers/hd_pin_bot 1 0.0 19bd360 2c888

 Profile: /usr/lib/drivers/pci/s_scsiddpin

 Total Ticks For /usr/bin/dd (/usr/lib/drivers/pci/s_scsiddpin) = 3

 Subroutine Ticks % Source Address Bytes
 ============= ===== ==== ======== ======== ======
 .ssc_good_status 1 0.0 .__s_scsiddpin 19858d0 30c
 .ssc_intr 1 0.0 .__s_scsiddpin 19846a4 a60
286 AIX 5L Performance Tools Handbook

 .ssc_alloc_iovec 1 0.0 .__s_scsiddpin 198c304 288

 Profile: /usr/lib/drivers/pci/pci_busdd

 Total Ticks For /usr/bin/dd (/usr/lib/drivers/pci/pci_busdd) = 2

 Subroutine Ticks % Source Address Bytes
 ============= ===== ==== ======== ======== ======
 .d_map_list_pci 2 0.0 .__pci_busdd 196a288 5f8

 Profile: /usr/lib/drivers/netinet

 Total Ticks For /usr/bin/dd (/usr/lib/drivers/netinet) = 2

 Subroutine Ticks % Source Address Bytes
 ============= ===== ==== ======== ======== ======
 .ip_output_post_fw 1 0.0 .__netinet 5722670 15c4
 .in_cksum 1 0.0 .__netinet 571dc40 100

 Profile: /usr/lib/drivers/tok_demux

 Total Ticks For /usr/bin/dd (/usr/lib/drivers/tok_demux) = 1

 Subroutine Ticks % Source Address Bytes
 ============= ===== ==== ======== ======== ======
 .tok_receive 1 0.0 .__tok_demux 1a99dac 2bc

 Profile: /etc/drivers/hd_pin_bot

 Total Ticks For /usr/bin/dd (/etc/drivers/hd_pin_bot) = 1

 Subroutine Ticks % Source Address Bytes
 ============= ===== ==== ======== ======== ======
 .ldata_free 1 0.0 glink.s 19c7ab8 28

 Total Ticks For /usr/bin/dd (SH-LIBs) = 2

 Shared Object Ticks % Address Bytes
 ============= ===== ==== ======== ======
 /usr/lib/libc.a/shr.o 2 0.0 d01ba240 1d9d29

 Profile: /usr/lib/libc.a/shr.o

 Total Ticks For /usr/bin/dd (/usr/lib/libc.a/shr.o) = 2
 Chapter 4. CPU performance tools 287

 Subroutine Ticks % Source Address Bytes
 ============= ===== ==== ======== ======== ======
 .malloc_y 1 0.0 ../src/bos/usr/ccs/lib/libc/malloc_y.c 1d4910 710
 .write 1 0.0 ../src/bos/usr/ccs/lib/libc/write.c 1ce0f0 1c0

The dd command always forks a second dd process. Example 4-39 on page 285
shows these two processes. Using the total time ticks accumulated for the two dd
processes (1666) and the total time ticks counted during the execution of dd
(6846), the percentage of CPU used by dd can be calculated. The report shows
the time ticks accumulated in each function of dd. These functions are .setobuf,
.flsh, .wbuf, and .wpipe, and each of these functions accumulated one time
tick. The majority of work done by the dd command used kernel subroutines.
Most of the accumulated time ticks (1660) are for kernel subroutines. Please refer
to “The summary report” on page 280 for a detailed description of the kernel,
kernel extension, and shared library sections of the summary report.

The accumulated time ticks for the dd command in the kernel extensions
/usr/lib/drivers/netinet and /usr/lib/drivers/tok_demux are in this report
because the command ran in a telnet session and standard output of the dd
command had to leave the system over the token-ring adapter.

Profiling an application already running on the system
The tprof command can be used to profile an application already running on the
system by using the -t Process_id flag. This is very useful for taking snapshots
of long running applications, for example a database server process. The
following command can be used to profile an application for a given time:

tprof -k -s -e -t Process_ID -x sleep 30

The sleep 30 command sets the profiling duration, 30 seconds in this example.

Note: The source file names in the above example are changed to fit on the
page. Only the leading part of the file names, which was ../../../.., is removed.

Note: The executable file for the Process_id to profile has to be in the current
directory to enable tprof to accumulate time ticks against the functions in the
application. A symbolic link can be used to link the executable file into the
current directory.
288 AIX 5L Performance Tools Handbook

Please refer to “Profiling an application” on page 285 for detailed information on
the summary report gathered by tprof.

Micro profiling an application
The tprof command can also be used to profile applications to accumulate the
time ticks on the source line level. This is called micro profiling. The application
has to be compiled using the compiler’s -g flag and the application source files
need to be in the current directory. The following command can be used to micro
profile an application:

tprof -m -p Application -x Application Para1 Para2

The tprof summary report in this case is called __Application.all. Please refer to
“Profiling an application” on page 285 for details on the summary report. Micro
profiling an application creates a hot lines report in the __h.Application file and,
for each function of the application that accumulated time ticks, a
__t.functionname_Application file that shows the time ticks accumulated on each
source line.

Example 4-40 shows the hot lines report created by running micro profiling using
the tprof command.

Example 4-40 The hot lines report

 Hot Line Profile for ./hotshot.c

 Line Ticks

 124 126
 125 101
 194 88
 200 36
 193 33
 201 25
 142 17
 100 16

 (... lines omitted ...)

The above example shows the accumulated time ticks for each source code line,
sorted by time ticks. This report can be used to find the source code line
numbers in the source file ./hotshot.c where the most time was spent during
application execution.
 Chapter 4. CPU performance tools 289

Example 4-41 shows the source code for lines 123 to 125 from the report file
__t.main.hotshot.c generated by the tprof command.

Example 4-41 The source code profile

 Ticks Profile for main in ./hotshot.c

 Line Ticks Source

 (... lines omitted ...)

 123 - x = y = z = 1.0;
 124 126 for (i = 1; i <= n8; i++) {
 125 101 mod8(x, y, &z);

 (... lines omitted ...)

The hot lines and the source code profiles can be used to optimize the parts of
the source code that accumulated the most time ticks to improve the
performance of the application.

Using tprof to detect a resource bottleneck
In this example the main user application of a company is sem_app. It is used on
smaller Uni Processor (UP) systems with up to 100 users per system. However,
maintaining all these small systems is no longer possible and the decision is
made to replace all 20 UP server systems by one big Symmetrical
Multiprocessor (SMP) server. During the switch from the old UP server systems
to the new SMP server, which was done on a step by step base, the performance
on the new SMP server goes down as more users start to use it. With half the
users moved to the new SMP server the performance of the user application is
very slow.

The first steps to detect the problem is to run vmstat and iostat on the new SMP
server system to detect possible CPU or I/O bottlenecks. The iostat command
shows no bottleneck with disk I/O. In fact, most of the disks are idle. Only the
CPU usage with more than 80 percent reported in system (kernel) mode and less
than 10 percent in user mode, with a few percent CPU left in idle, gives a first
indication of the problem source. The system spends too much CPU time in
kernel subroutines. The output of the vmstat command in this situation is shown
in Example 4-42.

Example 4-42 Output of the vmstat command on CPU bound system
vmstat 1 10

kthr memory page faults cpu
290 AIX 5L Performance Tools Handbook

----- ----------- ------------------------ ------------ -----------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa

 (... lines omitted ...)

517 0 73041 67983 0 0 0 0 0 0 462 1728 76642 11 86 3 0
418 0 73043 67981 0 0 0 0 0 0 450 1377 79056 9 87 4 0
962 0 73045 67979 0 0 0 0 0 0 446 1399 91215 8 88 4 0
198 0 73047 67977 0 0 0 0 0 0 441 1493 78038 13 82 5 0

The CPU time spend in system (kernel) mode is above 80 percent. The number
of threads on the run queue is between 198 and 962. The number of context
switches is very high. However, with this number of threads on the run queue it is
not unusual to have some context switches.

The tprof command is used to determine the reason why the CPU time spent in
system mode gets this high and to answer the question: Which application is
causing this behavior?

The tprof -kes -x sleep 5 command is used to collect the process summary
for all processes. The data collected by tprof is shown in Example 4-43.

Example 4-43 Output of tprof on a CPU bound system
Process PID TID Total Kernel User Shared Other
 ======= === === ===== ====== ==== ====== =====
 tprof 547514 563769 91 19 58 14 0
 wait 516 517 41 41 0 0 0
 wait 774 775 37 37 0 0 0
 wait 1290 1291 36 36 0 0 0
 wait 1032 1033 32 32 0 0 0
 sem_app 430374 446371 7 3 4 0 0
 swapper 0 3 6 6 0 0 0
 sem_app 431406 447403 6 5 1 0 0
 sem_app 116366 132107 5 5 0 0 0
 sem_app 132106 148103 5 5 0 0 0
 sem_app 157390 173131 5 5 0 0 0
 sem_app 183966 199707 5 2 3 0 0

 (... lines omitted ...)

 sem_app 544928 560669 1 1 0 0 0
 sem_app 546476 562217 1 1 0 0 0
 PID.547774 547774 562481 1 1 0 0 0
 sleep 547774 562481 1 1 0 0 0
 ======= === === ===== ====== ==== ====== =====
 Total 2071 1944 112 15 0
 Chapter 4. CPU performance tools 291

 Process FREQ Total Kernel User Shared Other
 ======= === ===== ====== ==== ====== =====
 sem_app 1142 1798 1744 54 0 0
 wait 4 146 146 0 0 0
 tprof 1 91 19 58 14 0
 trclogio 1 22 22 0 0 0
 swapper 1 6 6 0 0 0
 gil 2 3 3 0 0 0
 aixterm 2 2 1 0 1 0
 wlmsched 1 1 1 0 0 0
 PID.547774 1 1 1 0 0 0
 sleep 1 1 1 0 0 0
 ======= === ===== ====== ==== ====== =====
 Total 1156 2071 1944 112 15 0

 Total System Ticks: 2071 (used to calculate function level CPU)

 Total Ticks For All Processes (KERNEL) = 1943

 Subroutine Ticks % Source Address Bytes
 ============= ===== ==== ======== ======== ======
 .slock_ppc 690 33.3 simple_lock.c 1df990 354
 .e_block_thread 505 24.4 sleep2.c 425d8 548
 .e_assert_wait 190 9.2 sleep2.c 42eb8 18c
 .sunlock_ppc 124 6.0 simple_lock.c 1df898 f8
 .waitproc_find_run_queue 91 4.4 dispatch.c 25c88 210
 .kwakeup 86 4.2 sleep.c 438f0 1c0
 .waitproc 55 2.7 dispatch.c 26b54 12c
 .compare_and_swap 31 1.5 low.s a4c0 100
 .disable_lock 30 1.4 low.s 9004 2fc
 .atomic 28 1.4 ipc/sem.c 465e64 8bc
 .my_csa 18 0.9 low.s b408 20
 .exbcopy_ppc 16 0.8 misc_ppc.s 1d2dc0 bc
 .e_sleep_thread 14 0.7 sleep2.c 43044 118
 .simple_unlock_mem 13 0.6 low.s 9918 1e8
 .simple_lock 12 0.6 low.s 9500 400
 .uiocopyout_ppc 8 0.4 copyx_ppc.s 1d4720 2a0

 (... lines omitted ...)
292 AIX 5L Performance Tools Handbook

There are 1142 user processes sem_app active on the system. These processes
account for the most time spent in system mode, which is 1744 time ticks out of
1944 time ticks. The kernel subroutines most used are from the systems lock
management functions. There is a subroutine named .atomic out of the source
file ipc/sem.c. The next steps are to find out if the application is using
semaphores, and if the application is using only a few semaphores, causing all
1142 processes to fight for these semaphores.

To show the relationship between the number of users running the application
sem_app and the CPU usage, a monitoring script that runs every 5 minutes
counts the number of user processes named sem_app, runs the sar command for
a short time, and stores this data into a file is installed on the system. To start
with a clean system, the system is rebooted. The used script to collect the data is
shown in Example 4-44.

Example 4-44 Script to monitor CPU bound system
#!/usr/bin/ksh

OUTFILE=/var/adm/ras/server.load
TIME=300

while true
do
 date >>$OUTFILE
 UPROC=`ps -ef|grep sem_app|wc -l`
 echo "$UPROC sem_app processes in process table" >>$OUTFILE
 sar -quw 1 3 >>$OUTFILE
 echo "===" >>$OUTFILE
 sleep $TIME
done

The following (Example 4-45) is an extract of the data collected by the monitoring
script.

Example 4-45 Output of the monitoring script

(... lines omitted ...)

Mon May 21 7:15:07 CDT 2001
 8 sem_app processes in process table

AIX wlmhost 1 5 000BC6AD4C00 05/21/01

07:15:08 runq-sz %runocc swpq-sz %swpocc
 %usr %sys %wio %idle
 cswch/s

07:15:09 9.0 100
 Chapter 4. CPU performance tools 293

 53 4 0 43
 5672

07:15:10 3.0 100
 57 4 0 39
 5631

07:15:11 9.0 100
 61 2 0 37
 5642

Average 7.0 94
Average 57 3 0 40
Average 5648

(... lines omitted ...)

Mon May 21 7:35:25 CDT 2001
 17 sem_app processes in process table

AIX wlmhost 1 5 000BC6AD4C00 05/21/01

07:35:29 runq-sz %runocc swpq-sz %swpocc
 %usr %sys %wio %idle
 cswch/s

07:35:30 17.0 100
 49 9 0 42
 11052

07:35:31 17.0 100
 49 7 0 44
 11047

07:35:32 17.0 100
 48 7 0 45
 11090

Average 17.0 94
Average 49 8 0 44
Average 11063

 (... lines omitted ...)

Mon May 21 7:55:59 CDT 2001
 34 sem_app processes in process table
294 AIX 5L Performance Tools Handbook

AIX wlmhost 1 5 000BC6AD4C00 05/21/01

07:56:02 runq-sz %runocc swpq-sz %swpocc
 %usr %sys %wio %idle
 cswch/s

07:56:03 9.0 100
 54 15 0 30
 19753

07:56:04 22.0 100
 54 14 0 32
 19761

07:56:05 32.0 100
 56 15 0 29
 19636

Average 21.0 94
Average 55 15 0 30
Average 19717

(... lines omitted ...)

Mon May 21 8:15:45 CDT 2001
 67 sem_app processes in process table

AIX wlmhost 1 5 000BC6AD4C00 05/21/01

08:15:49 runq-sz %runocc swpq-sz %swpocc
 %usr %sys %wio %idle
 cswch/s

08:15:50 31.0 100
 49 40 0 11
 45493

08:15:51 89.0 100
 52 34 0 14
 45075

08:15:52 80.0 100
 54 36 0 10
 46057

Average 66.7 94
Average 52 37 0 12
 Chapter 4. CPU performance tools 295

Average 45540

 (... lines omitted ...)

Mon May 21 8:30:13 CDT 2001
 123 sem_app processes in process table

AIX wlmhost 1 5 000BC6AD4C00 05/21/01

08:30:16 runq-sz %runocc swpq-sz %swpocc
 %usr %sys %wio %idle
 cswch/s

08:30:17 115.0 100
 53 44 0 3
 53857

08:30:18 86.0 100
 55 41 0 4
 53593

08:30:19 122.0 100
 50 45 0 5
 54206

Average 107.7 94
Average 52 43 0 4
Average 53886

 (... lines omitted ...)

Mon May 21 8:45:21 CDT 2001
 263 sem_app processes in process table

AIX wlmhost 1 5 000BC6AD4C00 05/21/01

08:45:24 runq-sz %runocc swpq-sz %swpocc
 %usr %sys %wio %idle
 cswch/s

08:45:25 172.0 100
 45 51 0 3
 63418

08:45:26 249.0 100
 46 50 0 4
 63738
296 AIX 5L Performance Tools Handbook

08:45:27 119.0 100
 45 52 0 3
 64341

Average 180.0 93
Average 46 51 0 3
Average 63832

 (... lines omitted ...)

Mon May 21 9:00:23 CDT 2001
 499 sem_app processes in process table

AIX wlmhost 1 5 000BC6AD4C00 05/21/01

09:00:27 runq-sz %runocc swpq-sz %swpocc
 %usr %sys %wio %idle
 cswch/s

09:00:28 307.0 100
 35 64 0 1
 68880

09:00:29 262.0 100
 35 64 0 1
 66714

09:00:30 278.0 100
 31 67 0 1
 67414

Average 282.3 93
Average 34 65 0 1
Average 67664

 (... lines omitted ...)

Mon May 21 9:26:33 CDT 2001
 976 sem_app processes in process table

AIX wlmhost 1 5 000BC6AD4C00 05/21/01

09:26:37 runq-sz %runocc swpq-sz %swpocc
 %usr %sys %wio %idle
 cswch/s

09:26:38 347.0 100
 Chapter 4. CPU performance tools 297

 9 87 0 5
 76772

09:26:39 436.0 100
 7 89 0 4
 74820

09:26:40 635.0 100
 10 87 0 3
 76949

Average 472.7 92
Average 8 88 0 4
Average 76194

 (... lines omitted ...)

The above output shows that CPU time spent in system mode increases the
more sem_app user applications are running. At around 500 user processes the
CPU time spent in system mode is 65 percent and the time spent in user mode is
down to 34 percent. Even more dramatic are the values with close to 1000 user
processes running on the system. Only 8 percent CPU time is spent in user
mode, but 88 percent CPU time is spent in system mode.

The application supplier is contacted and the above turned out to be true. The
application does a fork() and the parent and child processes are using a
semaphore to synchronize with each other. However, the key used for the
semget() subroutine is a hard coded positive number that causes all sem_app
programs to access the same system wide semaphore. A change in the program
source to use the key IPC_PRIVATE solved the problem.

Trace hook 234 used by tprof
Example 4-46 shows how tprof used the trace hook 234 to gather the necessary
data.

Example 4-46 Trace data used by tprof

Mon Jun 4 15:16:22 2001
System: AIX datahost Node: 5
Machine: 000BC6AD4C00
Internet Address: 010301A4 1.3.1.164
The system contains 4 cpus, of which 4 were traced.
Buffering: Kernel Heap
This is from a 32-bit kernel.
Tracing all hooks.
298 AIX 5L Performance Tools Handbook

/usr/bin/trace -a -C all

ID PROCESS CPU PID TID ELAPSED KERNEL INTERRUPT

 (... lines omitted ...)

100 wait 3 1290 1291 0.002359 DECREMENTER INTERRUPT iar=25C88 cpuid=03
234 wait 3 1290 1291 0.002364 clock: iar=25C88 lr=26BF0
100 wait 3 1290 1291 0.002879 DECREMENTER INTERRUPT iar=25CAC cpuid=03
234 wait 3 1290 1291 0.002880 clock: iar=25CAC lr=26BF0 [516 usec]
100 wait 0 516 517 0.004866 DECREMENTER INTERRUPT iar=26BA8 cpuid=00
234 wait 0 516 517 0.004868 clock: iar=26BA8 lr=26BF0 [1988 usec]
100 wait 1 774 775 0.007352 DECREMENTER INTERRUPT iar=26BCC cpuid=01
234 wait 1 774 775 0.007355 clock: iar=26BCC lr=26BF0 [2486 usec]
100 ksh 2 4778 34509 0.009856 DECREMENTER INTERRUPT iar=22C5C cpuid=02
234 ksh 2 4778 34509 0.009860 clock: iar=22C5C lr=22BB0 [2505 usec]

 (... lines omitted ...)

100 ksh 3 13360 42871 0.012359 DECREMENTER INTERRUPT iar=D01D4260 cpuid=03
234 ksh 3 13360 42871 0.012361 clock: iar=D01D4260 lr=D01C722C [2501 usec]

 (... lines omitted ...)

100 wait 0 516 517 0.014862 DECREMENTER INTERRUPT iar=25D54 cpuid=00
234 wait 0 516 517 0.014864 clock: iar=25D54 lr=26BF0 [2502 usec]

 (... lines omitted ...)

100 wait 1 774 775 0.017356 DECREMENTER INTERRUPT iar=25D40 cpuid=01
234 wait 1 774 775 0.017360 clock: iar=25D40 lr=26BF0 [2495 usec]
100 wait 2 1032 1033 0.019861 DECREMENTER INTERRUPT iar=25D30 cpuid=02
234 wait 2 1032 1033 0.019865 clock: iar=25D30 lr=26BF0 [2505 usec]
100 wait 3 1290 1291 0.022355 DECREMENTER INTERRUPT iar=25CAC cpuid=03
234 wait 3 1290 1291 0.022358 clock: iar=25CAC lr=26BF0 [2492 usec]
100 wait 0 516 517 0.024857 DECREMENTER INTERRUPT iar=25E50 cpuid=00
234 wait 0 516 517 0.024858 clock: iar=25E50 lr=26BF0 [2500 usec]

 (... lines omitted ...)
 Chapter 4. CPU performance tools 299

The above example shows trace hook 100 for the decrementer interrupt too.
However, tprof only uses the trace hook 234. Focusing on the decrementer
interrupts and following trace hook 234 for CPU number 3 shows that the second
interrupt at 0.002879 was not issued by the normal 10 millisecond timer. A high
resolution timer was causing this decrementer interrupt. The interrupts for the 10
millisecond timer for this processor were issued at 0.002359, 0.012359, and
0.022355.
300 AIX 5L Performance Tools Handbook

Chapter 5. Memory performance tools

This chapter describes the tools to tune and monitor the performance data and
statistics relevant to memory. Other memory related commands not listed here
may appear in the Chapter 3, “Multi resource monitoring and tuning tools” on
page 57.

This chapter contains detailed information on the following memory monitoring
and tuning tools:

� The ipcs command described in Section 5.1, “ipcs” on page 302 is used to
report the status information of active Inter Process Communications (IPC)
facilities.

� The rmss command described in Section 5.2, “rmss” on page 314 is used to
ascertain the effects of reducing the amount of available memory on a system
without the need to physically remove memory from the system.

� The svmon command described in Section 5.3, “svmon” on page 320 is useful
for determining which processes, users, programs, and segments are
consuming the most paging space, and real and virtual memory.

5

© Copyright IBM Corp. 2001 301

5.1 ipcs
The ipcs command reports status information about active Inter Process
Communication (IPC) facilities. If you do not specify any flags, the ipcs
command writes information in a short form about currently active message
queues, shared memory segments, and semaphores.

This command is not a performance tool per se, but it can be useful in the
following two scenarios:

� For application developers who use IPC facilities and need to verify the
allocation and monitoring of IPC resources.

� For system administrators who need to clean up after an application
programs that uses IPC mechanisms which has failed to release previously
allocated IPC facilities1.

ipcs resides in /usr/bin and is part of the bos.rte.control fileset which is installed
by default from the AIX base installation media.

Other commands related to ipcs are ipcrm and slibclean, see the AIX 5L
Version 5.1 Commands Reference, SBOF-1877, for more information on these
commands.

5.1.1 Syntax
The syntax of the ipcs command is as follows:

ipcs [-m] [-q] [-s] [-a | -b -c -o -p -t] [-CCoreFile] [-N Kernel]

Flags
-a Uses the -b, -c, -o, -p, and -t flags.

-b Reports the maximum number of bytes in messages on
queue for message queues, the size of segments for
shared memory, and the number of semaphores in each
semaphores set.

-c Reports the login name and group name of the user that
made the facility.

-CCoreFile Uses the file specified by the CoreFile parameter in place
of the /dev/mem file.

1 Terminating a process with the SIGTERM signal prevents orderly cleanup of the process resources such as shared
memory segments.
302 AIX 5L Performance Tools Handbook

-m Reports information about active shared memory
segments.

-NKernel Uses the specified Kernel (the /usr/lib/boot/unix file is the
default).

-o Reports message queue and shared memory segment
information.

-p Reports process number information.

-q Reports information about active message queues.

-s Reports information about active semaphore set.

-t Reports time information.

5.1.2 Information on measurement and sampling
ipcs uses /dev/mem to obtain information about IPC facilities in the system. The
sampling is performed once every time the command is run, but ipcs executes
as a user process and the IPC information can change while ipcs is running, so
the information it gives is guaranteed to be accurate only at the time it was
retrieved.

5.1.3 Examples
You can use ipcs to check IPC message queues, semaphores and shared
memory. The default report shows basic information about all three IPC facilities
as is shown in Example 5-1.

Example 5-1 ipcs
ipcs
IPC status from /dev/mem as of Wed May 23 17:25:03 CDT 2001
T ID KEY MODE OWNER GROUP
Message Queues:
q 0 0x4107001c -Rrw-rw---- root printq

Shared Memory:
m 0 0x580508f9 --rw-rw-rw- root system
m 1 0xe4663d62 --rw-rw-rw- imnadm imnadm
m 2 0x9308e451 --rw-rw-rw- imnadm imnadm
m 3 0x52e74b4f --rw-rw-rw- imnadm imnadm
m 4 0xc76283cc --rw-rw-rw- imnadm imnadm
m 5 0x298ee665 --rw-rw-rw- imnadm imnadm
m 131078 0xffffffff --rw-rw---- root system
m 7 0x0d05320c --rw-rw-rw- root system
m 393224 0x7804129c --rw-rw-rw- root system
m 262153 0x780412e3 --rw-rw-rw- root system
m 393226 0xffffffff --rw-rw---- root system
 Chapter 5. Memory performance tools 303

m 393227 0xffffffff --rw-rw---- root system
Semaphores:
s 262144 0x580508f9 --ra-ra-ra- root system
s 1 0x440508f9 --ra-ra-ra- root system
s 131074 0xe4663d62 --ra-ra-ra- imnadm imnadm
s 3 0x62053142 --ra-r--r-- root system
...(lines omitted)...
s 20 0xffffffff --ra------- root system
s 21 0xffffffff --ra------- root system

The column headings and the meaning of the columns in the default ipcs report
are as follows:

T The type of facility. There are three facility types:

q message queue
m shared memory segment
s semaphore

ID The identifier for the facility entry.

KEY The key used as a parameter to the msgget subroutine,
the semget subroutine, or the shmget subroutine to make
the facility entry.

MODE The facility access modes and flags. The mode consists
of 11 characters that are interpreted as follows. The first
two characters can be the following:

R If a process is waiting on a msgrcv system call.
S If a process is waiting on a msgsnd system call.
D If the associated shared memory segment has been

removed. It disappears when the last process
attached to the segment detaches from it.

C If the associated shared memory segment is to be
cleared when the first attach is run.

- If the corresponding special flag is not set.

The next nine characters are interpreted as three sets of 3
bits each. The first set refers to the owner’s permissions,
the next to permissions of others in the user group of the
facility entry, and the last to all others. Within each set, the
first character indicates permission to read, the second
character indicates permission to write or alter the facility
entry, and the last character is currently unused. The
permissions are indicated as follows:

r If read permission is granted.
w If write permission is granted.
304 AIX 5L Performance Tools Handbook

a If alter permission is granted.
- If the indicated permission is not granted.

OWNER The login name of the owner of the facility entry.

GROUP The name of the group that owns the facility entry.

How to check which processes use shared memory
To find out which processes use shared memory, we can use the -m (memory)
and -p (processes) flags together, shown in Example 5-2.

Example 5-2 Using ipcs -mp
ipcs -mp
IPC status from /dev/mem as of Thu May 24 23:30:47 CDT 2001
T ID KEY MODE OWNER GROUP CPID LPID
Shared Memory:
m 0 0x580508f9 --rw-rw-rw- root system 5428 5428
m 1 0xe4663d62 --rw-rw-rw- imnadm imnadm 14452 14452
m 2 0x9308e451 --rw-rw-rw- imnadm imnadm 14452 14452
m 3 0x52e74b4f --rw-rw-rw- imnadm imnadm 14452 14452
m 4 0xc76283cc --rw-rw-rw- imnadm imnadm 14452 14452
m 5 0x298ee665 --rw-rw-rw- imnadm imnadm 14452 14452
m 6 0xffffffff --rw-rw---- root system 5202 5202
m 7 0x7804129c --rw-rw-rw- root system 17070 20696
m 8 0x0d05320c --rw-rw-rw- root system 19440 23046

In the output above we see one shared memory segment that is used by the
SPMI API library is 0x7804129c (see Section 9.2, “System Performance
Measurement Interface (SPMI)” on page 736 for more details on SPMI API), the
process id of the process that created this shared memory segment is 17070, and
the PID that last used it is 20696. To examine the process with process id 17070,
use the ps command (see Section 3.6, “ps” on page 109 for more details), as
shown in Example 5-3 below.

Example 5-3 Using ps
ps -eo comm,pid,user,group|grep 17070
topas 17070 root system

As can be seen from the ps output above, it is the topas command that uses the
0x7804129c shared memory segment and it is run by the root user in the system
group, which is the same user in the same group that owns the shared memory
segment as shown by the ipcs command in Example 5-2. To identify all users
that use the shared memory segment, use the -S option with ipcs and the svmon.
Refer to “How to remove an unused shared memory segment” on page 307.

The column headings and the meaning of the columns in a ipcs report with the
-p flag are as follows:
 Chapter 5. Memory performance tools 305

T The type of facility. There are three facility types:

q message queue
m shared memory segment
s semaphore

ID The identifier for the facility entry.

KEY The key used as a parameter to the msgget subroutine,
the semget subroutine, or the shmget subroutine to make
the facility entry.

MODE The facility access modes and flags. The mode consists
of 11 characters that are interpreted as follows. The first
two characters can be the following:

R If a process is waiting on a msgrcv system call.
S If a process is waiting on a msgsnd system call.
D If the associated shared memory segment has been

removed. It disappears when the last process
attached to the segment detaches it.

C If the associated shared memory segment is to be
cleared when the first attach is run.

- If the corresponding special flag is not set.

The next nine characters are interpreted as three sets of 3
bits each. The first set refers to the owner’s permissions,
the next to permissions of others in the user group of the
facility entry, and the last to all others. Within each set, the
first character indicates permission to read, the second
character indicates permission to write or alter the facility
entry, and the last character is currently unused. The
permissions are indicated as follows:

r If read permission is granted.
w If write permission is granted.
a If alter permission is granted.
- If the indicated permission is not granted.

OWNER The login name of the owner of the facility entry.

GROUP The name of the group that owns the facility entry.

CPID The PID of the creator of the shared memory entry.

LPID The PID of the last process to attach or detach the shared
memory segment.
306 AIX 5L Performance Tools Handbook

How to remove an unused shared memory segment
If a process that has allocated shared memory does not explicitly detach it before
terminating it can be identified with ipcs and then removed by using the ipcrm
and slibclean commands. The ipcrm command will detach the specified shared
memory identifier. The shared memory segment and data structure associated
with it are also removed after the last detach operation. The key of a shared
memory segment is changed to IPC_PRIVATE when the segment is removed until
all processes attached to the segment detach from it. The slibclean command
will remove any currently unused modules in kernel and library memory.

To look for shared memory segments not used by a no process, use the ipcs
with the -mpS flags as in Example 5-4. Note that the segment id (SID) is reported
after each shared memory line.

Example 5-4 Using ipcs -mpS to view shared memory
ipcs -mpS
IPC status from /dev/mem as of Mon Jun 4 17:42:51 CDT 2001
T ID KEY MODE OWNER GROUP CPID LPID
Shared Memory:
m 0 0x580508f9 --rw-rw-rw- root system 5180 5180

SID :
0x9c1
...(lines omitted)...

m 393226 0x7804129c --rw-rw-rw- root system 17048 17048

SID :
0x9d33

Then use the svmon command to check if there are any processes that use the
shared memory segments shown in the ipcs output. Use the -l and -S flag with
the svmon command as shown in Example 5-52.

Example 5-5 Using svmon -lS to check processes using segment
svmon -lS 9d33

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 9d33 c work shmat/mmap 398 0 0 398
 pid(s)=17048

If there are process ids (PIDs) reported on the pid(s), line, check if the
processes still exist with the ps command as Example 5-6 on page 308 shows.

2 To check all shared memory segments at once: ipcs -mS|awk '/^0x/{print substr($1,3)}'|xargs -i svmon -lS {}
 Chapter 5. Memory performance tools 307

Example 5-6 Using ps -u to check for active processes
ps -p 17048
 PID TTY TIME CMD
 17048 - 0:04 topas

In the example above the PID (17048) still exists. If ps only shows the column
headers, it is safe to use the ipcrm command to remove each unused shared
memory segment:

ipcrm -M 0x7804129c

The ipcrm command in the example above will remove the shared memory
segment 0x7804129c. After this has been done, use the slibclean command:

slibclean

Neither the ipcrm nor slibclean command should display any messages when
executed properly.

How to use a shared memory segment
For more detailed information on how to program IPC facilities, please review the
General Programming Concepts: Writing and Debugging Programs and
especially the section “Creating a Shared Memory Segment with the shmat
Subroutine” before using shared memory segments in application programs.

Example shared memory program
The following is a sample program that manages a single shared memory
segment (Example 5-7).

Example 5-7 Example shared memory segment program
1 #include <stdio.h>
2 #include <signal.h>
3 #include <sys/types.h>
4 #include <sys/ipc.h>
5 #include <sys/shm.h>

6 #define IPCSZ 4096

7 static int idfile = 0;
8 static char *idpath = NULL;

9 static key_t ipckey = 0;
10 static int ipcid = 0;
11 static char *ipcdata = NULL;

12 void
13 cleanup(int s)
14 {
308 AIX 5L Performance Tools Handbook

15 if (ipcid && ipcdata) {
16 /*
17 * The shmdt subroutine detaches from the data segment of the
18 * calling process the shared memory segment.
19 */
20 if (shmdt(ipcdata) < 0) {
21 perror("shmdt");
22 }
23 /*
24 * Once created, a shared memory segment is deleted only when the
25 * system reboots or by issuing the ipcrm command or using the
26 * shmctl subroutine.
27 */
28 if (shmctl(ipcid,IPC_RMID,(void *)ipcdata) < 0) {
29 perror("shmctl");
30 }
31 }
32 close(idfile);
33 remove(idpath);
34 _cleanup ();
35 _exit (0);
36 }

37 main()
38 {
39 /*
40 * Create a unique shared memory id, this is very important!
41 */
42 if ((idpath = tempnam("/tmp","IPC:")) == NULL) {
43 perror("tempnam");
44 exit(1);
45 }
46 if ((idfile = creat(idpath,0)) < 0) {
47 perror("creat");
48 exit(2);
49 }
50 if ((ipckey = ftok(idpath,random()%128)) < 0) {
51 perror("ftok");
52 exit(3);
53 }

54 /*
55 * We make sure that we clean up the shared memory that we use
56 * before we terminate the process. atexit() is called when
57 * the process is normally terminated, and we trap signals
58 * that a terminal user, or program malfunction could
59 * generate and cleanup then as well.
60 */
61 atexit(cleanup);
 Chapter 5. Memory performance tools 309

62 signal(SIGINT,cleanup);
63 signal(SIGTERM,cleanup);
64 signal(SIGSEGV,cleanup);
65 signal(SIGQUIT,cleanup);

66 /*
67 * IPC_CREAT Creates the data structure if it does not already exist.
68 * IPC_EXCL Causes the shmget subroutine to be unsuccessful if the
69 * IPC_CREAT flag is also set, and the data structure already exists.
70 */
71 if ((ipcid = shmget(ipckey,IPCSZ,IPC_CREAT|IPC_EXCL|0700)) < 0) {
72 perror("shmget");
73 exit(4);
74 }
75 if ((ipcdata = (char *)shmat(ipcid,0,0)) < 0) {
76 perror("shmat");
77 exit(5);
78 }

79 /*
80 * Work with the shared memory segment...
81 */
82 bzero(ipcdata,IPCSZ);
83 strcpy(ipcdata,"Hello World!");
84 printf("ipcdata\t: %s\n",ipcdata);
85 bzero(ipcdata,IPCSZ);
86 strcpy(ipcdata,"Dude!");
87 printf("ipcdata\t: %s\n",ipcdata);
88 }

The program performs in three steps. The first step is the setup part where the
unique shared memory key and the shared memory segment are created. This is
done from line 42 to line 78. Note that the way the ftok subroutine creates the 32
bit key id is by putting together the file’s inode number, the file system device
number, and the numeric id used in the call3.

The second step is the actual data manipulation part. This is between line 82 and
87. The third step is the house keeping part where all our allocated resources
from the setup part are removed, released, and freed. This is performed entirely
in the cleanup() subroutine on line 15 to 35.

3 Be aware that in the case of two identical file systems where the same numeric id is used to call ftok, ftok will return the
same number when used in either system.
310 AIX 5L Performance Tools Handbook

Below we have the result of the example program that stores text in the shared
memory and then uses the printf subroutine to display the stored text
(Example 5-8).

Example 5-8 sample program run
shm
ipcdata : Hello World!
ipcdata : Dude!

Example 5-9 below shows how the ipcs -mp and ps -p PID command reports
look while our sample program is running.

Example 5-9 Checking our shared memory program while running
ipcs -mp
IPC status from /dev/mem as of Fri May 25 01:41:26 CDT 2001
T ID KEY MODE OWNER GROUP CPID LPID
Shared Memory:
m 0 0x580508f9 --rw-rw-rw- root system 5428 5428
m 1 0xe4663d62 --rw-rw-rw- imnadm imnadm 14452 14452
m 2 0x9308e451 --rw-rw-rw- imnadm imnadm 14452 14452
m 3 0x52e74b4f --rw-rw-rw- imnadm imnadm 14452 14452
m 4 0xc76283cc --rw-rw-rw- imnadm imnadm 14452 14452
m 5 0x298ee665 --rw-rw-rw- imnadm imnadm 14452 14452
m 131078 0xffffffff D-rw-rw---- root system 5204 6252
m 262151 0x3d070079 --rw------- root system 23734 23734
m 8 0x0d05320c --rw-rw-rw- root system 19440 23046

ps -p 5204,23734
 PID TTY TIME CMD
 5204 - 0:00 rmcd
 23734 pts/4 0:00 shm

In the output above we use the ps command to check the shared memory
segment’s two owner PIDs (5204 and 23734). The PID 23734 was our program’s
process with id 262151 and key 0x3d070079. The following is the output of ipcs
-mp and ps -p PID after the sample program has ended (Example 5-10).

Example 5-10 Checking our shared memory program
ipcs -mp
IPC status from /dev/mem as of Fri May 25 01:46:50 CDT 2001
T ID KEY MODE OWNER GROUP CPID LPID
Shared Memory:
m 0 0x580508f9 --rw-rw-rw- root system 5428 5428
m 1 0xe4663d62 --rw-rw-rw- imnadm imnadm 14452 14452
m 2 0x9308e451 --rw-rw-rw- imnadm imnadm 14452 14452
m 3 0x52e74b4f --rw-rw-rw- imnadm imnadm 14452 14452
m 4 0xc76283cc --rw-rw-rw- imnadm imnadm 14452 14452
m 5 0x298ee665 --rw-rw-rw- imnadm imnadm 14452 14452
 Chapter 5. Memory performance tools 311

m 262150 0xffffffff --rw-rw---- root system 5206 5206
m 8 0x0d05320c --rw-rw-rw- root system 19440 23046
ps -p 23734
 PID TTY TIME CMD

The output above shows that neither our shared memory segment exists any
more, nor does the process that created and used it.

How to check which processes use semaphores
Some applications based on a process model4 use semaphores to communicate
numeric information between applications, such as status between child and
parent processes. Example 5-11 we become aware of the fact that there are
large amounts of semaphore activity per second by examining a sar report.

Example 5-11 sar report
sar -m 5 3

AIX wlmhost 1 5 000BC6AD4C00 05/28/01

17:40:43 msg/s sema/s
17:40:48 0.00 1352.21
17:40:53 0.00 1359.46
17:40:58 0.00 1353.09

Average 0.00 1354.93

We now use the ipcs command with the -tas flags to check which user(s) are
using semaphores. Note that the -t flag shows the time when the last
semaphore operation was completed. This is why we prefix the ipcs report with
the current system time by using the date command as shown in Example 5-12.

Example 5-12 ipcs -tas
date;ipcs -tas
Mon May 28 17:47:55 CDT 2001
IPC status from /dev/mem as of Mon May 28 17:43:02 CDT 2001
T ID KEY MODE OWNER GROUP CREATOR CGROUP NSEMS OTIME CTIME
Semaphores:
s 262144 0x580508f9 --ra-ra-ra- root system root system 1 17:17:21 17:17:21
...(lines omitted)...
s 13 0x010530ab --ra------- root system root system 1 17:28:24 17:28:24
s 14 0xffffffff --ra-ra-ra- baluba staff baluba staff 1 17:29:53 17:29:44
s 15 0xffffffff --ra-ra-ra- baluba staff baluba staff 1 17:30:51 17:30:42
...(lines omitted)...
s 185 0xffffffff --ra-ra-ra- baluba staff baluba staff 1 17:54:55 17:54:47

4 That is not using thread programming but the traditional UNIX style using the fork system call to split a process to
execute in parallel in a SMP environment.
312 AIX 5L Performance Tools Handbook

s 186 0xffffffff --ra-ra-ra- baluba staff baluba staff 1 17:55:04 17:54:55
s 187 0xffffffff --ra-ra-ra- baluba staff baluba staff 1 17:55:12 17:55:04

In the example output above we see that there are almost 200 semaphores on
the system, created (the CREATOR column) by the baluba user. Now we can use
the ps command to identify which programs this user is running as is shown in
Example 5-13.

Example 5-13 ps command
ps -fu baluba
 UID PID PPID C STIME TTY TIME CMD
 baluba 14830 16412 66 17:55:54 pts/3 0:00 batchsync
 baluba 15784 4618 0 17:28:21 pts/3 0:00 -ksh
 baluba 16412 15784 66 17:55:54 pts/3 0:00 batchsync

The user is only running a command called batchsync, and its start time
coincides with semaphore 186 in the previous output. To investigate further what
the batchsync application is doing we could use other tools such as tprof (see
Section 4.12, “tprof” on page 275) and truss (see Section 3.10, “truss” on
page 168). The final example uses truss to monitor what system calls the
batchsync application is executing. Note that because the batchsync process is
restarted very frequently (the start time shown with the ps command is more
related to the last semaphores created than the first), we use some shell
scripting to catch the process id while it is still active (Example 5-14).

Example 5-14 truss
truss -c -p $(ps -f -opid=,comm= -u baluba|awk '/batchsync/{print $1}')
syscall seconds calls errors
_exit .00 2
__semop .24 8677
kfcntl .00 4
 ---- --- ---
sys totals: .25 8683 0
usr time: 8.54
elapsed: 8.79

The ps command reports the process id and command name for the user, and
pipes it to awk, which separates the process id for the user and the batchsync
application name. The process ids are then used by truss to monitor and count
what system calls the application performs and the number of calls made. As can
be seen in the output above, there were 8677 calls made to semop during our
tracking with truss.
 Chapter 5. Memory performance tools 313

To clean up all used semaphores if the application does not, execute the ipcrm
command as in Example 5-15 for the specified user.

Example 5-15 ipcrm
ipcs -s|awk '/baluba/{print $2}'|xargs -ti ipcrm -s {}
...(lines omitted)...
ipcrm -s 348
ipcrm -s 349

First we use ipcs to report all semaphores, then awk to only print the specified
user’s semaphore ids, and finally use the xargs command to execute one ipcrm
for each semaphore id in the pipe.

5.2 rmss
The rmss (Reduced-Memory System Simulator) command is used to ascertain
the effects of reducing the amount of available memory on a system without the
need to physically remove memory from the system. It is useful for system sizing,
as you can install more memory than is required and then use rmss to reduce it.
Using other performance tools, the effects of the reduced memory can be
monitored. The rmss command has the ability to run a command multiple times
using different simulated memory sizes and produce statistics for all of those
memory sizes.

rmss resides in /usr/bin and is part of the bos.perf.tools fileset, which is
installable from the AIX base installation media.

5.2.1 Syntax
The syntax of the rmss command is as follows:

rmss -c MemSize

rmss -r

rmss -p

rmss [-d MemSize][-f MemSize][-n NumIterations][-o OutputFile]
[-s MemSize] Command

Flags
-c MemSize Changes the simulated memory size to the MemSize value,

which is an integer or decimal fraction in units of megabytes.
The MemSize variable must be between 4 MB and the real
314 AIX 5L Performance Tools Handbook

memory size of the machine. However, it is not
recommended to reduce the simulated memory size to under
256 MB on a uniprocessor system. For systems containing
larger amounts of memory, for example 16 GB to 32 GB, it is
not recommended to reduce the simulated memory size to
under 1 GB due to inherent system structures such as the
kernel. There is no default for this flag.

-d MemSize Specifies the increment or decrement between memory
sizes to be simulated. The MemSize value is an integer or
decimal fraction in units of megabytes. If the -d flag is
omitted, the increment will be 8 MB. Many systems produced
have a large amount of memory. Therefore, it is
recommended that when testing, you test in increments or
decrements of 128 MB.

-f MemSize Specifies the final memory size. You should finish testing the
simulated system by executing the command being tested at
a simulated memory size given by the MemSize variable,
which is an integer or decimal fraction in units of megabytes.
The MemSize variable may be set between 4 MB and the real
memory size of the machine. However, for systems
containing larger amounts of memory, for example 16 GB to
32 GB, it is not recommended to reduce the simulated
memory size to under 1 GB due to inherent system
structures such as the kernel. If the -f flag is omitted, the
final memory size will be 8 MB.

-n NumIterations Specifies the number of times to run and measure the
command, at each memory size. There is no default for the
-n flag. If the -n flag is omitted during rmss command
initialization, the rmss command will determine how many
iterations of the command being tested are necessary to
accumulate a total run time of ten seconds, and then run the
command that many times at each memory size

-o OutputFile Specifies the file into which to write the rmss report. If the -o
flag is omitted, then the rmss report is written to the file
rmss.out. In addition, the rmss report is always written to
standard output.

-p Displays the current simulated memory size.

-r Resets the simulated memory size to the real memory size of
the machine.

-s MemSize Specifies the starting memory size. Start by executing the
command at a simulated memory size specified by the
 Chapter 5. Memory performance tools 315

MemSize variable, which is an integer or decimal fraction in
units of megabytes. The MemSize variable must be between 4
MB and the real memory size of the machine. If the -s flag is
omitted, the starting memory size will be the real memory
size of the machine.

It is difficult to start at a simulated memory size of less than 8
MB, because of the size of inherent system structures such
as the kernel.

Parameters
Command Specifies the command to be run and measured at each

memory size. The Command parameter may be an executable
or shell script file, with or without command line arguments.
There is no default command.

rmss must be run as the root user or a user who is part of the system group.

5.2.2 Information on measurement and sampling
rmss measures the effects of limiting the amount of memory on the system.

Effective memory is reduced by stealing free page frames from the list of free
frames maintained by the Virtual Memory Manager. These frames are kept in a
pool of unusable frames and returned to the free list when effective memory is
increased by rmss. rmss also adjusts other data structures and system variables
that must be maintained at different memory settings.

The reports are generated to a file as specified by the -o option of the command
line. It is advisable to run any tests at least twice (specify 2 or greater as a
parameter for the -n option).

Measurements are taken on the completion of each executable or shell script as
specified in the command line.

Important: Before running rmss, note down the -h (SYS) setting from
/usr/samples/kernel/schedtune and disable memory load control by setting the
-h value to 0 (zero) (see Section 3.8, “schedtune” on page 144) to disable
memory load control. Change the -h value back to its original after completion
of rmss.
316 AIX 5L Performance Tools Handbook

The rmss command reports “usable” real memory. rmss may report a different
size than the size you specify. This is because the system may either have bad
memory, or rmss is unable to steal memory that is already pinned by the
operating system such as by device drivers.

5.2.3 Recommendations and precautions
There are no problems with setting the memory size too high as you cannot
exceed the maximum installed memory size.

Setting the memory size too low can lead to the following problems:

� Severe degradation of performance

� System hang

� High paging

You can recover from this scenario by following the procedure described in
“Resetting the simulated memory size” on page 318

It is recommended that you do not set the simulated memory size of a
uniprocessor system to under 256 MB. For larger systems containing memory
upwards of 16 GB, the recommendation is that you reduce the simulated
memory size to under 256 MB.

This command is effective immediately and does not require a reboot. Any
changes made are not permanent and will be lost upon rebooting.

5.2.4 Examples
This section shows examples of the most important report outputs with a detailed
description of the output.

It is important to run the application multiple times for each memory size as this
will eliminate the following scenarios:

� rmss can clear a large amount of memory, and the first time you run your
application you may experience a longer run time while your application loads
files. Also on subsequent runs of the application, as the program is already
loaded, shorter run times may be experienced.

� Due to other factors within a complex AIX environment, such as AIX, it may
not be possible to produce the same run times as the previous program run.
 Chapter 5. Memory performance tools 317

Changing the simulated memory size
Simulated memory size can be changed (between 8 MB and total memory on the
system) with the command shown in Example 5-16. In this case the simulated
memory size is set to 512 MB.

Example 5-16 Changing simulated memory size
rmss -c 512
Simulated memory size changed to 512 Mb.

Displaying the simulated memory size
To display the simulated memory size, use the following command
(Example 5-17).

Example 5-17 Displaying simulated memory size
rmss -p
Simulated memory size is 512 Mb.

Resetting the simulated memory size
To reset the simulated memory size to the system’s installed memory size, use
the following command (Example 5-18).

Example 5-18 Resetting simulated memory size

rmss -r
Simulated memory size changed to 4096 Mb.

Testing an executable run time with rmss
There are various ways to test how executables are affected by reduced effective
memory.

Testing an executable with different memory sizes
To investigate the performance of the command cc -O foo.c with memory sizes
512, 384, and 256 MB run and measure the command twice at each memory
size, then write the report to the cc.rmss.out file, enter:

rmss -s 512-f 256 -d 128 -n 2 -o cc.rmss.out cc -O foo.c

To investigate the performance of shell_script.sh with different memory sizes
from 256 MB to 512 MB, by increments of 64 MB; run and measure
shell_script.sh twice at each memory size; and write the report to the rmss.out
file, enter the following:

rmss -s 256 -f 512 -d 64 -n 2 -o rmss.out shell_script.sh
318 AIX 5L Performance Tools Handbook

When any combination of the -s, -f, -d, -n, and -o flags is used, the rmss
command runs as a driver program, which executes a command multiple times
over a range of memory sizes, and displays statistics describing the commands
performance of the command at each memory size.

The following command sequence was performed to generate the example
output shown in Example 5-19.

1. Create a 128 MB file called 128MB_file

2. Create a shell script called shell_script.sh containing:
tar cvf /dev/null 128MB_file > /dev/null 2>&1

3. Run the command:
rmss -s 256 -f 1024 -d 128 -n 2 -o rmss.out shell_script.sh

Example 5-19 Screen output from rmss
cat rmss.out

Hostname: bolshoi.itso.ibm.com
Real memory size: 4096 Mb
Time of day: Sun May 20 15:57:20 2001
Command: shell_script.sh

Simulated memory size initialized to 256 Mb.

Number of iterations per memory size = 1 warmup + 2 measured = 3.

Memory size Avg. Pageins Avg. Response Time Avg. Pagein Rate
(megabytes) (sec.) (pageins / sec.)
--
256 9.5 0.4 26.2
384 7.0 0.3 20.4
512 6.0 0.3 17.6
640 5.5 0.3 16.1
768 7.0 0.3 20.4
896 3.0 0.3 9.1
1024 2.5 0.3 7.6
Simulated final memory size.

The first few lines of the report gives general information, including the name of
the machine that the rmss command was running on, the real memory size of that
machine, the time and date, and the command that was being measured. The
next two lines give informational messages that describe the initialization of the
rmss command. Here, the rmss command displays that it has initialized the
simulated memory size to 256 MB, which was the starting memory size given
 Chapter 5. Memory performance tools 319

with the -s flag. Also, the rmss command prints out the number of iterations that
the command will be run at each memory size. Here, the command is to be run
three times at each memory size; once to warmup, and twice when its
performance is measured. The number of iterations was specified by the -n flag.

The lower part of the report provides the following for each memory size the
command was run at:

� The memory size, along with the average number of page-ins that occurred
while the command was run

� The average response time of the command

� The average page-in rate that occurred when the command was run

5.3 svmon
The svmon command is a virtual memory monitor. svmon is useful for determining
which processes, users, programs, and segments are consuming the most real,
virtual, and paging space memory. svmon can also determine Workload Manager
(WLM) class and tier consumption.

The svmon command invokes the svmon_back command, which does the actual
work. Therefore, in order for svmon to work the svmon_back command must be
available.

svmon resides in /usr/bin and is part of the bos.perf.tools fileset, which is
installable from the AIX base installation media. svmon_back resides in
/usr/lib/perf and is part of the same fileset.

5.3.1 Syntax
The syntax of the svmon command is as follows:

svmon -G [-i Interval [NumIntervals]] [-z]

svmon -U [LogName1...LogNameN] [-r] [-n | -s] [-w | -f -c]
[-t Count] [-u | -p | -g | -v] [-i Interval [NumIntervals]]
[-l] [-d] [-z] [-m]

Note: The average page-ins and average page-in rate values include all
page-ins that occurred while the command was run, not just those initiated
by the command.
320 AIX 5L Performance Tools Handbook

svmon -C Command1...CommandN [-r] [-n | -s] [-w | -f | -c]
[-t Count] [-u | -p | -g | -v] [-i Interval [NumIntervals]]
[-l] [-d] [-z] [-m]

svmon -W [ClassName1...ClassNameN] [-e] [-r] [-n | -s]
[-w | -f | -c] [-t Count] [-u | -p | -g | -v]
[-i Interval [NumIntervals]] [-l] [-d] [-z] [-m]

svmon -T [Tier1...TierN] [-a SupClassName] [-x] [-e] [-r]
[-u | -p | -g | -v] [-n | -s] [-w | -f | -c] [-t Count]
[-i Interval [NumIntervals]] [-l] [-z] [-m]

svmon -P [PID1... PIDN] [-r [-n | -s] [-w | -f | -c] [-t Count]
[-u | -p | -g | -v] [-i Interval [NumIntervals]] [-l] [-z]
[-m]

svmon -S [SID1...SIDN] [-r] [-n | -s] [-w | -f | -c]
[-t Count] [-u | -p | -g | -v] [-i Interval [NumIntervals]]
[-l] [-z] [-m]

svmon -D SID1..SIDN [-b] [-i Interval [NumIntervals]] [-z]

svmon -F [Frame1..FrameN] [-i Interval [NumIntervals]] [-z]

Flags
If no command line flag is given, then the -G flag is implicit.

-a SupClassName Restricts the scope to the subclasses of the
SupClassName class parameter (in the Tier report
-T). The parameter is a superclass name. No list
of class is supported.

-b Shows the status of the reference and modified
bits of all the displayed frames (detailed report -D).
Once shown, the reference bit of the frame is
reset. When used with the -i flag it detects which
frames are accessed between each interval. This
flag should be used with caution because of its
performance impacts.

-c Indicates that only client segments are to be
included in the statistics. By default all segments
are analyzed.

-C Command1...CommandN Displays memory usage statistics for the
processes running the command name
Commandnm1...CommandnmN. Commandnm is a string. It
is the exact basename of an executable file.
 Chapter 5. Memory performance tools 321

-d Displays the memory statistics of the processes
belonging to a given entity (user name or
command name).

-D SID1...SIDN Displays memory-usage statistics for segments
SID1...SIDN, and a detail status of all frames of
each segment.

-e Displays the memory usage statistics of the
subclasses of the Class parameter in the
Workload Class report -W and in the Tier report -T.
The class parameter of -W or -a needs to be a
superclass name.

-f Indicates that only persistent segments (files) are
to be included in the statistics. By default all
segments are analyzed.

-F [Frame1...FrameN] Displays the status of frames Frame1...FrameN,
including the segments that they belong to. If no
list of frames is supplied, the percentage of
memory used is displayed.

-g Indicates that the information to be displayed is
sorted in decreasing order by the total number of
pages reserved or used on paging space. This
flag, in conjunction with the segment report, shifts
the non-working segment at the end of the sorted
list.

-G Displays a global report.

-i Interval [NumIntervals]Instructs the svmon command to display statistics
repetitively. Statistics are collected and printed
every Interval seconds. NumIntervals is the
number of repetitions; if not specified, svmon runs
until user interruption (Ctrl-C).

-l Shows, for each displayed segment, the list of
process identifiers that use the segment and,
according to the type of report, the entity name
(login, command, tier, or class) the process
belongs to. For special segments a label is
displayed instead of the list of process identifiers.

-m Displays information about source segment and
mapping segment when a segment is mapping a
source segment. The default is to display only
information about the mapping segment.
322 AIX 5L Performance Tools Handbook

-n Indicates that only non-system segments are to be
included in the statistics. By default all segments
are analyzed.

-p Indicates that the information to be displayed is
sorted in decreasing order by the total number of
pages pinned.

-P [PID1... PIDN] Displays memory usage statistics for processes
PID1...PIDN. PID is a decimal value. If no list of
process IDs (PIDs) is supplied, memory usage
statistics are displayed for all active processes.

-r Displays the range(s) within the segment pages
that have been allocated. A working segment may
have two ranges because pages are allocated by
starting from both ends and moving towards the
middle.

-s Indicates that only system segments are to be
included in the statistics. By default all segments
are analyzed.

-S [SID1...SIDN] Displays memory-usage statistics for segments
SID1...SIDN. SID is a hexadecimal value. If no list
of segment IDs (SIDs) is supplied, memory usage
statistics are displayed for all defined segments.

-t Count Displays memory usage statistics for the top
Count object to be printed.

-T [Tier1...TierN] Displays memory usage statistics of all the classes
of the tier numbers Tier1...TierN. If no list of tier
is supplied, memory usage statistics are displayed
for all the defined tiers.

-u Indicates that the information to be displayed is
sorted in decreasing order by the total number of
pages in real memory. It is the default sorting
criteria if none of the following flags are present;
-p, -g, and -v.

-U [LogName1...LogNameN] Displays memory usage statistics for the login
names LogName1...LogNameN. LogName is an exact
login name string . If no list of login identifiers is
supplied, memory usage statistics are displayed
for all defined login identifiers.

-v Indicates that the information to be displayed is
sorted in decreasing order by the total number of
pages in virtual space. This flag in conjunction with
 Chapter 5. Memory performance tools 323

the segment report shifts the non-working
segment at the end of the sorted list.

-w Indicates that only working segments are to be
included in the statistics. By default all segments
are analyzed.

-W [Clnm1...ClnmN] Displays memory usage statistics for the workload
management class Clnm1...ClnmN. Clnm is the
exact name string of a class. For a subclass, the
name is should have the form
superclassname.subclassname. If no list of class
name is supplied, memory usage statistics are
displayed for all defined class names.

-x Displays memory usage statistics for the
segments for every class of a tier in the Tier report
-T.

-z Displays the maximum memory size dynamically
allocated by svmon during its execution.

Parameters
Interval Statistics are collected and printed every Interval

seconds.

NumIntervals NumIntervals is the number of repetitions. If not specified,
svmon runs until user interruption, Ctrl-C.

5.3.2 Information on measurement and sampling
When invoked, svmon captures a snapshot of the current contents of both real,
paging, and virtual memory, and summarizes the contents. Note that virtual
pages include both real memory and paging space pages except for the -G
report. Refer to “How to analyze the global report” on page 333.

The svmon command runs in the foreground as a normal user process. Because
it can be interrupted while collecting data, it cannot be considered to be a true
snapshot of the memory. svmon reports are based on virtual counters from the
Virtual Memory Manager (VMM) for statistical analysis, and these might not
always be current with the actual utilization. For these reasons you should be
careful when analyzing the information received from running svmon snapshots
on very busy systems with many processes because the data might have been
updated by VMM while svmon is running.
324 AIX 5L Performance Tools Handbook

svmon can be started either to take single snapshots or to monitor over time.
Depending on reporting option, you can specify the interval between snapshots
and some options. However, be aware that, depending on the options specified
and the system load, svmon can take several minutes to complete some
functions. Because of this, the observed interval may be longer than what has
been specified with the -i option.

Because processes and files are managed by VMM, and VMM’s view of memory
is as a segmented space, almost all of the svmon reports will concern segment
usage and utilization. To have the most benefit of the svmon reports you need to
understand what segments are and how they are used.

Segments
When a process is loaded into memory, its different parts (such as stack, heap,
and program text) will be loaded into different segments. The same is true for
files that are opened through the filesystem or are explicitly mapped.

A segment is a set of pages and is the basic object used to report the memory
consumption. Each segment is 256 MB of memory. The statistics reported by
svmon are expressed in terms of pages. A page is a 4 KB block of virtual memory,
while a frame is a 4 KB block of real memory. A segment can be used by multiple
processes at the same time.

A segment belongs to one of the five following types:

persistent Segments used to manipulate Journaled File System
(JFS) files and directories.

working Segments used to implement the data areas of processes
and shared memory segments.

client Segments used to implement some virtual file systems
like Network File System (NFS), the CD-ROM file system
and the Journaled File System 2 (J2).

mapping Segments used to implement the mapping of files in
memory.

real memory mapping Segments used to access the I/O space from the virtual
address space.

Note that a 64 bit system uses a different segmentation layout than a 32 bit
system. Different segments are used for storing specific objects, such as process
data and explicitly mapped files.
 Chapter 5. Memory performance tools 325

Please note that a dash (-) in the paging space utilization column indicates that
the segment does not use paging space. For example, work segments use
paging space whereas persistent and client segments will not because they are
read again from their stored location if the frames they occupied are freed5. A
working segment will be stored on paging space because it is dynamic data and
has no corresponding persistent storage area.

For more thorough information on VMM and segmented memory usage, please
refer to:

� Section 1.2, “Memory performance” on page 10

� AIX 5L Version 5.1 System Management Concepts: Operating System and
Devices

� AIX 5L Version 5.1 System Management Guide: Operating System and
Devices,

� AIX 5L Version 5.1 Performance Management Guide

� The svmon command in the AIX 5L Version 5.1 Commands Reference,
Volume 5.

5.3.3 Examples
The following shows the default display when running svmon (Example 5-20). To
monitor on a continual basis, use the -i option flag with an interval number and a
count number (svmon -i 5 12 for instance takes a snapshot every five seconds
repeating 12 times). The default report from svmon, when run without option flags,
will show system wide memory utilization.

Example 5-20 svmon without options
svmon
 size inuse free pin virtual
memory 131047 41502 89545 16749 62082
pg space 262144 29622

 work pers clnt
pin 16749 0 0
in use 39004 2498 0

In the first part of the output, what we usually are most interested in are the
number of real memory pages that are inuse and free, as shown on the memory
line. The number of pg space pages that are inuse show how many pages that
are actually in use on the paging space(s). The last line in use shows the
utilization of different memory segment types (work, pers and clnt).

5 There are exceptions, such as when a mapped file is opened in a deferred update mode.
326 AIX 5L Performance Tools Handbook

How to determine which processes use most real memory
To list the top real memory consumers in decreasing order, run svmon with the -P
and -u flags shown in Example 5-21. In this case we want to look at the top three
processes.

Example 5-21 svmon -uP -t 3
svmon -uP -t 3|grep -p Pid|grep '^.*[0-9] '
 5428 X 4681 1584 2656 9156 N N
 16274 bin 4594 1588 2273 8824 N Y
 6458 dtgreet 4660 1580 2144 8712 N N

The first process, called X, is the largest consumer. The highlighted column is the
Inuse field:

Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd

The X program in the output above uses 4681 * 4096 = 18763776 bytes or
approximately 18 MB of memory and includes file pages.

How to determine which processes use most paging space
To list the top paging space consumers in decreasing order, run svmon with the
-P and -g flags shown in Example 5-22. In this case, we want to look at the top
three processes.

Example 5-22 svmon -gP -t 3
svmon -gP -t 3|grep -p Pid|grep '^.*[0-9] '
 5428 X 4681 1584 2656 9156 N N
 16274 bin 4594 1588 2273 8824 N Y
 6458 dtgreet 4660 1580 2144 8712 N N

The first process, called X, is the largest consumer. The highlighted column is the
Pgsp field and shows the number of 4 KB pages reserved or used on paging
space:

Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd

A Pgsp number that grows but never decreases may indicate a memory leak in
the program. In the above example the X server uses 2566 * 4096 =1 0510336
byte or 10 MB paging space.

How much memory is a WLM class using

To find out how much processes belonging to a WLM class is using, use the -W
flag to svmon as in Example 5-23 on page 328.
 Chapter 5. Memory performance tools 327

Example 5-23 svmon -W
svmon -W Shared|sed '/^$/d'
===
Superclass Inuse Pin Pgsp Virtual
Shared 3619 0 1286 6417
 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 e01c - work 3024 0 30 4868
 e81d - work 595 0 1256 1549

How to find out what segments are most utilized
When using the -S option, svmon sorts segments by memory usage and displays
the memory-usage statistics for the top memory-usage segments. In
Example 5-24 we will monitor the memory usage for the top three segments
every three seconds.

Example 5-24 svmon -S
svmon -S -t 3 -i 3

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 4f08 - clnt 37505 0 - -
 11e1 - clnt 33623 0 - -
 8811 - work kernel pinned heap 12637 6547 8091 19397

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 4f08 - clnt 38540 0 - -
 11e1 - clnt 34498 0 - -
 8811 - work kernel pinned heap 12637 6547 8091 19397
...(lines omitted)...
 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 4f08 - clnt 47477 0 - -
 11e1 - clnt 43434 0 - -
 8811 - work kernel pinned heap 12637 6547 8091 19397

This can be useful if we suspect that a lot of memory is used for file caching (perm
for JFS and clnt for J2 file systems). In the example above, the clnt segment is
growing due to file caching.

How to find out what files a process or command is using
The output from svmon regarding persistent segments (files) only show the
device:inode for each file. To map the device:inode to a file system file name,
you can used the ncheck command. Example 5-25 on page 329 shows a sample
report using svmon with the -p (persistent segment).
328 AIX 5L Performance Tools Handbook

Example 5-25 svmon -pP
svmon -pP 22674

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
 22674 java 29333 1611 2756 32404 N Y

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1593 1659 4561
 a056 - work 43 16 3 46
 1e03 2 work process private 77 2 17 93
 1080 - pers /dev/hd2:69742 1 0 - -
 f8bd f work shared library data 84 0 11 99
 60ee 8 work shmat/mmap 0 0 0 0
 70ec - pers /dev/hd2:69836 1 0 - -
 1522 6 work shmat/mmap 4340 0 9 4349
 718c - pers /dev/hd2:69837 1 0 - -
 31c4 - pers /dev/hd2:69829 397 0 - -
 f59e - pers /dev/hd2:12302 1 0 - -
 1e2 - pers /dev/hd2:69726 0 0 - -
 31e4 - pers /dev/hd2:69733 0 0 - -
 a1d6 - pers /dev/hd2:69724 1 0 - -
 1602 3 work shmat/mmap 8351 0 341 8654
 640c - pers /dev/hd2:30760 1 0 - -
 e01c d work shared library text 4711 0 16 5612
 c1da - pers /dev/hd2:69729 0 0 - -
 9fd2 - pers /dev/hd2:69654 5 0 - -
 d1d8 - pers /dev/hd2:69727 1 0 - -
 c9db - pers /dev/hd2:69735 0 0 - -
 d9d9 - pers /dev/hd2:69728 4 0 - -
 3606 5 work shmat/mmap 2271 0 184 2455
 e1de - pers /dev/hd2:69730 0 0 - -
 f1dc - pers /dev/hd2:69725 0 0 - -
 f9dd - pers /dev/hd2:69731 8 0 - -
 6e0d - pers /dev/hd2:69835 0 0 - -
 760e 1 pers code,/dev/hd2:18575 4 0 - -
 cdf8 9 work shmat/mmap 0 0 0 0
 5eaa 4 work shmat/mmap 4399 0 516 4887
 aef4 7 work shmat/mmap 1648 0 0 1648
 5f4a a work shmat/mmap 0 0 0 0
 af74 - pers /dev/hd2:69655 5 0 - -

By creating a simple script, we can extract the device:inode information from the
output in the previous example using the ncheck command. We get the following
result (Example 5-26).

Example 5-26 ncheck script output
/usr/java130/jre/lib/rt.jar
/usr/java130/jre/lib/fonts/LucidaSansRegular.ttf
 Chapter 5. Memory performance tools 329

/usr/java130/jre/lib/ext/indicim.jar
/usr/java130/jre/lib/ext/ibmjcaprovider.jar
/usr/java130/jre/lib/fonts/LucidaSansDemiBold.ttf
/usr/java130/jre/bin/java
/usr/java130/jre/lib/fonts/LucidaBrightDemiBold.ttf
/usr/java130/jre/lib/ext/jaas.jar
/usr/java130/jre/lib/ext/jaas_lm.jar
/usr/java130/jre/lib/fonts/LucidaBrightRegular.ttf
/usr/java130/jre/lib/i18n.jar
/usr/lib/nls/csmap/sbcs
/usr/lib/nls/csmap/IBM-850
/usr/lib/nls/csmap/ISO8859-1
/usr/lib/nls/csmap/ISO8859-15
/usr/lib/nls/loc/uconvTable/ISO8859-1
/usr/java130/jre/lib/fonts/LucidaSansDemiOblique.ttf
/usr/java130/jre/lib/fonts/LucidaSansOblique.ttf
/usr/java130/jre/lib/fonts/LucidaBrightDemiItalic.ttf
/usr/java130/jre/lib/fonts/LucidaTypewriterBoldOblique.ttf
/usr/java130/jre/lib/ext/javaxcomm.jar
/usr/java130/jre/lib/fonts/LucidaBrightItalic.ttf
/usr/java130/jre/lib/fonts/LucidaTypewriterRegular.ttf

The output above shows all files that the 22674 process uses. Below is the script
that created the mapping between the <device>:<inode> into file system file path
name (Example 5-27).

Example 5-27 ncheck script
expand -4 files.sh|nl
1 grep -p Vsid $1|
2 awk 'NR>1&&$0!~/^$/&&$4~/\/dev/{
3 l=substr($4,1,index($4,":")-1)
4 i=substr($4,index($4,":")+1)
5 if (l~/^\//)
6 print l,i
7 else {
8 print substr(l,index(l,",")+1),i
9 }
10 }'|
11 while read lv inode;do
12 fs=$(lsfs -c $lv 2>/dev/null|awk -F: 'NR>1{print $1}')
13 ncheck -i $inode $lv|awk '!/:$/{print lv $2}' lv=$fs
14 done

Input to the file is the svmon -p output file (line 1). Because the svmon output is not
easy to parse, we used awk to extract the device:inode lines (line 2-10). The
while loop reads the logical volume name and inode number (line 11). On line 12
we extract the file system name from /etc/filesystems using the lsfs command.
330 AIX 5L Performance Tools Handbook

The file system name is then used on line 13 as input to the filtering awk
command in the pipe after ncheck is run on the logical volume to find the inode.
Since ncheck reports the pathname relative to the mount point for the file system,
we need to prefix the file system name to the filename to be a proper system
path for each file.

How to find out which segments are in the paging space
To find out what segments are on the paging space use the -S and -g flags in
combination only as Example 5-28 illustrates.

Example 5-28 svmon -gS
svmon -Sg

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 8811 - work kernel pinned heap 6947 6562 3118 9736
 0 - work kernel seg 2720 1565 1801 4446
 e81d - work 86 0 1043 1120
 e19c - work 74 4 720 772
 f01e - work 54 0 298 333
 b476 - work 155 0 268 405
 8010 - work misc kernel tables 302 0 266 314
 8bd1 - work 5 2 252 255
 1002 - work page table area 174 6 222 228
...(lines omitted)...
 748e - pers /dev/hd1:368643 0 0 - -
...(lines omitted)...
 d65a - clnt 2779 0 - -
 ce59 - clnt 2772 0 - -
 2a85 - pers log 2 0 - -
 742e - mmap mapped to sid 3ba7 0 0 - -
 2084 - pers log 2 0 - -
 abb5 - mmap mapped to sid 9432 0 0 - -
 686d - rmap 0 0 - -
 93f2 - mmap mapped to sid 8bf1 0 0 - -

We can use the -D option for detailed segment information to find out more about
the segment, such as in Example 5-29, which shows us that Vsid 742e is mapped
to sid 3ba7.

Example 5-29 svmon -D sid
svmon -D 3ba7

Segid: 3ba7
Type: persistent
Address Range: 0..255

 Page Frame Pin ExtSegid ExtPage
 0 93319 N - -
 Chapter 5. Memory performance tools 331

 157 68171 N - -

In the output above we can see that the segment is a persistent segment
consisting of one frame, 93319. To compare the -D output with -S and -r, as is
shown in Example 5-30, we view a similar report of the frame address range
(0..255).

Example 5-30 svmon -rS sid
svmon -rS 3ba7

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 3ba7 - pers /dev/hd9var:156 2 0 - -
 Addr Range: 0..255

If we use the -F option to look at the frame itself, as in Example 5-31, we monitor
if it is referenced or modified, but only over a very short interval.

Example 5-31 svmon -F
svmon -F 93319 -i 1 5

 Frame Segid Ref Mod Pincount State Swbits
 93319 3ba7 Y Y 0/0 In-Use 88000004

 Frame Segid Ref Mod Pincount State Swbits
 93319 3ba7 Y N 0/0 In-Use 88000004

 Frame Segid Ref Mod Pincount State Swbits
 93319 3ba7 N N 0/0 In-Use 88000004

 Frame Segid Ref Mod Pincount State Swbits
 93319 3ba7 N N 0/0 In-Use 88000004

 Frame Segid Ref Mod Pincount State Swbits
 93319 3ba7 N N 0/0 In-Use 88000004

To go back to the -gS output, we can use the ncheck command to find out which
files are on the paging space as well because the logical volume device and
inode number is reported in the output. In Example 5-32 we use inode 368643 in
logical volume hd1 to illustrate how this can be done.

Example 5-32 ncheck -i inode /dev/llogical volume
ncheck -i 368643 /dev/hd1
/dev/hd1:
368643 /fuzzy/backup/multithread
332 AIX 5L Performance Tools Handbook

Because /dev/hd1 is the /home filesystem (lsfs /dev/hd1), the file is
/home/fuzzu/backup/multithread. To find out what kind of file this is, we can use
the file command as in Example 5-33.

Example 5-33 file command
file /home/fuzzy/backup/multithread|pg
/home/fuzzy/backup/multithread: executable (RISC System/6000) or object module
not stripped

We could also use the dump command as in the Example 5-34.

Example 5-34 dump -H
dump -H /home/fuzzy/backup/multithread

/home/fuzzy/backup/multithread:

 Loader Section
 Loader Header Information
VERSION# #SYMtableENT #RELOCent LENidSTR
0x00000001 0x00000023 0x0000003e 0x0000004b

#IMPfilID OFFidSTR LENstrTBL OFFstrTBL
0x00000003 0x00000650 0x000001a6 0x0000069b

 Import File Strings
INDEX PATH BASE MEMBER
0 /usr/lib/threads:/usr/lib:/lib
1 libc.a shr.o
2 libpthreads_compat.a shr.o

How to analyze the global report
To monitor system memory utilization with svmon, the -G flag can be used.
Example 5-35 shows the used and free sizes of real as well as virtual memory in
the system.

Example 5-35 svmon -G
svmon -G
 size inuse free pin virtual
memory 131047 26602 104445 13786 38574
pg space 262144 14964

 work pers clnt
pin 13786 0 0
in use 20589 444 5569
 Chapter 5. Memory performance tools 333

The column headings in a global report are:

memory Specifies statistics describing the use of real memory, including:

size Number of real memory frames (size of real memory).
This includes any free frames that have been made
unusable by the memory sizing tool, the rmss command.

inuse Number of frames containing pages

free Number of frames free of all memory pools

pin Number of frames containing pinned pages

virtual Number of pages allocated in the system virtual space
for working segments only (not all segment types)

stolen Number of frames stolen by rmss and marked unusable
by the VMM

pg space Specifies statistics describing the use of paging space.

size Size of paging space

inuse Number of paging space pages used

pin Specifies statistics on the subset of real memory containing pinned
pages, including:

work Number of frames containing working segment pinned
pages

pers Number of frames containing persistent segment pinned
pages

clnt Number of frames containing client segment pinned
pages

in use Specifies statistics on the subset of real memory in use, including:

work Number of frames containing working segment pages

pers Number of frames containing persistent segment pages

clnt Number of frames containing client segment pages

To show system wide memory utilization, just run svmon without any flags or with
the -G flag as shown in Example 5-36.

Example 5-36 svmon with the -G flag
svmon -G
 size inuse free pin virtual
memory 131047 41502 89545 16749 62082
pg space 262144 29622

 work pers clnt
pin 16749 0 0
334 AIX 5L Performance Tools Handbook

in use 39004 2498 0

In the first part of the output what we usually are most interested in are the
number of real memory pages that are inuse and free, as shown on the memory
line. The number of pg space pages that are inuse show how many pages that
are actually in use on the paging space(s). The last line in use shows the
utilization of different memory segment types (work, pers, and clnt). Note that
clnt indicates both NFS and J2 cached file pages6 while the pers column shows
cached JFS file pages.

To illustrate how the report would look when using the rmss command (refer to
Section 5.2, “rmss” on page 314) to limit available memory for test purposes in
the system, we use it in Example 5-37 below. Note the additional column stolen.

Example 5-37 svmon report when using rmss
rmss -s 128 $(whence svmon) -G

Hostname: wlmhost
Real memory size: 512 Mb
Time of day: Thu May 24 22:27:13 2001
Command: /usr/bin/svmon-G

Simulated memory size initialized to 128 Mb.
 size inuse free pin virtual stolen
memory 131047 117619 13428 13784 134214 95584
pg space 262144 14964

 work pers clnt
pin 13784 0 0
in use 116211 445 963

How to analyze the user reports
To monitor users memory utilization with svmon, the -U flag can be used. In the
following series of examples we will show how svmon will report the memory
usage for a process by using the different optional flags with the -U flag. Without
any user specification the -U option reports on all users.

The column headings in a user report are:

User Indicates the user name

Inuse Indicates the total number of pages in real memory in
segments that are used by the user.

6 And CD-ROM.
 Chapter 5. Memory performance tools 335

Pin Indicates the total number of pages pinned in segments
that are used by the user.

Pgsp Indicates the total number of pages reserved or used on
paging space by segments that are used by the user.

Virtual Indicates the total number of pages allocated in the
process virtual space.

Vsid Indicates the virtual segment ID, which identifies a unique
segment in the VMM.

Esid Indicates the effective segment ID. The Esid is only valid
when the segment belongs to the address space of the
process. When provided, it indicates how the segment is
used by the process. If the Vsid segment is mapped by
several processes but with different Esid values, then this
field contains '-'. In that case, the exact Esid values can
be obtained through the -P flag applied on each of the
process identifiers using the segment. A '-' also displays
for segments used to manage open files or multi-threaded
structures because these segments are not part of the
user address space of the process.

Type Identifies the type of the segment; pers indicates a
persistent segment, work indicates a working segment,
clnt indicates a client segment, map indicates a mapped
segment, and rmap indicates a real memory mapping
segment.

Description Gives a textual description of the segment. The content of
this column depends on the segment type and usage:

persistent JFS files in the format: <device>:<inode>,
such as /dev/hd1:123.

working Data areas of processes and shared
memory segments, dependent on the role of
the segment based on the VSID and ESID.

mapping Mapped to sid source sid.
client NFS, CD-ROM, and J2 files, dependent on

the role of the segment based on the VSID
and ESID.

rmapping I/O space mapping dependent on the role of
the segment based on the VSID and ESID.

Inuse Indicates the number of pages in real memory in this
segment.

Pin Indicates the number of pages pinned in this segment.
336 AIX 5L Performance Tools Handbook

Pgsp Indicates the number of pages used on paging space by
this segment. This field is relevant only for working
segments.

Virtual Indicates the number of pages allocated for the virtual
space of the segment.

The segments used by the processes for a user are separated into three
categories:

SYSTEM Segments shared by all processes.

EXCLUSIVE Segments used by the set of processes belonging to the
specified user.

SHARED Segments shared by several users.

The global statistics for the specified user is the sum of each of the following
fields: Inuse, Pin, Pgsp, and Virtual of the segment categories SYSTEM,
EXCLUSIVE, and SHARED.

Source segment and mapping segment (-m)
The -m optional flag displays information about source segment and mapping
segment (Example 5-38).

Example 5-38 svmon -U user -m
svmon -U stuart -m

===
User Inuse Pin Pgsp Virtual
stuart 26975 1622 1800 10588

...
SYSTEM segments Inuse Pin Pgsp Virtual
 2979 1594 1659 4561

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1594 1659 4561

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 19217 28 125 415

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 7acd - pers large file /dev/datalv:17855 12316 0 - -
 8312 - pers /dev/hd1:376834 6575 0 - -
 8b33 2 work process private 27 2 0 27
...(lines omitted)...
 c9b9 1 pers code,/dev/hd2:6221 3 0 - -
 cf98 f work shared library data 1 0 1 2
 Chapter 5. Memory performance tools 337

 3c47 - pers /dev/hd1:36880 0 0 - -
 a236 f work shared library data 0 0 3 6
 fa1d - pers /dev/hd1:37076 0 0 - -
 5a29 f work shared library data 0 0 3 6
 d198 f work shared library data 0 0 3 6
 8ab3 f work shared library data 0 0 3 5

...
SHARED segments Inuse Pin Pgsp Virtual
 4779 0 16 5612

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 e01c d work shared library text 4711 0 16 5612
 28a5 1 pers code,/dev/hd2:6244 57 0 - -
 25e4 1 pers code,/dev/hd2:6194 8 0 - -
 4869 - pers /dev/hd2:21013 2 0 - -
 5248 - pers /dev/hd1:280607 1 0 - -
 a5d4 - pers /dev/hd1:376833 0 0 - -

All processes belonging to a user (-d)
The -d optional flag displays, for a given entity, the memory statistics of the
processes belonging to the specified user. With the -d flag is specified, the
statistics are followed by the information about all the processes run by the
specified user. The svmon command displays information about the segments
used by these processes. This set of segments are separated into three
categories; segments that are flagged system by the Virtual Memory Manager
(VMM) , segments that are only used by the set of processes belonging to the
specified user, and segments that are shared between several users
(Example 5-39).

Example 5-39 svmon -U user -d
svmon -U stuart -d

===
User Inuse Pin Pgsp Virtual
stuart 26980 1622 1789 10588

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
 27502 cpio 26619 1596 1690 10225 N N
 32260 -ksh 7793 1596 1690 10216 N N
...(lines omitted)...
 4284 -ksh 7753 1596 1689 10192 N N
 25112 -ksh 7753 1596 1689 10192 N N
 32698 expr 7701 1596 1676 10182 N N

...
338 AIX 5L Performance Tools Handbook

SYSTEM segments Inuse Pin Pgsp Virtual
 2979 1594 1659 4561

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1594 1659 4561

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 19222 28 114 415

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 7acd - pers large file /dev/datalv:17855 12311 0 - -
 8312 - pers /dev/hd1:376834 6573 0 - -
 8b33 2 work process private 27 2 0 27
...(lines omitted)...
 c9b9 1 pers code,/dev/hd2:6221 3 0 - -
 cf98 f work shared library data 1 0 1 2
 8ab3 f work shared library data 0 0 3 5
 3c47 - pers /dev/hd1:36880 0 0 - -
 5a29 f work shared library data 0 0 3 6
 fa1d - pers /dev/hd1:37076 0 0 - -
 a236 f work shared library data 0 0 3 6
 d198 f work shared library data 0 0 3 6

...
SHARED segments Inuse Pin Pgsp Virtual
 4779 0 16 5612

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 e01c d work shared library text 4711 0 16 5612
 28a5 1 pers code,/dev/hd2:6244 57 0 - -
 25e4 1 pers code,/dev/hd2:6194 8 0 - -
 4869 - pers /dev/hd2:21013 2 0 - -
 5248 - pers /dev/hd1:280607 1 0 - -
 a5d4 - pers /dev/hd1:376833 0 0 - -

Other processes also using segments (-l)
The -l optional flag shows, for each displayed segment, the list of process
identifiers that use the segment and the user the process belongs to. For special
segments a label is displayed instead of the list of process identifiers. With the -l
flag specified, each shared segment is followed by the list of process identifiers
that use the segment. Beside the process identifier, the user which started it is
also displayed (Example 5-40).

Example 5-40 svmon -U user -l
svmon -U stuart -l

===
 Chapter 5. Memory performance tools 339

User Inuse Pin Pgsp Virtual
stuart 26976 1622 1783 10588

...
SYSTEM segments Inuse Pin Pgsp Virtual
 2979 1594 1659 4561

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1594 1659 4561

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 19218 28 108 415

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 7acd - pers large file /dev/datalv:17855 12306 0 - -
 8312 - pers /dev/hd1:376834 6565 0 - -
 8b33 2 work process private 27 2 0 27
...(lines omitted)...
 c9b9 1 pers code,/dev/hd2:6221 3 0 - -
 cf98 f work shared library data 2 0 1 2
 8ab3 f work shared library data 0 0 3 5
 3c47 - pers /dev/hd1:36880 0 0 - -
 5a29 f work shared library data 0 0 3 6
 a236 f work shared library data 0 0 3 6
 fa1d - pers /dev/hd1:37076 0 0 - -
 d198 f work shared library data 0 0 3 6

...
SHARED segments Inuse Pin Pgsp Virtual
 4779 0 16 5612

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 e01c d work shared library text 4711 0 16 5612
 Shared library text segment
 28a5 1 pers code,/dev/hd2:6244 57 0 - -
 pid:32260 user: stuart
 pid:31296 user: root
 pid:30210 user: stuart
 pid:29160 user: stuart
 pid:28768 user: fred
 pid:28540 user: fred
 pid:28264 user: stuart
 pid:27854 user: fred
 pid:26726 user: root
 pid:26518 user: fred
...(lines omitted)...
 a5d4 - pers /dev/hd1:376833 0 0 - -
 pid:25626 user: fred
340 AIX 5L Performance Tools Handbook

 pid:17860 user: stuart

Total number of virtual pages (-v)
The optional -v flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages in virtual space (virtual pages
include real memory and paging space pages) (Example 5-41).

Example 5-41 svmon -U user -v
svmon -U stuart -v

===
User Inuse Pin Pgsp Virtual
stuart 26959 1622 1782 10588

...
SYSTEM segments Inuse Pin Pgsp Virtual
 2979 1594 1659 4561

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1594 1659 4561

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 19201 28 107 415

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 6b0f 2 work process private 23 2 10 31
 1a2 2 work process private 25 2 12 30
...(lines omitted)...
 cf98 f work shared library data 2 0 0 2
 8312 - pers /dev/hd1:376834 6554 0 - -
 fa1d - pers /dev/hd1:37076 0 0 - -
 3c47 - pers /dev/hd1:36880 0 0 - -
 7acd - pers large file /dev/datalv:17855 12300 0 - -
 c9b9 1 pers code,/dev/hd2:6221 3 0 - -

...
SHARED segments Inuse Pin Pgsp Virtual
 4779 0 16 5612

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 e01c d work shared library text 4711 0 16 5612
 a5d4 - pers /dev/hd1:376833 0 0 - -
 5248 - pers /dev/hd1:280607 1 0 - -
 4869 - pers /dev/hd2:21013 2 0 - -
 28a5 1 pers code,/dev/hd2:6244 57 0 - -
 25e4 1 pers code,/dev/hd2:6194 8 0 - -
 Chapter 5. Memory performance tools 341

Total number of reserved paging space pages (-g)
The -g optional flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages reserved or used on paging space
(Example 5-42).

Example 5-42 svmon -U user -g
svmon -U stuart -g

===
User Inuse Pin Pgsp Virtual
stuart 26970 1622 1782 10551

...
SYSTEM segments Inuse Pin Pgsp Virtual
 2979 1594 1659 4561

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1594 1659 4561

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 19212 28 107 378

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 57cb 2 work process private 25 2 15 27
 1a2 2 work process private 25 2 12 30
 ea3f 2 work process private 4 2 11 13
 ba35 2 work process private 4 2 11 13
 6b0f 2 work process private 23 2 10 31
...(lines omitted)...
 bb15 f work shared library data 0 0 0 0
 7acd - pers large file /dev/datalv:17855 12325 0 - -
 8312 - pers /dev/hd1:376834 6577 0 - -
 3c47 - pers /dev/hd1:36880 0 0 - -
 fa1d - pers /dev/hd1:37076 0 0 - -
 c9b9 1 pers code,/dev/hd2:6221 3 0 - -

...
SHARED segments Inuse Pin Pgsp Virtual
 4779 0 16 5612

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 e01c d work shared library text 4711 0 16 5612
 5248 - pers /dev/hd1:280607 1 0 - -
 a5d4 - pers /dev/hd1:376833 0 0 - -
 4869 - pers /dev/hd2:21013 2 0 - -
 25e4 1 pers code,/dev/hd2:6194 8 0 - -
 28a5 1 pers code,/dev/hd2:6244 57 0 - -
342 AIX 5L Performance Tools Handbook

Total number of pinned pages (-p)
The -p optional flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages pinned (Example 5-43).

Example 5-43 svmon -U user -p
svmon -U stuart -p

===
User Inuse Pin Pgsp Virtual
stuart 26817 1618 1804 10546

...
SYSTEM segments Inuse Pin Pgsp Virtual
 2979 1594 1659 4561

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1594 1659 4561

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 19056 24 129 373

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 ea3f 2 work process private 4 2 11 13
 2046 2 work process private 13 2 0 13
...(lines omitted)...
 7acd - pers large file /dev/datalv:17855 12256 0 - -
 d198 f work shared library data 0 0 3 6
 3c47 - pers /dev/hd1:36880 0 0 - -
 8312 - pers /dev/hd1:376834 6498 0 - -
 fb1d f work shared library data 14 0 5 21
 cf98 f work shared library data 2 0 0 2

...
SHARED segments Inuse Pin Pgsp Virtual
 4782 0 16 5612

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 4869 - pers /dev/hd2:21013 2 0 - -
 28a5 1 pers code,/dev/hd2:6244 57 0 - -
 e01c d work shared library text 4711 0 16 5612
 c9b9 1 pers code,/dev/hd2:6221 3 0 - -
 5248 - pers /dev/hd1:280607 1 0 - -
 25e4 1 pers code,/dev/hd2:6194 8 0 - -
 a5d4 - pers /dev/hd1:376833 0 0 - -
 Chapter 5. Memory performance tools 343

Total number of real memory pages (-u)
The -u optional flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages in real memory (Example 5-44).

Example 5-44 svmon -U user -u
svmon -U stuart -u

===
User Inuse Pin Pgsp Virtual
stuart 26749 1616 1789 10501

...
SYSTEM segments Inuse Pin Pgsp Virtual
 2979 1594 1659 4561

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1594 1659 4561

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 18991 22 114 328

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 7acd - pers large file /dev/datalv:17855 12246 0 - -
 8312 - pers /dev/hd1:376834 6488 0 - -
 aa3 2 work process private 27 2 8 27
...(lines omitted)...
 fa1d - pers /dev/hd1:37076 0 0 - -
 3c47 - pers /dev/hd1:36880 0 0 - -
 5a29 f work shared library data 0 0 3 6
 d198 f work shared library data 0 0 3 6

...
SHARED segments Inuse Pin Pgsp Virtual
 4779 0 16 5612

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 e01c d work shared library text 4711 0 16 5612
 28a5 1 pers code,/dev/hd2:6244 57 0 - -
 25e4 1 pers code,/dev/hd2:6194 8 0 - -
 4869 - pers /dev/hd2:21013 2 0 - -
 5248 - pers /dev/hd1:280607 1 0 - -
 a5d4 - pers /dev/hd1:376833 0 0 - -
344 AIX 5L Performance Tools Handbook

Client segments only (-c)
The -c optional flag indicates that only client segments are to be included in the
statistics. Note that Example 5-45 shows that the specified user does not use any
client segments.

Example 5-45 svmon -U user -c
svmon -U stuart -c

===
User Inuse Pin Pgsp Virtual
stuart 0 0 0 0

Example 5-46 shows a user reading files in a J2 filesystem.

Example 5-46 svmon -U user -c
svmon -cU baluba

===
User Inuse Pin Pgsp Virtual
baluba 22808 0 0 0

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 22808 0 0 0

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 ce59 - clnt 22808 0 - -

Persistent segments only (-f)
The -f optional flag indicates that only persistent segments (files) are to be
included in the statistics (Example 5-47).

Example 5-47 svmon -U user -f
svmon -U stuart -f

===
User Inuse Pin Pgsp Virtual
stuart 18802 0 0 0

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 18734 0 0 0

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 7acd - pers large file /dev/datalv:17855 12246 0 - -
 8312 - pers /dev/hd1:376834 6488 0 - -
 3c47 - pers /dev/hd1:36880 0 0 - -
 fa1d - pers /dev/hd1:37076 0 0 - -
 Chapter 5. Memory performance tools 345

...
SHARED segments Inuse Pin Pgsp Virtual
 68 0 0 0

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 28a5 1 pers code,/dev/hd2:6244 57 0 - -
 25e4 1 pers code,/dev/hd2:6194 8 0 - -
 4869 - pers /dev/hd2:21013 2 0 - -
 5248 - pers /dev/hd1:280607 1 0 - -
 a5d4 - pers /dev/hd1:376833 0 0 - -

Working segments only (-w)
The -w optional flag indicates that only working segments are to be included in
the statistics (Example 5-48).

Example 5-48 svmon -U user -w
svmon -U stuart -w

===
User Inuse Pin Pgsp Virtual
stuart 8119 1624 1788 10674

...
SYSTEM segments Inuse Pin Pgsp Virtual
 2979 1594 1659 4561

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1594 1659 4561

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 429 30 113 501

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 8032 2 work process private 27 2 9 27
 aa3 2 work process private 27 2 8 27
 eb1f 2 work process private 27 2 0 27
 322 2 work process private 26 2 0 26
...(lines omitted)...
 5a29 f work shared library data 0 0 3 6
 d198 f work shared library data 0 0 3 6

...
SHARED segments Inuse Pin Pgsp Virtual
 4711 0 16 5612

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
346 AIX 5L Performance Tools Handbook

 e01c d work shared library text 4711 0 16 5612

System segments only (-s)
The -s optional flag indicates that only system segments are to be included in the
statistics (Example 5-49).

Example 5-49 svmon -U user -s
svmon -U stuart -s

===
User Inuse Pin Pgsp Virtual
stuart 2979 1594 1659 4561

...
SYSTEM segments Inuse Pin Pgsp Virtual
 2979 1594 1659 4561

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1594 1659 4561

Non-system segments only (-n)
The -n optional flag indicates that only non-system segments are to be included
in the statistics (Example 5-50).

Example 5-50 svmon -U user -n
svmon -U stuart -n

===
User Inuse Pin Pgsp Virtual
stuart 23833 24 161 5984

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 19054 24 145 372

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 7acd - pers large file /dev/datalv:17855 12323 0 - -
 8312 - pers /dev/hd1:376834 6441 0 - -
 8032 2 work process private 26 2 16 27
 1a2 2 work process private 25 2 12 30
...(lines omitted)...
 5a29 f work shared library data 0 0 3 6
 fa1d - pers /dev/hd1:37076 0 0 - -
 8ab3 f work shared library data 0 0 3 5

...
SHARED segments Inuse Pin Pgsp Virtual
 Chapter 5. Memory performance tools 347

 4779 0 16 5612

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 e01c d work shared library text 4711 0 16 5612
 28a5 1 pers code,/dev/hd2:6244 57 0 - -
 25e4 1 pers code,/dev/hd2:6194 8 0 - -
 4869 - pers /dev/hd2:21013 2 0 - -
 5248 - pers /dev/hd1:280607 1 0 - -
 a5d4 - pers /dev/hd1:376833 0 0 - -

Allocated page ranges within segments (-r)
The -r optional flag displays the range(s) within the segment pages which have
been allocated. A working segment may have two ranges because pages are
allocated by starting from both ends and moving towards the middle. With the -r
flag specified, each segment is followed by the range(s) within the segment
where pages have been allocated (Example 5-51).

Example 5-51 svmon -U stuart -r
svmon -U stuart -r

===
User Inuse Pin Pgsp Virtual
stuart 26709 1618 1790 10487

...
SYSTEM segments Inuse Pin Pgsp Virtual
 2979 1594 1659 4561

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1594 1659 4561
 Addr Range: 0..23243

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 18951 24 115 314

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 7acd - pers large file /dev/datalv:17855 12344 0 - -
 Addr Range: 0..25919
 8312 - pers /dev/hd1:376834 6368 0 - -
 Addr Range: 0..8765
 8032 2 work process private 26 2 16 27
 Addr Range: 0..103 : 65310..65535
 6b0f 2 work process private 25 2 8 31
 Addr Range: 0..34 : 65310..65535
...(lines omitted)...
 9330 f work shared library data 0 0 0 0
 Addr Range: 0..196
348 AIX 5L Performance Tools Handbook

 aa57 f work shared library data 0 0 0 0
 Addr Range: 0..196

...
SHARED segments Inuse Pin Pgsp Virtual
 4779 0 16 5612

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 e01c d work shared library text 4711 0 16 5612
 Addr Range: 0..60123
 28a5 1 pers code,/dev/hd2:6244 57 0 - -
 Addr Range: 0..58
 25e4 1 pers code,/dev/hd2:6194 8 0 - -
 Addr Range: 0..7
 4869 - pers /dev/hd2:21013 2 0 - -
 Addr Range: 0..1
 5248 - pers /dev/hd1:280607 1 0 - -
 Addr Range: 0..0
 a5d4 - pers /dev/hd1:376833 0 0 - -
 Addr Range: 0..0

How to analyze processes reports
To monitor processes memory utilization with svmon, the -P flag can be used. In
the following series of examples we will show how svmon will report the memory
usage for a process by using the different optional flags with the -P flag. Without
any process specified, the -P option reports on all processes.

The column headings in a process report are:

Pid Indicates the process ID.

Command Indicates the command the process is running.

Inuse Indicates the total number of pages in real memory in
segments that are used by the process.

Pin Indicates the total number of pages pinned in segments
that are used by the process.

Pgsp Indicates the total number of pages reserved or used on
paging space by segments that are used by the process.

Virtual Indicates the total number of pages allocated in the
process virtual space.

64-bit Indicates if the process is a 64 bit process (Y) or a 32 bit
process (N).

Mthrd Indicates if the process is multi-threaded (Y) or not (N).
 Chapter 5. Memory performance tools 349

Vsid Indicates the virtual segment ID. Identifies a uniq segment
in the VMM.

Esid Indicates the effective segment ID. The Esid is only valid
when the segment belongs to the address space of the
process. When provided, it indicates how the segment is
used by the process. If the Vsid segment is mapped by
several processes but with different Esid values, then this
field contains '-'. In that case, the exact Esid values can
be obtained through the -P flag applied on each of the
process identifiers using the segment. A '-' also displays
for segments used to manage open files or multi-threaded
structures because these segments are not part of the
user address space of the process.

Type Identifies the type of the segment; pers indicates a
persistent segment, work indicates a working segment,
clnt indicates a client segment, map indicates a mapped
segment and rmap indicates a real memory mapping
segment.

Description Gives a textual description of the segment. The content of
this column depends on the segment type and usage:

persistent JFS files in the format: <device>:<inode>,
such as /dev/hd1:123.

working data areas of processes and shared
memory segments dependent on the role of
the segment based on the VSID and ESID.

mapping mapped to sid source sid.
client NFS, CD-ROM and J2 files, dependent on

the role of the segment based on the VSID
and ESID.

rmapping I/O space mapping dependent on the role of
the segment based on the VSID and ESID.

Inuse Indicates the number of pages in real memory in this
segment.

Pin Indicates the number of pages pinned in this segment.

Pgsp Indicates the number of pages used on paging space by
this segment. This field is relevant only for working
segments.

Virtual Indicates the number of pages allocated for the virtual
space of the segment.

Once process information is displayed, svmon displays information about all the
segments the process uses.
350 AIX 5L Performance Tools Handbook

Source segment and mapping segment (-m)
The -m optional flag displays information about source segment and mapping
segment (Example 5-52).

Example 5-52 svmon -P pid -m
svmon -P 22674 -m

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
 22674 java 29333 1611 2756 32404 N Y

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 1602 3 work shmat/mmap 8351 0 341 8654
 e01c d work shared library text 4711 0 16 5612
 5eaa 4 work shmat/mmap 4399 0 516 4887
 1522 6 work shmat/mmap 4340 0 9 4349
 0 0 work kernel seg 2979 1593 1659 4561
 3606 5 work shmat/mmap 2271 0 184 2455
 aef4 7 work shmat/mmap 1648 0 0 1648
 31c4 - pers /dev/hd2:69829 397 0 - -
 f8bd f work shared library data 84 0 11 99
 1e03 2 work process private 77 2 17 93
 a056 - work 43 16 3 46
...(lines omitted)...
 e1de - pers /dev/hd2:69730 0 0 - -
 5f4a a work shmat/mmap 0 0 0 0
 1e2 - pers /dev/hd2:69726 0 0 - -

Other processes also using segments (-l)
The -l optional flag shows, for each displayed segment, the list of process
identifiers that use the segment. For special segments a label is displayed
instead of the list of process identifiers (Example 5-53).

Example 5-53 svmon -P pid -l
svmon -P 22674 -l

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
 22674 java 29333 1611 2756 32404 N Y

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 1602 3 work shmat/mmap 8351 0 341 8654
 pid(s)=22674
 e01c d work shared library text 4711 0 16 5612
 Shared library text segment
 5eaa 4 work shmat/mmap 4399 0 516 4887
 pid(s)=22674
 1522 6 work shmat/mmap 4340 0 9 4349
 Chapter 5. Memory performance tools 351

 pid(s)=22674
 0 0 work kernel seg 2979 1593 1659 4561
 System segment
...(lines omitted)...
 f59e - pers /dev/hd2:12302 1 0 - -
 pid(s)=31296, 24524, 22674, 21478, 21222, 19622, 13456
 718c - pers /dev/hd2:69837 1 0 - -
 pid(s)=22674
...(lines omitted)...
 31e4 - pers /dev/hd2:69733 0 0 - -
 pid(s)=22674
 e1de - pers /dev/hd2:69730 0 0 - -
 pid(s)=22674
 5f4a a work shmat/mmap 0 0 0 0
 pid(s)=22674
 1e2 - pers /dev/hd2:69726 0 0 - -
 pid(s)=22674

Total number of virtual pages (-v)
The -v optional flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages in virtual space (virtual pages
include real memory and paging space pages) (Example 5-54).

Example 5-54 svmon -P 22674 -v
svmon -P 22674 -v

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
 22674 java 29333 1611 2756 32404 N Y

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 1602 3 work shmat/mmap 8351 0 341 8654
 e01c d work shared library text 4711 0 16 5612
 5eaa 4 work shmat/mmap 4399 0 516 4887
 0 0 work kernel seg 2979 1593 1659 4561
 1522 6 work shmat/mmap 4340 0 9 4349
 3606 5 work shmat/mmap 2271 0 184 2455
 aef4 7 work shmat/mmap 1648 0 0 1648
 f8bd f work shared library data 84 0 11 99
 1e03 2 work process private 77 2 17 93
 a056 - work 43 16 3 46
 60ee 8 work shmat/mmap 0 0 0 0
...(lines omitted)...
 640c - pers /dev/hd2:30760 1 0 - -
 760e 1 pers code,/dev/hd2:18575 4 0 - -
 f59e - pers /dev/hd2:12302 1 0 - -
352 AIX 5L Performance Tools Handbook

Total number of reserved paging space pages (-g)
The -g optional flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages reserved or used on paging space
(Example 5-55).

Example 5-55 svmon -P 22674 -g
svmon -P 22674 -g

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
 22674 java 29333 1611 2756 32404 N Y

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1593 1659 4561
 5eaa 4 work shmat/mmap 4399 0 516 4887
 1602 3 work shmat/mmap 8351 0 341 8654
 3606 5 work shmat/mmap 2271 0 184 2455
 1e03 2 work process private 77 2 17 93
 e01c d work shared library text 4711 0 16 5612
 f8bd f work shared library data 84 0 11 99
 1522 6 work shmat/mmap 4340 0 9 4349
 a056 - work 43 16 3 46
 60ee 8 work shmat/mmap 0 0 0 0
...(lines omitted)...
 6e0d - pers /dev/hd2:69835 0 0 - -
 760e 1 pers code,/dev/hd2:18575 4 0 - -
 f59e - pers /dev/hd2:12302 1 0 - -
 640c - pers /dev/hd2:30760 1 0 - -
 1e2 - pers /dev/hd2:69726 0 0 - -
 31e4 - pers /dev/hd2:69733 0 0 - -
 af74 - pers /dev/hd2:69655 5 0 - -

Total number of pinned pages (-p)
The -p optional flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages pinned (Example 5-56).

Example 5-56 svmon -P pid -p
svmon -P 22674 -p

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
 22674 java 29333 1611 2756 32404 N Y

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1593 1659 4561
 a056 - work 43 16 3 46
 1e03 2 work process private 77 2 17 93
 1080 - pers /dev/hd2:69742 1 0 - -
 Chapter 5. Memory performance tools 353

 f8bd f work shared library data 84 0 11 99
 60ee 8 work shmat/mmap 0 0 0 0
...(lines omitted)...
 5f4a a work shmat/mmap 0 0 0 0
 af74 - pers /dev/hd2:69655 5 0 - -

Total number of real memory pages (-u)
The optional -u flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages in real memory (Example 5-57).

Example 5-57 svmon -P pid -u
svmon -P 22674 -u

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
 22674 java 29333 1611 2756 32404 N Y

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 1602 3 work shmat/mmap 8351 0 341 8654
 e01c d work shared library text 4711 0 16 5612
 5eaa 4 work shmat/mmap 4399 0 516 4887
 1522 6 work shmat/mmap 4340 0 9 4349
 0 0 work kernel seg 2979 1593 1659 4561
 3606 5 work shmat/mmap 2271 0 184 2455
 aef4 7 work shmat/mmap 1648 0 0 1648
 31c4 - pers /dev/hd2:69829 397 0 - -
 f8bd f work shared library data 84 0 11 99
 1e03 2 work process private 77 2 17 93
 a056 - work 43 16 3 46
...(lines omitted)...
 5f4a a work shmat/mmap 0 0 0 0
 1e2 - pers /dev/hd2:69726 0 0 - -

Client segments only (-c)
The optional -c flag indicates that only client segments are to be included in the
statistics. Note that Example 5-58 shows that the specified process does not use
any client segments:

Example 5-58 svmon -P pid -c
svmon -P 22674 -c

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
 22674 java 0 0 0 0 N Y

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
354 AIX 5L Performance Tools Handbook

Example 5-59 shows a group of processes that are reading files in a J2
filesystem (the process is the dd command and dd forks off a child, which is why
there are two processes using the segment).

Example 5-59 svmon -lcp
svmon -lcP 19518

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
 19518 dd 22800 0 0 0 N N

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 ce59 - clnt 22800 0 - -
 pid(s)=22652, 19518

Persistent segments only (-f)
The optional -f flag indicates that only persistent segments (files) are to be
included in the statistics (Example 5-60).

Example 5-60 svmon -P pid -f
svmon -P 22674 -f

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
 22674 java 430 0 0 0 N Y

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 31c4 - pers /dev/hd2:69829 397 0 - -
 f9dd - pers /dev/hd2:69731 8 0 - -
 9fd2 - pers /dev/hd2:69654 5 0 - -
 af74 - pers /dev/hd2:69655 5 0 - -
 d9d9 - pers /dev/hd2:69728 4 0 - -
 760e 1 pers code,/dev/hd2:18575 4 0 - -
...(lines omitted)...
 1e2 - pers /dev/hd2:69726 0 0 - -
 c9db - pers /dev/hd2:69735 0 0 - -

Working segments only (-w)
The optional -w flag indicates that only working segments are to be included in
the statistics (Example 5-61).

Example 5-61 svmon -P pid -w
svmon -P 22674 -w

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
 22674 java 28903 1611 2756 32404 N Y
 Chapter 5. Memory performance tools 355

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 1602 3 work shmat/mmap 8351 0 341 8654
 e01c d work shared library text 4711 0 16 5612
 5eaa 4 work shmat/mmap 4399 0 516 4887
 1522 6 work shmat/mmap 4340 0 9 4349
 0 0 work kernel seg 2979 1593 1659 4561
 3606 5 work shmat/mmap 2271 0 184 2455
 aef4 7 work shmat/mmap 1648 0 0 1648
 f8bd f work shared library data 84 0 11 99
 1e03 2 work process private 77 2 17 93
 a056 - work 43 16 3 46
 5f4a a work shmat/mmap 0 0 0 0
 60ee 8 work shmat/mmap 0 0 0 0
 cdf8 9 work shmat/mmap 0 0 0 0

System segments only (-s)
The optional -s flag indicates that only system segments are to be included in the
statistics (Example 5-62).

Example 5-62 svmon -P pid -s
svmon -P 22674 -s

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
 22674 java 3022 1609 1662 4607 N Y

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1593 1659 4561
 a056 - work 43 16 3 46

Non-system segments only (-n)
The optional -n flag indicates that only non-system segments are to be included
in the statistics (Example 5-63).

Example 5-63 svmon -P pid -n
svmon -P 22674 -n

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
 22674 java 26311 2 1094 27797 N Y

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 1602 3 work shmat/mmap 8351 0 341 8654
 e01c d work shared library text 4711 0 16 5612
 5eaa 4 work shmat/mmap 4399 0 516 4887
 1522 6 work shmat/mmap 4340 0 9 4349
356 AIX 5L Performance Tools Handbook

 3606 5 work shmat/mmap 2271 0 184 2455
 aef4 7 work shmat/mmap 1648 0 0 1648
 31c4 - pers /dev/hd2:69829 397 0 - -
 f8bd f work shared library data 84 0 11 99
 1e03 2 work process private 77 2 17 93
...(lines omitted)...
 cdf8 9 work shmat/mmap 0 0 0 0
 c9db - pers /dev/hd2:69735 0 0 - -
 60ee 8 work shmat/mmap 0 0 0 0
 5f4a a work shmat/mmap 0 0 0 0
 c1da - pers /dev/hd2:69729 0 0 - -

Allocated page ranges within segments (-r)
The -r optional flag displays the range(s) within the segment pages that have
been allocated (Example 5-64). A working segment may have two ranges
because pages are allocated by starting from both ends and moving towards the
middle.

Example 5-64 svmon -P pid -r
svmon -P 22674 -r

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
 22674 java 29333 1611 2756 32404 N Y

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 1602 3 work shmat/mmap 8351 0 341 8654
 Addr Range: 0..65518
 e01c d work shared library text 4711 0 16 5612
 Addr Range: 0..60123
 5eaa 4 work shmat/mmap 4399 0 516 4887
 Addr Range: 0..65530
 1522 6 work shmat/mmap 4340 0 9 4349
 Addr Range: 0..65530
 0 0 work kernel seg 2979 1593 1659 4561
 Addr Range: 0..23243
 3606 5 work shmat/mmap 2271 0 184 2455
 Addr Range: 0..65525
...(lines omitted)...
 5f4a a work shmat/mmap 0 0 0 0
 1e2 - pers /dev/hd2:69726 0 0 - -
 Addr Range: 0..14
 Chapter 5. Memory performance tools 357

How to analyze the command reports
To monitor a command’s memory utilization with svmon, the -C flag can be used.
In the following series of examples we will show how svmon will report the
memory usage for commands by using the different optional flags with the -C
flag.

The column headings in a command report are:

Command Indicates the command name.

Inuse Indicates the total number of pages in real memory in
segments that are used by the command (for all
processes running the command).

Pin Indicates the total number of pages pinned in segments
that are used by the command (for all processes running
the command).

Pgsp Indicates the total number of pages reserved or used on
paging space by segments that are used by the
command.

Virtual Indicates the total number of pages allocated in the virtual
space of the command.

Vsid Indicates the virtual segment ID. Identifies a uniq segment
in the VMM.

Esid Indicates the effective segment ID. The Esid is only valid
when the segment belongs to the address space of the
process. When provided, it indicates how the segment is
used by the process. If the Vsid segment is mapped by
several processes but with different Esid values, then this
field contains '-'. In that case, the exact Esid values can
be obtained through the -P flag applied on each of the
process identifiers using the segment. A '-' also displays
for segments used to manage open files or multi-threaded
structures because these segments are not part of the
user address space of the process.

Type Identifies the type of the segment; pers indicates a
persistent segment, work indicates a working segment,
clnt indicates a client segment, map indicates a mapped
segment, and rmap indicates a real memory mapping
segment.

Description Gives a textual description of the segment. The content of
this column depends on the segment type and usage:
358 AIX 5L Performance Tools Handbook

persistent JFS files in the format: <device>:<inode>,
such as /dev/hd1:123.

working data areas of processes and shared
memory segments, dependent on the role of
the segment based on the VSID and ESID.

mapping mapped to sid source sid.
client NFS, CD-ROM, and J2 files, dependent on

the role of the segment based on the VSID
and ESID.

rmapping I/O space mapping dependent on the role of
the segment based on the VSID and ESID.

Inuse Indicates the number of pages in real memory in this
segment.

Pin Indicates the number of pages pinned in this segment.

Pgsp Indicates the number of pages used on paging space by
this segment. This field is relevant only for working
segments.

Virtual Indicates the number of pages allocated for the virtual
space of the segment.

The segments used by the command are separated into three categories:

SYSTEM Segments shared by all processes.

EXCLUSIVE Segments used by the specified command (process).

SHARED Segments shared by several commands (processes).

The global statistics for the specified command is the sum of each of the
following fields; Inuse, Pin, Pgsp, and Virtual of the segment categories SYSTEM,
EXCLUSIVE, and SHARED.

Source segment and mapping segment (-m)
The -m optional flag displays information about source segment and mapping
segment when a segment is mapping a source segment (Example 5-65).

Example 5-65 svmon -C command -m
svmon -C java -m

===
Command Inuse Pin Pgsp Virtual
java 29332 1610 2756 32404

...
SYSTEM segments Inuse Pin Pgsp Virtual
 3022 1608 1662 4607
 Chapter 5. Memory performance tools 359

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1592 1659 4561
 a056 - work 43 16 3 46

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 21597 2 1078 22185

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 1602 3 work shmat/mmap 8351 0 341 8654
 5eaa 4 work shmat/mmap 4399 0 516 4887
 1522 6 work shmat/mmap 4340 0 9 4349
 3606 5 work shmat/mmap 2271 0 184 2455
 aef4 7 work shmat/mmap 1648 0 0 1648
 31c4 - pers /dev/hd2:69829 397 0 - -
 f8bd f work shared library data 84 0 11 99
 1e03 2 work process private 77 2 17 93
...(lines omitted)...
 31e4 - pers /dev/hd2:69733 0 0 - -
 1e2 - pers /dev/hd2:69726 0 0 - -
 5f4a a work shmat/mmap 0 0 0 0
 60ee 8 work shmat/mmap 0 0 0 0

...
SHARED segments Inuse Pin Pgsp Virtual
 4713 0 16 5612

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 e01c d work shared library text 4711 0 16 5612
 640c - pers /dev/hd2:30760 1 0 - -
 f59e - pers /dev/hd2:12302 1 0 - -

All processes running a command (-d)
The -d flag reports information about all the processes running the specified
command. Next svmon displays information about the segments used by those
processes. This set of segments is separated into three categories; segments
flagged system by the VMM segments only used by the set of processes running
the command, and segments shared between several command names
(Example 5-66).

Example 5-66 svmon -C command -d
svmon -C ksh -d

===
Command Inuse Pin Pgsp Virtual
ksh 5124 1593 2178 9082

360 AIX 5L Performance Tools Handbook

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd
 22096 -ksh 4696 1579 1830 8383 N N
 24296 -ksh 4696 1579 1830 8383 N N
 20560 ksh 4694 1579 1830 8381 N N
 15006 -ksh 4648 1579 1890 8384 N N
 17290 -ksh 4645 1579 1905 8384 N N
 20814 -ksh 4641 1579 1888 8383 N N
 9594 -ksh 4641 1579 1909 8383 N N
 17804 -ksh 4639 1579 1906 8382 N N

...
SYSTEM segments Inuse Pin Pgsp Virtual
 2817 1577 1804 4446

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2817 1577 1804 4446

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 528 16 348 799

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 8850 2 work process private 77 2 0 77
 b856 2 work process private 77 2 0 77
 df9b 2 work process private 77 2 0 77
...(lines omitted)...
 1e23 f work shared library data 16 0 7 23
 8470 f work shared library data 16 0 12 23
 546a - pers /dev/hd4:436 1 0 - -
 5ecb - pers /dev/hd3:123 0 0 - -

...
SHARED segments Inuse Pin Pgsp Virtual
 1779 0 26 3837

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 e01c d work shared library text 1735 0 26 3837
 28a5 1 pers code,/dev/hd2:6244 42 0 - -
 4869 - pers /dev/hd2:21013 2 0 - -
 8f51 - pers /dev/hd4:435 0 0 - -
 f45e - pers /dev/hd2:12302 0 0 - -
 Chapter 5. Memory performance tools 361

Other processes also using segments (-l)
The optional -l flag shows, for each displayed segment, the list of process
identifiers that use the segment and the command the process belongs to
(Example 5-67). For special segments, a label is displayed instead of the list of
process identifiers. When the -l flag is specified, each segment in the last
category is followed by the list of process identifiers that use the segment.
Beside the process identifier, the command name it runs is also displayed.

Example 5-67 svmon -C command -l
svmon -C java -l

===
Command Inuse Pin Pgsp Virtual
java 29332 1610 2756 32404

...
SYSTEM segments Inuse Pin Pgsp Virtual
 3022 1608 1662 4607

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1592 1659 4561
 a056 - work 43 16 3 46

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 21597 2 1078 22185

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 1602 3 work shmat/mmap 8351 0 341 8654
 5eaa 4 work shmat/mmap 4399 0 516 4887
 1522 6 work shmat/mmap 4340 0 9 4349
 3606 5 work shmat/mmap 2271 0 184 2455
 aef4 7 work shmat/mmap 1648 0 0 1648
 31c4 - pers /dev/hd2:69829 397 0 - -
 f8bd f work shared library data 84 0 11 99
 1e03 2 work process private 77 2 17 93
...(lines omitted)...
 1e2 - pers /dev/hd2:69726 0 0 - -
 5f4a a work shmat/mmap 0 0 0 0
 60ee 8 work shmat/mmap 0 0 0 0

...
SHARED segments Inuse Pin Pgsp Virtual
 4713 0 16 5612

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 e01c d work shared library text 4711 0 16 5612
 Shared library text segment
 640c - pers /dev/hd2:30760 1 0 - -
362 AIX 5L Performance Tools Handbook

 pid:22674 cmd: java
 pid:15998 cmd: bin
 f59e - pers /dev/hd2:12302 1 0 - -
 pid:31296 cmd: ksh
 pid:24524 cmd: ksh
 pid:22674 cmd: java
 pid:21478 cmd: xmwlm
 pid:21222 cmd: ksh
 pid:19622 cmd: ksh
 pid:13456 cmd: ksh

Total number of virtual pages (-v)
The -v optional flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages in virtual space (virtual pages
include real memory and paging space pages) (Example 5-68).

Example 5-68 svmon -C command -v
svmon -C java -v

===
Command Inuse Pin Pgsp Virtual
java 29332 1610 2756 32404

...
SYSTEM segments Inuse Pin Pgsp Virtual
 3022 1608 1662 4607

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1592 1659 4561
 a056 - work 43 16 3 46

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 21597 2 1078 22185

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 1602 3 work shmat/mmap 8351 0 341 8654
 5eaa 4 work shmat/mmap 4399 0 516 4887
 1522 6 work shmat/mmap 4340 0 9 4349
 3606 5 work shmat/mmap 2271 0 184 2455
 aef4 7 work shmat/mmap 1648 0 0 1648
 f8bd f work shared library data 84 0 11 99
 1e03 2 work process private 77 2 17 93
 5f4a a work shmat/mmap 0 0 0 0
 cdf8 9 work shmat/mmap 0 0 0 0
 60ee 8 work shmat/mmap 0 0 0 0
 718c - pers /dev/hd2:69837 1 0 - -
...(lines omitted)...
 Chapter 5. Memory performance tools 363

 9fd2 - pers /dev/hd2:69654 5 0 - -
 760e 1 pers code,/dev/hd2:18575 4 0 - -

...
SHARED segments Inuse Pin Pgsp Virtual
 4713 0 16 5612

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 e01c d work shared library text 4711 0 16 5612
 640c - pers /dev/hd2:30760 1 0 - -
 f59e - pers /dev/hd2:12302 1 0 - -

Total number of reserved paging space pages (-g)
The optional -g flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages reserved or used on paging space
(Example 5-69).

Example 5-69 svmon -C command -g
svmon -C java -g

===
Command Inuse Pin Pgsp Virtual
java 29332 1610 2756 32404

...
SYSTEM segments Inuse Pin Pgsp Virtual
 3022 1608 1662 4607

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1592 1659 4561
 a056 - work 43 16 3 46

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 21597 2 1078 22185

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 5eaa 4 work shmat/mmap 4399 0 516 4887
 1602 3 work shmat/mmap 8351 0 341 8654
 3606 5 work shmat/mmap 2271 0 184 2455
 1e03 2 work process private 77 2 17 93
 f8bd f work shared library data 84 0 11 99
 1522 6 work shmat/mmap 4340 0 9 4349
 cdf8 9 work shmat/mmap 0 0 0 0
 60ee 8 work shmat/mmap 0 0 0 0
 5f4a a work shmat/mmap 0 0 0 0
 aef4 7 work shmat/mmap 1648 0 0 1648
 70ec - pers /dev/hd2:69836 1 0 - -
364 AIX 5L Performance Tools Handbook

...(lines omitted)...
 718c - pers /dev/hd2:69837 1 0 - -
 af74 - pers /dev/hd2:69655 5 0 - -

...
SHARED segments Inuse Pin Pgsp Virtual
 4713 0 16 5612

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 e01c d work shared library text 4711 0 16 5612
 640c - pers /dev/hd2:30760 1 0 - -
 f59e - pers /dev/hd2:12302 1 0 - -

Total number of pinned pages (-p)
The -p optional flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages pinned (Example 5-70).

Example 5-70 svmon -C command -p
svmon -C java -p

===
Command Inuse Pin Pgsp Virtual
java 29332 1610 2756 32404

...
SYSTEM segments Inuse Pin Pgsp Virtual
 3022 1608 1662 4607

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1592 1659 4561
 a056 - work 43 16 3 46

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 21597 2 1078 22185

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 1e03 2 work process private 77 2 17 93
 60ee 8 work shmat/mmap 0 0 0 0
 70ec - pers /dev/hd2:69836 1 0 - -
 1522 6 work shmat/mmap 4340 0 9 4349
...(lines omitted)...
 6e0d - pers /dev/hd2:69835 0 0 - -
 760e 1 pers code,/dev/hd2:18575 4 0 - -
 cdf8 9 work shmat/mmap 0 0 0 0
 5eaa 4 work shmat/mmap 4399 0 516 4887
 aef4 7 work shmat/mmap 1648 0 0 1648
 5f4a a work shmat/mmap 0 0 0 0
 Chapter 5. Memory performance tools 365

 af74 - pers /dev/hd2:69655 5 0 - -

...
SHARED segments Inuse Pin Pgsp Virtual
 4713 0 16 5612

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 640c - pers /dev/hd2:30760 1 0 - -
 e01c d work shared library text 4711 0 16 5612
 f59e - pers /dev/hd2:12302 1 0 - -

Total number of real memory pages (-u)
The -u optional flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages in real memory (Example 5-71).

Example 5-71 svmon -C command -u
svmon -C java -u

===
Command Inuse Pin Pgsp Virtual
java 29332 1610 2756 32404

...
SYSTEM segments Inuse Pin Pgsp Virtual
 3022 1608 1662 4607

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1592 1659 4561
 a056 - work 43 16 3 46

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 21597 2 1078 22185

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 1602 3 work shmat/mmap 8351 0 341 8654
 5eaa 4 work shmat/mmap 4399 0 516 4887
 1522 6 work shmat/mmap 4340 0 9 4349
 3606 5 work shmat/mmap 2271 0 184 2455
 aef4 7 work shmat/mmap 1648 0 0 1648
 31c4 - pers /dev/hd2:69829 397 0 - -
 f8bd f work shared library data 84 0 11 99
 1e03 2 work process private 77 2 17 93
 f9dd - pers /dev/hd2:69731 8 0 - -
...(lines omitted)...
 1e2 - pers /dev/hd2:69726 0 0 - -
 5f4a a work shmat/mmap 0 0 0 0
 60ee 8 work shmat/mmap 0 0 0 0
366 AIX 5L Performance Tools Handbook

...
SHARED segments Inuse Pin Pgsp Virtual
 4713 0 16 5612

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 e01c d work shared library text 4711 0 16 5612
 640c - pers /dev/hd2:30760 1 0 - -
 f59e - pers /dev/hd2:12302 1 0 - -

Client segments only (-c)
The -c optional flag indicates that only client segments are to be included in the
statistics. Example 5-72 shows that the specified process does not use any client
segments.

Example 5-72 svmon -C command -c
svmon -C java -c

===
Command Inuse Pin Pgsp Virtual
java 0 0 0 0

Example 5-73 shows that a command is using client segments. From the
following output we cannot know what kind of virtual file system it uses except
that it is only used by this command at the time of the snapshot.

Example 5-73 svmon -C command -c
svmon -cC dd

===
Command Inuse Pin Pgsp Virtual
dd 22808 0 0 0

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 22808 0 0 0

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 ce59 - clnt 22808 0 - -

Persistent segments only (-f)
The -f optional flag indicates that only persistent segments (files) are to be
included in the statistics (Example 5-74 on page 368).
 Chapter 5. Memory performance tools 367

Example 5-74 svmon -C command -f
svmon -C java -f

===
Command Inuse Pin Pgsp Virtual
java 429 0 0 0

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 427 0 0 0

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 31c4 - pers /dev/hd2:69829 397 0 - -
 f9dd - pers /dev/hd2:69731 8 0 - -
 9fd2 - pers /dev/hd2:69654 5 0 - -
 af74 - pers /dev/hd2:69655 5 0 - -
 760e 1 pers code,/dev/hd2:18575 4 0 - -
...(lines omitted)...
 1e2 - pers /dev/hd2:69726 0 0 - -
 31e4 - pers /dev/hd2:69733 0 0 - -

...
SHARED segments Inuse Pin Pgsp Virtual
 2 0 0 0

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 640c - pers /dev/hd2:30760 1 0 - -
 f59e - pers /dev/hd2:12302 1 0 - -

Working segments only (-w)
The -w optional flag indicates that only working segments are to be included in
the statistics (Example 5-75).

Example 5-75 svmon -C command -w
svmon -C java -w

===
Command Inuse Pin Pgsp Virtual
java 28903 1610 2756 32404

...
SYSTEM segments Inuse Pin Pgsp Virtual
 3022 1608 1662 4607

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1592 1659 4561
 a056 - work 43 16 3 46
368 AIX 5L Performance Tools Handbook

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 21170 2 1078 22185

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 1602 3 work shmat/mmap 8351 0 341 8654
 5eaa 4 work shmat/mmap 4399 0 516 4887
 1522 6 work shmat/mmap 4340 0 9 4349
 3606 5 work shmat/mmap 2271 0 184 2455
 aef4 7 work shmat/mmap 1648 0 0 1648
 f8bd f work shared library data 84 0 11 99
 1e03 2 work process private 77 2 17 93
 cdf8 9 work shmat/mmap 0 0 0 0
 60ee 8 work shmat/mmap 0 0 0 0
 5f4a a work shmat/mmap 0 0 0 0

...
SHARED segments Inuse Pin Pgsp Virtual
 4711 0 16 5612

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 e01c d work shared library text 4711 0 16 5612

System segments only (-s)
The -s optional flag indicates that only system segments are to be included in the
statistics (Example 5-76).

Example 5-76 svmon -C command -s
svmon -C java -s

===
Command Inuse Pin Pgsp Virtual
java 3022 1608 1662 4607

...
SYSTEM segments Inuse Pin Pgsp Virtual
 3022 1608 1662 4607

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1592 1659 4561
 a056 - work 43 16 3 46

Non-system segments only (-n)
The -n optional flag indicates that only non-system segments are to be included
in the statistics (Example 5-77 on page 370).
 Chapter 5. Memory performance tools 369

Example 5-77 svmon -C command -n
svmon -C java -n

===
Command Inuse Pin Pgsp Virtual
java 26310 2 1094 27797

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 21597 2 1078 22185

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 1602 3 work shmat/mmap 8351 0 341 8654
 5eaa 4 work shmat/mmap 4399 0 516 4887
 1522 6 work shmat/mmap 4340 0 9 4349
 3606 5 work shmat/mmap 2271 0 184 2455
 aef4 7 work shmat/mmap 1648 0 0 1648
 31c4 - pers /dev/hd2:69829 397 0 - -
 f8bd f work shared library data 84 0 11 99
 1e03 2 work process private 77 2 17 93
 f9dd - pers /dev/hd2:69731 8 0 - -
...(lines omitted)...
 1e2 - pers /dev/hd2:69726 0 0 - -
 5f4a a work shmat/mmap 0 0 0 0
 60ee 8 work shmat/mmap 0 0 0 0

...
SHARED segments Inuse Pin Pgsp Virtual
 4713 0 16 5612

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 e01c d work shared library text 4711 0 16 5612
 640c - pers /dev/hd2:30760 1 0 - -
 f59e - pers /dev/hd2:12302 1 0 - -

Allocated page ranges within segments (-r)
The -r optional flag displays the range(s) within the segment pages that have
been allocated. A working segment may have two ranges because pages are
allocated by starting from both ends and moving towards the middle. When the
-r flag is specified, each segment is followed by the range(s) within the segment
where the pages have been allocated (Example 5-78).

Example 5-78 svmon -C command -r
svmon -C java -r

===
Command Inuse Pin Pgsp Virtual
java 29332 1610 2756 32404
370 AIX 5L Performance Tools Handbook

...
SYSTEM segments Inuse Pin Pgsp Virtual
 3022 1608 1662 4607

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 0 0 work kernel seg 2979 1592 1659 4561
 Addr Range: 0..23243
 a056 - work 43 16 3 46
 Addr Range: 0..49377

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 21597 2 1078 22185

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 1602 3 work shmat/mmap 8351 0 341 8654
 Addr Range: 0..65518
 5eaa 4 work shmat/mmap 4399 0 516 4887
 Addr Range: 0..65530
 1522 6 work shmat/mmap 4340 0 9 4349
 Addr Range: 0..65530
 3606 5 work shmat/mmap 2271 0 184 2455
 Addr Range: 0..65525
...(lines omitted)...
 1e2 - pers /dev/hd2:69726 0 0 - -
 Addr Range: 0..14
 5f4a a work shmat/mmap 0 0 0 0
 60ee 8 work shmat/mmap 0 0 0 0

...
SHARED segments Inuse Pin Pgsp Virtual
 4713 0 16 5612

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 e01c d work shared library text 4711 0 16 5612
 Addr Range: 0..60123
 640c - pers /dev/hd2:30760 1 0 - -
 Addr Range: 0..1
 f59e - pers /dev/hd2:12302 1 0 - -
 Addr Range: 0..0

How to analyze segment utilization
To monitor segment utilization with svmon, the -S flag can be used. In the
following series of examples we will show how svmon will report the memory
usage for a process by using the different optional flags with the -S flag.
 Chapter 5. Memory performance tools 371

The column headings in a segment report are:

Vsid Indicates the virtual segment ID. Identifies a uniq segment
in the VMM.

Esid Indicates the effective segment ID. The Esid is only valid
when the segment belongs to the address space of the
process. When provided, it indicates how the segment is
used by the process. If the Vsid segment is mapped by
several processes but with different Esid values, then this
field contains '-'. In that case, the exact Esid values can
be obtained through the -P flag applied on each of the
process identifiers using the segment. A '-' also displays
for segments used to manage open files or multi-threaded
structures because these segments are not part of the
user address space of the process.

Type Identifies the type of the segment; pers indicates a
persistent segment, work indicates a working segment,
clnt indicates a client segment, map indicates a mapped
segment, and rmap indicates a real memory mapping
segment.

Description Gives a textual description of the segment. The content of
this column depends on the segment type and usage:

persistent JFS files in the format: <device>:<inode>,
such as /dev/hd1:123.

working data areas of processes and shared
memory segments, dependent on the role of
the segment based on the VSID and ESID.

mapping mapped to sid source sid.
client NFS, CD-ROM and J2 files, dependent on

the role of the segment based on the VSID
and ESID.

rmapping I/O space mapping dependent on the role of
the segment based on the VSID and ESID.

Inuse Indicates the number of pages in real memory in this
segment.

Pin Indicates the number of pages pinned in this segment.

Pgsp Indicates the number of pages used on paging space by
this segment. This field is relevant only for working
segments.

Virtual Indicates the number of pages allocated for the virtual
space of the segment.
372 AIX 5L Performance Tools Handbook

Without any segment specification the -S option reports on all segments as
shown in Example 5-79.

Example 5-79 svmon -S
svmon -S

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 8811 - work kernel pinned heap 7083 6562 3118 9753
 ce59 - clnt 2915 0 - -
 0 - work kernel seg 2750 1565 1801 4446
 d65a - clnt 2665 0 - -
 3006 - work page frame table 1792 1792 0 1792
...(lines omitted)...
 a3d4 - pers /dev/hd9var:116 0 0 - -
 fbbf - pers /dev/hd2:6279 0 0 - -

Using a combination of options to display system wide information can be very
useful, as shown in Example 5-80.

Example 5-80 svmon -rSlc
svmon -rSlc

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 ce59 - clnt 3250 0 - -
 Addr Range: 0..253830
 pid(s)=21766, 21248, 19940, 19130, 18896, 18588, 18420,
 pid(s)=17582, 5062
 d65a - clnt 3211 0 - -
 Addr Range: 0..253771
 pid(s)=21766, 21248, 19940, 19130, 18896, 18588, 18420,
 pid(s)=17582, 5062

By using the -rSlc flags in the example above, we see all client (clnt) segments
used in the system with all processes that use those segments, and the address
range of pages used for each segment.

Source segment and mapping segment (-m)
The -m optional flag displays information about source segment and mapping
segment (Example 5-81).

Example 5-81 svmon -S -m
svmon -Sm

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 8811 - work kernel pinned heap 7081 6562 3118 9753
 0 - work kernel seg 2750 1566 1801 4446
 d65a - clnt 2649 0 - -
 ce59 - clnt 2582 0 - -
 Chapter 5. Memory performance tools 373

 3006 - work page frame table 1792 1792 0 1792
 782f - work 1673 1549 12 1683
 f65e - work 1031 2 1 1032
 3e67 - work 1031 2 1 1032
 664c - work 1031 2 1 1032
 e01c - work 812 0 26 3850
 8010 - work misc kernel tables 316 0 266 324
 78af - pers /dev/hd2:2426 234 0 - -
 801 - work segment table 228 228 0 228
 b877 - pers /dev/hd2:12338 185 0 - -
 1002 - work page table area 174 6 221 227
 b476 - work 156 0 268 405
...(lines omitted)...
 a3d4 - pers /dev/hd9var:116 0 0 - -
 fbbf - pers /dev/hd2:6279 0 0 - -

Other processes also using segments (-l)
The -l optional flag shows, for each displayed segment, the list of process
identifiers that use the segment. For special segments a label is displayed
instead of the list of process identifiers. The list of process identifiers that use that
segment is displayed (Example 5-82).

Example 5-82 svmon -S -l
svmon -Sl

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 8811 - work kernel pinned heap 7079 6562 3118 9753
 System segment
 0 0 work kernel seg 2750 1566 1801 4446
 System segment
 d65a - clnt 2667 0 - -
 pid(s)=21992, 21682, 21424, 20390, 20154, 19916, 18584,
 pid(s)=17580, 5060
 ce59 - clnt 2620 0 - -
 pid(s)=21992, 21682, 21424, 20390, 20154, 19916, 18584,
 pid(s)=17580, 5060
 3006 - work page frame table 1792 1792 0 1792
 System segment
...(lines omitted)...
 a3d4 - pers /dev/hd9var:116 0 0 - -
 Unused segment
 fbbf - pers /dev/hd2:6279 0 0 - -
 Unused segment
374 AIX 5L Performance Tools Handbook

Total number of virtual pages (-v)
The -v optional flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages in virtual space (virtual pages
include real memory and paging space pages) (Example 5-83).

Example 5-83 svmon -S -v
svmon -Sv

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 8811 - work kernel pinned heap 7079 6562 3118 9753
 0 - work kernel seg 2750 1566 1801 4446
 e01c - work 812 0 26 3850
 3006 - work page frame table 1792 1792 0 1792

...(lines omitted)...
 d65a - clnt 2687 0 - -
 ce59 - clnt 2621 0 - -

Total number of reserved paging space pages (-g)
The -g optional flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages reserved or used on paging space
(Example 5-84).

Example 5-84 svmon -S -g
svmon -Sg

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 8811 - work kernel pinned heap 7077 6562 3118 9753
 0 - work kernel seg 2750 1566 1801 4446
 e81d - work 114 0 1043 1120
 e19c - work 74 4 720 772
 f01e - work 62 0 298 333
 b476 - work 156 0 268 405
 8010 - work misc kernel tables 316 0 266 324
 8bd1 - work 5 2 252 255
 1002 - work page table area 174 6 221 227
 3c67 - work 64 2 198 207
 f9bf - work 25 2 168 192
...(lines omitted)...
 2084 - pers log 2 0 - -
 abb5 - mmap mapped to sid 9432 0 0 - -
 686d - rmap 0 0 - -
 93f2 - mmap mapped to sid 8bf1 0 0 - -
 Chapter 5. Memory performance tools 375

Total number of pinned pages (-p)
The -p optional flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages pinned (Example 5-85).

Example 5-85 svmon -S -p
svmon -Sp

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 8811 - work kernel pinned heap 7077 6562 3118 9753
 3006 - work page frame table 1792 1792 0 1792
 0 - work kernel seg 2750 1566 1801 4446
 782f - work 1673 1549 12 1683
 801 - work segment table 228 228 0 228
 2805 - work software hat 64 64 0 64
 2004 - work kernel ext seg 44 43 1 44
 1803 - work page space disk map 19 19 0 19
...(lines omitted)...
 a3d4 - pers /dev/hd9var:116 0 0 - -
 fbbf - pers /dev/hd2:6279 0 0 - -

Total number of real memory pages (-u)
The -u optional flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages in real memory (Example 5-86).

Example 5-86 svmon -S -u
svmon -Su

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 8811 - work kernel pinned heap 7077 6562 3118 9753
 d65a - clnt 2755 0 - -
 0 - work kernel seg 2750 1566 1801 4446
 ce59 - clnt 2705 0 - -
 3006 - work page frame table 1792 1792 0 1792
 782f - work 1673 1549 12 1683
 3e67 - work 1031 2 1 1032
 f65e - work 1031 2 1 1032
 664c - work 1031 2 1 1032
 e01c - work 812 0 26 3850
 8010 - work misc kernel tables 316 0 266 324
 78af - pers /dev/hd2:2426 234 0 - -
 801 - work segment table 228 228 0 228
 b877 - pers /dev/hd2:12338 185 0 - -
...(lines omitted)...
 a3d4 - pers /dev/hd9var:116 0 0 - -
 fbbf - pers /dev/hd2:6279 0 0 - -
376 AIX 5L Performance Tools Handbook

Client segments only (-c)
The -c optional flag indicates that only client segments are to be included in the
statistics. Note that client segments are not paged to paging space when the
frames they occupy are needed for other use, hence the dash (-) in the Pgsp and
Virtual columns (Example 5-87).

Example 5-87 svmon -S -c
svmon -Sc

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 d65a - clnt 2869 0 - -
 ce59 - clnt 2641 0 - -

Persistent segments only (-f)
The -f optional flag indicates that only persistent segments (files) are to be
included in the statistics. Note that persistent segments are not paged to paging
space when the frames they occupy are needed for other use, hence the dash
(-) in the Pgsp and Virtual columns (Example 5-88 on page 377).

Example 5-88 svmon -S -f
svmon -Sf

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 78af - pers /dev/hd2:2426 234 0 - -
 b877 - pers /dev/hd2:12338 185 0 - -
 dc9b - pers /dev/hd2:6219 51 0 - -
 ced9 - pers /dev/hd1:280585 48 0 - -
 28a5 - pers /dev/hd2:6244 45 0 - -
...(lines omitted)...
 4be9 - pers /dev/hd9var:198 0 0 - -
 a3d4 - pers /dev/hd9var:116 0 0 - -
 fbbf - pers /dev/hd2:6279 0 0 - -

Working segments only (-w)
The -w optional flag indicates that only working segments are to be included in
the statistics. Note that working segments are paged to paging space when the
frames they occupy are needed for other use (Example 5-89).

Example 5-89 svmon -S -w
svmon -Sw

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 8811 - work kernel pinned heap 7076 6562 3118 9753
 0 - work kernel seg 2750 1566 1801 4446
 3006 - work page frame table 1792 1792 0 1792
 782f - work 1673 1549 12 1683
 3e67 - work 1031 2 1 1032
 Chapter 5. Memory performance tools 377

 f65e - work 1031 2 1 1032
 664c - work 1031 2 1 1032
 e01c - work 812 0 26 3850
 8010 - work misc kernel tables 315 0 266 323
 801 - work segment table 228 228 0 228
 1002 - work page table area 174 6 221 227
 b476 - work 156 0 268 405
...(lines omitted)...
 f2fe - work 0 0 70 88
 63cc - work 0 0 84 137

System segments only (-s)
The -s optional flag indicates that only system segments are to be included in the
statistics. Note that system segments can be paged to paging space when the
frames they occupy are needed for other use. The part that is pinned (Pin) will
not. In Example 5-90 you see that the kernel page frame table cannot be paged
out because its frame usage equals the pinned size (1792 and 1792).

Example 5-90 svmon -S -s
svmon -Ss

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 8811 - work kernel pinned heap 7075 6562 3118 9753
 0 - work kernel seg 2750 1566 1801 4446
 3006 - work page frame table 1792 1792 0 1792
 782f - work 1673 1549 12 1683
 8010 - work misc kernel tables 315 0 266 323
 801 - work segment table 228 228 0 228
 1002 - work page table area 174 6 221 227
 2805 - work software hat 64 64 0 64
 2004 - work kernel ext seg 44 43 1 44
 d09a - pers /dev/hd2:4 29 0 - -
 1803 - work page space disk map 19 19 0 19
 1282 - work 17 17 1 18
 7c2f - work 11 10 21 31
 e89d - pers /dev/hd2:3 11 0 - -
...(lines omitted)...
 4008 - work page frame table 0 0 0 0
 f09e - pers /dev/hd2:5 0 0 - -
 f89f - pers /dev/hd2:6 0 0 - -

Non-system segments only (-n)
The -n optional flag indicates that only non-system segments are to be included
in the statistics (Example 5-91).

Example 5-91 svmon -S -n
svmon -Sn
378 AIX 5L Performance Tools Handbook

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 d65a - clnt 2835 0 - -
 ce59 - clnt 2666 0 - -
 664c - work 1031 2 1 1032
 3e67 - work 1031 2 1 1032
 f65e - work 1031 2 1 1032
 e01c - work 812 0 26 3850
 78af - pers /dev/hd2:2426 234 0 - -
 b877 - pers /dev/hd2:12338 185 0 - -
 ceb9 - work 156 2 0 156
...(lines omitted)...
 a3d4 - pers /dev/hd9var:116 0 0 - -
 fbbf - pers /dev/hd2:6279 0 0 - -

Allocated page ranges within segments (-r)
The -r optional flag displays the range(s) within the segment pages that have
been allocated. A working segment may have two ranges because pages are
allocated by starting from both ends and moving towards the middle
(Example 5-92).

Example 5-92 svmon -S segment -r
svmon -Sr

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 8811 - work kernel pinned heap 7073 6562 3118 9753
 Addr Range: 0..20795
 d65a - clnt 2909 0 - -
 Addr Range: 0..253771
 0 - work kernel seg 2750 1566 1801 4446
 Addr Range: 0..23132
 ce59 - clnt 2700 0 - -
 Addr Range: 0..253830
 3006 - work page frame table 1792 1792 0 1792
 Addr Range: 0..1791
 782f - work 1673 1549 12 1683
 Addr Range: 0..1682
 f65e - work 1031 2 1 1032
 Addr Range: 0..1027 : 65314..65535
 664c - work 1031 2 1 1032
 Addr Range: 0..1027 : 65314..65535
 3e67 - work 1031 2 1 1032
 Addr Range: 0..1027 : 65314..65535
 e01c - work 812 0 26 3850
...(lines omitted)...
 a3d4 - pers /dev/hd9var:116 0 0 - -
 Addr Range: 0..2
 fbbf - pers /dev/hd2:6279 0 0 - -
 Chapter 5. Memory performance tools 379

 Addr Range: 0..0

How to analyze detailed reports
To monitor detailed utilization with svmon, the -D flag can be used. In the following
series of examples we will show how svmon will report the memory usage for a
process by using the different optional flags with the -D flag. Note that because
the detailed report will show all frames used by a segment, the output will usually
be quite extensive. The information shown for each frame comes from examining
the Page Frame Table (PFT) for the segments frames and report the same
information that the lrud kernel process would use when the number of free
pages are lower than the kernel minfree value (see Section 3.12, “vmtune” on
page 201 for more detail on minfree).

The column headings in a detailed report are:

Segid Indicates the virtual segment ID. Identifies a uniq segment
in the VMM.

Type Identifies the type of the segment; pers indicates a
persistent segment, work indicates a working segment,
clnt indicates a client segment, map indicates a mapped
segment, and rmap indicates a real memory mapping
segment.

Size of page space Indicates the number of pages used on paging space by
allocation this segment. This field is relevant only for working

segments.

Virtual Indicates the number of pages allocated for the virtual
space of the segment.

Inuse Indicates the number of pages in real memory in this
segment.

Page Page number relative to the virtual space. This page
number can be higher than the number of frames in a
segment (65535) if the virtual space is larger than a single
segment (large file).

Frame Frame number in the real memory.

Pin Indicates if the frame is pinned or not.

Ref Indicates if the frame has been referenced by a process
(-b flag only).

Mod Indicates if the frame has been modified by a process (-b
flag only).
380 AIX 5L Performance Tools Handbook

ExtSegid Extended segment identifier. This field is only set when
the page number is higher than the maximum number of
frames in a segment.

ExtPage Extended page number. This field is only set when the
page number is higher than the maximum number of
frames in a segment and indicates the page number
within the extended segment.

Segment details
Example 5-93 monitors details of segment 1602 showing the status of the
reference and modified bits of all the displayed frames.

Example 5-93 svmon -D segment
svmon -D 1602

Segid: 1602
Type: working
Address Range: 0..65518
Size of page space allocation: 341 pages (1.3 Mb)
Virtual: 8654 frames (33.8 Mb)
Inuse: 8351 frames (32.6 Mb)

 Page Frame Pin ExtSegid ExtPage
 0 19426 N - -
 1 95628 N - -
 3 19417 N - -
 4 102294 N - -
 5 21687 N - -
 6 78089 N - -
 7 95766 N - -
 8 91735 N - -
 9 95656 N - -
 33 95744 N - -
...(lines omitted)...
 19701 12552 N - -
 21034 34590 N - -
 3591 12752 N - -
 3513 33205 N - -

Monitoring segment details during a time interval
Example 5-94 on page 382 monitors details of segment 9012 showing the status
of the reference and modified bits of all the displayed frames that are accessed
between each interval. Once shown, the reference bit of the frame is reset.
 Chapter 5. Memory performance tools 381

Example 5-94 svmon -D segment -b -i
svmon -D 9012 -b -i 5 3

Segid: 9012
Type: working
Address Range: 65338..65535
Size of page space allocation: 0 pages (0.0 Mb)
Virtual: 3 frames (0.0 Mb)
Inuse: 3 frames (0.0 Mb)

 Page Frame Pin Ref Mod ExtSegid ExtPage
 65339 771 Y Y Y - -
 65340 770 Y Y Y - -
 65338 4438 N Y Y - -

Segid: 9012
Type: working
Address Range: 65338..65535
Size of page space allocation: 0 pages (0.0 Mb)
Virtual: 3 frames (0.0 Mb)
Inuse: 3 frames (0.0 Mb)

 Page Frame Pin Ref Mod ExtSegid ExtPage
 65339 771 Y Y Y - -
 65340 770 Y Y Y - -
 65338 4438 N Y Y - -

Segid: 9012
Type: working
Address Range: 65338..65535
Size of page space allocation: 0 pages (0.0 Mb)
Virtual: 3 frames (0.0 Mb)
Inuse: 3 frames (0.0 Mb)

 Page Frame Pin Ref Mod ExtSegid ExtPage
 65339 771 Y Y Y - -
 65340 770 Y Y Y - -
 65338 4438 N Y Y - -

How to analyze frame reports
To monitor frame utilization with svmon, the -F flag can be used. Example 5-95 on
page 383 shows how to use the -F flag with no argument specified. The frame
report returns the percentage of real memory used in the system (with the
reference flag set).
382 AIX 5L Performance Tools Handbook

Example 5-95 svmon -F
svmon -F
 Processing.. 100%
 percentage of memory used: 85.82%

A comparison of the -F to -G output is shown in Example 5-96.

Example 5-96 Comparing -F and -G output
svmon -G
 size inuse free pin virtual
memory 131047 27675 103372 13734 38228
pg space 262144 14452

 work pers clnt
pin 13734 0 0
in use 21252 815 5608

svmon -F
 Processing.. 100%
 percentage of memory used: 88.85%

Calculating the used memory percentage from the -G output it shows 21.18
percent used (27675 / 131047). The reason for this is that the percentage of
memory used in the -F report are only frames with the reference flag set; that is,
the sum of pages that are not eligible to be released if the page stealer (lrud
kproc) needs to allocate the frames for other use. The -G report shows all
memory that processes have allocated, either by themselves or by the VMM for
their use (such as shared libraries that needed to be loaded and linked to
dynamically to the process in order for the process to be loaded properly).

Specifying frame
When frame numbers are specified with the -F option, the column headings in
the report are:

Frame Frame number in real memory.

Segid Indicates the virtual segment ID that the frame belongs to.

Ref Indicates if the frame has been referenced by a process.

Mod Indicates if the frame has been modified by a process.

Pincount Indicates the long term pincount and the short term
pincount for the frame.

State Indicates the state of the frame (Bad, In-Use, Free, I/O,
PgAhead, Hidden).
 Chapter 5. Memory performance tools 383

Swbits Indicates the status of the frame in the Software Page
Frame Table.

The information shown for the frame(s) comes from examining the Page Frame
Table (PFT) about the frame(s) and report the same information that the lrud
kernel process would use when the number of free pages are lower than the
kernel minfree value (see Section 3.12, “vmtune” on page 201 for more detail on
minfree). In Example 5-97 we specify a frame to monitor (in this case frame
815).

Example 5-97 svmon -F frame
svmon -F 815

 Frame Segid Ref Mod Pincount State Swbits
 815 20f07e Y N 0/0 In-Use 88000004

Monitoring frames during a time interval
To monitor a frame over a specified interval, use the -i flag as in Example 5-98
(with five second intervals repeated three times).

Example 5-98 svmon -F frame -i
svmon -F 771 -i 5 3

 Frame Segid Ref Mod Pincount State Swbits
 771 9012 Y Y 1/0 Hidden 88000000

 Frame Segid Ref Mod Pincount State Swbits
 771 9012 Y Y 1/0 Hidden 88000000

 Frame Segid Ref Mod Pincount State Swbits
 771 9012 Y Y 1/0 Hidden 88000000

The example above shows that frame 771 is both referenced and modified
during the time the trace was run.

Monitoring frame reuse between processes
The following sample starts by using the dd command to read the same file from
the J2 file system three (3) times in a row. First we use the command report (-C)
to find out what segments the dd command is using the first time we run it
(Example 5-99).

Example 5-99 svmon -cC dd
svmon -cC dd

===
Command Inuse Pin Pgsp Virtual
dd 1444 0 0 0
384 AIX 5L Performance Tools Handbook

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 1444 0 0 0

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 d65a - clnt 1444 0 - -

In the output above we see that segment d65a is a client segment (used for the
J2 file system file pages). The next output (Example 5-100) shows how we use
the virtual segment id (Vsid) to see what frames that this segment has allocated
with the detailed report (-D).

Example 5-100 svmon -D d65a
svmon -D d65a

Segid: d65a
Type: client
Address Range: 0..253771

 Page Frame Pin ExtSegid ExtPage
 4050 817 N - -
 99330 813 N 200080 8402
 10280 811 N - -
 142970 809 N 201082 2e7a
 4 97499 N - -
...(lines omitted)...

The output above shows us that frame 817 is one of the frames that is used by
this segment. Now we can run the frame report (-F) continuously to monitor this
frame (Example 5-101).

Example 5-101 svmon -F -i 5
svmon -F 817 -i 5

 Frame Segid Ref Mod Pincount State Swbits
 817 d65a Y N 0/0 In-Use 88000004

 Frame Segid Ref Mod Pincount State Swbits
 817 d65a N N 0/0 In-Use 88000004

 Frame Segid Ref Mod Pincount State Swbits
 817 d65a N N 0/0 In-Use 88000004

 Frame Segid Ref Mod Pincount State Swbits
 817 d65a Y N 0/0 In-Use 88000004
 Chapter 5. Memory performance tools 385

 Frame Segid Ref Mod Pincount State Swbits
 817 d65a N N 0/0 In-Use 88000004

 Frame Segid Ref Mod Pincount State Swbits
 817 d65a N N 0/0 In-Use 88000004

 Frame Segid Ref Mod Pincount State Swbits
 817 d65a Y N 0/0 In-Use 88000004
...(lines omitted)...

The first report line show that the frame is referenced, the dd command causes
VMM to page in the J2 file system file into a frame. The next two report lines
show that the page scanning has removed the reference flag (can be freed by
the page stealer); this is shown as an N in the Ref column . We restart the dd
command and the frame containing the J2 filesystem file data is reused by the
second dd command (the files pages were already loaded in real memory). The
next two lines show that the reference flag has been removed by the page
scanner again. The last line shows our third dd command reading the same file,
and the frame is referenced once again.

Note that the detailed segment report gives a similar output when both -D and -b
flags are used, as seen in Example 5-102 below.

Example 5-102 svmon -bD segment
svmon -bD cd59

Segid: ce59
Type: client
Address Range: 0..253830

 Page Frame Pin Ref Mod ExtSegid ExtPage
 225354 815 N N N 20f07e 704a
 114021 922 N N N 201883 bd65
 174369 821 N N N 200881 a921
 174373 819 N N N 200881 a925
 114019 918 N N N 201883 bd63
 56273 50349 N N N - -
 56274 50424 N N N - -
...(lines omitted)...
386 AIX 5L Performance Tools Handbook

Chapter 6. Disk I/O performance tools

This chapter describes the tools to monitor the performance relevant data and
statistics for disk I/O.

� The filemon command described in Section 6.1, “filemon” on page 388
monitors a trace of file system and I/O system events, and reports
performance statistics for files, virtual memory segments, logical volumes,
and physical volumes.

� The fileplace command described in Section 6.2, “fileplace” on page 409
displays the placement of a files logical or physical blocks within a Journaled
File System (JFS).

� Section 6.3, “lslv, lspv, and lsvg” on page 429 describes the lslv command,
which displays the characteristics and status of the logical volume; the lspv
command, which is useful for displaying information about the physical
volume, its logical volume content, and logical volume allocation layout; and
the lsvg command, which displays information about volume groups.

� The lvmstat command described in Section 6.4, “lvmstat” on page 445
reports input and output statistics for logical partitions, logical volumes, and
volume groups.

6

© Copyright IBM Corp. 2001 387

6.1 filemon
The filemon command monitors a trace of file system and I/O system events,
and reports performance statistics for files, virtual memory segments, logical
volumes, and physical volumes. filemon is useful to those whose applications
are believed to be disk-bound, and want to know where and why. For file specific
layout and distribution, refer to Section 6.2, “fileplace” on page 409.

Monitoring disk I/O with the filemon command is usually done when there is a
known performance issue with regards to the I/O. The filemon command will
show the load on different disks, logical volumes, and files in great detail.

filemon resides in /usr/sbin and is part of the bos.perf.tools fileset, which is
installable from the AIX base installation media.

6.1.1 Syntax
The syntax of the filemon command is as follows:

filemon [-d] [-i Trace_File -n Gennames_File] [-o File] [-O Levels]
[-P] [-T n] [-u] [-v]

Flags
-i Trace_File Reads the I/O trace data from the specified Trace_File,

instead of from the real-time trace process. The filemon
report summarizes the I/O activity for the system and
period represented by the trace file. The -n option must
also be specified.

-n Gennames_File Specifies a Gennames_File for offline trace processing.
This file is created by running the gennames command and
redirecting the output to a file as follows (the -i option
must also be specified):

gennames > file.

-o File Writes the I/O activity report to the specified File instead of
to the stdout file.

-d Starts the filemon command, but defers tracing until the
trcon command has been executed by the user. By
default, tracing is started immediately.

-T n Sets the kernel’s trace buffer size to n bytes. The default
size is 32,000 bytes. The buffer size can be increased to
accommodate larger bursts of events (a typical event
record size is 30 bytes).
388 AIX 5L Performance Tools Handbook

-P Pins monitor process in memory. The -P flag causes the
filemon command's text and data pages to be pinned in
memory for the duration of the monitoring period. This flag
can be used to ensure that the real-time filemon process
is not paged out when running in a memory-constrained
environment.

-v Prints extra information in the report. The most significant
effect of the -v flag is that all logical files and all segments
that were accessed are included in the I/O activity report,
instead of only the 20 most active files and segments.

-O Levels Monitors only the specified file system levels. Valid level
identifiers are:

lf Logical file level

vm Virtual memory level

lv Logical volume level

pv Physical volume level

all Short for lf, vm, lv, and pv

The vm, lv, and pv levels are implied by default.

-u Reports on files that were opened prior to the start of the
trace daemon. The process ID (PID) and the file descriptor
(FD) are substituted for the file name.

6.1.2 Information on measurement and sampling
To provide a more complete understanding of file system performance for an
application, the filemon command monitors file and I/O activity at four levels:

Logical file system The filemon command monitors logical I/O operations
on logical files. The monitored operations include all
read, write, open, and lseek system calls, which may
or may not result in actual physical I/O depending on
whether or not the files are already buffered in
memory. I/O statistics are kept on a per-file basis.

Virtual memory system The filemon command monitors physical I/O
operations (that is, paging) between segments and
their images on disk. I/O statistics are kept on a
per-segment basis.

Logical volumes The filemon command monitors I/O operations on
logical volumes. I/O statistics are kept on a
per-logical-volume basis.
 Chapter 6. Disk I/O performance tools 389

Physical volumes The filemon command monitors I/O operations on
physical volumes. At this level, physical resource
utilizations are obtained. I/O statistics are kept on a
per-physical-volume basis.

Any combination of the four levels can be monitored, as specified by the
command line flags. By default, the filemon command only monitors I/O
operations at the virtual memory, logical volume, and physical volume levels.
These levels are all concerned with requests for real disk I/O.

The filemon command monitors a trace of a specific number of trace hooks,
such as for file system and disk I/O (see Section 8.9, “trace” on page 685 for
more information on the trace command and tracehooks). You can list the trace
hooks used by filemon by using the trcevgrp command as in Example 6-1.

Example 6-1 Using trcevgrp
trcevgrp -l filemon
filemon - Hooks for FILEMON performance tool (reserved)
101,102,104,106,107,10B,10C,10D,12E,130,139,154,15B,163,19C,1BA,1BE,1BC,1C9,221
,222,232,3D3,45B

The filemon tracing of I/O is usually stopped by issuing the trcstop command; it
is when this is done that filemon writes the output. filemon tracing can be
paused by using the trcoff command and restarted by using the trcon
command. By default, filemon starts tracing immediately, but tracing may be
deferred until a trcon command is issued if the -d flag is used.

The filemon command can also process a trace file that has been previously
recorded by the trace facility. The file and I/O activity report will be based on the
events recorded in that file. In order to include all trace hooks that are needed for
filemon, use the -J filemon option when running the trace command.

General notes on interpreting the reports
Check for most active segments, logical volumes, and physical volumes in this
report. Check for reads and writes to paging space to determine if the disk
activity is true application I/O or is due to paging activity. Check for files and
logical volumes that are particularly active.

Value ranges
In some filemon reports there are different value ranges such as min, max, avg,
and sdev. The min represents the minimum value, the max represents the
maximum value, avg is the average, and sdev is the standard deviation, which
shows how much the individual response times deviated from the average. If the
distribution of response times is scattered over a large range, the standard
deviation will be large compared to the average response time.
390 AIX 5L Performance Tools Handbook

Access pattern analysis
As the read sequences count approaches the reads count, file access is more
random. On the other hand, if the read sequence count is significantly smaller
than the reads count and the read sequence length is a high value, the file
access is more sequential. The same applies to the writes and write
sequences. Sequences are strings of pages that are read (paged in) or written
(paged out) consecutively. The seq. lengths is the length, in pages, of the
sequences.

Fragmentation analysis
The amount of fragmentation in a logical volume or a file (blocks) cannot be
directly obtained from the filemon output.

The amount of fragmentation and sequentiality of a file can be obtained by using
the fileplace command on that file (see Section 6.2, “fileplace” on page 409).
However, if seek times are larger then there are reads and writes, there is more
fragmentation and less sequentiality.

For logical volumes it is more difficult because a logical volume can be viewed as
having two parts. The first part is the logical partitions that constitutes the logical
volume. To determine fragmentation on the logical volume, use the lslv
command to determine sequentiality and space efficiency (refer to Section 6.3,
“lslv, lspv, and lsvg” on page 429). The second part is the file system. This part is
more complex because a file system contain meta data areas such as inode and
data block maps, and, in the case of J2, it can also contain a inline journaling log,
and of course the data blocks that contain the actual file data. Note that the
output from filemon cannot be used to determine if a filesystem has many files
that are fragmented or not.

Segments
The Most Active Segments report lists the most active files by file system and
inode. This report is useful in determining if the activity is to a file system
(segtype is persistent), the JFS log (segtype is log), or to paging space
(segtype is working).

Unknown files
In some cases you will find references to unknown files. The mount point of the
file system and inode of the file can be used with the ncheck command to identify
these files:

ncheck -i <inode> <mount point>

Example 6-2 shows how this works.

Example 6-2 Checking filenames by using ncheck and inode number
ncheck -i 36910 /home
/home:
 Chapter 6. Disk I/O performance tools 391

36910 /dude/out/bigfile

When using the ncheck command both the mount point and the file path within
that mount point must be concatenated. In the example above this would be
/home/dude/out/bigfile.

6.1.3 Examples
The output from filemon can be quite extensive. To quickly find out if something
is in need of attention, we filtered it with the awk command in most of our
examples below to extract specific summary tables from the filemon output file.

How to start monitoring
Example 6-3 shows how to run filemon. To have filemon monitor I/O during a
time interval just run the sleep program with the specified amount of seconds
and then the trcstop program. Below we have used the all option, and then the
awk command to extract relevant parts of the complete report. Note that the
output will be put in the filemon.out file in the following example.

Example 6-3 Using filemon.
filemon -u -o filemon.out -O all && sleep 60 && trcstop

Enter the "trcstop" command to complete filemon processing

[filemon command: Reporting started]
[filemon command: Reporting completed]

[filemon command: 96.371 secs in measured interval]

How to use the different reports
The following is one way to use the analysis of one report as input to another
report to pinpoint possible bottlenecks and performance issues. In the following
report we start at the bottom and look at disk I/O, and extract a part of the report
generated by filemon (Example 6-4).

Example 6-4 Most Active Physical Volumes report
awk '/Most Active Physical Volumes/,/^$/' filemon.out
Most Active Physical Volumes
--
 util #rblk #wblk KB/s volume description
--
 0.24 16 50383 171.9 /dev/hdisk0 N/A
 0.08 68608 36160 357.4 /dev/hdisk1 N/A
392 AIX 5L Performance Tools Handbook

This shows us that hdisk1 is more utilized than hdisk0, with almost twice the
amount of transferred data (KB/s). However hdisk0 is more utilized with 24
percent compared to eight percent for hdisk1 but this is mostly for writing
whereas hdisk1 has twice the amount of reading as it has writing. At this point
we could also examine the disks, volume groups, and logical volumes with static
reporting commands such as lspv, lsvg, and lslv (Section 6.3, “lslv, lspv, and
lsvg” on page 429). To get more detailed realtime information on the usage of the
logical volumes, extract the “Most Active Logical Volumes” part from our
previously created output file (Example 6-5).

Example 6-5 Most Active Logical Volumes report
awk '/Most Active Logical Volumes/,/^$/' filemon.out
Most Active Logical Volumes
--
 util #rblk #wblk KB/s volume description
--
 0.22 0 37256 127.1 /dev/hd8 jfslog
 0.08 68608 36160 357.4 /dev/lv0hd0 N/A
 0.04 0 11968 40.8 /dev/hd3 /tmp
 0.01 0 312 1.1 /dev/hd4 /
 0.01 16 536 1.9 /dev/hd2 /usr
 0.00 0 311 1.1 /dev/hd9var /var Frag_Sz.= 512

The logical volume lv0hd0 is the most utilized for both reading and writing (but
still only at 8 percent utilization), so now we extract information about this
particular logical volume from the output file (Example 6-6). Because it appears
in the summary part, it will have a detailed section as well.

Example 6-6 Detailed output for a logical volume.
awk '/VOLUME: \/dev\/lv0hd0/,/^$/' filemon.out
VOLUME: /dev/lv0hd0 description: N/A
reads: 1072 (0 errs)
 read sizes (blks): avg 64.0 min 64 max 64 sdev 0.0
 read times (msec): avg 7.112 min 2.763 max 29.334 sdev 2.476
 read sequences: 1072
 read seq. lengths: avg 64.0 min 64 max 64 sdev 0.0
writes: 565 (0 errs)
 write sizes (blks): avg 64.0 min 64 max 64 sdev 0.0
 write times (msec): avg 7.378 min 2.755 max 13.760 sdev 2.339
 write sequences: 565
 write seq. lengths: avg 64.0 min 64 max 64 sdev 0.0
seeks: 1074 (65.6%)
 seek dist (blks): init 60288,
 avg 123.6 min 64 max 64000 sdev 1950.9
time to next req(msec): avg 89.512 min 3.135 max 1062.120 sdev 117.073
throughput: 357.4 KB/sec
utilization: 0.08
 Chapter 6. Disk I/O performance tools 393

In the above example we can note that the I/O is random because both the reads
(1072) equal the read sequences (1072), as does the writes and write
sequences. To determine which files were most utilized during our monitoring, the
Most Active Files report can be used (Example 6-7).

Example 6-7 Most Active Files report
awk '/Most Active Files/,/^$/' filemon.out
Most Active Files
--
 #MBs #opns #rds #wrs file volume:inode
--
 337.3 2059 86358 0 fma.data /dev/hd2:342737
 176.7 2057 45244 0 fms.data /dev/hd2:342738
 45.6 1 1010 450 rlv0hd0
 9.6 2 2458 0 unix /dev/hd2:30988
 6.8 12 66140 0 errlog /dev/hd9var:2065
...(lines omitted)...

So let us now find the fma.data file, and by running the lsfs command we can
find out that hd2 is the /usr filesystem as is shown in Example 6-8.

Example 6-8 Determining which filesystem uses a known logical volume.
lsfs|awk '/\/dev\/hd2/{print $3}'
/usr

Then we can search for the file within the /usr filesystem (Example 6-9).

Example 6-9 Finding a file in a filesystem.
find /usr -name fma.data
/usr/lpp/htx/rules/reg/hxeflp/fma.data

We now have both the filename and the path, so we can now check how the file
is allocated on the logical volume by using the fileplace command (see
Section 6.2, “fileplace” on page 409).

How to analyze the physical volume reports
The physical volume report is divided into three parts; the header, the physical
volume summary, and the detailed physical volume report. The header shows
when and where the report was created and the CPU utilization during the
monitoring period. To create only a physical volume report, issue the filemon
command as follows (in this case using a six second measurement period):

filemon -uo filemon.pv -O pv;sleep 6;trcstop
394 AIX 5L Performance Tools Handbook

Example 6-10 shows the full physical volume report. In the report the disk with
the highest utilization is in the beginning and the others shown in descending
order.

Example 6-10 Physical volume report
Mon Jun 4 08:21:16 2001
System: AIX wlmhost Node: 5 Machine: 000BC6AD4C00

Cpu utilization: 12.8%

Most Active Physical Volumes
--
 util #rblk #wblk KB/s volume description
--
 0.77 10888 1864 811.5 /dev/hdisk3 N/A
 0.36 7352 2248 610.9 /dev/hdisk2 N/A
..(lines omitted)...

--
Detailed Physical Volume Stats (512 byte blocks)
--

VOLUME: /dev/hdisk3 description: N/A
reads: 717 (0 errs)
 read sizes (blks): avg 15.2 min 8 max 64 sdev 11.9
 read times (msec): avg 12.798 min 0.026 max 156.093 sdev 19.411
 read sequences: 645
 read seq. lengths: avg 16.9 min 8 max 128 sdev 15.0
writes: 142 (0 errs)
 write sizes (blks): avg 13.1 min 8 max 56 sdev 9.2
 write times (msec): avg 16.444 min 0.853 max 50.547 sdev 8.826
 write sequences: 142
 write seq. lengths: avg 13.1 min 8 max 56 sdev 9.2
seeks: 786 (91.5%)
 seek dist (blks): init 0,
 avg 525847.9 min 8 max 4284696 sdev 515636.2
 seek dist (%tot blks):init 0.00000,
 avg 2.95850 min 0.00005 max 24.10632 sdev 2.90104
time to next req(msec): avg 14.069 min 0.151 max 75.270 sdev 14.015
throughput: 811.5 KB/sec
utilization: 0.77

VOLUME: /dev/hdisk2 description: N/A
reads: 387 (0 errs)
 read sizes (blks): avg 19.0 min 8 max 72 sdev 18.5
 read times (msec): avg 5.016 min 0.007 max 14.633 sdev 4.157
 read sequences: 235
 read seq. lengths: avg 31.3 min 8 max 384 sdev 58.1
writes: 109 (0 errs)
 Chapter 6. Disk I/O performance tools 395

 write sizes (blks): avg 20.6 min 8 max 64 sdev 16.7
 write times (msec): avg 13.558 min 4.569 max 26.689 sdev 5.596
 write sequences: 109
 write seq. lengths: avg 20.6 min 8 max 64 sdev 16.7
seeks: 344 (69.4%)
 seek dist (blks): init 4340200,
 avg 515940.3 min 8 max 1961736 sdev 486107.7
 seek dist (%tot blks):init 24.41859,
 avg 2.90276 min 0.00005 max 11.03701 sdev 2.73491
time to next req(msec): avg 15.813 min 0.134 max 189.876 sdev 27.143
throughput: 610.9 KB/sec
utilization: 0.36

In Example 6-11 we only extract the physical volume summary section.

Example 6-11 Most Active Physical Volumes section
awk '/Most Active Physical Volumes/,/^$/' filemon.pv
Most Active Physical Volumes
--
 util #rblk #wblk KB/s volume description
--
 0.24 16 50383 171.9 /dev/hdisk0 N/A
 0.84 370680 372028 3853.4 /dev/hdisk1 N/A
 0.08 68608 36160 357.4 /dev/hdisk2 N/A

The disk with the highest transfer rate and utilization above is hdisk3, which is 84
percent utilized (0.84) at a 3.8 MB transfer rate.

The fields, in the Most Active Physical Volumes report of the filemon command,
are interpreted as follows:

util Utilization of the volume (fraction of time busy). The rows
are sorted by this field in decreasing order

#rblk Number of 512-byte blocks read from the volume

#wblk Number of 512-byte blocks written to the volume

KB/sec Total volume throughput, in Kilobytes per second

volume Name of volume

description Type of volume

If we want to find out more detail about a specific disk, then we just look further in
the report generated by filemon (Example 6-12).

Example 6-12 Detailed physical volume report section
grep -p "VOLUME:.*hdisk3" filemon.pv
VOLUME: /dev/hdisk3 description: N/A
396 AIX 5L Performance Tools Handbook

reads: 914 (0 errs)
 read sizes (blks): avg 24.0 min 8 max 64 sdev 21.8
 read times (msec): avg 4.633 min 0.275 max 14.679 sdev 4.079
 read sequences: 489
 read seq. lengths: avg 44.8 min 8 max 384 sdev 81.2
writes: 218 (0 errs)
 write sizes (blks): avg 21.3 min 8 max 64 sdev 17.6
 write times (msec): avg 15.552 min 4.625 max 32.366 sdev 5.686
 write sequences: 218
 write seq. lengths: avg 21.3 min 8 max 64 sdev 17.6
seeks: 707 (62.5%)
 seek dist (blks): init 4671584,
 avg 574394.4 min 8 max 2004640 sdev 484350.2
 seek dist (%tot blks):init 26.28301,
 avg 3.23163 min 0.00005 max 11.27840 sdev 2.72502
time to next req(msec): avg 10.279 min 0.191 max 175.833 sdev 15.355
throughput: 1137.4 KB/sec
utilization: 0.52

In the output above you can see the that the disk has had a 52% utilization during
the measuring interval, and that it is mostly random read and writes; 62.5% seeks
for reads and writes. You can also see that the read I/O is mixed between
random and sequential, but the writing is random.

The fields, in the Detailed Physical Volume report of the filemon command, are
interpreted as follows:

VOLUME Name of the volume.

description Description of the volume (describes contents, if
discussing a logical volume; and type, if dealing with a
physical volume).

reads Number of read requests made against the volume.

read sizes (blks) The read transfer-size statistics (avg/min/max/sdev) in units
of 512-byte blocks.

read times (msec) The read response-time statistics (avg/min/max/sdev) in
milliseconds.

read sequences Number of read sequences. A sequence is a string of
512-byte blocks that are read consecutively and indicate
the amount of sequential access.

read seq. lengths Statistics describing the lengths of the read sequences in
blocks.

writes Number of write requests made against the volume.

write sizes (blks) The write transfer-size statistics.
 Chapter 6. Disk I/O performance tools 397

write times (msec) The write-response time statistics.

write sequences Number of write sequences. A sequence is a string of
512-byte blocks that are written consecutively.

write seq. lengths Statistics describing the lengths of the write sequences, in
blocks.

seeks Number of seeks that preceded a read or write request,
also expressed as a percentage of the total reads and
writes that required seeks.

seek dist (blks) Seek distance statistics, in units of 512-byte blocks. In
addition to the usual statistics (avg/min/max/sdev), the
distance of the initial seek operation (assuming block 0
was the starting position) is reported separately. This
seek distance is sometimes very large, so it is reported
separately to avoid skewing the other statistics.

seek dist (cyls) Seek distance statistics, in units of disk cylinders.

time to next req Statistics (avg/min/max/sdev) describing the length of time,
in milliseconds, between consecutive read or write
requests to the volume. This column indicates the rate at
which the volume is being accessed.

throughput Total volume throughput, in Kilobytes per second.

utilization Fraction of time the volume was busy. The entries in this
report are sorted by this field, in decreasing order.

How to analyze the file report
The logical file report is divided into three parts; the header, the file summary,
and the detailed file report. The header shows when and where the report was
created and the CPU utilization during the monitoring period. To create only a
logical file report, issue the filemon command as follows (in this case using a six
second measurement period):

filemon -uo filemon.lf -O lf;sleep 6;trcstop

Example 6-13 shows the full file report. In the report the file with the highest
utilization is in the beginning and then listed in descending order.

Example 6-13 File report
Mon Jun 4 09:06:27 2001
System: AIX wlmhost Node: 5 Machine: 000BC6AD4C00

TRACEBUFFER 2 WRAPAROUND, 18782 missed entries
Cpu utilization: 24.8%

18782 events were lost. Reported data may have inconsistencies or errors.
398 AIX 5L Performance Tools Handbook

Most Active Files
--
 #MBs #opns #rds #wrs file volume:inode
--
 53.5 33 5478 0 file.tar /dev/datalv:17
 1.3 324 324 0 group /dev/hd4:4110
 1.2 0 150 0 pid=0_fd=15820
 0.6 163 163 0 passwd /dev/hd4:4149
 0.4 33 99 0 methods.cfg /dev/hd2:8492
 0.3 0 32 0 pid=0_fd=21706
...(lines omitted)...

--
Detailed File Stats
--

FILE: /data/file.tar volume: /dev/datalv (/data) inode: 17
opens: 33
total bytes xfrd: 56094720
reads: 5478 (0 errs)
 read sizes (bytes): avg 10240.0 min 10240 max 10240 sdev 0.0
 read times (msec): avg 0.090 min 0.080 max 0.382 sdev 0.017

...(lines omitted)...

In Example 6-14 we only extract the file summary section.

Example 6-14 Most Active Files report section
awk '/Most Active Files/,/^$/' filemon.out
Most Active Files
--
 #MBs #opns #rds #wrs file volume:inode
--
 180.8 1 0 46277 index.db /dev/hd3:107
 53.5 33 5478 0 file.tar /dev/datalv:17
 1.3 324 324 0 group /dev/hd4:4110
 1.2 0 150 0 pid=0_fd=15820
 0.6 163 163 0 passwd /dev/hd4:4149
...(lines omitted)...

We notice heavy reading (#rds) of the file.tar file and writing (#wrs) of the
index.db. The fields, in the Most Active Files report of the filemon command,
are interpreted as follows:

#MBS Total number of megabytes transferred to/from file. The
rows are sorted by this field in decreasing order.
 Chapter 6. Disk I/O performance tools 399

#opns Number of times the file was opened during measurement
period.

#rds Number of read system calls made against file.

#wrs Number of write system calls made against file.

file Name of file (full path name is in detailed report).

volume:inode Name of volume that contains the file, and the files inode
number. This field can be used to associate a file with its
corresponding persistent segment, shown in the virtual
memory I/O reports. This field may be blank; for example,
for temporary files created and deleted during execution.

If we want to find out more detail about a specific file, then we just look further in
the report generated by filemon (Example 6-15).

Example 6-15 Detailed File report section
grep -p "FILE:.*file.tar" filemon4.lf
FILE: /data/file.tar volume: /dev/datalv (/data) inode: 17
opens: 33
total bytes xfrd: 56094720
reads: 5478 (0 errs)
 read sizes (bytes): avg 10240.0 min 10240 max 10240 sdev 0.0
 read times (msec): avg 0.090 min 0.080 max 0.382 sdev 0.017

The fields, in the Detailed File report of the filemon command, are interpreted
as follows:

FILE Name of the file. The full path name is given, if possible.

volume Name of the logical volume/file system containing the file.

inode Inode number for the file within its file system.

opens Number of times the file was opened while monitored.

total bytes xfrd Total number of bytes read/written to/from the file.

reads Number of read calls against the file.

read sizes (bytes) The read transfer-size statistics (avg/min/max/sdev) in
bytes.

read times (msec) The read response-time statistics (avg/min/max/sdev) in
milliseconds.

writes Number of write calls against the file.

write sizes (bytes) The write transfer-size statistics.

write times (msec) The write response-time statistics.

seeks Number of lseek subroutine calls.
400 AIX 5L Performance Tools Handbook

How to analyze the logical volume report
The logical volume report is divided into three parts; the header, the logical
volume summary, and the detailed logical volume report. The header shows
when and where the report was created and the CPU utilization during the
monitoring period. To create only a logical volume report, issue the filemon
command as follows (in this case using a six second measurement period):

filemon -uo filemon.lv -O lv;sleep 6;trcstop

Example 6-16 shows the full logical volume report. In the report the logical
volume with the highest utilization is in the beginning, and the others are listed in
descending order.

Example 6-16 Logical volume report
Mon Jun 4 09:17:45 2001
System: AIX wlmhost Node: 5 Machine: 000BC6AD4C00

Cpu utilization: 13.9%

Most Active Logical Volumes
--
 util #rblk #wblk KB/s volume description
--
 0.78 10104 2024 761.1 /dev/lv05 jfs2
 0.39 10832 2400 830.4 /dev/lv04 jfs2
 0.04 0 128 8.0 /dev/hd2 /usr
...(lines omitted)...

--
Detailed Logical Volume Stats (512 byte blocks)
--

VOLUME: /dev/lv05 description: jfs2
reads: 727 (0 errs)
 read sizes (blks): avg 13.9 min 8 max 64 sdev 10.5
 read times (msec): avg 19.255 min 0.369 max 72.025 sdev 15.779
 read sequences: 587
 read seq. lengths: avg 17.2 min 8 max 136 sdev 16.7
writes: 162 (0 errs)
 write sizes (blks): avg 12.5 min 8 max 56 sdev 7.1
 write times (msec): avg 12.911 min 3.088 max 57.502 sdev 7.814
 write sequences: 161
 write seq. lengths: avg 12.6 min 8 max 56 sdev 7.1
seeks: 747 (84.0%)
 seek dist (blks): init 246576,
 avg 526933.0 min 8 max 1994240 sdev 479435.6
time to next req(msec): avg 8.956 min 0.001 max 101.086 sdev 13.560
throughput: 761.1 KB/sec
utilization: 0.78
 Chapter 6. Disk I/O performance tools 401

...(lines omitted)...

In Example 6-17 we only extract the logical volume section.

Example 6-17 Most Active Logical Volumes report
awk '/Most Active Logical Volumes/,/^$/' filemon.out

Most Active Logical Volumes
--
 util #rblk #wblk KB/s volume description
--
 1.00 370664 370768 3846.8 /dev/hd3 /tmp
 0.02 0 568 2.9 /dev/hd8 jfslog
 0.01 0 291 1.5 /dev/hd9var /var Frag_Sz.= 512
 0.00 0 224 1.2 /dev/hd4 /
 0.00 0 25 0.1 /dev/hd1 /home Frag_Sz.= 512
 0.00 16 152 0.9 /dev/hd2 /usr

The logical volume hd3 with filesystem /tmp is fully utilized (100 percent) with a
3.8 MB transfer rate per second.

The fields in the Most Active Logical Volumes report of the filemon command
are as follows:

util Utilization of the volume (fraction of time busy). The rows
are sorted by this field, in decreasing order. The first
number, 1.00, means 100 percent.

#rblk Number of 512-byte blocks read from the volume.

#wblk Number of 512-byte blocks written to the volume.

KB/sec Total transfer throughput in Kilobytes per second.

volume Name of volume.

description Contents of volume; either a filesystem name, or logical
volume type (jfs, jfs2, paging, jfslog, jfs2log, boot, or
sysdump). Also, indicates if the file system is fragmented
or compressed.

To check the details of the highest utilized logical volumes, create a script as
shown in Example 6-18 (here we call it filemon.lvdetail) and then run it using
the filemon output file as input.

Example 6-18 Script filemon.lvdetail.
#!/bin/ksh
file=${1:-filemon.out}
switch=${2:-0.20} # 20%
402 AIX 5L Performance Tools Handbook

extract the summary table...
awk '/Most Active Logical Volumes/,/^$/' $file|
select logcal volumes starting from line 5 and no empty lines...

awk 'NR>4&&$0!~/^$/{if ($1 >= switch)print $5}' switch=$switch|
while read lv;do

strip the /dev/ stuff and select the detail section.
awk '/VOLUME: \/dev\/'${lv##*/}'/,/^$/' $file

done

For our continuing example it would result in the following (Example 6-19).

Example 6-19 Logical volume detailed selection report.
filemon.lvdetail filemon.out
VOLUME: /dev/lv05 description: jfs2
reads: 727 (0 errs)
 read sizes (blks): avg 13.9 min 8 max 64 sdev 10.5
 read times (msec): avg 19.255 min 0.369 max 72.025 sdev 15.779
 read sequences: 587
 read seq. lengths: avg 17.2 min 8 max 136 sdev 16.7
writes: 162 (0 errs)
 write sizes (blks): avg 12.5 min 8 max 56 sdev 7.1
 write times (msec): avg 12.911 min 3.088 max 57.502 sdev 7.814
 write sequences: 161
 write seq. lengths: avg 12.6 min 8 max 56 sdev 7.1
seeks: 747 (84.0%)
 seek dist (blks): init 246576,
 avg 526933.0 min 8 max 1994240 sdev 479435.6
time to next req(msec): avg 8.956 min 0.001 max 101.086 sdev 13.560
throughput: 761.1 KB/sec
utilization: 0.78

VOLUME: /dev/lv04 description: jfs2
reads: 510 (0 errs)
 read sizes (blks): avg 21.2 min 8 max 72 sdev 18.6
 read times (msec): avg 5.503 min 0.368 max 25.989 sdev 5.790
 read sequences: 265
 read seq. lengths: avg 40.9 min 8 max 384 sdev 73.4
writes: 110 (0 errs)
 write sizes (blks): avg 21.8 min 8 max 64 sdev 16.8
 write times (msec): avg 9.994 min 4.440 max 18.378 sdev 2.752
 write sequences: 101
 write seq. lengths: avg 23.8 min 8 max 64 sdev 18.6
seeks: 366 (59.0%)
 seek dist (blks): init 127264,
 avg 538451.3 min 8 max 2009448 sdev 504054.2
time to next req(msec): avg 12.842 min 0.003 max 187.120 sdev 23.317
throughput: 830.4 KB/sec
 Chapter 6. Disk I/O performance tools 403

utilization: 0.39

The descriptions for the detailed output shown in the example above are as
follows:

VOLUME Name of the volume.

description Description of the volume. Describes contents, if
discussing a logical volume, and type if dealing with a
physical volume.

reads Number of read requests made against the volume.

read sizes (blks) The read transfer-size statistics (avg/min/max/sdev) in units
of 512-byte blocks.

read times (msec) The read response-time statistics (avg/min/max/sdev) in
milliseconds.

read sequences Number of read sequences. A sequence is a string of
512-byte blocks that are read consecutively and indicate
the amount of sequential access.

read seq. lengths Statistics describing the lengths of the read sequences in
blocks.

writes Number of write requests made against the volume.

write sizes (blks) The write transfer-size statistics.

write times (msec) The write-response time statistics.

write sequences Number of write sequences. A sequence is a string of
512-byte blocks that are written consecutively.

write seq. lengths Statistics describing the lengths of the write sequences in
blocks.

seeks Number of seeks that preceded a read or write request,
also expressed as a percentage of the total reads and
writes that required seeks.

seek dist (blks) Seek distance statistics in units of 512-byte blocks. In
addition to the usual statistics (avg/min/max/sdev), the
distance of the initial seek operation (assuming block 0
was the starting position) is reported separately. This seek
distance is sometimes very large, so it is reported
separately to avoid skewing the other statistics.

seek dist (cyls) (Hard files only.) Seek distance statistics, in units of disk
cylinders.
404 AIX 5L Performance Tools Handbook

time to next req Statistics (avg/min/max/sdev) describing the length of time,
in milliseconds, between consecutive read or write
requests to the volume. This column indicates the rate at
which the volume is being accessed.

throughput Total volume throughput in Kilobytes per second.

utilization Fraction of time the volume was busy. The entries in this
report are sorted by this field, in decreasing order.

How to analyze the virtual memory segments report
The virtual memory report is divided into three parts; the header, the segment
summary and the detailed segment report. The header shows when and where
the report was created and the CPU utilization during the monitoring period. To
create only a virtual memory report, issue the filemon command as follows (in
this case using a six second measurement period):

filemon -uo filemon.vm -O vm;sleep 6;trcstop

Example 6-20 shows the full virtual memory report. In the report the segment
with the highest utilization is in the beginning, and the others are listed in
descending order.

Example 6-20 Virtual memory report
Mon Jun 4 09:34:17 2001
System: AIX wlmhost Node: 5 Machine: 000BC6AD4C00

Cpu utilization: 7.0%

Most Active Segments
--
 #MBs #rpgs #wpgs segid segtype volume:inode
--
 1.8 416 50 2058ab page table
 1.4 301 57 8c91 page table
 1.3 286 52 4c89 page table
 1.3 311 23 2040a8 page table
 1.1 236 47 2068ad page table
 1.0 201 54 2050aa page table
 1.0 184 67 2048a9 page table
 0.7 123 46 2060ac page table
 0.0 0 7 2084 log
 0.0 3 0 ec9d ???
...(lines omitted)...

--
Detailed VM Segment Stats (4096 byte pages)
--
 Chapter 6. Disk I/O performance tools 405

SEGMENT: 2058ab segtype: page table
segment flags: pgtbl
reads: 416 (0 errs)
 read times (msec): avg 3.596 min 0.387 max 24.262 sdev 3.500
 read sequences: 55
 read seq. lengths: avg 7.6 min 1 max 48 sdev 13.6
writes: 50 (0 errs)
 write times (msec): avg 9.924 min 2.900 max 14.530 sdev 2.235
 write sequences: 25
 write seq. lengths: avg 2.0 min 1 max 8 sdev 1.5

...(lines omitted)...

SEGMENT: 2084 segtype: log
segment flags: log
writes: 7 (0 errs)
 write times (msec): avg 12.259 min 7.381 max 15.250 sdev 2.499
 write sequences: 5
 write seq. lengths: avg 1.4 min 1 max 2 sdev 0.5

SEGMENT: ec9d segtype: ???
segment flags:
reads: 3 (0 errs)
 read times (msec): avg 0.964 min 0.944 max 0.981 sdev 0.015
 read sequences: 1
 read seq. lengths: avg 3.0 min 3 max 3 sdev 0.0

...(lines omitted)...

In Example 6-21 we only extract the segment section.

Example 6-21 Most Active Segments report
awk '/Most Active Segments/,/^$/' filemon.out
Most Active Segments
--
 #MBs #rpgs #wpgs segid segtype volume:inode
--
 15.1 2382 1484 2070ae page table
 14.3 2123 1526 2058ab page table
 14.1 1800 1802 672d page table
 13.9 2209 1353 6f2c page table
 13.9 2287 1261 2060ac page table
 13.4 2054 1383 2068ad page table
 12.2 1874 1242 2050aa page table
 11.6 1985 983 2048a9 page table
...(lines omitted)...
406 AIX 5L Performance Tools Handbook

The fields in the Most Active Segments report of the filemon command are
interpreted as follows:

#MBS Total number of megabytes transferred to/from segment.
The rows are sorted by this field in decreasing order.

#rpgs Number of 4096-byte pages read into segment from disk.

#wpgs Number of 4096-byte pages written from segment to disk.

segid Internal ID of segment.

segtype Type of segment; working segment, persistent segment,
client segment, page table segment, system segment,
or special persistent segments containing file system data
(log, root directory, .inode, .inodemap, .inodex,
.inodexmap, .indirect, .diskmap).

volume:inode For persistent segments, name of volume that contains
the associated file, and the files inode number. This field
can be used to associate a persistent segment with its
corresponding file, shown in the file I/O reports. This field
is blank for non-persistent segments.

A detailed segment report is shown in Example 6-22.

Example 6-22 Detailed segment report
grep -p "SEGMENT:.*\?\?\?" filemon.vm
SEGMENT: ec9d segtype: ???
segment flags:
reads: 3 (0 errs)
 read times (msec): avg 0.964 min 0.944 max 0.981 sdev 0.015
 read sequences: 1
 read seq. lengths: avg 3.0 min 3 max 3 sdev 0.0

The fields, in the Detailed VM Segment Stats report of the filemon command,
are interpreted as follows:

SEGMENT Internal segment ID.

segtype Type of segment contents.

segment flags Various segment attributes.

volume For persistent segments, the name of the logical volume
containing the corresponding file.

inode For persistent segments, the inode number for the
corresponding file.

reads Number of 4096-byte pages read into the segment (that
is, paged in).
 Chapter 6. Disk I/O performance tools 407

read times (msec) The read response-time statistics (avg/min/max/sdev) in
milliseconds.

read sequences Number of read sequences. A sequence is a string of
pages that are read (paged in) consecutively. The number
of read sequences is an indicator of the amount of
sequential access.

read seq. lengths Statistics describing the lengths of the read sequences in
pages.

writes Number of pages written from the segment (that is, paged
out).

write times (msec) Write response time statistics.

write sequences Number of write sequences. A sequence is a string of
pages that are written (paged out) consecutively.

write seq.lengths Statistics describing the lengths of the write sequences in
pages.

In the example above filemon only shows a segment id and not if it is a file,
logical volume, or physical volume. To find out more about the segment we use
the svmon command (refer to Section 5.3, “svmon” on page 320 for more
information) as shown in Example 6-23.

Example 6-23 Using svmon to show segment information
svmon -S ec9d

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 ec9d - pers /dev/lv00:17 4 0 - -

In the output above the svmon command with the -S flag shows that segment
ec9d is a persistent segment, which means it is some kind of JFS file and it uses
4 * 4096 bytes of real memory (Inuse). To map the <device>:<inode>, shown
above, into a file system path name, use the ncheck command as in
Example 6-24.

Example 6-24 Using ncheck
ncheck -i 17 /dev/lv00
/dev/lv00:
17 /read_write
408 AIX 5L Performance Tools Handbook

The ncheck command shows the path name of a specified inode number within
the specified file system (logical volume). To obtain the full path name to the file
read_write (in the output above) we need the file system mount point, which can
be obtained by using the lsfs command as follows (Example 6-25).

Example 6-25 Using lsfs
lsfs /dev/lv00
Name Nodename Mount Pt VFS Size Options Auto Accounting
/dev/lv00 -- /tools jfs 32768 rw yes no

The absolute path to the read_write file is /tools/read_write.

6.2 fileplace
The fileplace command displays the placement of a file’s logical or physical
blocks within a Journaled File System (JFS), not Network File System (NFS) or
Enhanced Journaled File System (J2). Logically contiguous files in the file
system may be both logically and physically fragmented on the logical and
physical volume level, depending on the available free space at the time the file
and logical volume (file system) was created.

The fileplace command can be used to examine and assess the efficiency of a
file’s placement on disk and help identify those files that will benefit from
reorganization.

fileplace resides in /usr/bin and is part of the bos.perf.tools fileset, which is
installable from the AIX base installation media.

6.2.1 Syntax
The syntax of the fileplace command is as follows:

fileplace [{ -l | -p } [-i] [-v]] File

Flags
-i Displays the indirect blocks for the file, if any. The indirect

blocks are displayed in terms of either their logical or
physical volume block addresses, depending on whether
the -l or -p flag is specified.

-l Displays file placement in terms of logical volume
fragments, for the logical volume containing the file. The
-l and -p flags are mutually exclusive.
 Chapter 6. Disk I/O performance tools 409

-p Displays file placement in terms of underlying physical
volume, for the physical volumes that contain the file. If
the logical volume containing the file is mirrored, the
physical placement is displayed for each mirror copy. The
-l and -p flags are mutually exclusive.

-v Displays more information about the file and its
placement, including statistics on how widely the file is
spread across the volume and the degree of
fragmentation in the volume. The statistics are expressed
in terms of either the logical or physical volume fragment
numbers, depending on whether the -l or -p flag is
specified.

Parameters
File File is the file to display information about.

6.2.2 Information on measurement and sampling
The fileplace command extracts information about a file’s physical and logical
disposition from the JFS logical volume superblock and inode tables directly from
disk and displays this information in a readable form. If the file is newly created,
extended, or truncated, the file system information may not yet be on the disk
when the fileplace command is run. In this case use the sync command to flush
the file information to the logical volume.

Data on logical volumes (file systems) appears to be contiguous to the user but
can be discontiguous on the physical volume. File and file system fragmentation
can severely hurt I/O performance because it causes more disk arm movement.
To access data from a disk, the disk controller must first be directed to the
specified block by the LVM through the device driver. Then the disk arm must
seek the correct cylinder. After that the read/write heads must wait until the
correct block rotates under them. Finally the data must be transmitted to the
controller over the I/O bus to memory before it can be made available to the
application program. Of course some adapters and I/O architectures support
both multiple outstanding I/O requests and reordering of those requests, which in
some cases will be sufficient, but in most cases will not.

To assess the performance effect of file fragmentation, an understanding of how
the file is used by the application is required:

Note: If neither the -l flag nor the-p flag is specified, the -l flag is implied by
default. If both flags are specified, the -p flag is used.
410 AIX 5L Performance Tools Handbook

� If the application is primarily accessing this file sequentially, the logical
fragmentation is more important. At the end of each fragment read ahead
stops. The fragment size is therefore very important.

� If the application is accessing this file randomly, the physical fragmentation is
more important. The closer the information is in the file, the less latency there
is when accessing the physical data blocks.

6.2.3 Examples
In Example 6-26, the fileplace command lists to standard output the ranges of
logical volume fragments allocated to the specified file. The order in which the
logical volume fragments are listed corresponds directly to their order in the file.

Example 6-26 Using fileplace
fileplace index.db

File: index.db Size: 1812480 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 443 Compress: no

 Logical Fragment

 0000016-0000023 8 frags 32768 Bytes, 1.8%
 0000025-0000028 4 frags 16384 Bytes, 0.9%
 0000544-0000974 431 frags 1765376 Bytes, 97.3%

In the report above we can see that the majority of the file occupies a
consecutive range of blocks starting from 544 and ending at 974 (97.3%).

Attention: Avoid using fragmentation sizes smaller than 4096 bytes. Even
though it is allowed, it will increase the need for system administration and can
cause performance degradation in the I/O system. Fragmentation sizes
smaller than 4096 are only useful when a file system is used for files smaller
than the fragmentation size (<512, 1024, or 2048 bytes). If neededa these
filesystems should be created separately and defragmented regularly by using
the defragfs command. If no other job control system is used in the system,
use cron to execute the command on a regular basis.

a. One scenario in which it could be appropriate is when an application creates
many Simultaneous Periphereal Operation Off Line (SPOOL) files, for example
printer files that are written once and read mainly one time (by the qdaemon).
 Chapter 6. Disk I/O performance tools 411

How to analyze the logical report
The logical report that the fileplace command creates with the -l flag (default)
displays the file placement in terms of logical volume fragments for the logical
volume containing the file (Example 6-27).

Example 6-27 Using fileplace -l
fileplace -l index.db

File: /data/index.db Size: 1812480 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 443 Compress: no

 Logical Fragment

 0000016-0000023 8 frags 32768 Bytes, 1.8%
 0000025-0000028 4 frags 16384 Bytes, 0.9%
 0000544-0000974 431 frags 1765376 Bytes, 97.3%

The fields, in the logical report of the fileplace command, are interpreted as
follows:

File The name of the file being examined

Size The file size in bytes

Vol The name of the logical volume where the file is placed

Blk Size The block size in bytes for that logical volume

Frag Size The fragment size in bytes

Nfrags The number of fragments

Compress If the file system is compressed or not

Logical Fragments The logical block numbers where the file resides

The Logical Fragments part of the report is interpreted as follows, from left to
right:

Start The start of a consecutive block range

Stop The end of the consecutive block range

Nfrags Number of contiguous fragments in the block range

Size The number of bytes in the contiguous fragments

Percent Percentage of the block range compared with the total file
size
412 AIX 5L Performance Tools Handbook

Portions of a file may not be mapped to any logical blocks in the volume. These
areas are implicitly filled with null (0x00) by the file system when they are read.
These areas show as unallocated logical blocks. A file that has these holes will
show the file size to be a larger number of bytes than it actually occupies. Refer
to “Sparsely allocated files” on page 422.

How to analyze the physical report
The physical report that the fileplace command creates with the -p flag displays
the file placement in terms of underlying physical volume (or the physical
volumes that contain the file). If the logical volume containing the file is mirrored,
the physical placement is displayed for each mirror copy (Example 6-28).

Example 6-28 Using fileplace -p
fileplace -p index.db

File: /data/index.db Size: 1812480 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 443 Compress: no

 Physical Addresses (mirror copy 1) Logical Fragment
 ---------------------------------- ----------------
 0537136-0537143 hdisk1 8 frags 32768 Bytes, 1.8% 0000016-0000023
 0537145-0537148 hdisk1 4 frags 16384 Bytes, 0.9% 0000025-0000028
 0537664-0538094 hdisk1 431 frags 1765376 Bytes, 97.3% 0000544-0000974

The fields, in the physical report of the fileplace command, are interpreted as
follows:

File The name of the file being examined

Size The file size in bytes

Vol The name of the logical volume where the file is placed

Blk Size The block size in bytes for that logical volume

Frag Size The fragment size in bytes

Nfrags The number of fragments

Compress If the file system is compressed or not

Physical Address The physical block numbers where the file resides for
each mirror copy

The Physical Address part of the report are interpreted as follows, from left to
right:

Start The start of a consecutive block range

Stop The end of the consecutive block range

PVol Physical volume where the block is stored
 Chapter 6. Disk I/O performance tools 413

Nfrags Number of contiguous fragments in the block range

Size The number of bytes in the contiguous fragments

Percent Percentage of the block range compared with the total file
size

Logical Fragment The logical block addresses corresponding to the physical
block addresses

Portions of a file may not be mapped to any physical blocks in the volume. These
areas are implicitly filled with null (0x00) by the file system when they are read.
These areas show as unallocated physical blocks. A file that has these holes will
show the file size to be a larger number of bytes than it actually occupies. Refer
to “Sparsely allocated files” on page 422.

Analyzing the physical address
The Logical Volume Device Driver (LVDD) requires that all disks are partitioned
in 512 bytes blocks. This is the physical disk block size, and is the basis for the
block addressing reported by the fileplace command. Refer to “Interface to
Physical Disk Device Drivers“ in AIX 5L Version 5.1 Kernel Extensions and
Device Support Programming Concepts for more details.

The XLATE ioctl operation translates a logical address (logical block number and
mirror number) to a physical address (physical device and physical block number
on that device). Refer to the “XLATE ioctl Operation” in AIX 5L Version 5.1 Files
Reference for more details.

Whatever the fragment size, a full block is considered to be 4096 bytes. In a file
system with a fragment size less than 4096 bytes, however, a need for a full
block can be satisfied by any contiguous sequence of fragments totalling 4096
bytes. It does not need to begin on a multiple-of-4096-byte boundary. For more
information, refer to the AIX 5L Version 5.1 Performance Management Guide.

The primary performance hazard for file systems with small fragment sizes is
space fragmentation. The existence of small files scattered across the logical
volume can make it impossible to allocate contiguous or closely spaced blocks
for a large file. Performance can suffer when accessing large files. Carried to an
extreme, space fragmentation can make it impossible to allocate space for a file,
even though there are many individual free fragments.

Another adverse effect on disk I/O activity is the number of I/O operations. For a
file with a size of 4 KB stored in a single fragment of 4 KB, only one disk I/O
operation would be required to either read or write the file. If the choice of the
fragment size was 512 bytes, eight fragments would be allocated to this file, and
414 AIX 5L Performance Tools Handbook

for a read or write to complete, several additional disk I/O operations (disk seeks,
data transfers, and allocation activity) would be required. Therefore, for file
systems which use a fragment size of 4 KB, the number of disk I/O operations
might be far less than for file systems which employ a smaller fragment size.

Example 6-29 illustrates how the 512 byte physical disk block is reported by the
fileplace command.

Example 6-29 Using fileplace -p
fileplace -p file.log

File: file.log Size: 148549 bytes Vol: /dev/hd1
Blk Size: 4096 Frag Size: 512 Nfrags: 296 Compress: no

 Physical Addresses (mirror copy 1) Logical Fragment
 ---------------------------------- ----------------
 4693063 hdisk0 8 frags 4096 Bytes, 2.7% 0052039
 4693079 hdisk0 8 frags 4096 Bytes, 2.7% 0052055
 4693106 hdisk0 8 frags 4096 Bytes, 2.7% 0052082
 4693120 hdisk0 8 frags 4096 Bytes, 2.7% 0052096
 0829504-0829528 hdisk0 32 frags 16384 Bytes, 10.8% 1562432-1562456
 0825064-0825080 hdisk0 24 frags 12288 Bytes, 8.1% 1557992-1558008
 0825120 hdisk0 8 frags 4096 Bytes, 2.7% 1558048
 0825008-0825016 hdisk0 16 frags 8192 Bytes, 5.4% 1557936-1557944
 0824182 hdisk0 8 frags 4096 Bytes, 2.7% 1557110
 0824648 hdisk0 8 frags 4096 Bytes, 2.7% 1557576
 0829569-0829593 hdisk0 32 frags 16384 Bytes, 10.8% 1562497-1562521
 0829632-0829656 hdisk0 32 frags 16384 Bytes, 10.8% 1562560-1562584
 0829696-0829712 hdisk0 24 frags 12288 Bytes, 8.1% 1562624-1562640
 0829792-0829864 hdisk0 80 frags 40960 Bytes, 27.0% 1562720-1562792

In the following explanation we use the following line from the example above:

0825008-0825016 hdisk0 16 frags 8192 Bytes, 5.4% 1557936-1557944

As the fragment size is less than 4096 Bytes in this case, the start range is the
starting address of the 4096/FragSize contiguous blocks, and the end range is
nothing but the starting address of the 4096/FragSize contiguous blocks.

Hence from 0825008 to 08250015 is the first 4096 byte block, which is occupied by
the file (8 frags in this case), and from 08250016 to 08250023 is the next 4096 byte
block that is occupied by the file (8 frags, totals up to 16 frags now). Note that the
actual range is 0825008-0850023, but instead 0825008-08250016 are displayed.
 Chapter 6. Disk I/O performance tools 415

The reason why fileplace does not display the proper end physical address is
that AIX always tries to allocate the specified block size contiguously on the disk.
Hence, for a 4 KB block size, AIX will always look for 8 contiguous 512 byte block
on the disk and allocates it. Hence fileplace always displays the start and
endrange in terms of block addressing.

Hence if the fragment size and block size are same, then fileplace display
seems to be meaningful output, but if the block size and fragment size are not
the same, then the output may little bit confusing. Actually fileplace always
displays the address ranges in terms of start and end address of a block and not
a fragment, even though the addressing is done based on fragments.

The formula fileplace uses to display the mapping of physical address, logical
address, and fragments is

Number of fragments occupied = (End Range of Physical / Logical Address -
Start Range of Physical/Logical Address) + (Block Size / Frag Size)

For more information refer also to "Understanding Fragments" in AIX 5L Version
5.1 System Management Concepts: Operating System and Devices.

To illustrate the addressing, consider another example in AIX where the word
size is 4 bytes, which means that addressing is done for each and every 4 bytes.
Following example applies to the case of an array of the longlong type:

longlong word[10];

The starting address of word[0] is 123456. The display of the range of addresses
occupied by this array is:

Start Address: 123456
End Address: 123474
Total no. of words occupied: 20

However, if you calculate 123474 - 123456 + 1 = 19 words, this is one word less.
The end address is nothing but the address of word[10], which occupies two
words, so the actual formula in this case is:

 (Endaddress - startaddress) + (Data size / wordsize)

With our example above it would be:

 (123474 - 123456)+ (8 / 4) = 20 words
416 AIX 5L Performance Tools Handbook

How to analyze the indirect block report
The fileplace -i flag will display any indirect block(s) used for the file in addition
to the default display or together with the -l, -p, or -v flags. Indirect block(s) are
needed for files larger than 32 KB. An single indirect block is used for storing
addresses to data blocks when the inode’s number of data block addresses are
not sufficient. A double indirect block is used to store addresses to other blocks
that in their turn store addresses to data blocks. For more detail on the use of the
indirect block see AIX 5L Version 5.1 System User's Guide: Operating System
and Devices.

The only additional fields to the physical or logical reports, when the -i option is
used with fileplace, are interpreted as follows:

INDIRECT BLOCK The physical/logical address of a data block that
contains pointers (addresses) to data blocks.

DOUBLE INDIRECT BLOCK The physical/logical address of a block that contains
pointers (addresses) to other indirect blocks.

INDIRECT BLOCKS The physical/logical address of a data block(s) that
contains pointers (addresses) to data blocks.

In Example 6-30 using the logical report (-l), the indirect block’s logical address
is 24.

Example 6-30 Indirect block, logical view
fileplace -il index.db

File: /data/index.db Size: 1812480 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 443 Compress: no

INDIRECT BLOCK: 00024

 Logical Fragment

 0000016-0000023 8 frags 32768 Bytes, 1.8%
 0000025-0000028 4 frags 16384 Bytes, 0.9%
 0000544-0000974 431 frags 1765376 Bytes, 97.3%

Example 6-31, using the physical report (-p), shows that the indirect block’s
physical address is 537144.

Example 6-31 Indirect block, physical view
fileplace -ip index.db

File: /data/index.db Size: 1812480 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 443 Compress: no

INDIRECT BLOCK: 537144
 Chapter 6. Disk I/O performance tools 417

 Physical Addresses (mirror copy 1) Logical Fragment
 ---------------------------------- ----------------
 0537136-0537143 hdisk1 8 frags 32768 Bytes, 1.8% 0000016-0000023
 0537145-0537148 hdisk1 4 frags 16384 Bytes, 0.9% 0000025-0000028
 0537664-0538094 hdisk1 431 frags 1765376 Bytes, 97.3% 0000544-0000974

Example 6-32, using the default logical report (-i), shows that the double indirect
block’s logical address is 01170, and the two currently existing indirect blocks’
logical addresses are 00029 and 01171:

Example 6-32 Double indirect block and indirect blocks
fileplace -i bolshoi.tar

File: bolshoi.tar Size: 5724160 bytes Vol: /dev/vg10lv1
Blk Size: 4096 Frag Size: 4096 Nfrags: 1398 Compress: no

DOUBLE INDIRECT BLOCK: 01170
INDIRECT BLOCKS: 00029 01171

 Logical Fragment

 0000144-0000147 4 frags 16384 Bytes, 0.3%
 0000150-0001169 1020 frags 4177920 Bytes, 73.0%
 0001172-0001545 374 frags 1531904 Bytes, 26.8%

How to analyze the volume report
The volume report displays information about the file and its placement, including
statistics on how widely the file is spread across the volume and the degree of
fragmentation in the volume.

Logical report
In Example 6-33 the statistics are expressed in terms of logical fragment
numbers. This is the logical blocks placement on the logical volume, for each of
the logical copies of the file.

Example 6-33 Using fileplace -vl
fileplace -vl index.db

File: /data/index.db Size: 1812480 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 443 Compress: no
Inode: 17 Mode: -rw-r--r-- Owner: root Group: sys

 Logical Fragment

 0000016-0000023 8 frags 32768 Bytes, 1.8%
418 AIX 5L Performance Tools Handbook

 0000025-0000028 4 frags 16384 Bytes, 0.9%
 0000544-0000974 431 frags 1765376 Bytes, 97.3%

 443 frags over space of 959 frags: space efficiency = 46.2%

If the application is primarily accessing this file sequentially the logical
fragmentation is important. When VMM is reading a file sequentially, by default, it
uses read ahead (for more information on tuning the read ahead size, see
Section 3.12, “vmtune” on page 201). At the end of each fragment read ahead
stops. The fragment size is therefore very important. High space efficiency
means that the file is less fragmented. In the example above, the file has only
46.2 percent space efficiency for the logical fragmentation. Because the file in
the example above is larger than 32 KB, it will never have 100 percent space
efficiency because of the use of the indirect block.

Space efficiency is calculated as the number of non null fragments (N) divided by
the range of fragments assigned to the file (R) and multiplied by 100:

(N / R) * 100

Range is calculated as the highest assigned address (MaxBlk) minus the lowest
assigned address (MinBlk) plus 1:

MaxBlk - MinBlk + 1

In Example 6-34 we use the logical (-l), indirect (-i), and volume (-v) flags with
fileplace to show all interesting information from a logical point of view of a file.

Example 6-34 Using fileplace -liv
fileplace -liv bolshoi.tar

File: bolshoi.tar Size: 5724160 bytes Vol: /dev/vg10lv1
Blk Size: 4096 Frag Size: 4096 Nfrags: 1398 Compress: no
Inode: 29 Mode: -rw-rw-r-- Owner: root Group: sys

DOUBLE INDIRECT BLOCK: 01170
INDIRECT BLOCKS: 00029 01171

 Logical Fragment

 0000144-0000147 4 frags 16384 Bytes, 0.3%
 0000150-0001169 1020 frags 4177920 Bytes, 73.0%
 0001172-0001545 374 frags 1531904 Bytes, 26.8%

 1398 frags over space of 1402 frags: space efficiency = 99.7%
 3 fragments out of 1398 possible: sequentiality = 99.9%
 Chapter 6. Disk I/O performance tools 419

In the output you notice that this file is a file using double indirection for data
block addresses. Both space efficiency and sequentiality are at very good
levels (99.7 and 99.9 percent respectively).

Example 6-35 shows a file with zero sequentiality. It is a sparse file (see
“Sparsely allocated files” on page 422) but the importance is the distance
between the allocated blocks (1204 and 1205).

Example 6-35 Zero sequentiality
fileplace -liv ugly.file

File: ugly.file Size: 512001 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 2 Compress: no
Inode: 182 Mode: -rw-r--r-- Owner: root Group: sys

INDIRECT BLOCK: 01218

 Logical Fragment

 unallocated 12 frags 49152 Bytes, 0.0%
 0001204 1 frags 4096 Bytes, 50.0%
 unallocated 112 frags 458752 Bytes, 0.0%
 0001205 1 frags 4096 Bytes, 50.0%

 2 frags over space of 2 frags: space efficiency = 100.0%
 2 fragments out of 2 possible: sequentiality = 0.0%

Physical report
In Example 6-36 the statistics are expressed in terms of physical volume
fragment numbers. This is the logical blocks placement on physical volume(s), for
each of the logical copies of the file.

Example 6-36 fileplace -vp
fileplace -vp index.db

File: /data/index.db Size: 1812480 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 443 Compress: no
Inode: 17 Mode: -rw-r--r-- Owner: root Group: sys

 Physical Addresses (mirror copy 1) Logical Fragment
 ---------------------------------- ----------------
 0537136-0537143 hdisk1 8 frags 32768 Bytes, 1.8% 0000016-0000023
 0537145-0537148 hdisk1 4 frags 16384 Bytes, 0.9% 0000025-0000028
 0537664-0538094 hdisk1 431 frags 1765376 Bytes, 97.3% 0000544-0000974

 443 frags over space of 959 frags: space efficiency = 46.2%
 3 fragments out of 443 possible: sequentiality = 99.5%
420 AIX 5L Performance Tools Handbook

If the application is primarily accessing this file randomly, the physical
fragmentation is important. The closer the information is in the file, the less
latency when accessing the physical data blocks. High sequentiality means that
the file’s physical blocks are allocated more contiguously. In the example above,
the file has a 99.5 percent sequentiality.

Sequential efficiency is defined as 1 minus the number of gaps (nG) divided by
number of possible gaps (nPG):

1 - (nG / nPG)

The number of possible gaps equals N minus 1:

nPG = N - 1

In Example 6-37, we use the physical (-p), indirect (-i), and volume (-v) flags to
fileplace to show us all interesting information from a physical point of view of a
file.

Example 6-37 Using fileplace -piv
fileplace -piv bolshoi.tar

File: bolshoi.tar Size: 5724160 bytes Vol: /dev/vg10lv1
Blk Size: 4096 Frag Size: 4096 Nfrags: 1398 Compress: no
Inode: 29 Mode: -rw-rw-r-- Owner: root Group: sys

DOUBLE INDIRECT BLOCK: 01714
INDIRECT BLOCKS: 00573 01715

 Physical Addresses (mirror copy 1) Logical Fragment
 ---------------------------------- ----------------
 0000688-0000691 hdisk10 4 frags 16384 Bytes, 0.3% 0000144-0000147
 0000694-0001713 hdisk10 1020 frags 4177920 Bytes, 73.0% 0000150-0001169
 0001716-0002089 hdisk10 374 frags 1531904 Bytes, 26.8% 0001172-0001545

 1398 frags over space of 1402 frags: space efficiency = 99.7%
 3 fragments out of 1398 possible: sequentiality = 99.9%

In the output you notice that this file is a file using double indirection for data
block addresses. Both space efficiency and sequentiality are at very good
levels (99.7 and 99.9 percent respectively).

Example 6-38 on page 422 shows a file with zero sequentiality. It is a sparse file
(see “Sparsely allocated files” on page 422), but the importance is the distance
between the allocated blocks (1204 and 1205).
 Chapter 6. Disk I/O performance tools 421

Example 6-38 Zero sequentiality
fileplace -piv ugly.file

File: ugly.file Size: 512001 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 2 Compress: no
Inode: 182 Mode: -rw-r--r-- Owner: root Group: sys

INDIRECT BLOCK: 538338

 Physical Addresses (mirror copy 1) Logical Fragment
 ---------------------------------- ----------------
 unallocated 12 frags 49152 Bytes, 0.0% unallocated
 0538324 hdisk1 1 frags 4096 Bytes, 50.0% 0001204
 unallocated 112 frags 458752 Bytes, 0.0% unallocated
 0538325 hdisk1 1 frags 4096 Bytes, 50.0% 0001205

 2 frags over space of 2 frags: space efficiency = 100.0%
 2 fragments out of 2 possible: sequentiality = 0.0%

Sparsely allocated files
A file is a sequence of indexed blocks of arbitrary size. The indexing is
accomplished through the use of direct mapping or indirect index blocks from the
files inode (“Indirect block, logical view” on page 417). Each index within a file’s
address range is not required to map to an actual data block.

A file that has one or more inode data block indexes that are not mapped to an
actual data block is considered sparsely allocated (sparse file). A sparse file will
have a size associated with it (in the inode), but it will not have all of the data
blocks allocated that match this size.

A sparse file is created when an application extends a file by seeking a location
outside the currently allocated indexes, but the data that is written does not
occupy all of the newly assigned indexes. The new file size reflects the farthest
write into the file.

A read to a section of a file that has unallocated data blocks results in a default
value of null (0x00) bytes being returned. A write to a section of a file that has
unallocated data blocks causes the necessary data blocks to be allocated and
the data written, but there may not be enough free blocks in the file system any
more. The result is that the write will fail. Database systems in particular maintain
data in sparse files.

The problem with sparse files occur first when unallocated space is needed for
data being added to the file. Problems caused by sparse files can be avoided if
the file system is large enough to accommodate all the file’s defined sizes, and of
course to not have any sparse files in the file system.
422 AIX 5L Performance Tools Handbook

It is possible to check for the existence of sparse files within a file system by
using the fileplace command. Example 6-39 shows how to use the ls, du, and
fileplace commands to identify that a file is not sparse.

Example 6-39 Checking a non sparse file
ls -l happy.file
-rw-r--r-- 1 root sys 37 May 30 11:51 happy.file

du -k happy.file
4 happy.file

fileplace happy.file

File: happy.file Size: 37 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 1 Compress: no

 Logical Fragment

 0050663 1 frags 4096 Bytes, 100.0%

The example output above shows that the size of the file happy.file is 37 bytes,
but because the file system block (fragment) size is 4096 bytes and the smallest
allocation size in a file system is one (1) block, du and fileplace show that the
file actually uses 4 KB of disk space.

Example 6-40 shows how the same type of reports could look like if the file was
sparse.

Example 6-40 Checking a sparse file
ls -l unhappy.file
-rw-r--r-- 1 root sys 512037 May 30 11:55 unhappy.file

du -k unhappy.file
4 unhappy.file

fileplace unhappy.file

File: unhappy.file Size: 512037 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 1 Compress: no

 Logical Fragment

 unallocated 125 frags 512000 Bytes, 0.0%
 0050665 1 frags 4096 Bytes, 100.0%
 Chapter 6. Disk I/O performance tools 423

In the example output shown above, the ls -l command shows the size
information stored about the unhappy.file file in the files inode record, which is
the size in bytes (512037). The du -k command shows the number of allocated
blocks for the file, in this case only 1 (4 KB). The fileplace command shows
how the blocks (Logical Fragments) are allocated. In the fileplace output
above there are 125 unallocated blocks and one (1) allocated at logical address
50665, so the unhappy.file file is sparse.

How to create sparse files
To create a sparse file you can use the dd command with the seek option. In the
following examples we show how to check the file system utilization during the
process of creating a sparse file.

First we check the file system for our current directory to see how much apparent
available space there is available with the df command. Note the number of
inodes that are currently used (1659) to compare with the df output in
Example 6-41.

Example 6-41 Using df
df $PWD
Filesystem 512-blocks Free %Used Iused %Iused Mounted on
/dev/datalv 655360 393552 40% 1659 3% /data

Then we use the dd command to seek within one byte (-1 in the calculation in the
Example 6-42) of the maximum allowed file size for our user (ulimit -f shows
the current setting, in this case the default which is 2097151 bytes or 1 GB). The
input was just a new line character (\n) from the echo command. Now we have
created a sparse file.

Example 6-42 Creating a sparse file
echo|dd of=ugly.file seek=$(($(ulimit -f)-1))
0+1 records in.
0+1 records out.

Example 6-43 shows the examination of the file’s space utilization with the ls,
fileplace, and df commands. The first example below shows the output of the
ls command that displays the files inode byte counter. Note that the -s flag will
report the actual number of KB blocks allocated, as does the du command.

Example 6-43 Using ls on the sparse file
ls -sl ugly.file
4 -rw-r--r-- 1 root sys 1073740801 May 31 17:13 /test2/ugly.file
424 AIX 5L Performance Tools Handbook

According to the ls output in the previous example, the file size is 1073740801
bytes but only 4 blocks. Now we know that this is a sparse file. In Example 6-44
we use the fileplace -l command to look at the allocation in detail, first from a
logical view.

Example 6-44 Using fileplace -l on the sparse file
fileplace -l ugly.file

File: ugly.file Size: 1073740801 bytes Vol: /dev/lv09
Blk Size: 4096 Frag Size: 4096 Nfrags: 1 Compress: no

 Logical Fragment

 unallocated 262143 frags 1073737728 Bytes, 0.0%
 0000014 1 frags 4096 Bytes, 100.0%

The logical report above shows that logical block 14 is allocated for the file
occupying 4 KB, and the rest is unallocated. Example 6-45 shows the physical
view of the file using the fileplace -p command.

Example 6-45 Using fileplace -p on the sparse file
fileplace -p ugly.file

File: ugly.file Size: 1073740801 bytes Vol: /dev/lv09
Blk Size: 4096 Frag Size: 4096 Nfrags: 1 Compress: no

 Physical Addresses (mirror copy 1) Logical Fragment
 ---------------------------------- ----------------
 unallocated 262143 frags 1073737728 Bytes, 0.0% unallocated
 0631342 hdisk1 1 frags 4096 Bytes, 100.0% 0000014

The physical report above shows that physical block 631342 is allocated for the
logical block 13 and it resides on hdisk1. Example 6-46 shows the volume report
(logical view) for the file using the fileplace -v command.

Example 6-46 Using fileplace -lv on the sparse file
fileplace -lv ugly.file

File: ugly.file Size: 1073740801 bytes Vol: /dev/lv09
Blk Size: 4096 Frag Size: 4096 Nfrags: 1 Compress: no
Inode: 18 Mode: -rw-r--r-- Owner: root Group: sys

 Logical Fragment

 unallocated 262143 frags 1073737728 Bytes, 0.0%
 0000014 1 frags 4096 Bytes, 100.0%

 1 frags over space of 1 frags: space efficiency = 100.0%
 Chapter 6. Disk I/O performance tools 425

 1 fragment out of 1 possible: sequentiality = 100.0%

The volume report above, for the logical view, shows that the file has 100 percent
space efficiency and sequentiality. The next and final fileplace command
report on this file shows the volume report for the physical view of the file
(Example 6-47).

Example 6-47 Using fileplace -pv on the sparse file
fileplace -pv ugly.file

File: ugly.file Size: 1073740801 bytes Vol: /dev/lv09
Blk Size: 4096 Frag Size: 4096 Nfrags: 1 Compress: no
Inode: 18 Mode: -rw-r--r-- Owner: root Group: sys

 Physical Addresses (mirror copy 1) Logical Fragment
 ---------------------------------- ----------------
 unallocated 262143 frags 1073737728 Bytes, 0.0% unallocated
 0631342 hdisk1 1 frags 4096 Bytes, 100.0% 0000014

 1 frags over space of 1 frags: space efficiency = 100.0%
 1 fragment out of 1 possible: sequentiality = 100.0%

The volume report above, for the physical view, also shows that the file has 100
percent space efficiency and sequentiality.

Sparse files in large file enabled file systems
File data in a large file enabled file system (after the file size has increased over
4 MBs) will use 32 contiguous 4 KB blocks (so-called large disk blocks) as
opposed to one 4 KB block for a normal JFS file system. To illustrate the point,
we will show a series of examples using the fileplace command to examine the
allocation of a file. First we verify that the file system is a large file system with
the lsfs command, then we create a file without data, and finally we examine the
inode information with the ls command and then the block allocation with the
fileplace command (Example 6-48).

Example 6-48 Creating a file in a large file enabled file system
lsfs -cq $PWD|tail -1
 (lv size 655360:fs size 655360:frag size 4096:nbpi 4096:compress no:bf true:ag 64)
>ugly.file
ls -sl ugly.file
 0 -rw-r--r-- 1 root sys 0 May 31 17:59 ugly.file
fileplace ugly.file

File: ugly.file Size: 0 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 0 Compress: no

 Logical Fragment
426 AIX 5L Performance Tools Handbook

In the example above we see that it is indeed a large file enabled file system
because bf is true, the ls command shows zero blocks allocated, and that the
size is zero bytes as well. The fileplace command shows that the size is zero
and that there are no blocks allocated. Now we seek 4 MB (4194304 bytes) to the
new end of the file and examine it again with the ls and fileplace commands
(Example 6-49).

Example 6-49 Seeking 4 MB to the end of file
dd if=/dev/null of=ugly.file bs=1 seek=4194304
0+0 records in.
0+0 records out.
ls -sl ugly.file
 4 -rw-r--r-- 1 root sys 4194304 May 31 18:14 ugly.file
fileplace ugly.file

File: ugly.file Size: 4194304 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 1 Compress: no

 Logical Fragment

 unallocated 1023 frags 4190208 Bytes, 0.0%
 0001205 1 frags 4096 Bytes, 100.0%

In the output above the ls command shows four blocks allocated, and that the
size is 4 MB. The fileplace command show that the size is 4 MB and that there
is one 4 KB block allocated. Now we add one byte to the file and examine it again
(Example 6-50).

Example 6-50 File size after adding one byte
echo >>ugly.file

ls -sl ugly.file
 132 -rw-r--r-- 1 root sys 4194305 May 31 18:19 ugly.file

fileplace ugly.file

File: ugly.file Size: 4194305 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 33 Compress: no

 Logical Fragment

 unallocated 1023 frags 4190208 Bytes, 0.0%
 0001205 1 frags 4096 Bytes, 3.0%
 0001218 32 frags 131072 Bytes, 97.0%
 Chapter 6. Disk I/O performance tools 427

In the output above the ls command shows 132 blocks (1 KB per block)
allocated, and that the size is 4 MB and one byte. The fileplace command
shows that the size is 4 MB and one byte, and that there are 33 blocks (4 KB per
block) allocated. The byte we added to the file has caused 32 blocks (4 KB per
block) to be added because it is a large file system.

How to search for sparse files
To find sparse files in file systems we can use the find command with the -ls
flag. Example 6-51 shows how this can be done.

Example 6-51 Using find to find sparse files
root@wlmhost:/data: find /test0 -type f -xdev -ls
 17 4 -rw-r--r-- 1 root sys 1 May 31 12:23 /test0/file
 18 4 -rw-r--r-- 1 root sys 1073740801 May 31 17:13 /test0/ugly.file

The second column is the allocated block size, the seventh column is the byte
size and the 11th column is the file name. In the output above it is obvious that
this will be time consuming if done manually because the find command lists all
files by using the -type f flag. Because we cannot limit the output further by only
using the find command, we do it with a script.

The following script take as an optional parameter the file system to scan. If no
parameter is given, it will list all file systems in the system with the lsfs
command (except /proc) and stores this in the fs variable. The find command,
on the last line in the script, searches all file systems specified in the fs variable
for files (-type f), does not traverse over file system boundaries (-xdev), and
lists inode information about the file (-ls). The output from the find command is
then examined by awk in the pipe. The awk command compares the sizes of a
normalized block and byte value and, if they do not match, awk will print the
filename, block, and byte sizes (Example 6-52).

Example 6-52 Shell script to search for sparse files
:
fs=${1:-"$(lsfs -c|awk -F: 'NR>2&&!/\/proc/{print $1}')"}
find $fs -xdev -type f -ls 2>/dev/null|awk '{if (int($2*1024)<int($7/1024)) print $11,$2,$7}'

The awk built in int() function is used because awk returns floating point values
as the result of calculations and the comparison should be done with integers.
The following is a sample output from running the script above (Example 6-53).

Example 6-53 Sample output from sparse file search script
/home/mysp1 4 512000001
/tmp/mysp 4 512000001
...(lines omitted)...
/tmp/ugly.file 4 1073740801
/data/mysp3 128 1073740801
428 AIX 5L Performance Tools Handbook

/test0/ugly.file 4 1073740801

To find out how many sparse files the script found, just pipe the output to the wc
command with -l flag, or change the script to perform this calculation as well (it
was not included above for readability) as Example 6-54 shows.

Example 6-54 Enhanced shell script to search for sparse files
:
fs=${1:-"$(lsfs -c|awk -F: 'NR>2&&!/\/proc/{print $1}')"}
find $fs -xdev -type f -ls 2>/dev/null|
awk 'BEGIN{n=0}
 {if (int($2*1024)<int($7/1024)) {print $11,$2,$7;n++}}
 END{print "\nTotal no of sparse files",n}'

The variable n is incremented each time a file matching the calculation is found.
The sample output below show on the last line how many sparse files the script
found (Example 6-55).

Example 6-55 Sample output from the enhanced sparse file search script
...(lines omitted)...
/test0/ugly.file 4 1073740801

Total no of sparse files 110

In the output above, the enhanced search script found 110 sparse files.

6.3 lslv, lspv, and lsvg
Many times it is useful to determine the layout of logical volumes on disks and
volume groups to identify if rearranging or changing logical volume definitions
might be appropriate. Some of the commands that can be used are lslv, lspv,
and lsvg:

� The lslv command displays the characteristics and status of the logical
volume.

� The lspv command is useful for displaying information about the physical
volume, its logical volume content, and the logical volume allocation layout.

� The lsvg command displays information about volume groups.

These commands resides in /usr/sbin and are part of the bos.rte.lvm fileset,
which is installed by default from the AIX base installation media.
 Chapter 6. Disk I/O performance tools 429

6.3.1 lslv syntax
The syntax of the lslv command is as follows:

lslv [-L] [-l| -m] [-nPhysicalVolume] LogicalVolume

lslv [-L] [-nPhysicalVolume] -pPhysicalVolume [LogicalVolume]

Flags
-L Specifies no waiting to obtain a lock on the volume

group. Note: If the volume group is being changed, using
the -L flag gives unreliable data.

-l Lists the following fields for each physical volume in the
logical volume; PV, Copies, In band, Distribution

-m Lists the following fields for each logical partition; LPs,
PV1, PP1, PV2, PP2, PV3, PP3

-n PhysicalVolume Accesses information from the specific descriptor area of
the PhysicalVolume variable. The information may not be
current because the information accessed with the -n
flag has not been validated for the logical volumes. If you
do not use the -n flag, the descriptor area from the
physical volume that holds the validated information is
accessed and therefore the information that is displayed
is current. The volume group need not be active when
you use this flag.

-p PhysicalVolume Displays the logical volume allocation map for the
PhysicalVolume variable. If you use the LogicalVolume
parameter, any partition allocated to that logical volume
is listed by logical partition number.

Parameters
LogicalVolume The logical volume to examine.

6.3.2 lspv Syntax
The syntax of the lspv command is as follows:

lspv [-L] [-l | -p | -M] [-n DescriptorPhysicalVolume] [-vvolume
groupID] PhysicalVolume
430 AIX 5L Performance Tools Handbook

Flags
-L Specifies no waiting to obtain a lock on the

volume group. Note: If the volume group is
being changed, using the -L flag gives unreliable
data.

-l Lists the following fields for each logical volume
on the physical volume; LVname, LPs, PPs,
Distribution, Mount Point

-M Lists the following fields for each logical volume
on the physical volume; PVname, PPnum, LVname,
LPnum, Copynum, Mirror number, PPstate

-n DescriptorPhysicalVolume Accesses information from the variable
descriptor area specified by the
DescriptorPhysicalVolume variable. The
information may not be current because the
information accessed with the -n flag has not
been validated for the logical volumes. If you do
not use the -n flag, the descriptor area from the
physical volume that holds the validated
information is accessed, and therefore the
information displayed is current. The volume
group does not need to be active when you use
this flag.

-p Lists the following fields for each physical
partition on the physical volume; Range, State,
Region, LVname, Type, Mount point

-v volume groupID Accesses information based on the volume
groupID variable. This flag is needed only when
the lspv command does not function due to
incorrect information in the Device Configuration
Database. The volume groupID variable is the
hexadecimal representation of the volume group
identifier, which is generated by the mkvg
command.

Parameters
PhysicalVolume The physical volume to examine.
 Chapter 6. Disk I/O performance tools 431

6.3.3 lsvg syntax
The syntax of the lsvg command is as follows:

lsvg [-L] [-o] | [-n DescriptorPhysicalVolume] | [-i] [-l | -M
| -p] volume group ...

Flags
-L Specifies no waiting to obtain a lock on the

volume group. Note: If the volume group is
being changed, using the -L flag gives unreliable
data.

-p Lists the following information for each physical
volume within the group specified by the volume
group parameter; Physical volume, PVstate,
Total PPs, Free PPs, Distribution

-l Lists the following information for each logical
volume within the group specified by the volume
group parameter; LV, Type, LPs, PPs, PVs, Logical
volume state, Mount point

-i Reads volume group names from standard
input.

-M Lists the following fields for each logical volume
on the physical volume; PVname, PPnum, LVname,
LPnum, Copynum, PPstate

-n DescriptorPhysicalVolume Accesses information from the descriptor area
specified by the DescriptorPhysicalVolume
variable. The information may not be current
because the information accessed with the -n
flag has not been validated for the logical
volumes. If you do not use the -n flag, the
descriptor area from the physical volume that
holds the most validated information is
accessed, and therefore the information
displayed is current. The volume group need not
be active when you use this flag.

-o Lists only the active volume groups (those that
are varied on). An active volume group is one
that is available for use.

Parameters
volume group The name of the volume group to examine.
432 AIX 5L Performance Tools Handbook

6.3.4 Information on measurement and sampling
The lslv, lsvg, and lspv commands reads different Logical Volume Manager
(LVM) volume group and logical volume descriptor areas from physical volumes.

When information from the Object Data Manager (ODM) Device Configuration
database is unavailable, some of the fields will contain a question mark (?) in
place of the missing data.

6.3.5 Examples
Most of the times when starting to look for an potentially I/O related performance
bottleneck, we need to find out more about the disks in use; what is on them and
what they are used for. Here are a few of the actions we need to perform:

� We need to check what volume group the disks in question belong to.

� We need to check the logical volume layout on the disks in question.

� We need to check the logical volume layout of all the disks in question on the
volume group.

To accomplish this we will use mainly the lsvg, lspv, and lslv commands.

To monitor disk I/O we will usually start with the iostat command (see
Section 3.2, “iostat” on page 67). The iostat command will show the load on
different disks in great detail. The output below is the summary since boot time (if
the iostat attribute has been enabled for the sys0 logical device driver)
(Example 6-56).

Example 6-56 Starting point with iostat
iostat -ad

Adapter: Kbps tps Kb_read Kb_wrtn
scsi0 21.1 3.6 6018378 4343544

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk1 0.0 0.2 0.0 103951 2004
hdisk0 1.0 20.1 3.4 5534703 4341540
cd0 0.0 0.8 0.2 379724 0

Adapter: Kbps tps Kb_read Kb_wrtn
scsi1 71.3 7.6 21588850 13463040

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk2 2.1 38.5 3.4 12226787 6695708
hdisk3 3.1 32.8 4.2 9362063 6767332
 Chapter 6. Disk I/O performance tools 433

This system has two SCSI adapters and two disks on each adapter. Since IPL
the disks has not been so active. To find out how long the statistics have been
gathered, use the uptime command (Example 6-57).

Example 6-57 Using uptime
uptime
 11:57AM up 5 days, 1:13, 11 users, load average: 0.00, 0.00, 0.00

The example above tells us that the statistics has been collected over five days.
Also note that the output of iostat will show an average over 24 hours during
that time. We know that our system is only used during normal working hours so
we could check the current running statistics as in Example 6-58.

Example 6-58 Using iostat
iostat -ad 1 2
...(lines omitted)...
Adapter: Kbps tps Kb_read Kb_wrtn
scsi0 0.0 0.0 0 0

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk1 0.0 0.0 0.0 0 0
hdisk0 0.0 0.0 0.0 0 0
cd0 0.0 0.0 0.0 0 0

Adapter: Kbps tps Kb_read Kb_wrtn
scsi1 1834.2 192.8 1720 316

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk2 47.7 1228.8 97.3 1260 104
hdisk3 61.3 605.4 95.5 460 212

And now we see that the system performs quite a bit of I/O on hdisk2 and
hdisk3, so we should check how the layout is for these disks. First let’s find out
what volume groups the disks belong to (Example 6-59).

Example 6-59 Using lspv to examine the disk versus volume group mapping
lspv
hdisk0 000bc6adc9ee6b3a rootvg
hdisk1 000bc6ade881de45 vg0
hdisk2 000bc6adc472a478 vg0
hdisk3 000bc6adc9ec9be3 vg0
434 AIX 5L Performance Tools Handbook

The disks we are examining (hdisk2 and hdisk3) in our example above belong to
the vg0 volume group. Because the two disks belongs to the same volume group,
we can go ahead and list some information about the disks from the volume
group perspective with lsvg (Example 6-60).

Example 6-60 Using lsvg to check the distribution
lsvg -p vg0
vg0:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk1 active 542 509 109..75..108..108..109
hdisk2 active 542 397 47..25..108..108..109
hdisk3 active 542 397 47..25..108..108..109

Now we see that the disks have the same number of physical partitions, and
Because volume groups have one physical partition size, they must be of the
same size.

The lsvg -p fields are interpreted as follows:

Physical volume A physical volume within the group.

PVstate State of the physical volume.

Total PPs Total number of physical partitions on the physical
volume.

Free PPs Number of free physical partitions on the physical volume.

Distribution The number of physical partitions allocated within each
section of the physical volume: outer edge, outer middle,
center, inner middle, and inner edge of the physical
volume.

Let us now find out which logical volumes occupy the vg0 volume group
(Example 6-61).

Example 6-61 Using lsvg to get all logical volumes within the volume group
lsvg -l vg0
vg0:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
lv03 jfs2log 1 1 1 open/syncd N/A
lv04 jfs2 62 62 1 open/syncd /work/fs1
lv05 jfs2 62 62 1 open/syncd /work/fs2
lv06 jfs 62 124 2 closed/syncd N/A
lv07 jfs 63 63 3 closed/syncd N/A
datalv jfs 10 10 1 open/syncd /data
loglv00 jfslog 1 1 1 open/syncd N/A
 Chapter 6. Disk I/O performance tools 435

Well, this tells us that there are both JFS and J2 filesystems, a couple of logical
volumes without entries in /etc/file systems (the mount point show up as N/A), and
one logical volume is mirrored (lv06) and one logical volume that is spread over
three disks (lv07). The output above also show us that we have two external log
logical volumes; lv03 that is used by J2 file systems and loglv00 that is used by
JFS file systems. The report above does not tell us which of the file systems uses
which log logical volume, nor if any of them uses inline logs either.

The lsvg -l report has the following format:

LV A logical volume within the volume group.

Type Logical volume type.

LPs Number of logical partitions in the logical volume.

PPs Number of physical partitions used by the logical
volume.

PVs Number of physical volumes used by the logical
volume.

Logical volume state State of the logical volume. Opened/stale indicates the
logical volume is open but contains partitions that are
not current. Opened/syncd indicates the logical volume
is open and synchronized. Closed indicates the logical
volume has not been opened.

Mount point File system mount point for the logical volume, if
applicable.

At this point it would be a good idea to check which file systems are the ones that
are most used with the filemon (Section 6.1, “filemon” on page 388) or lvmstat
(Section 6.4, “lvmstat” on page 445) commands. For instance, Example 6-62
with lvmstat will show us the five busiest logical volumes.

Example 6-62 Checking busy logical volumes with lvmstat
lvmstat -v vg0 -c 5

Logical Volume iocnt Kb_read Kb_wrtn Kbps
 lv05 2073116 7886628 5052576 25.91
 lv04 1592894 9036912 4985908 28.08
 lv03 2 0 8 0.00
 loglv00 0 0 0 0.00
 datalv 0 0 0 0.00

We can clearly see that both lv04 and lv05 are the most utilized logical volumes.
Now we need to get more information on the layout on the disks. If the workload
shows a significant degree of I/O dependency (although it has a lot of I/O we
cannot conclude the complete workload from the iostat or lvmstat output only),
436 AIX 5L Performance Tools Handbook

we can investigate the physical placement of the files on the disk to determine if
reorganization at some level would yield an improvement. To view the placement
of the partitions of logical volume lv04 within physical volume hdisk2, the lslv
command could be used in the following way (Example 6-63).

Example 6-63 Using lslv -p
lslv -p hdisk2 lv04
hdisk2:lv04:/work/fs1
USED USED USED USED USED USED USED USED USED USED 1-10
USED USED USED USED USED USED USED USED USED USED 11-20
USED USED USED USED USED USED USED USED USED USED 21-30
USED USED USED USED USED USED USED USED USED USED 31-40
USED USED USED USED USED USED USED USED USED USED 41-50
USED USED USED USED USED USED USED USED USED USED 51-60
USED USED FREE FREE FREE FREE FREE FREE FREE FREE 61-70
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 71-80
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 81-90
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 91-100
FREE FREE FREE FREE FREE FREE FREE FREE FREE 101-109

0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 110-119
0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 120-129
0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 130-139
0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 140-149
0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 150-159
0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 160-169
0061 0062 USED USED USED USED USED USED USED USED 170-179
USED USED USED USED USED USED USED USED USED USED 180-189
USED USED USED FREE FREE FREE FREE FREE FREE FREE 190-199
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 200-209
FREE FREE FREE FREE FREE FREE FREE FREE 210-217
...(lines omitted)...

The USED label tells us that this partition is allocated by another logical volume,
the FREE label tells us that it is not allocated, and the numbers 0001-0062 indicate
that this belongs to the logical volume we wanted to check, in our case lv04. A
STALE partition (not shown in the example above) is a physical partition that
contains data you cannot use.

The following is a similar output from lspv to find out the intra disk layout of
logical volumes on hdisk2 and hdisk3 (Example 6-64).

Example 6-64 Using lspv to check the intra disk policy
lspv -l hdisk2;lspv -l hdisk3
hdisk2:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
lv06 62 62 62..00..00..00..00 N/A
lv04 62 62 00..62..00..00..00 /work/fs1
 Chapter 6. Disk I/O performance tools 437

lv07 21 21 00..21..00..00..00 N/A
hdisk3:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
lv06 62 62 62..00..00..00..00 N/A
lv05 62 62 00..62..00..00..00 /work/fs2
lv07 21 21 00..21..00..00..00 N/A

Each of our hot file systems are allocated on a separate disk and on the same
part of the disks, and are contiguously allocated there. Let us view the intra disk
layout in another, more readable, way with the lspv command (Example 6-65).

Example 6-65 Using lspv to check the intra disk layout
#lspv -p hdisk2;lspv -p hdisk3
hdisk2:
PP RANGE STATE REGION LV NAME TYPE MOUNT POINT
 1-62 used outer edge lv06 jfs N/A
 63-109 free outer edge
110-171 used outer middle lv04 jfs2 /work/fs1
172-192 used outer middle lv07 jfs N/A
193-217 free outer middle
218-325 free center
326-433 free inner middle
434-542 free inner edge
hdisk3:
PP RANGE STATE REGION LV NAME TYPE MOUNT POINT
 1-62 used outer edge lv06 jfs N/A
 63-109 free outer edge
110-171 used outer middle lv05 jfs2 /work/fs2
172-192 used outer middle lv07 jfs N/A
193-217 free outer middle
218-325 free center
326-433 free inner middle
434-542 free inner edge

The output above shows us the same information. If we had a fragmented layout
for our logical volumes this would have meant that the disk arms would have to
move across the disk platter whenever the end of the first part of the logical
volume was reached. This is usually the case when file systems are expanded
during production and this is an excellent feature of Logical Volume Manager
Device Driver (LVMDD). After a while in production, the logical volumes need to
be reorganized so that they occupy contiguous physical partitions. We can also
examine how the logical volumes partitions are organized with the lslv
command. In Example 6-66 on page 439 we will have a quick look at the two log
logical volumes.
438 AIX 5L Performance Tools Handbook

Example 6-66 Using lslv to check the logical volume disk layout
lslv -m lv04;lslv -m lv05
lv04:/work/fs1
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0110 hdisk2
0002 0111 hdisk2
...(lines omitted)...
0061 0170 hdisk2
0062 0171 hdisk2
lv05:/work/fs2
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0110 hdisk3
0002 0111 hdisk3
...(lines omitted)...
0061 0170 hdisk3
0062 0171 hdisk3

The output above just shows what physical partitions are allocated for each
logical partition. In a more complex allocation it can be most useful to check the
locations used for different very active logical volumes, compare where they are
allocated on the disk, and, if possible, move the hot spots closer together.
Example 6-67 shows how the logical partitions are mapped against the physical
partitions on the disks for the two logical volumes (lv04 and lv05).

Example 6-67 Using lslv to check the logical volume partition allocation
lslv -m lv04;lslv -m lv05
lv04:/work/fs1
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0110 hdisk2
0002 0111 hdisk2
...(lines omitted)...
0072 0202 hdisk2
0073 0203 hdisk2
lv05:/work/fs2
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0110 hdisk3
0002 0111 hdisk3
...(lines omitted)...
0071 0201 hdisk3
0072 0202 hdisk3

The output above tells us that the physical partitions are contiguous and that
there is only one physical partition (PV1) for each logical partition (LP), and each
logical volume has all its physical partitions on a single disk each (PV1).

The lslv -m report has the following format:
 Chapter 6. Disk I/O performance tools 439

LPs Logical partition number.

PV1 Physical volume name where the logical partition's first
physical partition is located.

PP1 First physical partition number allocated to the logical
partition.

PV2 Physical volume name where the logical partition's
second physical partition (first copy) is located.

PP2 Second physical partition number allocated to the logical
partition.

PV3 Physical volume name where the logical partition's third
physical partition (second copy) is located.

PP3 Third physical partition number allocated to the logical
partition.

When looking at the two log volumes, lv03 and loglv00 in the following example,
we know that they both use only one physical partition which could be a good
allocation for each log logical volume, but it depends on where they are allocated
(Example 6-68)

Example 6-68 Using lslv to check the logical volumes partition distribution
lslv -l lv03;lslv -l loglv00
lv03:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk1 001:000:000 100% 000:001:000:000:000
loglv00:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk1 001:000:000 100% 000:001:000:000:000

Each log volume is properly allocated (100% IN BAND). This is simple because
each log logical volume only consists of one physical and logical partition in this
example. However if this value is less than 100 percent, reorganization should be
in order. But they are a bit apart (physical partition 110 and 142) and each time a
JFS and J2 file system changes meta data each log logical volume will have to
be updated, causing the disk arm to move from the log logical volume to the file
system and back to the log logical volume.

To continue examining the layout for our hot logical volumes lv04 and lv05, now
would be a good time to check what is going on in the file system. For this we
need to use filemon (Section 6.1, “filemon” on page 388) and perhaps fileplace
(Section 6.2, “fileplace” on page 409).
440 AIX 5L Performance Tools Handbook

How to use lslv
The lslv command displays the characteristics and status of the logical volume,
as Example 6-69 shows.

Example 6-69 Logical volume fragmentation with lslv
lslv -l hd6
hd6:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk0 288:000:000 37% 000:108:108:072:000

As can be seen above, the lspv and lslv show the same distribution for the
logical volume hd6. The lslv command also shows that it has 288 LPs but no
additional copies. It also says that the intra-policy of center is only 37% in band,
which means that 63 percent is out of band (that is, not in the center).

The lslv -l report has the following format:

PV Physical volume name.

Copies The following three fields are displayed:

The number of logical partitions containing at least one
physical partition (no copies) on the physical volume

The number of logical partitions containing at least two
physical partitions (one copy) on the physical volume

The number of logical partitions containing three physical
partitions (two copies) on the physical volume

In band The percentage of physical partitions on the physical
volume that belong to the logical volume and were
allocated within the physical volume region specified by
Intra-physical allocation policy.

Distribution The number of physical partitions allocated within each
section of the physical volume. The DISTRIBUTION shows
how the physical partitions are placed in each part of the
intrapolicy; that is: edge : middle : center :
inner-middle : inner-edge

The higher the IN BAND percentage, the better the allocation efficiency. Each
logical volume has its own intra policy. If the operating system cannot meet this
requirement, it chooses the best way to meet the requirements.
 Chapter 6. Disk I/O performance tools 441

How to use lspv
The lspv command is useful for displaying information about the physical
volume, its logical volume content and logical volume allocation layout, as
Example 6-70 shows.

Example 6-70 Logical volume fragmentation with lspv -l
lspv -l hdisk0
hdisk0:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
hd5 1 1 01..00..00..00..00 N/A
hd6 288 288 00..108..108..72..00 N/A

In the above examples we can see that the hd6 logical volume is nicely placed in
the center area of the disk, the distribution being 108 logical partitions in the
center, 108 logical partitions in the outer middle, and 72 logical partitions in the
inner middle part of the disk.

The lspv -l report has the following format:

LVname Name of the logical volume to which the physical
partitions are allocated.

LPs The number of logical partitions within the logical volume
that are contained on this physical volume.

PPs The number of physical partitions within the logical
volume that are contained on this physical volume.

Distribution The number of physical partitions belonging to the logical
volume that are allocated within each of the following
sections of the physical volume: outer edge, outer
middle, center, inner middle, and inner edge of the
physical volume.

Mount Point File system mount point for the logical volume, if
applicable.

Another way to use lspv is with the -p parameter as in Example 6-71.

Example 6-71 Logical volume fragmentation with lspv -p
lspv -p hdisk0
hdisk0:
PP RANGE STATE REGION LV NAME TYPE MOUNT POINT
 1-1 used outer edge hd5 boot N/A
 2-109 free outer edge
110-217 used outer middle hd6 paging N/A
218-325 used center hd6 paging N/A
326-397 used inner middle hd6 paging N/A
398-433 free inner middle
434-542 free inner edge
442 AIX 5L Performance Tools Handbook

As shown in the output above, this output is easier to read.

The lspv -p report has the following format:

Range A range of consecutive physical partitions contained on a
single region of the physical volume.

State The current state of the physical partitions; free, used,
stale, or vgda.

Region The intra-physical volume region in which the partitions
are located.

LVname The name of the logical volume to which the physical
partitions are allocated.

Type The type of the logical volume to which the partitions are
allocated.

Mount point File system mount point for the logical volume, if
applicable.

How to use lsvg
The lsvg command is useful for displaying information about the volume group,
and its logical and physical volumes.

First we need to understand the basic properties of the volume group such as its
general characteristics, its currently allocated size, its physical partition size, if
there are any STALE partitions, how much space is already allocated, and how
much is not allocated. Example 6-72 shows how to obtain this basic information
about a volume group.

Example 6-72 Using lsvg to obtain volume group basics
lsvg -L vg99
VOLUME GROUP: vg99 VG IDENTIFIER: 006015611f031daa
VG STATE: active PP SIZE: 64 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 543 (34752 megabytes)
MAX LVs: 256 FREE PPs: 525 (33600 megabytes)
LVs: 2 USED PPs: 18 (1152 megabytes)
OPEN LVs: 2 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: yes
MAX PPs per PV: 1016 MAX PVs: 32

The volume group shown in the example above has two logical volumes and one
disk with a physical partition size of 64 MB.
 Chapter 6. Disk I/O performance tools 443

Secondly we need to find out which logical volumes are created on this volume
group and if they all are open and in use (Example 6-73). If they are not open and
in use they might be old, corrupted and forgotten, or only used occasionally, and
if we were to need more space to reorganize the volume group we might be able
to free that space.

Example 6-73 Using lsvg to check the logical volume state
lsvg -l vg99
vg99:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
loglv00 jfslog 1 1 1 open/syncd N/A
lv02 jfs 17 17 1 open/syncd /testfs

As the example above shows, there is only one logical volume with a file system
and a log logical volume allocated on the entire volume group. Remember that
the physical partition size was 64 MB, so even though the log logical volume only
has one (1) logical partition it is a 64 MB partition. We would also like to know
which disks are allocated for this volume group (Example 6-74).

Example 6-74 Using lsvg to check what disks are allocated to the volume group
lsvg -p vg99
vg99:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk6 active 543 525 109..91..108..108..109

So there is only one disk in this volume group and mirroring is not activated for
the logical volumes. When finding out information about volume groups it is often
necessary to know what kind of disks are being used to make up the volume
group. To examine disks we can use the lspv command, and the lsdev and
lscfg commands.

How to acquire more disk information
Example 6-75 uses the lsdev command to examine a disk device.

Example 6-75 Using lsdev to obtain information on types of disks in the volume group
lsdev -Cl hdisk6
hdisk6 Available 10-70-L SSA Logical Disk Drive

The output above tells us that it is an SSA logical disk, and in Example 6-76 we
use the ssaxlate command.

Example 6-76 Using ssaxlate to find out what physical disks belong to the logical disk
ssaxlate -l hdisk6
pdisk0 pdisk2 pdisk1 pdisk3
444 AIX 5L Performance Tools Handbook

The example above show that the logical disk hdisk6 is composed of four
physical disks (pdisk0-3) and could be some sort of SSA RAID configuration (
the hdisks consists of more than one pdisk). To find out, we used the ssaraid
command as in Example 6-77.

Example 6-77 Using ssaraid to check the logical disk
ssaraid -M|xargs -i ssaraid -l {} -Ihz -n hdisk6
#name id state size

hdisk6 156139E312C44CO good 36.4GB RAID-10 array

The output above confirm that it is a RAID defined disk. If it would not have been
a RAID defined disk, the output it would have looked similar to the output in
Example 6-78.

Example 6-78 Using ssaraid to check the logical disk
ssaraid -M|xargs -i ssaraid -l {} -Ihz -n hdisk6
#name id use member_stat size

pdisk5 000629D465DC00D system n/a 9.1GB Physical disk

To find all SSA configured RAID disks controlled by SSA RAID managers in the
system, run the ssaraid command as shown in Example 6-79.

Example 6-79 More examples of the use of ssariad
ssaraid -M|xargs -i ssaraid -l {} -Ihz
#name id use member_stat size

pdisk0 000629D148ED00D member n/a 18.2GB Physical disk
pdisk1 000629D2781600D member n/a 18.2GB Physical disk
pdisk2 000629D278C500D member n/a 18.2GB Physical disk
pdisk3 000629D282C500D member n/a 18.2GB Physical disk
hdisk6 156139E312C44CO good 36.4GB RAID-10 array

In the example above only hdisk6 is a RAID defined disk; the other pdisks are
only used as Just a Bunch Of Disks (JBODs).

6.4 lvmstat
The lvmstat command reports input and output statistics for logical partitions,
logical volumes, and volume groups. lvmstat is useful in determining whether a
physical volume is becoming a hindrance to performance by identifying the
busiest physical partitions for a logical volume.
 Chapter 6. Disk I/O performance tools 445

lvmstat can help identify if there are particular logical volume partitions that are
more used than other partitions1. If these partitions reside on the same disk or
are spread out over a single disk, it may be necessary to migrate these partitions
to new disks or put them closer together on the same disk2 to reduce the
performance penalty.

lvmstat resides in /usr/sbin and is part of the bos.rte.lvm fileset, which is
installed by default from the AIX base installation media.

6.4.1 Syntax
The syntax of the lvmstat command is as follows:

lvmstat { -l | -v } Name [-e | -d] [-F] [-C] [-c Count] [-s] [
Interval [Iterations]]

Flags
-c Count Prints only the specified number of lines of statistics.

-C Causes the counters that keep track of the iocnt, Kb_read, and
Kb_wrtn to be cleared for the specified logical volume or volume
group.

-d Specifies that statistics collection should be disabled for the
logical volume or volume group specified.

-e Specifies that statistics collection should be enabled for the
logical volume or volume group specified.

-F Causes the statistics to be printed in colon-separated format.

-l Specifies the name of the stanza to list.

-s Suppresses the header from the subsequent reports when
Interval is used.

-v Specifies that the Name specified is the name of the volume
group.

Parameters
Name Specifies the logical volume or volume group name to monitor.

Interval The Interval parameter specifies the amount of time, in
seconds, between each report. If Interval is used to run lvmstat
more than once, no reports are printed if the statistics did not
change since the last run. A single period (.) is printed instead.

1 Also referred to as hot spots or high traffic partitions.
2 When the volume group only has one disk.
446 AIX 5L Performance Tools Handbook

Count If the Count parameter is specified, only the top Count lines of the
report are generated. If no Iterations parameter is specified,
lvmstat generates reports continuously.

6.4.2 Information on measurement and sampling
The lvmstat command generates reports that can be used to change logical
volume configuration to better balance the input and output load between
physical disks.

By default, the statistics collection is not enabled, by using the -e flag you enable
Logical Volume Device Driver (LVMDD) to collect the physical partition statistics
for each specified logical volume or the logical volumes in the specified volume
group. Enabling the statistics collection for a volume group enables it for all the
logical volumes in that volume group. On every I/O call done to the physical
partition that belongs to an enabled logical volume, the I/O count for that partition
is incremented by LVMDD. All the data collection is done by the LVMDD and
lvmstat command reports on those statistics.

The first report section generated by lvmstat provides statistics concerning the
time since the statistical collection was enabled. Each subsequent report section
covers the time since the previous report. All statistics are reported each time
lvmstat runs. The report consists of a header row, followed by a line of statistics
for each logical partition or logical volume depending on the flags specified.

6.4.3 Examples
If the statistics collection has not been enabled for the volume group or logical
volume you wish to monitor, Example 6-80 will shows what the output from
lvmstat will look like.

Example 6-80 Using lvmstat without enabling statistics collection
lvmstat -v rootvg
0516-1309 lvmstat: Statistics collection is not enabled for this logical
device.
 Use -e option to enable.

To enable statistics collection for all logical volumes in a volume group (in this
case the rootvg volume group), use the -e option together with the -v <volume
group> flag as the following example shows:

lvmstat -v rootvg -e
 Chapter 6. Disk I/O performance tools 447

When you do not need to continue collecting statistics with lvmstat, it should be
disabled because it impacts the performance of the system. To disable statistics
collection for all logical volumes in a volume group (in this case the rootvg
volume group), use the -d option together with the -v <volume group> flag as the
following example shows:

lvmstat -v rootvg -d

This will disable the collection of statistics on all logical volume in the volume
group.

If there is no activity on the partitions of the monitored device, lvmstat will print a
period (.) for the time interval where no activity occurred. In Example 6-81 there
was no activity at all in the vg0 volume group:

Example 6-81 No activity
date;lvmstat -v vg0 1 10;print;date
Mon May 28 18:40:35 CDT 2001
..........
Mon May 28 18:40:45 CDT 2001

How to use lvmstat
Because the lvmstat command allows you to monitor the I/O on logical
partitions, it is a powerful tool to use when monitoring logical volume utilization.
In the following scenario we will start by using lvmstat to list the volume group
statistics by using the -v <volume group> flag as is shown in Example 6-82.

Example 6-82 Using lvmstat with a volume group
lvmstat -v rootvg

Logical Volume iocnt Kb_read Kb_wrtn Kbps
 hd9var 7321 867 102821 0.19
 hd8 3767 0 15068 0.03
 hd6 967 228 7416 0.02
 hd2 949 1824 1676 0.01
 hd4 567 60 2636 0.01
 hd1 363 23 4339 0.01
 hd3 141 4 632 0.00
 hd10opt 2 0 8 0.00
 hd5 0 0 0 0.00

From this output we can clearly see that the logical volumes that are most utilized
since we turned on the statistical collection, hd9var and hd8. Let us take a quick
look at the logical partition statistics for logical volume hd9var and hd8 by using
the -l <logical volume> flag as is shown in Example 6-83 on page 449.
448 AIX 5L Performance Tools Handbook

Example 6-83 Using lvmstat with a single logical volume
lvmstat -l hd9var; lvmstat -l hd8

Log_part mirror# iocnt Kb_read Kb_wrtn Kbps
 1 1 4123 0 70317 0.13
 9 1 508 0 7648 0.01
 6 1 500 0 7648 0.01
 7 1 484 0 6896 0.01
 8 1 443 0 6304 0.01
 2 1 182 0 2888 0.01
 10 1 57 0 1120 0.00
 11 1 0 0 0 0.00
...(lines omitted)...

Log_part mirror# iocnt Kb_read Kb_wrtn Kbps
 1 1 3767 0 15068 0.03

From the output in the example above we can see that the most utilized logical
partition for the hd9var logical volume is logical partition number 1, and logical
partition number 1 for hd8 as well (in this case the only logical partition of hd8).
Because hd8 is the JFS log logical volume for the rootvg volume group, it is
normally only written to when a file system is mounted (and when the information
about a file in a file system is changed3). There are mostly writes into the /var
(hd9var) file system during our measurement, which is probably because
programs use this file system to store log data and temporary files in directories
such as /var/adm, /var/tmp and /var/spool.

To continue our scenario, we use the migratelp command (For more information
on how to use the migratelp command, please refer to AIX 5L Version 5.1
Commands Reference, SBOF-1877) to move the hot logical partitions of hd9var
and hd8 logical partition closer together, if they are not already, because the
volume group only has one disk as is shown in Example 6-84.

Example 6-84 Using lsvg to determine the number of disks in a volume group
lsvg -p rootvg
rootvg:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk0 active 542 247 106..00..02..30..109

If we look at the placement of the logical partitions for both hd8 and hd9var, we
see that they are located near each other as is shown in Example 6-85 on
page 450, which shows output from the lslv command.

3 If not the nointegrity option to the mount command has been used (this disables journaling).
 Chapter 6. Disk I/O performance tools 449

Example 6-85 Using lslv to view the logical partition placement
lslv -m hd8; lslv -m hd9var
hd8:N/A
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0218 hdisk0
hd9var:/var
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0224 hdisk0
0002 0284 hdisk0
0003 0285 hdisk0
0004 0286 hdisk0
0005 0287 hdisk0
0006 0288 hdisk0
0007 0289 hdisk0
0008 0290 hdisk0
0009 0291 hdisk0
0010 0292 hdisk0
0011 0293 hdisk0
0012 0294 hdisk0
0013 0295 hdisk0
0014 0296 hdisk0
0015 0297 hdisk0

This output also shows us which disk the partitions are allocated on. To illustrate
how to use the migratelp command, we will move hd8 from physical partition 218
to physical partition 223. So we need to know if physical partition 223 is available,
and then we use the lspv command as in Example 6-86.

Example 6-86 Using lspv to determine if a physical partition is free
lspv -M hdisk0|grep 223
hdisk0:223 hd2:4

The output above tells us that physical partition 223 on hdisk0 is occupied by the
logical volume hd2 logical partition 4. So let us move hd2 logical partition 44 to a
free physical partition on the disk and then move logical partition 1 for hd8 to
physical partition 223. First we must determine which partitions on the disk are
not in use. To do this we use the lspv command as in Example 6-87.

Example 6-87 Using lspv to determine free physical partitions on a disk
lspv -M hdisk0|grep -
hdisk0:2-109
hdisk0:404-542

4 Note that we have not taken into consideration here the effects that this move will have on the fact that we will fragment
the logical volume hd2 by moving its partition to another part of the disk.
450 AIX 5L Performance Tools Handbook

The output in the above example shows us that physical partition 2-109 and
404-542 are unused. So now we move hd2 logical partition 4 from physical
partition 223 as is shown in Example 6-88.

Example 6-88 Using migratelp
migratelp hd2/4 hdisk0/109
migratelp: Mirror copy 1 of logical partition 4 of logical volume
 hd2 migrated to physical partition 109 of hdisk0.

First migratelp created a mirror copy of the logical partition, and then deleted the
original logical partition. Now we move the only logical partition for logical volume
hd8 to physical partition 223 as is shown in Example 6-89.

Example 6-89 Using migratelp
migratelp hd8/1 hdisk0/223
migratelp: Mirror copy 1 of logical partition 1 of logical volume
 hd8 migrated to physical partition 223 of hdisk0.

We can now easily verify that our logical partitions has been moved to the
desired physical partitions as is shown in Example 6-90.

Example 6-90 Using lspv to verify physical/logical partition allocation
lspv -M hdisk0|egrep "hdisk0:109|hdisk0:223"
hdisk0:109 hd2:4
hdisk0:223 hd8:1

hdisk0 physical partition 109 contains logical volume hd2’s logical partition 4,
and physical partition 223 contains logical volume hd8 logical partition 1, just as
was our original aim.

How to monitor all logical volumes in a volume group
To monitor all logical volumes in a volume group with lvmstat, you only need to
use the -v <volume group> flag as Example 6-91 shows.

Example 6-91 Using lvmstat on a volume group level
lvmstat -v rootvg

Logical Volume iocnt Kb_read Kb_wrtn Kbps
 lv05 682478 16 8579672 16.08
 loglv00 0 0 0 0.00
 datalv 0 0 0 0.00
 lv07 0 0 0 0.00
 lv06 0 0 0 0.00
 lv04 0 0 0 0.00
 lv03 0 0 0 0.00
 Chapter 6. Disk I/O performance tools 451

The lvmstat command report above is per logical volume statistics in the volume
group. The report has the following format:

Logical Volume The device name of the logical volume

iocnt Number of read and write requests

Kb_read The total number of kilobytes read

Kb_wrtn The total number of kilobytes written

Kbps The amount of data transferred in kilobytes per second

From the output in the example above we can see that lv05 is the most used of
all the logical volumes in this volume group. To map the logical volume name to a
file system (if the logical volume has a stanza in /etc/filesystems), we use lsfs
command as in Example 6-92.

Example 6-92 Using lsfs to determine file system name for a logical volume
lsfs -q /dev/lv05
Name Nodename Mount Pt VFS Size Options Auto Accounting
/dev/lv05 -- /work/fs2 jfs2 2359296 rw yes no
 (lv size: 2359296, fs size: 2359296, block size: 4096, sparse files: yes, inline log: yes, inline log size: 10240)

By using the -q flag with the lsfs command we get statistics that include the
logical volume such as the file system name, logical volume, file system, and
fragmentation sizes. The file system for this logical volume is /work/fs2, its size
is 1.1 GB (2359296 / 2 / 1024 / 1024) with a 4 KB block size, and it is a J2 file
system with an inline log.

To only monitor the logical volumes in the volume group that has the highest
number of read and write requests (iocnt), use the -c # flag to the lvmstat
command, where # is the number of lines to display, as is shown in Example 6-93
where we want to see the 3 highest used logical volumes (because lvmstat will
order the list with the logical volume with the highest iocnt at the top). The
number of measurements will be 5 with a 3 second interval.

Example 6-93 Using lvmstat on a volume group level with the highest iocnt
lvmstat -v vg0 -sc 3 3 5

Logical Volume iocnt Kb_read Kb_wrtn Kbps
 lv05 724778 32 9115128 17.06

 lv05 181 0 2012 631.71

 lv05 223 0 892 279.84

 lv05 379 0 1516 476.36
452 AIX 5L Performance Tools Handbook

As can be seen in the output above, the first part is the summary for the volume
group because statistics collection was enabled. The following lines show the
logical volumes with the highest number of read and write requests (iocnt). We
can see that lv05 is the logical volume that has the most I/O during our
measurement.

How to monitor a single logical volume
To monitor a single logical volumes with lvmstat you only need to use the -l
<logical volume> flag as in Example 6-94.

Example 6-94 Using lvmstat on a single logical volume
lvmstat -l lv05

Log_part mirror# iocnt Kb_read Kb_wrtn Kbps
 72 1 37736 0 263036 0.50
 66 1 7960 0 199956 0.38
 71 1 7330 0 170024 0.32
 67 1 2835 0 64732 0.12
 65 1 1735 0 37704 0.07
 63 1 242 0 968 0.00
 64 1 179 0 716 0.00
 68 1 33 0 132 0.00
 62 1 27 0 108 0.00
 1 1 0 0 0 0.00
...(lines omitted)...
 70 1 0 0 0 0.00

Because lvmstat reports on each individual logical partition, you will get a one
line output for each as can be seen in the output above. The report has the
following format:

Log_part Logical partition number

mirror# Mirror copy number of the logical partition

iocnt Number of read and write requests

Kb_read The total number of kilobytes read

Kb_wrtn The total number of kilobytes written

Kbps The amount of data transferred in kilobytes per second

We now see that there are a group of partitions that are used the most, so we
limit our scope with the -c # flag, in which # indicates the number of rows to
show. lvmstat orders the list top down based on the number of iocnt. In
Example 6-95 on page 454, which iterates once every minute (60 seconds), we
save the output in a file as well as displaying it on the screen with the tee
command.
 Chapter 6. Disk I/O performance tools 453

Example 6-95 Using lvmstat with a single logical volume with top 10 logical partitions
lvmstat -l lv05 -c 10 60|tee /tmp/lvmstat.out

Log_part mirror# iocnt Kb_read Kb_wrtn Kbps
 72 1 67221 0 467148 0.89
 66 1 14066 0 353832 0.67
 71 1 12991 0 300912 0.57
 67 1 4951 0 113056 0.21
 65 1 3079 0 66788 0.13
 63 1 485 0 1940 0.00
 64 1 340 0 1360 0.00
 68 1 59 0 236 0.00
 62 1 48 0 192 0.00

Log_part mirror# iocnt Kb_read Kb_wrtn Kbps
 72 1 3704 0 23432 369.23
 66 1 616 0 15408 242.79
 71 1 575 0 13128 206.86
 67 1 299 0 6612 104.19
 65 1 142 0 2932 46.20
 63 1 37 0 148 2.33
 64 1 30 0 120 1.89
 62 1 4 0 16 0.25
 68 1 4 0 16 0.25

Log_part mirror# iocnt Kb_read Kb_wrtn Kbps
 72 1 3258 0 21660 340.99
 71 1 736 0 17868 281.30
 66 1 612 0 15384 242.19
 67 1 222 0 5012 78.90
 65 1 132 0 2892 45.53
 64 1 13 0 52 0.82
 63 1 4 0 16 0.25
 62 1 2 0 8 0.13
 68 1 2 0 8 0.13
...(lines omitted)...

By looking at the utilization, we get a feel for how the logical volume is used. In
the output above access to logical partition 72 stands out, but logical partition 71
and 66 are very close when it comes to the amount of data that is written. To find
out the physical partition where each of these hot logical partitions are located on
disk, we need to use the lslv command.
454 AIX 5L Performance Tools Handbook

How to summarize I/O utilization per physical partition
To summarize the physical partition utilization, we create and use a simple script
that we call lvmstat.sum (see Example 6-97). This script uses the saved output
file from our previous lvmstat command, and summarizes the partition utilization
as shown in Example 6-96.

Example 6-96 Using script to summarize most used partitions
lvmstat.sum /tmp/lvmstat.out
Log_part mirror# iocnt Kb_read Kb_wrtn
 72 1 158860 0 1097940
 66 1 32470 0 815236
 71 1 30511 0 706512
 67 1 11696 0 266008
 65 1 7211 0 154420
 63 1 1249 0 4996
 64 1 897 0 3588
 68 1 131 0 524
 62 1 121 0 484

Note that we include the mirror number in the output because, if the logical
volume is mirrored, we could find the right physical partition for the logical
partition. The output above shows us that the logical partitions that are most
used are consecutive from the logical volumes perspective and all mirror copy 1.
However, it is interesting to note that the iocnt value for logical partition 72 is
almost five times higher than the iocnt value for logical partition 66, but has only
25% more written data. The lvmstat.sum script is shown in Example 6-97.

Example 6-97 lvmstat.sum script
1 cat $1|
2 (
3 printf "%-8s %8s %s %9s %9s\n" "Log_part" "mirror#" "iocnt" "Kb_read"
"Kb_wrtn"
4 awk '
5 $1~/[0-9]/&&i>=2{
6 iocnt[$1,$2]=iocnt[$1,$2]+$3
7 read[$1,$2]=read[$1,$2]+$4
8 write[$1,$2]=write[$1,$2]+$5
9 }
10 /Log/{i++}
11 END{
12 for (f in iocnt)
13 printf " %8s %8s%8s%10s%10s\n",
14 substr(f,0,length(f)-1), substr(f,length(f)-1), iocnt[f],
read[f], write[f]
15 }' i=0 | sort -k3nr
16)
 Chapter 6. Disk I/O performance tools 455

The lvmstat.sum script works by extracting the logical partition number, mirror
number, I/O count, KB read, and KB write values from the saved lvmstat output.
It will discard the first report section because it is the accumulation since the
statistical collection was enabled (if it is set to a value higher than zero it will
include this report as well in the summary). The awk command uses a table for
summarizing the I/O counts, KB read, and KB write for each logical partition
using the logical partition and the mirror number as indices. At the end (END
statement) it loops through the tables using the indices in the for loop and prints
the logical partition part of each index first, then the mirror number part of the
same index, and then the summarized I/O count, KB read, and KB write. When
awk has produced the output lines, we use the sort command to sort the output
using the summarized I/O count (third field) numerically and in reverse
(descending) order.
456 AIX 5L Performance Tools Handbook

Chapter 7. Network performance tools

This chapter describes the tools to monitor the performance relevant data and
statistics for networks. This includes tools to monitor the network adapters,
monitor the different layers of Transmission Control Protocol/Internet Protocol
(TCP/IP) networks, monitor the system resources used by the networking
software, trace data sent and received on the networks, monitor Network File
System (NFS) usage on client and server systems, and set and change network
performance relevant system parameters.

Knowledge of the basics of network communication and the network protocols
used is required to understand the data gathered by the tools discussed in this
chapter. The AIX 5L Version 5.1 System User's Guide: Communications and
Networks provides the necessary information.

This chapter contains detailed information on the following network monitoring
and tuning tools:

� Network adapter statistics monitoring tools:

– The atmstat command described in Section 7.1, “atmstat” on page 459 is
used to monitor Asynchronous Transfer Mode (ATM) adapter statistics.

– The entstat command discussed in Section 7.2, “entstat” on page 465 is
used to monitor Ethernet adapter statistics.

– The Section 7.3, “estat” on page 471 describes the usage of the estat
command to monitor RS/6000 SP Switch adapter statistics.

7

© Copyright IBM Corp. 2001 457

– To monitor the Fiber Distributed Data Interface (FDDI) network adapter
statistics, the fddistat command described in Section 7.4, “fddistat” on
page 474 is used.

– The tokstat command described in Section 7.13, “tokstat” on page 602 is
used to monitor token-ring network adapter statistics.

� The netstat command described in Section 7.8, “netstat” on page 502
provides data and statistics for the different network layers, system resources
used by networks, and network configuration information such as:

– Statistics for the different network protocols used

– Statistics for the communications memory buffer (mbuf) usage

– Information on the configured network interfaces

– Routing information

� The no command discussed in Section 7.11, “no” on page 549 is used to
display, set, and change the network parameters.

� The Section 7.10, “nfsstat” on page 541 discusses the usage of the nfsstat
command to monitor Remote Procedure Call (RPC) and NFS statistics on
NFS server and client systems.

� The nfso command described in Section 7.9, “nfso” on page 527 is used to
display, set, and change NFS variables and to remove file locks from NFS
client systems on an NFS server.

� To trace data sent to and received from the network, the following commands
can be used:

– The iptrace command discussed in Section 7.7, “iptrace” on page 494 is
used to gather the data sent to and received from the network.

– The ipfilter command described in Section 7.5, “ipfilter” on page 479
can be used to sort or extract a part of the data previously gathered by the
iptrace command.

– The tcpdump command discussed in Section 7.12, “tcpdump” on page 571
is used to gather and display packets sent to and received from the
network.

– The ipreport command described in Section 7.6, “ipreport” on page 488
is used to format the data gathered by the iptrace or tcpdump commands.

– The trpt command discussed in Section 7.14, “trpt” on page 608 can be
used to trace Transmission Control Protocol (TCP) sockets.
458 AIX 5L Performance Tools Handbook

7.1 atmstat
The atmstat command is a performance monitoring tool that displays
Asynchronous Transfer Mode (ATM) device driver (software) statistics. Optionally
the device (hardware) specific statistics can be displayed.

atmstat resides in /usr/sbin, is linked to /usr/bin, and is part of the
devices.common.IBM.atm.rte fileset, which is installable from the AIX base
operation system installation media.

7.1.1 Syntax
The syntax of the atmstat command is as follows:

atmstat [-d -r] Device_Name

Flags
-d Displays detailed statistics.

-r Resets all the statistics back to their initial values. This flag
can only be issued by privileged users.

Parameters
Device_Name The name of the ATM device, for example atm0. If an invalid

Device_Name is specified, the atmstat command produces an
error message stating that it could not connect to the device.

7.1.2 Information on measurement and sampling
The atmstat command used without flags provides generic statistics that consist
of transmit statistics, receive statistics, and general statistics. This includes
packets and bytes transmitted and received, information about hardware and
software queues usage, and error counters. If the -d flag is used, device specific
statistics are displayed along with the device driver statistics.

The atmstat command provides a snapshot of the device driver statistics
collected by the Network Device Driver (NDD). The header file
/usr/include/sys/ndd.h defines the used data structure ndd_genstats as well as
the ioctl() operation NDD_GET_ALL_STATS, which is used to read the data from
the NDD. atmstat uses a device dependent routine defined in the Object Data
Manager (ODM) to display the device specific statistics. This device dependent
routine is a command that is executed using fork() and exec() out of atmstat. In a
busy system there may be some delay doing this. In case the system is running
out of resources (for example low on memory), the necessary fork() may fail. All
 Chapter 7. Network performance tools 459

the device dependent routines can be found using the command odmget -q
attribute=addl_stat PdAt. All statistic values displayed by atmstat are the
absolute values since startup or the last reset of these values, which is done by
using atmstat -r Device_Name.

The device driver statistics are read out of the NDD at execution time of atmstat.
The device specific statistics are read from the device driver using the ioctl()
system call. The data gets displayed and atmstat exits. Using the -r flag,
atmstat first displays the current statistic values and then resets them.

The device specific data for Microchannel (MCA) ATM and Peripheral
Component Interconnect (PCI) ATM adapters are different.

The output of the atmstat command consists of five sections; the title fields, the
transmit statistics fields, the receive statistics fields, the general statistics fields,
and the adapter specific statistic fields. Please refer to the AIX 5L Version 5.1
Commands Reference, SBOF-1877 for a description of all output fields.

7.1.3 Examples
The output of atmstat always shows the device driver statistics. On request,
using the -d flag, more detailed data is displayed.

Example 7-1 shows the output of atmstat on a MCA system.

Example 7-1 Displaying ATM device driver statistics on a MCA system
atmstat -d atm0

ATM STATISTICS (atm0) :
Device Type: Turboways 155 MCA ATM Adapter
Hardware Address: 40:00:30:31:00:31
Elapsed Time: 11 days 1 hours 36 minutes 43 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 3969322 Packets: 3852487
Bytes: 3011576880 Bytes: 731915050
Interrupts: 0 Interrupts: 3893792
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
 Bad Packets: 0
Max Packets on S/W Transmit Queue: 0
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 0

Cells Transmitted: 64225555 Cells Received: 17232251
Out of Xmit Buffers: 0 Out of Rcv Buffers: 0
Current HW Transmit Queue Length: 0 CRC Errors: 0
460 AIX 5L Performance Tools Handbook

Current SW Transmit Queue Length: 0 Packets Too Long: 0
 Incomplete Packets: 0
 Cells Dropped: 0

General Statistics:

No mbuf Errors: 16
Adapter Loss of Signals: 0
Adapter Reset Count: 0
Driver Flags: Up Running Simplex
 64BitSupport
Virtual Connections in use: 12
Max Virtual Connections in use: 14
Virtual Connections Overflow: 0
SVC UNI Version: auto_detect

Turboways ATM Adapter Specific Statistics:

Packets Dropped - No small DMA buffer: 0
Packets Dropped - No medium DMA buffer: 0
Packets Dropped - No large DMA buffer: 0
Receive Aborted - No Adapter Receive Buffer: 0
Transmit Attempted - No small DMA buffer: 0
Transmit Attempted - No medium DMA buffer: 0
Transmit Attempted - No large DMA buffer: 0
Transmit Attempted - No MTB DMA buffer: 0
Transmit Attempted - No Adapter Transmit Buffer: 0
Max Hardware transmit queue length: 45
Small Mbuf in Use: 0
Medium Mbuf in Use: 0
Large Mbuf in Use: 66
Huge Mbuf in Use: 0
MTB Mbuf in Use: 0
Max Small Mbuf in Use: 0
Max Medium Mbuf in Use: 44
Max Large Mbuf in Use: 302
Max Huge Mbuf in Use: 0
MTB Mbuf in Use: 0
Small Mbuf overflow: 0
Medium Mbuf overflow: 0
Large Mbuf overflow: 16
Huge Mbuf overflow: 0
MTB Mbuf overflow: 0

Example 7-2 on page 462 shows atmstat on a PCI system.
 Chapter 7. Network performance tools 461

Example 7-2 Displaying ATM device driver statistics on a PCI system
atmstat -d atm0

ATM STATISTICS (atm0) :
Device Type: IBM PCI 155 Mbps ATM Adapter (14104f00)
Hardware Address: 00:04:ac:ad:29:16
Elapsed Time: 6 days 0 hours 45 minutes 0 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 171920 Packets: 171919
Bytes: 7953953 Bytes: 7145739
Interrupts: 0 Interrupts: 172154
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
 Bad Packets: 0
Max Packets on S/W Transmit Queue: 0
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 0

Cells Transmitted: 276313 Cells Received: 276306
Out of Xmit Buffers: 0 Out of Rcv Buffers: 0
Current HW Transmit Queue Length: 0 CRC Errors: 0
Current SW Transmit Queue Length: 0 Packets Too Long: 0
 Incomplete Packets: 0
 Cells Dropped: 13

General Statistics:

No mbuf Errors: 0
Adapter Loss of Signals: 0
Adapter Reset Count: 0
Driver Flags: Up Running Simplex

64BitSupport PrivateSegment
Virtual Connections in use: 15
Max Virtual Connections in use: 18
Virtual Connections Overflow: 0
SVC UNI Version: uni3.1

IBM PCI 155 Mbps ATM Adapter Specific Statistics:

Total 4K byte Receive Buffers: 96 Using: 64
Maximum 4K byte Receive Buffers used 96
Maximum Configurable 4K byte Receive Buffers 800
462 AIX 5L Performance Tools Handbook

The major fields of interest concerning performance and performance monitoring
are:

Elapsed Time The real time period that has elapsed since the last time the
statistics were reset.

Transmit and The number of packets transmitted and received
Receive Packets successfully by the device.

Transmit and The number of bytes transmitted and received successfully
Receive Bytes by the device. These values and their related packet counts

can show how the system is using this network adapter. For
example transmit and receive values may be close to equal
or they may differ by a huge margin.

Transmit and The number of transmit and receive interrupts received by
Receive the driver from the adapter. If these counters increase fast,
Interrupts then the number of interrupts to be handled by the operating

system may reach a level where overall system performance
may be affected. Other monitoring tools like
“vmstat” on page 186 can be used to control the interrupts
per second handled by the system.

Transmit and This field contains the number of cells transmitted by this
receive cells device.

Out of Xmit This field contains the number of packets dropped because
Buffers of out of transmit buffers condition. Tuning the adapter’s

sw_txq_size value is required. The lsattr -El atm0
command shows the current value set for the adapters
transmit queue size. lsattr -Rl atm0 -a sw_txq_size
displays the possible values for sw_txq_size. Use the chdev
-l atm0 -a sw_txq_size=xxx command to change this
value.

Out of Rcv This field contains the number of packets dropped because
Buffers of out of receive buffers condition. If this counter is not zero,

then the rx_req_size parameter of the adapter may be
changed. To get the current rx_que_sive value, use the
lsattr -El atm0 command. If this adapter parameter is
zero, which is the default, then the calculation for receive
buffers is based on available communications memory buffer
(mbufs). mbuf tuning using the no command is required in
this case. Please refer to “no” on page 549 for more details.
If rx_que_size is not zero, then increasing it using the
chdev -l atm0 -a rx_que_size=nnn command could be
necessary. However, keep in mind that each receive buffer
requires memory and a further mbuf tuning may be
necessary.
 Chapter 7. Network performance tools 463

Current HW This field contains the current number of transmit
Transmit Queue packets on the hardware queue.
Length

No mbuf Errors The number of times mbufs were not available to the device
driver. This usually occurs during receive operations when
the driver must obtain mbuf buffers to process inbound
packets. If the mbuf pool for the requested size is empty, the
packet will be discarded. This may cause retransmission by
the sending system, which increases load on the system as
well as the additional network load. The netstat command
can be used to confirm this. For details refer to Section 7.8,
“netstat” on page 502.

Driver Flag This field contains the neighborhood discovery daemon
flags. It should not be in Limbo state, which is an indication
of a missing signal on the adapter. The cables should be
checked in this case.

Virtual This field contains the number of virtual connections that are
Connections currently allocated or in use.
in use

Max Virtual This field contains the maximum number of virtual
Connections connections allocated since the last reset of the statistics.
in use

Virtual This field contains the number of virtual connection requests
Connections that have been denied. If this is not zero, then an adjustment
Overflow of the adapter parameter max_vc may be necessary. Use

lsattr -El Device_Name (for example, lsattr -El atm0)
to get the current max_vc value. The lsattr -Rl atm0
-a max_vc command can be used to see which values are
permitted. To change max_vc use the chdev -l atm0 -a
max_vc=xxxx command.

The Turboways ATM Adapter Specific Statistics in Example 7-1 on page 460
shows statistics for adapter buffer usage. This adapter uses mbufs in five fixed
sizes:

� Small mbufs are 256 bytes.

� Medium mbufs are 4096 bytes.

� Large mbufs are 8192 bytes.

� Huge mbufs are 16384 bytes.

� MTB mbufs are of variable size in the range of 32 KB to 1024 KB
464 AIX 5L Performance Tools Handbook

In case any of the Mbuf overflow statistics are not zero, the corresponding
adapter parameter should be tuned. It is not catastrophic to have an overflow.
The device driver will attempt to get the next smaller size of buffer. However, this
is inefficient and costs performance. The minimum and the maximum mbuf
number allocated by the adapter can be set using System Management Interface
Tool (SMIT) by running smitty chg_atm. For more information, see RS/6000 and
Asynchronous Transfer Mode, SG24-4796.

The IBM PCI 155 Mbps ATM Adapter Specific Statistics part of Example 7-2
on page 462 shows the device specific statistics for this adapter. These device
specific statistics show the values for the 4 KB byte pre-mapped receive buffers.
These buffers are used for Direct Memory Access (DMA) data transfers of mbufs
from the adapter to the system protocol stacks. The minimum number of buffers
allocated by the adapter is stored in ODM as the rv_buf4k_min attribute of the
adapter. To get the current value for this attribute, use lsattr -El atm0. Setting
the rv_buf4k_min attribute to a higher value will decrease the chance of running
out of buffers when an application has high bursts of small packets. The statistic
field Maximum 4K byte Receive Buffers used shows the high water mark for
pre-mapped receive buffers the system reached. Changing the rv_buf4k_min
attribute value should be done with care. SMIT or the chdev command can be
used to change the value.

Monitoring a ATM adapter on a regular basis using atmstat can point out
possible problems before the users notice any slowdown. The problem can be
taken care of by redesigning the network layout or tuning either the adapter
parameters using the chdev command or the network options using the no
command (see Section 7.11, “no” on page 549).

7.2 entstat
The entstat command is a monitoring tool that displays ethernet device driver
(software) statistics.

Note: Changing ATM adapter parameters using smit chg_atm or the chdev
command is only possible if the adapter is not in use. Using the -P flag on the
chdev command stores the changes only in the ODM database. This is useful
for devices that cannot be made unavailable and cannot be changed while in
the available state. The changes can be applied to the device by restarting the
system.
 Chapter 7. Network performance tools 465

Optionally the device (hardware) specific statistics can be displayed. The device
specific data may differ for different adapters, for example ethernet Microchannel
(MCA) and Peripheral Component Interconnect (PCI) adapters.

entstat resides in /usr/sbin, is linked to /usr/bin, and is part of the
devices.common.IBM.ethernet.rte fileset, which is installable from the AIX base
installation media.

7.2.1 Syntax
The syntax of the entstat command is as follows:

entstat [-d -r -t] Device_Name

Flags
-d Displays all the statistics, including the device-specific statistics.

Some adapters may not have any device specific statistics.

-r Resets all the statistics back to their initial values. This flag can
only be issued by privileged users.

-t Toggles debug trace in some device drivers.

Parameters
Device_Name The name of the ethernet device, for example, ent0. If an invalid

Device_Name is specified, the entstat command produces an
error message stating that it could not connect to the device.

7.2.2 Information on measurement and sampling
The entstat command used without flags provides generic statistics that consist
of transmit statistics, receive statistics, and general statistics. This includes
packets and bytes transmitted and received, and information about hardware
and software queues usage as well as error counters. If the -d flag is used,
device specific statistics as well as device driver statistics are displayed.

The entstat command provides a snapshot of the device driver statistics
collected by the Network Device Driver (NDD). The header file
/usr/include/sys/ndd.h defines the used data structure ndd_genstats as well as
the ioctl() operation NDD_GET_ALL_STATS, which is used to read the data from
the NDD. entstat uses a device dependent routine defined in the Object Data
Manager (ODM) to display the device specific statistics. This device dependent
routine is a command that will be executed using fork() and exec() out of
entstat. In a busy system there may be some delay doing this. In case the
system is running out of resources (for example low on memory), the necessary
466 AIX 5L Performance Tools Handbook

fork() may fail. All the device dependent routines can be found using the
command odmget -q attribute=addl_stat PdAt. All statistic values displayed
by entstat are the absolute values since startup or the last reset of these values,
which is done by using entstat -r Device_Name.

Hardware error recovery may cause some statistic values to be reset. If this
happens a second Elapsed Time is displayed in the middle of the statistic’s
output reflecting the elapsed time since the reset.

The device driver statistics are read out of the NDD at execution time of entstat.
The device specific statistics are read from the device driver using the ioctl()
system call. The data gets displayed and entstat exits. If the -r flag is used,
entstat first displays the current statistic values and then resets them.

Some adapters may not support a specific statistic. In this case the
non-supported statistic fields are always 0.

The output of the entstat command consists of five sections; the title fields, the
transmit statistics fields, the receive statistics fields, the general statistics fields,
and the adapter specific statistic fields. Please refer to the AIX 5L Version 5.1
Commands Reference, SBOF-1877 for a description of all output fields.

7.2.3 Examples
The output of entstat always shows the device driver statistics. When using the
-d flag, the additional device specific statistics are displayed. Some adapters
may not have any device specific statistics.

Example 7-3 shows the entstat output including device specific statistics.

Example 7-3 Displaying ethernet device driver statistics
entstat -d ent0

ETHERNET STATISTICS (ent0) :
Device Type: IBM PCI Ethernet Adapter (22100020)
Hardware Address: 08:00:5a:92:9e:6f
Elapsed Time: 11 days 3 hours 19 minutes 51 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 2121360 Packets: 2493230
Bytes: 307990132 Bytes: 368003398
Interrupts: 0 Interrupts: 2493091
Transmit Errors: 0 Receive Errors: 1
Packets Dropped: 0 Packets Dropped: 0
 Bad Packets: 0
Max Packets on S/W Transmit Queue: 37
 Chapter 7. Network performance tools 467

S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 1

Broadcast Packets: 71173 Broadcast Packets: 87040
Multicast Packets: 2 Multicast Packets: 2
No Carrier Sense: 0 CRC Errors: 0
DMA Underrun: 0 DMA Overrun: 0
Lost CTS Errors: 0 Alignment Errors: 0
Max Collision Errors: 0 No Resource Errors: 0
Late Collision Errors: 0 Receive Collision Errors: 1082
Deferred: 4554 Packet Too Short Errors: 1
SQE Test: 0 Packet Too Long Errors: 0
Timeout Errors: 0 Packets Discarded by Adapter: 0
Single Collision Count: 1723 Receiver Start Count: 0
Multiple Collision Count: 515
Current HW Transmit Queue Length: 1

General Statistics:

No mbuf Errors: 0
Adapter Reset Count: 1
Driver Flags: Up Broadcast Running

Simplex AlternateAddress 64BitSupport

IBM PCI Ethernet Adapter Specific Statistics:
--
Chip Version: 16
Packets with Transmit collisions:
 1 collisions: 1723 6 collisions: 0 11 collisions: 0
 2 collisions: 434 7 collisions: 0 12 collisions: 0
 3 collisions: 76 8 collisions: 0 13 collisions: 0
 4 collisions: 4 9 collisions: 0 14 collisions: 0
 5 collisions: 1 10 collisions: 0 15 collisions: 0

Elapsed Time The real time period that has elapsed since the last time the
statistics were reset. During error recovery, when a hardware
error is detected part of the statistics may be reset. In this
case another Elapsed Time is displayed in the middle of the
statistic’s output reflecting the elapsed time since the reset.
In this example there was no such event so there is no
addition Elapsed Time displayed.

Transmit and The number of packets transmitted and received
Receive Packets successfully by the device.

Transmit and The number of bytes transmitted and received successfully
Receive Bytes by the device. These values and their related packet count

can show how the system is using this network adapter. For
468 AIX 5L Performance Tools Handbook

example transmit and receive values may be close to equal,
or they may differ by a huge margin.

Transmit and The number of transmit and receive interrupts received by
Receive the driver from the adapter. If these counters increase fast,
Interrupts then the number of interrupts to be handled by the operating

system may reach a level where overall system performance
may be affected. Other monitoring tools like
“vmstat” on page 186 can be used to control the interrupts
per second handled by the system.

Max Packets The maximum number of outgoing packets ever queued to
on S/W the software transmit queue. If this value reaches the
Transmit Queue xt_que_size set for the adapter then the xt_que_size of the

adapter is not set to an adequate value. The command
lsattr -El Device_Name, like lsattr -El ent0, shows the
current adapter settings including xt_que_size. Use SMIT or
chdev to increase xt_que_size if necessary and possible.
The possible values allowed to set can be found using the
ODM as shown in Example 7-91 on page 607 or the lsattr
-Rl ent0 -a xt_que_size command.

S/W Transmit The number of outgoing packets that overflowed the
Queue Overflow software transmit queue. If this is not zero then you need to

increase the transmit queue size xt_que_size, as shown in
the description for the field Max Packets on S/W Transmit
Queue

Current S/W+H/W The number of pending outgoing packets on either the
Transmit Queue software transmit queue or the hardware transmit queue.
Length This reflects the current load on the adapter. This is the sum

of the Current SW Transmit Queue Length and Current HW
Transmit Queue Length fields.

Broadcast The number of broadcast packets transmitted and received
Packets without any error. A high value compared to the total

transmitted and received packets indicates that the system is
sending and receiving many broadcasts. Broadcasts
increase network load, and may increase the load on all the
other systems on the same subnetwork.

Receive The number of incoming packets with the collision errors
Collision Errors during the reception. This number, compared with number of

packets received, should stay low.

Single The number of outgoing packets with single (only one)
Collision Count collision encountered during transmission. This number,

compared with the number of packets transmitted, should
stay low.
 Chapter 7. Network performance tools 469

Multiple The summary of outgoing packets with multiple (up to 15)
Collision Count collisions encountered during transmission.

Current HW The number of outgoing packets currently on the hardware
Transmit Queue transmit queue.
Length

No mbuf Errors The number of times communications mbufs were not
available to the device driver. This usually occurs during
receive operations when the driver must obtain mbufs to
process inbound packets. If the mbuf pool for the requested
size is empty, the packet will be discarded. This may cause
retransmission by the sending system, which increases load
on the system as well as additional network load. The
netstat command can be used to confirm this. For details
refer to Section 7.8, “netstat” on page 502.

An increasing number of collisions could be caused by too much load on the
subnetwork. A split of this subnetwork into two or more subnetworks may be
necessary.

If the statistics for errors, such as the transmit errors, are increasing fast, these
errors should be corrected first. Some errors may be caused by hardware
problems. These hardware problems need to be fixed before any software tuning
is performed. The error counter should stay close to zero.

Sometimes it is useful to know how many packets an application or task sends or
receives. Use entstat -r Device_Name to reset the counters to zero, then run
the application or task. After the completion of the application or task, run
entstat Device_Name again to get this information. An example for using
entstat to monitor ethernet statistics during execution of one program is:

entstat -r ent0; ping -f 10.11.12.13 64 2048; entstat ent0

In other cases it may be of interest to collect ethernet statistics for a fixed time
frame. This can be done using entstat as shown in the following command:

entstat -r ent0;sleep 300;entstat ent0

The numbers of packets, bytes, and broadcasts transmitted and received
depend on many factors, like the applications running on the system or the
number of systems connected to the subnetwork. There is no rule of thumb how
much is too much. Monitoring a ethernet adapter on a regular basis using
entstat can point out possible problems before the users notice any slowdown.
The problem can be taken then care of by redesigning the network layout or
tuning the adapter parameters using the chdev command, or tuning network
options using the no command (See Section 7.11, “no” on page 549).
470 AIX 5L Performance Tools Handbook

7.3 estat
The estat command is a performance monitoring tool that displays RS/6000 SP
switch device driver (software) statistics. It is currently an undocumented
command.

Optionally the device (hardware) specific statistics can be displayed.

estat resides in /usr/lpp/ssp/css/css and is part of the ssp.css fileset, which is
installable from the IBM Parallel System Support Programs (PSSP) installation
media.

7.3.1 Syntax
The syntax of the estat command is as follows:

/usr/lpp/ssp/css/css/estat [-d -r] Device_Name

Flags
-d Displays all the device driver statistics, including the device

specific statistics.

-r Resets all the statistics back to their initial values. This flag can
only be issued by privileged users.

Parameters
Device_Name The name of the switch device, for example css0. If an invalid

Device_Name is specified, the estat command will produce an
error message stating that it could not connect to the device.

7.3.2 Information on measurement and sampling
The estat command used without flags provides generic statistics that consist of
transmit statistics, receive statistics, and general statistics. This includes packets
and bytes transmitted and received, and information about hardware and
software queues usage as well as error counters. If the -d flag is used, device
specific statistics are displayed along with the device driver statistics. Currently
device specific statistics show only the current number of communication
windows opened by the adapter.

The estat command provides a snapshot of the device driver statistics. The
output of the estat command consists of five sections; the title fields, the
transmit statistics fields, the receive statistics fields, the general statistics fields,
and the adapter specific statistic fields.
 Chapter 7. Network performance tools 471

Please refer to the RS/6000 SP System Performance Tuning Update, SG24-5340
for more detailed information on tuning an RS/6000 SP system, and the internet
site http://www.rs6000.ibm.com/support/sp/perf/ for the latest information on
tuning topics for the RS/6000 SP system.

7.3.3 Examples
The output of estat always shows the device driver statistics. If the -d flag is
used, the device specific statistics are also displayed.

Example 7-4 shows the output of estat.

Example 7-4 Output of the estat command
/usr/lpp/ssp/css/estat -d css0

CSS STATISTICS (css0) :
Elapsed Time: 97 days 10 hours 6 minutes 36 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 9798614 Packets: 5439592
Bytes: 2529885036 Bytes: 600249096
Interrupts: 0 Interrupts: 5437107
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
Max Packets on S/W Transmit Queue: 0 Bad Packets: 0
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 0

Broadcast Packets: 0 Broadcast Packets: 0

General Statistics:

No mbuf Errors: 0

High Performance Switch Specific Statistics:
--
Windows open: 2

The major fields of interest concerning performance and performance monitoring
are:

Elapsed Time The real time period that has elapsed since the last time the
statistics were reset.

Transmit and The number of packets transmitted and received
Receive Packets successfully by the device.
472 AIX 5L Performance Tools Handbook

Transmit and The number of bytes transmitted and received successfully
Receive Bytes by the device. These values and their related packet counts

can show how the system is using this network adapter. For
example, transmit and receive values may be close to equal
or they may differ by a huge margin.

No mbuf Errors The number of times communications memory buffers
(mbufs) were not available to the device driver. This usually
occurs during receive operations when the driver must obtain
mbuf buffers to process inbound packets. If the mbuf pool for
the requested size is empty, the packet will be discarded.
This may cause retransmission by the sending system which
increases load on the system as well as additional network
load. The netstat command can be used to confirm this.
For details refer to Section 7.8, “netstat” on page 502.
The RS/6000 SP switch adapter uses special
communications memory buffers for all packets greater than
256 bytes. For better performance these buffer pools are
allocated in pinned kernel memory. The device driver will use
AIX mbufs only when these pinned buffer pools are
exhausted. Use the lsattr -El css0 command to get the
current buffer pool settings. The attribute fields are rpoolsize
for the receive buffer pool and spoolsize for the send buffer
pool. The buffer pool sizes can be changed using the
/usr/lpp/ssp/css/cghcss -l css0 -a Attribute=Value
command, where Attribute is either rpoolsize or spoolsize
and Value is the new buffer size in bytes. On systems using
the RS/6000 SP Switch, a restart of the node is required to
activate the new pool settings. On systems using the
RS/6000 SP Switch2 the changes take place immediately.

Sometimes it is useful to know how many packets an application or task sends or
receives. Use /usr/lpp/ssp/css/estat -r Device_Name to reset the counters
to zero, then running the application or task. After the completion of the
application or task, run /usr/lpp/ssp/css/estat Device_Name again to get this
information. An example of using estat to monitor RS/6000 SP Switch statistics
during execution of one program is:

alias estat=/usr/lpp/ssp/css/estat

etstat -r css0; ping -f 10.10.10.200 8000 1024;estat css0

In other cases it may be of interest to collect RS/6000 SP Switch statistics for a
fixed time frame. This can be done using estat as shown in the following
commands:

alias estat=/usr/lpp/ssp/css/estat
 Chapter 7. Network performance tools 473

estat -r css0;sleep 300;estat css0

The numbers of packets and bytes transmitted and received depend on many
factors, like the applications running on the system or the number of systems
connected to the subnetwork. There is no rule of thumb how much is too much.
Monitoring a RS/6000 SP Switch adapter on a regular basis using estat can
point out possible problems before the users notice any slowdown. The problem
can be taken care of by tuning the adapter parameters using the chgcss
command or tuning network options using the no command (see Section 7.11,
“no” on page 549).

Upcoming releases and versions of IBM PSSP may add new features and tools
for monitoring and tuning the RS/6000 SP Switch. New RS/6000 SP Switch
hardware may offer new monitoring and tuning options as well. For detailed and
up to date information on RS/6000 SP switch tuning please refer to
http://www.rs6000.ibm.com/support/sp/perf/ on the Internet and the IBM
redbook RS/6000 SP System Performance Tuning Update, SG24-5340.

7.4 fddistat
The fddistat command is a monitoring tool. fddistat displays Fiber Distributed
Data Interface (FDDI) device driver (software) statistics.

Optionally the device (hardware) specific statistic can be displayed. The device
specific data may differ for different adapters.

fddistat resides in /usr/sbin, is linked to /usr/bin, and is part of the
devices.common.IBM.fddi.rte fileset, which is installable from the AIX base
installation media.

7.4.1 Syntax
The syntax of the fddistat command is as follows:

fddistat [-d -r -t] Device_Name

Flags
-d Displays all the device driver statistics, including the device

specific statistics. Some FDDI adapters do not support the
device specific statistic. In this case the output will be the same
as it would without the -d flag.

-r Resets all the statistics back to their initial values. This flag can
only be issued by privileged users.
474 AIX 5L Performance Tools Handbook

-t Toggles debug trace in some device drivers.

Parameters
Device_Name The name of the FDDI device, for example, fddi0. If an invalid

Device_Name is specified, the fddistat command will produce an
error message stating that it could not connect to the device.

7.4.2 Information on measurement and sampling
The fddistat command used without flags provides generic statistics that
consist of transmit statistics, receive statistics, and general statistics. This
includes packets and bytes transmitted and received, and information about
hardware and software queues usage as well as error counters. If the -d flag is
used, device specific statistics are displayed along with the device driver
statistics.

The fddistat command provides a snapshot of the device driver statistics
collected by the Network Device Driver (NDD). The header file
/usr/include/sys/ndd.h defines the used data structure ndd_genstats. fddistat
uses a device dependent routine defined in the Object Data Manager (ODM) to
display the device specific statistics. This device dependent routine is a
command that will be executed using fork() and exec() out of fddistat. In a busy
system there may be some delay doing this. If the system is running out of
resources (for example low on memory), the necessary fork() may fail. All the
device dependent routines can be found using the command odmget -q
attribute=addl_stat PdAt. All statistic values displayed by fddistat are the
absolute values since startup or the last reset of these values, which is done by
using fddistat -r Device_Name.

Hardware error recovery may cause some statistic values to be reset. If this
happens, a second Elapsed Time is displayed in the middle of the statistic’s
output reflecting the elapsed time since the reset.

The device driver statistics are read out of the NDD at execution time of
fddistat. The device specific statistics are read from the device driver using the
ioctl() system call. The data gets displayed and fddistat exits. Using the -r flag,
fddistat first displays the current statistic values and then resets them.

Some adapters may not support a specific statistic. In this case the
non-supported statistic fields are always 0.

The output of the fddistat command consists of five sections, the title fields, the
transmit statistics fields, the receive statistics fields, the general statistics fields,
and the adapter specific statistic fields. Please refer to the AIX 5L Version 5.1
Commands Reference, SBOF-1877 for a description of all output fields.
 Chapter 7. Network performance tools 475

7.4.3 Examples
The output of fddistat always shows the device driver statistics. If the -d flag is
used and the adapter supports it, the device specific statistics are displayed too
(Example 7-5).

Example 7-5 Using fddistat to display FDDI device driver statistics
fddistat fddi0

FDDI STATISTICS (fddi0) :
Elapsed Time: 1 days 23 hours 24 minutes 55 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 61478352 Packets: 54719134
Bytes: 51091616874 Bytes: 81586386390
Interrupts: 1235849 Interrupts: 35205866
Transmit Errors: 1 Receive Errors: 0
Packets Dropped: 2751646 Packets Dropped: 2486
 Bad Packets: 0
Max Packets on S/W Transmit Queue: 250
S/W Transmit Queue Overflow: 2751645
Current S/W+H/W Transmit Queue Length: 0

Broadcast Packets: 1340 Broadcast Packets: 87866
Multicast Packets: 2 Multicast Packets: 0

General Statistics:

No mbuf Errors: 36455

SMT Error Word: 00000000 SMT Event Word: 00000000
Connection Policy Violation: 0000 Port Event: 0000
Set Count Hi: 0000 Set Count Lo: 0000
Adapter Check Code: 0000 Purged Frames: 16263

ECM State Machine: IN
PCM State Machine Port A: ACTIVE
PCM State Machine Port B: ACTIVE
CFM State Machine Port A: THRU
CFM State Machine Port B: THRU
CF State Machine: THRU
MAC CFM State Machine: PRIMARY
RMT State Machine: RING_OP

Driver Flags: Up Broadcast Running
 Simplex AlternateAddress 64BitSupport
476 AIX 5L Performance Tools Handbook

The major fields of interest concerning performance and performance monitoring
are:

Elapsed Time The real time period that has elapsed since the last time the
statistics were reset. During error recovery when a hardware
error is detected, part of the statistics may be reset. In this
case another Elapsed Time is displayed in the middle of the
statistic’s output reflecting the elapsed time since the reset.
In this example there was no such event, so there is no
additional Elapsed Time displayed.

Transmit and The number of packets transmitted and received
Receive Packets successfully by the device.

Transmit and The number of bytes transmitted and received successfully
Receive Bytes by the device. These values and their related packet count

 show how the system is using this network adapter. For
example, transmit and receive values may be almost equal,
or they may differ by a huge margin.

Transmit and The number of transmit and receive interrupts received by
Receive the driver from the adapter. If these counters increase fast,
Interrupts the number of interrupts to be handled by the operating

system may reach a level where overall system performance
may be affected. Other monitoring tools like vmstat (see
“vmstat” on page 186) can be used to control the interrupts
per second handled by the system.

Max Packets The maximum number of outgoing packets ever queued to
on S/W the software transmit queue. If this value reaches the
Transmit Queue tx_que_size set for the adapter, the tx_que_size of the

adapter is not set to an adequate value. The command
lsattr -El Device_Name, like lsattr -El fddi0, shows the
current adapter settings including tx_que_size. Use
System Management Interface Tool (SMIT) or chdev to
increase tx_que_size if necessary and possible. The
permitted values can be found using the ODM as shown in
Example 7-91 on page 607 or the lsattr -Rlfddi0 -a
tx_que_size command.

S/W Transmit The number of outgoing packets that overflowed the
Queue Overflow software transmit queue. If this is not zero, you need to

increase the transmit queue size tx_que_size, as shown in
the description for the field Max Packets on S/W Transmit
Queue.

Current S/W+H/W The number of pending outgoing packets on either the
Transmit Queue software transmit queue or the hardware transmit queue.
Length This reflects the current load on the adapter.
 Chapter 7. Network performance tools 477

Broadcast The number of broadcast packets transmitted and received
Packets without any error. A high value compared to the total

transmitted and received packets indicates that the system is
sending and receiving many broadcasts. Broadcasts
increase network load, and may increase the load on all the
other systems on the same subnetwork.

No mbuf Errors The number of times communications mbufs were not
available to the device driver. This usually occurs during
receive operations when the driver must obtain mbuf buffers
to process inbound packets. If the mbuf pool for the
requested size is empty, the packet will be discarded. This
may cause retransmission by the sending system, which
increases load on the system as well as causing additional
network load. The netstat command can be used to confirm
this. For details, refer to Section 7.8, “netstat” on page 502.
Some FDDI adapters for AIX use mbuf buffers for their
transmit queue. In this case Packets Dropped in the transmit
statistics could be caused by a No mbuf Errors count greater
than zero.

If the statistics for errors, for example the transmit errors, are increasing fast
these errors should be corrected first. Some errors may be caused by hardware
problems. These hardware problems need to be fixed before any software tuning
is performed. These error counters should stay close to zero.

Example 7-5 on page 476 shows the output of fddistat on a system with two
different problems.

� The field S/W Transmit Queue Overflow shows a large number of overflows.
This is too high for the two days of Elapsed Time. The value 250 for the field
Max Packets on S/W Transmit Queue indicates that the tx_que_size for this
adapter may be set to 250. lsattr -El fddi0 and lsattr -Rl fddi0 -a
tx_que_size should be used to see if the transmit queue size can be
increased. SMIT or chdev should then be used to raise the value for
tx_que_size.

� The field No mbuf Errors indicates a shortage of mbufs. The netstat -m
command should be used to verify this; please refer to Section 7.8, “netstat”
on page 502 for details on the netstat command and the proper tuning in
case of mbuf errors.

Fixing the software transmit queue overflows and the mbuf errors will reduce, if
not eliminate, the dropped packets errors. Verification can be done by resetting
the FDDI device driver statistics with fddistat -r fddi0, then running the
system normally for two days. After these two days another fddistat fddi0
output should be created and compared to the previous one.
478 AIX 5L Performance Tools Handbook

Sometimes it is useful to know how many packets an application or task sends or
receives. Use fddistat -r Device_Name to reset the counters to zero, then run
the application or task. After the completion of the application or task, run
fddistat Device_Name again to get this information. An example for using
fddistat to monitor FDDI statistics during execution of one program is:

fddistat -r fddi0; ping -f 10.10.10.10 64 1024; fddistat fddi0

In other cases it may be of interest to collect FDDI statistics for a fixed time
frame. This can be done using fddistat as shown in the following command:

fddistat -r fddi0;sleep 3600;fddistat fddi0

The numbers of packets, bytes, and broadcasts transmitted and received
depend on many factors, for example the applications running on the system or
the number of systems connected to the subnetwork. There is no rule of thumb
how much is too much. Monitoring a FDDI adapter on a regular basis using
fddistat can point out possible problems before the users notice any slowdown.
The problem can be taken care of by redesigning the network layout, or tuning
the adapter parameters using the chdev command or network options using the
no command (see Section 7.11, “no” on page 549).

7.5 ipfilter
The ipfilter command sorts the output file created by the ipreport command,
provided the -r (for NFS/RPC reports) and -s (for all reports) flags have been
used in generating the report. The ipfilter command provides information
about NFS, UDP, TCP, IPX, and ICMP headers in table form. Information can be
displayed together, or separated by headers into different files. It can also
provide separate information about NFS calls and replies.

ipfilter resides in /usr/bin and is part of the bos.perf.tools fileset, which is
installable from the AIX base installation media.

For more detailed information on the TCP/IP protocols’, please review:

� Section 1.4, “Network performance” on page 29

� AIX 5L Version 5.1 Performance Management Guide

� AIX 5L Version 5.1 System Management Guide: Communications and
Networks

� TCP/IP Tutorial and Technical Overview, GG24-3376

� RS/6000 SP System Performance Tuning Update, SG24-5340

� http://www.rs6000.ibm.com/support/sp/perf
 Chapter 7. Network performance tools 479

� Appropriate Request For Comment (RFC) at http://www.rfc-editor.org/

There are also excellent books available on the subject, but a good starting point
is RFC 1180 A TCP/IP Tutorial.

7.5.1 Syntax
The syntax of the ipfilter command is as follows:

ipfilter [-f [u n t x c]] [-s [u n t x c]]
[-n [-d milliseconds]] ipreport_output_file

Flags
u n t x c Specifies operation headers (UDP, NFS, TCP, IPX, and

ICMP respectively).

-d milliseconds Only Call/Reply pairs whose elapsed time is greater than
milliseconds are to be shown.

-f [u n t x c] Selected operations are to be shown in ipfilter.all.

-n Generates an nfs.rpt file.

-s [u n t x c] Separate files are to be produced for each of the selected
operations.

Parameters
milliseconds Call/Reply paris whose elapsed time is greater than

milliseconds.

ipreport_output_file Name of file created by the ipreport command.

7.5.2 Information on measurement and sampling
ipfilter will read a file created by ipreport. The ipreport file has to be created
by using the -s (or -rsn) flag, which specifies that ipreport will prefix each line
with the protocol header. If no option flags are specified, ipfilter will generate a
file containing all protocols (ipfilter.all).
480 AIX 5L Performance Tools Handbook

Protocols and header type options
Table 7-1 shows the mapping between protocol (header types) and the
generated output file depending on how the option flags are specified to the
ipfilter command:

Table 7-1 ipfilter header types and options

7.5.3 Examples
The ipfilter command summarizes TCP/IP traffic flow by using the ASCII
output created by the ipreport command. Because the ipreport command uses
input from either iptrace or tcpdump, these commands must first be used to
create a binary trace of the network communication. In the following examples
we show how to create the input file for ipfilter and then show the different
reports that ipfilter can produce.

How to trace TCP/IP traffic
To trace TCP/IP traffic and use this as input to the ipfilter command, we can
use either the iptrace command, as shown in Example 7-6, or the tcpdump
command as shown in Example 7-7 on page 482.

Example 7-6 Start and stop iptrace for ipreport and ipfilter
startsrc -s iptrace -a "-P tcp $PWD/iptrace.tcp"
0513-059 The iptrace Subsystem has been started. Subsystem PID is 19602.
stopsrc -s iptrace
0513-044 The iptrace Subsystem was requested to stop.
lssrc -s iptrace
Subsystem Group PID Status
 iptrace tcpip inoperative

The first command line starts the trace using the System Resource Controller
(SRC) to control the execution. This makes it easier to stop the trace with the
stopsrc command instead of using ps and kill. In the example above we let
iptrace create a file in the current directory ($PWD).

Header Type Header type
option

Output filename (-s) Output filename (-f)

NFS (RPC) n ipfilter.nfs ipfilter.all

TCP t ipfilter.tcp ipfilter.all

UDP u ipfilter.udp ipfilter.all

ICMP c ipfilter.icmp ipfilter.all

IPX (PC
protocol)

x ipfilter.ipx ipfilter.all
 Chapter 7. Network performance tools 481

The -w - flags to the tcpdump command specifies that it should write raw packets
to stdout instead of parsing and printing them out. By specifying - as the input file
to ipreport, it will read from stdin. The -rs flags tells ipreport to start lines with
protocol indicator strings and to be aware of RPC packets.

Example 7-7 Using ipreport with tcpdump
tcpdump -vvSNs4096 -c 512 -w - tcp | ipreport -rsT - >$PWD/ipreport.tcp
tcpdump: listening on tr0
1261 packets received by filter
53 packets dropped by kernel

To create the ipreport file needed by ipfilter, run the ipreport command as
follows (still using the directory defined in the PWD environment variable as the
path to the input and output files for the commands):

ipreport -s $PWD/iptrace.out >$PWD/ipreport.tcp

Example 7-8 is a short extract from the ipreport.tcp file that we created with
the ipreport command for the iptrace created binary network trace output as
shown above in Example 7-6 on page 481.

Example 7-8 ipreport output for ipfilter
IPTRACE version: 2.0

TOK: ====(62 bytes received on interface tr0)==== 12:51:53.809120113
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 00:60:94:87:0a:87, dst = 00:60:94:8a:07:5b]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 1.3.1.114 > (3b-043)
IP: < DST = 1.3.1.164 > (wlmhost)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=41691, ip_off=0 DF
IP: ip_ttl=128, ip_sum=42d9, ip_p = 6 (TCP)
TCP: <source port=4743, destination port=23(telnet) >
TCP: th_seq=d3b63f0b, th_ack=eb301af8
TCP: th_off=5, flags<ACK>
TCP: th_win=16410, th_sum=2f16, th_urp=0

...(lines omitted)...
482 AIX 5L Performance Tools Handbook

As you can see the lines are prefixed with a keyword for the protocol header type
the output of each line belongs to. TOK specifies the Token Ring frame type from
the network interface layer, IP is the IP protocol from the network layer, and TCP
is the Transmission Control Protocol from the transport layer (see Example 7-7
on page 482). The only difference between the ipreport output for iptrace and
tcpdump is the first line in the report file indicating the source of the network trace
data (Table 7-2).

Table 7-2 ipreport source tag

To generate a summarized report for all protocols using the ipreport output, run
the ipfilter command:

ipfilter /tmp/ipreport.out

To limit the report to NFS (RPC) only, use the -n flag:

ipfilter -n /tmp/ipreport.out

NFS
The following is a sample output taken from nfs.rpt generated by ipfilter -n.
It can be used to get an overview of the NFS traffic (Example 7-9).

Example 7-9 nfs.rpt

 NFS REPORT

 Elasped Milliseconds Cut Off= 0
 --------CALL-------------------
------REPLY-------------------
Transaction ID Request Status Packet Send Time (secs) Size Packet Send Time (secs) Size
Elapsed msec
-------------- --------- -------- -------- ---------------- ----- ------- ----------------
----- ------------
 224607473 NFSPROC3_GETATTR SUCCESS 0 53.233199 174 0
53.234672 178 0.000
 224607474 NFSPROC3_GETATTR SUCCESS 0 53.235347 174 0
53.236720 178 0.000
 224607475 NFSPROC3_GETATTR SUCCESS 0 53.253619 174 0
53.254668 178 0.000
 224607476 NFSPROC3_GETATTR SUCCESS 0 53.255145 174 0
53.256369 178 0.000
 224607477 NFSPROC3_GETATTR SUCCESS 0 0.387394 174 0
0.388726 178 0.000

iptrace header tcpdump header

IPTRACE version: 2.0 TCPDUMP
 Chapter 7. Network performance tools 483

 224607478 NFSPROC3_GETATTR SUCCESS 0 24.852327 174 0
24.853634 178 0.000
 224607479 NFSPROC3_GETATTR SUCCESS 0 24.854309 174 0
24.855359 178 0.000
 224607480 NFSPROC3_GETATTR SUCCESS 0 24.855896 174 0
24.857220 178 0.000
 224607481 NFSPROC3_GETATTR SUCCESS 0 24.857594 174 0
24.858897 178 0.000
...(lines omitted)...

The nfs.rpt file (and the other ipfilter generated files) can either be analyzed
by browsing the file or by extracting selected parts of the information. The
following are a few examples of how to extract some interesting parts from the
nfs.rpt file. In all the examples below we exclude the header (lines 1 to 7) and
all records for UNKNOWN_PROC in the Request field.

The first example extracts all records that has more than 0.0 in the Elapsed msec
field:

awk '$10>0.0 && $2!~/UNKNOWN_PROC/ && NR>7' nfs.rpt

The following extracts all records that have a size larger than 512 bytes reported
in the Size field:

awk '$9>512 && $2!~/UNKNOWN_PROC/ && NR>7' nfs.rpt

The following example extracts all records that have a status of SUCCESS in the
Size field:

awk '$3!~/SUCCESS/ && $2!~/UNKNOWN_PROC/ && NR>7' nfs.rpt

This example extracts all records that have a request type matching _READ in the
Status field:

awk '$2~/_READ/ && NR>7' nfs.rpt

TCP
The following is a sample output taken from ipreport.tcp generated by
ipfilter -s t. It gives a good overview of the TCP packet flow (Example 7-10).

Example 7-10 ipfilter.tcp
Operation Headers: TCP

Ports

 pkt. Time Source Dest. Length Seq # Ack # Source
Destination Net_Interface Operation
484 AIX 5L Performance Tools Handbook

 22 18:06:44.509308 1.3.1.114 1.3.1.164 41, d3b5fa52, eb1263e6 4743,
23(telnet) tr0 TCP ACK PUSH
 23 18:06:44.509938 1.3.1.164 1.3.1.114 41, eb1263e6, d3b5fa53 23(telnet),
4743 tr0 TCP ACK PUSH
 26 18:06:44.668588 1.3.1.114 1.3.1.164 41, d3b5fa53, eb1263e7 4743,
23(telnet) tr0 TCP ACK PUSH
 27 18:06:44.669122 1.3.1.164 1.3.1.114 41, eb1263e7, d3b5fa54 23(telnet),
4743 tr0 TCP ACK PUSH
 30 18:06:44.782295 1.3.1.114 1.3.1.164 40, d3b5fa54, eb1263e8 4743,
23(telnet) tr0 TCP ACK
 33 18:06:44.827938 1.3.1.114 1.3.1.164 41, d3b5fa54, eb1263e8 4743,
23(telnet) tr0 TCP ACK PUSH
 34 18:06:44.828334 1.3.1.164 1.3.1.114 41, eb1263e8, d3b5fa55 23(telnet),
4743 tr0 TCP ACK PUSH
 35 18:06:44.913575 1.3.1.114 1.3.1.164 41, d3b5fa55, eb1263e9 4743,
23(telnet) tr0 TCP ACK PUSH
...(lines omitted)...

UDP
The following is a sample output taken from ipreport.udp generated by
ipfilter -s u (Example 7-11). It shows the UDP packet flow.

Example 7-11 ipreport.udp
Operation Headers: UDP

Ports

 pkt. Time Source Dest. Length Seq # Ack # Source
Destination Net_Interface Operation

 11 18:06:42.021652 1.3.1.114 221.55.150.208 178, 1346,
1345 tr0 UDP
 59 18:06:46.253304 1.3.1.144 1.3.1.255 265, 138(netbios-
138(netbios- tr0 UDP
 62 18:06:46.580319 1.3.1.103 221.55.150.208 178, 1346,
1345 tr0 UDP
 67 18:06:46.749541 1.3.1.164 1.3.1.2 73, 37310,
53(domain) tr0 UDP
 68 18:06:46.750645 1.3.1.2 1.3.1.164 149, 53(domain),
37310 tr0 UDP
 69 18:06:46.750974 1.3.1.164 1.3.1.2 53, 37311,
53(domain) tr0 UDP
 70 18:06:46.751848 1.3.1.2 1.3.1.164 129, 53(domain),
37311 tr0 UDP
 Chapter 7. Network performance tools 485

 71 18:06:46.752215 1.3.1.164 1.3.1.2 73, 37312,
53(domain) tr0 UDP
 72 18:06:46.753022 1.3.1.2 1.3.1.164 149, 53(domain),
37312 tr0 UDP
 73 18:06:46.753331 1.3.1.164 1.3.1.2 53, 37313,
53(domain) tr0 UDP
 74 18:06:46.754269 1.3.1.2 1.3.1.164 129, 53(domain),
37313 tr0 UDP
 78 18:06:46.789004 1.3.1.164 1.3.1.2 68, 37314,
53(domain) tr0 UDP
 79 18:06:46.789946 1.3.1.2 1.3.1.164 163, 53(domain),
37314 tr0 UDP
...(lines omitted)...

ICMP
The following is a sample output taken from ipreport.icmp generated by
ipfilter -s c (Example 7-12). It shows the ICMP packet flow.

Example 7-12 ipfilter.icmp
Operation Headers: ICMP

Ports

 pkt. Time Source Dest. Length Seq # Ack # Source
Destination Net_Interface Operation

 1 18:06:40.734626 1.31.7.84 1.3.1.164 84, 0
0 tr0 ICMP
 2 18:06:40.734790 1.3.1.164 1.31.7.84 84, 0
0 tr0 ICMP
 3 18:06:40.818499 1.31.7.76 1.3.1.164 84, 0
0 tr0 ICMP
 4 18:06:40.818664 1.3.1.164 1.31.7.76 84, 0
0 tr0 ICMP
 7 18:06:41.733939 1.31.7.84 1.3.1.164 84, 0
0 tr0 ICMP
 8 18:06:41.734051 1.3.1.164 1.31.7.84 84, 0
0 tr0 ICMP
 9 18:06:41.817298 1.31.7.76 1.3.1.164 84, 0
0 tr0 ICMP
 10 18:06:41.817430 1.3.1.164 1.31.7.76 84, 0
0 tr0 ICMP
...(lines omitted)...
486 AIX 5L Performance Tools Handbook

IPX
The following is a sample output taken from ipreport.ipx generated by
ipfilter -s x (Example 7-13). It shows the IPX packet flow.

Example 7-13 ipfilter.ipx
Operation Headers: IPX

Ports

 pkt. Time Source Dest. Length Seq # Ack # Source
Destination Net_Interface Operation

 123 18:06:50.182097 0 0 58 0
0 tr0 IPX
 138 18:06:51.178240 0 0 58 0
0 tr0 IPX
 157 18:06:52.178317 0 0 58 0
0 tr0 IPX
 165 18:06:53.178040 0 0 58 0
0 tr0 IPX
...(lines omitted)...

ALL
The following is a sample output taken from ipreport.all generated by
ipfilter without parameters (Example 7-14). It summarizes all protocols.

Example 7-14 ipfilter.all
Operation Headers: ICMP IPX NFS TCP UDP

Ports

 pkt. Time Source Dest. Length Seq # Ack # Source
Destination Net_Interface Operation

 1 18:06:40.734626 1.31.7.84 1.3.1.164 84, 0
0 tr0 ICMP
 2 18:06:40.734790 1.3.1.164 1.31.7.84 84, 0
0 tr0 ICMP
 3 18:06:40.818499 1.31.7.76 1.3.1.164 84, 0
0 tr0 ICMP
 4 18:06:40.818664 1.3.1.164 1.31.7.76 84, 0
0 tr0 ICMP
 Chapter 7. Network performance tools 487

 5 18:06:40.832805 1.3.1.1 224.0.0.5 68, 0
0 tr0
 6 18:06:41.409446 [1.3.1.24] [1.3.1.188] 52 0
0 tr0 ARP
...(lines omitted)...
13258 18:07:07.581747 1.3.1.164 1.3.1.164 1492, b9d0c9e6, daad2ac1 35648,
20(ftp-data) lo0 TCP ACK
13259 18:07:07.581757 1.3.1.164 1.3.1.164 1492, b9d0cf92, daad2ac1 35648,
20(ftp-data) lo0 TCP ACK
13260 18:07:07.581820 1.3.1.164 1.3.1.164 1492, b9d0d53e, daad2ac1 35648,
20(ftp-data) lo0 TCP ACK
...(lines omitted)...
13381 18:07:14.592564 1.3.1.114 1.3.1.164 41, d3b5fac8, eb126778 4743,
23(telnet) tr0 TCP ACK PUSH
13382 18:07:14.593005 1.3.1.164 1.3.1.114 41, eb126778, d3b5fac9 23(telnet),
4743 tr0 TCP ACK PUSH
13383 18:07:14.638730 1.3.1.114 1.3.1.164 42, d3b5fac9, eb126779 4743,
23(telnet) tr0 TCP ACK PUSH
13384 18:07:14.639378 1.3.1.164 1.3.1.114 42, eb126779, d3b5facb 23(telnet),
4743 tr0 TCP ACK PUSH
 0 18:07:14.639378 0 0 0 0
0 ACK
...(lines omitted)...

7.6 ipreport
The ipreport command generates a packet trace report from network packet
trace data. Monitoring the network traffic with iptrace or tcpdump can often be
very useful in determining why network performance is not as expected. The
ipreport command will format the binary trace reports from either of these
commands, or network sniffer, into an ASCII (or EBCDIC) formatted file. The
output created by ipreport can be summarized further by using the ipfilter
command (Section 7.5, “ipfilter” on page 479) or other shell scripts.

Please review the iptrace (Section 7.7, “iptrace” on page 494) and tcpdump
(Section 7.12, “tcpdump” on page 571) commands for information on how to limit
the scope of a network trace input file to ipreport.

ipreport resides in /usr/sbin and is part of the bos.net.tcp.server fileset, which is
installable from the AIX base installation media.

For more detailed information on the TCP/IP protocols’, please review:

� Section 1.4, “Network performance” on page 29

� AIX 5L Version 5.1 Performance Management Guide
488 AIX 5L Performance Tools Handbook

� AIX 5L Version 5.1 System Management Guide: Communications and
Networks

� TCP/IP Tutorial and Technical Overview, GG24-3376

� RS/6000 SP System Performance Tuning Update, SG24-5340

� http://www.rs6000.ibm.com/support/sp/perf

� Appropriate Request For Comment (RFC) at http://www.rfc-editor.org/

There are also excellent books available on the subject, but a good starting point
is RFC 1180 A TCP/IP Tutorial.

7.6.1 Syntax
The syntax of the ipreport command is as follows:

ipreport [-CenrsSvx1NT] [-c Count] [-j Pktnum] [-X Bytes] LogFile

Flags
-c Count Display Count number of packets

-C Validate checksums

-e Show EBCDIC instead of ASCII

-j Pktnum Jump to packet number Pktnum

-n Number of packets

-N Do not do name resolution

-r Decodes remote procedure call (RPC) packets

-s Start lines with protocol indicator strings

-S Input file was generated on a sniffer

-T Input file is in tcpdump format

-v Verbose

-x Print packet in hex

-X Bytes Limit hex dumps to Bytes

-1 Compatibility trace was generated on AIX V3.1

Parameters
LogFile The LogFile parameter specifies the name of the file

containing the results of the Internet Protocol trace. This
file can be generated by the iptrace or tcpdump
commands.
 Chapter 7. Network performance tools 489

Count Number of packets to display

Bytes Number of bytes to display for hex dumps

Pktnum Start reporting from packet number Pktnum

7.6.2 Information on measurement and sampling
The ipreport uses a binary input file from either the iptrace or tcpdump
commands1. Usually these network trace commands are executed in such a way
that they create a binary file that is then used by ipreport. The ipreport
command can, however, be used in a command pipeline with the tcpdump
command.

You must be aware that tracing and analyzing network traffic is not easy. You
need to understand how different applications communicate and what protocols
they use. You also need to understand how these network protocols work and
what effect the network tunables have on the protocols traffic flow.

For schematic information on frame and packet headers refer to “Packet header
formats” on page 580.

7.6.3 Examples
In the following examples we will show the usage of ipreport with the iptrace
and tcpdump commands.

How to use ipreport with tcpdump
To use ipreport on data from tcpdump, use the -T flag with ipreport as in
Example 7-15.

Example 7-15 Using ipreport with tcpdump
tcpdump -w - | ipreport -rsT - | more
TCPDUMP

TOK: ====(80 bytes on interface token-ring)==== 16:42:43.327359881
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 08:00:5a:fe:21:06, dst = 00:20:35:72:98:31]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 1.3.7.140 > (sox5.itso.ibm.com)
IP: < DST = 1.3.1.41 >
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=1500, ip_id=23840, ip_off=0
IP: ip_ttl=57, ip_sum=442, ip_p = 6 (TCP)

1 Or network sniffer device.
490 AIX 5L Performance Tools Handbook

IP: truncated-ip, 1442 bytes missing
IP: 00000000 043804fa a8fb14da 0937db32 50107d78 |.8.......7.2P.}x|
IP: 00000010 33330000 863fcc52 996d64f2 577d2c2c |33...?.R.md.W},,|
IP: 00000020 c5f7c26a 1eed |...j.. |
...(lines omitted)...

Using the tcpdump command with the -w - (dash) flags specifies that tcpdump
should write raw packets to stdout instead of parsing and printing them out. By
specifying a dash (-) as the input file to ipreport, it will read from stdin. The -rs
flags tells ipreport to start lines with protocol indicator strings and to be aware of
RPC packets.

How to use ipreport with iptrace
Example 7-16 shows how to trace a bi-directional connection between a server
host and a client (remote node), save the network trace output in a file, wait for 30
seconds, and then stop the trace. After iptrace is stopped the ipreport
command is executed to generate a readable report excluding host name
lookup, only reporting on the 100 first packets starting from packet number 55,
and including RPC information.

Example 7-16 ipreport from iptrace input
startsrc -s iptrace -a "-a -b -d remotenode /tmp/iptrace.out" &&
> sleep 30 &&
> stopsrc -s iptrace
ipreport -c 100 -j 55 -v -N -rs /tmp/iptrace.out
IPTRACE version: 2.0

TOK: ====(62 bytes received on interface tr0)==== 12:51:59.944658222
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 00:60:94:87:0a:87, dst = 00:60:94:8a:07:5b]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 1.3.1.114 >
IP: < DST = 1.3.1.164 >
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=41714, ip_off=0 DF
IP: ip_ttl=128, ip_sum=42c2, ip_p = 6 (TCP)
TCP: <source port=4743, destination port=23(telnet) >
TCP: th_seq=d3b63f19, th_ack=eb301b27
TCP: th_off=5, flags<ACK>
TCP: th_win=16363, th_sum=2f08, th_urp=0

...(lines omitted)...

++++++ END OF REPORT ++++++
 Chapter 7. Network performance tools 491

processed 154 packets
displayed 100 packets
Summary of RPC CALL packets

Example 7-17 shows the initiation of a TCP connection between two hosts (from
SRC to DST) on a Ethernet network.

Example 7-17 TCP initiation
ETH: ====(74 bytes received on interface en0)==== 12:22:05.191609117
ETH: [00:04:ac:ec:07:98 -> 00:04:ac:ec:08:d0] type 800 (IP)
IP: < SRC = 1.40.35.98 >
IP: < DST = 1.40.35.102 >
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=60, ip_id=41626, ip_off=0
IP: ip_ttl=60, ip_sum=9309, ip_p = 6 (TCP)
TCP: <source port=34308, destination port=2049(shilp) >
TCP: th_seq=f47ddc71, th_ack=0
TCP: th_off=10, flags<SYN>
TCP: th_win=65535, th_sum=4b0a, th_urp=0
TCP: mss 1460
TCP: nop
TCP: wscale 1
TCP: nop
...(lines omitted)...

Note the request for message segment size of 1460 in the example above.
Example 7-18 is the reply to the initiation request (note the SYN and ACK in the
flags field).

Example 7-18 TCP initiation reply
ETH: ====(74 bytes transmitted on interface en0)==== 12:22:05.191741778
ETH: [00:04:ac:ec:08:d0 -> 00:04:ac:ec:07:98] type 800 (IP)
IP: < SRC = 1.40.35.102 >
IP: < DST = 1.40.35.98 >
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=60, ip_id=51148, ip_off=0
IP: ip_ttl=60, ip_sum=6dd7, ip_p = 6 (TCP)
TCP: <source port=2049(shilp), destination port=34308 >
TCP: th_seq=b29207af, th_ack=f47ddc72
TCP: th_off=10, flags<SYN | ACK>
TCP: th_win=59368, th_sum=5530, th_urp=0
TCP: mss 1460
TCP: nop
TCP: wscale 0
TCP: nop
...(lines omitted)...
492 AIX 5L Performance Tools Handbook

For a more information on the protocol headers, refer to “Packet header formats”
on page 580 and the TCP/IP Protocols chapter in the AIX 5L Version 5.1 System
Management Guide: Communications and Networks.

Below we give a brief description of the ipreport report shown in the example
above:

First line The first line is a network frame summary line.

Second line The second line contains the destination and source
Media Access Control (MAC) addresses and the frame
type number and protocol in the following format:

##:##:##:##:##:## -> ##:##:##:##:##:##] type ### (X)

SRC SRC is the source (sender) of the packet.

DST DST is the destination (receiver) for the packet.

source port The source port is the port that the sending service used
to transmit the application layer data from.

destination port The destination port is the port that the receiving
service is using to receive the data on.

ip_ The ip_ fields correspond to the IP header fields (see “IP
V4 (RFC 791) packet header” on page 581). For example,
the ip_len field is the size including all packet information,
the ip_hl is the IP header size, the ip_v is the IP version
(4 or 6), and ip_p is the transport layer protocol (such as 1
for ICMP, 6 for TCP, and 17 for UDP). If the field is
“unknown internet protocol“ check the /etc/protocols file
and remove the comment (#) for the protocol line with the
matching ip_p number.

th_seq th_seq will be a large number for the first packet. After the
three way handshake has established a TCP connection,
th_seq will equal the th_ack from the last packet from the
other system. A th_ack of zero (0) indicates this is the first
packet of the sequence. After this it will contain the th_seq
from the last system plus the number of data bytes in the
last packet.

th_win Indicates the number of bytes of receive buffer space
available from the message originator. If the th_win field
is zero (0), it means that the other side is not accepting
any more data for the moment.

flags The flags field contains the control bits to identify the
purpose of the packet. A brief explanation of some flags
and combinations:
 Chapter 7. Network performance tools 493

SYN Synchronize the sequence numbers,
packet from the first part in the
connection, and the first part of initial
connection setup three way handshake.

ACK Acknowledgement of receipt, and also the
third part of initial connection setup three
way handshake from the first part in the
connection.

FIN Indicates that the sender has reached the
end of its byte stream.

PUSH Segment requests a PUSH (to deliver data).

URG Urgent pointer field is valid.

RST Resets the connection.

SYN | ACK Synchronize the sequence numbers and
acknowledge from the second part in the
connection, and the second part of initial
connection setup three way handshake
from the second part in the connection.

FIN | ACK Acknowledge receipt, and the sender
indicates that it is finished with this
connection. Either part can indicate the
completion of a connection. However,
data may still be sent.

PUSH | ACK Acknowledge receipt and PUSH data to
application.

7.7 iptrace
The iptrace command records Internet packets received from configured
network interfaces. Command flags provide a filter so that iptrace only traces
packets meeting specific criteria. Monitoring the network traffic with iptrace can
often be very useful in determining why network performance is not as expected.

To format the data file generated by iptrace, run the ipreport command
(Section 7.6, “ipreport” on page 488). The ipreport command generates a
readable trace report from the specified trace file created by the iptrace
command.

iptrace resides in /usr/sbin and is part of the bos.net.tcp.server fileset, which is
installable from the AIX base installation media.
494 AIX 5L Performance Tools Handbook

For more detailed information on the TCP/IP protocols’, please review:

� Section 1.4, “Network performance” on page 29

� AIX 5L Version 5.1 Performance Management Guide

� AIX 5L Version 5.1 System Management Guide: Communications and
Networks

� TCP/IP Tutorial and Technical Overview, GG24-3376

� RS/6000 SP System Performance Tuning Update, SG24-5340

� http://www.rs6000.ibm.com/support/sp/perf

� Appropriate Request For Comment (RFC) at http://www.rfc-editor.org/

There are also excellent books available on the subject, but a good starting point
is RFC 1180 A TCP/IP Tutorial.

7.7.1 Syntax
The syntax of the iptrace command is as follows:

iptrace [-a] [-e] [-d Host [-b]] [-s Host [-b]] [-p Port_list]
[-P Protocol_list] [-i Interface] [-B -S Snaplen] [-L Log_size]
LogFile

Flags
-a Suppresses ARP packets.

-b Changes the -d or -s flags to bidirectional mode.

-d Host Records packets headed for the destination host specified
by the Host variable.

-e Enables promiscuous mode on network adapters that
support this function.

-i Interface Records packets received on the interface specified by
the Interface variable.

-L Log_size This option causes iptrace to log data such that the
LogFile is copied to LogFile.old at the start, and every
time it becomes approximately Log_size bytes long.

-P Protocol_list Records packets that use the protocol specified by the
Protocol_list variable.

-p Port_list Records packets that use the port number specified by
the Port_list variable.
 Chapter 7. Network performance tools 495

-s Host Records packets coming from the source host specified
by the Host variable.

-B Use the Berkeley Packet Filter (BPF) instead of the
default network trace kernel extension.

-S Snaplen Captures Snaplen bytes of data from each packet.

Parameters
LogFile The LogFile parameter specifies the name of the file to

save the results of the network trace.

Snaplen The Snaplen parameters specifies the number of bytes of
data from each packet.

Interface Network interface to listen for packets on.

Host If used with the -b and the -d flag is used, iptrace
records packets both going to and coming from the host
specified by the Host variable. The Host variable can be a
host name or an Internet address in dotted-decimal
format.

Log_size When the output file for network trace data reaches
Log_size bytes, it is copied to LogFile.old. Using this flag
is also an indicator that the LogFile file should be copied
to LogFile.old at the start.

Protocol_list Protocol_list is a list of protocol specifications to
monitor. Several protocols can be monitored by a comma
separated list of identifiers. The Protocol_list variable
can be a decimal number or name from the /etc/protocols
file.

Port_list Port_list is a list of service/port specifications to monitor.
Several services/ports can be monitored by a comma
separated list of identifiers. The Port_list variable can
be a decimal number or name from the /etc/services file.

TCP/IP protocol and services tables
Table 7-3 is an extraction from the /etc/protocols file that shows some interesting
protocol types and their numeric value.

Table 7-3 grep -v ^# /etc/protocols

Symbolic
name

Numeric
id

Protocol Description

ip 0 IP Dummy for the Internet Protocol
496 AIX 5L Performance Tools Handbook

Table 7-4 is an extraction from the /etc/services file that shows some interesting
services, ports, and the protocol used on those ports.

Table 7-4 Selection from /etc/services

7.7.2 Information on measurement and sampling
The iptrace command can monitor more than one network interface at the same
time, such as the SP Switch network interfaces, and not only one as with the
tcpdump command (see Section 7.12, “tcpdump” on page 571). With the iptrace
command the kernel will copy the whole network packet to user space (to the

icmp 1 ICMP Internet control message protocol

igmp 2 IGMP Internet group multicast protocol

tcp 6 TCP Transmission control protocol

udp 17 UDP User datagram protocol

Symbolic
name

Port Protocol Description

echo 7 tcp Used by the ping command

echo 7 udp Used by the ping command

ftp-data 20 tcp Used by the ftp command

ftp 21 tcp Used by the ftp command

telnet 23 tcp Used by the telnet command

smtp 25 tcp Used by the mail commands

domain 53 udp Used by nameserver commands

pop 109 tcp Used by postoffice mail commands

pop3 110 tcp Used by postoffice3 mail commands

exec 512 tcp Used by remote commands

login 513 tcp Used by remote commands

shell 514 tcp Used by remote commands

printer 515 tcp Used by print spooler commands

route 520 udp Used by router (routed) commands

Symbolic
name

Numeric
id

Protocol Description
 Chapter 7. Network performance tools 497

monitoring iptrace command) from the kernel space. This can result in a lot of
dropped packets, especially if the number of monitored interfaces has not been
limited by using the -i Interface option to reduce the number of monitored
interfaces.

Because network tracing can produce large amounts of data, it is important to
limit the network trace, either by scope (what to trace) or amount (how much to
trace). Unlike the tcpdump command, the iptrace command does not offer many
options to reduce the scope of the network trace. The iptrace command also
relies on the ipreport command (see Section 7.6, “ipreport” on page 488) to
format the binary network trace data into a readable format (unlike tcpdump which
can do both). Note that the iptrace command will perform any filtering of packets
in user space and not in kernel space as the tcpdump command will (unless the
-B flag is used).

The iptrace command uses either the network trace kernel extension
(net_xmit_trace kernel service), which is the default method, or the Berkeley
Packet Filter (BPF) packet capture library to capture network packets (-B flag).
The iptrace command can either run as a daemon or under the System
Resource Controller (SRC).

For more information on the BPF, see the Chapter 4. “Packet Capture Library
Subroutines” in AIX 5L Version 5.1 Technical Reference: Communications,
Volume 2.

For more information on the net_xmit_trace kernel service, see AIX 5L Version
5.1 Technical Reference: Kernel and Subsystems, Volume 1.

7.7.3 Examples
To trace a specific network interface, use the -i option with the iptrace
command as shown in Example 7-19 to trace all traffic on the tr0 interface
(Token-Ring).

Example 7-19 Using iptrace to trace a network interface
startsrc -s iptrace -a "-i tr0 /tmp/iptrace.tr0"&&
read &&
stopsrc -s iptrace

The following (Example 7-20) is a short output from the network trace started in
the previous example that shows the ECHO_REQUEST from 1.39.7.84 and the
ECHO_REPLY from 1.3.1.164 (probably someone was using the ping command).

Example 7-20 Using ipreport
ipreport -sn /tmp/iptrace.tr0
498 AIX 5L Performance Tools Handbook

IPTRACE version: 2.0

Packet Number 1
TOK: ====(106 bytes received on interface tr0)==== 16:20:46.509067872
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 08:00:5a:fe:21:06, dst = 00:60:94:8a:07:5b]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 1.39.7.84 > (sp3tr35.itso.ibm.com)
IP: < DST = 1.3.1.164 > (wlmhost)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=16278, ip_off=0
IP: ip_ttl=245, ip_sum=6af1, ip_p = 1 (ICMP)
ICMP: icmp_type=8 (ECHO_REQUEST) icmp_id=12234 icmp_seq=3743

Packet Number 2
TOK: ====(106 bytes transmitted on interface tr0)==== 16:20:46.509234785
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 00:60:94:8a:07:5b, dst = 08:00:5a:fe:21:06]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 1.3.1.164 > (wlmhost)
IP: < DST = 1.39.7.84 > (sp3tr35.itso.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=45289, ip_off=0
IP: ip_ttl=255, ip_sum=ef9d, ip_p = 1 (ICMP)
ICMP: icmp_type=0 (ECHO_REPLY) icmp_id=12234 icmp_seq=3743
...(lines omitted)...

TCP packets
Example 7-21 on page 500 shows how to trace bi-directional (-b) TCP
connections (-P tcp) to and from system 1.1.1.114, suppressing ARP packets
(-a) and saving the output in a file (/tmp/iptrace.tcp). The iptrace command
will run until the ENTER key is pressed (read shell built-in function), and the
stopsrc command will stop the trace (the double && means that, if the previous
command was ok, then execute the following command).
 Chapter 7. Network performance tools 499

Example 7-21 Using iptrace to trace tcp to and from a system
startsrc -s iptrace -a "-a -b -P tcp -d 1.1.1.114 /tmp/iptrace.tcp"&&
read &&
stopsrc -s iptrace

To obtain a readable report from the iptrace binary data, use the ipreport
command, as Example 7-22 shows.

Example 7-22 Using ipreport
ipreport -s /tmp/iptrace.tcp
IPTRACE version: 2.0

TOK: ====(62 bytes received on interface tr0)==== 11:28:29.853288442
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 00:60:94:87:0a:87, dst = 00:60:94:8a:07:5b]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 1.3.1.114 > (3b-043)
IP: < DST = 1.3.1.164 > (wlmhost)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=50183, ip_off=0 DF
IP: ip_ttl=128, ip_sum=21ad, ip_p = 6 (TCP)
TCP: <source port=2423, destination port=23(telnet) >
TCP: th_seq=357cdd86, th_ack=a0005f0b
TCP: th_off=5, flags<ACK>
TCP: th_win=17155, th_sum=3c19, th_urp=0
...(lines omitted)...

UDP packets
Example 7-23 shows how to trace bi-directional (-b) UDP connections (-P udp) to
and from system 1.1.1.114, suppressing ARP packets (-a) and saving the
output in a file (/tmp/iptrace.udp). The iptrace command will run until the
ENTER key is pressed (read shell built-in function), and the stopsrc command
will stop the trace (the double && means that if the previous command was ok,
then execute the following command).

Example 7-23 Using iptrace to trace udp to and from a system
startsrc -s iptrace -a “-a -b -P up -d 1.1.1.114 /tmp/iptrace.udp” &&
read &&
stopsrc -s iptrace

To obtain a readable report from the iptrace binary data, use the ipreport
command, as Example 7-24 on page 501 shows.
500 AIX 5L Performance Tools Handbook

Example 7-24 Using ipreport
ipreport -s /tmp/iptrace.udp
IPTRACE version: 2.0

TOK: ====(202 bytes received on interface tr0)==== 11:30:03.808584556
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 80:60:94:87:0a:87, dst = c0:00:00:04:00:00]
TOK: routing control field = 8270, 0 routing segments
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 1.3.1.114 > (3b-043)
IP: < DST = 229.55.150.208 >
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=178, ip_id=50228, ip_off=0
IP: ip_ttl=10, ip_sum=658a, ip_p = 17 (UDP)
UDP: <source port=1346, <destination port=1345 >
UDP: [udp length = 158 | udp checksum = fbf5]
UDP: 00000000 24020209 0133064c 6f636174 65220100 |$....3.Locate"..|
UDP: 00000010 24020209 02330750 726f6475 63740c02 |$....3.Product..|
UDP: 00000020 24020209 03330547 686f7374 0c032402 |$....3.Ghost..$.|
UDP: 00000030 02090433 09436f6d 706f6e65 6e740c04 |...3.Component..|
UDP: 00000040 24020209 05330d43 6f6e6669 675f5365 |$....3.Config_Se|
UDP: 00000050 72766572 0c052402 02090633 044e616d |rver..$....3.Nam|
UDP: 00000060 650c0620 149c207f 9b2abcc2 0a50c17a |e..*...P.z|
UDP: 00000070 02de9f5f 1789e437 ef240202 09073309 |..._...7.$....3.|
UDP: 00000080 4368616c 6c656e67 650c0720 08f79efd |Challenge..|
UDP: 00000090 0bb44bf2 cb02 |..K... |
...(lines omitted)...

UDP domain name server requests and responses
Example 7-25 shows how to trace Domain Name Server (DNS) connections (-p
domain), suppressing ARP packets (-a) and saving the output in a file
(/tmp/iptrace.dns). The iptrace command will run until the ENTER key is
pressed (read shell built-in function), and the stopsrc command will stop the
trace (the double && means that if the previous command was ok, then execute
the following command).

Example 7-25 Using iptrace to trace DNS
startsrc -s iptrace -a "-a -p domain /tmp/iptrace.dns" &&
read &&
stopsrc -s iptrace

To obtain a readable report from the iptrace binary data, use the ipreport
command, as Example 7-26 on page 502 shows.
 Chapter 7. Network performance tools 501

Example 7-26 Using ipreport
ipreport -s /tmp/iptrace.dns
IPTRACE version: 2.0

TOK: ====(90 bytes transmitted on interface tr0)==== 11:33:55.782893557
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 00:60:94:8a:07:5b, dst = 00:20:35:3f:7e:11]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 1.3.1.164 > (wlmhost)
IP: < DST = 1.3.1.2 > (dude.itso.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=68, ip_id=28279, ip_off=0
IP: ip_ttl=30, ip_sum=1987, ip_p = 17 (UDP)
UDP: <source port=33681, <destination port=53(domain) >
UDP: [udp length = 48 | udp checksum = adae]
DNS Packet breakdown:
 QUESTIONS:
 114.1.3.1.in-addr.arpa, type = PTR, class = IN
...(lines omitted)...

7.8 netstat
The netstat command is a monitoring tool that displays a wide range of network
status information. This includes:

� The display of active socket connections for each protocol.
The local and remote addresses, send and receive queue sizes, the protocol,
and the state of the protocol are displayed.

� The display of routing table information.
The available routes and the status of these routes are shown. Each route
consists of a destination host or network and the gateway to use to forward
packets.

� The display of contents of a network data structure.
Statistics recorded by the memory management subroutines that show the
usage of communications memory buffers (mbufs) in the system and
statistics for each protocol can be displayed.

� The display of packet counts throughout the communications subsystem.
This shows the number of packets received, sent, and dropped in the
communication subsystem.

� The display of network buffer cache statistics.
The Network Buffer Cache (NBC) is currently used by two pieces of code.
502 AIX 5L Performance Tools Handbook

One is the send_file() system call, which uses the NBC if the
SF_SYNC_CACHE flag is set.
The second is the Fast Response Cache Accelerator (FRCA), which is
implemented by the FRCA kernel extension. This kernel extension is basically
a HTTP get engine that runs in the kernel. An API is provided as well as the
frcactrl command to control and use FRCA.

� The display of data link provider interface statistics.
The statistics of the Data Link Provider Interface (DLPI) is only available if
DLPI is loaded.

� The reset of statistics.
The interface, network buffer cache, mbufs, and protocol statistics can be
cleared.

The netstat command is a useful tool for determination of network problems,
and can provide information about the network traffic, the amount of data send
and received by each protocol, and memory usage for network buffers.

netstat resides in /usr/sbin/netstat, is linked to /usr/bin, and is part of the
bos.net.tcp.client fileset, which is installable from the AIX base installation media.

7.8.1 Syntax
The syntax of the netstat command is as follows:

To display active sockets for each protocol or routing table information:

netstat [-n] [{ -A -a } | { -r -C -i -I Interface }]
[-f AddressFamily] [-p Protocol] [Interval] [System]

To display the contents of a network data structure:

netstat [-m | -s | -ss | -u | -v] [-f AddressFamily]
[-p Protocol] [Interval] [System]

To display the packet counts throughout the communications subsystem:

netstat -D

To display the network buffer cache statistics:

netstat -c

To display the data link provider interface statistics:

netstat -P
 Chapter 7. Network performance tools 503

To clear the associated statistics:

netstat [-Zc | -Zi | -Zm | -Zs]

Flags
-A Shows the address of any protocol control blocks

associated with the sockets. This flag acts with the default
display and is used for debugging purposes.

-a Shows the state of all sockets. Without this flag, sockets
used by server processes are not shown.

-c Shows the statistics of the NBC. The NBC is a list of
network buffers that contains data objects that can be
transmitted to networks. The NBC grows dynamically as
data objects are added to or removed from it. The network
buffer cache is used by some network kernel interfaces
for performance enhancement on the network I/O.
Currently the send_file() system call, the Frca* family of
system calls, and the frcactrl command use the NBC.

-C Shows the routing tables, including the user-configured
and current costs of each route. The user-configured cost
is set using the -hopcount flag of the route command.
The current cost may be different than the
user-configured cost if dead gateway detection has
changed the cost of the route.

-D Shows the number of packets received, transmitted, and
dropped in the communications subsystem.

-f AddressFamily Limits reports of statistics or address control blocks to
those items specified by the AddressFamily variable.

-i Shows the state of all configured interfaces.

-I Interface Shows the state of the configured interface specified by
the Interface variable.

-m Shows statistics recorded by the memory management
routines.

-n Shows network addresses as numbers. When this flag is
not specified, the netstat command interprets addresses
where possible and displays them symbolically. This flag
can be used with any of the display formats.

-p Protocol Shows statistics about the value specified for the
Protocol variable, which is either a well-known name for
a protocol or an alias for it. Some protocol names and
504 AIX 5L Performance Tools Handbook

aliases are listed in the /etc/protocols file. A null response
means that there are no numbers to report. The program
report of the value specified for the Protocol variable is
unknown if there is no statistics routine for it.

-P Shows the statistics of the Data Link Provider Interface
(DLPI). If DLPI is not loaded, it displays the message:
can't find symbol: dl_stats

-r Shows the routing tables. When used with the -s flag, the
-r flag shows routing statistics.

-s Shows statistics for each protocol.

-ss Displays all the non-zero protocol statistics and provides
a concise display.

-u Displays information about domain sockets.

-v Shows statistics for CDLI-based communications
adapters. This flag causes the netstat command to run
the entstat, tokstat, fddistat, and atmstat commands.
No flags are issued to these commands. Please refer to
Section 7.2, “entstat” on page 465, Section 7.13, “tokstat”
on page 602, Section 7.4, “fddistat” on page 474, and
Section 7.1, “atmstat” on page 459 for more information
on these commands.

-Zc Clear network buffer cache statistics.

-Zi Clear interface statistics.

-Zm Clear network memory allocator statistics.

-Zs Clear protocol statistics. To clear statistics for a specific
protocol, use -p Protocol. For example, to clear TCP
statistics, enter netstat -Zs -p tcp.

Parameters
Interface The network interface, for example tok0.

AddressFamily The address family. The following address families are
recognized:

inet Indicates the AF_INET address family.

inet6 Indicates the AF_INET6 address family.

ns Indicates the AF_NS address family.

unix Indicates the AF_UNIX address family.
 Chapter 7. Network performance tools 505

Protocol Limits the output to statistics for this protocol. The
protocol names and aliases are listed in the /etc/protocols
file.

Interval The interval in seconds the netstat command is run. The
data reported following the header line shows the
summary values collected since the last reset of these
counters. The other lines show the data for the time
interval only.

System The memory used by the current kernel. This is /unix
unless you are looking into a dump file.

7.8.2 Information on measurement and sampling
The netstat command reads from kernel memory. This is done during execution
time. The netstat -v command calls atmstat, entstat, fddistat, and tokstat
without parameters to display the adapter device driver statistics. Among the
many outputs netstat can provide, only a few of them monitor the system for
performance. These are:

netstat -v Please refer to Section 7.1, “atmstat” on page 459,
Section 7.2, “entstat” on page 465, Section 7.4, “fddistat”
on page 474, and Section 7.13, “tokstat” on page 602 for
detailed information on the outputs of these commands.

netstat -in Lists the network interfaces including the Maximum
Transmission Unit (MTU), packets received and
transmitted, and receive and transmit errors for each
interface.

netstat -rn The output of this command shows the current routing
table used by the system including the used Path
Maximum Transfer Unit (PMTU). For two hosts
communicating across a path of multiple networks, a
transmitted packet becomes fragmented if its size is
greater than the smallest MTU of any network in the path.
Because packet fragmentation can result in reduced
network performance, it is desirable to avoid
fragmentation by transmitting packets with a size no
greater than the smallest MTU in the network path.

netstat -m Displays statistics for the communications memory buffer
(mbuf) usage. Each processor has its own mbuf pool. If
the network option extendednetstats is set to 1, a
summary of all processors is collected and displayed. For
performance reasons extendednetstats is set to 0 (zero)
in /etc/rc.net. Please refer to Section 7.11, “no” on
506 AIX 5L Performance Tools Handbook

page 549 for more information on the no command. In a
multi processor system only one processor can update
these summary values at a time, and this will block the
other processors trying to update these summary values.

netstat -s The output of this command shows detailed statistics for
each network protocol used. This includes packets sent
and received, packets dropped, and error counters. The
netstat -p Protocol command can be used to display
the data only for this one protocol. This is useful if you are
only interested in the statistics for one protocol, for
example User Datagram Protocol (UDP). Using the
netstat -p udp command shows only the statistics for
UDP.

netstat -D This command shows the count of packets transmitted
and received as well as the count for dropped packets for
each layer in the communications subsystem.

netstat -an The output of this command shows the state of all sockets
including the current sizes for their receive and send
queues.

netstat -c This command provides statistics about the NBC usage.

For a detailed description of all the other flags of the netstat command, please
refer to the AIX 5L Version 5.1 Commands Reference, SBOF-1877.

7.8.3 Examples
In this section we show the outputs of the netstat commands useful for
performance monitoring and show which parts of these outputs should be
inspected first.

The network interfaces
First, the state of the configured network interfaces should be observed using the
netstat -in command. Example 7-27 shows the netstat -in command output.

Example 7-27 Output of the netstat -in command
netstat -in
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 link#1 182 0 188 0 0
lo0 16896 127 127.0.0.1 182 0 188 0 0
lo0 16896 ::1 182 0 188 0 0
en0 1500 link#2 2.60.8c.f5.1c.fc 956 0 994 0 0
en0 1500 9.49.59.128 9.49.59.163 956 0 994 0 0
tr0 1492 link#3 8.0.5a.d.97.16 5925 0 240 0 0
tr0 1492 9.49 9.49.7.84 5925 0 240 0 0
 Chapter 7. Network performance tools 507

css0 65520 link#4 47517 0 93533 0 0
css0 65520 9.49.59.64 9.49.59.99 47517 0 93533 0 0

Name The name of the network interface. In this case there are
three network interfaces providing connections to three
different networks; en0, tr0, and css0. An interface
marked with a star, for example css0*, indicates that this
network interface is currently down and cannot be used
until it is set to the up state again using the ifconfig
Interface up command.

Mtu The MTU size set for each network interface.

Network The network address and the adapter hardware address
for each network interface.

Address IP address of the network interfaces.

Ipkts Packets received on the network interface.

Ierrs Receive errors on this network interface.

Opkts Packets sent to the interface.

Oerrs Transmit errors on the interface.

Coll The number of collisions on the interface. The collision
count for ethernet interfaces is not supported.

The network address and the IP address for each interface should be correct.
The MTU sizes for the network interfaces should be set to valid values. For
example, all systems connected to one local network should use the same MTU
on the network interface connecting them to this local network. The values for
Ierrs and Oerrs should be zero, and if they are not zero the value should be very
low and should not increase. The ratio between received packets and sent
packets shows how the network interfaces are used. The above example shows
a bigger number of packets received on the tr0 interface than this system sent.
In case this system is a client system and it gets connection to its server through
the tr0 interface, the numbers in the sample are acceptable. However, it is a
good idea to take a closer look and find the reason why we received this much
more data on tr0 than we sent.

The numbers of the packets received and sent over all network interfaces shows
which interface gets used most. Some network traffic may be redirected to other
network interfaces to balance the load. This can be done by changing the routing
table by, for example, adding static host routes. However, you should always be
careful in changing routing information on a system, and be aware of any
changes on the other systems.
508 AIX 5L Performance Tools Handbook

Now let us try to find why the number of packets received on tr0 are 10 times
higher than the number of packets sent to this network interface. There are
different ways to approach this. One is to run netstat -s, but for that command
all traffic over all interfaces is taken into account. Another way is to start at the
adapter and device driver layer using netstat -v or the tokstat command and
see if there are any unusual numbers. We will use tokstat in our sample to
check the token-ring device driver statistics first (Example 7-28).

Example 7-28 Output of tokstat tok0 command
tokstat tok0

TOKEN-RING STATISTICS (tok0) :
Device Type: Token-Ring High-Performance Adapter (8fa2)
Hardware Address: 08:00:5a:0d:97:16
Elapsed Time: 0 days 3 hours 28 minutes 9 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 37355 Packets: 302050
Bytes: 4042801 Bytes: 24739052
Interrupts: 37353 Interrupts: 300777
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
 Bad Packets: 0
Max Packets on S/W Transmit Queue: 27
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 0

Broadcast Packets: 11 Broadcast Packets: 257020
Multicast Packets: 2 Multicast Packets: 6992
Timeout Errors: 0 Receive Congestion Errors: 0
Current SW Transmit Queue Length: 0
Current HW Transmit Queue Length: 0

General Statistics:

No mbuf Errors: 0 Lobe Wire Faults: 0
Abort Errors: 0 AC Errors: 0
Burst Errors: 0 Frame Copy Errors: 0
Frequency Errors: 0 Hard Errors: 0
Internal Errors: 0 Line Errors: 0
Lost Frame Errors: 0 Only Station: 0
Token Errors: 0 Remove Received: 0
Ring Recovered: 0 Signal Loss Errors: 0
Soft Errors: 0 Transmit Beacon Errors: 0
Driver Flags: Up Broadcast Running
 AlternateAddress 64BitSupport ReceiveFunctionalAddr
 16 Mbps
 Chapter 7. Network performance tools 509

This output of the tokstat command shows a very high number of broadcasts
received. Most of these broadcasts may not even be useful for this system. We
can perform a netstat -p udp command to see if there are datagrams dropped
due to no socket. Example 7-37 on page 521 shows this. Here, some personal
computers running Windows are connected to the net are sending many
broadcasts.

The commands iptrace and tcpdump, for example tcpdump -i tr0 ip
broadcast, should be used now to find the source or sources for all these
broadcasts. Please see Section 7.7, “iptrace” on page 494 and Section 7.12,
“tcpdump” on page 571 for details on these commands.

The network routing
After inspecting the network interfaces the systems routing information should be
validated. Wrong routing can result in poor performance. It is necessary to know
the network topology to understand the current route settings. The following is an
example output of the netstat -rn command (Example 7-29).

Example 7-29 Output of netstat -rn command
netstat -rn
Routing tables
Destination Gateway Flags Refs Use If PMTU Exp Groups

Route Tree for Protocol Family 2 (Internet):
default 9.49.8.1 UGc 0 0 tr0 - -
9.3.9.165 9.49.8.1 UGHW 1 2344 tr0 - -
9.49/20 9.49.7.84 U 7 1809 tr0 - -
9.49.59.64/26 9.49.59.99 U 2 869707 css0 - -
9.49.59.128/26 9.49.59.163 U 0 5545 en0 - -
9.23.123.33 9.49.8.1 UGHW 0 4 tr0 - 1
9.23.123.34 9.49.8.1 UGHW 1 31 tr0 - -
127/8 127.0.0.1 U 0 155 lo0 - -

Route Tree for Protocol Family 24 (Internet v6):
::1 ::1 UH 0 0 lo0 16896 -

Destination The address of the destination network or host. The host
addresses are highlighted in the sample. The routes to these
hosts are cloned routes, which is indicated by the W in the Flags
column. All traffic to and from these hosts goes through the tr0
interface and the default gateway 9.49.8.1.

Gateway The gateway used to reach the destination. The highlighted
gateway addresses are the addresses of the network interfaces
of this system. In our example all network traffic to the
destination networks using the interface connected to that
network.
510 AIX 5L Performance Tools Handbook

Use The number of packets sent using that route. In our example the
most packets are sent to the css0 interface and the destination
was on that network. No gateway was used.

PMTU Path Maximum Transfer Unit (PMTU) used for that route. For two
hosts communicating across a path of multiple networks, a
transmitted packet becomes fragmented if its size is greater than
the smallest MTU of any network in the path. Because packet
fragmentation can result in reduced network performance, it is
desirable to avoid fragmentation by transmitting packets with a
size is no greater than the smallest MTU in the network path.
In the example all data to the highlighted destinations is sent
through network interface tr0 to the default gateway 9.49.8.1.
The MTU size for tr0 is 1492, please refer to Example 7-27 on
page 507. To set a PMTU value, use either PMTU discovery, by
using the no -o tcp_pmut_discover and no -o
udp_pmtu_discover commands, or add a static route including a
PMTU value, for example route add -host 9.3.9.165 9.49.8.1
-mtu 512. The MTU set using the route command has no affect
on MTU for applications using UDP. Please refer to Section 7.11,
“no” on page 549 for more details about the use of the no
command.

The next sample (Example 7-30) shows a netstat -rn output after the host route
to destination 9.3.9.165, including a PMTU of 512, was set using the route add
-host 9.3.9.165 9.49.8.1 -mtu 512 command.

Example 7-30 Output of netstat -rn including PMTU set to a fixed value
netstat -rn
Routing tables
Destination Gateway Flags Refs Use If PMTU Exp Groups

Route Tree for Protocol Family 2 (Internet):
default 9.49.8.1 UGc 0 0 tr0 - -
9.3.9.165 9.49.8.1 UGH 1 4980 tr0 512 -
9.49/20 9.49.7.84 U 7 2434 tr0 - -
9.49.59.64/26 9.49.59.99 U 0 969800 css0 - -
9.49.59.128/26 9.49.59.163 U 2 10561 en0 - -
9.23.123.34 9.49.8.1 UGHW 1 5882 tr0 - -
127/8 127.0.0.1 U 0 159 lo0 - -

Route Tree for Protocol Family 24 (Internet v6):
::1 ::1 UH 0 0 lo0 16896 -

Now all TCP traffic to destination 9.3.9.165 is broken up in packets of 512 bytes
or less.
 Chapter 7. Network performance tools 511

Kernel malloc statistics
The various layers of the communication subsystem share common buffer pools,
the communications memory buffers (mbufs). The mbuf management facility
controls buffer sizes. The buffer pools consists of pinned kernel memory.
Pointers to mbufs passed from one layer of the communication subsystem to
another reduces mbuf management overhead and avoids copying of data.

The maximum amount of memory the system can use for mbufs is defined in the
system configuration. Use the command lsattr -El sys0 -a maxmbuf to control
the current value set, and lsattr -Rl sys0 -a maxmbuf to see the possible
values. The maxmbuf value can be changed by using chdev -l sys0 -a
maxmbuf=NewValue command. A change requires a reboot of the system to
become activated.

If maxmbuf in the system configuration is zero, then the network option thewall
defines the maximum amount of memory to be used. Use the no command to
control and change thewall (refer to Section 7.11, “no” on page 549 for more
information). The thewall value is a runtime parameter and can be changed at
any time.

On a multi processor system each processor manages its own mbuf pool. This is
done to avoid unnecessary waits for locks that may occur if all processors are
using the same mbuf pool. The netstat -m command is used to observe the
system’s mbuf usage. The following is an example for the netstat -m output on a
multi processor system with the network option extendednetstats set to zero
(Example 7-31).

Example 7-31 netstat -m output with extendednetstats=0
netstat -m

Kernel malloc statistics:

******* CPU 0 *******
By size inuse calls failed delayed free hiwat freed
32 122 3425 0 0 134 1013 0
64 29 329 0 0 35 506 0
128 23 101446 0 0 233 253 11
256 147 591632 84 0 589 608 74
512 28 4942 0 0 28 63 0

Note: The above PMTU size of 512 used for destination 9.3.9.165 does not
reflect the optimum PMTU size to use. To set the PMTU size it is necessary to
know all MTU sizes on the networks your data travels to reach the destination.
Use the -mtu option to the route command with care.
512 AIX 5L Performance Tools Handbook

1024 4 1714 0 0 4 158 0
2048 15 3940 149 0 153 158 104
4096 127 17943 0 0 88 190 0
8192 1 163 0 0 7 15 0
16384 0 253 0 0 38 38 2
65536 1 1 0 0 0 1023 0

******* CPU 1 *******
... statistics for other CPUs removed

By type inuse calls failed delayed memuse memmax mapb

Streams mblk statistic failures:
0 high priority mblk failures
0 medium priority mblk failures
0 low priority mblk failures

The columns of the mbuf statistics per CPU are:

By size The size of the mbufs. Each processor’s mbuf pool is split up into
buckets between 32 and 65536 bytes.

inuse The number of mbufs in use for the given mbuf size.

calls The usage summary for the given mbuf size.

failed The failed requests to acquire an mbuf. This value should be zero.
If it is not zero then this number of requests for mbufs fails, causing
incoming packets to be dropped. Tuning the maxmbuf system
parameter or thewall network option is required.

delayed The number of delayed requests for mbufs. The requester of an
mbuf can specify the M_WAIT flag to get put to sleep if no mbuf is
available. The requester will be woken up if mbuf space becomes
available again. A user may notice a performance loss if the
application is waiting for a delayed mbuf request. This value should
stay zero.

free An application can free a previous requested mbuf. The mbuf stays
pinned in memory and can be used again. This avoids some
overhead in managing mbufs, which includes unpinning and
freeing the memory for general system usage.

hiwat If the number of buffers on the free list reaches this high water
mark, buffers from the free list are given back to the system. The
high water mark is scaled by the system based on the amount of
installed memory.
 Chapter 7. Network performance tools 513

freed A mbuf given back to the system increments the freed count. If
these values consistently increase, the high water mark is too low,
which causes unnecessary memory management overhead. The
high water mark value cannot be changed.

Setting the network option extendednetstats to a value of one using the no -o
extendednetstats=1 command will enable netstat -m to provide more
information. However, this will cost performance on a multi processor system and
should only be used to aid problem determination. Example 7-32 shows netstat
-m output on a multi processor system with extendednetstats enabled.

Example 7-32 netstat -m output with extendednetstats=1
netstat -m

521 mbufs in use:
512 mbuf cluster pages in use
2178 Kbytes allocated to mbufs
0 requests for mbufs denied
0 calls to protocol drain routines
0 sockets not created because sockthresh was reached

Kernel malloc statistics:

******* CPU 0 *******
By size inuse calls failed delayed free hiwat freed
... statistics for each CPU removed ...

By type inuse calls failed delayed memuse memmax mapb
mbuf 521 6048 0 0 133376 305408 0
mcluster 512 28 0 0 2097152 3149824 0
socket 20 28 0 0 19648 35392 0
pcb 6 9 0 0 416 1600 0
routetbl 24 0 0 0 2944 3584 0
ifaddr 16 0 0 0 1792 1792 0
mblk 7 422 0 0 896 119040 0
mblkdata 30 1 0 0 30720 151808 0
strhead 12 0 0 0 2304 5376 0
strqueue 11 0 0 0 5632 13312 0
strmodsw 16 0 0 0 1024 1024 0
strosr 0 0 0 0 0 512 0
strsyncq 17 0 0 0 1728 3712 0
streams 60 0 0 0 12224 17600 0
devbuf 0 0 0 0 0 528384 0
kernel tablemoun 17 0 0 0 86368 89440 0
spec buf 1 0 0 0 128 128 0
locking 2 0 0 0 256 256 0
temp 10 0 0 0 8640 16928 0
mcast opts 0 0 0 0 0 128 0
mcast addrs 3 0 0 0 192 192 0
514 AIX 5L Performance Tools Handbook

Streams mblk statistic failures:
0 high priority mblk failures
0 medium priority mblk failures
0 low priority mblk failures

The summary statistic is displayed in the first part of the output. This includes
information about the current memory usage for mbufs. The value for requests
for mbufs denied should be zero. The value for sockets not created because
sockthresh was reached should also be zero. It indicates that allocation of
mbufs for a new socket connection failed. The network option sockthresh, which
defaults to 85, allows mbuf allocation to new sockets only if less than 85 percent
of the maximum mbuf space is in use. The value for sockthresh can be changed
using the no -o sockthresh=NewValue command.

At the end of the statistics output a detailed usage of mbufs per service is
displayed.

By type This column names the service, for example mbuf or socket.

inuse Shows the number of mbufs used by the specific service.

calls These values show the usage count for mbufs by the specific
service.

failed These are the failed mbuf requests for the specific services. These
values should be zero. If they are not zero, then tuning of the
maxmbuf system parameter or the thewall network option is
necessary.

delayed These column shows the number of delayed mbuf requests. The
requester of an mbuf can specify the M_WAIT flag to get put to
sleep if no mbuf is available. The requester will be woken up if
mbuf space becomes available again. An user may notice a
degradation of performance if the application is waiting for a
delayed mbuf request. These values should stay at zero. If they are
not zero, tuning of the maxmbuf system parameter or the thewall
network option is necessary.

Statistics for each protocol
These statistics show detailed information including packet counts and error
counts for each protocol used on the system. The netstat -s command shows
the statistics for all protocols configured on the system (Example 7-33 on
page 516). Using netstat -p Protocol shows the statistics only for this one
protocol. We will show only the netstat -p Protocol outputs to keep the
examples smaller.
 Chapter 7. Network performance tools 515

The netstat -p ip command displays statistics for the IP protocol.

Example 7-33 Output from the netstat -p ip command
netstat -p ip
ip:

2935539 total packets received
0 bad header checksums
0 with size smaller than minimum
0 with data size < data length
0 with header length < data size
0 with data length < header length
0 with bad options
0 with incorrect version number
0 fragments received
0 fragments dropped (dup or out of space)
0 fragments dropped after timeout
0 packets reassembled ok
2769505 packets for this host
38 packets for unknown/unsupported protocol
0 packets forwarded
0 packets not forwardable
0 redirects sent
1624868 packets sent from this host
0 packets sent with fabricated ip header
0 output packets dropped due to no bufs, etc.
0 output packets discarded due to no route
1076 output datagrams fragmented
0 fragments created
1076 datagrams that can't be fragmented
165994 IP Multicast packets dropped due to no receiver
147 successful path MTU discovery cycles
46 path MTU rediscovery cycles attempted
1 path MTU discovery no-response estimate
2 path MTU discovery response timeouts
0 path MTU discovery decreases detected
152 path MTU discovery packets sent
0 path MTU discovery memory allocation failures
0 ipintrq overflows
0 with illegal source
0 packets processed by threads
0 packets dropped by threads
0 packets dropped due to the full socket receive buffer
0 dead gateway detection packets sent
0 dead gateway detection packet allocation failures
0 dead gateway detection gateway allocation failures
516 AIX 5L Performance Tools Handbook

The IP protocol statistics shows statistic information about sent and received
packets, error counters, statistics regarding forwarding of packets, and MTU
discovery. The error counters should be zero or be very low values compared
with the received and sent packets counters. Any unusually high number of bad
header checksums, packets with size smaller than minimum, packets with
data size < data length, packets with header length < data size, packets
with data length < header length, packets with bad options, or packets
with incorrect version number indicates a problem on the network. Some
other system may send such packets or there may be a hardware problem on the
network. Tools like iptrace or tcpdump can be used to identify the source of these
invalid packets. Please refer to Section 7.7, “iptrace” on page 494 and
Section 7.12, “tcpdump” on page 571 for details on these commands.

In case the system is set up to be a router, the fields packets forwarded, packets
not forwardable and redirects sent will show this. The number of packets not
forwardable should be low. The netstat -rn should be used to see if all
destination networks are still reachable. Please refer to “The network routing” on
page 510 for more information.

In Example 7-33 on page 516 there is a difference between the packets
received and packets for this host. No packets were forwarded. However,
there are some packets for unknown/unsupported protocol and IP Multicast
packets dropped due to no receiver, which means the systems received these
packets but no listener on the system is running to use them. The iptrace or the
tcpdump should show the source of these packets. Because such packets put
additional load on the system and the network, check if the configuration on the
source system for these packets is incorrect and, if so, correct it.

The netstat -p icmp command shows statistics for the Internet Control
Message Protocol (ICMP) protocol (Example 7-34).

Example 7-34 Output of the netstat -p icmp command
netstat -p icmp
icmp:

22 calls to icmp_error
0 errors not generated because old message was icmp
Output histogram:

echo reply: 187807
destination unreachable: 22

0 messages with bad code fields
0 messages < minimum length
0 bad checksums
0 messages with bad length
Input histogram:

echo reply: 149
destination unreachable: 22
echo: 187811
 Chapter 7. Network performance tools 517

time exceeded: 8
187807 message responses generated

The error counters in this output should stay close to zero. A value greater than
zero for the fields messages with bad code fields, messages < minimum length,
bad checksums, and messages with bad length are an indication of a network
problem. The tcpdump and iptrace command can be used for problem
determination.

The output for the netstat -p igmp command is part of the netstat -s output
and displays information for the Internet Group Multicast Protocol (IGMP)
(Example 7-35).

Example 7-35 Output of netstat -p igmp command
netstat -p igmp
igmp:

8 messages received
0 messages received with too few bytes
0 messages received with bad checksum
0 membership queries received
0 membership queries received with invalid field(s)
8 membership reports received
0 membership reports received with invalid field(s)
8 membership reports received for groups to which we belong
2 membership reports sent

This output is not very useful because there was not much traffic for the IGMP
protocol on this system. However, messages received with too few bytes and
messages received with bad checksum with values greater than zero are point to
network problems. The tcpdump and iptrace commands can be used for further
problem determination.

The tcp protocol is the most widely used protocol on AIX systems. The netstat
-p tcp command shows the statistics for this network protocol (Example 7-36).

Example 7-36 Output of netstat -p tcp command
netstat -p tcp
tcp:

1426798 packets sent
380151 data packets (115215459 bytes)
12 data packets (7860 bytes) retransmitted
1003361 ack-only packets (22553 delayed)
0 URG only packets
1 window probe packet
32137 window update packets
11136 control packets

2475620 packets received
518 AIX 5L Performance Tools Handbook

314523 acks (for 115227991 bytes)
3966 duplicate acks
0 acks for unsent data
2343535 packets (3092077757 bytes) received in-sequence
195 completely duplicate packets (125439 bytes)
0 old duplicate packets
7 packets with some dup. data (6692 bytes duped)
4101 out-of-order packets (560796 bytes)
0 packets (0 bytes) of data after window
0 window probes
113 window update packets
2 packets received after close
0 packets with bad hardware assisted checksum
0 discarded for bad checksums
0 discarded for bad header offset fields
0 discarded because packet too short
7 discarded by listeners
23333 ack packet headers correctly predicted
2140489 data packet headers correctly predicted

3741 connection requests
3707 connection accepts
7444 connections established (including accepts)
9245 connections closed (including 29 drops)
0 connections with ECN capability
0 times responded to ECN
4 embryonic connections dropped
271572 segments updated rtt (of 271586 attempts)
0 segments with congestion window reduced bit set
0 segments with congestion experienced bit set
0 resends due to path MTU discovery
1 path MTU discovery termination due to retransmits
13 retransmit timeouts

0 connections dropped by rexmit timeout
4 fast retransmits

0 when congestion window less than 4 segments
0 newreno retransmits
0 times avoided false fast retransmits
1 persist timeout

0 connections dropped due to persist timeout
136 keepalive timeouts

135 keepalive probes sent
1 connection dropped by keepalive

0 times SACK blocks array is extended
0 times SACK holes array is extended
0 packets dropped due to memory allocation failure
0 connections in timewait reused
0 delayed ACKs for SYN
0 delayed ACKs for FIN
0 send_and_disconnects
 Chapter 7. Network performance tools 519

0 spliced connections
0 spliced connections closed
0 spliced connections reset
0 spliced connections timeout
0 spliced connections persist timeout
0 spliced connections keepalive timeout

There are different areas concerning performance to look at in this statistics
output. These areas are:

� The number of retransmits.
Packets are dropped and a retransmission is performed. The cause for
dropped packets could be CRC errors, poor or noisy cables, not enough
receive buffers, remote node responding not in time, or switches or routers
along the route are dropping packets. Retransmission of packets could result
in poor performance. The number of retransmissions should stay low
compared to the number of packets sent. The tcpdump and iptrace, as well
as performance monitoring of the receiving system, can be used to find the
cause of the retransmits. The receiving system may be low on mbufs and
drops the packets. Please refer to Section 7.12, “tcpdump” on page 571 and
Section 7.7, “iptrace” on page 494 for more information on the tcpdump and
iptrace commands.

� The number of delayed packets.
This points to possible tcp_nodelay problems. tcp_nodelay specifies whether
TCP should follow the Nagle algorithm for deciding when to send data. By
default TCP will follow the Nagle algorithm. To disable this behavior,
applications can enable tcp_nodelay to force TCP to always send data
immediately. This can be done by the application. The Interface-Specific
Network Options (ISNO) and the ifconfig and chdev commands can be used
to enable tcp_nodelay for each network interface. To use ISNO the network
option use_isno needs to be set to a value of one. This is done using the no
-o use_isno=1 command. To set tcp_nodelay for one network interface the
ifconfig and chdev commands are used, for example ifconfig en0
tcp_nodelay 1. The network option tcp_nagle_limit can be set to 1 (one)
using the command no -o tcp_nagle_limit=1 to disable the Nagle algorithm.
Please refer to Section 7.11, “no” on page 549 for more details on the no
command.

� Packets received out-of-order.
The sender transmits the packets in order. There must be a reason why the
system receives the packets out-of-order. One reason can be dropped
packets because our system is running out of mbufs. Problems with routing,
for example the incoming packets using different routes, can cause
out-of-order packets, or a router on the network path is dropping packets. If
the number of out-of-order packets received reaches an unusually high
520 AIX 5L Performance Tools Handbook

number compared with the total packets received, then further investigation is
necessary. The tcpdump and iptrace commands can be used, as well as the
ping -R and traceroute commands.

� The window probe.
If the TCP window size of the receiving side of a connection is zero, then the
sending side stops transmitting data and waits for an update of the receivers
TCP window size. If the sender does not get this update it gets a time-out and
sends a window probe packet. This always has a negative impact on network
performance. The window probe packet value should remain at zero.
The windows probes field in the receive section of the output are the probes
for the TCP window size that the systems received. The consequences are
the same as on the sent side. Tuning the tcp_recvspace using the no
command is necessary if the window probe count gets too high. Please refer
to Section 7.11, “no” on page 549 for more information.

The netstat -p udp command is used to display udp protocol statistics
(Example 7-37).

Example 7-37 Output of netstat -p udp command
netstat -p udp
udp:

105925 datagrams received
0 incomplete headers
0 bad data length fields
0 bad checksums
22 dropped due to no socket
92472 broadcast/multicast datagrams dropped due to no socket
0 socket buffer overflows
13431 delivered
9930 datagrams output

The values for incomplete headers, bad data length fields, bad checksums,
and socket buffer overflows should stay at zero. Errors in the first three fields
point to network problems and further investigation is necessary using the
tcpdump and iptrace commands. For more information on these commands,
please refer to Section 7.12, “tcpdump” on page 571 and Section 7.7, “iptrace”
on page 494. In case of socket buffer overflows the network options sb_max,
upd_sendspace, and udp_recvspace should be checked using the no command.
Please refer to Section 7.11, “no” on page 549 for more details. A high number of
datagrams in the broadcast/multicast datagrams dropped due to no socket
field compared to the total number of received datagrams points to a large
number of broadcasts or multicast datagrams on the network. Our system has no
listener running for the datagrams and the packets are dropped. The tcpdump -i
Interface ip broadcast will show the source of these broadcasts.
 Chapter 7. Network performance tools 521

Communications subsystems statistics
The netstat -D command provides information on packets sent and received
and sent and received packets dropped (Example 7-38). This information is
provided for the adapter (hardware), the device driver, the demuxer, the
protocols, and the network interfaces.

Example 7-38 Output of netstat -d command
netstat -D

Source Ipkts Opkts Idrops Odrops

ent_dev0 127506 92275 0 0
fddi_dev0 0 0 0 0
tok_dev0 1943877 182098 0 0

Devices Total 2071383 274373 0 0

ent_dd0 127506 92275 0 0
fddi_dd0 0 0 0 0
tok_dd0 1943877 182098 0 0

Drivers Total 2071383 274373 0 0

ascsi_dmx0 0 N/A 0 N/A
ent_dmx0 127515 N/A 0 N/A
fddi_dmx0 0 N/A 0 N/A
tok_dmx0 1613875 N/A 330002 N/A

Demuxer Total 1741390 N/A 330002 N/A

IP 1948847 1866539 23107 23087
TCP 1084942 969481 0 0
UDP 559382 178335 44 0

Protocols Total 3593171 3014355 23151 23087

lo_if0 262 348 86 0
en_if0 127515 92283 0 0
tr_if0 1996638 228176 0 0
css_if0 1153430 1711417 0 3

Net IF Total 3277845 2032224 86 3

NFS/RPC Total N/A 909 0 0

(Note: N/A -> Not Applicable)
522 AIX 5L Performance Tools Handbook

The netstat -D command provides an overview of the received packets in the
Ipkts column and sent packets in the Opkts column for the different network
layers. These can be used to get an idea about the usage of each network layer.
Balancing the load on different adapters may improve performance. The above
example shows that the FDDI Adapter is not used at all. Moving some of the load
currently on the token-ring adapter to this FDDI adapter would be a good idea.

The Idrops and Odrops columns show the dropped packets. There is always a
reason for packets to be dropped. On the device level a shortage of mbufs can
cause these drops. Drops on the demux level indicate packets of an unsupported
protocol, for example IPX, are sent to the system. They cannot be processed and
are discarded. However, these packets will cost performance because they are
received by the adapter and passed to the device driver using mbufs and CPU
time. The iptrace command can be used to identify the source of such packets.
Further actions on the source system sending these packets can be taken to
reduce their number or stop them from being sent.

Dropped packets on the protocol layer should be taken care of by using the
netstat -p Protocol command to get more information on these dropped
packets. Please refer to “Statistics for each protocol” on page 515.

The state of all sockets
The netstat -an command provides information on all active connections
including the protocol, local and foreign address, state of the connection, and
size of the receive and send queues. Following is an example for the netstat
-an command (Example 7-39).

Example 7-39 Output of netstat -an command
netstat -an
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 2 9.49.7.84.23 9.3.9.165.36291 ESTABLISHED
tcp4 0 0 127.0.0.1.199 127.0.0.1.32860 ESTABLISHED
tcp4 0 0 127.0.0.1.32860 127.0.0.1.199 ESTABLISHED
tcp4 0 0 *.6680 *.* LISTEN
tcp4 0 0 *.2401 *.* LISTEN
tcp4 0 0 *.32803 *.* LISTEN
tcp4 0 0 127.0.0.1.199 127.0.0.1.32802 ESTABLISHED
tcp4 0 0 127.0.0.1.32802 127.0.0.1.199 ESTABLISHED
tcp4 0 0 *.199 *.* LISTEN
tcp4 0 0 *.12865 *.* LISTEN
tcp4 0 0 *.6681 *.* LISTEN
tcp4 0 17424 9.3.9.165.37773 9.3.9.165.20 ESTABLISHED
tcp 14520 0 9.3.9.165.20 9.3.9.165.37773 ESTABLISHED
tcp4 0 0 9.3.9.165.21 9.3.9.165.37772 ESTABLISHED
tcp 0 0 9.3.9.165.37772 9.3.9.165.21 ESTABLISHED
tcp4 0 0 *.37 *.* LISTEN
 Chapter 7. Network performance tools 523

tcp4 0 0 *.13 *.* LISTEN
tcp4 0 0 *.19 *.* LISTEN
tcp4 0 0 *.9 *.* LISTEN
tcp4 0 0 *.7 *.* LISTEN
tcp 0 0 *.512 *.* LISTEN
tcp4 0 0 *.543 *.* LISTEN
tcp 0 0 *.513 *.* LISTEN
tcp4 0 0 *.544 *.* LISTEN
tcp 0 0 *.514 *.* LISTEN
tcp 0 0 *.23 *.* LISTEN
tcp 0 0 *.21 *.* LISTEN
tcp4 0 0 *.32772 *.* LISTEN
tcp4 0 0 *.905 *.* LISTEN
tcp4 0 0 *.904 *.* LISTEN
tcp4 0 0 *.111 *.* LISTEN
tcp4 0 0 *.25 *.* LISTEN
udp4 0 0 *.514 *.*
udp4 0 0 *.10002 *.*
udp4 0 0 *.10001 *.*
udp4 0 0 *.10000 *.*
udp4 0 0 9.49.7.84.123 *.*
udp4 0 0 9.49.59.163.123 *.*
... some lines removed ...

Active UNIX domain sockets
SADR/PCB Type Recv-Q Send-Q Inode Conn Refs Nextref Addr
700edc00 dgram 0 0 137ac720 0 0 0 /dev/.SRC-unix/SRCgCedEo
7004d300
7004e600 dgram 0 0 13af1d20 0 7004dbc0 0 /dev/log
7004d100
70090c00 dgram 0 0 14d73d00 0 0 0 /dev/.SRC-unix/SRCb.edEb
7004df40
70098000 dgram 0 0 1428cd20 0 0 0 /dev/.SRC-unix/SRCNledEg
7004ddc0
70098c00 dgram 0 0 0 0 0 0
7004de00
700d4800 stream 0 0 14919fa0 0 0 0 /var/ha/soc/em.clsrv.cws3et
7004d780
70090e00 dgram 0 0 0 0 0 0
7004df80
700c1c00 dgram 0 0 14917660 0 0 0 /dev/.SRC-unix/SRCqQedEd
7004dd80
7004e800 dgram 0 0 151d03a0 0 0 0 /dev/SRC
7007f040
700c1e00 dgram 0 0 0 0 0 0
7004de40
700d4600 stream 0 0 0 7004d6c0 0 0
7004d700
700c1600 dgram 0 0 13231dc0 0 0 0 /dev/.SRC-unix/SRCvMedEe
524 AIX 5L Performance Tools Handbook

7004dd00
... many more removed ...

The data provided by the netstat -an command is very useful for the problem
determination of connection problems. For performance monitoring, the number
of connections and the sizes of the receive and send queues are of interest. The
number of established connections, for example to port 80 on a system running a
WEB server, shows the current number of clients accessing this service.

The send and receive queue sizes are an indication of the current use of a
connection. In Example 7-39 on page 523, the ftp command to our own
token-ring adapter is running performing a put “|dd if=/dev/zero bs=64k
count=100000” /dev/null. So both the sending and receiving side of the
connection are on the system. The send and receive queues for the ftp data
connection using port 20 are filled, data is sent out and received. Repeated runs
of the netstat -an command may indicate stuck transmissions on connections if
the send queue stays at the same size. The receiving system should be
inspected to check the state of the connection there.

The network buffer cache
The netstat -c command provides statistics about the NBC usage.
Example 7-40 shows the output of the netstat -c command.

Example 7-40 Output of netstat -c command
Network Buffer Cache Statistics:

Current total cache buffer size: 756389056

Maximum total cache buffer size: 756389056

Current total cache data size: 636761915

Maximum total cache data size: 636761915

Current number of cache: 100016

Maximum number of cache: 100016

Number of cache with data: 100016

Number of searches in cache: 400113

Number of cache hit: 16

Number of cache miss: 200038

Number of cache newly added: 100016

Number of cache updated: 0

Number of cache removed: 0

Number of successful cache accesses: 100032

Number of unsuccessful cache accesses: 100022

Number of cache validation: 0

Current total cache data size in private segments: 1438760235

Maximum total cache data size in private segments: 1438760235
 Chapter 7. Network performance tools 525

Current total number of private segments: 20000

Maximum total number of private segments: 20000

Current number of free private segments: 0

Current total NBC_NAMED_FILE entries: 100022

Maximum total NBC_NAMED_FILE entries: 100022

The above example shows a NBC which currently is mostly written to. There are
not many cache hits reported. The number of newly added files to the cache are
equal to the number of total files in the cache. The reason could be an
application just started using the NBC. However, the cache hit count should go
up soon. Or the cache is too small for the application. The NBC is used by the
send_file() system call, which uses the NBC if the SF_SYNC_CACHE flag is set
and the FRCA. If neither of these is used on a system, the values in the netstat
-c output are 0 (zero).

The network options to control the NBC are:

� nbc_limit
Specifies the total maximum amount of memory that can be used for the NBC
in kilobytes. The default value is derived from thewall. When the cache
grows to this limit, the least used cache objects are flushed out of cache to
make room for the new ones.

� nbc_max_cache
Specifies the maximum size of the cache object allowed in the NBC without
using the private segments in number of bytes, the default being 131,072
(128K) bytes. A data object bigger than this size is either cached in a private
segment or is not cached at all.

� nbc_min_cache
Specifies the minimum size of the cache object allowed in the NBC in number
of bytes, the default being one byte. A data object smaller than this size is not
put into the NBC.

� nbc_pseg
Specifies the maximum number of private segments that can be created for
the NBC. The default value is 0. When this option is set at a non-zero value, a
data object between the size specified in nbc_max_cache and the segment
size (256 MB) is cached in a private segment. A data object bigger than the
segment size is not cached at all. When the maximum number of private
segments exist, cache data in private segments may be flushed for new
cache data so that the number of private segments do not exceed the limit.
When nbc_pseg is set to zero, all caches in private segments are flushed.

� nbc_pseg_limit
Specifies the maximum amount of cached data size allowed in private
segments in the NBC in kilobytes. The default value is half of the total real
526 AIX 5L Performance Tools Handbook

memory size on the running system. Because data cached in private
segments are pinned by the NBC, nbc_pseg_limit controls the amount of
pinned memory used for the NBC in addition to the network buffers in global
segments. When the amount of cached data reaches this limit, cache data in
private segments may be flushed for new cache data so that the total pinned
memory size does not exceed the limit. When nbc_pseg_limit is set to zero,
all caches in private segments are flushed.

7.9 nfso
The nfso command allows the configuration of Network File System (NFS)
variables and removal of file locks from NFS client systems on the server. Prior to
changing NFS variables to tune NFS performance, monitor the load on the
system using the nfsstat, netstat, vmstat, and iostat commands.

nfso resides in /usr/sbin and is part of the bos.net.nfs.client fileset, which is
installable from the AIX base installation media.

7.9.1 Syntax
The syntax of the nfso command is as follows:

nfso { -a | -d Option | -l HostName | -o Option [=NewValue] } [-c]

Flags
-a Prints a list of all options and their current values.

-c Changes the output format of the nfso command to
colon-delineated format. To reset all NFS network
variables to their defaults, use the nfso -ac | cut -d‘:’
-f 1 | xargs -n 1 nfso -d command.

-d Option Sets the Option variable back to its default value.

-l HostName Allows a system administrator to release NFS file locks on
an NFS server. The HostName variable specifies the host
name of the NFS client that has file locks held at the NFS
server. The nfso -l command makes a remote procedure
call to the NFS server's rpc.lockd network lock manager
to request the release of the file locks held by the
HostName NFS client. If there is an NFS client that has file
locks held at the NFS server and this client has been
disconnected from the network and cannot be recovered,
the nfso -l command can be used to release those locks
so that other NFS clients can obtain similar file locks. The
 Chapter 7. Network performance tools 527

nfso command can be used to release locks on the local
NFS server only.

-o Option Shows the value of the option specified by the Option
[=NewValue] parameter if the NewValue variable is not specified. If a

new value is specified, the Option parameter is set to that
value. The nfso command sets or displays network
options in the kernel. This command operates only on the
kernel currently running. Use the nfso command after
each system startup or network configuration. To set
options at system startup, add the necessary nfso
command into the file /etc/rc.nfs. The effect of changing
any value will be immediate unless noted in the
description of the option.

Options
In this section we give a brief description of all possible options of the nfso
command. This includes the possible values for each option and information if a
change of this option takes effect immediately or what needs to be done to have
the change take effect. For more details, please refer to nfso command in the
AIX 5L Version 5.1 Commands Reference, SBOF-1877.

nfs_allow_all_signals
Specifies that the NFS server adhere to signal handling
requirements for blocked locks for the UNIX 95/98 test
suites. A value of 1 (one) enables and a value of 0 (zero)
disables the signal handling requirements for blocked
locks. The default value is 0 (zero). A change takes effect
immediately, and has a small performance impact.

nfs_device_specific_bufs
Forces the NFS server to use the device-specific buffers.
ATM and the SP high speed switch use special buffers for
sending data out of the device. The more efficiently the
NFS server uses the memory allocations, the better it
performs. A value of 1 (one) enables and a value of 0
(zero) disables the use of the device-specific buffers. The
default value is 1 (one). A change takes effect
immediately, and may have a performance impact if the
network adapter used supports this feature. If a shortage
of device-specific buffers on the adapter is noted, then the
value of this option should be changed to disable the use
of device-specific buffers for further problem
determination. Please refer to Section 7.1, “atmstat” on
page 459, Section 7.3, “estat” on page 471, and the
internet site
528 AIX 5L Performance Tools Handbook

http://www.rs6000.ibm.com/support/sp/perf/ for more
information about the device-specific buffers for ATM and
SP Switch adapters.

nfs_dynamic_retrans
Controls dynamic retransmit packet resizing. The
nfs_dynamic_retrans option allows the NFS read/write
packets to respond to network or server load problems.
This option also allows the NFS client to vary the
time-outs used for retransmissions, based on the
response time of the network or NFS server. A value of 1
(one) enables and a value of 0 (zero) disables the use of
dynamic retransmit packet resizing. The default value is 1
(one). A change takes effect immediately, and may have a
performance impact, especially in an environment with
changing network and server load. With
nfs_dynamic_retrans enabled, the client can adjust the
retransmit time-outs as well as the transfer size to try to
get the least performance impact because of
retransmissions.

nfs_gather_threshold
This option no longer applies to AIX.

nfs_iopace_pages
Sets the maximum number of changed pages that the
NFS client flushes to the NFS server at one time. The
kernel will modify the default value, depending on write
size. However, if you specify a value for
nfs_iopace_pages, the kernel does not modify that
maximum. Valid values are between one and 65536,
inclusively. The default value is 0 (zero), which
corresponds to max ((filesize/8)-1, 32) pages. A change
takes effect immediately, and may have a performance
impact in an environment where large files are written to
NFS mounted file systems. Flushing too much data at
once from an NFS client to the NFS server may block
other NFS I/O to that server. Setting nfs_iopace_pages to
a reasonably low value should prevent the NFS server
from blocking other NFS I/O in case of large writes.

nfs_max_connections
Specifies the maximum number of TCP connections
allowed on the NFS server. One TCP connection is used
per client. If new TCP connections are requested from
NFS clients and the new connection increases the total
amount of connections beyond the maximum, the existing
 Chapter 7. Network performance tools 529

TCP connection closes. The default value is 0 (zero),
which specifies that there is no maximum. A change takes
effect immediately, and has a small performance impact.
However, each open TCP connection requires resources.
Setting the option nfs_max_connections forces an NFS
server and an NFS client to close an idle connection and
release the resources used to keep it open. The
connection is reestablished if needed. The port number
used by NFS is 2049. Use the netstat -an|grep 2049
command to control the current TCP connections
established for NFS.

nfs_max_read_size
Sets the maximum and preferred read size. NFS clients,
mounting after nfs_max_read_size is set, use this value.
You cannot use this option to change the size for existing
mounts. The maximum is 65536 bytes and the minimum
is 512 bytes. The default values are 32678 bytes for NFS
V3, and 8192 bytes for NFS V2. A change takes effect
immediately. However, existing mounts are not affected.
Unmounting and mounting the NFS file systems on an
NFS client is required to change the maximum read size
on these file systems. A change of this option’s value may
have a performance impact. Setting this option may be
required to reduce the V3 read/write sizes when the
mounts cannot be manipulated directly on the clients, in
particular during Network Installation Management (NIM)
installations on networks where the network is dropping
packets with the default 32 KB read/write sizes. In that
case, set the maximum size to a smaller size that works
on the network. It can also be useful where network
devices are dropping packets and a generic change is
desired for communications with the server. Please note
that nfs_socketsize and nfs_tcp_socketsize should be
greater than or equal to the value of nfs_max_read_size.
Take this into account while changing this parameter.

nfs_max_threads
Specifies the maximum number of nfsd threads allowed
on an NFS server. This value can also be passed as an
argument to the nfsd daemon or set using the chnfs -n
NewValue command. The default value is 3891. A change
takes effect immediately, and may have a performance
impact on NFS servers. In AIX, the NFS server process
nfsd is multi-threaded. Threads are created as demand
increases on the server. When the threads are idle, they
530 AIX 5L Performance Tools Handbook

exit, thus allowing the server to adapt to the needs of the
NFS clients. On a system that serves as an NFS server
as its primary task, a large nfs_max_threads value does
not detract from overall system performance. However, if
a NFS serving system needs to perform other tasks at a
reasonable speed, specifying a lower value for
nfs_max_threads may be required to reduce NFS load on
this server. Please refer to nfso option
nfs_server_base_priority for another option which can
be used to control the NFS load on an NFS server.

nfs_max_write_size
The same as for the option nfs_max_read_size applies,
but for the maximum write size. Please refer to the
nfs_max_read_size option for more information.

nfs_repeat_messages
Checks for duplicate NFS messages. This option is used
to avoid displaying duplicate NFS messages on the
screen. When set to a value of one, all NFS messages
are printed to the screen. If set to a value of zero,
duplicate messages appearing one after the other are not
printed to the screen. Only the first message of such a
sequence is displayed. When a different message
appears, a message will be displayed similar to: Last NFS
message repeated n times. The default value is 1 (one).
A change takes effect immediately, and has no
performance impact.

nfs_rfc1323
Enables large TCP window size negotiation. If NFS uses
the TCP transport between client and server, and both
systems support RFC1323, this allows the systems to
negotiate a TCP window size in a way that more data is
allowed to be transferred between the client and server.
This increases the throughput potential between client
and server. The nfs_rfc1323 option enables RFC1323
only for NFS. To enable RFC1323 for NFS, set
nfs_rfc1323 to the value of 1 (one). To disable RFC1323
for NFS, set nfs_rfc1323 to the value of 0 (zero). If the
network option rfc1323 is already set to 1 (one), this NFS
option does not need to be set. Please refer to
Section 7.11, “no” on page 549 for information about the
network option rfc1323. The default value is 0 (zero). A
change takes effect immediately, and may have a
performance impact. However, you need to ensure that
 Chapter 7. Network performance tools 531

the TCP transport and the network can handle the
increased load.

nfs_server_base_priority
Specifies the base priority for nfsd processes. Valid
values are between 31 and 126, inclusive. The purpose of
nfs_server_base_priority is to allow performance tuning
of the NFS server or to allow the system administrator to
specify a reasonable value, depending on system load
requirements. The default value is 0 (zero), giving nfsd
processes regular floating priority. A change takes effect
immediately, and may have a performance impact. By
default, the nfsd daemons are running at normal floating
process priority. Therefore their priority will change (lower)
as they consume CPU time. Setting the option
nfs_server_base_priority to a value not equal zero
gives the nfsd processes a fixed priority, more favored or
less favored than a normal user process, depending on
the value. Depending on the main use of a system, acting
as an NFS server as well as performing another task, the
CPU load NFS can generate can be tuned to favor NFS or
to favor the other task. Use caution when setting this
option, because it can render the system almost unusable
by other processes if the nfsd processes get favored too
much. Please refer to the option nfs_max_threads for
another option which can be used to control the NFS load
on an NFS server.

nfs_server_clread
This option set to a value of 1 (one) enables a very
aggressive read-ahead on the NFS server for files served.
A whole cluster (128 KB) is read in and buffered. With
nfs_server_clread disabled the normal AIX Virtual
Memory Manager (VMM) read-ahead is performed. Set
nfs_server_clread to 0 (zero) to disable the aggressive
read-ahead function. The default value is 1 (one). A
change takes effect immediately, and may have a
performance impact. Performance may improve for
sequential file reads, but on random reads the load on the
server’s disk I/O system will increase and overall
performance may decrease.

nfs_setattr_error
Tells the NFS server to ignore invalid setattr() requests
when its value is set to 1 (one). The nfs_setattr_error
option is intended for certain personal computer
532 AIX 5L Performance Tools Handbook

applications. Set this option to a value of 0 (zero) to not
ignore invalid setattr() requests. The default value is 0
(zero). A change takes effect immediately, and has no
performance impact.

nfs_socketsize (UDP)
Refer to nfs_tcp_socketsize.

nfs_tcp_socketsize (TCP)
The nfs_tcp_socketsize (TCP) and nfs_socketsize
(UDP) options set the queue size of the NFS server
socket. The queue size is specified in bytes. The sockets
are used to receive NFS client requests on the NFS
server. The default value is 60000. A change takes effect
immediately, and may have a performance impact if the
NFS server serves a high volume of data. In this case the
socket size to receive NFS client request may be too
small, causing the server to drop packets. Please use
netstat -p udp (UDP) or netstat -p tcp (TCP) to check
for dropped packets and increase the value for the
options nfs_socketsize or nfs_tcp_socketsize until no
more packets are dropped. Please refer to Section 7.8,
“netstat” on page 502 and Section 7.10, “nfsstat” on
page 541 for more information.

nfs_udp_duplicate_cache_size (UDP)
Refer to nfs_tcp_duplicate_cache_size.

nfs_tcp_duplicate_cache_size (TCP)
The nfs_tcp_duplicate_cache_size (TCP) and
nfs_udp_duplicate_cache_size (UDP) options specify
the number of entries to store in the NFS server's
duplicate cache for the UDP and TCP network transport.
Duplicate checks are performed for operations that
cannot be performed twice with the same result. If the first
command will succeed but the reply is lost, the client will
retransmit this request. This retransmitted command will
fail. An example for an operation that cannot be
performed twice with the same result is the rm command.
We want duplicate requests like these to succeed, so the
duplicate cache is consulted, and if it is a duplicate
request, the same (successful) result is returned on the
duplicate request as was generated on the initial request.
Following operations apply to duplicate checks; setattr(),
write(), create(), remove(), rename(), link(), symlink(),
mkdir(), and rmdir(). Any such call is stored in the
duplicate request cache. The size of the duplicate request
 Chapter 7. Network performance tools 533

cache is controlled by the NFS options
nfs_tcp_duplicate_cache_size for the TCP network
transport and nfs_udp_duplicate_cache_size for the
UDP network transport. These NFS options need to be
increased on a high volume NFS server. Calculating the
NFS operations per second and use four times this value
is a good starting point. The nfsstat -z; sleep 60;
nfsstat -sn command can be used to capture the
number of NFS operations per minute. The default value
is 1000 and can range from 1 (one) to 10000. The value
for these options cannot be decreased. A change takes
effect immediately, and has a small performance impact.
However, a bigger cache requires more memory and
more time to manage the cache. On the NFS client side
errors may be reported if one of the above listed
operations gets transmitted to the NFS server twice and
the operation was already removed from a too small
duplicate cache.

nfs_use_reserve_ports
Forces the client to use reserved ports for all
communication. The default is not to force that use. A
value of 1 (one) enables the use of reserved ports, while a
value of 0 (zero) disables it. A change takes effect
immediately, and has no performance impact.

nfs_v2_pdts (NFS V2)
Refer to nfs_v3_pdts.

nfs_v3_pdts (NFS V3)
The nfs_v3_pdts (NFS V3) and nfs_v2_pdts (NFS V2)
options set the number of tables for paging device table
(pdt) pools used by the NFS client biods for NFS Version
3 or for NFS Version 2 mounts respectively. The default
and minimum value is 1 (one) and the maximum value is
8 (eight). Please refer to the nfs_v2_vm_bufs and
nfs_v3_vm_bufs options for more information. For values
greater than one, this option must be set before NFS
mounts are performed. A change takes effect
immediately.

nfs_v2_vm_bufs (NFS V2)
Refer to nfs_v3_vm_bufs.

nfs_v3_vm_bufs (NFS V3)
The nfs_v3_vm_bufs (NFS V3) and nfs_v2_vm_bufs (NFS
V2) options set or display the number of initial free
memory buffers used for each NFS version 3 or NFS
534 AIX 5L Performance Tools Handbook

version 2 pdt created after the first table. Valid values
range from 1 (one) to 5000. The very first pdt has a set
value of 256, 512, 640, or 1000, depending on system
memory. This initial value is also the default value of each
newly created pdt. For values other than the default
number, this option must be set before NFS mounts are
performed. Note that the initial set value for the first pdt
table will never change. A change takes effect
immediately, and may have a performance impact. In
previous versions of AIX the maximum number of
memory buffers an NFS client could get for transactions
with NFS servers was 640 memory buffers in one pdt. In
certain cases this was not enough and memory buffer
starvation slowed down NFS performance, as jobs had to
wait for memory buffers to be freed. The counter
rfsbufwaitcnt gets increased each time a job has to wait
for a memory buffer to be freed. The vmtune -a command
can be used to retrieve the current value of the
rfsbufwaitcnt counter. Using the options nfs_v2_pdts,
nfs_v3_pdts, nfs_v2_vm_bufs, and nfs_v3_vm_bufs
enables you to assign more memory buffers to be used in
transactions between an NFS client and an NFS server,
and increase NFS performance. Additionally, the pdts are
used in a round-robin way. For example in a system with
three pdts defined, the first directory to mount will use
pdt1, the second directory to mount will use pdt2, the third
directory to mount will use pdt3. The next directory to
mount will use pdt1 in a wrap-around and so on.
Changing the order of the mounts can help to balance the
use of the memory buffers in the defined pdts.

portcheck
Checks whether an NFS request originated from a
privileged port. The default value of 0 (zero) disables port
checking by the NFS server. A value of 1 (one) directs the
NFS server to do port checking on the incoming NFS
requests. A change takes effect immediately, and has no
performance impact.

udpchecksum
Performs the checksum of NFS UDP packets. A value of
1 (one) directs the NFS server or client to build UDP
checksums for the packets that it sends to the NFS clients
or servers. A value of 0 (zero) disables the checksum on
UDP packets from the NFS server or client. The default
value is 1 (one). A change takes effect immediately The
 Chapter 7. Network performance tools 535

performance gain by disabling udpchecksum is small. On a
network where packet corruption might occur, the UDP
checksum option should be turned on.

7.9.2 Information on measurement and sampling
The nfso command reads the NFS network variables from kernel memory and
writes changes to kernel memory of the running system. The values not equal to
the default values need to be set after each system start. This can be done by
adding the necessary nfso command into the /etc/rc.nfs file. Most changes
performed by nfso take effect immediately. Only changing the options
nfs_max_read_size, nfs_max_write_size, nfs_v2_pdts, nfs_v3_pdts,
nfs_v2_vm_bufs, and nfs_v3_pdts does not affect existing mounts.

7.9.3 Examples
Example 7-41 uses the nfso -a command to display the current NFS network
variables. This command should always be used to display and store the current
setting prior changing them.

Example 7-41 Display and store in a file the current NFS network variables
nfso -a | tee /tmp/nfso.current
portcheck= 0
udpchecksum= 1
nfs_socketsize= 60000
nfs_tcp_socketsize= 60000
nfs_setattr_error= 0
nfs_gather_threshold= 4096
nfs_repeat_messages= 0
nfs_udp_duplicate_cache_size= 5000
nfs_tcp_duplicate_cache_size= 0
nfs_server_base_priority= 0
nfs_dynamic_retrans= 0
nfs_iopace_pages= 0
nfs_max_connections= 0
nfs_max_threads= 3891
nfs_use_reserved_ports= 0
nfs_device_specific_bufs= 1

Attention: Be careful when you use this command. The nfso command
performs no range checking; therefore, it accepts all values for the variables. If
used incorrectly, the nfso command can make your system inoperable. Add
the nfso commands to set new option values to /etc/rc.nfs only after you
tested these new values. Bad option values may cause your system to hang at
the next reboot.
536 AIX 5L Performance Tools Handbook

nfs_server_clread= 1
nfs_rfc1323= 0
nfs_max_write_size= 0
nfs_max_read_size= 0
nfs_allow_all_signals= 0
nfs_v2_pdts= 1
nfs_v3_pdts= 1
nfs_v2_vm_bufs= 1000
nfs_v3_vm_bufs= 1000

The option nfs_dynamic_retrans is set to zero, so dynamic retransmit packet
resizing is turned off. Our NFS server is doing more than serving as an NFS
server. Local users use much of the CPU as well putting a heavy load on the disk
I/O subsystem. The users on the NFS client systems trying to read and write data
to and from the NFS mounted file system are getting very bad performance. All
other functions including other network based services on the NFS clients are
running at normal performance.

The first action in such a case is to check the NFS mounts on the NFS clients
including the options used to mount the NFS file systems. This can be done on
the NFS client systems using the mount command. Following is the output from
one NFS client system (Example 7-42).

Example 7-42 Using the mount command on NFS client to check the options
node mounted mounted over vfs date options
-------- --------------- --------------- ------ ------------ ---------------
 /dev/hd4 / jfs May 18 15:22 rw,log=/dev/hd8
 /dev/hd2 /usr jfs May 18 15:22 rw,log=/dev/hd8
 /dev/hd9var /var jfs May 18 15:22 rw,log=/dev/hd8
 /dev/hd3 /tmp jfs May 18 15:22 rw,log=/dev/hd8
 /dev/hd1 /home jfs May 18 15:23 rw,log=/dev/hd8
 /proc /proc procfs May 18 15:23 rw
wlmhost /work/fs2 /home/work/fs2re nfs May 18 15:39
vers=2,proto=udp,timeo=2,retry=10

There is only one NFS file system mounted. It uses NFS version 2 and UDP
transport, and the timeo value is two.

The next step is to look at the RPC and NFS statistics on the NFS clients. This is
done using the nfsstat -c command as shown in Example 7-43.

Example 7-43 Controlling RPC and NFS statistics on a NFS client system
nfsstat -z >/dev/null; sleep 30; nfsstat -c
Client rpc:
Connection oriented
calls badcalls badxids timeouts newcreds badverfs timers
6 0 0 0 0 0 0
 Chapter 7. Network performance tools 537

nomem cantconn interrupts
0 0 0
Connectionless
calls badcalls retrans badxids timeouts newcreds badverfs
1116 9 99 31 0 0 0
timers nomem cantsend
37 0 0

Client nfs:
calls badcalls clgets cltoomany
1112 0 0 0
Version 2: (1111 calls)
null getattr setattr root lookup readlink read
0 0% 168 15% 83 7% 0 0% 94 8% 0 0% 305 27%
wrcache write create remove rename link symlink
0 0% 456 41% 1 0% 0 0% 0 0% 0 0% 0 0%
mkdir rmdir readdir statfs
2 0% 0 0% 2 0% 0 0%
Version 3: (6 calls)
null getattr setattr lookup access readlink read
0 0% 6 100% 0 0% 0 0% 0 0% 0 0% 0 0%
write create mkdir symlink mknod remove rmdir
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
rename link readdir readdir+ fsstat fsinfo pathconf
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
commit
0 0%

The RPC statistics for connectionless (UDP) connections show a high number of
retransmissions. But what is the reason for these retransmissions? Are there
packets dropped on the client or the server side of the connection? Or are there
any problems on the network causing packets to get dropped? Or is the NFS
server responding too slow? Using the netstat -in, netstat -D, netstat -m,
netstat -p udp and tokstat tok0 commands on the NFS client does not show
any problem. We need to have a closer look at the NFS server.

On the NFS server we first check the RPC and NFS statistics provided by the
nfsstat -s command to see if there is any kind of problem (Example 7-44).

Example 7-44 Using nfsstat -s to gather RPC and NFS statistics on a NFS server
nfsstat -z >/dev/null; sleep 30; nfsstat -s

Server rpc:
Connection oriented
calls badcalls nullrecv badlen xdrcall dupchecks dupreqs
0 0 0 0 0 0 0
Connectionless
538 AIX 5L Performance Tools Handbook

calls badcalls nullrecv badlen xdrcall dupchecks dupreqs
1217 0 0 0 0 625 78

Server nfs:
calls badcalls public_v2 public_v3
1215 70 0 0
Version 2: (1217 calls)
null getattr setattr root lookup readlink read
0 0% 168 13% 83 6% 0 0% 94 7% 0 0% 328 26%
wrcache write create remove rename link symlink
0 0% 539 44% 1 0% 0 0% 0 0% 0 0% 0 0%
mkdir rmdir readdir statfs
2 0% 0 0% 2 0% 0 0%
Version 3: (0 calls)
null getattr setattr lookup access readlink read
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
write create mkdir symlink mknod remove rmdir
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
rename link readdir readdir+ fsstat fsinfo pathconf
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
commit
0 0%

The number of dupreqs indicates a slow response of the NFS server to requests
from the NFS clients. Please refer to Section 7.10, “nfsstat” on page 541 for more
details on the duplicate request cache. Using the vmstat command on the server
shows a high CPU load on the NFS server (Example 7-45).

Example 7-45 Output of vmstat 1 command on a busy NFS server
vmstat 1
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
 1 0 44384 10074 0 0 0 6 54 0 119 405 53 45 4 48 3
 7 0 44387 10118 0 0 0 0 0 0 487 822 483 98 2 0 0
 7 0 44389 10265 0 0 0 0 0 0 466 700 489 98 2 0 0
 7 0 44435 10252 0 0 0 0 0 0 465 757 467 99 1 0 0
 7 0 44436 10391 0 0 0 0 0 0 465 681 494 98 2 0 0
 7 0 44450 35942 0 0 0 0 0 0 482 1130 380 92 8 0 0
 9 0 44453 32254 0 0 0 0 0 0 712 4311 138 88 12 0 0
10 0 44452 28608 0 0 0 0 0 0 711 4313 102 84 16 0 0
 7 1 44463 26214 0 0 0 0 0 0 700 3166 201 87 13 0 0
 8 1 44463 22517 0 0 0 0 0 0 707 4334 82 87 13 0 0
 8 1 44465 18862 0 0 0 0 0 0 709 4318 137 86 14 0 0
 8 1 44466 15243 0 0 0 0 0 0 712 4265 242 86 14 0 0
 8 1 44464 11610 0 0 0 0 0 0 694 4240 242 86 14 0 0
 8 1 44496 29206 0 0 0 0 0 0 680 7466 262 78 22 0 0
 8 1 44510 26284 0 0 0 0 0 0 743 6829 434 82 18 0 0
 Chapter 7. Network performance tools 539

 8 0 44503 21455 0 0 0 0 0 0 659 10343 219 75 25 0 0
 9 0 44499 15372 0 0 0 0 0 0 632 12745 160 71 29 0 0
 8 0 44498 9153 0 0 0 0 0 0 600 13146 246 72 28 0 0
 8 0 44494 30954 0 0 0 0 0 0 581 9173 252 74 26 0 0
 8 0 44494 24350 0 0 0 0 0 0 612 13881 143 74 26 0 0

The first line of the vmstat output show the summary since system startup. The
NFS server process nfsd is not getting much CPU because it uses kernel level
threads and the CPU time accounted for system (kernel) usage is small
compared to the CPU time accounted for user level threads. However, currently
there are seven to ten threads on the run queue. The output of the ps command
shows some C compiler and linker processes are running, as well as other
processes using most of the processor time. The NFS server process nfsd does
not get enough processor time to answer each client request in time. One
possible solution to this problem is to run nfsd at a fixed priority, which is higher
than the normal floating priority of the user processes we currently compete with
get. This can be done setting the nfso option nfs_server_base_priority on the
NFS server as shown in Example 7-46.

Example 7-46 Changing NFS server base priority using the nfso command
nfso -o nfs_server_base_priority
nfs_server_base_priority= 0
nfso -o nfs_server_base_priority=55
nfso -o nfs_server_base_priority
nfs_server_base_priority= 55

Further the clients should enable the dynamic retransmit packet resizing using
the nfso -o nfs_dynamic_retrans=1 command to reduce the retransmission of
commands to the server in case the server is too loaded to answer in time.

The next step it to gather all statistics again to verify that the problem is solved,
and then see if the NFS clients performance accessing NFS mounted files is
back to normal. We show an nfsstat -cr example from a NFS client here
(Example 7-47).

Example 7-47 Output of nfsstat -cr on client after tuning the nfsd base priority
nfsstat -z >/dev/null; sleep 30; nfststat -cr

Client rpc:
Connection oriented

Note: Be very careful when increasing the nfsd base priority. An NFS sever
with heavy NFS load may assign processor time only to the nfsd threads and
no other process; a root login may not even get any processor time.
540 AIX 5L Performance Tools Handbook

calls badcalls badxids timeouts newcreds badverfs timers
0 0 0 0 0 0 0
nomem cantconn interrupts
0 0 0
Connectionless
calls badcalls retrans badxids timeouts newcreds badverfs
3564 0 0 0 0 0 0
timers nomem cantsend
0 0 0

There are no more retransmissions during the 30 seconds we monitored the NFS
client’s RPC statistics. More tests on the NFS clients show that the performance
for NFS file access improved.

7.10 nfsstat
The nfsstat command displays statistics about the Network File System (NFS)
and the Remote Procedure Call (RPC) interface to the kernel.

The nfsstat command is a monitoring tool. Its output data can be used for
problem determination and performance tuning.

nfsstat resides in /usr/sbin and is part of the bos.net.nfs.client fileset, which is
installable from the AIX base installation media.

7.10.1 Syntax
The syntax of the nfsstat command is as follows:

/usr/sbin/nfsstat [-c] [-s] [-n] [-r] [-z] [-m]

Flags
-c Displays client information. Only the client side NFS and RPC

information is printed. Allows the user to limit the report to client data
only. The nfsstat command provides information about the number of
RPC and NFS calls sent and rejected by the client. To print client NFS
or RPC information only, combine this flag with the -n or -r option.

-m Displays statistics for each NFS file system mounted along with the
server name and address, mount flags, current read and write sizes,
retransmission count, and the timers used for dynamic retransmission.
 Chapter 7. Network performance tools 541

-n Displays NFS information. Prints NFS information for both the client
and server. To print only the NFS client or server information, combine
this flag with the -c and -s options.

-r Displays RPC information.

-s Displays server information.

-z Reset statistics. This flag is for use by the root user only and can be
combined with any of the above flags to zero particular sets of statistics
after printing them.

7.10.2 Information on measurement and sampling
The nfsstat command reads out statistic information collected by the NFS client
and the NFS server kernel extensions. This read is done at execution time of the
nfststat command. The nfsstat -z command is used to reset the statistics. For
details on the data structures used, please refer to the system header files
/usr/include/nfs/nfs_fscntl.h and /usr/include/rpc/svc.h.

The nfsstat command displays server and client statistics for both RPC and
NFS. The flags -s (server), -c (client), -r (RPC), and -n (NFS) can be used to
display only a subset of all data. The RPC statistics output consists of two parts.
The first part shows the statistics for connection oriented Transmission Control
Protocol (TCP) RPC, the second part shows the statistics for connection less
User Datagram Protocol (UDP) RPC. The NFS statistics output is divided into
two parts. The first part shows the NFS version 2 statistics, and the second part
shows the NFS version 3 statistics. The RPC statistics are useful to detect
performance problems caused by time-outs and retransmissions. The NFS
statistics shows the usage count of file system operations, such as read(),
write(), and getattr(). These values show how the file system is used. This can
help to decide which tuning actions to perform to improve performance. The
nfsstat command can display information on each mounted file system.

7.10.3 Examples
In this section we take a closer look at each of the statistics nfsstat can provide.
These are:

� NFS server RPC statistics - the nfsstat -sr command.

� NFS server NFS statistics - the nfsstat -sn command.

� NFS client RPC statistics - the netstat -cr command.

� NFS client NFS statistics - the netstat -cn command.

� Statistics on mounted file systems - the nfsstat -m command
542 AIX 5L Performance Tools Handbook

NFS server RPC statistics
The output in Example 7-48 shows the servers RPC statistics created using the
nfsstat -sr command:

Example 7-48 Output of nfsstat -sr
nfsstat -sr

Server rpc:
Connection oriented
calls badcalls nullrecv badlen xdrcall dupchecks dupreqs
31197 0 0 0 0 10085 0
Connectionless
calls badcalls nullrecv badlen xdrcall dupchecks dupreqs
0 0 0 0 0 0 0

The output shows statistics for both connection oriented (TCP) and
connectionless (UDP) RPC. In this example, NFS used TCP as the transport
protocol. The fields in this output are:

calls Total number of RPC calls received from clients.

badcalls Total number of calls rejected by the RPC layer. The rejects
happen because of failed authentication. The value should be zero.

nullrecv Number of times a RPC call was not available when it was thought
to be received.

badlen Packets truncated or damaged (number of RPC calls with a length
shorter than a minimum-sized RPC call). The value should stay at
zero. An increasing value may be caused by network problems.

xdrcall Number of RPC calls whose header could not be External Data
Representation (XDR) decoded. The value should stay at zero. An
increasing value may be caused by network problems.

dupchecks Number of RPC calls that required a look up in the duplicate
request cache. Duplicate checks are performed for operations that
cannot be performed twice with the same result. If the first
command will succeed but the reply is lost, the client will retransmit
this request. This retransmitted command will fail. An example of
an operation that cannot be performed twice with the same result is
the rm command. We want duplicate requests like these to
succeed, so the duplicate cache is consulted, and, if it is a
duplicate request, the same (successful) result is returned on the
duplicate request as was generated on the initial request.
Following operations apply to duplicate checks; setattr(), write(),
create(), remove(), rename(), link(), symlink(), mkdir(), and rmdir().
Any instance of these is stored in the duplicate request cache.
The size of the duplicate request cache is controlled by the NFS
 Chapter 7. Network performance tools 543

options nfs_tcp_duplicate_cache_size for the TCP network
transport and nfs_udp_duplicate_cache_size for the UDP network
transport. Please refer to Section 7.9, “nfso” on page 527 for
information regarding the NFS options
nfs_tcp_duplicate_cache_size and nfs_udp_duplicate_cache_size.
These NFS options need to be increased on a high volume NFS
server. Calculating the NFS operations per second and using four
times this value is a good starting point. The nfsstat -z; sleep
60; nfsstat -sn command can be used to capture the number of
NFS operations per minute.

dupreqs Number of duplicate RPC calls found. This value gets increased
each time a duplicate RPC request, using the data from the
duplicate request cache, is found. An increasing value for dupreqs
indicates retransmissions of commands from clients. These
retransmissions can be caused by time-outs (the server did not
answer in time) or dropped packets on the client receiving side or
server sending side. Use the nfsstat -cr command to check for
time-outs on the NFS clients. Please refer to “NFS client RPC
statistics” on page 545 for more information on the nfsstat -cr
command. Use the netstat -in, netstat -s, netstat -v, and
netstat -m commands to check for dropped packets on both NFS
client and NFS server.

The nfsstat -zsr; sleep 60; nfsstat -sr can be used to get the server RPC
statistics for one minute and to calculate the per second values. Doing this on a
well performing NFS sever during normal operation and storing this data will help
to verify NFS server load in case this server shows later a NFS performance
problem. The cause for bad performance may be a temporary increased load
from one or more NFS clients.

NFS server NFS statistics
The NFS server NFS statistics can be used to determine the type of NFS
operation used most on the server. This helps to decide which tuning can be
performed to increase NFS server performance. For example, a high percentage
of write() calls may require disk and LVM tuning to increase write performance. A
high value of read() calls may require more RAM for file caching. There are no
rules of thumb, as tuning the NFS server depends on many factors such as:

� The amount of RAM installed

� The disk subsystem used

� The number of CPUs installed

� The CPU speed of the installed CPUs

� The number of NFS clients
544 AIX 5L Performance Tools Handbook

� The networks used

The following (Example 7-49) is the output of the nfsstat -sn command.

Example 7-49 Output of nfsstat -sn command
nfsstat -sn

Server nfs:
calls badcalls public_v2 public_v3
809766 0 0 0
Version 2: (0 calls)
null getattr setattr root lookup readlink read
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
wrcache write create remove rename link symlink
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
mkdir rmdir readdir statfs
0 0% 0 0% 0 0% 0 0%
Version 3: (809765 calls)
null getattr setattr lookup access readlink read
1 0% 133491 16% 558 0% 227155 28% 15397 1% 0 0% 56636 6%
write create mkdir symlink mknod remove rmdir
172511 21% 67425 8% 558 0% 0 0% 0 0% 67486 8% 558 0%
rename link readdir readdir+ fsstat fsinfo pathconf
0 0% 0 0% 1023 0% 560 0% 2 0% 0 0% 0 0%
commit
66404 8%

The above example shows a high usage of write. The reported 21 percent may
still be low enough not to worry about. However, the values for create (67425)
and remove (67486) are high and equal. This could be an indication of a NFS
client creating a high number of temporary files in the NFS file system. Creating
these temporary files in a local file system on the NFS client will reduce the load
on the NFS server. The NFS client performance (at least the performance of the
application creating the temporary files) will increase too.

NFS client RPC statistics
The output in Example 7-50 shows the clients RPC statistics created using the
command nfsstat -cr.

Example 7-50 Output of nfsstat -cr command
nfsstat -cr

Client rpc:
Connection oriented
calls badcalls badxids timeouts newcreds badverfs timers
1392748 0 0 0 0 0 0
nomem cantconn interrupts
 Chapter 7. Network performance tools 545

0 0 0
Connectionless
calls badcalls retrans badxids timeouts newcreds badverfs
188030 0 13 0 0 0 0
timers nomem cantsend
11 0 0

The fields in this output are:

calls Total number of RPC calls made to NFS.

badcalls Total number of calls rejected by the RPC layer. The value should
be zero.

retrans Number of times a call had to be retransmitted due to a time-out
while waiting for a reply from the server. This is applicable only to
RPC over connectionless (UDP) transports. The NFS client had to
retransmit requests to the NFS server because the NFS server
was not responding in time. This could be an indication of a
overloaded server, dropped packets on the server or dropped
packets on the client. Running the vmstat and iostat commands
on the server should show the load on the server. Please refer to
Section 3.11, “vmstat” on page 186 and Section 3.2, “iostat” on
page 67 for details on these commands. Use the netstat -in,
netstat -s, netstat -v and netstat -m commands on the server
and client to check for dropped packets, please refer to Section 7.8,
“netstat” on page 502 for more information.
The cause of dropped packets on the server could be an overrun of
the network adapter transmit queue or an UDP socket buffer
overflow. Tuning the NFS option nfs_socketsize using the nfso
command in case of socket buffer overflows is required. Please
refer to Section 7.9, “nfso” on page 527 for more information on the
nfso command.

badxid Number of times a reply from a server was received that did not
correspond to any outstanding call. This means the server is taking
too long to reply. The same as for the retrans value applies.
Please refer to the description for the retrans field.

timeouts Number of times a call timed-out while waiting for a reply from the
server. The same as for the retrans value applies. Please refer to
the description in for the retrans field.
Increasing the NFS mount option timeo by using the smitty
chnfsmnt command should reduce the NFS client requests that
time-out and are retransmitted. This will reduce the load on the
server because the number of retransmitted requests decreases.
546 AIX 5L Performance Tools Handbook

However, the performance improvement on the client is not very
high. If dynamic retransmission is used, the timeo value is only
used for the first retransmission time-out. Please refer to “Statistics
on mounted file systems” on page 548 for more details.

newcreds Number of times authentication information had to be refreshed.

badverfs Number of times a call failed due to a bad verifier in the response.

timers Number of times the calculated time-out value was greater than or
equal to the minimum specified time-out value for a call.

nomem Number of times a call failed due to a failure to allocate memory.

cantconn Number of times a call failed due to a failure to make a connection
to the server.

interrupts Number of times a call was interrupted by a signal before
completing.

cantsend Number of times a send failed due to a failure to make a
connection to the client.

NFS client NFS statistics
These statistics show the NFS clients usage for the various NFS calls. This
information can help in deciding the next steps to perform to increase
performance. Example 7-51 was taken on the NFS client at the same time the
NFS Server Example 7-49 on page 545 was produced.

Example 7-51 Output of nfsstat -cn command
nfsstat -cn

Client nfs:
calls badcalls clgets cltoomany
1584182 0 0 0
Version 2: (188425 calls)
null getattr setattr root lookup readlink read
0 0% 95392 50% 0 0% 0 0% 11740 6% 0 0% 81068 43%
wrcache write create remove rename link symlink
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
mkdir rmdir readdir statfs
0 0% 0 0% 223 0% 2 0%
Version 3: (1399306 calls)
null getattr setattr lookup access readlink read
0 0% 230820 16% 966 0% 393221 28% 26634 1% 0 0% 97536 6%
write create mkdir symlink mknod remove rmdir
296985 21% 116725 8% 966 0% 0 0% 0 0% 116786 8% 966 0%
rename link readdir readdir+ fsstat fsinfo pathconf
0 0% 0 0% 1771 0% 968 0% 4 0% 0 0% 0 0%
commit
114958 8%
 Chapter 7. Network performance tools 547

Please refer to “NFS server NFS statistics” on page 544 for more information and
how to use this statistic. The NFS clients nfsstat -cn example above shows the
same high file create and file remove count as Example 7-49 on page 545 taken
on the server side. There could be an application running, creating temporary
files in a NFS mounted file system. Moving these temporary files off of NFS to a
local file system will increase performance on this NFS client and reduce load on
the NFS server.

Statistics on mounted file systems
The nfsstat -m command displays statistics for each NFS mounted file system
on an NFS client system. This includes:

� Name of the file system

� Name of the server serving the file system

� Flags used to mount the file system

� Current timers used for dynamic retransmission

The following is an example of the nfsstat -m output (Example 7-52).

Example 7-52 Output of nfsstat -m command
nfsstat -m

/server1 from /server1:server1.itso.ibm.com
 Flags:
vers=2,proto=udp,auth=unix,hard,intr,dynamic,rsize=8192,wsize=8192,retrans=5
 Lookups: srtt=7 (17ms), dev=3 (15ms), cur=2 (40ms)
 Reads: srtt=47 (117ms), dev=4 (20ms), cur=7 (140ms)
 All: srtt=10 (25ms), dev=7 (35ms), cur=4 (80ms)

The above example shows one NFS file system mounted over /server1. The
NFS server serving this file system is server1.itso.ibm.com, and the directory
name on the server is /system1.

Flags The flags used to mount the NFS file system. Please refer to the
mount command in AIX 5L Version 5.1 Commands Reference,
SBOF-1877 for more information.

srtt Smoothed round-trip time.

dev Estimated deviation.

cur Current backed-off time-out value.
548 AIX 5L Performance Tools Handbook

The current timers used for dynamic retransmission are the numbers in
parentheses in the example output. These are the actual times in milliseconds.
Response times are shown for lookups, reads, writes, and a combination of all
operations (All). There was no write to this NFS file system, and so no respond
time values are shown for this function.

The dynamic retransmission can be turned off using the NFS option
nfs_dynamic_retrans. Please refer to Section 7.9, “nfso” on page 527 for more
information. The default in AIX is that dynamic retransmission is used.

7.11 no
The Network Options (no) command is used to set the network attributes. The no
command can either display the network parameters or change them in the
kernel. The no command can also set a parameter back to its default value.

The no command resides in /usr/sbin and is part of the bos.net.tcp.client fileset,
which is installable from the AIX installation media.

7.11.1 Syntax
The syntax of the no command is as follows:

no { -a | -d Attribute | -o Attribute [=NewValue] }

Flags
-a Prints a list of all configurable attributes and their

current values.

-d Attribute Sets Attribute back to its default value.

-o Attribute [=NewValue] Displays the value of Attribute if NewValue is not
specified, and otherwise sets Attribute to
NewValue.

Note: The no parameters are not saved, and so are lost on a reboot. To
ensure that the changes are permanent, add them to the /etc/rc.net file. In the
case of a Berkeley style network configuration, set the no attributes near to the
top of the /etc/rc.bsdnet file.

Note: When using the -o flag do not enter space characters before or after the
equal sign. If you do, the command will fail.
 Chapter 7. Network performance tools 549

7.11.2 Information on measurement and sampling

From the following list of attributes, any attribute that is labelled as being runtime
will change while the system is running. The following attributes can be changed
using the no command:

arpqsize Specifies the maximum number of packets to queue while
waiting for Address Resolution Protocol (ARP) responses.
The default value is 1 (one). This attribute is supported by
Ethernet, 802.3, Token Ring, and FDDI interfaces. The
arpqsize value is increased to a minimum value of 5 (five)
when path Maximum Transmission Unit (MTU) discovery is
enabled. The value will not automatically decrease if path
MTU discovery is subsequently disabled. arpqsize is a
runtime attribute.

arptab_bsize Specifies ARP table bucket size. The default value is seven.
arptab_bsiz is a loadtime attribute.

arptab_nb Specifies the number of ARP table buckets. The default
value is 25. arptab_nb is a loadtime attribute.

arpt_killc Specifies the time in minutes before a complete ARP entry
will be deleted. The default value is 20 minutes. arpt_killc
is a runtime attribute.

bcastping Allows response to Internet Control Management Protocol
(ICMP) echo packets to the broadcast address. A value of 0
(zero) disables it, while a value on 1 (one) enables it. The
default value is 0 (zero). bcastping is a runtime attribute.

clean_partial_conns

Specifies whether or not we are avoiding SYN attacks. If
non-zero, clean_partial_conns specifies how many partial
connections to randomly remove to make room for new
non-attack connections. This is a runtime attribute. The
default is 0 (zero), disabled.

delayack Delays ACKs for certain TCP packets and attempts to
piggyback them with the next packet sent instead. This will
only be performed for connections whose destination port is
specified in the list of the delayackports attribute. This can
be used to increase performance when communicating with

Note: The no command does not perform any range checking. If inappropriate
attribute values are set, the system could become inoperable.
550 AIX 5L Performance Tools Handbook

an HTTP server. This attribute is available only in AIX
Version 4.3.2 and later. The attribute can have one of four
values:

0 No delays; normal operation

1 Delay the ACK for the server's SYN

2 Delay the ACK for the server's FIN

3 Delay the ACKs for both SYN and FIN

delayackports Specifies the list of destination ports for which the operation
defined by the delayack port option will be performed. The
attribute takes a list of up to ten ports, separated by commas
and enclosed in curly braces. For example: no -o
delayackports={80,30080}. To clear the list, set the option to
{} This attribute is available only in AIX Version 4.3.2 and
beyond.

dgd_packets_lost Specifies how many consecutive packets must be lost before
Dead Gateway Detection decides that a gateway is down.
The default value is 3 (three). This attribute applies to AIX
Version 5.1 and later.

dgd_ping_time Specifies how many seconds should pass between pings of
a gateway by Active Dead Gateway Detection. The default
value is 5 (five). This attribute applies to AIX Version 5.1 and
later.

dgd_retry_time Specifies how many minutes a route's cost should remain
raised when it has been raised by Passive Dead Gateway
Detection. After this many minutes pass, the route's cost is
restored to its user-configured value. The default value is 5
(five). This attribute applies to AIX Version 5.1 and later.

directed_broadcast

Specifies whether or not to allow a directed broadcast to a
gateway. The value of 1 (one) allows packets to be directed
to a gateway to be broadcast on a network on the other side
of the gateway. directed_broadcast is a runtime attribute.

extendednetstats Enables more extensive statistics for network memory
services. The default for this attribute is 1 (one). However,
because these extra statistics cause a reduction in system
performance, extendednetstats is set to 0 (zero), for off, in
/etc/rc.net. If these statistics are desired, it is recommended
that the code in /etc/rc.net that sets extendednetstats to 0
(zero) be commented out. This attribute is available only in
AIX Version 4.3.2 and beyond.
 Chapter 7. Network performance tools 551

fasttimo Allows you to set the millisecond delay for the TCP fast
timeout timer. Its range is 50 to 200 milliseconds. Reducing
this timer value may improve performance with some
non-IBM systems. However, this may also result in slightly
increased system utilization.

icmp6_errmsg_rate

Specifies the upper limit for the number of ICMP v6 error
messages that can be sent per second. This prevents
excessive bandwidth from being used by ICMP v6 error
messages.

icmpaddressmask Specifies whether the system responds to an ICMP address
mask request. If the default value 0 (zero) is set, the network
silently ignores any ICMP address mask request that it
receives. icmpaddressmask is a runtime attribute.

ie5_old_multicast_mapping

Specifies IP multicast on token ring should be mapped to the
broadcast address rather than a functional address when
value 1 (one) is used. The default value is 0 (zero).
ie5_old_multicast_mapping is a runtime attribute.

ifsize Specifies the maximum number of network interface
structures per interface. The default value is 8 (eight). In AIX
Version 4.3.2 and above, if the system detects at boot time
that more adapters of a type are present than would be
allowed by the current value of ifsize, it will automatically
increase the value to support the number of adapters
present. ifsize is a loadtime attribute.

inet_stack_size Lets you configure the inet interrupt stack table size. This is
needed if you were running with an unoptimized debug
kernel and/or netinet. It must be set in rc.net; changing it on
the fly has no effect. This is different from the pin more stack
code because this is on interrupt. The pin more stack code is
not configurable. inet_stack_size is specified in KB. The
default is 16 KB.

ipforwarding Specifies whether the kernel should forward packets. The
default value of 0 (zero) prevents forwarding of IP packets
when they are not for the local system. A value of 1 (one)
enables forwarding. ipforwarding is a runtime attribute.

ipfragttl Specifies the time to live for IP fragments. The default value
is 60 half-seconds. ipfragttl is a runtime attribute.
552 AIX 5L Performance Tools Handbook

ipignoreredirects

Specifies whether or not to process redirects that are
received. The default value of 0 (zero) processes redirects
as usual. A value of 1 (one) ignores redirects.
ipignoreredirects is a runtime attribute.

ipqmaxlen Specifies the number of received packets that can be
queued on the IP protocol input queue. ipqmaxlen is a
loadtime attribute.

ipsendredirects Specifies whether the kernel should send redirect signals.
The default value of 1 (one) sends redirects. A value of 0
(zero) does not send redirects. ipsendredirects is a runtime
attribute.

ipsrcrouteforward

Specifies whether the system forwards source routed
packets. The default value of 1 (one) allows the forwarding of
source routed packets. A value of 0 (zero) causes all source
routed packets that are not at their destinations to be
discarded.

ipsrcrouterecv Specifies whether the system accepts source routed
packets. The default value of 0 (zero) causes all source
routed packets destined for this system to be discarded. A
value of 1 (one) allows source routed packets to be received.

ipsrcroutesend Specifies whether applications can send source routed
packets. The default value of 1 (one) allows source routed
packets to be sent. A value of 0 (zero) causes setsockopt to
return an error if an application attempts to set the source
routing option, and removes any source routing options from
outgoing packets.

ip6_defttl Specifies the default hop count that is used for IPv6 packets
if no other hop count is specified.

ip6forwarding Specifies whether the kernel should forward IPv6 packets.
The default value of 0 (zero) prevents forwarding of IPv6
packets when they are not for the local systems. A value of 1
(one) enables forwarding. This is a runtime attribute.

ip6_prune Specifies how often to check the IPv6 routing table for
expired routes. The default is 2 (two) seconds.

ip6srcrouteforward

Specifies whether the system forwards source-routed IPv6
packets. The default value of 1 (one) allows the forwarding of
source-routed packets. A value of 0 (zero) causes all
 Chapter 7. Network performance tools 553

source-routed packets that are not at their destinations to be
discarded.

main_if6 Specifies the interface to use for link local addresses. This is
only used by autoconf6 to set up initial routes.

main_site6 Specifies the interface to use for site local address routing.
This is only used if multi_homed is set to 3 (three).

maxnip6q Specifies the maximum number of IPv6 packet reassembly
queues. The default value is 20.

maxttl Specifies the time to live for RIP packets. The default is 255
seconds. maxttl is a runtime attribute.

multi_homed Specifies the level of multi-homed IPv6 host support.

0 Indicates the original functionality in AIX Version 4.3.

1 Indicates that link local addresses will be resolved by
querying each interface for the link local address.

2 Indicates that link local addresses will only be examined
for the interface defined by main_if6.

3 Indicates that link local addresses will only be examined
for the interface defined by main_if6 and site local
addresses will only be routed for the main_site6
interface.

nbc_limit Specifies the total maximum amount of memory that can be
used for the Network Buffer Cache (NBC). This attribute is in
number of kilobytes. The default value is derived from
thewall. When the cache grows to this limit, the least-used
cache objects are flushed out of cache to make room for the
new ones. This attribute only applies to AIX Version 4.3.2 or
later.

nbc_max_cache Specifies the maximum size of the cache object allowed in
the NBC without using the private segments. This parameter
is in number of bytes, the default being 131,072 bytes (128
KB). A data object bigger than this size is either cached in a
private segment or is not cached at all. This attribute only
applies to AIX Version 4.3.2 or later.

nbc_min_cache Specifies the minimum size of the cache object allowed in
the NBC. This attribute is in number of bytes, the default
being 1 (one) byte. A data object smaller than this size is not
put into the NBC. This attribute only applies to AIX Version
4.3.2 or later.
554 AIX 5L Performance Tools Handbook

nbc_pseg Specifies the maximum number of private segments that can
be created for the NBC. The default value is (0) zero. When
this option is set at non-zero, a data object between the size
specified in nbc_max_cache and the segment size (256 MB) is
cached in a private segment. A data object bigger than the
segment size is not cached at all. When the maximum
number of private segments exist, cache data in private
segments may be flushed for new cache data so that the
number of private segments do not exceed the limit. When
nbc_pseg is set to 0 (zero), all caches in private segments
are flushed. This attribute only applies to AIX Version 4.3.3
or later.

nbc_pseg_limit Specifies the maximum amount of cached data size allowed
in private segments in the NBC. This value is expressed in
kilobytes. The default value is half of the total real memory
size on the running system. Because data cached in private
segments are pinned by the NBC, nbc_pseg_limit controls
the amount of pinned memory used for the NBC in addition
to the network buffers in global segments. When the amount
of cached data reaches this limit, cache data in private
segments may be flushed for new cache data so that the
total pinned memory size does not exceed the limit. When
nbc_pseg_limit is set to (0) zero, all caches in private
segments are flushed. This attribute only applies to AIX
Version 4.3.3 or later.

ndpqsize Specifies the number of packets to hold waiting on
completion of a Neighbor Discovery Protocol (NDP) entry.
The default is 50 packets.

ndpt_down Specifies the time, in half seconds, to hold down a NDP
entry. The default value is 3 (three) units (1.5 seconds).

ndpt_keep Specifies the time, in half seconds, to keep a NDP entry. The
default value is 120 (60 seconds).

ndpt_mmaxtries Specifies the maximum number of Multicast NDP packets to
send. The default is value is 3 (three).

ndpt_probe Specifies the time, in half seconds, to delay before sending
their first NDP probe. The default value is 5 (five) units (2.5
seconds).

ndpt_reachable Specifies the time, in half seconds, to test if a NDP entry is
still valid. The default is 30 (15 seconds).
 Chapter 7. Network performance tools 555

ndpt_retrans Specifies the time, in half seconds, to wait before
retransmitting a NDP request. The default is 1 (a half
second).

ndpt_umaxtries Specifies the maximum number of Unicast NDP packets to
send. The default is value is 3 (three).

net_malloc_police

Specifies the size of the net_malloc/net_free trace buffer. If
the value of this variable is non-zero, all net_malloc and
net_free's will be traced in a kernel buffer and by system
trace hook HKWD_NET_MALLOC. Additional error checking
will also be enabled. This includes checks for freeing a free
buffer, alignment, and buffer overwrite. The default value is 0
(zero) (policing off). Values of net_malloc_police larger than
1024 will allocate that many items in the kernel buffer for
tracing. net_malloc_police is a runtime attribute.

nonlocsrcroute Tells the Internet Protocol that strictly source-routed packets
may be addressed to hosts outside the local network. A
default value of 0 (zero) disallows addressing to outside
hosts. The value of 1 (one) allows packets to be addressed
to outside hosts. Loosely source routed packets are not
affected by this attribute. nonlocsrcroute is a runtime
attribute.

passive_dgd Specifies whether Passive Dead Gateway Detection is
enabled. A value of 0 (zero) disables it, and a value of 1
(one) enables it for all gateways in use. The default value is 0
(zero). This attribute applies to AIX Version 5.1 and later.

pmtu_default_age Specifies the default amount of time (in minutes) before the
path MTU value for UDP paths is checked for a lower value.
A value of 0 (zero) allows no aging. The default value is 10
minutes. The pmtu_default_age value can be overridden by
UDP applications. pmtu_default_age is a runtime attribute.

pmtu_rediscover_interval

Specifies the default amount of time (in minutes) before the
path MTU value for UDP and TCP paths are checked for a
higher value. A value of 0 (zero) allows no path MTU
rediscovery. The default value is 30 minutes.
pmtu_rediscover_interval is a runtime attribute.

rfc1122addrchk Performs address validation as specified by RFC1122,
Requirements for Internet Hosts-Communication Layers.
The default value of 0 (zero) does not perform address
556 AIX 5L Performance Tools Handbook

validation. A value of 1 (one) performs address validation.
rfc1122addrchk is a runtime attribute.

rfc1323 Enables TCP enhancements as specified by RFC 1323, TCP
Extensions for High Performance. The default value of 0
(zero) disables the RFC enhancements on a system-wide
scale. A value of 1 (one) specifies that all TCP connections
will attempt to negotiate the RFC enhancements. The
socket’s application can override the default behavior on
individual TCP connections, using the setsockopt()
subroutine. rfc1323 is a runtime attribute. In AIX Version
4.3.3 and later versions, the rfc1323 network option can also
be set on a per interface basis through either the ifconfig or
chdev command.

rfc2414 Enables the increasing of TCP's initial window as described
in RFC 2414. The default value is 0 (zero). which disables it.
Setting this to 1 (one) enables it. When it is enabled, the
initial window will depend on the setting of the tunable
tcp_init_window. This feature was added in AIX Version 5.1.

route_expire Specifies whether the route expires. The route does not
expire when a value of 0 (zero) is selected . Negative values
are not allowed for this option. route_expire is a runtime
attribute. In AIX Version 4.3.3 and later versions, the default
value is 1 (one).

routerevalidate Specifies that each connection's cached route should be
revalidated each time a new route is added to the routing
table. This will ensure that applications that keep the same
connection open for long periods of time (for example NFS)
will use the correct route after routing table changes occur.
The default value of 0 (zero) does not revalidate the cached
routes. Enabling this option may cause some performance
degradation. routerevalidate is a runtime attribute.

rto_length Specifies the TCP Retransmit Time Out length value used in
calculating factors and the maximum retransmits allowable
used in TCP data segment retransmits. rto_length is the
total number of time segments. Default value is 13.
rto_length is a loadtime attribute.

rto_limit Specifies the TCP Retransmit Time out limit value used in
calculating factors and the maximum retransmits allowable
used in TCP data segment retransmits. rto_limit is the
number of time segments from rto_low to rto_high. The
default value is 7 (seven). rto_limit is a loadtime attribute.
 Chapter 7. Network performance tools 557

rto_low Specifies the TCP Retransmit Time Out low value used in
calculating factors and the maximum retransmits allowable
used in TCP data segment retransmits. rto_low is the low
factor. The default value is 1 (one). rto_low is a loadtime
attribute.

rto_high Specifies the TCP Retransmit Time out high value used in
calculating factors and the maximum retransmits allowable
used in TCP data segment retransmits. rto_high is the high
factor. The default value is 64. rto_high is a loadtime
attribute.

sb_max Specifies the maximum buffer size allowed for a socket. The
default is 65,536 bytes. sb_max is a runtime attribute.

sack Enables TCP Selective Acknowledgement (sack) as
described in RFC 2018. A value of 1 (one) will make all TCP
connections negotiate sack. The default is 0 (zero), which
disables the negotiation. The sack feature needs support
from the peer TCP. When receiving out of order segments,
sack from the receiver will inform the sender of data that has
been received so that the sender can retransmit only the
missing segments resulting in less unnecessarily
retransmitted segments. sack is useful for recovering fast
from multiple packet drops in a window of data. This option
was added in AIX 4.3.3.

send_file_duration

Specifies the cache validation duration for all the file objects
that system call send_file accessed in the NBC. This
attribute is in number of seconds; the default is 300 (5
minutes). A value of 0 (zero) means that the cache will be
validated for every access. This attribute only applies to AIX
Version 4.3.2 or later.

site6_index Specifies the maximum interface number for site local
routing.

sockthresh Specifies the maximum amount of network memory that can
be allocated for sockets. When the total amount of memory
allocated by the net_malloc subroutine reaches this
threshold, the socket and socketpair system calls fail with an
error of ENOBUFS. Incoming connection requests are
silently discarded. Existing sockets can continue to use
additional memory. The sockthresh attribute represents a
percentage of the thewall attribute, with possible values of 1
(one) to 100 and a default of 85. sockthresh is a runtime
attribute. This attribute only applies to AIX 4.3.1 or later.
558 AIX 5L Performance Tools Handbook

sodebug Specifies whether the newly created sockets will have
SO_DEBUG flag on.

somaxconn Specifies the maximum listen backlog. The default is 1024
bytes. somaxconn is a runtime attribute.

subnetsarelocal Determines if a packet address is on the local network. This
attribute is used by the in_localaddress subroutine. The
default value of 1 (one) specifies that addresses that match
the local network mask are local. If the value is 0 (zero), only
addresses matching the local subnetwork are local.
subnetsarelocal is a runtime attribute.

tcp_ecn Enables TCP level support for Explicit Congestion
Notification as described in RFC 2481. Default value is 0
(zero), which disables it. Enabling it, by setting the value to 1
(one), will make all connections negotiate ECN capability
with the peer. For this feature to work you need support from
the peer TCP, and also IP level ECN support from the routers
in the path. This feature was added in AIX Version 5.1.

tcp_ephemeral_low

Specifies the smallest port number to allocate for TCP
ephemeral ports. The default is 32768. This attribute is
available only in AIX Version 4.3.1 and beyond.

tcp_ephemeral_high

Specifies the largest port number to allocate for TCP
ephemeral ports. The default is 65535. This attribute is
available only in AIX Version 4.3.1 and beyond.

tcp_init_window This value is used only when rfc2414 is enabled (ignored
otherwise). If rfc2414 is enabled, and this value is 0 (zero),
then the initial window computation is done according to
rfc2414. If this value is non-zero, the initial (congestion)
window is initialized a number of maximum sized segments
equal to tcp_init_window. This feature was added in AIX
Version 5.1.

tcp_keepidle Specifies the length of time to keep the connection active,
measured in half seconds. The default is 14,400 half
seconds (7200 seconds or two hours). tcp_keepidle is a
runtime attribute.

tcp_keepinit Sets the initial timeout value for a TCP connection. This
value is defined in 1/2 second units, and defaults to 150,
which is 75 seconds. tcp_keepinit is a runtime attribute.
 Chapter 7. Network performance tools 559

tcp_keepintvl Specifies the interval, measured in half seconds, between
packets sent to validate the connection. The default is 150
half seconds (75 seconds). tcp_keepintvl is a runtime
attribute.

tcp_limited_transmit

Enables the feature that enhances TCP's loss recovery as
described in the RFC 3042. The default value is 1 (one),
which enables it. To disable it, set it to 0 (zero). This feature
was added in AIX Version 5.1.

tcp_mssdflt Default maximum segment size used in communicating with
remote networks. tcp_mssdflt is only used if path MTU
discovery is not enabled or path MTU discovery fails to
discover a path MTU. tcp_mssdflt is a runtime attribute. The
default value is 512. In AIX Version 4.3.3 and later versions,
the tcp_mssdflt network option can also be set on a per
interface basis via either the ifconfig or the chdev
command.

tcp_nagle_limit This is the Nagle Algorithm threshold in bytes that can be
used to disable Nagle. The default (65535 - the maximum
size of IP packet) is Nagle enabled. To disable Nagle, set this
value to 0 (zero) or 1 (one). TCP disables Nagle for data
segments larger than or equal to this threshold value.This
feature was added in AIX Version 4.3.3.

tcp_newreno Enables the modification to TCP's Fast Recovery algorithm
as described in RFC 2582. This fixes the limitation of TCP's
Fast Retransmit algorithm to recover quickly from dropped
packets when multiple packets in a window are dropped.
sack also achieves the same thing, but sack needs support
from both ends of the TCP connection; the tcp_newreno
modification is only on the sender side. This feature was
added in AIX Version 4.3.3. In AIX Version 5.1 the default
value is 1 (one), which enables it.

 tcp_ndebug Specifies the number of tcp_debug structures. The default is
100. tcp_ndebug is a runtime attribute.

tcp_pmtu_discover

Enables or disables path MTU discovery for TCP
applications. A value of 0 (zero) disables path MTU
discovery for TCP applications, while a value of 1 (one)
enables it. tcp_pmtu_discover is a runtime attribute. In AIX
Version 4.3.3 and later versions, the default value is 1 (one),
which enables it.
560 AIX 5L Performance Tools Handbook

tcp_recvspace Specifies the system default socket buffer size for receiving
data. This affects the window size used by TCP. Setting the
socket buffer size to 16 KB (16,384) improves performance
over Standard Ethernet and token-ring networks. The default
is a value of 4096; however, a value of 16,384 is set
automatically by the rc.net file or the rc.bsdnet file (if
Berkeley-style configuration is used).

Lower bandwidth networks, such as Serial Line Internet
Protocol (SLIP), or higher bandwidth networks, such as
Serial Optical Link, should have different optimum buffer
sizes. The optimum buffer size is the product of the media
bandwidth and the average round-trip time of a packet:

optimum_window=bandwidth * average_round_trip_time

In AIX Version 4.3.3 and later versions, the tcp_recvspace
network option can also be set on a per interface basis via
either the ifconfig or chdev command.

The tcp_recvspace attribute must specify a socket buffer
size less than or equal to the setting of the sb_max attribute.
tcp_recvspace is a runtime attribute, but for daemons started
by inetd, the following command needs to be executed:

stopsrc -s inetd ; startsrc -s inetd

tcp_sendspace Specifies the system default socket buffer size for sending
data. This affects the window size used by TCP. Setting the
socket buffer size to 16 KB (16,384) improves performance
over Standard Ethernet and Token-Ring networks. The
default is a value of 4096; however, a value of 16,384 is set
automatically by the rc.net file or the rc.bsdnet file (if
Berkeley-style configuration is used).

Lower bandwidth networks, such as Serial Line Internet
Protocol (SLIP), or higher bandwidth networks, such as
Serial Optical Link, should have different optimum buffer
sizes. The optimum buffer size is the product of the media
bandwidth and the average round-trip time of a packet:

optimum_window=bandwidth * average_round_trip_time

In AIX 4.3.3 and later versions, the tcp_sendspace network
option can also be set on a per interface basis via either the
ifconfig or chdev command.

The tcp_sendspace attribute must specify a socket buffer
size less than or equal to the setting of the sb_max attribute.
tcp_sendspace is a runtime attribute, but for daemons started
by inetd, the following command needs to be executed:
 Chapter 7. Network performance tools 561

stopsrc -s inetd ; startsrc -s inetd

tcp_timewait The tcp_timewait option is used to configure how long
connections are kept in the timewait state. It is given in 15
second intervals, and the default is 1 (one).

tcp_ttl Specifies the time to live for TCP packets. The default value
is 60 ticks (100 ticks per minute). tcp_ttl is a runtime
attribute.

thewall Specifies the maximum amount of memory, in kilobytes, that
is allocated to the memory pool. In AIX Version 4.3, the
default value is 1/8 of real memory or 131072 (128 MB),
which ever is smaller. In AIX Version 4.3.1, the default value
is 1/2 of real memory or 131072 (128 MB), whichever is
smaller. In AIX Version 4.3.2 and later, the default value
depends on whether you are running on a Common
Hardware Reference Platform (CHRP) machine or not. For
non-CHRP machines, the default value is 1/2 of real memory
or 262144 (256 MB), whichever is smaller. For CHRP
machines, the default value is 1/2 of real memory or
1048576 (1 GB). thewall is a runtime attribute.

udp_ephemeral_low

Specifies the smallest port number to allocate for UDP
ephemeral ports. The default is 32768. This attribute is
available only in AIX Version 4.3.1 and beyond.

udp_ephemeral_high

Specifies the largest port number to allocate for UDP
ephemeral ports. The default is 65535. This attribute is
available only in AIX Version 4.3.1 and beyond.

udp_pmtu_discover

Enables or disables path MTU discovery for UDP
applications. UDP applications must be specifically written to
utilize path MTU discovery. A value of 0 (zero) disables the
feature, while a value of 1 (one) enables it.
udp_pmtu_discover is a runtime attribute. In versions prior to
AIX Version 4.3.3, the default value is 0 (zero), which
disables it; in AIX Version 4.3.3 and later versions, the
default value is 1 (one), which enables it.

udp_recvspace Specifies the system default socket buffer size for receiving
UDP data. The default is 41600 bytes. The udp_recvspace
attribute must specify a socket buffer size less than or equal
to the setting of the sb_max attribute. udp_recvspace is a
runtime attribute.
562 AIX 5L Performance Tools Handbook

udp_sendspace Specifies the system default socket buffer size for sending
UDP data. The default is 9216 bytes. The udp_sendspace
attribute must specify a socket buffer size less than or equal
to the setting of the sb_max attribute. udp_sendspace is a
runtime attribute.

udp_ttl Specifies the time to live for UDP packets. The default is 30
seconds. udp_ttl is a runtime attribute.

udpcksum Allows UDP checksum to be enabled or disabled. A value of
0 (zero) disables it; while a value of 1 (one) enables it.
Default value is 1 (one). udpcksum is a runtime attribute.

use_isno Enables the use of Interface Specific Network Options. The
default value is 1 (one), which enables it. This attribute only
applies to AIX Version 4.3.3 and later versions.

Streams Tunable Attributes
The following streams tunable attributes can be changed by the no command.

lowthresh Specifies the maximum number of bytes that can be
allocated using the allocb call for the BPRI_LO priority. When
the total amount of memory allocated by the net_malloc call
reaches this threshold, the allocb request for the BPRI_LO
priority returns 0 (zero). The lowthresh attribute represents a
percentage of the thewall attribute, and you can set its value
from 0 (zero) to 100.

This is a runtime attribute and the default value is set to 90
(90 percent of thewall attribute).

medthresh Specifies the maximum number of bytes that can be
allocated using the allocb call for the BPRI_MED priority.
When the total amount of memory allocated by the
net_malloc call reaches this threshold, the allocb request for
the BPRI_MED priority returns 0 (zero). The medthresh
attribute represents a percentage of the thewall attribute
and you can set its value from 0 (zero) to 100.

Note: If you use the tcp_recvspace, tcp_sendspace, udp_recvspace, or
udp_sendspace attribute to specify a socket to a buffer size larger than the
sb_max attribute default, you must set the sb_max attribute to an equal or
greater value. Otherwise, the socket system call returns the ENOBUFS error
message when an application tries to create a socket.
 Chapter 7. Network performance tools 563

This is a runtime attribute, and the default value is 95 (95
percent of thewall attribute).

nstrpush Specifies the maximum number (should be at least 8 (eight))
of modules that you can push onto a single Stream.

This is a loadtime attribute and the default value is set to 8
(eight).

psebufcalls Specifies the maximum number of bufcalls to allocate by
streams. The stream subsystem allocates a certain number
of bufcall structures at initialization, so that when the allocb
call fails, the user can register their requests for the bufcall.
You are not allowed to lower this value until the system
reboots, at which time it returns to its default value.

This is a runtime attribute and the default value is 20.

pseintrstack Specifies the maximum size of the interrupt stack allowed by
streams while running in the offlevel. Sometimes, when a
process that is running other than INTBASE level enters into
a stream, it encounters a stack overflow problem because
the interrupt stack size is too small. Setting this attribute
properly reduces the chances of stack overflow problems.

This is a loadtime attribute and the default value is 0x3000.

psetimers Specifies the maximum number of timers to allocate by
streams. The stream subsystem allocates a certain number
of timer structures at initialization so that the streams driver
or module can register their timeout calls. You are not
allowed to lower this value until the system reboots, at which
time it returns to its default value.

This is a runtime attribute, and the default value is 20.

strctlsz Specifies the maximum number of bytes of information that a
single system call can pass to a stream to place into the
control part of a message (in an M_PROTO or M_PCPROTO
block). A putmsg call with a control part exceeding this size
will fail with ERANGE.

This is a runtime attribute, and the default value is 1024.

strmsgsz Specifies the maximum number of bytes of information that a
single system call can pass to a stream to place into the data
part of a message (in M_DATA blocks). Any write call
exceeding this size is broken into multiple messages. A
putmsg call with a data part exceeding this size will fail with
ERANGE.

This is a runtime attribute, and the default value is 1024.
564 AIX 5L Performance Tools Handbook

strthresh Specifies the maximum number of bytes streams are
normally allowed to allocate. When the threshold is passed,
strthresh prevents users without the appropriate privilege to
open streams, push modules, or write to streams devices,
and returns ENOSR. The threshold applies only to the output
side and does not affect data coming into the system (e.g.
console continues to work properly). A value of 0 (zero)
means that there is no threshold.

The strthresh attribute represents a percentage of the
thewall attribute and you can set its value from 0 (zero) to
100. The thewall attribute indicates the maximum number of
bytes that can be allocated by streams and sockets using the
net_malloc() call. When you change thewall attribute, the
threshold gets updated accordingly.

strturncnt Specifies the maximum number of requests handled by the
current running thread for module or elsewhere level streams
synchronization.The module level synchronization works in
such a way that only one thread can run in the module at any
time and all other threads which try to acquire the same
module will enqueue their requests and leave. After the
current running thread completes its work, it dequeues all the
previously enqueued requests one by one and invokes them.
If there are a large number of requests enqueued in the list,
then the current running thread has to serve everyone and
will always be busy serving others and starves itself. To
avoid this the current running thread serves only the
strturncnt number of threads, after that a separate kernel
thread wakes up and invokes all the pending requests. This
is a runtime attribute and the default value is set to 15.

7.11.3 Examples
The output from the no -a command displays all of the no parameters as seen in
Example 7-53 below.

Example 7-53 The no -a command displays the attribute and their values
no -a
 extendednetstats = 0
 thewall = 262092
 sockthresh = 85
 sb_max = 1048576
 somaxconn = 1024
 clean_partial_conns = 0
 net_malloc_police = 0
 rto_low = 1
 Chapter 7. Network performance tools 565

 rto_high = 64
 rto_limit = 7
 rto_length = 13
 inet_stack_size = 16
 arptab_bsiz = 7
 arptab_nb = 25
 tcp_ndebug = 100
 ifsize = 8
 arpqsize = 12
 ndpqsize = 50
 route_expire = 1
 send_file_duration = 300
 fasttimo = 200
 routerevalidate = 0
 dgd_packets_lost = 3

dgd_retry_time = 5
 dgd_ping_time = 5
 passive_dgd = 0
 sodebug = 0
 nbc_limit = 0
 nbc_max_cache = 131072
 nbc_min_cache = 1
 nbc_pseg = 0
 nbc_pseg_limit = 262092
 strmsgsz = 0
 strctlsz = 1024
 nstrpush = 8
 strthresh = 85
 psetimers = 20
 psebufcalls = 20
 strturncnt = 15
 pseintrstack = 12288
 lowthresh = 90
 medthresh = 95
 psecache = 1
 subnetsarelocal = 1
 maxttl = 255
 ipfragttl = 60
 ipsendredirects = 1

ipforwarding = 0
 udp_ttl = 30
 tcp_ttl = 60
 arpt_killc = 20
 tcp_sendspace = 16384
 tcp_recvspace = 16384
 udp_sendspace = 9216
 udp_recvspace = 42080
 tcp_bad_port_limit = 0
 udp_bad_port_limit = 0
566 AIX 5L Performance Tools Handbook

 rfc1122addrchk = 0
 nonlocsrcroute = 0
 tcp_keepintvl = 150
 tcp_keepidle = 14400
 bcastping = 0
 udpcksum = 1
 tcp_mssdflt = 512
 icmpaddressmask = 0
 tcp_keepinit = 150
ie5_old_multicast_mapping = 0
 rfc1323 = 0
 pmtu_default_age = 10
 pmtu_rediscover_interval = 30
 udp_pmtu_discover = 1

tcp_pmtu_discover = 1
 ipqmaxlen = 100
 directed_broadcast = 0
 ipignoreredirects = 0
 ipsrcroutesend = 1
 ipsrcrouterecv = 0
 ipsrcrouteforward = 1
 ip6srcrouteforward = 1
 ip6_defttl = 64
 ndpt_keep = 120
 ndpt_reachable = 30
 ndpt_retrans = 1
 ndpt_probe = 5
 ndpt_down = 3
 ndp_umaxtries = 3
 ndp_mmaxtries = 3
 ip6_prune = 2
 ip6forwarding = 0
 multi_homed = 1
 main_if6 = 0
 main_site6 = 0
 site6_index = 0
 maxnip6q = 20
 llsleep_timeout = 3

llsleep_timeout = 3
 tcp_timewait = 1
 tcp_ephemeral_low = 32768
 tcp_ephemeral_high = 65535
 udp_ephemeral_low = 32768
 udp_ephemeral_high = 65535
 delayack = 0
 delayackports = {}
 sack = 0
 use_isno = 1
 tcp_newreno = 1
 Chapter 7. Network performance tools 567

 tcp_nagle_limit = 65535
 rfc2414 = 0
 tcp_init_window = 0
 tcp_ecn = 0
 tcp_limited_transmit = 1
 icmp6_errmsg_rate = 10
 tcp_maxburst = 0

To change a network attribute with the no command, the following command can
be used (Example 7-54).

Example 7-54 Using the no command to change network parameters
no -o tcp_recvspace
tcp_recvspace = 16384
no -o tcp_recvspace=32768
no -o tcp_recvspace
tcp_recvspace = 32768

Firstly the value of tcp_recvspace is displayed as being 16386 bytes (16 KB).
The value is then increased to 32768 bytes (32 KB). Notice that there is no space
either side of the equal sign in the command to set the value of tcp_recvspace. If
a space is inserted, the command will fail with the following error message
(Example 7-55).

Example 7-55 Error message from the no command
no -o tcp_sendspace = 16384
tcp_sendspace = 16384
Some parameters were not parsed.

usage:no -o option[=newvalue] [-o ...]
 no -d option
 no -a

Table 7-5 shows a list of adapter types and the suggested minimum buffer and
MTU sizes.

Table 7-5 Suggested minimum buffer and MTU sizes for adapters

Device Speed MTU tcp_sendspace tcp_recvspace sb_max rfc1323

Ethernet 10 Mbit 1500 16384 16384 32768 0

Ethernet 100 Mbit 1500 16384 16384 32768 0

Ethernet Gigabit 1500 65535 16384 131072 0
568 AIX 5L Performance Tools Handbook

The following example shows the use of the no command to resolve network
problems. The following error was received when running the ifconfig
command:

PROBLEM: ifconfig -a --> there is not enough buffer space for the
requested operation.

Determine the amount of memory in the system by using the lsattr command
as shown below:

lsattr -El sys0 | grep realmem --> 16777213

The amount of memory in the system must be determined because the thewall
parameter should be set to a value of half of the size of real memory or 1 GB,
whichever is the smaller. This applies to AIX 4.3.2 and later.

The value of the maxmbuf kernel parameter is also used to limit the amount of
memory to be used by the communications subsystem. Use the following
command to determine what the value of maxmbuf is (Example 7-56).

Example 7-56 Determining the value of maxmbuf
lsattr -El sys0 -a maxmbuf
maxmbuf 0 Maximum Kbytes of real memory allowed for MBUFS True

Ethernet Gigabit 9000 131072 65535 262144 0

Ethernet Gigabit 9000 131072 92160 262144 1

ATM 155 Mbit 1500 16384 16384 131072 0

ATM 155 Mbit 9180 65535 65535a 131072 0

ATM 155 Mbit 65527 655360 655360b 1310720 1

FDDI 100 Mbit 4352 45056 45056 90012 0

a. Certain values of tcp_recvspace and tcp_sendspace will result in poor performance on ATM
adapters. For example, an MTU size of 9180, a tcp_sendspace set to 16384, and a tcp_recvspace
set to 32768 or 65535 results in poor performance. Setting the tcp_sendspace and tcp_recvspace
both to 65535 results in a good performance. For best performance in this case, ensure that
tcp_sendspace is equal to or larger than tcp_recvspace.
b. The TCP window is only a 16 bit size. With ATM adapters with large MTU sizes of 32 KB or 64
KB, streaming may be poor. To overcome this 16 bit limit, set the value of rfc1323 to 1 (one).

Device Speed MTU tcp_sendspace tcp_recvspace sb_max rfc1323
 Chapter 7. Network performance tools 569

It can be seen that the value of maxmbuf is set to 0 (zero). This implies that the
value of thewall determines the maximum amount of memory to be used by the
communication subsystem (Example 7-57).

Example 7-57 Obtaining the buffer values using the no command

no -o thewall
thewall = 1048576
no -o sb_max
sb_max = 1048576
no -o tcp_sendspace
tcp_sendspace = 131072
no -o tcp_recvspace
tcp_recvspace = 65536
no -o udp_sendspace
udp_sendspace = 65536
no -o udp_recvspace
udp_recvspace = 2621440
no -o rfc1323
rfc1323=1

From the error message, it appears that not enough buffers have been allocated
to the communications subsystem. In Example 7-57, the no command is used to
determine the values of some of the network buffers.

Ensure that the following relationship is adhered to:

The sb_max buffer value must be greater than or equal to the sum of
tcp_sendspace and tcp_recvspace.

sb_max >= (tcp_sendspace + tcp_recvspace)

1048576 >(131072 + 65536 = 196608)

The above values for tcp_sendspace and tcp_recvspace are within the limit.

The udp_sendspace and udp_recvspace need to be checked as well. In the same
way, the sum of udp_sendspace and udp_recvspace must be less than or equal to
sb_max.

sb_max >= (udp_sendspace + udp_recvspace)

1048576 < (65536 + 2621440 = 2686976)

Here it can be seen that the sum of udp_sendspace and udp_revcspace is greater
than sb_max.
570 AIX 5L Performance Tools Handbook

The size of udp_recvspace should be changed so that the sum of udp_sendspace
and udp_recvspace is less than or equal to sb_max. This example emphasizes the
fact that the no command does not perform any checking. In this case the
udp_recvspace parameter was set too high.

7.12 tcpdump
The tcpdump command prints out the headers of packets captured on a network
interface. The tcpdump command is a very powerful network packet trace tool
that allows a wide range of packet filtering criteria. These criteria can range from
simple trace-all options to detailed byte and bit level evaluations in packet
headers and data parts.

tcpdump resides in /usr/sbin and is part of the bos.net.tcp.server fileset, which is
installable from the AIX base installation media.

For more detailed information on the TCP/IP protocols’, please review:

� Section 1.4, “Network performance” on page 29

� AIX 5L Version 5.1 Performance Management Guide

� AIX 5L Version 5.1 System Management Guide: Communications and
Networks

� TCP/IP Tutorial and Technical Overview, GG24-3376

� RS/6000 SP System Performance Tuning Update, SG24-5340

� http://www.rs6000.ibm.com/support/sp/perf

� Appropriate Request For Comment (RFC) at http://www.rfc-editor.org/

There are also excellent books available on the subject but a good starting point
is RFC 1180 A TCP/IP Tutorial.

7.12.1 Syntax
The syntax of the tcpdump command is as follows:

tcpdump [-defIlnNOpqStvx] [-c Count] [-i Interface] [-F File]
[-r File] [-w File] [-s Snaplen] [Expression]

Flags
-c Count Exits after receiving Count packets.

-d Dumps the compiled packet-matching code to standard
output, then stops.
 Chapter 7. Network performance tools 571

-e Prints the link-level header on each dump line. If the -e
flag is specified, the link level header is printed out. On
Ethernet and Token-Ring, the source and destination
addresses, protocol, and packet length are printed.

-f Prints foreign internet addresses numerically rather than
symbolically.

-F File Uses File as input for the filter expression. The -F flag
ignores any additional expression given on the command
line.

-i Interface Listens on Interface. If unspecified, the tcpdump
command searches the system interface list for the lowest
numbered and configured interface that is up. This search
excludes loopback interfaces. For supported interfaces
refer to “Information on measurement and sampling” on
page 573.

-I (Capital i) Specifies immediate packet capture mode. The
-l flag does not wait for the buffer to fill up.

-l (Lowercase L) Buffers the standard out (stdout) line. This
flag is useful if you want to see the data while capturing it.

-n Omits conversion of addresses to names.

-N Omits printing domain name qualification of host names.
For example, the -N flag prints dude instead of
dude.itso.ibm.com.

-O Omits running the packet-matching code optimizer. This is
useful only if you suspect a bug in the optimizer.

-p Specifies that the interface not run in promiscuous mode.

-q Quiets output. The -q flag prints less protocol information
so output lines are shorter.

-r File Reads packets from File (which is created with the -w
option). Standard input is used if File is "-".

-s Snaplen Captures Snaplen bytes of data from each packet rather
than the default of 80. Eighty bytes is adequate for IP,
ICMP, TCP, and UDP but may truncate protocol
information from name server and NFS packets (see
below). Packets truncated because of a limited snapshot
are indicated in the output with [|proto], where proto is
the name of the protocol level at which the truncation has
occurred.
572 AIX 5L Performance Tools Handbook

-S Prints absolute rather than relative TCP sequence
numbers.

-t Omits the printing of a timestamp on each dump line.

-tt Prints an unformatted timestamp on each dump line.

-v Specifies slightly more verbose output. For example, the
time to live and the type of service information in an IP
packet is printed.

-w File Writes the raw packets to File rather than parsing and
printing them out. They can later be printed with the -r
flag. Standard output is used if File is "-".

-x Prints each packet (minus its link level header) in hex.
The smaller of the entire packet or Snaplen bytes will be
printed.

Parameters
Interface Network interface to listens for packets on.

File The File parameter specifies the name of the file to use
as input or output depending on optional flag specified.

Snaplen The Snaplen parameters specifies the number of bytes of
data from each packet.

Expression The Expression parameter consists of one or more
primitives.

7.12.2 Information on measurement and sampling
The output of the tcpdump command is protocol dependent. The different
protocols that can be monitored are2:

� Ethernet frames (ether)

� IP (ip)

� ARP and RARP (arp and rarp)

� TCP (tcp)

� UDP (udp)

2 These are the protocol formats that tcpdump can interpret and analyze. Because tcpdump can trace the IP protocol, it can
trace other protocol types as well, but it is left to the user to interpret the packet header. In some cases tcpdump can also
interpret the application level packet headers, such as for Domain Name Services (DNS).
 Chapter 7. Network performance tools 573

The tcpdump command will only monitor one interface at a time rather than
several as the iptrace command can. Only Ethernet V2 (en) and Ethernet 802.3
(et), Token-Ring (tr), FDDI (fddi), ATM (at), and loopback (lo) interfaces are
supported to be monitored. For other interfaces the iptrace command can be
used (Section 7.7, “iptrace” on page 494).

Access to monitor network traffic is controlled by the permissions on /dev/bpf#
special files because tcpdump uses the Berkeley Packet Filter (BPF) packet
capture library (see the Chapter 4. “Packet Capture Library Subroutines” in AIX
5L Version 5.1 Technical Reference: Communications, Volume 2 for further
information about the BPF) or http://www.tcpdump.org3.

You can specify the direction of the communication that is monitored, such as
simplex in one or the other direction or duplex for both directions. It is also
possible to monitor broadcast and multicast packets.

By default, all output lines are preceded by a timestamp. The timestamp is the
current clock time in the form:

hh:mm:ss.frac

The timestamps are as accurate as the kernels clock. The timestamp reflects the
time the kernel first saw the packet. No attempt is made to account for the time
lag between when the network (interface) device driver removed the packet from
the wire and when the kernel serviced the new packet interrupt. Timestamping
can be turned off by specifying the -t flag.

Expressions
The Expression parameter consists of one or more primitives. Primitives usually
consist of an id (name or number) preceded by one or more qualifiers. There are
three types of qualifier:

type Specifies what kind of device the id name or number
refers to. Possible types are host, net, and port.

dir Specifies a particular transfer direction to or from id.
Possible directions are src, dst, src or dst, and src and
dst.

proto Restricts the match to a particular protocol. Possible
proto qualifiers are: ether, ip, arp, rarp, tcp, and udp. If
there is no proto qualifier, all protocols consistent with the
type are assumed.

3 Note that the publicly available tcpdump command differs from the supported tcpdump command supplied with AIX.
574 AIX 5L Performance Tools Handbook

In addition to the above, there are some special primitive keywords that do not
follow the pattern; broadcast, multicast, less, greater and arithmetic
expressions. Note that broadcast and multicast are only supported for the
ether protocol type.

Device types and transfer direction primitives
Primitives allowed are the following:

dst host Host True if the value of the IP (Internet Protocol) destination
field of the packet is the same as the value of the Host
variable, which may be either an address or a name.

src host Host True if the value of the IP source field of the packet is the
same as the value of the Host variable.

host Host True if the value of either the IP source or destination of
the packet is the same as the value of the Host variable.
Any of the above host expressions can be preceded with
the keywords ip, arp, or rarp as in:

ip host Host

If the Host variable is a name with multiple IP addresses,
each address will be checked for a match.

dst net Net True if the value of the IP destination address of the
packet has a network number of Net.

src net Net True if the value of the IP source address of the packet
has a network number of Net.

net Net True if the value of either the IP source or destination
address of the packet has a network number of Net.

dst port Port True if the packet is TCP/IP (Transmission Control
Protocol/Internet Protocol) or IP/UDP (Internet
Protocol/User Datagram Protocol) and has a destination
port value of Port. The port can be a number or a name
used in /etc/services. If a name is used, both the port
number and protocol are checked. If a number or
ambiguous name is used, only the port number is
checked.

src port Port True if the value of the Port variable is the same as the
value of the source port.

port Port True if the value of either the source or the destination
port of the packet is Port. Any of the above port
expressions can be preceded by the keywords tcp or udp
as in:

tcp src port port
 Chapter 7. Network performance tools 575

which matches only TCP packets.

less Length True if the packet has a length less than or equal to
Length.

greater Length True if the packet has a length greater than or equal to the
Length variable.

ip proto Protocol True if the packet is an IP packet of protocol type
Protocol. Protocol can be a number or one of the names
icmp, udp, or tcp.

Note: The identifiers tcp, udp, and icmp are also keywords
and must be escaped via \ (backslash). Example 'ip
proto \tcp'

ip broadcast True if the packet is an IP broadcast packet. It checks for
the all-zeroes and all-ones broadcast conventions, and
looks up the local subnet mask.

ip multicast True if the packet is an IP multicast packet.

proto Protocol True if the packet is of type Protocol. Protocol can be a
number or a name like ip, arp, or rarp.

Note: These identifiers are also keywords and must be
escaped via \ (backslash). Example 'proto \tcp'.

Abbreviations
The following protocol abbreviations can be used:

ip, arp, rarp Abbreviations for proto p where p is one of the above
protocols.

tcp, udp, icmp Abbreviations for ip proto p where p is one of the above
protocols.

Arithmetic expressions
The following relational expressions can be used:

expr relop expr The relop is one of the following relational operators:

> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
= Equal to
!= Not equal to (exclamation point and equal sign)

The expr is an arithmetic expression composed of integer
constants4 or binary operators:

4 Expressed in standard C syntax.
576 AIX 5L Performance Tools Handbook

+ Plus sign
- Minus sign
* Multiplication sign (asterisk)
/ Divison sign (slash)
& Logical AND sign (ampersand)
| Logical OR sign (pipe)

The following operators can also be used in expressions:

len Length operator
[] Packet data accessors

Combining primitives
More complex filter expressions are built up by using the words and, or, and not
(!) to combine primitives:

! Negation
not Negation
and Concatenation
or Alternation

Negation has highest precedence. Alternation and concatenation have equal
precedence and associate left to right. If an identifier is given without a keyword,
the most recent keyword is assumed. Primitives may be combined, but must be
escaped so that they are not interpreted by the shell:

\(a = b \)
“a = b”
‘a = b‘

Only the last example above will specify to the shell that the string between the
citation marks (‘) should not be parsed at all. The following show how to combine
primitives and use expressions to access data (in the 14th byte in the tcp header,
bits 7 and 8) in a packet:

‘'(tcp[13] & 6 != 0) or (tcp[13] & 7 != 0)'

Accessing data inside a packet
To access data inside the packet, use the following syntax:

proto [expr : size]

proto is one of the keywords ip, arp, rarp, tcp, or icmp, and indicates the
protocol layer for the index operation. The byte offset relative to the indicated
protocol layer is given by expr. The indicator size is optional and indicates the
number of bytes in the field of interest. It can be either one, two, or four (1, 2, or
4), and defaults to one byte. The length operator, indicated by the keyword len,
gives the length of the packet.
 Chapter 7. Network performance tools 577

Note that addressing starts with zero (0) so, for example, byte 14 in a TCP
packet header would be written as tcp[13]. After the byte position the bit offset
can be specified by using & #, where # represents bit zero (0) to seven (7). When
using bit expressions the comparison is binary (zero or one). The following
reminder shows the bits and their corresponding value if the bit is on (1):

bit : 0 1 2 3 4 5 6 7
value : 1 2 4 8 16 32 64 128

It is possible to use the bc command to convert between different bases as
shown in Example 7-58.

Example 7-58 Using the bc command to perform base conversion of numbers
print "obase=2\n90"|bc
1011001
print "obase=16\n90"|bc
5A

In the first example above the value 90 is converted to binary format and in the
second example the value 90 is converted to hexadecimal format.

TCP/IP protocol and services tables
Table 7-6 is an extraction from the /etc/protocols file that shows some interesting
protocol types and their numeric value.

Table 7-6 grep -v ^# /etc/protocols

Table 7-7 is an extraction from the /etc/services file that shows some interesting
services, ports, and the protocol used on that port.

Table 7-7 Selection from /etc/services

Symbolic
name

Numeric
id

Protocol Description

ip 0 IP Dummy for the Internet Protocol

icmp 1 ICMP Internet control message protocol

igmp 2 IGMP Internet group multicast protocol

tcp 6 TCP Transmission control protocol

udp 17 UDP User datagram protocol

Symbolic
name

Port Protocol Description

echo 7 tcp Used by the ping command

echo 7 udp Used by the ping command
578 AIX 5L Performance Tools Handbook

ICMP message type table
Table 7-8 lists some Internet Control Message Protocol (ICMP) message types.
The table includes some of the more interesting message types. For a detailed
description of the message type and its specific ICMP packet format please refer
to the appropriate Request For Comment (RFC).

Table 7-8 Some ICMP message types

ftp-data 20 tcp Used by the ftp command

ftp 21 tcp Used by the ftp command

telnet 23 tcp Used by the telnet command

smtp 25 tcp Used by the mail commands

domain 53 udp Used by nameserver commands

pop 109 tcp Used by postoffice mail commands

pop3 110 tcp Used by postoffice3 mail commands

exec 512 tcp Used by remote commands

login 513 tcp Used by remote commands

shell 514 tcp Used by remote commands

printer 515 tcp Used by print spooler commands

route 520 udp Used by router (routed) commands

Symbolic Numeric id RFC

Echo Reply 0 RFC792

Destination Unreachable 3 RFC792

Source Quench 4 RFC792

Redirect 5 RFC792

Echo 8 RFC792

Router Advertisement 9 RFC1256

Router Solicitation 10 RFC1256

Time Exceeded 11 RFC792

Symbolic
name

Port Protocol Description
 Chapter 7. Network performance tools 579

Packet header formats
The following are schematic layouts for the Token-Ring, Ethernet (V2 and 802.3),
IP, TCP, and UDP header formats. For a more thorough explanation of the
TCP/IP protocol headers, please review the appropriate Request For Comment
(RFC) and the “TCP/IP Protocols chapter” in the AIX 5L Version 5.1 System
Management Guide: Communications and Networks.

Token-Ring frame header
In Example 7-59 below, the scale is in bytes (B).

Example 7-59 Token-Ring frame header

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1...
+-+
|S|A|F|DST |SRC |RI (0-30)
|D|C|C| | |
+-+
SD Starting delimiter
AC Access control
FC Frame control
DST Destination host address
SRC Source host address
RI Routing information. Can have variable length.

Ethernet V2 frame header
In Example 7-60 below, the scale is in bytes (B).

Example 7-60 Ethernet V2 frame header

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|PA |DST |SRC |L |
| | | |N |
+-+
PA Preamble

Parameter Problem 12 RFC792

Timestamp 13 RFC792

Timestamp Reply 14 RFC792

Information Request 15 RFC792

Information Reply 16 RFC792

Traceroute 30 RFC1393

Symbolic Numeric id RFC
580 AIX 5L Performance Tools Handbook

DST Destination host address
SRC Source host address
LN Length of client protocol data

Ethernet 802.3 frame header
In Example 7-61 below, the scale is in bytes (B).

Example 7-61 Ethernet 802.3 frame header

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|PA |S|DST |SRC |T |
| |F| | |Y |
+-+
PA Preamble
SF Start frame delimiter
DST Destination host address
SRC Source host address
TY Type of client protocol

IP V4 (RFC 791) packet header
Example 7-62 below illustrates the IP V4 header according to RFC 791. Please
refer to this RFC (http://www.rfc-editor.org/) for detailed explanation. The
struct ip can be found in /usr/include/netinet/ip.h. The first line shows the byte
index, the second line shows the bit index. On the right hand side of the header
layout is the last byte for each row.

Example 7-62 IP V4 (RFC 791) packet header

0 1 2 3
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

+-+
|Version| IHL |Type of Service| Total Length |
+-+4
| Identification |Flags| Fragment Offset |
+-+8
| Time to Live | Protocol | Header Checksum |
+-+12
| Source Address |
+-+16
| Destination Address |
+-+20
| Options | Padding |
+-+24
 Chapter 7. Network performance tools 581

TCP (RFC 793) packet header
Example 7-63 illustrates the TCP header according to RFC 793. Please refer to
this RFC (http://www.rfc-editor.org/) for a detailed explanation. The struct
tcphdr can be found in /usr/include/netinet/tcp.h. The first line shows the byte
index, and the second line shows the bit index. On the right hand side of the
header layout is the last byte for each row.

Example 7-63 TCP (RFC 793) packet header

0 1 2 3
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

+-+
| Source Port | Destination Port |
+-+4
| Sequence Number |
+-+8
| Acknowledgment Number |
+-+12
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+16								
Checksum	Urgent Pointer							
+-+20								
Options	Padding							
+-+24								
data								
+-+28

UDP (RFC 768) packet header
Example 7-64 illustrates the UDP header according to RFC 768 (please refer to
this RFC (http://www.rfc-editor.org/) for a detailed explanation). The struct
udphdr can be found in /usr/include/netinet/udp.h. The first line shows the byte
index, and the second line shows the bit index. On the right hand side of the
header layout is the last byte for each row.

Example 7-64 UDP (RFC 768) packet header

0 1 2 3
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

+-+
| Source Port | Destination Port |
+-+2
| Length | Checksum |
+-+4
582 AIX 5L Performance Tools Handbook

ICMP (RFC 792) packet header
Example 7-65 illustrates the basic5 ICMP header according to RFC 792 (refer to
this RFC (http://www.rfc-editor.org/) for a detailed explanation). The struct
icmp6_hdr can be found in /usr/include/netinet/icmp6.h. The first line shows the
byte index, and the second line shows the bit index. On the right hand side of the
header layout is the last byte for each row. Refer to Table 7-8 on page 579 for
more information on the type field.

Example 7-65 ICMP (RFC 792) packet header

0 1 2 3
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

+-+
| Type | Code | Checksum |
+-+4
| unused |
+-+8
| Internet Header + 64 bits of Original Data Datagram |
+-+12

7.12.3 Examples
Because network tracing can produce large amounts of data, it is important to
limit the network trace, either by scope (what to trace) or amount (how much to
trace)6. The tcpdump command offers many options to reduce the scope of the
network trace, unlike the iptrace command (see Section 7.7, “iptrace” on
page 494). The tcpdump can also display readable reports as well as saving
binary output, for formatting later, from the network trace data.

A good way to use tcpdump is to save the network trace to a file with the -w flag
and then analyze the trace by using different filtering options together with the -r
flag. The following example show how to run a basic tcpdump network trace
saving the output in a file with the -w flag (on a Ethernet network interface):

tcpdump -w /tmp/tcpdump.en0 -i en0

To limit the number of traced packets, use the -c flag and specify the number,
such as in the following example that traces the first 128 packets (on a
Token-Ring network interface):

tcpdump -c 128 -w /tmp/tcpdump.tr0 -i tr0

To read the file produced by a previous tcpdump command above, use the -r flag
as shown below:

5 Various ICMP messages use different packet types.
6 Both number of packets by using filtering options and packet sizes (copied from the kernel space to the tcpdump user
space).
 Chapter 7. Network performance tools 583

tcpdump -Snr /tmp/tcpdump.en0

Note that when reading the tcpdump trace we usually want to include both the
timestamp and the absolute sequence numbers, and use IP addresses and not
host and domain names. Note that tcpdump wraps relative sequence numbers
(and sometimes it shows the absolute anyway), which can make the analysis
more difficult. By displaying only absolute sequence numbers, this problem will
not occur.

How to use tcpdump with ipreport
The -w - flags to tcpdump specifies that it should write raw packets to stdout
instead of parsing and printing them out. By specifying - as the input file to
ipreport, it will read from stdin. The -rs flags tells ipreport to start lines with
protocol indicator strings and to be aware of RPC packets. Example 7-66 below
shows how this can be done.

Example 7-66 Using ipreport with tcpdump
tcpdump -w - | ipreport -rsT - | more
TCPDUMP

TOK: ====(80 bytes on interface token-ring)==== 16:42:43.327359881
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 08:00:5a:fe:21:06, dst = 00:20:35:72:98:31]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 13.7.140 > (sox5.itso.ibm.com)
IP: < DST = 1.3.1.41 >
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=1500, ip_id=23840, ip_off=0
IP: ip_ttl=57, ip_sum=442, ip_p = 6 (TCP)
IP: truncated-ip, 1442 bytes missing
IP: 00000000 043804fa a8fb14da 0937db32 50107d78 |.8.......7.2P.}x|
IP: 00000010 33330000 863fcc52 996d64f2 577d2c2c |33...?.R.md.W},,|
IP: 00000020 c5f7c26a 1eed |...j.. |
...(lines omitted)...

How to monitor TCP
For many performance related TCP/IP communication cases the protocol to tune
is TCP. One way of quickly gathering information about how the TCP protocol
flow is performing on the local network is to limit the filtering scope by only
monitoring initiation and termination of TCP connections.
584 AIX 5L Performance Tools Handbook

In Example 7-67 only packets with the TCP header field are monitored. For
clarity we reduce the output length by excluding the timestamp information.

Example 7-67 Using tcpdump with TCP to monitor start/stop packets
tcpdump -c 6 -vnIs1492 -i tr0 "tcp[13] & 7 != 0"
tcpdump: listening on tr0
20:44:55.884956867 1.3.1.47.3111 > 1.99.41.117.1352: S 2739718210:2739718210(0) win 64240 <mss
1361,nop,nop,sackOK> (DF)] (ttl 128, id 31407)
20:44:55.919483478 1.99.41.117.1352 > 1.3.1.47.3111: S 3917974983:3917974983(0) ack 2739718211
win 65535 <mss 1448>] (ttl 52, id 56924)
20:44:56.664665475 1.3.1.47.3106 > 1.99.140.15.1352: F 2738058183:2738058183(0) ack 819381945
win 64062 (DF)] (ttl 128, id 31418)
20:44:56.664858098 1.3.1.47.3107 > 1.14.3.93.1080: F 2738572850:2738572850(0) ack 4011668374
win 63132 (DF)] (ttl 128, id 31419)
20:44:56.665211657 1.3.1.47.3109 > 1.165.223.3.1352: F 2739075962:2739075962(0) ack 2156758289
win 63146 (DF)] (ttl 128, id 31420)
20:44:56.665288620 1.3.1.47.3110 > 1.3.1.7.1352: F 2739600920:2739600920(0) ack 16883503 win
63192 (DF)] (ttl 128, id 31421)
51 packets received by filter
0 packets dropped by kernel

The output above shows connection setup packets (marked lines with S in the
flags field) between host 1.3.1.47 and 1.99.41.117. Note that this is only the first
two steps of the TCP three way handshake, refer to “How a TCP connection is
opened” on page 587.

The general format of a TCP protocol line is7:

SRC > DST: flags data-seqno ack win urg options

The following are the explanation of the fields:

SRC Indicates the source (host) address and port. This field is
always specified.

DST Indicates the destination address and port. This field is
always specified.

flags Specifies some combination of the flags S (SYN), F (FIN),
P (PUSH), and R (RST), or a single . (period) to indicate
no flags. The flags field is always specified.

data-seqno Describes the portion of sequence space covered by the
data in this packet. In ACK packets the data-seqno part
can be split up into FS:LS(NSN)

FS First sequence number to acknowledge
LS Last sequence number to acknowledge

7 Fields, except SRC, DST, and flags, depend on the contents of the packet's TCP protocol header and are output only if
appropriate.
 Chapter 7. Network performance tools 585

NSN Next sequence number to use

ack Specifies (by acknowledgement) the sequence number of
the next data packet expected from the other direction on
this connection.

win Specifies the number of bytes of receive buffer space
available from the other direction on this connection.

urg Indicates there is urgent data in the packet.

options Specifies TCP options enclosed in angle brackets, such
as: <option>.

How to monitor all TCP traffic
Example 7-68 shows how to use tcpdump to monitor all TCP traffic. In the
example, tcpdump will only report 10 packets (-c 10), read 14928 bytes from each
packet, exclude the timestamp (-t), reporting will be interactive (-I) for TCP
(tcp) protocol only, and will omit the domain name part of host names (-N):

Example 7-68 Using tcpdump to monitor TCP
tcpdump -c 10 -tNIs 1492 tcp
tcpdump: listening on tr0
3b-043.2423 > wlmhost.telnet: . ack 2684017960 win 16281 (DF)]
wlmhost.telnet > 3b-043.2423: P 2684017960:2684018015(55) ack 897371828 win 17424]
wlmhost.telnet > 3b-043.2423: P 2684017960:2684018015(55) ack 897371828 win 17424]
3b-043.2423 > wlmhost.telnet: . ack 55 win 16226 (DF)]
wlmhost.telnet > 3b-043.2423: P 2684018015:2684018247(232) ack 897371828 win 17424]
wlmhost.telnet > 3b-043.2423: P 2684018015:2684018247(232) ack 897371828 win 17424]
3b-043.2423 > wlmhost.telnet: . ack 232 win 15994 (DF)]
wlmhost.telnet > 3b-043.2423: P 2684018247:2684018473(226) ack 897371828 win 17424]
wlmhost.telnet > 3b-043.2423: P 232:458(226) ack 1 win 17424]
3b-043.2423 > wlmhost.telnet: . ack 2684018473 win 17424 (DF)]
34 packets received by filter
0 packets dropped by kernel

In the example above there are four packets with the IP does not fragment flag
set. This is marked with a trailing (DF). This flag is set in the D bit field as shown in
the schematic header layout for the IP V4 header (“IP V4 (RFC 791) packet
header” on page 581).

8 Because the MTU size for this particular interface is set to 1492, there will be no IP frames larger than 1492 bytes that
will be used by our host (for Ethernet 10/100 this will be 1500). However, there may be frames on the Token-Ring that are
larger than the local MTU size sent by other systems with different sizes. Use commands such as netstat or ifconfig to
determine the current MTU size (the lsattr command shows the setting used when the network interface device driver
was loaded).
586 AIX 5L Performance Tools Handbook

How a TCP connection is opened
When a TCP connection is opened a three way handshake is performed as
shown in Example 7-69.

Example 7-69 Using tcpdump to monitor TCP
tcpdump -tNIc 1492 “tcp port 23 and host dude.itso.ibm.com”
tcpdump: listening on tr0
...(lines omitted)...
bolshoi.32796 > wlmhost.telnet: S 563275966:563275966(0) win 16384 <mss 1452> (DF) [tos 0x10]
wlmhost.telnet > bolshoi.32796: S 3147194261:3147194261(0) ack 563275967 win 17424 <mss 1452>
(DF)]
bolshoi.32796 > wlmhost.telnet: . ack 3147194262 win 17424 (DF) [tos 0x10]
...(lines omitted)...
718 packets received by filter
0 packets dropped by kernel

Refer to “How to monitor TCP” on page 584 for an explanation of the output
format above.

The three way handshake can be described as follows (Figure 7-1):

1. The initiator (bolshoi) sends a SYN packet to the party (wlmhost) that it wants
to connect to. The initial sequence number is 563275966 in the example above
(line 1 from bolshoi to wlmhost).

2. The receiving party (wlmhost) responds with its own SYN packet containing its
initial sequence number (line 2 from wlmhost to bolshoi). This packet also
contains an ACK flag to acknowledge the initiator’s SYN sequence number by
incrementing the current sequence number by one, which would be
563275967 (563275966 +1) in the example above.

3. The initiator acknowledges this SYN from the second party by sending a ACK
packet with no flag (.) indicator (line 3 from bolshoi to wlmhost) by
incrementing the current sequence number by one, which would be
3147194262 (3147194261 +1) in the example above.

Figure 7-1 Schematic flow during TCP open

bolshoi wlmhost

bolshoi wlmhost

bolshoi wlmhostSYN

SYN/ACK

ACK
 Chapter 7. Network performance tools 587

How a TCP connection is closed
To end a TCP connection, either of the two communication ends can send an
end of transmission segment (containing the FIN flag) when it has finished
transmitting data as is shown in Figure 7-70.

Example 7-70 Using tcpdump to monitor TCP9

tcpdump -tNIc 1492 “tcp port 23 ”
tcpdump: listening on tr0
...(lines omitted)...
wlmhost.telnet > bolshoi.32785: F 1949791116:1949791116(0) ack 3641849741 win 17424 (DF)]
bolshoi.32785 > wlmhost.telnet: . ack 1949791117 win 17424 (DF) [tos 0x10]
bolshoi.32785 > wlmhost.telnet: F 3641849741:3641849741(0) ack 1949791117 win 17424 (DF) [tos
0x10]
wlmhost.telnet > bolshoi.32785: . ack 3641849742 win 17424 (DF)]
...(lines omitted)...
718 packets received by filter
0 packets dropped by kernel

Refer to “The general format of a TCP protocol line is:” on page 585 for
explanation of the output format above.

The normal four way close can be described as follows (Figure 7-2 on page 589).

1. The initiator (wlmhost) sends a FIN packet the other party (bolshoi). The
absolute sequence number above is 1949791116 in the example above (line 1
from wlmhost to bolshoi).

2. The receiving party (bolshoi) acknowledges the initiator’s FIN sequence
number by incrementing the current sequence number by one to 1949791117
(1949791116 +1) in the example above (line 2 from bolshoi to wlmhost).

3. The receiving party (bolshoi) sends it own FIN packet to the initiator (after the
application that is using the connection has closed the socket) with sequence
number 3641849741 in the example above (line 3 from bolshoi to wlmhost).

4. The initiator (wlmhost) acknowledges the receiving party’s FIN sequence
number by incrementing the current sequence number by one to 3641849742
(3641849741 +1) in the example above (line 4 from wlmhost to bolshoi).

9 Note that the monitoring was interrupted by using the Ctrl-C key sequence (^C).
588 AIX 5L Performance Tools Handbook

Figure 7-2 Schematic flow during TCP close

How to monitor UDP packets
Example 7-71 shows how to use tcpdump to monitor UDP traffic. In the example,
tcpdump will only report 10 packets (-c 10), read 1492 bytes from each packet (-s
1492), exclude the timestamp (-t), reporting will be interactive (-I) for UDP (udp)
protocol only, and will omit the domain name part of host names (-N):

Example 7-71 Using tcpdump to monitor UDP
tcpdump -c 10 -tNIs 1492 udp
tcpdump: listening on tr0
snecac.1346 > 229.55.1.208.1345: udp 150]
wlmhost.33314 > dhcp001.domain: 29625+ PTR? 111.1.3.1.in-addr.arpa. (40)]
wlmhost.33314 > dhcp001.domain: 29625+ PTR? 111.1.3.1.in-addr.arpa. (40)]
dhcp001.domain > wlmhost.33314: 29625* 2/0/0 PTR snecac. (80)]
wlmhost.33315 > dhcp001.domain: 29626+ PTR? 208.150.1.229.in-addr.arpa. (45)]
wlmhost.33315 > dhcp001.domain: 29626+ PTR? 208.150.1.229.in-addr.arpa. (45)]
dhcp001.domain > wlmhost.33315: 29626 NXDomain 0/1/0 (118)]
wlmhost.33316 > dhcp001.domain: 29627+ PTR? 164.1.3.1.in-addr.arpa. (40)]
wlmhost.33316 > dhcp001.domain: 29627+ PTR? 164.1.3.1.in-addr.arpa. (40)]
dhcp001.domain > wlmhost.33316: 29627 NXDomain* 0/1/0 (135)]
65 packets received by filter
0 packets dropped by kernel

Some UDP services are recognized from the source or destination port number,
and the higher level protocol information is printed. In particular, Domain Name
service requests and Sun RPC calls to NFS are recognized.

The general format of a UDP protocol line is:

SRC > DST: udp size

The following are the explanation of the fields:

wlmhost bolshoi

wlmhost bolshoi

wlmhost bolshoiFIN

ACK

wlmhost bolshoiACK

FIN
 Chapter 7. Network performance tools 589

SRC Indicates the source (host) address and port. This field is
always specified.

DST Indicates the destination address and port. This field is
always specified.

udp Indicates that it is a udp datagram.

size Shows the user data packet’s size in bytes.

How to monitor UDP domain name server requests
Example 7-72 shows how to use tcpdump to monitor DNS requests. In the
example, tcpdump will only report 10 packets (-c 10), read 143 bytes from each
packet (-s 143), exclude the timestamp (-t), reporting will be interactive (-I),
DNS (port domain) protocol only, and will omit the domain name part of host
names (-N).

Example 7-72 Using tcpdump to monitor DNS10

tcpdump -tNIs 143 port domain
tcpdump: listening on tr0
wlmhost.33309 > dhcp001.domain: 33797+ A? www.ibm.com. (29)]
wlmhost.33309 > dhcp001.domain: 33797+ A? www.ibm.com. (29)]
wlmhost.33310 > dhcp001.domain: 56418+ PTR? 2.1.3.1.in-addr.arpa. (38)]
wlmhost.33310 > dhcp001.domain: 56418+ PTR? 2.1.3.1.in-addr.arpa. (38)]
^C
434 packets received by filter
0 packets dropped by kernel

In the example above there are two different DNS queries; one is for a name to
IP address lookup, and the other type is for a IP address to name lookup
(reverse lookup).

The two first packets have query id 33797, have the recursive request flag set (+),
and are address (A) records 29 bytes in size. Both the query class (CC_IN) and
the query operation (Query) are omitted. The name to resolve is www.ibm.com.

The next two packets have query id 56418, have the recursive request flag set
(+), and are IP address (PTR) records 38 bytes in size. Both the query class
(CC_IN) and the query operation (Query) are omitted. The address to resolve is
1.3.1.2 (reverse in the request).

DNS requests are formatted as11:

SRC > DST: id op? flags qtype qclass name (len)

10 Note that the monitoring was interrupted by using the Ctrl-C key sequence (^C).
11 A few anomalies are checked, and may result in extra fields enclosed in square brackets.
590 AIX 5L Performance Tools Handbook

The following are the explanation of the fields:

SRC Indicates the source (host) address and port. This field is
always specified.

DST Indicates the destination address and port. This field is
always specified.

id Specifies the identification number of the query

op Specifies the type of operation. The default is the query
operation, which will be omitted. If the type of operation
had been anything else, it would have been printed
between the id and the flags field.

flags A + (plus sign) indicates that the recursion desired flag is
set.

qtype DNS query type.

qclass Query class. Will be omitted if CC_IN. Any other qclass
will be printed.

name Name to resolve in reverse order.

(len) Query length, not including the UDP and IP protocol
headers.

How to monitor UDP name server responses
Example 7-73 shows how to use tcpdump to monitor DNS responses. tcpdump will
only report 10 packets (-c 10), read 143 bytes from each packet (-s 143),
exclude the timestamp (-t), reporting will be interactive (-I), DNS (port domain)
protocol only, and will omit the domain name part of host names (-N).

Example 7-73 Using tcpdump to monitor DNS
tcpdump -tNIs 143 port domain
tcpdump: listening on tr0
dhcp001.domain > wlmhost.33360: 60043 2/2/2 CNAME 37.32.123.178.204.in-addr.arpa. (209)]
^C
434 packets received by filter
0 packets dropped by kernel

In the example above the packet have query id 60043, two answer records, two
DNS records, and two authoritative answers. The resolved address type is CNAME
and the address is 204.178.123.32 (reverse in the reply). The packet length is
209 bytes.

DNS replies are formatted as:

SRC > DST: id op rcode flags a/n/au type class data (len)
 Chapter 7. Network performance tools 591

The following are the explanation of the fields:

SRC Indicates the source (host) address and port. This field is
always specified.

DST Indicates the destination address and port. This field is
always specified.

id Specifies the identification number of the query

op Specifies the type of operation. The default is the query
operation, which will be omitted. If the type of operation
had been anything else, it would have been printed
between the id and the flags field.

rcode Response code, Will be omitted if NoError. Any other
rcode will be printed.

flags A * (asterisk) indicates that the authoritative answer bit
was set. Other flag characters that might appear are -
(recursion available, RA, not set) and | (truncated
message, TC, set). A + (plus sign) indicates that the
recursion desired flag is set.

a/n/au Answer records/Name server records/Authority records.

type DNS record type.

class DNS Record class. Will be omitted if CC_IN. Any other
class will be printed.

data Resolved reply.

(len) Response length, not including the UDP and IP protocol
headers.

How to monitor all packets
Example 7-74 shows how to use tcpdump to monitor all traffic on the default
interface (in this case tr0). In the example, tcpdump will only report 16 packets
(-c 16), read 17792 bytes12 from each packet13, print absolute rather than
relative TCP sequence numbers (-S), verbose output (-v), not use DNS lookup
for IP addresses to names (-n), and the reporting should be interactive (-I).

Example 7-74 Using tcpdump to monitor all packets
tcpdump -c 16 -SIvns 17792
tcpdump: listening on tr0
19:08:08.148317911 1.3.1.106.1346 > 229.55.150.208.1345: udp 150] (ttl 10, id 24999)
19:08:08.230511146 1.3.1.114.2423 > 1.3.1.164.23: . ack 2686878608 win 16127 (DF)] (ttl 128, id
208)

12 The maximum allowed Token-Ring frame size (MTU).
13 Please note that this size will be copied from the kernel to the tcpdump command. Using smaller sizes reduces the
risk of loosing traced packets due to the increase in overhead large copies can induce.
592 AIX 5L Performance Tools Handbook

19:08:08.325292354 0:6:29:1:72:4 80:1:43:0:0:0 0000 30:
 8000 0060 9480 4e20 0000 0000 8000 0060
 9480 4e20 8001 0000 1400 0200 0f00
19:08:08.341996876 1.3.1.75 > 224.1.1.5: OSPFv2-hello 48: rtrid 192.168.31.12 backbone E mask
255.255.255.0 int 10 pri 1 dead 40 dr 1.3.1.1 bdr 1.3.1.75 nbrs 1.3.1.1] [ttl 1] (id 53064)
19:08:08.441327515 1.39.7.76 > 1.3.1.164: icmp: echo request] (ttl 245, id 39306)
19:08:08.441440043 1.3.1.164 > 1.39.7.76: icmp: echo reply] (ttl 255, id 23286)
19:08:08.441742760 1.3.1.164 > 1.39.7.76: icmp: echo reply] (ttl 255, id 23286)
19:08:08.608477546 [|tokenring]
19:08:08.611070026 1.3.187.140.137 > 1.3.1.20.137: udp 68] (ttl 127, id 41648)
19:08:08.625016191 1.3.1.20.137 > 1.3.187.140.137: udp 62] (ttl 128, id 56925)
19:08:08.625763165 1.3.187.140.137 > 1.3.1.20.137: udp 68] (ttl 127, id 41649)
19:08:08.641570137 1.3.1.20.137 > 1.3.187.140.137: udp 62] (ttl 128, id 57181)
19:08:08.642107452 1.3.187.140.137 > 1.3.1.20.137: udp 68] (ttl 127, id 41650)
19:08:08.666561077 1.3.1.20.137 > 1.3.187.140.137: udp 62] (ttl 128, id 57437)
19:08:08.667100392 1.3.187.140.137 > 1.3.1.20.137: udp 68] (ttl 127, id 41651)
19:08:08.683200443 1.3.1.20.137 > 1.3.187.140.137: udp 62] (ttl 128, id 57693)
17 packets received by filter
0 packets dropped by kernel

In the example above the marked packets are of the following type (in sequence
from top down):

� TCP packet

� Unknown protocol to tcpdump

� OSPF routing packet

� ICMP packet

� Truncated Token-Ring packet

� UDP packet

How to interpret link-level headers
Example 7-75 shows how to use tcpdump to monitor all traffic on the Token-Ring
interface tr0. In the example, tcpdump will only report 6 packets (-c 6), exclude
the timestamp (-t), read 35 bytes from each packet (-s 35), only include the
link-level header (-e), and the reporting should be interactive (-I).

Example 7-75 Using tcpdump to monitor link-level headers
tcpdump -c 6 -tes 35
tcpdump: listening on tr0
0:40:aa:49:4b:1b 0:60:94:8a:7:5b ip 36: [|ip]
0:60:94:8a:7:5b 0:40:aa:49:4b:1b ip 36: [|ip]
0:60:94:8a:7:5b 0:40:aa:49:4b:1b ip 36: [|ip]
0:40:aa:49:4b:1b 0:60:94:8a:7:5b ip 36: [|ip]
0:60:94:8a:7:5b 0:40:aa:49:4b:1b ip 36: [|ip]
0:60:94:8a:7:5b 0:40:aa:49:4b:1b ip 36: [|ip]
 Chapter 7. Network performance tools 593

71 packets received by filter
0 packets dropped by kernel

In the example above the [|ip] indicates that the packet is an IP protocol packet
but was truncated by tcpdump.

The general format of a the Token-Ring link-level report is:

SRC DST proto len:

The following are the explanation of the fields:

SRC Source hardware address (MAC address)

DST Destination hardware address (MAC address)

proto The protocol type of the frame data

len The amount of data read from the frame14

How to monitor ARP packets
Example 7-76 shows how to use tcpdump to monitor ARP traffic on a network on
a host. In the example, tcpdump will only report 10 ARP packets (-c 10) and
exclude the timestamp (-t), and reporting will be interactive (-I) for ARP (arp) on
network 1.3.1 (net) and will omit the domain name part of host names (-N).

Example 7-76 Using tcpdump to monitor ARP
tcpdump -c 10 -t -N -I arp net 1.3.1
tcpdump: listening on tr0
arp who-has 1.3.1.188 tell ANALYZER
arp who-has 3b-043 tell itsont00
arp reply 3b-043 is-at 0:60:94:87:a:87
arp who-has 1.3.1.188 tell 1.3.1.1
arp who-has 1.3.1.188 tell wlmhost
arp who-has 1.3.1.188 tell wlmhost
arp who-has 1.3.1.188 tell wlmhost
arp who-has 1.3.1.188 tell wlmhost
arp who-has 3b-043 tell itsont00
arp reply 3b-043 is-at 0:40:aa:49:49:d4
120 packets received by filter
0 packets dropped by kernel

14 If the frame data is less than the size specified with -s, then the size of the read frame is reported.
594 AIX 5L Performance Tools Handbook

Lines starting with arp who-has are ARP requests from hosts on the network. Our
hosts name is wlmhost, and there are four requests from our host to the network
to resolve the 1.3.1.188 IP address. Lines starting with arp reply are replies to
who-has requests. Lines with host names show hosts that the local system can
resolve, and lines with IP addresses show those hosts that the local system
cannot resolve.

Note in the output above that the host itsnt00 requests the IP address for host
3b-043 twice and each time it get a different MAC address. This can indicate
potential problems that can become a performance issue for the itsont00 host. If
the host does not have enough space available in its ARP tables, this can lead to
this behavior that will slow down communication with the itsont00 host. The
reason is that it will free up one ARP table entry each time it has to communicate
with a host that does not have a entry. If the itsont00 host communicates with
many other systems, this will lead to what is known as ARP cache thrashing. The
other issue is why the itsont00 host receives different MAC addresses for the
requested host (3b-043). One reason could be that the 3b-043 host uses multiple
network adapters (for performance or availability reasons). Another reason could
be that the hosts are on different networks with different routers, and at least two
routers believe that they are the preferred route between the networks and
therefore respond to ARP requests (proxy ARP). Yet a third reason could be that
apart from the host itself that replies to ARP requests, there are at least one
system on the network that acts like an ARP server but has the wrong MAC
address in its ARP table15.

Notes on ARP handling
When an application sends an Internet packet to one of the interface drivers, the
driver requests the appropriate address mapping. If the mapping is not in the
table, an ARP broadcast packet is sent through the requesting interface driver to
the hosts on the local area network. ARP requests are link-level broadcasts that
go only to the local physical net unless proxy ARP is enabled in a router/gateway.
ARP requests normally do not get forwarded through a router. For hosts
reachable only through a router, the originating host will ARP only for the
gateway, not for the end host.

The kernel maintains the translation table (ARP table) between Internet
addresses and MAC addresses. The size of this table is made up of a hash table
and bucket entries in this table. The following tunables are used for the
translation table (refer to Section 7.11, “no” on page 549):

arptab_nb Specifies the number of hash lines in the ARP table.

arptab_bsiz Specifies the number of struct arptab entries in the hash
table (/usr/include/net/if_arp.h).

15 When adding ARP table entries manually with the arp command and specifying the pub option, the local system will
respond to requests as a ARP server for this entry.
 Chapter 7. Network performance tools 595

arpt_killc Specifies the time in minutes before a complete entry will
be deleted from the translation table.

arpqsize Specifies the maximum number of packets to queue while
waiting for ARP responses. The IP packet to send will be
linked to the at_hold pointer in the arptab struct.

IP addresses’ places in the translation table are determined first by the reminder
after a modulus operation is performed on the IP address (in hex) and by the size
of the hash table (the ARPTAB_HASH define in /usr/include/net/if_arp.h). The
bucket for the arptab struct is assigned sequentially, as is the bucket search
(the ARPTAB_LOOK define in /usr/include/net/if_arp.h).

Note that the translation table may run out of free bucket entries before all
buckets are filled with arp entries. When an arp entry cannot be added to the
translation table, the least recently used dynamically added entry is discarded
(the at_timer variable in the arptab struct)16.

When a packet to be sent to a host that does not have a mapping between IP
address and MAC address in the translation table, the packet will be linked to the
arptab struct entry for that IP address (the at_hold variable in the struct). This
ensures that the packet will be sent immediately when the ARP request is
returned with a IP address to MAC address mapping.

How to use expressions
The tcpdump command has a powerful filtering mechanism; Example 7-77
illustrates how this can be used. Please note that the indexing into packets is
based from zero (0), as per “Accessing data inside a packet” on page 577. To
debug your expression statements, use the -d flag as in the following example
(the output was piped through the expand and nl commands for referentiality).

Example 7-77 Using the decoding of expressions
tcpdump -d 'tcp[6] = 0xffffffff'|expand|nl
 1 (000) ldh [38]
 2 (001) jeq #0x800 jt 2 jf 10
 3 (002) ldb [49]
 4 (003) jeq #0x6 jt 4 jf 10
 5 (004) ldh [46]
 6 (005) jset #0x1fff jt 10 jf 6
 7 (006) ldxb 4*([40]&0xf)
 8 (007) ldb [x + 46]
 9 (008) jeq #0xffffffff jt 9 jf 10
 10 (009) ret #80
 11 (010) ret #0

16 This excludes permanent entries made by users.
596 AIX 5L Performance Tools Handbook

How to monitor initiation and termination of TCP connections
To monitor only initiation and termination of TCP connections, specify the
tcpdump command as in Example 7-78 (refer to “How to monitor all TCP traffic”
on page 586).

Example 7-78 Using tcpdump to monitor start and stop TCP packets
tcpdump -c 16 -NIs 160 -i tr0 “(tcp[13] & 7 != 0)"
tcpdump: listening on tr0
1.3.1.43.2308 > ss12.1080: F 1419758927:1419758927(0) ack 1649681797 win 17000 (DF)]
1.3.1.43.2310 > ss12.1080: S 1419967325:1419967325(0) win 16384 <mss 4016,nop,nop,sackOK> (DF)]
1.3.1.43.2308 > ss12.1080: R 1419758928:1419758928(0) win 0 (DF)]
ss12.1080 > 1.3.1.43.2308: F 1649683845:1649683845(0) ack 1419758928 win 16060]
1.3.1.43.2308 > ss12.1080: R 1419758928:1419758928(0) win 0]
1.3.1.43.2308 > ss12.1080: R 1419758928:1419758928(0) win 0]
ss12.1080 > 1.3.1.43.2310: S 1553633667:1553633667(0) ack 1419967326 win 16060 <mss 1460>]
3b-054.2364 > www.80: R 2201046150:2201046150(0) win 0 (DF)]
3b-054.2370 > 208.80: S 2210195146:2210195146(0) win 16384 <mss 4016,nop,nop,sackOK> (DF)]
208.80 > 3b-054.2370: S 3491660221:3491660221(0) ack 2210195147 win 16384 <mss 1432>]
1.3.1.43.2310 > ss12.1080: R 1419967756:1419967756(0) win 0 (DF)]
1.3.1.43.2312 > ss12.1080: S 1420173609:1420173609(0) win 16384 <mss 4016,nop,nop,sackOK> (DF)]
204.174.18.152.80 > 3b-054.2369: F 3488338654:3488338654(0) ack 2209986206 win 16384]
3b-054.2369 > 204.174.1.152.80: F 2209986206:2209986206(0) ack 3488338655 win 16480 (DF)]
3b-054.2371 > www.80: S 2210246478:2210246478(0) win 16384 <mss 4016,nop,nop,sackOK> (DF)]
1.3.1.43.2310 > ss12.1080: R 1419967756:1419967756(0) win 0]
794 packets received by filter
0 packets dropped by kernel

In the output above the S is SYN, F is FIN, R is RST, and ack is ACK. In the SYN
packet the connection setup options start with win (TCP window size), which is
16384. The mss option is the Maximum Segment Size (MSS) which is 4016. The
next two options are nop (No operation). The last option is sackOK which is the
Selective ACKnowledgement (SACK). This negotiated option is useful for
recovering fast from multiple packet drops in a window of data, but it must be
negotiated because not all TCP implementations support it.

Short IP packets
To monitor IP packets shorter than 149217 bytes sent through gateway 1.3.1.1,
specify the tcpdump command as in Example 7-79.

Example 7-79 Using tcpdump to monitor small packets through gateways
tcpdump -tNIi tr0 -c 4 “host 1.3.1.1 and ip[2:2] < 1492”
tcpdump: listening on tr0
 1.3.1.1 > ospf-all: OSPFv2-hello 48: backbone dr 1.3.1.1 bdr 1.3.1.75] [ttl 1]
 1.3.1.1 > ospf-all: OSPFv2-hello 48: backbone dr 1.3.1.1 bdr 1.3.1.75] [ttl 1]

17 In the example we do not use MTU discover but use mss_dflt, which is set to the currently used MTU size (1492) in the
system. Note also the possible usage of the length primitives to monitor packet sizes, refer to “Expressions” on page 574,
such as 'ip and len < 1492'.
 Chapter 7. Network performance tools 597

1.3.1.1 > itsoaus: icmp: redirect itsopok to host 1.3.1.75]
 1.3.1.1 > ospf-all: OSPFv2-hello 48: backbone dr 1.3.1.1 bdr 1.3.1.75] [ttl 1]
33730 packets received by filter
0 packets dropped by kernel

In the output above we see that there are only routing packets that are shorter
than our specified size (1492) and no data packets. If there were shorter data
packets, we could investigate this further by checking the PMTU field in the route
table with netstat (Section 7.8, “netstat” on page 502), the mss_dflt with the no
command (Section 7.11, “no” on page 549), or the lsattr command.

Example 7-80 assumes that we have found a data packet with a suspiciously
small size by using tcpdump sent from the local host to a destination on the tr0
interface.

Example 7-80 Checking TCP MSS
ifconfig tr0
tr0: flags=e0a0043<UP,BROADCAST,RUNNING,ALLCAST,MULTICAST,GROUPRT,64BIT>
 inet 1.3.1.164 netmask 0xffffff00 broadcast 1.3.1.255
 tcp_sendspace 16284 tcp_recvspace 16384 tcp_mssdflt 512 rfc1323 0

lsattr -El tr0 -a tcp_mssdflt
tcp_mssdflt N/A True

netstat -rn|head -2;netstat -rn|grep tr0
Routing tables
Destination Gateway Flags Refs Use If PMTU Exp Groups
default 1.3.1.1 UGc 0 0 tr0 - -
1.3.1/24 1.3.1.164 U 39 213259 tr0 - -
1.39.7.76 1.3.1.1 UGHW 0 6877 tr0 - 2
1.39.7.84 1.3.1.1 UGHW 0 6883 tr0 - 2
1.53.148.171 1.3.1.1 UGHW 1 44 tr0 - -
1.184.194.78 1.3.1.1 UGHW 1 973 tr0 - -
...(lines omitted)...

no -o tcp_mssdflt
tcp_mssdflt = 512

Note that the order of precedence for how the MSS is set is used for the
commands in the above output. To use the above commands, we need to know
which interface and which IP address we are looking for. In the example above
the ifconfig and no commands show that the segment (packet) size to use
when communicating with remote networks (if the no variable subnetsarelocal is
set to zero) is 512 bytes.
598 AIX 5L Performance Tools Handbook

Notes on subnetsarelocal
The subnetsarelocal tunable (refer to Section 7.11, “no” on page 549)
determines which MSS size to use. When subnetsarelocal is set to one (1), all
IP addresses are viewed as local network addresses except when the IP network
class address part is different. In that case it is considered a remote IP address.

A class address First byte (#.0.0.0)

B class address First and second byte (#.#.0.0)

C class address First, second and third byte (#.#.#.0)

For example: the hosts 1.6.6.1 and 1.6.7.2 with netmask 255.255.255.0 are
considered to be local but the hosts 1.6.6.1 and 2.6.7.2 with netmask
255.255.255.0 are considered to be remote when subnetsarelocal is set to one.

ICMP packets
To monitor all ICMP packets that are not echo requests or replies (not ping
packets), specify the tcpdump command as in Example 7-81 (refer “ICMP
message type table” on page 579).

Example 7-81 Using tcpdump to monitor non echo request/echo reply ICMP packets
tcpdump -tNIi tr0 -c 10 “icmp[0] != 8 and icmp[0] != 0”
tcpdump: listening on tr0
rtrgfr1 > alexaix: icmp: time exceeded in-transit [tos 0xc0]
1.3.1.1 > m78lbf01: icmp: redirect 1.24.106.202 to host 1.3.1.75]
wlmhost > dhcp001: icmp: wlmhost udp port 33324 unreachable]
wlmhost > dhcp001: icmp: wlmhost udp port 33324 unreachable]
rtrgfr1 > alexaix: icmp: time exceeded in-transit [tos 0xc0]
wlmhost > dhcp001: icmp: wlmhost udp port 33325 unreachable]
wlmhost > dhcp001: icmp: wlmhost udp port 33325 unreachable]
rtrgfr1 > alexaix: icmp: time exceeded in-transit [tos 0xc0]
wlmhost > dhcp001: icmp: wlmhost udp port 33326 unreachable]
wlmhost > dhcp001: icmp: wlmhost udp port 33326 unreachable]
1699 packets received by filter
0 packets dropped by kernel

The marked line in the output above indicates an ICMP route redirect. Normally a
route redirection is used by gateway hosts or routers to indicate, to the sender of
a packet that it has forwarded, that another preferred route to the destination of
the forwarded packet exists.
 Chapter 7. Network performance tools 599

Other protocols from the IP header
To monitor other protocols it is possible to examine the IP headers protocol field
directly (see TCP/IP protocol and services tables) as in Example 7-82 that only
traces protocol number 89, which is the Open Shortest Path First (OSPF) routing
protocol.

Example 7-82 Using tcpdump to monitor other protocols
tcpdump -c 4 -qtNIs 120 -i tr0 'ip[9] = 89'
tcpdump: listening on tr0
 1.3.1.75 > ospf-all: OSPFv2-hello 48: rtrid 1.1.31.12 backbone dr 1.3.1.1 bdr 1.3.1.75] [ttl
1]
 1.3.1.1 > ospf-all: OSPFv2-hello 48: backbone dr 1.3.1.1 bdr 1.3.1.75] [ttl 1]
 1.3.1.75 > ospf-all: OSPFv2-hello 48: rtrid 1.1.31.12 backbone dr 1.3.1.1 bdr 1.3.1.75] [ttl
1]
 1.3.1.1 > ospf-all: OSPFv2-hello 48: backbone dr 1.3.1.1 bdr 1.3.1.75] [ttl 1]
1087 packets received by filter
0 packets dropped by kernel

Verbosity
The tcpdump command can display four levels of verbosity. The default, verbose
(-v), quick (-q), and quick verbose (-qv). The other flags in the following example
are not important here. The following short samples illustrates some of the
differences between these verbosity levels. Example 7-83 shows the default
output:

Example 7-83 Using default output
tcpdump -c 4 -tnIs 512 -i tr0 'tcp[13] & 7 != 0'
tcpdump: listening on tr0
1.14.3.69.1080 > 1.3.1.41.3357: FP 2600873504:2600874006(502) ack 5851629 win 16060]
1.3.1.41.3357 > 1.14.3.69.1080: F 5851629:5851629(0) ack 2600874007 win 16825 (DF)]
1.3.1.41.3361 > 1.14.3.69.1080: S 9308623:9308623(0) win 16384 <mss 4016,nop,nop,sackOK> (DF)]
1.14.3.69.1080 > 1.3.1.41.3361: S 3338953794:3338953794(0) ack 9308624 win 16060 <mss 1460>]
63 packets received by filter
0 packets dropped by kernel

Example 7-84 shows the output with the verbose flag (-v).

Example 7-84 Using verbose output
tcpdump -c 4 -vtnIs 512 -i tr0 'tcp[13] & 7 != 0'
tcpdump: listening on tr0
1.14.3.69.1080 > 1.3.1.41.3382: S 983077529:983077529(0) ack 11986781 win 16060 <mss 1460>]
(ttl 54, id 2849)
1.14.3.69.1080 > 1.3.1.41.3382: F 983078259:983078259(0) ack 11987132 win 16060] (ttl 54, id
3696)
1.3.1.41.3382 > 1.14.3.69.1080: F 11987132:11987132(0) ack 983078260 win 16791 (DF)] (ttl 128,
id 65064)
600 AIX 5L Performance Tools Handbook

1.3.1.41.3384 > 1.14.3.69.1080: S 12254776:12254776(0) win 16384 <mss 4016,nop,nop,sackOK>
(DF)] (ttl 128, id 65065)
43 packets received by filter
0 packets dropped by kernel

Example 7-85 shows the output with the quick flag (-q).

Example 7-85 Using quick output
tcpdump -c 4 -qtnIs 512 -i tr0 'tcp[13] & 7 != 0'
tcpdump: listening on tr0
1.14.3.50.1080 > 1.3.1.130.1224: tcp 0]
1.3.1.130.1224 > 1.14.3.50.1080: tcp 0 (DF)]
1.3.1.41.3405 > 1.14.3.69.1080: tcp 0 (DF)]
1.3.1.41.3413 > 1.14.3.69.1080: tcp 0 (DF)]
38 packets received by filter
0 packets dropped by kernel

Example 7-86 shows the output with the quick verbose flags (-qv).

Example 7-86 Using quick verbose output
tcpdump -c 4 -qvtnIs 512 -i tr0 'tcp[13] & 7 != 0'
tcpdump: listening on tr0
1.14.3.69.1080 > 1.3.1.41.3370: tcp 0] (ttl 54, id 24025)
1.3.1.41.3203 > 1.14.3.69.1080: tcp 0 (DF)] (ttl 128, id 65347)
1.3.1.41.3370 > 1.14.3.69.1080: tcp 0 (DF)] (ttl 128, id 65348)
1.3.1.41.3407 > 1.14.3.69.1080: tcp 0 (DF)] (ttl 128, id 65354)
223 packets received by filter
0 packets dropped by kernel

Name resolution
The tcpdump command can display host addresses in three different ways. The
default is to display both the host and the domain part. With the -N flag only the
host part is displayed, and with the -n flag only the IP address is displayed and
no name resolution is performed at all. The other flags in the examples are not
important here. The following short example illustrates the differences between
these name resolution settings. The first example shows the default output. The
address part in the output above has been marked (host and domain name) in
Example 7-87.

Example 7-87 Default name resolution
tcpdump -c 1 -ftIqvs 512 -i tr0 tcp
tcpdump: listening on tr0
3b-043.1897 > wlmhost.wow.ibm.telnet: tcp 0 (DF)] (ttl 128, id 57620)
11 packets received by filter
0 packets dropped by kernel
 Chapter 7. Network performance tools 601

The address part in the output above has been marked (host name) in
Example 7-88.

Example 7-88 Host names only
tcpdump -c 1 -NftIqvs 512 -i tr0 tcp
tcpdump: listening on tr0
3b-043.1896 > wlmhost.telnet: tcp 0 (DF)] (ttl 128, id 57466)
12 packets received by filter
0 packets dropped by kernel

The address part in the output above has been marked (IP address) in
Example 7-89.

Example 7-89 IP addresses only
tcpdump -c 1 -nftIqvs 512 -i tr0 tcp
tcpdump: listening on tr0
1.14.4.71.1080 > 1.3.1.115.1068: tcp 8] (ttl 54, id 35696)
6 packets received by filter
0 packets dropped by kernel

7.13 tokstat
The tokstat command is a performance monitoring tool that displays token-ring
device driver (software) statistics.

Optionally the device (hardware) specific statistics can be displayed. The device
specific data may differ for different adapters, for example token-ring
Microchannel (MCA) and Peripheral Component Interconnect (PCI) adapters.

tokstat resides in /usr/sbin, is linked to /usr/bin and is part of the
devices.common.IBM.tokenring.rte fileset which is installable from the AIX base
operation system install media.

7.13.1 Syntax
The syntax of the tokstat command is as follows:

tokstat [-d -r -t] Device_Name

Flags
-d Displays all the device driver statistics, including the device

specific statistics.
602 AIX 5L Performance Tools Handbook

-r Resets all the statistics back to their initial values. This flag can
only be issued by privileged users.

-t Toggles debug trace in some device drivers.

Parameters
Device_Name The name of the token-ring device, for example, tok0. If an

invalid Device_Name is specified, the tokstat command will
produce an error message stating that it could not connect to the
device.

7.13.2 Information on measurement and sampling
The tokstat command used without flags provides generic statistics which
consist of transmit statistics, receive statistics and general statistics. This
includes packets and bytes transmitted and received, information about
hardware and software queues usage as well as error counters. If the -d flag is
used then device specific statistics in addition to the device driver statistics are
displayed.

The tokstat command provides a snapshot of the device driver statistics
collected by the Network Device Driver (NDD). The header file
/usr/include/sys/ndd.h defines the used data structure ndd_genstats as well as
the ioctl() operation NDD_GET_ALL_STATS which is used to read the data from
the NDD. tokstat uses a device dependent routine defined in the Object Data
Manager (ODM) to display the device specific statistics. This device dependent
routine is a command that will be executed using fork() and exec() out of
tokstat. In a busy system there may be some delay doing this. In case the
system is running out of resources (for example low on memory), the necessary
fork() may fail. All the device dependent routines can be found using the
command odmget -q attribute=addl_stat PdAt. All statistic values displayed
by tokstat are the absolute values since startup or the last reset of these values,
which is done by using tokstat -r Device_Name.

Hardware error recovery may cause some statistic values to be reset. If this
happens, a second Elapsed Time is displayed in the middle of the statistic’s
output reflecting the elapsed time since the reset.

The device driver statistics are read out of the NDD at execution time of tokstat.
The device specific statistics are read from the device driver using the ioctl()
system call. The data gets displayed and tokstat exits. Using the -r flag,
tokstat first displays the current statistic values and then resets them.

Some adapters may not support a specific statistic. In this case the
non-supported statistic fields are always 0.
 Chapter 7. Network performance tools 603

The output of the tokstat command consists of five sections; the title fields, the
transmit statistics fields, the receive statistics fields, the general statistics fields,
and the adapter specific statistic fields. Please refer to the AIX 5L Version 5.1
Commands Reference, SBOF-1877 for a description of all output fields.

7.13.3 Examples
The output of tokstat always shows the device driver statistics. If the -d flag is
used, the device specific statistics are displayed.

Example 7-90 shows the output of tokstat including the device specific
statistics.

Example 7-90 Displaying token-ring device driver statistics
tokstat -d tok0

TOKEN-RING STATISTICS (tok0) :
Device Type: IBM PCI Tokenring Adapter (14103e00)
Hardware Address: 00:60:94:8a:07:5b
Elapsed Time: 0 days 3 hours 27 minutes 47 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 48476 Packets: 67756
Bytes: 41102959 Bytes: 38439965
Interrupts: 13491 Interrupts: 67733
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
 Bad Packets: 0
Max Packets on S/W Transmit Queue: 890
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 0

Broadcast Packets: 10 Broadcast Packets: 26634
Multicast Packets: 0 Multicast Packets: 4341
Timeout Errors: 0 Receive Congestion Errors: 0
Current SW Transmit Queue Length: 0
Current HW Transmit Queue Length: 0

General Statistics:

No mbuf Errors: 0 Lobe Wire Faults: 0
Abort Errors: 0 AC Errors: 0
Burst Errors: 0 Frame Copy Errors: 0
Frequency Errors: 0 Hard Errors: 0
Internal Errors: 0 Line Errors: 0
Lost Frame Errors: 0 Only Station: 0
Token Errors: 0 Remove Received: 0
604 AIX 5L Performance Tools Handbook

Ring Recovered: 0 Signal Loss Errors: 0
Soft Errors: 0 Transmit Beacon Errors: 0
Driver Flags: Up Broadcast Running

AlternateAddress 64BitSupport ReceiveFunctionalAddr
16 Mbps

IBM PCI Tokenring Adapter (14103e00) Specific Statistics:

Media Speed Running: 16 Mbps Half Duplex
Media Speed Selected: 16 Mbps Full Duplex
Receive Overruns : 0
Transmit Underruns : 0
ARI/FCI errors : 0
Microcode level on the adapter :00IHSS2B4
Num pkts in priority sw tx queue : 0
Num pkts in priority hw tx queue : 0
Open Firmware Level : 001PXHL00

The major fields of interest concerning performance and performance monitoring
are:

Elapsed Time The real time period that has elapsed since the last time the
statistics were reset. During error recovery, when a hardware
error is detected, part of the statistics may be reset. In this
case another Elapsed Time is displayed in the middle of the
statistic’s output reflecting the elapsed time since the reset.
In this example there was no such event, so there is no
addition Elapsed Time displayed.

Transmit and The number of packets transmitted and received
Receive Packets successfully by the device.

Transmit and The number of bytes transmitted and received successfully
Receive Bytes by the device. These values and their related packet count

can show how the system is using this network adapter. For
example transmit and receive values may be close to equal
or they may differ by a huge margin.

Transmit and The number of transmit and receive interrupts received by
Receive the driver from the adapter. If these counters increase fast,
Interrupts then the number of interrupts to be handled by the operating

system may reach a level where overall system performance
may be affected. Other monitoring tools like
“vmstat” on page 186 can be used to control the interrupts
per second handled by the system.
 Chapter 7. Network performance tools 605

Max Packets The maximum number of outgoing packets ever queued to
on S/W the software transmit queue. If this value reaches the
Transmit Queue xmt_que_size set for the adapter, then the xmt_que_size of

the adapter is not set to an adequate value. The command
lsattr -El Device_Name, like lsattr -El tok0, shows the
current adapter settings including xmt_que_size. Use
System Management Interface Tool (SMIT) or chdev to
increase xmt_que_size if necessary and possible. The
possible values allowed to set can be found using the ODM
as shown in Example 7-91 on page 607 or the lsattr -Rl
tok0 -a xmt_que_size command.

S/W Transmit The number of outgoing packets that overflowed the
Queue Overflow software transmit queue. If this is not zero, you need to

increase the transmit queue size xmt_que_size, as shown in
the description for the field Max Packets on S/W Transmit
Queue.

Current S/W+H/W The number of pending outgoing packets on either the
Transmit Queue software transmit queue or the hardware transmit queue.
Length This reflects the current load on the adapter. This is the sum

of the Current SW Transmit Queue Length and Current HW
Transmit Queue Length fields.

Broadcast The number of broadcast packets transmitted and received
Packets without any error. A high value compared to the total

transmitted and received packets indicates that the system is
sending and receiving many broadcasts. Broadcasts
increase network load and may increase load on all the other
systems on the same subnetwork.

Current SW The number of outgoing packets currently on the software
Transmit Queue transmit queue.
Length

Current HW The number of outgoing packets currently on the hardware
Transmit Queue transmit queue.
Length

No mbuf Errors The number of times communications memory buffers
(mbufs) were not available to the device driver. This usually
occurs during receive operations when the driver must obtain
mbuf buffers to process inbound packets. If the mbuf pool for
the requested size is empty, the packet will be discarded.
This may cause retransmission by the sending system,
which increases load on the system as well as additional
network load. The netstat command can be used to confirm
this. For details refer to Section 7.8, “netstat” on page 502.
606 AIX 5L Performance Tools Handbook

Example 7-91 shows how to get the possible xmt_que_size values for tok0.

Example 7-91 Get the possible xmt_que_size values for tok0
odmget -q name=tok0 CuDv
CuDv:

name = "tok0"
status = 1
chgstatus = 2
ddins = "pci/cstokdd"
location = "10-68"
parent = "pci0"
connwhere = "104"
PdDvLn = "adapter/pci/14103e00"

odmget -q 'uniquetype=adapter/pci/14103e00 and attribute=xmt_que_size' PdAt
PdAt:

uniquetype = "adapter/pci/14103e00"
attribute = "xmt_que_size"
deflt = "8192"
values = "32-16384,1"
width = ""
type = "R"
generic = "DU"
rep = "nr"
nls_index = 7

The first odmget reads the adapter data from ODM class CuDv. We need the
value of the PdDvLn field, which identifies the adapter in the PdAt class for the
second odmget.
The second odmget shows the default value for xmt_que_size in the deflt field
and the possible values in the values field. In this sample the xmt_que_size can
be set to values between 32 and 16384 in steps by 1 using the chdev command:

chdev -l tok -a xmt_que_size=16384 -P

If the statistics for errors, for example the transmit errors, are increasing fast,
then these errors should be corrected first. Some errors may be caused by
hardware problems. These hardware problems need to be fixed before any
software tuning is performed. These error counters should stay close to zero.

Note: The chdev command cannot change an active adapter. Using the -P
flag forces chdev to only change the value in ODM. After the next reboot this
new value gets used.
 Chapter 7. Network performance tools 607

Sometimes it is useful to know how many packets an application or task sends or
receives. Use tokstat -r Device_Name to reset the counters to zero, then run
the application or task. After the completion of the application or task, run
tokstat Device_Name again to get this information. An example for using
tokstat to monitor token-ring statistics during execution of one program is:

tokstat -r tok0; ping -f 10.10.10.10 64 1024; tokstat tok0

In other cases it may be of interest to collect token-ring statistics for a fixed time
frame. This can be done using tokstat as shown in the following command:

tokstat -r tok0;sleep 300;tokstat tok0

The numbers of packets, bytes, and broadcasts transmitted and received
depend on many factors, like the applications running on the system or the
number of systems connected to the subnetwork. There is no rule of thumb how
much is too much. Monitoring a token-ring adapter on a regular basis using
tokstat can point out possible problems before the users notice any slowdown.
The problem can be taken care of by redesigning the network layout or tuning the
adapter parameters using the chdev command or tuning network options using
the no command (see Section 7.11, “no” on page 549).

7.14 trpt
The trpt command performs protocol tracing on Transmission Control Protocol
(TCP) sockets. Monitoring the network traffic with trpt can be useful in
determining how applications that use the TCP connection oriented
communications protocol perform.

Please review the iptrace (Section 7.7, “iptrace” on page 494) and tcpdump
(Section 7.12, “tcpdump” on page 571) commands for information on how to
perform network tracing on a system wide basis.

trpt resides in /usr/sbin and is part of the bos.net.tcp.server fileset, which is
installable from the AIX base installation media.

7.14.1 Syntax
The syntax of the trpt command is as follows:

trpt [-a] [-f] [-j] [-pAddress]... [-s] [-t]

Flags
-a Prints the values of the source and destination addresses

for each packet recorded in addition to the normal output.
608 AIX 5L Performance Tools Handbook

-f Follows the trace as it occurs, waiting briefly for additional
records each time the end of the log is reached.

-j Lists just the protocol control block addresses for which
trace records exist.

-pAddress Shows only trace records associated with the protocol
control block specified in hexadecimal by the Address
variable. You must repeat the -p flag with each Address
variable specified.

-s Prints a detailed description of the packet-sequencing
information in addition to the normal output.

-t Prints the values for all timers at each point in the trace in
addition to the normal output.

Parameters
Address The Address variable is the hexadecimal address of the

TCP protocol control block to query for trace data.

7.14.2 Information on measurement and sampling
The trpt command queries the Protocol Control Block (PCB) for TCP trace
records. This buffer is created when a socket is marked for debugging with the
setsockopt subroutine. The trpt command then prints a description of these
trace records.

In order for the trpt command to work, the TCP application that is to be
monitored needs to be able to set the SO_DEBUG flag with the setsockopt
subroutine. If this is not possible you can enable this option for all new sockets
that are created by using the no command with the sodebug option set to one (1):

no -o sodebug=1

Please note that the SO_DEBUG flag will not be turned off for sockets that have this
set even when the sodebug option is set to zero (0).

For more detailed information on the TCP/IP protocols, please review:

� Section 1.4, “Network performance” on page 29

� AIX 5L Version 5.1 Performance Management Guide

� AIX 5L Version 5.1 System Management Guide: Communications and
Networks manual

� TCP/IP Tutorial and Technical Overview, GG24-3376

� RS/6000 SP System Performance Tuning Update, SG24-5340
 Chapter 7. Network performance tools 609

� http://www.rs6000.ibm.com/support/sp/perf

� Appropriate Request For Comment (RFC) at http://www.rfc-editor.org/

There are also excellent books available on the subject but a good starting point
is RFC 1180 A TCP/IP Tutorial.

For schematic information on frame and packet headers refer to “Packet header
formats” on page 580.

7.14.3 Examples
The following examples show the output of trpt command after sodebug has
been set to one (1) with the no command, and a telnet session has been started
immediately thereafter. Note that all trpt reports query the stored TCP trace
records from the PCB. Only when trpt is used with the -f flag will it follow the
trace as it occurs18, waiting briefly for additional records each time the end of the
log is reached.

For a detailed description of the output fields of the trpt command please review
the command in AIX 5L Version 5.1 Commands Reference, Volume 5, SBOF
1857.

To list the PCB addresses for which trace records exist, use the -j parameter
with the trpt command as in Example 7-92.

Example 7-92 Using trpt -j
trpt -j
7064fbe8

You can check the PCB record with the netstat command as Example 7-93
shows

Example 7-93 Using netstat -aA19

netstat -aA|head -2;netstat -aA |grep 7064fbe8
Active Internet connections (including servers)
PCB/ADDR Proto Recv-Q Send-Q Local Address Foreign Address (state)
7064fbe8 tcp 0 0 wlmhost.32826 wlmhost.telnet ESTABLISHED

The report format of the netstat -aA column layout is as follows:

PCB/ADDR Proto Recv-Q Send-Q Local Address Foreign Address (state)

18 After it has displayed the currently stored trace records.
19 The first netstat -aA|head -2 only showed the two header lines that netstat produce. This is done only to increase
readability of the report.
610 AIX 5L Performance Tools Handbook

The following are the explanation of the fields:

PCB/ADDR The PCB address

Proto Protocol

Recv-Q Receive queue size (in bytes)

Send-Q Send queue size (in bytes)

Local Address Local address

Foreign Address Remote address

(state) Internal state of the protocol

How to display all stored trace records
When no option is specified, the trpt command prints all the trace records found
in the system and groups them according to their TCP connection PCB. Note
that in the following examples, there is only one PCB with opened with SO_DEBUG
(7064fbe8). Example 7-94 shows the output during initialization.

Example 7-94 Using trpt during telnet initialization
trpt

7064fbe8:
365 CLOSED:user ATTACH -> CLOSED
365 SYN_SENT:output [fcbaf1a5..fcbaf1a9)@0(win=4000)<SYN> -> SYN_SENT
365 CLOSED:user CONNECT -> SYN_SENT
365 SYN_SENT:input 4b96e888@fcbaf1a6(win=4410)<SYN,ACK> -> ESTABLISHED
365 ESTABLISHED:output fcbaf1a6@4b96e889(win=4410)<ACK> -> ESTABLISHED
365 ESTABLISHED:output [fcbaf1a6..fcbaf1b5)@4b96e889(win=4410)<ACK,PUSH> -> ESTABLISHED
365 ESTABLISHED:user SEND -> ESTABLISHED
...(lines omitted)...

The following output from the trpt command is reported after the telnet session
is closed (Example 7-95).

Example 7-95 Using trpt during telnet termination
trpt
...(lines omitted)...
591 ESTABLISHED:output fcbaf1d3@4b96e913(win=4410)<ACK> -> ESTABLISHED
591 ESTABLISHED:input 4b96e913@fcbaf1d3(win=4410)<ACK,FIN> -> CLOSE_WAIT
591 CLOSE_WAIT:output fcbaf1d3@4b96e914(win=4410)<ACK> -> CLOSE_WAIT
591 LAST_ACK:output fcbaf1d3@4b96e914(win=4410)<ACK,FIN> -> LAST_ACK
591 CLOSE_WAIT:user SHUTDOWN -> LAST_ACK
 Chapter 7. Network performance tools 611

How to display source and destination addresses
To print the values of the source and destination addresses for each packet
recorded in addition to the normal output, use the -a parameter with the trpt
command as in Example 7-96. The following example contains the same
information as the two examples in Example 7-94 on page 611 and
Example 7-95 on page 611, but with additional details. The reason for showing
the full report is that it can be correlated with the examples mentioned. Note that
even though the telnet session has ended, the TCP trace buffer still contain the
protocol trace information (it was just a short connection).

Example 7-96 Using trpt -a
trpt -a

7064fbe8:
365 CLOSED:user ATTACH -> CLOSED
365 SYN_SENT:output (src=1.3.1.164,32821, dst=1.3.1.164,23)[fcbaf1a5..fcbaf1a9)@0(win=4000)
<SYN> -> SYN_SENT
365 CLOSED:user CONNECT -> SYN_SENT
365 SYN_SENT:input (src=1.3.1.164,23, dst=1.3.1.164,32821)4b96e888@fcbaf1a6(win=4410)<SYN,ACK>
-> ESTABLISHED
365 ESTABLISHED:output (src=1.3.1.164,32821, dst=1.3.1.164,23)fcbaf1a6@4b96e889(win=4410)<ACK>
-> ESTABLISHED
365 ESTABLISHED:output (src=1.3.1.164,32821,
dst=1.3.1.164,23)[fcbaf1a6..fcbaf1b5)@4b96e889(win=4410)<ACK,PUSH> -> ESTABLISHED
365 ESTABLISHED:user SEND -> ESTABLISHED
...(lines omitted)...
591 ESTABLISHED:output (src=1.3.1.164,32821, dst=1.3.1.164,23)fcbaf1d3@4b96e913(win=4410)<ACK>
-> ESTABLISHED
591 ESTABLISHED:input (src=1.3.1.164,23,
dst=1.3.1.164,32821)4b96e913@fcbaf1d3(win=4410)<ACK,FIN> -> CLOSE_WAIT
591 CLOSE_WAIT:output (src=1.3.1.164,32821, dst=1.3.1.164,23)fcbaf1d3@4b96e914(win=4410)<ACK>
-> CLOSE_WAIT
591 LAST_ACK:output (src=1.3.1.164,32821, dst=1.3.1.164,23)fcbaf1d3@4b96e914(win=4410)<ACK,FIN>
-> LAST_ACK
591 CLOSE_WAIT:user SHUTDOWN -> LAST_ACK

How to display packet-sequencing information
To print a detailed description of the packet-sequencing information in addition to
the normal output, use the -s parameter with the trpt command as in the
Example 7-97. The following example contains the same information as Example
7-94, “Using trpt during telnet initialization” on page 611 and Example 7-95,
“Using trpt during telnet termination” on page 611, but with additional details.

Example 7-97 Using trpt -s
trpt -s

7064fbe8:
612 AIX 5L Performance Tools Handbook

365 CLOSED:user ATTACH -> CLOSED
rcv_nxt 0 rcv_wnd 0 snd_una 0 snd_nxt 0 snd_max 0
snd_wl1 0 snd_wl2 0 snd_wnd 0

365 SYN_SENT:output [fcbaf1a5..fcbaf1a9)@0(win=4000)<SYN> -> SYN_SENT
rcv_nxt 0 rcv_wnd 0 snd_una fcbaf1a5 snd_nxt fcbaf1a6 snd_max fcbaf1a6
snd_wl1 0 snd_wl2 0 snd_wnd 0

365 CLOSED:user CONNECT -> SYN_SENT
rcv_nxt 0 rcv_wnd 0 snd_una fcbaf1a5 snd_nxt fcbaf1a6 snd_max fcbaf1a6
snd_wl1 0 snd_wl2 0 snd_wnd 0

365 SYN_SENT:input 4b96e888@fcbaf1a6(win=4410)<SYN,ACK> -> ESTABLISHED
rcv_nxt 4b96e889 rcv_wnd 4410 snd_una fcbaf1a6 snd_nxt fcbaf1a6 snd_max fcbaf1a6
snd_wl1 4b96e889 snd_wl2 fcbaf1a6 snd_wnd 4410

...(lines omitted)...
591 LAST_ACK:output fcbaf1d3@4b96e914(win=4410)<ACK,FIN> -> LAST_ACK

rcv_nxt 4b96e914 rcv_wnd 4410 snd_una fcbaf1d3 snd_nxt fcbaf1d4 snd_max fcbaf1d4
snd_wl1 4b96e913 snd_wl2 fcbaf1d3 snd_wnd 4410

591 CLOSE_WAIT:user SHUTDOWN -> LAST_ACK
rcv_nxt 4b96e914 rcv_wnd 4410 snd_una fcbaf1d3 snd_nxt fcbaf1d4 snd_max fcbaf1d4
snd_wl1 4b96e913 snd_wl2 fcbaf1d3 snd_wnd 4410

How to display timers at each point in the trace
To print the values for all timers at each point in the trace in addition to the normal
output, use the -t parameter with the trpt command as in Example 7-98. The
following example contains the same information as Example 7-94 on page 611
and Example 7-95 on page 611, but with additional detail.

Example 7-98 Using trpt -t
trpt -t

7064fbe8:
365 CLOSED:user ATTACH -> CLOSED
365 SYN_SENT:output [fcbaf1a5..fcbaf1a9)@0(win=4000)<SYN> -> SYN_SENT

REXMT=6 (t_rxtshft=0), KEEP=150
365 CLOSED:user CONNECT -> SYN_SENT

REXMT=6 (t_rxtshft=0), KEEP=150
365 SYN_SENT:input 4b96e888@fcbaf1a6(win=4410)<SYN,ACK> -> ESTABLISHED
365 ESTABLISHED:output fcbaf1a6@4b96e889(win=4410)<ACK> -> ESTABLISHED
365 ESTABLISHED:output [fcbaf1a6..fcbaf1b5)@4b96e889(win=4410)<ACK,PUSH> -> ESTABLISHED

REXMT=3 (t_rxtshft=0)
365 ESTABLISHED:user SEND -> ESTABLISHED

REXMT=3 (t_rxtshft=0)
...(lines omitted)...

591 ESTABLISHED:output fcbaf1d3@4b96e913(win=4410)<ACK> -> ESTABLISHED
591 ESTABLISHED:input 4b96e913@fcbaf1d3(win=4410)<ACK,FIN> -> CLOSE_WAIT
591 CLOSE_WAIT:output fcbaf1d3@4b96e914(win=4410)<ACK> -> CLOSE_WAIT
591 LAST_ACK:output fcbaf1d3@4b96e914(win=4410)<ACK,FIN> -> LAST_ACK
 Chapter 7. Network performance tools 613

REXMT=3 (t_rxtshft=0), 2MSL=1200
591 CLOSE_WAIT:user SHUTDOWN -> LAST_ACK

REXMT=3 (t_rxtshft=0), 2MSL=1200
614 AIX 5L Performance Tools Handbook

Chapter 8. Trace tools

This chapter describes the usage of the AIX trace command and the tools that
support or post-process the output of it.

� The trace command, described in Section 8.9, “trace” on page 685, is used
to monitor statistics of user and kernel subsystems in detail.

� The trcrpt command, described in Section 8.11, “trcrpt” on page 704, is
used to format a raw trace file into a readable trace file.

� The trcnm command, described in Section 8.10, “trcnm” on page 702, is used
to generate a list of all symbols with their addresses defined in the kernel.

� The gennames command, described in Section 8.5, “gennames” on page 644,
is used to gather address mapping information necessary for other
commands.

� The stripnm command, described in Section 8.8, “stripnm” on page 682,
produces an output similar to the output generated by the gennames
command, which is required for using the tprof, filemon, netpmon, and pprof
commands in real-time mode.

� The genkex command, described in Section 8.2, “genkex” on page 640,
extracts the list of kernel extensions currently loaded into the system and
displays the address, size, and path name for each kernel extension in the
list.

� The genkld command, described in Section 8.3, “genkld” on page 641,
extracts the list of shared objects for all processes currently loaded into the

8

© Copyright IBM Corp. 2001 615

shared segment and displays the address, size, and path name for each
object on the list.

� The genld command, described in Section 8.4, “genld” on page 643, collects
the list of all processes currently running on the system, and optionally
reports the list of loaded objects corresponding to each process.

� The curt command, described in Section 8.1, “curt” on page 616, is a trace
post processing tool that summarizes system utilization. Usually you would
look at the output of the curt command to get an overview of the state of the
system before analyzing the trace in detail.

� The locktrace command, described in Section 8.6, “locktrace” on page 651,
is used to determine which kernel locks will be traced by the trace subsystem.

� The splat command, described in Section 8.7, “splat” on page 653, is a trace
post processing tool that produces kernel limple_lock usage reports.

8.1 curt
The CPU Utilization Reporting Tool (curt) is a tool that takes an AIX trace file
as input and produces a number of statistics related to CPU utilization and
process/thread activity. These easy-to-read statistics allows quick and easy
tracking of what a specific application is doing. curt works with both
uniprocessor and multiprocessor AIX Version 4 and AIX 5L traces. For
information on trace, refer to Section 8.9, “trace” on page 685.

curt can be obtained from the following ftp site:

ftp://ftp.software.ibm.com/aix/tools/perftools/curt/

There are two files in this directory that you need:

� ptools.curt, which is the installp image for curt

� ptools.utilities, which is an auxiliary installp image and a prerequisite for
ptools.curt

8.1.1 Syntax
The syntax for the curt command is as follows:

curt -i inputfile [-o outputfile] [-n gennamesfile] [-m trcnmfile]
[-a pidnamefile] [-f timestamp] [-l timestamp] [-bcehprstv] [-V]

Flags
-i inputfile Specifies the input AIX trace file to be analyzed.
616 AIX 5L Performance Tools Handbook

-o outputfile Specifies an output file (default is stdout).

-n gennamesfile Specifies a names file produced by gennames.

-m trcnmfile Specifies a names file produced by trcnm.

-a pidnamefile Specifies a PID-to-process name mapping file.

-f timestamp Starts processing trace at timestamp seconds.

-l timestamp Stops processing trace at timestamp seconds.

-b Outputs Proc Table that was read from trace header.

-c Outputs counts for trace hook types that were processed.

-e Outputs elapsed time information for system calls.

-h Displays usage text (this information).

-p Shows ticks as trace processing progresses.

-r Outputs detailed process information.

-s Outputs information about errors returned by system
calls.

-t Outputs detailed thread by thread information.

-v Displays curt version information only (do not run).

-V Verbose mode.

Parameters

inputfile The AIX trace file that should be processed by curt.

gennamesfile The names file as produced by gennames.

trcnmfile The names file as produced by trcnm.

outputfile The names of the output file created by curt.

pidnamefile If the trace process name table is not accurate, or if
more descriptive names are desired, use the -a flag to
specify a PID to process name mapping file. This is a
file with lines consisting of a process ID (in decimal)
followed by a space, then an ASCII string to use as the
name for that process.

timestamp The time in seconds at which to start and stop the trace
file processing.
 Chapter 8. Trace tools 617

8.1.2 Information on measurement and sampling
A raw (unformatted) system trace from AIX Version 4 or AIX 5L is read by curt to
produce summaries on CPU utilization and first and second level interrupt
handlers. This summary information is useful for determining which application,
system call, or interrupt handler is using most of the CPU time and is a candidate
to be optimized to improve system performance.

Table 8-1 lists the minimum trace hooks required for curt. Using only these trace
hooks will limit the size of the trace file. However, other events on the system may
not be captured in this case. This is significant if you intend to analyze the trace
in more detail.

Table 8-1 Minimum trace hooks required for curt

HOOK ID Event Name Event Explanation

100 HKWD_KERN_FLIH Occurrence of a first level interrupt, such as
an I/O interrupt, a data access page fault,
or a timer interrupt (scheduler).

101 HKWD_KERN_SVC A thread has issued a system call.

102 HKWD_KERN_SLIH Occurrence of a second level interrupt, that
is, first level I/O interrupts are being passed
on to the second level interrupt handler who
then is working directly with the device
driver.

103 HKWD_KERN_SLIHRET Return from a second level interrupt to the
caller (usually a first level interrupt handler).

104 HKWD_KERN_SYSCRET Return from a system call to the caller
(usually a thread).

106 HKWD_KERN_DISPATCH A thread has been dispatched from the
runqueue to a CPU.

10C HKWD_KERN_IDLE The idle process has been dispatched.

119 HKWD_KERN_PIDSIG A signal has been sent to a process.

134 HKWD_SYSC_EXECVE An exec SVC has been issued by a (forked)
process.

135 HKWD_SYSC__EXIT An exit SVC has been issued by a process.

139 HKWD_SYSC_FORK A fork SVC has been issued by a process.

200 HKWD_KERN_RESUME A dispatched thread is being resumed on
the CPU.
618 AIX 5L Performance Tools Handbook

Trace hooks 119 and 135 are used to report on the time spent in the exit() system
call. This is special because a process will enter it, but will never return (because
the calling process terminates). However a SIGCHLD signal is sent to the parent
process of the exiting process, and this event is reflected in the trace by a
HKWD_KERN_PIDSIG trace hook. curt will match this trace hook up with the
exit() system call trace hook (HKWD_KERN_SVC) and treat it as the system call
return for the exit() system call.

8.1.3 Examples
To generate a trace to be used in the following examples, we need to perform the
following steps.

The first step is generate a system trace from the system. This can be done by
using the trace.sh script as supplied by perfpmr. See Section 3.5, “perfpmr” on
page 98 for details, or alternatively, you can run trace as shown in Example 8-1
on page 619 (see Section 8.9.4, “Ways to start and stop trace” on page 694 for
details on the trace command).

Preparing to run curt is a four stage process as follows:

1. Build the raw trace
This will create files as listed in Example 8-1. One raw trace file per CPU is
produced. The files are called trace.raw-0, trace.raw-1 and so forth for each
CPU. An additional raw trace file called trace.raw is also generated. This is a
master file that has information that ties in the other CPU specific traces.

2. Merge the trace files
To merge the trace files together to form one raw trace file, run the trcrpt
command as shown in Example 8-1.

3. Create the supporting files gennamesfile and trcnmfile
Neither the gennamesfile nor the trcnmfile file are necessary for curt to
run. However, if you provide one or both of those files, curt will output names
for system calls and interrupt handles instead of just addresses. The
gennames command output includes more information than the trcnm
command output, and so, while the trcnmfile will contain most of the
important address to name mapping data, a gennamesfile will enable curt to
output more names, especially interrupt handlers. gennames requires root
authority to run. trcnm can be run by any user.

4. Generate the curt output.

Example 8-1 Creating a trace file for curt to analyze
HOOKS="100,101,102,103,104,106,10C,119,134,135,139,200"
SIZE="1000000"
export HOOKS SIZE
trace -n -C all -d -j $HOOKS -L $SIZE -T $SIZE -afo trace.raw
 Chapter 8. Trace tools 619

trcon ; sleep 5 ; trcstop
unset HOOKS SIZE
ls trace.raw*
trace.raw trace.raw-0 trace.raw-1 trace.raw-2 trace.raw-3
trcrpt -C all -r trace.raw > trace.r
rm trace.raw*
ls trace*
trace.r
gennames > gennames.out
trcnm > trace.nm

Overview of the reports generated by curt
All reports, regardless of which flags you specify, display the following:

� A report header with the trace file name, the trace size, and the date and time
the trace was taken. It also details the command line used when the trace was
run.

� For each CPU (and a summary of all the CPUs), processing time expressed
in milliseconds and as a percentage (idle and non-idle percentages are
included) for various CPU usage categories.

� Average thread affinity across all CPUs and for each individual CPU.

� The total number of processes dispatched for each individual CPU.

� Statistics on the amount of time spend on each wait process expressed in
milliseconds and as a percentage of the total CPU time.

� Statistics on the amount of time spent in application and kernel mode
expressed in milliseconds and as a percentage by thread, process, and
process type. Also included are summaries for the number of threads per
process and per process type.

� Information on system calls that includes the name and address of the system
call, the number of times the system call was called, and the total time
expressed in milliseconds and as a percentage with average, minimum, and
maximum times the system call was running.

� Information on the first level interrupt handlers (FLIHs) that includes the type
of interrupt, the number of times the interrupt occurred, and the total time
spent handling the interrupt with average, minumum, and maximum times.
This information is given across all CPUs and for each individual CPU.

� Information on the second level interrupt handlers (SLIHs) which includes the
type of interrupt, the number of times the interrupt occurred and the total time
spent handling the interrupt with average, minumum and maximum times.
This information is given across all CPUs and for each individual CPU.
620 AIX 5L Performance Tools Handbook

� A summary that contains detailed information on each process, the time it
spent in application and kernel mode, its threads, and the system calls called
by these threads.

� A summary that contains detailed information on each thread, the process it
belongs to, the time it spent in application and kernel mode, and the system
calls it called. Further information on how many times the thread was
dispatched on each CPU, the procesor affinity, and interrupts that occured
while the thread was running.

Refer to “The default report” on page 622 for this report.

To create additional, specialized reports with curt, run the curt command using
the flags described below:

-b Produces a report that includes the statistics displayed in “The default
report” on page 622 and includes a process table that includes the Thread
ID, Process ID, and the Process name.

Refer to Example 8-12 on page 633 for this report.

-c Produces a report that includes the statistics displayed in “The default
report” on page 622, and includes a summary of trace hooks processed.

Refer to Example 8-13 on page 634 for this report.

-e Produces a report that includes the statistics displayed in “The default
report” on page 622 and includes additional information on the System
Calls Summary Report. The additional information pertains to the total,
average, maximum, and minimum elapsed times a system call was
running.

Refer to Example 8-14 on page 634 for this report.

-s Produces a report that includes the statistics displayed in “The default
report” on page 622, and includes a report on errors returned by system
calls.

Refer to Example 8-15 on page 636 for this report.

-t Produces a report that includes the statistics displayed in “The default
report” on page 622, and includes a detailed report on thread status that
includes the amount of time the thread was in application and kernel mode,
what system calls the thread made, processor affinity, the number of times
the thread was dispatched, and to what CPU it was dispatched to. The
report also includes dispatch wait times and details of interrupts.

Refer to Example 8-16 on page 636 for this report

-r Produces a report that includes the statistics displayed “The default report”
on page 622 and a detailed report on process status that includes the
 Chapter 8. Trace tools 621

amount of time the process was in application and kernel mode, which
threads were in the process, and what system calls the process made.

Refer to Example 8-17 on page 639 for this report

The default report
This section explains the default report created by curt, using the following
command:

curt -i trace.r -m trace.nm -n gennames.out -o curt.out

The curt output always includes this default report in its output, even if one of the
flags described in the previous section is used.

The generated report has been divided into its individual components for clarity.

General information
The first information given by curt is the curt version number, the time when that
curt version was built, and the time and date when this particular curt command
was run, including the syntax of the curt command run.

Following that, some information about the AIX trace file that was processed by
curt is displayed. This consists of the trace file's name, size, and its creation
date. After that, the command used to invoke the AIX trace facility and gather the
trace file is displayed.

A sample of this output is shown in Example 8-2.

Example 8-2 General information from curt.out

CURT (Cpu Utilization Reporting Tool) Version 1.0.18 (built Jan 18 2000)
Run on Fri May 25 11:08:46 2001
Command line was:
curt -i trace.r -m trace.nm -n gennames.out -o curt.out

AIX trace file name = trace.r
AIX trace file size = 1632496
AIX trace file created = Fri May 25 11:04:33 2001

Command used to gather AIX trace was:
trace -n -C all -d -j 100,101,102,103,104,106,10C,134,139,200 -L 1000000 -T 1000000 -afo
trace.raw
622 AIX 5L Performance Tools Handbook

System Summary
The next part of the default output is the System Summary produced by curt
(Example 8-3).

Example 8-3 The System Summary report from curt.out

 System Summary

 processing percent percent
 total time total time busy time
 (msec) (incl. idle) (excl. idle) processing category
=========== =========== =========== ===================
 15046.98 73.70 92.98 APPLICATION
 591.59 2.90 3.66 KERNEL
 486.19 2.38 3.00 FLIH
 49.10 0.24 0.30 SLIH
 8.83 0.04 0.05 DISPATCH (all procs. incl. IDLE)
 1.04 0.01 0.01 IDLE DISPATCH (only IDLE proc.)
----------- ---------- -------
 16182.69 79.26 100.00 CPU(s) busy time
 4234.76 20.74 WAIT
----------- ----------
 20417.45 TOTAL
Avg. Thread Affinity = 0.99

This portion of the report describes the time spent by the system as a whole (all
CPUs) in various execution modes.

The System Summary has the following fields:

Processing total This column gives the total time in milliseconds for the
time corresponding processing category.

Percent total time This column gives the time from the first column as a
percentage of the sum of total trace elapsed time for all
processors. This includes whatever amount of time each
processor spent running the IDLE process.

Percent busy This column gives the time from the first column as a
percentage of the sum of total trace elapsed time for all
processors without including the time each processor
spent executing the IDLE process.

Avg. Thread The Avg. Thread Affinity is the probability that
Affinity a thread was dispatched to the same processor that it last

executed on.
 Chapter 8. Trace tools 623

The possible execution modes or processing categories translate as follows:

APPLICATION The sum of times spent by all processors in User (that is,
non-supervisory or non-privileged) mode.

KERNEL The sum of times spent by all processors doing System
Calls, sometimes called Supervisory Calls. Although it is
labeled as kernel time, it is more accurately thought of as
system call time because it does not include other time a
processor spends executing in the kernel. Time spent
processing interrupts (FLIHs and SLIHs) or exceptions or
in the dispatch code is also kernel time, but is not included
in this category.

FLIH The sum of times spent by all processors in FLIHs (First
Level Interrupt Handlers). The FLIH time consists of the
time from when the FLIH is entered until the SLIH is
entered, then from when the SLIH returns back into the
FLIH until either dispatch or resume is called.

SLIH The sum of times spent by all processors in SLIHs
(Second Level Interrupt Handlers). The SLIH time consists
of the time from when a SLIH is entered until it returns.
Note nested interrupts may occur inside an SLIH. These
FLIH times are not counted as SLIH time but rather as
FLIH time as described above.

DISPATCH The sum of times spent by all processors in the AIX
dispatch code. The time starts when the dispatch code is
entered and ends when the resume code is entered. The
dispatch code corresponds to the OS, deciding which
thread will run next and doing the necessary
bookkeeping. This time includes the time spent
dispatching all threads (that is, includes the dispatch of
the IDLE process).

IDLE DISPATCH The sum of times spent by all processors in the AIX
dispatch code where the process being dispatched was
the IDLE process. Because it is the IDLE process being
dispatched, the overhead spent in dispatching is less
critical than other dispatch times where there is useful
work being dispatched. Because the Dispatch category
already includes the IDLE Dispatch category's time, the
IDLE Dispatch category’s time will not be included in
either of the total categories CPU busy time or TOTAL.

CPU(s) busy time The sum of times spent by all processors executing in
application, kernel, FLIH, SLIH, and dispatch modes.
624 AIX 5L Performance Tools Handbook

WAIT The sum of times spent by all processors executing the
IDLE process.

TOTAL The sum of CPU(s) busy time and WAIT.

By looking at the System Summary in Example 8-3 on page 623, it can be seen
that the CPU is spending most of its time in application mode. We still have
4234.76 ms of wait time so we know that we have enough CPU to run our
applications. The Wait Summary, which can be seen in Example 8-5 on page 626,
reports similar values. If there was insufficient CPU power then we would not
expect to see any wait time. The Avg. Thread Affinity value is 0.99 showing
good processor affinity, that is threads returning to the same processor when
they are ready to be re-run.

Processor Summary
This part of the curt output follows the System Summary and is essentially the
same information but broken down on a processor by processor basis. The same
description that was given for the System Summary applies here, except that the
phrase "sum of times spent by all processors" can be replaced by "time
spent by this processor".

A sample of this output is shown in Example 8-4.

Example 8-4 The Processor Summary from curt.out

Processor Summary processor number 0

 processing percent percent
 total time total time busy time
 (msec) (incl. idle) (excl. idle) processing category
=========== =========== =========== ===================
 92.90 1.82 10.64 APPLICATION
 591.39 11.58 67.71 KERNEL
 173.78 3.40 19.90 FLIH
 9.27 0.18 1.06 SLIH
 6.07 0.12 0.70 DISPATCH (all procs. incl. IDLE)
 1.04 0.02 0.12 IDLE DISPATCH (only IDLE proc.)
----------- ---------- -------
 873.42 17.10 100.00 CPU(s) busy time
 4232.92 82.90 WAIT
----------- ----------
 5106.34 TOTAL
Avg. Thread Affinity = 0.98

Total number of process dispatches = 1620

 Processor Summary processor number 1

 Chapter 8. Trace tools 625

 processing percent percent
 total time total time busy time
 (msec) (incl. idle) (excl. idle) processing category
=========== =========== =========== ===================
 4985.81 97.70 97.70 APPLICATION
 0.09 0.00 0.00 KERNEL
 103.86 2.04 2.04 FLIH
 12.54 0.25 0.25 SLIH
 0.97 0.02 0.02 DISPATCH (all procs. incl. IDLE)
 0.00 0.00 0.00 IDLE DISPATCH (only IDLE proc.)
----------- ---------- -------
 5103.26 100.00 100.00 CPU(s) busy time
 0.00 0.00 WAIT
----------- ----------
 5103.26 TOTAL
Avg. Thread Affinity = 0.99

Total number of process dispatches = 516

...(lines omitted)...

The Total number of process dispatches refers to how many times AIX
dispatched any non-IDLE process on this processor.

Wait Summary
On SMP machines it can be observed that for each processor in the system one
wait process is running. The Wait Summary displays the time each processor
has spent executing its wait process (Example 8-5).

Example 8-5 The Wait Summary from curt.out

Wait Summary

 time percent
 (msec) total time name(Pid Tid) - (Cpuid:Times Dispatched)
=========== =========== ===
 4232.9216 20.7319 wait(516 517) - (Cpu0:864)
 1.8365 0.0090 wait(1290 1291) - (Cpu3:1)

...(lines omitted)...

The Wait Summary has the following fields:

Time (msec) The time in milliseconds that one particular CPU has
spent executing its wait process.

Percent total time The percentage of the total system time that was spent by
a particular CPU executing its wait process.
626 AIX 5L Performance Tools Handbook

Name (Pid Tid) The name of the wait process (they may be called kproc
or wait), its process ID, and its thread ID.

CPUid:Times The number of the CPU that processed the wait process,
Dispatched and the number of times the wait process got dispatched

onto that particular CPU.

Application and Kernel Summary
The Application and Kernel Summary of curt shows an output of all the threads
that were running on the system during the time of trace collection and their CPU
consumption (Example 8-6). The thread that consumed the most CPU time
during the time of the trace collection is on top of the list.

Example 8-6 The Application and Kernel Summary from curt.out

Application and Kernel Summary

 -- processing total (msec) -- -- percent of total processing time --
 combined application kernel combined application kernel procname (Pid Tid)
 ======== =========== ====== ======== =========== ====== =======================
4986.2355 4986.2355 0.0000 24.4214 24.4214 0.0000 cpu (18418 32437)
4985.8051 4985.8051 0.0000 24.4193 24.4193 0.0000 cpu (19128 33557)
4982.0331 4982.0331 0.0000 24.4009 24.4009 0.0000 cpu (18894 28671)
 83.8436 2.5062 81.3374 0.4106 0.0123 0.3984 disp+work(20390 28397)
 72.5809 2.7269 69.8540 0.3555 0.0134 0.3421 disp+work(18584 32777)
 69.8023 2.5351 67.2672 0.3419 0.0124 0.3295 disp+work(19916 33033)
 63.6399 2.5032 61.1368 0.3117 0.0123 0.2994 disp+work(17580 30199)
 63.5906 2.2187 61.3719 0.3115 0.0109 0.3006 disp+work(20154 34321)
 62.1134 3.3125 58.8009 0.3042 0.0162 0.2880 disp+work(21424 31493)
 60.0789 2.0590 58.0199 0.2943 0.0101 0.2842 disp+work(21992 32539)
...(lines omitted)...

The output is divided into two main sections, of which one shows the total
processing time of the thread in milliseconds (processing total (msec)), and
the other shows the CPU time the thread has consumed, expressed as a
percentage of the total CPU time (percent of total processing time).

The Application and Kernel Summary has the following fields:

procname (Pid Tid) The name of the process associated with the thread, its
process id, and its thread id.

Processing total (msec)

combined The total amount of time, expressed in milliseconds, the
thread was running in either application or kernel mode.

application The amount of time, expressed in milliseconds, the thread
spent in application mode.
 Chapter 8. Trace tools 627

kernel The amount of time, expressed in milliseconds, the thread
spent in kernel mode.

Percent of total processing time

combined The amount of time the thread was running, expressed as
percentage of the total processing time.

application The amount of time the thread the thread spent in
application mode, expressed as percentage of the total
processing time.

kernel The amount of time the thread spent in kernel mode,
expressed as percentage of the total processing time.

In our example, we can look further into why the system is spending so much
time in application mode by looking at the Application and Kernel Summary,
where we can see the top three processes of the report are called cpu. cpu is a
test program that burns up CPU time. The report shows once again that the CPU
spent most of its time in application mode running the cpu process. If we wanted
to learn more about this process, we could run the gprof command (see
Section 4.5, “gprof” on page 235) and profile the process, or alternatively look
directly at the formatted trace file (after formatting the trace file with the trcrpt
command (see Section 8.11, “trcrpt” on page 704)) focusing on that specific
process to determine what the process is doing.

Application and Kernel Summary (by Pid)
The Application and Kernel Summary (by PID) has the same content as the
Application and Kernel Summary, except that this time the threads that belong to
each process are consolidated and the process that consumed the most CPU
time during the monitoring period heads the list.

The column procname (Pid) (Thread Count) shows the process name, its
process id, and the number of threads that belong to this process and have been
accumulated for this statistic (Example 8-7).

Example 8-7 The Application and Kernel Summary (by PID) from curt.out

Application and Kernel Summary (by Pid)

 -- processing total (msec) -- -- percent of total processing time --
 combined application kernel combined application kernel procname (Pid)(Thread Count)
 ======== =========== ====== ======== =========== ====== ============================
4986.2355 4986.2355 0.0000 24.4214 24.4214 0.0000 cpu(18418)(1)
4985.8051 4985.8051 0.0000 24.4193 24.4193 0.0000 cpu(19128)(1)
4982.0331 4982.0331 0.0000 24.4009 24.4009 0.0000 cpu(18894)(1)
 83.8436 2.5062 81.3374 0.4106 0.0123 0.3984 disp+work(20390)(1)
 72.5809 2.7269 69.8540 0.3555 0.0134 0.3421 disp+work(18584)(1)
 69.8023 2.5351 67.2672 0.3419 0.0124 0.3295 disp+work(19916)(1)
628 AIX 5L Performance Tools Handbook

 63.6399 2.5032 61.1368 0.3117 0.0123 0.2994 disp+work(17580)(1)
 63.5906 2.2187 61.3719 0.3115 0.0109 0.3006 disp+work(20154)(1)
 62.1134 3.3125 58.8009 0.3042 0.0162 0.2880 disp+work(21424)(1)
 60.0789 2.0590 58.0199 0.2943 0.0101 0.2842 disp+work(21992)(1)
...(lines omitted)...

Application and Kernel Summary (by process type)
The Application and Kernel Summary (by process type) consolidates all
processes of the same name and sorts them in descending order of combined
processing time (Example 8-8).

The proc name (thread count) column shows the name of the process, and the
number of threads that belong to this process name (type) and were running on
the system during the monitoring period.

Example 8-8 The Application and Kernel Summary (by process type) from curt.out

 Application and Kernel Summary (by process type)

 -- processing total (msec) -- -- percent of total processing time --
 combined application kernel combined application kernel proc name (thread count)
 ======== =========== ====== ======== =========== ====== ========================
14954.0738 14954.0738 0.0000 73.2416 73.2416 0.0000 cpu(3)
 573.9466 21.2609 552.6857 2.8111 0.1041 2.7069 disp+work(9)
 30.4374 30.4374 0.0000 0.1491 0.1491 0.0000 lrud(1)
 20.9568 5.5820 15.3748 0.1026 0.0273 0.0753 trcstop(1)
 10.6151 2.4241 8.1909 0.0520 0.0119 0.0401 i4llmd(1)
 10.1069 10.1069 0.0000 0.0495 0.0495 0.0000 wlmsched(1)
 8.7146 5.3062 3.4084 0.0427 0.0260 0.0167 dtgreet(1)
 7.7833 7.7833 0.0000 0.0381 0.0381 0.0000 gil(4)
 7.6063 1.4893 6.1171 0.0373 0.0073 0.0300 sleep(1)
...(lines omitted)...

System Calls Summary
The System Calls Summary provides a list of all the system calls that have been
used on the system during the monitoring period (Example 8-9). The list is sorted
by the total time in milliseconds consumed by each type of system call.

Example 8-9 The System Calls Summary from curt.out

 System Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time SVC (Address)
 (msec) time (msec) (msec) (msec)
======== =========== ====== ======== ======== ======== ================
 605 355.4475 1.74% 0.5875 0.0482 4.5626 kwrite(4259c4)
 Chapter 8. Trace tools 629

 733 196.3752 0.96% 0.2679 0.0042 2.9948 kread(4259e8)
 3 9.2217 0.05% 3.0739 2.8888 3.3418 execve(1c95d8)
 38 7.6013 0.04% 0.2000 0.0051 1.6137 __loadx(1c9608)
 1244 4.4574 0.02% 0.0036 0.0010 0.0143 lseek(425a60)
 45 4.3917 0.02% 0.0976 0.0248 0.1810 access(507860)
 63 3.3929 0.02% 0.0539 0.0294 0.0719 _select(4e0ee4)
 2 2.6761 0.01% 1.3380 1.3338 1.3423 kfork(1c95c8)
 207 2.3958 0.01% 0.0116 0.0030 0.1135 _poll(4e0ecc)
 228 1.1583 0.01% 0.0051 0.0011 0.2436 kioctl(4e07ac)
 9 0.8136 0.00% 0.0904 0.0842 0.0988 .smtcheckinit(1b245a8)
 5 0.5437 0.00% 0.1087 0.0696 0.1777 open(4e08d8)
 15 0.3553 0.00% 0.0237 0.0120 0.0322 .smtcheckinit(1b245cc)
 2 0.2692 0.00% 0.1346 0.1339 0.1353 statx(4e0950)
 33 0.2350 0.00% 0.0071 0.0009 0.0210 _sigaction(1cada4)
 1 0.1999 0.00% 0.1999 0.1999 0.1999 kwaitpid(1cab64)
 102 0.1954 0.00% 0.0019 0.0013 0.0178 klseek(425a48)
...(lines omitted)...

The System Calls Summary has the following fields:

Count The number of times a system call of a certain type (see
SVC (Address)) has been used (called) during the
monitoring period.

Total Time (msec) The total time the system spent processing these system
calls, expressed in milliseconds.

% sys time The total time the system spent processing these system
calls, expressed as a percentage of the total processing
time.

Avg Time (msec) The average time the system spent processing one
system call of this type, expressed in milliseconds.

Min Time (msec) The minimum time the system needed to process one
system call of this type, expressed in milliseconds.

Max Time (msec) The maximum time the system needed to process one
system call of this type, expressed in milliseconds.

SVC (Address) The name of the system call and its kernel address.

Flih Summary
The Flih (First Level Interrupt Handler) Summary lists all first level interrupt
handlers that were called during the monitoring period (Example 8-10 on
page 631).

The Global Flih Summary lists the total of first level interrupts on the system,
while the Per CPU Flih Summary lists the first level interrupts per CPU.
630 AIX 5L Performance Tools Handbook

Example 8-10 The Flih summaries from curt.out

 Global Flih Summary

 Count Total Time Avg Time Min Time Max Time Flih Type
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =========
 2183 203.5524 0.0932 0.0041 0.4576 31(DECR_INTR)
 946 102.4195 0.1083 0.0063 0.6590 3(DATA_ACC_PG_FLT)
 12 1.6720 0.1393 0.0828 0.3366 32(QUEUED_INTR)
 1058 183.6655 0.1736 0.0039 0.7001 5(IO_INTR)

Per CPU Flih Summary

CPU Number 0:
 Count Total Time Avg Time Min Time Max Time Flih Type
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =========
 635 39.8413 0.0627 0.0041 0.4576 31(DECR_INTR)
 936 101.4960 0.1084 0.0063 0.6590 3(DATA_ACC_PG_FLT)
 9 1.3946 0.1550 0.0851 0.3366 32(QUEUED_INTR)
 266 33.4247 0.1257 0.0039 0.4319 5(IO_INTR)

CPU Number 1:
 Count Total Time Avg Time Min Time Max Time Flih Type
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =========
 4 0.2405 0.0601 0.0517 0.0735 3(DATA_ACC_PG_FLT)
 258 49.2098 0.1907 0.0060 0.5076 5(IO_INTR)
 515 55.3714 0.1075 0.0080 0.3696 31(DECR_INTR)
...(lines omitted)...

The Flih Summary report has the following fields:

Count The number of times a first level interrupt of a certain type
(see Flih Type) occurred during the monitoring period.

Total Time (msec) The total time the system spent processing these first
level interrupts, expressed in milliseconds.

Avg Time (msec) The average time the system spent processing one first
level interrupt of this type, expressed in milliseconds.

Min Time (msec) The minimum time the system needed to process one first
level interrupt of this type, expressed in milliseconds.

Max Time (msec) The maximum time the system needed to process one
first level interrupt of this type, expressed in milliseconds.
 Chapter 8. Trace tools 631

Flih Type The number and name of the first level interrupt.

Flih types in the example:

DATA_ACC_PG_FLT Data access page fault

QUEUED_INTR Queued interrupt

DECR_INTR Decrementer interrupt

IO_INTR I/O interrupt

Slih Summary
The Slih (Second level interrupt handler) Summary lists all second level
interrupts handler that were called during the monitoring period (Example 8-11).

The Global Slih Summary lists the total of second level interrupts on the system,
while the Per CPU Slih Summary lists the second level interrupts per CPU.

Example 8-11 The Slih summaries from curt.out

 Global Slih Summary

 Count Total Time Avg Time Min Time Max Time Slih Name(Address)
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =================
 43 7.0434 0.1638 0.0284 0.3763 .copyout(1a99104)
 1015 42.0601 0.0414 0.0096 0.0913 .i_mask(1990490)

 Per CPU Slih Summary

CPU Number 0:
 Count Total Time Avg Time Min Time Max Time Slih Name(Address)
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =================
 8 1.3500 0.1688 0.0289 0.3087 .copyout(1a99104)
 258 7.9232 0.0307 0.0096 0.0733 .i_mask(1990490)

CPU Number 1:
 Count Total Time Avg Time Min Time Max Time Slih Name(Address)
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =================
 10 1.2685 0.1268 0.0579 0.2818 .copyout(1a99104)
 248 11.2759 0.0455 0.0138 0.0641 .i_mask(1990490)

...(lines omitted)...
632 AIX 5L Performance Tools Handbook

The Slih Summary report has the following fields:

Count The number of times each second level interrupt handler
was called during the monitoring period.

Total Time (msec) The total time the system spent processing these second
level interrupts, expressed in milliseconds.

Avg Time (msec) The average time the system spent processing one
second level interrupt of this type, expressed in
milliseconds.

Min Time (msec) The minimum time the system needed to process one
second level interrupt of this type, expressed in
milliseconds.

Max Time (msec) The maximum time the system needed to process one
second level interrupt of this type, expressed in
milliseconds.

Slih Name (Address) The name and kernel address of the second level
interrupt.

Report generated with the -b flag
The report generated with the -b flag includes the reports shown in “The default
report” on page 622 and also includes a process table that includes the Thread
ID, Process ID, and the Process name. Lines in the report have been removed to
keep it to a presentable size (Example 8-12).

Example 8-12 curt output with the -b flag
curt -b -i trace.r -m trace.nm -n gennames.out -o curt.out
cat curt.out
...(lines omitted)...
(start of proc table - (tid pid name))
35515 24908 bsh
33325 24594 telnetd
35057 24528 kdb_mp
36093 24296 ksh
21965 23720 view
34187 23004 ps
33957 22532 trace
36421 22346 aixterm
24717 22096 ksh
32539 21992 disp+work
34579 21682 disp+work
31493 21424 disp+work
37551 21054 telnetd
31821 20814 ksh
36613 20560 ksh
28397 20390 disp+work
 Chapter 8. Trace tools 633

...(lines omitted)...

Report generated with the -c flag
The report generated with the -c flag includes the reports shown in “The default
report” on page 622, and also includes a summary of trace hooks processed
(Example 8-13).

Example 8-13 curt output with the -c flag
curt -c -i trace.r -m trace.nm -n gennames.out -o curt.out
cat curt.out
...(lines omitted)...
Summary of Tracehooks processed

nsvc= 3458
nsyscret= 3441
nflih= 4199
nresume= 5601
nslih= 1058
nslihret= 1058
ndispatch= 3167
nidle= 865
nfork= 2
nexecve= 3
nutil= 0
nsyscexit = ??
npidsig = ??
Total Trace Hooks Seen = 22868
(found 3 HKWD_KERN_RESUME hooks that were assumed to be a SVC return).
note: util hooks are currently filtered by tracereader and may have been > 0.
...(lines omitted)...

Report generated with the -e flag
The report generated with the -e flag includes the reports shown in “The default
report” on page 622, and also includes additional information in the System Calls
Summary report (Example 8-14). The additional information pertains to the total,
average, maximum, and minimum elapsed times a system call was running.

Example 8-14 curt output with the -e flag
curt -e -i trace.r -m trace.nm -n gennames.out -o curt.out
cat curt.out
...(lines omitted)...

System Calls Summary

Count Total % sys Avg Min Max Tot Avg Min Max SVC
 Time time Time Time Time ETime ETime Etime ETime (Address)
 (msec) (msec) (msec) (msec) (msec) (msec) (msec) (msec)
===== ======== ===== ====== ====== ====== ========== ========= ========= ========= ======================
634 AIX 5L Performance Tools Handbook

 605 355.4475 1.74% 0.5875 0.0482 4.5626 31172.7658 51.5252 0.0482 422.2323 kwrite(4259c4)
 733 196.3752 0.96% 0.2679 0.0042 2.9948 12967.9407 17.6916 0.0042 265.1204 kread(4259e8)
 3 9.2217 0.05% 3.0739 2.8888 3.3418 57.2051 19.0684 4.5475 40.0557 execve(1c95d8)
 38 7.6013 0.04% 0.2000 0.0051 1.6137 12.5002 0.3290 0.0051 3.3120 __loadx(1c9608)
 1244 4.4574 0.02% 0.0036 0.0010 0.0143 4.4574 0.0036 0.0010 0.0143 lseek(425a60)
 45 4.3917 0.02% 0.0976 0.0248 0.1810 4.6636 0.1036 0.0248 0.3037 access(507860)
 63 3.3929 0.02% 0.0539 0.0294 0.0719 5006.0887 79.4617 0.0294 100.4802 _select(4e0ee4)
 2 2.6761 0.01% 1.3380 1.3338 1.3423 45.5026 22.7513 7.5745 37.9281 kfork(1c95c8)
 207 2.3958 0.01% 0.0116 0.0030 0.1135 4494.9249 21.7146 0.0030 499.1363 _poll(4e0ecc)
 228 1.1583 0.01% 0.0051 0.0011 0.2436 1.1583 0.0051 0.0011 0.2436 kioctl(4e07ac)
 9 0.8136 0.00% 0.0904 0.0842 0.0988 4498.7472 499.8608 499.8052 499.8898 .smtcheckinit(1b245a8)
 5 0.5437 0.00% 0.1087 0.0696 0.1777 0.5437 0.1087 0.0696 0.1777 open(4e08d8)
 15 0.3553 0.00% 0.0237 0.0120 0.0322 0.3553 0.0237 0.0120 0.0322 .smtcheckinit(1b245cc)
 2 0.2692 0.00% 0.1346 0.1339 0.1353 0.2692 0.1346 0.1339 0.1353 statx(4e0950)
 33 0.2350 0.00% 0.0071 0.0009 0.0210 0.2350 0.0071 0.0009 0.0210 _sigaction(1cada4)
 1 0.1999 0.00% 0.1999 0.1999 0.1999 5019.0588 5019.0588 5019.0588 5019.0588 kwaitpid(1cab64)
 102 0.1954 0.00% 0.0019 0.0013 0.0178 0.5427 0.0053 0.0013 0.3650 klseek(425a48)
...(lines omitted)...

The System Calls Summary in the above example has the following fields in
addition to the default System Calls Summary displayed in Example 8-9 on
page 629:

Tot ETime (msec) The total amount of time the system call was started to
when it completed. This time will include any times spent
servicing interrupts, running other processes, and so
forth.

Avg ETime (msec) The average amount of time the system call was started
to when it completed. This time will include any times
spent servicing interrupts, running other processes, and
so forth.

Min ETime (msec) The minimum amount of time the system call was started
to when it completed. This time will include any times
spent servicing interrupts, running other processes, and
so forth.

Max ETime (msec) The maximum amount of time the system call was started
to when it completed. This time will include any times
spent servicing interrupts, running other processes, and
so forth.

The above report shows that the kwrite thread was runnable for 422.2323 msec
but only used 4.5626 msec of CPU time. Likewise, the kread thread was
runnable for 265.1204 msec but only used 2.9948 msec of CPU time. To
determine why the system calls are not running on the CPU, we need to look at
the trace file.
 Chapter 8. Trace tools 635

Report generated with the -s flag
The report generated with the -s flag includes the reports shown in “The default
report” on page 622 and also includes reports on errors returned by system calls
(Example 8-15).

Example 8-15 curt output with the -s flag
curt -s -i trace.r -m trace.nm -n gennames.out -o curt.out
cat curt.out
...(lines omitted)...
 Errors Returned by System Calls

Errors (errorno : count : description) returned for System call:
socket_aio_dequeue(0x11e0d8)
 11 : 485 : "Resource temporarily unavailable"
 Errors (errorno : count : description) returned for System call:
connext(0x11e24c)
75 : 7 : "Socket is already connected"
...(lines omitted)...

Sometimes comparing the average elapsed time and to the average eecution
time will show that a certain system call is being delayed by something
unexpected. Other debug measures can be used to fix the delay.

Report generated with the -t flag
The report generated with the -t flag includes the reports shown in “The default
report” on page 622 and also includes a detailed report on thread status that
includes the amount of time the thread was in application and kernel mode, what
system calls the thread made, processor affinity, the number of times the thread
was dispatched, and to what CPU it was dispatched to (Example 8-16). The
report also includes dispatch wait times and details of interrupts

Example 8-16 curt output with the -t flag

...(lines omitted)...

Report for Thread Id: 48841 (hex bec9) Pid: 143984 (kex 23270)
 Process Name: oracle

 Total Application Time (ms): 70.324465
 Total Kernel Time (ms): 53.014910

 Thread System Call Data
 Count Total Time Avg Time Min Time Max Time SVC (Address)
 (msec) (msec) (msec) (msec)
 ======== =========== =========== =========== =========== ================
 69 34.0819 0.4939 0.1666 1.2762 kwrite(169ff8)
636 AIX 5L Performance Tools Handbook

 77 12.0026 0.1559 0.0474 0.2889 kread(16a01c)
 510 4.9743 0.0098 0.0029 0.0467 times(f1e14)
 73 1.2045 0.0165 0.0105 0.0306 select(1d1704)
 68 0.6000 0.0088 0.0023 0.0445 lseek(16a094)
 12 0.1516 0.0126 0.0071 0.0241 getrusage(f1be0)

 No Errors Returned by System Calls

 processor affinity: 0.583333

 Dispatch Histogram for thread (CPUid : times_dispatched).
 CPU 0 : 23
 CPU 1 : 23
 CPU 2 : 9
 CPU 3 : 9
 CPU 4 : 8
 CPU 5 : 14
 CPU 6 : 17
 CPU 7 : 19
 CPU 8 : 1
 CPU 9 : 4
 CPU 10 : 1
 CPU 11 : 4

 total number of dispatches: 131
 total number of redispatches due to interupts being disabled: 1
 avg. dispatch wait time (ms): 8.273515

 Data on Interrupts that Occured while Thread was Running
 Type of Interrupt Count
 =============================== ============================
 Data Access Page Faults (DSI): 115
 Instr. Fetch Page Faults (ISI): 0
 Align. Error Interrupts: 0
 IO (external) Interrupts: 0
 Program Check Interrupts: 0
 FP Unavailable Interrupts: 0
 FP Imprecise Interrupts: 0
 RunMode Interrupts: 0
 Decrementer Interrupts: 18
 Queued (Soft level) Interrupts: 15

...(lines omitted)...

The information in the threads summary includes:

Thread ID The Thread ID of the thread.
 Chapter 8. Trace tools 637

Process ID The Process ID the thread belongs to.

Process Name The process name, if known, that the thread
belongs to.

Total Application Time (ms) The amount of time, expressed in
milliseconds, that the thread spent in
application mode.

Total Kernel Time (ms) The amount of time, expressed in
milliseconds, that the thread spent in kernel
mode.

Thread System Call Data A system call summary for the thread; this has
the same fields as the global System Call
Summary (see Example 8-9 on page 629). It
also includes elapsed times if the -e flag is
specified and error information if the -s flag is
specified.

processor affinity The process affinity, which is the probability
that, for any dispatch of the thread, the thread
was dispatched to the same processor that it
last executed on.

Dispatch Histogram for thread Shows the number of times the thread was
dispatched to each CPU in the system.

total number of dispatches The total number of times the thread was
dispatched (not including redispatches
described below).

total number of redispatches The number of redispatches due to interrupts
due to interrupts being being disabled, which is when the dispatch
disabled code is forced to dispatch the same thread

that is currently running on that particular
CPU because the thread had disabled some
interrupts. This is only shown if non-zero.

avg. dispatch wait time (ms) The average dispatch wait time is the average
elapsed time for the thread from being
undispatched and its next dispatch.

Data on Interrupts that This is a count of how many times each type
occurred while Thread was of Flih occurred while this thread was
Running executing.
638 AIX 5L Performance Tools Handbook

Report generated with the -r flag
The Process Summary gives detailed information about each process found in
the trace. Example 8-17 shows the report generated for the router process (Pid
129190).

Example 8-17 curt output with the -r flag

...(lines omitted)...

Process Details for Pid: 129190
 Process Name: router
 7 Tids for this Pid: 245889 245631 244599 82843 78701 75347
 28941
 Total Application Time (ms): 124.023749
 Total Kernel Time (ms): 8.948695

 Process System Call Data
 Count Total Time % sys Avg Time Min Time Max Time SVC (Address)
 (msec) time (msec) (msec) (msec)
======== =========== ====== ======== ======== ======== ================
 93 3.6829 0.05% 0.0396 0.0060 0.3077 kread(19731c)
 23 2.2395 0.03% 0.0974 0.0090 0.4537 kwrite(1972f8)
 30 0.8885 0.01% 0.0296 0.0073 0.0460 select(208c5c)
 1 0.5933 0.01% 0.5933 0.5933 0.5933 fsync(1972a4)
 106 0.4902 0.01% 0.0046 0.0035 0.0105 klseek(19737c)
 13 0.3285 0.00% 0.0253 0.0130 0.0387 semctl(2089e0)
 6 0.2513 0.00% 0.0419 0.0238 0.0650 semop(2089c8)
 3 0.1223 0.00% 0.0408 0.0127 0.0730 statx(2086d4)
 1 0.0793 0.00% 0.0793 0.0793 0.0793 send(11e1ec)
 9 0.0679 0.00% 0.0075 0.0053 0.0147 fstatx(2086c8)
 4 0.0524 0.00% 0.0131 0.0023 0.0348 kfcntl(22aa14)
 5 0.0448 0.00% 0.0090 0.0086 0.0096 yield(11dbec)
 3 0.0444 0.00% 0.0148 0.0049 0.0219 recv(11e1b0)
 1 0.0355 0.00% 0.0355 0.0355 0.0355 open(208674)
 1 0.0281 0.00% 0.0281 0.0281 0.0281 close(19728c)

...(lines omitted)...

The Process Summary includes the Process ID and name, and a count and list
of the thread IDs belonging to the process. The total application and kernel time
for all the threads of the process is given. Lastly, it includes a summary report of
all the system calls for the threads of the process.
 Chapter 8. Trace tools 639

8.2 genkex
The genkex command extracts the list of kernel extensions currently loaded into
the system and displays the address, size, and path name for each kernel
extension in the list.

genkex resides in /usr/bin and is part of the bos.perf.tools fileset, which is
installable from the AIX base installation media.

8.2.1 Syntax
genkex

8.2.2 Information on measurement and sampling
For kernel extensions loaded into the system, the kernel maintains a linked list
consisting of data structures called loader entries. A loader entry contains the
name of the extension, its starting address, and its size. This information is
gathered and reported by the genkex command.

8.2.3 Examples
Example 8-18 shows the output from running genkex.

Example 8-18 genkex report
genkex
Virtual Address Size File

 1b76960 87c4 /usr/lib/drivers/trcdd
 1b744c0 2494 /usr/lib/drivers/netintf
 1b6fc80 4824 /usr/lib/drivers/if_en
 1b67420 8848 /usr/pmapi/etc/pmsvcs
 1b50ec0 16540 /usr/lib/drivers/qos
 1a6fde0 dc38 /usr/lib/drivers/pci/kentdd
 5a78000 522b0 /usr/lib/drivers/pci/gxentdd
 1b446e0 c7bc /usr/lib/drivers/diagex
 1b389a0 bd1c /usr/lib/drivers/pdiagex
 1a99300 2e98 /usr/lib/drivers/tok_demux
 1a80a20 188bc /usr/lib/drivers/pci/cstokdd
 1b35340 3654 /usr/lib/driv ers/rmss.ext.mp
 1b2a620 ad04 /usr/lib/drivers/cfs.ext
 595e000 77f58 /usr/lib/drivers/nfs.ext
 1b2a2e0 32c /usr/lib/drivers/nfs_kdes.ext
 1b25460 4e74 /usr/lib/drivers/if_tr
 1b1fa80 59d8 /usr/lib/perf/perfstat
 1b1f888 1dc /usr/lib/drivers/smt_loadpin
640 AIX 5L Performance Tools Handbook

 1b1b080 4800 /usr/lib/drivers/smt_load
 1af9fc0 210b0 /usr/lib/drivers/rcm_loadpin
 1af89e0 15d8 /usr/lib/drivers/rcm_load
...

The columns in the previous example are:

Virtual Address Start of the virtual address in memory (in hex) where the
kernel extension resides.

Size Size in hex of the kernel extension.

File File where the kernel extension is loaded from.

As kernel extensions may be loaded more than once, they may appear more
than once with different virtual addresses and different sizes, but only if the file
has changed.

genkex is useful for determining who owns the extension. In example
Example 8-19, the /usr/lib/drivers/tok_demux kernel extension belongs to fileset
devices.common.IBM.tokenring.rte. If you experience problems with this kernel
extension, you can look at devices.common.IBM.tokenring.rte to determine the
problem.

Example 8-19 Determining the owner of a kernel extension
genkex | grep tok_demux
 1a99300 2e98 /usr/lib/drivers/tok_demux
lslpp -w /usr/lib/drivers/tok_demux
 File Fileset Type
 --
 /usr/lib/drivers/tok_demux
 devices.common.IBM.tokenring.rte File

8.3 genkld
The genkld command extracts the list of shared objects for all processes
currently loaded into the shared segment and displays the address, size, and
path name for each object on the list.

genkld resides in /usr/bin and is part of the bos.perf.tools fileset, which is
installable from the AIX base installation media.
 Chapter 8. Trace tools 641

8.3.1 Syntax
genkld

8.3.2 Information on measurement and sampling
For shared objects loaded into the system, the kernel maintains a linked list
consisting of data structures called loader entries. A loader entry contains the
name of the object, its starting address, and its size. This information is gathered
and reported by the genkld command.

8.3.3 Examples
The following is an example of running genkld (Example 8-20).

Example 8-20 Using genkld
genkld
Virtual Address Size File

 d013a100 4bbf /usr/lib/libperfstat.a/shr.o
 d013a100 4bbf /usr/lib/libperfstat.a/shr.o
 d2305d20 26837 /usr/lib/libxcurses.a/shr4.o
 d22d6100 2ee57 /usr/lib/libSpmi.a/spmishr.o
 d2305d20 26837 /usr/lib/libxcurses.a/shr4.o
 d22d6100 2ee57 /usr/lib/libSpmi.a/spmishr.o
 d00c3100 3e3d /usr/lib/libtrace.a/shr.o
 d00c3100 3e3d /usr/lib/libtrace.a/shr.o
 d00c2000 2cd /usr/lib/drivers/nfs.load/
 d00c1000 248 /usr/sbin/netstat_load/
 d072f100 1100d /usr/lib/libsrc.a/shr.o
 d07da50c a49 /usr/lib/libc.a/pse.o
 d07d1920 85ef /usr/lib/libtli.a/shr.o
 d0757900 795ad /usr/lib/libnsl.a/shr.o
 d00e7100 31bf6 /usr/lib/liblvm.a/shr.o
 d00c7860 1f314 /usr/lib/libsm.a/shr.o
 d1eab000 1b9b7 /usr/lib/boot/bin/libcfg_chrp/
 d246a4a0 1afab /usr/lib/libcur.a/shr32c.o
 d24510f8 1827b /usr/lib/libcur.a/shr.o
 d243d100 137f4 /usr/lib/libasl.a/shr.o
 d22a8100 2d6c5 /usr/lib/libdiag.a/shr.o
...

The example above contains the following columns:

Virtual Address Start of the virtual address in memory (in hex) where the
kernel extension resides. You can use the svmon
642 AIX 5L Performance Tools Handbook

command to get more detailed information on virtual
addresses.

Size Size in hex of the kernel extension.

File File where the kernel extension is loaded from.

If path names end with / (slash), then they are shared objects (as in the output of
the file command). If path names end without / (slash), then they are modules
of shared libraries.

If some shared libraries and shared objects are loaded more than once, than
there is an entry for each of them.

As kernel extensions may be loaded more that once, they may appear more than
once with different virtual addresses and different sizes.

8.4 genld
The genld command collects the list of all processes currently running on the
system, and optionally reports the list of loaded objects corresponding to each
process.

genld resides in /usr/bin and is part of the bos.perf.tools fileset, which is
installable from the AIX base installation media.

8.4.1 Syntax
genld

8.4.2 Information on measurement and sampling
For each process currently running, the genld command prints a report
consisting of the process ID and name. genld does not report on the loaded
libraries.

8.4.3 Examples
Example 8-21 shows output from genld.

Example 8-21 genCld report
#Proc_pid: 0 Proc_name: swapper

Proc_pid: 1 Proc_name: init

Proc_pid: 516 Proc_name: wait
 Chapter 8. Trace tools 643

Proc_pid: 774 Proc_name: wait

Proc_pid: 1032 Proc_name: wait

Proc_pid: 1290 Proc_name: wait

Proc_pid: 1548 Proc_name: lrud

Proc_pid: 1806 Proc_name: xmgc

Proc_pid: 2064 Proc_name: netm

Proc_pid: 2322 Proc_name: gil

Proc_pid: 2580 Proc_name: wlmsched

...(lines omitted)...

8.5 gennames
The gennames command gathers name to address mapping information
necessary for commands such as tprof, filemon, netpmon, pprof, and curt to
work in off-line mode. This is useful when it is necessary to post-process a trace
file from a remote system or perform the trace data collection at one time and
post-process it at another time.

gennames resides in /usr/bin and is part of the bos.perf.tools fileset, which is
installable from the AIX base installation media.

8.5.1 Syntax
The syntax of gennames is as follows:

gennames [-f] [ProgramName...]

Flags
-f In addition to the gennames output without the -f flag,

device information for logical and physical volumes and
the virtual file system information are printed. This
information is necessary for the filemon command to be
run in off-line mode.
644 AIX 5L Performance Tools Handbook

Parameters
ProgramName... Optional list of program names for which the output of the

stripnm command must be collected to allow the usage of
the tprof command with the -p flag in off-line mode.

The gennames command writes its output to standard output. For further use the
output needs to be redirected into a file.

8.5.2 Information on measurement and sampling
The gennames command gathers the following information:

� The Name to address mapping information for the currently running kernel
(/unix). The output is similar to the output of the stripnm /unix command.

� A list of all loaded kernel extensions. This list is similar to the output of the
genkex command. Please refer to Section 8.2, “genkex” on page 640 for more
information on the genkex command.

� A list of all loaded shared libraries. This list is similar to the output of the
genkld command. Please refer to Section 8.3, “genkld” on page 641 for more
information on the genkld command.

� For all kernel extensions and libraries, the output of the stripnm command.
Please refer to Section 8.8, “stripnm” on page 682 for more information on the
stripnm command.

� For all the loaded processes, the process ID and process name. The data
collected is similar to the data the genld command reports. Please refer to
Section 8.4, “genld” on page 643 for more information on the genld
command.

� The symbols defined in the system header file /usr/include/sys/lockname.h.

� The name to address mapping for optionally specified programs. The output
of the stripnm command is collected to allow subroutine breakdown with the
tprof command used in off-line mode with any of the specified programs.
Please refer to Section 8.8, “stripnm” on page 682 and Section 4.12, “tprof”
on page 275 for more information on the stripnm and tprof commands.

� The device information for logical and physical volumes and the virtual file
system information. This data is needed to run the filemon command in
off-line mode.
 Chapter 8. Trace tools 645

8.5.3 Examples
Example 8-22 shows the use of the gennames command to gather information for
later use by commands such as tprof, filemon, netpmon, pprof, and curt.

Example 8-22 Gather gennames output
gennames >gennames.out

Next we show small examples of the major sections in the output of the gennames
command.

The name to address mapping
The gennames command provides name to address mapping information for the
currently used kernel, the loaded kernel extensions, the loaded shared libraries,
and optionally the specified programs. Example 8-23 shows a part of the listing
for the kernel (/unix).

Example 8-23 Output of gennames showing the name to address mapping
gennames

gennames v1.1
 /unix | 00000000| 00000000| 0052b988| | |initialize
Symbols from /unix

 (... lines omitted ...)

../../../../../src/bos/kernel/net/llsleep.c| | file | |
| |
.llsleep | 1129384|unamex| | | |.text
.llsleep | 1129384|extern| | | |.text
.llsleep_timeout_rt | 1129800|unamex| | | |.text
.llsleep_timeout_rt | 1129800|extern| | | |.text
.llwakeup | 1129856|unamex| | | |.text
.llwakeup | 1129856|extern| | | |.text
_$STATIC | 1709080|unamex| | | |.text
llsleep | 1878320|extern| | | |.text
llsleep_timeout_rt | 1878332|extern| | | |.text
llwakeup | 1878344|extern| | | |.text

 (... lines omitted ...)

Attention: The output produced by the gennames command can exceed
300000 lines and 4 MB. The size depends on the number of loaded shared
libraries and kernel extensions. Opening this file in an editor may take some
time.
646 AIX 5L Performance Tools Handbook

The first line for each module, in this example /unix, shows the file name
followed by the load address, the text section offset within the module, and the
module size. These values are hexadecimal numbers. The symbol address
offsets, for example for the function .llwakeup, are decimal values that represent
the offset values of the symbols in the object modules text segment. To calculate
the address of a symbol, use the equation; start address + text offset + symbol
offset = address in memory. In the above example, the external function
.llwakeup is at offset 1129856. The load address and the text section offset of
/unix is zero. The resulting address for the .llwakeup symbol is 0 + 0 + 1129856
= 1129856. To verify this address, use the kdb sub command nm .llwakeup on
the same system. This returns the address for symbol .llwakeup in the running
kernel, in our case 0x113d80, that equals the above value (1129856).

The list of loaded kernel extensions
The information in this output section can be compared to the output of the
genkex command. The only difference is, that the gennames command integrates
the list of loaded kernel extensions information into the name to address
mapping listing. Example 8-24 shows the part for one kernel extension.

Example 8-24 Output of gennames showing the loaded kernel extensions
gennames

 (... lines omitted ...)

 /usr/lib/drivers/nfs.ext | 05988000| 00000100| 00077f58| | |initialize
Symbols from .__nfs.ext
.__nfs.ext | | file | | | |
.nfs_config | 0|extern| | | |.text
.init_kacl | 340|extern| | | |.text
.init_serv | 376|extern| | | |.text
.init_clnt | 616|extern| | | |.text
.fill_nfs_syms | 1460|extern| | | |.text
.init_nfs_syms | 1524|extern| | | |.text
.init_krpc | 2008|extern| | | |.text
.nfs_ulimit_64 | 2856|extern| | | |.text

 (... lines omitted ...)

In the above example the kernel extension /usr/lib/drivers/nfs.ext is loaded
at address 0x5988000. The size of the kernel extension is 0x77f58 bytes, and the
text offset is 0x100. This kernel extension file information is followed by the name
to address mapping information for this kernel extension.
 Chapter 8. Trace tools 647

The list of loaded shared libraries
The information in this output section can be compared to the output of the
genkld command. The only difference is that the gennames command integrates
the list of loaded shared libraries information into the name to address mapping
list. Example 8-25 shows part of the input for a shared library

Example 8-25 Output of gennames showing the loaded shared libraries
gennames
/usr/lib/libXm.a[shr_32.o] | d2640100| 00000140| 002548a1| | |initialize
Symbols from .__shr_32.o
nl_langinfo | 0|extern| | | |
setlocale | 0|extern| | | |

 (... lines omitted ...)

dlsym | 0|extern| | | |
TOC | 254084|unamex| | | |.data
XtDisplayOfObject | 254084|unamex| | | |.data
XSetClipMask | 254088|unamex| | | |.data
XtWindowOfObject | 254092|unamex| | | |.data

 (... lines omitted ...)

For the above example, the same applies as for Example 8-24 on page 647.
However, there is one small difference that should be noted. The AIX operating
system is using shared objects. In our example, the whole /usr/lib/libXm.a is
not loaded here. Only the shared object module shr_32.o out of
/usr/lib/libXm.a is loaded at the specific address. There are more shared
objects in /usr/lib/libXm.a, and each of them is loaded separately as needed.
The symbols with an offset value of zero, in the above example nl_langinfo,
setlocale and dlsym, are references from /usr/lib/libXm.a[shr_32.o] to other
shared objects. The dump -nv /usr/lib/libXm.a | grep setlocale command
can be used to find the object file providing the setlocale function to
/usr/lib/libXm.a[shr_32.o].

The list of loaded processes
In this section of the gennames command output, the process IDs and the names
of the currently running processes are listed. This section of the output of the
gennames command can be compared with the output of the genld command.
Example 8-26 shows a small section of this output.

Example 8-26 Output of gennames showing the loaded processes
gennames

 (... lines omitted ...)
648 AIX 5L Performance Tools Handbook

Symbols from genld
Proc_pid: 0 Proc_name: swapper

Proc_pid: 1 Proc_name: init

Proc_pid: 516 Proc_name: wait

Proc_pid: 774 Proc_name: wait

Proc_pid: 1032 Proc_name: wait

Proc_pid: 1290 Proc_name: wait

 (... lines omitted ...)

The above example shows the list of processes in the output of the gennames
command. For each process the process ID and the name is displayed. Please
note that kernel processes are included in this listing.

Physical and logical volume and file system information
The gennames -f command gathers additional data necessary for the off-line
processing by the filemon command. The following additional data is gathered
(Example 8-27).

Example 8-27 Physical and logical volume and file system information gathered
Symbols from filesystems:
dev_id| path| mode| blocks| Description
a0000 | /dev/__vg10| 20600| 1048576|
a0008 | /dev/hd1| 60660| 5111808|/home Frag_Sz.= 512
a0009 | /dev/hd10opt| 60660| 65536|/opt Frag_Sz.= 512
a0005 | /dev/hd2| 60660| 1933312| /usr
a0007 | /dev/hd3| 60660| 1114112| /tmp
a0004 | /dev/hd4| 60660| 196608| /
a0001 | /dev/hd5| 60660| 32768| boot
a0002 | /dev/hd6| 60660| 2097152| paging
a0003 | /dev/hd8| 60660| 32768| jfslog

 (... lines omitted ...)

Symbols from vfs:
num |name | mount point
1 |/dev/hd4 | /
2 |/dev/hd2 | /usr
4 |/dev/hd9var | /var
5 |/dev/hd3 | /tmp
6 |/dev/hd1 | /home
 Chapter 8. Trace tools 649

7 |/proc | /proc
8 |/dev/hd10opt | /opt
9 |/dev/lv02 | /audit
10 |/dev/lv04 | /work/fs1
11 |/dev/lv05 | /work/fs2
12 |/dev/datalv | /data
13 |/dev/lv00 | /tools
14 |/dev/lv01 | /test0
15 |/dev/lv08 | /test1
16 |/dev/lv09 | /test2

The first part of the above output shows the physical and logical volume
information. The columns in this part are:

dev_id The dev_id field contains the major and minor device
number of the device. The values in the output are
hexadecimal. The last four digits are the minor number.
The other digits are the major number. In the above
example, dev_id a0003 belongs to the logical volume
/dev/hd8 and has the major device number 10 (a) and the
minor device number 3 (0003).

path This field shows the full path name of the device.

mode| This field shows the file access mode bits of the device.
The values are defined in the system header file
/usr/include/sys/mode.h. In the above example the 60660
for /dev/hd8 translates to; Block special device, read and
write permission for owner and group.

blocks The value in this field shows the size of the physical or
logical volume in blocks of 512 bytes. The device
/dev/hd8 in the above example has the size of
32768 * 512 = 16 MB.

Description This field shows the description for the physical or logical
volume. The logical volume /dev/hd8 in the above
example is a jfslog.

The second part of the output shown in Example 8-27 on page 649 contains the
name of the logical volume and the mount point for each volume during execution
time of the gennames command.
650 AIX 5L Performance Tools Handbook

8.6 locktrace
The locktrace command determines which kernel locks will be traced by the
trace subsystem. If a bosboot -L was run prior to rebooting the system, then
kernel lock tracing can be enabled or disabled for one or more individual lock
classes, or for all lock classes. If the bosboot -L was not run prior to a reboot,
then lock class tracing can either be enabled or disabled for all locks. Where the
bosboot -L was not invoked, the trace events will not display the lock class
names for taken, missed, and released locks. By default lock tracing performed
by the trace subsystem is disabled.

The locktrace command resides in /usr/bin and is part of the bos.perf.tools
fileset, which is installable from the AIX base installation media.

8.6.1 Syntax
The syntax for the locktrace command is as follows:

locktrace [-r ClassName | -s ClassName | -S | -R | -l]

Flags
-r classname Turn off lock tracing for all the kernel locks belonging to the

specified class. This option always fails if bosboot -L was not
executed prior to a reboot.

-s classname Turn on lock tracing for all the kernel locks belonging to the
specified class. This option always fails if bosboot -L has not
been executed prior to a reboot.

-R Turn off all lock tracing.

-S Turn on lock tracing for all locks regardless of their class
membership.

-l List kernel lock tracing current status.

8.6.2 Information on measurement and sampling
The tracing of locks can be extremely useful in providing crucial information on
how locks are being used, which are hot, which are in contention, and which are
degrading the system. However, trace hooks in already heavily used lock
routines cause the system to slow down. The locktrace command allows lock
trace hooks to be effectively inserted or completely removed dynamically from
the lock routines. If the system has been rebooted after a bosboot -L, finer
selectivity is provided by enabling and disabling lock trace hooks for specific
 Chapter 8. Trace tools 651

classes. This results in less or at least contolled system degradation from trace
hooks in a lock routine. The names of the lock classes can be found in the file
lockname.h, which is located in the /usr/include/sys directory. Example 8-28
shows a list of some of the class names that can be found in this file.

Example 8-28 An extract from the lockname.h file
...(lines omitted)...
#define MSG_LOCK_CLASS 120 /* IPC */
#define SEM_LOCK_CLASS 121 /* IPC */
#define SHM_LOCK_CLASS 122 /* IPC */
#define DEVNODE_LOCK_CLASS 123 /* LFS */
#define FFREE_LOCK_CLASS 124 /* LFS */
#define FIFOBUF_LOCK_CLASS 125 /* LFS */
#define FILOCK_LOCK_CLASS 126 /* LFS */
#define FOFF_LOCK_CLASS 127 /* LFS */
#define FPTR_LOCK_CLASS 128 /* LFS */
#define GFS_LOCK_CLASS 129 /* LFS */
#define GPA_LOCK_CLASS 130 /* LFS */
#define PATH_LOCK_CLASS 131 /* LFS */
#define U_FD_CLASS 132 /* LFS */
#define U_FSO_CLASS 133 /* LFS */
#define VFS_LIST_LOCK_CLASS 134 /* LFS */
#define VFS_LOCK_CLASS 135 /* LFS */
#define VNODE_LOCK_CLASS 136 /* LFS */
...(lines omitted)...

8.6.3 Examples
Example 8-29 shows the output when the locktrace command is run without the
bosboot -L command being run first and without the system being rebooted.

Example 8-29 locktrace error message when bosboot -L has not been run
locktrace -s MSG_LOCK_CLASS
locktrace: selective tracing not allowed without bosboot -L

Example 8-30 shows the use of the locktrace command to enable the trace
subsystem to trace the SEM_LOCK_CLASS lock type. The bosboot -L command has
been run on the system and it has been rebooted prior to the locktrace
commands being run. The locktrace -l option shows which locks are enabled
for tracing. In the first case, all lock tracing is disabled. The locktrace -s
SEM_LOCK_CLASS command was used to enable the tracing of the SEM_LOCK_CLASS
lock class type. The locktrace -l command was used again to check which lock
classes are enabled for tracing.

Example 8-30 Enabling tracing of the SEM_LOCK_CLASS type
locktrace -l
lock tracing disabled for all classes
652 AIX 5L Performance Tools Handbook

locktrace -s SEM_LOCK_CLASS
lock tracing enabled for class SEM_LOCK_CLASS

locktrace -l
lock tracing enabled for classes:
 SEM_LOCK_CLASS

To disable the tracing of this class, use the command in Example 8-31. The
locktrace -r SEM_LOCK_CLASS command is used to disable the tracing of the
SEM_LOCK_CLASS lock type. The locktrace -R command could have been used,
but would disable tracing of all lock classes.

Example 8-31 Turning off tracing of the SEM_LOCK_CLASS
locktrace -r SEM_LOCK_CLASS
lock tracing disabled for class SEM_LOCK_CLASS

locktrace -l
lock tracing disabled for all classes

8.7 splat
The Simple Performance Lock Analysis Tool (splat) is a software tool that
generates reports on the use of synchronization locks. These include the simple-
and complex- locks provided by the AIX kernel as well as user-level mutexes,
read/write locks, and condition variables provided by the PThread library. splat
is not currently equipped to analyze the behavior of the VMM- and PMAP- locks
used in the AIX kernel.

8.7.1 Syntax
The syntax for the splat command is as follows:

splat [-i file] [-n file] [-o file] [-k kexList] [-d[bfta]]
[-l address][-c class] [-s[acelmsS]] [-C#] [-S#] [-t start]
[-T stop] [-V]

splat -h [topic]

splat -j

splat -v
 Chapter 8. Trace tools 653

Flags
-i inputfile Specifies the AIX trace log file input.

-n namefile Specifies the file containing output of gennames command.

-o outputfile Specifies an output file (default is stdout).

-k kex[,kex]* Specifies the kernel extensions for which the lock
activities will be reported. This flag is valid only if a
namefile is provided with -n.

-d detail Specifies the level of detail of the report.

-c class Specifies class of locks to be reported.

-l address Specifies the address for

which activity on the lock will be reported.

-s criteria Specifies the sort order of the lock, function, and thread.

-C CPUs Specifies the number of CPU’s on the MP system that the
trace was drawn from. The default is one. This value is
overridden if more CPUs are observed to be reported in
the trace.

-S count Specifies the number of items to report on for each
section. The default is 10. This gives the number of locks
to report in the Lock Summary and Lock Detail reports, as
well as the number of functions to report in the Function
Detail and threads to report in the Thread detail (the -s
option specifies how the most significant locks, threads,
and functions are selected).

-t starttime Overrides the start time from the first event recorded in
the trace. This flag forces the analysis to begin an event
that occurs starttime seconds after the first event in the
trace.

-T stoptime Overrides the stop time from the last event recorded in
the trace. This flag forces the analysis to end with an
event that occurs stoptime seconds after the first event in
the trace.

-v Prints the splat version and date of the build, and exits.

-j Prints the list of ID’s of the trace hooks used by splat.

-V Executes splat in verbose mode, where it prints
information on the steps it takes as it analyzes the trace
file.

-h topic Prints a help message on usage or a specific topic.
654 AIX 5L Performance Tools Handbook

Parameters
inputfile The AIX trace log file input. This file can be a merge trace

file generated using trcrpt -r.

namefile File containing output of gennames command.

outputfile File to write reports to.

kex[,kex]* List of kernel extensions.

detail The detail level of the report, it can be one of:

basic lock summary plus lock detail (the default)

function basic + function detail

thread basic + thread detail

all basic + function + thread detail

class Activity classes, which is a decimal value found in the file
/usr/include/sys/lockname.h.

address The address to be reported, given in hexadecimal.

criteria Order the lock, function, and thread reports by the
following criteria:

a Acquisitions

c Percent CPU time held

e Percent elapsed time held

l Lock address, function address, or thread ID.

m Miss rate

s Spin count

S Percent CPU spin hold time (the default)

CPUs The number of CPUs on the MP system that the trace
was drawn from. The default is one. This value is
overridden if more CPUs are observed to be reported in
the trace.

count The number of locks to report in the Lock Summary and
Lock Detail reports, as well as the number of functions to
report in the Function Detail and threads to report in the
Thread detail. (The -s option specifies how the most
significant locks, threads, and functions are selected).

starttime The number of seconds after the first event recorded in
the trace that the reporting starts.
 Chapter 8. Trace tools 655

stoptime The number of seconds after the first event recorded in
the trace that the reporting stops.

topic Help topics, which are:

� all
� overview
� input
� names
� reports
� sorting

8.7.2 Information on measurement and sampling
splat takes as input an AIX trace log file or (for an SMP trace) a set of log files,
and preferably a names file produced by gennames. The procedure for generating
these files is shown in Section 8.9, “trace” on page 685. When you run trace you
will usually use the flag -J splat to capture the events analyzed by splat (or no
-J flag, to capture all events). The important trace hooks are shown in Table 8-2.

Table 8-2 Trace hooks required for splat

Hook ID Event name Event explanation

106 HKWD_KERN_DISPATCH The thread is dispatched from the
runqueue to a CPU.

10C HKWD_KERN_IDLE The idle process is been dispatched.

10E HKWD_KERN_RELOCK One thread is suspended while another
is dispatched; the ownership of a RunQ
lock is transferred from the first to the
second.

112 HKWD_KERN_LOCK The thread attempts to secure a kernel
lock; the subhook shows what
happened.

113 HKWD_KERN_UNLOCK A kernel lock is released.

46D HKWD_KERN_WAITLOCK The thread is enqueued to wait on a
kernel lock.

606 HKWD_PTHREAD_COND Operations on a Condition Variable.

607 HKWD_PTHREAD_MUTEX Operations on a Mutex.

608 HKWD_PTHREAD_RWLOCK Operations on a Read/Write Lock.

609 HKWD_PTHREAD_GENERAL Operations on a PThread.
656 AIX 5L Performance Tools Handbook

Source
splat was originally created to assist AIX developers and IBM performance
analysts. It is now generally available for download from the following ftp site:

ftp://ftp.software.ibm.com/aix/tools/perftools/splat/

There are two files in this directory that you will need:

� ptools.splat, which is the installp image for splat

� ptools.utilities, which is an auxiliary installp image and a prerequisite for
ptools.splat

The splat tool also has an install-requisite on the libC.a library that is installed
from one of the filesets listed below at the corresponding level or above,
depending on the level of AIX you are running:

xlC.aix51.rte (5.0.0.0)
xlC.aix50.rte (5.0.0.0)
xlC.aix43.rte (4.0.2.0)
xlC.rte (4.0.2.0)

As a rule you will want to install xlC.aix??.rte at the latest level for your AIX
version plus the most recent drops of ptools.splat and ptools.utilities.

The execution, trace, and analysis intervals
In some cases you can use trace to capture the entire execution of a workload,
while other times you will only capture an interval of the execution. We
distinguish these as the execution interval and the trace interval. The execution
interval is the entire time that a workload runs. This interval is arbitrarily long for
server workloads that run continuously. The trace interval is the time actually
captured in the trace log file by trace. The length of this trace interval is limited
by how large of a trace log file will fit on the filesystem.

In contrast, the analysis interval is the portion of time that is analyzed by splat.
The -t and -T options tell splat to start and finish analysis some number of
seconds after the first event in the trace. By default splat analyzes the entire
trace, so this analysis interval is the same as the trace interval. Example 8-32 on
page 659 shows the reporting of the trace and analysis intervals.

Note: As an optimization, splat stops reading the trace when it finishes its
analysis, so it will report the trace and analysis intervals as ending at the same
time even if they do not.
 Chapter 8. Trace tools 657

You will usually want to capture the longest trace interval you can, and analyze
that entire interval with splat, in order to most accurately estimate the effect of
lock activity on the computation. The -t and -T options are usually used for
debugging purposes to study the behavior of splat across a few events in the
trace.

As a rule, either use large buffers when collecting a trace, or limit the captured
events to the ones you need to run splat.

Trace discontinuities
splat uses the events in the trace to reconstruct the activities of threads and
locks in the original system. If part of the trace is missing because:

� Tracing was stopped at one point and restarted at a later point

� One CPU fills its trace buffer and stops tracing, while other CPUs continue
tracing

� Event records in the trace buffer were overwritten before they could be copied
into the trace log file

then splat will not be able to correctly analyze all the events across the trace
interval. The policy of splat is to finish its analysis at the first point of
discontinuity in the trace, issue a warning message, and generate its report. In
the first two cases the warning message is:

TRACE OFF record read at 0.567201 seconds. One or more of the CPU’s has
stopped tracing. You may want to generate a longer trace using larger
buffers and re-run splat.

In the third case the warning message is:

TRACEBUFFER WRAPAROUND record read at 0.567201 seconds. The input trace has
some records missing; splat finishes analyzing at this point. You may want
to re-generate the trace using larger buffers and re-run splat.

Along the same lines, versions of the AIX kernel or PThread library that are still
under development may be incompletely instrumented, and so the traces will be
missing events. splat may not give correct results in this case.

Address-to-name resolution in splat
The lock instrumentation in the kernel and PThread library is what captures the
information for each lock event. Data addresses are used to identify locks;
instruction addresses are used to identify the point of execution. These
addresses are captured in the event records in the trace, and used by splat to
identify the locks and the functions that operate on them.
658 AIX 5L Performance Tools Handbook

However, these addresses aren’t much use to the programmer, who would rather
know the names of the lock and function declarations so they can be located in
the program source files. The conversion of names to addresses is determined
by the compiler and loader, and can be captured in a file using the gennames
utility. gennames also captures the contents of the file
/usr/include/sys/lockname.h, which declares classes of kernel locks.

This gennames output-file is passed to splat with the -n option. When splat
reports on a kernel lock, it provides the best identification it can. A splat lock
summary is shown in Example 8-34 on page 662; the left column identifies each
lock by name if it can be determined, otherwise by class if it can be determined,
or by address if nothing better can be provided. A lock detail is shown in
Example 8-35 on page 664, and identifies the lock by as much of this information
as can be determined.

Kernel locks that are declared will be resolved by name. Locks that are created
dynamically will be identified by class if their class name is given when they are
created. Note that the libpthreads.a instrumentation is not equipped to capture
names or classes of PThread synchronizers, so they are always identified by
address only.

8.7.3 Examples
The report generated by splat consists of an execution summary, a gross lock
summary, and a per-lock summary, followed by a list of lock detail reports that
optionally includes a function detail and/or a thread detail report.

Execution summary
Example 8-32 shows a sample of the Execution summary. This report is
generated by default when using splat.

Example 8-32 Execution summary report

splat - Version 5.1.0.2 (build 2, Mar 24 2001 at 13:54:09)

This program is classified IBM CONFIDENTIAL. It is still under development.
User is responsible for verifying current status prior to use
(C) COPYRIGHT International Business Machines Corp., 1999, 2000, 2001.

splat Cmd:
/.../austin.ibm.com/fs/projects/ptools/u/ponder/sandb/0109B_510/ship/power/usr/bin/splat

-sa -da -S100 -i trace.cooked -n gennames -o splat.out

Trace Cmd:trace-aj splat -T 178956970 -L 2000000000 -o CONDVAR.raw
Trace Host: darkwing (0054451E4C00) AIX 5.1
Trace Date: Fri Mar 2 08:37:27 2001
 Chapter 8. Trace tools 659

Elapsed Real Time:18.330873
Number of CPUs Traced: 1(Indicated):0
Cumulative CPU Time:18.330873

 start stop
 -------------------- --------------------
trace interval (absolute tics) 1799170309 2104623072
 (relative tics) 0 305452763
 (absolute secs) 107.972055 126.302928
 (relative secs) 0.000000 18.330873
analysis interval (absolute tics) 1799170309 2104623072
 (trace-relative tics) 0 305452763
 (self-relative tics) 0 305452763
 (absolute secs) 107.972055 126.302928
 (trace-relative secs) 0.000000 18.330873
 (self-relative secs) 0.000000 18.330873

The execution summary consists of the following elements:

� The splat version and build information, disclaimer, and copyright notice.

� The command used to run splat.

� The trace command used to collect the trace.

� The host that the trace was taken on.

� The date that the trace was taken on.

� The real-time duration of the trace in seconds.

� The maximum number of CPUs that were observed in the trace, the number
specified in the trace conditions information, and the number specified on the
splat command-line. If the number specified in the header or command-line
is less, the entry (Indicated: <value>) is listed. If the number observed in
the trace is less, the entry (Observed: <value>) is listed.

� The cumulative CPU time, equal to the duration of the trace in seconds times
the number of CPUs that represents the total number of seconds of CPU time
consumed.

� A table containing the start- and stop- times of the trace-interval, measured in
tics and seconds, as absolute timestamps from the trace-records, as well as
relative to the first event in the trace. This is followed by the start and stop
times of the analysis interval, measured in tics and seconds, as absolute
660 AIX 5L Performance Tools Handbook

timestamps as well as relative to the beginning of the trace-interval and the
beginning of the analysis interval.

Gross lock summary
Example 8-33 shows a sample of the gross lock summary report. This report is
generated by default when using splat.

Example 8-33 Gross lock summary
Unique Acquisitions Acq. or Passes % Total System

Total Addresses (or Passes) per Second ’spin’ Time
--------- ------------- ------------ -------------- ---------------

AIX (all) Locks: 523 523 1323045 72175.7768 0.003986
 RunQ: 2 2 487178 26576.9121 0.000000
 Simple: 480 480 824898 45000.4754 0.003986
 Complex: 41 41 10969 598.3894 0.000000
PThread CondVar: 7 6 160623 8762.4305 0.000000
 Mutex: 128 116 1927771 105165.2585 10.280745 *
 RWLock: 0 0 0 0.0000 0.000000

(’spin’ time goal <10%)

The gross lock summary report table consists of the following columns:

Total The number of AIX Kernel locks, followed by the number
of each type of AIX Kernel lock; RunQ, Simple, and
Complex. Under some conditions this will be larger than
the sum of the numbers of RunQ, Simple, and Complex
locks because we may not observe enough activity on a
lock to differentiate its type. This is followed by the
number of PThread condition-variables, the number of
PThread Mutex’s, and the number of PThread Read/Write
Locks.

Unique Addresses The number of unique addresses observed for each
synchronizer type. Under some conditions a lock will be
destroyed and re-created at the same address; splat
produces a separate lock detail report for each instance
because the usage may be quite different.

Acquisitions For locks, the total number of times acquired during the
(or Passes) analysis interval; for PThread condition-variables, the total

number of times the condition passed during the analysis
interval.

Acq. or Passes Acquisitions or passes per second, which is the total
(per second) number of acquisitions or passes divided by the elapsed

real time of the trace.
 Chapter 8. Trace tools 661

% Total System The cumulative time spent spinning on each synchronizer
‘spin’ Time type, divided by the cumulative CPU time, times 100

percent. The general goal is to spin for less than 10
percent of the CPU time; a message to this effect is
printed at the bottom of the table. If any of the entries in
this column exceed 10 percent, they are marked with a ‘*’.

Per-lock summary
Example 8-34 shows a sample of the per-lock summary report. This report is
generated by default when using splat.

Example 8-34 Per-lock summary report
100 max entries, Summary sorted by Acquisitions:

T Acqui-
y sitions Locks or Percent Holdtime

Lock Names, p or Passes Real Real Comb Kernel
Class, or Address e Passes Spins Wait %Miss %Total / CSec CPU Elapse Spin Symbol
********************** * ****** ***** **** ***** ****** ********* ******** ****** ******* *******
PROC_INT_CLASS.0003 Q 486490 0 0 0.0000 36.7705 26539.380 5.3532 100.000 0.0000 unix
THREAD_LOCK_CLASS.0012 S 323277 0 0 0.0000 24.4343 17635.658 6.8216 6.8216 0.0000 libc
THREAD_LOCK_CLASS.0118 S 323094 0 0 0.0000 24.4205 17625.674 6.7887 6.7887 0.0000 libc
ELIST_CLASS.003C S 80453 0 0 0.0000 6.0809 4388.934 1.0564 1.0564 0.0000 unix
ELIST_CLASS.0044 S 80419 0 0 0.0000 6.0783 4387.080 1.1299 1.1299 0.0000 unix
tod_lock C 10229 0 0 0.0000 0.7731 558.020 0.2212 0.2212 0.0000 unix
LDATA_CONTROL_LOCK.0000 S 1833 0 0 0.0000 0.1385 99.995 0.0204 0.0204 0.0000 unix
U_TIMER_CLASS.0014 S 1514 0 0 0.0000 0.1144 82.593 0.0536 0.0536 0.0000 netinet

(... lines omitted ...)
000000002FF22B70 L 368838 0 N/A 0.0000 100.000 9622.964 99.9865 99.9865 0.0000
00000000F00C3D74 M 160625 0 0 0.0000 14.2831 8762.540 99.7702 99.7702 0.0000
00000000200017E8 M 160625 175 0 0.1088 14.2831 8762.540 42.9371 42.9371 0.1487
0000000020001820 V 160623 0 624 0.0000 100.000 1271.728 N/A N/A N/A
00000000F00C3750 M 37 0 0 0.0000 0.0033 2.018 0.0037 0.0037 0.0000
00000000F00C3800 M 30 0 0 0.0000 0.0027 1.637 0.0698 0.0698 0.0000

(... lines omitted ...)

The first line indicates the maximum number of locks to report (100 in this case,
but we only show 13 of the entries here) as specified by the -S 100 flag. It also
indicates that the entries are sorted by the total number of acquisitions or
passes, as specified by the -sa flag. Note that the various Kernel locks and
PThread synchronizers are treated as two separate lists in this report, so you
would get the top 100 Kernel locks sorted by acquisitions, followed by the top
100 PThread synchronizers sorted by acquisitions or passes.

The per-lock summary table consists of the following columns:

Lock Names, Class, The name, class, or address of the lock, depending on
or Address whether splat could map the address from a name file.

See “Address-to-name resolution in splat” on page 658
for an explanation.
662 AIX 5L Performance Tools Handbook

Type The type of the lock, identified by one of the following
letters:

Q A RunQ lock
S A simple kernel lock
C A complex kernel lock
M A PThread mutex
V A Pthread condition-variable
L A Pthread read/write lock

Acquisitions or PassesThe number of times the lock was acquired or the
condition passed, during the analysis interval.

Spins The number of times the lock (or condition-variable) was
spun on during the analysis interval.

Wait The number of times a thread was driven into a wait state
for that lock or condition-variable during the analysis
interval.

%Miss The percentage of access attempts that resulted in a spin
as opposed to a successful acquisition or pass.

%Total The percentage of all acquisitions that were made to this
lock, out of all acquisitions to all locks of this type. Note
that all AIX locks (RunQ, simple, and complex) are treated
as being the same type for this calculation. The PThread
synchronizers mutex, condition-variable, and read/write
lock are all distinct types.

Locks or Passes / CSecThe number of times the lock (or condition-variable) was
acquired (or passed) divided by the cumulative CPU time.
This is a measure of the acquisition frequency of the lock.

Real CPU The percentage of the cumulative CPU time that the lock
was held by an executing thread. Note that this definition
is not applicable to condition-variables because they are
not held.

Real Elapse The percentage of the elapsed real time that the lock was
held by any thread at all, whether running or suspended.
Note that this definition is not applicable to
condition-variables because they are not held.

Comb Spin The percentage of the cumulative CPU time that
executing threads spent spinning on the lock. Note that
the PThreads library currently uses waiting for
condition-variables, so there is no time actually spent
spinning.
 Chapter 8. Trace tools 663

Kernel Symbol The name of the kernel-extension or library (or /unix for
the kernel) that the lock was defined in. Note that this
information is not recoverable for PThreads.

AIX kernel lock details
By default, splat prints out a lock detail report for each entry in the summary
report. The AIX Kernel locks come it two major types; simple and complex. We
will start by examining the contents of the simple lock report, and follow this with
an explanation of the additional information printed with a complex lock report.

The RunQ lock is a special case of the simple lock, although its pattern of usage
will differ markedly from other lock types. splat distinguishes it from the other
simple locks to save you the trouble of figuring out why it behaves so uniquely.

Simple- and RunQ- Lock Details
Example 8-35 shows a sample AIX SIMPLE lock report. The first line starts with
either [AIX SIMPLE Lock] or [AIX RunQ lock]. Below this is the 16-digit
hexadecimal ADDRESS of the lock. If the gennames output-file allows, the ADDRESS
is also converted into a lock NAME and CLASS, and the containing kernel-extension
(KEX) is identified as well. The CLASS is printed with an eight hex-digit extension
indicating how many locks of this class were allocated prior to it.

Example 8-35 AIX SIMPLE Lock
[AIX SIMPLE Lock] CLASS: NETISR_LOCK_FAMILY.FFFFFFFF
ADDRESS: 0000000000535378 KEX: unix
NAME: netisr_slock
==
 | | | Percent Held (18.330873s)
Acqui- | Miss Spin Wait Busy | Secs Held | Real Real Comb Real
sitions | Rate Count Count Count |CPU Elapsed | CPU Elapsed Spin Wait
471 | 0.000 0 0 0 |0.002584 0.002584 | 0.01 0.01 0.00 0.00
--
%Enabled 0.00 (0)|SpinQ Min Max Avg | WaitQ Min Max Avg
%Disabled 100.00 (471)|Depth 0 0 0 | Depth 0 0 0
--

 Lock Activity w/Interrupts Enabled (mSecs)

 SIMPLE Count Minimum Maximum Average Total
 +++++++ ++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
 LOCK 0 0.000000 0.000000 0.000000 0.000000
 SPIN 0 0.000000 0.000000 0.000000 0.000000
 UNDISP 0 0.000000 0.000000 0.000000 0.000000
 WAIT 0 0.000000 0.000000 0.000000 0.000000
 PREEMPT 0 0.000000 0.000000 0.000000 0.000000

 Lock Activity w/Interrupts Disabled (mSecs)

 SIMPLE Count Minimum Maximum Average Total
 +++++++ ++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
 LOCK 471 0.001200 0.019684 0.005486 2.583943
 SPIN 0 0.000000 0.000000 0.000000 0.000000
 UNDISP 0 0.000000 0.000000 0.000000 0.000000
 WAIT 0 0.000000 0.000000 0.000000 0.000000
664 AIX 5L Performance Tools Handbook

 PREEMPT 0 0.000000 0.000000 0.000000 0.000000

The statistics are as follows:

Acquisitions The number of times the lock was acquired in the analysis
interval (this includes successful simple_lock_try() calls).

Miss Rate The percentage of attempts that failed to acquire the lock.

Spin Count The number of unsuccessful attempts to acquire the lock.

Wait Count The number of times a thread was forced into a
suspended wait state, waiting for the lock to come
available.

Busy Count The number of simple_lock_try() calls that returned busy.

Seconds Held This field contains the following sub-fields:

CPU The total number of CPU seconds that
the lock was held by an executing
thread.

Elapsed The total number of elapsed seconds
that the lock was held by any thread at
all, whether running or suspended.

Percent Held This field contains the following sub-fields:

Real CPU The percentage of the cumulative CPU
time that the lock was held by an
executing thread.

Real Elapsed The percentage of the elapsed real time
that the lock was held by any thread at
all, either running or suspended.

Comb(ined) Spin The percentage of the cumulative CPU
time that running threads spent
spinning while trying to acquire this
lock.

Real Wait The percentage of elapsed real time
that any thread was waiting to acquire
this lock. Note that if two or more
threads are waiting simultaneously, this
wait-time will only be charged once. If
you want to know how many threads
were waiting simultaneously, look at the
WaitQ Depth statistics.
 Chapter 8. Trace tools 665

%Enabled The percentage of acquisitions of this lock that occurred
while interrupts were enabled. In parenthesis is the total
number of acquisitions made while interrupts were
enabled.

%Disabled The percentage of acquisitions of this lock that occurred
while interrupts were disabled. In parenthesis is the total
number of acquisitions made while interrupts were
disabled.

SpinQ The minimum, maximum, and average number of threads
spinning on the lock, whether executing or suspended,
across the analysis interval.

WaitQ The minimum, maximum, and average number of threads
waiting on the lock, across the analysis interval.

The Lock Activity with Interrupts Enabled (mSecs) and
Lock Activity with Interrupts Disabled (mSecs) sections contain information
on the time each lock state is used by the locks.

Figure 8-1 on page 667 shows the states that a thread can be in with respect to
the given simple or complex lock.
666 AIX 5L Performance Tools Handbook

Figure 8-1 Lock states

The states are defined as follows:

(no lock reference) The thread is running, does not hold this lock, and is not
attempting to acquire this lock.

LOCK The thread has successfully acquired the lock and is
currently executing.

SPIN The thread is executing and unsuccessfully attempting to
acquire the lock.

UNDISP The thread has become undispatched while
unsuccessfully attempting to acquire the lock.

WAIT The thread has been suspended until the lock comes
available. It does not necessarily acquire the lock at that
time, instead going back to a SPIN state.

PREEMPT The thread is holding this lock and has become
undispatched.

WAIT

UNDISP

SPIN LOCK

PREEMPT

The thread has
acquired the lock
in these states.

The thread is
attempting to
acquire the lock
in these states.

The thread is
executing in
these states.

The thread is
suspended in
these states.

no lock
reference
 Chapter 8. Trace tools 667

The Lock Activity sections of the report measure the intervals of time (in
milliseconds) that each thread spends in each of the states for this lock. The
columns report the number of times that a thread entered the given state,
followed by the maximum, minimum, and average time that a thread spent in the
state once entered, followed by the total time all threads spent in that state.
These sections distinguish whether interrupts were enabled or disabled at the
time the thread was in the given state.

A thread can acquire a lock prior to the beginning of the analysis interval and
release the lock during the analysis interval. When splat observes the lock being
released, it recognizes that the lock had been held during the analysis interval up
to that point and counts the time as part of the state-machine statistics. For this
reason the state-machine statistics can report that the number of times that the
LOCK state was entered may actually be larger than the number of acquisitions
of the lock that were observed in the analysis interval.

RunQ locks are used to protect resources in the thread management logic.
These locks are acquired a large number of times and are only held briefly each
time. A thread does not necessarily need to be executing to acquire or release a
RunQ lock. Further, a thread may spin on a RunQ lock, but it will not go into an
UNDISP or WAIT state on the lock. You will see a dramatic difference between
the statistics for RunQ versus other simple locks.

Function detail
Below is an example of the function detail report (Example 8-36). This report is
obtained by using the -df or -da options of splat. Note that we have split the
three right columns here and moved them below the table.

Example 8-36 Function detail report for the simple lock report
Acqui- Miss Spin Wait Busy Percent Held of Total Time

Function Name sitions Rate Count Count Count CPU Elapse Spin Wait
^^^^^^^^^^^^^^^^ ^^^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^^^^^^
._thread_unlock 80351 0.00 0 0 0 1.13 1.13 0.00 0.00
.thread_waitlock 68 0.00 0 0 0 0.00 0.00 0.00 0.00

Return Address Start Address Offset
^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^ ^^^^^^^^
000000000001AA54 0000000000000000 0001AA54
000000000001A494 0000000000000000 0001A494

The columns are defined as follows:

Function Name The name of the function that acquired or attempted to
acquire this lock (with a call to one of the functions
simple_lock, simple_lock_try, simple_unlock,
disable_lock, or unlock_enable), if it could be resolved.
668 AIX 5L Performance Tools Handbook

Acquisitions The number times the function was able to acquire this
lock.

Miss Rate The percentage of acquisition attempts that failed.

Spin Count The number of unsuccessful attempts by the function to
acquire this lock.

Wait Count The number of times that any thread was forced to wait on
the lock, using a call to this function to acquire the lock.

Busy Count The number of times the function used tried to acquire the
lock without success (that is, calls to simple_lock_try()
that returned busy).

Percent Held of Total Time contains the following sub-fields:

CPU The percentage of the cumulative CPU
time that the lock was held by an
executing thread that had acquired the
lock through a call to this function.

Elapse(d) The percentage of the elapsed real time
that the lock was held by any thread at
all, whether running or suspended, that
had acquired the lock through a call to
this function.

Spin The percentage of cumulative cpu time
that executing threads spent spinning
on the lock while trying to acquire the
lock through a call to this function.

Wait The percentage of elapsed real time
that executing threads spent waiting on
the lock while trying to acquire the lock
through a call to this function.

Return Address The return address to this calling function, in
hexadecimal.

Start Address The start address of the calling function, in hexadecimal.

Offset The offset from the function start address to the return
address, in hexadecimal.

Note that the functions are ordered by the same sorting criterion as the locks,
controlled by the -s option of splat. Further, the number of functions listed is
controlled by the -S parameter, with the default being the top ten functions being
listed.
 Chapter 8. Trace tools 669

Thread Detail
Example 8-37 shows an example of the Thread Detail report. This report is
obtained by using the -dt or -da options of splat.

Note that at any point in time, a single thread is either running or it is not, and
when it runs, it only runs on one CPU. Some of the composite statistics are
measured relative to the cumulative CPU time when they measure activities that
can happen simultaneously on more than one CPU, and the magnitude of the
measurements can be proportional to the number of CPU’s in the system. In
contrast, the thread statistics are generally measured relative to the elapsed real
time, which is the amount of time a single CPU spends processing and the
amount of time a single thread spends in an executing or suspended state.

Example 8-37 Thread detail report

 Acqui- Miss Spin Wait Busy Percent Held of Total Time
ThreadID sitions Rate Count Count Count CPU Elapse Spin Wait
 ~~~~~~~~  ~~~~~~~~  ~~~~~~~ ~~~~~~~ ~~~~~~ ~~~~~~  ~~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~
      517      1613    0.00 0      0      0 0.05 100.00   0.00  99.81
     5423      1569    0.00 0      0      0 0.06 100.00   0.00   0.00
     4877       504    0.00 0      0      0 0.01 100.00   0.00   0.00
     4183        79    0.00 0      0      0 0.00 100.00   0.00   0.00
        3        59    0.00 0      0      0 0.00 100.00   0.00   0.00
     2065        36    0.00 0      0      0 0.00 100.00   0.00   0.00
     2323        36    0.00 0      0      0 0.00 100.00   0.00   0.00
     2839        33    0.00 0      0      0 0.00 100.00   0.00   0.00
     2581        33    0.00 0      0      0 0.00 100.00   0.00   0.00
     5425         8    0.00 0      0      0 0.00 100.00   0.00   0.00

The columns are defined as follows:

ThreadID The thread identifier.

Acquisitions The number of times this thread acquired the lock.

Miss Rate The percentage of acquisition attempts by the thread that 
failed to secure the lock.

Spin Count The number of unsuccessful attempts by this thread to 
secure the lock.

Wait Count The number of times this thread was forced to wait until 
the lock came available.

Busy Count The number of times this thread used try to acquire the 
lock, without success (calls to simple_lock_try() that 
returned busy).

Percent Held of Total Time consists of the following sub-fields:
670 AIX 5L Performance Tools Handbook



CPU The percentage of the elapsed real time 
that this thread executed while holding 
the lock.

Elapse(d) The percentage of the elapsed real time 
that this thread held the lock while 
running or suspended.

Spin The percentage of elapsed real time 
that this thread executed while spinning 
on the lock.

Wait The percentage of elapsed real time 
that this thread spent waiting on the 
lock.

Complex-Lock report
The AIX Complex lock supports recursive locking, where a thread can acquire 
the lock more than once before releasing it, as well as differentiating between 
write-locking, which is exclusive, from read-locking, which is not. The top of the 
complex lock report appears in Example 8-38.

Example 8-38   Complex lock report (top part)
[AIX COMPLEX Lock]                 CLASS:      TOD_LOCK_CLASS.FFFF
ADDRESS: 0000000000856C88          KEX: unix
NAME:            tod_lock
======================================================================================
         |                             |                  | Percent Held ( 15.710062s )
Acqui-   |  Miss  Spin   Wait   Busy   |    Secs Held     |  Real  Real    Comb  Real
sitions  |  Rate  Count  Count  Count  |CPU      Elapsed  |  CPU  Elapsed  Spin  Wait
8763     |  0.000 0      0      0      |0.044070 0.044070 |  0.28   0.28   0.00   0.00
--------------------------------------------------------------------------------------
%Enabled    0.00 (       0)|SpinQ   Min   Max   Avg  | WaitQ    Min   Max   Avg
%Disabled 100.00 (    8763)|Depth   0     0     0    | Depth   0     0     0    
---------------------------|Readers 0     0     0    |Readers  0     0     0    
          Min   Max   Avg  |Writers 0     0     0    |Writers  0     0     0    
Upgrade   0     0     0    +-----------------------------------------------------------
Dngrade   0     0     0    |LockQ   Min   Max   Avg  |
Recursion 0     1     0    |Readers 0     1     0    |
--------------------------------------------------------------------------------------

Note that this report begins with [AIX COMPLEX Lock]. Most of the entries are 
identical to the simple lock report, while some of them are differentiated by 
read/write/upgrade. For example, the SpinQ and WaitQ statistics include the 
minimum, maximum, and average number of threads spinning or waiting on the 
lock. They also include the minimum, maximum, and average number of threads 
 Chapter 8. Trace tools 671



attempting to acquire the lock for reading versus writing. Because an arbitrary 
number of threads can hold the lock for reading, the report includes the 
minimum, maximum, and average number of readers in the LockQ that holds the 
lock.

A thread may hold a lock for writing; this is exclusive and prevents any other 
thread from securing the lock for reading or for writing. The thread downgrades 
the lock by simultaneously releasing it for writing and acquiring it for reading; this 
allows other threads to also acquire the lock for reading. The reverse of this 
operation is an upgrade; if the thread holds the lock for reading and no other 
thread holds it as well, the thread simultaneously releases the lock for reading 
and acquires it for writing. The upgrade operation may require that the thread 
wait until other threads release their read-locks. The downgrade operation does 
not.

A thread may acquire the lock to some recursive depth; it must release the lock 
the same number of times to free it. This is useful in library code where a lock 
must be secured at each entry-point to the library; a thread will secure the lock 
once as it enters the library, and internal calls to the library entry-points simply 
re-secure the lock, and release it when returning from the call. The minimum, 
maximum, and average recursion depths of any thread holding this lock are 
reported in the table.

A thread holding a recursive write-lock is not allowed to downgrade it because 
the downgrade is intended to apply to only the last write-acquisition of the lock, 
and the prior acquisitions had a real reason to keep the acquisition exclusive. 
Instead, the lock is marked as being in the downgraded state, which is erased 
when the this latest acquisition is released or upgraded. A thread holding a 
recursive read-lock can only upgrade the latest acquisition of the lock, in which 
case the lock is marked as being upgraded. The thread will have to wait until the 
lock is released by any other threads holding it for reading. The minimum, 
maximum, and average recursion-depths of any thread holding this lock in an 
upgraded or downgraded state are reported in the table.

The Lock Activity report also breaks the time down by whether the lock is being 
secured for reading, writing, or upgrading as shown in Example 8-39.

Example 8-39   Complex lock report (lock activity)
Lock Activity w/Interrupts Enabled (mSecs)

  READ     Count         Minimum        Maximum        Average          Total
  +++++++  ++++++  ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
  LOCK       7179        0.001260       0.023825  0.005623 40.366684
  SPIN          0        0.000000       0.000000 0.000000 0.000000
   UNDISP       0        0.000000       0.000000   0.000000 0.000000
  WAIT          0        0.000000       0.000000  0.000000 0.000000
  PREEMPT       0        0.000000       0.000000 0.000000 0.000000
672 AIX 5L Performance Tools Handbook



  WRITE    Count         Minimum        Maximum        Average          Total
  +++++++  ++++++  ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
  LOCK       1584        0.001380       0.008582       0.002338       3.703169
  SPIN          0        0.000000       0.000000 0.000000  0.000000
   UNDISP       0        0.000000       0.000000 0.000000  0.000000
  WAIT          0        0.000000       0.000000 0.000000  0.000000
  PREEMPT       0        0.000000       0.000000 0.000000  0.000000

  UPGRADE  Count         Minimum        Maximum        Average          Total
  +++++++  ++++++  ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
  LOCK          0        0.000000       0.000000 0.000000  0.000000
  SPIN          0        0.000000       0.000000 0.000000  0.000000
   UNDISP       0        0.000000       0.000000 0.000000  0.000000
  WAIT          0        0.000000       0.000000 0.000000  0.000000
  PREEMPT       0        0.000000       0.000000 0.000000  0.000000

Note that there is no time reported to perform a downgrade because this is 
performed without any contention. The upgrade state is only reported for the 
case where a recursive read-lock is upgraded; otherwise the thread activity is 
measured as releasing a read-lock and acquiring a write-lock.

The function- and thread- details also break down the acquisition, spin, and wait 
counts by whether the lock is to be acquired for reading or writing as shown in 
Example 8-40.

Example 8-40   Complex lock report (function and thread detail)

Acquisitions Miss Spin Count Wait Count Busy Percent Held of Total Time
Function NameWrite Read Rate Write Read Write Read Count CPU ElapseSpin Wait 
^^^^^^^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^^^^^^^^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^^^^^^^^^^^^^ 
.tstart 0 1912 0.00 0 0 0 0 0 0.07 0.07 0.00 0.00 
.clock 0 1911 0.00 0 0 0 0 0 0.05 0.05 0.00 0.00 

 Return Address   Start Address    Offset
^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^ ^^^^^^^^
000000000001AA54 0000000000000000 0001AA54
000000000001A494 0000000000000000 0001A494

Acquisitions Miss Spin Count Wait Count Busy Percent Held of Total Time
ThreadID Write Read Rate Write Read Write Read Count CPU Elapse Spin Wait
~~~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~
5423 1206 5484 0.00 0 0 0 0 0 0.24 0.24 0.00 0.00
4877 300 1369 0.00 0 0 0 0 0 0.03 0.03 0.00 0.00
517 54 242 0.00 0 0 0 0 0 0.01 0.01 0.00 0.00
4183 5 27 0.00 0 0 0 0 0 0.00 0.00 0.00 0.00
 Chapter 8. Trace tools 673

PThread synchronizer reports
By default, splat prints out a detailed report for each PThread entry in the
summary report. The PThread synchronizers come in three types; mutex,
read/write lock, and condition-variable. The mutex and read/write lock are
related to the AIX complex lock, so you will see similarities in the lock detail
reports. The condition-variable differs significantly from a lock, and this is
reflected in the report details.

The PThread library instrumentation does not provide names or classes of
synchronizers, so the addresses are the only way we have to identify them.
Under certain conditions the instrumentation is able to capture the
return-addresses of the function-call stack, and these addresses are used with
the gennames output to identify the call-chains when these synchronizers are
created. Sometimes the creation and deletion times of the synchronizer can be
determined as well, along with the ID of the PThread that created them.
Example 8-41 shows an example of the header.

Example 8-41 PThread synchronizer report header

[PThread MUTEX] ADDRESS: 00000000F0049DE8
Parent Thread: 0000000000000001 creation time: 0.624240
Creation call-chain ==
00000000D00D9414 .pthread_mutex_lock
00000000D00E0D48 .pthread_once
00000000D01EC30C .__getgrent_tsd_callback
00000000D01D9574 ._libc_inline_callbacks
00000000D01D9500 ._libc_declare_data_functions
00000000D00EF400 ._pth_init_libc
00000000D00DCF78 .pthread_init
0000000010000318 .driver_addmulti
0000000010000234 .driver_addmulti
00000000D01D8E0C .__modinit
0000000010000174 .driver_addmulti

Mutex reports
The PThread mutex is like an AIX simple lock in that only one thread can acquire
the lock, and is like an AIX complex lock in that it can be held recursively. A
sample report is shown in Example 8-42.

Example 8-42 PThread Mutex report

[PThread MUTEX] ADDRESS: 00000000F010A3C8
Parent Thread: 0000000000000001 creation time: 15.708728
Creation call-chain ==
00000000D00491BC .pthread_mutex_lock
00000000D0050DA0 .pthread_once
00000000D007417C .__odm_init
00000000D01D9600 ._libc_process_callbacks
674 AIX 5L Performance Tools Handbook

00000000D01D8F28 .__modinit
000000001000014C .driver_addmulti
==
 | | | Percent Held (15.710062s)
Acqui- | Miss Spin Wait Busy | Secs Held | Real Real Comb Real
sitions | Rate Count Count Count |CPU Elapsed | CPU Elapsed Spin Wait
1 | 0.000 0 0 0 |0.000000 0.000000 | 0.00 0.00 0.00 0.00
--
Depth Min Max Avg
SpinQ 0 0 0
WaitQ 0 0 0
Recursion 0 1 0

Besides the common header information and the [PThread MUTEX] identifier, this
report lists the following lock details:

Acquisitions The number of times the lock was acquired in the analysis
interval.

Miss Rate The percentage of attempts that failed to acquire the lock.

Spin Count The number of unsuccessful attempts to acquire the lock.

Wait Count The number of times a thread was forced into a
suspended wait state waiting for the lock to come
available.

Busy Count The number of trylock() calls that returned busy.

Seconds Held This field contains the following sub-fields:

CPU The total number of CPU seconds that
the lock was held by an executing
thread.

Elapsed The total number of elapsed seconds
that the lock was held, whether the
thread was running or suspended.

Percent Held This field contains the following sub-fields:

Real CPU The percentage of the cumulative CPU
time that the lock was held by an
executing thread.

Real Elapsed The percentage of the elapsed real time
that the lock was held by any thread at
all, either running or suspended.

Comb(ined) Spin The percentage of the cumulative cpu
time that running threads spent
 Chapter 8. Trace tools 675

spinning while trying to acquire this
lock.

Real Wait The percentage of elapsed real time
that any thread was waiting to acquire
this lock. Note that if two or more
threads are waiting simultaneously, this
wait-time will only be charged once. If
you want to know how many threads
were waiting simultaneously, look at the
WaitQ Depth statistics.

Depth This field contains the following sub-fields:

SpinQ The minimum, maximum, and average
number of threads spinning on the lock,
whether executing or suspended,
across the analysis interval.

WaitQ The minimum, maximum, and average
number of threads waiting on the lock,
across the analysis interval.

Recursion The minimum, maximum, and average
recursion-depth to which each thread
held the lock.

If the -dt or -da options are used, splat reports the thread detail as shown in
Example 8-43.

Example 8-43 PThread mutex report (thread detail)

Acqui- Miss Spin Wait Busy Percent Held of Total Time
 PThreadID sitions Rate Count Count Count CPU Elapse Spin Wait
 ~~~~~~~~~  ~~~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~  ~~~~~~  ~~~~~~   ~~~~~~   ~~~~~~
         1        1   0.0000      0      0      0   0.0001 0.0001 0.0000 0.0000

The columns are defined as follows:

PThreadID The PThread identifier.

Acquisitions The number of times this thread acquired the lock.

Miss Rate The percentage of acquisition attempts by the thread that 
failed to secure the lock.

Spin Count The number of unsuccessful attempts by this thread to 
secure the lock.

Wait Count The number of times this thread was forced to wait until 
the lock came available.
676 AIX 5L Performance Tools Handbook



Busy Count The number of times this thread used try to acquire the 
lock without success (calls to simple_lock_try() that 
returned busy).

Percent Held of Total Time contains the following sub-fields:

CPU The percentage of the elapsed real time 
that this thread executed while holding 
the lock.

Elapse(d) The percentage of the elapsed real time 
that this thread held the lock while 
running or suspended.

Spin The percentage of elapsed real time 
that this thread executed while spinning 
on the lock.

Wait The percentage of elapsed real time 
that this thread spent waiting on the 
lock.

Read/Write lock reports
The PThread read/write lock is like an AIX complex lock in that it can be acquired 
for reading or writing; writing is exclusive in that a single thread can only acquire 
the lock for writing, and no other thread can hold the lock for reading or writing at 
that point. Reading is not exclusive, so more than one thread can hold the lock 
for reading. Reading is recursive in that a single thread can hold multiple 
read-acquisitions on the lock. Writing is not. A sample report is shown in 
Example 8-44.

Example 8-44   PThread read/write lock report
[PThread RWLock]    ADDRESS:    000000002FF22B70
Parent Thread:  0000000000000001     creation time: 0.051140                
Creation call-chain ==================================================================
00000000100003D4    .driver_addmulti
00000000100001B4    .driver_addmulti
=============================================================================
         |                     |                  | Percent Held (383.290027s )
Acqui-   |  Miss  Spin   Wait  |    Secs Held     |  Real  Real    Comb  Real
sitions  |  Rate  Count  Count |CPU      Elapsed  |  CPU  Elapsed  Spin  Wait
3688386  |  0.000 0      0  |383.2384 383.2384 | 99.99  99.99   0.00   0.00
--------------------------------------------------------------------------------------
                Readers                  Writers Total
Depth     Min   Max Avg            Min   Max   Avg           Min   Max Avg
LockQ     0     3688386 3216413  0     0     0 0     3688386 3216413
SpinQ     0     0 0 0     0     0 0     0 0    
WaitQ     0     0 0 0     0     0 0     0 0    
 Chapter 8. Trace tools 677



Besides the common header information and the [PThread RWLock] identifier, 
this report lists the following lock details:

Acquisitions The number of times the lock was acquired in the analysis 
interval.

Miss Rate The percentage of attempts that failed to acquire the lock.

Spin Count The number of unsuccessful attempts to acquire the lock.

Wait Count The current PThread implementation does not force 
threads to wait on read/write locks. What is reported here 
is the number of times a thread, spinning on this lock, is 
undispatched.

Seconds Held This field contains the following sub-fields:

CPU The total number of CPU seconds that 
the lock was held by an executing 
thread. If the lock is held multiple times 
by the same thread, only one hold 
interval is counted.

Elapsed The total number of elapsed seconds 
that the lock was held by any thread, 
whether the thread was running or 
suspended.

Percent Held This field contains the following sub-fields:

Real CPU The percentage of the cumulative CPU 
time that the lock was held by any 
executing thread.

Real Elapsed The percentage of the elapsed real time 
that the lock was held by any thread at 
all, either running or suspended.

Comb(ined) Spin The percentage of the cumulative cpu 
time that running threads spent 
spinning while trying to acquire this 
lock.

Real Wait The percentage of elapsed real time 
that any thread was waiting to acquire 
this lock. Note that if two or more 
threads are waiting simultaneously, this 
wait-time will only be charged once. If 
you want to know how many threads 
were waiting simultaneously, look at the 
WaitQ Depth statistics.
678 AIX 5L Performance Tools Handbook



Depth This field contains the following sub-fields:

LockQ The minimum, maximum, and average 
number of threads holding the lock, 
whether executing or suspended, 
across the analysis interval. This is 
broken down by read-acquisitions, 
write-acquisitions, and all acquisitions 
together.

SpinQ The minimum, maximum, and average 
number of threads spinning on the lock, 
whether executing or suspended, 
across the analysis interval. This is 
broken down by read-acquisitions, 
write-acquisitions, and all acquisitions 
together.

WaitQ The minimum, maximum, and average 
number of threads in a timed-wait state 
for the lock, across the analysis interval. 
This is broken down by 
read-acquisitions, write-acquisitions, 
and all acquisitions together.

If the -dt or -da options are used, splat reports the thread detail as shown in 
Example 8-45.

Example 8-45   PThread read/write lock (thread detail)
Acquisitions   Miss    Spin Count    Wait Count Busy Percent Held of Total Time

 ThreadID  Write  Read    Rate   Write  Read   Write  Read   CountCPU  Elapse  Spin   Wait
 ~~~~~~~~ ~~~~~~ ~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~
 1 0 36883860.000 0 0 0 00.00 99.99 0.00 0.00

The columns are defined as follows:

PThreadID The PThread identifier.

Acquisitions The number of times this thread acquired the lock,
differentiated by write versus read.

Miss Rate The percentage of acquisition attempts by the thread that
failed to secure the lock.

Spin Count The number of unsuccessful attempts by this thread to
secure the lock, differentiated by write versus read.
 Chapter 8. Trace tools 679

Wait Count The number of times this thread was forced to wait until
the lock came available, differentiated by write versus
read.

Busy Count The number of times this thread used try to acquire the
lock, without success (for example calls to
simple_lock_try() that returned busy).

Percent Held of Total Time contains the following sub-fields:

CPU The percentage of the elapsed real time
that this thread executed while holding
the lock.

Elapse(d) The percentage of the elapsed real time
that this thread held the lock while
running or suspended.

Spin The percentage of elapsed real time
that this thread executed while spinning
on the lock.

Wait The percentage of elapsed real time
that this thread spent waiting on the
lock.

Condition-Variable report
The PThread condition-variable is a synchronizer but not a lock. A PThread is
suspended until a signal indicates that the condition now holds. A sample report
is shown in Example 8-46.

Example 8-46 PThread condition variable report
[PThread CondVar] ADDRESS: 0000000020004858
Parent Thread: 0000000000000000 creation time: 18.316493
Creation call-chain ==
00000000D004E42C ._free_pthread
00000000D004CE98 .pthread_init
00000000D01D8E40 .__modinit
000000001000014C .driver_addmulti
===
 | | Spin / Wait Time (18.330873s)
 | Fail Spin Wait | Comb Comb
 Passes | Rate Count Count | Spin Wait
0 | 0.00 0 0 | 0.00 0.00

Depth Min Max Avg
SpinQ 0 0 0
WaitQ 0 0 0
680 AIX 5L Performance Tools Handbook

Besides the common header information and the [PThread CondVar] identifier,
this report lists the following details:

Passes The number of times the condition was signaled to hold
during the analysis interval.

Fail Rate The percentage of times that the condition was tested and
was not found to be true.

Spin Count The number of times that the condition was tested and
was not found to be true.

Wait Count The number of times a thread was forced into a
suspended wait state waiting for the condition to be
signaled.

Spin / Wait Time This field contains the following sub-fields:

Comb Spin The total number of CPU seconds that
threads spun while waiting for the
condition.

Comb Wait The total number of elapsed seconds
that threads spent in a wait state for the
condition.

Depth This field contains the following sub-fields:

SpinQ The minimum, maximum, and average
number of threads spinning while
waiting for the condition, across the
analysis interval.

WaitQ The minimum, maximum, and average
number of threads waiting for the
condition, across the analysis interval.

If the -dt or -da options are used, splat reports the thread detail as shown in
Example 8-47.

Example 8-47 PThread condition variable report (thread detail)
 Fail Spin Wait % Total Time

 PThreadID Passes Rate Count Count Spin Wait
 ~~~~~~~~~  ~~~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~   ~~~~~~ ~~~~~~
       1    80312    0.0000       0  80312   0.0000  82.4531
     258    80311    0.0000       0  80312   0.0000  82.4409

The columns are defined as follows:

PThreadID The PThread identifier.
 Chapter 8. Trace tools 681



Passes The number of times this thread was notified that the 
condition passed.

Fail Rate The percentage of times the thread checked the condition 
and did not find it to be true.

Spin Count The number of times the thread checked the condition 
and did not find it to be true.

Wait Count The number of times this thread was forced to wait until 
the condition cam true.

Percent Total Time This field contains the following sub-fields:

Spin The percentage of elapsed real time that this 
thread spun while testing the condition.

Wait The percentage of elapsed real time that this 
thread spent waiting for the condition to hold.

8.8  stripnm
The stripnm command extracts the symbol information from a specified object 
file, executable, or archive library, and prints it to standard output.  If the input file 
is an archive library, the command extracts the symbol information from each 
object file contained in the archive. It can also be used to search for symbol 
information in the /unix file. If the /unix file does not correspond to the currently 
running kernel, a warning message is displayed. The stripnm command 
produces an output similar to the output generated by the gennames command, 
which is required for using the tprof, filemon, netpmon, and pprof commands in 
real-time mode.

The stripnm command is similar to the nm command. However, it can extract 
symbol information from stripped executables whereas nm cannot.

stripnm resides in /usr/bin and is part of the bos.perf.tools fileset, which is 
installable from the AIX base installation media.

8.8.1  Syntax
The syntax of stripnm is as follows:

stripnm [ -x ] [ -s ] File

Flags
-x Prints symbol address values in hexadecimal format.
682 AIX 5L Performance Tools Handbook



-s If the symbol table does not exist, as is the case when the 
executable has been stripped, this flag displays symbol 
names from the trace back tables. If the symbol table 
exists, the -s flag first displays the symbol names from 
the trace back tables, and then displays the symbol 
names found in the symbol table but not found in the trace 
back tables. Routines defined as static do not appear in 
the symbol table. However, they may have trace back 
tables and using the -s flag will print them. If the trace 
back tables do not exist, an error message is displayed.

Parameter
File The name of the object or archive library file.

8.8.2  Information on measurement and sampling
If an executable is produced with optimization (-O), some of the information used 
by stripnm is not included. In order for stripnm to work correctly with stripped 
optimized executables, the -q tbtable=full compiler option should be used in 
addition to the -O option when compiling the executable.

The stripnm command reads the data out of the objects symbol table. If the -s 
flag is used, it extracts routine names from the trace back table of the object file. 
The stripnm command also searches for the glue code. The glue code is a set of 
executable instructions in the text section of the object file. 

8.8.3  Examples
Example 8-48 shows the output of the stripnm -sx /usr/bin/ls command.

Example 8-48   The output of the stripnm -sx /usr/bin/ls command
# stripnm -sx /usr/bin/ls 

Symbols from /usr/bin/ls

Note: Unlike the nm command, the stripnm command does not list all symbols 
from the symbol table. Only file names, and named and unnamed external 
symbols are reported. When used with the -s flag, the stripnm command will 
also suppress printing of some duplicated symbols in the symbol table.

Note: Only the root user and members of the security group should have 
execute access to the stripnm command.
 Chapter 8. Trace tools 683



ls                         |          | file |          |      |     |
.__start                   |0x10000100|extern|          |      |     |.text
.__threads_init            |0x100001c8|extern|          |      |     |.text
.add_cache                 |0x10000300|extern|          |      |     |.text
.cache_hit                 |0x10000450|extern|          |      |     |.text
.ls_select                 |0x10000508|extern|          |      |     |.text
.getname                   |0x10000618|extern|          |      |     |.text
.pmode                     |0x1000074c|extern|          |      |     |.text
.column                    |0x100007b8|extern|          |      |     |.text
.pentry                    |0x10000a68|extern|          |      |     |.text
.new_line                  |0x100013c8|extern|          |      |     |.text
.pprintf                   |0x10001480|extern|          |      |     |.text
.pdirectory                |0x10001830|extern|          |      |     |.text
.pem                       |0x10001b40|extern|          |      |     |.text
.main                      |0x10001cfc|extern|          |      |     |.text
.compar                    |0x100026b4|extern|          |      |     |.text
.makename                  |0x100027fc|extern|          |      |     |.text
.readdirs                  |0x10002958|extern|          |      |     |.text
.savestr                   |0x10002b2c|extern|          |      |     |.text
.gstat                     |0x10002be4|extern|          |      |     |.text
.strcpy                    |0x10003320|extern|          |      |     |.text
.strcmp                    |0x100034e0|extern|          |      |     |.text
glink.s                    |          | file |          |      |     |
.__mod_init                |0x100002d8|extern|          |      |     |.text
.malloc                    |0x100031f8|extern|          |      |     |.text
.catgets                   |0x10003220|extern|          |      |     |.text
.fprintf                   |0x10003248|extern|          |      |     |.text
.exit                      |0x10003270|extern|          |      |     |.text
.free                      |0x10003298|extern|          |      |     |.text
.__flsbuf                  |0x100032c0|extern|          |      |     |.text
._getpwuid_shadow          |0x100032e8|extern|          |      |     |.text
.getgrgid                  |0x10003428|extern|          |      |     |.text
.printf                    |0x10003450|extern|          |      |     |.text
.localtime                 |0x10003478|extern|          |      |     |.text
.setlocale                 |0x100034a0|extern|          |      |     |.text
.strftime                  |0x10003610|extern|          |      |     |.text
.strlen                    |0x10003638|extern|          |      |     |.text
.mbswidth                  |0x10003660|extern|          |      |     |.text
.fputs                     |0x10003688|extern|          |      |     |.text
.mbtowc                    |0x100036b0|extern|          |      |     |.text
.qsort                     |0x100036d8|extern|          |      |     |.text
.calloc                    |0x10003700|extern|          |      |     |.text
.catopen                   |0x10003728|extern|          |      |     |.text
.time                      |0x10003750|extern|          |      |     |.text
.getuid                    |0x10003778|extern|          |      |     |.text
.isatty                    |0x100037a0|extern|          |      |     |.text
.getopt                    |0x100037c8|extern|          |      |     |.text
.getenv                    |0x100037f0|extern|          |      |     |.text
.atoi                      |0x10003818|extern|          |      |     |.text
684 AIX 5L Performance Tools Handbook



.ioctl                     |0x10003840|extern|          |      |     |.text

.fclose                    |0x10003868|extern|          |      |     |.text

.perror                    |0x10003890|extern|          |      |     |.text

.strcoll                   |0x100038b8|extern|          |      |     |.text

.opendir                   |0x100038e0|extern|          |      |     |.text

.readdir                   |0x10003908|extern|          |      |     |.text

.closedir                  |0x10003930|extern|          |      |     |.text

.realloc                   |0x10003958|extern|          |      |     |.text

.stat64                    |0x10003980|extern|          |      |     |.text

.lstat64                   |0x100039a8|extern|          |      |     |.text

.__divi64                  |0x100039d0|extern|          |      |     |.text

.readlink                  |0x100039f8|extern|          |      |     |.text

� The first column shows the name of the symbol. 

� The second column lists the address of the symbol. No address is displayed if 
the reference of the symbol is file. 

� The third column shows the symbol’s reference. The possible values are:

– file 
The symbol references a file name.

– extern 
The symbol references a named external symbol.

– unamex 
The symbol references an unnamed external symbol.

� The last column shows the section of the object the symbol belongs to. The 
possible values are:

– .text
The text (code) section.

– .data
The data section.

– .bss
The uninitialized data section.

For detailed information about the Extended Common Object File Format 
(XCOFF), please refer to the AIX 5L Version 5.1 Files Reference.

8.9  trace
trace is a utility that monitors statistics of user and kernel subsystems in detail.
 Chapter 8. Trace tools 685



Many of the performance tools listed in this Redbook, for example curt (see 
Section 8.1, “curt” on page 616), use trace to obtain their data. The performance 
tools then formats the data read from the raw trace report and presents it to the 
user. You can format the trace report using the trcrpt command as discussed in 
Section 8.11, “trcrpt” on page 704.

Usually before analyzing the trace file, you would use other performance tools to 
obtain an overview of the system for potential or real performance problems. This 
will give you an indication of what to look for in the trace for resolving any 
performance bottlenecks. The commonly used methodology is to look at the curt 
output, then other performance command outputs, then lthe formatted trace file.

trace resides in /usr/sbin, is linked from /usr/bin, and is part of the 
bos.sysmgt.trace fileset, which is installable from the AIX base installation media.

8.9.1  Syntax
The following syntax applies to the trace command:

trace [ -a [ -g ] ] [ -f | -l ] [ -b | -B] [ -c] [ -C [ CPUList | all ]] 
[ -d ] [ -h ] [ -j Event [ ,Event ] ] [ -k Event [ ,Event ] ] 
[ -J Event-group [ ,Event-group ]] [ -K Event-group [ ,Event-group ]]
[ -m Message ] [ -n ] [ -o Name ] [ -o- ] [ -p ] [ -s ] [ -L Size ] 
[ -T Size ]

Flags
-a Runs the trace daemon asynchronously (that is, as a 

background task. Once trace has been started this way, 
you can use the trcon, trcoff, and trcstop commands 
to respectively start tracing, stop tracing, or exit the trace 
session. These commands are implemented as links to 
trace.

-b Allocate buffers from the kernel heap. If the requested 
buffer space cannot be obtained from the kernel heap, 
the command fails. This flag is only valid for a 32-bit 
kernel.

-B Allocate buffers in separate segments. This flag is only 
valid for a 32-bit kernel.

-c Saves the trace log file, adding .old to its name.

-C[ CPUList | all ] Traces using one set of buffers per CPU in the CPUList. 
The CPUs can be separated by commas, or enclosed in 
double quotation marks and separated by commas or 
blanks. To trace all CPUs, specify all. Because this flag 
686 AIX 5L Performance Tools Handbook



uses one set of buffers per CPU, and produces one file 
per CPU, it can consume large amounts of memory and 
file space, and should be used with care. The files 
produced are named trcfile, trcfile-0, trcfile-1, and so 
forth, where then numbers represent the CPU numbers. 
If -T or -L are specified, the sizes apply to each set of 
buffers and each file. On a uniprocessor system, you 
may specify -C all, but the -C flag with a list of CPU 
numbers is ignored. If the -C flag is used to specify more 
than one CPU, such as -Call or -C "0 1", then the 
associated buffers are not put into the system dump.

-d Disables the automatic start of trace data collection. 
Normally the collection of trace data starts automatically 
when you issue the trace daemon, but when you have 
specified the trace command using the -d flag, the trace 
will not start until the trcon command ha been issued.

-f Runs trace in a single mode. Causes the collection of 
trace data to stop as soon as the in-memory buffer is 
filled up. The trace data is then written to the trace log. 
Use the trcon command to restart trace data collection 
and capture another full buffer of data. If you issue the 
trcoff subcommand before the buffer is full, trace data 
collection is stopped and the current contents of the 
buffer are written to the trace log.

-g Starts a trace session on a generic trace channel 
(channels 1 through 7). This flag works only when trace 
is run asynchronously (-a). The return code of the 
command is the channel number; the channel number 
must subsequently be used in the generic trace 
subroutine calls. To stop the generic trace session, use 
the command trcstop -<channel_number>.

-h Omits the header record from the trace log. Normally, the 
trace daemon writes a header record with the date and 
time (from the date command) at the beginning of the 
trace log; the system name, version and release, the 
node identification, and the machine identification (from 
the uname -a command); and a user-defined message. 
At the beginning of the trace log, the information from the 
header record is included in the output of the trcrpt 
command.

-j Event[,Event] See the description for the -k flag.
 Chapter 8. Trace tools 687



-k Event[,Event] Specifies the user-defined events for which you want to 
collect (-j) or exclude (-k) trace data. The Event list 
items can be separated by commas, or enclosed in 
double quotation marks and separated by commas or 
blanks.

The following events are used to determine the pid, the 
cpuid, and the exec path name in the trcrpt report:

� 106 DISPATCH

� 10C DISPATCH IDLE PROCESS

� 134 EXEC SYSTEM CALL

� 139 FORK SYSTEM CALL

� 465 KTHREAD CREATE

If any of these events are missing, the information 
reported by the trcrpt command will be incomplete. 
Consequently, when using the -j flag, you should 
include all these events in the Event list. Conversely, 
when using the -k flag, you should not include these 
events in the Event list. If starting the trace with SMIT or 
the -J flag, these events are in the tidhk group.

-J Event-group See description for the -K flag.
[, Event-group ]

-K Event-group Specifies the event groups to be included (-J) or
[ ,Event-group ] excluded (-K). The -J and -K flags work like -j and -k,

except with event groups instead of individual hook ids.
All four flags, -j, -J, -k, and -K, may be specified.

-l Runs trace in a circular mode. The trace daemon writes 
the trace data to the trace log when the collection of 
trace data is stopped. Only the last buffer of trace data is 
captured. When you stop trace data collection using the 
trcoff command, restart it using the trcon command. 

-L Size Overrides the default trace log file size of 1 MB with the 
value stated. Specifying a file size of zero sets the trace 
log file size to the default size. For a multiple-CPU 
system, the size limit applies to each of the per-CPU 
logfiles that are generated, rather than their collective 
size.
688 AIX 5L Performance Tools Handbook



-m Message Specifies text to be included in the message field of the 
trace log header record.

-n Adds information to the trace log header; lock 
information, hardware information, and, for each loader 
entry, the symbol name, address, and type. 

-o Name Overrides the /var/adm/ras/trcfile default trace log file 
and writes trace data to a user-defined file.

-o - Overrides the default trace log name and writes trace 
data to standard output. The -c flag is ignored when 
using this flag. An error is produced if -o- and -C are 
specified.

-p Includes the cpuid of the current processor with each 
hook. This flag is only valid for 64-bit kernel traces. The 
trcrpt command can report the cpuid whether or not 
this option is specified.

-s Stops tracing when the trace log fills. The trace daemon 
normally wraps the trace log when it fills up and 
continues to collect trace data. During asynchronous 
operation, this flag causes the trace daemon to stop 
trace data collection. During interactive operations, the 
quit subcommand must be used to stop trace.

-T Size Overrides the default trace buffer size of 128 KB with the 
value stated. You must be root to request more than 1 
MB of buffer space. The maximum possible size is 
268,435,184 bytes (256 MB) unless the -f flag is used, 
in which case it is 536,870,368 bytes (512 MB). The 
smallest possible size is 8192 bytes, unless the -f flag 
is used, in which case it is 16,392 bytes. Sizes between 
8,192 and 16,392 will be accepted when using the -f 
flag, but the actual size used will be 16,392 bytes. Note 
that with the -C option allocating one buffer per traced 
CPU, the size applies to each buffer rather than the 
collective size of all the buffers.

Note: In the circular and the alternate modes, the trace log file size must be at 
least twice the size of the trace buffer. In the single mode, the trace log file 
must be at least the size of the buffer. See the -T flag for information on 
controlling the trace buffer size.
 Chapter 8. Trace tools 689



Unless the -b or -B flags are specified, the system attempts to allocate the buffer 
space from the kernel heap. If this request cannot be satisfied, the system then 
attempts to allocate the buffers as separate segments.

The -f flag actually uses two buffers, which behave as a single buffer (except 
that a buffer wraparound trace hook will be recorded when the first buffer is 
filled).

Subcommands
When run interactively, trace recognizes the following subcommands:

trcon Starts the collection of trace data.

trcoff Stops the collection of trace data.

q or quit Stops the collection of trace data and exits trace.

! Runs the shell command specified by the Command 
parameter.

? Displays the summary of trace subcommands.

Signals
The INTERRUPT signal acts as a toggle to start and stop the collection of trace 
data. Interruptions are set to SIG_IGN for the traced process. 

Files
/usr/include/sys/trcmacros.h Defines trchook and utrchook macros.

/var/adm/ras/trcfile Contains the default trace log file.

Note: In the single mode, the trace log file must be at least the size of the 
buffer. See the -L flag for information on controlling the trace log file size. The 
trace buffers use pinned memory, which means they are not pageable. 
Therefore, the larger the trace buffers, the less physical memory is available to 
applications. In the circular and the alternate modes, the trace buffer size must 
be one-half or less the size of the trace log file.
690 AIX 5L Performance Tools Handbook



8.9.2  Information on measurement and sampling
When trace is running, it will require a CPU overhead of less that two percent. 
When the trace buffer are full, trace will write its output to the trace log, which 
may require up to five percent of CPU resource. The trace command claims and 
pins buffer space. If a system is short of memory, then running trace could 
further degrade system performance.

The trace daemon configures a trace session and starts the collection of system 
events. The data collected by the trace function is recorded in the trace log. A 
report from the trace log is a raw file and can be formatted to a readable ASCII 
file with the trcrpt command.

When invoked with the -a flag, the trace daemon will run asynchronously (that is, 
as a background task). Otherwise, it is run interactively and prompts you for 
subcommands as is shown in Example 8-51 on page 695.

You can use the System Management Interface Tool (SMIT) to run the trace 
daemon. See “Using SMIT to stop and start trace” on page 694 for details.

Operation modes
There are three modes of trace data collection:

� Alternate (the default)

All trace events are captured in the trace log file.

� Circular

The trace events wrap within the in-memory buffers and are not captured in 
the trace log file until the trace data collection is stopped. To choose the 
Circular trace method, use the -l flag.

� Single

The collection of trace events stops when the in-memory trace buffer fills up 
and the contents of the buffer are captured in the trace log file. To choose the 
Single trace method, use the -f flag. 

Buffer Allocation Trace buffers are allocated from either the kernel heap, or are 
put into separate segments. By default, buffers are allocated from the kernel 
heap unless the buffer size requested is too large for buffers to fit in the kernel 
heap, in which case they are allocated in separate segments.

Attention: Depending on what trace hooks you are tracing, the trace file can 
become very large.
 Chapter 8. Trace tools 691



Allocating buffers from separate segments hinders trace performance somewhat. 
However, buffers in separate segments will not take up paging space; just pinned 
memory. The type of buffer allocation can be specified with the optional -b or -B 
flags when using a 32-bit kernel.

8.9.3  Terminology used for trace
In order to understand how the trace facility (also called trace program) works, it 
is important to know the meaning of some terms.

Trace Hooks
A trace hook is a specific event that is to be monitored. For example, if you wish 
to monitor Physical File System (PFS) events, include trace hook 10A in the 
trace. Trace hooks are defined by the kernel and can change with different 
releases of the operating system, but trace hooks can also be defined and used 
by an application. If a specific event in an application does not have a trace hook 
defined, then this event will never show up in a trace report.

Trace hooks can be displayed with trcrpt -j. The example in “AIX 5L trace 
hooks” on page 922 shows the trace hooks that are applicable for AIX 5L.

It is recommended that you run trcrpt -j to check for any modifications to the 
trace hooks that IBM may make.

Hook ID
A unique number is assigned to a trace hook (for example, a certain event) called 
a hook ID. These hook IDs can either be called by a user application or by the 
kernel. The hook IDs can be found in the file /usr/sys/include/trchkid.h.

Trace daemon
The trace daemon (sometimes also called trace command or trace process) has 
to be activated in order to generate statistics on user processes and kernel sub 
systems. This is actually the process that can be monitored by the ps command.

Trace buffer
The data that is collected by the trace daemon is first written to the trace buffer. 
Only one trace buffer is transparent to the user, though it is internally divided into 
two parts, also referred to as a set of trace buffers. By using the -C option with 
the trace command, one set of trace buffers can be created for each CPU of an 
SMP system. This enhances the total trace buffer capacity. 
692 AIX 5L Performance Tools Handbook



Trace log file
Once one of the two internal trace buffers is full, its content is usually written to 
the trace log file. The trace log file does fill up quite quickly, so that in most cases 
only a few seconds are chosen to be monitored by trace.

The sequence followed by the trace facility is shown in Figure 8-2 on page 693

Figure 8-2   The trace facility

Either a user process or a kernel subsystem calls a trace hook function (by using 
the hook ID). These trace hook functions check if the trace daemon is running 
and, if it is running, pass the data to the trace daemon that then takes the hook 
ID and the according event and writes them (together with a timestamp) 
sequentially to the trace buffer. Depending on the options that were chosen 
when the trace daemon was invoked (see “Operation modes” on page 691), the 
trace data is then written to the trace log file. A report from the trace log can be 
generated with the trcrpt command.

The trace facility

user
kernel

trace log file

trace buffers

A B

user
process

kernel
subsystems

trace
hook calls

trace
deamon
 Chapter 8. Trace tools 693



Just as important is to keep in mind that the trace log file can grow huge 
depending on the amount of data that is being collected. A trace on a fully loaded 
24-way SMP can easily accumulate close to 100 MB of trace data in less than a 
minute. Some sensibility is required to determine if all that data is really needed. 
Often a few seconds are enough to catch all the important activities that need to 
be traced. An easy method of limiting the size of the trace log file run the trace in 
Single mode as discussed in “Operation modes” on page 691.

8.9.4  Ways to start and stop trace
There are several ways to stop and start trace.

Using SMIT to stop and start trace
A convenient way to stop and start trace is to use the smitty trace command. 
This is especially convenient if you are including or excluding specific trace 
hooks. Using the System Management Interface Tool (SMIT) allows you to view a 
list of trace hook(s) (by using the F4 key of SMIT) and choose the trace hook(s) to 
include or exclude.

To access the trace menus of SMIT, type smitty trace. The following menu will 
appear (Example 8-49).

Example 8-49   The SMIT trace menu
                                     Trace

Move cursor to desired item and press Enter.

  START Trace
  STOP Trace
  Generate a Trace Report
  Manage Event Groups

Esc+1=Help          Esc+2=Refresh       Esc+3=Cancel        Esc+8=Image
Esc+9=Shell         Esc+0=Exit          Enter=Do

Enter the START Trace menu and start the trace as shown in Example 8-50.

Example 8-50   Using SMIT to start the trace
# smitty trace
                                  START Trace

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

                                                        [Entry Fields]
694 AIX 5L Performance Tools Handbook



  EVENT GROUPS to trace                              []                       +
  ADDITIONAL event IDs to trace                      []                       +
  Event Groups to EXCLUDE from trace                 []                       +
  Event IDs to EXCLUDE from trace                    []                       +
  Trace MODE                                         [alternate]              +
  STOP when log file full?                           [no]                     +
  LOG FILE                                           [trace.raw]
  SAVE PREVIOUS log file?                            [no]                     +
  Omit PS/NM/LOCK HEADER to log file?                [yes]                    +
  Omit DATE-SYSTEM HEADER to log file?               [no]                     +
  Run in INTERACTIVE mode?                           [no]                     +
  Trace BUFFER SIZE in bytes                         [10000000]                #
  LOG FILE SIZE in bytes                             [10000000]                #
  Buffer Allocation                                  [automatic]              +

Esc+1=Help          Esc+2=Refresh       Esc+3=Cancel        Esc+4=List
Esc+5=Reset         Esc+6=Command       Esc+7=Edit          Esc+8=Image
Esc+9=Shell         Esc+0=Exit          Enter=Do

You can exit the menu, then select the STOP Trace option of the menu in 
Example 8-49 on page 694 to stop the trace. The trace trace.raw will reside in 
the current directory.

Running trace interactively
Example 8-51 shows how to run trace interactively, tracing the ls command as 
well as other processes running on the system from within the trace command. 
The raw trace file created by trace is called /var/adm/ras/trcfile.

Example 8-51   Running trace interactively
# trace
-> !ls
-> quit
# ls -l /var/adm/ras/trcfile*
-rw-r--r--   1 root     system      1345980 May 30 11:00 /var/adm/ras/trcfile

Running trace asynchronously
Example 8-52 shows how to run trace asynchronously, tracing the ls command 
as well as other processes running on the system. This method avoids delays 
when the command finishes. The raw trace file created by trace is called 
/var/adm/ras/trcfile.

Example 8-52   Running trace asynchronously
# trace -a ; ls ; trcstop
# ls -l /var/adm/ras/trcfile*
-rw-rw-rw-   1 root     system       174624 May 30 11:04 /var/adm/ras/trcfile
 Chapter 8. Trace tools 695



Note that by using this method, the trace file is considerably smaller that the 
interactive method shown in Example 8-51.

Running trace an entire system for 10 seconds
Example 8-53 shows how to run trace on the entire system for 10 seconds. This 
will trace all system activity and include all trace hooks. The raw trace file created 
by trace is called /var/adm/ras/trcfile.

Example 8-53   Running trace on entire system for 10 seconds
# trace -a ; sleep 10 ; trcstop
# ls -l /var/adm/ras/trcfile*
-rw-rw-rw-   1 root     system      1346168 May 30 11:15

Tracing to a specific log file
Example 8-54 shows how to run trace asynchronously, tracing the ls command 
and outputting the raw trace file to /tmp/my_trace_log.

Example 8-54   Tracing to a specific log file
# ls -l /tmp/my_trace_log
ls: 0653-341 The file /tmp/my_trace_log does not exist.
# trace -a -o /tmp/my_trace_log; ls; trcstop
# ls -l /tmp/my_trace_log*
-rw-rw-rw-   1 root     system       181012 May 30 11:20 /tmp/my_trace_log

Tracing a command
The following section shows how to trace commands.

Tracing a command that is not already running on the system
Example 8-54 shows how to run trace on a command that you are about to start. 
It allows you to start trace, run the command, and then terminate trace. This 
ensures that all trace events are captured.

Tracing a command that is already running on the system
To trace a command that is already running, run a trace on the entire system as 
was shown in Example 8-53, and use the trcrpt command with the -p flag to 
specify reporting of the specific process.

Tracing using one set of buffers per CPU
Normally, trace groups all CPU buffers into one trace file. Events that occurred 
on the individual CPUs may be separated into CPU specific files as shown in 
Example 8-55. This increases the total buffered size capacity for collecting trace 
events.

Example 8-55   Tracing using one set of buffers per CPU
696 AIX 5L Performance Tools Handbook



# trace -aC all ; sleep 10 ; trcstop
# ls -l /var/adm/ras/trcfile*
-rw-rw-rw-   1 root     system        32824 May 30 11:55 /var/adm/ras/trcfile
-rw-rw-rw-   1 root     system      1313376 May 30 11:55 /var/adm/ras/trcfile-0
-rw-rw-rw-   1 root     system       529624 May 30 11:55 /var/adm/ras/trcfile-1
-rw-rw-rw-   1 root     system       897160 May 30 11:55 /var/adm/ras/trcfile-2
-rw-rw-rw-   1 root     system       454128 May 30 11:13 /var/adm/ras/trcfile-3

The example above has four individual files (one for each CPU) plus the master 
file /var/adm/ras/trcfile.

Running the trace -aCall -o mylog command would produce the files mylog, 
mylog-0, mylog-1, mylog-2, mylog-3, and so forth; one for each CPU.

8.9.5  Examples
The following are just two of the examples where trace can be used. The trace 
command is a powerful tool that can be used for many diagnostic purposes.

� Checking return times from called routines.

If the system is running slow, then trace can be used to determine how long 
threads are taking to return from functions. Long return times could highlight a 
performance problem. An example of this shown in “Checking return times 
from trace” on page 697.

� Sequential Reads and Writes

If you are experiencing high disk I/O then you can determine how long the 
disk I/O is taking to perform and what sort of disk accesses are occurring. For 
example, a database may be performing a full table scan on an unindexed file 
to retrieve records. This would be inefficient and may point to problems with 
indexing, or there may not be an index at all. An example of this shown in 
“Sequential Reads and Writes” on page 701.

Checking return times from trace
In this section we will check return times from the trace to see if there are any 
long delays.

First, we will create a raw trace of all the processes running on the system as in 
Example 8-56. Then the individual CPU traces are combined into the raw trace 
file (trace.r). We will then use trcrpt to create the file trcrpt.out.

Example 8-56   Running trace on entire system 10 seconds
# trace -aC all ; sleep 10 ; trcstop
# gennames > gennames.out
# trcnm > trace.nm
# cp /etc/trcfmt trace.fmt
 Chapter 8. Trace tools 697



# trcrpt -C all -r /var/adm/ras/trcfile > trace.r
# trcrpt -O exec=on,pid=on,cpuid=on -n trace.nm -t trace.fmt trace.r > trcrpt.out

A useful part of the trace report (trcrp.out) is the return times from various 
functions that occurred during the trace. By using the grep command and 
grepping for only the usec times, you can get an indication of which processes 
are using the most time. This can also be achieved by using the shell script in 
Example 8-57. The script greps for the usec times, and displays trace files lines 
of the top 20 highest return times. It excludes the trace hook id 102 (wait).

Example 8-57   Script to check for return times in trace.
# Extract the return times from the trace file

TMPFILE1=/tmp/usec1-$$
TMPFILE2=/tmp/usec2-$$

grep "ID  PROCESS NAME" trcrpt.out

grep usec trcrpt.out | grep -vw '102 wait' | awk -F'[' '{ print $2 }' |\
awk '{ print $1 }' > $TMPFILE1

sort -rn $TMPFILE1| head -20 > $TMPFILE2

while read string
do

grep "$string usec" trcrpt.out

done < $TMPFILE2

The output from the script is as follows (Example 8-58).

Example 8-58   Top 20 highest return times
ID  PROCESS NAME CPU   PID   I  ELAPSED_SEC   DELTA_MSEC APPL SYSCALL KERNEL  INTERRUPT
104 syncd          2   378      4.504329796     0.000216       return from sync [472167 usec]
221 wait           0   516   1  4.882048580     0.002962               SCDISKDD iodone: ipldevice 
bp=30B47200 B_WRITE [392401 usec]
221 wait           0   516   1  4.875472073     0.003951               SCDISKDD iodone: ipldevice 
bp=309D2100 B_WRITE [386128 usec]
106 java           0   29944    1.924588685     0.000746               dispatch:   cmd=java pid=29944 
tid=40263 priority=181 old_tid=517 old_priority=255 CPUID=0 [250117 usec]
104 java           2   29944    9.930639660     0.001493       return from _select [250117 usec]
106 java           0   29944    1.924588685     0.000746               dispatch:   cmd=java pid=29944 
tid=40263 priority=181 old_tid=517 old_priority=255 CPUID=0 [250117 usec]
104 java           2   29944    9.930639660     0.001493       return from _select [250117 usec]
104 java           0   29944    4.926771906     0.005855       return from _select [250108 usec]
104 java           0   29944    7.928691841     0.029999       return from _select [250100 usec]
104 java           0   29944    8.929828448     0.019108       return from _select [250097 usec]
104 java           0   29944    4.426232284     0.005662       return from _select [250096 usec]
698 AIX 5L Performance Tools Handbook



104 java           0   29944    8.429250350     0.009999       return from _select [250089 usec]
104 java           0   29944    7.678503300     0.016433       return from _select [250088 usec]
104 java           0   29944    4.175869414     0.041926       return from _select [250081 usec]
104 java           0   29944    4.676462779     0.032481       return from _select [250080 usec]
104 java           0   29944    8.679499786     0.036143       return from _select [250080 usec]
104 java           0   29944    4.676462779     0.032481       return from _select [250080 usec]
104 java           0   29944    8.679499786     0.036143       return from _select [250080 usec]
104 java           0   29944    8.179039200     0.021662       return from _select [250075 usec]
104 java           0   29944    2.424882026     0.012939       return from _select [250073 usec]
104 java           0   29944    5.927430839     0.003036       return from _select [250071 usec]
104 java           0   29944    3.425409815     0.016963       return from _select [250064 usec]
104 java           0   29944    9.180150683     0.015228       return from _select [250064 usec]
104 java           0   29944    3.425409815     0.016963       return from _select [250064 usec]
104 java           0   29944    9.180150683     0.015228       return from _select [250064 usec]
104 java           0   29944    6.427796087     0.007108       return from _select [250062 usec]

The above example shows that we are getting some large return times from 
syncd and java. As the syncd only featured once, compared to the java process 
29944, we will look at the java process. syncd may have a lot of data to write to 
disk because of a problem with the java process, and therefore longer return 
times.

To look at process 29944 in more detail, we need to run the trcrpt command 
specifying process 29944 in the command line as in Example 8-59.

Example 8-59   Traces for process 29944 (java)
# trcrpt -O exec=on,pid=on,cpuid=on -o trcrpt.29944 -p 29944 -n trace.nm -t trace.fmt trace.r
# ls trcrpt.29944
trcrpt.29944

We can now look directly at the trace file called trcrpt.29944 using an editor such 
as vi that is able to handle large files. When editing the trace file with vi, you 
may get an error stating that there is not enough space in the file system. If you 
get this error, choose a file system with enough free space to edit the trace file (in 
this example, /bigfiles is the name of the file system), then run the following 
commands:

mkdir /bigfiles/tmp ; echo "set dir=/bigfiles/tmp" > $HOME/.exrc

This will direct vi to use the /bigfiles/tmp directory for temporary storage.

Attention: As some trace files may be large, be careful that you do not use all 
the file system space, as this will cause problems for AIX and other 
applications running on the system. 
 Chapter 8. Trace tools 699



From Example 8-58 on page 698 we know that we have a potential problem with 
process ID 29944 (java). We can now look further into the java process by 
producing a trace file specific to process 29944 as in the following example (the 
file we will create is called trcrpt.29944).

Search for the return time of 250117 usec (refer to Example 8-58 on page 698) in 
trcrpt.29944. This will display the events for the process as shown in 
Example 8-60.

Example 8-60   A traced routine call for process 29944
# cat trcrpt.29944
...(lines omitted)...
252 java           0   29944         1.674567306       0.003879           SOCK soo_select fp=10006FF0 
so=7013B000 corl=12 reqevents=00000001 rtneventsp=F00EFA50
116 java           0   29944         1.674568077       0.000771                   xmalloc(0020,30000000)
116 java           0   29944         1.674573257       0.005180                   xmalloc(0020,30000000)
2F9 java           0   29944         1.674585184       0.011927                   WLM STOP THREAD: 
pid=29944 class=65 nb_us=112 time=11760
10E java           -1  29944         1.924587939     250.002755                   relock: lock 
addr=1945040  oldtid=517  newtid=40263
106 java           0   29944         1.924588685       0.000746                   dispatch:   cmd=java 
pid=29944 tid=40263 priority=181 old_tid=517 old_priority=255 CPUID=0 [250117 usec]
200 java           0   29944         1.924589576       0.000891                   resume  java iar=43620 
cpuid=00
104 java           0   29944         1.924604756       0.015180           return from _select [250042 
usec]
...(lines omitted)...

A similar entry is repeated many times throughout the trace file (trcrpt.29944), 
suggesting we have the same problem occurring many times throughout the 
trace.

For ease of reading, Example 8-60 has been split vertically approximately 
halfway across the page and shown separately in the next two examples.

The left hand side with the times is shown in Example 8-61.

Example 8-61    A traced routine call for process 29944 (left hand side)
ID  PROCESS NAME   CPU PID      I    ELAPSED_SEC     DELTA_MSEC
252 java           0   29944         1.674567306       0.003879
116 java           0   29944         1.674568077       0.000771
116 java           0   29944         1.674573257       0.005180
2F9 java           0   29944         1.674585184       0.011927
10E java           -1  29944         1.924587939     250.002755
106 java           0   29944         1.924588685       0.000746
200 java           0   29944         1.924589576       0.000891
104 java           0   29944         1.924604756       0.015180
700 AIX 5L Performance Tools Handbook



The right hand side with the system calls is shown in Example 8-62. The trace 
hooks have been left in to enable you to associate the two examples.

Example 8-62   A traced routine call for process 29944 (right hand side)
ID  SYSCALL KERNEL  INTERRUPT
252 SOCK soo_select fp=10006FF0 so=7013B000 corl=12 reqevents=00000001 rtneventsp=F00EFA50
116  xmalloc(0020,30000000)
116  xmalloc(0020,30000000)
2F9  WLM STOP THREAD: pid=29944 class=65 nb_us=112 time=11760
10E  relock: lock addr=1945040  oldtid=517  newtid=40263
106  dispatch:cmd=java pid=29944 tid=40263 priority=181 old_tid=517 old_priority=255 CPUID=0 [250117 usec]
200  resume  java iar=43620 cpuid=00
104 return from _select [250042 usec]

As can be seen from the above example, when the java process was trying to 
reserve memory, the Workload Manager (WLM) stopped the thread from 
running, which caused a relock to occur. The relock took 250.002755 usec 
(microseconds). This should be investigated further. You could, in this instance, 
tune the WLM to allow more time for the java process to complete.

Sequential Reads and Writes
The trace command can be used to identifying reads and writes to files.

When the trace report has been generated, you can determine the type of read 
and writes that are occurring on files systems when the trace was run.

The following script is useful for displaying the type of file accesses. The script 
does the following extracts readi and writei Physical File System (PFS) calls from 
the formatted trace and sorts the file in order of the ip field (Example 8-63).

Example 8-63   Script to sort PFS trace events
:
egrep "PFS writei|PFS readi" trcrpt.out > readwrite
> trcrpt.pfs
for ip in `cat readwrite | grep 'ip=' | awk -F'ip=' '{ print $2 }' |\
 awk '{ print $1 }' | sort -u`
do
        grep "ip=$ip" readwrite >> trcrpt.pfs
done

The output from the above scripts is as follows (Example 8-64).

Example 8-64   PFS file access in trace file
# cat trcrpt.pfs
...(lines omitted)...
PFS readi  VA.S=0000 3CE000.293C5 bcount=2000 ip=1B160270
PFS readi  VA.S=0000 3D0000.293C5 bcount=2000 ip=1B160270
PFS readi  VA.S=0000 3D4000.293C5 bcount=2000 ip=1B160270
 Chapter 8. Trace tools 701



PFS readi  VA.S=0000 3D6000.293C5 bcount=2000 ip=1B160270
PFS readi  VA.S=0000 3D8000.293C5 bcount=2000 ip=1B160270
PFS readi  VA.S=0000 3E0000.293C5 bcount=2000 ip=1B160270
...(lines omitted)...

The above example shows that the file at ip address 1B160270 was read from with 
a block size of 8 KB reads (bcount=2000). By looking at the Virtual Address (VA) 
field, you will observe that the VA field mostly incremented by 2000 (the 2000 is 
expressed in hexadecimal). If you see this sequence then you know that the file 
is receiving a lot of sequential reads. In this case, it could be because that file 
does not have an index. For an application to read large files without indexes, in 
some cases, a full table scan is needed to retrieve records. In this case it would 
be advisable to index the file.

To determine what file is being accessed, it is necessary to map the ip to a file 
name. This is done with the ps command.

For efficiency considerations, it is best to perform file accesses in multiples of 4 
KB. 

8.10  trcnm
The trcnm command generates a list of all symbols with their addresses defined 
in the kernel. This data is used by the trcrpt -n command to interpret addresses 
when formatting a report from a trace log file. Please refer to Section 8.11, 
“trcrpt” on page 704 for more information on the trcrpt command.

trcnm resides in /usr/bin and is part of the bos.sysmgt.trace fileset, which is 
installable from the AIX base installation media.

8.10.1  Syntax
The syntax of the trcnm command is as follows:

trcnm [  -a [ FileName ] ] | [ FileName ] | -K Symbol ... 

Flags
-a Writes all loader symbols to standard output. The default 

is to write loader symbols only for system calls.

-K Symbol... Obtains the value of all command line symbols through 
the knlist system call. 
702 AIX 5L Performance Tools Handbook



Parameters
FileName The kernel file that the trcnm command creates the name 

list for. If this parameter is not specified, the default 
FileName is /unix.

Symbol The name list will be created only for the specified 
symbols. To specify multiple symbols, seperate the 
symbols by a space.

The trcnm command writes to standard output. When using the output of the 
trcnm command with the trcrpt -n command, this output needs to be saved into 
a file.

8.10.2  Information on measurement and sampling
The trcnm command generates a list of symbol names and their addresses for 
the specified kernel file, or /unix if no kernel file is specified. The symbol names 
and addresses are read out of the kernel file. The output of the trcnm command 
is similar the output the stripnm -x command provides. The output format differs 
between these commands. Please refer to Section 8.8, “stripnm” on page 682 for 
more information on the stripnm command.

8.10.3  Examples
The following command is used to create a name list for the kernel file /unix:

trcnm >/tmp/trcnm.out

To create the name list only for the kernel symbols net_malloc and m_copym, 
use the trcnm -K net_malloc m_copym command as shown in Example 8-65.

Example 8-65   Using trcnm to create the name list for specified symbols
# trcnm -K net_malloc m_copym
net_malloc           001C9FCC
m_copym              001CA11C

For each specified symbol the name and the address is printed.

Note: The trace command flag -n gathers the necessary symbol information 
needed by the trcrpt command and stores this information in the trace log 
file. The symbol information gathered by trace -n includes the symbols from 
the loaded kernel extensions. The trcnm command provides only the symbol 
information for the kernel. The use of the -n flag of trace as a replacement for 
the trcnm command is recommended.
 Chapter 8. Trace tools 703



8.11  trcrpt
The trcrpt command formats a report from the trace log. Refer to Section 8.9, 
“trace” on page 685.

trcrpt resides in /usr/sbin, is linked from /usr/bin, and is part of the 
bos.sysmgt.trace fileset, which is installable from the AIX base installation media.

8.11.1  Syntax
The following syntax applies to the trcrpt command:

trcrpt [ -c ] [ -C [ CPUList | all ]] [ -d List ] 
[ -D Event-group-list ] [ -e Date ] [ -G ] [ -h ] [ -j ] [ -k List ]
[ -K Group-list ] [ -n Name ] [ -o File ] [ -p List ] [ -r ]
[ -s Date ] [ -t File ] [ -T List ] [ -v ] [ -O Options ] [-x ] [ File ]

Flags
-c Checks the template file for syntax errors.

-C [ CPUList | all ] Generates a report for a multicpu trace with trace -C. 
The CPUs can be separated by commas, or enclosed 
in double quotation marks and separated by commas 
or blanks. To report on all CPUs, specify trace -C all. 
The -C flag is not necessary unless you want to see 
only a subset of the CPUs traced, or have the CPU 
number show up in the report. If -C is not specified, 
and the trace is a multicpu trace, trcrpt generates the 
trace report for all CPUs, but the CPU number is not 
shown for each hook unless you specify -O cpu=on. 

-d List Limits report to hook IDs specified with the List 
variable. The List parameter items can be separated 
by commas, or enclosed in double quotation marks 
and separated by commas or blanks.

-D Event-group-list Limits the report to hook ids in the Event groups list, 
plus any hook ids specified with the -d flag. List 
parameter items can be separated by commas, or 
enclosed in double quotation marks and separated by 
commas or blanks. Event groups are described in 
"Debug and Performance Tracing" (refer to 
Section 8.9.2, “Information on measurement and 
sampling” on page 691).

-e Date Ends the report time with entries on, or before the 
specified date. The Date variable has the form 
704 AIX 5L Performance Tools Handbook



mmddhhmmssyy (month, day, hour, minute, second, 
and year). Date and time are recorded in the trace 
data only when trace data collection is started and 
stopped. If you stop and restart trace data collection 
multiple times during a trace session, date and time 
are recorded each time you start or stop a trace data 
collection. Use this flag in combination with the -s flag 
to limit the trace to data collected during a certain time 
interval.

    If you specify -e with -C, the -e flag is ignored.

-G List all event groups. The list of groups, the hook ids in 
each group, and each group's description is listed to 
standard output.

-h Omits the header information from the trace report and 
writes only formatted trace entries to standard output.

-j Displays the list of hook IDs. The trcrpt -j 
command can be used with the trace -j command 
that includes IDs of trace events, or the trace -k 
command that excludes IDs of trace events.

-k List Excludes from the report hook IDs specified with the 
List variable. The List parameter items can be 
separated by commas or enclosed in double quotation 
marks and separated by commas or blanks.

-K Event-group-list Excludes from the report hook ids in the event-groups 
list, plus any hook ids specified with the -k flag. List 
parameter items can be separated by commas, or 
enclosed in double quotation marks and separated by 
commas or blanks. Event groups are described in 
"Debug and Performance Tracing" (refer to 
Section 8.9.2, “Information on measurement and 
sampling” on page 691).

-n Name Specifies the kernel name list file to be used to 
interpret addresses for output. Usually this flag is used 
when moving a trace log file to another system.

-o File Writes the report to a file instead of to standard output.

-O Options Specifies options that change the content and 
presentation of the trcrpt command. Arguments to 
the options must be separated by commas. Valid 
options are:

2line=[on|off] Uses two lines per trace event in the report 
instead of one. The default value is off.
 Chapter 8. Trace tools 705



cpuid=[on|off] Displays the physical processor number in 
the trace report. The default value is off.

endtime=Seconds Displays trace report data for events 
recorded before the seconds specified. 
Seconds can be given in either an integral or 
rational representation. If this option is used 
with the starttime option, a specific range 
can be displayed.

exec=[on|off] Displays exec path names in the trace 
report. The default value is off.

hist=[on|off] Logs the number of instances that each 
hook ID is encountered. This data can be 
used for generating histograms. The default 
value is off. This option cannot be run with 
any other option. 

ids=[on|off] Displays trace hook identification numbers 
in the first column of the trace report. The 
default value is on.

pagesize=Number Controls the number of lines per page in the 
trace report and is an integer in the range of 
0 through 500. The column headings are 
included on each page. No page breaks are 
present when the default value of 0 (zero) is 
set.

pid=[on|off] Displays the process IDs in the trace report. 
The default value is off.

reportedcpus=[on|off] Displays the number of CPUs remaining. 
This option is only meaningful for a multicpu 
trace; that is, if the trace was performed with 
the -C flag. For example, if you're reading a 
report from a system having four CPUs, and 
the reported CPUs value goes from four to 
three, then you know that there are no more 
hooks to be reported for that CPU.

starttime=Seconds Displays trace report data for events 
recorded after the seconds specified. The 
specified seconds are from the beginning of 
the trace file. Seconds can be given in either 
an integral or rational representation. If this 
option is used with the endtime option, a 
specific range of seconds can be displayed.
706 AIX 5L Performance Tools Handbook



svc=[on|off] Displays the value of the system call in the 
trace report. The default value is off.

tid=[on|off] Displays the thread ID in the trace report. 
The default value is off. 

timestamp=[0|1|2|3] Controls the time stamp associated with an 
event in the trace report. The possible 
values are:

 0 Time elapsed since the trace was 
started. Values for elapsed seconds and 
milliseconds are returned to the nearest 
nanosecond and microsecond,     
respectively. This is the default value.

1 Short elapsed time.

2 Microseconds.

3 No time stamp.

-p List Reports the process IDs for each event specified by 
the List variable. The List variable may be a list of 
process IDs or a list of process names. List items that 
start with a numeric character are assumed to be 
process IDs. The list items can be separated by 
commas, or enclosed in double quotation marks and 
separated by commas or blanks.

-r Outputs unformatted (raw) trace entries and writes the 
contents of the trace log to standard output one entry 
at a time. Use the -h flag with the -r flag to exclude the 
heading. To get a raw report for CPUs in a multicpu 
trace, use both the -r and -C flags.

-s Date Starts the report time with entries on or before the 
specified date. The Date variable has the form 
mmddhhmmssyy (month, day, hour, minute, second, 
and year). Date and time are recorded in the trace data 
only when trace data collection is started and stopped. 
If you stop and restart trace data collection multiple 
times during a trace session, date and time are 
recorded each time you start or stop a trace data 
collection. Use this flag in combination with the -e flag 
to limit the trace to data collected during a certain time 
interval. 

   If you specify -s with -C, the -s flag is ignored.
 Chapter 8. Trace tools 707



-t File Uses the file specified in the File variable as the 
template file. The default is the /etc/trcfmt file.

-T List Limits the report to the kernel thread IDs specified by 
the List parameter. The list items are kernel thread 
IDs separated by commas. Starting the list with a 
kernel thread ID limits the report to all kernel thread 
IDs in the list. Starting the list with a ! (exclamation 
point) followed by a kernel thread ID limits the report to 
all kernel thread IDs not in the list.

-v Prints file names as the files are opened. Changes to 
verbose setting. 

-x Displays the exec path name and value of the system 
call.

Parameters
File Name of the raw trace file.

Information on measurement and sampling
The trcrpt command reads the trace log specified by the File parameter, 
formats the trace entries, and writes a report to standard output. The default file 
from which the system generates a trace report is the /var/adm/ras/trcfile file, but 
you can specify an alternate File parameter. 

8.11.2  Examples
You can use the System Management Interface Tool (SMIT) to run the trcrpt 
command by entering the SMIT fast path: 

# smitty trcrpt

Example 8-66 shows how to run trcrpt using /var/adm/ras/trcfile as the raw 
trace file.

Example 8-66   Running trcrpt via smit
                            Generate a Trace Report

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

                                                      [Entry Fields]
  Show exec PATHNAMES for each event?              [yes]                    +
  Show PROCESS IDs for each event?                 [yes]                    +
  Show THREAD IDs for each event?                  [yes]                    +
  Show CURRENT SYSTEM CALL for each event?         [yes]                    +
  Time CALCULATIONS for report                     [elapsed+delta in milli> +
708 AIX 5L Performance Tools Handbook



  Event Groups to INCLUDE in report                []                       +
  IDs of events to INCLUDE in report               []                       +X
  Event Groups to EXCLUDE from report              []                       +
  ID's of events to EXCLUDE from report            []                       +X
  STARTING time                                    []
  ENDING time                                      []
  LOG FILE to create report from                   [/var/adm/ras/trcfile]
  FILE NAME for trace report (default is stdout)   []

Esc+1=Help          Esc+2=Refresh       Esc+3=Cancel        Esc+4=List
Esc+5=Reset         Esc+6=Command       Esc+7=Edit          Esc+8=Image
Esc+9=Shell         Esc+0=Exit          Enter=Do

Combining trace buffers
Normally, trace groups all CPU buffers into one trace file. If you run trace with 
the -C all option, then the events that occurred on the individual CPUs will be 
separated into CPU specific files as in the following example. To run trcrpt to 
format the trace into a readable file, you will need to combine the raw trace files 
into one raw trace file. After combining the files, you can remove the specific raw 
trace files, as these are no longer required and usually are quite large in size. 
Example 8-67 shows the above procedure.

Example 8-67   Tracing using one set of buffers per CPU
# trace -aC all ; sleep 10 ; trcstop
# ls -l /var/adm/ras/trcfile*
-rw-rw-rw-   1 root     system        31120 Jun 01 11:05 /var/adm/ras/trcfile
-rw-rw-rw-   1 root     system       424768 Jun 01 11:05 /var/adm/ras/trcfile-0
-rw-rw-rw-   1 root     system       343692 Jun 01 11:05 /var/adm/ras/trcfile-1
-rw-rw-rw-   1 root     system       345536 Jun 01 11:05 /var/adm/ras/trcfile-2
-rw-rw-rw-   1 root     system      1313376 Jun 01 11:05 /var/adm/ras/trcfile-3
# trcrpt -C all -r /var/adm/ras/trcfile > trace.r
# ls -l trace.r
-rw-r--r--   1 root     system      2386848 Jun 01 11:07 trace.r
# trcrpt -O exec=on,pid=on,cpuid=on -n trace.nm -t trace.fmt trace.r > trcrpt.out
# head -10 trcrpt.out

Fri Jun  1 11:05:06 2001
System: AIX wlmhost Node: 5
Machine: 000BC6AD4C00
Internet Address: 090301A4 1.3.11.164
The system contains 4 cpus, of which 4 were traced.
Buffering: Kernel Heap
This is from a 32-bit kernel.
Tracing all hooks.

# rm /var/adm/ras/trcfile*
# trcnm > trace.nm
 Chapter 8. Trace tools 709



# cp /etc/trcfmt trace.fmt
# trcrpt -O exec=on,pid=on,cpuid=on -n trace.nm -t trace.fmt trace.r > trcrpt.out
# head trcrpt.out
...(lines omitted)...

For other examples, refer to Section 8.9.5, “Examples” on page 697.
710 AIX 5L Performance Tools Handbook



Chapter 9. APIs for performance 
monitoring

In this chapter we describe how to use the different Application Programming 
Interfaces (API) that are available. It contains information on how to use the 
Perfstat API to develop customized performance monitoring applications. We 
also describe the basic usage of the System Performance Measurement 
Interface (SPMI) API and the Performance Monitor (PM) API. Additionally we will 
describe the Resource Monitoring and Control (RMC) subsystem and usage. 
Finally we show some examples of using other performance monitoring 
subroutines that are available on AIX.

This chapter contains the following sections:

� Perfstat API

� System Performance Measurement Interface (SPMI)

� Performance Monitor (PM) API

� Resource Monitoring and Control (RMC)

� Miscellaneous performance monitoring subroutines

9

© Copyright IBM Corp. 2001 711



9.1  Perfstat API
The Perfstat Application Programming Interface (API) is a collection of C 
programming language subroutines that execute in user space and extract data 
from the perfstat kernel extension (kex) to obtain statistics1.

The Perfstat API is both a 32 bit and a 64 bit API, and is thread safe, very simple 
to use, and does not require root security level authentication. It is the preferred 
way to develop monitoring applications, and the kex is also used by most system 
monitoring commands. The API is under development, and will have additional 
API subroutines and data structures in future release. Note that the internal 
perfstat kex access mechanisms are not available. Only the Perfstat Library API 
will be maintained for public use.

The Perfstat API subroutines resides in the libperfstat.a library in the /usr/lib (or 
/lib because /lib is a symbolic link to /usr/lib) and is part of the 
bos.perf.libperfstat fileset, which is installable from the AIX base installation 
media and requires that the bos.perf.perfstat fileset is installed.

The /usr/include/libperfstat.h file contains the subroutine declarations and type 
definitions of the data structures to use when calling the subroutines. This 
include file is also part of the bos.perf.libperfstat fileset. Sample source code is 
also available and resides in the /usr/samples/libperfstat directory.

The documentation for the subroutines can be found in the AIX 5L Version 5.1 
Technical Reference: Base Operating System and Extensions, Volume 1.

9.1.1  Compiling and linking
After writing a C program that uses the Perfstat API and includes the libperfstat.h 
header file, you just run cc on it specifying that you want to link to the 
libperfstat.a library, as in Example 9-1.

Example 9-1   cc with libperfstat.a
# cc -lperfstat -o perfstat_program perfstat_program.c

This will create the perfstat_program file from the perfstat_program.c source 
program, linking it with the libperfstat.a library. Then perfstat_program can be 
run as a normal command.

9.1.2  Subroutines
The following subroutines make up the Perfstat API:

1  AIX 5L only.
712 AIX 5L Performance Tools Handbook



perfstat_cpu The perfstat_cpu subroutine retrieves one 
or more individual CPU usage statistics. The 
same function can be used to retrieve the 
number of available sets of CPU statistics.

perfstat_cpu_total The perfstat_cpu_total subroutine returns 
global CPU usage statistics.

perfstat_memory_total The perfstat_memory_total subroutine 
returns global memory usage statistics.

perfstat_disk The perfstat_disk subroutine retrieves one 
or more individual disk usage statistics. The 
same function can also be used to retrieve 
the number of available sets of disk 
statistics. 

perfstat_disk_total The perfstat_disk_total subroutine 
returns global disk usage statistics.

perfstat_netinterface The perfstat_netinterface subroutine 
retrieves one or more individual network 
interface usage statistics. The same function 
can also be used to retrieve the number of 
available sets of network interface statistics.

perfstat_netinterface_total The perfstat_netinterface_total 
subroutine returns global network interface 
usage statistics.

perfstat_cpu
The perfstat_cpu subroutine retrieves one or more individual CPU usage 
statistics. The same function can be used to retrieve the number of available sets 
of CPU statistics.

Syntax
int perfstat_cpu (name, userbuff, sizeof_struct, desired_number)

perfstat_id_t * name;
perfstat_cpu_t * userbuff;
int sizeof_struct;
int desired_number;

Note: The Perfstat API subroutines return raw data. To create output similar to 
what is reported by commands such as iostat and vmstat, you need to take a 
snapshot, wait for a specified interval of time, and then take another snapshot. 
After this you need to deduct the first obtained value from the second to get 
the proper delta for the occurrence during the specified interval time. The 
libperfstat.h file should be reviewed to identify the units of each metric.
 Chapter 9. APIs for performance monitoring 713



Parameters
name Contains a name identifying the first CPU for which 

statistics are desired. "" is used to indicate the first 
available CPU. For example: cpu0, cpu1, and so on.

userbuff Points to the memory area that is to be filled with one or 
more perfstat_cpu_t structures.

sizeof_struct Specifies the size of the perfstat_cpu_t structure: 
sizeof(perfstat_cpu_t).

desired_number Specifies the number of perfstat_cpu_t structures to 
copy to userbuff.

Example
The following code (Example 9-2) uses the perfstat_cpu_t structure to obtain 
information on CPU statistics.

Example 9-2   Example perfstat_cpu_t program
# expand -4 perfstat_cpu_t.c|nl
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <libperfstat.h>

4 main()
5 {
6     perfstat_id_t   name;
7     perfstat_cpu_t  *ub;
8     int             ncpu,i;
 
9     ncpu = perfstat_cpu (NULL,NULL,sizeof(perfstat_cpu_t),0);
10     ub = malloc(sizeof(perfstat_cpu_t)*ncpu);

11     strcpy(name.name,"");
 
12     if (perfstat_cpu(&name,ub,sizeof(perfstat_cpu_t),ncpu) >= 0)
13         for (i = 0; i < ncpu; i++) {
14             printf("name    : %s\n",   ub[i].name);
15             printf("\tuser    : %llu\n", ub[i].user);
16             printf("\tsys     : %llu\n", ub[i].sys);
17             printf("\tidle    : %llu\n", ub[i].idle);
18             printf("\twait    : %llu\n", ub[i].wait);
19             printf("\tpswitch : %llu\n", ub[i].pswitch);
20             printf("\tsyscall : %llu\n", ub[i].syscall);
21             printf("\tsysread : %llu\n", ub[i].sysread);
22             printf("\tsyswrite: %llu\n", ub[i].syswrite);
23             printf("\tsysfork : %llu\n", ub[i].sysfork);
24             printf("\tsysexec : %llu\n", ub[i].sysexec);
25             printf("\treadch  : %llu\n", ub[i].readch);
26             printf("\twritech : %llu\n", ub[i].writech);
714 AIX 5L Performance Tools Handbook



27         }
28 }

On line 3 the libperfstat.h declaration file is included. Then on line 6 and 7 we 
declare the variables for calling the perfstat_cpu subroutine, which we do on 
line 12. Note how the usage and reference of structures is done in the call. The 
first call to perfstat_cpu is done to acquire the number of CPUs in the system. 
This is then used to allocate the appropriate number of structures, with malloc, 
to store the information for each CPU. 

The output from the program can look like in Example 9-3.

Example 9-3   Sample output from the perfstat_cpu_t program
# perfstat_cpu_t
name    : proc0
    user    : 63584
    sys     : 29732
    idle    : 13419287
    wait    : 20660
    pswitch : 2122965
    syscall : 6498220
    sysread : 978004
    syswrite: 607014
    sysfork : 3536
    sysexec : 4666
    readch  : 976572598
    writech : 335808673
...(lines omitted)...
name    : proc3
    user    : 194219
    sys     : 34758
    idle    : 13063504
    wait    : 35837
    pswitch : 2230810
    syscall : 15141865
    sysread : 754259
    syswrite: 474751
    sysfork : 6391
    sysexec : 4903
    readch  : 1583351139
    writech : 490560773

Note: Only rudimentary error checking is done in the example program. This 
is done for clarity of reading purposes only.
 Chapter 9. APIs for performance monitoring 715



In the output above you can see you will only get raw data. The Perfstat API will 
let you acquire the data quite easily as can be seen in the program in 
Example 9-2 on page 714. 

The following are definitions of each structure element:

name CPU name (proc0, proc1, and so on)
user CPU user time (raw ticks)
sys CPU sys time (raw ticks)
idle CPU idle time (raw ticks)
wait CPU wait time (raw ticks)
pswitch Incremented whenever the current running process 

changes
syscall Number of syscalls
sysread Number of readings
syswrite Number of writings
sysfork Number of forks 
sysexec Number of execs
readch Number of bytes read by CPU
writech Number of bytes written by CPU

perfstat_cpu_total
The perfstat_cpu_total subroutine returns global CPU usage statistics.

Syntax
int perfstat_cpu_total (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_cpu_total_t * userbuff;
int sizeof_struct;
int desired_number;

Parameters
name  In AIX 5.1, this must always be set to NULL. 

userbuff Points to the memory area that is to be filled with the 
perfstat_cpu_total_t structure. 

sizeof_struct Specifies the size of the perfstat_cpu_total_t structure: 
sizeof(perfstat_cpu_total_t). 

desired_number In AIX 5.1, this must always be set to 1. 

Example
The following code (Example 9-4) uses the perfstat_cpu_total_t structure to 
obtain information on CPU statistics.

Example 9-4   Example perfstat_cpu_total_t program
# expand -4 perfstat_cpu_total_t.c|nl
716 AIX 5L Performance Tools Handbook



1  #include <stdio.h>
2  #include <stdlib.h>
3  #include <libperfstat.h>

4  main()
5  {
6      perfstat_cpu_total_t    ub;

7      if (perfstat_cpu_total ((perfstat_id_t*)NULL, &ub, 
sizeof(perfstat_cpu_total_t),1) >= 0) {
8          printf("ncpus       : %d\n", ub.ncpus);
9          printf("ncpus_cfg   : %d\n", ub.ncpus_cfg);
10          printf("description : %s\n", ub.description);
11          printf("processorHZ : %llu\n", ub.processorHZ);
12          printf("user        : %llu\n", ub.user);
13          printf("sys         : %llu\n", ub.sys);
14          printf("idle        : %llu\n", ub.idle);
15          printf("wait        : %llu\n", ub.wait);
16          printf("pswitch     : %llu\n", ub.pswitch);
17          printf("syscall     : %llu\n", ub.syscall);
18          printf("sysread     : %llu\n", ub.sysread);
19          printf("syswrite    : %llu\n", ub.syswrite);
20          printf("sysfork     : %llu\n", ub.sysfork);
21          printf("sysexec     : %llu\n", ub.sysexec);
22          printf("readch      : %llu\n", ub.readch);
23          printf("writech     : %llu\n", ub.writech);
24          printf("devintrs    : %llu\n", ub.devintrs);
25          printf("softintrs   : %llu\n", ub.softintrs);
26          printf("lbolt       : %ld\n", ub.lbolt);
27          printf("loadavg T0  : %llu\n", ub.loadavg[0]);
28          printf("loadavg T-5 : %llu\n", ub.loadavg[1]);
29          printf("loadavg T-15: %llu\n", ub.loadavg[2]);
30          printf("runque      : %llu\n", ub.runque);
31          printf("swpque      : %llu\n", ub.swpque);
32      }
33  }

On line 3 the libperfstat.h declaration file is included. Then on line 6 we declare 
the only variable we need for calling the perfstat_cpu_total subroutine, which 
we do on line 7. Note how the usage and reference of structures is done in the 
call, especially the reference to NULL for the pointer to the perfstat_id_t 
reference. The output from the program will look like in Example 9-5.

Example 9-5   Sample output from the perfstat_cpu_total_t program
# perfstat_cpu_total_t
ncpus       : 4          
ncpus_cfg   : 4          
description : PowerPC_604
 Chapter 9. APIs for performance monitoring 717



processorHZ : 332000000  
user        : 563603     
sys         : 155464     
idle        : 54414065   
wait        : 133115     
pswitch     : 9097233    
syscall     : 63896685   
sysread     : 11619483   
syswrite    : 2565050    
sysfork     : 23221      
sysexec     : 19076      
readch      : 9580711417 
writech     : 5815058009 
devintrs    : 0          
softintrs   : 0          
lbolt       : 13044260   
loadavg T0  : 199900     
loadavg T-5 : 201223     
loadavg T-15: 200463     
runque      : 19903      
swpque      : 1147 

In the output above you can see you will only get raw data. The Perfstat API will 
let you acquire the data quite easily, as can be seen in the program in 
Example 9-5 on page 717.

The following are definitions of each structure element:

ncpus   Number of active CPUs
ncpus_cfg    Number of configured CPUs
description  CPU description
processorHZ  CPU speed in Hz
user     CPU user time (raw ticks)
sys  CPU sys  time (raw ticks)
idle     CPU idle time (raw ticks)
wait     CPU wait time (raw ticks)
pswitch  Number of changes of the current running process
syscall  Number of syscalls executed
sysread  Number of readings
syswrite     Number of writings
sysfork  Number of forks
sysexec  Number of execs
readch   Total number of bytes read
writech Total number of bytes written
devintrs     Total number of interrupts
softintrs    Total number of software interrupts
718 AIX 5L Performance Tools Handbook



lbolt    Number of ticks since last reboot
loadavg  Load average now, last 5 minutes, last 15 minutes
runque   Average length of the run queue
swpque   Average length of the swap queue

perfstat_memory_total
The perfstat_memory_total subroutine returns global memory usage statistics.

Syntax
int perfstat_memory_total (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_memory_total_t * userbuff;
int sizeof_struct;
int desired_number;

Parameters
name  In AIX 5.1, this must always be set to NULL. 

userbuff  Points to the memory area that is to be filled with the 
perfstat_memory_total_t structures.  

sizeof_struct  Specifies the size of the perfstat_memory_total_t 
structure; sizeof(perfstat_memory_total_t).  

desired_number  In AIX 5.1, this must always be set to 1. 

Example
The following code (Example 9-6) uses the perfstat_memory_total_t structure 
to obtain information on memory statistics.

Example 9-6   Example perfstat_memory_total_t program
# expand -4 perfstat_memory_total_t.c|nl
1  #include <stdio.h>
2  #include <stdlib.h>
3  #include <libperfstat.h>

4  main()
5  {
6      perfstat_memory_total_t ub;network interfaces */

7      if (perfstat_memory_total ((perfstat_id_t*)NULL, &ub, 
sizeof(perfstat_memory_total_t),1) >= 0) {
8          printf("virt_total: %llu\n", ub.virt_total);
9          printf("real_total: %llu\n", ub.real_total);
10          printf("real_free : %llu\n", ub.real_free);
11          printf("real_inuse: %llu\n", ub.real_inuse);
12          printf("pgbad     : %llu\n", ub.pgbad);
13          printf("pgexct    : %llu\n", ub.pgexct);
14          printf("pgins     : %llu\n", ub.pgins);
 Chapter 9. APIs for performance monitoring 719



15          printf("pgouts    : %llu\n", ub.pgouts);
16          printf("pgspins   : %llu\n", ub.pgspins);
17          printf("pgspouts  : %llu\n", ub.pgspouts);
18          printf("scans     : %llu\n", ub.scans);
19          printf("cycles    : %llu\n", ub.cycles);
20          printf("pgsteals  : %llu\n", ub.pgsteals);
21          printf("numperm   : %llu\n", ub.numperm);
22          printf("pgsp_total: %llu\n", ub.pgsp_total);
23          printf("pgsp_free : %llu\n", ub.pgsp_free);
24          printf("pgsp_rsvd : %llu\n", ub.pgsp_rsvd);
25      }
26  }

On line 3 the libperfstat.h declaration file is included. Then on line 6 we declare 
variables for calling the perfstat_memory_total subroutine, which we do on line 
7. Note how the usage and reference of structures is done in the call. The output 
from the program can look like in Example 9-7.

Example 9-7   Sample output from the perfstat_memory_total_t program
# perfstat_memory_total_t
virt_total: 393191
real_total: 131047
real_free : 3086
real_inuse: 127961
pgbad     : 25
pgexct    : 4531280
pgins     : 220714
pgouts    : 422582
pgspins   : 2949
pgspouts  : 12610
scans     : 3078020
cycles    : 24
pgsteals  : 1238335
numperm   : 80291
pgsp_total: 262144
pgsp_free : 250922
pgsp_rsvd : 0

In the output above you can see you will only get raw data. The Perfstat API will 
let you acquire the data quite easily as can be seen in the program in 
Example 9-6 on page 719. 

The following are definitions of each structure element:

virt_total  Total virtual memory (4K pages)
real_total  Total real memory (4K pages)
720 AIX 5L Performance Tools Handbook



real_free   Free real memory (4K pages)
real_pinned  Real memory that is pinned (4K pages)
real_inuse   Real memory that is in use (4K pages)
pgbad    Count of bad pages
pgexct Count of page faults
pgins Count of pages paged in
pgouts Count of pages paged out
pgspins Count of page ins from paging space
pgspouts Count of page outs from paging space
scans Count of page scans by clock
cycles Count of clock hand cycles
pgsteals Count of page steals
numperm Number of non-working frames
pgsp_total   Total paging space (4K pages)
pgsp_free    Free paging space (4K pages)
pgsp_rsvd    Reserved paging space (4K pages)

perfstat_disk
The perfstat_disk subroutine retrieves one or more individual disk usage 
statistics. The same function can also be used to retrieve the number of available 
sets of disk statistics. 

Syntax
int perfstat_disk (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_disk_t * userbuff;
int sizeof_struct;
int desired_number;

Parameters
name  Contains a name identifying the first disk for which 

statistics are desired. "" is used to indicate the first 
available disk. For example: hdisk0, hdisk1,and so on

userbuff  Points to the memory area that is to be filled with one or 
more perfstat_disk_t structures.  

sizeof_struct  Specifies the size of the perfstat_disk_t structure; 
sizeof(perfstat_cpu_t).

desired_number  Specifies the number of perfstat_disk_t structures to 
copy to userbuff. 
 Chapter 9. APIs for performance monitoring 721



Example
The following code (Example 9-8) uses the perfstat_disk_t structure to obtain 
information on disk statistics.

Example 9-8   Example perfstat_disk_t program
# expand -4 perfstat_disk_t.c|nl
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <libperfstat.h>

4 main()
5 {
6     perfstat_id_t   name;
7     perfstat_disk_t *ub;
8     int             ndisk,i;

9     ndisk = perfstat_disk (NULL,NULL,sizeof(perfstat_disk_t),0);
10     ub = malloc(sizeof(perfstat_disk_t)*ndisk);

11     strcpy(name.name,"");

12     if (perfstat_disk (&name,ub,sizeof(perfstat_disk_t),ndisk) >= 0)
13         for (i = 0; i < ndisk; i++) {
14             printf("name       : %s\n",  ub[i].name);
15             printf("\tdescription: %s\n",  ub[i].description);
16             printf("\tvgname     : %s\n",  ub[i].vgname);
17             printf("\tsize       : %llu\n", ub[i].size);
18             printf("\tfree       : %llu\n", ub[i].free);
19             printf("\tbsize      : %llu\n", ub[i].bsize);
20             printf("\txrate      : %llu\n", ub[i].xrate);
21             printf("\txfers      : %llu\n", ub[i].xfers);
22             printf("\twblks      : %llu\n", ub[i].wblks);
23             printf("\trblks      : %llu\n", ub[i].rblks);
24             printf("\tqdepth     : %llu\n", ub[i].qdepth);
25             printf("\ttime       : %llu\n", ub[i].time);
26         }
27 }

On line 3 the libperfstat.h declaration file is included. Then on line 6 and 7 we 
declare variables for calling the perfstat_disk subroutine, which we do on line 
12. Note how the usage and reference of structures is done in the call. The first 
call to perfstat_disk is done to acquire the number of available sets of disk 
statistics in the system. This is then used to allocate the appropriate number of 
structures to keep the information for each statistics set with malloc. 

Note: Only rudimentary error checking is done in the example program. This 
is done for clarity of reading purposes only.
722 AIX 5L Performance Tools Handbook



The output from the program will look something like Example 9-9.

Example 9-9   Sample output from the perfstat_disk_t program
# perfstat_disk_t
name       : hdisk1
    description: 16 Bit SCSI Disk Drive
    vgname     : vg0
    size       : 8672
    free       : 7936
    bsize      : 512
    xrate      : 0
    xfers      : 14104
    wblks      : 148913
    rblks      : 1298481
    qdepth     : 0
    time       : 7498
...(lines omitted)...
name       : cd0
    description: SCSI Multimedia CD-ROM Drive
    vgname     : None
    size       : 0
    free       : 0
    bsize      : 512
    xrate      : 0
    xfers      : 0
    wblks      : 0
    rblks      : 0
    qdepth     : 0
    time       : 0

In the output above you can see you will only get raw data. The Perfstat API will 
let you acquire the data quite easily as can be seen in the program in 
Example 9-6 on page 719. 

The following are definitions of each structure element:

name     Name of the disk
description  Disk description
vgname   Volume group name
size     Size of the disk (MB)
free     Free portion of the disk (MB)
bsize    Disk block size (bytes)
xrate    KB/sec xfer rate capability
xfers    Total transfers to/from disk
wblks    Blocks written to disk
rblks    Blocks read from disk
qdepth   Queue depth
 Chapter 9. APIs for performance monitoring 723



time     Amount of time disk is active

perfstat_disk_total
The perfstat_disk_total subroutine returns global disk usage statistics.

Syntax
int perfstat_disk_total (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_disk_total_t * userbuff;
int sizeof_struct;
int desired_number;

Parameters
name  In AIX 5.1, this must always be set to NULL.  

userbuff  Points to the memory area that is to be filled with one or 
more perfstat_disk_total_t structures.  

sizeof_struct  Specifies the size of the perfstat_disk_total_t 
structure; sizeof(perfstat_cpu_t).

desired_number  In AIX 5.1, this must always be set to 1.  

Example
The following code (Example 9-10) uses the perfstat_disk_total_t structure to 
obtain information on disk statistics.

Example 9-10   Example perfstat_disk_total_t program
# expand -4 perfstat_disk_total_t.c|nl
1  #include <stdio.h>
2  #include <stdlib.h>
3  #include <libperfstat.h>

4  main()
5  {
6      perfstat_disk_total_t   ub;

7      if (perfstat_disk_total ((perfstat_id_t*)NULL, &ub, 
sizeof(perfstat_disk_total_t),1) >= 0) {
8          printf("number: %d\n", ub.number);
9          printf("size  : %llu\n", ub.size);
10          printf("free  : %llu\n", ub.free);
11          printf("xrate : %llu\n", ub.xrate);
12          printf("xfers : %llu\n", ub.xfers);
13          printf("wblks : %llu\n", ub.wblks);
14          printf("rblks : %llu\n", ub.rblks);
15          printf("time  : %llu\n", ub.time);
16      }
17  }
724 AIX 5L Performance Tools Handbook



On line 3 the libperfstat.h declaration file is included. Then on line 6 we declare 
variables for calling the perfstat_disk_total subroutine, which we do on line 7. 
Note how the usage and reference of structures is done in the call. The output 
from the program will look like Example 9-11.

Example 9-11   Sample output from the perfstat_disk_total_t program
# perfstat_disk_total_t
number: 5
size  : 34688
free  : 23520
xrate : 0
xfers : 254296
wblks : 3447164
rblks : 5065261
time  : 168958

In the output above you can see you will only get raw data. The Perfstat API will 
let you acquire the data quite easily as can be seen in the program in 
Example 9-12 on page 726. The following are definitions of each structure 
element as displayed above.

number Number of disks
size Size of the disks (MB)
free Free portion of the disks (MB)
xrate Average kbytes/sec xfer rate capability
xfers Total transfers to/from disks
wblks Blocks written to all disks
rblks Blocks read from all disks
time Amount of time disk is active

perfstat_netinterface
The perfstat_netinterface subroutine retrieves one or more individual network 
interface usage statistics. The same function can also be used to retrieve the 
number of available sets of network interface statistics.

Syntax
int perfstat_netinterface (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_netinterface_t * userbuff;
int sizeof_struct;
int desired_number;
 Chapter 9. APIs for performance monitoring 725



Parameters
name  Contains a name identifying the first network interface for 

which statistics are desired. "" is used to specify the first 
available interface. For example: en0, tr1,and so on

userbuff  Points to the memory area that is to be filled with one or 
more perfstat_netinterface_t structures.  

sizeof_struct  Specifies the size of the perfstat_netinterface_t 
structure; sizeof(perfstat_cpu_t).

desired_number  Specifies the number of perfstat_netinterface_t 
structures to copy to userbuff.

Example
The following code (Example 9-12) uses the perfstat_netinterface_t structure 
to obtain information on network statistics.

Example 9-12   Example perfstat_netinterface_t program
# expand -4 perfstat_netinterface_t.c|nl
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <libperfstat.h>

4 main()
5 {
6     perfstat_id_t           name;
7     perfstat_netinterface_t *ub;
8     int                     nnetinterface,i;

9     nnetinterface = perfstat_netinterface 
(NULL,NULL,sizeof(perfstat_netinterface_t),0);
10     ub = malloc(sizeof(perfstat_netinterface_t)*nnetinterface);

11     strcpy(name.name,"");

12     if (perfstat_netinterface 
(&name,ub,sizeof(perfstat_netinterface_t),nnetinterface) >= 0)
13         for (i = 0; i < nnetinterface; i++) {
14             printf("name       : %s\n",     ub[i].name);
15             printf("\tdescription: %s\n",   ub[i].description);
16             printf("\ttype       : %u\n",   ub[i].type);
17             printf("\tmtu        : %llu\n", ub[i].mtu);
18             printf("\tipackets   : %llu\n", ub[i].ipackets);
19             printf("\tibytes     : %llu\n", ub[i].ibytes);
20             printf("\tierrors    : %llu\n", ub[i].ierrors);
21             printf("\topackets   : %llu\n", ub[i].opackets);
22             printf("\tobytes     : %llu\n", ub[i].obytes);
23             printf("\toerrors    : %llu\n", ub[i].oerrors);
24             printf("\tcollisions : %llu\n", ub[i].collisions);
726 AIX 5L Performance Tools Handbook



25         }
26 }

On line 3 the libperfstat.h declaration file is included. Then on line 6 and 7 we 
declare variables for calling the perfstat_netinterface subroutine, which we do 
on line 9. Note how the usage and reference of structures is done in the call. The 
first call to perfstat_netinterface is done to acquire the number of network 
interfaces in the system. This is then used to allocate the appropriate number of 
structures to keep the information for each network interface with malloc. 

The output from the program will look something like Example 9-13.

Example 9-13   Sample output from the perfstat_netinterface_t program
# perfstat_netinterface_t
name       : tr0
        description: Token Ring Network Interface
        type       : 9
        mtu        : 1492
        ipackets   : 764483
        ibytes     : 153429823
        ierrors    : 0
        opackets   : 499053
        obytes     : 93898923
        oerrors    : 0
        collisions : 0
name       : en0
        description: Standard Ethernet Network Interface
        type       : 6
        mtu        : 1500
        ipackets   : 0
        ibytes     : 0
        ierrors    : 0
        opackets   : 3
        obytes     : 180
        oerrors    : 3
        collisions : 0
name       : lo0
        description: Loopback Network Interface
        type       : 24
        mtu        : 16896
        ipackets   : 17501
        ibytes     : 2031836
        ierrors    : 0
        opackets   : 17501
        obytes     : 2031432

Note: Only rudimentary error checking is done in the example program. This 
is done for clarity of reading purposes only.
 Chapter 9. APIs for performance monitoring 727



        oerrors    : 0
        collisions : 0

In the output above you can see you will only get raw data. The Perfstat API will 
let you acquire the data quite easily as can be seen in the program in 
Example 9-12 on page 726. Note that the type value of 9, in the output above for 
Token-Ring, translates in hex to ISO88025 or Token Ring as can be seen in 
Table 9-1. The following is a short definition of each structure element as 
displayed above:

name     Name of the interface
description  Interface description (lscfg type output)
type     Interface types see /usr/include/net/if_types.h or 

Table 9-1 on page 728
mtu  Network frame size
ipackets     Packets received on interface
ibytes   Bytes received on interface
ierrors  Input errors on interface
opackets     Packets sent on interface
obytes   Bytes sent on interface
oerrors  Output errors on interface
collisions   Collisions on CSMA interface

Table 9-1   Interface types from if_types.h

Name Type Name Type

1822 0x2 DS3 0x1e

HDH1822 0x3 SIP 0x1f

X25DDN 0x4 FRELAY 0x20

X25 0x5 RS232 0x21

ETHER 0x6 PARA 0x22

OTHER 0x1 ULTRA 0x1d

ISO88023 0x7 ARCNET 0x23

ISO88024 0x8 ARCNETPLUS 0x24

ISO88025 0x9 ATM 0x25

ISO88026 0xa MIOX25 0x26

STARLAN 0xb SONET 0x27

P10 0xc X25PLE 0x28
728 AIX 5L Performance Tools Handbook



perfstat_netinterface_total
The perfstat_netinterface_total subroutine returns global network interface 
usage statistics.

Syntax
int perfstat_netinterface_total (name, userbuff, sizeof_struct, desired_number)
perfstat_id_t * name;
perfstat_netinterface_total_t * userbuff;
int sizeof_struct;
int desired_number;

Parameters
name  In AIX 5.1, this must always be set to NULL. 

userbuff  Points to the memory area that is to be filled with the 
perfstat_netinterface_total_t structure.  

P80 0xd ISO88022LLC 0x29

HY 0xe LOCALTALK 0x2a

FDDI 0xf SMDSDXI 0x2b

LAPB 0x10 FRELAYDCE 0x2c

SDLC 0x11 V35 0x2d

T1 0x12 HSSI 0x2e

CEPT 0x13 HIPPI 0x2f

ISDNBASIC 0x14 MODEM 0x30

ISDNPRIMARY 0x15 AAL5 0x31

PTPSERIAL 0x16 SONETPATH 0x32

PPP 0x17 SONETVT 0x33

LOOP 0x18 SMDSICIP 0x34

EON 0x19 PROPVIRTUAL 0x35

XETHER 0x1a PROPMUX 0x36

NSIP 0x1b VIPA 0x37

SLIP 0x1c

Name Type Name Type
 Chapter 9. APIs for performance monitoring 729



sizeof_struct  Specifies the size of the perfstat_netinterface_total_t 
structure; sizeof(perfstat_netinterface_total_t).  

desired_number  In AIX 5.1, this must always be set to 1. 

Example
The following code (Example 9-14) uses the perfstat_netinterface_total_t 
structure to obtain information on CPU statistics.

Example 9-14   Sample perfstat_netinterface_total_t program
# expand -4 perfstat_netinterface_total_t.c|nl
1  #include <stdio.h>
2  #include <stdlib.h>
3  #include <libperfstat.h>

4  main()
5  {
6      perfstat_netinterface_total_t   ub;

7      if (perfstat_netinterface_total ((perfstat_id_t*)NULL, &ub, 
sizeof(perfstat_netinterface_total_t),1) >= 0) {
8          printf("number    : %d\n", ub.number);
9          printf("ipackets  : %llu\n", ub.ipackets);
10          printf("ibytes    : %llu\n", ub.ibytes);
11          printf("ierrors   : %llu\n", ub.ierrors);
12          printf("opackets  : %llu\n", ub.opackets);
13          printf("obytes    : %llu\n", ub.obytes);
14          printf("oerrors   : %llu\n", ub.oerrors);
15          printf("collisions: %llu\n", ub.collisions);
16      }
17  }

On line 3 the libperfstat.h declaration file is included. Then on line 6 we declare 
variables for calling the perfstat_netinterface_total subroutine, which we do 
on line 7. Note how the usage and reference of structures is done in the call. The 
output from the program will look like Example 9-15.

Example 9-15   Sample output from the perfstat_netinterface_total_t program
# perfstat_netinterface_total_t
number    : 3
ipackets  : 781984
ibytes    : 155461659
ierrors   : 0
opackets  : 516557
obytes    : 95930535
oerrors   : 3
collisions: 0
730 AIX 5L Performance Tools Handbook



In the output above you can see you will only get raw data. The Perfstat API will 
let you acquire the data quite easily as can be seen in the program in 
Example 9-14 on page 730. The following is a short definition of each structure 
element as displayed above:

number   Interfaces count
ipackets     Packets received on interface
ibytes   Bytes received on interface
ierrors  Input errors on interface
opackets     Packets sent on interface
obytes   Bytes sent on interface
oerrors  Output errors on interface
collisions   Collisions on csma interface

9.1.3  Examples
Example 9-16 shows how to use all of the subroutines and access all the data 
that the different AIX 5.1 Perfstat API subroutines provide. Please note that the 
error checking and memory management in the example below needs to be 
enhanced for a production type program. Please also note that the statistics 
reported are raw counters of different sizes (such as bytes and KB).

Example 9-16   AIX 5.1 Perfstat API complete example
# expand -4 perfstat_dump_all.c|nl
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <libperfstat.h>

4 cpu()
5 {
6     perfstat_id_t   name;
7     perfstat_cpu_t  *ub;
8     int             ncpu,i;

9     ncpu = perfstat_cpu (NULL,NULL,sizeof(perfstat_cpu_t),0);
10     ub = malloc(sizeof(perfstat_cpu_t)*ncpu);

11     strcpy(name.name,"");

12     if (perfstat_cpu(&name,ub,sizeof(perfstat_cpu_t),ncpu) >= 0)
13         for (i = 0; i < ncpu; i++) {
14             printf("name    : %s\n",   ub[i].name);
15             printf("\tuser    : %llu\n", ub[i].user);
16             printf("\tsys     : %llu\n", ub[i].sys);
17             printf("\tidle    : %llu\n", ub[i].idle);
18             printf("\twait    : %llu\n", ub[i].wait);
19             printf("\tpswitch : %llu\n", ub[i].pswitch);
20             printf("\tsyscall : %llu\n", ub[i].syscall);
 Chapter 9. APIs for performance monitoring 731



21             printf("\tsysread : %llu\n", ub[i].sysread);
22             printf("\tsyswrite: %llu\n", ub[i].syswrite);
23             printf("\tsysfork : %llu\n", ub[i].sysfork);
24             printf("\tsysexec : %llu\n", ub[i].sysexec);
25             printf("\treadch  : %llu\n", ub[i].readch);
26             printf("\twritech : %llu\n", ub[i].writech);
27         }
28 }
      
29 cpu_total()
30 {
31     perfstat_cpu_total_t    ub;

32     if (perfstat_cpu_total((perfstat_id_t*)NULL, &ub, 
sizeof(perfstat_cpu_total_t), 1) >= 0) {
33         printf("ncpus       : %d\n", ub.ncpus);
34         printf("ncpus_cfg   : %d\n", ub.ncpus_cfg);
35         printf("description : %s\n", ub.description);
36         printf("processorHZ : %llu\n", ub.processorHZ);
37         printf("user        : %llu\n", ub.user);
38         printf("sys         : %llu\n", ub.sys);
39         printf("idle        : %llu\n", ub.idle);
40         printf("wait        : %llu\n", ub.wait);
41         printf("pswitch     : %llu\n", ub.pswitch);
42         printf("syscall     : %llu\n", ub.syscall);
43         printf("sysread     : %llu\n", ub.sysread);
44         printf("syswrite    : %llu\n", ub.syswrite);
45         printf("sysfork     : %llu\n", ub.sysfork);
46         printf("sysexec     : %llu\n", ub.sysexec);
47         printf("readch      : %llu\n", ub.readch);
48         printf("writech     : %llu\n", ub.writech);
49         printf("devintrs    : %llu\n", ub.devintrs);
50         printf("softintrs   : %llu\n", ub.softintrs);
51         printf("lbolt       : %ld\n", ub.lbolt);
52         printf("loadavg T0  : %llu\n", ub.loadavg[0]);
53         printf("loadavg T-5 : %llu\n", ub.loadavg[1]);
54         printf("loadavg T-15: %llu\n", ub.loadavg[2]);
55         printf("runque      : %llu\n", ub.runque);
56         printf("swpque      : %llu\n", ub.swpque);
57     }
58 }

59 disk()
60 {
61     perfstat_id_t   name;
62     perfstat_disk_t *ub;
63     int             ndisk,i;

64     ndisk = perfstat_disk (NULL,NULL,sizeof(perfstat_disk_t),0);
732 AIX 5L Performance Tools Handbook



65     ub = malloc(sizeof(perfstat_disk_t)*ndisk);

66     strcpy(name.name,"");

67     if (perfstat_disk (&name,ub,sizeof(perfstat_disk_t),ndisk) >= 0)
68         for (i = 0; i < ndisk; i++) {
69             printf("name       : %s\n",  ub[i].name);
70             printf("\tdescription: %s\n",  ub[i].description);
71             printf("\tvgname     : %s\n",  ub[i].vgname);
72             printf("\tsize       : %llu\n", ub[i].size);
73             printf("\tfree       : %llu\n", ub[i].free);
74             printf("\tbsize      : %llu\n", ub[i].bsize);
75             printf("\txrate      : %llu\n", ub[i].xrate);
76             printf("\txfers      : %llu\n", ub[i].xfers);
77             printf("\twblks      : %llu\n", ub[i].wblks);
78             printf("\trblks      : %llu\n", ub[i].rblks);
79             printf("\tqdepth     : %llu\n", ub[i].qdepth);
80             printf("\ttime       : %llu\n", ub[i].time);
81         }
82 }

83 disk_total()
84 {
85     perfstat_disk_total_t   ub;

86     if (perfstat_disk_total ((perfstat_id_t*)NULL, &ub, 
sizeof(perfstat_disk_total_t), 1) >= 0) {
87         printf("number: %d\n", ub.number);
88         printf("size  : %llu\n", ub.size);
89         printf("free  : %llu\n", ub.free);
90         printf("xrate : %llu\n", ub.xrate);
91         printf("xfers : %llu\n", ub.xfers);
92         printf("wblks : %llu\n", ub.wblks);
93         printf("rblks : %llu\n", ub.rblks);
94         printf("time  : %llu\n", ub.time);
95     }
96 }

97 memory_total()
98 {
99     perfstat_memory_total_t ub;

100    if (perfstat_memory_total 
((perfstat_id_t*)NULL,&ub,sizeof(perfstat_memory_total_t),1) >= 0) {
101        printf("virt_total: %llu\n", ub.virt_total);
102        printf("real_total: %llu\n", ub.real_total);
103        printf("real_free : %llu\n", ub.real_free);
104        printf("real_inuse: %llu\n", ub.real_inuse);
105        printf("pgbad     : %llu\n", ub.pgbad);
 Chapter 9. APIs for performance monitoring 733



106        printf("pgexct    : %llu\n", ub.pgexct);
107        printf("pgins     : %llu\n", ub.pgins);
108        printf("pgouts    : %llu\n", ub.pgouts);
109        printf("pgspins   : %llu\n", ub.pgspins);
110        printf("pgspouts  : %llu\n", ub.pgspouts);
111        printf("scans     : %llu\n", ub.scans);
112        printf("cycles    : %llu\n", ub.cycles);
113        printf("pgsteals  : %llu\n", ub.pgsteals);
114        printf("numperm   : %llu\n", ub.numperm);
115        printf("pgsp_total: %llu\n", ub.pgsp_total);
116        printf("pgsp_free : %llu\n", ub.pgsp_free);
117        printf("pgsp_rsvd : %llu\n", ub.pgsp_rsvd);
118    }
119}

120netinterface()
121{
122    perfstat_id_t           name;
123    perfstat_netinterface_t *ub;
124    int                     nnetinterface,i;
      
125    nnetinterface = perfstat_netinterface (NULL,NULL, 
sizeof(perfstat_netinterface_t), 0);
126    ub = malloc(sizeof(perfstat_netinterface_t)*nnetinterface);

127    strcpy(name.name,"");

128    if (perfstat_netinterface (&name,ub, sizeof(perfstat_netinterface_t), 
nnetinterface) >= 0)
129        for (i = 0; i < nnetinterface; i++) {
130            printf("name       : %s\n",     ub[i].name);
131            printf("\tdescription: %s\n",   ub[i].description);
132            printf("\ttype       : %u\n",   ub[i].type);
133            printf("\tmtu        : %llu\n", ub[i].mtu);
134            printf("\tipackets   : %llu\n", ub[i].ipackets);
135            printf("\tibytes     : %llu\n", ub[i].ibytes);
136            printf("\tierrors    : %llu\n", ub[i].ierrors);
137            printf("\topackets   : %llu\n", ub[i].opackets);
138            printf("\tobytes     : %llu\n", ub[i].obytes);
139            printf("\toerrors    : %llu\n", ub[i].oerrors);
140            printf("\tcollisions : %llu\n", ub[i].collisions);
141        }
142}

143netinterface_total()
144{
145    perfstat_netinterface_total_t   ub;
734 AIX 5L Performance Tools Handbook



146    if (perfstat_netinterface_total ((perfstat_id_t*)NULL,&ub, 
sizeof(perfstat_netinterface_total_t),1) >= 0) {
147        printf("number    : %d\n", ub.number);
148        printf("ipackets  : %llu\n", ub.ipackets);
149        printf("ibytes    : %llu\n", ub.ibytes);
150        printf("ierrors   : %llu\n", ub.ierrors);
151        printf("opackets  : %llu\n", ub.opackets);
152        printf("obytes    : %llu\n", ub.obytes);
153        printf("oerrors   : %llu\n", ub.oerrors);
154        printf("collisions: %llu\n", ub.collisions);
155    }
156}

157main()
158{
159    cpu_total();
160    cpu();
161    disk_total();
162    disk();
163    memory_total();
164    netinterface_total();
165    netinterface();
166}

In main we just run the subroutines (on line 159 to 165) in order.

Additional examples of source code programs that uses the Perfstat API can be 
found in Appendix A, “Source code examples” on page 885.

Makefile
Example 9-17 shows what a makefile2 would look like for all the programs 
described above.

Example 9-17   Makefile
# nl Makefile
1  CC=cc
2  CFLAGS=-g
3  PERF_LIBS=-lperfstat

4  PERF_PROGRAMS = perfstat_cpu_t perfstat_cpu_total_t perfstat_disk_t 
perfstat_disk_total_t perfstat_memory_total_t perfstat_netinterface_t 
perfstat_netinterface_total_t perfstat_dump_all perfstat_dude

5  all:    $(PERF_PROGRAMS)

2  can be named Makefile or makefile, but if it has another name, it needs to be specified with the -f <filename> flag
when running the make command.
 Chapter 9. APIs for performance monitoring 735



6  $(PERF_PROGRAMS):       $$@.c
7          $(CC) $(CFLAGS) $(LIBS) $(PERF_LIBS) $? -o $@

Line 1-3 are variable declarations that make changing compile parameters 
easier. Line 4 declares a variable for the programs (PERF_PROGRAMS). Line 6 
declares that all the programs that are targets (declared on line 4) will have a 
source that they depend on (appended .c to each target). Line 7 is the compile 
statement itself, if the program perfstat_dump_all was the target (and the 
source file was changed since the last created target), then the line would be 
parsed to look like the following:

# cc -g -lperfstat perfstat_dump_all.c -o perfstat_dump_all

Line 5 declares a target named all that, if we had other target:source lines with 
compile statements, would include them as sources on this line as well. Because 
this line is the first non declarative line in the Makefile, just typing make in the 
same directory would evaluate it, thus compiling everything that has changed 
sources since the last time they were compiled.

To use the makefile, just run the make command as follows:

# make

9.2  System Performance Measurement Interface (SPMI)
The System Performance Measurement Interface (SPMI) is an application 
programming interface (API) that provides standardized access to local system 
resource statistics. The SPMI mainly use the perfstat kernel extension (kex) to 
obtain statistics3. SPMI and Remote Statistics Interface (RSi)4 are utilized by the 
Performance Toolbox and Performance Aide Products. 

By developing SPMI application programs, a user can retrieve information about 
system performance with minimum system overhead. The SPMI API5 is 
supported on both AIX 4.3 and AIX 5L, it has currently more metrics than the 
Perfstat API and data is more refined (it provides rates and percentages for some 
statistics) before handed to the caller. It also allows user created data suppliers 
to export data for processing by the Performance Toolbox. 

The SPMI API is a collection of C programming language subroutines that 
execute in user space and extract data from the running kernel regarding 
performance statistics.

3  In AIX 5.
4  RSi serves as a remote means for collecting performance statistics, but it requires the Performance Aide product.
5  The SPMI API is used by Performance Toolbox.
736 AIX 5L Performance Tools Handbook



The SPMI API subroutines reside in the libSpmi.a library in the /usr/lib (or /lib 
because /lib is a symbolic link to /usr/lib) and is part of the perfagent.tools 
fileset, which is installable from the AIX base installation media and requires that 
the bos.perf.perfstat fileset be installed.

The /usr/include/sys/Spmidef.h file contains the subroutine declarations and type 
definitions of the data structures to use when calling the subroutines. This 
include file is part of the perfagent.server fileset. 

The documentation for the subroutines can be found in the AIX 5L Version 5.1 
Technical Reference: Base Operating System and Extensions, Volume 2.

9.2.1  Compiling and linking
After writing a C program that uses the SPMI API and including the sys/Spmidef.h 
header file, you just run cc on it specifying that you want to link to the libSpmi.a 
library as follows:

# cc -lSpmi -o spmi_program spmi_program.c

This will create the spmi_program file from the spmi_program.c source program, 
linking it with the libSpmi.a library. Then spmi_program can be run as a normal 
command.

9.2.2  SPMI data organization
SPMI data is organized in a multilevel hierarchy of contexts. A context may have 
subordinate contexts, known as sub contexts, as well as metrics. The 
higher-level context is called a parent context. 

The following example illustrates the SPMI data hierarchy for a metric (refer to 
“Traversing and displaying the SPMI hierarchy” on page 754):

CPU/cpu0/kern

The parents in the example above are CPU and cpu0, and the metric that can 
contain statistical value is kern (time executing in kernel mode).

When multiple copies of a resource are available, the SPMI uses a base context 
description as a template. The SPMI creates one instance of that context for 
each copy of the resource or system object. This process is known as 
instantiation. A context is considered instantiable if at least one of its immediate 
sub contexts can exist in more than one copy. 
 Chapter 9. APIs for performance monitoring 737



The SPMI can generate new instances of the subcontracts of instantiable 
contexts prior to the execution of API subroutines that traverse the data 
hierarchy. An application program can also request instantiation explicitly. In 
either case, instantiation is accomplished by requesting the instantiation for the 
parent context of the instances. Some instantiable contexts always generate a 
fixed number of sub context instances in a given system as long as the system 
configuration remains unchanged. Other contexts generate a fixed number of 
subcontracts on one system, but not on another. A final type of context is entirely 
dynamic in that it will add and delete instances as required during operation.

The SPMI uses a shared memory segment created from user space. When an 
SPMI application program starts, the SPMI checks whether another program has 
already set up the SPMI data structures in shared memory. If the SPMI does not 
find the shared memory area, it creates one and generates and initializes all data 
structures. If the SPMI finds the shared memory area, it bypasses the 
initialization process. A counter, called users, shows the number of processes 
currently using the SPMI. 

When an application program terminates, the SPMI releases all memory 
allocated for the application and decrements the users counter. If the counter 
drops to less than 1, the entire common shared memory area is freed. 
Subsequent execution of an SPMI application reallocates the common shared 
memory area. An application program has access to the data hierarchy through 
the API. 

9.2.3  Subroutines
For a complete list of the SPMI API subroutines refer to the AIX 5L Version 5.1 
Technical Reference: Base Operating System and Extensions, Volume 2.

Important: If you need to terminate an SPMI program, use kill <PID> without 
specifying a signal. This will send the SIGTERM signal to the process and it will 
exit properly. If for some reason this is not done, and a SIGKILL signal is sent 
to terminate the process and its threads, you need to cleanup the shared 
memory areas used by the application. The following steps needs to be done 
manually:

1. Make sure no other SPMI program is running.
2. Run the ipcs command and look for segments with segment ids beginning 

with 0x78.
3. Remove all segments the segments that has a segment id beginning with 

0x78 with the -m flag to the ipcrm command
4. Run the slibclean command.
738 AIX 5L Performance Tools Handbook



To create a simple monitoring program using the SPMI API, the following 
subroutine sequence could be used to make a snapshot of the current values for 
specified statistics:

SpmiInit Initializes the SPMI for a local data consumer program.

SpmiCreateStatSet Creates an empty set of statistics.

SpmiPathGetCx Returns a handle to use when referencing a context.

SpmiPathAddSetStat Adds a statistics value to a set of statistics.

SpmiGetValue Returns a decoded value based on the type of data value 
extracted from the data field of an SpmiStatVals structure.

Before the program exits, the following subroutines should be called to cleanup 
the used SPMI environment (allocated memory is not released until the program 
issues an SpmiExit subroutine call):

SpmiFreeStatSet Erases a set of statistics. 

SpmiExit Terminates a dynamic data supplier (DDS) or local data 
consumer program's association with the SPMI, and 
releases allocated memory.

After setting up a SPMI environment in a monitoring application, the statistical 
values could be retrieved iteratively by the use of these subroutines:

SpmiFirstVals Returns a pointer to the first SpmiStatVals structure 
belonging to a set of statistics. 

SpmiGetStat Returns a pointer to the SpmiStat structure corresponding 
to a specified statistic handle. 

SpmiNextVals Returns a pointer to the next SpmiStatVals structure in a 
set of statistics.

SpmiInit
The SpmiInit subroutine initializes the SPMI. During SPMI initialization, a 
memory segment is allocated and the application program obtains basic address 
ability to that segment. An application program must issue the SpmiInit 
subroutine call before issuing any other subroutine calls to the SPMI.

Syntax
int SpmiInit (TimeOut)
int TimeOut;

Parameters
TimeOut Specifies the number of seconds the SPMI waits for a 

Dynamic Data Supplier (DDS) program to update its 
shared memory segment. If a DDS program does not 
 Chapter 9. APIs for performance monitoring 739



update its shared memory segment in the time specified, 
the SPMI assumes that the DDS program has terminated 
or disconnected from shared memory and removes all 
contexts and statistics added by the DDS program. The 
Time Out value must be either zero or greater than or 
equal to 15 seconds and less than or equal to 600 
seconds. A value of zero overrides any other value from 
any other program that invokes the SPMI and disables the 
checking for terminated DDS programs.

SpmiCreateStatSet
The SpmiCreateStatSet subroutine creates an empty set of statistics and returns 
a pointer to an SpmiStatSet structure.

Syntax
struct SpmiStatSet *SpmiCreateStatSet()

Parameters
None.

SpmiPathGetCx
The SpmiPathGetCx subroutine searches the context hierarchy for a given path 
name of a context and returns a handle to use when subsequently referencing 
the context.

Syntax
SpmiCxHdl SpmiPathGetCx(CxPath, Parent)
char *CxPath;
SpmiCxHdl Parent;

Parameters
CxPath Specifies the path name of the context to find. If you 

specify the fully qualified path name in the CxPath 
parameter, you must set the Parent parameter to NULL. If 
the path name is not qualified or is only partly qualified 
(that is, if it does not include the names of all contexts 
higher in the data hierarchy), the SpmiPathGetCx 
subroutine begins searching the hierarchy at the context 
identified by the Parent parameter. If the CxPath 
parameter is either NULL or an empty string, the 
subroutine returns a handle identifying the top context. 

Parent Specifies the anchor context that fully qualifies the CxPath 
parameter. If you specify a fully qualified path name in the 
740 AIX 5L Performance Tools Handbook



CxPath parameter, you must set the Parent parameter to 
NULL. 

SpmiPathAddSetStat
The SpmiPathAddSetStat subroutine adds a statistics value to a set of statistics. 
The SpmiStatSet structure that provides the anchor point to the set must exist 
before the SpmiPathAddSetStat subroutine call can succeed.

Syntax
struct SpmiStatVals *SpmiPathAddSetStat(StatSet, StatName, Parent)
struct SpmiStatSet *StatSet;
char *StatName;
SpmiCxHdl Parent;

Parameters
StatSet Specifies a pointer to a valid structure of type 

SpmiStatSet as created by the SpmiCreateStatSet 
subroutine call. 

StatName Specifies the name of the statistic within the context 
identified by the Parent parameter. If the Parent 
parameter is NULL, you must specify the fully qualified 
path name of the statistic in the StatName parameter. 

Parent Specifies either a valid SpmiCxHdl handle as obtained by 
another subroutine call or a NULL value. 

SpmiFirstVals
The SpmiFirstVals subroutine returns a pointer to the first SpmiStatVals 
structure belonging to the set of statistics identified by the StatSet parameter. 
SpmiStatVals structures are accessed in reverse order, so the last statistic 
added to the set of statistics is the first one returned. This subroutine call should 
only be issued after an SpmiGetStatSet subroutine has been issued against the 
statset. 

Syntax
struct SpmiStatVals *SpmiFirstVals(StatSet)
struct SpmiStatSet *StatSet;

Parameters
StatSet Specifies a pointer to a valid structure of type SpmiStatSet 

as created by the SpmiCreateStatSet subroutine call. 
 Chapter 9. APIs for performance monitoring 741



SpmiGetValue
The SpmiGetValue subroutine returns a decoded value based on the type of data 
value extracted from the data field of an SpmiStatVals structure.

The SpmiGetValue subroutine performs the following steps: 

1. Verifies that an SpmiStatVals structure exists in the set of statistics identified 
by the StatSet parameter. 

2. Determines the format of the data field as being either SiFloat or SiLong, and 
extracts the data value for further processing. 

3. Determines the data value as being of either type SiQuantity or type 
SiCounter. 

4. If the data value is of type SiQuantity, returns the val field of the SpmiStatVals 
structure. 

5. If the data value is of type SiCounter, returns the value of the val_change field 
of the SpmiStatVals structure divided by the elapsed number of seconds 
since the previous time a data value was requested for this set of statistics. 

This subroutine call should only be issued after an SpmiGetStatSet subroutine 
has been issued against the statset. 

Syntax
float SpmiGetValue(StatSet, StatVal)
struct SpmiStatSet *StatSet;
struct SpmiStatVals *StatVal;

Parameters
StatSet Specifies a pointer to a valid structure of type SpmiStatSet 

as created by the SpmiCreateStatSet subroutine call. 

StatVal Specifies a pointer to a valid structure of type 
SpmiStatVals as created by the SpmiPathAddSetStat 
subroutine call, or returned by the SpmiFirstVals or 
SpmiNextVals subroutine calls. 

SpmiNextVals
The SpmiNextVals subroutine returns a pointer to the next SpmiStatVals 
structure in a set of statistics, taking the structure identified by the StatVal 
parameter as the current structure. The SpmiStatVals structures are accessed in 
reverse order so the statistic added before the current one is returned. This 
subroutine call should only be issued after an SpmiGetStatSet subroutine has 
been issued against the statset. 

Syntax
struct SpmiStatVals *SpmiNextVals(StatSet, StatVal)
struct SpmiStatSet *StatSet;
742 AIX 5L Performance Tools Handbook



struct SpmiStatVals *StatVal;

Parameters
StatSet Specifies a pointer to a valid structure of type SpmiStatSet 

as created by the SpmiCreateStatSet subroutine call. 

StatVal Specifies a pointer to a valid structure of type 
SpmiStatVals as created by the SpmiPathAddSetStat 
subroutine call, or returned by a previous SpmiFirstVals 
subroutine or SpmiNextVals subroutine call. 

SpmiFreeStatSet
The SpmiFreeStatSet subroutine erases the set of statistics identified by the 
StatSet parameter. All SpmiStatVals structures chained off the SpmiStatSet 
structure are deleted before the set itself is deleted. 

Syntax
int SpmiFreeStatSet(StatSet)
struct SpmiStatSet *StatSet;

Parameters
StatSet Specifies a pointer to a valid structure of type SpmiStatSet 

as created by the SpmiCreateStatSet subroutine call. 

SpmiExit
A successful SpmiInit subroutine or SpmiDdsInit subroutine call allocates 
shared memory. Therefore, a Dynamic Data Supplier (DDS) program that has 
issued a successful SpmiInit or SpmiDdsInit subroutine call should issue an 
SpmiExit subroutine call before the program exits the SPMI. Allocated memory is 
not released until the program issues an SpmiExit subroutine call. 

Syntax
void SpmiExit()

Parameters
None.

9.2.4  Example
In this section we show three example programs that use the SPMI API. The first 
program will use a hard coded array to store the hierarchical names of the 
metrics to collect statistics about (see also “Hard coded metrics” on page 744). 
The second program will read the metrics from a file (see “Reading metrics from 
file” on page 749). The third program will traverse the SPMI hierarchy and display 
all metrics (refer to “Traversing and displaying the SPMI hierarchy” on page 754).
 Chapter 9. APIs for performance monitoring 743



Hard coded metrics
The program in Example 9-18 shows how the SPMI environment can be set up to 
collect and display statistics.

Example 9-18   Example program spmi_dude.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <signal.h>
4 #include <sys/Spmidef.h>

5 #if defined(DEBUG)
6     #define PDEBUG(x,y) printf(x,y)
7 #else
8     #define PDEBUG(x,y)
9 #endif

10 extern              errno;
11 extern char         SpmiErrmsg[]; 
12 extern int          SpmiErrno; 
13 /*
14  * Since we need this structure pointer in our cleanup() function
15  * we declare it as a global variable.
16  */
17 struct SpmiStatSet  *SPMIset = NULL;
18 /*
19  * These are the statistics we are interested in monitoring.
20  * To the left of the last slash (/) is the context, to the
21  * right of this slash (/) is the actual statistic within
22  * the context. Note that statistics can have the same
23  * name but belong to different contexts.
24  */
25 char                *stats[] = {
26                         "CPU/glwait",
27                         "CPU/glidle",
28                         "CPU/glkern",
29                         "CPU/gluser",
30                         "Mem/Virt/scan",
31                         "Mem/Virt/steal",
32                         "PagSp/%totalfree",
33                         "PagSp/%totalused",
34                         "Mem/Virt/pagein",
35                         "Mem/Virt/pageout",
36                         "Mem/Virt/pgspgin",
37                         "Mem/Virt/pgspgout",
38                         "Proc/runque",
39                         "Proc/swpque",
40                         NULL
41                         };
744 AIX 5L Performance Tools Handbook



42 void
43 SPMIerror(char *s)
44 {
45     /* We do not want the \n that the SpmiErrmsg have at the 
46      * end since we will use our own error reporting format.
47      */
48     SpmiErrmsg[strlen(SpmiErrmsg)-1] = 0x0;
49     fprintf(stderr,"%s: %s (%d)\n",s,SpmiErrmsg,SpmiErrno);
50 }
51 /*
52  * This subroutine is called when a user interrupts it or
53  * when the main program exits. If called by a signal handler
54  * it will have a value in parameter s. If s is not set, then
55  * it is called when the main program exits. To not have this
56  * subroutine called when calling exit() to terminate the
57  * process, we use _exit() instead. Since exit() would call
58  * _cleanup() and any atexit() registred functions, we call
59  * _cleanup() ourselves.
60  */
61 void
62 cleanup(int s)
63 {
64     if (SPMIset)
65         if (SpmiFreeStatSet(SPMIset))
66             SPMIerror("SpmiFreeStatSet");
67     SpmiExit();
68     _cleanup();
69     _exit(0);
70 }

71 #define MAXDELAY    2
72 #define MAXCOUNT    -1

73 main(int argc, char *argv[])
74 {
75     struct SpmiStatVals *SPMIval = NULL;
76     struct SpmiStat     *SPMIstat = NULL;
77     SpmiCxHdl           SPMIcxhdl = 0;
78     char                context[128];
79     char                *statistic;
80     float               statvalue;
81     int                 i, hardcore = 0, bailout = 0;
82     int                 maxdelay = MAXDELAY;
83     uint                maxcount = MAXCOUNT;
84     /*
85      * Here we initialize the SPMI environment for our process.
86      */
87     if (SpmiInit(15)) {
 Chapter 9. APIs for performance monitoring 745



88         SPMIerror("SpmiInit");
89         exit(SpmiErrno);
90     }
91     if (argc == 2)
92         maxdelay = atoi(argv[1]);
93     else if (argc == 3) {
94         maxdelay = atoi(argv[1]);
95         maxcount = atoi(argv[2]);
96     }
97     /*
98      * To illustrate enhanced durability of our simple program.
99      */
100    hardcore = atoi(getenv("HARDCORE"));
101    /*
102     * We make sure that we clean up the SPMI memory that we use
103     * before we terminate the process. atexit() is called when
104     * the process is normally terminated, and we trap signals
105     * that a terminal user, or program malfunction could 
106     * generate and cleanup then as well.
107     */
108    atexit(cleanup);
109    signal(SIGINT,cleanup); 
110    signal(SIGTERM,cleanup);
111    signal(SIGSEGV,cleanup);
112    signal(SIGQUIT,cleanup);
113    /*
114     * Here we create the base for our SPMI statistical data hierarchy.
115     */
116    if ((SPMIset = SpmiCreateStatSet()) == NULL) {
117        SPMIerror("SpmiCreateStatSet");
118        exit(SpmiErrno);
119    }
120    /*
121     * For each metric we want to monitor we need to add it to
122     * our statistical collection set.
123     */
124    for (i = 0; stats[i] != NULL; i++) {
125        if (SpmiPathAddSetStat(SPMIset,stats[i],SPMIcxhdl) == NULL) {
126            SPMIerror("SpmiPathAddSetStats");
127            exit(SpmiErrno);
128        }
129    }
130    printf ("%5s %5s %5s %5s %5s %5s %5s %5s %5s %5s %5s %5s %5s %5s\n",
131        "swpq","runq","pgspo","pgspi","pgout","pgin",
132        "%used","%free","fr","sr","us","sy","id","wa");
133    /*
134     * In this for loop we collect all statistics that we have specified
135     * to SPMI that we want to monitor.  Each of the data values selected 
136     * for the set is represented by an SpmiStatVals structure. 
746 AIX 5L Performance Tools Handbook



137     * Whenever Spmi executes a request from the to read the data values 
138     * for a set all SpmiStatVals structures in the set are updated.
139     * The application program will then have to traverse the list of 
140     * SpmiStatVals structures through the SpmiFirstVals() and SpmiNextVals()
141     * function calls.
142     */
143    for (i=0; i< maxcount; i++) {
144again:
145        /*
146         * First we must request that SPMI refresh our statistical
147         * data hierarchy.
148         */
149        if ((SpmiGetStatSet(SPMIset,TRUE)) != 0) {
150            /*
151             * if the hardcore variable is set (environment variable HARDCORE),
152             * then we discard runtime errors from SpmiGetStatSet (up to three
153             * times). This can happen some time if many processes use the SPMI 
154             * shared resources simultaneously. 
155             */
156            if (hardcore && (3 > bailout++)) goto again;
157            SPMIerror("SpmiGetStatSet");
158            exit(SpmiErrno);
159        }
160        bailout = 0;
161        /*
162         * Here we get the first entry point in our statistical data hierarchy.
163         * Note that SPMI will return the values in the reverse order of the one
164         * used to add them to our statistical set.
165         */
166        SPMIval = SpmiFirstVals(SPMIset);
167        do {
168            if ((statvalue = SpmiGetValue(SPMIset,SPMIval)) < 0) {
169                    SPMIerror("SpmiGetValue");
170                    exit(SpmiErrno);
171            }
172            printf("%5.0f ",statvalue);
173            PDEBUG("\t%s\n",SpmiStatGetPath(SPMIval->context,SPMIval->stat, 0));
174        /*
175         * Finaly we get the next statistic in our data hierarchy.
176         * And if this is NULL, then we have retreived all our statistics.
177         */
178        } while ((SPMIval = SpmiNextVals(SPMIset,SPMIval)));
179        printf("\n");
180        sleep(maxdelay);
181    }
182}
 Chapter 9. APIs for performance monitoring 747



Example 9-19 is a sample output created by the spmi_dude program above.

Example 9-19   Sample output from the spmi_dude program 
#spmi_dude 1 10
 swpq  runq pgspo pgspi pgout  pgin %used %free    fr    sr    us    sy    id    wa
    0     0     1    99     0     0     0     0     0     0     0     0     0     0 
    0     0     1    99     0     0     0     0     0     0     0     0   100     0 
    0     0     1    99     0     0     0     0     0     0     0     0   100     0 
    0     0     1    99     0     0     0     0     0     0     0     0   100     0 
    0     0     1    99     0     0     0     0     0     0     0     0   100     0 
    0     0     1    99     0     0     0     0     0     0     0     0   100     0 
    0     0     1    99     0     0     0     0     0     0     0     0   100     0 
    0     0     1    99     0     0     0     0     0     0     0     0   100     0 
    0     0     1    99     0     0     0     0     0     0     0     0   100     0 
    0     0     1    99     0     0    26     0     0     0     0     0    97     3 

Table 9-2 below explains the values shown in the columns in the previous output 
for the spmi_dude program.

Table 9-2   Column explanation

Displayed 
column

SPMI metric SPMI description

wa CPU/glwait System-wide time waiting for I/O (percent)

id CPU/glidle System-wide time CPU is idle (percent)

sy CPU/glkern System-wide time executing in kernel mode 
(percent)

us CPU/gluser System-wide time executing in user mode 
(percent)

fr Mem/Virt/scan Physical memory 4K frames examined by VMM

fr Mem/Virt/steal Physical memory 4K frames stolen by VMM

%free PagSp/%totalfree Total free disk paging space (percent)

%used PagSp/%totalused Total used disk paging space (percent)

pgin Mem/Virt/pagein 4K pages read by VMM

pgout Mem/Virt/pageout 4K pages written by VMM

pgspi Mem/Virt/pgspgin 4K pages read from paging space by VMM

pgspo Mem/Virt/pgspgout 4K pages written to paging space by VMM

runq Proc/runque Average count of processes that are waiting for 
the CPU
748 AIX 5L Performance Tools Handbook



Reading metrics from file
The program below (Example 9-20) shows how to set up the SPMI environment 
to collect and display statistics after reading the SPMI metrics from a file.

Example 9-20   Example program spmi_file.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/Spmidef.h>

4 extern              errno;
5 extern char         SpmiErrmsg[]; 
6 extern int          SpmiErrno; 

7 struct SpmiStatSet  *SPMIset = NULL;

8 void
9 SPMIerror(char *s)
10 {
11     /* We do not want the \n that the SpmiErrmsg have at the 
12      * end since we will use our own error reporting format. 
13      */                                                      
14     SpmiErrmsg[strlen(SpmiErrmsg)-1] = 0x0;
15     fprintf(stderr,"%s: %s (%d)\n",s,SpmiErrmsg,SpmiErrno);
16 }
17 /*
18  * This subroutine is called when a user interrupts it or
19  * when the main program exits. If called by a signal handler
20  * it will have a value in parameter s. If s is not set, then
21  * it is called when the main program exits. To not have this
22  * subroutine called when calling exit() to terminate the
23  * process, we use _exit() instead. Since exit() would call
24  * _cleanup() and any atexit() registred functions, we call
25  * _cleanup() ourselves.
26  */
27 void
28 cleanup(int s)
29 {
30     if (SPMIset)
31         if (SpmiFreeStatSet(SPMIset))
32             SPMIerror("SpmiFreeStatSet");
33     SpmiExit();
34     _cleanup();

swpq Proc/swpque Average count of processes waiting to be paged 
in

Displayed 
column

SPMI metric SPMI description
 Chapter 9. APIs for performance monitoring 749



35     _exit(0);
36 }

37 main(int argc, char *argv[])
38 {
39     struct SpmiStatVals *SPMIval = NULL;
40     struct SpmiStat     *SPMIstat = NULL;
41     SpmiCxHdl           SPMIcxhdl = 0;
42     FILE                *file;
43     char                stats[4096];
44     float               statvalue;
45     /*
46      * Here we initialize the SPMI environment for our process.
47      */
48     if (SpmiInit(15)) {
49         SPMIerror("SpmiInit");
50         exit(SpmiErrno);
51     }
52     /*
53      * We make sure that we clean up the SPMI memory that we use
54      * before we terminate the process. atexit() is called when
55      * the process is normally terminated, and we trap signals
56      * that a terminal user, or program malfunction could
57      * generate and cleanup then as well.
58      */
59     atexit(cleanup);
60     signal(SIGINT,cleanup);
61     signal(SIGTERM,cleanup);
62     signal(SIGSEGV,cleanup);
63     signal(SIGQUIT,cleanup);
64     /*
65      * Here we create the base for our SPMI statistical data hierarchy.
66      */ 
67     if ((SPMIset = SpmiCreateStatSet()) == NULL) {
68         SPMIerror("SpmiCreateStatSet");
69         exit(SpmiErrno);
70     }
71     /*
72      * Open the file we have the SPMI metrics stored in
73      */ 
74     if ((file = fopen("SPMI_METRICS", "r")) == NULL) exit(1);
75     /*
76      * Read all lines in the file
77      */ 
78     while (fscanf(file,"%s",&stats) != EOF) {
79         /*
80          * For each metric we want to monitor we need to add it to
81          * our statistical collection set.
82          */
750 AIX 5L Performance Tools Handbook



83         if ((SPMIval = SpmiPathAddSetStat(SPMIset,stats,SPMIcxhdl)) == NULL) {
84             SPMIerror("SpmiPathAddSetStats");
85             exit(SpmiErrno);
86         }
87     }
88     fclose(file);
89     /*
90      * First we must request that SPMI refresh our statistical
91      * data hierarchy.
92      */
93     if ((SpmiGetStatSet(SPMIset,TRUE)) != 0) {
94         SPMIerror("SpmiGetStatSet");
95         exit(SpmiErrno);
96     }
97     /*
98      * Here we get the first entry point in our statistical data hierarchy.
99      * Note that SPMI will return the values in the reverse order of the 
100     * one used to add them to our statistical set.
101     */
102    SPMIval = SpmiFirstVals(SPMIset);
103    do {
104        if ((statvalue = SpmiGetValue(SPMIset,SPMIval)) < 0) {
105                SPMIerror("SpmiGetValue");
106                exit(SpmiErrno);
107        }
108        printf("%-25s: %.0f\n", SpmiStatGetPath(SPMIval->context,SPMIval->stat,0), 
statvalue);
109    /*
110     * Finaly we get the next statistic in our data hierarchy.
111     * And if this is NULL, then we have retreived all our statistics.
112     */
113    } while ((SPMIval = SpmiNextVals(SPMIset,SPMIval)));
114}
 Chapter 9. APIs for performance monitoring 751



Example 9-21 is sample output created by the spmi_file program shown in the 
previous example.

Example 9-21   Sample output from the spmi_file program 
# spmi_file|pr -t -2
IP/NetIF/tr0/oerror      : 0        Mem/Virt/pgspgin         : 0
IP/NetIF/tr0/ooctet_kb   : 0        Mem/Virt/pageout         : 0
IP/NetIF/tr0/opacket     : 0        Mem/Virt/pagein          : 0
IP/NetIF/tr0/ierror      : 0        PagSp/pgspgout           : 0
IP/NetIF/tr0/ioctet_kb   : 0        PagSp/pgspgin            : 0
IP/NetIF/tr0/ipacket     : 0        PagSp/%totalused         : 1
SysIO/writech_kb         : 0        PagSp/%totalfree         : 99
SysIO/readch_kb          : 0        PagSp/totalfree          : 261171
Syscall/fork             : 0        PagSp/totalsize          : 262144
Syscall/total            : 0        Mem/Real/numclient       : 86470
Proc/ksched              : 0        Mem/Real/numlocal        : 44110
Proc/swpocc              : 375      Mem/Real/comp            : 33379
Proc/swpque              : 0        Mem/Real/noncomp         : 97201
Proc/runocc              : 130      Mem/Real/numfrb          : 467
Proc/runque              : 0        Mem/Real/%clnt           : 66
Proc/pswitch             : 0        Mem/Real/%local          : 0
Mem/Kmem/mbuf/blocks     : 0        Mem/Real/%noncomp        : 75
Mem/Kmem/mbuf/memmax     : 66931200 Mem/Real/%comp           : 26
Mem/Kmem/mbuf/memuse     : 2229248  Mem/Real/%pinned         : 11
Mem/Kmem/mbuf/failures   : 0        Mem/Real/%free           : 1
Mem/Kmem/mbuf/calls      : 0        Mem/Real/size            : 131047
Mem/Kmem/mbuf/inuse      : 1028     CPU/glidle               : 0
Mem/Virt/steal           : 0        CPU/glwait               : 0
Mem/Virt/scan            : 0        CPU/glkern               : 0
Mem/Virt/pgspgout        : 0        CPU/gluser               : 0

The output was formatted with the pr command so that the columns created by 
the spmi_file program would fit on one screen. The left column shows the SPMI 
hierarchy name, and the value to the right of the separating colon (:) is the 
statistical value. The output Mem/Real/size shows the amount of real memory on 
the system. The value of the metric, in this case 131047, is the number of 4 KB 
memory pages on the system (512 MB).

Example 9-22 shows the input file used with the spmi_file program (“Example 
program spmi_file.c” on page 749) to create the output above.

Example 9-22   Sample input file SPMI_METRICS
CPU/gluser             
CPU/glkern             
CPU/glwait             
CPU/glidle             
Mem/Real/size          
Mem/Real/%free         
752 AIX 5L Performance Tools Handbook



Mem/Real/%pinned       
Mem/Real/%comp         
Mem/Real/%noncomp      
Mem/Real/%local        
Mem/Real/%clnt         
PagSp/totalsize        
PagSp/totalfree        
PagSp/%totalfree       
PagSp/%totalused       
PagSp/pgspgin          
PagSp/pgspgout         
Mem/Real/size          
Mem/Real/numfrb        
Mem/Real/noncomp       
Mem/Real/comp          
Mem/Real/numlocal      
Mem/Real/numclient     
Mem/Virt/pagein        
Mem/Virt/pageout       
Mem/Virt/pgspgin       
Mem/Virt/pgspgout      
Mem/Virt/scan          
Mem/Virt/steal         
Mem/Kmem/mbuf/inuse    
Mem/Kmem/mbuf/calls    
Mem/Kmem/mbuf/failures 
Mem/Kmem/mbuf/memuse   
Mem/Kmem/mbuf/memmax   
Mem/Kmem/mbuf/blocks   
Proc/pswitch           
Proc/runque            
Proc/runocc            
Proc/swpque            
Proc/swpocc            
Proc/ksched 
Syscall/total
Syscall/fork
SysIO/readch_kb
SysIO/writech_kb
IP/NetIF/tr0/ipacket
IP/NetIF/tr0/ioctet_kb
IP/NetIF/tr0/ierror
IP/NetIF/tr0/opacket
IP/NetIF/tr0/ooctet_kb
IP/NetIF/tr0/oerror
 Chapter 9. APIs for performance monitoring 753



Traversing and displaying the SPMI hierarchy
The following program (Example 9-23) shows how to set up the SPMI 
environment, and then traverse and display all metrics found in the SPMI 
hierarchy. 

Example 9-23   Example program spmi_traverse.c
1 #include <sys/types.h>
2 #include <sys/errno.h>
3 #include <stdio.h>
4 #include <sys/Spmidef.h>
5  
6 extern              errno;
7 extern char         SpmiErrmsg[]; 
8 extern int          SpmiErrno; 

9 SPMIerror(char *s)
10 {
11     /* We do not want the \n that the SpmiErrmsg have at the
12      * end since we will use our own error reporting format.
13      */
14     SpmiErrmsg[strlen(SpmiErrmsg)-1] = 0x0;
15     fprintf(stderr,"%s: %s (%d)\n",s,SpmiErrmsg,SpmiErrno);
16 }
17 /*
18  * This subroutine is called when a user interrupts it or
19  * when the main program exits. If called by a signal handler
20  * it will have a value in parameter s. If s is not set, then
21  * it is called when the main program exits. To not have this
22  * subroutine called when calling exit() to terminate the
23  * process, we use _exit() instead. Since exit() would call
24  * _cleanup() and any atexit() registred functions, we call
25  * _cleanup() ourselves.
26  */
27 void
28 cleanup(int s)                                 
29 {                                         
30     SpmiExit();                           
31     _cleanup ();
32     _exit (0);
33 }
34 /*
35  * This function that traverses recursively down a
36  * context link.  When the end of the context link is found,
37  * findstats traverses down the statistics links and writes the
38  * statistic name to stdout.  findstats is originally passed the
39  * context handle for the TOP context.
40  */
41 findstats(SpmiCxHdl SPMIcxhdl)
42 {
754 AIX 5L Performance Tools Handbook



43     struct SpmiCxLink   *SPMIcxlink;
44     struct SpmiStatLink *SPMIstatlink;
45     struct SpmiCx       *SPMIcx, *SPMIcxparent;
46     struct SpmiStat     *SPMIstat;
47     int                 instantiable;
48     /*
49      * Get the first context.
50      */
51     if (SPMIcxlink = SpmiFirstCx(SPMIcxhdl)) {
52         while (SPMIcxlink) {
53             SPMIcx = SpmiGetCx(SPMIcxlink->context);
54             /*
55              * Determine if the context's parent is instantiable
56              * because we do not want to have to print the metrics
57              * for every child of that parent, ie Procs/<PID>/metric
58              * will be the same for every process.
59              */
60             SPMIcxparent = SpmiGetCx(SPMIcx->parent);
61             if (SPMIcxparent->inst_freq == SiContInst)
62                 instantiable++;
63             else
64                 instantiable = 0;
65             /*
66              * We only want to print out the stats for any contexts
67              * whose parents aren't instantiable. If the parent
68              * is instantiable then we only want to print out
69              * the stats for the first instance of that parent.
70              */
71             if (instantiable > 1) {
72                 /*
73                  * Output the name of the metric with instantiable parents.
74                  */
75                 fprintf(stdout,"%s/%s/.....\n", SPMIcxparent->name, SPMIcx->name);
76             } else {
77                 /*
78                  * Traverse the stats list for the context.
79                  */
80                 if (SPMIstatlink = SpmiFirstStat(SPMIcxlink->context)) {
81                     while (SPMIstatlink) {
82                         SPMIstat = SpmiGetStat(SPMIstatlink->stat);
83                         /*
84                          * Output name of the statistic.
85                          */
86                         fprintf(stdout, "%s:%s",
87                             SpmiStatGetPath(SPMIcxlink->context, SPMIstatlink->stat, 10),
88                             SPMIstat->description);
89                         /*
90                          * Output data type/value type about the metric
91                          */
 Chapter 9. APIs for performance monitoring 755



92                         fprintf(stdout, ":%s/%s",
93                             (SPMIstat->data_type == SiLong?"Long":"Float"),
94                             (SPMIstat->value_type == SiCounter?"Counter":"Quantity"));
95                         /*
96                          * Output max/min information about the metric.
97                          */
98                         fprintf(stdout,":%ld-%ld\n",SPMIstat->min,SPMIstat->max);
99                         /*
100                         * Get next SPMIstatlink
101                         */
102                        SPMIstatlink = SpmiNextStat(SPMIstatlink);
103                    }
104                }
105            }   
106            /*
107             * Recursive call to this function, this gets the next context link
108             */
109            findstats(SPMIcxlink->context);
110            /*
111             * After returning from the previous link, we go to the next context
112             */
113            SPMIcxlink = SpmiNextCx(SPMIcxlink);
114        }
115    }
116}

117main(int argc, char *argv[])
118{
119    int         spmierr=0;
120    SpmiCxHdl   SPMIcxhdl;
121    /*
122     * Here we initialize the SPMI environment for our process.
123     */
124    if ((spmierr = SpmiInit(15)) != 0) {
125        SPMIerror("SpmiInit");
126        exit(errno);
127    }
128    /*
129     * We make sure that we clean up the SPMI memory that we use
130     * before we terminate the process. atexit() is called when
131     * the process is normally terminated, and we trap signals
132     * that a terminal user, or program malfunction could
133     * generate and cleanup then as well.
134     */
135    atexit(cleanup);
136    signal(SIGINT,cleanup);
137    signal(SIGTERM,cleanup);
138    signal(SIGSEGV,cleanup);
139    signal(SIGQUIT,cleanup);
756 AIX 5L Performance Tools Handbook



140    if ((SPMIcxhdl = SpmiPathGetCx(NULL, NULL)) == NULL)
141        SPMIerror("SpmiPathGetCx");
142    else
143        /*
144         * Traverse the SPMI statistical data hierarchy.
145         */
146        findstats(SPMIcxhdl);
147}

Example 9-24 shows sample output created by the spmi_traverse program.

Example 9-24   Sample output from the spmi_traverse program
CPU/gluser:System-wide time executing in user mode (percent):Float/Quantity:0-100
CPU/glkern:System-wide time executing in kernel mode (percent):Float/Quantity:0-100
CPU/glwait:System-wide time waiting for IO (percent):Float/Quantity:0-100
CPU/glidle:System-wide time CPU is idle (percent):Float/Quantity:0-100
CPU/gluticks:System-wide CPU ticks executing in user mode:Long/Counter:0-100
CPU/glkticks:System-wide CPU ticks executing in kernel mode:Long/Counter:0-100
CPU/glwticks:System-wide CPU ticks waiting for IO:Long/Counter:0-100
CPU/gliticks:System-wide CPU ticks while CPU is idle:Long/Counter:0-100
CPU/cpu0/user:Time executing in user mode (percent):Float/Quantity:0-100
CPU/cpu0/kern:Time executing in kernel mode (percent):Float/Quantity:0-100
CPU/cpu0/wait:Time waiting for IO (percent):Float/Quantity:0-100
...(lines omitted)...
NFS/V3Svr/pathconf:NFS server path configure requests:Long/Counter:0-200
NFS/V3Svr/commit:NFS server commit requests:Long/Counter:0-200
Spmi/users:Count of common shared memory users:Long/Quantity:0-10
Spmi/statsets:Count of defined StatSets:Long/Quantity:0-50
Spmi/ddscount:Count of active dynamic data suppliers:Long/Quantity:0-10
Spmi/consumers:Count of active data consumers:Long/Quantity:0-10
Spmi/comused:kbytes of common shared memory in use:Long/Quantity:0-200
Spmi/hotsets:Count of defined HotSets:Long/Quantity:0-50

Makefile
Example 9-25 shows what a makefile6 would look like for all the programs 
described above.

Example 9-25   Makefile
# nl Makefile
     1  CC=cc
     2  CFLAGS=-g
     3  SPMI_LIBS=-lSpmi

     4  SPMI_PROGRAMS = spmi_dude spmi_file spmi_traverse
6  Can be named Makefile or makefile. If it has another name, it needs to be specified with the -f <filename> flag when
running the make command.
 Chapter 9. APIs for performance monitoring 757



     5  all:    $(SPMI_PROGRAMS)

     6  $(SPMI_PROGRAMS):       $$@.c
     7          $(CC) $(CFLAGS) $(LIBS) $(SPMI_LIBS) $? -o $@

Line 1-3 are variable declarations that make changing compile parameters 
easier. Line 4 declares a variable for the programs (SPMI_PROGRAMS). Line 6 
declares that all the programs that are targets (declared on line 4) will have a 
source that they depend on (appended .c to each target). Line 7 is the compile 
statement itself. If the program spmi_dude was the target (and the source file was 
changed since the last created target), then the line would be parsed to look like 
the following:

# cc -g -lSpmi spmi_dude.c -o spmi_dude

Line 5 declares a target named all so that if we had other target:source lines 
with compile statements, they could be included as sources on this line. Because 
this line is the first non declarative line in the Makefile, just typing make in the 
same directory would evaluate it and thus compile everything that has changed 
sources since the last time they were compiled.

To use the makefile, just run the make command as follows:

# make

9.3  Performance Monitor (PM) API
The Performance Monitor (PM) Application Programming Interface (API) is a 
collection of C programming language subroutines that provide access to some 
of the counting facilities of the Performance Monitor features included in selected 
IBM micro-processors.

The Performance Monitor API and the events available on each of the supported 
processors are separated by design. The events available are different on each 
processor. However, none of the API calls depend on the availability or status of 
any of the events.

The Performance Monitor API includes a set of:

� System level APIs to allow counting of the activity of a whole machine, or of a 
set of processes with a common ancestor.

� First party kernel thread level APIs to allow threads running in 1:1 mode to 
count their own activity.
758 AIX 5L Performance Tools Handbook



� Third party kernel thread level APIs to allow a debugger to count the activity of 
target threads running in 1:1 mode.

The Performance Monitor API subroutines reside in the libpmapi.a library in the 
/usr/pmapi/lib directory. The libpmapi.a library is linked to from /usr/lib (or /lib 
because /lib is a symbolic link to /usr/lib) and is part of the bos.pmapi.lib fileset, 
which is installable from the AIX base installation media.

The /usr/include/pmapi.h file contains the subroutine declarations and type 
definitions of the data structures to use when calling the subroutines. This 
include file is also part of the bos.pmapi.lib fileset.

Sample source code is available with the distribution and resides in the 
/usr/samples/pmapi directory.

The tables describing different events for different processors reside in the 
/usr/pmapi/lib directory. To extract the events available on the specific 
processor, use the API subroutine that extracts this information at run time. Refer 
to “Example program for displaying available events” on page 764.

The documentation for the subroutines can be found in the AIX 5L Version 5.1 
Technical Reference: Base Operating System and Extensions, Volume 1 and the 
RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning 
Guide, SG24-5155.

9.3.1  Performance Monitor data access
Hardware counters are extra logic inserted in the processor to count specific 
events. They are updated at every CPU cycle, and can count metrics such as the 
number of cycles, instructions, floating point and fixed point operations, loads 
and stores of data, and delays associated with cache. Hardware counters are 
non-intrusive, very accurate, and have a low overhead, but they are specific for 
each processor. The metrics can be useful if you wish to determine such 
statistics as instructions per cycle and cache hit rates.

Performance Monitor contexts are extensions to the regular processor and 
thread contexts and include one 64 bit counter per hardware counter and a set of 
control words. The control words define what events get counted and when 
counting is on or off. Because the monitor cannot count every event 
simultaneously, alternating the counted events can provide more data. 

The thread and thread group Performance Monitor contexts are independent. 
This allows each thread or group of threads on a system to program themselves 
to be counted with their own list of events. In other words, except when using the 
system level API, there is no requirement that all threads count the same events.
 Chapter 9. APIs for performance monitoring 759



Only events categorized as verified (PM_VERIFIED) have gone through full 
verification and can be trusted to count accurately. Events categorized as caveat 
(PM_CAVEAT) have been verified, but are accurate only within the limitations 
documented in the event description (returned by pm_init). Events categorized 
as unverified (PM_UNVERIFIED) have undefined accuracy.

For more detailed information on the Performance Monitoring API, please review 
the following documentation:

� AIX 5L Version 5.1 General Programming Concepts

� AIX 5L Version 5.1 Technical Reference: Base Operating System and 
Extensions, Volume 1 

� RS/6000 Scientific and Technical Computing: POWER3 Introduction and 
Tuning Guide, SG24-5155

� http://www.austin.ibm.com/tech/monitor.html

9.3.2  Compiling and linking
After writing a C program that uses the PM API, and including the pmapi.h and 
sys/types.h header file, you just run cc on it specifying that you want to link to the 
libpmapi.a library, as in Example 9-26.

Example 9-26   cc with libpmapi.a
# cc -lpmapi -o pmapi_program pmapi_program.c

This will create the pmapi_program file from the pmapi_program.c source 
program, linking it with the libpmapi.a library. Then pmapi_program can be run as 
a normal command.

Note: Use caution with unverified events. The PM API software is essentially 
providing a service to read hardware registers, which may or may not have 
any meaningful content.

Note: If you create a thread based monitoring application (using the threads 
library), the pthread.h header file must be the first included file of each source 
file. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the 
cc_r compiler used. In this case, the flag is automatically set.
760 AIX 5L Performance Tools Handbook



9.3.3  Subroutines
The following subroutines constitutes the basic Performance Monitor API. Each 
subroutine in bold letters bellow indicates that there are four additional variations 
for this subroutine (suffixed by _group, _mygroup, _mythread and _thread)7:

pm_init Initializes the PM API. Always called first.

pm_cycles Measures processor speed in cycles per second.

pm_error Decodes PM API error codes. 

pm_set_program Sets system wide PM programmation. 

pm_get_program Retrieves systemwide PM settings. 

pm_delete_program Deletes previously established systemwide PM settings. 

pm_start Starts system wide PM counting.

pm_stop Stops system wide PM counting. 

pm_get_data Returns systemwide PM data. 

pm_reset_data Resets system wide PM data. 

For a detailed description of the subroutines, please read the AIX 5L Version 5.1 
Technical Reference: Base Operating System and Extensions, Volume 1.

9.3.4  Examples
A program using the PM API will usually consist of three parts:

� Initialization

� Monitoring

� Reporting

Example 9-27 shows the basic layout of a program that uses the PM API.

Example 9-27   Basic layout of PM API programs
main ()
{
/* code that is not monitored */

pm_init
pm_set_program
pm_start

/* code that is monitored */
pm_stop
pm_get_data

/* code that is not monitored */
pm_delete_program

7  These have variations for first-party kernel thread or group counting, and third-party kernel thread or group counting. 
 Chapter 9. APIs for performance monitoring 761



printf(...);
}

The following, very simple, example program (Example 9-28) shows how to 
initialize the PM API and to add the events that we want to monitor. In the 
example program we monitor the PM_CYC and PM_INST_CMPL events. Note that in 
the sample below we use a simple loop to check if our events are supported on 
the system on lines 16-22.

The maxpmcs field in the pm_info_t structure contain the number of available 
counters on the system. This value is used to initialize the monitored events in 
the pm_prog_t structure on line 15.

Example 9-28   Example program using the Performance Monitor API
1 #include <sys/types.h>
2 #include <pmapi.h>

3 main(int argc, char *argv[])
4 {
5     static pm_info_t    pminfo;
6     static pm_prog_t    pmprog;
7     static pm_data_t    pmdata;
8     static pm_events_t  *pmeventp;
9     static char         *search_events[] = {"PM_CYC", "PM_INST_CMPL"};
10     static int          found,i,j=0,k,rc,cycles_index,inst_index;

11     if ((rc = pm_init(PM_VERIFIED|PM_UNVERIFIED|PM_CAVEAT, &pminfo)) > 0) {
12         pm_error("pm_init", rc);
13         exit(-1);
14     }

15     for (i = 0; i < pminfo.maxpmcs; i++) pmprog.events[i] = 0;

16     for (i = 0; i < 2; i++) {
17         for (j = i; j < pminfo.maxpmcs; j++) {
18             pmeventp = pminfo.list_events[j];
19             for (k = 0; k < pminfo.maxevents[j]; k++, pmeventp++) {
20                 if (strcmp(search_events[i], pmeventp->short_name) == 0) {
21                     switch (i) {
22                     case 0:
23                         cycles_index = i;
24                         break;
25                     case 1:
26                         inst_index = i;
27                         break;
28                     }
29                     pmprog.events[j] = pmeventp->event_id;
30                     printf("proc name  : %s\n",pminfo.proc_name);
762 AIX 5L Performance Tools Handbook



31                     printf("event id   : %d\n",pmeventp->event_id);
32                     printf("status     : %c\n",pmeventp->status);
33                     printf("threshold  : %c\n",pmeventp->threshold);
34                     printf("short name : %s\n",pmeventp->short_name);
35                     printf("long name  : %s\n",pmeventp->long_name);
36                     printf("description: %s\n",pmeventp->description);
37                     found++;
38                     break;
39                 }
40             }
41             if (found) break;
42         }
43     }

44     pmprog.mode.w = PM_USER|PM_KERNEL;

45     if ((rc = pm_set_program(&pmprog)) > 0) {
46         pm_error("pm_set_program", rc);
47         exit(-1);
48     }
49     if ((rc = pm_start()) > 0) {
50         pm_error("pm_start", rc);
51         exit(-1);
52     }
53     for (i = 0 ;i < 3; i++) {
54         sleep(1);
55         if ((rc = pm_get_data(&pmdata)) > 0) {
56             pm_error("pm_get_data", rc);
57             exit(-1);
58         }
59         printf("cpi = %4.2f\n", (double) pmdata.accu[cycles_index] / 
(double) pmdata.accu[inst_index]);
60     }
61 }

Line 49 to 59 show a simple collection of the values for our monitored events. On 
line 59 we display the delta for our metrics (number of cycles divided by number 
of instructions). The following (Example 9-29) is a sample output from the 
pmapi_program program (Example 9-28 on page 762).

Example 9-29   Sample output from the example Performance Monitor API program
# pmapi_program                                          
proc name  : PowerPC 604e                             
event id   : 1                                        
status     : 117                                      
threshold  : 110                                      
short name : PM_CYC                                   
long name  : Processor cycles                         
 Chapter 9. APIs for performance monitoring 763



description: Processor cycles 0b1.  Count every cycle.
                                                      
proc name  : PowerPC 604e                             
event id   : 2                                        
status     : 117                                      
threshold  : 110                                      
short name : PM_INST_CMPL                             
long name  : Instructions completed                   
description: Number of instructions completed.        
                                                      
cpi = 0.78                                            
cpi = 0.78                                            
cpi = 0.78 

The last three lines are the actual reporting of our metrics. The first part of the 
output is information about the events that we retrieved from the PM API 
subroutines. The next sample program (Example 9-30) traverses the available 
event list (read at runtime from the .evs files in /usr/pmapi/lib directory).

Example 9-30   Example program for displaying available events
1 #include <sys/types.h>
2 #include <pmapi.h>

3 main(int argc, char *argv[])
4 {
5     static pm_info_t    pminfo;
6     static pm_events_t  *pmeventp;
7     static int          i,j,rc;

8     if ((rc = pm_init(PM_VERIFIED|PM_UNVERIFIED|PM_CAVEAT, &pminfo)) > 0) {
9         pm_error("pm_init", rc);
10         exit(-1);
11     }

12     for (i = 0; i < pminfo.maxpmcs; i++) {
13         pmeventp = pminfo.list_events[i];
14         for (j = 0; j < pminfo.maxevents[i]; j++, pmeventp++) {
15             printf("proc name  : %s\n",pminfo.proc_name);
16             printf("event id   : %d\n",pmeventp->event_id);
17             printf("status     : %c\n",pmeventp->status);
18             printf("threshold  : %c\n",pmeventp->threshold);
19             printf("short name : %s\n",pmeventp->short_name);
20             printf("long name  : %s\n",pmeventp->long_name);
21             printf("description: %s\n",pmeventp->description);
22         }
23     }
24 }
764 AIX 5L Performance Tools Handbook



Example 9-31 is the sample output from the pmapi_list program shown above 
(Example 9-30 on page 764).

Example 9-31   Sample output from the example pmapi_list program
...(lines omitted)...
proc name  : PowerPC 604e
event id   : 5
status     : 117
threshold  : 110
short name : PM_IC_MISS
long name  : Instruction cache misses
description: Instruction cache misses.
...(lines omitted)...
proc name  : PowerPC 604e
event id   : 7
status     : 117
threshold  : 110
short name : PM_BR_MPRED
long name  : Branches incorrectly predicted
description: Branch misprediction correction from execute stage.
...(lines omitted)...
proc name  : PowerPC 604e
event id   : 25
status     : 117
threshold  : 110
short name : PM_BRU_IDLE
long name  : Number of cycles the branch unit is idle
description: Number of cycles the branch unit is idle.
...(lines omitted)...
proc name  : PowerPC 604e
event id   : 12
status     : 117
threshold  : 110
short name : PM_SYNCHRO_INST_CMPL
long name  : Pipeline flushing operations
description: Number of pipeline "flushing" instructions (sc, isync, mtspr 
(XER), mcrxr, floating-point operation with divide by 0 or invalid operand and 
MSR[FE0, FE1] = 00, branch with MSR[BE] = 1, load string indexed with XER = 0, 
and SO bit getting set).
...(lines omitted)...
proc name  : PowerPC 604e
event id   : 6
status     : 117
threshold  : 110
short name : PM_LSU_WT_SQ_FULL
long name  : Cycles LSU is stalled due to store queue being filled
description: Number of cycles the LSU stalls due to a full store queue.
...(lines omitted)...
proc name  : PowerPC 604e
 Chapter 9. APIs for performance monitoring 765



event id   : 11
status     : 117
threshold  : 110
short name : PM_SC_INST
long name  : System calls
description: Number of system calls.
...(lines omitted)...

9.4  Resource Monitoring and Control (RMC)
The Resource Monitoring and Control (RMC) application is part of Reliable 
Scalable Cluster Technology (RSCT). RMC is the strategic technology for 
monitoring in AIX 5L, and provides a consistent and comprehensive set of 
monitoring and response capabilities that can assist in detecting system 
resource problems. RMC can monitor many aspects of the system resources 
and specify a wide range of actions to be taken when a threshold or specified 
condition is met. 

By monitoring conditions of interest and providing automated responses when 
these conditions occur, RSCT RMC helps maintain system availability.

RMC is included in the rsct.core package, which is installed automatically when 
AIX 5L Version 5.1 is installed. The RSCT RMC application executables resides 
in /usr/sbin/rsct/bin. 

There are other RSCT packages included with AIX 5.1, but they are not installed 
automatically:

rsct.basic Topology Services (HATS) and Group Services (HAGS)

rsct.compat.basic Event Management (HAEM)

rsct.compat.clients Event Management (HAEM)

HATS, HAGS and HAEM are used by Parallel System Support Programs (PSSP) 
and High Availability Cluster Multi-Processing/Enhanced Scalability 
(HACMP/ES). Note that HAEM has been moved from the rsct.basic and 
rsct.clients packages to the rsct.compat package. 

RMC can be used by the WebSM Graphical User Interface (GUI), but it does also 
have command line programs that can be used to manage it.

For additional information, see Resource Monitoring and Control Guide and 
Reference, SC23-4345.
766 AIX 5L Performance Tools Handbook



Always review the README documents in the /usr/sbin/rsct/README directory 
that accompany the RSCT installation media for the latest information.

9.4.1  Syntax
The following scripts, utilities, commands, and files can be used to control 
monitoring on a system with RMC. See the man pages or AIX 5L Version 5.1 
Commands Reference, SBOF-1877 for detailed usage information. 

Resource Monitoring and Control Commands
chrsrc Changes the persistent attribute values of a resource or 

resource class. 

lsactdef Lists action definitions of a resource or resource class. 

lsrsrc Lists resources or a resource class. 

lsrsrcdef Lists a resource or resource class definition. 

mkrsrc Defines a new resource. 

refrsrc Refreshes the resources within the specified resource 
class. 

rmrsrc Removes a defined resource. 

Other useful RMC utilities
ctsnap Gathers configuration, log, and trace information for the 

RSCT product. 

lsaudrec Lists records from the audit log. 

rmaudrec Removes records from the audit log. 

rmcctrl Manages the RMC subsystem. 

Event Response Resource Manager commands
chcondition Changes any of the attributes of a defined condition. 

lscondition Lists information about one or more conditions. 

mkcondition Creates a new condition definition that can be monitored. 

rmcondition Removes a condition. 

chresponse Adds or deletes the actions of a response, or renames a 
response. 

lsresponse Lists information about one or more responses. 

mkresponse Creates a new response definition with one action. 

rmresponse Removes a response. 
 Chapter 9. APIs for performance monitoring 767



lscondresp Lists information about a condition and its linked 
responses, if any. 

mkcondresp Creates a link between a condition and one or more 
responses. 

rmcondresp Deletes a link between a condition and one or more 
responses. 

startcondresp Starts monitoring a condition that has one or more linked 
responses. 

stopcondresp Stops monitoring a condition that has one or more linked 
responses. 

9.4.2  Information on measurement and sampling
The RMC subsystem and its resource managers are controlled by the System 
Resource Controller (SRC). The basic flow in RMC for monitoring is that 
resource managers provide values for dynamic attributes, which are dynamic 
properties of resources. Resource managers obtain this information from a 
variety of places depending on the resource. RMC applications then register for 
events and specifies conditions for dynamic attributes for which it want to receive 
events (event expression/condition). Whenever this condition is true an event 
notification is returned to the application (response) and the event expression is 
disabled until a rearm8 expression is true.

Comparing RMC with HAEM
Dynamic attributes are the equivalent of resource variables in Event 
Management. A resource manager in RMC is the equivalent of a resource 
monitor in HAEM (with respect to monitoring). The overhead in RMC should be 
about the same as in Event Management with respect to monitoring and event 
generation. The RMC subsystem acts as a broker between the client processes 
that use it and the resource manager processes that control resources.

Refer to Event Management Programming Guide and Reference, SA22-7354 for 
more information on HAEM.

Resource Managers
A resource manager is a process that maps resource and resource-class 
abstractions into calls and commands for one or more specific types of 
resources. A resource manager is a stand-alone daemon. The resource 
manager contains definitions of all resource classes that the resource manager 
supports. The following resource managers are provided with the RMC fileset: 

8  The rearm expression is commonly the inverse of the event expression (for example, a dynamic attributes is on or off).
It can also be used with the event expression to define an upper and lower boundary for a condition of interest.
768 AIX 5L Performance Tools Handbook



IBM.AuditRM The Audit Log resource manager (AuditRM) provides a 
system-wide facility for recording information about the 
system's operation, which is particularly useful for tracking 
subsystems running in the background. 

IBM.ERRM The Event Response resource manager (ERRM) 
provides the ability to take actions in response to 
conditions occurring on the system. 

IBM.FSRM The File System resource manager (FSRM) monitors file 
systems. 

IBM.HostRM The Host resource manager (HostRM) monitors 
resources related to an individual machine. The types of 
values that are provided relate to the load (processes, 
paging space, and memory usage) and status of the 
operating system. It also monitors program activity from 
initiation until termination.

Resource classes
A resource class definition includes a description of all attributes, actions, and 
other characteristics of a resource class. The currently supported resource 
classes are:

� IBM.Association     
� IBM.ATMDevice       
� IBM.AuditLog        
� IBM.AuditLogTemplate
� IBM.Condition       
� IBM.EthernetDevice  
� IBM.EventResponse   
� IBM.FDDIDevice 
� IBM.FileSystem      
� IBM.Host            
� IBM.PagingDevice    
� IBM.PhysicalVolume  
� IBM.Processor       
� IBM.Program         
� IBM.TokenRingDevice 

The resource class IBM.Host defines a number of dynamic attributes containing 
kernel statistics. There are more kernel stats available than what are currently 
defined as dynamic attributes. The IBM.Program resource class allows an 
application to obtain events related to running programs, such as process death 
and rebirth. To find out more about the definition of a class see -“How to examine 
resource classes and resources” on page 771.
 Chapter 9. APIs for performance monitoring 769



9.4.3  Examples
In this section we will show how to use the RMC facilities9. The ordered way to 
start using monitoring with RMC is to:

1. Know what threshold/resource to monitor

2. Determine what action to be performed when the event occurs

3. Create a script that will perform the desired action

4. Create a RMC condition that meets the monitoring requirements

5. Create a RMC response for the action script(s)

6. Create a RMC association between the defined RMC condition and RMC 
response

7. Activate monitoring for the condition

How to verify that the RMC is active
To verify that the RMC resource managers are active, run the lssrc command 
as shown in Example 9-32.

Example 9-32   Using lssrc
# lssrc -g rsct
Subsystem         Group            PID     Status
 ctrmc            rsct             4454    active
# lssrc -g rsct_rm
Subsystem         Group            PID     Status
 IBM.ERRM         rsct_rm          5954    active
 IBM.AuditRM      rsct_rm          8040    active
 IBM.HostRM       rsct_rm          18610   active

The output shows that RMC (ctrmc) is active as well as the default resource 
managers (IBM.ERRM, IBM.AuditRM, and IBM.HostRM).

Normally the ctrmc subsystem will be started by init because the installation 
procedure will create the following entry in /etc/inittab:

ctrmc:2:once:/usr/bin/startsrc -s ctrmc > /dev/console 2>&1

The RMC command rmcctrl controls the operation of the RMC subsystem and 
the RSCT resource managers. It is not normally run from the command line, but 
it can be used in some diagnostic environments. For example, it can be used to 
add, start, stop, or delete an RMC subsystem.

9  It is possible to manage the RMC facilities through the WebSM GUI as well. We chose to show the command line
interface because it is used for most other performance monitoring and tuning tools, and the usage of the GUI is well
explained in the AIX 5L Differences Guide Version 5.1 Edition Redbook, SG24-5765.
770 AIX 5L Performance Tools Handbook



How to examine resource classes and resources
Use the lsrsrc command to list the persistent and dynamic attributes and their 
values of either a resource class or a resource. By using lsrsrc without any 
flags, it will show all classes as in Example 9-33.

Example 9-33   Using lsrsrc
# lsrsrc            
class_name                                      
"IBM.Association"                               
"IBM.ATMDevice"                                 
"IBM.AuditLog"                                  
"IBM.AuditLogTemplate"                          
"IBM.Condition"                                 
"IBM.EthernetDevice"                            
"IBM.EventResponse"                             
"IBM.FDDIDevice"                                
"IBM.Host"                                      
"IBM.FileSystem"                                
"IBM.PagingDevice"                              
"IBM.PhysicalVolume"                            
"IBM.Processor"                                 
"IBM.Program"                                   
"IBM.TokenRingDevice" 

Now we can examine each of these classes in more detail. When we use the -ap 
(default) flags to the lsrsrc command, it will only show the persistent attributes 
defined for the specified class. In Example 9-34 below, we used IBM.Host.

Example 9-34   Using lsrsrc with the -ap flags
# lsrsrc -ap IBM.Host
resource 1:
        Name          = "wlmhost"
        NodeList      = {1}
        NumProcessors = 4
        RealMemSize   = 536768512

To look at dynamic attributes, use the -ad flags with the lsrsrc command as is 
shown in Example 9-35. Note that we will get the current value of the attribute as 
well10.

Example 9-35   Using lsrsrc with the -ad flags
# lsrsrc -ad IBM.Host
Resource Dynamic Attributes for: IBM.Host  
resource 1:                                
    PctRealMemActive    = 47               

10  Because some of the dynamic attributes are rates, which require two values obtained over a time interval, it will take a
few seconds to execute the lsrsrc command.
 Chapter 9. APIs for performance monitoring 771



    VMActivePageCount   = 62206            
    KMemSizeOther       = 92896            
    KMemSizeStreams     = 10496            
    KMemSizeMblk        = 14336            
    KMemSizeOtherIP     = 4096             
    KMemSizeProtcb      = 64               
    KMemSizeSock        = 544              
    KMemSizeMbuf        = 2229248          
    KMemNumOther        = 23               
    KMemNumStreams      = 68               
    KMemNumMblk         = 28               
    KMemNumOtherIP      = 34               
    KMemNumProtcb       = 1                
    KMemNumSock         = 2                
    KMemNumMbuf         = 1028             
    KMemFailOtherRate   = 0                
    KMemFailStreamsRate = 0                
    KMemFailMblkRate    = 0                
    KMemFailOtherIPRate = 0                
    KMemFailProtcbRate  = 0                
    KMemFailSockRate    = 0                
    KMemFailMbufRate    = 0                
    KMemReqOtherRate    = 0                
    KMemReqStreamsRate  = 0                
    KMemReqMblkRate     = 0                
    KMemReqOtherIPRate  = 0                
    KMemReqProtcbRate   = 0                
    KMemReqSockRate     = 0                
    KMemReqMbufRate     = 0                
    VMPgSpOutRate       = 0                
    VMPgSpInRate        = 0                
    VMPgFaultRate       = 27               
    VMPgOutRate         = 0                
    VMPgInRate          = 0                
    RealMemFramesFree   = 89716            
    PctRealMemPinned    = 12               
    PctRealMemFree      = 68               
    PctTotalTimeKernel  = 2.7455121436114 
    PctTotalTimeUser    = 5.98380851812742
    PctTotalTimeWait    = 0.175994368180218
    PctTotalTimeIdle    = 91.094684970081
    PctTotalPgSpFree    = 88.6924743652344
    PctTotalPgSpUsed    = 11.3075256347656
    TotalPgSpFree       = 232502
    TotalPgSpSize       = 262144
    ProcSwapQueue       = 1.89120188531029
    ProcRunQueue        = 12.0156637149075
772 AIX 5L Performance Tools Handbook



Some classes have a different layout. To look at how the class is structured, use 
the lsrsrcdef command as in Example 9-36 with the IBM.PhysicalVolume class.

Example 9-36   Using lsrsrcdef
# lsrsrcdef IBM.PhysicalVolume
Resource Persistent Attribute Definitions for: IBM.PhysicalVolume              
attribute 1:                                                                   
        program_name  = "Name"                                                 
        display_name  = ""                                                     
        group_name    = ""                                                     
        properties    = {"read_only","public","selectable","reqd_for_define"}  
        description   = ""                                                     
        attribute_id  = 0                                                      
        group_id      = 0                                                      
        data_type     = "char_ptr"                                             
        variety_list  = {[1,1]}                                                
        variety_count = 1                                                      
        default_value = ""                                                     
attribute 2:                                                                   
        program_name  = "NodeList"                                             
        display_name  = ""                                                     
        group_name    = ""                                                     
        properties    = {"option_for_define","read_only","public","selectable"}
        description   = ""                                                     
        attribute_id  = 3                                                      
        group_id      = 0                                                      
        data_type     = "uint32_array"                                         
        variety_list  = {[1,1]}                                                
        variety_count = 1                                                      
        default_value = {0}                                                    
attribute 3:                                                                   
        program_name  = "PVId"                                                 
        display_name  = ""                                                     
        group_name    = ""                                                     
        properties    = {"read_only","public","selectable","inval_for_define"} 
        description   = ""                                                     
        attribute_id  = 4                                                      
        group_id      = 0                                                      
        data_type     = "binary_ptr"                                           
        variety_list  = {[1,1]}                                                
        variety_count = 1                                                      
        default_value = "" 

To examine only specified attributes (in Example 9-37 on page 774, attribute 1 
and 3), from the output in the previous example, we can use lsrsrc to only show 
what is defined for the Value and PVId attributes from IBM.PhysicalVolume.
 Chapter 9. APIs for performance monitoring 773



Example 9-37   Using lsrsrc with the -xdab flags
# lsrsrc -xdab IBM.PhysicalVolume Name PVId
"hdisk1":"0x000bc6ad 0xe881de45 0x00000000 0x00000000":
"hdisk0":"0x000bc6ad 0xc9ee6b3a 0x00000000 0x00000000":
"hdisk3":"0x000bc6ad 0xc9ec9be3 0x00000000 0x00000000":
"hdisk2":"0x000bc6ad 0xc472a478 0x00000000 0x00000000":

By using the -x (no header), -d (delimiter separated output), and -ab (both 
persistent and dynamic attributes) the lsrsrc command displays the disk drives 
and their physical volume ID in our system. A similar output will be shown by 
using the -t flag as is seen in Example 9-38 (we could also use the -xab flags in 
combination with -t).

Example 9-38   Using lsrsrc with the -t flag
# lsrsrc  -t IBM.PhysicalVolume Name PVId
Resource Persistent Attributes for: IBM.PhysicalVolume
Name     PVId
"hdisk1" "0x000bc6ad 0xe881de45 0x00000000 0x00000000"
"hdisk0" "0x000bc6ad 0xc9ee6b3a 0x00000000 0x00000000"
"hdisk3" "0x000bc6ad 0xc9ec9be3 0x00000000 0x00000000"
"hdisk2" "0x000bc6ad 0xc472a478 0x00000000 0x00000000"

How to write an event response script
An event response script will have the following environment variables set when 
it is started by RMC:

ERRM_COND_HANDLE The condition resource handle that caused the 
event. It is represented as a string of six 
hexadecimal integers that are separated by spaces.

ERRM_COND_NAME The name of the condition resource that caused the 
event. It is enclosed within double quotation marks.

ERRM_COND_SEVERITY The significance of the Condition resource that 
caused the event. For the severity attribute values of 
0, 1, and 2, this environment variable has the 
following values; informational, warning, and critical. 
All other Condition resource severity attribute values 
are represented in this environment variable as a 
decimal string.

ERRM_COND_SEVERITYID The significance of the Condition resource that 
caused the event. For the severity attribute values of 
0, 1, and 2, this environment variable has the 
following values; informational, warning, and critical. 
All other Condition resource severity attribute values 
774 AIX 5L Performance Tools Handbook



are represented in this environment variable as a 
decimal string.

ERRM_ER_HANDLE The event response resource handle for this event. It 
is represented as a string of six hexadecimal 
integers that are separated by spaces.

ERRM_ER_NAME The name of the event response resource that is 
executing this command. It is enclosed within double 
quotation marks.

ERRM_RSRC_HANDLE The resource handle of the resource whose state 
change caused the generation of this event. It is 
represented as a string of six hexadecimal integers 
that are separated by spaces.

ERRM_RSRC_NAME The name of the resource whose dynamic attribute 
changed to cause this event. It is enclosed within 
double quotation marks.

ERRM_RSRC_CLASS_NAME The name of the resource class of the dynamic 
attribute that caused the event to occur. It is 
enclosed within double quotation marks.

ERRM_RSRC_CLASS_PNAME The name of the resource class of the dynamic 
attribute (enclosed within double quotation marks) 
that caused the event to occur. Set to the 
programmatic name of the class that caused the 
event to occur.

ERRM_TIME The time the event occurred written as a decimal 
string that represents the time since midnight 
January 1, 1970 in seconds, followed by a comma 
and the number of microseconds. 

ERRM_TYPE The type of event that occurred. The two possible 
values for this environment variable are event and 
rearm. 

ERRM_TYPEID The type of event that occurred. The two possible 
values for this environment variable are Event and 
Rearm Event.

ERRM_EXPR The expression that was evaluated that caused the 
generation of this event. This could be either the 
event or rearm expression, depending on the type of 
event that occurred. This can be determined by the 
value of ERRM_TYPE. 

ERRM_ATTR_NAME The programmatic name of the dynamic attribute 
used in the expression that caused this event to 
 Chapter 9. APIs for performance monitoring 775



occur. A variable name is restricted to include only 
7-bit ASCII characters that are alphanumeric (a-z, 
A-Z, 0-9) and the underscore character (_). The 
name must begin with an alphabetic character.

ERRM_ATTR_PNAME The programmatic name of the dynamic attribute 
used in the expression that caused this event to 
occur. A variable name is restricted to include only 
7-bit ASCII characters that are alphanumeric (a-z, 
A-Z, 0-9) and the underscore character (_). The 
name must begin with an alphabetic character. 

ERRM_DATA_TYPE RMC ct_data_type_t of the dynamic attribute that 
changed to cause this event.

ERRM_VALUE The value of the dynamic attribute that caused the 
event to occur for all dynamic attributes except those 
with a data type of CT_NONE. 

ERRM_SD_DATA_TYPES The data type for each element within the structured 
data (SD) variable separated by commas. This 
environment variable is only defined when 
ERRM_DATA_TYPE is CT_SD_PTR.

The ERRM_TIME is a string with the current time in seconds. This needs to be 
converted into the current time in a more readable format. Example 9-39 uses 
perl for the conversion.

Example 9-39   perl converting ERRM_TIME
perl -e 'use POSIX qw(strftime);print strftime("%Y-%m-%d 
%T",localtime('${ERRM_TIME%,*}') );'

The following basic script (Example 9-40) is an example of how to send an email 
to the root user when a condition occurs that triggers the activation of the event 
response script.

Example 9-40   Example event response script
#!/bin/ksh
_message () {
cat  <<-EOF | tee -a /tmp/debug.out
        TIME OF EVENT : $EVENTTIME
        CONDITION     : $ERRM_COND_NAME
        SERVERITY     : $ERRM_COND_SEVERITY
        EVENT TYPE    : $ERRM_TYPE
        EXPRESSION    : $ERRM_EXPR
        RESOURCE NAME : $ERRM_RSRC_NAME
        RESOURCE CLASS: $ERRM_RSRC_CLASS_NAME
        DATA TYPE     : $ERRM_DATA_TYPE
        DATA VALUE    : $ERRM_VALUE
776 AIX 5L Performance Tools Handbook



EOF
}
EVENTTIME=$(perl -e 'use POSIX qw(strftime);print strftime("%Y-%m-%d 
%T",localtime('${ERRM_TIME%,*}') );')
_message | mail -s “RSCT: ERRM_COND_NAME $ERRM_COND_SEVERITY” root

How to create a condition
A condition is needed for monitoring of a metric to be performed. To define a 
condition, use the mkcondition command. In Example 9-41 a condition is defined 
to use the IBM.FileSystem resource manager.

Example 9-41   Creating a condition with the mkcondition command
# mkcondition -r IBM.FileSystem -e "PercentTotUsed > 90" -E "PercentTotUsed < 
85" -d "Generate event when /home > 90% full" -D "Restart monitoring /home 
again after back down < 85% full" -s 'Name=="/home"' "_EVENT 12345"

The example above creates a condition that will monitor the /home filesystem and 
when the evaluation of PercentTotUsed > 90 is true, it will generate an event 
named "_EVENT 12345" and the monitoring will stop. When the expression 
PercentTotUsed < 85 becomes true, monitoring will restart11.

By default conditions will generate informational events. Because we did not 
specify anything else, the chcondition command can be used to change it to a 
critical condition.

# chcondition -S c "_EVENT 12345"

To check how the definition of the condition looks like to RMC, we can use the 
lscondition command as in Example 9-42.

Example 9-42   Using the lscondition command
# lscondition "_EVENT 12345"
Displaying condition information:

condition 1:
    Name             = "_EVENT 12345"
    MonitorStatus    = "Not monitored"
    ResourceClass    = "IBM.FileSystem"
    EventExpression  = "PercentTotUsed > 90"
    EventDescription = "Generate event when /home > 90% full"

Note: In this example the output will also be appended to a debug file in /tmp 
named debug.out. It can be helpful to use logfiles when developing event 
response scripts.

11  This is to prevent an event from being generated repeatedly and indefinitely.
 Chapter 9. APIs for performance monitoring 777



    RearmExpression  = "PercentTotUsed < 85"
    RearmDescription = "Restart monitoring /home again after back down < 85% 
full"
    SelectionString  = 'Name=="/home"'
    Severity         = "c"
    NodeNames        = {"localnode"}

How to create a response to a condition event
In order to perform some action when a condition gets activated, a response is 
needed. In the following example we create a response that activates the script, 
as is shown in Example 9-40 on page 776. We define our event response script 
to RMC:

# mkresponse -n rsct.trapevent -s /rcm/rsct.trapevent rsct.trapevent

The above created event response will have all stdout discarded (we did not 
specify the -o flag), will only be active when an event occurs (-e flag), and will be 
active all days and hours in the week (because we did not specify otherwise with 
the -d and -t flags).

To check how the definition of our response looks like to RMC, we can use the 
lsresponse command as in Example 9-43.

Example 9-43   Using the lsresponse command
# lsresponse rsct.trapevent
Displaying response information:

    ResponseName    = "rsct.trapevent"
    Action          = "rsct.trapevent"
    DaysOfWeek      = 1-7
    TimeOfDay       = 0000-2400
    ActionScript    = "/rcm/rsct.trapevent"
    ReturnCode      = 0
    CheckReturnCode = "n"
    EventType       = "a"
    StandardOut     = "n"

How to associate a response with a condition
To associate an event condition, such as our condition "_EVENT 12345", with a 
event response, such as our response "rsct.trapevent", we use the 
mkcondresp command as follows:

# mkcondresp  "_EVENT 12345" "rsct.trapevent"
778 AIX 5L Performance Tools Handbook



To check how the definition of our condition/response connection looks to RMC, 
we can use the lscondresp command as in Example 9-44.

Example 9-44   Using the lscondresp command
# lscondresp _EVENT
Displaying condition with response information:

condition-response link 1:
    Condition = "_EVENT 12345"
    Response  = "rsct.trapevent"
    State     = "Not active"

Note that we only used the first part of the condition name (_EVENT). It is also 
possible to use wildcards with a similar syntax to the grep command. 
Example 9-45 illustrates how to use wildcards with the lscondresp command.

Example 9-45   Using the lscondresp command with wildcards
# lscondresp "_EVEN.*6"
Displaying condition with response information:        
                                                       
condition-response link 1:                             
        Condition = "_EVENT 12346"                     
        Response  = "rsct.trapevent2"                   
        State     = "Active" 

If we were to leave out the search expression for the lscondresp12 command, we 
would get a line view of all the condition/response connections that are defined 
on the system as is shown in Example 9-46.

Example 9-46   Using the lscondresp command
# lscondresp
Displaying condition with response information:
Condition      Response         State
"_EVENT 12345" "rsct.trapevent" "Not active"
...(lines omitted)...

The output above shows the output from the lscondresp command in the two 
previous examples. The condition/response is not active (“Not active”).

How to activate monitoring of a condition
To activate monitoring of a condition, we use the startcondresp command. For 
our condition "_EVENT 12345" it would be done as follows:

# startcondresp "_EVENT 12345"

12  Because we prefixed our condition name with a underscore (_), it will show up at the top of all listings.
 Chapter 9. APIs for performance monitoring 779



After running the startcondresp command, the “_EVENT 12345" condition with 
the "rsct.trapevent" response will be monitored (Active) as is shown in the 
sample output in Example 9-47.

Example 9-47   Using the lscondresp command
# lscondresp
Displaying condition with response information:
Condition      Response         State
"_EVENT 12345" "rsct.trapevent" "Active"

When we check the condition again with the lscondition command it will look 
something like the output in Example 9-48, and indicate that the condition is now 
“Monitored”.

Example 9-48   Using the lscondition command
# lscondition _EVENT
Displaying condition information:

condition 1:
    Name             = "_EVENT 12345"
    MonitorStatus    = "Monitored"
    ResourceClass    = "IBM.FileSystem"
    EventExpression  = "PercentTotUsed > 90"
    EventDescription = "Generate event when /home > 90% full"
    RearmExpression  = "PercentTotUsed < 85"
    RearmDescription = "Restart monitoring /home again after back down < 85% 
full"
    SelectionString  = 'Name=="/home"'
    Severity         = "c"
    NodeNames        = {"localnode"}

The startcondresp command can also be used to create a condition-response 
association, such as our condition "_EVENT 12345", with a event response, such 
as our response "rsct.trapevent" as the following example shows:

# startcondresp  "_EVENT 12345" "rsct.trapevent"

Note however that this will both create a condition-response association and 
activate it as the lscondresp command as Example 9-49 shows (refer to “How to 
associate a response with a condition” on page 778).

Example 9-49   Using the startcondresp and lscondresp commands
# startcondresp "_EVENT 12345" "rsct.trapevent"

# lscondresp _EVENT
Displaying condition with response information:

condition-response link 1:
780 AIX 5L Performance Tools Handbook



        Condition = "_EVENT 12345"
        Response  = "rsct.trapevent"
        State     = "Active"

How will the condition/response event generation be done
When the event generating expressions for the “_EVENT 12345” condition 
becomes true, our little shell script will generate an email message that will look 
similar to the output in Example 9-50 shown below.

Example 9-50   Sample email output
# inc
Incorporating new mail into inbox...

8+ 05/14 To:root@wlmhost    RSCT: 2001-05-14 19:14:41 _EVENT /home >90% USED  
<<TIME O

# show 8
(Message inbox:8)
Received: (from root@localhost) by wlmhost (AIX5.1/8.11.0/8.11.0) id 
f4F0Ffx22176 for root; Mon, 14 May 2001 19:15:41 -0500
Date: Mon, 14 May 2001 19:15:41 -0500
From: root
Message-Id: <200105150015.f4F0Ffx22176@wlmhost>
To: root
Subject: RSCT: 2001-05-14 19:14:41 _EVENT 12345

TIME OF EVENT : 2001-05-14 19:14:41

CONDITION     : _EVENT 12345
SERVERITY     : Informational
EVENT TYPE    : Event
EXPRESSION    : PercentTotUsed > 90

RESOURCE NAME : /home
RESOURCE CLASS: File System
DATA TYPE     : CT_INT32
DATA VALUE    : 77

In the output above we use the Mail Handler (MH) commands inc and show, this 
email is the current one (8+)13. Because our event response script also 
appended the output to a file in the /tmp directory named debug.out, this is how 
the same event would look in the file (Example 9-51 on page 782).

13   So using 8 as a parameter to the show command was unnecessary, but was done for clarity.
 Chapter 9. APIs for performance monitoring 781



Example 9-51   Using tail -f to track the /tmp/debug.out file
# tail -f /tmp/debug.out
TIME OF EVENT : 2001-05-14 19:14:41

CONDITION     : _EVENT /home >90% USED
SERVERITY     : Informational
EVENT TYPE    : Event
EXPRESSION    : PercentTotUsed > 90
RESOURCE NAME : /home
RESOURCE CLASS: File System
DATA TYPE     : CT_INT32
DATA VALUE    : 77

How to stop monitoring a condition
To stop monitoring a condition use the stopcondresp command as follows when 
applied to our sample condition/response monitoring event for the /home 
filesystem:

# stopcondresp "_EVENT 12345"

To verify that the monitoring has stopped, use the lscondresp command as is 
show in Example 9-52.

Example 9-52   Using the lscondresp command
# lscondresp "_EVENT 12345"
Displaying condition with response information:
Condition      Response         State
"_EVENT 12345" "rsct.trapevent" "Not active"

How to remove a response definition
To remove a response definition it is first necessary to remove any 
condition-response associations for the response definition. This can be 
accomplished by using the -f flag with the rmresponse command as shown 
below:

# rmresponse -f rsct.trapevent

To perform the same operation in steps, first disassociate the response from the 
condition, as in our example between the "_EVENT 12345" condition and 
“rsct.trapevent” response as is shown below:

# rmcondresp "_EVENT 12345" “rsct.trapevent”

After this is done, the response definition can be removed:

# rmresponse rsct.trapevent
782 AIX 5L Performance Tools Handbook



How to remove a condition
To remove a condition, it is first necessary to remove any condition-response 
associations for condition. This can be accomplished by using the -f flag with the 
rmcondition command as shown below:

# rmcondition -f "_EVENT 12345"

To perform the same operation in steps, first disassociate the response from the 
condition, as in our example between the "_EVENT 12345" condition and 
“rsct.trapevent” response, as is shown below:

# rmcondresp "_EVENT 12345" “rsct.trapevent”

After this is done the condition can be removed:

# rmcondition "_EVENT 12345"

9.5  Miscellaneous performance monitoring subroutines
In this section we describe the usage of some subroutines that are available to 
programmers from different libraries. The intent here is to show examples of 
usage and to demonstrate that the usage of the Perfstat API will simplify writing 
performance monitoring applications (see Section 9.1, “Perfstat API” on 
page 712).

The documentation for the subroutines can be found in the AIX 5L Version 5.1 
Technical Reference: Base Operating System and Extensions, Volume 1 & 2.

9.5.1  Compiling and linking
Many of the subroutines described in this section require different libraries to be 
linked with the program. For each subroutine that requires a specific library this is 
mentioned. The general syntax for compiling and linking is shown in the following 
example:

# cc -lLIBRARY -o program program.c

This will create the program executable file from the program.c source program, 
linking it with the libLIBRARY.a library. Then program can be run as a normal 
command.

9.5.2  Subroutines
The following subroutines can be used to obtain statistical metrics:
 Chapter 9. APIs for performance monitoring 783



sys_parm Provides a service for examining or setting kernel 
run-time tunable parameters.

vmgetinfo Retrieves Virtual Memory Manager (VMM) information. 

swapqry Returns paging device status. 

rstat Gets performance data from remote kernels. 

getprocs Gets process table entries. 

wlm_get_info Read the characteristics of superclasses or subclasses. 

wlm_get_bio_stats Read the WLM disk I/O statistics per class or per device

sys_parm
The sys_parm subroutine is used to query and/or customize run-time operating 
system parameters. This is a replacement service for sysconfig with respect to 
querying or changing information in the var structure. 

Syntax
int sys_parm ( cmd, parmflag, parmp)
int cmd;
int parmflag;
struct vario *parmp;

Parameters
cmd  Specifies the SYSP_GET or SYSP_SET function.  

parmflag  Specifies the parameter upon which the function will act.  

parmp  Points to the user specified structure from which or to 
which the system parameter value is copied. parmp 
points to a structure of type vario as defined in var.h.  

Library
libc.a

Example
The following example code uses the vario structure to obtain information on 
the run-time operating system parameters (Example 9-53).

Example 9-53   Using sys_param
#include <stdio.h>
#include <stdlib.h>
#include <sys/var.h>
sys_param_()
{
    struct vario    vario;
784 AIX 5L Performance Tools Handbook



    if (!sys_parm(SYSP_GET,SYSP_V_BUFHW,&vario))
        printf("v_bufhw (buffer pool high-water mark)                 : %lld\n", 
vario.v.v_bufhw.value);
    if (!sys_parm(SYSP_GET,SYSP_V_MBUFHW,&vario))
        printf("v_mbufhw (max. mbufs high water mark)                 : %lld\n", 
vario.v.v_mbufhw.value);
    if (!sys_parm(SYSP_GET,SYSP_V_MAXUP,&vario))
        printf("v_maxup (max. # of user processes)                    : %lld\n", 
vario.v.v_maxup.value);
    if (!sys_parm(SYSP_GET,SYSP_V_MAXPOUT,&vario))
        printf("v_maxpout (# of file pageouts at which waiting occurs): %lld\n", 
vario.v.v_maxpout.value);
    if (!sys_parm(SYSP_GET,SYSP_V_MINPOUT,&vario))
        printf("v_minpout (# of file pageout at which ready occurs)   : %lld\n", 
vario.v.v_minpout.value);
    if (!sys_parm(SYSP_GET,SYSP_V_IOSTRUN,&vario))
        printf("v_iostrun (enable disk i/o history)                   : %d\n", 
vario.v.v_iostrun.value);
    if (!sys_parm(SYSP_GET,SYSP_V_LEASTPRIV,&vario))
        printf("v_leastpriv (least privilege enablement)              : %d\n", 
vario.v.v_leastpriv.value);
    if (!sys_parm(SYSP_GET,SYSP_V_AUTOST,&vario))
        printf("v_autost (automatic boot after halt)                  : %d\n", 
vario.v.v_autost.value);
    if (!sys_parm(SYSP_GET,SYSP_V_MEMSCRUB,&vario))
        printf("v_memscrub (memory scrubbing enabled)                 : %d\n", 
vario.v.v_memscrub.value);
    if (!sys_parm(SYSP_GET,SYSP_V_LOCK,&vario))
        printf("v_lock (# entries in record lock table)               : %lld\n", 
vario.v.v_lock.value);
    if (!sys_parm(SYSP_GET,SYSP_V_FILE,&vario))
        printf("v_file (# entries in open file table)                 : %lld\n", 
vario.v.v_file.value);
    if (!sys_parm(SYSP_GET,SYSP_V_PROC,&vario))
        printf("v_proc (max # of system processes)                    : %lld\n", 
vario.v.v_proc.value);
    if (!sys_parm(SYSP_GET,SYSP_VE_PROC,&vario))
        printf("ve_proc (process table high water mark (64 Krnl))     : %llu\n", 
vario.v.ve_proc.value);
    if (!sys_parm(SYSP_GET,SYSP_V_CLIST,&vario))
        printf("v_clist (# of cblocks in cblock array)                : %lld\n", 
vario.v.v_clist.value);
    if (!sys_parm(SYSP_GET,SYSP_V_THREAD,&vario))
        printf("v_thread (max # of system threads)                    : %lld\n", 
vario.v.v_thread.value);
    if (!sys_parm(SYSP_GET,SYSP_VE_THREAD,&vario))
        printf("ve_thread (thread table high water mark (64 Krnl))    : %llu\n", 
vario.v.ve_thread.value);
    if (!sys_parm(SYSP_GET,SYSP_VB_PROC,&vario))
 Chapter 9. APIs for performance monitoring 785



        printf("vb_proc (beginning of process table (64 Krnl))        : %llu\n", 
vario.v.vb_proc.value);
    if (!sys_parm(SYSP_GET,SYSP_VB_THREAD,&vario))
        printf("vb_thread (beginning of thread table (64 Krnl))       : %llu\n", 
vario.v.vb_thread.value);
    if (!sys_parm(SYSP_GET,SYSP_V_NCPUS,&vario))
        printf("v_ncpus (number of active CPUs)                       : %d\n", 
vario.v.v_ncpus.value);
    if (!sys_parm(SYSP_GET,SYSP_V_NCPUS_CFG,&vario))
        printf("v_ncpus_cfg (number of processor configured)          : %d\n", 
vario.v.v_ncpus_cfg.value);
    if (!sys_parm(SYSP_GET,SYSP_V_FULLCORE,&vario))
        printf("v_fullcore (full core enabled (true/false))           : %d\n", 
vario.v.v_fullcore.value);
    if (!sys_parm(SYSP_GET,SYSP_V_INITLVL,&vario))
        printf("v_initlvl (init level)                                : %s\n", 
vario.v.v_initlvl.value);
    if (!sys_parm(SYSP_GET,SYSP_V_COREFORMAT,&vario))
        printf("v_coreformat (Core File Format (64 Krnl))             : %s\n", 
vario.v.v_coreformat.value);
    if (!sys_parm(SYSP_GET,SYSP_V_XMGC,&vario))
        printf("v_xmgc (xmalloc garbage collect delay)                : %d\n", 
vario.v.v_xmgc.value);
    if (!sys_parm(SYSP_GET,SYSP_V_CPUGUARD,&vario))
        printf("v_cpuguard (CPU Guarding Mode (true/false))           : %d\n", 
vario.v.v_cpuguard.value);
    if (!sys_parm(SYSP_GET,SYSP_V_NCARGS,&vario))
        printf("v_ncargs (length of args,env for exec())              : %d\n", 
vario.v.v_ncargs.value);
}
main()                 
{ 
sys_param_();
} 

Example 9-54 shows the output from the program above.

Example 9-54   Sample output from the sys_param subroutine program
v_bufhw (buffer pool high-water mark)                 : 20        
v_mbufhw (max. mbufs high water mark)                 : 0         
v_maxup (max. # of user processes)                    : 1000      
v_maxpout (# of file pageouts at which waiting occurs): 0         
v_minpout (# of file pageout at which ready occurs)   : 0         
v_iostrun (enable disk i/o history)                   : 1         
v_leastpriv (least privilege enablement)              : 0         
v_autost (automatic boot after halt)                  : 0         
v_memscrub (memory scrubbing enabled)                 : 0         
v_lock (# entries in record lock table)               : 200       
786 AIX 5L Performance Tools Handbook



v_file (# entries in open file table)                 : 511       
v_proc (max # of system processes)                    : 262144    
ve_proc (process table high water mark (64 Krnl))     : 3791704576
v_clist (# of cblocks in cblock array)                : 16384     
v_thread (max # of system threads)                    : 524288    
ve_thread (thread table high water mark (64 Krnl))    : 3925887872
vb_proc (beginning of process table (64 Krnl))        : 3791650816
vb_thread (beginning of thread table (64 Krnl))       : 3925868544
v_ncpus (number of active CPUs)                       : 4         
v_ncpus_cfg (number of processor configured)          : 4         
v_fullcore (full core enabled (true/false))           : 0         
v_initlvl (init level)                                :           
v_coreformat (Core File Format (64 Krnl))             :           
v_xmgc (xmalloc garbage collect delay)                : 3000      
v_cpuguard (CPU Guarding Mode (true/false))           : 0         
v_ncargs (length of args,env for exec())              : 6 

vmgetinfo
The vmgetinfo subroutine returns the current value of certain Virtual Memory 
Manager parameters. 

Syntax
int vmgetinfo(out, command, arg) 
void *out;
int command;
int arg;

Parameters
arg  Additional parameter that depends on the command 

parameter.  

command  Specifies which information should be returned. The 
command parameter has the following valid value: VMINFO 

out  Specifies the address where VMM information should be 
returned.  

Library
libc.a

Example
The following code (Example 9-55) uses the vminfo structure to obtain 
information on certain VMM parameters.

Example 9-55   Using vmgetinfo
#include <stdio.h>
#include <stdlib.h>
 Chapter 9. APIs for performance monitoring 787



#include <sys/vminfo.h>                                                                                   
vmgetinfo_()                                                                                              
{                                                                                                         
    struct vminfo   vminfo;                                                                               
                                                                                                          
    if (!vmgetinfo(&vminfo,VMINFO,sizeof(vminfo))) {                                                      
        printf("vminfo.pgexct (count of page faults)                        : 
%lld\n",vminfo.pgexct);     
        printf("vminfo.pgrclm (count of page reclaims)                      : 
%lld\n",vminfo.pgrclm);     
        printf("vminfo.lockexct (count of lockmisse)                        : 
%lld\n",vminfo.lockexct);   
        printf("vminfo.backtrks (count of backtracks)                       : 
%lld\n",vminfo.backtrks);   
        printf("vminfo.pageins (count of pages paged in)                    : 
%lld\n",vminfo.pageins);    
        printf("vminfo.pageouts (count of pages paged out)                  : 
%lld\n",vminfo.pageouts);   
        printf("vminfo.pgspgins (count of page ins from paging space)       : 
%lld\n",vminfo.pgspgins);   
        printf("vminfo.pgspgouts (count of page outs from paging space)     : 
%lld\n",vminfo.pgspgouts);  
        printf("vminfo.numsios (count of start I/Os)                        : 
%lld\n",vminfo.numsios);    
        printf("vminfo.numiodone (count of iodones)                         : 
%lld\n",vminfo.numiodone);  
        printf("vminfo.zerofills (count of zero filled pages)               : 
%lld\n",vminfo.zerofills);  
        printf("vminfo.exfills (count of exec filled pages)                 : 
%lld\n",vminfo.exfills);    
        printf("vminfo.scans (count of page scans by clock)                 : 
%lld\n",vminfo.scans);      
        printf("vminfo.cycles (count of clock hand cycles)                  : 
%lld\n",vminfo.cycles);     
        printf("vminfo.pgsteals (count of page steals)                      : 
%lld\n",vminfo.pgsteals);   
        printf("vminfo.freewts (count of free frame waits)                  : 
%lld\n",vminfo.freewts);    
        printf("vminfo.extendwts (count of extend XPT waits)                : 
%lld\n",vminfo.extendwts);  
        printf("vminfo.pendiowts (count of pending I/O waits)               : 
%lld\n",vminfo.pendiowts);  
        printf("vminfo.pings (count of ping-pongs: source => alias)         : 
%lld\n",vminfo.pings);      
        printf("vminfo.pangs (count of ping-pongs):alias => alias)          : 
%lld\n",vminfo.pangs);      
        printf("vminfo.pongs (count of ping-pongs):alias => source)         : 
%lld\n",vminfo.pongs);      
788 AIX 5L Performance Tools Handbook



        printf("vminfo.dpongs (count of ping-pongs):alias page delete)      : 
%lld\n",vminfo.dpongs);     
        printf("vminfo.wpongs (count of ping-pongs):alias page writes)      : 
%lld\n",vminfo.wpongs);     
        printf("vminfo.cachef (count of ping-pong cache flushes)            : 
%lld\n",vminfo.cachef);     
        printf("vminfo.cachei (count of ping-pong cache invalidates)        : 
%lld\n",vminfo.cachei);     
        printf("vminfo.numfrb (number of pages on free list)                : 
%lld\n",vminfo.numfrb);     
        printf("vminfo.numclient (number of client frames)                  : 
%lld\n",vminfo.numclient);  
        printf("vminfo.numcompress (no of frames in compressed segments)    : 
%lld\n",vminfo.numcompress);
        printf("vminfo.numperm (number frames non-working segments)         : 
%lld\n",vminfo.numperm);    
        printf("vminfo.maxperm (max number of frames non-working)           : 
%lld\n",vminfo.maxperm);    
        printf("vminfo.memsizepgs (real memory size in 4K pages)            : 
%lld\n",vminfo.memsizepgs); 
        printf("vminfo.minperm (no fileonly page steals)                    : 
%lld\n",vminfo.minperm); 
        printf("vminfo.minfree (minimun pages free list (fblru))            : 
%lld\n",vminfo.minfree);
        printf("vminfo.maxfree (maxfree pages free list (fblru))            : 
%lld\n",vminfo.maxfree);
        printf("vminfo.maxclient (max number of client frames)              : 
%lld\n",vminfo.maxclient);
        printf("vminfo.rpgcnt[0] (repaging cnt)                             : 
%lld\n",vminfo.rpgcnt[0]);
        printf("vminfo.rpgcnt[1] (repaging cnt)                             : 
%lld\n",vminfo.rpgcnt[1]);
        printf("vminfo.numpout (number of fblru page-outs)                  : 
%lld\n",vminfo.numpout);
        printf("vminfo.numremote (number of fblru remote page-outs)         : 
%lld\n",vminfo.numremote);
        printf("vminfo.numwseguse (count of pages in use for working seg)   : 
%lld\n",vminfo.numwseguse);
        printf("vminfo.numpseguse (count of pages in use for persistent seg): 
%lld\n",vminfo.numpseguse);
        printf("vminfo.numclseguse (count of pages in use for client seg)   : 
%lld\n",vminfo.numclseguse);
        printf("vminfo.numwsegpin (count of pages pinned for working seg)   : 
%lld\n",vminfo.numwsegpin);
        printf("vminfo.numpsegpin (count of pages pinned for persistent seg): 
%lld\n",vminfo.numpsegpin);
        printf("vminfo.numclsegpin (count of pages pinned for client seg)   : 
%lld\n",vminfo.numclsegpin);
 Chapter 9. APIs for performance monitoring 789



        printf("vminfo.numvpages (accessed virtual pages)                   : 
%lld\n",vminfo.numvpages);
    }
}
main()                 
{ 
vmgetinfo_();        
} 

Example 9-56 shows sample output from the previous program.

Example 9-56   Sample output from the vmgetinfo subroutine program
vminfo.pgexct (count of page faults)                        : 14546505012618220
vminfo.pgrclm (count of page reclaims)                      : 536876590        
vminfo.lockexct (count of lockmisses)                        : 536876658        
vminfo.backtrks (count of backtracks)                       : 120109297309366  
vminfo.pageins (count of pages paged in)                    : 2014365968504570 
vminfo.pageouts (count of pages paged out)                  : 1418138608473918 
vminfo.pgspgins (count of page ins from paging space)       : 3805877901186    
vminfo.pgspgouts (count of page outs from paging space)     : 10523206752198   
vminfo.numsios (count of start I/Os)                        : 3372769634949130 
vminfo.numiodone (count of iodones)                         : 1953278648653902 
vminfo.zerofills (count of zero filled pages)               : 4932190655748242 
vminfo.exfills (count of exec filled pages)                 : 657018864015574  
vminfo.scans (count of page scans by clock)                 : 10112917647137050
vminfo.cycles (count of clock hand cycles)                  : 77846288734      
vminfo.pgsteals (count of page steals)                      : 2602183782570402 
vminfo.freewts (count of free frame waits)                  : 877973456558566  
vminfo.extendwts (count of extend XPT waits)                : 536877610        
vminfo.pendiowts (count of pending I/O waits)               : 731223013988974  
vminfo.pings (count of ping-pongs: source => alias)         : 536877746        
vminfo.pangs (count of ping-pongs):alias => alias)          : 536877814        
vminfo.pongs (count of ping-pongs):alias => source)         : 536877882        
vminfo.dpongs (count of ping-pongs):alias page delete)      : 536877950        
vminfo.wpongs (count of ping-pongs):alias page writes)      : 536878018        
vminfo.cachef (count of ping-pong cache flushes)            : 536878086        
vminfo.cachei (count of ping-pong cache invalidates)        : 536878154        
vminfo.numfrb (number of pages on free list)                : 65345            
vminfo.numclient (number of client frames)                  : 23562            
vminfo.numcompress (no of frames in compressed segments)    : 0                
vminfo.numperm (number frames non-working segments)         : 32535            
vminfo.maxperm (max number of frames non-working)           : 32761            
vminfo.memsizepgs (real memory size in 4K pages)            : 131047           
vminfo.minperm (no fileonly page steals)                    : 6552             
vminfo.minfree (minimun pages free list (fblru))            : 120              
vminfo.maxfree (maxfree pages free list (fblru))            : 128              
vminfo.maxclient (max number of client frames)              : 104016           
vminfo.rpgcnt[0] (repaging cnt)                             : 0                
790 AIX 5L Performance Tools Handbook



vminfo.rpgcnt[1] (repaging cnt)                             : 0                
vminfo.numpout (number of fblru page-outs)                  : 0                
vminfo.numremote (number of fblru remote page-outs)         : 0                
vminfo.numwseguse (count of pages in use for working seg)   : 33167            
vminfo.numpseguse (count of pages in use for persistent seg): 8973             
vminfo.numclseguse (count of pages in use for client seg)   : 23562
vminfo.numwsegpin (count of pages pinned for working seg)   : 14195
vminfo.numpsegpin (count of pages pinned for persistent seg): 0
vminfo.numclsegpin (count of pages pinned for client seg)   : 0
vminfo.numvpages (accessed virtual pages)                   : 34567

swapqry
The swapqry subroutine returns information to a user-designated buffer about 
active paging and swap devices. 

Syntax
int swapqry (PathName,  Buffer)
char *PathName;
struct pginfo *Buffer;

Parameters
PathName  Specifies the full path name of the block device.  

Buffer  Points to the buffer into which the status is stored. 

Library
libc.a

Example
The following code (Example 9-57) uses the pginfo structure to obtain 
information on active paging and swap devices.

Example 9-57   Using swapqry
#include <stdio.h>
#include <stdlib.h>
#include <sys/vminfo.h>                                                                                   
swapqry_()
{
    struct pginfo   pginfo;
    char            device[256];
    char            path[256];
    char            cmd[256];
    FILE            *file;

    bzero(cmd,sizeof(cmd));
    sprintf(cmd,"odmget -q \"value = paging\" CuAt|awk '/name/{gsub(\"\\\"\",\"\",$3);print 
$3}'\n");
 Chapter 9. APIs for performance monitoring 791



    if (file = popen(cmd,"r"))
        while (fscanf(file,"%s\n", &device)!=EOF) {
            sprintf(path,"/dev/%s", device);
            if (!swapqry(path,&pginfo)) {
                printf("pagingspace                      : %s\n",path);
                printf("devno (device number)            : %u\n",pginfo.devno);
                printf("size (size in PAGESIZE blocks)   : %u\n",pginfo.size);
                printf("free  (# of free PAGESIZE blocks): %u\n",pginfo.free);
                printf("iocnt (number of pending i/o's)  : %u\n",pginfo.iocnt);
            }
        }
    pclose(file);
}
main()                 
{ 
    swapqry_();        
} 

Example 9-58 shows what the output would look like from the example program 
above.

Example 9-58   Sample output from the swapqry subroutine program
pagingspace                      : /dev/hd6
devno (device number)            : 655362  
size (size in PAGESIZE blocks)   : 262144  
free  (# of free PAGESIZE blocks): 259240  
iocnt (number of pending i/o's)  : 0 

rstat
The rstat subroutine gathers statistics from remote kernels. These statistics are 
available on items such as paging, swapping, and CPU utilization. 

Syntax
rstat (host, statp) 
char *host;
struct statstime *statp;

Parameters
host  Specifies the name of the machine to be contacted to 

obtain statistics found in the statp parameter.  

statp  Contains statistics from host. 

Library
librpcsvc.a
792 AIX 5L Performance Tools Handbook



Example
The following code (Example 9-59) uses the statstime structure to obtain 
statistics from the remote host specified in the host variable.

Example 9-59   Using rstat
#include <stdio.h>
#include <stdlib.h>
#include <rpcsvc/rstat.h>
rstat_(char *host)
{
    struct statstime statstime;
    if (!rstat(host, &statstime)) {
        printf("host         : %s\n",host);
        printf("cp_time[0]   : %d\n",statstime.cp_time[0]);
        printf("cp_time[1]   : %d\n",statstime.cp_time[1]);
        printf("cp_time[2]   : %d\n",statstime.cp_time[2]);
        printf("cp_time[3]   : %d\n",statstime.cp_time[3]);
        printf("dk_xfer[0]   : %d\n",statstime.dk_xfer[0]);
        printf("dk_xfer[1]   : %d\n",statstime.dk_xfer[1]);
        printf("dk_xfer[2]   : %d\n",statstime.dk_xfer[2]);
        printf("dk_xfer[3]   : %d\n",statstime.dk_xfer[3]);
        printf("v_pgpgin     : %u\n",statstime.v_pgpgin);
        printf("v_pgpgout    : %u\n",statstime.v_pgpgout);
        printf("v_pswpin     : %u\n",statstime.v_pswpin);
        printf("v_pswpout    : %u\n",statstime.v_pswpout);
        printf("v_intr       : %u\n",statstime.v_intr);
        printf("if_ipackets  : %d\n",statstime.if_ipackets);
        printf("if_ierrors   : %d\n",statstime.if_ierrors);
        printf("if_opackets  : %d\n",statstime.if_opackets);
        printf("if_oerrors   : %d\n",statstime.if_oerrors);
        printf("if_collisions: %d\n",statstime.if_collisions);
        printf("v_swtch      : %d\n",statstime.v_swtch);
        printf("avenrun[0]   : %d\n",statstime.avenrun[0]);
        printf("avenrun[1]   : %d\n",statstime.avenrun[1]);
        printf("avenrun[2]   : %d\n",statstime.avenrun[2]);
        printf("boottime     : %s",ctime(&statstime.boottime.tv_sec));
        printf("curtime      : %s",ctime(&statstime.curtime.tv_sec));
    }
}
main()                 
{ 
    rstat_("wlmhost"); 
} 

The librpcsvc.a library contains the rstat subroutine. Link this library to the cc 
command with the -lrpcsvc flag as follows:
 Chapter 9. APIs for performance monitoring 793



# cc -lrpcsvc -o <program> <program>.c

Example 9-60 shows the output from running the program above.

Example 9-60   Sample output from the rstat subroutine program
host         : wlmhost                 
cp_time[0]   : 28498                   
cp_time[1]   : 0                       
cp_time[2]   : 0                       
cp_time[3]   : 10747805                
dk_xfer[0]   : 24944                   
dk_xfer[1]   : 361                     
dk_xfer[2]   : 31                      
dk_xfer[3]   : 31                      
v_pgpgin     : 469012                  
v_pgpgout    : 330709                  
v_pswpin     : 886                     
v_pswpout    : 2458                    
v_intr       : 44313756                
if_ipackets  : 436778                  
if_ierrors   : 0                       
if_opackets  : 240334                  
if_oerrors   : 4                       
if_collisions: 0                       
v_swtch      : 7168446                 
avenrun[0]   : 3                       
avenrun[1]   : 5                       
avenrun[2]   : 3                       
boottime     : Mon Jun  4 08:01:53 2001
curtime      : Tue Jun  5 13:01:36 2001

getprocs
The getprocs subroutine returns information about processes, including process 
table information defined by the procsinfo structure, and information about the 
per-process file descriptors defined by the fdsinfo structure.

Syntax
int getprocs(ProcessBuffer,ProcessSize,FileBuffer,FileSize,IndexPointer,Count)
struct procsinfo *ProcessBuffer;
or struct procsinfo64 *ProcessBuffer;
int ProcessSize;
struct fdsinfo *FileBuffer;

Note: The following line must be enabled in /etc/inetd.conf file the rstat 
subroutine to work (it communicates with the rstatd service):

rstatd sunrpc_udp udp wait root /usr/sbin/rpc.rstatd rstatd 100001 1-3
794 AIX 5L Performance Tools Handbook



int FileSize;
pid_t *IndexPointer;
int Count;

Parameters
ProcessBuffer Specifies the starting address of an array of procsinfo, 

procsinfo64, or procentry64 structures to be filled in with 
process table entries. If a value of NULL is passed for this 
parameter, the getprocs subroutine scans the process 
table and sets return values as normal, but no process 
entries are retrieved. 

ProcessSize Specifies the size of a single procsinfo, procsinfo64, or 
procentry64 structure. 

FileBuffer Specifies the starting address of an array of fdsinfo, or 
fdsinfo64 structures to be filled in with per-process file 
descriptor information. If a value of NULL is passed for this 
parameter, the getprocs subroutine scans the process 
table and sets return values as normal, but no file 
descriptor entries are retrieved. 

FileSize Specifies the size of a single fdsinfo, or fdsinfo64 
structure. 

IndexPointer Specifies the address of a process identifier which 
indicates the required process table entry. A process 
identifier of zero selects the first entry in the table. The 
process identifier is updated to indicate the next entry to 
be retrieved. 

Count Specifies the number of process table entries requested. 

Library
libc.a

Example
The following code (Example 9-61) uses the procsinfo structure to obtain 
information of processes:

Example 9-61   Using getprocs
#include <procinfo.h>                                                                      
#include <sys/proc.h>                                                                      
getprocs_()                                                                                
{                                                                                          
    struct procsinfo    ps[8192];                                                          
    pid_t               index = 0;                                                         
    int                 nprocs;                                                            
    int                 i;                                                                 
 Chapter 9. APIs for performance monitoring 795



    char                state;                                                             
                                                                                           
    if ((nprocs = getprocs(&ps, sizeof(struct procsinfo), NULL, 0, &index, 8192)) > 0) {   
        printf("total # %-8d %3s %5s %5s %5s %5s %5s %5s %5s %5s %5s %5s\n",nprocs,        
            "cmd","state","pid","ppid","uid",                                              
            "nice","#thrd","io/4k","size",                                                 
            "%real","io/b");                                                               
        for (i=0; i<nprocs; i++) {                                                         
            if (ps[i].pi_pid == 0) strcpy(ps[i].pi_comm,"swapper");                        
            if (ps[i].pi_comm[0] == '') strcpy(ps[i].pi_comm,"zombie");                    
            switch (ps[i].pi_state) {                                                      
                case SNONE:     state='E'; break;                                          
                case SIDL:      state='C'; break;                                          
                case SZOMB:     state='Z'; break;                                          
                case SSTOP:     state='S'; break;                                          
                case SACTIVE:   state='A'; break;                                          
                case SSWAP:     state='P'; break;                                          
            }                                                                              
            printf("%20s %5c %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",                       
                ps[i].pi_comm, state, ps[i].pi_pid, ps[i].pi_ppid, ps[i].pi_uid,           
                ps[i].pi_nice, ps[i].pi_thcount, ps[i].pi_majflt, ps[i].pi_size,           
                ps[i].pi_prm, ps[i].pi_ioch);                                              
        }                                                                                  
    }                                                                                      
} 
main()                 
{ 
    getprocs_();   
} 

Example 9-62 shows what the output would look like when running the example 
program above.

Example 9-62   Sample output from the getprocs subroutine program
total # 65       cmd state   pid  ppid   uid  nice #thrd io/4k  size %real  io/b
             swapper     A     0     0     0    41     1     7     3     6     0
                init     A     1     0     0    20     1    91   203     0 94344704
                wait     A   516     0     0    41     1     0     2     6     0
                wait     A   774     0     0    41     1     0     2     6     0
                wait     A  1032     0     0    41     1     0     2     6     0
                wait     A  1290     0     0    41     1     0     2     6     0
                lrud     A  1548     0     0    41     1     0     3     6     0
                xmgc     A  1806     0     0    41     1     0     4     6     0
                netm     A  2064     0     0    41     1     1     4     6     0
                 gil     A  2322     0     0    41     5     0    16     6     0
            wlmsched     A  2580     0     0    41     1     0     4     6     0
                 dog     A  3184     1     0    20     4     0    10     6     0
               lvmbb     A  3372     0     0    20     1     0     4     6     0
796 AIX 5L Performance Tools Handbook



                 bsh     A  4602     1     0    22     1     0   314     0 10949
...(lines omitted)...

wlm_get_info
The wlm_get_info subroutine is used to get the characteristics of the classes 
defined in the active Workload Manager (WLM) configuration, together with their 
current resource usage statistics. 

Syntax
int wlm_get_info ( wlmargs, info, count)
struct wlm_args *wlmargs;
struct wlm_info *info
int *count

Parameters
wlmargs The address of a struct wlm_args data structure. The 

versflags fields of the wlm_args structure need to be 
provided and initialized with WLM_VERSION. Optionally, the 
following flag value can be logically or'ed to WLM_VERSION: 
WLM_SUPER_ONLY, WLM_SUB_ONLY, WLM_VERBOSE_MODE. 
WLM_SUPER_ONLY and WLM_SUB_ONLY are mutually exclusive. 

name Contains either a null string or the name of a valid 
superclass or subclass (in the form Super.Sub). This field 
can be used in conjunction with the flags to further narrow 
the scope of wlm_get_info.

All the other fields of the wlm_args structure can be left 
uninitialized. 

info The address of an array of structures of type struct 
wlm_info. Upon successful return from wlm_get_info, this 
array contains the WLM statistics for the classes selected. 

count The address of an integer containing the maximum 
number of element (of type wlm_info) for wlm_get_info to 
copy into the array above. If the call to wlm_get_info is 
successful, this integer contains the number of elements 
actually copied. If the initial value is equal to zero (0), 
wlm_get_info sets this value to the number of classes 
selected by the specified combination of versflags and 
name above. 

Library
libwlm.a
 Chapter 9. APIs for performance monitoring 797



Example
The following code (Example 9-63) uses the wlm_info structure to obtain 
information on characteristics of the active WLM classes.

Example 9-63   Using wlm_get_info
#include <stdio.h>
#include <stdlib.h>
#include <sys/wlm.h>                                                                                                    
#include <sys/wlm.h>
wlm_get_info_()
{
    struct wlm_args wlmargs;
    struct wlm_info *wlminfo;
    int             wlmcount = 0;
    int             i=0;

    if (!wlm_initialize(WLM_VERSION)) {
        wlmargs.versflags = WLM_VERSION;
        bzero(wlmargs.cl_def.data.descr.name,sizeof(wlmargs.cl_def.data.descr.name));
        if (!wlm_get_info(&wlmargs,NULL,&wlmcount) && wlmcount > 0) {
            wlminfo = malloc(wlmcount*sizeof(struct wlm_info));
            if (!wlm_get_info(&wlmargs,wlminfo,&wlmcount)) {
                printf("%-15s %8s %8s %8s %8s %8s 
%8s\n","Class","Tier","Id","Pri","Inuse","#Pages","ChgLvl");
                for (i = 0; i< wlmcount; i++) {
                    printf("%-15s %8d %8d %8d %8d %8d %8d\n",wlminfo[i].i_descr.name 
,wlminfo[i].i_descr.tier ,wlminfo[i
].i_class_id ,wlminfo[i].i_cl_pri ,wlminfo[i].i_cl_inuse ,wlminfo[i].i_cl_npages 
,wlminfo[i].i_cl_change_level);
                }
            }
        }
    }
}
main()                 
{ 
    wlm_get_info_();   
} 

Example 9-64 shows how the output could look like when running the example 
program above.

Example 9-64   Sample output from the wlm_get_info subroutine program
Class               Tier       Id      Pri    Inuse   #Pages   ChgLvl
Unclassified           0        0       10        1    28911        1
Unmanaged              0       16       10        1    14244        1
Default                0       32       47        3        0        2
Shared                 0       48       47        0     4843        2
798 AIX 5L Performance Tools Handbook



System                 6       64      145       54    30695        2
db1                    0       80        0        0        0        1
db1.Default            0       81       23        0        0        2
db1.Shared             0       82       23        0        0        2
db1.sub1               0       83        0        0        0        1
db2                    0       96       47        0        0        1
...(lines omitted)...

The libwlm.a library contains the wlm_get_info subroutine. Link this library to the 
cc command with the -lwlm flag as follows:

# cc -lwlm -o <program> <program>.c

wlm_get_bio_stats
The wlm_get_bio_stats subroutine is used to get the WLM disk I/O statistics. 
There are two types of statistics available: 

� The statistics about disk I/O utilization per class and per devices, returned by 
wlm_get_bio_stats in wlm_bio_class_info_t structures

� The statistics about the disk I/O utilization per device, all classes combined, 
returned by wlm_get_bio_stats in wlm_bio_dev_info_t structures

Syntax
int wlm_get_bio_stats ( dev, array, count, class, flags)
dev_t dev;
void *array;
int *count;
char *class;
int flags;

Parameters
flags  Need to be initialized with WLM_VERSION. Optionally, the 

following flag values can be or'ed to WLM_VERSION: 
WLM_SUPER_ONLY, WLM_SUB_ONLY, WLM_BIO_CLASS_INFO, 
WLM_BIO_DEV_INFO, WLM_BIO_ALL_DEV, WLM_BIO_ALL_MINOR, 
WLM_VERBOSE_MODE.

One of the flags WLM_BIO_CLASS_INFO or 
WLM_BIO_DEV_INFO (and only one) must be specified. 
WLM_SUPER_ONLY and WLM_SUB_ONLY are mutually exclusive. 

Note: To initialize the WLM API connection you must use the wlm_initialize 
subroutine before other WLM subroutines can be used. This only needs to be 
done once per process.
 Chapter 9. APIs for performance monitoring 799



dev  Device identification (major, minor) of a disk device. If dev 
is equal to 0, the statistics for all devices are returned 
(even if WLM_BIO_ALL_DEV is not specified in the flags 
argument). 

array  Pointer to an array of wlm_bio_class_info_t structures 
(when WLM_BIO_CLASS_INFO is specified in the flags 
argument) or an array of wlm_bio_dev_info_t  structures 
(when WLM_BIO_DEV_INFO is specified in the flags 
argument). A NULL pointer can be passed together with a 
count of 0 to determine how many elements are in scope 
for the set of arguments passed.  

count  The address of an integer containing the maximum 
number of elements to be copied into the array above. If 
the call to wlm_get_bio_stats is successful, this integer 
will contain the number of elements actually copied. If the 
initial value is equal to 0, wlm_get_bio_stats sets this 
value to the number of elements selected by the specified 
combination of flags and class.  

class  A pointer to a character string containing the name of a 
superclass or subclass. If class is a pointer to an empty 
string (""), the information for all classes is returned. The 
class parameter is taken into account only when the flag 
WLM_BIO_CLASS_INFO is set.  

Library
libwlm.a

Example
The following code (Example 9-65) uses the wlm_bio_dev_info_t structure to 
obtain information on WLM disk I/O statistics.

Example 9-65   Using wlm_get_bio_stats
#include <stdio.h>
#include <stdlib.h>
#include <sys/wlm.h>                                                                                                    
#include <sys/wlm.h>
wlm_get_bio_()
{
    dev_t                       wlmdev = 0;
    struct wlm_bio_dev_info_t   *wlmarray;
    int                         wlmcount = 0;
    char                        *wlmclass = NULL;
    int                         wlmflags = WLM_VERSION|WLM_BIO_ALL_DEV;
    int                         i=0;
800 AIX 5L Performance Tools Handbook



    if (!wlm_initialize(WLM_VERSION)) {
        wlmflags |= WLM_BIO_DEV_INFO;
        if (!wlm_get_bio_stats(wlmdev,NULL,&wlmcount,wlmclass,wlmflags) && wlmcount > 0) {
            wlmarray = (struct wlm_bio_dev_info_t*)malloc(wlmcount*sizeof(struct 
wlm_bio_dev_info_t));
            if (!wlm_get_bio_stats(wlmdev,(void*)wlmarray,&wlmcount,wlmclass,wlmflags)) {
                for (i = 0; i< wlmcount; i++) {
                    printf("device                                              : %ld\n", 
wlmarray[i].wbd_dev);
                    printf("wbd_active_cntrl (number of active cntrl)           : %d\n", 
wlmarray[i].wbd_active_cntrl);
                    printf("wbd_in_queue (number of requests in waiting queue)  : %d\n", 
wlmarray[i].wbd_in_queue);
                    printf("wbd_max_queued (maximum number of requests in queue): %d\n", 
wlmarray[i].wbd_max_queued);
                    printf("wbd_last[0] (Statistics of last second)             : %d\n", 
wlmarray[i].wbd_last[0]);
                    printf("wbd_max[0] (Maximum of last second statistics)      : %d\n", 
wlmarray[i].wbd_max[0]);
                    printf("wbd_av[0] (Average of last second statistics)       : %d\n", 
wlmarray[i].wbd_av[0]);
                    printf("wbd_total[0] (Total of last second statistics)      : %d\n", 
wlmarray[i].wbd_total[0]);
                    printf("\n");
                }
            }
        }

    }
}
main()                 
{ 
    wlm_get_bio_();   
} 

The following (Example 9-66) shows what the output of the above program would 
look like.

Example 9-66   Sample output from the wlm_get_bio_stats subroutine program
device                                              : 917504
wbd_active_cntrl (number of active cntrl)           : 0     
wbd_in_queue (number of requests in waiting queue)  : 0     
wbd_max_queued (maximum number of requests in queue): 0     
wbd_last[0] (Statistics of last second)             : 0     
wbd_max[0] (Maximum of last second statistics)      : 0     
wbd_av[0] (Average of last second statistics)       : 0     
wbd_total[0] (Total of last second statistics)      : 0     
 Chapter 9. APIs for performance monitoring 801



                                                            
device                                              : 917505
wbd_active_cntrl (number of active cntrl)           : 2     
wbd_in_queue (number of requests in waiting queue)  : 0     
wbd_max_queued (maximum number of requests in queue): 0     
wbd_last[0] (Statistics of last second)             : 0     
wbd_max[0] (Maximum of last second statistics)      : 72    
wbd_av[0] (Average of last second statistics)       : 0     
wbd_total[0] (Total of last second statistics)      : 0 
...(lines omitted)...

The libwlm.a library contains the wlm_get_info subroutine, link this library to the 
cc command with the -lwlm flag as follows:

# cc -lwlm -o <program> <program>.c

9.5.3  Example
The following program (Example 9-67) illustrates how the different subroutines 
could be used together.

Example 9-67   The dudestat.c program
#include <stdio.h>
#include <stdlib.h>
#include <sys/var.h>
#include <sys/vminfo.h> 
#include <sys/wlm.h>
#include <procinfo.h>
#include <sys/proc.h>
#include <usersec.h>

sys_param_dude()
{

struct variovario;

if (!sys_parm(SYSP_GET,SYSP_V_MAXUP,&vario)) 
printf("v_maxup (max. # of user processes)                    : %lld\n", 

vario.v.v_maxup.value);
if (!sys_parm(SYSP_GET,SYSP_V_MAXPOUT,&vario)) 

printf("v_maxpout (# of file pageouts at which waiting occurs): %lld\n", 
vario.v.v_maxpout.value);

if (!sys_parm(SYSP_GET,SYSP_V_MINPOUT,&vario)) 
printf("v_minpout (# of file pageout at which ready occurs)   : %lld\n", 

vario.v.v_minpout.value);

Note: To initialize the WLM API connection, you must use the wlm_initialize 
subroutine before other WLM subroutines can be used. This only needs to be 
done once per process.
802 AIX 5L Performance Tools Handbook



if (!sys_parm(SYSP_GET,SYSP_V_FILE,&vario)) 
printf("v_file (# entries in open file table)                 : %lld\n", 

vario.v.v_file.value);
if (!sys_parm(SYSP_GET,SYSP_V_PROC,&vario)) 

printf("v_proc (max # of system processes)                    : %lld\n", 
vario.v.v_proc.value);

if ((!sys_parm(SYSP_GET,SYSP_V_NCPUS,&vario)) != 
(!sys_parm(SYSP_GET,SYSP_V_NCPUS_CFG,&vario)))

printf("Dude! v_ncpus %d (number of active CPUs) \
does not match v_ncpus_cfg %d (number of processor configured)\n",
vario.v.v_ncpus_cfg.value,
vario.v.v_ncpus_cfg.value);

}

vmgetinfo_dude()
{

struct vminfovminfo;

if (!vmgetinfo(&vminfo,VMINFO,sizeof(vminfo))) {
printf("freewts (count of free frame waits)                   : %lld\n",vminfo.freewts);
printf("extendwts (count of extend XPT waits)                 : 

%lld\n",vminfo.extendwts);
printf("pendiowts (count of pending I/O waits)                : 

%lld\n",vminfo.pendiowts);
printf("numfrb (number of pages on free list)                 : %lld\n",vminfo.numfrb);
printf("numclient (number of client frames)                   : 

%lld\n",vminfo.numclient);
printf("numcompress (no of frames in compressed segments)     : 

%lld\n",vminfo.numcompress);
printf("numperm (number frames non-working segments)          : %lld\n",vminfo.numperm);
printf("maxperm (max number of frames non-working)            : %lld\n",vminfo.maxperm);
printf("maxclient (max number of client frames)               : 

%lld\n",vminfo.maxclient);
printf("memsizepgs (real memory size in 4K pages)             : 

%lld\n",vminfo.memsizepgs);
}

}

swapqry_dude()
{

struct pginfopginfo;
char device[256];
char path[256];
char cmd[256];
FILE *file;

bzero(cmd,sizeof(cmd));
 Chapter 9. APIs for performance monitoring 803



sprintf(cmd,"odmget -q \"value = paging\" CuAt|awk '/name/{gsub(\"\\\"\",\"\",$3);print 
$3}'\n");

if (file = popen(cmd,"r"))
while (fscanf(file,"%s\n", &device)!=EOF) {

sprintf(path,"/dev/%s", device);
if (!swapqry(path,&pginfo)) {

printf("paging space device                                   : %s\n",path);
printf("size (size in PAGESIZE blocks)                        : 

%u\n",pginfo.size);
printf("free  (# of free PAGESIZE blocks)                     : 

%u\n",pginfo.free);
printf("iocnt (number of pending i/o's)                       : 

%u\n",pginfo.iocnt);
}

}
pclose(file);

}

getprocs_dude(char *dudes[])
{

struct procsinfops[8192]; 
int uids[12]; 
pid_t index = 0;
int nprocs;
int i,j,k;
char *p;

if (dudes[0] != NULL)
if ((nprocs = getprocs(&ps, sizeof(struct procsinfo), NULL, 0, &index, 8192)) > 0)

for (i = 0,k = 0; dudes[i] != NULL; i++)
for (j=0; j<nprocs; j++) {

p = IDtouser(ps[j].pi_uid);
if (!strcmp(dudes[i],p)) {

printf ("The %s dude is online and excellent!\n\n",dudes[i]);
uids[k++] = ps[j].pi_uid;
break;

}
}

if (i != k) {
j = i - k;
printf ("There %s %d dude%s missing!\n\n",(j>1)?"are":"is",j,(j>1)?"s":"");

}
}

main(int argc, char *argv[])
{

printf("PARTY ON!\n\n");
getprocs_dude(argc>1?&argv[1]:NULL);
printf("Dude, here is some excellent info for you today\n\n");
804 AIX 5L Performance Tools Handbook



sys_param_dude();
vmgetinfo_dude();
swapqry_dude();

}

Sample output of the previous program is shown in Example 9-68.

Example 9-68   Sample output from the dudestat program
# dudestat root kiwi saffy fuzzy swede
PARTY ON!

The root dude is online and excellent!

There are 4 dudes missing!

Dude, here is some excellent info for you today

v_maxup (max. # of user processes)                    : 1000
v_maxpout (# of file pageouts at which waiting occurs): 0
v_minpout (# of file pageout at which ready occurs)   : 0
v_file (# entries in open file table)                 : 511
v_proc (max # of system processes)                    : 262144
freewts (count of free frame waits)                   : 877973724082172
extendwts (count of extend XPT waits)                 : 0
pendiowts (count of pending I/O waits)                : 740774484377600
numfrb (number of pages on free list)                 : 51945
numclient (number of client frames)                   : 19994
numcompress (no of frames in compressed segments)     : 0
numperm (number frames non-working segments)          : 32628
maxperm (max number of frames non-working)            : 32761
maxclient (max number of client frames)               : 104016
memsizepgs (real memory size in 4K pages)             : 131047
paging space device                                   : /dev/hd6
size (size in PAGESIZE blocks)                        : 262144
free  (# of free PAGESIZE blocks)                     : 259171
iocnt (number of pending i/o's)                       : 0
 Chapter 9. APIs for performance monitoring 805



806 AIX 5L Performance Tools Handbook



Chapter 10. WLM performance tools

Workload Manager (WLM) gives the system administrator the ability to define 
resource management classes and assign processes to these classes. Each 
class can be allocated a specific amount of CPU, physical memory, and disk I/O 
bandwidth according to its needs. This enables one class to operate without 
another class interfering with its work. This ultimately results in users of a class 
being able to function without the system resources being stolen by another 
class.

The purpose of this chapter is to discuss WLM performance tools rather than to 
explain the intricacies of setting up WLM. For information on configuring WLM 
please refer to AIX 5L Workload Manager (WLM), SG24-5977.

The tools discussed in this chapter are only effective when WLM is operative and 
are discussed here in that context. These tools are useful for monitoring and 
analyzing WLM activity. This situation may be useful for determining the effect of 
Workload Manager on the system. For example, statistics can be collected with 
Workload Manager in passive mode. In this mode WLM monitors resources, but 
does not allocate them. The statistics can then be compared to the same system 
with Workload Manager active. The active and passive modes can be defined as 
follows:

Active mode In this mode, WLM monitors and regulates the CPU, 
memory, and disk I/O utilization of the processes in the 
various classes.

10
© Copyright IBM Corp. 2001 807



Passive mode In this mode, WLM only monitors the resource utilization 
without interfering with the standard operating system 
resource allocation mechanisms.

This chapter discusses the use of tools that give current real time information, as 
in the case of the wlmstat command. Other commands capture data over a 
period of time, such as the wlmmon command that captures data over a 24 hour 
period. wlmperf is similar to wlmmon, but will monitor WLM statistics for up to one 
year. wlmmon and wlmperf are graphical while others such as wlmstat are text 
based. wlmstat, wlmmon, and wlmperf will be discussed in great detail in this 
chapter. There are other tools that capture WLM statistics, but are not discussed 
in this chapter because of their general nature, such as the topas command. For 
details on the topas command, please see Section 3.9, “topas” on page 158. The 
topas command is useful in that it shows the top hot classes as well as their 
associated processes in WLM in real time. In the same way, the ps command 
(Section 3.6, “ps” on page 109) can list WLM classes. This can be useful to 
determine if a process belongs to a particular WLM class. See Example 10-7 on 
page 815 for details. The svmon command can display WLM class and tier 
statistics. Refer to Section 5.3, “svmon” on page 320 for more information.

WLM Tools and their purposes
The specific purpose of each WLM tool is listed below:

wlmstat -v Checking the WLM configuration

wlmstat Real time monitoring tool

topas Real time monitoring tool on AIX 5L Version 5.1

wlmmon Long term analysis tool

wlmperf Long term analysis tool

10.1  wlmstat
The wlmstat command symbolically displays WLM statistics in real time. The 
information displayed is typically CPU, memory, and disk I/O usage for each 
class. If WLM is not running on a system and the wlmstat command is executed, 
then the following error message will be displayed:

# wlmstat

1495-576 WLM is not running

This command is useful on systems that have Workload Manager in either active 
or passive mode. 
808 AIX 5L Performance Tools Handbook



The wlmstat command resides in /usr/sbin, and is part of the bos.rte.control 
fileset. This fileset is installed as part of the default AIX operating system 
installation.

10.1.1  Syntax
The syntax of the wlmstat command is as follows:

wlmstat [ -l Class | -t Tier ] [ -S | -s ] [ -c | -m | -b ] 

[ -B Device ] [ -q ][ -T ] [ -a ][ -w ] [ -v ] [ Interval ] [ Count ]

Flags
-a Gives absolute figures (relative to the total amount of the 

resource available to the whole system) for subclasses, with a 
0.01 percent resolution. By default, the figures shown for 
subclasses are a percentage of the amount of the resource 
consumed by the superclass, with a one percent resolution. For 
instance, if a superclass has a CPU target of seven percent and 
the CPU percentage shown by wlmstat without -a for a subclass 
is five percent, wlmstat with -a shows the CPU percentage for 
the subclass as 0.35 percent.

-b Displays only disk I/O statistics.

-B Device Displays disk I/O device statistics. Passing an empty string 
(-B "") displays the statistics for all the disks accessed by the 
class.

-c Shows only CPU statistics.

-l Class Displays statistics for Class name. If not specified, all classes 
display along with a summary for appropriate fields.

-m Shows only physical memory statistics.

-q Suppresses the output of status files of last activation.

-s Displays only subclass statistics.

-S Displays only superclasses statistics.

-t Tier Displays statistics only for the specified Tier.
 Chapter 10. WLM performance tools 809



-T Displays the total numbers for resource utilization since WLM 
was started or the class was created, whichever happened last. 
The units are:

� The total number of CPU time, in seconds, that is consumed 
by a class.

� The memory*time product consumed by the class expressed 
as a number of memory pages multiplied by a number of 
seconds.

� The total number of 512 byte blocks sent and received by a 
class for all the disk devices accessed.

-v Specifies verbose mode. This flag, intended for trouble shooting, 
also displays some class attributes, resource shares, limits, and 
other WLM parameters, including internal parameter values 
intended for AIX support personnel. 

-w Displays the memory high water mark, which is the maximum 
number of pages that a class had in memory at any given time 
since WLM was started or the class was created (whichever 
happened last).

Parameters
Class The name of a collection of processes and their associated 

threads.

Tier The position in the hierarchy of resources that a class is in.

Interval The length of time in seconds between measurements.

Count The number of iterations. If this value is omitted, then the output 
will be continuous.

Device The name of a disk device to be monitored.

10.1.2  Information on measurement and sampling
The results obtained by the wlmstat command from the kernel structures are 
tabulated with the following fields:

CLASS The name of the class field.

CPU The percentage of total CPU time consumed by the class.

MEM The percentage of physical memory consumed by the class.
810 AIX 5L Performance Tools Handbook



DKIO The percentage of the disk I/O bandwidth consumed by the 
class. This number is the average of the disk bandwidth on 
all the disk devices accessed by the class, and is usually not 
very significant. For instance, if a class consumes 80 percent 
of the bandwidth of one disk and 5 percent of the bandwidth 
of two other disks, the DKIO column will show 30 percent. For 
details on the per device utilization, use the -B Device 
option.

The wlm_get_info subroutine is used to get the characteristics of the classes 
defined in the active WLM configuration, together with their current resource 
usage statistics. The kernel updates the statistics once a second. The values that 
are displayed by the wlmstat command are decayed averages over the sample 
period. 

For more information on the wlm_get_info subroutine, refer to AIX 5L Version 5.1 
Technical Reference: Base Operating System and Extensions, Volume 2.

The sampling interval for the wlmstat command can be supplied when the 
command is issued. If an interval value is not specified on the command line, 
then a single output is displayed, which is a decayed average over the sample 
period. If the wlmstat command is used with an interval figure, then the sampling 
interval will be that supplied value in seconds. The number of iterations is 
determined by the value of the Count parameter on the command line. If this 
value is omitted, and an interval value is used on the command line, then the 
number of iterations are assumed to be infinite.

10.1.3  Examples
Example 10-1 shows the output when no parameters are supplied with the 
wlmstat command.

Example 10-1   Output of the wlmstat command without any flags or parameters
# wlmstat
          CLASS CPU MEM DKIO 
   Unclassified   0  75   0 
      Unmanaged   0  12   0 
        Default   0   0   0 
         Shared   0   6   0 
         System   0  18   0 
            db1   0   0   0 
  db1.Default     -   -   - 
   db1.Shared     -   -   - 
     db1.sub1     -   -   - 
            db2   0   0   0 
          devlt   0   0   0 
devlt.Default     -   -   - 
 Chapter 10. WLM performance tools 811



 devlt.Shared     -   -   - 
devlt.hackers     -   -   - 
   devlt.hogs     -   -   - 
devlt.editors     -   -   - 
  devlt.build     -   -   - 
            VPs   0   0   0 
          acctg   0   0   0 
          TOTAL   0 100   0 

Using the wlmstat command with the -v flag produces the following output 
(Example 10-2).

Example 10-2   wlmstat -v provides a verbose output
# wlmstat -vc

CLASS tr i #pr CPU sha min smx hmx des  rap urap pri 
     Unclassified  0 0   1   0  -1   0 100 100 100    0   47  10 
        Unmanaged  0 0   1   0  -1   0 100 100 100    0   47  10 
          Default  0 0   3   0  -1   0 100 100 100    0   47  47 
Default.Default    0 0   3   -   1   0 100 100 100  100   23  23 
 Default.Shared    0 0   0   -  -1   0 100 100   0    0   46  46 
           Shared  0 0   0   0  -1   0 100 100 100    0   47  47 
 Shared.Default    0 0   0   -   1   0 100 100 100  100   23  23 
  Shared.Shared    0 0   0   -  -1   0 100 100   0    0   46  46 
           System  6 0  62   0  -1   0 100 100 100    0  145 145 
 System.Default    0 0  62   -   1   0 100 100 100  100  121 121 
  System.Shared    0 0   0   -  -1   0 100 100   0    0  144 144 
              db1  0 1   0   0   2   0 100 100 100  100    0   0 
    db1.Default    0 0   0   -  -1   0 100 100 100    0   23  23 
     db1.Shared    0 0   0   -  -1   0 100 100 100    0   23  23 
       db1.sub1    0 0   0   -  -1  25 100 100 100  100    0   0 
              db2  0 1   0   0  -1   0 100 100 100    0   47  47 
    db2.Default    0 0   0   -   1   0 100 100 100  100   23  23 
     db2.Shared    0 0   0   -  -1   0 100 100   0    0   46  46 
            devlt  0 0   0   0  30   0 100 100 100  100    0   0 
  devlt.Default    0 0   0   -  -1   0 100 100 100    0   23  23 
   devlt.Shared    0 0   0   -  -1   0 100 100 100    0   23  23 
  devlt.hackers    0 0   0   -  -1   0  20 100 100    0   23  23 
     devlt.hogs    0 0   0   -  -1   0 100 100 100    0   23  23 
812 AIX 5L Performance Tools Handbook



Note that the output of the wlmstat -v command will wrap around on the screen 
if used on its own. In the above example, the -c flag has been added, so the 
statistics are for CPU only. Here is the information that can be of interest for 
users (Table 10-1).

Table 10-1   Output of wlnstat -v

The other columns are for internal use only and bear no meaning for 
administrators and end users. This format is better used with a resource selector 
(-c, -m, or -b). Otherwise the lines might be too long to fit into a line of a display 
terminal.

In Example 10-2 on page 812, the wlmstat command is used with various flags 
together with the ps command to resolve a performance and WLM configuration 
problem.

Column Header Description

CLASS Class name.

tr Tier number (0 (zero) to 9 (nine)).

i Value of the inheritance attribute: 0 (zero) = no,1 (one) = 
yes.

#pr Number of processes in the class. If a class has no 
process assigned to it, the values shown in the other 
columns may not be significant.

CPU CPU utilization of the class expressed as a percentage.

MEM Physical memory utilization of the class expressed as a 
percentage.

DKIO Disk IO bandwidth utilization for the class expressed as a 
percentage.

sha Number of shares ('-' is represented as -1).

in Resource minimum limit expressed as a percentage.

smx Resource soft maximum limit expressed as a 
percentage.

hmx Resource hard maximum limit expressed as a 
percentage.

des (desired): percentage goal (target) calculated by WLM 
using the shares numbers.

npg Number of memory pages owned by the class.
 Chapter 10. WLM performance tools 813



Example 10-3   wlmstat showing unexpected distribution of resources
root: / =>wlmstat
            Name CPU MEM
    Unclassified   1  18
          System   5   2
         Default  91   5
        DB2_user   0   0
      DB2_system   0   0
            http   0   0
           notes   0   0

In Example 10-3, the Default class unexpectedly has 91 percent of the total 
CPU usage. The other classes, specifically DB2_user, DB2_system, http, and 
notes, have no CPU usage even though processes that are expected to be 
assigned to these classes are running.

Example 10-4   Examining the WLM rules and classes files
root: /etc/wlm/standard =>cat classes
System:
Default:
DB2_user:
        description = "DB2 Clients"
DB2_system:
        description = "DB2 server"
http:
        description = "http testing"
notes:
        description = "Domino"

root: /etc/wlm/standard =>cat rules
*class  resvd   user    group   application type    tag
System   - root   -    -
Default  -    -      -    -
DB2_system      - db2as   -      -
DB2_user        - db2inst1  -      -
http    - nobody  -     -
notes  -  notes   -     -

The problem is in the rules file. The rule for Default is in the second line, as can 
be seen in Example 10-4. Because the WLM class assignment algorithm reads 
through the rules file from top to bottom, the Default class is configured prior to 
the notes, http, DB2_user and DB2_system classes. The class assignment 
algorithm goes through the rules in order and assigns the process to the class 
corresponding to the first rule that matches the process attributes. This results in 
all non-root processes being assigned to the Default class. In the ideal WLM rules 
814 AIX 5L Performance Tools Handbook



file, the Default class is inserted at the bottom of this file.

Example 10-5   The WLM rules file after the change in class order
root: /etc/wlm/standard =>cat rules
*class  resvd   user    group   application type    tag
System   - root   -    -
DB2_system      - db2as   -      -
DB2_user        - db2inst1  -      -
http    - nobody  -     -
notes  -  notes   -     -
Default  -    -      -    -

In Example 10-5, the Default class has been moved and is now the last entry in 
the rules file. Note that the order in the other files such as classes, limits, and 
shares is irrelevant. The rules file in this instance, where the order of the rules is 
incorrect, can be edited using the vi editor. Under normal circumstances, the 
smitty wlm command or Web-based System Manager should be used to modify 
the rules file. For the changes to the rules file to take effect, WLM can be updated 
using the wlmcntrl -u command.

Example 10-6   wlmstat output after the changes to the WLM rules file
root: / =><wlmstat>
            Name CPU MEM
    Unclassified   1  17
          System   5   2
         Default   0   0
        DB2_user  79   6
      DB2_system   0   0
            http   0   0
           notes  13   1

It can be seen in Example 10-6, the DB2_user and notes classes are now 
registering resources usage. Note that the http and DB2_system classes still have 
no resource usage.

Example 10-7   ps command output shows that http processes are running
root: / =>ps -e -o pid,ppid,user,class,args | grep httpd
   PID   PPID     USER                CLASS COMMAND
  9140 159154   nobody               System /usr/HTTPServer/bin/httpd
 18414 159154   nobody               System /usr/HTTPServer/bin/httpd
 21716 159154   nobody               System /usr/HTTPServer/bin/httpd
 24316 159154   nobody               System /usr/HTTPServer/bin/httpd
 24808 159154   nobody               System /usr/HTTPServer/bin/httpd
 31626 159154   nobody               System /usr/HTTPServer/bin/httpd
 39070 159154   nobody               System /usr/HTTPServer/bin/httpd
 41582 159154   nobody               System /usr/HTTPServer/bin/httpd
...(lines omitted)...
 Chapter 10. WLM performance tools 815



There are processes running on the system that are expected to be running in the 
http class. These processes are actually running in the System class, as can be 
seen from the ps command output in Example 10-7 on page 815. The parent 
process, which has PID 159154 and UID root, is classified in the System class. A 
process will remain in its parent’s class if the inheritance option is enabled for that 
class, regardless of the classification rules. In this case, inheritance should be 
disabled (which is the default). Alternately, classification can be done by 
application name as can be seen in Example 10-8. In this way, the parent process 
will start as member of the http class and all the child processes will remain in 
that class. 

Example 10-8   The WLM rules file is changed for child processes 
root: /etc/wlm/standard =>cat rules
*class  resvd   user    group   application type    tag
http    -      -      -      /usr/HTTPServer/bin/httpd
System   - root   -    -
DB2_system      - db2as   -      -
DB2_user        - db2inst1  -      -
notes  -  notes   -     -
Default  -    -      -    -

In Example 10-8, the changes to the rules file with the modified entry for the http 
class can be seen. When the process under the application type heading is 
executed, the child processes will run in that same class.

Example 10-9   wlmstat output 
# wlmstat
          CLASS CPU MEM DKIO 

Unmanaged   0  43   0
        Default   0   0   0
         Shared   0   6   0
         System   3  33   0
            db1   0   0   0
  db1.Default     -   -   -
   db1.Shared     -   -   -
     db1.sub1     -   -   -
            db2   0   0   0
          devlt   0   0   0
devlt.Default     -   -   -
 devlt.Shared     -   -   -
devlt.hackers     -   -   -
   devlt.hogs     -   -   -
devlt.editors     -   -   -
  devlt.build     -   -   -
          acctg   0   0   0
            Red  29  25   2
  Red.Default     0   0   0
   Red.Shared     0   0   0
816 AIX 5L Performance Tools Handbook



  Red.Authors    65  48   0
  Red.Editors    34  48 100
          TOTAL  32 100   2

The output of the wlmstat command can be seen in Example 10-9 on page 816. 
The hard maximum value of memory set up in the WLM configuration for the Red 
class is set to 25 percent. The wlmstat command reports the value of 25 percent 
of total memory consistently used over a period of time. This means that all of the 
available memory for this class is consistently used up. This is an obvious 
bottleneck on performance for this class. It will be necessary to analyze the 
nature of the work type that the Red class does because the jobs running could 
be of a batch nature and the priority may be low. Alternately, the Red class could 
be a group of users trying to process invoices in which performance may be poor 
and the Red class should be allocated more memory. Another problem that will 
occur when a class runs out of memory is that it will start to page. This paging 
activity will affect the entire system’s performance.

Example 10-10   The Red class memory shortage has caused a global paging problem
# vmstat 2
kthr     memory             page              faults        cpu     
----- ----------- ------------------------ ------------ -----------
 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa 
23  7 58807   957   0  21  13 384 752289   6 1052  743 560 48  7 13 31
 6  3 58810   860   0   4  24 336 626827   5 645  809 687  0 12 23 64
 8  4 58811   856   0   5  13 312 375770   3 639  756 663  0  9 30 61
 6  6 58814   833   0  52   6 218 251173   2 657  710 618  0  7 19 74
 7  3 58815   825   0 100   8 359 544865   4 723  672 823  0 11 18 71
 8  3 58837   862   0  67  23 334 697884   5 686  814 712  0 12 20 67
19  8 58872   971   0  70   7 480 877304   7 1148  826 986 48  8  8 36
 8  3 58960   814   0  11  15 312 376204   3 902  829 709  0  9 23 69
10  2 58930   816   0   3 154 384 501383   4 699  895 940  0  9 25 67
10  2 58963   852   0   1  36 395 659926   5 664  793 608  0 13 34 53
19  5 58920   932   0  10  13 349 466821   4 886  640 621 57  6 11 26
7  4 58951   874   0 114  59 336 126230   1 739  773 847  0  6 17 76
8  3 58952   881   0 134   2 408 1742   0 755  700 999  0  5 19 76

 9  3 59023   845   0   0  10 342 645514   5 643  780 539  0 13 36 51
 8  1 59026   908   0   2 102 336 510580   4 689  659 566  0 10 30 59
 8  1 59027   906   0   4  75 360 501603   4 683  661 502  0 10 41 48
20  3 59028   918   0   7  18 576 707263   5 1099 1094 953 46  7 18 29
 7  6 59340   921   0  56  17 456 171002   1 660 34325 873  1  8 20 71
 8  3 59341   835   0   0  52 192 249882   2 612  663 624  0  7 23 70
 7  6 59033   839   0  47  39 288 250585   2 2698 2902 4798  0  2 12 86
 Chapter 10. WLM performance tools 817



From Example 10-10 on page 817, it can be seen that the system has started to 
page due to a lack of memory in the Red WLM class. It can also be seen that the 
number of jobs in the run and wait queues are consistently high.

10.2  wlmmon / wlmperf
The wlmmon and wlmperf commands graphically display Workload Manager 
resource activity by class. wlmmon only monitors WLM class information over a 
period of up to 24 hours. The wlmperf command can monitor the WLM class 
information for days, weeks, or even months at a time for up to one year. 

The wlmmon command resides in /usr/bin and is part of the perfagent.tools fileset, 
which is installable from the AIX base installation media.

The wlmperf command resides in /usr/bin and is part of the 
perfmgr.analysis.jazizo fileset, which is installable from the Performance Toolbox 
(PTX) media.

10.2.1  Syntax xmwlm
The syntax of the xmwlm and xmtrend daemons is as follows:

xmwlm {-d recording_dir} {-n recording_name} {-t trace_level}

Flags
-d recording_dir This flag specifies the output directory for the recording 

file(s). By default the directory name is /etc/perf/wlm.

-n recording_name The recording file name is specified by this flag. By 
default the name of the file is xmwlm.date, where date is 
the system date at file creation time and is in the format 
yymmdd.

Note: In order for the wlmmon and wlmperf commands to function correctly, the 
following Java filesets need to be installed:

� Java130.adt

� Java130.ext

� Java130.rte
818 AIX 5L Performance Tools Handbook



-t Trace level This is the trace level and can be a whole number in the 
range of 1 (one) to 9 (nine). The higher the trace number, 
the greater the amount of trace information gathered. 
The trace file is useful for debugging problems.

10.2.2  Syntax xmtrend
xmtrend {-f infile} {-d recording_dir} {-n recording_name} 
{-t trace_level}

Flags
-f infile The name of the configuration file that is used by 

xmtrend to determine which parameters to monitor. The 
default file name is /etc/perf/xmtrend.cf.

-d recording_dir This flag specifies the output directory for the recording 
file(s). The default directory is /etc/perf.

-n recording_name This flag specifies the name of the recording file. By 
default, xmtrend creates a recording file named 
xmtrend.date. If -n myfile is specified, the recording files 
will be named myfile.date, where date is the system date 
at file creation time in the format yymmdd.

-t trace_level Trace level can be any whole number from 1 (one) to 9 
(nine). The log file is located in /etc/perf. The higher the 
value of the trace level, the greater the amount of trace 
information supplied. The log file name is xmtrend.log1 
and xmtrend.log2 when xmtrend.log1 is full.

The syntax of the wlmmon and wlmperf commands is as follows:

wlmmon

wlmperf

Note that there are no flag options for either of these commands. The two 
commands are graphical in nature, so a graphical display is required to view 
report information from the log files. Both wlmmon and wlmperf are capable of 
displaying data gathered by the xmwlm daemon in AIX 5l Version 5.1. For 
monitoring long term statistics on AIX 4.3.3 ,however, the wlmperf command and 
the xmtrend daemon are required. They are both part of the PTX media.
 Chapter 10. WLM performance tools 819



10.2.3  Information about the xmwlm and xmtrend daemons
This section discusses information about the daemons used by the WLM 
graphical commands. The daemons are used to gather the required information 
from the system. Both xmwlm and xmtrend, which are the daemons used by 
wlmmon and wlmperf respectively, are both capable of running when WLM is not 
active. The xmwlm daemon is installable from the AIX base operating system, 
while xmtrend is part of the Performance Toolbox media. 

Starting the daemons
The two daemons are initiated as follows.

xmwlm
The xmwlm daemon is used to gather information for the wlmmon command. If 
there is a requirement to gather information on a daily basis, the xmwlm daemon 
can be started from the /etc/rc.tcpip file. Add an entry as the last line in the file as 
in Example 10-11.

Example 10-11   The entry in the /etc/rc.tcpip file to start the xmwlm daemon
...(lines omitted)...
xmwlm -n /etc/perf/myfile -d /etc/perf

The daemon can be started up by typing its name on the command line with the 
required flags (Example 10-12).

Example 10-12   Starting the xmwlm daemon
# nohup xmwlm -d /etc/perf/wlm -n devsys &
[1]     26292
# Sending nohup output to nohup.out.

The reason for using the nohup command is that the daemon will not be 
terminated when the current window from which the command was issued is 
closed. Also, the xmwlm command has been put into background by use of the 
‘&’. 

xmtrend
The xmtrend daemon, when used in a WLM environment, will gather information 
for the xmperf command. The xmtrend daemon can be started from the 
command line, and needs a configuration file in order to start. The configuration 
file can be specified by using the -f flag. If the -f flag is not specified, then the 
xmtrend daemon will search in several predefined directories for the 
820 AIX 5L Performance Tools Handbook



configuration file. If the file does not exist, the xmtrend daemon will not know 
which metrics to collect information for and will die. To start the daemon after 
each reboot, add the xmtrend command to the /etc/rc.tcpip file as in 
Example 10-13.

Example 10-13   The entry in the /etc/rc.tcpip file to start xmtrend on reboots
...(lines omitted)...
xmtrend -f /etc/perf/xmtrend.cf -n /etc/perf/myfile -d /etc/perf

If the daemon will not start, it may be due to incorrectly terminating the daemons.

.

It is important that there is at least 10 MB of disk space available in the directory 
where the recording files are to be kept. 

Attention: If the xmwlm or xmtrend daemons need to be stopped, do not use 
the kill -9 PID command. This may result in the shared memory of the 
System Performance Measurement Interface (SPMI) Application Program 
Interface (API) used by the xmwlm and xmtrend daemons not being 
re-initialized. If changes are made to the WLM configuration, then these 
changes will not be displayed by wlmmon and wlmperf after the kill -9 PID 
command has been used on them. Use the kill PID command instead. In 
the case where the kill -9 PID command has been used to kill the daemons, 
the following procedure can be used to correct the problem:

# ipcs -m

IPC status from /dev/mem as of Fri May 18 10:49:56 CDT 2001

T        ID     KEY        MODE       OWNER    GROUP

Shared Memory:

m    262153 0x7804129c --rw-rw-rw-     root   system

#ipcrm -m 262153

#slibclean

Now restart the xmwlm or xmtrend daemons

Look for any shared memory segments that start with 0x78xxxxxx under the 
column headed KEY. Get the ID number (for example, 262153) so you can 
remove it.
 Chapter 10. WLM performance tools 821



The record file created by the xmtrend daemon can also be monitored by the 
PTX tools xmperf and 3dmon. Users may find the three dimensional reports of the 
3dmon program useful. For more information on setting up metrics in PTX, please 
refer to Chapter 11, “Performance Toolbox Version 3 for AIX” on page 839.

10.2.4  Information on measurement and sampling
Before it is possible to view any WLM statistics, it is necessary to ensure that the 
appropriate daemon is active on the system. While the wlmstat command 
provides a per second view of WLM activity, it is not suited for the long term 
analysis. The wlmstat command also does not have any means of storing 
displayed data. To supplement the wlmstat command, the wlmmon and wlmperf 
commands provide reports on WLM activity over much longer time periods with 
minimal impact to system performance. The reports generated by these tools are 
based on samplings made by the associated recording daemon. These daemons 
sample the WLM and system statistics at a very high rate in seconds, but only 
record at a low rate in minutes. These values represent the minimum, maximum, 
mean, and standard deviation values for each collected statistic over the 
recording period. The same mechanism is used to collect the statistics as is used 
by the wlmstat command. From these statistics the reports are generated. For 
more information on the collection of statistics by the wlmstat command, please 
refer to “Information on measurement and sampling” on page 810.

10.2.5  Exploring the graphical windows
Figure 10-1 on page 823 shows the typical default screen of wlmmon and wlmperf 
when they are started. To start wlmmon or wlmperf, merely enter the names on the 
command line. Only users with root authority can run these commands. Across 
the bottom of the graphical display the following fields are displayed:

RunQ The average number of threads in the run queue over the 
reporting period. 

SwapQ The average number of threads in the wait queue over the 
reporting period. 

CPU Busy% The percentage of time during the reporting period that the CPU 
was busy. 

I/O Wait% The amount of time that the CPU was idle while there was an 
outstanding I/O to disk (local or remote). 

PagSp Used% The percentage of paging space used during the reporting 
period. 
822 AIX 5L Performance Tools Handbook



Host The name of the host on which the report information was 
captured.

WLM State This field shows the state of WLM at the time of capturing the 
data, for example Active.

Period 1 This field is used when comparisons are made on the same 
report between different time periods. If no comparison is made, 
then this field is blank. This field represents the earlier of the two 
time periods. The format is as follows: month/day start time - 
month/day end time.

Period 2 When comparisons are not being made to determine trends, the 
value in this field shows the date and time of the recording period 
in the following format: month/day start time - month/day end 
time. When comparisons are being made, this field will have the 
date and time of the second trend period.

The fields cannot be manually adjusted, but some of the fields’ contents can be 
changed by using the tab down menu option Selected (Figure 10-1).

Figure 10-1   Initial screen when wlmperf and wlmmon are started
 Chapter 10. WLM performance tools 823



The WLM_Console menu
Clicking on the tab down menu WLM_Console will display the following options:

Open log Used to open the required log file containing the report data.

Reports Used to open copy and delete reports (wlmperf only).

Print Used to print the current report.

Exit Exits the tool.

The tab down menu bar is shown in Figure 10-2 with its options. Note that 
currently unavailable options are greyed out. 

Figure 10-2   The WLM_Console tab down menu

Open log
Open a log file by choosing Open Log from the tab down bar. If the appropriate 
daemon is running on the system, then a log file or log files with a name similar to 
xmwlm.010517 will be displayed. The first part of the name is the WLM daemon 
name while the part after the period (.) is the date when the log file was created. 
These files are located in the directory /etc/perf/wlm. See Figure 10-3 on 
page 825.
824 AIX 5L Performance Tools Handbook



Figure 10-3   The open log option from the tab down bar

Move the mouse pointer to the appropriate file, in this case xmwlm.010517. Click 
on the file name, and then the Open radio button to open the log file. This action 
will open up the reporting window seen in Figure 10-4 on page 826.
 Chapter 10. WLM performance tools 825



Figure 10-4   The WLM table visual report

Three different reports can be displayed. They are Table View, Bar View, and 
Snapshot View. These views will now be discussed in detail. 

Table View
The Table View provides actual numeric statistics for each class. Notice that the 
Table View shown in Figure 10-4 on page 826 has a tab down menu. By default 
this tab down menu has the word CPU on it, indicating that CPU statistics are 
currently being displayed. By clicking on this tab down menu, the option of MEM 
and DISK I/O are also available. See Figure 10-5 for a detailed view of this tab 
down menu.

Figure 10-5   The CPU, memory and disk I/O tab down menu
826 AIX 5L Performance Tools Handbook



Moving the mouse pointer to any of the options available from the tab down 
menu and clicking on the item results in the statistics for that item being 
displayed.

Across the top of the table view report screen, field headings are displayed. The 
field headings are as follows:

Shares These are the defined shares in the WLM configuration.

Target This is the share value target computed by WLM in 
percentage. If the share is undefined, the value will be 
set to 100.

Min The class minimum as defined in WLM limits.

SMax The class soft maximum value as defined in WLM limits.

HMax The class hard maximum value as defined in WLM limits.

Actual The calculated average value over the sample period.

Low The actual observed minimum value across the time 
period.

High The actual observed maximum value across the time 
period.

Standard Deviation The computed standard deviation of the Actual, High, 
and Low values. This value indicates the actual 
variability of the value across the recording period. A 
high value of standard deviation indicates more 
variability while a lower value of standard deviation 
indicates less variability.

Samples The number of samples for the period.

On the extreme right of the example in Figure 10-4 on page 826 a slide bar is 
available. Often all of the classes cannot be displayed on one screen, and the 
slide bar allows the additional classes to be displayed.

Bar View
The Bar View visual report can be seen in Figure 10-6 on page 828. The class 
information is displayed in bar-graph style, together with the appropriate 
percentage values of the resource used over the specified time period. The 
percentage value is calculated based on the total system resources.
 Chapter 10. WLM performance tools 827



Figure 10-6   The bar-graph style visual report

Snapshot View
The Snapshot View visual report is a quick reference to check that there are no 
serious eminent problems. No statistical values are displayed, but rather colored 
dots or bulbs indicating the status of a resource for a specific class. The color 
coding of the bulbs can be seen in the Advanced Menu

The order of the bulbs is shown below.

Figure 10-7   The order of the snapshot visual report colored bulbs

In the Snapshot View of Figure 10-8 on page 829, the resources are outside of 
the range, and lower than the target. This is with the exception of the System class 
where the memory usage is between the inside and outside ranges. See 
advanced options for more details in Figure 10-14 on page 834.

Blue Yellow Green Yellow Red

Colored circles or "bulbs"
are used to associate
displacement. Only one
bulb is displayed at a time
828 AIX 5L Performance Tools Handbook



Figure 10-8   The snapshot visual report

The Select menu
When the select menu option is chosen, the tab down menu in Figure 10-9 on 
page 829 is displayed.

Figure 10-9   The select tab down menu

Times
The Times option will display the screen shown in Figure 10-10 on page 830. If 
the Trend block is checked, then comparisons can be made between different 
times within the report file. In the example, the report period of 11am on the 18th 
May is compared to the report period of 1pm on the 18th May. The width of the 
monitor interval can also be changed. This is set to five minutes by default.
 Chapter 10. WLM performance tools 829



Figure 10-10   The time window for setting trend periods

When selecting a trended view, the output of the visual report screens change 
slightly. In Figure 10-11 on page 831 the figures are shown in parenthesis. The 
Period1 field contains the first report period, while the Period2 field contains the 
second period value. The format of the date can be seen in the beginning of this 
section. In the visual reports, the values at the bottom of the screen, for example 
RunQ, are also in parenthesis, comparing the difference at the two reporting 
periods.
830 AIX 5L Performance Tools Handbook



Figure 10-11   The table visual report with trend values shown

The bar-graph style report shows two bar-graphs for each field of the report. In 
any field, the bottom value, represented by the white bar graph, shows the value 
of the first reporting period. The top, black bar graph shows the second period. 
This can be seen in Figure 10-12 on page 832. Note that the trend values are 
also visible, for the general statistics, at the bottom of the screen and are in 
parenthesis.
 Chapter 10. WLM performance tools 831



Figure 10-12   The bar graph style report showing a trend

The Snapshot visual report can be seen in Figure 10-13 on page 833. The 
greater than (>) and less than (<) symbols indicate the change. If there is no 
symbol indicated, then there was no change in this value. For example, the CPU 
usage was less at the second report period than at the first report period for the 
Unmanaged class.
832 AIX 5L Performance Tools Handbook



Figure 10-13   The snapshot visual report showing the trend

The example in Figure 10-13 shows a snapshot visual report. This is a trend type 
report, which can be seen from the fact that there are two period values and 
trend indicators for the bulbs. 

This snapshot has two report times. The first from 08:00 to 10:00 on the 4th 
January 2001. The second report time is 10:00 to 12:00 on the 4th January 2001. 
Therefore, each report period is over a two hour period. In general, from the 
example, it can be seen that there is an under utilization of resources. It is 
necessary, however, to take into consideration that this is a snapshot of two short 
periods of one day. The trended view is ideal for a before and after view when 
resources have been reallocated on the system. For example, a trended 
snapshot view can be taken prior to increasing the amount of memory and CPU 
allocated to a class. Taking another trended snapshot view afterward will 
determine the effect of the changes on the classes.

Typical the snapshot view brings to light the under-utilization of resources for 
some classes, and over-utilization in another. The idea of the snapshot is to 
instantly highlight possible problem areas.

It should be noted that this report in Figure 10-13 on page 833 is over two, two 
hour periods and may not be a true reflection of the state of the system. Ideally, 
further investigation should be conducted over additional time periods.
 Chapter 10. WLM performance tools 833



Advanced
The Advanced option in the Selected tab down menu is used together with the 
snapshot visual report. This option is only appropriate for the snapshot visual 
report. The advanced option menu can be seen in Figure 10-14. 

Figure 10-14   Advanced option under the Selected tab down menu

The interpretation of the colored bulbs changes with the option chosen. There 
are two options available. Option one ignores the user defined minimum and 
maximum settings, while option two uses a percentage of difference between the 
defined target and the minimum and maximum values. Figure 10-15 on page 835 
shows the Advanced Menu options displayed in a graphical format. The graph 
labeled Class shows the Soft and Hard maximum and minimum limits. This 
graph is of a specific class that has a 50 percent Target (share value), a 
minimum of 20 percent (Min), and a maximum limit of 90 percent (Max).
834 AIX 5L Performance Tools Handbook



Figure 10-15   The Advanced Menu options shown in graphical form

In the Option1 graph, the user defined maximum and minimum limits are 
ignored. Using the settings in Figure 10-14 on page 834, the green range of the 
graph is shown by the label Stdev within 50% of Target, and is set to a value of 
50 percent. The red range is shown by the label Stdev within 80% of Target 
and is set to a value of 80 percent.

The green range can be determined by the following formula:

Low green range = Target - (Target * green%) = 50 - (50 * 50%) = 25

High green range = Target + (Target * green%) = 50 + (50 * 50%) = 75

Therefore, the range covered by the arrowed line labeled Stdev within 50% of 
Target is from 25 to 75 percent. In the same way the values for the red range can 
be calculated:

Low red range = Target - (Target * red%) = 50 - (50 * 80%) = 10

High red range = Target + (Target * red%) = 50 + (50 * 80%) = 90
 Chapter 10. WLM performance tools 835



The red range, therefore, is from zero to 10 percent and 90 to 100 percent. This 
range is denoted by the arrowed line labeled Stdev within 80% of Target in 
Figure 10-15 on page 835. The yellow range is that region between the red and 
green regions.

In the Option2 graph in Figure 10-15 on page 835, the predefined minimum and 
maximum settings are taken into account. If the same options are selected as in 
Figure 10-14 on page 834, and the hard minimum (Min) and maximum (Max) 
values are 20 percent and 90 percent respectively, the ranges can be determined 
as follows:

Low green range = Target - ((Target - Min) * green%)

= 50 - ((50 - 20) * 50%) = 35

High green range = Target + ((Max - Target) * green%)

= 50 + ((90 - 50) * 50%) = 70

Low red range = Target - ((Target - Min) * red%)

= 50 - ((50 - 20) * 80%) = 26

High red range = Target + ((Max - Target) * red%)

= 50 + ((90 - 50) * 80%) = 82

Once again, the yellow range is between the red range and the green range. 

Tier/Class
From the Selected menu, the Tier/Class option enables the viewing of a 
selected class or tier. The class/tier pane is shown in Figure 10-16 on page 837. 
If the class Red was chosen from the list of classes, the snapshot output shown 
in Figure 10-17 on page 837 can be displayed.
836 AIX 5L Performance Tools Handbook



Figure 10-16   The class/tier option from the selected tab down menu

Only the Red superclass with its subclasses are shown in Figure 10-17, which 
helps to analyze report information for this specific class.

Figure 10-17   The snapshot report showing only the Red WLM class
 Chapter 10. WLM performance tools 837



838 AIX 5L Performance Tools Handbook



Chapter 11. Performance Toolbox 
Version 3 for AIX

This chapter describes the use of some of the utilities available in the AIX 
Performance Toolbox Version 3 (PTX). There are numerous component parts to 
the PTX, of which this chapter will explain the use of the most important. For a 
full description of the all of the features of the PTX, refer to Performance Toolbox 
Version 2 and 3 Guide and Reference.

This chapter shows examples of the use of the popular tools and explains the 
results obtained. The components that are covered in this document are:

� xmperf, which is useful for monitoring system statistics.

� 3dmon, which monitors performance of multiple hosts on the same network.

� jazizo, which is ideal for monitoring long term performance.

The aim is to invite the reader to use the PTX to arrive at meaningful and useful 
conclusions to performance issues. The aim is not to cover details on the System 
Performance Measurement Interface (SPMI) Application Program Interface (API) 
in depth. For more information on the SPMI, please refer to Section 9.2, “System 
Performance Measurement Interface (SPMI)” on page 736.

Additional tools
Some of the other tools are listed below:

11
© Copyright IBM Corp. 2001 839



3dplay A program to play 3dmon recordings back in a 3dmon-like 
view.

chmon Supplied as an executable as well as in source form, this 
program allows monitoring of vital statistics from a 
character terminal. 

exmon The program that allows monitoring of alarms generated 
by the filtd daemon running on remote hosts. 

azizo Legacy recording tool replaced by jazizo in PTX Version 
3. A program that allows you to analyze any recording of 
performance data. It lets you zoom-in on sections of the 
recording and provides graphical as well as tabular views 
of the entire recording or zoomed-in parts of it. 

ptxtab A program that can format statistics from recording files 
for printing. 

ptxmerge This program allows you to merge up to 10 recording files 
into one. For example, you could merge xmservd 
recordings from the client and server sides of an 
application into one file to better correlate the 
performance impact of the application on the two sides. 

ptxsplit In cases where recording files are too large to analyze as 
one file, this program allows you to split the file into 
multiple smaller files for better overview and faster 
analysis. 

ptxrlog A program to create recordings in ASCII or binary format. 

ptxls A program to list the control information of a recording file, 
including a list of the statistics defined in the file. 

a2ptx The a2ptx program can generate recordings from ASCII 
files in a format as produced by the ptxtab or ptxrlog 
programs or the Performance Toolbox for AIX 
SpmiLogger sample program. The generated recording 
can then be played back by xmperf and analyzed with 
jazizo. 

ptxconv The format of recordings has changed between versions 
of the Performance Toolbox for AIX. As a convenience to 
users of multiple versions of the Performance Toolbox for 
AIX, this program converts recording files between those 
formats. 

ptx2stat Converts data collected in a recording file to a format that 
resembles the recording format for the statistic set. 
840 AIX 5L Performance Tools Handbook



Permits postprocessing of data with the programs that 
allow playback and manipulation of recordings. 

ptxhottab A program that can format and print hotset information 
collected in recording files. 

wlmperf Program for analyzing Workload Management (WLM) 
activity from xmtrend recordings. Provides reports on 
class activity across hours, days, or weeks in a variety of 
formats. This application is available only in PTX Version 
3. See Section 10.2, “wlmmon / wlmperf” on page 818 for 
more information.

11.1  Introduction
The performance toolbox version 3 consists of two parts; the manager and the 
agent. The agent, also known as Performance AIDE, must be loaded on all the 
nodes that are to be monitored by the manager. The performance toolbox can be 
useful in performing the following functions:

Load monitoring Assists in the monitoring of the system resources to 
detect performance problems. 

Analysis and control When a problem is encountered, the correct tool needs to 
be used to analyze the problem and determine the root 
cause of the problem so that the necessary corrective 
action can be taken.

Capacity planning To perform long term monitoring to determine in advance 
the correct quantity of additional resources required. 

The PTX is a graphical tool, and hence requires a suitable graphical monitor for 
display purposes.

The PTX filesets are as follows:

� perfagent.server

� perfmgr.analysis.jazizo

� perfmgr.common

� perfmgr.network

The required AIX base filesets are as follows:

� perfagent.tools
 Chapter 11. Performance Toolbox Version 3 for AIX 841



These filesets are available on the Performance Toolbox Version 3 media CDs. 
Performance Toolbox Version 3, both manager and AIDE, is supported on AIX 
Version 4.3.3 and AIX 5L Version 5.1 on POWER platforms only. When AIDE is 
installed on a remote host (node), it is necessary to refresh the inetd daemon. 
The refreshing of the daemon makes it aware of the PTX xmquery protocol. As a 
user with root authority, run the following command:

# refresh -s inetd

Where an address of a remote client is outside of the local subnet, PTX requires 
the Rsi.hosts file to be edited on the manager host to include this remote client. 
In the case where there may be a name resolution delay it is recommended that 
the IP address is supplied instead of the hostname in the Rsi.hosts file. For more 
information on setting up the Rsi.hosts file, please refer to the web page:

http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/perftool/prfusrgd/
ch02body.htm#HDRXHDHOSTS

During the course of this chapter, as a performance tool is used, the specific 
fileset of which it is a component together with the path name will be supplied.

11.2  xmperf
The xmperf program is used to monitor the statistics of a system. Monitoring 
system performance is one of a system administrator’s most important 
functions.The xmperf program has the ability to monitor statistics on the system 
where it is running as well as on remote systems via a network. The agent 
component must be running on all remote hosts as well as the host where the 
xmperf program is running.

The xmperf program resides in /usr/bin, which is part of the perfmgr.network 
fileset that is installable from the Performance Toolbox Version 3 for AIX media. 
The perfmgr.common and perfagent.server filesets are prerequisites for 
perfmgr.network. They are also installable from the AIX Performance Toolbox 
Version 3 media. 

11.2.1  Syntax
The syntax of the xmperf command is as follows:

xmperf [-v auxz] [-w width] [-o options_file] [-p weight] [-h 
localhostname] [-r network_timeout] 
842 AIX 5L Performance Tools Handbook



Flags
All command line flags are optional and all except -r and -h correspond to X 
Window System resources that can be used in place of the command line 
arguments.

The options -v, -a, -u, -x, and -z are true or false options. If one of those options 
is set through an X Window System resource, it cannot be overridden by the 
corresponding command line argument. The options are as follows: 

-v Verbose. This option prints the configuration file lines to 
the xmperf log file $HOME/xmperf.log as they are 
processed. Any errors detected for a line will be printed 
immediately below the line. The option is intended as a 
help to find and correct errors in a configuration file. Use 
the option if you don't understand why a line in your 
configuration file does not have the expected effect. 
Setting the X Window System resource BeVerbose to true 
has the same effect as this flag. 

-a Adjusts the path name size that is displayed in an 
instrument to a minimum length. The length can be less 
than the default fixed length (or the length specified by the 
-w option if used) but never longer. The use of this option 
can result in consoles where the time scales are not 
aligned from one instrument to the next. Note: For pie 
chart graphs, adjustment is always done, regardless of 
this command line argument. Setting the X Window 
System resource LegendAdjust to true has the same 
effect as this flag. 

-u Use popup menus. As described in Console Windows, 
the overall menu structure can be based upon pull down 
menus (which is the default) or popup menus as activated 
with this flag. Typically, pull-down menus are easier to 
understand for occasional users, while popup menus 
provide a faster but less intuitive interface. Setting the X 
Window System resource PopupMenus to true has the 
same effect as this flag. 

-x Subscribe to exception packets from remote hosts. This 
option makes xmperf inform all the remote hosts it 
identifies that they should forward exception packets 
produced by the filtd daemon, if the daemon is running. 
If this flag is omitted, xmperf will not subscribe to 
exception packets. Setting the X Window System 
resource GetExceptions to true has the same effect as 
this flag. 
 Chapter 11. Performance Toolbox Version 3 for AIX 843



-z For monochrome displays and X stations, you might want 
to try the -z option, which causes xmperf to draw 
graphical output directly to the display rather than always 
redrawing from a pixmap. By default, xmperf first draws 
graphical output to a pixmap and then, when all changes 
are done, moves the pixmap to the display. Generally, 
with a locally-attached color display, performance is better 
when graphical output is redrawn from pixmaps. Also, a 
flaw in some levels of X Window System can be bypassed 
when this option is in effect. Setting the X Window System 
resource DirectDraw to true has the same effect as this 
flag. 

-w width Must be followed by a number between 8 and 32 to define 
the number of characters from the value path name to 
display in instruments. The default number of characters 
is 12. Alternatively, the legend width can be set through 
the X Window System resource LegendWidth. 

-o options_file Must be followed by a file name of a configuration file to 
be used in the execution of xmperf. If this option is 
omitted, the configuration file name is assumed to be 
$HOME/xmperf.cf. Alternatively, the configuration file 
name can be set through the X Window System resource 
ConfigFile. 

-p weight If given, this flag must be followed by a number in the 
range 25-100. When specified, this flag turns on 
"averaging" or "weighting" of all observations for state 
graphs before they are plotted. The number is taken as 
the "weight percentage" to use when averaging the values 
plotted in state graphs. The formula used to calculate the 
average is: 

val = new * weight/100 + old * (100-weight) / 100 

Where: 

val Is the value used to plot. 

new Is the latest observation value. 

old Is the val calculated for the previous observation. 

-h local hostname Must be followed by the host name of a remote host that 
is to be regarded as Localhost. The Localhost is used to 
qualify all value path names that do not have a host name 
specified. If not specified, Local host defaults to the host 
where xmperf executes. 
844 AIX 5L Performance Tools Handbook



-r network_timeout Specifies the timeout, in milliseconds, used when waiting 
for responses from remote hosts. The value specified 
must be between 5 and 10000. If not specified, this value 
defaults to 100 milliseconds. In systems where the 
subnets are large, it is recommended to set the value of 
this flag to 10000.

One indication of a too low timeout value is when the list 
of hosts displayed by xmperf contains many host names 
that are followed by two asterisks. The two asterisks 
indicate that the host did not respond to xmperf 
broadcasts within the expected timeout period. 

Parameters
width The length of the path name to be used in graphical 

instruments.

options_file Configuration file name.

weight Is the weight specified by the -p flag. If a number outside 
the valid range is specified, a value of 50 is used. If this 
flag is omitted, averaging is not used. Alternatively, the 
averaging weight can be set through the X Window 
System resource Averaging. The weight also controls the 
calculation of weighted average in tabulating windows.

local hostname The name of a remote host.

network_timeout The network timeout value in milliseconds.

11.2.2  Information on measurement and sampling
Over and above the ability to monitor performance in real time, the xmperf 
program has the functionality to record performance and to play back a 
recording. The xmperf program uses the SPMI API to gather information. The 
information is of two types dependant on the instrument type:

� SiCounter The value is incremented continuously and the instrument 
shows the change in the value between time intervals.

� SiQuantity The value represents a level. The observed value is 
displayed by the instrument.

Note: On networks that extend over several routers, gateways, or bridges, the 
default value is likely to be too low.
 Chapter 11. Performance Toolbox Version 3 for AIX 845



Display requirements
The xmperf program requires a graphical display for its output. This display need 
not be the system console. If, for example, the system res07 is an AIX system 
and it has a color graphical monitor that is ideal for displaying xmperf statistics. 
The system wlmhost has the manager part of the PTX installed, but has no 
graphical display. To monitor the statistics on res07’s monitor, firstly run the 
xhost command on the res07 system as below:

res07> xhost +

access control disabled, clients can connect from any host

The xhost command allows the system wlmhost to output to the X-Window of 
res07.

It is now necessary to export the display of res07 on the system wlmhost:

wlmhost> export DISPLAY=res07:0

Ensure that the remote system name, in this case res07, appears in the 
/etc/hosts file of the wlmhost system. Once the X-session has been established, 
the xmperf program can be run. 

Starting xmperf
Start xmperf as follows:

res07> xmperf

The window in Figure 11-1 will be displayed.

Figure 11-1   The initial xmperf window

The windows or panes that are displayed by the xmperf program are referred to 
as consoles. Note also that the “Mini Monitor” console is displayed by default as 
seen in Figure 11-2 on page 847.
846 AIX 5L Performance Tools Handbook



Monitoring instruments occupy a rectangular area within a console. An 
instrument has the ability to plot 24 values simultaneously. Only values from the 
same system can be displayed in an instrument.

Figure 11-2   The mini monitor window

The xmperf program will display two types of monitoring instruments; recording 
instruments and state instruments. 

Recording instruments
Recording instruments monitor information over a period of time. They should 
not be confused with recording or saving data to a disk. The displayed values are 
pushed to the left as they are replaced by the new values. In Figure 11-3 on 
page 848 the aged or older data is moved to the left as it is replaced with new 
data. The data is moved to the left at a user defined time interval.
 Chapter 11. Performance Toolbox Version 3 for AIX 847



Figure 11-3   Aged data moved to the left

State instruments
State instruments show the latest information for a system resource. The “Mini 
Monitor” console shown in Figure 11-2 on page 847 is a state instrument.

Primary graphic styles
There are various primary graphic styles that are available for each of the 
instrument types. For recording instruments, the styles are:

� Skyline 

� Bar graph

� Area

� Line

For the state instruments, the styles are:

� Pie chart
848 AIX 5L Performance Tools Handbook



� State bar

� State light

� Speedometer

The xmperf program enables a system administrator to create consoles. A 
console can consist of more than one graphic type, and may consist of both 
recording and state instruments. See “Examples” on page 853 for details on how 
to set up a user defined console.

System commands
In addition to the monitoring features, the xmperf program has an enhanced 
interface to system commands. From the initial xmperf window shown in 
Figure 11-1 on page 846, the tab down menus Utilities, Analysis, and Control, 
can be used to access the system commands. The tab down menus and some of 
their commands are listed below (Figure 11-4, Figure 11-5 on page 850, and 
Figure 11-6 on page 850).

Figure 11-4   The utilities tab down menu

Utilities Includes the topas, wlmperf, time, and pstat commands.
 Chapter 11. Performance Toolbox Version 3 for AIX 849



Figure 11-5   The analysis tab down menus

Analysis Includes the tprof, pprof, PDT, rmss, svmon, vmstat, netpmon, 
netstat, nfsstat, filemon, iostat, fileplace, sar, ipfilter, 
and trace commands.

Figure 11-6   The controls tab down menu

Control Includes the no and chnfs command.

Recording and playback
As previously mentioned, the xmperf program is able to save the recorded 
information to a file. This information can be played back for analysis at a later 
time. To record information from a console, select that console as in Figure 11-3 
on page 848. Choose the Record tab down menu as shown in Figure 11-7 and 
select Console Recording.

Figure 11-7   The Recording tab down menu

In the menu option shown in Figure 11-8, choose the option Begin Recording to 
start the recording.
850 AIX 5L Performance Tools Handbook



Figure 11-8   The console recording options

If the data from this instrument has been recorded before, then the cautionary 
window in Figure 11-9 will be displayed. This is to prevent accidental overwriting 
of the existing file. Note that there is an option to Append to the existing file. 
Choosing the Replace option will overwrite the file.

Figure 11-9   Cautionary window when recording an instrument 

Choosing either the Append or Replace options will start the recording process. 
To stop the recording, select the tab down menu Recording as shown in 
Figure 11-3 on page 848 and select the menu option Console Recording. 
Select the End Recording option from the menu as shown in Figure 11-10. This 
option will end the recording to file.

Figure 11-10   The Console Recording tab down menu’s End Recording option
 Chapter 11. Performance Toolbox Version 3 for AIX 851



In order to play back the recording, select the File tab down menu of the initial 
xmperf window show in Figure 11-1 on page 846. The window in Figure 11-11 
will be displayed. From this menu, select Playback. 

Figure 11-11   Options under the initial xmperf window File tab down menu

The window in Figure 11-12 will be displayed showing the list of playback files. 
Select the appropriate file by moving the mouse pointer to the file. 

Figure 11-12   The Select Play-back File window

Once the file name has been selected, click on the OK button at the bottom of 
the window. The window in Figure 11-13 on page 853 shows the playback 
monitor.
852 AIX 5L Performance Tools Handbook



Figure 11-13   The Play-Back window

Click on the Playback button to review the monitored data.

11.2.3  Examples
This section shows examples using the xmperf program. The steps in creating a 
user defined console are as follows:

From the xmperf initial window shown in Figure 11-1 on page 846, choose the 
Monitor tab down menu. From this menu, select Add New Console. The 
window in Figure 11-14 on page 854 will be displayed. A number exists in the top 
field. This is constructed by the system from the date and time. Overwrite it with a 
name for the new console. For syntax and illegal character information, move the 
mouse pointer to the Help button and click the left mouse button.
 Chapter 11. Performance Toolbox Version 3 for AIX 853



Figure 11-14   Naming the user defined console

To continue creating the console, move the mouse pointer to the Proceed button 
in the window and click the left mouse button. The window in Figure 11-15 will be 
displayed. From the tab down menu Edit Console, select Add Local 
Instrument.

Figure 11-15   Edit the console window
854 AIX 5L Performance Tools Handbook



The window in Figure 11-16 shows a list of the resources that can be monitored. 
Make the selection by moving the mouse pointer to the required resource and 
clicking the left mouse button. Several other windows with options for the chosen 
resource will be displayed. These options vary from resource to resource and 
hence are not displayed here.

Figure 11-16   Dynamic Data Supplier Statistics window

Once all the required selections have been made, the “Changing Properties of a 
Value” window (Figure 11-17 on page 856) will be displayed. The color and type 
of graph can be changed as well as the maximum, minimum, and threshold 
values. In this example, CPU idle time was monitored. The graph type can be 
changed to either line, area, skyline, or bar. In this example, the default line 
graphical display style was chosen. Some of the properties in the “Changing 
Properties of a Value” window need to b explained. Other properties are self 
explanatory.

Lower range for value This property is defined as the lowest point to be 
displayed on the graph. Typically, this value would be set 
to zero.

Upper range of value This property is defined as the highest point plotted on 
the graph and determines the scale of the graph. This 
property is not required for the state light graph type.
 Chapter 11. Performance Toolbox Version 3 for AIX 855



Threshold for value This property is only required by the state light graph. It 
can be defined as the value at which the state light will 
change state.

Figure 11-17   The Change Properties of a Value window

Finally, the monitoring console can be seen in Figure 11-18 on page 857. This is 
a recording instrument, and as a new reading is taken, the older or aged values 
are pushed to the left.
856 AIX 5L Performance Tools Handbook



Figure 11-18   The final console monitoring CPU idle time

The console can be further enhanced by changing the name from glidle to 
something more meaningful by selecting the instrument. This is achieved by 
moving the mouse pointer to the instrument to be changed and clicking the left 
mouse button. When selected, the graphic will have a phantom border around it. 
Choose the Edit Value tab down menu and from it, select Change Value. This 
will bring up the “Change Properties of a Value” window as shown in 
Figure 11-17 on page 856. The label name of the recording instrument can now 
be changed by typing over the name glidle in the label box.

A more useful instrument in this case may be the pie chart for CPU usage. It 
would, however, be ideal to represent the percentage of time the CPU is in user 
mode, in kernel mode, the percentage of time the CPU is idle while an I/O is 
outstanding, and the percentage of time that the CPU is idle (excluding the time 
that it is waiting for I/O). This can be achieve quite easily by changing the 
instrument type to pie chart. First select the instrument by moving the mouse 
pointer to the instrument to be changed and click the left mouse button. The 
selected instrument will have a phantom line around it. From the console in 
which the instrument is active (Figure 11-18 on page 857), click the Edit 
Console tab down menu and select Modify Instrument. This tab down menu 
option can be seen in Figure 11-19 on page 858.
 Chapter 11. Performance Toolbox Version 3 for AIX 857



Figure 11-19   The Edit Console tab down menu

The options are shown in Figure 11-20. Select Style & Stacking from the menu. 

Figure 11-20   The Modify Instrument menu options

The window in Figure 11-21 on page 859 is displayed. Select the pie chart 
option. Before closing this window, select the Stacking option as in Figure 11-21 
on page 859. Finally close the window by clicking Proceed.
858 AIX 5L Performance Tools Handbook



Figure 11-21   The Style and Stacking menu option

To include the additional CPU statistics, it is necessary to move the mouse button 
to the Edit Value tab down menu in the instrument console shown in 
Figure 11-18 on page 857. The menu options in Figure 11-22 will be displayed.

Figure 11-22   Menu options from the Edit Value tab down display

Select Add Value from the menu. This will open the Dynamic Data Supplier 
Statistic window as in Figure 11-16 on page 855. The procedure from this point is 
the same as for creating a new instrument. The final result when all the CPU 
statistics are being measured by the same instrument is shown in Example 11-23 
on page 860.
 Chapter 11. Performance Toolbox Version 3 for AIX 859



Figure 11-23   An example of a CPU usage instrument

11.3  3D monitor
The 3dmon program is useful for monitoring the same statistics on numerous 
hosts across a network. The results of the 3dmon program are three dimensional 
graphical chessboard-like outputs. The number of fields can range from one to 
24. This is a graphical program and hence requires a graphical monitor.

The 3dmon program resides in /usr/bin and is part of the perfmgr.network fileset, 
which is installable from the Performance Toolbox Version 3 for AIX media. The 
perfmgr.common and perfagent.server filesets are prerequisites for 
perfmgr.network. They are also installable from the AIX Performance Toolbox 
Version 3 media. 

11.3.1  Syntax
The syntax of the 3dmon command is as follows:

3dmon [-vng] [-f config_file] [-i seconds_interval] [-h hostname] 
[-w weight_percent] [-s spacing] [-p filter_percent] [-c config] 
[-a "wildcard_match_list"][-t resync_timeout] [-d invitation_delay] 
[-l left_side_tile] [-r right_side_tile] [-m top_tile] 
860 AIX 5L Performance Tools Handbook



Flags
-v Verbose mode. Causes the program to display 

warning messages about potential errors in the 
configuration file to standard error. Also causes 
3dmon to print a line for each statset created and for 
each statistic added to the statset, including the 
results of re-synchronizing. 

-n This flag only has an effect if a filter percentage is 
specified with the -p argument. When specified, 
draws only a simple outline of the grid rectangles for 
statistics with values that are filtered out. If not 
specified, a full rectangle is outlined and the 
numerical value is displayed in the rectangle. 

-g Usually, 3dmon will attempt to resynthesized for each 
statset it does not receive data-feeds for 
resync-timeout seconds. If more than half of the 
statsets for any host are found to not supply 
data-feeds, re-synchronizing is attempted for all the 
statsets of that host. By specifying the -g option, you 
can force re-synchronization of all the statsets of a 
host if any one of them becomes inactive. 

-f config_file Allows the specifying of a configuration file name 
other than the default. If not specified, 3dmon looks 
for the file $HOME/3dmon.cf.

-i seconds interval If specified, this argument is taken as the number of 
seconds between sampling of the statistics. If 
omitted, the sampling interval is five seconds. You 
can specify from one to 60 seconds sampling 
interval. 

-h hostname Used to specify which host to monitor. This 
argument is ignored if the specified wildcard is 
"hosts”. If omitted, the local host is assumed. 

-w weight_percent Modifies the default weight percentage used to 
calculate a weighted average of statistics values 
before plotting them. The default value for the weight 
is 50 percent, meaning that the value plotted for 
statistics is composed of 50 percent of the previously 
plotted value for the same statistic and 50 percent of 
the latest observation. The percentage specified is 
taken as the percentage of the previous value to 
use. For example, if you specify 40 with this 
argument the value plotted is: 
 Chapter 11. Performance Toolbox Version 3 for AIX 861



0.4 * previous + (1 - 0.4) * latest

Weight can be specified as any percentage from 0 
(zero) to 100. 

-s spacing Spacing (in pixels) between the pillars representing 
statistics. The default space is four pixels. You can 
specify from 0 (zero) to 20 pixels. 

-p filter_percent If specified, only statistics with current values of at 
least -p percent of the expected maximum value for 
the statistic are drawn. The idea is to allow you to 
specify monitoring "by exception" so statistics that 
are approaching a limit stand out while others are 
not drawn. Filtering can be specified as any 
percentage from 0 (zero) to 100. The default is 0 
(zero) percent.

-c config When specified, overrides the default configuration 
set and causes 3dmon to configure its graph using 
the named configuration set. The argument specified 
after the -c flag must match one of the wildcard 
stanzas in the configuration file. If this argument is 
omitted, the configuration set used is the first one 
defined in the configuration file. 

-a wildcard_match_list Wildcard match list. When specified, is assumed to 
be a list of host names. If the primary wildcard in the 
selected configuration set is hosts, then the list to 
display host names is suppressed as 3dmon 
automatically selects the supplied hosts from the list 
of active remote hosts. Depending on the 
configuration set definition, 3dmon then either goes 
directly on with displaying the monitoring screen or, 
when additional wildcards are present, displays the 
secondary selection list. 

The list of host names must be enclosed in double 
quotation marks if it contains more than one host 
name. Individual host names must be separated by 
white space or commas. The primary purpose of this 
option is to allow the invocation of 3dmon from other 
programs. For example, you could customize 
NetView to invoke 3dmon with a list of host names, 
corresponding to hosts selected in a NetView 
window. 

-t resync_timeout Re-synchronizing timeout. When specified, 
overrides the default time between checks for 
862 AIX 5L Performance Tools Handbook



whether synchronizing is required. The default is 30 
seconds; any specified timeout value must be at 
least this long. 

-d invitation delay Allows you to control the time 3dmon waits for remote 
hosts to respond to an invitation. The value must be 
given in seconds, and defaults to 10 seconds. Use 
this flag if the default value results in the list of hosts 
being incomplete when you want to monitor remote 
hosts. 

-l left_side_tile Specifies the number of the tile to use when painting 
the left side of the pillars. Specify a value in the 
range 0 (zero) to 8 (eight). The values correspond to 
the tile names: 

0: foreground (100% foreground) 

            1: 75_foreground (75% foreground) 

            2: 50_foreground (50% foreground) 

            3: 25_foreground (25% foreground) 

            4: background (100% background) 

            5: vertical 

            6: horizontal 

            7: slant_right 

            8: slant_left 

The default tile number for the left side is 1 (one) 
(75_foreground). 

-r right_side_tile Specifies the number of the tile to use when painting 
the right side of the pillars. Specify a value in the 
range 0 (zero) to 8 (eight). The values correspond to 
the tile names specified above for option -l. The 
default tile number for the right side is 8 (eight) 
(slant_left). 

-m top_tile Specifies the number of the tile to use when painting 
the top of the pillars. Specify a value in the range 0 
(zero) to 8 (eight). The values correspond to the tile 
name specified above for option -l. The default tile 
number for the top is 0 (zero) (foreground). 
 Chapter 11. Performance Toolbox Version 3 for AIX 863



11.3.2  Information on measurement and sampling
To start the 3dmon program as the root user, enter the following command:

# 3dmon -i1

The sampling interval will be one second as selected by the -i flag in the 
command above.

The initial screen in Figure 11-24 is displayed. A host name or host names must 
be selected. To select more than one host name, move the mouse pointer to the 
first host name and click the left mouse button. To select the second host name, 
hold the Ctrl key of the keyboard down and moving the mouse pointer to the 
second host name. Keeping the Ctrl key down, click the mouse left button on the 
second host name. Both of the host names should be highlighted. Once this 
selection has been made, click on Click here when selection complete. 

Figure 11-24   Initial 3dmon screen

In the window displayed in Figure 11-25 on page 865, a typical “chessboard” like 
three dimensional window output of the 3dmon command is shown. On the 
right-hand side, the name of the host can be seen. In front of the three 
dimensional graphic bars, are the names of the statistics that are being 
monitored and displayed. On the top of each of the statistic bars is the actual 
value of the statistic being measured. In this case, only one host is being 
monitored. If multiple hosts were being monitored, the three dimensional display 
would be staggered behind the first display.
864 AIX 5L Performance Tools Handbook



Figure 11-25   3D window from 3dmon showing the statistic of a host

The monitored values in Figure 11-25 can be found in the configuration file, 
3dmon.cf. Usually this file is in the user’s home directory. In this case, the file is in 
/usr/lpp/perfmgr. This file can be modified to produce customized graphical 
monitoring instruments. For a listing of the metrics that can be measured, the 
xmpeek -l command can be run. Example 11-1 shows the configuration file 
3dmon.cf. 

Example 11-1   The 3dmon configuration file 3dmon.cf
# @(#)01   1.7  src/perf/perfmgr/usr/samples/perfmgr/3dmon.cf, perfmgr, 
43perf30
0, 0101A_43perf300 12/3/96 06:52:31

#
# COMPONENT_NAME:   (PERFMGR) - Performance Manager
#
# FUNCTIONS: Configuration file
#
# ORIGINS: 30
#
# (C) COPYRIGHT International Business Machines Corp. 1992, 1993
# All Rights Reserved
#
# US Government Users Restricted Rights - Use, duplication or
# disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
 Chapter 11. Performance Toolbox Version 3 for AIX 865



#
wildcard:   hosts           # remote hosts
UDP/fullsock
UDP/noport
UDP/rcvdgrm
UDP/snddgrm
Mem/Virt/steal
PagSp/pgspgout
PagSp/pgspgin
Proc/swpque
Proc/runque
PagSp/%totalused
Syscall/total
SysIO/writech
SysIO/readch

The 3dmon program uses the SPMI API to obtain the kernel statistics. 

11.3.3  Examples
Example 11-2 shows the 3dmon.cf file modified to produce a customized output.

Example 11-2   Customizing the 3dmon.cf file
# @(#)01   1.7  src/perf/perfmgr/usr/samples/perfmgr/3dmon.cf, perfmgr, 
43perf30
0, 0101A_43perf300 12/3/96 06:52:31

#
# COMPONENT_NAME:   (PERFMGR) - Performance Manager
#
# FUNCTIONS: Configuration file
#
# ORIGINS: 30
#
# (C) COPYRIGHT International Business Machines Corp. 1992, 1993
# All Rights Reserved
#
# US Government Users Restricted Rights - Use, duplication or
# disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
wildcard:   myconfig    hosts
CPU/cpu0/user
CPU/cpu0/kern
CPU/cpu0/wait
CPU/cpu0/idle
CPU/cpu1/user
CPU/cpu1/kern
CPU/cpu1/wait
CPU/cpu1/idle
866 AIX 5L Performance Tools Handbook



CPU/cpu2/user
CPU/cpu2/kern
CPU/cpu2/wait
CPU/cpu2/idle
CPU/cpu3/user
CPU/cpu3/kern
CPU/cpu3/wait
CPU/cpu3/idle

The wildcard stanza has been modified to display the CPU usage of all four of 
the CPUs of the system. The following command was issued to produce the 
graphical display shown in Figure 11-26:

# 3dmon -i1 -cmyconfig

Figure 11-26   CPU statistics displayed by 3dmon after modifying 3dmon.cf

A typical example of a multiple host graphical display showing the disk statistics 
can be seen in Figure 11-27 on page 868. 
 Chapter 11. Performance Toolbox Version 3 for AIX 867



Figure 11-27   3dmon graph showing disk activity for multiple hosts

The configuration file for this can be seen in Example 11-3 below.

Example 11-3   3dmon.cf showing disk configuration for multiple hosts
# @(#)01   1.7  src/perf/perfmgr/usr/samples/perfmgr/3dmon.cf, perfmgr, 
43perf30
0, 0101A_43perf300 12/3/96 06:52:31

#
# COMPONENT_NAME:   (PERFMGR) - Performance Manager
#
# FUNCTIONS: Configuration file
#
# ORIGINS: 30
#
# (C) COPYRIGHT International Business Machines Corp. 1992, 1993
# All Rights Reserved
#
# US Government Users Restricted Rights - Use, duplication or
# disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
868 AIX 5L Performance Tools Handbook



#
wildcard:   disk    hosts   # disks on remote hosts
Disk/*/busy
Disk/*/xfer
Disk/*/rblk
Disk/*/wblk

11.4  jazizo
The jazizo program is used to analyze system statistics over a long period of 
time. The jazizo program uses the xmtrend daemon to collect data. It can be 
configured to only show areas of interest in a concise graphical form or in a table 
form. The output can be generated for specific time periods.

The jazizo program resides in /usr/bin and is part of the perfmgr.analysis.jazizo 
fileset, which is installable from the Performance Toolbox Version 3 for AIX 
media. The perfmgr.common and perfagent.server filesets are prerequisites for 
perfmgr.analysis.jazizo. They are also installable from the AIX Performance 
Toolbox Version 3 media. 

11.4.1  Syntax xmtrend
The syntax of the xmtrend command is as follows:

xmtrend {-f infile} {-d recording_dir} {-n recording_name} 
{-t trace_level}

Flags
-f infile The name of the configuration file that is used by xmtrend 

to determine which parameters to monitor. The default file 
name is /etc/perf/xmtrend.cf.

-d recording_dir This flag specifies the output directory for the recording 
file(s). The default directory is /etc/perf.

-n recording_name This flag specifies the name of the recording file. By 
default, xmtrend creates a recording files named 
xmtrend.date. If -n myfile is specified, the recording files 
will be named myfile.date, where date is the system date 
at file creation time in the format yymmdd.

-t trace_level Trace level can be any whole number from 1 (one) to 9 
(nine). The higher the value of the trace level, the greater 
 Chapter 11. Performance Toolbox Version 3 for AIX 869



the amount of trace information supplied. By default the 
log file is created in /etc/perf and is named xmtrend.log1, 
and xmtrend.log2 when xmtrend.log1 is full. If -d mydir is 
specified, then the log file will be created in mydir, and if 
-n myfile is specified, then the logfile is named as 
myfile.log1 and myfile.log2.

11.4.2  Syntax jazizo
The syntax of the jazizo command is as follows:

jazizo -r <recording> -c <configuration file>

Flags
-r <recording> This is the name of the recording file. A directory 

name can be specified in which recording files will 
be located.

-c <configuration file> This is the jazizo configuration file. A sample can 
be found in /usr/lpp/perfmgr/jazizo.cf

The default configuration file can be copied into a working directory and modified 
as required. It is recommended that the original file is not modified, but rather a 
copy of it is made and moved to the required directory.

11.4.3  Information on measurement and sampling
The jazizo program is dependant on the xmtrend daemon running on the 
system. To start the xmtrend daemon, perform the following functions:

Determine where the xmtrend.cf file is. This file determines which statistics or 
metrics will be monitored. The sample xmtrend configuration file can be found in 
the /usr/lpp/perfagent directory. It is recommended that the original is left 
untouched. Make a copy of the file in the working directory, for example /etc/perf. 
Make the required changes to the file in the working directory.

Run the xmtrend daemon in background and use the nohup command as follows:

# cd /etc/perf

# nohup xmtrend -f /etc/perf/xmtrend.cf -d /etc/perf -n my_stats

The xmtrend daemon can also be started by placing an entry in the /etc/inittab 
file. This overcomes the problem of restarting the daemon each time the system 
is rebooted. 
870 AIX 5L Performance Tools Handbook



To confirm that the xmtrend daemon is running, use the ps command as in 
Example 11-4.

Example 11-4   Checking that the xmtrend daemon is running
# ps -ef |grep xmtrend
    root 17544 17834   1 15:51:40  pts/1  0:26 xmtrend -f /etc/perf/xmtrend.cf 
d /etc/perf -n stuart 
    root 21414 14758   1 17:20:49  pts/2  0:00 grep xmtrend 

If the daemon starts successfully, a reporting file will be created in the working 
directory. In this example, the file name will be my_stats.date, where date is the 
system date. The size of this file is dependant on the number of metrics that are 
being measured. A metric can be defined as a measurement of a resource such 
as cpu idle time.

If the daemon fails to start, it may be due to the xmtrend daemon being 
incorrectly stopped on a previous occasion. To correct this problem, please refer 
to the Workload Manager (WLM) section in “xmtrend” on page 820.

To start the jazizo program, type the following command:

# jazizo -c /etc/perf/jazizo.cf -n my_stats.010531

Exploring the jazizo windows
If the command had been issued without any flags, the jazizo program would 
have searched for a configuration file in order to determine which metrics are to 
be displayed. At this point it is important to remember that the xmtrend daemon 
gathers the data, while the jazizo program displays the results. In Figure 11-28 
on page 872, the jazizo program was issued without any flags.
 Chapter 11. Performance Toolbox Version 3 for AIX 871



Figure 11-28   The jazizo opening window

In Figure 11-28 on page 872, the first screen displayed by jazizo can be seen. 
Move the mouse pointer to the File tab down menu and click the left mouse 
button. This will bring up the tab down menu in Figure 11-29.

Figure 11-29   The File tab down menu
872 AIX 5L Performance Tools Handbook



From the tab down menu, click Open Recording File to select the recording file 
from which the results are to be obtained. The list of files in the jazizo directory 
will be displayed (Figure 11-30).

Figure 11-30   The Open Recording File window in jazizo

In this instance, the directory name is /etc/perf. Select the recording file from 
which the results are required. In this instance, the xmtrend.010529 file is the 
only file that contains monitored data. All files that contain monitoring information 
have a six digit date suffix. The creation data of the file is determined by the date 
suffix. 

In the Metric Selection window, seen in Figure 11-31 on page 874, a full list of 
metrics that can be displayed are shown in the left hand pane. In this figure, the 
values for the CPU idle, CPU kernel and CPU user metrics have been selected. 
You can select multiple values using the control or shift keys. 
 Chapter 11. Performance Toolbox Version 3 for AIX 873



Figure 11-31   Metric Selection window

To display the metrics, they must be added to the right-hand pane. Click on Add 
to move the selected metrics (Figure 11-32 on page 875). In the same way, 
incorrectly selected metric can be removed from the right-hand pane by selecting 
the metric and clicking on Remove.
874 AIX 5L Performance Tools Handbook



Figure 11-32   The metric selection window showing metric selections

The file containing the data on the metrics can contain data spanning several 
months, up to a year. It is not always desirable to view this amount of 
information. For this reason date and time selections are available to crop the 
view to display the required period. Without closing the window in Figure 11-32, 
select Edit Start/Stop. The window in Figure 11-33 on page 876 will be 
displayed. This window is useful for selecting the Start Hour and Stop Hour for 
the period to be displayed. 
 Chapter 11. Performance Toolbox Version 3 for AIX 875



Figure 11-33   The Time Selection window

By moving the mouse pointer to the Start Hour or Stop Hour tab down menus, 
the respective times can be selected. The tab down menu options are displayed 
in Figure 11-34. Move the mouse pointer to the appropriate start or stop time and 
left click the mouse button. Note that all of the possible time selections are not 
displayed. In order to make the additional time options available, use the slide 
bar on the right-hand side of this tab down menu. Move the mouse button to the 
slide bar, click and hold down the left mouse button and move the slide bar. 
Clicking the left mouse button on the grey area of the slide bar or the up and 
down arrows also make the additional times available. 

Figure 11-34   The stop and start hour tab down menus

In the same way, the month of the year can also be selected as shown in 
Figure 11-35 on page 877. Left click the required month to select it.
876 AIX 5L Performance Tools Handbook



Figure 11-35   Adjusting the month in the jazizo Time Selection window

The day of the month can also be changed as can be seen in Figure 11-36 on 
page 878. Note that two of the blocks in the calendar have day of the month 
number, while others don’t. The reason for this is that this particular recording file 
only contains statistics on these days. Move the mouse pointer to one of the days 
in the calendar and click the left mouse button. The tab down menu with Set 
Start Date and Set End Date will be displayed. To set the stop day for the 
monitoring period, select that day on the calendar and select Set End Date from 
the tab down menu. Perform the same operation for the start time. There is no 
specific order in which the date and time is set. Note that the selected start and 
stop dates are displayed below the calendar, while the start and stop times are 
displayed below the start and stop tab down menus. Once the time and date 
selections have been made, click Ok. The Time Selection window will close. 
Now select Apply in the Metric Selection screen in Figure 11-32 on page 875.
 Chapter 11. Performance Toolbox Version 3 for AIX 877



Figure 11-36   Adjusting the day in the jazizo Time Selection window

The jazizo program will now display the metrics selected over the selected 
monitoring period as shown in Figure 11-37 on page 879. The vertical axis of the 
graph is shown in graduations of 10, and is in percent because this graphic is 
displaying CPU percentage statistics. The horizontal axis has a time graduation 
over the selected monitor period. Each of the selected metrics in this example 
are represented by a colored line graph. At the bottom of the window the metrics 
are listed with the appropriate colored selection blocks. These selection blocks 
are the same color as the line of the graph. The selection block is used to select 
the specific metric on the graph. The name of the particular metric is followed by 
its range minimum and maximum in parenthesis. 
878 AIX 5L Performance Tools Handbook



. 

Figure 11-37   The jazizo window 

A slide bar is available at the bottom of the display window. This slide bar is 
useful when the entire measurement period cannot be displayed on one screen. 
Note that in the interest of clarity, the background color has been changed from 
black to grey.

Selecting the Edit tab down menu in Figure 11-28 on page 872, the options 
shown in Figure 11-38 are made available. On choosing the Metric Selection 
option, the window in Figure 11-31 on page 874 is displayed.

Figure 11-38   The jazizo Edit tab down menu
 Chapter 11. Performance Toolbox Version 3 for AIX 879



If the Graph Selection option is chosen, the window in Figure 11-39 will be 
displayed. Several options are available here such as standard deviation and the 
trend line option. 

Figure 11-39   The Graph Selection window of the jazizo program

Figure 11-40 on page 881 shows the jazizo graphical output within which the 
trend lines have been added. This option is particularly useful when comparing 
the output for one month with another so overall performance for the measured 
metric can quickly be observed. The trend lines are the same color in the graph 
as the metric which they are associated with. Two trend options are available. 
The first option, All Data, to show the trend for the entire measurement period, 
as shown in Figure 11-40 on page 881. The second trend option, Visible Data, 
shows the trend for only the section that is currently visible in the display window. 
Alternately, the trend option can be switched off using the Off radio button. Only 
one of the options can be selected at a time.
880 AIX 5L Performance Tools Handbook



Figure 11-40   The trend of the metric can be displayed by jazizo

From the jazizo main window as shown in Figure 11-28 on page 872, the View 
tab down menu can be selected and the options in Figure 11-41 can be 
accessed. 

Figure 11-41   The View tab down menu
 Chapter 11. Performance Toolbox Version 3 for AIX 881



When the Reduce Data by Tick box in the tab down menu is checked, the 
output will show less data. For a full display showing all of the time intervals, 
ensure that this box in not checked (it is checked by default). The other options in 
the tab down menu determine the displayed time graduation. Day by Hour is 
default.

In Figure 11-28 on page 872, selecting the Report tab down menu displays the 
menu shown in Figure 11-42. 

Figure 11-42   The Report tab down menu

These options supply statistical (non graphical) information about the metrics. On 
selecting the Summary: All Data option, a table with the statistics for all of the 
currently displayed metrics is shown. If the Selected Metric options are required, 
then move the mouse pointer to the selection block at the bottom of the screen 
for the required metric and click the left mouse button. The selected graph will be 
highlighted. Choose either the Selected Metric: All Data or the Selected 
Metric: Viewport Data option to display the statistical data for the specific 
metric.

Figure 11-43   Tabular statistical output that can be obtained from jazizo

The display is in a tabular format as seen in Figure 11-43. The table has the 
following headings:

Timestamp The sample time interval. Here the interval between samples is 
five minutes.

Mean This is the mean value monitored over the time interval.

Max The maximum value during the time interval.

Min The minimum value over the time period.
882 AIX 5L Performance Tools Handbook



Std Dev The standard deviation during the time interval.

The output can be printed either to file or to a printer by selecting Print. Note that 
in Figure 11-43 on page 882, the table is an extract from the full table listing and 
hence does not show the Print or Close screen buttons that appear at the 
bottom of the table view.

To close the jazizo windows, select the File tab down menu in the jazizo main 
window shown in Figure 11-28 on page 872, which displays the options in 
Figure 11-44.

Figure 11-44   The File tab down menu when closing jazizo

If any configurations have been changed, they can be saved here using the Save 
Configurations or Save Configuration As.. options. To exit from the program, 
select the Exit option.
 Chapter 11. Performance Toolbox Version 3 for AIX 883



884 AIX 5L Performance Tools Handbook



Appendix A. Source code examples

This appendix contains source code that was used to create the examples for the 
following sections of this redbook:

� The perfstat_dude.c program was used in Section 9.1, “Perfstat API” on 
page 712.

� The programs spmi_dude.c, spmi_data.c, spmi_file.c, and spmi_traverse.c 
were used in Section 9.2, “System Performance Measurement Interface 
(SPMI)” on page 736.

� The dudestat.c program was used in Section 9.5, “Miscellaneous 
performance monitoring subroutines” on page 783.

� The cwhet.c program was used in Section 4.5, “gprof” on page 235 and 
Section 4.8, “prof” on page 261.

Unlike the examples in the different chapters, the source code examples in this 
appendix do not have the line numbering, which facilitates copy and paste from 
the online version of this book. 

A

© Copyright IBM Corp. 2001 885



perfstat_dude.c
The following sample program makes one reading of a selected number of 
statistics, then waits for a specified amount of time before it takes the other 
reading. 

Example: A-1   perfstat_dude.c program
#include <stdio.h>
#include <stdlib.h>
#include <sys/var.h>
#include <libperfstat.h>

#defineNCPU1024
#defineNDISK1024
#defineNNETWORK1024

static intncpu = NCPU;
static intndisk = NDISK;
static intnnetwork = NNETWORK;

cpu_t(int t)
{

perfstat_id_tname;
perfstat_cpu_tub[NCPU];
int i, rc;
static u_longlong_tttime[NCPU];
static u_longlong_tuser[NCPU];
static u_longlong_tsys[NCPU];
static u_longlong_tidle[NCPU];
static u_longlong_twait[NCPU];
static u_longlong_tsysfork[NCPU];
static u_longlong_tsyscall[NCPU];
static u_longlong_tpswitch[NCPU];

strcpy(name.name,"");

if (t) {
if ((rc = perfstat_cpu (&name,ub,sizeof(perfstat_cpu_t),NCPU)) >= 0) {

printf("%6.6s %6.6s %6.6s %6.6s %3.3s %3.3s %3.3s %3.3s\n",
"cpu","fk","sy","cs"," us"," sy","id","wa");

for (i=0;i<rc;i++) {
ttime[i] = 

(ub[i].user-user[i])+(ub[i].sys-sys[i])+(ub[i].idle-idle[i])+(ub[i].wait-wait[i
]);

printf("%6.6s ", ub[i].name);
printf("%6lld ", ub[i].sysfork-sysfork[i]);
printf("%6lld ", ub[i].syscall-syscall[i]);
printf("%6lld ", ub[i].pswitch-pswitch[i]);
886 AIX 5L Performance Tools Handbook



printf("%3lld ", (ub[i].user-user[i])*100/ttime[i]);
printf("%3lld ", (ub[i].sys-sys[i])*100/ttime[i]);
printf("%3lld ", (ub[i].idle-idle[i])*100/ttime[i]);
printf("%3lld ", (ub[i].wait-wait[i])*100/ttime[i]);
printf("\n");

}
printf("\n");

} else {
perror("perfstat_cpu 1");

}
} else {

if ((rc = perfstat_cpu (&name,ub,sizeof(perfstat_cpu_t),NCPU)) >= 0) {
for (i=0;i<rc;i++) {

user[i] = ub[i].user;
sys[i] = ub[i].sys;
idle[i] = ub[i].idle;
wait[i] = ub[i].wait;
sysfork[i] = ub[i].sysfork;
syscall[i] = ub[i].syscall;
pswitch[i] = ub[i].pswitch;

}
} else {

perror("perfstat_cpu 0");
}

}
}
cpu_total_t(int t)
{

perfstat_cpu_total_tub;
static int ncpus;
static u_longlong_tttime;
static u_longlong_trunque;
static u_longlong_tswpque;
static u_longlong_tdevintrs;
static u_longlong_tsoftintrs;
static u_longlong_tsysfork;
static u_longlong_tsyscall;
static u_longlong_tpswitch;
static u_longlong_tuser;
static u_longlong_tsys;
static u_longlong_tidle;
static u_longlong_twait;

if (t) {
if (perfstat_cpu_total 

((perfstat_id_t*)NULL,&ub,sizeof(perfstat_cpu_total_t),1) >= 0) {
ttime = (ub.user-user)+(ub.sys-sys)+(ub.idle-idle)+(ub.wait-wait);
printf("Que     Faults                      Cpu\n");
 Appendix A. Source code examples 887



printf("%3.3s %3.3s %6.6s %6.6s %6.6s %6.6s %3.3s %3.3s %3.3s 
%3.3s\n",

"rq","sq","fk","in","sy","cs","us","sy","id","wa");
printf("%3lld ", ub.runque-runque);
printf("%3lld ", ub.swpque-swpque);
printf("%6lld ", ub.sysfork-sysfork);
printf("%6lld ", (ub.devintrs+ub.softintrs)-(devintrs+softintrs));
printf("%6lld ", ub.syscall-syscall);
printf("%6lld ", ub.pswitch-pswitch);
printf("%3lld ", (ub.user-user)*100/ttime);
printf("%3lld ", (ub.sys-sys)*100/ttime);
printf("%3lld ", (ub.idle-idle)*100/ttime);
printf("%3lld ", (ub.wait-wait)*100/ttime);
printf("\n\n");

} else {
perror("perfstat_cpu_total 1");

}
} else {

if (perfstat_cpu_total 
((perfstat_id_t*)NULL,&ub,sizeof(perfstat_cpu_total_t),1) >= 0) {

ncpus = ub.ncpus;
runque = ub.runque;
swpque = ub.swpque;
sysfork = ub.sysfork;
syscall = ub.syscall;
devintrs = ub.devintrs;
softintrs = ub.softintrs;
pswitch = ub.pswitch;
user = ub.user;
sys = ub.sys;
idle = ub.idle;
wait = ub.wait;

} else {
perror("perfstat_cpu_total 0");

}
}

}

disk_t(int t)
{

perfstat_id_tname;
perfstat_disk_tub[NDISK];
int i,rc;
static u_longlong_tqdepth[NDISK];
static u_longlong_ttime[NDISK];
static u_longlong_txrate[NDISK];
static u_longlong_txfers[NDISK];
static u_longlong_trblks[NDISK];
static u_longlong_twblks[NDISK];
888 AIX 5L Performance Tools Handbook



strcpy(name.name,"");

if (t) {
if ((rc = perfstat_disk (&name,ub,sizeof(perfstat_disk_t),NDISK)) >= 0) 

{
printf("%6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s\n",

"disk","vg","qd","busy","KB/s","xfers","KBrd","KBwr");
for (i=0;i<rc;i++) {

printf("%6s ", ub[i].name);
printf("%6s ", ub[i].vgname);
printf("%6lld ", ub[i].qdepth-qdepth[i]);
printf("%6lld ", ub[i].time-time[i]);
printf("%6lld ", ub[i].xrate-xrate[i]);
printf("%6lld ", ub[i].xfers-xfers[i]);
printf("%6lld ", ub[i].rblks-rblks[i]);
printf("%6lld ", ub[i].wblks-wblks[i]);
printf("\n");

}
printf("\n");

} else {
perror("perfstat_disk 1");

}
} else {

if ((rc = perfstat_disk (&name,ub,sizeof(perfstat_disk_t),NDISK)) >= 0) 
{

for (i=0;i<rc;i++) {
qdepth[i] = ub[i].qdepth;
time[i] = ub[i].time;
xrate[i] = ub[i].xrate;
xfers[i] = ub[i].xfers;
rblks[i] = ub[i].rblks;
wblks[i] = ub[i].wblks;

}
} else {

perror("perfstat_disk 0");
}

}
}

disk_total_t(int t)
{

perfstat_disk_total_tub;
static u_longlong_ttime;
static u_longlong_txrate;
static u_longlong_txfers;
static u_longlong_trblks;
static u_longlong_twblks;
 Appendix A. Source code examples 889



if (t) {
if (perfstat_disk_total 

((perfstat_id_t*)NULL,&ub,sizeof(perfstat_disk_total_t),1) >= 0) {
printf("%6.6s %6.6s %6.6s %6.6s %6.6s\n",

"busy"," KB/s","xfers","KBrd","KBwr");
printf("%6lld ", ub.time-time);
printf("%6lld ", ub.xrate-xrate);
printf("%6lld ", ub.xfers-xfers);
printf("%6lld ", ub.rblks-rblks);
printf("%6lld ", ub.wblks-wblks);
printf("\n\n");

} else {
perror("perfstat_disk_total 1");

}
} else {

if (perfstat_disk_total 
((perfstat_id_t*)NULL,&ub,sizeof(perfstat_disk_total_t),1) >= 0) {

time = ub.time;
xrate = ub.xrate;
xfers = ub.xfers;
rblks = ub.rblks;
wblks = ub.wblks;

} else {
perror("perfstat_disk_total 0");

}
}

}

memory_total_t(int t)
{

perfstat_memory_total_tub;
static u_longlong_treal_free;
static u_longlong_treal_inuse;
static u_longlong_tpgsp_free;
static u_longlong_tpgspins;
static u_longlong_tpgspouts;
static u_longlong_tpgins;
static u_longlong_tpgouts;
static u_longlong_tpgexct;
static u_longlong_tpgsteals;
static u_longlong_tscans;
static u_longlong_tnumperm;

if (t) {
if (perfstat_memory_total 

((perfstat_id_t*)NULL,&ub,sizeof(perfstat_memory_total_t),1) >= 0) {
printf("Real memory          Paging space Virtual\n");
printf("%6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s 

%6.6s\n",
890 AIX 5L Performance Tools Handbook



"free","use","free","psi","pso","pi","po","fault","fr","sr","num");
printf("%6lld ", ub.real_free);
printf("%6lld ", ub.real_inuse);
printf("%6lld ", ub.pgsp_free);
printf("%6lld ", ub.pgspins);
printf("%6lld ", ub.pgspouts);
printf("%6lld ", ub.pgins);
printf("%6lld ", ub.pgouts);
printf("%6lld ", ub.pgexct);
printf("%6lld ", ub.pgsteals);
printf("%6lld ", ub.scans);
printf("%6lld ", ub.numperm);
printf("\n\n");

} else {
perror("perfstat_memory_total 1");

}
} else {

if (perfstat_memory_total 
((perfstat_id_t*)NULL,&ub,sizeof(perfstat_memory_total_t),1) >= 0) {

real_free = ub.real_free;
real_inuse = ub.real_inuse;
pgsp_free = ub.pgsp_free;
pgspins = ub.pgspins;
pgspouts = ub.pgspouts;
pgins = ub.pgins;
pgouts = ub.pgouts;
pgexct = ub.pgexct;
pgsteals = ub.pgsteals;
scans = ub.scans;
numperm = ub.numperm;

} else {
perror("perfstat_memory_total 1");

}
}

}

netinterface_t(int t)
{

perfstat_id_tname;
perfstat_netinterface_tub[NDISK];
int i,rc;
static u_longlong_tipackets[NDISK];
static u_longlong_tibytes[NDISK];
static u_longlong_tierrors[NDISK];
static u_longlong_topackets[NDISK];
static u_longlong_tobytes[NDISK];
static u_longlong_toerrors[NDISK];
static u_longlong_tcollisions[NDISK];
 Appendix A. Source code examples 891



strcpy(name.name,"");

if (t) {
if ((rc = perfstat_netinterface 

(&name,ub,sizeof(perfstat_netinterface_t),NNETWORK)) >= 0) {
printf("%7.7s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s\n",

"network","mtu","ipack","ibyte","ierr","opack"," obyte"," 
oerr","coll");

for (i=0;i<rc;i++) {
printf("%7s ", ub[i].name);
printf("%6lld ", ub[i].mtu);
printf("%6lld ", ub[i].ipackets-ipackets[i]);
printf("%6lld ", ub[i].ibytes-ibytes[i]);
printf("%6lld ", ub[i].ierrors-ierrors[i]);
printf("%6lld ", ub[i].opackets-opackets[i]);
printf("%6lld ", ub[i].obytes-obytes[i]);
printf("%6lld ", ub[i].oerrors-oerrors[i]);
printf("%6lld ", ub[i].collisions-collisions[i]);
printf("\n");

}
printf("\n");

} else {
perror("perfstat_netinterface 1");

}
} else {

if ((rc = perfstat_netinterface 
(&name,ub,sizeof(perfstat_netinterface_t),NNETWORK)) >= 0) {

for (i=0;i<rc;i++) {
ipackets[i] = ub[i].ipackets;
ibytes[i] = ub[i].ibytes;
ierrors[i] = ub[i].ierrors;
opackets[i] = ub[i].opackets;
obytes[i] = ub[i].obytes;
oerrors[i] = ub[i].oerrors;
collisions[i] = ub[i].collisions;

}
} else {

perror("perfstat_netinterface 1");
}

}
}

netinterface_total_t(int t)
{

perfstat_netinterface_total_tub;
static u_longlong_tipackets;
static u_longlong_tibytes;
static u_longlong_tierrors;
892 AIX 5L Performance Tools Handbook



static u_longlong_topackets;
static u_longlong_tobytes;
static u_longlong_toerrors;
static u_longlong_tcollisions;

if (t) {
if (perfstat_netinterface_total 

((perfstat_id_t*)NULL,&ub,sizeof(perfstat_netinterface_total_t),1) >= 0) {
printf("%6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s\n",

"ipack","ibyte","ierr","opack"," obyte"," oerr","coll");
printf("%6lld ", ub.ipackets-ipackets);
printf("%6lld ", ub.ibytes-ibytes);
printf("%6lld ", ub.ierrors-ierrors);
printf("%6lld ", ub.opackets-opackets);
printf("%6lld ", ub.obytes-obytes);
printf("%6lld ", ub.oerrors-oerrors);
printf("%6lld ", ub.collisions-collisions);
printf("\n\n");

} else {
perror("perfstat_netinterface_total 1");

}
} else {

if (perfstat_netinterface_total 
((perfstat_id_t*)NULL,&ub,sizeof(perfstat_netinterface_total_t),1) >= 0) {

ipackets = ub.ipackets;
ibytes = ub.ibytes;
ierrors = ub.ierrors;
opackets = ub.opackets;
obytes = ub.obytes;
oerrors = ub.oerrors;
collisions = ub.collisions;

} else {
perror("perfstat_netinterface_total 0");

}
}

}

main()
{

struct variovario;
int rc;

if (!sys_parm(SYSP_GET,SYSP_V_NCPUS,&vario))
        ncpu = vario.v.v_ncpus_cfg.value;

if ((rc = perfstat_cpu (NULL,NULL,sizeof(perfstat_cpu_t),0)) > 0)
        ncpu = rc;

if ((rc = perfstat_disk (NULL,NULL,sizeof(perfstat_disk_t),0)) > 0)
 Appendix A. Source code examples 893



        ndisk = rc;

if ((rc = perfstat_netinterface 
(NULL,NULL,sizeof(perfstat_netinterface_t),0)) > 0)
        nnetwork = rc;

cpu_total_t(0);
cpu_t(0);
memory_total_t(0);
disk_total_t(0);
disk_t(0);
netinterface_total_t(0);
netinterface_t(0);

sleep(1);

cpu_total_t(1);
cpu_t(1);
memory_total_t(1);
disk_total_t(1);
disk_t(1);
netinterface_total_t(1);
netinterface_t(1);

}

The following is the output from perfstat_dude.

Example: A-2   Output from perfstat_dude
# perfstat_dude
Que     Faults                      Cpu                                                
 rq  sq     fk     in     sy     cs  us  sy  id  wa                                    
527  92   3475      0 1155774  89458  34  65   0   0                                   
                                                                                       
   cpu     fk     sy     cs  us  sy  id  wa                                            
 proc0    617 287652  23495  24  75   0   0                                            
 proc1    820 254020  21343  44  55   0   0                                            
 proc2   1070 312183  20444  36  63   0   0                                            
 proc3    967 302249  24156  31  68   0   0                                            
                                                                                       
Real memory          Paging space Virtual                                              
  free    use   free    psi    pso     pi     po  fault     fr     sr    num           
918872 129693 117305  28653 1571655 768871 21933912 144835233 2350115 57022524  
30170  
                                                                                       
  busy   KB/s  xfers   KBrd   KBwr                                                     
  3633      0  38039  67368 341736                                                     
                                                                                       
894 AIX 5L Performance Tools Handbook



  disk     vg     qd   busy   KB/s  xfers   KBrd   KBwr                                
hdisk0 rootvg      0     45      0    115   4210    728                                
hdisk1   None      0      0      0      0      0      0                                
hdisk12   vg12      0    239      0   2559   4210  22776                               
hdisk3    vg3      0    259      0   2935   4210  25936                                
hdisk2    vg2      0    229      0   2771   4210  24600                                
hdisk9   None      0      0      0      0      0      0                                
hdisk16   vg16      0    273      0   3058   4210  27376                               
hdisk15   vg15      0    227      0   2429   4210  21544                               
hdisk7    vg7      0    267      0   2875   4210  25472                                
hdisk8    vg8      0     27      0    108   4210   1856                                
hdisk4    vg4      0    259      0   2691   4210  24152                                
hdisk17   vg11      0    108      0   1094      4   8720                               
hdisk11   vg11      0     56      0    170   8420   2160                               
hdisk6   vg10      0    177      0   1853      4  14792                                
hdisk14   vg14      0    243      0   2506   4210  22576                               
hdisk5    vg5      0    234      0   2478   4210  22072                                
hdisk13   vg13      0    260      0   2944   4210  26352                               
hdisk10   vg10      0     41      0    109   8420    112                               
                                                                                       
 ipack  ibyte   ierr  opack  obyte   oerr   coll                                       
    14   1389      0     11   1824      0      0                                       
                                                                                       
network    mtu  ipack  ibyte   ierr  opack  obyte   oerr   coll                        
    tr0   1492     14   1389      0     11   1824      0      0                        
    lo0  16896      0      0      0      0      0      0      0 

spmi_dude.c
Following is the source code for the spmi_dude.c program.

Example: A-3   spmi_dude.c program

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/Spmidef.h>

#if defined(DEBUG)
#define PDEBUG(x,y) printf(x,y)

#else
#define PDEBUG(x,y)

#endif

extern errno;
extern charSpmiErrmsg[]; 
 Appendix A. Source code examples 895



extern intSpmiErrno; 
/*
 * Since we need this structure pointer in our cleanup() function
 * we declare it as a global variable.
 */
struct SpmiStatSet*SPMIset = NULL;
/*
 * These are the statistics we are interested in monitoring.
 * To the left of the last slash (/) is the context, to the
 * right of this slash (/) is the actual statistic within
 * the context. Note that statistics can have the same
 * name but belong to different contexts.
 */
char *stats[] = {

"CPU/glwait",
"CPU/glidle",
"CPU/glkern",
"CPU/gluser",
"Mem/Virt/scan",
"Mem/Virt/steal",
"PagSp/%totalfree",
"PagSp/%totalused",
"Mem/Virt/pagein",
"Mem/Virt/pageout",
"Mem/Virt/pgspgin",
"Mem/Virt/pgspgout",
"Proc/runque",
"Proc/swpque",
NULL
};

void
SPMIerror(char *s)
{

/* We do not want the \n that the SpmiErrmsg have at the 
 * end since we will use our own error reporting format.
 */
SpmiErrmsg[strlen(SpmiErrmsg)-1] = 0x0;
fprintf(stderr,"%s: %s (%d)\n",s,SpmiErrmsg,SpmiErrno);

}
/*
 * This subroutine is called when a user interrupts it or
 * when the main program exits. If called by a signal handler
 * it will have a value in parameter s. If s is not set, then
 * it is called when the main program exits. To not have this
 * subroutine called when calling exit() to terminate the
 * process, we use _exit() instead. Since exit() would call
 * _cleanup() and any atexit() registred functions, we call
 * _cleanup() ourselves.
896 AIX 5L Performance Tools Handbook



 */
void
cleanup(int s)
{
    if (SPMIset)

if (SpmiFreeStatSet(SPMIset))
SPMIerror("SpmiFreeStatSet");

SpmiExit();
_cleanup();
_exit(0);

}

#define MAXDELAY2
#define MAXCOUNT-1

main(int argc, char *argv[])
{

struct SpmiStatVals*SPMIval = NULL;
struct SpmiStat*SPMIstat = NULL;
SpmiCxHdl SPMIcxhdl = 0;
char context[128];
char *statistic;
float statvalue;
int i, hardcore = 0, bailout = 0;
int maxdelay = MAXDELAY;
uint maxcount = MAXCOUNT;
/*
 * Here we initialize the SPMI environment for our process.
 */
if (SpmiInit(15)) {

SPMIerror("SpmiInit");
exit(SpmiErrno);

}
if (argc == 2)

maxdelay = atoi(argv[1]);
else if (argc == 3) {

maxdelay = atoi(argv[1]);
maxcount = atoi(argv[2]);

}
/*
 * To illustrate enhanced durability of our simple program.
 */
hardcore = atoi(getenv("HARDCORE"));
/*
 * We make sure that we clean up the SPMI memory that we use
 * before we terminate the process. atexit() is called when
 * the process is normally terminated, and we trap signals
 * that a terminal user, or program malfunction could 
 * generate and cleanup then as well.
 Appendix A. Source code examples 897



 */
atexit(cleanup);
signal(SIGINT,cleanup); 
signal(SIGTERM,cleanup);
signal(SIGSEGV,cleanup);
signal(SIGQUIT,cleanup);
/*
 * Here we create the base for our SPMI statistical data hierarchy.
 */
if ((SPMIset = SpmiCreateStatSet()) == NULL) {

SPMIerror("SpmiCreateStatSet");
exit(SpmiErrno);

}
/*
 * For each metric we want to monitor we need to add it to
 * our statistical collection set.
 */

    for (i = 0; stats[i] != NULL; i++) {
if (SpmiPathAddSetStat(SPMIset,stats[i],SPMIcxhdl) == NULL) {

SPMIerror("SpmiPathAddSetStats");
exit(SpmiErrno);

}
    }

printf ("%5s %5s %5s %5s %5s %5s %5s %5s %5s %5s %5s %5s %5s %5s\n",
"swpq","runq","pgspo","pgspi","pgout","pgin",
"%used","%free","fr","sr","us","sy","id","wa");

/*
 * In this for loop we collect all statistics that we have specified
 * to SPMI that we want to monitor.  Each of the data values selected 
 * for the set is represented by an SpmiStatVals structure. 
 * Whenever Spmi executes a request from the to read the data values 
 * for a set all SpmiStatVals structures in the set are updated.
 * The application program will then have to traverse the list of 
 * SpmiStatVals structures through the SpmiFirstVals() and SpmiNextVals()
 * function calls.
 */
for (i=0; i< maxcount; i++) {

again:
/*
 * First we must request that SPMI refresh our statistical
 * data hierarchy.

  */
if ((SpmiGetStatSet(SPMIset,TRUE)) != 0) {

/*
 * if the hardcore variable is set (environment variable HARDCORE),
 * then we discard runtime errors from SpmiGetStatSet (up to three
 * times). This can happen some time if many processes use the SPMI 
 * shared resources simultaneously. 
 */
898 AIX 5L Performance Tools Handbook



if (hardcore && (3 > bailout++)) goto again;
SPMIerror("SpmiGetStatSet");
exit(SpmiErrno);

}
bailout = 0;
/*
 * Here we get the first entry point in our statistical data hierarchy.
 * Note that SPMI will return the values in the reverse order of the one
 * used to add them to our statistical set.
 */
SPMIval = SpmiFirstVals(SPMIset);
do {

if ((statvalue = SpmiGetValue(SPMIset,SPMIval)) < 0) {
SPMIerror("SpmiGetValue");
exit(SpmiErrno);

}
printf("%5.0f ",statvalue);
PDEBUG("\t%s\n",SpmiStatGetPath(SPMIval->context,SPMIval->stat, 0));

/*
 * Finaly we get the next statistic in our data hierarchy.
 * And if this is NULL, then we have retreived all our statistics.
 */
} while ((SPMIval = SpmiNextVals(SPMIset,SPMIval)));
printf("\n");
sleep(maxdelay);

}
}

spmi_data.c
Following is the source code for the spmi_data program.

Example: A-4   spmi_data.c program

/*  The following statistics are added by the SpmiPathAddSetStat
 *  subroutine to form a set of statistics:
 *     CPU/cpu0/kern
 *     CPU/cpu0/idle
 *     Mem/Real/%free
 *     PagSp/%free
 *     Proc/runque
 *     Proc/swpque
 *  These statistics are then retrieved every 2 seconds and their
 *  value is displayed to the user.
 */
 Appendix A. Source code examples 899



#include <sys/types.h>
#include <sys/errno.h>
#include <signal.h>
#include <stdio.h>
#include <sys/Spmidef.h>

#define TIME_DELAY 2            /* time between samplings */

extern char   SpmiErrmsg[];     /* Spmi Error message array */
extern int    SpmiErrno;        /* Spmi Error indicator */

struct SpmiStatSet *statset;    /* statistics set */

/*====================== must_exit() ==========================*/
/* This subroutine is called when the program is ready to exit.
 * It frees any statsets that were defined and exits the
 * interface.
 */
/*=============================================================*/

void must_exit()
{
    /* free statsets */
    if (statset)
    if (SpmiFreeStatSet(statset))
       if (SpmiErrno)
       printf("%s", SpmiErrmsg);

    /* exit SPMI */
    SpmiExit();
    if (SpmiErrno)
       printf("%s", SpmiErrmsg);

    exit(0);
}

/*======================== getstats() =========================*/
/* getstats() traverses the set of statistics and outputs the
 * statistics values.
900 AIX 5L Performance Tools Handbook



 */
/*=============================================================*/

void getstats()
{
    int                  counter=20;    /* every 20 lines output
                                         * the header
                                         */
    struct SpmiStatVals   *statval1;
    float                 spmivalue;

    /* loop until a stop signal is received. */
    while (1) {
       if(counter == 20) {
          printf("\nCPU/cpu0   CPU/cpu0  Mem/Real   PagSp     ");
          printf("Proc       Proc\n");
          printf("    kern       idle    %%free     %%free    ");
          printf("runque     swpque\n");
          printf("============================================");
          printf("===============\n");
          counter=0;
       }

       /* retrieve set of statistics */
       if (SpmiGetStatSet(statset, TRUE) != 0) {
          printf("SpmiGetStatSet failed.\n");
          if (SpmiErrno)
             printf("%s", SpmiErrmsg);
          must_exit();
       }

       /* retrieve first statistic */
       statval1 = SpmiFirstVals(statset);
       if (statval1 == NULL) {
          printf("SpmiFirstVals Failed\n");
          if (SpmiErrno)
             printf("%s", SpmiErrmsg);
          must_exit();
       }

       /* traverse the set of statistics */
       while (statval1 != NULL) {
          /* value to be displayed */
          spmivalue = SpmiGetValue(statset, statval1);
          if (spmivalue < 0.0) {
             printf("SpmiGetValue Failed\n");
             if (SpmiErrno)
 Appendix A. Source code examples 901



                printf("%s", SpmiErrmsg);
             must_exit();
          }
          printf("  %6.2f   ",spmivalue);

          statval1 = SpmiNextVals(statset, statval1);
       }  /* end while (statval1) */
       printf("\n");
       counter++;
       sleep(TIME_DELAY);
    }
}

/*======================== addstats() =========================*/
/* addstats() adds statistics to the statistics set. */
/* addstats() also takes advantage of the different ways a
 * statistic may be added to the set.
 */
/*=============================================================*/

void addstats()
{
    SpmiCxHdl   cxhdl, parenthdl;

    /* initialize the statistics set */
    statset = SpmiCreateStatSet();
    if (statset == NULL)
    {
       printf("SpmiCreateStatSet Failed\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    /* Pass SpmiPathGetCx the fully qualified path name of the
     * context
     */
    if (!(cxhdl = SpmiPathGetCx("Proc", NULL)))
    {
       printf("SpmiPathGetCx failed for Proc context.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }
902 AIX 5L Performance Tools Handbook



    /* Pass SpmiPathAddSetStat the name of the statistic */
    /* & the handle of the parent */
    if (!SpmiPathAddSetStat(statset,"swpque", cxhdl))
    {
       printf("SpmiPathAddSetStat failed for Proc/swpque statistic.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    if (!SpmiPathAddSetStat(statset,"runque", cxhdl))
    {
       printf("SpmiPathAddSetStat failed for Proc/runque statistic.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    /* Pass SpmiPathAddSetStat the fully qualified name of the
     * statistic
     */
    if (!SpmiPathAddSetStat(statset,"PagSp/%totalfree", NULL))
    {
       printf("SpmiPathAddSetStat failed for PagSp/%%free statistic.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    if (!(parenthdl = SpmiPathGetCx("Mem", NULL)))
    {
       printf("SpmiPathGetCx failed for Mem context.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    /* Pass SpmiPathGetCx the name of the context */
    /* & the handle of the parent context */
    if (!(cxhdl = SpmiPathGetCx("Real", parenthdl)))
    {
       printf("SpmiPathGetCx failed for Mem/Real context.\n");
       if (SpmiErrmsg)
          printf("%s", SpmiErrmsg);
 Appendix A. Source code examples 903



       must_exit();
    }

    if (!SpmiPathAddSetStat(statset,"%free", cxhdl))
    {
       printf("SpmiPathAddSetStat failed for Mem/Real/%%free statistic.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    /* Pass SpmiPathGetCx the fully qualified path name of the
     * context
     */
    if (!(cxhdl = SpmiPathGetCx("CPU/cpu0", NULL)))
    {
       printf("SpmiPathGetCx failed for CPU/cpu0 context.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    if (!SpmiPathAddSetStat(statset,"idle", cxhdl))
    {
       printf("SpmiPathAddSetStat failed for CPU/cpu0/idle statistic.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    if (!SpmiPathAddSetStat(statset,"kern", cxhdl))
    {
       printf("SpmiPathAddSetStat failed for CPU/cpu0/kern statistic.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    return;
}

/*=============================================================*/
904 AIX 5L Performance Tools Handbook



main(int argc, char **argv)
{
    int   spmierr=0;

    /* Initialize SPMI */
    if ((spmierr = SpmiInit(15)) != 0)
    {
       printf("Unable to initialize SPMI interface\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       exit(-98);
    }

    /* set up interrupt signals */
    signal(SIGINT,must_exit);
    signal(SIGTERM,must_exit);
    signal(SIGSEGV,must_exit);
    signal(SIGQUIT,must_exit);
 
    /* Go to statistics routines. */
    addstats();
    getstats();
 
    /* Exit SPMI */
    must_exit();
}

spmi_file.c
Following is the source code for the spmi_file program.

Example: A-5   spmi_file program

#include <stdio.h>
#include <stdlib.h>
#include <sys/Spmidef.h>

extern errno;
extern charSpmiErrmsg[]; 
extern intSpmiErrno; 
 Appendix A. Source code examples 905



struct SpmiStatSet*SPMIset = NULL;

void
SPMIerror(char *s)
{

/* We do not want the \n that the SpmiErrmsg have at the 
 * end since we will use our own error reporting format. 
 */                                                      
SpmiErrmsg[strlen(SpmiErrmsg)-1] = 0x0;
fprintf(stderr,"%s: %s (%d)\n",s,SpmiErrmsg,SpmiErrno);

}
/*
 * This subroutine is called when a user interrupts it or
 * when the main program exits. If called by a signal handler
 * it will have a value in parameter s. If s is not set, then
 * it is called when the main program exits. To not have this
 * subroutine called when calling exit() to terminate the
 * process, we use _exit() instead. Since exit() would call
 * _cleanup() and any atexit() registred functions, we call
 * _cleanup() ourselves.
 */
void
cleanup(int s)
{
    if (SPMIset)

if (SpmiFreeStatSet(SPMIset))
SPMIerror("SpmiFreeStatSet");

SpmiExit();
_cleanup();
_exit(0);

}

main(int argc, char *argv[])
{

struct SpmiStatVals*SPMIval = NULL;
struct SpmiStat*SPMIstat = NULL;
SpmiCxHdl SPMIcxhdl = 0;
FILE *file;

    char stats[4096];
    float statvalue;
    /*
     * Here we initialize the SPMI environment for our process.
     */

if (SpmiInit(15)) {
SPMIerror("SpmiInit");
exit(SpmiErrno);

}
    /*
     * We make sure that we clean up the SPMI memory that we use
906 AIX 5L Performance Tools Handbook



     * before we terminate the process. atexit() is called when
     * the process is normally terminated, and we trap signals
     * that a terminal user, or program malfunction could
     * generate and cleanup then as well.
     */

atexit(cleanup);
signal(SIGINT,cleanup);
signal(SIGTERM,cleanup);
signal(SIGSEGV,cleanup);
signal(SIGQUIT,cleanup);

    /*
     * Here we create the base for our SPMI statistical data hierarchy.
     */ 

if ((SPMIset = SpmiCreateStatSet()) == NULL) {
SPMIerror("SpmiCreateStatSet");
exit(SpmiErrno);

}
    /*
     * Open the file we have the SPMI metrics stored in
     */ 

if ((file = fopen("SPMI_METRICS", "r")) == NULL) exit(1);
    /*
     * Read all lines in the file
     */ 
    while (fscanf(file,"%s",&stats) != EOF) {

/*
 * For each metric we want to monitor we need to add it to
 * our statistical collection set (assuming the input file syntax is 

correct).
 */
if ((SPMIval = SpmiPathAddSetStat(SPMIset,stats,SPMIcxhdl)) == NULL) {

SPMIerror("SpmiPathAddSetStats");
exit(SpmiErrno);

}
    }
    fclose(file);

/*
 * First we must request that SPMI refresh our statistical
 * data hierarchy.
 */
if ((SpmiGetStatSet(SPMIset,TRUE)) != 0) {

SPMIerror("SpmiGetStatSet");
exit(SpmiErrno);

}
/*
 * Here we get the first entry point in our statistical data hierarchy.
 * Note that SPMI will return the values in the reverse order of the one
 * used to add them to our statistical set.
 */
 Appendix A. Source code examples 907



SPMIval = SpmiFirstVals(SPMIset);
do {

if ((statvalue = SpmiGetValue(SPMIset,SPMIval)) < 0) {
SPMIerror("SpmiGetValue");
exit(SpmiErrno);

}
printf("%-25s: 

%.0f\n",SpmiStatGetPath(SPMIval->context,SPMIval->stat,0),statvalue);
/*
 * Finaly we get the next statistic in our data hierarchy.
 * And if this is NULL, then we have retreived all our statistics.
 */
} while ((SPMIval = SpmiNextVals(SPMIset,SPMIval)));

}

spmi_traverse.c
Following is the source code for the spmi_traverse program.

Example: A-6   spmi_traverse program

#include <sys/types.h>
#include <sys/errno.h>
#include <stdio.h>
#include <sys/Spmidef.h>
 
extern errno;
extern charSpmiErrmsg[]; 
extern intSpmiErrno; 

SPMIerror(char *s)
{
    /* We do not want the \n that the SpmiErrmsg have at the
     * end since we will use our own error reporting format.
     */

SpmiErrmsg[strlen(SpmiErrmsg)-1] = 0x0;
fprintf(stderr,"%s: %s (%d)\n",s,SpmiErrmsg,SpmiErrno);

}
/*
 * This subroutine is called when a user interrupts it or
 * when the main program exits. If called by a signal handler
 * it will have a value in parameter s. If s is not set, then
 * it is called when the main program exits. To not have this
 * subroutine called when calling exit() to terminate the
908 AIX 5L Performance Tools Handbook



 * process, we use _exit() instead. Since exit() would call
 * _cleanup() and any atexit() registred functions, we call
 * _cleanup() ourselves.
 */
void
cleanup(int s)                                 
{                                         
    SpmiExit();                           

_cleanup ();
_exit (0);

}
/*
 * This function that traverses recursively down a
 * context link.  When the end of the context link is found,
 * findstats traverses down the statistics links and writes the
 * statistic name to stdout.  findstats is originally passed the
 * context handle for the TOP context.
 */
findstats(SpmiCxHdl SPMIcxhdl)
{

struct SpmiCxLink   *SPMIcxlink;
struct SpmiStatLink *SPMIstatlink;
struct SpmiCx       *SPMIcx, *SPMIcxparent;
struct SpmiStat     *SPMIstat;
int                 instantiable;
/*
 * Get the first context.
 */
if (SPMIcxlink = SpmiFirstCx(SPMIcxhdl)) {

while (SPMIcxlink) {
SPMIcx = SpmiGetCx(SPMIcxlink->context);
/*
 * Determine if the context's parent is instantiable
 * because we do not want to have to print the metrics
 * for every child of that parent, ie Procs/<PID>/metric
 * will be the same for every process.
 */
SPMIcxparent = SpmiGetCx(SPMIcx->parent);
if (SPMIcxparent->inst_freq == SiContInst)

instantiable++;
else

instantiable = 0;
/*
 * We only want to print out the stats for any contexts
 * whose parents aren't instantiable. If the parent
 * is instantiable then we only want to print out
 * the stats for the first instance of that parent.
 */
if (instantiable > 1) {
 Appendix A. Source code examples 909



/*
  * Output the name of the metric with instantiable parents.
  */

fprintf(stdout,"%s/%s/.....\n",SPMIcxparent->name,SPMIcx->name);
} else {

/*
  * Traverse the stats list for the context.
  */

if (SPMIstatlink = SpmiFirstStat(SPMIcxlink->context)) {
while (SPMIstatlink) {

SPMIstat = SpmiGetStat(SPMIstatlink->stat);
/*

  * Output name of the statistic.
  */

fprintf(stdout, "%s:%s",

SpmiStatGetPath(SPMIcxlink->context,SPMIstatlink->stat,10),
SPMIstat->description);

/*
  * Output data type/value type about the metric
  */

fprintf(stdout, ":%s/%s",
(SPMIstat->data_type == SiLong?"Long":"Float"),
(SPMIstat->value_type == 

SiCounter?"Counter":"Quantity"));
/*

  * Output max/min information about the metric.
  */

fprintf(stdout,":%ld-%ld\n",SPMIstat->min,SPMIstat->max);
/*

  * Get next SPMIstatlink
  */

SPMIstatlink = SpmiNextStat(SPMIstatlink);
}

}
}   
/*

  * Recursive call to this function, this gets the next context link
  */

findstats(SPMIcxlink->context);
/*

  * After returning from the previous link, we go to the next context
  */

SPMIcxlink = SpmiNextCx(SPMIcxlink);
}

}
}

main(int argc, char *argv[])
910 AIX 5L Performance Tools Handbook



{
int    spmierr=0;
SpmiCxHdlSPMIcxhdl;
/*
 * Here we initialize the SPMI environment for our process.
 */
if ((spmierr = SpmiInit(15)) != 0) {

SPMIerror("SpmiInit");
exit(errno);

}
/*
 * We make sure that we clean up the SPMI memory that we use
 * before we terminate the process. atexit() is called when
 * the process is normally terminated, and we trap signals
 * that a terminal user, or program malfunction could
 * generate and cleanup then as well.
 */
atexit(cleanup);
signal(SIGINT,cleanup);
signal(SIGTERM,cleanup);
signal(SIGSEGV,cleanup);
signal(SIGQUIT,cleanup);

if ((SPMIcxhdl = SpmiPathGetCx(NULL, NULL)) == NULL)
SPMIerror("SpmiPathGetCx");

else
/*
 * Traverse the SPMI statistical data hierarchy.
 */
findstats(SPMIcxhdl);

}

dudestat.c
Following is the source code for the dudestat program. 

Example: A-7   dudestat program

#include <stdio.h>
#include <stdlib.h>
#include <sys/var.h>
#include <sys/vminfo.h> 
#include <sys/wlm.h>
#include <procinfo.h>
#include <sys/proc.h>
#include <usersec.h>
 Appendix A. Source code examples 911



sys_param_dude()
{

struct variovario;

if (!sys_parm(SYSP_GET,SYSP_V_MAXUP,&vario)) 
printf("v_maxup (max. # of user processes)                    : %lld\n", 

vario.v.v_maxup.value);
if (!sys_parm(SYSP_GET,SYSP_V_MAXPOUT,&vario)) 

printf("v_maxpout (# of file pageouts at which waiting occurs): %lld\n", 
vario.v.v_maxpout.value);

if (!sys_parm(SYSP_GET,SYSP_V_MINPOUT,&vario)) 
printf("v_minpout (# of file pageout at which ready occurs)   : %lld\n", 

vario.v.v_minpout.value);
if (!sys_parm(SYSP_GET,SYSP_V_FILE,&vario)) 

printf("v_file (# entries in open file table)                 : %lld\n", 
vario.v.v_file.value);

if (!sys_parm(SYSP_GET,SYSP_V_PROC,&vario)) 
printf("v_proc (max # of system processes)                    : %lld\n", 

vario.v.v_proc.value);

if ((!sys_parm(SYSP_GET,SYSP_V_NCPUS,&vario)) != 
(!sys_parm(SYSP_GET,SYSP_V_NCPUS_CFG,&vario)))

printf("Dude! v_ncpus %d (number of active CPUs) \
does not match v_ncpus_cfg %d (number of processor configured)\n",
vario.v.v_ncpus_cfg.value,
vario.v.v_ncpus_cfg.value);

}

vmgetinfo_dude()
{

struct vminfovminfo;

if (!vmgetinfo(&vminfo,VMINFO,sizeof(vminfo))) {
printf("freewts (count of free frame waits)                   : 

%lld\n",vminfo.freewts);
printf("extendwts (count of extend XPT waits)                 : 

%lld\n",vminfo.extendwts);
printf("pendiowts (count of pending I/O waits)                : 

%lld\n",vminfo.pendiowts);
printf("numfrb (number of pages on free list)                 : 

%lld\n",vminfo.numfrb);
printf("numclient (number of client frames)                   : 

%lld\n",vminfo.numclient);
printf("numcompress (no of frames in compressed segments)     : 

%lld\n",vminfo.numcompress);
printf("numperm (number frames non-working segments)          : 

%lld\n",vminfo.numperm);
912 AIX 5L Performance Tools Handbook



printf("maxperm (max number of frames non-working)            : 
%lld\n",vminfo.maxperm);

printf("maxclient (max number of client frames)               : 
%lld\n",vminfo.maxclient);

printf("memsizepgs (real memory size in 4K pages)             : 
%lld\n",vminfo.memsizepgs);

}
}

swapqry_dude()
{

struct pginfopginfo;
char device[256];
char path[256];
char cmd[256];
FILE *file;

bzero(cmd,sizeof(cmd));
sprintf(cmd,"odmget -q \"value = paging\" CuAt|awk 

'/name/{gsub(\"\\\"\",\"\",$3);print $3}'\n");
if (file = popen(cmd,"r"))

while (fscanf(file,"%s\n", &device)!=EOF) {
sprintf(path,"/dev/%s", device);
if (!swapqry(path,&pginfo)) {

printf("paging space device                                   : 
%s\n",path);

printf("size (size in PAGESIZE blocks)                        : 
%u\n",pginfo.size);

printf("free  (# of free PAGESIZE blocks)                     : 
%u\n",pginfo.free);

printf("iocnt (number of pending i/o's)                       : 
%u\n",pginfo.iocnt);

}
}

pclose(file);
}

getprocs_dude(char *dudes[])
{

struct procsinfops[8192]; 
int uids[12]; 
pid_t index = 0;
int nprocs;
int i,j,k;
char *p;

if (dudes[0] != NULL)
if ((nprocs = getprocs(&ps, sizeof(struct procsinfo), NULL, 0, &index, 

8192)) > 0)
 Appendix A. Source code examples 913



for (i = 0,k = 0; dudes[i] != NULL; i++)
for (j=0; j<nprocs; j++) {

p = IDtouser(ps[j].pi_uid);
if (!strcmp(dudes[i],p)) {

printf ("The %s dude is online and 
excellent!\n\n",dudes[i]);

uids[k++] = ps[j].pi_uid;
break;

}
}

if (i != k) {
j = i - k;
printf ("There %s %d dude%s 

missing!\n\n",(j>1)?"are":"is",j,(j>1)?"s":"");
}

}

main(int argc, char *argv[])
{

printf("PARTY ON!\n\n");
getprocs_dude(argc>1?&argv[1]:NULL);
printf("Dude, here are some excellent info for you today\n\n");
sys_param_dude();
vmgetinfo_dude();
swapqry_dude();

}

cwhet.c
The following is the source for the cwhet program. This Whetstone benchmark 
was written by Harold Curnow of CCTA, the British government computer 
procurement agency, based on work by Brian Wichmann of the National Physical 
Laboratory.

Example: A-8   The cwhet.c file
# cat whet.c
/* HARDENED WHETSTONE.
      Module 8 changed. Inlining will not throw Module 8 away now.
      Remove <#define HARD> to get the soft version
*/

/*  Whetstone benchmark -- Double Precision.
    This program has a long history and is well described in "A Synthetic
    Benchmark" by H.J. Curnow and B.A. Wichman in Computer Journal, Vol.
    19 #1, February 1976.
914 AIX 5L Performance Tools Handbook



    The number of ITERATIONS was increased from 10 to 10000 to minimize
    system overhead.
 */

#define ITERATIONS      10000
#define POUT
#define HARD

#include "math.h"
#include <stdio.h>

double   x1, x2, x3, x4, x, y, z, t, t1, t2;
double   e1[4];
int      i, j, k, l, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11;

main()
{
    t = 0.499975;
    t1 = 0.50025;
    t2 = 2.0;

    n1 =   0;
    n2 =  12 * ITERATIONS;
    n3 =  14 * ITERATIONS;
    n4 = 345 * ITERATIONS;
    n5 =   0;
    n6 = 210 * ITERATIONS;
    n7 =  32 * ITERATIONS;
    n8 = 899 * ITERATIONS;
    n9 = 616 * ITERATIONS;
    n10 =  0;
    n11 = 93 * ITERATIONS;

    /**** Module 1: Simple Identifier ****/

    x1 = 1.0;
    x2 = x3 = x4 = -1.0;
    for (i = 1; i <= n1; i++) {

x1 = ( x1 + x2 + x3 - x4) * t;
x2 = ( x1 + x2 - x3 + x4) * t;
x3 = ( x1 - x2 + x3 + x4) * t;
x4 = (-x1 + x2 + x3 + x4) * t;

    }
#ifdef POUT
   pout(n1, n1, n1, x1, x2, x3, x4);
#endif

    /**** Module 2: array elements ****/
 Appendix A. Source code examples 915



    e1[0] = 1.0;
    e1[1] = e1[2] = e1[3] = -1.0;
    for (i = 1; i <= n2; i++) {

e1[0] = (  e1[0] + e1[1] + e1[2] - e1[3]) * t;
e1[1] = (  e1[0] + e1[1] - e1[2] + e1[3]) * t;
e1[2] = (  e1[0] - e1[1] + e1[2] + e1[3]) * t;
e1[3] = ( -e1[0] + e1[1] + e1[2] + e1[3]) * t;

    }
#ifdef POUT
    pout(n2, n3, n2, e1[0], e1[1], e1[2], e1[3]);
#endif

    /**** Module 3: Array as Parameter ****/

    for (i = 1; i <= n3; i++) {
mod3(e1);

    }
#ifdef POUT
    pout(n3, n2, n2, e1[0], e1[1], e1[2], e1[3]);
#endif

    /**** Module 4: Conditional Jumps ****/

    j = 1;
    for (i = 1; i <= n4; i++) {

if (j == 1) j = 2;
else j = 3;
if (j > 2) j = 0;
else j = 1;
if (j < 1) j = 1;
else j = 0;

    }
#ifdef POUT
    pout(n4, j, j, x1, x2, x3, x4);
#endif

    /**** Module 6: Integer Arithmetic Using Arrays ***/

    j = 1; k = 2; l = 3;
    for (i = 1; i <= n6; i++) {

j = j * (k - j) * (l - k);
k = l * k - (l - j ) * k;
l = (l - k) * (k + j);
e1[l - 2] = j + k + l;
e1[k - 2] = j * k * l;

    }
#ifdef POUT
    pout(n6, j, k, e1[0], e1[1], e1[2], e1[3]);
#endif
916 AIX 5L Performance Tools Handbook



    /**** Module 7 : Trigonometric functions ****/

    x = y = 0.5;
    for (i = 1; i <= n7; i++) {
       x = t * atan(t2 * sin(x) * cos(x) / (cos(x + y) + cos(x - y) - 1.0));
       y = t * atan(t2 * sin(y) * cos(y) / (cos(x + y) + cos(x - y) - 1.0));
    }
#ifdef POUT
    pout(n7, j, k, x, x, y, y);
#endif

    /**** Module 8 Procedure Call ****/

    x = y = z = 1.0;
    for (i = 1; i <= n8; i++) {

mod8(x, y, &z);
#ifdef HARD

x = z;
#endif
    }
#ifdef POUT
    pout(n8, j, k, x, y, z, z);
#endif

    /**** Module 9: Array References ****/

    j = 1;
    k = 2;
    l = 3;
    e1[1] = 1.0;
    e1[2] = 2.0;
    e1[3] = 3.0;
    for (i = 1; i <= n9; i++) {

mod9();
    }
#ifdef POUT
    pout(n9, j, k, e1[0], e1[1], e1[2], e1[3]);
#endif

    /**** Module 10: Integer Arithmetic ****/

    j = 2;
    k = 3;
    for (i = 1; i <= n10; i++) {

j = j + k;
k = j + k;
j = k - j;
k = k - j - j;
 Appendix A. Source code examples 917



    }
#ifdef POUT
    pout(n10, j, k, x1, x2, x3, x4);
#endif

    /**** Module 11: Standard Functions ****/

    x = 0.75;
    for (i = 1; i <= n11; i++) {

x = sqrt(exp(log(x) / t1));
    }
#ifdef POUT
    pout(n11, j, k, x, x, x, x);
#endif

} /* End of Main */

/**** Module 3 Routine ****/
mod3(a)
double a[4];
{
    register int j;
    for (j = 0; j < 6; j++) {

a[0] = ( a[0] + a[1] + a[2] - a[3]) * t;
a[1] = ( a[0] + a[1] - a[2] + a[3]) * t;
a[2] = ( a[0] - a[1] + a[2] + a[3]) * t;
a[3] = (-a[0] + a[1] + a[2] + a[3]) / t2;

    }
}

/**** Module 8 Routine ****/
mod8(x, y, z)
double x, y, *z;
{
    x = t * (x + y);
    y = t * (x + y);
    *z = (x + y) / t2;
}

/**** Module 9 Routine ****/
mod9()
{
    e1[j] = e1[k];
    e1[k] = e1[l];
    e1[l] = e1[j];
}

#ifdef POUT
pout(n, j, k, x1, x2, x3, x4)
918 AIX 5L Performance Tools Handbook



int n, j, k;
double x1, x2, x3, x4;
{
   printf("%6d %6d %6d %5e %5e %5e %5e\n",

   n, j, k, x1, x2, x3, x4);
}
#endif
 Appendix A. Source code examples 919



920 AIX 5L Performance Tools Handbook



Appendix B. Trace hooks

This appendix contains a listing of the AIX 5L trace hook IDs. 

Trace hooks can be thought of as markers in a trace report that mark certain 
events. After creating the trace report, the trace hooks can then be used to 
search for these events. 

A trace report can be taken with all trace hooks active, or with only certain trace 
hooks active. It is a particularly good idea to limit the number of events that are 
captured (by limiting the number of trace hooks) on systems that are very busy, 
especially large SMP systems. Because the trace buffers are limited in size and 
can grow extremely quickly, avoid filling the buffer by limiting the number of trace 
hooks. Please refer to Section 8.9, “trace” on page 685 for further information on 
trace. The trace hooks that are needed by AIX trace post-processing tools, such 
as filemon, netpmon, tprof, or curt, are specified in the AIX documentation that 
can be found at:

http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixgen/

B

© Copyright IBM Corp. 2001 921



AIX 5L trace hooks
The following list of trace hooks and their accoring hook ID can be obtained by 
running the trcrpt -j command. It is recommended that you run trcrpt -j 
every time the operating system is updated to check for any modifications to the 
trace hooks that IBM may make.

Example: B-1   AIX5 Trace Hooks (trcrpt -j)
# trcrpt -j
004 TRACEID IS ZERO
3A8 SCSESDD
2A4 kentdd
2A5 kentdd
2A6 kentdd
2DA cstokdd
2DB cstokdd
2DC cstokdd
2EA gxentdd
2EB gxentdd
2EC gxentdd
409 STTY SF
707 LFTDD:  
709 INPUTDD:  
2FA ethchandd
2FB ethchandd
3FD vlandd
3FE vlandd
3FF vlandd
211 NFS: Client VNOP read/write routines
212 NFS: Client VNOP routines
213 NFS: Server read/write services
214 NFS: Server services
215 NFS: Server dispatch
216 NFS: Client call
217 NFS: RPC Debug
218 NFS: rpc.lockd hooks
2D9 NFS: krpc network hooks
3AF NFS: cachefs hooks
3B0 AutoFS: Client VNOP read/write routines
355 PDIAGEX
001 TRACE ON
002 TRACE OFF
003 TRACE HEADER
005 LOGFILE WRAPAROUND
006 TRACEBUFFER WRAPAROUND
007 UNDEFINED TRACE ID
008 DEFAULT TEMPLATE
00A TRACE_UTIL
100 FLIH
922 AIX 5L Performance Tools Handbook



101 SYSTEM CALL
102 SLIH
103 RETURN FROM SLIH
104 RETURN FROM SYSTEM CALL
105 LVM EVENTS
106 DISPATCH
107 FILENAME TO VNODE (lookuppn) 
108 FILE ORIENTED SYSTEM CALLS
10A KERN_PFS
10B LVM BUF STRUCT FLOW
10C DISPATCH IDLE PROCESS
10D FILE VFS AND INODE
10E LOCK OWNERSHIP CHANGE
10F KERN_EOF
110 KERN_STDERR
111 KERN_LOCKF
112 LOCK
113 UNLOCK
114 LOCKALLOC
115 SETRECURSIVE
116 XMALLOC size,align,heap
117 XMFREE address,heap
118 FORKCOPY
119 SENDSIGNAL
11A KERN_RCVSIGNAL
11C P_SLIH
11D KERN_SIGDELIVER
11E ISSIG
11F SET ON READY QUEUE
120 ACCESS SYSTEM CALL
121 SYSC_ACCT
122 ALARM SYSTEM CALL
12E CLOSE SYSTEM CALL
130 CREAT SYSTEM CALL
131 DISCLAIM SYSTEM CALL
134 EXEC SYSTEM CALL
135 EXIT SYSTEM CALL
137 FCNTL SYSTEM CALL
139 FORK SYSTEM CALL
13A FSTAT SYSTEM CALL
13B FSTATFS SYSTEM CALL
13E FULLSTAT SYSTEM CALL
14C IOCTL SYSTEM CALL
14E KILL SYSTEM CALL
152 LOCKF SYSTEM CALL
154 LSEEK SYSTEM CALL
15B OPEN SYSTEM CALL
15F PIPE SYSTEM CALL
160 PLOCK
 Appendix B. Trace hooks 923



163 READ SYSTEM CALL
169 SBREAK SYSTEM CALL
16A SELECT SYSTEM CALL
16E SETPGRP
16F SBREAK
180 SIGACTION SYSTEM CALL
181 SIGCLEANUP
183 SIGRETURN
18E TIMES
18F ULIMIT SYSTEM CALL
195 USRINFO SYSTEM CALL
19B WAIT SYSTEM CALL
19C WRITE SYSTEM CALL
1A4 GETRLIMIT SYSTEM CALL
1A5 SETRLIMIT SYSTEM CALL
1A6 GETRUSAGE SYSTEM CALL
1A7 GETPRIORITY SYSTEM CALL
1A8 SETPRIORITY SYSTEM CALL
1A9 ABSINTERVAL SYSTEM CALL
1AA GETINTERVAL SYSTEM CALL
1AB GETTIMER SYSTEM CALL
1AC INCINTERVAL SYSTEM CALL
1AD RESTIMER SYSTEM CALL
1AE RESABS SYSTEM CALL
1AF RESINC SYSTEM CALL
1B0 VMM_ASSIGN (assign virtual page to a physical page)
1B1 VMM_DELETE (delete a virtual page)
1B2 VMM_PGEXCT (pagefault)
1B3 VMM_PROTEXCT (protection fault)
1B4 VMM_LOCKEXCT (lockmiss)
1B5 VMM_RECLAIM
1B6 VMM_GETPARENT
1B7 VMM_COPYPARENT
1B8 VMM_VMAP (fault on a shared process private segment)
1B9 VMM_ZFOD (zero fill a page)
1BA VMM_PAGEIO
1BB VMM_SEGCREATE (segment create)
1BC VMM_SEGDELETE (segment delete)
1BD VMM_DALLOC
1BE VMM_PFEND
1BF VMM_EXCEPT
1C8 PPDD
1CA TAPEDD
1CF C327DD
1D0 DDSPEC_GRAPHIO
1D1 ERRLG
1D2 DUMP
1D9 VMM_ZERO 
1DA VMM_MKP 
924 AIX 5L Performance Tools Handbook



1DB VMM_FPGIN 
1DC VMM_SPACEOK
1DD VMM_LRU
1F0 SETTIMER SYSTEM CALL
200 RESUME
201 KERN_HFT
202 KERN_KTSM
204 SWAPPER swapin process
205 SWAPPER swapout process
206 SWAPPER post process for suspension
207 SWAPPER sched stats
208 SWAPPER process stats
209 SWAPPER sched stats
20A MEMORY SCRUBBING disable
20B MEMORY SCRUBBING enable
20C MEMORY SCRUBBING choose segment of memory
20D MEMORY SCRUBBING report single bit errors
20E LOCKL locks a conventional process lock
20F UNLOCKL unlocks a conventional process lock
220 FDDD
221 SCDISKDD
222 BADISKDD
223 SCSIDD
226 GIODD
228 SERDASDD
229 TMSCSIDD
234 CLOCK
250 
251 NETERR 
252 SOCK
254 MBUF
255 NETIF_EN
256 NETIF_TOK
257 NETIF_802.3
258 NETIF_X25
259 NETIF_SER
25A TCPDBG
25B TCP
25C UDP
25D IP
25E IP6
25F PCB
272 PSLA DR. OPEN(X) CALL 
273 PSLA DR. CLOSE CALL
274 PSLA DR. READ CALL
275 PSLA DR. WRITE CALL
276 PSLA DR. IOCTL CALLS 
277 PSLA INTERRUPT HANDLER 
278 PSLA DR. CONFIG CALL 
 Appendix B. Trace hooks 925



280 HIADD
292 VCA DEVICE DRIVER
2ED nbc
2F9 WLM
2FC  VMM_VWAIT EVENT
2FD RPDP:
2FE System freeze:
300 ODM EVENTS
340 
38D AIO: Asynchronous I/O
3A5 atmsock
3B7 SECURITY:
3B8 SEC DATA:
3C5  IPCACCESS EVENT
3C6  IPCGET EVENT
3C7  MSGCONV EVENT
3C8  MSGCTL SYSTEM CALL
3C9  MSGGET SYSTEM CALL
3CA  MSGRCV SYSTEM CALL
3CB  MSGSELECT SYSTEM CALL
3CC  MSGSND SYSTEM CALL
3CD  MSGXRCV SYSTEM CALL
3CE  SEMCONV EVENT
3CF  SEMCTL SYSTEM CALL
3D0  SEMGET SYSTEM CALL
3D1  SEMOP SYSTEM CALL
3D2  SEM EVENT
3D3  SHMAT SYSTEM CALL
3D4  SHMCONV EVENT
3D5  SHMCTL SYSTEM CALL
3D6  SHMDT SYSTEM CALL
3D7  SHMGET SYSTEM CALL
3D8  MADVISE SYSTEM CALL
3D9  MINCORE SYSTEM CALL
3DA  MMAP SYSTEM CALL
3DB  MPROTECT SYSTEM CALL
3DC  MSYNC SYSTEM CALL
3DD  MUNMAP SYSTEM CALL
3DE  MVALID SYSTEM CALL
3DF  MSEM_INIT SYSTEM CALL
3E0  MSEM_LOCK SYSTEM CALL
3E1  MSEM_REMOVE SYSTEM CALL
3E2  MSEM_UNLOCK SYSTEM CALL
3F7 J2 - VNODE
3F8 J2 - PAGER
400 STTY 
401 STTY STRTTY
402 STTY LDTERM 
403 STTY SPTR 
926 AIX 5L Performance Tools Handbook



404 STTY NLS 
405 STTY PTY
406 STTY RS
407 STTY LION
460 ASSERT WAIT
461 CLEAR WAIT
462 THREAD BLOCK
463 EMPSLEEP
464 EWAKEUPONE
465 THREAD_CREATE SYSTEM CALL
466 KTHREAD_START
467 THREAD_TERMINATE SYSTEM CALL
468 KSUSPEND
469 THREAD_SETSTATE
46A THREAD_TERMINATE_ACK
46B THREAD_SETSCHED
46C TIDSIG
46D WAIT_ON_LOCK
46E WAKEUP_LOCK
502 GSC 
503 GSC 
600 Pthread user scheduler thread
603 Pthread timer thread
605 Pthread vp sleep
606 Pthread condition variable
607 Pthread mutex
608 Pthread read/write lock
609 General pthread library call
7FF STREAMS (PSE)
DD1 
DD2 
339 ATM SIGNALING-DD -
33A if_at
3A0 atmcm
2AB PPP interface
2AC PPP ASYNC HDLC Encap
2AD PPP LCP MUX 
2AE PPP DATA
DBA 
2DE IPSEC_FILTER
2DF IPSEC_FILTER_INFO
2E0 IPSEC_CAPSUL
2E1 IPSEC_CAPSUL_INFO
2E2 IPSEC_CRYPTO
2E3 IPSEC_CRYPTO_INFO
2E4 IPSEC_TUNNEL
2E5 IPSEC_TUNNEL_INFO
2E9 IPSEC_ERROR
3A1 atmle_dd
 Appendix B. Trace hooks 927



3A2 atmle_dd
3A3 atmle_dd
3A4 atmle_dd
2C7 chatmdd
2C8 chatmdd
2C9 chatmdd
2CA chatmdd
928 AIX 5L Performance Tools Handbook



Related publications

The publications listed in this section are considered particularly suitable for a 
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” 
on page 931.

� AIX 5L Workload Manager (WLM), SG24-5977

� AIX 5L Differences Guide Version 5.1, SG24-5765

� RS/6000 and Asynchronous Transfer Mode, SG24-4796

� RS/6000 Scientific and Technical Computing: POWER3 Introduction and 
Tuning Guide, SG24-5155

� RS/6000 SP System Performance Tuning Update, SG24-5340

� Understanding IBM ^ pSeries Performance and Sizing, SG24-4810

Other resources
These publications are also relevant as further information sources:

� AIX 5L Version 5.1 Commands Reference, SBOF-1877

� AIX 5L Version 5.1 Commands Reference, Volume 5, SBOF-1857

� AIX 5L Version 5.1 Files Reference

� AIX 5L Version 5.1 General Programming Concepts

� AIX 5L Version 5.1 Kernel Extensions and Device Support Programming 
Concepts

� AIX 5L Version 5.1 Performance Management Guide

� AIX 5L Version 5.1 Performance Management Guide: Communications and 
Networks

� AIX 5L Version 5.1 Performance Management Guide: Operating System and 
Devices

� AIX 5L Version 5.1 System Management Concepts: Operating System and 
Devices
© Copyright IBM Corp. 2001 929



� AIX 5L Version 5.1 System User's Guide: Communications and Networks

� AIX 5L Version 5.1 System User's Guide: Operating System and Devices

� AIX 5L Version 5.1 Technical Reference: Communications, Volume 2

� AIX 5L Version 5.1 Technical Reference: Base Operating System and 
Extensions, Volume 1

� AIX 5L Version 5.1 Technical Reference: Base Operating System and 
Extensions, Volume 2

� AIX 5L Version 5.1 Technical Reference: Kernel and Subsystems, Volume 1

� AIX 5L Version 5.1 Technical Reference: Kernel and Subsystems, Volume 2

� Event Management Programming Guide and Reference, SA22-7354

� General Programming Concepts: Writing and Debugging Programs

� Performance Toolbox Version 2 and 3 Guide and Reference

� Resource Monitoring and Control Guide and Reference, SC23-4345

� RFC 1180 A TCP/IP Tutorial

� TCP/IP Tutorial and Technical Overview, GG24-3376

Referenced Web sites
These Web sites are also relevant as further information sources:

� http://www.austin.ibm.com/tech/monitor.html

� http://www.rs6000.ibm.com/support/sp/perf/

� Http://www.networking.ibm.com/netprod.html

� http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/perftool/prfusrgd/c
h02bod y.htm#HDRXHDHOSTS

� http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/cmds/aixcmds5/telin
it.htm

� http://www.rfc_editor.org

� http://www.rs6000.ibm.com/cgi-bin/ds_form

� http://www.tcpdump.org

� fttp://ftp.software.ibm.com/aix/tools/perftools.perfpmr

� fttp://ftp.software.ibm.com/aix/tools/perftools/curt/

� fttp://ftp.software.ibm.com/aix/tools/perftools/splat/
930 AIX 5L Performance Tools Handbook930 AIX 5L Performance Tools Handbook



How to get IBM Redbooks
Search for additional Redbooks or redpieces, view, download, or order hardcopy 
from the Redbooks Web site:

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images) 
from this Redbooks site. 

Redpieces are Redbooks in progress; not all Redbooks become redpieces and 
sometimes just a few chapters will be published this way. The intent is to get the 
information out much quicker than the formal publishing process allows.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the 
Redbooks Web site for information about all the CD-ROMs offered, as well as 
updates and formats. 
 Related publications 931

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/


932 AIX 5L Performance Tools Handbook932 AIX 5L Performance Tools Handbook



Special notices

References in this publication to IBM products, programs or services do not imply 
that IBM intends to make these available in all countries in which IBM operates. 
Any reference to an IBM product, program, or service is not intended to state or 
imply that only IBM's product, program, or service may be used. Any functionally 
equivalent program that does not infringe any of IBM's intellectual property rights 
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment 
specified, and is limited in application to those specific hardware and software 
products and levels.

IBM may have patents or pending patent applications covering subject matter in 
this document. The furnishing of this document does not give you any license to 
these patents. You can send license inquiries, in writing, to the IBM Director of 
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose 
of enabling: (i) the exchange of information between independently created 
programs and other programs (including this one) and (ii) the mutual use of the 
information which has been exchanged, should contact IBM Corporation, Dept. 
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions, 
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal 
IBM test and is distributed AS IS. The use of this information or the 
implementation of any of these techniques is a customer responsibility and 
depends on the customer's ability to evaluate and integrate them into the 
customer's operational environment. While each item may have been reviewed 
by IBM for accuracy in a specific situation, there is no guarantee that the same or 
similar results will be obtained elsewhere. Customers attempting to adapt these 
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for 
convenience only and do not in any manner serve as an endorsement of these 
Web sites.
© Copyright IBM Corp. 2001 933



The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything. 
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli, 
and Tivoli Enterprise are trademarks or registered trademarks of Tivoli Systems 
Inc., an IBM company,  in the United States, other countries, or both.  In 
Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other 
countries.

Java and all Java-based trademarks and logos are trademarks or registered 
trademarks of Sun Microsystems, Inc. in the United States and/or other 
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of 
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States 
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel 
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed 
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks 
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service 
marks of others.
934 AIX 5L Performance Tools Handbook



 acronyms
AIX Advanced Interactive 
Executive

API Application Programming 
Interface

ARP Address Resolution Protocol

ATM Asynchronous Transfer 
Mode

Audit RM Audit Log Response 
Manager

boids Block I/O Daemons

BOS Base Operating System

BPF Berkeley Packet Filter

bufstructs Buffer Structures

CD-ROM Compact Disk Read Only 
Memory

CHRP Common Hardware 
Reference Platform

CPU Central Processing Unit

DASD Direct Access Storage 
Device

DDS Dynamic Data Supplier

DLPI Data Link Provider Interface

DMA Direct Memory Access

DMS Dead Man Switch

DNS Domain Name Service

DPSA Deferred Paging Space 
Allocation

DSI Data Storage Interrupt

EBCDIC Extended Binary Coded 
Decimal Interchange

EPSA Early Paging Space 
Allocation

ERRM Event Response Resource 
Manager

ES Enhanced Scalability

Abbreviations and
© Copyright IBM Corp. 2001
FC-AL Fibre Channel Arbitrated 
Loop

FDDI Fiber Distributed Data 
Interface

FLIH First Level Interrupt Handler

FRCA Fast Response Cache 
Accelerator

FSRM File System Resource 
Manager

GB Gigabyte

GUI Graphical User Interface

HACMP High Availability Cluster 
Multi-Processing

hex Hexadecimal

HiPPI High Performance Parallel 
Interface

Host RM Host Resource Manager

I/O Input/Output

IBM International Business 
Machines Corporation

ICMP Internet Control Message 
Protocol

IGMP Internet Group Multicast 
Protocol

IP Internet Protocol

IPC Interprocess 
Communications

IPL Initial Program Load

ISNO Interface Specific Network 
Options

ITSO International Technical 
Support Organization

J2 Journaled File System 2

JBOD Just a Bunch of Disks

JFS Journaled File System
 935



KB Kilobyte

Kex Kernel Extension

kproc Kernel Processes

LAN Local Area Network

LP Logical Partition

LPSA Late Paging Space Allocation

LRU Least Recently Used

LTG Logical Task Group

LVDD Logical Volume Device Driver

LVM Logical Volume Manager

MAC Media Access Control

MB Megabyte

mbuf Communications Memory 
Buffer

MCA Microchannel 

MH Mail Handler

msec Millisecond

MSS Maximum Segment Size

MTBF Mean Time Between Failure

MTTR Mean Time To Repair

MTU Maximum Transfer Unit

MWCC Mirror Write Consistency 
Check

NBC Network Buffer Cache

NDD Network Device Driver

NDP Neighbor Discovery Protocol

NFS Network File System

NIM Network Installation 
Management

ODM Object Data Manager

OEA Operating Environment 
Architecture

OSPF Open Shortest Path First

pbuf Physical Buffer

PC Personal Computer

PCB Protocol Control Block

PCI Peripheral Component 
Interconnect

pdt Paging Device Table

PDT Performance Diagnostic Tool

PDU Protocol Data Unit

Perl Practical Extraction and 
Report Language

PFS Physical File System

PGID Process Group Identification 
Number

PID Process ID

PFT Page Frame Table

PM Performance Monitor

PMTU Path Maximum Transfer Unit

PP Physical Partition

PSSP Parallel System Support 
Programs

PTF Program Temporary Fix

PTX Performance Toolbox

PV Physical Volume

PVC Permanent Virtual Circuit

RAID Redundant Array of 
Independent Disks

RARP Reverse Address Resolution 
Protocol

RFC Request for Comment

RISC Reduced Instruction Set 
Computing

RMC Resource Monitoring and 
Control

RMSS Reduced Memory System 
Simulator

RPC Remote Procedure Call

RPM Revolutions Per Minute

RSCT Reliable Scalable Cluster 
Technology

RSi Remote Statistics Interface

Sack Selective Acknowledgement
936 AIX 5L Performance Tools Handbook



SCSI Small Computer System 
Interface 

SD Structured Data

SID Segment ID

SLIH Second Level Interrupt 
Handler

SLIP Serial Line Internet Protocol

SMIT System Management 
Interface Tool

SMP Symmetrical Multiprocessor

SP Scalable Processor

SPMI System Performance 
Management Interface

SRC System Resource Control

SSA Serial Storage Architecture

SVC Switched Virtual Circuit

TCP Transmission Control 
Protocol

TCP/IP Transmission Control 
Protocol/Internet Protocol

TLB Translation Look-Aside Buffer

TOC Table Of Contents

tps Transactions per second

TTY   Teletype

UDP User Datagram Protocol

UID User Identification

UP Uni Processor

usec Microsecond

VA Virtual Address

VG Volume Group

VMM Virtual Memory Manager

WIO Wait I/O

WLM Workload Manager

XCOFF Extended Common Object 
File Format

XDR External Data Representation
 Abbreviations and acronyms 937



938 AIX 5L Performance Tools Handbook



Index

Symbols
.evs event file   764
/etc/inittab   156
/etc/rc   127
/proc   173, 174, 428
/usr/lib/sa   120

Numerics
32 bit   325, 712
3dmon command   860

Configuration file   861, 865
Flags   861
Hostname parameter   861
Invitation delay   863
Measurement and sampling   864
Multiple host graphical display   867
Sampling interval   861
Selecting host names   864
Starting 3dmon   864
Synchronizing timeout   862
Syntax   860
Three dimensional graphic bars   864
Weight percentage   861

3dplay command   840
64 bit   325, 712, 759

A
a2ptx command   840
Actuator   23
Adapter interrupt level   226
Adapters

Throughput report   68
Address family   505
Address mapping information   644
Address space   3
Address translation faults   198
Addressability to a page   199
Affinity - Processor affinity   8
AIX maintenace Levels   103
AIX tools   43

By system resource   47
Disk I/O   387
© Copyright IBM Corp. 2001
Filesets   44
Full path name   44
Memory   301
Monitoring tools   47
Multi resource tools   57
Network tools   457
Performance Toolbox

3dmon command   860
xmperf   842

Trace tools   615
WLM tools   807

wlmmon   818
wlmperf   818
wlmstat   808

See also Commands
Alignment exceptions   222
alstat

Examples
Emulation and alignment   224

alstat command   222
Alignment exceptions   222
Detecting and resolving alignment   225
Examples

Emulation   224
Emulation and alignment   224
Output of alstat   223

Flags   223
Legacy applications   222
Parameters   223
Porting applications   223
Syntax   223

Analyzing and resolving problems   43
API   712

Miscellaneous subroutines   783
Performance Monitor   758
Perfstat   712
Resource Monitoring and Control   766
SPMI   736

Application development
Tools   47

Arbitrated bus   18
ARP   500, 573
ARP broadcast packet   595
 939



ARP cache thrashing   595
ARP handling   595
ARP server   595
ARP tables   595
arpt_killc   550
arptab_bsize   550
arptab_nb   550
ATM   574
ATM device driver statistics   459
atmstat command   459

Current HW Transmit Queue Length   464
Device specific statistics   459
Driver Flag   464
Elapsed Time   463
Examples   460

Device driver statistics for MCA   460
Device driver statistics for PCI   462

Flags   459
Generic statistics   459
Max Virtual Connections in use   464
MCA device specific adapter buffers   464
Measurement and sampling   459
No mbuf Errors   464
Out of Rcv Buffers   463
Out of Xmit Buffers   463
Parameters   459
PCI adapter 4 KB byte receive buffers   465
PCI device max 4K byte receive buffers   465
Syntax   459
Transmit and Receive Bytes   463
Transmit and Receive Cells   463
Transmit and Receive Interrupts   463
Transmit and Receive Packets   463
Virtual Connections in use   464
Virtual Connections Overflow   464

awk command   93
azizo command   840

B
Backtracks   199
Balance the input and output load   447
Base priority - Threads   4
Baseline performance   49
bcastping   550
Berkeley Packet Filter   498, 574
Binding processes to a CPU   226
Binding threads to a processor   229
bindintcpu command   7, 225

Examples   226
Parameters   226
Syntax   226

bindprocessor command   7, 8, 228
Examples   229
Flags   228
Measurement and sampling   229
Parameters   229
Syntax   228

Block queue   189
Block size   412
bosboot command   203, 204, 652
BPF   498, 574

C
C subroutines   712, 758
Cache coherency   7
Calculating thread priorities   247
cc command   712, 760
Center region - Disk   23
Change logical volume configuration   447
chcondition command   777
chdev command   39
Checksum errors   518, 521
chfs command   28
Child process   816
chmon command   840
chnfs command   850
chvg command   27
Class WLM   810
clean_partial_conns   550
Client segments   11
Clock interrupt   5
Clock tick   6
Clock ticks   14
Collision errors   469, 470
Commands

3dmon   860
3dplay   840
a2ptx   840
alstat   222
atmstat   459
awk   93
azizo   840
bindintcpu   7, 225
bindprocessor   7, 8, 228
bosboot   203, 204, 652
cc   712, 760
940 AIX 5L Performance Tools Handbook



chcondition   777
chdev   39
chfs   28
chmon   840
chnfs   850
chvg   27
cronadm   92
curt   616
dd   176, 424
defragfs   411
df   424
du   423
emstat   232
entstat   31, 465
estat   471
exmon   840
fddistat   474
fdpr   59
filemon   167, 388, 850
fileplace   409, 850
find   428
fsck   27
ftp   31
genkex   640
genkld   641
genld   643
gennames   644
gprof   235
grep   91, 779
iostat   67, 433, 850
ipcrm   302, 307, 738, 821
ipcs   302, 738, 821
ipfilter   32, 479, 850
ipreport   488
iptrace   32, 494
jazizo   869, 870
kill   821
locktrace   651
logform   27
Long time running   112
lsattr   37, 226
lscondition   777, 780
lscondresp   779, 782
lsfs   409, 452
lslv   391, 429, 449, 454
lsps   14
lsresponse   778
lsrsrc   771, 773
lsrsrcdef   773

lvmstat   436, 445
migratelp   449, 450
mkcondition   777
mkcondresp   778
mklv   24
mkresponse   778
mkvg   22, 27
mount   27
ncheck   391, 409
netpmon   850
netstat   502
nfso   527
nfsstat   541, 850
nice   4, 245
no   549, 850
nohup   820, 870
pdt_config   90
pdt_report   98
perfpmr   30, 49, 98
perl   776
ping   31
pprof   249, 850
prof   261
ps   109, 185, 313
pstat   849
ptx2stat   840
ptxconv   840
ptxhottab   841
ptxls   840
ptxmerge   840
ptxrlog   840
ptxsplit   840
ptxtab   840
renice   4, 266
rmcctrl   770
rmcondition   783
rmresponse   782
rmss   314, 850
sa1   120
sa2   120
sadc   120
sar   120, 271, 850
schedtune   5, 13, 14, 144, 316
slibclean   302, 307, 738, 821
snap   30
sort   456
splat   653
ssaraid   445
ssaxlate   444
 Index 941



startcondresp   779
stopcondresp   782
stripnm   682
svmon   14, 305, 320, 408, 808, 850
svmon_back   320
sync   410
syncvg   26
tcpdump   32, 571
time   268, 849
timex   270
tokstat   602
topas   43, 50, 158, 808, 849
tprof   275, 313, 850
trace   685, 850
traceroute   31
trcnm   702
trcoff   390, 686
trcon   390, 686
trcrpt   103, 704
trcstop   390, 686
trpt   608
truss   168, 313
ulimit   142, 424
uptime   434
vmstat   186, 850
vmtune   12, 13, 20, 201
vmtune64   202
wlmmon   818
wlmperf   818, 841, 849
wlmstat   808
xmpeek   865
xmperf   842
xmtrend   869
xprofiler   236

Communications memory buffers   512
Communications subsystems statistics   522
Compiling and linking   737

Subroutines   783
Compressed file system   189, 412
Computational pages   212
Connection problem   525
Context switches   6, 192
Contiguous files   409
Contiguous fragments   412
CPU bound   71
CPU bound system   50
CPU context switches   199
CPU decay factor   155
CPU idle time   193

CPU penalty factor - Thread priority   4
CPU time a program uses   236
CPU usage   146

Thread priority   4
CPU wait   193
CPUs

Displaying number installed   118
cron   98, 120
cron daemon   411
cronadm command   92
crontab   91, 120
curt command   616, 686

Application and kernel summary   620
CPU time   620
Examples

Creating trace   619
Output with -b flag   633
Output with -c flag   634
Output with -e flag   634
Output with -r flag   639
Output with -s flag   636
Output with -t flag   636

Flags   616
Interrupt handlers   620
Measurement and sampling   618
Parameters   617
Process dispatches   620
Report overview   620
Reports

Application and Kernel Summary   627
Default report   622
Flih Summary   630
General information   622
Percent of total processing time   628
Processor Summary   625
Slih Summary   632
System Calls Summary   629
System Summary   623
Wait Summary   626

Syntax   616
System calls   620
Trace hooks   618

D
Daemons

cron   98, 120, 411
inetd   842
init   183, 770
942 AIX 5L Performance Tools Handbook



qdaemon   411
xmtrend   818, 869
xmwlm   818

Data link provider interface   503
Datagrams dropped   510, 521
dd command   176, 424
Decrementer interrupt   278, 300
Deferred Paging Space Allocation   13, 28
Deferred update   11
defragfs command   411
delayack   550, 551
delayackports   550, 551
Delayed packets   520
Demuxer statistics   522
Design phase   2
Device Configuration database   433
Device driver statistics   509
Device interrupts   199
df command   424
dgd_packets_lost   551
dgd_ping_time   551
dgd_retry_time   551
diag_tool   90
Direct mapping   422
directed_broadcast   551
Disk

Utilization reports   68
Disk buffers   20
Disk I/O

Logical limitations   16
Performance   15
Physical limitations   16

Disk I/O bound system   53
Disk subsystem

Application workload type   17
Arbitrated bus   18
Bandwidth   17
Cost   17
Cylinder   19
Design approach   16
Disk access times   19
Disk adapters   18
Disk design   18
Disk devices   17
Disk space   17
Disk utilization   69
Disks per adapter/bus/loop   19
Head   18
I/O pending   193

I/O statistics   188
I/O wait   72
J2 inline log   28
Log logical volume   27
LV mirror consistency   27
LVM   22
Mirrored write consistency   26
Mirroring   24
Paging space   28
Peak throughput   17
Performance optimization   28
Performance versus availability   16
Physical disk buffers   20
Policies

Inter-disk allocation   24
Intra-disk allocation   23
LV Device Driver   26
Write-scheduling   25
Write-verify   26

Random access   20
Rotational time   19
SCSI   17
Sector   18
Seek time   19
Sequential access   20
SSA   17
System bus   18
Throughput   17
Track   18
Transfer rates   67
Transfer time   19
Where to place files   24

Disk-bound   388
diskmap   407
Dispatchable threads   6
DNS   93, 501, 591
Domain Namer Server   93
Double indirect block   417, 418
DPSA   13
Driver_ script   90
du command   423
dudestat program   805

E
Early paging space allocation   13
emstat command   232

Detecting and resolving emulation   235
Emulation exception statistics   232
 Index 943



Examples
Displaying emulation and alignment   234
Displaying emulation for each processor   
234
output   233

Emulation exception statistics   232
ENOBUFS error   563
entstat command   31, 465

Broadcast Packets   469
Current H/W Transmit Queue Length   470
Current S/W+H/W Transmit Queue Length   469
Device specific statistics   466
Elapsed Time   468
Examples   467

Device driver statistics   467
Monitor during execution of a program   470
Statistics for fixed time frame   470

Flags   466
Generic statistics   466
Max Packets on S/W Transmit Queue   469
Measurement and sampling   466
Multiple Collision Count   470
No mbuf Errors   470
Parameters   466
Receive Collision Errors   469
S/W Transmit Queue Overflow   469
Single Collision Count   469
Syntax   466
Transmit and Receive Bytes   468
Transmit and Receive Interrupts   469
Transmit and Receive Packets   468

EPSA   13
ERRM

Commands   767
estat command   471

Elapsed Time   472
Examples   472

During execution of a program   473
Statistics for a fixed time frame   473

Flags   471
Measurement and sampling   471
No mbuf Errors   473
Parameters   471
Syntax   471
Transmit and Receive Bytes   473
Transmit and Receive Packets   472

Ethernet   580
Ethernet 802.3   574
Ethernet device driver statistics   465

Ethernet frames   573
Ethernet V2   574
Event Management   766
Event Response Resource Manager

Commands   767
Executable-filled page faults   198
Execution time   59, 263
exmon command   840
Extend a file   422
Extend XPT waits   199
Extended shared memory   15
extendednetstats   551
EXTSHM variable   15

F
Fast Response Cache Accelerator   503
fasttimo parameter   36, 552
FDDI   574
FDDI device driver statistics   474
fddistat command   474

Broadcast Packets   478
Current S/W+H/W Transmit Queue Length   477
Device specific statistics   475
Elapsed Time   477
Examples   476

FDDI device driver statistics   476
Statistics during execution of a program   479
Statistics for a fixed time frame   479

Flags   474
Generic statistics   475
Max Packets on S/W Transmit Queue   477
Measurement and sampling   475
No mbuf Errors   478
Parameters   475
S/W Transmit Queue Overflow   477
Syntax   474
Transmit and Receive Bytes   477
Transmit and Receive Interrupts   477
Transmit and Receive Packets   477

fdpr command   59
Compiler support   62
Examples   63

Compiler generated code   63
Optimize the program   64
Program to show code reordering   63
Reordered example program   65, 66
Script to instrument program   64, 66

Flags   60
944 AIX 5L Performance Tools Handbook



Measurement and sampling   62
Optimization phases   59
Syntax   59

File size   412
File system buffer structures (bufstructs)   201
File system caching   212
File systems

Large file enabled   426
File table   141
filemon command   167, 388, 850

Average response time   390
Examples

Amount of transfered data   393
Client segment   407
File report   398
Logical volume report   401
lseek calls   400
Megabytes transfered   399
Most Active Logical Volumes   393, 402
Number of 512-byte blocks read   396, 402
Number of 512-byte blocks written   396, 402
Number of read system calls   400
Number of seeks   398
Number of write calls   400
Number of write sequences   398
Number of write system calls   400
Page table   407
Pages read into segment from disk   407
Pages written from segment to disk   407
Persistent segment   407
Physical volume reports   394
Read calls   400
Read requests   397
Read response-time statistics   397
Read sequence lengths   397
Read sequences   397
Read transfer-size statistics   397, 400
Seek distance   398
segid   407
Segment flags   407
segtype   407
Start monitoring   392
Throughput   398
Total number of bytes read/written   400
Total transfer throughput   402
Total volume throughput   396
Type of segment   407
Using filemon   392
Using the reports   392

Utilization of the volume   402
Virtual memory segments report   405
Volume utilization   398
Working segment   407
Write requests   397
Write response-time   400
Write transfer-size   400
Write transfer-size statistics   397
Write-response time statistics   398

Flags   388
Measurement and sampling   389

Access pattern analysis   391
Fragmentation   391
Fragmentation analysis   391
Interpreting reports   390
Logical file   389
Logical volumes   389
Physical volumes   390
Random access   391
Read sequence   391
Segments   391
Sequential access   391
Unknown files   391
Value ranges   390
Virtual memory   389
Write sequences   391

Syntax   388
trace hooks   390
Using trcevgrp   390

fileplace command   409, 850
Contiguous filesystems   410
Examples   411

32 contiguous 4 KB blocks   426
Block size   412
Compressed file system   412
Contiguous fragments   412
Create sparse files   424
Direct mapping   422
Double indirect block   417
Extend a file   422
File size   412
Fragment size   412
Fragments   412
Indirect block report   417
Indirect index blocks   422
Large disk blocks   426
Large file enabled file systems   426
Logical block   412
Logical fragmentation   419
 Index 945



Logical report   412, 418
Logical volume   412
Physical fragmentation   421
Physical report   413, 420
Read ahead   419
Search for sparse files   428
Sequentiality   421
Single indirect block   417
Space efficiency   419
Sparse file   422
Sparsely allocated files   422
Unallocated logical blocks   413
Using fileplace   411
Volume report   418

Flags   409
Fragmentation   410
Measurement and sampling   410
Parameters   410
Syntax   409

Files
.evs   764
.nodes   93
/dev/bpf#   574
/etc/aliases   91
/etc/filesystems   452
/etc/protocols   496
/etc/resolv.conf   93
/etc/services   496, 497
aliases   91
as   174
crontab   120, 127
ctl   174
if_arp.h   595
ipfilter.all   481
ipfilter.icmp   481
ipfilter.ipx   481
ipfilter.nfs   481
ipfilter.tcp   481
ipfilter.udp   481
lwpctl   175
lwpsinfo   175
lwpstatus   175
map   174
object   174
psinfo   174
README   767
resolv.conf   93
sigact   175
status   174

sys/procfs.h   169
sys/signal.h   170
sysent   175
tid   175
wtmp   93

Filesets   44
find command   428
Fixed priority   5
Fixed priority threads   5, 6, 149
Foreign address   523
Fork retries   149
Forks   195
Fragment size   412
Fragmentation   506
Fragmentation sizes   411
Fragmented files   409
Fragments   412
Frame headers   490
Frames of memory   325
framesets parameter   206
FRCA   503
Free frame waits   199
Free list   12, 190
fsck command   27
ftp command   31

G
Gateway   510
genkex command   640

Examples   640
Determining kex owner   641

Measurement and sampling   640
Report   640
Syntax   640

genkld command   641
Examples   642

Using   642
Kernel Extensions   642
Measurement and sampling   642
Syntax   642

genld command   643
Examples   643

Report   643
Measurement and sampling   643
Syntax   643

gennames command   644, 659
Examples   646

File system information   649
946 AIX 5L Performance Tools Handbook



Kernel extensions loaded   647
Logical volume information   649
Name to address mapping   646
Physical volume information   649
Processes loaded   648
Shared libraries loaded   648

Flags   644
Measurement and sampling   645
Parameters   645
Syntax   644

getprocs   804
Global kernel address space   6
Global run queue   6, 146
Glue code   683
gprof command   235

Detailed function reprot   239
Examples   238

Cross-references index report   243
Flat profile report   241

Flags   236
Functions sorted by time   237
Graph profile entry   236
Measurement and sampling   237
Output of gprof   239
Parameters   237
Profiling with and exec   238
Profiling with source   238
Profiling with source code   238
Profiling without source   244
Syntax   236

grep command   91, 779
Group Services   766
GUI

WebSM   766

H
HACMP   766
HACMP/ES   766
HAEM   766
HAGS   766
HATS   766
Heap   325
High Availability Cluster Multi-Processing   766
High resolution timer   278, 300
History buffer   12
Human expectations   1

I
I/O buffer contents   169
I/O handling   7
I/O pending   193
I/O scheduling policy   25

Parallel   25
Parallel/round robin   25
Parallel/sequential   25
Sequential   25

I/O transfer rates   67
I/O tuning parameters   211
I/O wait   72
ICMP   479, 493, 497
ICMP statistics   517
icmp6_errmsg_rate   552
icmpaddressmask   552
Idle migration barrier   146
IDtouser   804
ie5_old_multicast_mapping   552
ifsize   552
IGMP   497
IGMP statistics   518
Improve process priority   245
Index node reference number   130
Indirect index blocks   422
inet_stack_size   552
inetd daemon   842
init   770
Inner edge   23
Inner middle   23
inode   422
inode definition   130
inode number   130
inode table   141
inode tables   410
inodemap   407
inodex   407
inodexmap   407
Inter Process Communication   302
Inter-disk allocation policy   24
Interface specific network options   29
Internet control message protocol   497
Internet group multicast protocol   497
Internet Protocol   31, 496
Interrupt activity   188
Interrupt handlers   6, 618
Interrupt handling   7
Interrupt level binding   225
Interrupt priority   196
 Index 947



Interrupt statistics   228
Interrupts   192
Interrupts - Number of   187
Intra-disk allocation policy   23
iostat command   67, 433, 850

Enabling disk input/output statistics   75
Examples

Adapter throughput report   76
Disk utilization report   74
System throughput report   70
tty and CPU usage   74

Flags   68
Parameters   68
Syntax   68

IP   496, 573, 580, 601
IP address   508
IP address to MAC address mapping   596
IP datagrams   31
IP header fields   493
IP statistics   516
ip6_defttl   553
ip6forwarding   553
ip6srcrouteforward   553
IPC   302
ipcrm command   302, 307, 308, 738, 821
ipcs command   302, 738, 821

Examples   303
Check for active processes   308
Check processes using segment   307
creat   309
Detach   307
ftok   309
Numeric information between applications   
312
Remove an unused shared memory seg-
ment   307
sar report   312
Semaphores   312
Shared memory program   308
Shared memory segment   307, 310
Shared memory segment program   308
shmat   310
shmctl   309
shmdt   309
shmget   310
tempnam   309
truss   313
Using ipcs   305
Using ps   305

View shared memory   307
Which processes use semaphores   312
Which processes use shared memory   305

Flags   302
Measurement and sampling   303
Syntax   302

ipfilter command   32, 479, 488, 850
Examples   481

ALL   487
ICMP   486
ipreport output for ipfilter   482
ipreport source tag   483
ipreport.all   487
ipreport.icmp   486
ipreport.ipx   487
ipreport.tcp   484
ipreport.udp   485
iptrace header   483
IPX   487
NFS   483
nfs.rpt   483
Start and stop iptrace   481
TCP   484
tcpdump header   483
Trace TCP/IP traffic   481
UDP   485
Using ipreport with tcpdump   482

Flags   480
Measurement and sampling   480

ipfilter.all   481
ipfilter.icmp   481
ipfilter.ipx   481
ipfilter.nfs   481
ipfilter.tcp   481
ipfilter.udp   481

Parameters   480
Syntax   480

ipforwarding   552
ipfragttl   552
ipignoreredirects   553
IPL   434
ipqmaxlen   553
ipqmaxlen parameter   36
ipreport command   479, 481, 488, 498, 501

Binary input file   490
Examples   490

Acknowledgement of receipt   494
End of byte stream   494
ipreport from iptrace input   491
948 AIX 5L Performance Tools Handbook



ipreport with iptrace   491
ipreport with tcpdump   490
Synchronize sequence numbers   494
TCP initiation   492
TCP initiation reply   492

Flags   489
Measurement and sampling   490

pipeline   490
Parameters   489
Reports

Destination port   493
DST   493
Flags   493
ip_ fields   493
MAC   493
Media Access Control   493
Network frame summary line   493
Source port   493
SRC   493
th_seq   493
th_win   493

Syntax   489
Using ipreport with tcpdump   490

ipsendredirects   553
ipsrcrouteforward   553
ipsrcrouterecv   553
ipsrcroutesend   553
iptrace command   32, 481, 488, 490, 494, 608

Examples   498
Domain Name Server   501
TCP   499
UDP   500
UDP domain name server   501
Using ipreport   498, 500, 501, 502
Using iptrace   498

Flags   495
Measurement and sampling   497
Parameters   496
Protocol and services tables   496
Syntax   495

IPX   479

J
J2 inline log   28
Java filesets   818
jazizo command   869

Adding metrics for display   874
Adjusting monitor period   875

Configuration file   870
Displaying metrics   878
Exiting jazizo   883
Exploring jazizo windows   871
File tab down menu   872
Flags   870
Graph selection menu   880
Main window   872
Measurement and sampling   870
Metric selection menu   879
Metric selection window   873
Open recording file   873
Print statistics   883
Recording file   870
Reduce data tick box   882
Remove metrics   874
Report summaries   882
Starting jazizo   871
Syntax   869, 870
Tabular statistics   882
Trended view   880

JBOD   445
JFS   27, 335, 336, 402, 408, 409, 410, 426, 436, 
440, 449
JFS log   27
JFS2   11
JFS2 client pages   213
Journaled File System   409
Just a Bunch Of Disks   445

K
Kernel address space   6
Kernel buffer space   36
Kernel clock   574
Kernel data - shared   8
Kernel extensions   6, 640
Kernel file table   141
Kernel inode table   141
Kernel locks   664
Kernel mode   6
Kernel process   135
Kernel process table   142
Kernel processes   6
Kernel protection domain   135
Kernel services   135
Kernel thread table   142
Kernel threads   3
kernel threads
 Index 949



Listing   110
Kernel translation table   595
kex   122, 712
kill command   821
knlist subroutine   188
kproc   135
kprocs   193

L
Large file enabled file systems   426
largepages parameter   204
largepagesize parameter   203
Late paging space allocation   13
Leaks - Memory   14
Least Recently Used   198
Legacy applications   222
Libraries

libperfstat.a   712
libpmapi.a   759
librpcsvc.a   792
libSpmi.a   737
libwlm.a   797, 800

Lock misses   199
Lock states   667
Lock tuning   149
Locking   8
lockname.h file   652
Locks   8

Lock misses   199
Looping   8
Mutex   9
Mutual exclusion   9
Read-write   9
Recursive read-lock   672
Recursive write-lock   672
SEM_LOCK_CLASS   652
Sleeping   9
Sleeping lock   8
Spin locks   8
Spinning on locks   146
Waiting on locks   8

locktrace command   651
Examples   652
Flags   651
Measurement and sampling   651
SEM_LOCK_CLASS locks   652
Syntax   651

logform command   27

Logical block   412
Logical blocks   409
Logical file   389
Logical fragmentation   411, 419
Logical system resources   8
Logical Track Groups   26
Logical volume   389, 412
Logical Volume Device Driver   26, 447
Logical volume fragmentation   442
Logical Volume Manager   433
Logical Volume Manager (LVM)   20
Logical Volume Manager Device Driver   438
Logical volume statistics   388
Logical volume utilization monitoring   448
Logical volumes   443
Loopback   574
Looping on locks   8
LPSA   13
LRU   198
lrubucket parameter   209
lrud kernel process   12
lsattr command   37, 226
lscondition command   777, 780
lscondresp command   779, 782
lsfs command   409, 452
lslv command   391, 429, 449, 454

Examples   433
Allocation efficiency   441
Average over 24 hours   434
Center   441
Contiguous physical partitions   438
Copies   441
Distribution   441
Edge   441
First copy   440
First physical partition   440
Hot logical volume   440
Hot spots   439
In band   441
In band percentage   441
Inner-edge   441
Inner-middle   441
Intra policy   441
Intra-policy   441
Logical volume fragmentation   441
LPs   440
Middle   441
Normal working hours   434
pdisks   445
950 AIX 5L Performance Tools Handbook



Percentage of physical partitions   441
Physical partitions   441
PP1   440
PP2   440
PP3   440
PV   441
PV1   440
PV2   440
PV3   440
RAID   445
Second copy   440
Second physical partition   440
SSA RAID managers   445
Third physical partition   440
Using iostat   433, 434
Using lslv   437, 439
Using uptime   434

Flags   430
How to use lslv   441
Logical volume   429
Measurement and sampling   433
Parameters   430
Syntax   430

lsps command   14
lspv command

Examples   433
Consecutive physical partitions   443
Disk platter   438
Distribution   442
File system mount point   442, 443
Intra disk layout   438
Intra-physical volume region   443
Logical volume allocation layout   442
Logical volume fragmentation   442
LPs   442
LVname   442, 443
Mount Point   442
Mount point   443
Number of physical partitions   442
Physical partitions within the LV   442
Physical volume   442
PPs   442
Range   443
Region   443
Separate disk   438
State   443
Type   443
Using lspv   434, 437, 438
vgda   443

Flags   431
How to use lspv   442
Measurement and sampling   433
Parameters   431
Physical volume   429
Syntax   430

lsresponse command   778
lsrsrc command   771
lsrsrcdef command   773
lsvg command

Examples   433
Center   435
Checking busy LVs with lvmstat   436
Closed   436
Distribution   435
Free PPs   435
Free that space   444
How to aquire more disk information   444
Inline logs   436
Inner edge   435
Inner middle   435
Log logical volumes   436
Logical volume state   436
LPs   436
LV   436
Mirroring   444
Most utilized logical volumes   436
Mount point   436
Old, corrupted and forgotten logical volumes   
444
Opened/stale   436
Opened/syncd   436
Outer edge   435
Outer middle   435
Physical partition size   444
Physical volume   435
PPs   436
PVs   436
PVstate   435
STALE partitions   443
State of the physical volume   435
Total PPs   435
Type   436
Using lsvg   435
Volume group   444

Flags   432
How to use lsvg   443
Measurement and sampling   433
Parameters   432
 Index 951



Syntax   432
Volume groups   429

LTG   26
LVM   22, 410, 433

Buffers   201
Concepts   22
Policies   22

lvm_bufcnt parameter   206
LVMDD   438, 447
lvmstat command   436, 445

Balance the input and output load   447
Busiest physical partitions   445
Change logical volume configuration   447
Examples   447

Amount of data transferred   452
Data transferred   453
Disable statistics collection   448
Enable statistics collection   447
Enabled for logical volume   447
Enabled for the volume group   447
Fragmentation sizes   452
Highest used logical volumes   452
Hot logical partitions   449
How to use lvmstat   448
I/O per physical partition   455
Individual logical partition   453
iocnt   453
Kilobytes read   453
Kilobytes written   453
Logical volume utilization   448
lvmstat.sum   455
Measurements interval   452
Mirror copy   451
Mirror copy number   453
Monitor a single logical volume   453
Monitor all LVs in a volume group   451
Move from physical partition   450
Move logical partition   450
Move the hot logical partitions   449
Number of read and write requests   452
Performance of the system   448
Physical partition   450
Placement of logical partitions   449
Read and write requests   453
Single logical volume   449
Statistics collection   447
Summarize I/O utilization   455
Summarized I/O count   456
Time interval where no activity occurred   448

Total number of kilobytes read   452
Total number written   452
Using lsfs   452
Using lslv   450
Using lspv   450, 451
Using lsvg   449
Using lvmstat   447, 451, 452, 453, 454
Using lvmstat -l   449
Using lvmstat -v   448
Using migratelp   451
Using script   455
Utilization   454
Volume group   448

Flags   446
Input and output statistics   445
Logical partitions   445
Logical volume partitions   446
Logical volumes   445
Measurement and sampling   447
Migrate partitions   446
Performance penalty   446
Reduce performance penalty   446
Reports

iocnt   452, 453
Kb_read   452, 453
Kb_wrtn   452, 453
Kbps   452, 453
Log_part   453
Logical Volume   452
Mirror number   453

Syntax   446
Volume groups   445

M
Machine faults   168
main_if6   554
main_site6   554
Mapped files   325
maxclient parameter   205
maxfree   12
maxfree parameter   190, 203
Maximum Segment Size   597
Maximum Transfer Unit (MTU)   30
Maximum transmission unit   506
maxnip6q   554
maxperm parameter   205
maxpgahead parameter   203, 205
maxpin parameter   204
952 AIX 5L Performance Tools Handbook



maxrandwrt parameter   206
maxttl   554
mbuf

Statistics   502
mbuf statistics   506, 512, 514
mcount subroutine   237
Memory

Active Virtual Memory   189
Allocation   10
Consuming memory   320
Deferred update   11
Extended shared memory   15
Frame sizes   10
Free list   11, 12
History buffer   12
Leaks   14
Load control mechanism   12, 144
Memory pools   208
Page fault   11
Page faults   118
Page frame table (PFT)   11
Page of virtual memory   325
Page replacement   11
Page stealer   11
Paging   12
Paging space memory   320
Pinning   209
Pinning parameters   201
Real memory   320
Real memory usage   59
Repage fault   12
schedtune command   150
Segment size   325
Segments   10, 325

Address space   15
Client segments   11
JFS2   11
Persistent segments   11
Working segments   11

Shared   15
Shared memory   303
Shared regions   15
Thrashing   13, 145
Virtual memory   11, 320

Memory bound system   52
Memory management   7
Memory performance   10
mempools parameter   204
Message queues   303

Micro profiling using tprof   275
Micro-code version   103
migratelp command   449, 450
minfree   12
minfree parameter   190, 203
Minimum range - Disk allocation   24
minperm parameter   205
minpgahead parameter   205
Mirrored Write Consistency   24
Mirroring   24
Miscellaneous Subroutines

Accessed virtual pages   791
Active CPUs   787
Backtracks   790
Buffer pool   786
Client frames   790
Client segment   791
Clock hand cycles   790
Compiling and linking   783
Compressed segments   790
Examining kernel run-time parameters   784
Extend XPT waits   790
fblru   790
fblru page-outs   791
fblru remote page-outs   791
file pageouts   786
Fileonly page steals   790
Free frame waits   790
high-water mark   786
Iodones   790
Lockmisses   790
mbufs   786
Memory scrubbing   786
Non-working segments   790
odmget   791
Open file table   787
Page faults   790
Page ins from paging space   790
Page outs from paging space   790
Page reclaims   790
Page scans by clock   790
Page steals   790
Pages free list   790
Pages on free list   790
Pages paged in   790
Pages paged out   790
Paging device status   784
pclose   792
Pending I/O waits   790
 Index 953



Performance data from remote kernels   784
Persistent segment   791
Pginfo structure   791
popen   792
Process table   787
Process table entries   784
Procsinfo structure   795
Real memory   790
Record lock table   786
Remote kernels   784
Repaging cnt   790
Start I/Os   790
Statstime structure   793
swapqry   791, 792
System threads   787
Thread table   787
vario structure   784
vminfo structure   787
WLM characteristics of classes   784
WLM disk I/O statistics   784
Working segment   791

Miscellaneous subroutines
Performance monitoring subroutines   783

mkcondition command   777
mkcondresp command   778
mklv command   24
mkresponse command   778
mkvg command   22, 27
Mode switching   6
Monitor network trafic   574
Monitoring disk I/O   388
Monitoring tools   47
mount command   27
MSS   597, 598
MTU   30, 506, 508

Attribute   39
Size   39

Multi programing level   145
multi_homed   554
Mutex locks   9
Mutual exclusion lock   9
MWC   26

Check   26
Record   26
States

Active   26
Disabled   26
Passive   27

N
NBC   502, 504, 507, 525
nbc_limit   554
nbc_max_cache   554, 555
nbc_min_cache   554
nbc_pseg   555
nbc_pseg_limit   555
ncheck command   391, 409
ndpqsize   555
ndpt_down   555
ndpt_keep   555
ndpt_mmaxtries   555
ndpt_probe   555
ndpt_reachable   555
ndpt_retrans   556
ndpt_umaxtries   556
net_malloc_police   556
net_xmit_trace   498
netpmon command   850
netstat command   502, 610, 850

Adapter statistics   522
Address family   505
Checksum errors   518, 521
Clear statistics   504
Data link provider interface   503
Datagrams dropped   510, 521
Delayed packets   520
Demuxer statistics   522
Device driver statistics   506, 522
Examples   507

Active socket connections   523
Communications subsystems statistics   522
Device driver statistics   509
ICMP statistics   517
IGMP statistics   518
IP statistics   516
mbuf statistics   512, 514
Network buffer cache   525
Network interfaces   507
Routing table   510, 511
TCP statistics   518
UDP statistics   521

Flags   504
Foreign address   523
Fragmentation   506
FRCA   503
Interfaces

Address   508
Coll   508
954 AIX 5L Performance Tools Handbook



Ierrs   508
Ipkts   508
MTU   508
Name   508
Network   508
Oerrs   508
Opkts   508

Interfaces statistics   522
IP address   508
Maximum transmission unit   506
mbuf   506, 512

By size   513
By type   515
Calls   513, 515
Delayed   513, 515
Extended statistics   514
Failed   513, 515
Free   513
Freed   514
Inuse   513, 515
Statistics   504

mbuf statistics   502
Measurement and sampling   506
Memory usage   503
MTU   506, 508
NBC   502, 504, 507, 525

Cache object maximum size   526
Cache object minimum size   526
Cached data maximum amount   526
Memory maximum   526
Private segments maximum   526

Network buffer cache   502, 503
Network interfaces   506
Network protocol statistics   507, 515
Network routing   510
Network status information   502
Out-of-order packets   520
Packet counts   502, 503, 507
Parameters   505
Path maximum transfer unit   506
PMTU   506
Protocol   504, 506
Protocol statistics   522
Reset of statistics   503
Retransmits   520
Routing table   502, 503, 504, 506, 510

Destination   510
Gateway   510
PMTU   511

Use   511
Socket buffer overflow   521
Socket connections   502, 503
Socket state   504, 507, 523
Syntax   503
TCP window probe   521
TCP window size   521

Network
Buffer tuning   34

MTU   34
Nagle algorithm   35
rfc1323   34
sb_max   34
tcp_nagle_limit   35
tcp_recvspace   34
tcp_sendspace   34
Values to start with   34

Load   30
Maximum Transfer Unit (MTU)   30
Performance   29, 55
Tunables   32

Document the current values   33
Global network options   32
Interface specific network options   32

Network adapter settings   37
Receive queue size   37
Software transmit queue size   37

Network adapter statistics   457, 522
Network attributes   549
Network buffer cache   502, 525
Network device driver queues   37
Network device driver statistics   506, 522
Network I/O bound system   55
Network Interface layer   31
Network interfaces   494, 497, 506, 507
Network interfaces statistics   522
Network layers statistics   458
Network options   549

Interface specific   29
Network packet trace   488
Network packet trace tool   571
Network parameters   458
Network performance tools   457
Network protocol   503
Network protocol statistics   507, 515, 522
Network routing   510
Network status information   502
Network trace kernel extension   498
Network trace tools   458
 Index 955



Network traffic   488, 494, 503, 608
Network tunable considerations   35

fasttimo   36
ipqmaxlen   36
rfc1323   37
sb_max   35
tcp_mssdflt   36
tcp_nagle_limit   36
tcp_pmtu_discover   35
tcp_recvspace   36
tcp_sendspace   36
thewall   35
udp_recvspace   36
udp_sendspace   36

Network tunables
Default   40

MTU   41
PMTU   41
Receive queue size   40
Software transmit queue size   40

Resetting   40
NFS   335, 336, 479, 527

Base priority for nfsd processes   532
Buffers used for pdt   534
Changing server base priority   540
Checksum of UDP packets   535
Device-specific buffers   528
Duplicate cache   533
Duplicate messages   531
Dynamic retransmit   529
I/O pace   529
Large TCP window size negotiation   531
Maximum and preferred read size   530
Maximum number of nfsd threads   530
Maximum number of TCP connections   529
Maximum write size   531
Memory buffers starvation   535
Network variables set after IPL   536
Options used to mount a file system   537
Performance   56
Port number for TCP connections   530
Privileged port   535
Queue size of the server socket   533
Read-ahead   532
Release file locks   527
Reserved ports   534
RFC1323   531
RPC and NFS statistics   537, 538
Signal handling   528

Tables for paging device table   534
UDP checksum   535

NFS block I/O daemons   194
NFS client NFS statistics   547
NFS client pages   213
NFS client RPC statistics   545
NFS performance   527
NFS server NFS statistics   544
NFS server RPC statistics   543
NFS statistics   458
NFS tunable variables   527
NFS variables   458
nfs_allow_all_signals   528
nfs_device_specific_bufs   528
nfs_dynamic_retrans   529, 537, 540, 549
nfs_gather_threshold   529
nfs_iopace_pages   529
nfs_max_connections   529
nfs_max_read_size   530
nfs_max_threads   530
nfs_max_write_size   531
nfs_repeat_messages   531
nfs_rfc1323   531
nfs_server_base_priority   532, 540
nfs_server_clread   532
nfs_setattr_error   532
nfs_socketsize   533
nfs_tcp_duplicate_cache_size   533, 544
nfs_tcp_socketsize   533
nfs_udp_duplicate_cache_size   533, 544
nfs_use_reserve_ports   534
nfs_v2_pdts   534
nfs_v2_vm_bufs   534
nfs_v3_pdts   534
nfs_v3_vm_bufs   534
nfso command   527

Examples   536
After tuning nfsd base priority   540
Changing NFS server base priority   540
Current NFS network variables   536
RPC and NFS statistics on NFS client   537
RPC and NFS statistics on NFS server   538
vmstat on a busy NFS server   539

Flags   527
Measurement and sampling   536
Options   528

nfs_allow_all_signals   528
nfs_device_specific_bufs   528
nfs_dynamic_retrans   529, 537, 540, 549
956 AIX 5L Performance Tools Handbook



nfs_gather_threshold   529
nfs_iopace_pages   529
nfs_max_connections   529
nfs_max_read_size   530
nfs_max_threads   530
nfs_max_write_size   531
nfs_repeat_messages   531
nfs_rfc1323   531
nfs_server_base_priority   532, 540
nfs_server_clread   532
nfs_setattr_error   532
nfs_socketsize   533
nfs_tcp_duplicate_cache_size   533, 544
nfs_tcp_socketsize   533
nfs_udp_duplicate_cache_size   533, 544
nfs_use_reserve_ports   534
nfs_v2_pdts   534
nfs_v2_vm_bufs   534
nfs_v3_pdts   534
nfs_v3_vm_bufs   534
portcheck   535
udpchecksum   535

Release NFS file locks   527
Syntax   527

nfsstat command   541, 850
Examples   542

After tuning nfsd base priority   540
NFS client NFS statistics   547
NFS client RPC statistics   545
NFS server NFS statistics   544
NFS server RPC statistics   543
Reset RPC and NFS statistics   542
RPC and NFS statistics on NFS client   537
RPC and NFS statistics on NFS server   538
Statistics on mounted NFS file systems   548

Flags   541
Measurement and sampling   542
Server RPC statistics

badcalls   543
badlen   543
calls   543
dupchecks   543
dupreqs   544
nullrecv   543
xdrcall   543

Statistics
cur   548
Current backed-off time-out value   548
dev   548

Estimated deviation   548
Flags   548
Smoothed round-trip time   548
srtt   548

Syntax   541
nice command   4, 245

Examples   247
Degrade the priority of a process   248
Improve the priority of a process   248

Flags   246
Measurement and sampling   247
Parameters   246
Syntax   246

Nice value   4
Niced priority - Threads   4
Nmclust parameter   203
no command   549, 609, 850

Examples
Change a network attribute   568
Displays all parameters   565
Suggested minimum buffer and MTU sizes   
568

Flags   549
Measurement and sampling   550
Options

arpqsize   550
arpt_killc   550
arptab_bsize   550
arptab_nb   550
bcastping   550
clean_partial_conns   550
delayack   550, 551
delayackports   550, 551
dgd_packets_lost   551
dgd_ping_time   551
dgd_retry_time   551
directed_broadcast   551
extendednetstats   551
fasttimo   552
icmp6_errmsg_rate   552
icmpaddressmask   552
ie5_old_multicast_mapping   552
ifsize   552
inet_stack_size   552
ip6_defttl   553
ip6_prune   553
ip6forwarding   553
ip6srcrouteforward   553
ipforwarding   552
 Index 957



ipfragttl   552
ipignoreredirects   553
ipqmaxlen   553
ipsendredirects   553
ipsrcrouteforward   553
ipsrcrouterecv   553
ipsrcroutesend   553
lowthresh   563
main_if6   554
main_site6   554
maxnip6q   554
maxttl   554
medthresh   563
multi_homed   554
nbc_limit   526, 554
nbc_max_cache   526, 554, 555
nbc_min_cache   526, 554
nbc_pseg   526, 555
nbc_pseg_limit   526, 555
ndpqsize   555
ndpt_down   555
ndpt_keep   555
ndpt_mmaxtries   555
ndpt_probe   555
ndpt_reachable   555
ndpt_retrans   556
ndpt_umaxtries   556
net_malloc_police   556
nonlocsrcroute   556
nstrpush   564
passive_dgd   556
pmtu_default_age   556
pmtu_rediscover_interval   556
psebufcalls   564
pseintrstack   564
psetimers   564
rfc1122addrchk   556
rfc1323   531, 557
rfc2414   557, 559
route_expire   557
routerevalidate   557
rto_high   558
rto_length   557
rto_limit   557
rto_low   558
sack   558, 560
sb_max   558, 561, 562, 563
send_file_duration   558
site6_index   558

sockthresh   558
sodebug   559
somaxconn   559
strctlsz   564
strmsgsz   564
strthresh   565
strturncnt   565
subnetsarelocal   559
tcp_ecn   559
tcp_ephemeral_high   559
tcp_ephemeral_low   559
tcp_init_window   557, 559
tcp_keepidle   559
tcp_keepinit   559
tcp_keepintvl   560
tcp_limited_transmit   560
tcp_mssdflt   560
tcp_nagle_limit   560
tcp_ndebug   560
tcp_newreno   560
tcp_pmtu_discover   560
tcp_recvspace   561, 563
tcp_sendspace   561, 563
tcp_timewait   562
tcp_ttl   562
thewall   554, 558, 563, 565
udp_ephemeral_high   562
udp_ephemeral_low   562
udp_pmtu_discover   562
udp_recvspace   562, 563
udp_sendspace   563
udp_ttl   563
udpcksum   563
use_isno   563

Syntax   549
nohup command   820, 870
nointegrity mount option   27
nokilluid parameter   14
Non-fixed priority threads   5
nonlocsrcroute   556
Non-preemptive scheduling   5
npskill parameter   14, 204
npswarn parameter   14, 206
Numfsbuf parameter   203
Numpbuf parameter   203

O
Object Data Manager   433
958 AIX 5L Performance Tools Handbook



ODM   433
odmget   804
odmget subroutine   791
Open Shortest Path First   600
Optimizing executables   62
OSPF   600
Outer edge   23
Outer middle   23
Out-of-order packets   520

P
p_nice   4
Packet capture library   574
Packet counts   502
Packet filtering criteria   571
Packet headers   490
Packet trace   488
page   118
Page deletes   201
Page fault   11, 12
Page faults   118
Page Frame Table   191
Page frame table   11
Page in   190
Page ins   198
Page out   190
Page outs   198
Page replacement   11
Page replacement algorithm   208
Page size   10
Page stealer   11
Pages examined by the clock   198
Pages freed   191
Pages freed by the clock   199
Pages scanned   191
Paging   12, 188
Paging parameters   213
Paging space   13, 28, 817

Allocation policies   13
DPSA   13
EPSA   13
LPSA   13
Placement on disk   23
Thresholds   13

Paging space memory   320
Paging space page ins   198
Paging space page outs   198
Paging space parameters   201

Parallel System Support Programs   766
Parallelized user code   8
Parameters

Base parameter setting   2
fasttimo   36
framesets   206
ipqmaxlen   36
largepages   204
largepagesize   203
lrubucket   209
lvm_bufcnt   206
maxclient   205
maxfree   190, 203
maxfree parameter   12
maxperm   205
maxpgahead   203, 205
maxpin   204
maxrandwrt   206
mempools   204
minfree   12, 190, 203
minperm   205
minpgahead   205
Nmclust   203
nokilluid   14
npskill   14, 204
npswarn   14, 206
Numfsbuf   203
Numpbuf   203
pd_npages   205
rfc1323   37
sb_max   35
syncreleaseinodelock   205
tcp_mssdflt   36
tcp_nagle_limit   36
tcp_pmtu_discover   35
tcp_recvspace   36
tcp_sendspace   36
thewall   35
udp_recvspace   36
udp_sendspace   36
unixfile   206
v_pinshm   210

passive_dgd   556
Path maximum transfer unit   506
Path names for AIX tools   44
pbuf   20
pbufs

Setting pbufs   21
PCB   609, 610
 Index 959



PCB addresses   610
PCB record   610
pclose   804
pd_npages parameter   205
PDT   89, 850

Appropriate setting of system parameters   90
Balanced use of resources   90
Changes investigated   90
Collection and reporting   90
Commands

pdt_report   98
cron   98
Daily profile   90
Daily2 profile   90
Data collection and reporting   89
DISK_STORAGE_BALANCE   94
Driver_   90
Error free operation   90
EVENT_HORIZON   95
Examples

Changing thresholds   93
Creating a report manually   98
Disable PDT collection   91
Disable PDT reporting   91
Display current settings   91
Editing the configuration files   92
Enable PDT collection   91
Enable PDT reporting   91
Finding PDT files and directories   93
Manual collection   98
Monitoring hosts   93
Using reports   95

Files
.collection.control   92
.files   93
.nodes   93
.reporting.list   92
.SM_RAW_REPORT   92
.thresholds   93
/etc/resolv.conf   93
PDT_REPORT   92
resolv.conf   93
wtmp   93

FS_UTIL_LIMIT   94
Identified workload trends   90
Identify performance problems   89
Measurement and sampling   90
MEMORY_FACTOR   94
MIN_UTIL   94

NUMBER_OF_BALANCE   94
Offweekly profile   90
Operation within bounds   90
PAGING_SPACE_BALANCE   94
pdt_config   90
Reports

Alerts   95
System Health   96

Syntax   90
System parameters   90
TREND_THRESHOLD   94

pdt_report command   98
Peak throughput   17
Pending I/O waits   199
Performance

Baseline   49
CPU   2
CPU bound system   50
Disk I/O   15
Disk I/O bound system   53
Expectations   2
Getting started   43
I/O performance optimization   28
Memory   10
Memory bound system   52
Network   29
Network I/O bound system   55
NFS   56

Performance AIDE   841
Performance analysis task   43
Performance Diagnostic Facility   95
Performance Diagnostic Tool   89
Performance Monitor

Caveat events   760
PM_CAVEAT   760

Compiling and linking   760
Count metrics   759
Counting facilities   758
CPU cycle   759
Events

PM_CYC   762
PM_INST_CMPL   762

Events for different processors   759
Hardware counters   759
Metrics   764
pm_init   760
Programming

Basic program layout   761
Initialization   761
960 AIX 5L Performance Tools Handbook



Monitoring   761
Reporting   761

Sample source code   759
Subroutines

pm_cycles   761
pm_delete_program   761
pm_error   761, 762
pm_get_data   761, 763
pm_get_program   761
pm_init   761, 762
pm_reset_data   761
pm_set_program   761, 763
pm_start   761, 763
pm_stop   761

thread contexts   759
Traverse available event list   764
Unverified events   760

PM_UNVERIFIED   760
Verified events   760

PM_VERIFIED   760
Performance Monitor API   758
Performance Toolbox   818, 839

Analysis and control   841
Capacity planning   841
Filesets   841
Load monitoring   841

Performance tools
See also Tools

Performance tuning
Objective   1

Performance tuning approach   49
perfpmr command   30, 49, 98

Downloading perfpmr   104
Examples   108
Flags   99
HACMP   106
Installing perfpmr   104
Measurement and sampling   99
Parameters   99
Preparing for perfpmr   104
Reports

lsps.after   100
lsps.before   100
monitor.int   100
monitor.sum   100
nfsstat.int   100
pprof.trace.raw   100
psb.elfk   100
svmon.after   100

svmon.before   101
vmstati.after   101
vmstati.before   101
vmtunea   101
vmtunea.before   101

Scripts
config.sh   99
emstat.sh   99
filemon.sh   99
hd_pbuf_cnt.sh   99
iostat.sh   99
iptrace.sh   100
monitor.sh   100
netstat.sh   101
nfsstat.sh   101
perfpmr.sh   101
pprof.sh   101
ps.sh   102
sar.sh   102
tcpdump.sh   102
tprof.sh   102
trace.sh   102, 103
vmstat.sh   102

Sending a testcase   103
Syntax   99
Tips   109
Uploading the testcase   107

Perfstat API   712, 783
Amount of time disk is active   724, 725
Average kbytes/sec xfer rate capability   725
Average length of the run queue   719
Average length of the swap queue   719
Bad pages   721
Blocks read from all disks   725
Blocks read from disk   723
Blocks written to all disks   725
Blocks written to disk   723
Bytes received on interface   728
Bytes sent on interface   728
Clock hand cycles   721
Collisions on CSMA interface   728
Compiling and linking   712
CPU description   718
CPU idle time   716, 718
CPU name   716
CPU speed in Hz   718
CPU sys time   716, 718
CPU usage statistics   713
CPU user time   716, 718
 Index 961



CPU wait time   716, 718
Disk block size   723
Disk description   723
Examples   731
Free paging space   721
Free portion of the disk   723
Free portion of the disks   725
Free real memory   721
Global CPU usage statistics   716
Global disk usage statistics   724
Global memory usage statistics   719
Individual disk usage statistics   721
Input errors on interface   728
Interface description   728
KB/sec xfer rate capability   723
Load average   719
Network frame size   728
Network interface usage statistics   725
Non-working segment frames   721
Number of active CPUs   718
Number of bytes read by CPU   716
Number of bytes written by CPU   716
Number of configured CPUs   718
Number of execs   716, 718
Number of forks   716, 718
Number of readings   716, 718
Number of syscalls   716, 718
Number of ticks since last reboot   719
Number of writings   716, 718
Output errors on interface   728
Packets received on interface   728
Packets sent on interface   728
Page faults   721
Page ins from paging space   721
Page outs from paging space   721
Page scans by clock   721
Page steals   721
Pages paged in   721
Pages paged out   721
Queue depth   723
Real memory in use   721
Real memory pinned   721
Reserved paging space   721
Sample source code   712
Size of the disk   723
Size of the disks   725
Subroutines   712

perfstat_cpu   713
perfstat_cpu_total   713, 716

perfstat_disk   713, 721
perfstat_disk_total   713, 724
perfstat_memory_total   713, 719
perfstat_netinterface   713, 725
perfstat_netinterface_total   713

Total number of bytes read   718
Total number of bytes written   718
Total number of interrupts   718
Total number of software interrupts   718
Total paging space   721
Total real memory   720
Total transfers to/from disk   723
Total transfers to/from disks   725
Total virtual memory   720
Volume group name   723
Writing a C program   712

Perfstat kernel extension   122, 712, 736
perfstat kernel extensions   160
perl command   776
Persistent file reads and writes   201
Persistent pages   190
Persistent segments   11
PFT   11, 191
Physical blocks   409
Physical File System   692
Physical fragmentation   411, 421
Physical partitions   22, 24
Physical volume   22, 389, 413
Physical volume statistics   388
Physical volumes   443
ping command   31, 498
Pinning memory   209
plock()   15
PM   758

See also Performance Monitor
PMTU   506, 511
PMTU attribute   41
pmtu_default_age   556
pmtu_rediscover_interval   556
popen   804
portcheck   535
Porting applications   223
Ports   497
PP   22
pprof command   249, 850

Examples
pprof.cpu report   252
pprof.famcpu report   260
pprof.famind report   257
962 AIX 5L Performance Tools Handbook



pprof.namecpu report   256
pprof.start report   254

Flags   249
Measurement and sampling   250
Parameters   250
Syntax   249
Threads consuming most time   253

Prioritizing processes   148
Priority

Fixed   5
Priority calculation - Threads   4
Priority calculation for threads   4
Process dispatches   620
Process suspension   145
Process table   142
Processes   3

Definition   3
Forking   14
Kernel processes   6
Load into memory   325
Penalized processes   115
Prioritizing   148
Priority   3
Suspending active processes   13
Using most paging space   327

Processor affinity   8
Production phase   2
prof command   261

Examples
Running prof   264

Flags   262
Measurement and sampling   263
Parameters   263
Syntax   261

Profiling using tprof   275
Program text   325
Protocol   504, 506
Protocol Control Block   609
Protocol layers   31
Protocols   496, 497

TCP/IP   31
Proxy ARP   595
ps command   109, 185, 313

Examples   113
%CPU column   113
%MEM column   114
C column   115
CLASS column   118
Determining PID of wait processes   119

Displaying CPU consuming processes   113
Displaying top penalized processes   115
Displaying WLM Classes   118
Memory consuming processes   113
NI column   116
PGIN column   118
PRI column   115
Processes ordered by I/O   118
Processes ordered by nice value   116
Processes ordered by priority   115
Processes ordered by RSS value   117
Processes ordered by time   116
RSS column   117
SIZE column   114
SZ column   114
TIME column   116
Viewing threads   118
Wait processes bound to CPUs   119

Flags   110
Measurement and sampling   112
Syntax   109

PSALLOC   13
PSALLOC variable   191
PSSP   766
pstat command   849
PTFs   103
ptx2stat command   840
ptxconv command   840
ptxhottab command   841
ptxls command   840
ptxmerge command   840
ptxrlog command   840
ptxsplit command   840
ptxtab command   840
PV   22

Q
qdaemon   411

R
RAID   22
Random I/O   20
Random write-behind   210
RARP   573
Raw input/output   201
Read ahead   419
Read response-time statistics   400
README   767
 Index 963



Read-write lock   9
Real memory frame   325
Recalculated priority   4
Receive queue size   37, 40
Receiver   493
Reclaims   190
Redbooks Web site   931

Contact us   xxviii
Reduced-Memory System Simulator   314
Release NFS file locks   527
Reliable Scalable Cluster Technology   766
renice command   4, 266

Examples   267
Flags   266
Measurement and sampling   267
Parameters   266
Syntax   266

Repage fault   12
Reset RPC and NFS statistics   542
Resetting network tunables   40
Resource access serialization   8
Resource Monitoring and Control   766

See also RMC
Resource Monitoring and Control Commands   767
Response time   1
Response time expectations   1
Resuspension   145
Retransmits   520
Revolutions of the clock hand   199
rfc1122addrchk   556
rfc1323   531, 557
rfc1323 parameter   37
rfc2414   557
RMC   766

Associate reponse with condition   778
Audit Log resource manager   769
AuditRM   769, 770
chcondition   777
Commands   767
Condition occurs   776
Condition/response event   781
Conditions for dynamic attributes   768
ctrmc subsystem   770
Dynamic attributes   768
ERRM   769, 770
Event Management   766
Event Response resource manager   769
Event response script   774, 776
Examine resource classes   771

Examine resources   771
Facilities   770
File System resource manager   769
FSRM   769
grep   779
Group Services   766
HACMP   766
HACMP/ES   766
HAEM   766
HAGS   766
HATS   766
High Availability Cluster Multi-Processing   766
Host resource manager monitors   769
HostRM   769, 770
lscondition   777, 780
lscondresp   779, 782
lsresponse   778
lsrsrc   771, 773
lsrsrcdef   773
Measurement and sampling   768
mkcondition   777
mkcondresp   778
mkresponse   778
Parallel System Support Programs   766
perl   776
Properties of resources   768
PSSP   766
Register for events   768
Remove a response condition   783
Remove response definition   782
Resource classes   768
Resource manager   768
Resource monitor   768
Resource variables   768
Resources   768
Response to condition event   778
rmcctrl   770
rmcondition   783
rmresponse   782
startcondresp   779
Stop monitoring condition   782
stopcondresp   782
Supported resource classes   769
Syntax   767
Topology Services   766
Triggering the activation   776
Useful utilities   767
Variables

ERRM_ATTR_NAME   775
964 AIX 5L Performance Tools Handbook



ERRM_ATTR_PNAME   776
ERRM_COND_HANDLE   774
ERRM_COND_NAME   774
ERRM_COND_SEVERITY   774
ERRM_COND_SEVERITYID   774
ERRM_DATA_TYPE   776
ERRM_ER_HANDLE   775
ERRM_ER_NAME   775
ERRM_EXPR   775
ERRM_RSRC_CLASS_NAME   775
ERRM_RSRC_CLASS_PNAME   775
ERRM_RSRC_HANDLE   775
ERRM_RSRC_NAME   775
ERRM_SD_DATA_TYPES   776
ERRM_TIME   775, 776
ERRM_TYPE   775
ERRM_TYPEID   775
ERRM_VALUE   776

Verify active   770
Wildcards   779

rmcctrl command   770
rmcondition command   783
rmresponse command   782
rmss command   314, 850

Examples   317
Changing memory size   318
Displaying memory size   318
Resetting memory size   318
Screen output   319
Testing an executable   318

Flags   314
Measurement and sampling   316
Parameters   316
Recommendations and precautions   317
Syntax   314

route_expire   557
routerevalidate   557
Routing table   502, 503, 504, 506, 510
RPC   479
RSCT   766, 781
RT_GRQ   6
Run queue   6

Global run queue   6
Run queues   189
Runnable threads   6
Runtime phase   2
rx_que_size attribute   39

S
sa1 command   120, 127
sa2 command   120, 127
sadc command   120, 127
sar command   120, 271, 850

Buffer usage counters   122
Disk and tape I/O activity counters   122
Examples   123

24x7   127
Allocated dynamically   141
Analysis of the workload   128
Average number of kernel threads in the run 
queue   137
Average number of kernel threads waiting for 
resources or I/O   138
Average number of requests   134
Average time for request waits   135
Average time servicing a request   135
Binary statistical collection files   128
Busy servicing a transfer request   134
Caching effectiveness   132
Calls to inode lookup routines   130
Calls to the directory search routine   130
Characters transferred by read syscalls   132
Characters transferred by write syscalls   132
Collect statistics by using cron   127
Combine reports with different flags   125
CPU   123
Current limits   142
Current number of active inodes   142
Current number of active threads   142
Current number of processes running   142
Entries in the kernel process table   142
Entries in the kernel thread table   142
High watermark   141
I/O   123
IPC messages and semaphores   136
Kernel buffers   131
Kernel processes could not be created   135
Maximum number of inodes allowed   142
Maximum number of open files   141
Maximum number of threads allowed   142
Maximum number processes allowed   142
Memory   123
Monitor activity for each block device   133
Monitor all CPUs   124
Monitor file access system routines   129
Monitor one CPU at a time   123
Monitor system calls   132
 Index 965



Monitor transfers, access and caching   131
Monitoring kernel process activity   135
Monitoring kernel scheduling queue   137
Monitoring kernel tables   141
Monitoring messages and semaphores   135
Monitoring paging statistics   138
Monitoring processor utilization   138
Monitoring system context switching   142
Monitoring tty device activity   140
Number of 512-byte blocks read   130
Number of block I/O operations   131
Number of bytes transferred   135
Number of context switches   143
Number of entries in kernel inode table   141
Number of entries in the kernel file table   141
Number of free pages in paging space   138
Number of I/Os on raw devices   131
Number of IPC message primitives   136
Number of IPC semaphore primitives   136
Number of kernel procs assigned to task   
135
Number of kernel procs terminating   135
Number of logical I/O requests   131
Number of non paging disk I/Os   138
Number of open files in the system   141
Number of page faults per second   138
Number of page replacement cycles   138
Number of read and write requests   134
Outstanding I/O requests   139
Per process   142
Percentage CPU time   140
Performance bottleneck   123
Physical device units   131
Potential performance bottleneck   123
Read cache efficency   131
Run queue is occupied   138
sa1.custom script   129
Statistical collection   127
Swap queue is occupied   138
Total number of exec system calls   132
Total number of fork system calls   132
Total number of read system calls   132
Total number of system calls   132
Total number of write system calls   132
tty canonical input queue   140
tty input queue   141
tty modem interrupts   140
tty output queue   140
tty receive interrupts   141

tty transmit interrupts   141
Using sar   125
Using sar -A   126
Using sar -a   129
Using sar -aP   130
Using sar -b   131
Using sar -c   132
Using sar -cPALL   133
Using sar -d   133
Using sar -f   128
Using sar -k   135
Using sar -m   135
Using sar -mPALL   136
Using sar -q   137
Using sar -r   138
Using sar -s -f -e   128
Using sar -u   138
Using sar -uPALL   139
Using sar -v   141
Using sar -w   142
Using sar -wPALL   143
Using sar -y   140

File access counters   122
Flags   120
Interprocess communication counters   122
Measurement and sampling   122
Queue activity counters   122
Reports

%busy   134
%idle   140
%rcache   132
%runocc   138
%swpocc   138
%sys   140
%usr   140
%wcache   132
%wio   140
avque   134
avserv   135
avwait   135
blks/s   135
Block I/O cache area   131
bread/s   131
bwrit/s   131
canch/s   140
cswch/s   143
cycle/s   138
dirblk/s   130
exec/s   132
966 AIX 5L Performance Tools Handbook



fault/s   138
file-size   141
file-size-max   141
file-sz   141
fork/s   132
iget/s   130
inode-size   142
inode-size-max   142
inod-sz   141
kexit/s   135
kproc-ov/s   135
ksched/s   135
lookuppn/s   130
lread/s   131
lwrit/s   131
mdmin/s   140
msg/s   136
odio/s   138
outch/s   140
pread/s   131
proc-size   142
proc-size-max   142
proc-sz   142
pwrit/s   131
r+w/s   134
rawch/s   141
rchar/s   132
revin/s   141
runq-sz   137
scall/s   132
sema/s   136
slots   138
sread/s   132
swpq-sz   138
swrit/s   132
thrd-sz   142
thread-size   142
thread-size-max   142
wchar/s   132
xmtin/s   141

Switching and subroutine counters   122
Syntax   120
System unit utilization counters   122
tty device activity counters   122

sb_max parameter   35
SCHED_FIFO   5, 147
SCHED_FIFO2   5, 147
SCHED_FIFO3   6, 147
SCHED_OTHER   5, 147

SCHED_RR   5, 147
schedtune   5, 13
schedtune command   144, 316

Aging of a thread   148
Calculating tunable values   147
CPU flags   147
CPU usage   146
Examples   152

/etc/inittab entry   156
Calculating effective priority   153
CPU decay factor   155
CPU penalty factor   153
Displaying current settings   152
New maxspin value   157
Using schedtune -d   155
Using schedtune -r   153
Using schedtune -s   157

Fixed priority threads   149
Flags   145
Fork retries   149
Forking   14
Global run queue   146
Idle migration barrier   146
Lock tuning   149
Memory flags   150
Multi programming level   145
Prioritizing   148
Process suspension   145
Recommendations and precautions   151
Resuspension   145
SCHED_FIFO2   146
SCHED_RR   146
Spinning on locks   146
Syntax   145
Thrashing   145, 150
Time slice   149

Scheduling policies   5
Default   5
SCHED_FIFO   5, 147
SCHED_FIFO2   5, 146, 147
SCHED_FIFO3   6, 147
SCHED_OTHER   5, 147
SCHED_RR   5, 146, 147

SCSI   17, 434
Seek distance   398
Segment size   325
Segments   325

Client   325
Mapping   325
 Index 967



Persistent   325
Real memory mapping   325
Working   325

Selective ACKnowledgement   597
Semaphores   303
semop   313
Sender   493
Sequential I/O   20
Sequential write-behind   210
Sequentiality   391, 421
Shared kernel data   8
Shared memory   15

Removing
ipcrm   738

Shapshot
ipcs   738

Shared memory regions   15
SIGDANGER signal   14
SIGKILL   738
SIGKILL signal   14
Signals

SIGKILL   738
SIGTERM   738

SIGTERM   738
Simultaneous Periphereal Operation Off Line   411
Single indirect block   417
Size of paging space   334
Sizing phase   2
Sleeping lock   8
Sleeping locks   9
slibclean command   302, 307, 308, 738, 821
SMIT

WLM   815
SMP

bindintcpu command   225
snap command   30
Snooping   7
Socket buffer overflow   521
Socket connections   502
Socket state   504, 507, 523
Software interrupts   199
Software transmit queue size   37, 40
sort command   456
Soubroutines

mcount   237
SP Switch device driver statistics   471
Space efficiency   419
Sparsely allocated files   422
Spin locks   8

SPINLOOPTIME   8
splat command   653

Address-to-name resolution   658
Examples   659
Execution, trace, and analysis intervals   657
Flags   654
Lock states   667
Measurement and sampling   656
Parameters   655
Reports

AIX kernel lock details   664
Complex-Lock report   671
Condition-Variable report   680
Execution summary   659
Gross lock summary   661
Mutex reports   674
Per-lock summary   662
PThread synchronizer reports   674
Read/Write lock reports   677
RunQ- Lock Details   664
Simple Lock Details   664
Thread Detail   670

Source   657
Syntax   653
Trace discontinuities   658
Trace hooks   656

SPMI   736, 839
Compiling and linking   737
Context template   737
Data organization   737
Higher-level context   737
Metric data hierarchy   737
Metric instantiation   737
Metrics   737
Multilevel hierarchy of contexts   737
Parent context   737
Processes using SPMI   738
Shared memory   738
Shared memory segment   738
Sub contexts   737
Subroutines   738

SpmiCreateStatSet   739, 740
SpmiExit   739, 743
SpmiFirstVals   739, 741
SpmiFreeStatSet   739, 743
SpmiGetStat   739
SpmiGetValue   739, 742
SpmiInit   739
SpmiNextVals   739, 742
968 AIX 5L Performance Tools Handbook



SpmiPathAddSetStat   739, 741
SpmiPathGetCx   739

Writing a C program   737
SPOOL   411
SRC   498
SSA   17
SSA logical disk   444
ssaraid command   445
ssaxlate command   444
Stack   325
Start I/Os   199
startcondresp command   779
Statistics on mounted NFS file systems   548
stopcondresp command   782
Strict - Disk allocation   24
stripnm command   682

Examples   683
Output generated   683

Flags   682
Glue Code   683
Measurement and sampling   683
Parameter   683
Syntax   682
Trace back table   683

Structures
wlm_info   798

Subroutines
creatp   135
getprocs   784, 794, 796
initp   135
knlist   188
plock()   15
rstat   784, 792, 793
setsockopt   609
swapqry   784
sys_parm   784, 785
sysconfig   784
vmgetinfo   784, 787, 788
wlm_get_bio_stats   784, 799
wlm_get_info   784, 797, 798
wlm_get_info()   811
wlm_initialize   798

WLM_VERSION   798
sum structure   187
Superblock   410
Superstrict - Disk allocation   24
Suspending active processes   13
svmon command   14, 305, 320, 408, 808, 850

Examples   326

Client segment   336
Client segment pages   334
Client segment pinned pages   334
Files used by a process or command   328
Frames containing pages   334
Frames containing pinned pages   334
Frames free of all memory pools   334
Global report   333
Mapped segment   336
Monitor system memory utilization   333
Monitor users memory utilization   335
Most used segments   328
Pages allocated in process virtual space   
336
Paging space pages used   334
Persistent segment   336
Persistent segment pages   334
Persistent segment pinned pages   334
Processes belonging to a user   338
Processes using most paging space   327
Processes using most real memory   327
Real memory frames   334
Real memory mapping segment   336
Segments in paging space   331
Size of paging space   334
Unique segment in the VMM   336
User reports   335
Virtual segment ID   336
Virtual space for working segments   334
WLM classes consuming memory   327
Working segment   336
Working segment pages   334
Working segment pinned pages   334

Flags   321
Measurement and sampling   324
Parameters   324
Segments   325
Syntax   320

svmon_back command   320
swapqry   804
Symmetrical Multiprocessor (SMP)   7

bindintcpu command   7
bindprocessor command   7
Cache coherency   7
I/O handling   7
Interrupt handling   7
Locks   8
lrud kernel process   12
Memory management   7
 Index 969



Mutual exclusion lock   9
Performance   7
Read-write lock   9
Resource access serialization   8
Sleeping locks   9
Snooping   7
Spin locks   8
Thread handling   7

sync command   410
syncd daemon   211
syncreleaseinodelock parameter   205
syncvg command   26
sys_parm   784, 802
System bus   18
System calls   7, 15, 169, 199
System calls per second   192
System load   30
System Performance Measurement Interface   160, 
736, 839
System Resource Controller   498, 768
System resources   47

Logical   8
System throughput   6
System time   193

T
TCP   479, 493, 497, 573, 580, 584, 597, 608, 612
TCP statistics   518
TCP window probe   521
TCP Window size   521
TCP window size   521
TCP/IP   584
TCP/IP layers   32
TCP/IP protocol headers   580
TCP/IP protocols   31, 479

Internet Protocol   31
Layers   31
Transmission Control Protocol   31
User Datagram Protocol   31

tcp_init_window   557
tcp_mssdflt parameter   36
tcp_nagle_limit parameter   36
tcp_pmtu_discover parameter   35
tcp_recvspace parameter   36
tcp_sendspace parameter   36
tcpdump command   32, 481, 488, 490, 497, 571, 
583, 608

Amount   583

Examples   583
A class address   599
ARP cache thrashing   595
ARP handling   595
ARP reply   595
ARP requests   595
ARP server   595
arpqsize   596
arpt_killc   596
arptab struct   596
arptab_bsiz   595
ARPTAB_HASH   596
ARPTAB_LOOK   596
arptab_nb   595
B class address   599
Basic tcpdump network trace   583
Bucket entries   595
C class address   599
Checking TCP MSS   598
Four way close   588
Good way to use tcpdump   583
Hash table   595
How a TCP connection is closed   588
ICMP packet   593
ICMP packets   599
Interpret link-level headers   593
Limit the number of traced packets   583
Link-level broadcasts   595
Monitor all packets   592
Monitor all TCP traffic   586
Monitor ARP packets   594
Monitor start/stop packets   585
Monitor TCP   584
Monitor TCP connections   597
Monitor UDP domain name server requests   
590
Monitor UDP name server responses   591
Monitor UDP packets   589
Name resolution   601
Order of precedence   598
OSPF routing packet   593
Other protocols from the IP header   600
Powerful filtering mechanism   596
Proxy ARP   595
Quick   600
Quick verbose   600
Read a tcpdump file   583
Schematic flow during TCP close   589
Schematic flow during TCP open   587
970 AIX 5L Performance Tools Handbook



Short IP packets   597
subnetsarelocal   599
TCP connection is opened   587
TCP packet   593
Three way handshake   587
Truncated Token-Ring packet   593
UDP packet   593
Unknown protocol to tcpdump   593
Use expressions   596
Use tcpdump with ipreport   584
Using tcpdump   585, 587, 588, 589, 591, 
592, 593, 594, 597, 599, 600
Verbose   600
Verbosity   600
Verbosity levels   600

Flags   571
Measurement and sampling   573

ARP   573
Broadcast   574
Ethernet 802.3 frame header   581
Ethernet frames   573
Ethernet V2 frame header   580
ICMP (RFC 792) packet header   583
IP   573
IP V4 (RFC 791) packet header   581
Multicast   574
Packet header formats   580
Protocol dependent   573
RARP   573
TCP   573
TCP (RFC 793) packet header   582
Timestamp   574
Token-Ring frame header   580
UDP   573
UDP (RFC 768) packet header   582

Network tracing   583
Parameters   573
Scope   583
Syntax   571

Theads
Average CPU affinity   625

thewall parameter   35, 554
Thrashing   13, 150
Thread handling - SMP   7
Thread table   142
Threads   3

Aging   5
Aging of a thread   148
Base priority   4

Definition   3
Dispatchable   5, 6
Fixed priority   5, 6, 149
Kernel mode   6
Kernel threads   3
Niced priority   4
Non-fixed priority   5
Priority   3

Calculation   4
Recalculated priority   4
Run queue   6
Runnable   6
User mode   6
User threads   3

Thresholds
Paging space   13

Throughput   1, 6
Throughput expectations   1
Tier WLM   810
time command   268, 849

Examples   269
Flags   269
Measurement and sampling   269
Parameters   269
Real time   269
SMP   270
Syntax   268
System time   269
User time   269

Time slice   5, 149
Time slices   6
Time spent by a function   265
Time spent in a function   245
timex command   270

Buffer activity   272
Context switches   275
CPU statistics   274
Event and queue statistics   273
Examples   271
Flags   270
Kernel statistics   274
Measurement and sampling   271
Paging space   274
Parameters   270
Queue statistics   273
Semaphores and messages   273
Syntax   270
System access routines   272
tty statistics   275
 Index 971



Token-Ring   574, 580
Token-ring device driver statistics   602
tokstat command   602

Broadcast Packets   606
Current HW Transmit Queue Length   606
Current S/W+H/W Transmit Queue Length   606
Current SW Transmit Queue Length   606
Device specific statistics   603
Elapsed Time   605
Examples   604

Device driver statistics   604
Statistics during execution of a program   608
Statistics for a fixed time frame   608
xmt_que_size values for tok0   607

Flags   602
Generic statistics   603
Max Packets on S/W Transmit Queue   606
Measurement and sampling   603
No mbuf Errors   606
Parameters   603
S/W Transmit Queue Overflow   606
Syntax   602
Transmit and Receive Bytes   605
Transmit and Receive Interrupts   605
Transmit and Receive Packets   605

Tools
API   711
CPU   221

alstat   222
bindintcpu   225
bindprocessor   228
emstat   232
gprof   235
nice   245
pprof   249
prof   261
renice   266
time   268
timex   270
tprof   275
xprofiler   236

Disk I/O
filemon   388
fileplace   409
lslv   429
lvmstat   445

Memory
ipcs   302
rmss   314

svmon   320
Multi resource

fdpr   59
iostat   67
PDT   89
perfpmr   98
ps   109
sar   120
schedtune   144
topas   158
truss   168
vmstat   186
vmtune   201

Network
atmstat   459
entstat   465
estat   471
fddistat   474
ipfilter   479
ipreport   488
iptrace   494
netstat   502
nfso   527
nfsstat   541
no   549
tcpdump   571
tokstat   602
trpt   608

Trace
curt   616
genkex   640
genkld   641
genld   643
gennames   644
locktrace   651
splat   653
stripnm   682
trace   685
trcnm   702
trcrpt   704

Tools and filesets   44
topas command   43, 50, 158, 808, 849

Common usage   160
CPU

Idle time   160
Kernel time   160
User time   160
Wait time   160

CPU utilization statistics   160
972 AIX 5L Performance Tools Handbook



Disk
Kilobytes per second   161
Kilobytes Read   161
Kilobytes written   161
Percentage busy   161
Transfers per second   161

Disk drive statistics   161
Event and queue statistics   161
Events and queues

Context switches   161
Number of execs   161
Number of forks   161
System calls   161
System read calls   161
System writes calls   161
Threads in run queue   161
Threads in wait queue   161

Examples   165
Full process display screen   166
Initially diagnose a bottleneck   167
Monitoring disk problems   167

File and tty
Bytes read   162
Bytes written   162
Directory block scanned   162
Inode lookups   162
Path lookup   162
System read calls   161
System write calls   161

File and tty statistics   161
Measurement and sampling   160
Measuring context switches   160
Measuring system calls   160
Memory statistics   162
Network

Kilobytes per second   160
Kilobytes received   160
Kilobytes transmitted   160
Packets received   160
Packets transmitted   160

Network interface statistics   160
NFS statistics   162
Paging

Faults   162
Number of I/Os   162
Page read   162
Page written   162
Pages read from paging space   162
Pages written to paging space   162

Steals   162
Paging statistics   162
Process statistics   161
Real Memory

Client cache   162
Non computational pages   162

Real memory
Computational pages   162

Sample interval   160
Subcommands   163
Syntax   158
WLM statistics   158

Topology Services   766
Total CPU time   620
Total reclaims   198
tprof command   275, 313, 850

Decrementer interrupt   278, 300
Examples   279

Application profiling   285, 288
Detect a resource bottleneck   290
Hot lines report   289
Micro profiling   289
Monitor CPU bound system   293
Process summary report   280
Profile the system   279
Report for one application   285
Run tprof in offline mode   279
Source code profile   290
Summary report   280
Time ticks in kernel extensions   283
Time ticks in kernel mode   282
Time ticks in shared library code   284
Trace hook 234   298
vmstat on CPU bound system   290

Files generated   277
Flags   276
Gathering data   278
High resolution timer   278, 300
Hot profile   277
Measurement and sampling   278
Micro profile   277
Micro profiling   275
Offline mode   278, 279
Sample rate   278
Summary report   277
Syntax   275

Trace
Examples

AIX5 Trace Hooks   922
 Index 973



Trace back table   683
Trace buffer   688
trace command   685, 850

circular mode   688
CPU Overhead   691
Daemon   691
Examples

Checking return times   697
Checking sequential access   697
Running asynchronously   695
Running for 10 seconds   696
Running trace interactively   695
Specifying a log file   696
Tracing a command   696
Tracing a specific process   699
Tracing with SMIT   694
Using one set of buffers per CPU   696

Files   690
Flags   686
Formatting raw trace file   704
Hook ID   692
Measurement and sampling   691
Operation modes

Alternate   691
Circular   691
Single   691

SIG_IGN   690
Signals   690
Stopping and starting trace   694
Subcommands   690
Syntax   686
Trace buffer   688, 692
Trace buffer size   690
Trace daemon   692
Trace Hooks   692
Trace log file   693

Trace Hooks   692
Trace tools   615
traceroute command   31
Tracing and analyzing network traffic   490
Transmission Control Protocol   31, 497
trcnm command   702

Examples   703
Create and save a name list   703
Create name list for specified symbols   703

Measurement and sampling   703
Syntax   702

trcoff command   390, 686
trcon command   390, 686

trcrpt
Examples

Creating raw trace files via smit   708
ExamplesCombining trace buffers   709

trcrpt command   103, 686, 704
Examples   708
Flags   704
Measurement and sampling   708
Parameters   708
Syntax   704

trcstop command   390, 686
trpt command   608

Examples   610
Internal state   611
Local address   611
Packet-sequencing information   612
Protocol   611
Receive queue size   611
Remote address   611
Send queue size   611
Source and destination addresses   612
Stored trace records   611
Timers at each point in the trace   613
Using netstat   610
Using trpt   610, 612, 613

Flags   608
Measurement and sampling   609

setsockopt   609
SO_DEBUG   609
sodebug   609

Parameters   609
protocol tracing   608
Reports

Foreign Address   611
Local Address   611
PCB/ADDR   611
Proto   611
Recv-Q   611
Send-Q   611
State   611

Syntax   608
truss command   168, 313

Examples   175
Analyze file descriptors   180
Authenticated user   185
Checking the general application flow   175
Child processes   184
Combine different flags   182
Forking   185
974 AIX 5L Performance Tools Handbook



How to use truss   175
Include all processes   178
Login shell   185
Program environment variables   183
Program parameters   183
Read file descriptors   180
read_write.c program   178
Running processes   178
Spawned child   185
Summary output   176
Track a process   178
Using ps   184, 185
Using truss   175, 176, 177, 183, 184, 185, 
186

Flags   168
I/O buffer contents   169
Machine faults   168, 170

Breakpoint instruction   171
Floating-point exception   171
FLTACCESS   171
FLTBOUNDS   171
FLTBPT   171
FLTFPE   171
FLTILL   170
FLTIOVF   171
FLTIZDIV   171
FLTPAGE   171
FLTPRIV   171
FLTSTACK   171
FLTTRACE   171
Illegal instruction   170
Integer overflow   171
Integer zero divide   171
Memory access   171
Memory bounds   171
Privileged instruction   171
Recoverable page fault   171
Trace trap (single-step)   171
Unrecoverable stack fault   171

Measurement and sampling   173
/proc   173
Address space map info for PID   174
Address space of process PID   174
Atomic representation   174
Atomic snapshot   174
Control file for process PID   174
Control file for thread TID   175
Directory for objects for process PID   174
Directory for the process PID   174

Directory for thread TID   175
Future releases   174
Process status info for process PID   174
Process status info for thread TID   175
Signal actions for process PID   175
Status of process PID   174
Status of thread TID   175
Subroutines   173
System call information for process PID   175
Zombie   174

Received signals   168
Signals   171

Abort   173
Abort process   171
AIX virtual time alarm   172
Alarm clock timeout   172
Background read   172
Background write   172
Bad argument   171
Base LAN I/O   173
Bus error   171
Continue   172
CPU time limit exceeded   172
EMT intruction   171
File size limit exceeded   172
Floating point exception   171
Hangup   171
I/O possible   172
Illegal instruction   171
Input data is in the ring buffer   172
Interactive stop   172
Interrupt   171
Keep alive poll   173
Kill   171
Monitor mode granted   173
Monitor mode should be relinguished   173
Power-fail restart   172
Predictive De-configuration   173
Printer to backend error   173
Profiling time alarm   172
Programming exception   172
PTY I/O   173
Quit   171
Secure attention key   173
Segmentation violation   171
Sent to parent   172
SIGABRT   171
SIGAIO   173
SIGALRM   172
 Index 975



SIGALRM1   172
SIGBUS   171
SIGCHLD   172
SIGCLD   173
SIGCONT   172
SIGCPUFAIL   173
SIGDANGER   172
SIGEMT   171
SIGFPE   171
SIGGRANT   173
SIGHUP   171
SIGILL   171
SIGINT   171
SIGIO   172
SIGIOINT   173
SIGIOT   173
SIGKAP   173
SIGKILL   171
SIGLOST   173
SIGMIGRATE   172
SIGMSG   172
SIGPIPE   172
SIGPOLL   173
SIGPRE   172
SIGPROF   172
SIGPTY   173
SIGPWR   172
SIGQUIT   171
SIGRETRACT   173
SIGSAK   173
SIGSEGV   171
SIGSOUND   173
SIGSTOP   172
SIGSYS   171
SIGTERM   172
SIGTRAP   171
SIGTSTP   172
SIGTTIN   172
SIGTTOU   172
SIGURG   172
SIGUSR1   172
SIGUSR2   172
SIGVIRT   172
SIGVTALRM   172
SIGWAITING   172
SIGWINCH   172
SIGXCPU   172
SIGXFSZ   172
Software termination   172

Sound control   173
Stop   172
System crash imminent   172
Trace trap   171
Urgent condition   172
User defined   172
Virtual time alarm   172
Window size changed   172
Write on a pipe   172

Syntax   168
System calls   168, 169

tx_que_size attribute   39

U
UDP   479, 493, 497, 573, 580, 589
UDP statistics   521
udp_recvspace parameter   36
udp_sendspace parameter   36
udpchecksum   535
ulimit command   142, 424
Unallocated logical blocks   413
unixfile parameter   206
Unlock   8
uptime command   434
User code

Parallelized   8
User Datagram Protocol   31, 497
User mode   6
User threads   3
User time   193

V
v_pinshm parameter   210
Variables

EXTSHM   15
PSALLOC   13, 191
RT_GRQ   6
SPINLOOPTIME   8
YIELDLOOPTIME   8

VFS   130
VG   22
vi

Editing large files   699
Virtual memory   11, 320, 389
Virtual memory activity   187, 188
Virtual Memory Manager   10, 201, 324, 338

vmgetinfo   784
Virtual memory monitor   320
976 AIX 5L Performance Tools Handbook



Virtual memory page   325
Virtual memory statistics   388
vmgetinfo   803

VMM   784
VMM   10, 324, 338

Page replacement   201
Page stealing   190
Statistics   187
See also Memory

VMM information   784
vmstat command   137, 186, 850

Active Virtual Memory   189
avm   189
Block queue   189
Context switches   192
CPU idle time   193
CPU wait   193
Examples   188

Address translation faults   198
Backtracks   199
Busy NFS server   539
CPU context switches   199
Device interrupts   199
Executable-filled page faults   198
Extended XPT waits   199
Forks report   195
Free frame waits   199
High paging   191
I/O report   200
Interrupt report   195
iodones   199
Lock misses   199
Page ins   198
Page outs   198
Pages examined by the clock   198
Pages freed by the clock   199
Paging space page ins   198
Paging space page outs   198
Pending I/O waits   199
Revolutions of the clock hand   199
Software interrupts   199
Start I/Os   199
Sum structure report   197
Syscalls   199
Total reclaims   198
Virtual memory activity   188
Virtual memory report   194
Zero-filled page faults   198

Flags   187

Forks   195
fr to sr ratio   191
Free List   190
I/O pending   193
Interrupt statistics   228
Interrupts   192
Measurement and sampling   188
Page in   190
Page out   190
Pages freed   191
Pages scanned   191
Parameters   187
Reclaims   190
Run queue   189
Syntax   187
System calls   192
System time   193
Tips   201
User time   193
Virtual memory activity   188
wait I/O   193

vmtune command   12, 13, 20, 201
Calculating tunable values   206
Computational pages   212
defps   213
Examples   214

/etc/inittab entry   214
Changing minperm and maxperm   218
Current settings   215
Increasing lvm_bufcnt   220
minperm and maxperm problem   217
minpgahead and maxpgahead values   219
Using vmtune -a   216

File system caching   212
Flags   203
I/O tuning parameters   211
JFS2 client pages   213
lgpg_regions   213
lgpg_size   213
lrubucket   209
lvm_bufcnt   211
maxclient   213
maxfree   208
maxperm   212
maxpgahead   206
maxpin   209
maxrandwrt   210
Memory pools   208
mempools   208
 Index 977



minfree   208
minperm   212
minpgahead   206
NFS client pages   213
nokilluid   14
npskill   14
npswarn   14
numclust   210
numfsbufs   211
numperm   212
Page replacement algorithm   208
Paging parameters   213
pd_npages   211
Pinning memory   209
Random write-behind   210
Recommendations and precautions   214
rfsbufwaitcnt   535
Sequential read-ahead   206
Sequential write-behind   210
strict_maxperm   212
sync_release_ilock   211
syncd daemon   211
Syntax   202

vmtune64 command   202
vnode definition   130
Volume Group   22
vpath   20

W
Web-based System Manager

WLM   815
WebSM   766
Wildcards   779
WLM   797, 807

Active mode   807
Child processes   816
Class   810
Java filesets   818
Memory consumption   320
Memory usage per class   327
Paging space   817
Passive mode   808
Performance Toolbox   818
Rules file   814
Rules file order   814
SMIT   815
svmon command   808
Tier   810

topas command   808
Web-based System Manager   815
wlmmon   818

Advanced option1   835
Advanced option2   836
Advanced options   834
Bar graph trended view   831
Bar View   827
Exploring wlmmon windows   822
Measurement and sampling   822
Opening log file   824
Selected menu   829
Snapshot trended view   832
Snapshot View   828
Snapshot View bulbs   828
Starting wlmmon   822
Table trended view   830
Table View   826
Tier/Class menu   836
Trend   829
WLM_Console menu   824

wlmperf   818
Advanced option1   835
Advanced option2   836
Advanced options   834
Bar graph trended view   831
Bar View   827
Exploring wlmperf windows   822
Measurement and sampling   822
Opening log file   824
Selected menu   829
Snapshot trended view   832
Snapshot View   828
Snapshot View bulbs   828
Starting wlmperf   822
Table trended view   830
Table View   826
Tier/Class menu   836
Trend   829
WLM_Console menu   824

wlmstat   808
xmtrend daemon   818

Configuration file   819
Recording directory   819
Recording file   819
Starting the daemon   820
Stopping the daemon   821
Trace   819

xmwlm daemon   818
978 AIX 5L Performance Tools Handbook



Recording directory   818
Recording file   818
Starting the daemon   820
Trace   819

WLM classes   110
WLM statistics   158
WLM_BIO_ALL_DEV   800
WLM_BIO_DEV_INFO   801
wlm_bio_dev_info_t structure   800
wlm_get_bio_stats   801
wlm_info structure   798
wlm_initialize   801
WLM_VERSION   800
wlmmon command   818

Advanced option1   835
Advanced option2   836
Advanced options   834
Bar graph trended view   831
Bar View   827
Exploring wlmmon windows   822
Measurement and sampling   822
Opening log file   824
Selected menu   829
Snapshot trended view   832
Snapshot View   828
Snapshot View bulbs   828
Starting wlmmon   822
Syntax   819
Table trended view   830
Table View   826
Tier/Class menu   836
Trend   829
WLM_Console menu   824

wlmperf command   818, 841, 849
Advanced option1   835
Advanced option2   836
Advanced options   834
Bar graph trended view   831
Bar View   827
Exploring wlmperf windows   822
Measurement and sampling   822
Opening log file   824
Selected menu   829
Snapshot trended view   832
Snapshot View   828
Snapshot View bulbs   828
Starting wlmperf   822
Syntax   819
Table trended view   830

Table View   826
Tier/Class menu   836
Trend   829
WLM_Console menu   824

wlmstat command   808
CLASS   810
CPU   810
Decayed average   811
DKIO   811
Examples   811
Flags   809
Measurement and sampling   810
MEM   810
Parameters   810
Syntax   809
Verbose output   812
wlm_get_info()   811

Working segments   11
Workload Manager   807
Workload Manager (WLM)   320
Workload Manager subroutines   797
Workstation identifiers   111

X
x_nice   4
xargs command   314
xmpeek command   865
xmperf command   842

Add a local instrument   854
Consoles   847
Creating user defined consoles   853

Adding instrument resources   859
Changing value properties   855
Instrument naming   857
Modify instrument   857
Resource listing   855

Display requirements   846
Examples   853
Flags   843
Main window   846
Measurement and sampling   845
Mini monitor window   846
Parameters   845
Playback   850, 852

The playback monitor   852
Primary graphic styles   848
Recording   850

Append to file   851
 Index 979



Begin recording   850
End recording   851
Replace file   851

Recording instruments   847
SiCounter   845
SiQuantity   845
Starting xmperf   846
State instruments   848
Syntax   842
System commands   849

xmt_que_size attribute   39
xmtrend   869

Syntax   869
xmtrend command

Flags   869
xmtrend daemon   818, 820

Configuration file   819, 869
Daemon fails to start   871
Flags   819
Recording directory   819, 869
Recording file   819, 869
Starting the daemon   820, 870
Stopping the daemon   821
Syntax   819
Trace   819
xmtrend log files   873

xmwlm daemon   818, 820
Flags   818
Recording directory   818
Recording file   818
Starting the daemon   820
Syntax   818
Trace   819

xnice factor   4
xprofiler command   236

Y
YIELDLOOPTIME   8

Z
Zero-filled page faults   198
Zombie definition   174
980 AIX 5L Performance Tools Handbook



 

AIX 5L Perform
ance Tools 

Handbook
 







®

SG24-6039-00 ISBN 0738422983

INTERNATIONAL 
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE 

IBM Redbooks are developed by 
the IBM International Technical 
Support Organization. Experts 
from IBM, Customers and 
Partners from around the world 
create timely technical 
information based on realistic 
scenarios. Specific 
recommendations are provided 
to help you implement IT 
solutions more effectively in 
your environment.

For more information:
ibm.com/redbooks

AIX 5L Performance Tools 
Handbook

Use the AIX 5L 
performance 
monitoring and 
tuning tools 
efficiently

Understand the 
performance of your 
AIX system

Know how to 
interpret the 
statistics

This redbook is a comprehensive guide on the performance 
monitoring and tuning tools that are provided with AIX 5L 
Version 5.1.

The usage of each tool is explained together with the way it 
takes the measurements and statistics it produces. This 
redbook contains a large number of usage and output 
examples for each of the tools, pointing out the relevant 
statistics to look for when analyzing an AIX system’s 
performance from a practical point of view. It also explains the 
performance APIs that are available with AIX 5L and gives 
examples on how to create your own performance tools. This 
redbook also contains an overview of the graphical AIX 
performance tools available with AIX 5L and the AIX 
Performance Toolbox Version 3.0.

This redbook is the ultimate reference for system 
administrators and support professionals who want to 
efficiently use the AIX performance monitoring and tuning 
tools and understand how to interpret the statistics. 

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Special notice
	IBM trademarks
	Comments welcome

	Chapter 1. Introduction to AIX performance monitoring and tuning
	1.1 CPU performance
	1.1.1 Initial advice
	1.1.2 Processes and threads
	1.1.3 Process and thread priorities
	1.1.4 Scheduling policies
	1.1.5 Run queues
	1.1.6 Time slices
	1.1.7 Mode switching
	1.1.8 SMP performance

	1.2 Memory performance
	1.2.1 Initial advice
	1.2.2 Memory segments

	1.3 Disk I/O performance
	1.3.1 Initial advice
	1.3.2 Disk subsystem design approach
	1.3.3 Bandwidth related performance considerations
	1.3.4 Disk design
	1.3.5 Logical Volume Manager (LVM) concepts

	1.4 Network performance
	1.4.1 TCP/IP protocols
	1.4.2 Network tunables


	Chapter 2. Getting started
	2.1 Tools and filesets
	2.2 Tools by resource matrix
	2.3 Performance tuning approach
	2.3.1 CPU bound system
	2.3.2 Memory bound system
	2.3.3 Disk I/O bound system
	2.3.4 Network I/O bound system


	Chapter 3. Multi resource monitoring and tuning tools
	3.1 fdpr
	3.1.1 Syntax
	3.1.2 Information on measurement and sampling
	3.1.3 Examples

	3.2 iostat
	3.2.1 Syntax
	3.2.2 Information on measurement and sampling
	3.2.3 Examples

	3.3 netpmon
	3.3.1 Syntax
	3.3.2 Information on measurement and sampling
	3.3.3 Examples

	3.4 Performance Diagnostic Tool (PDT)
	3.4.1 Syntax
	3.4.2 Information on measurement and sampling
	3.4.3 Examples

	3.5 perfpmr
	3.5.1 Syntax
	3.5.2 Information on measurement and sampling
	3.5.3 Building and submitting a testcase
	3.5.4 Examples

	3.6 ps
	3.6.1 Syntax
	3.6.2 Information on measurement and sampling
	3.6.3 Examples

	3.7 sar
	3.7.1 Syntax
	3.7.2 Information on measurement and sampling
	3.7.3 Examples

	3.8 schedtune
	3.8.1 Syntax
	3.8.2 Information on calculating tunable values
	3.8.3 Recommendations and precautions
	3.8.4 Examples

	3.9 topas
	3.9.1 Syntax
	3.9.2 Information on measurement and sampling
	3.9.3 Common uses of the topas command
	3.9.4 Examples

	3.10 truss
	3.10.1 Syntax
	3.10.2 Information on measurement and sampling
	3.10.3 Examples

	3.11 vmstat
	3.11.1 Syntax
	3.11.2 Information on measurement and sampling
	3.11.3 Examples

	3.12 vmtune
	3.12.1 Syntax
	3.12.2 Calculating tunable values
	3.12.3 Recommendations and precautions
	3.12.4 Examples


	Chapter 4. CPU performance tools
	4.1 alstat
	4.1.1 Syntax
	4.1.2 Information on measurement and sampling
	4.1.3 Examples
	4.1.4 Detecting and resolving alignment

	4.2 bindintcpu
	4.2.1 Syntax
	4.2.2 Examples

	4.3 bindprocessor
	4.3.1 Syntax
	4.3.2 Information on measurement and sampling
	4.3.3 Examples

	4.4 emstat
	4.4.1 Syntax
	4.4.2 Information on measurement and sampling
	4.4.3 Examples
	4.4.4 Detecting and resolving emulation

	4.5 gprof
	4.5.1 Syntax
	4.5.2 Information on measurement and sampling
	4.5.3 Examples

	4.6 nice
	4.6.1 Syntax
	4.6.2 Information on measurement and sampling
	4.6.3 Examples

	4.7 pprof
	4.7.1 Syntax
	4.7.2 Information on measurement and sampling
	4.7.3 Examples

	4.8 prof
	4.8.1 Syntax
	4.8.2 Information on measurement and sampling
	4.8.3 Examples

	4.9 renice
	4.9.1 Syntax
	4.9.2 Information on measurement and sampling
	4.9.3 Examples

	4.10 time
	4.10.1 Syntax
	4.10.2 Information on measurement and sampling
	4.10.3 Examples

	4.11 timex
	4.11.1 Syntax
	4.11.2 Information on measurement and sampling
	4.11.3 Examples

	4.12 tprof
	4.12.1 Syntax
	4.12.2 Information on measurement and sampling
	4.12.3 Examples


	Chapter 5. Memory performance tools
	5.1 ipcs
	5.1.1 Syntax
	5.1.2 Information on measurement and sampling
	5.1.3 Examples

	5.2 rmss
	5.2.1 Syntax
	5.2.2 Information on measurement and sampling
	5.2.3 Recommendations and precautions
	5.2.4 Examples

	5.3 svmon
	5.3.1 Syntax
	5.3.2 Information on measurement and sampling
	5.3.3 Examples


	Chapter 6. Disk I/O performance tools
	6.1 filemon
	6.1.1 Syntax
	6.1.2 Information on measurement and sampling
	6.1.3 Examples

	6.2 fileplace
	6.2.1 Syntax
	6.2.2 Information on measurement and sampling
	6.2.3 Examples

	6.3 lslv, lspv, and lsvg
	6.3.1 lslv syntax
	6.3.2 lspv Syntax
	6.3.3 lsvg syntax
	6.3.4 Information on measurement and sampling
	6.3.5 Examples

	6.4 lvmstat
	6.4.1 Syntax
	6.4.2 Information on measurement and sampling
	6.4.3 Examples


	Chapter 7. Network performance tools
	7.1 atmstat
	7.1.1 Syntax
	7.1.2 Information on measurement and sampling
	7.1.3 Examples

	7.2 entstat
	7.2.1 Syntax
	7.2.2 Information on measurement and sampling
	7.2.3 Examples

	7.3 estat
	7.3.1 Syntax
	7.3.2 Information on measurement and sampling
	7.3.3 Examples

	7.4 fddistat
	7.4.1 Syntax
	7.4.2 Information on measurement and sampling
	7.4.3 Examples

	7.5 ipfilter
	7.5.1 Syntax
	7.5.2 Information on measurement and sampling
	7.5.3 Examples

	7.6 ipreport
	7.6.1 Syntax
	7.6.2 Information on measurement and sampling
	7.6.3 Examples

	7.7 iptrace
	7.7.1 Syntax
	7.7.2 Information on measurement and sampling
	7.7.3 Examples

	7.8 netstat
	7.8.1 Syntax
	7.8.2 Information on measurement and sampling
	7.8.3 Examples

	7.9 nfso
	7.9.1 Syntax
	7.9.2 Information on measurement and sampling
	7.9.3 Examples

	7.10 nfsstat
	7.10.1 Syntax
	7.10.2 Information on measurement and sampling
	7.10.3 Examples

	7.11 no
	7.11.1 Syntax
	7.11.2 Information on measurement and sampling
	7.11.3 Examples

	7.12 tcpdump
	7.12.1 Syntax
	7.12.2 Information on measurement and sampling
	7.12.3 Examples

	7.13 tokstat
	7.13.1 Syntax
	7.13.2 Information on measurement and sampling
	7.13.3 Examples

	7.14 trpt
	7.14.1 Syntax
	7.14.2 Information on measurement and sampling
	7.14.3 Examples


	Chapter 8. Trace tools
	8.1 curt
	8.1.1 Syntax
	8.1.2 Information on measurement and sampling
	8.1.3 Examples

	8.2 genkex
	8.2.1 Syntax
	8.2.2 Information on measurement and sampling
	8.2.3 Examples

	8.3 genkld
	8.3.1 Syntax
	8.3.2 Information on measurement and sampling
	8.3.3 Examples

	8.4 genld
	8.4.1 Syntax
	8.4.2 Information on measurement and sampling
	8.4.3 Examples

	8.5 gennames
	8.5.1 Syntax
	8.5.2 Information on measurement and sampling
	8.5.3 Examples

	8.6 locktrace
	8.6.1 Syntax
	8.6.2 Information on measurement and sampling
	8.6.3 Examples

	8.7 splat
	8.7.1 Syntax
	8.7.2 Information on measurement and sampling
	8.7.3 Examples

	8.8 stripnm
	8.8.1 Syntax
	8.8.2 Information on measurement and sampling
	8.8.3 Examples

	8.9 trace
	8.9.1 Syntax
	8.9.2 Information on measurement and sampling
	8.9.3 Terminology used for trace
	8.9.4 Ways to start and stop trace
	8.9.5 Examples

	8.10 trcnm
	8.10.1 Syntax
	8.10.2 Information on measurement and sampling
	8.10.3 Examples

	8.11 trcrpt
	8.11.1 Syntax
	8.11.2 Examples


	Chapter 9. APIs for performance monitoring
	9.1 Perfstat API
	9.1.1 Compiling and linking
	9.1.2 Subroutines
	9.1.3 Examples

	9.2 System Performance Measurement Interface (SPMI)
	9.2.1 Compiling and linking
	9.2.2 SPMI data organization
	9.2.3 Subroutines
	9.2.4 Example

	9.3 Performance Monitor (PM) API
	9.3.1 Performance Monitor data access
	9.3.2 Compiling and linking
	9.3.3 Subroutines
	9.3.4 Examples

	9.4 Resource Monitoring and Control (RMC)
	9.4.1 Syntax
	9.4.2 Information on measurement and sampling
	9.4.3 Examples

	9.5 Miscellaneous performance monitoring subroutines
	9.5.1 Compiling and linking
	9.5.2 Subroutines
	9.5.3 Example


	Chapter 10. WLM performance tools
	10.1 wlmstat
	10.1.1 Syntax
	10.1.2 Information on measurement and sampling
	10.1.3 Examples

	10.2 wlmmon / wlmperf
	10.2.1 Syntax xmwlm
	10.2.2 Syntax xmtrend
	10.2.3 Information about the xmwlm and xmtrend daemons
	10.2.4 Information on measurement and sampling
	10.2.5 Exploring the graphical windows


	Chapter 11. Performance Toolbox Version 3 for AIX
	11.1 Introduction
	11.2 xmperf
	11.2.1 Syntax
	11.2.2 Information on measurement and sampling
	11.2.3 Examples

	11.3 3D monitor
	11.3.1 Syntax
	11.3.2 Information on measurement and sampling
	11.3.3 Examples

	11.4 jazizo
	11.4.1 Syntax xmtrend
	11.4.2 Syntax jazizo
	11.4.3 Information on measurement and sampling


	Appendix A. Source code examples
	perfstat_dude.c
	spmi_dude.c
	spmi_data.c
	spmi_file.c
	spmi_traverse.c
	dudestat.c
	cwhet.c

	Appendix B. Trace hooks
	AIX 5L trace hooks

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections


	Special notices
	Abbreviations and acronyms
	Index
	Back cover

