
AIX Version 6.1

Technical Reference: Kernel and
Subsystems, Volume 1

SC23-6612-02

���

AIX Version 6.1

Technical Reference: Kernel and
Subsystems, Volume 1

SC23-6612-02

���

Note
Before using this information and the product it supports, read the information in “Notices,” on page 655.

Third Edition (October 2009)

This edition applies to AIX Version 6.1 and to all subsequent releases of this product until otherwise indicated in new
editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to Information Development, Department 04XA-905-6B013, 11501 Burnet Road, Austin, Texas
78758-3400. To send comments electronically, use this commercial Internet address: pserinfo@us.ibm.com. Any
information that you supply may be used without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book . xv
Highlighting . xv
Case-Sensitivity in AIX. xv
ISO 9000 . xv
32-Bit and 64-Bit Support for the Single UNIX Specification xvi
Related Publications . xvi

Chapter 1. Kernel Services . 1
__pag_getid System Call . 1
__pag_getname System Call. 1
__pag_getvalue System Call . 2
__pag_setname System Call . 3
__pag_setvalue System Call . 3
acct_add_LL or acct_zero_LL Kernel Service . 4
acct_get_projid Kernel Service . 5
acct_get_usage Kernel Service . 5
acct_interval_register or acct_interval_unregister Kernel Service. 7
acct_put Kernel Service . 8
add_domain_af Kernel Service . 10
add_input_type Kernel Service. 11
add_netisr Kernel Service . 13
add_netopt Macro . 14
as_att64 Kernel Service . 14
as_det64 Kernel Service . 15
as_geth Kernel Service . 16
as_geth64 Kernel Service . 17
as_getsrval64 Kernel Service . 18
as_lw_att64 Kernel Service . 19
as_lw_det64 Kernel Service . 21
as_lw_pool_init Kernel Service . 22
as_puth64 Kernel Service . 23
as_seth64 Kernel Service . 24
attach Device Queue Management Routine . 25
audit_svcbcopy Kernel Service . 26
audit_svcfinis Kernel Service . 27
audit_svcstart Kernel Service . 27
bawrite Kernel Service . 29
bdwrite Kernel Service . 29
bflush Kernel Service . 30
bindprocessor Kernel Service . 31
binval Kernel Service . 32
blkflush Kernel Service . 33
bread Kernel Service . 34
breada Kernel Service. 35
brelse Kernel Service . 36
bsr_alloc Kernel Service . 37
bsr_free Kernel Service . 38
bsr_query Kernel Service . 38
bwrite Kernel Service . 39
cancel Device Queue Management Routine. 40
cfgnadd Kernel Service . 41
cfgncb Configuration Notification Control Block. 42
cfgndel Kernel Service . 43

© Copyright IBM Corp. 1997, 2009 iii

check Device Queue Management Routine . 44
clrbuf Kernel Service . 46
clrjmpx Kernel Service. 46
common_reclock Kernel Service . 47
compare_and_swap Kernel Services . 49
copyin Kernel Service . 50
copyinstr Kernel Service . 51
copyout Kernel Service . 52
crcopy Kernel Service . 53
crdup Kernel Service . 54
creatp Kernel Service . 55
CRED_GETEUID, CRED_GETRUID, CRED_GETSUID, CRED_GETLUID, CRED_GETEGID,

CRED_GETRGID, CRED_GETSGID and CRED_GETNGRPS Macros 55
crexport Kernel Service . 56
crfree Kernel Service . 57
crget Kernel Service . 58
crhold Kernel Service . 58
crref Kernel Service . 59
crset Kernel Service . 60
curtime Kernel Service . 61
d_align Kernel Service . 62
d_alloc_dmamem Kernel Service. 62
d_cflush Kernel Service . 63
delay Kernel Service . 64
del_domain_af Kernel Service . 65
del_input_type Kernel Service . 66
del_netisr Kernel Service. 67
del_netopt Macro . 68
detach Device Queue Management Routine . 69
devdump Kernel Service . 69
devstrat Kernel Service . 70
devswadd Kernel Service . 72
devswchg Kernel Service . 73
devswdel Kernel Service . 74
devswqry Kernel Service . 76
d_free_dmamem Kernel Service . 77
disable_lock Kernel Service. 78
disablement_checking_resume Kernel Service . 79
disablement_checking_suspend Kernel Service . 79
d_map_attr Kernel Service . 80
d_map_clear Kernel Service . 81
d_map_disable Kernel Service . 82
d_map_enable Kernel Service . 82
d_map_init Kernel Service . 83
d_map_init_ext Kernel Service . 84
d_map_list Kernel Service . 85
d_map_page Kernel Service . 87
d_map_slave Kernel Service . 89
dmp_add Kernel Service . 90
dmp_compspec and dmp_compext Kernel Services . 92
dmp_ctl Kernel Service . 94
dmp_del Kernel Service . 99
dmp_eaddr, dmp_context, dmp_tid, dmp_pid, dmp_errbuf, dmp_mtrc, dmp_systrace, and dmp_ct

Kernel Services . 100
dmp_kernext Kernel Service . 103
d_roundup Kernel Service . 104

iv AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

d_sync_mem Kernel Service . 104
DTOM Macro for mbuf Kernel Services . 105
d_unmap_list Kernel Service . 106
d_unmap_slave Kernel Service . 107
d_unmap_page Kernel Service . 108
dr_reconfig System Call . 108
e_assert_wait Kernel Service . 112
e_block_thread Kernel Service . 112
e_clear_wait Kernel Service . 113
e_sleep Kernel Service . 114
e_sleepl Kernel Service . 116
e_sleep_thread Kernel Service . 117
et_post Kernel Service . 119
et_wait Kernel Service . 120
e_wakeup, e_wakeup_one, or e_wakeup_w_result Kernel Service 121
e_wakeup_w_sig Kernel Service . 122
eeh_broadcast Kernel Service . 123
eeh_clear Kernel Service . 124
eeh_disable_slot Kernel Service . 125
eeh_enable_dma Kernel Service . 126
eeh_enable_pio Kernel Service . 127
eeh_enable_slot Kernel Service. 128
eeh_init Kernel Service . 129
eeh_init_multifunc Kernel Service . 131
eeh_read_slot_state Kernel Service . 133
eeh_reset_slot Kernel Service . 135
eeh_slot_error Kernel Service . 136
enque Kernel Service . 138
errresume Kernel Service . 139
errsave or errlast Kernel Service . 140
fetch_and_add Kernel Services . 141
fetch_and_and or fetch_and_or Kernel Services. 142
fidtovp Kernel Service . 143
find_input_type Kernel Service . 144
fp_access Kernel Service . 144
fp_close Kernel Service. 145
fp_close Kernel Service for Data Link Control (DLC) Devices 146
fp_fstat Kernel Service . 147
fp_fsync Kernel Service. 147
fp_getdevno Kernel Service . 148
fp_getf Kernel Service . 149
fp_hold Kernel Service . 150
fp_ioctl Kernel Service . 151
fp_ioctl Kernel Service for Data Link Control (DLC) Devices 151
fp_ioctlx Kernel Service . 153
fp_lseek, fp_llseek Kernel Service . 154
fp_open Kernel Service . 155
fp_open Kernel Service for Data Link Control (DLC) Devices 156
fp_opendev Kernel Service . 157
fp_poll Kernel Service . 159
fp_read Kernel Service . 161
fp_readv Kernel Service . 162
fp_rwuio Kernel Service. 163
fp_select Kernel Service . 164
fp_select Kernel Service notify Routine . 167
fp_write Kernel Service . 168

Contents v

fp_write Kernel Service for Data Link Control (DLC) Devices 169
fp_writev Kernel Service . 171
fubyte Kernel Service . 172
fuword Kernel Service . 173
getblk Kernel Service . 174
getc Kernel Service . 175
getcb Kernel Service . 175
getcbp Kernel Service . 176
getcf Kernel Service . 177
getcx Kernel Service . 178
geteblk Kernel Service . 179
geterror Kernel Service . 179
getexcept Kernel Service . 180
getfslimit Kernel Service . 181
get_pag or get_pag64 Kernel Service . 182
getpid Kernel Service . 183
getppidx Kernel Service. 183
getuerror Kernel Service . 184
getufdflags and setufdflags Kernel Services . 185
get_umask Kernel Service . 185
gfsadd Kernel Service . 186
gfsdel Kernel Service . 188
gn_closecnt Subroutine . 188
gn_common_memcntl Subroutine . 189
gn_mapcnt Subroutine . 190
gn_opencnt Subroutine . 191
gn_unmapcnt Subroutine . 192
groupmember, groupmember_cr Subroutines . 192
heap_create Kernel Service . 193
heap_destroy Kernel Service . 195
heap_modify Kernel Service . 196
hkeyset_add, hkeyset_replace, hkeyset_restore, or hkeyset_get Kernel Service 197
hkeyset_restore_userkeys Kernel Service . 198
hkeyset_update_userkeys Kernel Service . 198
i_clear Kernel Service . 199
i_disable Kernel Service . 200
i_enable Kernel Service. 202
i_eoi Kernel Service . 202
ifa_ifwithaddr Kernel Service . 203
ifa_ifwithdstaddr Kernel Service . 204
ifa_ifwithnet Kernel Service . 205
if_attach Kernel Service. 206
if_detach Kernel Service . 206
if_down Kernel Service . 207
if_nostat Kernel Service. 208
ifunit Kernel Service . 208
i_init Kernel Service . 209
i_mask Kernel Service . 211
init_heap Kernel Service . 212
initp Kernel Service . 213
initp Kernel Service func Subroutine . 214
io_map Kernel Service . 215
io_map_clear Kernel Service . 216
io_map_init Kernel Service . 217
io_unmap Kernel Service . 218
iodone Kernel Service . 219

vi AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

iostadd Kernel Service . 220
iostdel Kernel Service . 224
iowait Kernel Service. 225
ip_fltr_in_hook, ip_fltr_out_hook, ipsec_decap_hook, inbound_fw, outbound_fw Kernel Service . . . 226
i_pollsched Kernel Service. 228
i_reset Kernel Service . 229
i_sched Kernel Service . 230
i_unmask Kernel Service . 231
ldata_alloc Kernel Service . 232
ldata_create Kernel Service . 232
ldata_destroy Kernel Service . 234
ldata_free Kernel Service . 234
ldata_grow Kernel Service . 235
ldmp_bufest, ldmp_timeleft, ldmp_xmalloc, ldmp_xmfree, and ldmp_errstr Kernel Services 236
ldmp_freeparms Kernel Service . 238
ldmp_setupparms Kernel Service . 238
IS64U Kernel Service . 239
kcap_is_set and kcap_is_set_cr Kernel Service . 240
kcid_curproc Kernel Service . 240
kcred_genpagvalue Kernel Service . 241
kcred_getcap Kernel Service . 242
kcred_getgroups Kernel Service . 243
kcred_getpag or kcred_getpag64 Kernel Service . 243
kcred_getpagid Kernel Service . 244
kcred_getpaginfo Kernel Service . 245
kcred_getpagname Kernel Service. 246
kcred_getppriv Kernel Service . 246
kcred_getpriv Kernel Service . 247
kcred_setcap Kernel Service . 248
kcred_setgroups Kernel Service. 249
kcred_setpag or kcred_setpag64 Kernel Service . 249
kcred_setpagname Kernel Service. 250
kcred_setppriv Kernel Service . 251
kcred_setpriv Kernel Service . 252
kgethostname Kernel Service . 253
kgetpname Kernel Service. 253
kgetrlimit64 Kernel Service . 254
kgettickd Kernel Service . 256
kkey_assign_private Kernel Service . 257
kkeyset_add_key Kernel Service . 258
kkeyset_add_set Kernel Service . 258
kkeyset_create Kernel Service . 259
kkeyset_delete Kernel Service . 260
kkeyset_remove_key Kernel Service . 260
kkeyset_remove_set Kernel Service . 261
kkeyset_to_hkeyset Kernel Service . 262
klpar_get_info Kernel Service . 263
kmod_entrypt Kernel Service . 264
kmod_load Kernel Service . 264
kmod_unload Kernel Service . 267
kmsgctl Kernel Service . 268
kmsgget Kernel Service. 270
kmsgrcv Kernel Service. 272
kmsgsnd Kernel Service . 274
kra_attachrset Subroutine . 275
kra_creatp Subroutine . 277

Contents vii

kra_detachrset Subroutine . 278
kra_getrset Subroutine . 280
krs_alloc Subroutine . 281
krs_free Subroutine . 282
krs_getassociativity Subroutine . 282
krs_getinfo Subroutine . 283
krs_getpartition Subroutine . 284
krs_getrad Subroutine . 285
krs_init Subroutine . 286
krs_numrads Subroutine . 287
krs_op Subroutine . 287
krs_setpartition Subroutine . 289
ksettickd Kernel Service . 290
ksettimer Kernel Service . 291
kthread_kill Kernel Service . 292
kthread_start Kernel Service . 293
kvmgetinfo Kernel Service . 294
kwpar_checkpoint_status Kernel Service . 296
kwpar_getname Kernel Service . 297
kwpar_getrootpath Kernel Service . 298
kwpar_isappwpar Kernel Service . 299
kwpar_r2vmap_devno Kernel Service . 299
kwpar_r2vmap_pid Kernel Service . 300
kwpar_r2vmap_tid Kernel Service . 301
kwpar_regdevno Kernel Service. 302
kwpar_reghook Kernel Service . 303
kwpar_unregdevno Kernel Service. 305
kwpar_unreghook Kernel Service . 306
kwpar_v2rmap_devno Kernel Service . 307
kwpar_v2rmap_pid Kernel Service . 308
kwpar_v2rmap_tid Kernel Service . 309
limit_sigs or sigsetmask Kernel Service . 309
livedump Kernel Service . 310
lock_alloc Kernel Service . 311
lock_clear_recursive Kernel Service . 312
lock_done Kernel Service . 313
lock_free Kernel Service . 314
lock_init Kernel Service . 314
lock_islocked Kernel Service . 315
lockl Kernel Service . 316
lock_mine Kernel Service . 317
lock_read or lock_try_read Kernel Service . 318
lock_read_to_write or lock_try_read_to_write Kernel Service 319
lock_set_recursive Kernel Service . 320
lock_write or lock_try_write Kernel Service. 321
lock_write_to_read Kernel Service . 321
loifp Kernel Service . 322
longjmpx Kernel Service . 323
lookupvp, lookupname, lookupname_cur Kernel Services 324
looutput Kernel Service . 326
ltpin Kernel Service . 327
ltunpin Kernel Service . 328
m_adj Kernel Service . 328
mbreq Structure for mbuf Kernel Services . 329
mbstat Structure for mbuf Kernel Services . 330
m_cat Kernel Service . 330

viii AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

m_clattach Kernel Service . 331
m_clget Macro for mbuf Kernel Services . 332
m_clgetm Kernel Service . 333
m_collapse Kernel Service . 333
m_copy Macro for mbuf Kernel Services . 334
m_copydata Kernel Service . 335
m_copym Kernel Service . 336
m_dereg Kernel Service . 337
m_free Kernel Service . 337
m_freem Kernel Service . 338
m_get Kernel Service . 339
m_getclr Kernel Service . 340
m_getclust Macro for mbuf Kernel Services . 340
m_getclustm Kernel Service . 341
m_gethdr Kernel Service . 342
M_HASCL Macro for mbuf Kernel Services . 343
m_pullup Kernel Service . 344
m_reg Kernel Service . 344
md_restart_block_read Kernel Service . 345
md_restart_block_upd Kernel Service . 346
MTOCL Macro for mbuf Kernel Services . 347
MTOD Macro for mbuf Kernel Services . 348
M_XMEMD Macro for mbuf Kernel Services . 348
mycpu Kernel Service . 349
net_attach Kernel Service . 349
net_detach Kernel Service. 350
net_error Kernel Service . 351
net_sleep Kernel Service . 352
net_start Kernel Service . 353
net_start_done Kernel Service . 353
net_wakeup Kernel Service . 354
net_xmit Kernel Service. 355
net_xmit_trace Kernel Service . 356
NLuprintf Kernel Service . 357
ns_add_demux Network Kernel Service . 360
ns_add_filter Network Service . 361
ns_add_status Network Service . 363
ns_alloc Network Service . 364
ns_attach Network Service . 365
ns_del_demux Network Service . 366
ns_del_filter Network Service. 367
ns_del_status Network Service . 368
ns_detach Network Service . 369
ns_free Network Service . 369
panic Kernel Service . 370
pci_cfgrw Kernel Service . 371
pfctlinput Kernel Service . 372
pffindproto Kernel Service . 372
pgsignal Kernel Service. 373
pidsig Kernel Service. 374
pin Kernel Service. 375
pin_context_stack or unpin_context_stack Kernel Service 376
pincf Kernel Service . 377
pincode Kernel Service . 378
pio_assist Kernel Service . 378
Process State-Change Notification Routine . 381

Contents ix

proch_reg Kernel Service . 383
proch_unreg Kernel Service . 384
prochadd Kernel Service . 384
prochdel Kernel Service . 386
probe or kprobe Kernel Service . 386
purblk Kernel Service . 389
putc Kernel Service . 390
putcb Kernel Service . 390
putcbp Kernel Service . 391
putcf Kernel Service . 392
putcfl Kernel Service . 393
putcx Kernel Service . 394
query_proc_info Kernel Service . 394
RAS_BLOCK_NULL Exported Data Structure. 395
ras_control Exported Kernel Service . 396
ras_customize Exported Kernel Service . 397
ras_path_control Exported Kernel Services . 398
ras_register and ras_unregister Exported Kernel Services 399
ras_ret_query_parms Kernel Service . 401
raschk_eaddr_hkeyset Kernel Service . 402
raschk_eaddr_kkey Kernel Service . 403
raw_input Kernel Service . 404
raw_usrreq Kernel Service. 405
reconfig_register, reconfig_register_ext, reconfig_unregister, or reconfig_complete,

reconfig_register_list Kernel Service . 406
refmon Kernel Service . 412
register_HA_handler Kernel Service . 413
rmalloc Kernel Service . 415
rmfree Kernel Service . 416
rmmap_create Kernel Service . 416
rmmap_getwimg Kernel Service. 419
rmmap_remove Kernel Service . 420
rtalloc Kernel Service . 421
rtalloc_gr Kernel Service . 421
rtfree Kernel Service . 422
rtinit Kernel Service . 423
rtredirect Kernel Service . 424
rtrequest Kernel Service . 425
rtrequest_gr Kernel Service . 426
rusage_incr Kernel Service . 427
schednetisr Kernel Service . 428
selnotify Kernel Service . 429
selreg Kernel Service . 431
set_pag or set_pag64 Kernel Service. 433
setioctlrv Subroutine . 434
setjmpx Kernel Service . 434
setpinit Kernel Service . 435
setuerror Kernel Service . 436
shutdown_notify_reg Kernel Service . 436
shutdown_notify_unreg Kernel Service . 438
sig_chk Kernel Service . 439
simple_lock or simple_lock_try Kernel Service . 440
simple_lock_init Kernel Service . 441
simple_unlock Kernel Service . 442
sleep Kernel Service . 442
subyte Kernel Service . 444

x AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

suser Kernel Service . 445
suword Kernel Service . 445
talloc Kernel Service . 446
tfree Kernel Service . 447
thread_create Kernel Service. 448
thread_self Kernel Service. 448
thread_setsched Kernel Service. 449
thread_set_smt_priority or thread_read_smt_priority System Call 450
thread_terminate Kernel Service . 452
timeout Kernel Service . 453
timeoutcf Subroutine for Kernel Services . 454
trc_ishookon Exported Kernel Service . 456
trcgenk Kernel Service . 456
trcgenkt Kernel Service . 457
trcgenkt Kernel Service for Data Link Control (DLC) Devices 458
tstart Kernel Service . 461
tstop Kernel Service . 463
tuning Kernel Service . 464
ue_proc_check Kernel Service . 467
ue_proc_register Subroutine . 468
ue_proc_unregister Subroutine . 469
uexadd Kernel Service . 469
User-Mode Exception Handler for the uexadd Kernel Service 470
uexblock Kernel Service . 472
uexclear Kernel Service. 472
uexdel Kernel Service . 473
ufdcreate Kernel Service . 474
ufdgetf Kernel Service . 478
ufdhold and ufdrele Kernel Service . 479
uiomove Kernel Service. 480
unlock_enable Kernel Service . 481
unlockl Kernel Service . 482
unpin Kernel Service . 483
unpincode Kernel Service . 484
unregister_HA_handler Kernel Service . 485
untimeout Kernel Service . 486
uphysio Kernel Service . 487
uphysio Kernel Service mincnt Routine . 490
uprintf Kernel Service . 491
ureadc Kernel Service . 492
uwritec Kernel Service . 494
validate_pag or validate_pag64 Kernel Service . 495
vec_clear Kernel Service . 496
vec_init Kernel Service . 497
vfsrele Kernel Service . 497
vm_att Kernel Service . 498
vm_cflush Kernel Service . 499
vm_det Kernel Service . 500
vm_flushp Kernel Service . 501
vm_galloc Kernel Service . 502
vm_gfree Kernel Service . 503
vm_guatt Kernel Service . 504
vm_gudet Kernel Service . 505
vm_handle Kernel Service . 506
vm_invalidatep Kernel Service . 507
vm_ioaccessp Kernel Service . 508

Contents xi

vm_makep Kernel Service . 509
vm_mount Kernel Service . 510
vm_mounte Kernel Service . 511
vm_move Kernel Service . 512
vm_mvc Kernel Service. 513
vm_pattr System Call and kvm_pattr Kernel Service 514
vm_protect_kkey Kernel Service . 520
vm_protectp Kernel Service . 521
vm_qmodify Kernel Service . 522
vm_qpages Kernel Service . 523
vm_readp Kernel Service . 523
vm_release Kernel Service . 524
vm_releasep Kernel Service . 525
vm_segmap Kernel Service . 526
vm_setdevid Kernel Service . 527
vm_setseg_kkey Kernel Service . 529
vm_thrpgio_pop Kernel Service . 529
vm_thrpgio_push Kernel Service . 530
vms_create Kernel Service . 531
vms_delete Kernel Service . 532
vms_iowait, vms_iowaitf Kernel Services . 533
vm_uiomove Kernel Service . 534
vm_umount Kernel Service . 535
vm_write Kernel Service . 536
vm_writep Kernel Service . 537
vn_free Kernel Service . 538
vn_get Kernel Service . 539
waitcfree Kernel Service . 540
waitq Kernel Service . 541
WPAR_CKPT_QUERY (Checkpoint Query) Device Driver ioctl Operation 542
w_clear Kernel Service . 543
w_init Kernel Service. 544
w_start Kernel Service . 545
w_stop Kernel Service . 546
xlate_create Kernel Service . 547
xlate_pin Kernel Service . 548
xlate_remove Kernel Service . 549
xlate_unpin Kernel Service . 550
xm_det Kernel Service . 551
xm_mapin Kernel Service . 551
xm_maxmap Kernel Service . 552
xmalloc Kernel Service . 553
xmattach Kernel Service . 554
xmdetach Kernel Service . 556
xmemdma Kernel Service . 557
xmemdma64 Kernel Service . 559
xmempin Kernel Service . 560
xmemunpin Kernel Service . 561
xmemzero Kernel Service . 562
xmemin Kernel Service . 563
xmemout Kernel Service . 564
xmempsize Kernel Service . 565
xmfree Kernel Service . 566
xmgethkeyset Kernel Service. 567
xmsethkeyset Kernel Service. 568

xii AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Chapter 2. Device Driver Operations . 571
Standard Parameters to Device Driver Entry Points 571
buf Structure . 572
bufx Structure . 574
Character Lists Structure . 576
uio Structure . 577
ddclose Device Driver Entry Point . 579
ddconfig Device Driver Entry Point. 581
dddump Device Driver Entry Point . 583
ddioctl Device Driver Entry Point . 585
ddmpx Device Driver Entry Point . 587
ddopen Device Driver Entry Point . 589
ddread Device Driver Entry Point . 590
ddrevoke Device Driver Entry Point . 592
ddselect Device Driver Entry Point . 593
ddstrategy Device Driver Entry Point . 595
ddwrite Device Driver Entry Point . 597
Select/Poll Logic for ddwrite and ddread Routines . 599

Chapter 3. File System Operations . 601
List of Virtual File System Operations . 601
vfs_aclxcntl Entry Point . 602
vfs_cntl Entry Point . 604
vfs_hold or vfs_unhold Kernel Service . 605
vfs_init Entry Point . 605
vfs_mount Entry Point . 606
vfs_root Entry Point . 607
vfs_search Kernel Service . 608
vfs_statfs Entry Point . 609
vfs_sync Entry Point . 610
vfs_umount Entry Point . 611
vfs_vget Entry Point . 612
vnop_access Entry Point . 613
vnop_close Entry Point . 614
vnop_create Entry Point . 615
vnop_create_attr Entry Point . 616
vnop_fclear Entry Point . 617
vnop_fid Entry Point . 618
vnop_finfo Entry Point . 619
vnop_fsync, vnop_fsync_range Entry Points . 620
vnop_ftrunc Entry Point . 621
vnop_getacl Entry Point. 622
vnop_getattr Entry Point . 623
vnop_getxacl Entry Point . 624
vnop_hold Entry Point . 626
vnop_ioctl Entry Point . 626
vnop_link Entry Point. 627
vnop_lockctl Entry Point . 628
vnop_lookup Entry Point . 630
vnop_map Entry Point . 631
vnop_map_lloff Entry Point . 632
vnop_memcntl Entry Point . 633
vnop_mkdir Entry Point . 634
vnop_mknod Entry Point . 635
vnop_open Entry Point . 636
vnop_rdwr, vnop_rdwr_attr Entry Points . 637

Contents xiii

vnop_readdir Entry Point . 638
vnop_readdir_eofp Entry Point . 639
vnop_readlink Entry Point . 640
vnop_rele Entry Point . 641
vnop_remove Entry Point . 641
vnop_rename Entry Point . 642
vnop_revoke Entry Point . 644
vnop_rmdir Entry Point . 645
vnop_seek Entry Point . 646
vnop_select Entry Point. 646
vnop_setacl Entry Point. 647
vnop_setattr Entry Point . 648
vnop_setxacl Entry Point . 650
vnop_strategy Entry Point . 651
vnop_symlink Entry Point . 652
vnop_unmap Entry Point . 653

Appendix. Notices . 655
Trademarks . 656

Index . 657

xiv AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

About This Book

This book provides system programmers with complete detailed information about kernel services, device
driver operations, and file system operations for the AIX operating system. Kernel services, device driver
operations, and file system operations are listed alphabetically by topic. This book is intended for system
programmers wishing to extend the kernel, and to use the book effectively, you should be familiar with
operating system concepts and kernel programming. This book is also available on the documentation CD
that is shipped with the operating system.

This book is part of the six-volume technical reference set, AIX Version 6.1 Technical Reference, that
provides information on system calls, kernel extension calls, and subroutines in the following volumes:

v AIX Version 6.1 Technical Reference: Base Operating System and Extensions Volume 1 and AIX
Version 6.1 Technical Reference: Base Operating System and Extensions Volume 2 provide information
on system calls, subroutines, functions, macros, and statements associated with base operating system
runtime services.

v AIX Version 6.1 Technical Reference: Communications Volume 1 and AIX Version 6.1 Technical
Reference: Communications Volume 2 provide information on entry points, functions, system calls,
subroutines, and operations related to communications services.

v AIX Version 6.1 Technical Reference: Kernel and Subsystems Volume 1 and AIX Version 6.1 Technical
Reference: Kernel and Subsystems Volume 2 provide information about kernel services, device driver
operations, file system operations, subroutines, the configuration subsystem, the communications
subsystem, the low function terminal (LFT) subsystem, the logical volume subsystem, the M-audio
capture and playback adapter subsystem, the printer subsystem, the SCSI subsystem, and the serial
DASD subsystem.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files,
structures, directories, and other items whose names are
predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to
be supplied by the user.

Monospace Identifies examples of specific data values, examples of
text similar to what you might see displayed, examples of
portions of program code similar to what you might write
as a programmer, messages from the system, or
information you should actually type.

Case-Sensitivity in AIX
Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the
system responds that the command is ″not found.″ Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 1997, 2009 xv

32-Bit and 64-Bit Support for the Single UNIX Specification
Beginning with Version 5.2, the operating system is designed to support The Open Group’s Single UNIX
Specification Version 3 (UNIX 03) for portability of UNIX-based operating systems. Many new interfaces,
and some current ones, have been added or enhanced to meet this specification, making Version 5.2 even
more open and portable for applications, while remaining compatible with previous releases of AIX.
To determine the proper way to develop a UNIX 03-portable application, you may need to refer to The
Open Group’s UNIX 03 specification, which can be accessed online or downloaded from
http://www.unix.org/ .

Related Publications
The following books contain information about or related to application programming interfaces:

v AIX Version 6.1 General Programming Concepts: Writing and Debugging Programs

v AIX Version 6.1 Communications Programming Concepts

v AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts

xvi AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Chapter 1. Kernel Services

__pag_getid System Call

Purpose
Invokes the kcred_getpagid kernel service and returns the PAG identifier for that PAG name.

Syntax
int __pag_getid (name)
char *name;

Description
Given a PAG type name, the __pag_getid invokes the kcred_getpagid kernel service and returns the
PAG identifier for that PAG name.

Parameters

name A char * value which references a NULL-terminated string of not more than
PAG_NAME_LENGTH_MAX characters.

Return Values
If successful, a value greater than or equal to 0 is returned and represents the PAG type. This value may
be used in subsequent calls to other PAG system calls that require a type parameter on input. If
unsuccessful, -1 is returned and the errno global variable is set to a value reflecting the cause of the error.

Error Codes

ENOENT The name parameter doesn’t refer to an existing PAG type.
ENAMETOOLONG The name parameter refers to a string that is longer than PAG_NAME_LENGTH_MAX.

Related Information
“__pag_getname System Call,” “__pag_getvalue System Call” on page 2, “__pag_setname System Call”
on page 3, “__pag_setvalue System Call” on page 3, “kcred_getpagid Kernel Service” on page 244,
“kcred_getpagname Kernel Service” on page 246, and “kcred_setpagname Kernel Service” on page 250.

__pag_getname System Call

Purpose
Retrieves the name of a PAG type.

Syntax
int __pag_getname (type, buf, size)
int type;
char *buf;
int size;

Description
The __pag_getname system call retrieves the name of a PAG type given its integer value by invoking the
kcred_getpagname kernel service with the given parameters.

© Copyright IBM Corp. 1997, 2009 1

Parameters

type A numerical PAG identifier.
buf A char * value that points to an array at least PAG_NAME_LENGTH_MAX+1 bytes in length.
size An int value that gives the size of buf in bytes.

Return Values
If successful, 0 is returned and the buf parameter contains the PAG name associated with the type
parameter. If unsuccessful, -1 is returned and the errno global variable is set to a value reflecting the
cause of the error.

Error Codes

EINVAL The value of the type parameter is less than 0 or greater than the maximum PAG identifier.
ENOENT There is no PAG associated with the type parameter.
ENOSPC The value of the size parameter is insuffient to hold the PAG name and its terminating NULL

character.

Related Information
“__pag_getid System Call” on page 1, “__pag_getvalue System Call,” “__pag_setname System Call” on
page 3, “__pag_setvalue System Call” on page 3, “kcred_getpagid Kernel Service” on page 244,
“kcred_getpagname Kernel Service” on page 246, and “kcred_setpagname Kernel Service” on page 250.

__pag_getvalue System Call

Purpose
Invokes the kcred_getpag kernel service and returns the PAG value.

Syntax
int __pag_getvalue (type)
int type;

Description
Given a PAG type, the __pag_getvalue system call invokes the kcred_getpag kernel service and returns
the PAG value for the value of the type parameter.

Parameters

type An int value indicating the desired PAG.

Return Values
If successful, the value of the PAG (or 0 when there is no value for that PAG type) is returned. If
unsuccessful, -1 is returned and the errno global variable is set to a value reflecting the cause of the error.

Error Codes

EINVAL The type parameter is less than 0 or greater than the maximum PAG type value.
ENOENT The type parameter doesn’t reference and existing PAG type.

2 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Note: It is not an error for a defined PAG to not have a value in the current process’ credentials.

Related Information
“__pag_getid System Call” on page 1, “__pag_getname System Call” on page 1, “__pag_setname System
Call,” “__pag_setvalue System Call,” “kcred_getpagid Kernel Service” on page 244, “kcred_getpagname
Kernel Service” on page 246, and “kcred_setpagname Kernel Service” on page 250.

__pag_setname System Call

Purpose
Invokes the kcred_setpagname kernel service and returns the PAG type identifier.

Syntax
int __pag_setname (name, flags)
char *name;
int flags;

Description
The __pag_setname system call invokes the kcred_setpagname kernel service to register the name of a
PAG and returns the PAG type identifier. The value of the func parameter to kcred_setpagname will be
NULL. The other parameters to this system call are the same as with the underlying kernel service. This
system call requires the SYS_CONFIG privilege.

Parameters

name A char * value giving the symbolic name of the requested PAG.
flags Either PAG_UNIQUEVALUE or PAG_MULTIVALUED 1 .

Return Values
A return value greater than or equal to 0 is the PAG type associated with the name parameter. This value
may be used with other PAG-related system calls which require a numerical PAG identifier. If
unsuccessful, -1 is returned and the errno global variable is set to indicate the cause of the error.

Error Codes

ENOSPC The PAG name table is full.
EEXIST The named PAG type already exists in the table, and the flags and func parameters do not match

their previous values.
EPERM The calling process does not have the SYS_CONFIG privilege.

Related Information
“__pag_getid System Call” on page 1, “__pag_getname System Call” on page 1, “__pag_getvalue System
Call” on page 2, “__pag_setvalue System Call,” “kcred_getpagid Kernel Service” on page 244,
“kcred_getpagname Kernel Service” on page 246, and “kcred_setpagname Kernel Service” on page 250.

__pag_setvalue System Call

Purpose
Invokes the kcred_setpag kernel service and sets the value of PAG type to pag.

Chapter 1. Kernel Services 3

Syntax
int __pag_setvalue (type, pag)
int type;
int pag;

Description
Given a PAG type and value, the __pag_setvalue system call invokes the kcred_setpag kernel service
and sets the value of PAG type to pag. This system call requires the SET_PROC_DAC privilege.

Parameters

type An int value indicating the desired PAG.
pag An int value containing the new PAG value.

Return Values
If successful, 0 is returned. If unsuccessful, -1 is returned and the errno global variable is set to a value
reflecting the cause of the error.

Error Codes

ENOENT The type parameter doesn’t reference an existing PAG type.
EINVAL The value of pag is -1.
EPERM The calling process lacks the appropriate privilege.

Related Information
“__pag_getid System Call” on page 1, “__pag_getname System Call” on page 1, “__pag_getvalue System
Call” on page 2, “__pag_setname System Call” on page 3, “kcred_getpagid Kernel Service” on page 244,
“kcred_getpagname Kernel Service” on page 246, and “kcred_setpagname Kernel Service” on page 250.

acct_add_LL or acct_zero_LL Kernel Service

Purpose
Increments counters for advanced accounting.

Syntax
unsigned long long acct_add_LL(ptr, incr)
unsigned long long *ptr;
unsigned int incr;

unsigned long long acct_zero_LL(ptr)
unsigned long long *ptr;

Parameters

ptr Address of statistic to be incremented.
incr Increment to be applied.

4 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
These kernel services are special atomic increment and clear services that are designed to allow
machine-independent updating of unsigned long long values. The increment service only performs an
increment if advanced accounting is enabled.

The acct_add_LL kernel service adds the value associated with the incr parameter to the 64-bit counter at
the address designated by the ptr parameter. The acct_zero_LL kernel service atomically zeroes the
64-bit counter.

Both routines return the previous value of the 64-bit counter. This way, the acct_zero_LL kernel service
can be used to atomically get the most recent value and set the counter to NULL. Because only delta
statistics are reported each interval, this capability is required by interval accounting when the accounting
record is being built for a report.

Execution Environment
These kernel services can be called from either the interrupt environment or the process environment.

Return Values
These subroutines return the previous value of the location designated by the ptr parameter.

Related Information
“acct_interval_register or acct_interval_unregister Kernel Service” on page 7, “acct_put Kernel Service” on
page 8

acct_get_projid Kernel Service

Purpose
Gets the project identifier for the current process.

Syntax
projid_t acct_get_projid(void)

Description
The acct_get_projid kernel service returns the project identifier for the current process.

Execution Environment
The acct_get_projid kernel service can be called from the process environment only.

Return Values
The acct_get_projid kernel service returns the current project identifier.

Related Information
“acct_put Kernel Service” on page 8

acct_get_usage Kernel Service

Purpose
Allows kernel extensions to measure the resource utilization of transactions.

Chapter 1. Kernel Services 5

Syntax
#include <sys/types.h>
#include <sys/aacct.h>

unsigned long long acct_get_usage(usage)
struct tusage *usage;

Parameters

usage Resource utilization structure.

Description
This routine is used to measure the resource utilization of a client transaction, so that the cost of the
transaction can be included within the accounting record that identifies the client transaction. This
accounting record is then used for chargeback purposes.

The acct_get_usage kernel service is designed to be called twice: once at the start of a transaction and a
second time at the end of a transaction. Each time that the routine is called, it returns the resource
utilization for the calling thread from creation using the usage parameter. Therefore, this routine can be
called multiple times to determine the resource utilization of a code fragment by subtracting start and end
values.

The following macros are provided for manipulating the usage parameter:

TUSAGE_ZERO(TU)
Initializes the tusage structure

TUSAGE_ADD(TU1, TU2)
Adds tusage structures (T1 = T1 + T2)

TUSAGE_SUB(TU1, TU2)
Subtracts tusage structures (T1 = T1 – T2)

The usage parameter provides thread-specific information, so the caller must ensure that this routine is
called from the same thread context when measuring the utilization of a transaction. The return value
identifies the calling thread context.

The acct_get_usage kernel service returns a token that identifies the calling context. This token can be
logically compared with other tokens returned by this routine to ensure that start and stop invocations were
made from the same thread. The scope of the token depends on the context of the calling program. If this
routine is called under a pthread, then it returns a token representing the currently executing pthread.
Otherwise, the acct_get_usage kernel service returns a token representing the currently executing kernel
thread. In the former case, the token has process-wide scope; in the latter case, the token has
system-wide scope.

Execution Environment
The acct_get_usage kernel service can only be called from the process environment.

Return Values
Upon successful completion, the acct_get_usage kernel service returns a token that identifies the calling
thread context.

6 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
“acct_add_LL or acct_zero_LL Kernel Service” on page 4, “acct_get_projid Kernel Service” on page 5,
“acct_interval_register or acct_interval_unregister Kernel Service,” “acct_put Kernel Service” on page 8

acct_interval_register or acct_interval_unregister Kernel Service

Purpose
Registers or unregisters an advanced accounting handler.

Syntax
#include <sys/aacct.h>

int acct_interval_register(trid, cmds, handler, arg, reg_token, reg_name)
int trid;
int cmds;
int (*handler)(int trid, int cmds, void *arg);
void *arg;
unsigned long *reg_token;
char *reg_name;

int acct_interval_unregister(reg_token)
unsigned long reg_token;

Parameters

trid Transaction identifier
cmds Invocations supported by the advanced accounting handler
handler Function descriptor for the handler
arg Identifies the instance of the kernel extension
reg_token Token that is returned to caller naming the instance of the registration
reg_name Identifies the transaction using a string

Description
The acct_interval_register kernel service registers accounting records that are produced by the kernel
extension with the advanced accounting subsystem. These accounting records are named through
accounting transaction identifiers, which are provided by the caller. Transaction identifiers are persistent in
nature, because they are used by report and analysis utilities to interpret transaction-specific accounting
data. The transaction identifier is implicitly mapped to a template.

Transaction identifiers (and associated templates) used by AIX are defined in the sys/aacct.h file.
Identifiers in the range of 0 – 127 are reserved for AIX. Vendors can choose any value in the range 128 –
256 for their accounting records. If two vendors choose the same value, report and analysis programs
must reference other fields in the accounting record header to uniquely identify the source of the
transaction; that way, they can apply the appropriate template. The subproject field (which specifies the
command name of the logger) and length field can be used to identify the source of the transaction.
Collisions are very unlikely to occur. The transaction identifier and the transaction name, which is provided
by the reg_name field, are presented to the system administrator. Vendors should choose representative
names for their transactions. The maximum length of a transaction name is 15 bytes.

Administrators can enable and disable transactions, and thereby drive callouts to the kernel extension. A
function descriptor for the advanced accounting handler is provided through the handler parameter. The
interface of this handler is:
int handler(int trid, int cmd, void *arg);

Chapter 1. Kernel Services 7

The trid parameter is the transaction being acted on. The cmd parameter describes the action. The arg
parameter is a value that was specified at registration for this particular instance of the handler. The arg
parameter is specific to the kernel extension.

The following cmd values are supported:

ACCT_CMD_ENABLE The transaction is being enabled; start collecting.
ACCT_CMD_DISABLE The transaction is being disabled; stop collecting.
ACCT_CMD_INTERVAL The system interval has expired; provide accounting data.
ACCT_CMD_FSWITCH The active accounting file has changed; provide meta data.

The handler is invoked in the process environment from a dedicated kernel-only thread that is part of the
advanced accounting subsystem. The kernel extension registers for the callouts that should be made by
logically ORing cmd values. The cmds parameter to the acct_interval_register kernel service is provided
for this purpose.

When a transaction is enabled, the kernel extension should allocate accounting structures and start
collecting statistics. When a transaction is disabled, the kernel extension should quit collecting statistics
and free accounting structures. If a transaction is not enabled, the kernel subsystem should not collect
statistics for the transaction. The kernel extension relies on the callout mechanism to provide notification
when a transaction is enabled. This way, accounting records that are not required for the report are not
collected and the accounting overhead is minimized.

If the kernel extension registers for interval accounting, the extension is called when the system interval
expires. The handler should record its data using the acct_put kernel service and should reset its
counters so that only delta statistics are produced in the next interval. The acct_zero_LL and
acct_add_LL kernel services are provided so that statistics can be reported and zeroed atomically. When
the system interval is disabled, the system automatically generates an interval callout to collect the last
round of statistics.

The file switch callout is provided, so that subsystems can record accounting data in each accounting file.
Most subsystems are not expected to use this option.

Execution Environment
The acct_interval_register kernel service can be called from the process environment only.

The acct_interval_unregister kernel service can be called from either the interrupt environment or the
process environment.

Return Values
Upon successful completion, 0 is returned. If unsuccessful, errno is set to a value that explains the error.

Related Information
“acct_add_LL or acct_zero_LL Kernel Service” on page 4, “acct_put Kernel Service”

acct_put Kernel Service

Purpose
Writes an accounting record.

8 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/aacct.h>

void acct_put(trid, flags, projid, usage, trdata, tr_len);
int trid;
int flags;
projid_t projid;
struct tusage *usage;
void *trdata;
int tr_len;

Parameters

trid Transaction identifier.
flags Flags associated with the transaction or the production of the transaction. The following value is

defined:

ACCT_PUT_DIRECT
Overrides aggregate transaction

projid Project identifier, associated with the transaction, that identifies the billable entity. The following
values are defined:

PROJID_SYSTEM
This identifier is typically associated with system overhead and is often used for shared
devices, such as disks and network adapters.

PROJID_UNKNOWN
This identifier is used when the billable entity is unknown to the caller. In this case, the
system calculates the project identifier using the project assignment policy specified by the
system administrator.

project identifier
If the project identifier is known, it should be specified.

usage Identifies the resource usage values associated with the transaction.
trdata Transaction-specific information.
tr_len Size of the transaction-specific data in bytes.

Description
The acct_put kernel service provides accounting data to the advanced accounting subsystem. This
service builds the accounting record header from its parameters and values associated with the calling
context. The transaction-specific data specified by the caller is copied after the header. This data is
internally buffered so that it can be written efficiently to the accounting data file some time later.

The trid parameter identifies the type of transaction that is being provided and implicitly identifies the
format of the transaction-specific data. This identifier is included within the accounting header and is used
by report and analysis commands to infer the right template that can interpret transaction-specific data.
Vendors are encouraged to document their transaction identifiers and record templates so that report and
analysis tools can be produced to interpret this data.

Accounting transaction identifiers are defined in the following range:

0-127 AIX accounting transaction identifiers
128-255 Vendor accounting transaction identifiers

The ACCT_PUT_DIRECT flag is provided as an override to the aggregation of accounting records, which
is an optional feature of the advanced accounting subsystem. By default, the system does not aggregate
accounting data. Aggregation is designed to reduce the volume of data that is written to the accounting
file. It is transparent to applications and middleware. When aggregation is enabled, the system throws out

Chapter 1. Kernel Services 9

the transaction-specific data and produces statistics about the occurrence of the transaction and the
aggregate resource utilization. The data is produced along project boundaries, so the ability to perform
chargeback is not lost, although the data that is produced is different. Statistical information about the
transaction is captured in the accounting file in lieu of the transaction.

Because aggregation might not be desirable in some cases, the ACCT_PUT_DIRECT flag is provided to
override this feature. For example, because the significance of a transaction that describes the shared use
of a disk is bound up in the transaction-specific data, the transaction cannot be effectively aggregated. The
significance of the transaction is thrown out in the course of aggregation. In effect, the statistic has already
been aggregated by the producer, so it should be written directly to the file instead of being aggregated
again by the accounting subsystem.

The usage values pointed to by the usage parameter is calculated using the acct_get_usage kernel
service. The usage parameter is optional. A value of NULL can be specified to signify no usage
information. Aggregation uses this field to accumulate resource utilization. If this information is calculated
for the transaction, it should be passed as a parameter to this routine, instead of just including it within the
transaction-specific data section. The advanced accounting subsystem does not know the format of this
section and cannot aggregate it. In such a case, this section would be thrown out when aggregation is
enabled.

The trdata parameter contains the address of a buffer containing transaction-specific data, and the tr_len
parameter identifies the number of bytes in this buffer that should be copied to the accounting file. A
maximum of 16 KB of data can be written.

Execution Environment
The acct_put kernel service can be started from either the process or interrupt environment. However,
aggregation of the transaction is only supported when the acct_put service is started from the process
environment.

Return Values
The acct_put kernel service does not return a value.

Related Information
The acctctl Command.

“acct_add_LL or acct_zero_LL Kernel Service” on page 4, “acct_get_projid Kernel Service” on page 5,
“acct_get_usage Kernel Service” on page 5, “acct_interval_register or acct_interval_unregister Kernel
Service” on page 7

add_domain_af Kernel Service

Purpose
Adds an address family to the Address Family domain switch table.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/domain.h>
int add_domain_af (domain)
struct domain *domain;

10 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameter

domain Specifies the domain of the address family.

Description
The add_domain_af kernel service adds an address family domain to the Address Family domain switch
table.

Execution Environment
The add_domain_af kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates that the address family was successfully added.
EEXIST Indicates that the address family was already added.
EINVAL Indicates that the address family number to be added is out of range.

Example
To add an address family to the Address Family domain switch table, invoke the add_domain_af kernel
service as follows:
add_domain_af(&inetdomain);

In this example, the family to be added is inetdomain.

Related Information
The del_domain_af kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

add_input_type Kernel Service

Purpose
Adds a new input type to the Network Input table.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>
#include <net/netisr.h>
int add_input_type (type, service_level, isr, ifq, af)
u_short type;
u_short service_level;
int (* isr) ();
struct ifqueue * ifq;
u_short af;

Chapter 1. Kernel Services 11

Parameters

type Specifies which type of protocol a packet contains. A value of x’FFFF’ indicates that this
input type is a wildcard type and matches all input packets.

service_level Determines the processing level at which the protocol input handler is called. If the
service_level parameter is set to NET_OFF_LEVEL, the input handler specified by the isr
parameter is called directly. Setting the service_level parameter to NET_KPROC schedules
a network dispatcher. This dispatcher calls the subroutine identified by the isr parameter.

isr Identifies the routine that serves as the input handler for an input packet type.
ifq Specifies an input queue for holding input buffers. If this parameter has a non-null value, an

input buffer (mbuf) is enqueued. The ifq parameter must be specified if the processing level
specified by the service_level parameter is NET_KPROC. Specifying null for this parameter
generates a call to the input handler specified by the isr parameter, as in the following:

af Specifies the address family of the calling protocol. The af parameter must be specified if
the ifq parameter is not a null character. This parameter must be greater than or equal to 0
and less than NETISR_MAX. Refer to netisr.h for the range of values of af that are already
in use. Also, other kernel extensions that are not AIX and that use network ISRs currently
running on the system can make use of additional values not mentioned in netisr.h.

(*isr)(CommonPortion,Buffer);

In this example, CommonPortion points to the network common portion (the arpcom
structure) of a network interface and Buffer is a pointer to a buffer (mbuf) containing an
input packet.

Description
To enable the reception of packets, an address family calls the add_input_type kernel service to register
a packet type in the Network Input table. Multiple packet types require multiple calls toAIX Version 6.1
Kernel Extensions and Device Support Programming Concepts the add_input_type kernel service.

Execution Environment
The add_input_type kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates that the type was successfully added.
EEXIST Indicates that the type was previously added to the Network Input table.
ENOSPC Indicates that no free slots are left in the table.
EINVAL Indicates that an error occurred in the input parameters.

Examples
1. To register an Internet packet type (TYPE_IP), invoke the add_input_type service as follows:

add_input_type(TYPE_IP, NET_KPROC, ipintr, &ipintrq, AF_INET);

This packet is processed through the network kproc. The input handler is ipintr. The input queue is
ipintrq.

2. To specify the input handler for ARP packets, invoke the add_input_type service as follows:
add_input_type(TYPE_ARP, NET_OFF_LEVEL, arpinput, NULL, NULL);

Packets are not queued and the arpinput subroutine is called directly.

Related Information
The del_input_type kernel service, find_input_type kernel service.

12 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

add_netisr Kernel Service

Purpose
Adds a network software interrupt service to the Network Interrupt table.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/netisr.h>
int add_netisr (soft_intr_level, service_level, isr)
u_short soft_intr_level;
u_short service_level;
int (*isr) ();

Parameters

soft_intr_level Specifies the software interrupt level to add. This parameter must be greater than or
equal to 0 and less than NETISR_MAX. Refer to netisr.h for the range of values of
soft_intr_level that are already in use. Also, other kernel extensions that are not AIX
and that use network ISRs currently running on the system can make use of additional
values not mentioned in netisr.h.

service_level Specifies the processing level of the network software interrupt.
isr Specifies the interrupt service routine to add.

Description
The add_netisr kernel service adds the software-interrupt level specified by the soft_intr_level parameter
to the Network Software Interrupt table.

The processing level of a network software interrupt is specified by the service_level parameter. If the
interrupt level specified by the service_level parameter equals NET_KPROC, a network interrupt scheduler
calls the function specified by the isr parameter. If you set the service_level parameter to
NET_OFF_LEVEL, the schednetisr service calls the interrupt service routine directly.

Execution Environment
The add_netisr kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates that the interrupt service routine was successfully added.
EEXIST Indicates that the interrupt service routine was previously added to the table.
EINVAL Indicates that the value specified for the soft_intr_level parameter is out of range or at a service level that

is not valid.

Related Information
The del_netisr kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

Chapter 1. Kernel Services 13

add_netopt Macro

Purpose
Adds a network option structure to the list of network options.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/netopt.h>
add_netopt (option_name_symbol, print_format)
option_name_symbol;
char *print_format;

Parameters

option_name_symbol Specifies the symbol name used to construct the netopt structure and default
names.

print_format Specifies the string representing the print format for the network option.

Description
The add_netopt macro adds a network option to the linked list of network options. The no command can
then be used to show or alter the variable’s value.

The add_netopt macro has no return values.

Execution Environment
The add_netopt macro can be called from either the process or interrupt environment.

Related Information
The no command.

The del_netopt macro.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

as_att64 Kernel Service

Purpose
Allocates and maps a specified region in the current user address space.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/adspace.h>
unsigned long long as_att64 (vmhandle, offset)
vmhandle_t vmhandle;
int offset;

14 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

vmhandle Describes the virtual memory object being made addressable in the address space.
offset Specifies the offset in the virtual memory object. The upper 4-bits of this offset are ignored.

Description

The as_att64 kernel service: Selects an unallocated region within the current user address space.
Allocates the region.
Maps the virtual memory object selected by the vmhandle parameter
with the access permission specified in the handle.
Constructs the address of the offset specified by the offset parameter
within the user-address space.

The as_att64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for
kernel processes (kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on
another address space.

Execution Environment
The as_att64 kernel service can be called from the process environment only.

Return Values
On successful completion, this service returns the base address plus the input offset (offset) into the
allocated region.

NULL An error occurred and ernno indicates the cause:
EINVAL Address specified is out of range, or
ENOMEM Could not allocate due to insufficient resources.

Related Information
The as_seth64 kernel service, as_det64 kernel service, as_geth64 kernel service, as_getsrval64 kernel
service, as_puth64 kernel service.

as_det64 Kernel Service

Purpose
Unmaps and deallocates a region in the current user address space that was mapped with the as_att64
kernel service.

Syntax
#include <sys/errno.h>
#include <sys/adspace.h>
int as_det64 (addr64)
unsigned long long addr64;

Chapter 1. Kernel Services 15

Parameters

addr64 Specifies an effective address within the region to be deallocated.

Description
The as_det64 kernel service unmaps the virtual memory object from the region containing the specified
effective address (specified by the addr64 parameter).

The as_det64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service should not be used to deallocate a base kernel region, process text, process private or an
unallocated region. An EINVAL return code will result.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for
kernel processes (kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on
another address space.

Execution Environment
The as_det64 kernel service can be called from the process environment only.

Return Values

0 The region was successfully unmapped and deallocated.
EINVAL An attempt was made to deallocate a region that should not have been deallocated (that is, a base

kernel region, process text region, process private region, or unallocated region).
EINVAL Input address out of range.

Related Information
The as_att64 kernel service, as_seth64 kernel service, as_geth64 kernel service, as_getsrval64 kernel
service, as_puth64 kernel service.

as_geth Kernel Service

Purpose
Obtains a handle to the virtual memory object for the specified address given in the specified address
space.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/adspace.h>
vmhandle_t as_geth (Adspacep, Addr)
adspace_t *Adspacep;
caddr_t Addr;

Parameters

Adspacep Points to the address space structure to obtain the virtual memory object handle from.

16 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Addr Specifies the virtual memory address that should be used to determine the virtual memory object
handle for the specified address space.

Description
The as_geth kernel service is used to obtain a handle to the virtual memory object corresponding to a
virtual memory address in a particular address space. This handle can then be used with the vm_att
kernel service to make the object addressable in another address space.

This service can also be called from the interrupt environment.

Execution Environment
The as_geth kernel service can be called from the process environment only.

Return Values
The as_geth kernel service always succeeds and returns the appropriate handle.

Related Information
The vm_att kernel service.

as_geth64 Kernel Service

Purpose
Obtains a handle to the virtual memory object for the specified address.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/adspace.h>

vmhandle_t as_geth64 (addr64)
unsigned long long addr64;

Parameter

addr64 Specifies the virtual memory address for which the corresponding handle should be returned.

Description
The as_geth64 kernel service is used to obtain a handle to the virtual memory object corresponding to the
input address (addr64). This handle can then be used with the as_att64 or vm_att kernel service to make
the object addressable at a different location.

After the last use of the handle and after it is detached accordingly, the as_puth64 kernel service must be
used to indicate this fact. Failure to call the as_puth64 service may result in resources being permanently
unavailable for re-use.

If the handle returned refers to a virtual memory segment, then that segment is protected from deletion
until the as_puth64 kernel service is called.

If, for some reason, it is known that the virtual memory object cannot be deleted, then the as_getsrval64
kernel service may be used instead of the as_geth64 service.

Chapter 1. Kernel Services 17

The as_geth64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for
kernel processes (kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on
another address space.

Execution Environment
The as_geth64 kernel service can be called from the process environment only.

Return Values
On successful completion, this routine returns the appropriate handle.

On error, this routine returns the value INVLSID defined in sys/seg.h. This is caused by an address out of
range.

Errors include: Input address out of range.

Related Information
The as_att64 kernel service, as_seth64 kernel service, as_det64 kernel service, as_getsrval64 kernel
service, and as_puth64 kernel service.

as_getsrval64 Kernel Service

Purpose
Obtains a handle to the virtual memory object for the specified address.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/adspace.h>
vmhandle_t as_getsrval64 (addr64)
unsigned long long addr64;

Parameters

addr64 Specifies the virtual memory address for which the corresponding handle should be returned.

Description
The as_getsrval64 kernel service is used to obtain a handle to the virtual memory object corresponding to
the input address(addr64). This handle can then be used with the as_att64 or vm_att kernel services to
make the object addressable at a different location.

This service should only be used when it is known that the virtual memory object cannot be deleted,
otherwise the as_geth64 kernel service must be used.

The as_puth64 kernel service must not be called for handles returned by the as_getsrval64 kernel
service.

18 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

The as_getsrval64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for
kernel processes (kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on
another address space.

Execution Environment
The as_getsrval64 kernel service can be called from the process environment only when the current user
address space is 64-bits. If the current user address space is 32-bits, or is a kproc, then as_getsrval64
may be called from an interrupt environment.

Return Values
On successful completion this routine returns the appropriate handle.

On error, this routine returns the value INVLSID defined in sys/seg.h. This is caused by an address out of
range.

Errors include: Input address out of range.

Related Information
The as_att64 kernel service, as_det64 kernel service, as_geth64 kernel service, and as_puth64 kernel
service, as_seth64 kernel service.

as_lw_att64 Kernel Service

Purpose
Allocates and maps a specified region in the current user address space. Part of the lightweight kernel
service subsystem, which must be initialized with the as_lw_pool_init kernel service before it can be
used.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sysvmuser.h>
#include <sys/adspace.h>
#include <sys/mem.h>

int as_lw_att64 (dp, offset, length, addr)
xmem* dp;
size_t offset;
size_t length;
ptr64* addr;

Parameters

dp Pointer to a cross memory descriptor that describes the virtual memory object that is being made
addressable in the address space.

offset Specifies the byte offset in the virtual memory object.
length Specifies the number of bytes to map in the virtual memory object.
addr Pointer to the location where the address will be returned.

Chapter 1. Kernel Services 19

Description
The as_lw_att64 kernel service does the following:

v Allocates a region from the process’ address space for the mapping.

v Maps the virtual memory object selected by the dp parameter.

v Constructs the address of the offset specified by the offset parameter within the user-address space.

Note: The as_lw_att64 kernel service should be used with caution. Be sure to read the documentation for
this and the other lightweight services (as_lw_det64 and as_lw_pool_init) carefully before doing
so. There is a risk of illegal data access and cross-process data corruption if these services are not
used correctly.

In order to use this service, the cross memory descriptor pointed to by the dp parameter must be initialized
by using the xmattach kernel service with the LW_XMATTACH flag set. The lw_pool_init kernel service
must also have been successfully called by the current process.

The service will map an area length bytes long into the caller’s address space from the memory
represented by the descriptor, starting at the number of bytes specified in the offset parameter. It is illegal
for any thread other than the caller of this service to address the attached region.

This service will operate correctly only in 64-bit user address spaces. It will not work for kernel processes
(kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on
another address space.

Execution Environment
The as_lw_att64 kernel service can be called from the process environment only.

Return Values
On successful completion, this service sets the value of addr to the address of the allocated region and
returns 0.

NULL An error occurred and errno indicates the cause.
EINVAL Cross memory descriptor is in an invalid state, length is zero or offset plus length goes past the

end of the virtual memory object.
ENODEV The as_lw_pool_init kernel service has not been called to initialize the pool settings for this

process.
ENOSYS Called by a 32-bit process.
ENOSPC Resources allocated to do lightweight services for this thread expended. Either the region to be

attached is too large (the as_lw_pool_init kernel service was called with too small a pool_size)
or there are outstanding attaches which need to release their lightweight resources using the
as_lw_det64 kernel service before this attach can be completed.

EIO Indicates a failure of the lightweight subsystem, process should discontinue use of lightweight
kernel services.

EPERM Called by a user thread that is not 1:1 with a kernel thread.
ENOMEM Could not allocate system resources for lightweight services for this thread.

Implementation Specifics
The as_lw_att64 kernel service is part of Base Operating System (BOS) Runtime.

Related Information
“as_lw_det64 Kernel Service” on page 21, “as_lw_pool_init Kernel Service” on page 22.

20 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

as_lw_det64 Kernel Service

Purpose
Unmaps and deallocates a region in the current user address space that was mapped using the
as_lw_att64 kernel service.

Syntax
#include <sys/errno.h>
#include <sys/adspace.h>
#include <sys/xmem.h>
int as_lw_det64 (dp, addr, length)
xmem* dp;
void* addr;
size_t length;

Parameters

dp The cross memory descriptor describing the attached virtual memory.
addr Specifies the first effective address of the region to be deallocated.
length Specifies the length of the region to be deallocated.

Description

Note: The as_lw_det64 kernel service should be used with caution. Read the documentation for this and
the other lightweight services (as_lw_att64 and as_lw_pool_init) carefully before doing so. There
is a risk that illegal data accesses will be allowed if these services are not used correctly.

The as_lw_det64 kernel service unmaps the virtual memory from the region starting at the specified
effective address, which is specified by the addr parameter. This service (and only this service) must be
used to unmap regions mapped by the as_lw_att64 kernel service. It must be called by the same thread
that called the as_lw_att64 kernel service. The addr parameter must be the value returned by the
as_lw_att64 kernel service, and the dp parameter and the length parameter must be the same dp and
length passed to it. The xmdetach kernel service must not be called to release the dp parameter until any
outstanding attaches of the dp parameter using the as_lw_att64 kernel service have been detached using
the as_lw_det64 kernel service.

The as_lw_det64 kernel service cannot be used to detach a region not mapped by the as_lw_att64
kernel service.

The as_lw_det64 kernel service will operate correctly only for 64-bit user address spaces. It will not work
for kernel processes (kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on
another address space.

Execution Environment
The as_lw_det64 kernel service can be called from the process environment only.

Return Values

0 The region was successfully unmapped and deallocated.
EINVAL An attempt was made to deallocate a region that should not have been deallocated.
ENOSYS The service was called by a 32-bit process.

Chapter 1. Kernel Services 21

ENOMEM No lightweight resources allocated to this thread.
EIO Indicates a failure of the lightweight subsystem, process should discontinue use of lightweight

kernel services.
EPERM Called by a user thread that is not 1:1 with a kernel thread.

Implementation Specifics
The as_lw_det64 kernel service is part of Base Operating System (BOS) Runtime.

Related Information
“as_lw_att64 Kernel Service” on page 19, “as_lw_pool_init Kernel Service.”

as_lw_pool_init Kernel Service

Purpose
Initializes lightweight attach and detach subsystem for the current process with the given settings.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/adspace.h>

int as_lw_pool_init (pool_size, flags)
size_t pool_size;
uint flags;

Parameters

pool_size Specifies the maximum number of bytes that can be attached by lightweight services at
one time by each thread of this process.

flags Specifies flag options for this kernel service. Valid values are 0 and LW_DEBUG.

Description

Note: The as_lw_pool_init kernel service should be used with caution. Read the documentation for this
and the other lightweight services (as_lw_att64 and as_lw_det64) carefully before doing so. There
is a risk that illegal data accesses will be allowed if these services are not used correctly.

The as_lw_pool_init kernel service initializes the lightweight pool size and flag settings for the current
process. Once it has been called, these settings are fixed and cannot be changed for the process.

If LW_DEBUG is set in the flags parameter, the risk of illegal data access will be removed from calls to the
as_lw_att64 kernel service and the as_lw_det64 kernel service. This setting allows users to debug
problems that are caused by incorrect use of these services.

Processes that have called the as_lw_pool_init kernel service can use the other lightweight kernel
services (as_lw_att64 and as_lw_det64) to attach and detach virtual memory regions represented by a
cross memory descriptor. These kernel services are used on a per-thread basis, that is if one thread uses
the as_lw_att64 kernel service to attach virtual memory to a region of its address space, that region
cannot be addressed by any other thread, and it must be detached by the same thread by using the
as_lw_det64 kernel service.

22 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

This service will operate correctly only for 64-bit user address spaces. It will not work for kernel processes
(kprocs).

Execution Environment
The as_lw_pool_init kernel service can be called from a 64-bit process environment only.

Return Values
On successful completion, this service returns 0.

ENOSYS The service was called by a 32-bit process.
EEXIST The as_lw_pool_init kernel service has already been successfully completed for this

process.
EINVAL Invalid flag settings or the pool_size parameter is 0.
EPERM Called by a user thread that is not 1:1 with a kernel thread.

Implementation Specifics
The as_lw_pool_init kernel service is part of Base Operating System (BOS) Runtime.

Related Information
“as_lw_att64 Kernel Service” on page 19, “as_lw_det64 Kernel Service” on page 21.

as_puth64 Kernel Service

Purpose
Indicates that no more references will be made to a virtual memory object obtained using the as_geth64
kernel service.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/adspace.h>
int as_puth64 (addr64, vmhandle)
unsigned long long addr64;
vmhandle_t vmhandle;

Parameters

addr64 Specifies the virtual memory address that the virtual memory object handle was obtained from. This
must be the same address that was given to the as_geth64 kernel service previously.

vmhandle Describes the virtual memory object that will no longer be referenced. This handle must have been
returned by the as_geth64 kernel service.

Description
The as_puth64 kernel service is used to indicate that no more references will be made to the virtual
memory object returned by a call to the as_geth64 kernel service. The virtual memory object must be
detached from the address space already, using either as_det64 or vm_det service.

Failure to call the as_puth64 kernel service may result in resources being permanently unavailable for
re-use.

Chapter 1. Kernel Services 23

If, for some reason, it is known that the virtual memory object cannot be deleted, the as_getsrval64 kernel
service may be used instead of the as_geth64 kernel service. This kernel service does not require that the
as_puth64 kernel service be used.

The as_puth64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for
kernel processes (kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on
another address space.

Execution Environment
The as_puth64 kernel service can be called from the process environment only.

Return Values

0 Successful completion.
EINVAL Input address out of range.

Related Information
The as_att64 kernel service, as_det64 kernel service, as_getsrval64 kernel service, as_geth64 kernel
service, and as_seth64 kernel service.

as_seth64 Kernel Service

Purpose
Maps a specified region for the specified virtual memory object.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/adspace.h>

int as_seth64 (addr64,vmhandle)
unsigned long long addr64;
vmhandle_t vmhandle;

Parameters

addr64 The region covering this input virtual memory address will be mapped.
vmhandle Describes the virtual memory object being made addressable within a region of the address space.

Description
The as_seth64 kernel service maps the region covering the input addr64 parameter. Any virtual memory
object previously mapped within this region is unmapped.

The virtual memory object specified with the vmhandle parameter is then mapped with the access
permission specified in the handle.

24 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

The as_seth64 kernel service should only be used when it is necessary to map a virtual memory object at
a fixed address. The as_att64 kernel service should be used when it is not absolutely necessary to map
the virtual memory object at a fixed address.

The as_seth64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for
kernel processes (kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on
another address space.

Execution Environment
The as_seth64 kernel service can be called from the process environment only.

Return Values

0 Successful completion.
EINVAL Input address out of range.

Related Information
The as_att64 kernel service, as_det64 kernel service, as_getsrval64 kernel service, as_geth64 kernel
service, and as_puth64 kernel service.

attach Device Queue Management Routine

Purpose
Provides a means for performing device-specific processing when the attchq kernel service is called.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>
int attach (dev_parms, path_id)
caddr_t dev_parms;
cba_id path_id;

Parameters

dev_parms Passed to the creatd kernel service when the attach routine is defined.
path_id Specifies the path identifier for the queue being attached to.

Description
The attach routine is part of the Device Queue Management kernel extension. Each device queue can
have an attach routine. This routine is optional and must be specified when the creatd kernel service
defines the device queue. The attchq service calls the attach routine each time a new path is created to
the owning device queue. The processing performed by this routine is dependent on the server function.

The attach routine executes under the process under which the attchq kernel service is called. The kernel
does not serialize the execution of this service with the execution of any other server routines.

Chapter 1. Kernel Services 25

Execution Environment
The attach-device routine can be called from the process environment only.

Return Values

RC_GOOD Indicates a successful completion.
RC_NONE Indicates that resources such as pinned memory are unavailable.
RC_MAX Indicates that the server already has the maximum number of users that it

supports.
Greater than or equal to RC_DEVICE Indicates device-specific errors.

audit_svcbcopy Kernel Service

Purpose
Appends event information to the current audit event buffer.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
int audit_svcbcopy (buf, len)
char *buf;
int len;

Parameters

buf Specifies the information to append to the current audit event record buffer.
len Specifies the number of bytes in the buffer.

Description
The audit_svcbcopy kernel service appends the specified buffer to the event-specific information for the
current switched virtual circuit (SVC). System calls should initialize auditing with the audit_svcstart kernel
service, which creates a record buffer for the named event.

The audit_svcbcopy kernel service can then be used to add additional information to that buffer. This
information usually consists of system call parameters passed by reference.

If auditing is enabled, the information is written by the audit_svcfinis kernel service after the record buffer
is complete.

Execution Environment
The audit_svcbcopy kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
ENOMEM Indicates that the kernel service is unable to allocate space for the new buffer.

Related Information
The audit_svcfinis kernel service, audit_svcstart kernel service.

26 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

audit_svcfinis Kernel Service

Purpose
Writes an audit record for a kernel service.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/audit.h>
int audit_svcfinis ()

Description
The audit_svcfinis kernel service completes an audit record begun earlier by the audit_svcstart kernel
service and writes it to the kernel audit logger. Any space allocated for the record and associated buffers is
freed.

If the system call terminates without calling the audit_svcfinis service, the switched virtual circuit (SVC)
handler exit routine writes the records. This exit routine calls the audit_svcfinis kernel service to complete
the records.

Execution Environment
The audit_svcfinis kernel service can be called from the process environment only.

Return Values
The audit_svcfinis kernel service always returns a value of 0.

Related Information
The audit_svcbcopy kernel service, audit_svcstart kernel service.

Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

audit_svcstart Kernel Service

Purpose

Initiates an audit record for a system call.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/audit.h>
int audit_svcstart (eventnam , eventnum, numargs, arg1, arg2, ...)
char * eventnam;
int * eventnum;
int numargs;

Chapter 1. Kernel Services 27

int arg1;
int arg2;
...

Parameters

eventnam Specifies the name of the event. In the current implementation, event names must be
less than 17 characters, including the trailing null character. Longer names are
truncated.

eventnum Specifies the number of the event. This is an internal table index meaningful only to the
kernel audit logger. The system call should initialize this parameter to 0. The first time
the audit_svcstart kernel service is called, this parameter is set to the actual table
index. The system call should not reset the parameter. The parameter should be
declared a static.

numargs Specifies the number of parameters to be included in the buffer for this record. These
parameters are normally zero or more of the system call parameters, although this is
not a requirement.

arg1, arg2, ... Specifies the parameters to be included in the buffer.

Description
The audit_svcstart kernel service initiates auditing for a system call event. It dynamically allocates a
buffer to contain event information. The arguments to the system call (which should be specified as
parameters to this kernel service) are automatically added to the buffer, as is the internal number of the
event. You can use the audit_svcbcopy service to add additional information that cannot be passed by
value.

The system call commits this record with the audit_svcfinis kernel service. The system call should call
the audit_svcfinis kernel service before calling another system call.

Execution Environment
The audit_svcstart kernel service can be called from the process environment only.

Return Values

Nonzero Indicates that auditing is on for this routine.
0 Indicates that auditing is off for this routine.

Example
svccrash(int x, int y, int z)
{

static int eventnum;
if (audit_svcstart("crashed", &eventnum, 2, x, y))

{
audit_svcfinis();
}

body of svccrash
}

The preceding example allocates an audit event record buffer for the crashed event and copies the first
and second arguments into it. The third argument is unnecessary and not copied.

Related Information
The audit_svcbcopy kernel service, audit_svcfinis kernel service.

28 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

bawrite Kernel Service

Purpose
Writes the specified buffer data without waiting for I/O to complete.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>
int bawrite (bp)
struct buf *bp;

Parameter

bp Specifies the address of the buffer structure.

On a platform that supports storage keys, the passed in bp parameter must be in the KKEY_PUBLIC or
KKEY_BLOCK_DEV protection domain.

Description
The bawrite kernel service sets the asynchronous flag in the specified buffer and calls the bwrite kernel
service to write the buffer.

For a description of how the three buffer-cache write subroutines work, see ″Block I/O Buffer Cache
Services: Overview″ in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Execution Environment
The bawrite kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
ERRNO Returns an error number from the /usr/include/sys/errno.h file on error.

Related Information
The bwrite kernel service.

Block I/O Buffer Cache Kernel Services: Overview and I/O Kernel Services in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

bdwrite Kernel Service

Purpose
Releases the specified buffer after marking it for delayed write.

Chapter 1. Kernel Services 29

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

void bdwrite (bp)
struct buf *bp;

Parameter

bp Specifies the address of the buffer structure for the buffer to be written.

On a platform that supports storage keys, the passed in bp parameter must be in the KKEY_PUBLIC or
KKEY_BLOCK_DEV protection domain.

Description
The bdwrite kernel service marks the specified buffer so that the block is written to the device when the
buffer is stolen. The bdwrite service marks the specified buffer as delayed write and then releases it (that
is, puts the buffer on the free list). When this buffer is reassigned or reclaimed, it is written to the device.

For a description of how the three buffer-cache write subroutines work, see ″Block I/O Buffer Cache Kernel
Services: Overview″ in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Execution Environment
The bdwrite kernel service can be called from the process environment only.

Return Values
The bdwrite kernel service has no return values.

Related Information
The brelse kernel service.

Block I/O Buffer Cache Kernel Services: Overview and I/O Kernel Services in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

bflush Kernel Service

Purpose
Flushes all write-behind blocks on the specified device from the buffer cache.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

void bflush (dev)
dev_t dev;

Parameter

dev Specifies which device to flush. A value of NODEVICE flushes all devices.

30 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The bflush kernel service runs the free list of buffers. It notes as busy or writing any dirty buffer whose
block is on the specified device. When a value of NODEVICE is specified, the bflush service flushes all
write-behind blocks for all devices. The bflush service has no return values.

Execution Environment
The bflush kernel service can be called from the process environment only.

Related Information
The bwrite kernel service.

Block I/O Buffer Cache Kernel Services: Overview and I/O Kernel Services in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

bindprocessor Kernel Service

Purpose
Binds or unbinds kernel threads to a processor.

Syntax
#include <sys/processor.h>

int bindprocessor (What, Who, Where)
int What;
int Who;
cpu_t Where;

Parameters

What Specifies whether a process or a kernel thread is being bound to a processor. The What parameter can
take one of the following values:

BINDPROCESS
A process is being bound to a processor.

BINDTHREAD
A kernel thread is being bound to a processor.

Who Indicates a process or kernel thread identifier, as appropriate for the What parameter, specifying the
process or kernel thread which is to be bound to a processor.

Where If the Where parameter is in the range 0-n (where n is the number of online processors in the system), it
represents a bind CPU identifier to which the process or kernel thread is to be bound. Otherwise, it
represents a processor class, from which a processor will be selected. A value of
PROCESSOR_CLASS_ANY unbinds the specified process or kernel thread, which will then be able to run
on any processor.

Description
The bindprocessor kernel service binds a single kernel thread, or all kernel threads in a process, to a
processor, forcing the bound threads to be scheduled to run on that processor only. It is important to
understand that a process itself is not bound, but rather its kernel threads are bound. Once kernel threads
are bound, they are always scheduled to run on the chosen processor, unless they are later unbound.
When a new thread is created using the thread_create kernel service, it has the same bind properties as
its creator.

Chapter 1. Kernel Services 31

Programs that use processor bindings should become Dynamic Logical Partitioning (DLPAR) aware. Refer
to Dynamic Logical Partitioning in AIX Version 6.1 General Programming Concepts: Writing and
Debugging Programs for more information.

Return Values
On successful completion, the bindprocessor kernel service returns 0. Otherwise, a value of -1 is
returned and the error code can be checked by calling the getuerror kernel service.

Error Codes
The bindprocessor kernel service is unsuccessful if one of the following is true:

EINVAL The What parameter is invalid, or the Where parameter indicates an invalid processor number or a
processor class which is not currently available.

ESRCH The specified process or thread does not exist.
EPERM The caller does not have root user authority, and the Who parameter specifies either a process, or a

thread belonging to a process, having a real or effective user ID different from that of the calling process.

Execution Environment
The bindprocessor kernel service can be called from the process environment only.

Related Information
The bindprocessor command.

The exec subroutine, fork subroutine, sysconf subroutine.

The Dynamic Logical Partitioning article in AIX Version 6.1 General Programming Concepts: Writing and
Debugging Programs.

binval Kernel Service

Purpose
Makes nonreclaimable all blocks in the buffer cache of a specified device.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

void binval (dev)
dev_t dev;

Parameter

dev Specifies the device to be purged.

Description
The binval kernel service makes nonreclaimable all blocks in the buffer cache of a specified device.
Before removing the device from the system, use the binval service to remove the blocks.

All of blocks of the device to be removed need to be flushed before you call the binval service. Typically,
these blocks are flushed after the last close of the device.

32 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment
The binval kernel service can be called from the process environment only.

Return Values
The binval service has no return values.

Related Information
The bflush kernel service, blkflush kernel service.

Block I/O Buffer Cache Kernel Services: Overview and I/O Kernel Services in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

blkflush Kernel Service

Purpose
Flushes the specified block if it is in the buffer cache.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

int blkflush (dev, blkno)
dev_t dev;
daddr_t blkno;

Parameters

dev Specifies the device containing the block to be flushed.
blkno Specifies the block to be flushed.

Description
The blkflush kernel service checks to see if the specified buffer is in the buffer cache. If the buffer is not
in the cache, then the blkflush service returns a value of 0. If the buffer is in the cache, but is busy, the
blkflush service calls the e_sleep service to wait until the buffer is no longer in use. Upon waking, the
blkflush service tries again to access the buffer.

If the buffer is in the cache and is not busy, but is dirty, then it is removed from the free list. The buffer is
then marked as busy and synchronously written to the device. If the buffer is in the cache and is neither
busy nor dirty (that is, the buffer is already clean and therefore does not need to be flushed), the blkflush
service returns a value of 0.

Execution Environment
The blkflush kernel service can be called from the process environment only.

Return Values

1 Indicates that the block was successfully flushed.
0 Indicates that the block was not flushed. The specified buffer is either not in the buffer cache or is in the buffer

cache but neither busy nor dirty.

Chapter 1. Kernel Services 33

Related Information
The bwrite kernel service.

Block I/O Buffer Cache Kernel Services: Overview I/O Kernel Services in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

bread Kernel Service

Purpose
Reads the specified block data into a buffer.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

struct buf *bread (dev, blkno)
dev_t dev;
daddr_t blkno;

Parameters

dev Specifies the device containing the block to be read.
blkno Specifies the block to be read.

Description
The bread kernel service assigns a buffer to the given block. If the specified block is already in the buffer
cache, then the block buffer header is returned. Otherwise, a free buffer is assigned to the specified block
and the data is read into the buffer. The bread service waits for I/O to complete to return the buffer
header.

The buffer is allocated to the caller and marked as busy.

Execution Environment
The bread kernel service can be called from the process environment only.

Return Values
The bread service returns the address of the selected buffer’s header. A nonzero value for B_ERROR in
the b_flags field of the buffer’s header (buf structure) indicates an error. If this occurs, the caller should
release the buffer associated with the block using the brelse kernel service.

On a platform that supports storage keys, the buffer header is allocated from the storage protected by the
KKEY_BLOCK_DEV kernel key.

Related Information
The getblk kernel service, iowait kernel service.

Block I/O Buffer Cache Kernel Services: Overview in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts describes how the buffer cache services manage the block I/O buffer
cache mechanism.

34 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

breada Kernel Service

Purpose
Reads in the specified block and then starts I/O on the read-ahead block.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

struct buf *breada (dev, blkno, rablkno)
dev_t dev;
daddr_t blkno;
daddr_t rablkno;

Parameters

dev Specifies the device containing the block to be read.
blkno Specifies the block to be read.
rablkno Specifies the read-ahead block to be read.

Description
The breada kernel service assigns a buffer to the given block. If the specified block is already in the buffer
cache, then the bread service is called to:

v Obtain the block.

v Return the buffer header.

Otherwise, the getblk service is called to assign a free buffer to the specified block and to read the data
into the buffer. The breada service waits for I/O to complete and then returns the buffer header.

I/O is also started on the specified read-ahead block if the free list is not empty and the block is not
already in the cache. However, the breada service does not wait for I/O to complete on this read-ahead
block.

″Block I/O Buffer Cache Kernel Services: Overview″ in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts summarizes how the getblk, bread, breada, and brelse services
uniquely manage the block I/O buffer cache.

Execution Environment
The breada kernel service can be called from the process environment only.

Return Values
The breada service returns the address of the selected buffer’s header. A nonzero value for B_ERROR in
the b_flags field of the buffer header (buf structure) indicates an error. If this occurs, the caller should
release the buffer associated with the block using the brelse kernel service.

On a platform that supports storage keys, the buffer header is allocated from the storage protected by the
KKEY_BLOCK_DEV kernel key.

Chapter 1. Kernel Services 35

Related Information
The bread kernel service, iowait kernel service.

The ddstrategy device driver entry point.

Block I/O Buffer Cache Kernel Services: Overview and I/O Kernel Services in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

brelse Kernel Service

Purpose
Frees the specified buffer.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

void brelse (bp)
struct buf *bp;

Parameter

bp Specifies the address of the buf structure to be freed.

On a platform that supports storage keys, the passed in bp parameter must be in the KKEY_PUBLIC or
KKEY_BLOCK_DEV protection domain.

Description
The brelse kernel service frees the buffer to which the bp parameter points.

The brelse kernel service awakens any processes waiting for this buffer or for another free buffer. The
buffer is then put on the list of available buffers. The buffer is also marked as not busy so that it can either
be reclaimed or reallocated.

The brelse service has no return values.

Execution Environment
The brelse kernel service can be called from either the process or interrupt environment.

Related Information
The geteblk kernel service.

The buf structure.

Block I/O Buffer Cache Kernel Services: Overview and I/O Kernel Services in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

36 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

bsr_alloc Kernel Service

Purpose
Allocates a Barrier Synchronization Register (BSR) resource, and retrieves mapping information.

Syntax
#include <sys/adspace.h>

int bsr_alloc (
int bsr_bytes,
struct io_map * bsr_map,
int *bsr_stride,
int *bsr_id)

Parameters

bsr_bytes Number of BSR bytes wanted.
bsr_map Mapping information for the BSR facility
bsr_stride Stride at which the BSR bytes repeat within the mapping
bsr_id An opaque identifier for the allocated BSR resource

Description
The bsr_alloc service can be used to allocate and reserve all or a portion of the BSR facility. The
requested number of BSR bytes to allocate is communicated through the bsr_bytes parameter. The
requested number of bytes must correspond to a supported window size, as communicated by the
supported_window_mask parameter of the bsr_query service. If the requested number of bytes is
available, the bytes are reserved and the I/O mapping information for accessing the allocated facility is
written to the bsr_map structure. In addition, the stride within the mapping that the allocated BSR bytes
repeat is recorded in the bsr_stride field. The bsr_id field is written with a unique identifier to be used with
the bsr_free call.

If multiple granules or windows are to be used, they must be allocated with independent calls to bsr_alloc.
this is because I/O mappings for multiple granules might not be contiguous, and strides are only applicable
within the granule.

The resulting bsr_map information can then be used as input to rmmap_create for establishing
addressability to the BSR resource within the current process address space.

Execution Environment
The bsr_alloc service can only be called from the process environment.

Return Values
If successful, bsr_alloc returns 0 and modifies the bsr_map structure so that it contains the mapping
information for the newly allocated resource, modifies the bsr_stride field displays the stride on which the
BSR bytes repeat within the mapping, and modifies the bsr_id field so that it displays a unique identifier for
the newly allocated BSR resource. If unsuccessful, one of the following values is returned:

ENODEV The BSR facility does not exist.
EINVAL Unsupported number of bytes requested.
EBUSY Requested BSR bytes or mappable BSR windows are currently in use.

Chapter 1. Kernel Services 37

Related Information
The “bsr_free Kernel Service,” “bsr_query Kernel Service,” “rmmap_create Kernel Service” on page 416.

bsr_free Kernel Service

Purpose
Frees a Barrier Synchronization Register (BSR) resource previously allocated with the bsr_alloc kernel
service.

Syntax
#include <sys/adspace.h>

int bsr_free (
int bsr_id,

Parameters

bsr_id BSR resource identifier as returned in the bsr_id field of the bsr_alloc call.

Description
The bsr_free service releases a BSR allocation. The specific BSR resource being freed is identified by the
unique identifier bsr_id from the corresponding bsr_alloc call.

It is the caller’s responsibility to ensure that all prior attachments to the BSR resource, through
rmmap_create calls, have been detached with corresponding rmmap_remove calls prior to freeing the
BSR resource.

Execution Environment
The bsr_free service can only be called from the process environment.

Return Values

0 A successful operation.
ENODEV The BSR facility is not present.
EINVAL BSR resource corresponding to bsr_id is invalid or not currently allocated.

Related Information
The “bsr_alloc Kernel Service” on page 37, “bsr_query Kernel Service,” “rmmap_remove Kernel Service”
on page 420.

bsr_query Kernel Service

Purpose
Queries the existence of the Barrier Synchronization Register facility, and, if it exists, its size and allocation
granule.

38 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/adspace.h>

int bsr_query (
int *total_bytes,
uint * supported_window_mask,
int *free_bytes,
uint *free_window_mask)

Parameters

total_bytes Total bytes of the BSR facility currently present within the system or logical partition
supported_window_mask Bit mask representing supported power-of-2-sized windows that can be allocated
free_bytes Number of BSR bytes currently available (not allocated)
free_window_mask Bit mask representing available (not allocated) power-of-2-sized windows

Description
The bsr_query service can be used to detect the presence and capabilities of the Barrier Synchronization
Register (BSR) facility on a given system or logical partition. If the BSR facility is present on a system or
within a logical partition, a value of 0 is returned, and the parameters, passed by reference, are written
with the appropriate information.

The total_bytes field is written with the total number of BSR bytes currently present in the system or logical
partition. The supported_window_mask field is written with a bitmask, where each bit set indicates the
various power-of-2 window sizes that the total_bytes can be allocated and accessed. For example, a mask
of 0x58 would indicate that windows of size 64 (0x40), 16 (0x10), and 8 (0x8) bytes were supported.

The free_bytes field is written with the number of BSR bytes within the system or logical partition that are
currently unallocated. The free_window_mask field is written with a bitmask, where each bit set indicates
the power-of-2 window sizes that are available for allocating and accessing the remaining free_bytes.

Note: Due to dynamic reconfiguration, the information returned by this query service might become stale.

Execution Environment
The bsr_query service can only be called from the process environment.

Return Values

0 The BSR facility exists and information is provided.
ENODEV The BSR facility does not exist.

Related Information
The “bsr_alloc Kernel Service” on page 37, “bsr_free Kernel Service” on page 38.

bwrite Kernel Service

Purpose
Writes the specified buffer data.

Chapter 1. Kernel Services 39

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

int bwrite (bp)
struct buf *bp;

Parameter

bp Specifies the address of the buffer structure for the buffer to be written.

On a platform that supports storage keys, the passed in bp parameter must be in the KKEY_PUBLIC or
KKEY_BLOCK_DEV protection domain.

Description
The bwrite kernel service writes the specified buffer data. If this is a synchronous request, the bwrite
service waits for the I/O to complete.

″Block I/O Buffer Cache Kernel Services: Overview″ in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts describes how the three buffer-cache write routines work.

Execution Environment
The bwrite kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
ERRNO Returns an error number from the /usr/include/sys/errno.h file on error.

Related Information
The brelse kernel service, iowait kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

cancel Device Queue Management Routine

Purpose
Provides a means for cleaning up queue element-related resources when a pending queue element is
eliminated from the queue.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

void cancel (ptr)
struct req_qe *ptr;

40 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameter

ptr Specifies the address of the queue element.

Description
The kernel calls the cancel routine to clean up resources associated with a queue element. Each device
queue can have a cancel routine. This routine is optional and must be specified when the device queue is
created with the creatq service.

The cancel routine is called when a pending queue element is eliminated from the queue. This occurs
when the path is destroyed or when the canclq service is called. The device manager should unpin any
data and detach any cross-memory descriptor.

Any operations started as a result of examining the queue with the peekq service must be stopped.

The cancel routine is also called when a queue is destroyed to get rid of any pending or active queue
elements.

Execution Environment
The cancel-queue-element routine can be called from the process environment only.

cfgnadd Kernel Service

Purpose
Registers a notification routine to be called when system-configurable variables are changed.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/sysconfig.h>

void cfgnadd
(cbp)
struct cfgncb *cbp;

Parameter

cbp Points to a cfgncb configuration notification control block.

On a platform that supports storage keys, the passed in cbp parameter must only be in the KKEY_PUBLIC
domain.

Description
The cfgnadd kernel service adds a cfgncb control block to the list of cfgncb structures that the kernel
maintains. A cfgncb control block contains the address of a notification routine (in its cfgncb.func field) to
be called when a configurable variable is being changed.

The SYS_SETPARMS sysconfig operation allows a user with sufficient authority to change the values of
configurable system parameters. The cfgnadd service allows kernel routines and extensions to register
the notification routine that is called whenever these configurable system variables have been changed.

Chapter 1. Kernel Services 41

This notification routine is called in a two-pass process. The first pass performs validity checks on the
proposed changes to the system parameters. During the second pass invocation, the notification routine
performs whatever processing is needed to make these changes to the parameters. This two-pass
procedure ensures that variables used by more than one kernel extension are correctly handled.

To use the cfgnadd service, the caller must define a cfgncb control block using the structure found in the
/usr/include/sys/sysconfig.h file.

Execution Environment
The cfgnadd kernel service can be called from the process environment only.

The cfgncb.func notification routine is called in a process environment only.

Related Information
The sysconfig subroutine.

The cfgncb configuration notification control block.

The cfgndel kernel service.

Kernel Extension and Device Driver Management Kernel Services in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

cfgncb Configuration Notification Control Block

Purpose
Contains the address of a notification routine that is invoked each time the sysconfig subroutine is called
with the SYS_SETPARMS command.

Syntax
int func (cmd, cur, new)
int cmd;
struct var *cur;
struct var *new;

Parameters

cmd Indicates the current operation type. Possible values are CFGV_PREPARE and CFGV_COMMIT, as defined in
the /usr/include/sys/sysconfig.h file.

cur Points to a var structure representing the current values of system-configurable variables.
new Points to a var structure representing the new or proposed values of system-configurable variables.

The cur and new var structures are both in the system address space.

Description
The configuration notification control block contains the address of a notification routine. This structure is
intended to be used as a list element in a list of similar control blocks maintained by the kernel.

Each control block has the following definition:

42 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

struct cfgncb {
struct cfgncb *cbnext; /* next block on chain */
struct cfgncb *cbprev; /* prev control block on chain */
int (*func)(); /* notification function */
};

The cfgndel or cfgnadd kernel service can be used to add or delete a cfgncb control block from the
cfgncb list. To use either of these kernel services, the calling routine must define the cfgncb control block.
This definition can be done using the /usr/include/sys/sysconfig.h file.

Every time a SYS_SETPARMS sysconfig command is issued, the sysconfig subroutine iterates through
the kernel list of cfgncb blocks, invoking each notification routine with a CFGV_PREPARE command. This
call represents the first pass of what is for the notification routine a two-pass process.

On a CFGV_PREPARE command, the cfgncb.func notification routine should determine if any values of
interest have changed. All changed values should be checked for validity. If the values are valid, a return
code of 0 should be returned. Otherwise, a return value indicating the byte offset of the first field in error in
the new var structure should be returned.

If all registered notification routines create a return code of 0, then no value errors have been detected
during validity checking. In this case, the sysconfig subroutine issues its second pass call to the
cfgncb.func routine and sends the same parameters, although the cmd parameter contains a value of
CFGV_COMMIT. This indicates that the new values go into effect at the earliest opportunity.

An example of notification routine processing might be the following. Suppose the user wishes to increase
the size of the block I/O buffer cache. On a CFGV_PREPARE command, the block I/O notification routine
would verify that the proposed new size for the cache is legal. On a CFGV_COMMIT command, the
notification routine would then make the additional buffers available to the user by chaining more buffers
onto the existing list of buffers.

Related Information
The cfgnadd kernel service, cfgndel kernel service.

The SYS_SETPARMS sysconfig operation.

Kernel Extension and Device Driver Management Kernel Services in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

cfgndel Kernel Service

Purpose
Removes a notification routine for receiving broadcasts of changes to configurable system variables.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/sysconfig.h>
void cfgndel (cbp)
struct cfgncb *cbp;

Chapter 1. Kernel Services 43

Parameter

cbp Points to a cfgncb configuration notification control block.

On a platform that supports storage keys, the passed in cbp parameter must only be in the KKEY_PUBLIC
domain.

Description
The cfgndel kernel service removes a previously registered cfgncb configuration notification control block
from the list of cfgncb structures maintained by the kernel. This service thus allows kernel routines and
extensions to remove their notification routines from the list of those called when a configurable system
variable has been changed.

The address of the cfgncb structure passed to the cfgndel kernel service must be the same address
used to call the cfgnadd service when the structure was originally added to the list. The
/usr/include/sys/sysconfig.h file contains a definition of the cfgncb structure.

Execution Environment
The cfgndel kernel service can be called from the process environment only.

Return Values
The cfgndel service has no return values.

Related Information
The sysconfig subroutine.

The cfgncb configuration notification control block.

The cfgnadd kernel service.

Kernel Extension and Device Driver Management Kernel Services in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

check Device Queue Management Routine

Purpose
Provides a means for performing device-specific validity checking for parameters included in request
queue elements.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

int check (type, ptr, length)
int type;
struct req_qe *ptr;
int length;

44 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

type Specifies the type of call. The following values are used when the kernel calls the check routine:

CHECK_PARMS + SEND_CMD
Send command queue element.

CHECK_PARMS + START_IO
Start I/O CCB queue element.

CHECK_PARMS + GEN_PURPOSE
General purpose queue element.

ptr Specifies the address of the queue element.
length Specifies the length of the queue element.

Description
The check routine is part of the Device Queue Management Kernel extension. Each device queue can
have a check routine. This routine is optional and must be specified when the device queue is created
with the creatq service. The enque service calls the check routine before a request queue element is put
on the device queue. The kernel uses the routine’s return value to determine whether to put the queue
element on the device queue or to stop the request.

The kernel does not call the check routine when an acknowledgment or control queue element is sent.
Therefore, the check routine is only called while executing within a process.

The address of the actual queue element is passed to this routine. In the check routine, take care to alter
only the fields that were meant to be altered. This routine does not need to be serialized with the rest of
the server’s routines, because it is only checking the parameters in the queue element.

The check routine can check the request before the request queue element is placed on the device
queue. The advantage of using this routine is that you can filter out unacceptable commands before they
are put on the device queue.

The routine looks at the queue element and returns RC_GOOD if the request is acceptable. If the return
code is not RC_GOOD, the kernel does not place the queue element in a device queue.

Execution Environment
The check routine executes under the process environment of the requester. Therefore, access to data
areas must be handled as if the routine were in an interrupt handler environment. There is, however, no
requirement to pin the code and data as in a normal interrupt handler environment.

Return Values

RC_GOOD Indicates successful completion.

All other return values are device-specific.

Related Information
The enque kernel service.

Chapter 1. Kernel Services 45

clrbuf Kernel Service

Purpose
Sets the memory for the specified buffer structure’s buffer to all zeros.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

void clrbuf (bp)
struct buf *bp;

Parameter

bp Specifies the address of the buffer structure for the buffer to be cleared.

On a platform that supports storage keys, the passed in bp parameter must be in the KKEY_PUBLIC or
KKEY_BLOCK_DEV protection domain.

Description
The clrbuf kernel service clears the buffer associated with the specified buffer structure. The clrbuf
service does this by setting to 0 the memory for the buffer that contains the specified buffer structure.

Execution Environment
The clrbuf kernel service can be called from either the process or interrupt environment.

Return Values
The clrbuf service has no return values.

Related Information
Block I/O Buffer Cache Kernel Services: Overview and I/O Kernel Services in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

clrjmpx Kernel Service

Purpose
Removes a saved context by popping the last saved jump buffer from the list of saved contexts.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

void clrjmpx (jump_buffer)
label_t *jump_buffer;

Parameter

jump_buffer Specifies the address of the caller-supplied jump buffer that was specified on the call to the
setjmpx service.

46 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The clrjmpx kernel service pops the most recent context saved by a call to the setjmpx kernel service.
Since each longjmpx call automatically pops the jump buffer for the context to resume, the clrjmpx kernel
service should be called only following:

v A normal return from the setjmpx service when the saved context is no longer needed

v Any code to be run that requires the saved context to be correct

The clrjmpx service takes the address of the jump buffer passed in the corresponding setjmpx service.

Execution Environment
The clrjmpx kernel service can be called from either the process or interrupt environment.

Return Values
The clrjmpx service has no return values.

Related Information
The longjmpx kernel service, setjmpx kernel service.

Process and Exception Management Kernel Services and Understanding Exception Handling in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

common_reclock Kernel Service

Purpose
Implements a generic interface to the record locking functions.

Syntax
#include <sys/types.h>
#include <sys/flock.h>

common_reclock(gp, size, offset,
lckdat, cmd, retray_fcn, retry_id, lock_fcn,
rele_fcn)
struct gnode *gp;
offset_t size;
offset_t offset;
struct eflock *lckdat;
int cmd;
int (*retry_fcn)();
ulong *retry_id;
int (*lock_fcn)();
int (*rele_fcn)();

Parameters

gp Points to the gnode that represents the file to lock.
size Identifies the current size of the file in bytes.
offset Specifies the current file offset. The system uses the offset parameter to establish where the lock

region is to begin.
lckdat Points to an eflock structure that describes the lock operation to perform.

Chapter 1. Kernel Services 47

cmd Defines the type of operation the kernel service performs. This parameter is a bit mask consisting
of the following bits:

SETFLCK
If set, the system sets or clears a lock. If not set, the lock information is returned.

SLPFLCK
If the lock cannot be granted immediately, wait for it. This is only valid when SETFLCK
flag is set.

INOFLCK
The caller is holding a lock on the object referred to by the gnode. The common_reclock
kernel service calls the release function before sleeping, and the lock function on return
from sleep.

When the cmd parameter is set to SLPFLCK, it indicates that if the lock cannot be granted
immediately, the service should wait for it. If the retry_fcn parameter contains a valid pointer, the
common_reclock kernel service does not sleep, regardless of the SLPFLCK flag.

retry_fcn Points to a retry function. This function is called when the lock is retried. The retry function is not
used if the lock is granted immediately. When the requested lock is blocked by an existing lock, a
sleeping lock is established with the retry function address stored in it. The common_reclock
kernel service then returns a correlating ID (see the retry_id parameter) to the calling routine, along
with an exit value of EAGAIN. When the sleeping lock is awakened, the retry function is called with
the correlating ID as its ID argument.

If this argument is not NULL, then the common_ reclock kernel service does not sleep, regardless
of the SLPFLCK command flag.

retry_id Points to location to store the correlating ID. This ID is used to correlate a retry operation with a
specific lock or set of locks. This parameter is used only in conjunction with retry function. The
value stored in this location is an opaque value. The caller should not use this value for any
purpose other than lock correlation.

lock_fcn Points to a lock function. This function is invoked by the common_ reclock kernel service to lock a
data structure used by the caller. Typically this is the data structure containing the gnode to lock.
This function is necessary to serialize access to the object to lock. When the common_reclock
kernel service invokes the lock function, it is passed the private data pointer from the gnode as its
only argument.

rele_fcn Points to a release function. This function releases the lock acquired with the lock function. When
the release function is invoked, it is passed the private data pointer from the gnode as its only
argument.

Description
The common_reclock routine implements a generic interface to the record-locking functions. This service
allows distributed file systems to use byte-range locking. The kernel service does the following when a
requested lock is blocked by an existing lock:

v Establishes a sleeping lock with the retry function in the lock structure. The address of the retry function
is specified by the retry_fcn parameter.

v Returns a correlating ID value to the caller along with an exit value of EAGAIN. The ID is stored in the
retry_id parameter.

v Calls the retry function when the sleeping lock is later awakened, the retry function is called with the
retry_id parameter as its argument.

Note: Before a call to the common_ reclock subroutine, the eflock structure must be completely filled
in. The lckdat parameter points to the eflock structure.

The caller can hold a serialization lock on the data object pointed to by the gnode. However, if the caller
expects to sleep for a blocking-file lock and is holding the object lock, the caller must specify a lock
function with the lock_fcn parameter and a release function with the rele_fcn parameter.

48 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

The lock is described by a eflock structure. This structure is identified by the lckdat parameter. If a read
lock (F_RDLCK) or write lock (F_WRLCK) is set with a length of 0, the entire file is locked. Similarly, if
unlock (F_UNLCK) is set starting at 0 for 0 length, all locks on this file are unlocked. This method is how
locks are removed when a file is closed.

To allow the common_reclock kernel service to update the per-gnode lock list, the service takes a
GN_RECLK_LOCK lock during processing.

Execution Environment
The common_reclock kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
EAGAIN Indicates a lock cannot be granted because of a blocking lock and the caller did not request that the

operation sleep.
ERRNO Indicates an error. Refer to the fcntl system call for the list of possible values.

Related Information
The fcntl subroutine.

The flock.h file.

compare_and_swap Kernel Services

Purpose
Conditionally updates or returns a variable atomically.

Syntax
#include <sys/atomic_op.h>

boolean_t compare_and_swap (addr, old_val_addr, new_val)
atomic_p addr;
int * old_val_addr;
int new_val;

boolean_t compare_and_swaplp (addr, old_val_addr, new_val)
atomic_l addr;
long * old_val_addr;
long new_val;

Parameters

addr Specifies the address of the variable.
old_val_addr Specifies the address of the old value to be checked against (and conditionally updated with)

the value of the variable.
new_val Specifies the new value to be conditionally assigned to the variable.

Chapter 1. Kernel Services 49

Description
The compare_and_swap kernel services performs an atomic (uninterruptible) operation which compares
the contents of a variable with a stored old value; if equal, a new value is stored in the variable, and TRUE
is returned, otherwise the old value is set to the current value of the variable, and FALSE is returned.

The compare_and_swap kernel service operates on a single word (32 bit) variable while the
compare_and_swaplp kernel service operates on a double word (64 bit) variable.

The compare_and_swap kernel services are particularly useful in operations on singly linked lists, where
a list pointer must not be updated if it has been changed by another thread since it was read.

Note:

v The single word variable passed to the compare_and_swap kernel service must be aligned on a
full word (32 bit) boundary.

v The double word variable passed to the compare_and_swaplp kernel service must be aligned
on a double word (64 bit) boundary.

Execution Environment
The compare_and_swap kernel services can be called from either the process or interrupt environment.

Return Values

TRUE Indicates that the variable was equal to the old value, and has been set to the new value.
FALSE Indicates that the variable was not equal to the old value, and that its current value has been returned in

the location where the old value was stored.

Related Information
The fetch_and_add kernel service, fetch_and_and kernel service, fetch_and_or kernel service.

Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts

copyin Kernel Service

Purpose
Copies data between user and kernel memory.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int copyin (uaddr, kaddr, count)
char *uaddr;
char *kaddr;
int count;

Parameters

uaddr Specifies the address of user data.
kaddr Specifies the address of kernel data.
count Specifies the number of bytes to copy.

50 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The copyin kernel service copies the specified number of bytes from user memory to kernel memory. This
service is provided so that system calls and device driver top half routines can safely access user data.
The copyin service ensures that the user has the appropriate authority to access the data. It also provides
recovery from paging I/O errors that would otherwise cause the system to crash.

The copyin service should be called only while executing in kernel mode in the user process.

Execution Environment
The copyin kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
EFAULT Indicates that the user has insufficient authority to access the data, or the address

specified in the uaddr parameter is not valid.
EIO Indicates that a permanent I/O error occurred while referencing data.
ENOMEM Indicates insufficient memory for the required paging operation.
ENOSPC Indicates insufficient file system or paging space.

Related Information
Accessing User-Mode Data While in Kernel Mode and Memory Kernel Services in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

The copyinstr kernel service, copyout kernel service.

copyinstr Kernel Service

Purpose
Copies a character string (including the terminating null character) from user to kernel space.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

On the 32-bit kernel, the syntax for the copyinstr Kernel Service is:
int copyinstr (from, to, max, actual)
caddr_t from;
caddr_t to;
uint max;
uint *actual;

On the 64-bit kernel, the syntax for the copyinstr subroutine is:
int copyinstr (from, to, max, actual)
void *from;
void *to;
size_t max;
size_t *actual;

Parameters

from Specifies the address of the character string to copy.

Chapter 1. Kernel Services 51

to Specifies the address to which the character string is to be copied.
max Specifies the number of characters to be copied.
actual Specifies a parameter, passed by reference, that is updated by the copyinstr service with the actual

number of characters copied.

Description
The copyinstr kernel service permits a user to copy character data from one location to another. The
source location must be in user space or can be in kernel space if the caller is a kernel process. The
destination is in kernel space.

Execution Environment
The copyinstr kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
E2BIG Indicates insufficient space to complete the copy.
EIO Indicates that a permanent I/O error occurred while referencing data.
ENOSPC Indicates insufficient file system or paging space.
EFAULT Indicates that the user has insufficient authority to access the data or the address specified in the uaddr

parameter is not valid.

Related Information
Accessing User-Mode Data While in Kernel Mode and Memory Kernel Services in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

copyout Kernel Service

Purpose
Copies data between user and kernel memory.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int copyout (kaddr, uaddr, count)
char *kaddr;
char *uaddr;
int count;

Parameters

kaddr Specifies the address of kernel data.
uaddr Specifies the address of user data.
count Specifies the number of bytes to copy.

Description
The copyout service copies the specified number of bytes from kernel memory to user memory. It is
provided so that system calls and device driver top half routines can safely access user data. The

52 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

copyout service ensures that the user has the appropriate authority to access the data. This service also
provides recovery from paging I/O errors that would otherwise cause the system to crash.

The copyout service should be called only while executing in kernel mode in the user process.

Execution Environment
The copyout kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
EFAULT Indicates that the user has insufficient authority to access the data or the address

specified in the uaddr parameter is not valid.
EIO Indicates that a permanent I/O error occurred while referencing data.
ENOMEM Indicates insufficient memory for the required paging operation.
ENOSPC Indicates insufficient file system or paging space.

Related Information
The copyin kernel service, copyinstr kernel service.

Accessing User-Mode Data While in Kernel Mode and Memory Kernel Services in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

crcopy Kernel Service

Purpose
Copies a credentials structure to a new one and frees the old one.

Syntax

#include <sys/cred.h>

struct ucred * crcopy (cr)
struct ucred * cr;

Parameter

cr Pointer to the credentials structure that is to be copied and then freed.

Description
The crcopy kernel service allocates a new credentials structure that is initialized from the contents of the
cr parameter. The reference to cr is then freed and a pointer to the new structure returned to the caller.

Note: The cr parameter must have been obtained by an earlier call to the crcopy kernel service, crdup
kernel service, crget kernel service, or the crref kernel service.

Execution Environment
The crcopy kernel service can be called from the process environment only.

Chapter 1. Kernel Services 53

Return Values

Nonzero value A pointer to a newly allocated and initialized credentials structure.
Zero value An error occurred when the kernel service was attempting to allocate pinned

memory for the credentials structure.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

crdup Kernel Service

Purpose
Copies a credentials structure to a new one.

Syntax

#include <sys/cred.h>

struct ucred * crdup (cr)
struct ucred * cr;

Parameter

cr Pointer to the credentials structure that is to be copied.

Description
The crdup kernel service allocates a new credentials structure that is initialized from the contents of the cr
parameter.

Execution Environment
The crdup kernel service can be called from the process environment only.

Return Values

Nonzero value A pointer to a newly allocated and initialized credentials structure.
Zero value An error occurred when the kernel service was attempting to allocate pinned memory

for the credentials structure.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

54 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

creatp Kernel Service

Purpose
Creates a new kernel process.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

pid_t creatp()

Description
The creatp kernel service creates a kernel process. It also allocates and initializes a process block for the
new process. Initialization involves these three tasks:

v Assigning an identifier to the kernel process.

v Setting the process state to idle.

v Initializing its parent, child, and sibling relationships.

″Using Kernel Processes″ in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts has a more detailed discussion of how the creatp kernel service creates and initializes kernel
processes.

The process calling the creatp service must subsequently call the initp kernel service to complete the
process initialization. The initp service also makes the newly created process runnable.

Execution Environment
The creatp kernel service can be called from the process environment only.

Return Values

-1 Indicates an error.

Upon successful completion, the creatp kernel service returns the process identifier for the new kernel
process.

Related Information
The initp kernel service.

CRED_GETEUID, CRED_GETRUID, CRED_GETSUID, CRED_GETLUID,
CRED_GETEGID, CRED_GETRGID, CRED_GETSGID and
CRED_GETNGRPS Macros

Purpose
Credentials structure field accessing macros.

Syntax
#include <sys/cred.h>

uid_t CRED_GETEUID (crp)
uid_t CRED_GETRUID (crp)

Chapter 1. Kernel Services 55

uid_t CRED_GETSUID (crp)
uid_t CRED_GETLUID (crp)
gid_t CRED_GETEGID (crp)
gid_t CRED_GETRGID (crp)
gid_t CRED_GETSGID (crp)
int CRED_GETNGRPS (crp)

Parameter

crp Pointer to a credentials structure

Description
These macros provide a means for accessing the user and group identifier fields within a credentials
structure. The fields within a ucred structure should not be accessed directly as the field names and their
locations are subject to change.

The CRED_GETEUID macro returns the effective user ID field from the credentials structure referenced by
crp.

The CRED_GETRUID macro returns the real user ID field from the credentials structure referenced by crp.

The CRED_GETSUID macro returns the saved user ID field from the credentials structure referenced by
crp.

The CRED_GETLUID macro returns the login user ID field from the credentials structure referenced by
crp.

The CRED_GETEUID macro returns the effective group ID field from the credentials structure referenced
by crp.

The CRED_GETRUID macro returns the real group ID field from the credentials structure referenced by
crp.

The CRED_GETSUID macro returns the saved group ID field from the credentials structure referenced by
crp.

The CRED_GETNGRPS macro returns the number of concurrent group ID values stored within the
credentials structure referenced by crp.

These macros are defined in the system header file <sys/cred.h>.

Execution Environment
The credentials macros called with any valid credentials pointer.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

crexport Kernel Service

Purpose
Copies an internal format credentials structure to an external format credentials structure.

56 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/cred.h>

void crexport (src, dst)
struct ucred * src;
struct ucred_ext * dst;

Parameter

src Pointer to the internal credentials structure.
dst Pointer to the external credentials structure.

Description
The crexport kernel service copies from the internal credentials structure referenced by src into the
external credentials structure referenced by dst. The external credentials structure is guaranteed to be
compatible between releases. Fields within a ucred structure must not be referenced directly as the field
names and locations within that structure are subject to change.

Execution Environment
The crexport kernel service can be called from the process environment only.

Return Values
This kernel service does not have a return value.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

crfree Kernel Service

Purpose
Releases a reference count on a credentials structure.

Syntax

#include <sys/cred.h>

void crfree (cr)
struct ucred * cr;

Parameter

cr Pointer to the credentials structure that is to have a reference freed.

Description
The crfree kernel service deallocates a reference to a credentials structure. The credentials structure is
deallocated when no references remain.

Chapter 1. Kernel Services 57

Note: The cr parameter must have been obtained by an earlier call to the crcopy kernel service, crdup
kernel service, crget kernel service, or the crref kernel service.

Execution Environment
The crfree kernel service can be called from the process environment only.

Return Values
No value is returned by this kernel service.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

crget Kernel Service

Purpose
Allocates a new, uninitialized credentials structure to a new one and frees the old one.

Syntax

#include <sys/cred.h>

struct ucred * crget (void)

Parameter
This kernel service does not require any parameters.

Description
The crget kernel service allocates a new credentials structure. The structure is initialized to all zero
values, and the reference count is set to 1.

Execution Environment
The crget kernel service can be called from the process environment only.

Return Values

Nonzero value A pointer to a newly allocated and initialized credentials structure.
Zero value An error occurred when the kernel service was attempting to allocate pinned

memory for the credentials structure.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

crhold Kernel Service

Purpose
Increments the reference count for a credentials structure.

58 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/cred.h>

void crhold (cr)
struct ucred * cr;

Parameter

cr Pointer to the credentials structure that will have its reference count incremented.

Description
The crhold kernel service increments the reference count of a credentials structure.

Note: Reference counts that are incremented with the crhold kernel service must be decremented with
the crfree kernel service.

Execution Environment
The crhold kernel service can be called from the process environment only.

Return Values
No value is returned by this kernel service.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

crref Kernel Service

Purpose
Increments the reference count for the current credentials structure.

Syntax

#include <sys/cred.h>

struct ucred * crref (void)

Parameter
This kernel service does not require any parameters.

Description
The crref kernel service increments the reference count of the current credentials structure and returns a
pointer to the current credentials structure to the invoker.

Chapter 1. Kernel Services 59

Note: References that are allocated with the crref kernel service must be released with the crfree kernel
service.

Execution Environment
The crref kernel service can be called from the process environment only.

Return Values

Nonzero value A pointer to the current credentials structure.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

crset Kernel Service

Purpose
Sets the current security credentials.

Syntax
#include <sys/cred.h>

void crset (cr)
struct ucred * cr;

Parameter

cr Pointer to the credentials structure that will become the new, current security credentials.

Description
The crset kernel service replaces the current security credentials with the supplied value. The existing
structure will be deallocated.

Note: The cr parameter must have been obtained by an earlier call to the crcopy kernel service, crdup
kernel service, crget kernel service, or the crref kernel service.

Execution Environment
The crset kernel service can be called from the process environment only.

Return Values
No value is returned by this kernel service.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

60 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

curtime Kernel Service

Purpose
Reads the current time into a time structure.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/time.h>

void curtime (timestruct)
struct timestruc_t *timestruct;

Parameter

timestruct Points to a timestruc_t time structure defined in the /usr/include/sys/time.h file. The curtime
kernel service updates the fields in this structure with the current time.

Description
The curtime kernel service reads the current time into a time structure defined in the
/usr/include/sys/time.h file. This service updates the tv_sec and tv_nsec fields in the time structure,
pointed to by the timestruct parameter, from the hardware real-time clock. The kernel also maintains and
updates a memory-mapped time tod structure. This structure is updated with each clock tick.

The kernel also maintains two other in-memory time values: the lbolt and time values. The three
in-memory time values that the kernel maintains (the tod, lbolt, and time values) are available to kernel
extensions. The lbolt in-memory time value is the number of timer ticks that have occurred since the
system was booted. This value is updated once per timer tick. The time in-memory time value is the
number of seconds since Epoch. The kernel updates the value once per second.

Note: POSIX 1003.1 defines ″seconds since Epoch″ as a ″value interpreted as the number of seconds
between a specified time and the Epoch″. It further specifies that a ″Coordinated Universal Time
name specified in terms of seconds (tm_sec), minutes (tm_min), hours (tm_hour), and days since
January 1 of the year (tm_yday), and calendar year minus 1900 (tm_year) is related to a time
represented as seconds since the Epoch, according to the following expression: tm_sec + tm_min *
60 tm_hour*3600 + tm_yday * 86400 + (tm_year - 70) * 31536000 ((tm_year - 69) / 4) * 86400 if
the year is greater than or equal to 1970, otherwise it is undefined.″

The curtime kernel service does not page-fault if a pinned stack and input time structure are used. Also,
accessing the lbolt, time, and tod in-memory time values does not cause a page fault since they are in
pinned memory.

Execution Environment
The curtime kernel service can be called from either the process or interrupt environment.

The tod, time, and lbolt memory-mapped time values can also be read from the process or interrupt
handler environment. The timestruct parameter and stack must be pinned when the curtime service is
called in an interrupt handler environment.

Return Values
The curtime kernel service has no return values.

Chapter 1. Kernel Services 61

Related Information
Timer and Time-of-Day Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

d_align Kernel Service

Purpose
Provides needed information to align a buffer with a processor cache line.

Library
Kernel Extension Runtime Routines Library (libsys.a)

Syntax
int d_align()

Description
To maintain cache consistency with system memory, buffers must be aligned. The d_align kernel service
helps provide that function by returning the maximum processor cache-line size. The cache-line size is
returned in log2 form.

Execution Environment
The d_align service can be called from either the process or interrupt environment.

Related Information
The d_cflush kernel service, d_roundup kernel service.

Understanding Direct Memory Access (DMA) Transfer in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

d_alloc_dmamem Kernel Service

Purpose
Allocates an area of “dma-able” memory.

Syntax
void *
d_alloc_dmamem(d_handle_t device_handle, size_t size,int align)

Description
Exported, documented kernel service supported on PCI-based systems only. The d_alloc_dmamem
kernel service allocates an area of “dma-able” memory which satisfies the constraints associated with a
DMA handle, specified via the device_handle parameter. The constraints (such as need for contiguous
physical pages or need for 32-bit physical address) are intended to guarantee that a given adapter will be
able to access the physical pages associated with the allocated memory. A driver associates such
constraints with a dma handle via the flags parameter on its d_map_init call.

The area to be allocated is the number of bytes in length specified by the size parameter, and is aligned
on the byte boundary specified by the align parameter. The align parameter is actually the log base 2 of
the desired address boundary. For example, an align value of 12 requests that the allocated area be
aligned on a 4096 byte boundary.

62 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

d_alloc_dmamem is appropriate to be used for long-term mappings. Depending on the system
configuration and the constraints encoded in the device_handle, the underlying storage will come from
either the real_heap (rmalloc service) or pinned_heap (xmalloc service).

Notes:

1. The d_free_dmamem service should be called to free allocation from a previous d_alloc_dmamem
call.

2. The d_alloc_dmamem kernel service can be called from the process environment only.

Parameters

device_handle Indicates the dma handle.
align Specifies alignment characteristics.
size_t size Specifies number of bytes to allocate.

Return Values

Address of allocated
area

Indicates that d_alloc_dmamem was successful.

NULL Requested memory could not be allocated.

Related Information
The d_free_dmamem kernel service, d_map_init kernel service, rmalloc kernel service, xmalloc kernel
service.

d_cflush Kernel Service

Purpose
Flushes the processor and I/O channel controller (IOCC) data caches when mapping bus device DMA with
the long-term DMA_WRITE_ONLY option.

Syntax
int d_cflush (channel_id, baddr, count, daddr)
int channel_id;
caddr_t baddr;
size_t count;
caddr_t daddr;

Parameters

channel_id Specifies the DMA channel ID returned by the d_init kernel service.
baddr Designates the address of the memory buffer.
count Specifies the length of the memory buffer transfer in bytes.
daddr Designates the address of the device corresponding to the transfer.

Description
The d_cflush kernel service should be called after data has been modified in a buffer that will undergo
direct memory access (DMA) processing. Through DMA processing, this data is sent to a device where the
d_master kernel service with the DMA_WRITE_ONLY option has already mapped the buffer for device
DMA. The d_cflush kernel service is not required if the DMA_WRITE_ONLY option is not used or if the
buffer is mapped before each DMA operation by calling the d_master kernel service.

Chapter 1. Kernel Services 63

The d_cflush kernel service flushes the processor cache for the involved cache lines and invalidates any
previously retrieved data that may be in the IOCC buffers for the designated channel. This most frequently
occurs when using long-term buffer mapping for DMA support to or from a device.

Long-Term DMA Buffer Mapping
The long-term DMA buffer mapping approach is frequently used when a pool of buffers is defined for
sending commands and obtaining responses from an adapter using bus master DMA. This approach is
also used frequently in the communications field where buffers can come from a common pool such as the
mbuf pool or a pool used for protocol headers.

When using a fixed pool of buffers, the d_master kernel service is used only once to map the pool’s
address and range. The device driver then modifies the data in the buffers. It must also flush the data from
the processor and invalidate the IOCC data cache involved in transfers with the device. The IOCC cache
must be invalidated because the data in the IOCC data cache may be stale due to the last DMA operation
to or from the buffer area that has just been modified for the next operation.

The d_cflush kernel service permits the flushing of the processor cache and making the required IOCC
cache not valid. The device driver should use this service after modifying the data in the buffer and before
sending the command to the device to start the DMA operation.

Once DMA processing has been completed, the device driver should call the d_complete service to check
for errors and ensure that any data read from the device has been flushed to memory.

Note: The d_cflush kernel service is not supported on the 64-bit kernel.

Execution Environment
The d_cflush kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates that the transfer was successfully completed.
EINVAL Indicates the presence of an invalid parameter.

Related Information
I/O Kernel Services and Understanding Direct Memory Access (DMA) Transfer in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

delay Kernel Service

Purpose
Suspends the calling process for the specified number of timer ticks.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

void delay
(ticks)
int ticks;

64 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameter

ticks Specifies the number of timer ticks that must occur before the process is reactivated. Many timer ticks can
occur per second.

Description
The delay kernel service suspends the calling process for the number of timer ticks specified by the ticks
parameter.

The HZ value in the /usr/include/sys/m_param.h file can be used to determine the number of ticks per
second.

Execution Environment
The delay kernel service can be called from the process environment only.

Return Values
The delay service has no return values.

Related Information
Timer and Time-of-Day Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

del_domain_af Kernel Service

Purpose
Deletes an address family from the Address Family domain switch table.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/domain.h>

int
del_domain_af (domain)
struct domain *domain;

Parameter

domain Specifies the address family.

Description
The del_domain_af kernel service deletes the address family specified by the domain parameter from the
Address Family domain switch table.

Execution Environment
The del_domain_af kernel service can be called from either the process or interrupt environment.

Chapter 1. Kernel Services 65

Return Value

EINVAL Indicates that the specified address is not found in the Address Family domain switch table.

Example
To delete an address family from the Address Family domain switch table, invoke the del_domain_af
kernel service as follows:
del_domain_af(&inetdomain);

In this example, the family to be deleted is inetdomain.

Related Information
The add_domain_af kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

del_input_type Kernel Service

Purpose
Deletes an input type from the Network Input table.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>

int del_input_type
(type)
u_short type;

Parameter

type Specifies which type of protocol the packet contains. This parameter is a field in a packet.

Description
The del_input_type kernel service deletes an input type from the Network Input table to disable the
reception of the specified packet type.

Execution Environment
The del_input_type kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates that the type was successfully deleted.
ENOENT Indicates that the del_input_type service could not find the type in the Network Input table.

66 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Examples
1. To delete an input type from the Network Input table, invoke the del_input_type kernel service as

follows:
del_input_type(ETHERTYPE_IP);

In this example, ETHERTYPE_IP specifies that Ethernet IP packets should no longer be processed.

2. To delete an input type from the Network Input table, invoke the del_input_type kernel service as
follows:
del_input_type(ETHERTYPE_ARP);

In this example, ETHERTYPE_ARP specifies that Ethernet ARP packets should no longer be processed.

Related Information
The add_input_type kernel service, find_input_type kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

del_netisr Kernel Service

Purpose
Deletes a network software interrupt service routine from the Network Interrupt table.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/netisr.h>

int del_netisr (soft_intr_level)
u_short soft_intr_level;

Parameter

soft_intr_level Specifies the software interrupt level to delete. This parameter must be greater than or
equal to 0 and less than NETISR_MAX. Refer to netisr.h for the range of values of
soft_intr_level that are already in use. Also, other kernel extensions that are not AIX
and that use network ISRs currently running on the system can make use of additional
values not mentioned in netisr.h.

Description
The del_netisr kernel service deletes the network software interrupt service routine specified by the
soft_intr_level parameter from the Network Software Interrupt table.

Execution Environment
The del_netisr kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates that the software interrupt service was successfully deleted.
ENOENT Indicates that the software interrupt service was not found in the Network Software Interrupt table.

Chapter 1. Kernel Services 67

Example
To delete a software interrupt service from the Network Software Interrupt table, invoke the kernel service
as follows:

del_netisr(NETISR_IP);

In this example, the software interrupt routine to be deleted is NETISR_IP.

Related Information
The add_netisr kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

del_netopt Macro

Purpose
Deletes a network option structure from the list of network options.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/netopt.h>

del_netopt (option_name_symbol)
option_name_symbol;

Parameter

option_name_symbol Specifies the symbol name used to construct the netopt structure and default
names.

Description
The del_netopt macro deletes a network option from the linked list of network options. After the
del_netopt service is called, the option is no longer available to the no command.

Execution Environment
The del_netopt macro can be called from either the process or interrupt environment.

Return Values
The del_netopt macro has no return values.

Related Information
The no command.

The add_netopt macro.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

68 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

detach Device Queue Management Routine

Purpose
Provides a means for performing device-specific processing when the detchq kernel service is called.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

int detach(dev_parms, path_id)
caddr_t dev_parms;
cba_id path_id;

Parameters

dev_parms Passed to creatd service when the detach routine is defined.
path_id Specifies the path identifier for the queue that is being detached from.

Description
The detach routine is part of the Device Queue Management kernel extension. Each device queue can
have a detach routine. This routine is optional and must be specified when the device queue is defined
with the creatd service. The detchq service calls the detach routine each time a path to the device queue
is removed.

To ensure that the detach routine is not called while a queue element from this client is still in the device
queue, the kernel puts a detach control queue element at the end of the device queue. The server knows
by convention that a detach control queue element signifies completion of all pending queue elements for
that path. The kernel calls the detach routine after the detach control queue element is processed.

The detach routine executes under the process under which the detchq service is called. The kernel does
not serialize the execution of this service with the execution of any of the other server routines.

Execution Environment
The detach routine can be called from the process environment only.

Return Values

RC_GOOD Indicates successful completion.

A return value other than RC_GOOD indicates an irrecoverable condition causing system failure.

devdump Kernel Service

Purpose
Calls a device driver dump-to-device routine.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

Chapter 1. Kernel Services 69

int devdump
(devno, uiop, cmd, arg, chan, ext)
dev_t devno;
struct uio * uiop;
int cmd, arg, ext;

Parameters

devno Specifies the major and minor device numbers.
uiop Points to the uio structure containing write parameters.
cmd Specifies which dump command to perform.
arg Specifies a parameter or address to a parameter block for the specified command.
chan Specifies the channel ID.
ext Specifies the extended system call parameter.

Description
The kernel or kernel extension calls the devdump kernel service to initiate a memory dump to a device
when writing dump data and then to terminate the dump to the target device.

The devdump service calls the device driver’s dddump routine, which is found in the device switch table
for the device driver associated with the specified device number. If the device number (specified by the
devno parameter) is not valid or if the associated device driver does not have a dddump routine, an
ENODEV return value is returned.

If the device number is valid and the specified device driver has a dddump routine, the routine is called.

If the device driver’s dddump routine is successfully called, the return value for the devdump service is
set to the return value provided by the device’s dddump routine.

Execution Environment
The devdump kernel service can be called in either the process or interrupt environment, as described
under the conditions described in the dddump routine.

Return Values

0 Indicates a successful operation.
ENODEV Indicates that the device number is not valid or that no dddump routine is registered for this device.

The dddump device driver routine provides other return values.

Related Information
The dddump device driver entry point.

Kernel Extension and Device Driver Management Kernel Services and How Device Drivers are Accessed
in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

devstrat Kernel Service

Purpose
Calls a block device driver’s strategy routine.

70 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int devstrat (bp)
struct buf *bp;

Parameter

bp Points to the buf structure specifying the block transfer parameters.

Description
The kernel or kernel extension calls the devstrat kernel service to request a block data transfer to or from
the device with the specified device number. This device number is found in the buf structure. The
devstrat service can only be used for the block class of device drivers.

The devstrat service calls the device driver’s ddstrategy routine. This routine is found in the device
switch table for the device driver associated with the specified device number found in the b_dev field. The
b_dev field is found in the buf structure pointed to by the bp parameter. The caller of the devstrat service
must have an iodone routine specified in the b_iodone field of the buf structure. Following the return from
the device driver’s ddstrategy routine, the devstrat service returns without waiting for the I/O to be
performed.

On multiprocessor systems, all iodone routines run by default on the first processor started when the
system was booted. This ensures compatibility with uniprocessor device drivers. If the iodone routine has
been designed to be multiprocessor-safe, set the B_MPSAFE flag in the b_flags field of the buf structure
passed to the devstrat kernel service. The iodone routine will then run on any available processor.

If the device major number is not valid or the specified device is not a block device driver, the devstrat
service returns the ENODEV return code. If the device number is valid, the device driver’s ddstrategy
routine is called with the pointer to the buf structure (specified by the bp parameter).

Execution Environment
The devstrat kernel service can be called from either the process or interrupt environment.

Note: The devstrat kernel service can be called in the interrupt environment only if its priority level is
INTIODONE or lower.

Return Values

0 Indicates a successful operation.
ENODEV Indicates that the device number is not valid or that no ddstrategy routine registered. This value is also

returned when the specified device is not a block device driver. If this error occurs, the devstrat service
can cause a page fault.

Related Information
The iodone kernel service.

The ddstategy routine.

The buf structure.

Chapter 1. Kernel Services 71

Kernel Extension and Device Driver Management Kernel Services and How Device Drivers are Accessed
in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

devswadd Kernel Service

Purpose
Adds a device entry to the device switch table.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/device.h>

int devswadd (devno, dswptr)
dev_t devno;
struct devsw *dswptr;

Parameters

devno Specifies the major and minor device numbers to be associated with the specified entry in the device
switch table.

dswptr Points to the device switch structure to be added to the device switch table.

Description
The devswadd kernel service is typically called by a device driver’s ddconfig routine to add or replace
the device driver’s entry points in the device switch table. The device switch table is a table of device
switch (devsw) structures indexed by the device driver’s major device number. This table of structures is
used by the device driver interface services in the kernel to facilitate calling device driver routines.

The major device number portion of the devno parameter is used to specify the index in the device switch
table where the devswadd service must place the specified device switch entry. Before this service copies
the device switch structure into the device switch table, it checks the existing entry to determine if any
opened device is using it. If an opened device is currently occupying the entry to be replaced, the
devswadd service does not perform the update. Instead, it returns an EEXIST error value. If the update is
successful, it returns a value of 0.

Entry points in the device switch structure that are not supported by the device driver must be handled in
one of two ways. If a call to an unsupported entry point should result in the return of an error code, then
the entry point must be set to the nodev routine in the structure. As a result, any call to this entry point
automatically invokes the nodev routine, which returns an ENODEV error code. The kernel provides the
nodev routine.

Otherwise, a call to an unsupported entry point should be treated as a no-operation function. Then the
corresponding entry point should be set to the nulldev routine. The nulldev routine, which is also provided
by the kernel, performs no operation if called and returns a 0 return code.

On multiprocessor systems, all device driver routines run by default on the first processor started when the
system was booted. This ensures compatibility with uniprocessor device drivers. If the device driver being
added has been designed to be multiprocessor-safe, set the DEV_MPSAFE flag in the d_opts field of the
devsw structure passed to the devswadd kernel service. The device driver routines will then run on any
available processor.

72 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

All other fields within the structure that are not used should be set to 0. Some fields in the structure are for
kernel use; the devswadd service does not copy these fields into the device switch table. These fields are
documented in the /usr/include/device.h file.

Execution Environment
The devswadd kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
EEXIST Indicates that the specified device switch entry is in use and cannot be replaced.
ENOMEM Indicates that the entry cannot be pinned due to insufficient real memory.
EINVAL Indicates that the major device number portion of the devno parameter exceeds the maximum permitted

number of device switch entries.

Related Information
The devswchg kernel service, devswdel kernel service, devswqry kernel service.

The ddconfig device driver entry point.

Kernel Extension and Device Driver Management Kernel Services in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

devswchg Kernel Service

Purpose
Alters a device switch entry point in the device switch table.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/device.h>

int devswchg (devno, type, newfunc, oldfunc);
dev_t devno;
int type;
int (*newfunc) ();
int (**oldfunc)();

Parameters

devno Specifies the major and minor device numbers of the device to be changed.

Chapter 1. Kernel Services 73

type Specifies the device switch entry point to alter. The type parameter can have one of the following
values:

DSW_BLOCK
Alters the ddstrategy entry point.

DSW_CONFIG
Alters the ddconfig entry point.

DSW_CREAD
Alters the ddread entry point.

DSW_CWRITE
Alters the ddwrite entry point.

DSW_DUMP
Alters the dddump entry point.

DSW_MPX
Alters the ddmpx entry point.

DSW_SELECT
Alters the ddselect entry point.

DSW_TCPATH
Alters the ddrevoke entry point.

newfunc Specifies the new value for the device switch entry point.
oldfunc Specifies that the old value of the device switch entry point be returned here.

Description
The devswchg kernel service alters the value of a device switch entry point (function pointer) after a
device switch table entry has been added by the devswadd kernel service. The device switch entry point
specified by the type parameter is set to the value of the newfunc parameter. Its previous value is returned
in the memory addressed by the oldfunc parameter. Only one device switch entry can be altered per call.

If the devswchg kernel service is unsuccessful, the value referenced by the oldfunc parameter is not
defined.

Execution Environment
The devswchg kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
EINVAL Indicates the Type command was not valid.
ENODEV Indicates the device switch entry specified by the devno parameter is not defined.

Related Information
The devswadd kernel service.

List of Kernel Extension and Device Driver Management Kernel Services and How Device Drivers are
Accessed in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

devswdel Kernel Service

Purpose
Deletes a device driver entry from the device switch table.

74 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/device.h>

int devswdel
(devno)
dev_t devno;

Parameter

devno Specifies the major and minor device numbers of the device to be deleted.

Description
The devswdel kernel service is typically called by a device driver’s ddconfig routine on termination to
remove the device driver’s entry points from the device switch table.The device switch table is a table of
device switch (devsw) structures indexed by the device driver’s major device number. The device driver
interface services use this table of structures in the kernel to facilitate calling device driver routines.

The major device number portion of the devno parameter is used to specify the index into the device
switch table for the entry to be removed. Before the device switch structure is removed, the existing entry
is checked to determine if any opened device is using it.

If an opened device is currently occupying the entry to be removed, the devswdel service does not
perform the update. Instead, it returns an EEXIST return code. If the removal is successful, a return code
of 0 is set.

The devswdel service removes a device switch structure entry from the table by marking the entry as
undefined and setting all of the entry point fields within the structure to a nodev value. As a result, any
callers of the removed device driver return an ENODEV error code. If the specified entry is already marked
undefined, the devswdel service returns an ENODEV error code.

Execution Environment
The devswdel kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
EEXIST Indicates that the specified device switch entry is in use and cannot be removed.
ENODEV Indicates that the specified device switch entry is not defined.
EINVAL Indicates that the major device number portion of the devno parameter exceeds the maximum permitted

number of device switch entries.

Related Information
The devswadd kernel service, devswchg kernel service, devswqry kernel service.

Kernel Extension and Device Driver Management Kernel Services in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

Chapter 1. Kernel Services 75

devswqry Kernel Service

Purpose
Checks the status of a device switch entry in the device switch table.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/device.h>int devswqry (devno, status, dsdptr)
dev_t devno;
uint *status;
caddr_t *dsdptr;

Parameters

devno Specifies the major and minor device numbers of the device to be queried.
status Points to the status of the specified device entry in the device switch table. This parameter is passed by

reference.
dsdptr Points to device-dependent information for the specified device entry in the device switch table. This

parameter is passed by reference.

Description
The devswqry kernel service returns the status of a specified device entry in the device switch table. The
entry in the table to query is determined by the major portion of the device number specified in the devno
parameter. The status of the entry is returned in the status parameter that is passed by reference on the
call. If this pointer is null on entry to the devswqry service, then the status is not returned to the caller.

The devswqry service also returns the address of device-dependent information for the specified device
entry in the device switch table. This address is taken from the d_dsdptr field for the entry and returned in
the dsdptr parameter, which is passed by reference. If this pointer is null on entry to the devswqry
service, then the service does not return the address from the d_dsdptr field to the caller.

Status Parameter Flags
The status parameter comprises a set of flags that can indicate the following conditions:

DSW_BLOCK Device switch entry is defined by a block device driver. This flag is set when the device
driver has a ddstrategy entry point.

DSW_CONFIG Device driver in this device switch entry provides an entry point for configuration.
DSW_CREAD Device driver in this device switch entry is providing a routine for character reads or raw

input. This flag is set when the device driver has a ddread entry point.
DSW_CWRITE Device driver in this device switch entry is providing a routine for character writes or raw

output. This flag is set when the device driver has a ddwrite entry point.
DSW_DEFINED Device switch entry is defined.
DSW_DUMP Device driver defined by this device switch entry provides the capability to support one or

more of its devices as targets for a kernel dump. This flag is set when the device driver has
provided a dddump entry point.

DSW_MPX Device switch entry is defined by a multiplexed device driver. This flag is set when the
device driver has a ddmpx entry point.

DSW_OPENED Device switch entry is in use and the device has outstanding opens. This flag is set when
the device driver has at least one outstanding open.

DSW_SELECT Device driver in this device switch entry provides a routine for handling the select or poll
subroutines. This flag is set when the device driver has provided a ddselect entry point.

76 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

DSW_TCPATH Device driver in this device switch entry supports devices that are considered to be in the
trusted computing path and provide support for the revoke function. This flag is set when
the device driver has provided a ddrevoke entry point.

DSW_TTY Device switch entry is in use by a tty device driver. This flag is set when the pointer to the
d_ttys structure is not a null character.

DSW_UNDEFINED Device switch entry is not defined.

The status parameter is set to the DSW_UNDEFINED flag when a device switch entry is not in use. This
is the case if either of the following are true:

v The entry has never been used. (No previous call to the devswadd service was made.)

v The entry has been used but was later deleted. (A call to the devswadd service was issued, followed
by a call to the devswdel service.)

No other flags are set when the DSW_UNDEFINED flag is set.

Note: The status parameter must be a null character if called from the interrupt environment.

Execution Environment
The devswqry kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates a successful operation.
EINVAL Indicates that the major device number portion of the devno parameter exceeds the maximum permitted

number of device switch entries.

Related Information
The devswadd kernel service, devswchg kernel service, devswdel kernel service.

Kernel Extension and Device Driver Management Kernel Services.

d_free_dmamem Kernel Service

Purpose
Frees an area of memory.

Syntax
int d_free_dmamem(d_handle_t device_handle, void * addr, size_t size)

Description
Exported, documented kernel service supported on PCI-based systems only. The d_free_dmamem kernel
service frees the area of memory pointed to by the addr parameter. This area of memory must be
allocated with the d_alloc_dmamem kernel service using the same device_handle, and the addr must be
the address returned from the corresponding d_alloc_dmamem call. Also, the size must be the same size
that was used on the corresponding d_alloc_dmamem call.

Notes:

1. Any memory allocated in a prior d_alloc_dmamem call must be explicitly freed with a
d_free_dmamem call.

2. This service can be called from the process environment only.

Chapter 1. Kernel Services 77

Parameters

device_handle Indicates the dma handle.
size_t size Specifies size of area to free.
void * addr Specifies address of area to free.

Return Values

0 Indicates successful completion.
–1 Indicates underlying free service (xmfree or rmalloc) failed.

Related Information
The d_alloc_dmamem kernel service.

disable_lock Kernel Service

Purpose
Raises the interrupt priority, and locks a simple lock if necessary.

Syntax
#include <sys/lock_def.h>

int disable_lock (int_pri, lock_addr)
int int_pri;
simple_lock_t lock_addr;

Parameters

int_pri Specifies the interrupt priority to set.
lock_addr Specifies the address of the lock word to lock.

Description
The disable_lock kernel service raises the interrupt priority, and locks a simple lock if necessary, in order
to provide optimized thread-interrupt critical section protection for the system on which it is executing. On a
multiprocessor system, calling the disable_lock kernel service is equivalent to calling the i_disable and
simple_lock kernel services. On a uniprocessor system, the call to the simple_lock service is not
necessary, and is omitted. However, you should still pass a valid lock address to the disable_lock kernel
service. Never pass a NULL lock address.

Execution Environment
The disable_lock kernel service can be called from either the process or interrupt environment.

Return Values
The disable_lock kernel service returns the previous interrupt priority.

Related Information
The i_disable kernel service, simple_lock_init kernel service, simple_lock kernel service,
unlock_enable kernel service.

78 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Understanding Locking,Locking Kernel Services,Understanding Interrupts,I/O Kernel Services, and
Interrupt Environment. in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

disablement_checking_resume Kernel Service

Purpose
Indicates the end of a disabled code path that was exempted from detection of excessive interrupt
disablement.

Syntax
#include <sys/intr.h>

void disablement_checking_resume(long prev_state)

Parameters

prev_state Specifies the disablement detection state to be restored.
This value is returned by the
disablement_checking_suspend kernel service.

Description
The disablement_checking_resume service restores the disablement detection state to the value passed
as prev_state. This service must be called after reenabling interrupts at the end of an INTMAX critical
section, not within it. This is because, in the case of an INTMAX critical section, the tick counting will have
been deferred by the total disablement until the moment of enablement.

This service must be used in conjunction with the disablement_checking_suspend kernel service, which
temporarily stops disablement detection.

Note: Error checking, including that for excessive interrupt disablement, can be enabled or disabled by
the errctrl command.

Execution Environment
The disablement_checking_resume service can be called from either the process or the interrupt
environments.

Related Information
The “disablement_checking_suspend Kernel Service.”

The errctrl command.

disablement_checking_suspend Kernel Service

Purpose
Indicates the start of a disabled code path that is exempt from detection of excessive interrupt
disablement.

Syntax
#include <sys/intr.h>

long disablement_checking_suspend(void)

Chapter 1. Kernel Services 79

Description
A call to the disablement_checking_suspend service temporarily disables the detection of excessive
disablement for the duration of a portion of a critical section. For base level code, insert this call at the
beginning of the exempt critical section immediately after it disables, or as soon as possible within interrupt
handling code.

This service must be used in conjunction with the disablement_checking_resume kernel service, which
resumes the prior disablement checking state.

Note: Error checking, including that for excessive interrupt disablement, can be enabled or disabled by
the errctrl command.

Execution Environment
The disablement_checking_suspend service can be called from either the process or the interrupt
environments. Interrupts should be at least partially disabled at the time of the call.

Return Values
The disablement_checking_suspend service returns the previous suspension state to the caller. This
value must be passed later to the resume function, which restores that state. This enables nesting of
exempt critical sections.

Related Information
The “disablement_checking_resume Kernel Service” on page 79.

The errctrl command.

d_map_attr Kernel Service

Purpose
Changes the attributes associated with a DMA handle.

Syntax
#include <sys/dma.h>

kerrno_t d_map_attr (handle, cmd, attr, attr_size)
d_handle_t handle;
ulong cmd;
void * attr;
size_t attr_size;

Parameters

handle Indicates the unique handle returned by the d_map_init_ext kernel service.
cmd Specifies one of the following flags:

D_ATTR_SET_MIN_MAPMEM
Sets the minimum amount of I/O mappable memory. This is the logical memory change
and not the DMA bus memory change.

D_ATTR_SET_DES_MAPMEM
Sets the desired amount of I/O mappable memory. This is the logical memory change and
not the DMA bus memory change.

attr You must set this parameter to the value of size64_t *. This parameter sets the minimum or the
desired amount of I/O mappable memory depending on the specified value of the cmd parameter.

80 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

attr_size You must set this parameter to the value of sizeof(size64_t). This parameter sets the minimum or
the desired amount of I/O mappable memory depending on the specified value of the cmd
parameter.

Description
The d_map_attr kernel service can change certain attributes of the d_handle_t structure in case the
needs of a device driver change during runtime. For example, if a device driver needs more DMA space at
runtime, it can call the d_map_attr kernel service to request an increase in the map space. The
d_map_attr kernel service is not an exported kernel service, but a bus specific utility routine determined
by the d_map_init_ext kernel service and provided to the caller through the d_handle structure.

Execution Environment
The d_map_attr kernel service can be called from the process environment at INTBASE. Serialization
with other DMA services like the d_map_page service and the d_unmap_page service is the caller’s
responsibility.

Return Values

DMA_SUCC Indicates a successful completion.
EINVAL_D_MAP_ATTR Indicates that the specified cmd parameter is not valid.
ENOMEM_D_MAP_ATTR Indicates that it is unable to change the minimum or desired I/O mappable memory.

Related Information
The d_map_init_ext kernel service.

d_map_clear Kernel Service

Purpose
Deallocates resources previously allocated on a d_map_init call.

Syntax
#include <sys/dma.h>

void d_map_clear (*handle)
struct d_handle *handle

Parameters

handle Indicates the unique handle returned by the d_map_init kernel service.

Description
The d_map_clear kernel service is a bus-specific utility routine determined by the d_map_init service that
deallocates resources previously allocated on a d_map_init call. This includes freeing the d_handle
structure that was allocated by d_map_init.

Note: You can use the D_MAP_CLEAR macro provided in the /usr/include/sys/dma.h file to code calls
to the d_map_clear kernel service.

Related Information
The d_map_init kernel service.

Chapter 1. Kernel Services 81

d_map_disable Kernel Service

Purpose
Disables DMA for the specified handle.

Syntax
#include <sys/dma.h>

int d_map_disable(*handle)
struct d_handle *handle;

Parameters

handle Indicates the unique handle returned by d_map_init.

Description
The d_map_disable kernel service is a bus-specific utility routine determined by the d_map_init kernel
service that disables DMA for the specified handle with respect to the platform.

Note: You can use the D_MAP_DISABLE macro provided in the /usr/include/sys/dma.h file to code
calls to the d_map_disable kernel service.

Return Values

DMA_SUCC Indicates the DMA is successfully disabled.
DMA_FAIL Indicates the DMA could not be explicitly disabled for this device or bus.

Related Information
The d_map_init kernel service.

d_map_enable Kernel Service

Purpose
Enables DMA for the specified handle.

Syntax
#include <sys/dma.h>

int d_map_enable(*handle)
struct d_handle *handle;

Parameters

handle Indicates the unique handle returned by d_map_init.

Description
The d_map_enable kernel service is a bus-specific utility routine determined by the d_map_init kernel
service that enables DMA for the specified handle with respect to the platform.

82 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Note: You can use the D_MAP_ENABLE macro provided in the /usr/include/sys/dma.h file to code calls
to the d_map_enable kernel service.

Return Values

DMA_SUCC Indicates the DMA is successfully enabled.
DMA_FAIL Indicates the DMA could not be explicitly enabled for this device or bus.

Related Information
The d_map_init kernel service.

d_map_init Kernel Service

Purpose
Allocates and initializes resources for performing DMA with PCI and ISA devices.

Syntax
#include <sys/dma.h>

struct d_handle* d_map_init (bid, flags, bus_flags, channel)
int bid;
int flags;
int bus_flags;
uint channel;

Parameters

bid Specifies the bus identifier.
flags Describes the mapping.
bus_flags Specifies the target bus flags.
channel Indicates the channel assignment specific to the bus.

Description
The d_map_init kernel service allocates and initializes resources needed for managing DMA operations
and returns a unique handle to be used on subsequent DMA service calls. The handle is a pointer to a
d_handle structure allocated by d_map_init from the pinned heap for the device. The device driver uses
the function addresses provided in the handle for accessing the DMA services specific to its host bus. The
d_map_init service returns a DMA_FAIL error when resources are unavailable or cannot be allocated.

The channel parameter is the assigned channel number for the device, if any. Some devices and or buses
might not have the concept of channels. For example, an ISA device driver would pass in its assigned
DMA channel in the channel parameter.

Note: The possible flag values for the flags parameter can be found in /usr/include/sys/dma.h. These
flags can be logically ORed together to reflect the desired characteristics.

Execution Environment
The d_map_init kernel service should only be called from the process environment.

Return Values

DMA_FAIL Indicates that the resources are unavailable. No registration was completed.

Chapter 1. Kernel Services 83

struct d_handle * Indicates successful completion.

Related Information
The d_map_clear kernel service, d_map_page kernel service, d_unmap_page kernel service,
d_map_list kernel service, d_unmap_list kernel service, d_map_slave kernel service, d_unmap_slave
kernel service, d_map_disable kernel service, d_map_enable kernel service.

d_map_init_ext Kernel Service

Purpose
Allocates and initializes resources for performing DMA with PCI and VDEVICE devices.

Syntax
#include <sys/types.h>
#include <sys/dma.h>
#include <sys/kerrno.h>

kerrno_t d_map_init_ext (dma_input, info_size, handle_ptr)
d_info_t * dma_input;
size_t info_size;
d_handle_t * handle_ptr;

Parameters

dma_input Contains information like the bus identifier, flags, and so on.
info_size Specifies the size of the dma_input parameter in bytes.
handle_ptr Contains the DMA handle returned upon success.

Description
The d_map_init_ext kernel service is very similar to the d_map_init kernel service. Unlike the
d_map_init kernel service, the input argument list of the d_map_init_ext kernel service is not limited and
can be extended without breaking binary compatibility. Also, the d_map_init_ext kernel service returns a
kerrno_t type return code which contains more RAS information rather than just the DMA_FAIL value.

The caller of the d_map_init_ext kernel service initializes the d_info_t structure and passes it into the
d_map_init_ext kernel service by reference. The size of the d_info_t type must match the info_size
parameter. This allows future expansion of the d_info_t type safely. If there is a size mismatch, the
d_map_init_ext kernel service fails. The d_map_init_ext kernel service also creates a new private pool of
I/O memory entitlement that can be used for DMA. The private pool is created by carving out a chunk of
total I/O memory entitlement for the AIX partition. Thus, in order to create a d_handle_t type successfully,
there must be sufficient DMA PCI space and I/O memory entitlement.

The following structure is defined in the sys/dma.h file:
#define DMA_MAX_MAPPER_NAME 32
typedef struct d_info
{

uint64_t di_bid;
uint64_t di_flags;
uint64_t di_bus_flags;
uint64_t di_channel;
uint64_t di_min_mapmem;
uint64_t di_des_mapmem;
uint64_t di_max_mapmem;
char di_mapper_name[DMA_MAX_MAPPER_NAME];

} d_info_t;

84 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Note: The first four fields of the d_info_t type match the four arguments of the d_map_init kernel
service. Therefore, all flags and bus_flags on the d_map_init kernel service are honored by the
d_map_init_ext kernel service except the DMA_MAXMIN_* flags. The DMA_MAXMIN_* flags are
replaced with the di_min_mapmem, di_des_mapmem, and di_max_mapmem fields. They not only
specify the required amount of DMA space, but also the necessary I/O memory entitlement for the
device.

The di_min_mapmem parameter is the minimum amount of memory that the driver must be able to map
for DMA in order to ensure the forward progress. The d_map_init_ext kernel service fails if the minimum
I/O memory entitlement requirement cannot be satisfied.

The di_des_mapmem parameter is the required amount of memory that the driver wants to be able to I/O
map in order to have good throughput. In most cases, this is a value that a driver specifies through the
DMA_MAXMIN_* flag.

The di_max_mapmem parameter is the maximum amount of memory that the driver can ever map for
DMA. This is the amount of DMA space that the d_map_init_ext kernel service can allocate.

Note: While the I/O memory entitlement for a d_handle_t type can be changed at runtime through the
d_map_attr kernel service, the DMA space cannot be changed dynamically.

The di_mapper_name parameter contains the name of the device instance using the DMA resources (for
example, ent0, scsi1, and so on).

Execution Environment
The d_map_init_ext kernel service can be called from the process environment only.

Return Values

0 Indicates a successful completion.
struct d_handle * Indicates a successful completion.
ENOMEM_D_MAP_INIT_EXT_1 Indicates that the memory allocation failed. An AIX error is logged.
ENOMEM_D_MAP_INIT_EXT_2 Cannot reserve I/O memory entitlement with the least amount specified

by the di_min_mapmem parameter. An AIX error is logged.
ENOMEM_D_MAP_INIT_EXT_3 Cannot allocate enough DMA space. An AIX error is logged.
EINVAL_D_MAP_INIT_EXT_1 Indicates that some input argument is not valid. An AIX error is logged

in some cases.
EINVAL_D_MAP_INIT_EXT_2 Indicates that the combination of input arguments and system

configuration is not valid. No AIX error is logged.
EINVAL_D_MAP_INIT_EXT_3 Indicates that the RAS initialization failed. No AIX error is logged.

Related Information
The d_map_clear kernel service, d_map_page kernel service, d_unmap_page kernel service,
d_map_list kernel service, d_unmap_list kernel service, d_map_slave kernel service, d_unmap_slave
kernel service, d_map_disable kernel service, d_map_enable kernel service.

d_map_list Kernel Service

Purpose
Performs platform-specific DMA mapping for a list of virtual addresses.

Syntax
#include <sys/dma.h>

Chapter 1. Kernel Services 85

int d_map_list (*handle, flags, minxfer, *virt_list, *bus_list)
struct d_handle *handle;
int flags;
int minxfer;
struct dio *virt_list;
struct dio *bus_list;

Note: The following is the interface definition for d_map_list when the DMA_ADDRESS_64 and
DMA_ENABLE_64 flags are set on the d_map_init call.

int d_map_list (*handle, flags, minxfer, *virt_list, *bus_list)
struct d_handle *handle;
int flags;
int minxfer;
struct dio_64 *virt_list;
struct dio_64 *bus_list;

Parameters

handle Indicates the unique handle returned by the d_map_init kernel service.
flags Specifies one of the following flags:

DMA_READ
Transfers from a device to memory.

BUS_DMA
Transfers from one device to another device.

DMA_BYPASS
Do not check page access.

DMA_STMAP
Indicates a short-term mapping.

minxfer Specifies the minimum transfer size for the device.
virt_list Specifies a list of virtual buffer addresses and lengths.
bus_list Specifies a list of bus addresses and lengths.

Description
The d_map_list kernel service is a bus-specific utility routine determined by the d_map_init kernel service
that accepts a list of virtual addresses and sizes and provides the resulting list of bus addresses. This
service fills out the corresponding bus address list for use by the device in performing the DMA transfer.
This service allows for scatter/gather capability of a device and also allows the device to combine multiple
requests that are contiguous with respect to the device. The lists are passed via the dio structure. If the
d_map_list service is unable to complete the mapping due to exhausting the capacity of the provided dio
structure, the DMA_DIOFULL error is returned. If the d_map_list service is unable to complete the
mapping due to exhausting resources required for the mapping, the DMA_NORES error is returned. In
both of these cases, the bytes_done field of the dio virtual list is set to the number of bytes successfully
mapped. This byte count is a multiple of the minxfer size for the device as provided on the call to
d_map_list. The resid_iov field is set to the index of the remaining d_iovec fields in the list. Unless the
DMA_BYPASS flag is set, this service verifies access permissions to each page. If an access violation is
encountered on a page with the list, the DMA_NOACC error is returned, and the bytes_done field is set to
the number of bytes preceding the faulting iovec. If the mapping is for short term (that is, it is unmapped
as soon as the I/O is complete), you must set the DMA_STMAP flag.

Note:

1. When the DMA_NOACC return value is received, no mapping is done, and the bus list is
undefined. In this case, the resid_iov field is set to the index of the d_iovec that encountered
the access violation.

86 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

2. You can use the D_MAP_LIST macro provided in the /usr/include/sys/dma.h file to code calls
to the d_map_list kernel service.

Return Values

DMA_NORES Indicates that resources were exhausted during mapping.

Note: d_map_list possible partial transfer was mapped. Device driver may continue with partial transfer
and submit the remainer on a subsequent d_map_list call, or call d_unmap_list to undo the partial
mapping. If a partial transfer is issued, then the driver must call d_unmap_list when the I/O is
complete.

DMA_DIOFULL Indicates that the target bus list is full.

Note: d_map_list possible partial transfer was mapped. Device driver may continue with partial transfer
and submit the remainder on a subsequent d_map_list call, or call d_unmap_list to undo the
partial mapping. If a partial transfer is issued, then the driver must call d_unmap_list when the I/O
is complete.

DMA_NOACC Indicates no access permission to a page in the list.

.

Note: d_map_list no mapping was performed. No need for the device driver to call d_unmap_list, but
the driver must fail the faulting I/O request, and resubmit any remainder in a subsequent
d_map_list call.

DMA_SUCC Indicates that the entire transfer successfully mapped.

Note: d_map_list successful mapping was performed. Device driver must call d_unmap_list when the
I/O is complete. In the case of a long-term mapping, the driver must call d_unmap_list when the
long-term mapping is no longer needed.

Related Information
The d_map_init kernel service, d_map_init_ext kernel service.

d_map_page Kernel Service

Purpose
Performs platform-specific DMA mapping for a single page.

Syntax
#include <sys/dma.h>
#include <sys/xmem.h>

int d_map_page(*handle, flags, baddr, *busaddr, *xmp)
struct d_handle *handle;
int flags;
caddr_t baddr;
uint *busaddr;
struct xmem *xmp;

Chapter 1. Kernel Services 87

Note: The following is the interface definition for d_map_page when the DMA_ADDRESS_64 and
DMA_ENABLE_64 flags are set on the d_map_init call.

int d_map_page(*handle, flags, baddr, *busaddr, *xmp)
struct d_handle *handle;
int flags;
unsigned long long baddr;
unsigned long long *busaddr;
struct xmem *xmp;

Parameters

handle Indicates the unique handle returned by the d_map_init kernel service.
flags Specifies one of the following flags:

DMA_READ
Transfers from a device to memory.

BUS_DMA
Transfers from one device to another device.

DMA_BYPASS
Do not check page access.

DMA_STMAP
Indicates a short-term mapping.

baddr Specifies the buffer address.
busaddr Points to the busaddr field.
xmp Cross-memory descriptor for the buffer.

Description
The d_map_page kernel service is a bus-specific utility routine determined by the d_map_init or
d_map_init_ext kernel service that performs platform specific mapping of a single 4KB or less transfer for
DMA master devices. The d_map_page kernel service is a fast-path version of the d_map_list service.
The entire transfer amount must fit within a single page in order to use this service. This service accepts a
virtual address and completes the appropriate bus address for the device to use in the DMA transfer.
Unless the DMA_BYPASS flag is set, this service also verifies access permissions to the page. If the
mapping is for short term (that is, it is unmapped as soon as the I/O is complete), you must set the
DMA_STMAP flag.

If the buffer is a global kernel space buffer, the cross-memory descriptor can be set to point to the
exported GLOBAL cross-memory descriptor, xmem_global.

If the transfer is unable to be mapped due to resource restrictions, the d_map_page service returns
DMA_NORES. If the transfer is unable to be mapped due to page access violations, this service returns
DMA_NOACC.

Note: You can use the D_MAP_PAGE macro provided in the /usr/include/sys/dma.h file to code calls to
the d_map_page kernel service.

Return Values

DMA_NORES Indicates that resources are unavailable.

Note: d_map_page no mapping is done, device driver must wait until resources are freed and attempt
the d_map_page call again.

DMA_NOACC Indicates no access permission to the page.

88 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Note: d_map_page no mapping is done, device driver must fail the corresponding I/O request.

DMA_SUCC Indicates that the busaddr parameter contains the bus address to use for the device transfer.

Note: d_map_page successful mapping was done, device driver must call d_unmap_page when I/O is
complete, or when device driver is finished with the mapped area in the case of a long-term
mapping.

Related Information
The d_alloc_dmamem kernel service,d_map_init kernel service, d_map_list kernel service,
d_map_init_ext kernel service.

d_map_slave Kernel Service

Purpose
Accepts a list of virtual addresses and sizes and sets up the slave DMA controller.

Syntax
#include <sys/dma.h>

int d_map_slave (*handle, flags, minxfer, *vlist, chan_flag)
struct d_handle *handle;
int flags;
int minxfer;
struct dio *vlist;
uint chan_flag;

Parameters

handle Indicates the unique handle returned by the d_map_init kernel service.
flags Specifies one of the following flags:

DMA_READ
Transfers from a device to memory.

BUS_DMA
Transfers from one device to another device.

DMA_BYPASS
Do not check page access.

minxfer Specifies the minimum transfer size for the device.
vlist Specifies a list of buffer addresses and lengths.
chan_flag Specifies the device and bus specific flags for the transfer.

Description
The d_map_slave kernel service accepts a list of virtual buffer addresses and sizes and sets up the slave
DMA controller for the requested DMA transfer. This includes setting up the system address generation
hardware for a specific slave channel to indicate the specified data buffers, and enabling the specific
hardware channel. The d_map_slave kernel service is not an exported kernel service, but a bus-specific
utility routine determined by the d_map_init kernel service and provided to the caller through the
d_handle structure.

This service allows for scatter/gather capability of the slave DMA controller and also allows the device
driver to coalesce multiple requests that are contiguous with respect to the device. The list is passed with

Chapter 1. Kernel Services 89

the dio structure. If the d_map_slave kernel service is unable to complete the mapping due to resource,
an error, DMA_NORES is returned, and the bytes_done field of the dio list is set to the number of bytes
that were successfully mapped. This byte count is guaranteed to be a multiple of the minxfer parameter
size of the device as provided to d_map_slave. Also, the resid_iov field is set to the index of the
remaining d_iovec that could not be mapped. Unless the DMA_BYPASS flag is set, this service will verify
access permissions to each page. If an access violation is encountered on a page within the list, an error,
DMA_NOACC is returned and no mapping is done. The bytes_done field of the virtual list is set to the
number of bytes preceding the faulting iovec. Also in this case, the resid_iov field is set to the index of the
d_iovec entry that encountered the access violation.

The virtual addresses provided in the vlist parameter can be within multiple address spaces, distinguished
by the cross-memory structure pointed to for each element of the dio list. Each cross-memory pointer can
point to the same cross-memory descriptor for multiple buffers in the same address space, and for global
space buffers, the pointers can be set to the address of the exported GLOBAL cross-memory descriptor,
xmem_global.

The minxfer parameter specifies the absolute minimum data transfer supported by the device(the device
blocking factor). If the device supports a minimum transfer of 512 bytes (floppy and disks, for example),
the minxfer parameter would be set to 512. This allows the underlying services to map partial transfers to
a correct multiple of the device block size.

Note:

1. The d_map_slave kernel service does not support more than one outstanding DMA transfer per
channel. Attempts to do multiple slave mappings on a single channel will corrupt the previous
mappings.

2. You can use the D_MAP_SLAVE macro provided in the /usr/include/sys/dma.h file to code
calls to the d_map_clear kernel service.

3. The possible flag values for the chan_flag parameter can be found in /usr/include/sys/dma.h.
These flags can be logically ORed together to reflect the desired characteristics of the device
and channel.

4. If the CH_AUTOINIT flag is used then the transfer described by the vlist pointer is limited to a
single buffer address with a length no greater than 4K bytes.

Return Values

DMA_NORES Indicates that resources were exhausted during the mapping.
DMA_NOACC Indicates no access permission to a page in the list.
DMA_BAD_MODE Indicates that the mode specified by the chan_flag parameter is not supported.

Related Information
The d_map_init kernel service.

dmp_add Kernel Service

Purpose
Specifies data to be included in a system dump by adding an entry to the master dump table. Callers
should use the “dmp_ctl Kernel Service” on page 94. This service is provided for compatibility purposes.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dump.h>

90 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

int dmp_add
(cdt_func)
struct cdt * ((*cdt_func) ());

Description
Kernel extensions use the dmp_add service to register data areas to be included in a system dump. The
dmp_add service adds an entry to the master dump table. A master dump table entry is a pointer to a
function provided by the kernel extension that will be called by the kernel dump routine when a system
dump occurs. The function must return a pointer to a component dump table structure.

When a dump occurs, the kernel dump routine calls the function specified by the cdt_func parameter
twice. On the first call, an argument of 1 indicates that the kernel dump routine is starting to dump the data
specified by the component dump table. On the second call, an argument of 2 indicates that the kernel
dump routine has finished dumping the data specified by the component dump table. Kernel extensions
should allocate and pin their component dump tables and call the dmp_add service during initialization.
The entries in the component dump table can be filled in later. The cdt_func routine must not attempt to
allocate memory when it is called.

Note: In AIX 6.1 with the 6100-02 Technology Level, this function automatically serializes CDT functions
with I/O during dump time. The need for this function is device specific. Only the developer of the
device can determine if this routine needs to be used. It is only recommended for devices that can
be on the dump I/O path. Serializing I/O during dump time might degrade dump performance.
Devices that are not on the dump path must either use the dmp_ctl routine or the RAS system
dump interface.

The Component Dump Table
The component dump table structure specifies memory areas to be included in the system dump. The
structure type (struct cdt) is defined in the /usr/include/sys/dump.h file. A cdt structure consists of a
fixed-length header (cdt_head structure) and an array of one or more cdt_entry structures. The cdt_head
structure contains a component name field, which should be filled in with the name of the kernel extension,
and the length of the component dump table. Each cdt_entry structure describes a contiguous data area,
giving a pointer to the data area, its length, a segment register, and a name for the data area.

Use of the Formatting Routine
Each kernel extension that includes data in the system dump can install a unique formatting routine in the
/var/adm/ras/dmprtns directory.The name of the formatting routine must match the component name field
of the corresponding component dump table.

The dump image file includes a copy of each component dump table used to dump memory.A sample
dump formatter is shipped with bos.sysmgt.serv_aid in the /usr/samples/dumpfmt directory.

Organization of the Dump Image File
Memory dumped for each kernel extension is laid out as follows in the dump image file. The component
dump table is followed by a bit map for the first data area, then the first data area itself, then a bit map for
the next data area, the next data area itself, and so on.

The bit map for a given data area indicates which pages of the data area are actually present in the dump
image and which are not. Pages that were not in memory when the dump occurred were not dumped. The
least significant bit of the first byte of the bit map is set to 1 (one) if the first page is present. The next
least significant bit indicates the presence or absence of the second page and so on.

A macro for determining the size of a bit map is provided in the /usr/include/sys/dump.h file.

Chapter 1. Kernel Services 91

Parameters

cdt_func Specifies a function that returns a pointer to a component dump table entry. The function
and the component dump table entry both must reside in pinned global memory.

Execution Environment
The dmp_add kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
-1 Indicates that the function pointer to be added is already present in the master dump table.

Related Information
“dmp_del Kernel Service” on page 99, and “dmp_ctl Kernel Service” on page 94.

The exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine in AIX Version 6.1
Technical Reference: Base Operating System and Extensions Volume 1.

RAS Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

dmp_compspec and dmp_compext Kernel Services

Purpose
Specifies a component and callback parameters to be included in the dump.

Syntax
#include <sys/livedump.h>

kerrno_t dmp_compspec (flags, comp, anchor, extid, p1, p2, ..., NULL)
long flags;
long comp;
void *anchor;
dmp_extid_t *extid;
char *p1;
char *p2;
...

kerrno_t dmp_compext (extid, p1, p2, ..., NULL)
dmp_extid_t extid;
char *p1;
char *p2;
...

Parameters

anchor Points to the associated ldmp_parms_t data structure or to an ldmp_prepare_t data structure.
comp Specifies the component, specified as indicated by the flags.

92 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

extid Points to an item of dmp_extid_t type, for the dmp_compspec kernel service, where an identifier
is returned, if you use the dmp_compext kernel service to provide additional parameters for the
component being dumped. This identifier might then be specified to add additional parameters to
the component using the dmp_compext kernel service. The extid parameter can be NULL.

flags You can specify the following values:

DCF_FAILING
Indicates that this is the failing component. You can only specify one failing component.

DCF_FIRST
Indicates that this component is to be dumped first. Normally components are dumped in
the order specified.
Note:

v The DCF_FIRST value is only valid when the anchor refers to an ldmp_parms_t data
item. It is not valid when the callback receives the RASCD_LDMP_PREPARE
command.

v The last component specified to be dumped first is the one dumped first.

DCF_LEVEL0 - DCF_LEVEL9
Indicates the detail level, 0 through 9, to dump this component. If none of these flags are
set, the component is dumped at its current level.

DCF_MINIMAL
Indicates the DCF_LEVEL1 level.

DCF_NORMAL
Indicates the DCF_LEVEL3 level.

DCF_DETAIL
Indicates the DCF_LEVEL7 level.

DCF_LONG
Indicates that the parameters are two parameters of long type. Rather than passing in an
unlimited number of strings, a component can be passed in two long data items, as in the
case with pseudo-components.

One and only one of the following component specification flags must be given. They specify how
the component is specified in the dc_component field:

DCF_BYPNAME
Indicates that the component is specified by path name.

DCF_BYLNAME
Indicates that the component is specified by logical alias.

DCF_BYTYPE
Indicates that the component is specified by type.

DCF_BYCB
Indicates that the component is specified by ras_block_t.

p1, p2 ... Specifies the component’s parameters, the last of which must be NULL. If keyword parameters are
being specified, The parameters must be strings, and contain the keyword and its values. If multiple
keyword and value pairs appear in a single parameter, they are separated with blanks. For
example, the p1 parameter can be foo=1234, and the p2 parameter can be bar=5678,16. Also, the
p1 parameter can be foo=1234 bar=5678.

If the DCF_LONG flag is set, two parameters of long type are passed in. In this case, the p1 and
p2 parameters contain the values of long type, and no more parameters can be specified.

Description
The dmp_compspec and dmp_compext kernel services provide components and their callback
parameters for a dump. You can only use these kernel services in a live dump.

Chapter 1. Kernel Services 93

The dmp_compspec kernel service is used before you start a live dump with the livedump kernel
service. You can also use this kernel service when a component’s callback wants to include another
component in a live dump, that is, when the callback receives the RASCD_LDMP_PREPARE command.

Multiple components can be included in a live dump.

The dmp_compext function is used to provide additional parameters for a component.

Return Values

0 Indicates a successful completion.
EINVAL_RAS_DMP_COMPSPEC_FLAGS Indicates that the flags specification is not valid.
EINVAL_RAS_DMP_COMPSPEC_COMP Indicates that the component specification is not valid.
EINVAL_RAS_DMP_COMPSPEC_NOTAWARE Indicates that the specified component must support live

dump.
EINVAL_RAS_DMP_COMPSPEC_ANCHOR Indicates that the anchor specification is not valid.
EFAULT_RAS_DMP_COMPSPEC_ANCHOR Indicates that the storage the anchor parameter refers to is

not valid.
EFAULT_RAS_DMP_COMPSPEC_EXTID Indicates that the storage the extid parameter refers to is not

valid.
EFAULT_RAS_DMP_COMPSPEC_PARMS Indicates that a parameter address is not valid.
EINVAL_RAS_LDMP_ESTIMATE Indicates that the anchor parameter indicates a dump size

estimate request, but the dmp_compspec call was not made
from the process environment.

EINVAL_RAS_DMP_COMPSPEC_NOADD Indicates that components cannot be added to this dump, that
is, the dump type flags, ldpr_flags, have the LDT_NOADD bit
set.

EINVAL_RAS_DMP_COMPSPEC_FAILING Indicates that the failing component has already been
specified.

ENOMEM_RAS_DMP_COMPSPEC Indicates that no storage is available.
EINVAL_RAS_DMP_COMPEXT_EXTID Indicates that the extid parameter does not refer to a valid

component.
EFAULT_RAS_DMP_COMPEXT_EXTID Indicates that the storage the extid parameter refers to is not

valid.
EFAULT_RAS_DMP_COMPEXT_PARMS Indicates that the storage a parameter refers to is not valid.
EBUSY_RAS_DMP_COMPEXT Indicates that the specification of this component is complete,

and no more parameters can be added. This happens if the
component the extid parameter referred to has already
completed its RASCD_LDMP_PREPARE processing.

ENOMEM_RAS_DMP_COMPEXT Indicates that no storage is available.

Related Information
The livedump kernel service, ldmp_setupparms kernel service, and ras_ret_query_parms kernel
service.

dmp_ctl Kernel Service

Purpose
Adds and removes entries to the master dump table.

Syntax
#include <sys/types.h>

#include <errno.h>
#include <sys/dump.h>

94 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

int dmp_ctl(op, parmp)
int op;
struct dmpctl_data *parmp;

Description
The dmp_ctl kernel service is used to manage dump routines. It replaces the dmp_add and dmp_del
kernel services which are still supported for compatibility reasons. The major differences between routines
added with the dmp_add() command and those added with the dmp_ctl() command are:

v The routines are invoked differently from routines added with the dmp_add kernel service. Routines
added using the dmp_ctl kernel service return a void pointer, to a dump table or to a dump size
estimate.

v Routines added with the dmp_ctl kernel service are expected to ignore functions they don’t support.
For example, they should not trap if they receive an unrecognized request. This allows future
functionality to be added without all users needing to change.

The dmp_ctl kernel service is used to request that an amount of memory be set aside in a global buffer.
This will then be used by the routine to store data not resident in memory. An example of such data is
dump data provided by an adapter. Without a global buffer, the data would need to be placed into a pinned
buffer allocated at configuration time. Each component would need to allocate its own pinned buffer.

The system dump facility maintains a global buffer for such data. This buffer is allocated when it is first
requested, with the requested size. Another dump routine requesting more data causes the buffer to be
reallocated with the larger size. Since this buffer must be maintained in pinned storage for the life of the
system, only ask for as much memory as is required. Asking for an excessive amount of storage will
compromise system performance by reserving too much pinned storage.

Any dump routine using the global buffer is called whenever dump data is required. Routines are only
called once to provide such data. Their dump table addresses are saved and used if the dump is
restarted.

Note: The dmp_ctl kernel service can also be used by a dump routine to report a routine failure. This
may be necessary if the routine detects that it can’t dump what needs to be dumped for some
reason such as corruption of a data structure.

Note: Beginning with AIX 6.1 with the 6100-02 Technology Level, the dmp_ctl kernel service supports
that DMPFUNC_SERIALIO operation flag.

Dump Tables
A dump routine returns a component dump table that begins with DMP_MAGIC, which is the magic
number for the 32- or 64-bit dump table. If the unlimited sized dump table is used, the magic number is
DMP_MAGIC_U and the cdt_u structure is used. If this is the case, the dump routine is called repeatedly
until it returns a null cdt_u pointer. The purpose of the unlimited size dump table is to provide a way to
dump an unknown number of data areas without having to preallocate the largest possible array of
cdt_entry elements as is required for the classic dump table. The definitions for dump tables are in the
sys/dump.h include file.

Parameters
dmp_ctl operations and the dmpctl_data structure are defined in the dump.h text file.

op Specifies the operation to perform.

Chapter 1. Kernel Services 95

parmp Points to a dmpctl_data structure containing values for the specified operation. The dmpctl_data
structure is defined in the /usr/include/sys/dump.h file as follows:

/* Dump Routine failures data. */
struct __rtnf {

int rv; /* error code. */
ulong vaddr; /* address. */
vmhandle_t handle; /* handle */

};

typedef void *((*__CDTFUNCENH)(int op, void *buf));
struct dmpctl_data {

int dmpc_magic; /* magic number */
int dmpc_flags; /* dump routine flags. */
__CDTFUNCENH dmpc_func;
union {

u_longlong_t bsize; /* Global buffer size requested. */
struct __rtnf rtnf;

} dmpc_u;
};
#define DMPC_MAGIC1 0xdcdcdc01
#define DMPC_MAGIC DMPC_MAGIC1
#define dmpc_bsize dmpc_u.bsize
#define dmpcf_rv dmpc_u.rtnf.rv
#define dmpcf_vaddr dmpc_u.rtnf.vaddr
#define dmpcf_handle dmpc_u.rtnf.handle

The supported operations and their associated data are:

DMPCTL_ADD Adds the specified dump routine to the master dump table. This requires a
pointer to the function and function type flags. Supported type flags are:

DMPFUNC_CALL_ON_RESTART
Calls this function again if the dump is restarted. A dump function is
only called once to provide dump data. If the function must be called
and the dump is restarted on the secondary dump device, then this
flag must be set. The DMPFUNC_CALL_ON_RESTART flag must be
set if this function uses the global dump buffer. It also must be set if
the function uses an unlimited size dump table, a table with
DMP_MAGIC_U as the magic number.

DMPFUNC_GLOBAL_BUFFER
This function uses the global dump buffer. The size is specified using
the dmpc_bsize field.

DMPFUNC_SERIALIO
Enables serialized I/O during dump time. The need for this flag is
device specific. Only the developer of the device can determine if this
flag needs to be set. It is only recommended for devices that can be
on the dump I/O path. Serializing I/O during dump time can degrade
dump performance. The default, without this flag, is to allow I/O to
occur in parallel with CDT function calls.

DMPCTL_DEL Deletes the specified dump function from the master dump table.

DMPCTL_RTNFAILURE Reports an inability to dump required data. The routine must set the
dmpc_func, dmpcf_rV, dmpcf_vaddr, and dmpcf_handle fields.

Dump function invocation parameters:

96 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

operation code Specifies the operation the routine is to perform. Operation codes are:

DMPRTN_START
The dump is starting for this dump table. Provide data.

DMPRTN_DONE
The dump is finished. This call is provided so that a dump routine can do any
cleanup required after a dump. This is specific to a device for which information was
gathered. It does not free memory, since such memory must be allocated before the
dump is taken.

DMPRTN_AGAIN
Provide more data for this unlimited dump table. The routine must have first passed
back a dump table beginning with DMP_MAGIC_U. When finished, the function must
return a NULL.

DMPRTN_ESTIMATE
Provide a size estimate. The function must return a pointer to an item of type
dmp_sizeest_t. See the examples later in this article.

buffer pointer This is a pointer to the global buffer, or NULL if no global buffer space was requested.

Return Values

0 Returned if successful.

EINVAL Returned if one or more parameter values are invalid.

ENOMEM Returned if the global buffer request can’t be satisfied.

EEXIST Returned if the dump function has already been added.

Examples
1. To add a dump routine (dmprtn) that can be called once to provide data, type:

void *dmprtn(int op, void *buf);
struct cdt cdt;
dmp_sizeest_t estimate;

config()
{

struct dmpctl_data parm;
...

parm.dmpc_magic = DMPC_MAGIC1;
parm.dmpc_func = dmprtn;
parm.dmpc_flags = 0;
ret = dmp_ctl(DMPCTL_ADD, &parm);

...
}

/*
* Dump routine.
*
* input:
* op - dump routine operation.
* buf - NULL since no global buffer is used.
*
* returns:
* A pointer to the component dump table.
*/
void *
dmprtn(int op, void *buf)
{

Chapter 1. Kernel Services 97

void *ret;

switch(op) {
case DMPRTN_START: /* Provide dump data. */

...
ret = (void *)&cdt;
break;

case DMPRTN_ESTIMATE:
ret = (void *)&estimate;
break;

default:
break;

}

return(ret);
}

2. To add a dump routine (dmprtn) that requests 16 kb of global buffer space, type:
...

#define BSIZ 16*1024
dmp_sizeest_t estimate;

config()
{

...
parm.dmpc_magic = DMPC_MAGIC1;
parm.dmpc_func = dmprtn;
parm.dmpc_flags = DMPFUNC_CALL_ON_RESTART|DMPC_GLOBAL_BUFFER;
parm.dmpc_bsize = BSIZ;
ret = dmp_ctl(DMPCTL_ADD, &parm);
...

}

/*
* Dump routine.
*
* input:
* op - dump routine operation.
* buf - points to the global buffer.
*
* output:
* Return a pointer to the dump table or to the estimate.
*/
void *
dmprtn(int op, void *buf)
{

void *ret;

switch(op) {
case DMPRTN_START: /* Provide dump data. */

...
(Put data in buffer at buf.)
ret = (void *)&cdt;
break;

case DMPRTN_ESTIMATE:
ret = (void *)&estimate;
break;

default:
break;

}

return(ret);
}

98 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
The “dmp_add Kernel Service” on page 90 and “dmp_del Kernel Service” kernel services.

The Dump Special File in AIX Version 6.1 Files Reference.

RAS Kernel Services and System Dump Facility in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

dmp_del Kernel Service

Purpose
Deletes an entry from the master dump table. Callers should use the “dmp_ctl Kernel Service” on page 94.
This service is provided for compatibility purposes.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dump.h>

dmp_del (cdt_func_ptr)
struct cdt * ((*cdt_func_ptr) ());

Description
Kernel extensions use the dmp_del kernel service to unregister data areas previously registered for
inclusion in a system dump. A kernel extension that uses the “dmp_add Kernel Service” on page 90 to
register such a data area can use the dmp_del service to remove this entry from the master dump table.

Parameters

cdt_func_ptr Specifies a function that returns a pointer to a component dump table. The
function and the component dump table must both reside in pinned global
memory.

Execution Environment
The dmp_del kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
-1 Indicates that the function pointer to be deleted is not in the master dump table.

Related Information
“dmp_add Kernel Service” on page 90, and “dmp_ctl Kernel Service” on page 94.

RAS Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 99

dmp_eaddr, dmp_context, dmp_tid, dmp_pid, dmp_errbuf, dmp_mtrc,
dmp_systrace, and dmp_ct Kernel Services

Purpose
Provides functions for common dump tasks.

Syntax
#include <sys/dump.h>

kerrno_t dmp_eaddr (flags, anchor, name, addr, sz)
long flags;
void *anchor;
char *name;
long addr;
long sz;

kerrno_t dmp_context (flags, anchor, name, ctx_type, p2)
long flags;
void *anchor;
char *name;
long ctx_type;
long p2;

kerrno_t dmp_tid (flags, anchor, name, tid, unused)
long flags;
void *anchor;
char *name;
tid_t tid;
void *unused;

kerrno_t dmp_pid (flags, anchor, name, pid, unused)
long flags;
void *anchor;
char *name;
pid_t pid;
void *unused;

kerrno_t dmp_errbuf (flags, anchor, name, erridx, unused)
long flags;
void *anchor;
char *name;
ulong erridx;
long unused;

kerrno_t dmp_mtrc (flags, anchor, name, com_sz, rare_sz)
long flags;
void *anchor;
char *name;
size_t com_sz;
size_t rare_sz;

kerrno_t dmp_systrace (flags, anchor, name, sz, unused)
long flags;
void *anchor;

100 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

char *name;
long sz;
long unused;

kerrno_t dmp_ct (flags, anchor, name, rasb, sz)
long flags;
void *anchor;
char *name;
ras_block_t rasb;
size_t sz;

Parameters

anchor Points to the associated ldmp_parms_t data structure or to an ldmp_prepare_t data structure.
flags The flags parameter can be one or more of the following values:

DCF_FIRST
Specifies that this component is to be dumped first. Normally components are dumped in
the order specified.
Note: The last component specified to be dumped first is the one dumped first.

DCF_LEVEL0 - DCF_LEVEL9
Dumps the component at the specified detail level, 0 through 9. If none of these flags are
set, the component is dumped at CD_LVL_NORMAL, detail level 3.

name Specifies the name of the pseudo-component’s dump table in the dump. The name parameter is
only valid for the dmp_eaddr kernel service. You must specify the name parameter to NULL for the
dmp_context, dmp_tid, dmp_pid, dmp_errbuf, dmp_mtrc, dmp_systrace, and dmp_ct kernel
services.

unused You must specify this parameter to NULL or 0.
The remaining parameters are pseudo-component dependent:
dmp_eaddr
addr Specifies the effective address of the memory to be dumped.
sz Specifies the length of the memory in bytes.
dmp_context
ctx_type Specifies the context to dump. It can be one of the following values:

DMP_CTX_CUR
To dump the current context.

DMP_CTX_PREV
To dump the previous context.

DMP_CTX_SPEC
To dump the context specified by the p2 parameter. The p2 parameter must contain the
address of the ksmtsave structure for the context.

DMP_CTX_RWA
To dump the context from the supplied recovery work area. The p2 parameter must
contain the address of the recovery work area, rwa.

DMP_CTX_BID or DMP_CTX_LCPUID
To dump the context for the processor specified by the p2 parameter. You can specify the
processor either by the bind ID or by the logical ID.

DMP_CTX_TID
To dump the context of the thread specified by the p2 parameter, which must contain the
thread ID.

p2 Specifies the address of the context, the logical processor ID, the bind ID, or the thread ID
dependent on the value of the ctx_type parameter.

dmp_tid
tid Specifies the ID of the thread to dump.
dmp_pid

Chapter 1. Kernel Services 101

pid Specifies the ID of the process to dump.
dmp_errbuf
erridx Specifies the kernel workload partition (WPAR) ID of the partition’s error logging buffer to dump.

The value of 0 stands for the global buffer.
dmp_mtrc
com_sz Specifies the amount of common to dump.
rare_sz Specifies the amount of rare data to dump.
dmp_systrace
sz Specifies the amount of system trace data to dump.If the sz parameter is set to 0, all the buffered

trace data is dumped, up to the amount allowed by the detail level.
dmp_ct
rasb Specifies the ras_block_t of the component whose component trace is to be dumped.
sz Specifies the amount of data to dump. If the sz parameter is set to 0, all the components' trace

data is dumped, up to the limit for the detail level.

Description
The dmp_eaddr kernel service dumps memory by effective address.

The dmp_context kernel service dumps the specified thread context.

The dmp_tid kernel service dumps the kernel data for a thread.

The dmp_pid kernel service dumps the kernel data for a process.

The dmp_errbuf kernel service dumps the error logging buffer for the specified partition.

The dmp_mtrc kernel service dumps entries from the lightweight memory trace buffers.

The dmp_systrace dumps entries from the system trace buffers.

The dmp_ct dumps component trace entries.

Execution Environment
The dmp_eaddr, dmp_context, dmp_tid, dmp_pid, dmp_errbuf, dmp_mtrc, dmp_systrace, and
dmp_ct kernel services can be called from either the process or interrupt environment.

Return Values

0 Indicates a successful completion.
EINVAL_DMP_PSEUDO Indicates that the name parameter is not valid.
EINVAL_DMP_CHECK_ANCHOR Indicates that no anchor was specified, or the anchor

parameter does not point to an area of ldmp_parms_t or
ldmp_prepare_t type.

EFAULT_DMP_CHECK_ANCHOR Indicates that the storage specified by the anchor parameter
is not valid.

EINVAL_RAS_DMP_COMPSPEC_FLAGS Indicates that the flags specification is not valid. This error
also occurs if the DCF_FIRST flag is specified when the
anchor is an ldmp_prepare_t data item.

EINVAL_RAS_DMP_COMPSPEC_NOADD Indicates that components cannot be added to this dump.
ENOMEM_RAS_DMP_COMPSPEC Indicates that the storage is not sufficient.
EINVAL_RAS_DMP_EADDR Indicates that the flags parameter is not valid.
EINVAL_RAS_DMP_CONTEXT Indicates that the parameter of the dmp_context kernel

service is not valid. This is also returned if the p2 parameter is
not used, but is not NULL.

102 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

ENOENT_RAS_DMP_CONTEXT_CTX_NOTFOUND Indicates that the specified context was not found.
EFAULT_RAS_DMP_CONTEXT Indicates that the storage the specified context pointer points

to is not valid.
EINVAL_RAS_DMP_TID Indicates that the parameter of the dmp_tid kernel service is

not valid.
EINVAL_RAS_DMP_PID Indicates that the parameter of the dmp_pid kernel service is

not valid.
EINVAL_RAS_DMP_ERRBUF Indicates that the parameter of the dmp_errbuf kernel service

is not valid.
ECHRNG_RAS_DMP_ERRBUF Indicates that the erridx parameter is out of range.
EINVAL_RAS_DMP_MTRC Indicates that the parameter of the dmp_mtrc kernel service

is not valid.
ENOENT_RAS_DMP_MTRC Indicates that the lightweight memory trace is not active.
EINVAL_RAS_DMP_SYSTRACE Indicates that the parameter of the dmp_systrace kernel

service is not valid.
ENOENT_RAS_DMP_SYSTRACE Indicates that the system trace is not active.
EINVAL_RAS_DMP_CT Indicates that the parameter of the dmp_ct kernel service is

not valid.
ENOMEM_RAS_DMP_CT Indicates that the storage is not sufficient.
EINVAL_RAS_DMP_CT_GETPATH Indicates that the specified component is not valid.
EINVAL_RAS_DMP_CT_LOOKUP Indicates that an error occurred while this component was

being validated.
ENOTSUP_RAS_DMP_CT Indicates that the specified component does not have a

component trace.

Related Information
The livedump kernel service and dmp_kernext kernel service.

dmp_kernext Kernel Service

Purpose
Causes the specified kernel extension to be shipped with the live dump for symbol resolution.

Syntax
#include <sys/dump.h>

kerrno_t dmp_kernext (anchor, ptr)void *anchor;
void *ptr;

Parameters

anchor Points to either an ldmp_parms_t or ldmp_prepare_t structure.
ptr Specifies an address within the kernel extension. If the value is 0, the dump includes information

for all loaded kernel extensions.

Description
The dmp_kernext kernel service causes snap to package the specified kernel extension with the current
live dump. This also includes loader information for the extension in the dump. You can specify the
extension by setting the ptr parameter to a text or data address within the extension. The extension’s file
name is noted in the dump, and snap can be used to cause this file to be bundled with the snap data
when the dump is collected for sending to IBM.

Chapter 1. Kernel Services 103

Execution Environment
The dmp_kernext kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates a successful completion.
EINVAL_RAS_DMP_KERNEXT Indicates that the anchor parameter is not valid.

Related Information
The livedump kernel service.

The snap command in AIX Version 6.1 Commands Reference, Volume 5.

d_roundup Kernel Service

Purpose
Rounds the value length up to a given number of cache lines.

Syntax
int d_roundup(length)

int length;

Parameter

length Specifies the size in bytes to be rounded.

Description
To maintain cache consistency, buffers must occupy entire cache lines. The d_roundup service helps
provide that function by rounding the value length up to a given number in integer form.

Execution Environment
The d_roundup service can be called from either the process or interrupt environment.

Related Information
The d_align kernel service, d_cflush kernel service.

Understanding Direct Memory Access (DMA) Transfers in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

d_sync_mem Kernel Service

Purpose
Allows a device driver to indicate that previously mapped buffers may need to be refreshed.

Syntax
int d_sync_mem(d_handle_t handle, dio_t blist)

104 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The d_sync_mem service allows a device driver to indicate that previously mapped buffers may need to
be refreshed, either because a new DMA is about to start or a previous DMA has now completed.
d_sync_mem is not an exported kernel service, but a bus-specific utility determined by d_map_init based
on platform characteristics and provided to the caller through the d_handle structure. d_sync_mem allows
the driver to identify additional coherency points beyond those of the initial mapping (d_map_list) and
termination of the mapping (d_unmap_list). Thus d_sync_mem provides a way to long-term map buffers
and still handle potential data consistency problems.

The blist parameter is a pointer to the dio structure that describes the initial mapping, as returned by
d_map_list. Note that for bounce buffering, the data direction is also implicitly defined by this initial
mapping.

v If the map_list call describes a transfer from system memory to a device, subsequent d_sync_mem
calls using the corresponding blist will synchronize the memory view. This assumes that the original
system memory pages contain the correct data.

v If the map_list call describes a transfer from a device to system memory, then subsequent
d_sync_mem calls will synchronize the memory view. This assumes that the bounce pages the device
directly accessed contained the correct data.

Note: You can use the D_SYNC_MEM macro provided in the /usr/include/sys/dma.h file to code calls to
the d_sync_mem kernel service.

Parameters

d_handle_t Indicates the unique dma handle returned by d_map_init.
dio_t blist List of vectors returned by original d_map_list.

Return Values

DMA_SUCC Buffers described by the blist have been synchronized.
DMA_FAIL Buffers could not be synchronized.

Related Information
The d_alloc_dmamem kernel service, d_map_init kernel service, d_map_list kernel service,
d_unmap_list kernel service.

DTOM Macro for mbuf Kernel Services

Purpose
Converts an address anywhere within an mbuf structure to the head of that mbuf structure.

Syntax
#include <sys/mbuf.h>

DTOM (bp);

Parameter

bp Points to an address within an mbuf structure.

Chapter 1. Kernel Services 105

Description
The DTOM macro converts an address anywhere within an mbuf structure to the head of that mbuf
structure. This macro is valid only for mbuf structures without an external buffer (that is, with the M_EXT
flag not set).

This macro can be viewed as the opposite of the MTOD macro, which converts the address of an mbuf
structure into the address of the actual data contained in the buffer. However, the DTOM macro is more
general than this view implies. That is, the input parameter can point to any address within the mbuf
structure, not merely the address of the actual data.

Example
The DTOM macro can be used as follows:
char *bp;
struct mbuf *m;
m = DTOM(bp);

Related Information
The MTOD macro for mbuf Kernel Services.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

d_unmap_list Kernel Service

Purpose
Deallocates resources previously allocated on a d_map_list call.

Syntax
#include <sys/dma.h>

void d_unmap_list (*handle, *bus_list)
struct d_handle *handle
struct dio *bus_list

Note: The following is the interface definition for d_unmap_list when the DMA_ADDRESS_64 and
DMA_ENABLE_64 flags are set on the d_map_init call.

void d_unmap_list (*handle,
*bus_list)
struct d_handle *handle;
struct dio_64 *bus_list;

Parameters

handle Indicates the unique handle returned by the d_map_init kernel service.
bus_list Specifies a list of bus addresses and lengths.

Description
The d_unmap_list kernel service is a bus-specific utility routine determined by the d_map_init kernel
service that deallocates resources previously allocated on a d_map_list call.

The d_unmap_list kernel service must be called after I/O completion involving the area mapped by the
prior d_map_list call. Some device drivers might choose to leave pages mapped for a long-term mapping
of certain memory buffers. In this case, the driver must call d_unmap_list when it no longer needs the
long-term mapping.

106 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Note: You can use the D_UNMAP_LIST macro provided in the /usr/include/sys/dma.h file to code calls
to the d_unmap_list kernel service. If not, you must ensure that the d_unmap_list function pointer
is non-NULL before attempting the call. Not all platforms require the unmapping service.

Related Information
The d_map_init kernel service, d_map_list kernel service.

d_unmap_slave Kernel Service

Purpose
Deallocates resources previously allocated on a d_map_slave call.

Syntax
#include <sys/dma.h>

int d_unmap_slave (*handle)
struct d_handle *handle;

Parameters

handle Indicates the unique handle returned by the d_map_init kernel service.

Description
The d_unmap_slave kernel service deallocates resources previously allocated on a d_map_slave call,
disables the physical DMA channel, and returns error and status information following the DMA transfer.
The d_unmap_slave kernel service is not an exported kernel service, but a bus-specific utility routine that
is determined by the d_map_init kernel service and provided to the caller through the d_handle structure.

Note: You can use the D_UNMAP_SLAVE macro provided in the /usr/include/sys/dma.h file to code
calls to the d_unmap_slave kernel service. If not, you must ensure that the d_unmap_slave
function pointer is non-NULL before attempting to call. No all platforms require the unmapping
service.

The device driver must call d_unmap_slave when the I/O is complete involving a prior mapping by the
d_map_slave kernel service.

Note: The d_unmap_slave kernel should be paired with a previous d_map_slave call. Multiple
outstanding slave DMA transfers are not supported. This kernel service assumes that there is no
DMA in progress on the affected channel and deallocates the current channel mapping.

Return Values

DMA_SUCC Indicates successful transfer. The DMA controller did not report any errors and that
the Terminal Count was reached.

DMA_TC_NOTREACHED Indicates a successful partial transfer. The DMA controller reported the Terminal
Count reached for the intended transfer as set up by the d_map_slave call. Block
devices consider this an erro; however, for variable length devices this may not be
an error.

DMA_FAIL Indicates that the transfer failed. The DMA controller reported an error. The device
driver assumes the transfer was unsuccessful.

Chapter 1. Kernel Services 107

Related Information
The d_map_init kernel service.

d_unmap_page Kernel Service

Purpose
Deallocates resources previously allocated on a d_unmap_page call.

Syntax
#include <sys/dma.h>

void d_unmap_page (*handle, *busaddr)
struct d_handle *handle
uint *busaddr

Note: The following is the interface definition for d_unmap_page when the DMA_ADDRESS_64 and
DMA_ENABLE_64 flags are set on the d_map_init call.

int d_unmap_page(*handle,
*busaddr)
struct d_handle *handle;
unsigned long long *busaddr;

Parameters

handle Indicates the unique handle returned by the d_map_init kernel service.
busaddr Points to the busaddr field.

Description
The d_unmap_page kernel service is a bus-specific utility routine determined by the d_map_init kernel
service that deallocates resources previously allocated on a d_map_page call for a DMA master device.

The d_unmap_page service must be called after I/O completion involving the area mapped by the prior
d_map_page call. Some device drivers might choose to leave pages mapped for a long-term mapping of
certain memory buffers. In this case, the driver must call d_unmap_page when it no longer needs the
long-term mapping.

Note: You can use the D_UNMAP_PAGE macro provided in the /usr/include/sys/dma.h file to code calls
to the d_unmap_page kernel service. If not, you must ensure that the d_unmap_page function
pointer is non-NULL before attempting the call. Not all platforms require the unmapping service.

Related Information
The d_map_init kernel service.

dr_reconfig System Call

Purpose
Determines the nature of the DLPAR request.

108 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/dr.h>

int dr_reconfig (flags, dr_info)
int flags;
dr_info_t *dr_info;

Description
The dr_reconfig system call is used by DLPAR-aware applications to adjust their use of resources in
relation to a DLPAR request. Applications are notified about the usage through the SIGRECONFIG signal,
which is generated three times for each DLPAR event.

The first time is to check with the application whether the DLPAR event should be continued. Using the
DR_EVENT_FAIL flag, an application can indicate that the operation should be aborted, if it is not
DLPAR-safe and its operation is considered vital to the system.

The application is notified the second time before the resource is added or removed, and the third time
afterwards. Applications must attempt to control their scheduling priority and policy to guarantee timely
delivery of signals. The system does not guarantee that every signal that is sent is delivered before
advancing to the next step in the algorithm.

The dr_reconfig system call can also be used to notify applications about the changes to the workload
partition that they are running. Applications are notified about changes to the CPU, memory capacity, and
resources set.

The dr_reconfig interface is signal-handler safe and can be used by multi-threaded programs.

The dr_info structure is declared within the address space of the application. The kernel fills out data in
this structure relative to the current DLPAR request. The user passes this structure identifying the current
DLPAR request, as a parameter to the kernel when the DR_RECONFIG_DONE flag is used. The
DR_RECONFIG_DONE flag is used by the application to notify the kernel that necessary action to adjust
their use of resources has been taken in response to the SIGRECONFIG signal sent to them. It is
expected that the signal handler associated with the SIGRECONFIG signal calls the interface with the
DR_QUERY flag to identify the phase of the DLPAR event, takes the appropriate action, and calls the
interface with the DR_RECONFIG_DONE flag to indicate to the kernel that the signal has been handled.
This type of acknowledgment to the kernel in each of the DLPAR phases enables a DLPAR event to
perform efficiently.

With the addition of new fields to the dr_info structure, DR-aware applications can support
Micro-Partitioning.

The bindproc, softpset, and hardpset bits are only set, if the request is to remove a cpu. If the bindproc is
set, the process or one of its threads has a bindprocessor attachment, which must be resolved. If the
softpset bit is set, the process has a Workload Manager (WLM) attachment, which can be changed by
calling the appropriate WLM interface or by invoking the appropriate WLM command. If the hardpset bit is
set, the appropriate pset API must be used.

Note: The bcpu and lcpu fields identify the cpu being removed and do not necessarily indicate that the
process has a dependency that must be resolved. The bindproc, softpset, and hardpset bits are
provided for that purpose.

The plock and pshm bits are only set, if the request is to remove memory and the process has plock
memory or is attached to a pinned shared memory segment. If the plock bit is set, the process callsplock
to unpin itself. If the pshm bit is set, the application has pinned shared memory segments, which may
need to be detached. The memory remove request can succeed in any case, if there is enough pinnable
memory in the system, so an action in this case is not necessarily required. The field sys_pinnable_frames

Chapter 1. Kernel Services 109

provides this information, however, this value and other statistical values are just approximations. They
reflect the state of the system at the time of the request. They are not updated during the request. The
current size of physical memory can be determined by referencing the _system_configuration.physmem
field.

To provide support for virtual real memory related DR operations, a new field, dr_op, has been added to
the dr_info structure. The dr_op field provides information about the current DR operation. Additionally, all
future DR operations use this field and the previously used resource bits will no longer be extended.

dr_wlm_info Structure
typedef struct dr_wlm_info {

unsigned int cpu_add : 1; // cpu wlm resource add for the WPAR
unsigned int cpu_rem : 1; // cpu wlm resource remove for the WPAR
unsigned int mem_add : 1; // memory wlm resource add for the WPAR
unsigned int mem_rem : 1; // memory wlm resource remove for the WPAR
unsigned int rs_cpu : 1; // wlm cpu rset change for the WPAR
unsigned int rs_mem : 1; // wlm memory rset change for the WPAR
unsigned int pad1 : 2; // un-used
unsigned int cpu_cap : 8; // percentage of cpu capacity of the WPAR
unsigned int mem_cap : 8; // percentage of the memory capacity of the WPAR
unsigned int pad2 : 8; // un-used

} dr_wlm_info_t;

dr_info Structure
typedef struct dr_info {

unsigned int add : 1; // add request
rem : 1; // remove request
cpu : 1; // target resource is a cpu
mem : 1; // target resource is memory

check : 1; // check phase in effect
pre : 1; // pre phase in effect
post : 1; // post phase in effect

posterror : 1; // post error phase in effect
force : 1; // force option is in effect

bindproc : 1; // process has bindprocessor dependency
softpset : 1; // process has WLM software partition dependency
hardpset : 1; // process has processor set API dependency

plock : 1; // process has plock'd memory
pshm : 1; // process has pinned shared memory

ent_cap : 1; // target resource:entitled capacity
var_wgt : 1; // target resource:variable weight

splpar_capable : 1; // 1/0 partition is/not splpar capable
splpar_shared : 1; // 1/0 partition shared/dedicated mode
splpar_capped : 1; // 1/0 partition capped/uncapped mode

splpar_constrained : 1; // Set to 1 if requested capacity
update is constrained by PHYP to
be within partition capacity bounds.

//

unsigned int migrate : 1; // migration operation
unsigned int hibernate : 1; // hibernation operation
unsigned int partition : 1; // resource is partition
unsigned int topology_update : 1; // topology update

// The following fields are filled out for cpu based requests
int lcpu; // logical cpu ID being added or removed
int bcpu; // bind cpu ID being added or removed

// The following fields are filled out for memory based requests
size64_t req_memsz_change; // User request size in bytes
size64_t sys_memsz; // System Memory size at time of request
rpn64_t sys_free_frames; // Number of free frames in the system
rpn64_t sys_pinnable_frames; // Number of pinnable frames in system
rpn64_t sys_total_frames; // Total number of frames in system

110 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

// SPLPAR parameters.
uint64_t capacity; // partition current entitled capacity

if ent_cap bit is set, partition's
current variable capacity weight
if var_wgt bit is set.

//

int delta_cap; // delta capacity added/removed to
current value depending on add/rem
bit flag value above

//
dr_wlm_info_t dr_wlm; // DR info for the WPAR
ushort dr_op; // type of DR operation

ushort dr_pad; // reserved pad field
size64_t mem_capacity; // partition’s entitled I/O memory or variable capacity.
ssize64_t delta_mem_capacity; // amount of I/O being added/removed

int reserved[2];

} dr_info_t;

Parameters

flags The following values are supported:

DR_QUERY
Identifies the current DLPAR request and the
actions that the application must take to comply
with the current DLPAR request. This information
is returned to the caller in the structure identified
by the dr_info parameter.

DR_EVENT_FAIL
Fail the current DLPAR event. Root authority is
required.

DR_RECONFIG_DONE
This flag is used with the DR_QUERY flag. The
application notifies the kernel that the actions it
took to comply with the current DLPAR request
are now complete. The dr_info structure
identifying the DLPAR request that was returned
is passed as an input parameter.

dr_info Contains the address of a dr_info structure, which is
declared with the address space of the application.

Return Values
Upon success, the dr_reconfig system call returns a zero. If unsuccessful, it returns negative one and
sets the errno variable to the appropriate error value.

Error Codes

EINVAL Invalid flags.
ENXIO No DLPAR event in progress.
EPERM Root authority required for DR_EVENT_FAIL.
EINPROGRESS Cancellation of DLPAR event may only occur in the check

phase.

Chapter 1. Kernel Services 111

Related Information
Making Programs DLPAR-Aware Using DLPAR APIs in AIX Version 6.1 General Programming Concepts:
Writing and Debugging Programs.

e_assert_wait Kernel Service

Purpose
Asserts that the calling kernel thread is going to sleep.

Syntax
#include <sys/sleep.h>

void e_assert_wait (event_word, interruptible)
tid_t *event_word;
boolean_t interruptible;

Parameters

event_word Specifies the shared event word. The kernel uses the event_word parameter as the anchor
to the list of threads waiting on this shared event.

interruptible Specifies if the sleep is interruptible.

Description
The e_assert_wait kernel service asserts that the calling kernel thread is about to be placed on the event
list anchored by the event_word parameter. The interruptible parameter indicates wether the sleep can be
interrupted.

This kernel service gives the caller the opportunity to release multiple locks and sleep atomically without
losing the event should it occur. This call is typically followed by a call to either the e_clear_wait or
e_block_thread kernel service. If only a single lock needs to be released, then the e_sleep_thread kernel
service should be used instead.

The e_assert_wait kernel service has no return values.

Execution Environment
The e_assert_wait kernel service can be called from the process environment only.

Related Information
The e_clear_wait kernel service, e_block_thread kernel service, e_sleep_thread kernel service

Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

e_block_thread Kernel Service

Purpose
Blocks the calling kernel thread.

112 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/sleep.h>

int e_block_thread ()

Description
The e_block_thread kernel service blocks the calling kernel thread. The thread must have issued a
request to sleep (by calling the e_assert_wait kernel service). If it has been removed from its event list, it
remains runnable.

Execution Environment
The e_block_thread kernel service can be called from the process environment only.

Return Values
The e_block_thread kernel service return a value that indicate how the thread was awakened. The
following values are defined:

THREAD_AWAKENED Denotes a normal wakeup; the event occurred.
THREAD_INTERRUPTED Denotes an interruption by a signal.
THREAD_TIMED_OUT Denotes a timeout expiration.
THREAD_OTHER Delineates the predefined system codes from those that need to be defined at the

subsystem level. Subsystem should define their own values greater than or equal
to this value.

Related Information
The e_assert_wait kernel service.

Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

e_clear_wait Kernel Service

Purpose
Clears the wait condition for a kernel thread.

Syntax
#include <sys/sleep.h>

void e_clear_wait (tid, result)
tid_t tid;
int result;

Parameters

tid Specifies the kernel thread to be awakened.

Chapter 1. Kernel Services 113

result Specifies the value returned to the awakened kernel thread. The following values can be used:

THREAD_AWAKENED
Usually generated by the e_wakeup or e_wakeup_one kernel service to indicate a normal
wakeup.

THREAD_INTERRUPTED
Indicates an interrupted sleep. This value is usually generated by a signal delivery when the
INTERRUPTIBLE flag is set.

THREAD_TIMED_OUT
Indicates a timeout expiration.

THREAD_OTHER
Delineates the predefined system codes from those that need to be defined at the subsystem
level. Subsystem should define their own values greater than or equal to this value.

Description
The e_clear_wait kernel service clears the wait condition for the kernel thread specified by the tid
parameter, and the thread is made runnable.

This kernel service differs from the e_wakeup, e_wakeup_one, and e_wakeup_w_result kernel services
in the fact that it assumes the identity of the thread to be awakened. This kernel service should be used to
handle exceptional cases, where a special action needs to be taken. The result parameter is used to
specify the value returned to the awakened thread by the e_block_thread or e_sleep_thread kernel
service.

The e_clear_wait kernel service has no return values.

Execution Environment
The e_clear_wait kernel service can be called from either the process environment or the interrupt
environment.

Related Information
The e_wakeup, e_wakeup_one, or e_wakeup_w_result kernel services, e_block_thread kernel servic,
e_sleep_thread kernel service.

Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

e_sleep Kernel Service

Purpose
Forces the calling kernel thread to wait for the occurrence of a shared event.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/sleep.h>
int e_sleep (event_word, flags)
tid_t *event_word;
int flags;

114 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

event_word Specifies the shared event word. The kernel uses the event_word parameter to anchor the list of
processes sleeping on this event. The event_word parameter must be initialized to EVENT_NULL
before its first use.

flags Specifies the flags that control action on occurrence of signals. These flags can be found in the
/usr/include/sys/sleep.h file. The flags parameter is used to control how signals affect waiting
for an event. The following flags are available to the e_sleep service:

EVENT_SIGRET
Indicates the termination of the wait for the event by an unmasked signal. The return
value is set to EVENT_SIG.

EVENT_SIGWAKE
Indicates the termination of the event by an unmasked signal. This flag results in the
transfer of control to the return from the last setjmpx service with the return value set to
EINTR.

EVENT_SHORT
Prohibits the wait from being terminated by a signal. This flag should only be used for
short, guaranteed-to-wakeup sleeps.

Description
The e_sleep kernel service is used to wait for the specified shared event to occur. The kernel places the
current kernel thread on the list anchored by the event_word parameter. This list is used by the e_wakeup
service to wake up all threads waiting for the event to occur.

The anchor for the event list, the event_word parameter, must be initialized to EVENT_NULL before its
first use. Kernel extensions must not alter this anchor while it is in use.

The e_wakeup service does not wake up a thread that is not currently sleeping in the e_sleep function.
That is, if an e_wakeup operation for an event is issued before the process calls the e_sleep service for
the event, the thread still sleeps, waiting on the next e_wakeup service for the event. This implies that
routines using this capability must ensure that no timing window exists in which events could be missed
due to the e_wakeup service being called before the e_sleep operation for the event has been called.

Note: The e_sleep service can be called with interrupts disabled only if the event or lock word is pinned.

Execution Environment
The e_sleep kernel service can be called from the process environment only.

Return Values

EVENT_SUCC Indicates a successful operation.
EVENT_SIG Indicates that the EVENT_SIGRET flag is set and the wait is terminated by a signal.

Related Information
The e_sleepl kernel service, e_wakeup kernel service.

Process and Exception Management Kernel Services and Understanding Execution Environments in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 115

e_sleepl Kernel Service

Purpose
Forces the calling kernel thread to wait for the occurrence of a shared event.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/sleep.h>
int e_sleepl (lock_word, event_word, flags)
int *lock_word;
tid_t *event_word;
int flags;

Parameters

lock_word Specifies the lock word for a conventional process lock.
event_word Specifies the shared event word. The kernel uses this word to anchor the list of kernel threads

sleeping on this event. This event word must be initialized to EVENT_NULL before its first use.
flags Specifies the flags that control action on occurrence of a signal. These flags are found in the

/usr/include/sys/sleep.h file.

Description

Note: The e_sleepl kernel service is provided for porting old applications written for previous versions of
the operating system. Use the e_sleep_thread kernel service when writing new applications.

The e_sleepl kernel service waits for the specified shared event to occur. The kernel places the current
kernel thread on the list anchored by the event_word parameter. The e_wakeup service wakes up all
threads on the list.

The e_wakeup service does not wake up a thread that is not currently sleeping in the e_sleepl function.
That is, if an e_wakeup operation for an event is issued before the thread calls the e_sleepl service for
the event, the thread still sleeps, waiting on the next e_wakeup operation for the event. This implies that
routines using this capability must ensure that no timing window exists in which events could be missed
due to the e_wakeup service being called before the e_sleepl service for the event has been called.

The e_sleepl service also unlocks the conventional lock specified by the lock_word parameter before
putting the thread to sleep. It also reacquires the lock when the thread wakes up.

The anchor for the event list, specified by the event_word parameter, must be initialized to EVENT_NULL
before its first use. Kernel extensions must not alter this anchor while it is in use.

Note: The e_sleepl service can be called with interrupts disabled, only if the event or lock word is pinned.

Values for the flags Parameter
The flags parameter controls how signals affect waiting for an event. There are three flags available to the
e_sleepl service:

EVENT_SIGRET Indicates the termination of the wait for the event by an unmasked signal. The return value
is set to EVENT_SIG.

116 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

EVENT_SIGWAKE Indicates the termination of the event by an unmasked signal. This flag also indicates the
transfer of control to the return from the last setjmpx service with the return value set to
EINTR.

EVENT_SHORT Indicates that signals cannot terminate the wait. Use the EVENT_SHORT flag for only
short, guaranteed-to-wakeup sleeps.

Note: The EVENT_SIGRET flag overrides the EVENT_SIGWAKE flag.

Execution Environment
The e_sleepl kernel service can be called from the process environment only.

Return Values

EVENT_SUCC Indicates successful completion.
EVENT_SIG Indicates that the EVENT_SIGRET flag is set and the wait is terminated by a signal.

Related Information
The e_sleep kernel service, e_wakeup kernel service.

Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

Interrupt Environment in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

e_sleep_thread Kernel Service

Purpose
Forces the calling kernel thread to wait for the occurrence of a shared event.

Syntax
#include <sys/sleep.h>

int e_sleep_thread (event_word, lock_word, flags)
tid_t *event_word;
void *lock_word;
int flags;

Parameters

event_word Specifies the shared event word. The kernel uses the event_word parameter as the anchor to the
list of threads waiting on this shared event.

lock_word Specifies simple or complex lock to unlock.
flags Specifies lock and signal handling options.

Description
The e_sleep_thread kernel service forces the calling thread to wait until a shared event occurs. The
kernel places the calling thread on the event list anchored by the event_word parameter. This list is used
by the e_wakeup, e_wakeup_one, and e_wakeup_w_result kernel services to wakeup some or all
threads waiting for the event to occur.

Chapter 1. Kernel Services 117

A lock can be specified; it will be unlocked when the kernel service is entered, just before the thread
blocks. This lock can be a simple or a complex lock, as specified by the flags parameter. When the kernel
service exits, the lock is re-acquired.

Flags
The flags parameter specifies options for the kernel service. Several flags can be combined with the
bitwise OR operator. They are described below.

The four following flags specify the lock type. If the lock_word parameter is not NULL, exactly one of these
flags must be used.

Flag Description
LOCK_HANDLER lock_word specifies a simple lock protecting a thread-interrupt or interrupt-interrupt critical

section.
LOCK_SIMPLE lock_word specifies a simple lock protecting a thread-thread critical section.
LOCK_READ lock_word specifies a complex lock in shared-read mode.
LOCK_WRITE lock_word specifies a complex lock in exclusive write mode.

The following flag specify the signal handling. By default, while the thread sleeps, signals are held pending
until it wakes up.

INTERRUPTIBLE The signals must be checked while the kernel thread is sleeping. If a signal needs to be
delivered, the thread is awakened.

Return Values
The e_sleep_thread kernel service return a value that indicate how the kernel thread was awakened. The
following values are defined:

THREAD_AWAKENED Denotes a normal wakeup; the event occurred.
THREAD_INTERRUPTED Denotes an interruption by a signal. This value can be returned even if the

INTERRUPTIBLE flag is not set since it may be also generated by the
e_clear_wait or e_wakeup_w_result kernel services.

THREAD_TIMED_OUT Denotes a timeout expiration. The e_sleep_thread has no timeout. However, the
e_clear_wait or e_wakeup_w_result kernel services may generate this return
value.

THREAD_OTHER Delineates the predefined system codes from those that need to be defined at the
subsystem level. Subsystem should define their own values greater than or equal
to this value.

Execution Environment
The e_sleep_thread kernel service can be called from the process environment only.

Related Information
The e_wakeup, e_wakeup_one, or e_wakeup_w_result kernel services, e_block_thread kernel service,
e_clear_wait kernel service.

Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

Understanding Locking in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts

Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts

118 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

et_post Kernel Service

Purpose
Notifies a kernel thread of the occurrence of one or more events.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/sleep.h>
void et_post (events, tid)
unsigned long events;
tid_t tid;

Parameters

events Identifies the masks of events to be posted.
tid Specifies the thread identifier of the kernel thread to be notified.

Description
The et_post kernel service is used to notify a kernel thread that one or more events occurred.

The et_post service provides the fastest method of interprocess communication, although only the event
numbers are passed.

The event numbers must be known by the cooperating components, either through programming
convention or the passing of initialization parameters.

The et_post service is performed automatically when sending a request to a device queue serviced by a
kernel thread or when sending an acknowledgment.

The EVENT_KERNEL mask defines the event bits reserved for use by the kernel. For example, a bit with
a value of 1 indicates an event bit reserved for the kernel. Kernel extensions should assign their events
starting with the most significant bits and working down. If threads using the et_post service are also
using the device queue management kernel extensions, care must be taken not to use the event bits
registered for device queue management.

The et_wait service does not sleep but returns immediately if a specified event has already been posted
by the et_post service.

Execution Environment
The et_post kernel service can be called from either the process or interrupt environment.

Return Values
The et_post service has no return values.

Related Information
The et_wait kernel service.

Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

Chapter 1. Kernel Services 119

et_wait Kernel Service

Purpose
Forces the calling kernel thread to wait for the occurrence of an event.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/sleep.h>
unsigned long
et_wait (wait_mask, clear_mask, flags)
unsigned long wait_mask;
unsigned long clear_mask;
int flags;

Parameters

wait_mask Specifies the mask of events to await.
clear_mask Specifies the mask of events to clear.
flags Specifies the flags controling actions on occurrence of a signal.

The flags parameter is used to control how signals affect waiting for an event. There are two flag
values:

EVENT_SIGRET
Causes the wait for the event to be ended by an unmasked signal and the return value
set to EVENT_SIG.

EVENT_SIGWAKE
Causes the event to be ended by an unmasked signal and control transferred to the
return from the last setjmpx call, with the return value set to EXSIG.

EVENT_SHORT
Prohibits the wait from being terminated by a signal. This flag should only be used for
short, guaranteed-to-wakeup sleeps.

Note: The EVENT_SIGRET flag overrides the EVENT_SIGWAKE flag.

Description
The et_wait kernel service forces the calling kernel thread to wait for specified events to occur.

The wait_mask parameter indicates a mask, where each bit set equal to 1 represents an event for which
the thread must wait. The clear_mask parameter indicates a mask of events that must clear when the wait
is complete. Subsequent calls to the et_wait service return immediately unless you clear the bits, which
ends the wait.

Note: The et_wait service can be called with interrupts disabled only if the event or lock word is pinned.

Strategies for Using et_wait
Calling the et_wait kernel service with the EVENT_SIGRET flag clears the the pending events field when
the signal is received. If et_wait is called again by the same kernel thread, the thread waits indefinitely for
an event that has already occurred. When this happens, the thread does not run to completion. This
problem occurs only if the event and signal are posted at the same time.

To avoid this problem, use one of the following programming methods:

120 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

v Use the EVENT_SHORT flag to prevent signals from waking the thread up.

v Mask signals prior to the call of et_wait by using the limit_sigs kernel service. Then call et_wait. Invoke
the sigprocmask call to restore the signal mask by using the mask returned previously by limit_sigs.

The et_wait service is also used to clear events without waiting for them to occur. This is accomplished by
doing one of the following:

v Set the wait_mask parameter to EVENT_NDELAY.

v Set the bits in the clear_mask parameter that correspond with the events to be cleared to 1.

Because the et_wait service returns an event mask indicating those events that were actually cleared,
these methods can be used to poll the events.

Execution Environment
The et_wait kernel service can be called from the process environment only.

Return Values
Upon successful completion, the et_wait service returns an event mask indicating the events that
terminated the wait. If an EVENT_NDELAY value is specified, the returned event mask indicates the
pending events that were cleared by this call. Otherwise, it returns the following error code:

EVENT_SIG Indicates that the EVENT_SIGRET flag is set and the wait is terminated by a signal.

Related Information
The et_post kernel service, setjmpx kernel service.

e_wakeup, e_wakeup_one, or e_wakeup_w_result Kernel Service

Purpose

Notifies kernel threads waiting on a shared event of the event’s occurrence.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/sleep.h>

void e_wakeup (event_word)
tid_t *event_word;

void e_wakeup_one (event_word)
tid_t *event_word;

void e_wakeup_w_result (event_word, result)
tid_t *event_word;
int result;

Parameters

event_word Specifies the shared event designator. The kernel uses the event_word parameter as the anchor
to the list of threads waiting on this shared event.

Chapter 1. Kernel Services 121

result Specifies the value returned to the awakened kernel thread. The following values can be used:

THREAD_AWAKENED
Indicates a normal wakeup. This is the value automatically generated by the e_wakeup
or e_wakeup_one kernel services.

THREAD_INTERRUPTED
Indicates an interrupted sleep. This value is usually generated by a signal delivery when
the INTERRUPTIBLE flag is set.

THREAD_TIMED_OUT
Indicates a timeout expiration.

THREAD_OTHER
Delineates the predefined system codes from those that need to be defined at the
subsystem level. Subsystem should define their own values greater than or equal to this
value.

Description
The e_wakeup and e_wakeup_w_result kernel services wake up all kernel threads sleeping on the event
list anchored by the event_word parameter. The e_wakeup_one kernel service wakes up only the most
favored thread sleeping on the event list anchored by the event_word parameter.

When threads are awakened, they return from a call to either the e_block_thread or e_sleep_thread
kernel service. The return value depends on the kernel service called to wake up the threads (the wake-up
kernel service):

v THREAD_AWAKENED is returned if the e_wakeup or e_wakeup_one kernel service is called

v The value of the result parameter is returned if the e_wakeup_w_result kernel service is called.

If a signal is delivered to a thread being awakened by one of the wake-up kernel services, and if the
thread specified the INTERRUPTIBLE flag, the signal delivery takes precedence. The thread is awakened
with a return value of THREAD_INTERRUPTED, regardless of the called wake-up kernel service.

The e_wakeup and e_wakeup_w_result kernel services set the event_word parameter to EVENT_NULL.

The e_wakeup, e_wakeup_one, and e_wakeup_w_result kernel services have no return values.

Execution Environment
The e_wakeup, e_wakeup_one, and e_wakeup_w_result kernel services can be called from either the
process environment or the interrupt environment.

When called by an interrupt handler, the event_word parameter must be located in pinned memory.

Related Information
The e_block_thread kernel service, e_clear_wait kernel service, e_sleep_thread kernel service.

Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

e_wakeup_w_sig Kernel Service

Purpose
Posts a signal to sleeping kernel threads.

122 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/sleep.h>

void e_wakeup_w_sig (event_word, sig)
tid_t *event_word;
int sig;

Parameters

event_word Specifies the shared event word. The kernel uses the event_word parameter as the anchor to the
list of threads waiting on this shared event.

sig Specifies the signal number to post.

Description
The e_wakeup_w_sig kernel service posts the signal sig to each kernel thread sleeping interruptible on
the event list anchored by the event_word parameter.

The e_wakeup_w_sig kernel service has no return values.

Execution Environment
The e_wakeup_w_sig kernel service can be called from either the process environment or the interrupt
environment.

Related Information
The e_block_thread kernel service, e_clear_wait kernel service.

Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

eeh_broadcast Kernel Service

Purpose
This service is provided for device drivers to coordinate activities during an EEH event.

Syntax
void eeh_broadcast(handle, message)
eeh_handle_t handle;
unsigned long long message;

Parameters

handle EEH handle obtained from eeh_init or eeh_init_multifunc
message User- or kernel-defined message

Description
Because single-function drivers do not have a need for coordination, this service is intended for
multifunction drivers only. If a single-function driver calls it, it is a NOP. There are two kinds of messages
that can be sent among the drivers: kernel-defined messages (such as EEH_DD_SUSPEND and
EEH_DD_DEAD) and the user-defined messages. See sys/eeh.h for help on how to define user

Chapter 1. Kernel Services 123

messages. Kernel messages have a higher priority than user messages. Therefore, if user messages and
kernel messages are both pending, the kernel messages are sent out before the user messages.

Note: Device drivers should only broadcast their own messages (that is, the user-defined message) and
not the kernel messages.

Within the kernel messages, EEH_DD_DEAD has the highest priority. Multiple messages of the same kind
may or may not be coalesced depending upon the relative timing. Messages are sent by invoking the
callback routines. The callback routines are invoked sequentially but not in any specific order except that
the last driver to receive a message will have the EEH_MASTER flag set to indicate that all other drivers
have finished processing the message. Only one message is broadcast at a time—that is, all registered
callback routines are called sequentially with the same message before moving on to the next message.
Finally, they are invoked asynchronously at INTIODONE priority. Because they are broadcast
asynchronously, a device driver must not assume on a specific timeout within which the message would
arrive.

The macro EEH_BROADCAST(handle, message) is provided for device drivers to call this service.

Execution Environment
This kernel service can be called from the process or interrupt environment.

Return Values
This service has no return value.

Related Information
“eeh_clear Kernel Service,” “eeh_disable_slot Kernel Service” on page 125, “eeh_enable_dma Kernel
Service” on page 126, “eeh_enable_pio Kernel Service” on page 127, “eeh_enable_slot Kernel Service” on
page 128, “eeh_init Kernel Service” on page 129, “eeh_init_multifunc Kernel Service” on page 131,
“eeh_read_slot_state Kernel Service” on page 133, “eeh_reset_slot Kernel Service” on page 135,
“eeh_slot_error Kernel Service” on page 136

eeh_clear Kernel Service

Purpose
This service unregisters a slot for an EEH function and removes resources allocated by the eeh_init or
eeh_init_multifunc kernel service.

Syntax
#include <sys/eeh.h>

void eeh_clear(handle)
eeh_handle_t handle;

Parameters

handle EEH handle obtained from theeeh_init or eeh_init_multifunc kernel services

Description
Single-function Drivers: This service disables EEH function on the slot and frees its eeh_handle.

124 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Multifunction Drivers: For a multifunction adapter driver, this service removes the driver from a list of
registered drivers under the same parent bus. This service also disables EEH function on the slot if this is
the last driver to unregister and the state of the slot is NORMAL.

All device drivers are required to call eeh_clear before being removed from the system, so that there are
no hot plug conflicts. A subsequent adapter might fail in eeh_init_multifunc() on the slot if the eeh_clear
kernel service has not cleared the prior device drivers on that slot. A driver can unregister at
unconfigure/unload time. The kernel checks the state of the slot when this service is called. If the slot state
is neither NORMAL nor DEAD, eeh_clear sleeps until the state returns to one of them.

The macro EEH_CLEAR(handle) is provided for device drivers to call this service. This service is called by
a function pointer in the EEH handle.

Execution Environment
This kernel service can only be called from the process environment.

Return Values
This service has no return values.

Related Information
“eeh_broadcast Kernel Service” on page 123, “eeh_disable_slot Kernel Service,” “eeh_enable_dma Kernel
Service” on page 126, “eeh_enable_pio Kernel Service” on page 127, “eeh_enable_slot Kernel Service” on
page 128, “eeh_init Kernel Service” on page 129, “eeh_init_multifunc Kernel Service” on page 131,
“eeh_read_slot_state Kernel Service” on page 133, “eeh_reset_slot Kernel Service” on page 135,
“eeh_slot_error Kernel Service” on page 136

eeh_disable_slot Kernel Service

Purpose
This service disables a slot for the EEH operations.

Syntax
#include <sys/eeh.h>

long eeh_disable_slot(handle)
eeh_handle_t handle;

Parameters

handle EEH handle obtained from theeeh_init kernel service

Description
This service disables EEH operation on a slot.

CAUTION:
CAUTION: Disabling EEH operation on a slot is highly discouraged, because it can cause system
crash or worse, data corruption.

This service can only be called by the single-function adapter drivers. If the service fails for a hardware or
firmware reason, an error is logged.

Chapter 1. Kernel Services 125

Multifunction drivers call this service indirectly via eeh_clear(). It fails with EEH_FAIL if called directly by a
multifunction driver.

The macro EEH_DISABLE_SLOT(handle) is provided for device drivers to call this service.

Execution Environment
This kernel service can be called from the process or interrupt environment.

Return Values

EEH_SUCC Slot successfully disabled
EEH_FAIL Unable to disable the slot

Related Information
“eeh_broadcast Kernel Service” on page 123, “eeh_clear Kernel Service” on page 124, “eeh_enable_dma
Kernel Service,” “eeh_enable_pio Kernel Service” on page 127, “eeh_enable_slot Kernel Service” on page
128, “eeh_init Kernel Service” on page 129, “eeh_init_multifunc Kernel Service” on page 131,
“eeh_read_slot_state Kernel Service” on page 133, “eeh_reset_slot Kernel Service” on page 135,
“eeh_slot_error Kernel Service” on page 136

eeh_enable_dma Kernel Service

Purpose
This service enables DMA operations to an adapter after an EEH event.

Syntax
#include <sys/eeh.h>

long eeh_enable_dma(handle)
eeh_handle_t handle;

Parameters

handle EEH handle obtained from theeeh_init or eeh_init_multifunc kernel services

Description
When an EEH event occurs on a slot, all Direct Memory Access (DMA) operations on the slot are
inhibited. This service should be called to re-enable DMA after an EEH event. This service can only be
called from the dump context (that is, when the dump is in progress).

Single-function Drivers: This service enables the DMA operations on a slot. If this call fails with
EEH_FAIL, an error is logged by the kernel.

Multifunction Drivers: On the multifunction adapters, the slot state must be either SUSPEND or DEBUG,
and the caller must be an EEH_MASTER. This service is called only from a dump context. While a system
dump is in progress, all callbacks and broadcasts are suspended, and a multifunction adapter is treated
like a single-function adapter, because the system can no longer support the EEH multifunction kernel
services. If the service fails, EEH_FAIL is returned. If the failure is due to hardware or firmware, an error is
logged.

126 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

There are cases when this kernel service cannot succeed because of the platform state restrictions. In
such a case, if a driver calls it, the service would return EEH_FAIL. This causes the slot to be marked
permanently unavailable, which is not correct because the slot can be recovered. To avoid receiving
EEH_FAIL from this service, the driver should supply the EEH_ENABLE_NO_SUPPORT_RC flag at
eeh_init_multifunc() time. If the EEH_ENABLE_NO_SUPPORT_RC flag is supplied, eeh_enable_dma()
returns EEH_NO_SUPPORT, indicating to the drivers that they cannot collect debug data but must
continue with the next step in recovery.

The macro EEH_ENABLE_DMA(handle) is provided for device drivers to call this service.

Execution Environment
This kernel service can only be called from a process or interrupt environment.

Return Values
This kernel service has no return values.

Related Information
“eeh_broadcast Kernel Service” on page 123, “eeh_clear Kernel Service” on page 124, “eeh_disable_slot
Kernel Service” on page 125, “eeh_enable_pio Kernel Service,” “eeh_enable_slot Kernel Service” on page
128, “eeh_init Kernel Service” on page 129, “eeh_init_multifunc Kernel Service” on page 131,
“eeh_read_slot_state Kernel Service” on page 133, “eeh_reset_slot Kernel Service” on page 135,
“eeh_slot_error Kernel Service” on page 136

eeh_enable_pio Kernel Service

Purpose
This kernel service enables programmed I/O (PIO or MMIO) to an adapter after an EEH event.

Syntax
#include <sys/eeh.h>

long eeh_enable_pio(handle)
eeh_handle_t handle;

Parameters

handle EEH handle obtained from the eeh_init or eeh_init_multifunc kernel services

Description
When an EEH event occurs on a slot, all load and store operations (such as PIO) are inhibited. This
kernel service should be called to re-enable PIO after an EEH event.

Single-function Drivers: This kernel service enables the load and store operations on a slot. If this call
fails with EEH_FAIL, an error is logged by the kernel.

Multifunction Drivers: On the multifunction adapters, the state of the slot is checked for either SUSPEND
or DEBUG. The caller must be an EEH_MASTER. If the state is SUSPEND, a series of device driver
callback routines is executed with a command option of EEH_DD_DEBUG and flag set to
EEH_DD_PIO_ENABLED. The callbacks inform device drivers that PIO has been enabled and that further
debug procedures can be executed (such as reading command and status register). This service can be
called as a result of the EEH_DD_SUSPEND or EEH_DD_DEBUG callback message as many times as

Chapter 1. Kernel Services 127

needed by the EEH_MASTER. Additional calls to this service trigger a new set of callbacks. If this service
fails, EEH_FAIL is returned. If the failure is due to hardware or firmware, an error is logged.

There are cases when this kernel service cannot succeed due to the platform state restrictions. In such a
case, if a driver calls it, the kernel service would return EEH_FAIL followed by a EEH_DD_DEAD
message. This causes the slot to be marked permanently unavailable, which is not correct because the
slot can be recovered. To avoid receiving EEH_FAIL from this service, the driver should supply the
EEH_ENABLE_NO_SUPPORT_RC flag at eeh_init_multifunc() time. If the
EEH_ENABLE_NO_SUPPORT_RC flag is supplied, eeh_enable_pio() returns EEH_NO_SUPPORT,
indicating to the drivers that they cannot collect debug data but must continue with the next step in
recovery.

The macro EEH_CLEAR(handle) is provided for device drivers to call this service. This service is called
via a function pointer in the EEH handle.

Note: Enabling PIO is not the same as recovering the slot. In fact, this is an optional step in the recovery
procedure.

Execution Environment
This kernel service can be called from the process or interrupt environment.

Return Values

EEH_SUCC PIO successfully enabled.
EEH_FAIL Invalid call or could not enable PIO.
EEH_NO_SUPPORT Call is valid according to AIX EEH state, but current platform state precludes

normal completion.

Related Information
“eeh_broadcast Kernel Service” on page 123, “eeh_clear Kernel Service” on page 124, “eeh_disable_slot
Kernel Service” on page 125, “eeh_enable_dma Kernel Service” on page 126, “eeh_enable_slot Kernel
Service,” “eeh_init Kernel Service” on page 129, “eeh_init_multifunc Kernel Service” on page 131,
“eeh_read_slot_state Kernel Service” on page 133, “eeh_reset_slot Kernel Service” on page 135,
“eeh_slot_error Kernel Service” on page 136

eeh_enable_slot Kernel Service

Purpose
This service enables a slot for the EEH operations.

Syntax
#include <sys/eeh.h>

long eeh_enable_slot(handle)
eeh_handle_t handle;

Parameters

handle EEH handle obtained from theeeh_init kernel service

128 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
This service enables EEH operation on a slot so that when certain errors occur on a PCI bus, the slot will
freeze (that is, PIO and DMA are disabled, which prevents potential system crash, data corruption, and so
on). This service can only be called by the single-function adapter drivers. If the service fails for hardware
or firmware reasons, an error is logged.

Multifunction drivers call this service indirectly via eeh_init_multifunc(). It fails with EEH_FAIL if called
directly by a multifunction driver.

The macro EEH_ENABLE_SLOT(handle) is provided for device drivers to call this service.

Execution Environment
This kernel service can be called from the process or interrupt environment.

Return Values

EEH_SUCC Slot successfully enabled
EEH_FAIL Unable to enable the slot

Related Information
“eeh_broadcast Kernel Service” on page 123, “eeh_clear Kernel Service” on page 124, “eeh_disable_slot
Kernel Service” on page 125, “eeh_enable_dma Kernel Service” on page 126, “eeh_enable_pio Kernel
Service” on page 127, “eeh_init Kernel Service,” “eeh_init_multifunc Kernel Service” on page 131,
“eeh_read_slot_state Kernel Service” on page 133, “eeh_reset_slot Kernel Service” on page 135,
“eeh_slot_error Kernel Service” on page 136

eeh_init Kernel Service

Purpose
This service registers a single-function adapter slot on a PCI/PCI-E bus for EEH function.

Syntax
#include <sys/eeh.h>

eeh_handle_t eeh_init(pbid, slot, flag)
long pbid;
long slot;
long flag;

Parameters

pbid AIX parent bus identifier
slot device slot (device*8+function). This is same as ″connwhere″ property in CuDv.
flag flag that enables eeh

Description
The pbid argument identifies a bus type and number. The bus type is IO_PCI in the case of PCI and
PCI-X bus. If the bus type is IO_PCIE, the device is on PCI-E (PCI Express) bus. The bus number is a
unique identifier determined during bus configuration. The BID_VAL macro defined in ioacc.h is used to
generate the bid. The slot argument is the device/function combination ((device*8) + function) as in the

Chapter 1. Kernel Services 129

PCI addressing scheme. The flag argument of EEH_ENABLE enables the slot. The flag argument of
EEH_DISABLE does not enable the slot but still allocates an EEH handle. This service should be called
only by the single-function adapter drivers.

The macro EEH_INIT(pbid, slot, flag) is provided for the device drivers to call this service. The
eeh_handle is defined as follows in <sys/eeh.h>:
/*
* This is the eeh_handle structure for the eeh_* services
*/

typedef struct eeh_handle * eeh_handle_t;
struct eeh_handle {

struct eeh_handle *next;
long bid; /* bus id passed to eeh_init */
long slot; /* slot passed to eeh_init */
long flag; /* flag passed to eeh_init */
int config_addr; /* Configuration Space Address */
int eeh_mode; /* Indicates safe mode */
uint retry_delay; /* re-read the slot state after *

* these many seconds. */
int reserved1;
int reserved2;
int reserved3;
long long PHB_Unit_ID; /* /pci@ */
void (*eeh_clear)(eeh_handle_t);
long (*eeh_enable_pio)(eeh_handle_t);
long (*eeh_enable_dma)(eeh_handle_t);
long (*eeh_reset_slot)(eeh_handle_t, int);
long (*eeh_enable_slot)(eeh_handle_t);
long (*eeh_disable_slot)(eeh_handle_t);
long (*eeh_read_slot_state)(eeh_handle_t, long *, long *);
long (*eeh_slot_error)(eeh_handle_t, int, char *, long);
struct eeh_shared_domain *parent_sd; /* point back to the parent

* shared domain structure if
* in shared domain, NULL if singlefunc.
*/

void (*eeh_configure_bridge)(eeh_handle_t);
void (*eeh_broadcast)(eeh_handle_t, unsigned long long);

};

This is an exported kernel service.

Execution Environment
This service can only be called from the process environment.

Return Values

EEH_FAIL Unable to allocate EEH handle.
EEH_NO_SUPPORT EEH not supported on this system, no handle allocated.
struct eeh_handle * If successful.

Related Information
“eeh_broadcast Kernel Service” on page 123, “eeh_clear Kernel Service” on page 124, “eeh_disable_slot
Kernel Service” on page 125, “eeh_enable_dma Kernel Service” on page 126, “eeh_enable_pio Kernel
Service” on page 127, “eeh_enable_slot Kernel Service” on page 128, “eeh_init_multifunc Kernel Service”
on page 131, “eeh_read_slot_state Kernel Service” on page 133, “eeh_reset_slot Kernel Service” on page
135, “eeh_slot_error Kernel Service” on page 136

130 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

eeh_init_multifunc Kernel Service

Purpose
This kernel service registers a multifunction adapter slot on a PCI/PCI-E bus for EEH function.

Syntax
#include <sys/eeh.h>

eeh_handle_t eeh_init_multifunc(gpbid, pbid, slot, flag, delay_seconds,
callback_ptr, dds_ptr)

long gpbid;
long pbid;
long slot;
long flag;
long delay_seconds;
long (*callback_ptr)();
void *dds_ptr;

Parameters

gpbid Bus identifier of grandparent bus.
pbid Bus identifier of parent bus.
slot Slot on the parent bus (device*8+function). This is same as ″connwhere″ property in

CuDv for the device.
flag Flag that enables eeh, checks if the slot is already taken, etc.
delay_seconds Time delay after a reset (in seconds).
callback_ptr Device driver callback routine.
dds_ptr Cookie to a target device driver that is usually a pointer to the adapter structure.

Description
This kernel service is provided for systems that support shared EEH domain, where one or more PCI
functions in one or more adapters could belong to the same EEH recovery domain. In the past, this was
called ″multifunction adapter″. The shared EEH domain is a more general concept than just a multifunction
adapter. It is also recommended that single function adapters use the shared EEH model. All PCI-E
devices, single or multifunction have to use the shared EEH model and hence this kernel service to
register for EEH (instead of eeh_init()). In a shared EEH domain, multiple instances of device drivers may
be operating. The instances are independent of each other and hence oblivious to each other’s existence.
Therefore, when recovering a slot from an EEH event, there is a need to coordinate the recovery
procedure among them. As with eeh_init(), this service also returns an eeh_handle to the calling device
driver.

There are two kinds of adapters: bridged and non-bridged. A bridged adapter has a bridge on the card
such as PCI-to-PCI or PCIX-to-PCIX or PCI-E switch. For PCI and PCI-X bridged-adapters, pbid is the bus
ID of the parent bus, and gpbid is the bus ID of the grandparent bus. The parent bus for a bridged adapter
is the bus generated by the bridge/switch on the adapter. A bid identifies a bus number and type. The bus
type is IO_PCI in the case of PCI and PCI-X bus, and IO_PCIE in the case of PCI-E bus. The bus number
is a unique identifier determined during bus configuration. The BID_VAL macro defined in ioacc.h is used
to generate the bid. For non-bridged adapters, pbid and gpbid are the same and are the bus IDs of the
parent bus. Thus, when pbid and gpbid have different values for a PCI or PCI-X device, the kernel knows
that this is a bridged adapter and needs to the bridge recovered as part of EEH recovery. It is not
necessary to know if a PCI-E device is bridged or not for the purposes of EEH. Therefore, pbid and gpbid
must be same and equal to the parent bus bid.

In summary, there are the following cases:

Chapter 1. Kernel Services 131

1. PCI/PCI-X non-bridged adapters and all PCI-E adapters: gpbid and pbid are same and equal to the
parent bus bid.

2. PCI/PCI-X bridged adapters, gpbid is grandparent bus bid, and pbid is parent bus bid.

The slot argument is the device/function combination ((device* 8) + function) as in the PCI addressing
scheme. This is the same as the connwhere ODM value of the device.

The following flag values are legal:

EEH_ENABLE_FLAG/EEH_DISABLE_FLAG The slot is always enabled for EEH when this service is
called by the first driver on that slot. All subsequent
requests to enable the slot via the EEH_ENABLE flag are
ignored. Therefore, the flag argument of EEH_ENABLE is
optional, and a flag of EEH_DISABLE is ignored.

EEH_CHECK_SLOT The flag argument of EEH_CHECK_SLOT verifies whether
a given slot is already registered. A value of either
EEH_SLOT_ACTIVE or EEH_SLOT_FREE is returned. No
registration occurs with the EEH_CHECK_SLOT flag, and
it supersedes all other flags. This flag simply checks the
slot and returns without any other action.

EEH_ENABLE_NO_SUPPORT_RC If the flag is set to EEH_ENABLE_NO_SUPPORT_RC,
eeh_enable_pio() and eeh_enable_dma() return
EEH_NO_SUPPORT under certain conditions. See
“eeh_enable_dma Kernel Service” on page 126 and
“eeh_enable_pio Kernel Service” on page 127 for more
information.

Multiple flags can be logically ORed together.

The slot is always enabled for EEH when this service is called by the first driver on that slot. All
subsequent requests to enable the slot via the EEH_ENABLE flag are ignored. Therefore, the flag
argument of EEH_ENABLE is optional, and a flag of EEH_DISABLE is ignored. The flag argument of
EEH_CHECK_SLOT verifies whether a given slot is already registered. A value of either
EEH_SLOT_ACTIVE or EEH_SLOT_FREE is returned. No registration will occur with the
EEH_CHECK_SLOT flag, and it supersedes all other flags. This flag just checks the slot and returns
without any other action. If the flag is set to EEH_ENABLE_NO_SUPPORT_RC, eeh_enable_pio() and
eeh_enable_dma() returns EEH_NO_SUPPORT under certain conditions. See eeh_enable_pio() and
eeh_enable_dma() for more information. It is allowed to logically OR multiple flags together.

The delay_seconds argument allows the device driver to set a time delay between completion of PCI reset
and configuration of the bridge on the adapter. The delay is enforced even if the adapter is non-bridged. If
a value of 0 is specified for delay_seconds, a default delay time of 1 second is set. When several drivers
register on the same pbid (under a shared EEH domain), the highest delay time among all registered
drivers is used.

The callback_ptr argument is a function pointer to an EEH callback routine. The handler is defined by the
device driver and is called by the kernel in order to coordinate recovery among different drivers on the
same slot. The driver handles a variety of messages from the kernel in its callback routine. These
messages trigger the next step in recovery. The callback routines are called sequentially at INTIODONE
interrupt level.

The dds_ptr argument is a cookie that is passed to the driver when the callback routine is invoked. Drivers
normally specify a pointer to the device driver’s adapter structure.

EEH_SAFE mode: A bridged adapter needs to have its bridge reconfigured at the end of PCI reset.
However, if the platform firmware does not support reconfiguration of the bridge, the adapter is marked as

132 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

EEH_SAFE by the kernel. An EEH_SAFE adapter cannot finish error recovery after an EEH event
because of the unsatisfied firmware dependency. See eeh_reset_slot for information on how the error
recovery is handled in EEH_SAFE mode.

The macro EEH_INIT_MULTIFUNC(gpbid, pbid, slot, flag, delay_seconds, callback_ptr, dds_ptr) is
provided for the device drivers in order to call this service. This is an exported kernel service.

Execution Environment
This kernel service can only be called from the process environment.

Return Values

EEH_FAIL Unable to allocate EEH handle.
EEH_NO_SUPPORT EEH is not supported on this system, no handle allocated.
EEH_SLOT_ACTIVE Given slot is already registered.
EEH_SLOT_FREE Given slot free.
EEH_BUSY Unable to continue, because the slot is in the middle of error recovery.
struct eeh_handle * Upon Success.

Related Information
“eeh_broadcast Kernel Service” on page 123, “eeh_clear Kernel Service” on page 124, “eeh_disable_slot
Kernel Service” on page 125, “eeh_enable_dma Kernel Service” on page 126, “eeh_enable_pio Kernel
Service” on page 127, “eeh_enable_slot Kernel Service” on page 128, “eeh_init Kernel Service” on page
129, “eeh_read_slot_state Kernel Service,” “eeh_reset_slot Kernel Service” on page 135, “eeh_slot_error
Kernel Service” on page 136

eeh_read_slot_state Kernel Service

Purpose
This service returns state and capabilities of a slot with respect to EEH operation.

Syntax
long eeh_read_slot_state(handle, state, support)
eeh_handle_t handle;
long *state;
long *support;

Parameters

handle EEH handle obtained from eeh_init or eeh_init_multifunc
state State of a slot with respect to EEH
support Indicates if EEH is supported by this slot

Description
This service is used to query the hardware state of a slot and to determine whether a given slot supports
EEH. It should be called to confirm an EEH event if the driver suspects that the PIO data is invalid (for
example, getting all Fs from reading a register). This service returns the hardware state in state and
indicates whether the slot supports EEH in support. The state and support parameters are integer values
as shown below:

Chapter 1. Kernel Services 133

Valid state values are as follows:

EEH_NSTOPPED_RST_DEA Reset deactivated and adapter is not in stopped state.
EEH_NSTOPPED_RST_ACT Reset activated and adapter is not in stopped state.
EEH_STOPPED_LS_DIS Adapter in stopped state with reset signal deactivated and

Load/Store disabled.
EEH_STOPPED_LS_ENA Adapter in stopped state with reset signal deactivated and

Load/Store enabled.
EEH_UNAVAILABLE Adapter is either permanently or temporarily unavailable.

Valid support values are as follows:

0 EEH not supported.
1 EEH supported.

The driver should call this service and check for EEH_STOPPED_LS_DIS and EEH_STOPPED_LS_ENA
as the state values if it suspects an EEH event on the adapter. If the state is either of those values, the
slot is said to be frozen.

Single-function Driver: A single-function adapter driver calls this service to query the state of the slot. If
the service fails due to hardware or firmware reasons, an error is logged. If the service fails, state and
support values are undefined, and EEH_FAIL is returned.

Multifunction Driver: For a multifunction adapter driver, this service analyzes the state to determine if:

v The state is frozen, or

v it is permanently unavailable (that is, the slot is unusable from hereon), or

v it is temporarily unavailable.

If the slot is in either a frozen or temporarily unavailable state, the EEH_DD_SUSPEND message is
broadcast to all registered drivers on this slot. If the slot is permanently unavailable (that is, dead), the
EEH_DD_DEAD message is broadcast. Upon receiving this message, the drivers are expected to suspend
all further DMA, PIO, interrupt, configuration cycles, and so on until the slot is recovered. If the service
fails due to hardware or firmware reasons, an error is logged, EEH_DD_DEAD is broadcast, and
EEH_FAIL is returned.

Temporarily versus permanently unavailable state

In addition to state and support, this service also returns a valid retry_delay value in the eeh_handle
structure if the state is EEH_UNAVAILABLE. If retry_delay is 0, it is permanently unavailable. If retry_delay
is non-zero, it is temporarily unavailable. A permanently unavailable state means that the slot is unusable
until a hot-plug operation or partition reboot is performed. Therefore, the drivers mark their adapters as
unusable when they receive an EEH_UNAVAILABLE message (single-function) or when they receive an
EEH_DD_DEAD message (multifunction). A temporarily unavailable state means that the current state of a
slot is transient and might take a few minutes to settle down. Until that time, the device driver cannot begin
recovery because it does not know what the final state will be. The temporarily unavailable state is
handled differently by the single-function and multifunction drivers as follows:

Single-function Driver: Because a single-function driver drives its own recovery, it needs to check for
retry_delay if the state is set to EEH_UNAVAILABLE. If retry_delay is non-zero, it represents the number
of seconds that the driver should wait before calling this kernel service again. It continues to call this
service repeatedly as long as the state is EEH_UNAVAILABLE and retry_delay is non-zero. Eventually, the
state will end up in one of the following:

v EEH_NSTOPPED_RST_ACT

v EEH_STOPPED_LS_DIS

134 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

v EEH_UNAVAILABLE w/ ″retry_delay″ set to 0 (i.e. permanently unavailable)

At that point, the driver can continue with its normal course of action for a given state.

Multifunction Driver: A multifunction driver does not need to check for the retry_delay field when the state
is EEH_UNAVAILABLE, because EEH_UNAVAILABLE would only mean permanently unavailable. In the
case of temporarily unavailable, a multifunction driver would receive the EEH_DD_SUSPEND or
EEH_DD_DEAD message after some time, depending upon the final state of the slot. If the final state was
EEH_NSTOPPED_RST_ACT or EEH_STOPPED_LS_DIS, then EEH_DD_SUSPEND is broadcast; if it
was EEH_UNAVAILABLE, then EEH_DD_DEAD is broadcast. Thus, from the point-of-view of a
multifunction driver, there is no difference between frozen and temporarily unavailable.

The macro EEH_READ_SLOT_STATE(handle, state, support) is provided for device drivers to call this
service.

Execution Environment
This kernel service can be called from the process or interrupt environment.

Return Values

EEH_SUCC Successfully read the slot state and capabilities
EEH_FAIL Unable to read the slot state and capabilities

Related Information
“eeh_broadcast Kernel Service” on page 123, “eeh_clear Kernel Service” on page 124, “eeh_disable_slot
Kernel Service” on page 125, “eeh_enable_dma Kernel Service” on page 126, “eeh_enable_pio Kernel
Service” on page 127, “eeh_enable_slot Kernel Service” on page 128, “eeh_init Kernel Service” on page
129, “eeh_init_multifunc Kernel Service” on page 131, “eeh_reset_slot Kernel Service,” “eeh_slot_error
Kernel Service” on page 136

eeh_reset_slot Kernel Service

Purpose
This service activates, deactivates, or toggles the reset line of a PCI slot.

Syntax
#include <sys/eeh.h>

long eeh_reset_slot(handle, flag)
eeh_handle_t handle;
long flag;

Parameters

handle EEH handle obtained from theeeh_init or eeh_init_multifunc kernel services
flag Flag can be either EEH_ACTIVE or EEH_DEACTIVE.

Description
Single-function Drivers: This service activates and deactivates the reset line between the Terminal
Bridge and the adapter. The flag argument specifies whether to activate (EEH_ACTIVE) or deactivate
(EEH_DEACTIVE) depending upon the required action. To do the reset of a slot, the reset line should be

Chapter 1. Kernel Services 135

toggled by calling this service twice: once with EEH_ACTIVE followed by a second call with
EEH_DEACTIVE. There should be a minimum of 100 milliseconds delay between the activation and
deactivation of the signal. The minimum delay is specified by the PCI System Architecture and should be
enforced by the single-function driver.

Multifunction Drivers: On a multifunction adapter, the EEH_MASTER for the slot drives error recovery.
Therefore, only the EEH_MASTER can call this service. Unlike the single-function driver, the master calls
this service only once with the EEH_ACTIVE flag.

For the multi-function drivers, the service first activates and then deactivates the reset signal on the slot. It
enforces a 100–millisecond delay between the activation and deactivation as mandated by the PCI System
Architecture. After the reset signal is deactivated, the service attempts to reconfigure the bridge on the
adpater, if there is one (only applies to the bridged-adapters), after dd_trb_timer seconds specified in
eeh_init_multifunc(). At the end of a successful reset and optional bridge recovery, an
EEH_DD_RESUME message is broadcast to the slot’s multifunction drivers notifying them to resume
normal operation. If this service fails, the EEH_DD_DEAD message is broadcast. If failure is due to
hardware or firmware, an error is logged.

EEH_SAFE mode: If an EEH_SAFE adapter calls this service, the reset signal is activated but is never
deactivated, thereby leaving the adapter in a ″permanently unavailable″ state. Such an adapter becomes
available again if either the PCI hot-plug operation is performed on it or if the partition is rebooted. This
service returns EEH_FAIL for an EEH_SAFE driver.

The macro EEH_RESET_SLOT(handle, flag) is provided for device drivers to call this service.

Execution Environment
This kernel service can be called from the process or interrupt environment.

Return Values

EEH_SUCC Slot reset activate/deactivate succeeded
EEH_FAIL Failed to activate/deactivate the reset line, nonmaster called the service, or

EEH_SAFE mode is active
EEH_BUSY Recovery is already in progress

Related Information
“eeh_broadcast Kernel Service” on page 123, “eeh_clear Kernel Service” on page 124, “eeh_disable_slot
Kernel Service” on page 125, “eeh_enable_dma Kernel Service” on page 126, “eeh_enable_pio Kernel
Service” on page 127, “eeh_enable_slot Kernel Service” on page 128, “eeh_init Kernel Service” on page
129, “eeh_init_multifunc Kernel Service” on page 131, “eeh_read_slot_state Kernel Service” on page 133,
“eeh_slot_error Kernel Service”

eeh_slot_error Kernel Service

Purpose
This service logs a temporary or permanent error and optionally marks the slot permanently unavailable.

Syntax
#include <sys/eeh.h>

long eeh_slot_error(handle, flag, dd_buf, dd_buf_length)
eeh_handle_t handle;

136 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

int flag;
char *dd_buf;
long dd_buf_length;

Parameters

handle EEH handle obtained from eeh_init or eeh_init_multifunc
flag EEH_RESET_TEMP or EEH_RESET_PERM
dd_buf Address of the device driver’s error log buffer
dd_buf_length Length of device driver’s error log buffer in bytes

Description
This service performs a number of tasks:

v It collects hardware data to help in understanding the nature and source of an EEH event

v It combines the device-driver-supplied debug data log with the hardware data log and creates an entry
in the error log

v It optionally marks the slot permanently unavailable so that subsequent eeh_read_slot_state() calls
return EEH_UNAVAILABLE with a retry_delay value of 0

The behavior of this kernel service is controlled by two flag values:

EEH_RESET_TEMP This flag performs only the first two of the preceding tasks..
EEH_RESET_PERM This flag performs all three tasks.

Depending on the hardware state of the slot, this service might not be able to collect the hardware data.
Thus, the service succeeds but logs no data. If EEH_RESET_PERM was supplied, it still marks the slot
permanently unavailable.

The dd_buf and dd_buf_length parameters are used to combine the device driver error log with the
hardware log. The dd_buf argument is the address of an error log buffer containing the device driver’s
data. The dd_buf_length argument is the length of this buffer. If the length exceeds 1024 bytes in AIX
5.1/AIX 5.2 and MAX_DD_LOG_SIZE bytes in AIX 5.3 and above, the driver’s log data will be truncated. If
dd_buf is NULL, the error log will only contain hardware data, if any.

Single-function Driver: The kernel service works as in the preceding description. If it fails because of
hardware or firmware reasons, EEH_FAIL is returned and an error is logged.

Multifunction Driver: For the multifunction drivers, this service works as in the preceding description,
except that if EEH_RESET_PERM was supplied, the EEH_DD_DEAD message is broadcast.

The macro EEH_SLOT_ERROR(handle, flag, dd_buf, dd_buf_length) is provided for device drivers to call
this service.

Execution Environment
This kernel service can be called from the process or interrupt environment.

Return Values

EEH_SUCC Successfully logged error
EEH_FAIL Failed to log the error and optionally mark the slot permanently unavailable

Chapter 1. Kernel Services 137

Related Information
“eeh_broadcast Kernel Service” on page 123, “eeh_clear Kernel Service” on page 124, “eeh_disable_slot
Kernel Service” on page 125, “eeh_enable_dma Kernel Service” on page 126, “eeh_enable_pio Kernel
Service” on page 127, “eeh_enable_slot Kernel Service” on page 128, “eeh_init Kernel Service” on page
129, “eeh_init_multifunc Kernel Service” on page 131, “eeh_read_slot_state Kernel Service” on page 133,
“eeh_reset_slot Kernel Service” on page 135

enque Kernel Service

Purpose
Sends a request queue element to a device queue.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>
int enque (qe)
struct req_qe *qe;

Parameter

qe Specifies the address of the request queue element.

Description
The enque kernel service is not part of the base kernel, but is provided by the device queue management
kernel extension. This queue management kernel extension must be loaded into the kernel before loading
any kernel extensions referencing these services.

The enque service places the queue element into a specified device queue. It is used for simple
process-to-process communication within the kernel. The requester builds a copy of the queue element,
indicated by the qe parameter, and passes this copy to the enque service. The kernel copies this queue
element into a queue element in pinned global memory and then enqueues it on the target device queue.

The path identifier in the request queue element indicates the device queue into which the element is
placed.

The enque service supports the sending of the following types of queue elements:

Queue Element Description
SEND_CMD Send command.
START_IO Start I/O.
GEN_PURPOSE General purpose.

For simple interprocess communication, general purpose queue elements are used.

The queue element priority value can range from QE_BEST_PRTY to QE_WORST_PRTY. This value is
limited to the value specified when the queue was created.

The operation options in the queue element control how the queue element is processed. There are five
standard operation options:

138 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Operation Option Description
ACK_COMPLETE Acknowledge completion in all cases.
ACK_ERRORS Acknowledge completion if the operation results in an error.
SYNC_REQUEST Synchronous request.
CHAINED Chained control blocks.
CONTROL_OPT Kernel control operation.

Note: Only one of ACK_COMPLETE, ACK_ERRORS, or SYNC_REQUEST can be specified. Also, all of
these options are ignored if the path specifies that no acknowledgment (NO_ACK) should be sent.

With the SYNC_REQUEST synchronous request option, control does not return from the enque service
until the request queue element is acknowledged. This performs in one step what can also be achieved by
sending a queue element with the ACK_COMPLETE flag on, and then calling either the et_wait or waitq
kernel services.

The kernel calls the server’s check routine, if one is defined, before a queue element is placed on the
device queue. This routine can stop the operation if it detects an error.

The kernel notifies the device queue’s server, if necessary, after a queue element is placed on the device
queue. This is done by posting the server process (using the et_post kernel service) with an event control
bit.

Execution Environment
The enque kernel service can be called from the process environment only.

Return Values

RC_GOOD Indicates a successful operation.
RC_ID Indicates a path identifier that is not valid.

All other error values represent errors returned by the server.

Related Information
The et_post kernel service, et_wait kernel service, waitq kernel service.

The check device queue management routine.

errresume Kernel Service

Purpose
Resumes error logging after an errlast command was issued.

Syntax
void errresume()

Description
When an error is logged with the errlast command, no more error logging will happen on the system until
an errresume call is issued.

Chapter 1. Kernel Services 139

Execution Environment
This can be called from either the process or an interrupt level.

Related Information
The “errsave or errlast Kernel Service.”

Error-Logging Facility in AIX Version 6.1 General Programming Concepts: Writing and Debugging
Programs

errsave or errlast Kernel Service

Purpose
Allows the kernel and kernel extensions to write to the error log.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/errids.h>
void errsave (buf, cnt)
char *buf;
unsigned int cnt; void errlast (buf, cnt)
char *buf
unsigned int cnt;

Parameters

buf Points to a buffer that contains an error record as described in the /usr/include/sys/err_rec.h file.
cnt Specifies the number of bytes in the error record contained in the buffer pointed to by the buf parameter.

Description
The errsave kernel service allows the kernel and kernel extensions to write error log entries to the error
device driver. The error record pointed to by the buf parameter includes the error ID resource name and
detailed data.

In addition, the errlast kernel service disables any future error logging, thus any error logged with errlast
will stay on NVRAM. This service is only for use prior to a pending system crash or stop. The errlast
service should only be used in extreme circumstances where the system can not continue, such as the
occurance of a machine check.

Execution Environment
The errsave kernel service can be called from either the process or interrupt environment.

Return Values
The errsave service has no return values.

Related Information
The errlog subroutine.

For more information on error device drivers, see Error Logging Special Files in AIX Version 6.1 Files
Reference.

140 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

RAS Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

fetch_and_add Kernel Services

Purpose
Increments a variable atomically.

Syntax
#include <sys/atomic_op.h>

int fetch_and_add (addr, value)
atomic_p addr;
int value;

long fetch_and_addlp (addr, value)
atomic_l addr;
long value;

Parameters

addr Specifies the address of the variable to be incremented.
value Specifies the value to be added to the variable.

Description
The fetch_and_add kernel services atomically increment a variable.

The fetch_and_add kernel service operates on a single word (32 bit) variable while the fetch_and_addlp
kernel service operates on a double word (64 bit) variable.

These operations are useful when a counter variable is shared between several kernel threads, because it
ensures that the fetch, update, and store operations used to increment the counter occur atomically (are
not interruptible).

Note:

v The single word variable for the fetch_and_add kernel service must be aligned on a word (32
bit) boundary.

v The double word variable for the fetch_and_addlp kernel service must be aligned on a double
word (64 bit) boundary.

Execution Environment
The fetch_and_add kernel services can be called from either the process or interrupt environment.

Return Values
The fetch_and_add kernel services return the original value of the variable.

Related Information
The fetch_and_and kernel service, fetch_and_or kernel service, compare_and_swap kernel service.

Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts

Chapter 1. Kernel Services 141

fetch_and_and or fetch_and_or Kernel Services

Purpose
Clears and sets bits in a variable atomically.

Syntax
#include <sys/atomic_op.h>

uint fetch_and_and (addr, mask)
atomic_p addr;uint mask;

ulong fetch_and_andlp (addr, mask)
atomic_l addr;
ulong mask;

uint fetch_and_or (addr, mask)
atomic_p addr;
uint mask;

ulong fetch_and_orlp (addr, mask)
atomic_l addr;
ulong mask;

Parameters

addr Specifies the address of the variable whose bits are to be cleared or set.
mask Specifies the bit mask which is to be applied to the variable.

Description
The fetch_and_and and fetch_and_or kernel services respectively clear and set bits in a variable,
according to a bit mask, as a single atomic operation. The fetch_and_and service clears bits in the
variable which correspond to clear bits in the bit mask, and the fetch_and_or service sets bits in the
variable which correspond to set bits in the bit mask.

The fetch_and_add and fetch_and_or kernel services operate on a single word (32 bit) variable while the
fetch_and_addlp and fetch_and_orlp kernel services operate on a double word (64 bit) variable.

These operations are useful when a variable containing bit flags is shared between several kernel threads,
because they ensure that the fetch, update, and store operations used to clear or set a bit in the variable
occur atomically (are not interruptible).

Note:

v For the fetch_and_and and fetch_and_or kernel services, the single word containing the bit
flags must be aligned on a full word (32 bit) boundary.

v For the fetch_and_addlp and fetch_and_orlp kernel services, the double word containing the
bit flags must be aligned on a double word (64 bit) boundary.

Execution Environment
The fetch_and_and and fetch_and_or kernel services can be called from either the process or interrupt
environment.

142 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Return Values
The fetch_and_and and fetch_and_or kernel services return the original value of the variable.

Related Information
The fetch_and_add kernel service, compare_and_swap kernel service.

Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts

fidtovp Kernel Service

Purpose
Maps a file system structure to a file ID.

Maps a file identifier to a mode.

Syntax
#include <sys/types.h>
#include <sys/vnode.h>
int fidtovp(fsid, fid, vpp)
fsid_t *fsid;
struct fileid *fid;
struct vnode **vpp;

Parameters

fsid Points to a file system ID structure. The system uses this structure to determine which virtual file system
(VFS) contains the requested file.

fid Points to a file ID structure. The system uses this pointer to locate the specific file within the VFS.
vpp Points to a location to store the file’s vnode pointer upon successful return of the fidtovp kernel service.

Description
The fidtovp kernel service returns a pointer to a vnode for the file identified by fsid and fid, and
increments the count on the vnode so the file is not removed. Subroutines that call the fidtovp kernel
service must call VNOP_RELE to release the vnode pointer.

This kernel service is designed for use by the server side of distributed file systems.

Execution Environment
The fidtovp kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
ESTALE Indicates the requested file or file system was removed or recreated since last access with the given file

system ID or file ID.

Chapter 1. Kernel Services 143

find_input_type Kernel Service

Purpose
Finds the given packet type in the Network Input Interface switch table and distributes the input packet
according to the table entry for that type.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>
int find_input_type (type, m, ac, header_pointer)
ushort type;
struct mbuf * m;
struct arpcom * ac;
caddr_t header_pointer;

Parameters

type Specifies the protocol type.
m Points to the mbuf buffer containing the packet to distribute.
ac Points to the network common portion (arpcom) of the network interface on which the

packet was received. This common portion is defined as follows:

in net/if_arp.h
header_pointer Points to the buffer containing the input packet header.

Description
The find_input_type kernel service finds the given packet type in the Network Input table and distributes
the input packet contained in the mbuf buffer pointed to by the m value. The ac parameter is passed to
services that do not have a queued interface.

Execution Environment
The find_input_type kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates that the protocol type was successfully found.
ENOENT Indicates that the service could not find the type in the Network Input table.

Related Information
The add_input_type kernel service, del_input_type kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

fp_access Kernel Service

Purpose
Checks for access permission to an open file.

144 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/types.h>
#include <sys/errno.h>
int fp_access (fp, perm)
struct file *fp;
int perm;

Parameters

fp Points to a file structure returned by the fp_open or fp_opendev kernel service.
perm Indicates which read, write, and execute permissions are to be checked. The /usr/include/sys/mode.h file

contains pertinent values (IREAD, IWRITE, IEXEC).

Description
The fp_access kernel service is used to see if either the read, write, or exec bit is set anywhere in a file’s
permissions mode. Set perm to one of the following constants from mode.h:

IREAD
IWRITE
IEXEC

Execution Environment
The fp_access kernel service can be called from the process environment only.

Return Values

0 Indicates that the calling process has the requested permission.
EACCES Indicates all other conditions.

Related Information
The access subroutine.

Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

fp_close Kernel Service

Purpose
Closes a file.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
int fp_close (fp)
struct file *fp;

Parameter

fp Points to a file structure returned by the fp_open, fp_getf, or fp_opendev kernel service.

Chapter 1. Kernel Services 145

Description
The fp_close kernel service is a common service for closing files used by both the file system and
routines outside the file system.

Execution Environment
The fp_close kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.

If an error occurs, one of the values from the /usr/include/sys/error.h file is returned.

Related Information
The close subroutine.

Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

fp_close Kernel Service for Data Link Control (DLC) Devices

Purpose
Allows kernel to close the generic data link control (GDLC) device manager using a file pointer.

Syntax
int fp_close(fp)

Parameters

fp Specifies the file pointer of the GDLC being closed.

Description
The fp_close kernel service disables a GDLC channel. If this is the last channel to close on a port, the
GDLC device manager resets to an idle state on that port and the communications device handler is
closed. The fp_close kernel service may be called from the process environment only.

Return Values

0 Indicates a successful completion.
ENXIO Indicates an invalid file pointer. This value is defined in the

/usr/include/sys/errno.h file.

Related Information
The fp_close kernel service.

The fp_open kernel service for data link control (DLC) devices.

Generic Data Link Control (GDLC) Environment Overview in AIX Version 6.1 Kernel Extensions and
Device Support Programming Concepts.

146 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

fp_fstat Kernel Service

Purpose
Gets the attributes of an open file.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
int fp_fstat (fp, statbuf, statsz, segflag)
struct file * fp;
caddr_t statbuf;
unsigned int statsz;
unsigned int segflag;

Parameters

fp Points to a file structure returned by the fp_open kernel service.
statbuf Points to a buffer defined to be of stat or fullstat type structure. The statsz parameter indicates the

buffer type.
statsz Indicates the size of the stat or fullstat structure to be returned. The /usr/include/sys/stat.h file

contains information about the stat structure.
segflag Specifies the flag indicating where the information represented by the statbuf parameter is located:

SYS_ADSPACE
Buffer is in kernel memory.

USER_ADSPACE
Buffer is in user memory.

Description
The fp_fstat kernel service is an internal interface to the function provided by the fstatx subroutine.

Execution Environment
The fp_fstat kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.

If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned.

Related Information
The fstatx subroutine.

Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

fp_fsync Kernel Service

Purpose
Writes changes for a specified range of a file to permanent storage.

Chapter 1. Kernel Services 147

Syntax
#include <sys/fp_io.h>

int fp_fsync (fp, how, off, len)
struct file *fp;
int how;
offset_t off;
offset_t len;

Description
The fp_fsync kernel service is an internal interface to the function provided by the fsync_range
subroutine.

Parameters

fp Points to a file structure returned by the fp_open kernel service.
how How to flush, FDATASYNC, or FFILESYNC:

FDATASYNC
Write file data and enough of the meta-data to retrieve the data for the specified range.

FFILESYNC
All modified file data and meta-data for the specified range.

off Starting file offset.
len Length, or zero for everything

Execution Environment
The fp_fsync kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
ERRNO Returns an error number from the /usr/include/sys/

errno.h file on failure.

Related Information
The fsync or fsync_range Subroutine in AIX Version 6.1 Technical Reference: Base Operating System and
Extensions Volume 1.

Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

fp_getdevno Kernel Service

Purpose

Gets the device number or channel number for a device.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/file.h>
int fp_getdevno (fp, devp, chanp)

148 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

struct file *fp;
dev_t *devp;
chan_t *chanp;

Parameters

fp Points to a file structure returned by the fp_open or fp_opendev service.
devp Points to a location where the device number is to be returned.
chanp Points to a location where the channel number is to be returned.

Description
The fp_getdevno service finds the device number and channel number for an open device that is
associated with the file pointer specified by the fp parameter. If the value of either devp or chanp
parameter is null, this service does not attempt to return any value for the argument.

Execution Environment
The fp_getdevno kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
EINVAL Indicates that the pointer specified by the fp parameter does not point to a file structure for an open

device.

Related Information
Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

fp_getf Kernel Service

Purpose
Retrieves a pointer to a file structure.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
int fp_getf (fd, fpp)
int fd;
struct file **fpp;

Parameters

fd Specifies a file descriptor.
fpp Points to the location where the file pointer is to be returned.

Description
A process calls the fp_getf kernel service when it has a file descriptor for an open file, but needs a file
pointer to use other Logical File System services.

Chapter 1. Kernel Services 149

The fp_getf kernel service uses the file descriptor as an index into the process’s open file table. From this
table it extracts a pointer to the associated file structure.

As a side effect of the call to the fp_getf kernel service, the reference count on the file descriptor is
incremented. This count must be decremented when the caller has completed its use of the returned file
pointer. The file descriptor reference count is decremented by a call to the ufdrele kernel service.

Execution Environment
The fp_getf kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
EBADF Indicates that either the file descriptor is invalid or not currently used in the process.

Related Information
The ufdrele kernel service.

Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

fp_hold Kernel Service

Purpose
Increments the open count for a specified file pointer.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

void fp_hold (fp)
struct file *fp;

Parameter

fp Points to a file structure previously obtained by calling the fp_open, fp_getf, or fp_opendev kernel service.

Description
The fp_hold kernel service increments the use count in the file structure specified by the fp parameter.
This results in the associated file remaining opened even when the original open is closed.

If this function is used, and access to the file associated with the pointer specified by the fp parameter is
no longer required, the fp_close kernel service should be called to decrement the use count and close the
file as required.

Execution Environment
The fp_hold kernel service can be called from the process environment only.

150 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

fp_ioctl Kernel Service

Purpose
Issues a control command to an open device or file.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int fp_ioctl (fp, cmd, arg, ext)
struct file * fp;
unsigned int cmd;
caddr_t arg;
int ext;

Parameters

fp Points to a file structure returned by the fp_open or fp_opendev kernel service.
cmd Specifies the specific control command requested.
arg Indicates the data required for the command.
ext Specifies an extension argument required by some device drivers. Its content, form, and use are determined by

the individual driver.

Description
The fp_ioctl kernel service is an internal interface to the function provided by the ioctl subroutine.

Execution Environment
The fp_ioctl kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.

If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned. The ioctl
subroutine contains valid errno values.

Related Information
The ioctl subroutine.

Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

fp_ioctl Kernel Service for Data Link Control (DLC) Devices

Purpose
Transfers special commands from the kernel to generic data link control (GDLC) using a file pointer.

Chapter 1. Kernel Services 151

Syntax
#include <sys/gdlextcb.h>
#include <fcntl.h>

int fp_ioctl (fp, cmd, arg, ext)

Parameters

fp Specifies the file pointer of the target GDLC.
cmd Specifies the operation to be performed by GDLC. For a

listing of all possible operators, see ″ioctl Operations (op)
for DLC″AIX Version 6.1 Technical Reference:
Communications Volume 1.

arg Specifies the address of the parameter block. The
argument for this parameter must be in the kernel space.
For a listing of possible values, see ″Parameter Blocks by
ioctl Operation for DLC″AIX Version 6.1 Technical
Reference: Communications Volume 1.

ext Specifies the extension parameter. This parameter is
ignored by GDLC.

Description
Various GDLC functions can be initiated using the fp_ioctl kernel service, such as changing configuration
parameters, contacting the remote, and testing a link. Most of these operations can be completed before
returning to the user synchronously. Some operations take longer, so asynchronous results are returned
much later using the exception function handler. GDLC calls the kernel user’s exception handler to
complete these results. Each GDLC supports the fp_ioctl kernel service by way of its dlcioctl entry point.
The fp_ioctl kernel service may be called from the process environment only.

Note: The DLC_GET_EXCEP ioctl operation is not used since all exception conditions are passed to the
kernel user through the exception handler.

Return Values

0 Indicates a successful completion.
ENXIO Indicates an invalid file pointer.
EINVAL Indicates an invalid value.
ENOMEM Indicates insufficient resources to satisfy the ioctl

subroutine.

These return values are defined in the /usr/include/sys/errno.h file.

Related Information
The fp_ioctl kernel service.

The ioctl subroutine.

The ioctl subroutine interface for DLC devices.

Generic Data Link Control (GDLC) Environment Overview in AIX Version 6.1 Kernel Extensions and
Device Support Programming Concepts.

152 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

fp_ioctlx Kernel Service

Purpose
Issues a control command to an open device.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <fcntl.h>

int fp_ioctlx (fp, cmd, arg, ext, flags, retval)
struct file *fp;
unsigned long cmd;
caddr_t arg;
ext_t ext;
unsigned long flags;
long *retval;

Description
The fp_ioctlx kernel service is an internal interface to the function provided by the ioctl subroutine.

The fp_ioctlx kernel service issues a control command to an open device. Some drivers need the return
value that is returned by the kernel service if there is no error. This value is not available through the
fp_ioctl kernel service. The fp_ioctlx kernel service allows this data to be passed.

Parameters

fp Points to a file structure returned by the fp_open or fp_opendev kernel service.
cmd Specifies the specific control command requested.
arg Indicates the data required for the command.
ext Specifies an extension argument required by some device drivers. Its content, form, and use

are determined by the individual driver.
flags Indicates the address space of arg parameter. If the arg value is in kernel address space,

flags should be specified as FKERNEL. Otherwise, it should be zero (drivers pass data that
is in user space).

retval Points to the location where the return value will be stored on successful return from the call.

Execution Environment
The fp_ioctlx kernel service can be called only from the process environment.

Return Values
Upon successful completion, the fp_ioctlx kernel service returns 0. If unsuccessful, one of the values from
the /usr/include/sys/errno.h file is returned. The ioctl subroutine contains valid errno values. This value
will be stored in the retval parameter.

Related Information
The “fp_ioctl Kernel Service” on page 151.

The ioctl, ioctlx, ioctl32, or ioctl32x Subroutine in AIX Version 6.1 Technical Reference: Base Operating
System and Extensions Volume 1.

Chapter 1. Kernel Services 153

fp_lseek, fp_llseek Kernel Service

Purpose
Changes the current offset in an open file.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int fp_lseek (fp, offset, whence)
struct file *fp;
off_t offset;
int whence;

int fp_llseek
(fp, offset, whence)
struct file *fp
offset_t offset;
int whence;

Parameters

fp Points to a file structure returned by the fp_open kernel service.
offset Specifies the number of bytes (positive or negative) to move the file pointer.
whence Indicates how to use the offset value:

SEEK_SET
Sets file pointer equal to the number of bytes specified by the offset parameter.

SEEK_CUR
Adds the number of bytes specified by the offset parameter to current file pointer.

SEEK_END
Adds the number of bytes specified by the offset parameter to current end of file.

Description
The fp_lseek and fp_llseek kernel services are internal interfaces to the function provided by the lseek
and llseek subroutines.

Execution Environment
The fp_lseek and fp_llseek kernel services can be called from the process environment only.

Return Values

0 Indicates a successful operation.
ERRNO Returns an error number from the /usr/include/sys/errno.h file on failure.

Related Information
The lseek, llseek subroutine.

Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

154 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

fp_open Kernel Service

Purpose

Opens special and regular files or directories.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int fp_open (path, oflags, cmode, ext, segflag, fpp)
char * path;
unsigned oflags;
unsigned cmode;
int ext;
unsigned segflag;
struct file ** fpp;

Parameters

path Points to the file name of the file to be opened.
oflags Specifies open mode flags as described in the open subroutine.
cmode Specifies the mode (permissions) value to be given to the file if the file is to be created.
ext Specifies an extension argument required by some device drivers. Individual drivers determine its

content, form, and use.
segflag Specifies the flag indicating where the pointer specified by the path parameter is located:

SYS_ADSPACE
The pointer specified by the path parameter is stored in kernel memory.

USER_ADSPACE
The pointer specified by the path parameter is stored in application memory.

fpp Points to the location where the file structure pointer is to be returned by the fp_open service.

Description
The fp_open kernel service provides a common service used by:

v The file system for the implementation of the open subroutine

v Kernel routines outside the file system that must open files

Execution Environment
The fp_open kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.

Also, the fpp parameter points to an open file structure that is valid for use with the other Logical File
System services. If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned.
The discussion of the open subroutine contains possible errno values.

Chapter 1. Kernel Services 155

Related Information
The open subroutine.

Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

fp_open Kernel Service for Data Link Control (DLC) Devices

Purpose
Allows kernel to open the generic data link control (GDLC) device manager by its device name.

Syntax
#include <sys/gdlextcb.h>
#include <fcntl.h>

fp_open (path, oflags, cmode, ext, segflag, fpp)

Parameters

path Consists of a character string containing the /dev special
file name of the GDLC device manager, with the name of
the communications device handler appended. The format
is shown in the following example:

/dev/dlcether/ent0
oflags Specifies a value to set the file status flag. The GDLC

device manager ignores all but the following values:

O_RDWR
Open for reading and writing. This must be set
for GDLC or the open will not be successful.

O_NDELAY, O_NONBLOCK
Subsequent writes return immediately if no
resources are available. The calling process is
not put to sleep.

cmode Specifies the O_CREAT mode parameter. This is ignored
by GDLC.

ext Specifies the extended kernel service parameter. This is a
pointer to the dlc_open_ext extended I/O structure for
open subroutines. The argument for this parameter must
be in the kernel space. ″open Subroutine Extended
Parameters for DLC″AIX Version 6.1 Technical Reference:
Communications Volume 1 provides more information on
the extension parameter.

segflag Specifies the segment flag indicating where the path
parameter is located:

FP_SYS
The path parameter is stored in kernel memory.

FP_USR
The path parameter is stored in application
memory.

fpp Specifies the returned file pointer. This parameter is
passed by reference and updated by the file I/O
subsystem to be the file pointer for this open subroutine.

156 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The fp_open kernel service allows the kernel user to open a GDLC device manager by specifying the
special file names of both the DLC and the communications device handler. Since the GDLC device
manager is multiplexed, more than one process can open it (or the same process multiple times) and still
have unique channel identifications.

Each open carries the communications device handler’s special file name so that the DLC knows which
port to transfer data on.

The kernel user must also provide functional entry addresses in order to obtain receive data and exception
conditions. Each GDLC supports the fp_open kernel service via its dlcopen entry point. The fp_open
kernel service may be called from the process environment only. ″Using GDLC Special Kernel Services″ in
AIX Version 6.1 Communications Programming Concepts provides additional information.

Return Values
Upon successful completion, this service returns a value of 0 and a valid file pointer in the fpp parameter.

ECHILD Indicates that the service cannot create a kernel process.
EINVAL Indicates an invalid value.
ENODEV Indicates that no such device handler is present.
ENOMEM Indicates insufficient resources to satisfy the open.
EFAULT Indicates that the kernel service, such as the copyin or

initp service, has failed.

These return values are defined in the /usr/include/sys/errno.h file.

Related Information
The copyin kernel service, fp_open kernel service, initp kernel service.

The fp_close kernel service for data link control (DLC) devices.

open Subroutine Extended Parameters for DLC in AIX Version 6.1 Technical Reference: Communications
Volume 1.

Generic Data Link Control (GDLC) Environment Overview and Using GDLC Special Kernel Services in AIX
Version 6.1 Communications Programming Concepts.

fp_opendev Kernel Service

Purpose
Opens a device special file.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int fp_opendev (devno, devflag, channame, ext, fpp)
dev_t devno;
int devflag;
char * channame;
int ext;
struct file** fpp;

Chapter 1. Kernel Services 157

Parameters

devno Specifies the major and minor device number of device driver to open.
devflag Specifies one of the following values:

DREAD
The device is being opened for reading only.

DWRITE
The device is being opened for writing.

DNDELAY
The device is being opened in nonblocking mode.

channame Points to a channel specifying a character string or a null value.
ext Specifies an extension argument required by some device drivers. Its content, form, and use are

determined by the individual driver.
fpp Specifies the returned file pointer. This parameter is passed by reference and is updated by the

fp_opendev service to be the file pointer for this open instance. This file pointer is used as input to
other Logical File System services to specify the open instance.

Description
The kernel or kernel extension calls the fp_opendev kernel service to open a device by specifying its
device major and minor number. The fp_opendev kernel service provides the correct semantics for
opening the character or multiplexed class of device drivers.

If the specified device driver is nonmultiplexed:

v An in-core i-node is found or created for this device.

v The i-node reference count is incremented.

v The device driver’s ddopen entry point is called with the devno, devflag, and ext parameters. The
unused chan parameter on the call to the ddopen routine is set to 0.

If the device driver is a multiplexed character device driver (that is, its ddmpx entry point is defined), an
in-core i-node is created for this channel. The device driver’s ddmpx routine is also called with the
channame pointer to the channel identification string if non-null. If the channame pointer is null, the ddmpx
device driver routine is called with the pointer to a null character string.

If the device driver can allocate the channel, the ddmpx routine returns a channel ID, represented by the
chan parameter. If the device driver cannot allocate a channel, the fp_opendev kernel service returns an
ENXIO error code. If successful, the i-node reference count is incremented. The device driver’s ddopen
routine is also called with the devno, devflag, chan (provided by ddmpx routine), and ext parameters.

If the return value from the specified device driver’s ddopen routine is nonzero, it is returned as the return
code for the fp_opendev kernel service. If the return code from the device driver’s ddopen routine is 0,
the fp_opendev service returns the file pointer corresponding to this open of the device.

The fp_opendev kernel service can only be called in the process environment or device driver top half.
Interrupt handlers cannot call it. It is assumed that all arguments to the fp_opendev kernel service are in
kernel space.

The file pointer (fpp) returned by the fp_opendev kernel service is only valid for use with a subset of the
Logical File System services. These nine services can be called:

v fp_close

v fp_ioctl

v fp_poll

v fp_select

158 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

v fp_read

v fp_readv

v fp_rwuio

v fp_write

v fp_writev

Other services return an EINVAL return value if called.

Execution Environment
The fp_opendev kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.

The *fpp field also points to an open file structure that is valid for use with the other Logical File System
services. If an error occurs, one of the following values from the /usr/include/sys/errno.h file is returned:

EINVAL Indicates that the major portion of the devno parameter exceeds the maximum number allowed, or the
devflags parameter is not valid.

ENODEV Indicates that the device does not exist.
EINTR Indicates that the signal was caught while processing the fp_opendev request.
ENFILE Indicates that the system file table is full.
ENXIO Indicates that the device is multiplexed and unable to allocate the channel.

The fp_opendev service also returns any nonzero return code returned from a device driver ddopen
routine.

Related Information
The ddopen Device Driver Entry Point.

The fp_close kernel service, fp_ioctl kernel service, fp_poll kernel service, fp_read kernel service,
fp_readv kernel service, fp_rwuio kernel service, fp_select kernel service, fp_write kernel service,
fp_writev kernel service.

Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

fp_poll Kernel Service

Purpose

Checks the I/O status of multiple file pointers, file descriptors, and message queues.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/poll.h>

int fp_poll (listptr, nfdsmsgs, timeout, flags)
void * listptr;

Chapter 1. Kernel Services 159

unsigned long nfdsmsgs;
long timeout;
uint flags;

Parameters

listptr Points to an array of pollfd or pollmsg structures, or to a single pollist structure. Each structure
specifies a file pointer, file descriptor, or message queue ID. The events of interest for this file or
message queue are also specified.

nfdsmsgs Specifies the number of files and message queues to check. The low-order 16 bits give the number
of elements present in the array of pollfd structures. The high-order 16 bits give the number of
elements present in the array of pollmsg structures. If either half of the nfdsmsgs parameter is equal
to 0, then the corresponding array is presumed abse1e.

timeout Specifies how long the service waits for a specified event to occur. If the value of this parameter is
-1, the fp_poll kernel service does not return until at least one of the specified events has occurred.
If the time-out value is 0, the fp_poll kernel service does not wait for an event to occur. Instead, the
service returns immediately even if none of the specified events have occurred. For any other value
of the timeout parameter, the fp_poll kernel service specifies the maximum length of time (in
milliseconds) to wait for at least one of the specified events to occur.

flags Specifies the type of data in the listptr parameter:

POLL_FDMSG
Input is a file descriptor and/or message queue.

0 Input is a file pointer.

Description

Note: The fp_poll service applies only to character devices, pipes, message queues, and sockets. Not all
character device drivers support the fp_poll service.

The fp_poll kernel service checks the specified file pointers/descriptors and message queues to see if
they are ready for reading or writing, or if they have an exceptional condition pending.

The pollfd, pollmsg, and pollist structures are defined in the /usr/include/sys/poll.h file. These are the
same structures described for the poll subroutine. One difference is that the fd field in the pollfd structure
contains a file pointer when the flags parameter on the fp_poll kernel service equals 0 (zero). If the flags
parameter is set to a POLL_FDMSG value, the field is taken as a file descriptor in all processed pollfd
structures. If either the fd or msgid fields in their respective structures has a negative value, the
processing for that structure is skipped.

When performing a poll operation on both files and message queues, the listptr parameter points to a
pollist structure, which can specify both files and message queues. To construct a pollist structure, use
the POLLIST macro as described in the poll subroutine.

If the number of pollfd elements in the nfdsmsgs parameter is 0, then the listptr parameter must point to
an array of pollmsg structures.

If the number of pollmsg elements in the nfdsmsgs parameter is 0, then the listptr parameter must point
to an array of pollfd structures.

If the number of pollmsg and pollfd elements are both nonzero in the nfdsmsgs parameter, the listptr
parameter must point to a pollist structure as previously defined.

Execution Environment
The fp_poll kernel service can be called from the process environment only.

160 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Return Values
Upon successful completion, the fp_poll kernel service returns a value that indicates the total number of
files and message queues that satisfy the selection criteria. The return value is similar to the nfdsmsgs
parameter in the following ways:

v The low-order 16 bits give the number of files.

v The high-order 16 bits give the number of message queue identifiers that have nonzero revents values.

Use the NFDS and NMSGS macros to separate these two values from the return value. A return code of 0
(zero) indicates that:

v The call has timed out.

v None of the specified files or message queues indicates the presence of an event.

In other words, all revents fields are 0 (zero).

When the return code from the fp_poll kernel service is negative, it is set to the following value:

EINTR Indicates that a signal was caught during the fp_poll kernel service.

Related Information
The poll subroutine.

The selreg kernel service.

Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

fp_read Kernel Service

Purpose

Performs a read on an open file with arguments passed.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int fp_read (fp, buf, nbytes, ext, segflag, countp)
struct file * fp;
char * buf;
int nbytes;
int ext;
int segflag;
int * countp;

Parameters

fp Points to a file structure returned by the fp_open or fp_opendev kernel service.
buf Points to the buffer where data read from the file is to be stored.
nbytes Specifies the number of bytes to be read from the file into the buffer.
ext Specifies an extension argument required by some device drivers. Its content, form, and use are

determined by the individual driver.

Chapter 1. Kernel Services 161

segflag Indicates in which part of memory the buffer specified by the buf parameter is located:

SYS_ADSPACE
The buffer specified by the buf parameter is in kernel memory.

USER_ADSPACE
The buffer specified by the buf parameter is in application memory.

countp Points to the location where the count of bytes actually read from the file is to be returned.

Description
The fp_read kernel service is an internal interface to the function provided by the read subroutine.

Execution Environment
The fp_read kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.

If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned.

Related Information
The read subroutine.

Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

fp_readv Kernel Service

Purpose

Performs a read operation on an open file with arguments passed in iovec elements.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int fp_readv
(fp, iov, iovcnt, ext,
segflag, countp)
struct file * fp;
char * iov;
int iovcnt;
int ext;
int segflag;
int * countp;

Parameters

fp Points to a file structure returned by the fp_open kernel service.
iov Points to an array of iovec elements. Each iovec element describes a buffer where data to be read

from the file is to be stored.

162 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

iovcnt Specifies the number of iovec elements in the array pointed to by the iov parameter.
ext Specifies an extension argument required by some device drivers. Its content, form, and use are

determined by the individual driver.
segflag Indicates in which part of memory the array specified by the iov parameter is located:

SYS_ADSPACE
The array specified by the iov parameter is in kernel memory.

USER_ADSPACE
The array specified by the iov parameter is in application memory.

countp Points to the location where the count of bytes actually read from the file is to be returned.

Description
The fp_readv kernel service is an internal interface to the function provided by the readv subroutine.

Execution Environment
The fp_readv kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.

If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned.

Related Information
The readv subroutine.

Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

fp_rwuio Kernel Service

Purpose
Performs read and write on an open file with arguments passed in a uio structure.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int fp_rwuio
(fp, rw, uiop, ext)
struct file *fp;
enum uio_rw rw;
struct uio *uiop;
int ext;

Parameters

fp Points to a file structure returned by the fp_open or fp_opendev kernel service.
rw Indicates whether this is a read operation or a write operation. It has a value of UIO_READ or UIO_WRITE.
uiop Points to a uio structure, which contains information such as where to move data and how much to move.

Chapter 1. Kernel Services 163

ext Specifies an extension argument required by some device drivers. Its content, form, and use are determined
by the individual driver.

Description
The fp_rwuio kernel service is not the preferred interface for read and write operations. The fp_rwuio
kernel service should only be used if the calling routine has been passed a uio structure. If the calling
routine has not been passed a uio structure, it should not attempt to construct one and call the fp_rwuio
kernel service with it. Rather, it should pass the requisite uio components to the fp_read or fp_write
kernel services.

Execution Environment
The fp_rwuio kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.

If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned.

Related Information
The uio structure.

Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

fp_select Kernel Service

Purpose

Provides for cascaded, or redirected, support of the select or poll request.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
int fp_select (fp, events, rtneventp, notify)
struct file *fp;
ushort events;
ushort *rtneventp;
void (*notify)();

Parameters

fp Points to the open instance of the device driver, socket, or pipe for which the low-level select
operation is intended.

164 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

events Identifies the events that are to be checked. There are three standard event flags defined for the
poll and select functions and one informational flag. The /usr/include/sys/poll.h file details the
event bit definition. The four basic indicators are:

POLLIN
Input is present for the specified object.

POLLOUT
The specified file object is capable of accepting output.

POLLPRI
An exception condition has occurred on the specified object.

POLLSYNC
This is a synchronous request only. If none of the requested events are true, the selected
routine should not remember this request as pending. That is, the routine does not need to
call the selnotify service because of this request.

rtneventp Indicates the returned events pointer. This parameter, passed by reference, is used to indicate
which selected events are true at the current time. The returned event bits include the requested
events plus an additional error event indicator:

POLLERR
An error condition was indicated by the object’s select routine. If this flag is set, the
nonzero return code from the specified object’s select routine is returned as the return
code from the fp_select kernel service.

notify Points to a routine to be called when the specified object invokes the selnotify kernel service for
an outstanding asynchronous select or poll event request. If no routine is to be called, this
parameter must be NULL.

Description
The fp_select kernel service is a low-level service used by kernel extensions to perform a select operation
for an open device, socket, or named pipe. The fp_select kernel service can be used for both
synchronous and asynchronous select requests. Synchronous requests report on the current state of a
device, and asynchronous requests allow the caller to be notified of future events on a device.

Invocation from a Device Driver’s ddselect Routine

A device driver’s ddselect routine can call the fp_select kernel service to pass select/poll requests to
other device drivers. The ddselect routine for one device invokes the fp_select kernel service, which calls
the ddselect routine for a second device, and so on. This is required when event information for the
original device depends upon events occurring on other devices. A cascaded chain of select requests can
be initiated that involves more than two devices, or a single device can issue fp_select calls to several
other devices.

Each ddselect routine should preserve, in its call to the fp_select kernel service, the same POLLSYNC
indicator that it received when previously called by the fp_select kernel service.

Invocation from Outside a Device Driver’s ddselect Routine

If the fp_select kernel service is invoked outside of the device driver’s ddselect routine, the fp_select
kernel service sets the POLLSYNC flag, always making the request synchronous. In this case, no
notification of future events for the specified device occurs, nor is a notify routine called, if specified. The
fp_select kernel service can be used in this manner (unrelated to a poll or select request in progress) to
check an object’s current status.

Asynchronous Processing and the Use of the notify Routine

For asynchronous requests, the fp_select kernel service allows its callers to register a notify routine to be
called by the kernel when specified events become true. When the relevant device driver detects that one

Chapter 1. Kernel Services 165

or more pending events have become true, it invokes the selnotify kernel service. The selnotify kernel
service then calls the notify routine, if one has been registered. Thus, the notify routine is called at
interrupt time and must be programmed to run in an interrupt environment.

Use of a notify routine affects both the calling sequence at interrupt time and how the requested
information is actually reported. Generalized asynchronous processing entails the following sequence of
events:

1. A select request is initiated on a device and passed on (by multiple fp_select kernel service
invocations) to further devices. Eventually, a device driver’s ddselect routine that is not dependent on
other devices for information is reached. This ddselect routine finds that none of the requested events
are true, but remembers the asynchronous request, and returns to the caller. In this way, the entire
chain of calls is backed out, until the origin of the select request is reached. The kernel then puts the
originating process to sleep.

2. Later, one or more events become true for the device remembering the asynchronous request. The
device driver routine (possibly an interrupt handler) calls the selnotify kernel service.

3. If the events are still being waited on, the selnotify kernel service responds in one of two ways. If no
notify routine was registered when the select request was made for the device, then all processes
waiting for events on this device are awakened. If a notify routine exists for the device, then this
routine is called. The notify routine determines whether the original requested event should be
reported as true, and if so, calls the selnotify kernel service on its own.

The following example details a cascaded scenario involving several devices. Suppose that a request has
been made for Device A, and Device A depends on Device B, which depends on Device C. When
specified events become true at Device C, the selnotify kernel service called from Device C’s device
driver performs differently depending on whether a notify routine was registered at the time of the request.

Cascaded Processing without the Use of notify Routines

If no notify routine was registered from Device B, then the selnotify kernel service determines that the
specified events are to be considered true for the device driver at the head of the cascading chain. (The
head of the chain, in this case Device A, is the first device driver to issue the fp_select kernel service
from its select routine.) The selnotify kernel service awakens all processes waiting for events that have
occurred on Device A.

It is important to note that when no notify routine is used, any device driver in the calling chain that
reports an event with the selnotify kernel service causes that event to appear true for the first device in
the chain. As a result, any processes waiting for events that have occurred on that first device are
awakened.

Cascaded Processing with notify Routines
If, on the other hand, notify routines have been registered throughout the chain, then each interrupting
device (by calling the selnotify kernel service) invokes the notify routine for the device above it in the
calling chain. Thus in the preceding example, the selnotify kernel service for Device C calls the notify
routine registered when Device B’s ddselect routine invoked the fp_select kernel service. Device B’s
notify routine must then decide whether to again call the selnotify kernel service to alert Device A’s
notify routine. If so, then Device A’s notify routine is called, and makes its own determination whether to
call another selnotify routine. If it does, the selnotify kernel service wakes up all the processes waiting on
occurred events for Device A.

A variation on this scenario involves a cascaded chain in which only some device drivers have registered
notify routines. In this case, the selnotify kernel service at each level calls the notify routine for the level
above, until a level is encountered for which no notify routine was registered. At this point, all events of
interest are determined to be true for the device driver at the head of the cascading chain. If any notify
routines were registered in levels above the current level, they are never called.

166 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Returning from the fp_select Kernel Service

The fp_select kernel service does not wait for any selected events to become true, but returns
immediately after the call to the object’s ddselect routine has completed.

If the object’s select routine is successfully called, the return code for the fp_select kernel service is set to
the return code provided by the object’s ddselect routine.

Execution Environment
The fp_select kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
EAGAIN Indicates that the allocation of internal data structures failed. The rtneventp parameter is not updated.
EINVAL Indicates that the fp parameter is not a valid file pointer. The rtneventp parameter has the POLLNVAL

flag set.

The fp_select kernel service can also be set to the nonzero return code from the specified object’s
ddselect routine. The rtneventp parameter has the POLLERR flag set.

Related Information
The fp_poll kernel service, selnotify kernel service, selreg kernel service.

The fp_select kernel service notify routine.

The poll subroutine, select subroutine.

Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

fp_select Kernel Service notify Routine

Purpose
Registers the notify routine.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
void notify (id, sub_id, rtnevents, pid)
int id;
int sub_id ;
ushort rtnevents ;
pid_t pid;

Parameters

id Indicates the selected function ID specified by the routine that made the call to the selnotify kernel
service to indicate the occurrence of an outstanding event. For device drivers, this parameter is
equivalent to the devno (device major and minor number) parameter.

Chapter 1. Kernel Services 167

sub_id Indicates the unique ID specified by the routine that made the call to the selnotify kernel service to
indicate the occurrence of an outstanding event. For device drivers, this parameter is equivalent to
the chan parameter: channel for multiplexed drivers; 0 for nonmultiplexed drivers.

rtnevents Specifies the rtnevents parameter supplied by the routine that made the call to the selnotify
service indicating which events are designated as true.

pid Specifies the process ID of a process waiting for the event corresponding to this call of the notify
routine.

When a notify routine is provided for a cascaded function, the selnotify kernel service calls the specified
notify routine instead of posting the process that was waiting on the event. It is up to this notify routine to
determine if another selnotify call should be made to notify the waiting process of an event.

The notify routine is not called if the request is synchronous (that is, if the POLLSYNC flag is set in the
events parameter) or if the original poll or select request is no longer outstanding.

Note: When more than one process has requested notification of an event and the fp_select kernel
service is used with a notify routine specified, the notification of the event causes the notify routine
to be called once for each process that is currently waiting on one or more of the occurring events.

Description
The fp_select kernel service notify routine is registered by the caller of the fp_select kernel service to be
called by the kernel when specified events become true. The option to register this notify routine is
available in a cascaded environment. The notify routine can be called at interrupt time.

Execution Environment
The fp_select kernel service notify routine can be called from either the process or interrupt environment.

Related Information
The fp_select kernel service, selnotify kernel service.

Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

fp_write Kernel Service

Purpose

Performs a write operation on an open file with arguments passed.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
int fp_write (fp, buf, nbytes, ext, segflag, countp)
struct file * fp;
char * buf;
int nbytes,
int ext;
int segflag;
int * countp;

168 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

fp Points to a file structure returned by the fp_open or fp_opendev kernel service.
buf Points to the buffer where data to be written to a file is located.
nbytes Indicates the number of bytes to be written to the file.
ext Specifies an extension argument required by some device drivers. Its content, form, and use are

determined by the individual driver.
segflag Indicates in which part of memory the buffer specified by the buf parameter is located:

SYS_ADSPACE
The buffer specified by the buf parameter is in kernel memory.

USER_ADSPACE
The buffer specified by the buf parameter is in application memory.

countp Points to the location where count of bytes actually written to the file is to be returned.

Description
The fp_write kernel service is an internal interface to the function provided by the write subroutine.

Execution Environment
The fp_write kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
ERRNO Returns an error number from the /usr/include/sys/errno.h file on failure.

Related Information
The write subroutine.

Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

fp_write Kernel Service for Data Link Control (DLC) Devices

Purpose

Allows kernel data to be sent using a file pointer.

Syntax
#include <sys/gdlextcb.h>
#include <sys/fp_io.h>
int fp_write (fp, buf, nbytes, ext, segflag, countp)

Parameters

fp Specifies file pointer returned from the fp_open kernel
service.

buf Points to a kernel mbuf structure.

Chapter 1. Kernel Services 169

nbytes Contains the byte length of the write data. It is not
necessary to set this field to the actual length of write
data, however, since the mbuf contains a length field.
Instead, this field can be set to any non-negative value
(generally set to 0).

ext Specifies the extended kernel service parameter. This is a
pointer to the dlc_io_ext extended I/O structure for writes.
The argument for this parameter must be in the kernel
space. For more information on this parameter, see ″write
Subroutine Extended Parameters for DLC″AIX Version 6.1
Technical Reference: Communications Volume 1.

segflag Specifies the segment flag indicating where the path
parameter is located. The only valid value is:

FP_SYS
The path parameter is stored in kernel memory.

countp Points to the location where a count of bytes actually
written is to be returned (must be in kernel space). GDLC
does not provide this information for a kernel user since
mbufs are used, but the file system requires a valid
address and writes a copy of the nbytes parameter to that
location.

Description
Four types of data can be sent to generic data link control (GDLC). Network data can be sent to a service
access point (SAP), and normal, exchange identification (XID) or datagram data can be sent to a link
station (LS).

Kernel users pass a communications memory buffer (mbuf) directly to GDLC on the fp_write kernel
service. In this case, a uiomove kernel service is not required, and maximum performance can be
achieved by merely passing the buffer pointer to GDLC. Each write buffer is required to have the proper
buffer header information and enough space for the data link headers to be inserted. A write data offset is
passed back to the kernel user at start LS completion for this purpose.

All data must fit into a single packet for each write call. That is, GDLC does not separate the user’s write
data area into multiple transmit packets. A maximum write data size is passed back to the user at
DLC_ENABLE_SAP completion and at DLC_START_LS completion for this purpose.

Normally, a write subroutine can be satisfied immediately by GDLC by completing the data link headers
and sending the transmit packet down to the device handler. In some cases, however, transmit packets
can be blocked by the particular protocol’s flow control or a resource outage. GDLC reacts to this
differently, based on the system blocked/nonblocked file status flags (set by the file system and based on
the O_NDELAY and O_NONBLOCKED values passed on the fp_open kernel service). Nonblocked write
subroutines that cannot get enough resources to queue the communications memory buffer (mbuf) return
an error indication. Blocked write subroutines put the calling process to sleep until the resources free up or
an error occurs. Each GDLC supports the fp_write kernel service via its dlcwrite entry point. The
fp_write kernel service may be called from the process environment only.

Return Values

0 Indicates a successful operation.
EAGAIN Indicates that transmit is temporarily blocked, and the

calling process cannot be put to sleep.

170 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

EINTR Indicates that a signal interrupted the kernel service
before it could complete successfully.

EINVAL Indicates an invalid argument, such as too much data for
a single packet.

ENXIO Indicates an invalid file pointer.

These return values are defined in the /usr/include/sys/errno.h file.

Related Information
The fp_open kernel service, fp_write kernel service.

The uiomove subroutine.

Generic Data Link Control (GDLC) Environment Overview in AIX Version 6.1 Kernel Extensions and
Device Support Programming Concepts.

Parameter Blocks by ioctl Operation for DLC.

read Subroutine Extended Parameters for DLC.

fp_writev Kernel Service

Purpose

Performs a write operation on an open file with arguments passed in iovec elements.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
int fp_writev (fp, iov, iovcnt, ext, segflag, countp)
struct file * fp;
struct iovec * iov;
int iovcnt;
int ext;
int segflag;
int * countp;

Parameters

fp Points to a file structure returned by the fp_open kernel service.
iov Points to an array of iovec elements. Each iovec element describes a buffer containing data to be

written to the file.
iovcnt Specifies the number of iovec elements in an array pointed to by the iov parameter.
ext Specifies an extension argument required by some device drivers. Its content, form, and use are

determined by the individual driver.
segflag Indicates which part of memory the information designated by the iov parameter is located in:

SYS_ADSPACE
The information designated by the iov parameter is in kernel memory.

USER_ADSPACE
The information designated by the iov parameter is in application memory.

countp Points to the location where the count of bytes actually written to the file is to be returned.

Chapter 1. Kernel Services 171

Description
The fp_writev kernel service is an internal interface to the function provided by the writev subroutine.

Execution Environment
The fp_writev kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.

If an error occurs, one of the values from the /usr/include/sys/errno.h file is returned.

Related Information
The writev subroutine.

Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

fubyte Kernel Service

Purpose
Retrieves a byte of data from user memory.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
int fubyte (uaddr)
uchar *uaddr;

Parameter

uaddr Specifies the address of the user data.

Description
The fubyte kernel service fetches, or retrieves, a byte of data from the specified address in user memory.
It is provided so that system calls and device heads can safely access user data. The fubyte service
ensures that the user has the appropriate authority to:

v Access the data.

v Protect the operating system from paging I/O errors on user data.

The fubyte service should be called only while executing in kernel mode in the user process.

Execution Environment
The fubyte kernel service can be called from the process environment only.

Return Values
When successful, the fubyte service returns the specified byte.

-1 Indicates a uaddr parameter that is not valid.

172 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

The access is not valid under the following circumstances:

v The user does not have sufficient authority to access the data.

v The address is not valid.

v An I/O error occurs while referencing the user data.

Related Information
The fuword kernel service, subyte kernel service, suword kernel service.

Accessing User-Mode Data while in Kernel Mode and Memory Kernel Services in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

fuword Kernel Service

Purpose

Retrieves a word of data from user memory.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int fuword (uaddr)
int *uaddr;

Parameter

uaddr Specifies the address of user data.

Description
The fuword kernel service retrieves a word of data from the specified address in user memory. It is
provided so that system calls and device heads can safely access user data. The fuword service ensures
that the user had the appropriate authority to:

v Access the data.

v Protect the operating system from paging I/O errors on user data.

The fuword service should be called only while executing in kernel mode in the user process.

Execution Environment
The fuword kernel service can be called from the process environment only.

Return Values
When successful, the fuword service returns the specified word of data.

-1 Indicates a uaddr parameter that is not valid.

The access is not valid under the following circumstances:

v The user does not have sufficient authority to access the data.

Chapter 1. Kernel Services 173

v The address is not valid.

v An I/O error occurred while referencing the user data.

For the fuword service, a retrieved value of -1 and a return code of -1 are indistinguishable.

Related Information
The fubyte kernel service, subyte kernel service, suword kernel service.

Accessing User-Mode Data while in Kernel Mode and Memory Kernel Services in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

getblk Kernel Service

Purpose
Assigns a buffer to the specified block.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

struct buf *getblk
(dev, blkno)
dev_t dev;
daddr_t blkno;

Parameters

dev Specifies the device containing the block to be allocated.
blkno Specifies the block to be allocated.

Description
The getblk kernel service first checks whether the specified buffer is in the buffer cache. If the buffer
resides there, but is in use, the e_sleep service is called to wait until the buffer is no longer in use. Upon
waking, the getblk service tries again to access the buffer. If the buffer is in the cache and not in use, it is
removed from the free list and marked as busy. Its buffer header is then returned. If the buffer is not in the
buffer cache, another buffer is taken from the free list and returned.

Execution Environment
The getblk kernel service can be called from the process environment only.

Return Values
The getblk service returns a pointer to the buffer header. A nonzero value for B_ERROR in the b_flags
field of the buffer header (buf structure) indicates an error. If this occurs, the caller should release the
block’s buffer using the brelse kernel service.

On a platform that supports storage keys, the buffer header is allocated from the storage protected by the
KKEY_BLOCK_DEV kernel key.

174 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
Block I/O Buffer Cache Kernel Services: Overview in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts summarizes how the bread, brelse, and getblk services uniquely
manage the block I/O buffer cache.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

getc Kernel Service

Purpose
Retrieves a character from a character list.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

int getc (header)
struct clist *header;

Parameter

header Specifies the address of the clist structure that describes the character list.

Description
Attention: The caller of the getc service must ensure that the character list is pinned. This includes
the clist header and all the cblock character buffers. Otherwise, the system may crash.

The getc kernel service returns the character at the front of the character list. After returning the last
character in the buffer, the getc service frees that buffer.

Execution Environment
The getc kernel service can be called from either the process or interrupt environment.

Return Values

-1 Indicates that the character list is empty.

Related Information
I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

getcb Kernel Service

Purpose
Removes the first buffer from a character list and returns the address of the removed buffer.

Chapter 1. Kernel Services 175

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

struct cblock *getcb
(header)
struct clist *header;

Parameter

header Specifies the address of the clist structure that describes the character list.

Description
Attention: The caller of the getcb service must ensure that the character list is pinned. This includes
the clist header and all the cblock character buffers. Character buffers acquired from the getcf
service are pinned. Otherwise, the system may crash.

The getcb kernel service returns the address of the character buffer at the start of the character list and
removes that buffer from the character list. The user must free the buffer with the putcf service when
finished with it.

Execution Environment
The getcb kernel service can be called from either the process or interrupt environment.

Return Values
A null address indicates the character list is empty.

The getcb service returns the address of the character buffer at the start of the character list when the
character list is not empty.

Related Information
The getcf kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

getcbp Kernel Service

Purpose
Retrieves multiple characters from a character buffer and places them at a designated address.

Syntax
#include <cblock.h>

int getcbp (header, dest, n)
struct clist *header;
char *dest;
int n;

176 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

header Specifies the address of the clist structure that describes the character list.
dest Specifies the address where the characters obtained from the character list are to be placed.
n Specifies the number of characters to be read from the character list.

Description
Attention: The caller of the getcbp services must ensure that the character list is pinned. This
includes the clist header and all the cblock character buffers. Character buffers acquired from the
getcf service are pinned. Otherwise, the system may crash.

The getcbp kernel service retrieves as many as possible of the n characters requested from the character
buffer at the start of the character list. The getcbp service then places them at the address pointed to by
the dest parameter.

Execution Environment
The getcbp kernel service can be called from either the process or interrupt environment.

Return Values
The getcbp service returns the number of characters retrieved from the character buffer.

Related Information
The getcf kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

getcf Kernel Service

Purpose
Retrieves a free character buffer.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h

struct cblock *getcf ()

Description
The getcf kernel service retrieves a character buffer from the list of available ones and returns that
buffer’s address. The returned character buffer is pinned. If you use the getcf service to get a character
buffer, be sure to free the space when you have finished using it. The buffers received from the getcf
service should be freed by using the putcf kernel service.

Before starting the getcf service, the caller should request enough clist resources by using the pincf
kernel service. The proper use of the getcf service ensures that there are sufficient pinned buffers
available to the caller.

If the getcf service indicates that there is no available character buffer, the waitcfree service can be called
to wait until a character buffer becomes available.

The getcf service has no parameters.

Chapter 1. Kernel Services 177

Execution Environment
The getcf kernel service can be called from either the process or interrupt environment.

Return Values
Upon successful completion, the getcf service returns the address of the allocated character buffer.

A null pointer indicates no buffers are available.

Related Information
The pincf kernel service, putcf kernel service, waitcfree kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

getcx Kernel Service

Purpose
Returns the character at the end of a designated list.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

int getcx (header)
struct clist *header;

Parameter

header Specifies the address of the clist structure that describes the character list.

Description
Attention: The caller of the getcx service must ensure that the character list is pinned. This includes
the clist header and all the cblock character buffers. Character buffers acquired from the getcf
service are pinned.

The getcx kernel service is identical to the getc service, except that the getcx service returns the
character at the end of the list instead of the character at the front of the list. The character at the end of
the list is the last character in the first buffer, not in the last buffer.

Execution Environment
The getcx kernel service can be called from either the process or interrupt environment.

Return Values
The getcx service returns the character at the end of the list instead of the character at the front of the
list.

Related Information
The getcf kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

178 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

geteblk Kernel Service

Purpose
Allocates a free buffer.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

struct buf *geteblk ()

Description
Attention: The use of the geteblk service by character device drivers is strongly discouraged. As an
alternative, character device drivers can use the xmalloc service to allocate the memory space
directly, or the character I/O kernel services such as the getcb or getcf services.

The geteblk kernel service allocates a buffer and buffer header and returns the address of the buffer
header. If no free buffers are available, then the geteblk service waits for one to become available. Block
device drivers can retrieve buffers using the geteblk service.

In the header, the b_forw, b_back, b_flags, b_bcount, b_dev, and b_un fields are used by the system and
cannot be modified by the driver. The av_forw and av_back fields are available to the user of the geteblk
service for keeping a chain of buffers by the user of the geteblk service. (This user could be the kernel file
system or a device driver.) The b_blkno and b_resid fields can be used for any purpose.

The brelse service is used to free this type of buffer.

The geteblk service has no parameters.

Execution Environment
The geteblk kernel service can be called from the process environment only.

Return Values
The geteblk service returns a pointer to the buffer header. There are no error codes because the geteblk
service waits until a buffer header becomes available.

On a platform that supports storage keys, the buffer header is allocated from the storage protected by the
KKEY_BLOCK_DEV kernel key.

Related Information
The brelse kernel service, xmalloc kernel service.

Block I/O Buffer Cache Kernel Services: Overview, I/O Kernel Services, buf Structure, Device Driver
Concepts Overview in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

geterror Kernel Service

Purpose
Determines the completion status of the buffer.

Chapter 1. Kernel Services 179

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

int geterror (bp)
struct buf *bp;

Parameter

bp Specifies the address of the buffer structure whose status is to be checked.

On a platform that supports storage keys, the passed in bp parameter must be in the KKEY_PUBLIC or
KKEY_BLOCK_DEV protection domain.

Description
The geterror kernel service checks the specified buffer to see if the b_error flag is set. If that flag is not
set, the geterror service returns 0. Otherwise, it returns the nonzero B_ERROR value or the EIO value (if
b_error is 0).

Execution Environment
The geterror kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates that no I/O error occurred on the buffer.
b_error value Indicates that an I/O error occurred on the buffer.
EIO Indicates that an unknown I/O error occurred on the buffer.

Related Information
Block I/O Buffer Cache Kernel Services: Overview and I/O Kernel Services in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

getexcept Kernel Service

Purpose
Allows kernel exception handlers to retrieve additional exception information.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/except.h>

void getexcept
(exceptp)
struct except *exceptp;

180 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameter

exceptp Specifies the address of an except structure, as defined in the /usr/include/sys/except.h file. The
getexcept service copies detailed exception data from the current machine-state save area into this
caller-supplied structure.

Description
The getexcept kernel service provides exception handlers the capability to retrieve additional information
concerning the exception from the machine-state save area.

The getexcept service should only be used by exception handlers when called to handle an exception.
The contents of the structure pointed at by the exceptp parameter is platform-specific, but is described in
the /usr/include/sys/except.h file for each type of exception that provides additional data. This data is
typically included in any error logging data for the exception. It can be also used to attempt to handle or
recover from the exception.

Execution Environment
The getexcept kernel service can be called from either the process or interrupt environment. It should be
called only when handling an exception.

Return Values
The getexcept service has no return values.

Related Information
Kernel Extension and Device Driver Management Kernel Services and in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

getfslimit Kernel Service

Purpose
Returns the maximum file size limit of the current process.

Syntax
#include <sys/types.h>
offset_t getfslimit (void)

Description
The getfslimit kernel service returns the file size limit of the current process as a 64 bit integer. This can
be used by file systems to implement the checks needed to enforce limits. The getfslimit kernel service is
called from the process environment.

Return Values
The getfslimit kernel service returns the the file size limit, there are no error values.

Related Information
The ulimit subroutine, getrlimit subroutine, setrlimit subroutine.

The ulimit command.

Chapter 1. Kernel Services 181

get_pag or get_pag64 Kernel Service

Purpose
Retrieves a Process Authentication Group (PAG) value for the current process.

Syntax
#include <sys/cred.h>

int get_pag (type, pag)
int type;
int *pag;

int get_pag64 (type, pag)
int type;
uint64_t *pag;

Parameters

type PAG type to retrieve
pag Pointer to buffer where operating system returns the PAG

Description
The get_pag and get_pag64 kernel services copy the requested PAG from the current process into pag.
The value of type must be a defined PAG ID. The PAG ID for the Distributed Computing Environment
(DCE) is 0.

Execution Environment
The get_pag and get_pag64 kernel services can be called from the process environment only.

Return Values
A value of 0 is returned upon successful completion. If unsuccessful, errno is set to a value that explains
the error.

Error Codes
The get_pag kernel service fails if one or both of the following conditions are true:

EINVAL Invalid PAG specification
EOVERFLOW PAG value is 64-bit (should be using get_pag64)

The get_pag64 kernel service fails if the following condition is true:

EINVAL Invalid PAG specification

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

182 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

getpid Kernel Service

Purpose
Gets the process ID of the current process.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

pid_t getpid ()

Description
The getpid kernel service returns the process ID of the calling process.

The getpid service can also be used to check the environment that the routine is being executed in. If the
caller is executing in the interrupt environment, the getpid service returns a process ID of -1. If a routine is
executing in a process environment, the getpid service obtains the current process ID.

Execution Environment
The getpid kernel service can be called from either the process or interrupt environment.

Return Values

-1 Indicates that the getpid service was called from an interrupt environment.

The getpid service returns the process ID of the current process if called from a process environment.

Related Information
Process and Exception Management Kernel Services and Understanding Execution Environments in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

getppidx Kernel Service

Purpose
Gets the parent process ID of the specified process.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

pid_t getppidx (ProcessID)
pid_t ProcessID;

Parameter

ProcessID Specifies the process ID. If this parameter is 0, then the parent process ID of the calling process
will be returned.

Description
The getppidx kernel service returns the parent process ID of the specified process.

Chapter 1. Kernel Services 183

Execution Environment
The getppidx kernel service can be called from the process environment only.

Return Values

-1 Indicates that the ProcessID parameter is invalid.

The getppidx service returns the parent process ID of the calling process.

Related Information
The getpid kernel service.

Process and Exception Management Kernel Services and Understanding Execution Environments in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

getuerror Kernel Service

Purpose
Allows kernel extensions to read the ut_error field for the current thread.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int getuerror ()

Description
The getuerror kernel service allows a kernel extension in a process environment to retrieve the current
value of the current thread’s ut_error field. Kernel extensions can use the getuerror service when using
system calls or other kernel services that return error information in the ut_error field.

For system calls, the system call handler copies the value of the ut_error field in the per thread uthread
structure to the errno global variable before returning to the caller. However, when kernel services use
available system calls, the system call handler is bypassed. The getuerror service must then be used to
obtain error information.

Execution Environment
The getuerror kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.

When an error occurs, the getuerror kernel service returns the current value of the ut_error field in the
per thread uthread structure. Possible return values for this field are defined in the /usr/include/sys/
errno.h file.

Related Information
The setuerror kernel service.

184 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Kernel Extension and Device Driver Management Kernel Services and Understanding System Call
Execution in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

getufdflags and setufdflags Kernel Services

Purpose
Queries and sets file-descriptor flags.

Syntax
#include <sys/user.h>
int getufdflags(fd, flagsp)
int fd;
int *flagsp;
#include <sys/user.h>
int setufdflags(fd, flags)
int fd;
int flags;

Parameters

fd Identifies the file descriptor.
flags Sets attribute flags for the specified file descriptor. Refer to the sys/user.h file for the list of valid flags.
flagsp Points to an integer field where the flags associated with the file descriptor are stored on successful

return.

Description
The setufdflags and getufdflags kernel services set and query the file descriptor flags. The file descriptor
flags are listed in fontl.h.

Execution Environment
These kernel services can be called from the process environment only.

Return Values

0 Indicates successful completion.
EBADF Indicates that the fd parameter is not a file descriptor for an open file.

Related Information
The ufdhold and ufdrele kernel services.

get_umask Kernel Service

Purpose
Queries the file mode creation mask.

Syntax
int get_umask(void)

Chapter 1. Kernel Services 185

Description
The get_umask service gets the value of the file mode creation mask currently set for the process.

Note: There is no corresponding kernel service to set the umask because kernel routines that need to set
the umask can call the umask subroutine.

Execution Environment
The get_umask kernel service can be called from the process environment only.

Return Values
The get_umask kernel service always completes successfully. Its return value is the current value of the
umask.

Related Information
The umask subroutine.

gfsadd Kernel Service

Purpose
Adds a file system type to the gfs table.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
int gfsadd (gfsno, gfsp)
int gfsno;
struct gfs *gfsp;

Parameters

gfsno Specifies the file system number. This small integer value is either defined in the /usr/include/sys/
vmount.h file or a user-defined number of the same order.

gfsp Points to the file system description structure.

Description
The gfsadd kernel service is used during configuration of a file system. The configuration routine for a file
system invokes the gfsadd kernel service with a gfs structure. This structure describes the file system
type.

The gfs structure type is defined in the /usr/include/sys/gfs.h file. The gfs structure must have the
following fields filled in:

Field Description
gfs_type Specifies the integer type value. The predefined types are listed in the /usr/include/sys/vmount.h

file.
gfs_name Specifies the character string name of the file system. The maximum length of this field is 16 bytes.

Shorter names must be null-padded.

186 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Field Description
gfs_flags Specifies the flags that define the capabilities of the file system. The following flag values are

defined:

GFS_FUMNT
File system supports forced unmount.

GFS_NAMED_OPEN
File system supports named open.

GFS_NOUMASK
File system applies umask when creating new objects.

GFS_REMNT
File system supports remount of a mounted file system.

GFS_REMOTE
File system is remote (ie. NFS).

GFS_STATFSVP
File system supports vfs_statfsvp VFS interface. (new vfs operation: vfs_statfsvp)

GFS_SYS5DIR
File system that uses the System V-type directory structure.

GFS_VERSION4
File system supports AIX Version 4 V-node interface.

GFS_VERSION42
File system supports AIX 4.2 V-node interface. (new vnode operation: vnop_seek)

GFS_VERSION421
File system supports AIX 4.2.1 V-node interface.(new vnode operations: vnop_sync_range,
vnop_create_attr, vnop_finfo, vnop_map_lloff, vnop_readdir_eofp, vnop_rdwr_attr))

GFS_VERSION43
File system supports AIX 4.3 V-node interface. (new file flag for
vnop_sync_range:FMSYNC)

GFS_VERSION53
File system supports AIX 5.3 V-node interface (new vnode operations: vnop_getxacl,
vnop_setxacl) and AIX 5.3 VFS interface. (new vfs operation: vfs_aclxcntl)

gfs_ops Specifies the array of pointers to vfs operation implementations.
gn_ops Specifies the array of pointers to v-node operation implementations.

The file system description structure can also specify:

gfs_init Points to an initialization routine to be called by the gfsadd kernel service. This field must be null if
no initialization routine is to be called.

gfs_data Points to file system private data.

Execution Environment
The gfsadd kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
EBUSY Indicates that the file system type has already been installed.
EINVAL Indicates that the gfsno value is larger than the system-defined maximum. The system-defined maximum

is indicated in the /usr/include/sys/vmount.h file.

Chapter 1. Kernel Services 187

Related Information
The gfsdel kernel service.

gfsdel Kernel Service

Purpose
Removes a file system type from the gfs table.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int gfsdel (gfsno)
int gfsno;

Parameter

gfsno Specifies the file system number. This value identifies the type of the file system to be deleted.

Description
The gfsdel kernel service is called to delete a file system type. It is not valid to mount any file system of
the given type after that type has been deleted.

Execution Environment
The gfsdel kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
ENOENT Indicates that the indicated file system type was not installed.
EINVAL Indicates that the gfsno value is larger than the system-defined maximum. The system-defined maximum

is indicated in the /usr/include/sys/vmount.h file.
EBUSY Indicates that there are active vfs structures for the file system type being deleted.

Related Information
Virtual File System Overview, Virtual File System Kernel Services in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

The gfsadd kernel service.

gn_closecnt Subroutine

Purpose
Maintains the using count on a gnode structure.

Syntax
#include <sys/vnode.h>
#include <sys/fcntl.h>

188 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

void gn_closecnt (gnode, flags)
struct gnode *gnode;
long flags;

Parameters

gnode Points to a gnode structure.
flags Specifies the open mode (FREAD, FWRITE, FEXEC, FRSHARE) from the open file flags.

Description
The gn_closecnt subroutine uses the passed in flags value to determine the appropriate using counts to
decrease in the gnode structure. For example, if the FREAD flag is set, the gn_closecnt subroutine
decreases the gn_rdcnt field. The following table shows the mapping of the flags value to the counts field
in the gnode structure:

FREAD gn_rdcnt
FWRITE gn_wrcnt
FEXEC gn_excnt
FRSHARE gn_rshcnt

Return Values
The gn_closecnt subroutine returns no return values.

Error Codes
The gn_closecnt subroutine returns no error codes.

Related Information
Understanding Data Structures and Header Files for Virtual File Systems in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

gn_common_memcntl Subroutine

Purpose
Changes or queries the physical attachment of a file.

Syntax
#include <sys/vnode.h>
#include <sys/fcntl.h>

int gn_common_memcntl (gnode, cmd, arg)
struct gnode * gnode;
int cmd;
void * arg;

Parameters

gnode Points to a gnode structure.

Chapter 1. Kernel Services 189

cmd Specifies the operation to be performed. The cmd parameter can be one of the following values:

v F_ATTACH

v F_DETACH

v F_ATTINFO
arg Points to a structure containing information for the specified cmd parameter.

F_ATTACH attach_desc_t
F_DETACH detach_desc_t
F_ATTINFO attinfo_desc_t

Description
The gn_common_memcntl subroutine is to be called by file system vnop_memcntl implementations. It
performs the normal function of such operations. If the cmd parameter is set to F_ATTACH, the
gn_common_memcntl subroutine attaches the segment specified by the gn_seg field in the gnode
structure. If the cmd parameter is set to F_DETACH, the gn_common_memcntl subroutine detaches the
segment. If the cmd parameter is set to F_ATTINFO, the gn_common_memcntl subroutine returns
information about the current state of attachment.

Return Values

0 Success.
non-zero Failure.

Error Codes

EINVAL The cmd parameter is not valid.
ENOMEM Resources are not available to attach the memory segment.

gn_mapcnt Subroutine

Purpose
Maintains the mapping count in a gnode structure.

Syntax
#include <sys/vnode.h>
#include <sys/shm.h>

void gn_mapcnt (gnode, flags)
struct gnode * gnode;
long flags;

Parameters

gnode Points to a gnode structure.
flags Specifies the following mapping flag:

SHM_RDONLY
Only read access is required.

190 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The gn_mapcnt subroutine uses the passed in flags value to determine the appropriate mapping count to
increase in the gnode structure. If the SHM_RDONLY flag is set, the gn_mapcnt subroutine increases the
gn_mrdcnt field. Otherwise, the gn_mapcnt subroutine increases the gn_mwrcnt field.

Return Values
The gn_mapcnt subroutine returns no return values.

Error Codes
The gn_mapcnt subroutine returns no error codes.

Related Information
The mmap subroutine in AIX Version 6.1 Technical Reference: Base Operating System and Extensions
Volume 1.

The shmat subroutine in AIX Version 6.1 Technical Reference: Base Operating System and Extensions
Volume 2.

gn_opencnt Subroutine

Purpose
Maintains the using count on a gnode structure.

Syntax
#include <sys/vnode.h>
#include <sys/fcntl.h>

void gn_opencnt (gnode, flags)
struct gnode * gnode;
long flags;

Parameters

gnode Points to a gnode structure.
flags Specifies the open mode (FREAD, FWRITE, FEXEC, FRSHARE) from the open file flags.

Description
The gn_opencnt subroutine uses the passed in flags value to determine the appropriate using counts to
increase in the gnode structure. The following table shows the mapping of the flags value to the counts
field in the gnode structure:

FREAD gn_rdcnt
FWRITE gn_wrcnt
FEXEC gn_excnt
FRSHARE gn_rshcnt

Return Values
The gn_opencnt subroutine returns no return values.

Chapter 1. Kernel Services 191

Error Codes
The gn_opencnt subroutine returns no error codes.

Related Information
Understanding Data Structures and Header Files for Virtual File Systems in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

gn_unmapcnt Subroutine

Purpose
Maintains the mapping count in a gnode structure.

Syntax
#include <sys/vnode.h>
#include <sys/shm.h>

void gn_unmapcnt (gnode, flags)
struct gnode * gnode;
long flags;

Parameters

gnode Points to a gnode structure.
flags Specifies the following mapping flag:

SHM_RDONLY
Only read access is required.

Description
The gn_unmapcnt subroutine uses the passed in flags value to determine the appropriate mapping count
to decrease in the gnode structure. If the SHM_RDONLY flag is set, the gn_unmapcnt subroutine
decreases the gn_mrdcnt field. Otherwise, the gn_unmapcnt subroutine decreases the gn_mwrcnt field.

Return Values
The gn_unmapcnt subroutine returns no return values.

Error Codes
The gn_unmapcnt subroutine returns no error codes.

Related Information
The mmap subroutine in AIX Version 6.1 Technical Reference: Base Operating System and Extensions
Volume 1.

The shmat subroutine in AIX Version 6.1 Technical Reference: Base Operating System and Extensions
Volume 2.

groupmember, groupmember_cr Subroutines

Purpose
Determines if the named group is a member of a credential group set.

192 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/types.h>
#include <sys/cred.h>

int groupmember (gid)
gid_t gid;

int groupmember_cr (gid, cred)
gid_t gid;
cred_t * cred;

Parameters

gid Specifies an identifier for a group.
cred Points to a ucred structure.

Description
The groupmember subroutines determine if a group is included in the group set of a credential structure.
The groupmember subroutine queries the credential associated with the current thread. The
groupmember_cr subroutine checks for the group within the specified ucred structure.

Return Values
The groupmember subroutines return TRUE if the ucred structure contains the specified gid parameter or
if the specified gid parameter is the current effective group ID for the thread. Otherwise, these routines
return FALSE.

Error Codes
The groupmember subroutines return no error codes.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

heap_create Kernel Service

Purpose
Initializes a new heap to be used with kernel memory management services. The heap_create kernel
service replaces the init_heap kernel service. It returns a heap handle that can be used with the xmalloc
and the xmfree kernel services.

Syntax
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/skeys.h>
#include <sys/kerrno.h>

kerrno_t heap_create (heapattr_t * heapattr, heapaddr_t * heapptr);

Chapter 1. Kernel Services 193

Parameters

heapattr Points to an initialized heap attribute structure. See the sys/malloc.h file. This
structure is initialized by the caller of heap_create.

heapptr Points to an external heap descriptor. The caller must initialize this parameter to the
HPA_INVALID_HEAP value.

The heapattr structure contains the following fields:

eye_catch8b_t hpa_eyec Must be initialized to the EYEC_HEAPATTR value.
short hpa_version Must be initialized to the HPA_VERSION value.
long hpa_flags The following flags describe heap properties:

HPA_PAGED
The heap returns pageable memory.

HPA_PINNED
The heap returns pinned memory.

HPA_SHARED
The returned descriptor is backed by a common sub-heap.

HPA_PRIVATE
The returned descriptor is backed by isolated storage.

void * hpa_heapaddr Must be set to NULL (reserved).
size_t hpa_heapsize Heap size in bytes. It is only used for private heaps.
size_t hpa_limit Usage barrier independent from size. Limits the amount available from a private heap

that is less than or equal to the actual size of the private heap.
long hpa_debug_level Heap debug level. The HPA_DEFAULT_DEBUG value gives the heap the system

debug level.
uint hpa_kkey Kernel key requested for the storage allocated.

Description
The heap_create service is a replacement for the init_heap service. It can be used to create private
heaps, and to create shared sub-heaps. After this service creates a private heap or a handle to a shared
sub-heap, the returned heapaddr_t value can be used with the xmalloc service or the xmfree service to
allocate or free memory from that heap.

The most common usage for the heap_create service is to get a handle to a shared sub-heap. This is
done by setting the HPA_SHARED flag in the input attribute structure. See the sys_malloc.h file.

Private heaps can be created by specifying the HPA_PRIVATE flag. This allows the heap_create service
to initialize and manage an area of virtual memory as a private heap. The hpa_heapaddr field must be set
to zero. The heap_create service provides the storage but this field is reserved for future use. The
hpa_size field indicates the size of the private heap in bytes.

Private heaps can make use of the hpa_limit field. Use the hpa_size field to reserve a maximum effective
address space. Then use the hpa_limit field to alter and control the amount of effective address space
that is in use. The value of the hpa_limit field must be less than or equal to the value of the hpa_size
field.

The hpa_debug and hpa_kkey fields are required for shared and private heaps. The hpa_debug level
allows a component run-time debug level to be applied to allocations using the returned heap handle. The
hpa_kkey field associates a kernel key with a sub-heap that can limit the kernel accessibility.

On a successful completion, the heapattr field contains the address of a heap structure. This can be used
as a parameter to the xmalloc and the xmfree kernel services. The memory returned by these services

194 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

and the internal heap structures are protected by the hpa_kkey field. When calling the xmalloc and the
xmfree heap services, the caller must hold the key that was used when creating the heap.

Execution Environment
The heap_create kernel service can be called from the process environment only.

Return Values

0 Indicates a successful completion. A descriptor is returned in the heapptr
parameter.

EINVAL_HEAP_CREATE Indicates one or more of the following inputs that were not valid:

v heapattr is NULL.

v *heapptr != HPA_INVALID_HEAP.

v heapattr->hpa_eyec != EYEC_HEAPATTR.

v heapattr->hpa_version != HPA_VERSION.

v Flags: Both the HPA_SHARED and the HPA_PRIVATE flags are
specified.

v Flags: Neither the HPA_SHARED nor the HPA_PRIVATE flag is
specified.

v Flags: Both the HPA_PINNED and the HPA_PAGED flags are specified.

v Flags: Neither the HPA_PINNED nor the HPA_PAGED flag is specified.

v Keys: kernel key specified is not valid.

v Other: Size is specified with a shared heap.

v Other: Limit is specified with a shared heap.

v Other: Address specified is not NULL.

v Other: Limit > size for private heap.

v Other: Private heap size is too small (less than 8M).
ENOMEM_HEAP_CREATE Indicates insufficient memory available to complete the request.

Related Information
The heap_modify kernel service, heap_destroy kernel service

heap_destroy Kernel Service

Purpose
Removes a heap.

Syntax
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/kerrno.h>

kerrno_t heap_destroy (heapattr_t heap, long flags);

Parameters

heap The heap to destroy.
flags Must be zero.

Chapter 1. Kernel Services 195

Description
This service removes a heap and its internal resources from the system. There must be no outstanding
allocations when a heap is destroyed.

Execution Environment
The heap_destroy kernel service can be called from the process environment only.

Return Values

EINVAL_HEAP_DESTROY The heap parameter is not recognizable.
EBUSY_HEAP_DESTROY The heap is still in use.

Related Information
The heap_create kernel service.

The heap_modify kernel service.

heap_modify Kernel Service

Purpose
Modifies the attributes of a heap.

Syntax
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/kerrno.h>

kerrno_t heap_modify (heapattr_t heap, long command, long argument);

Parameters

heap The heap handle returned from the heap_create kernel service.
command Specifies the operation to perform. The following values are supported:

HPA_SET_LIMIT
Modifies the limit value of a private heap.

HPA_SET_DEBUG
Modifies the debug level. Debug levels from 0 to 9 are supported.

argument Command specific data (new limit or debug level).

Description
The heap_modify kernel service is used to alter the heap characteristics at run time.

Execution Environment
The heap_modify kernel service can be called from the process environment only with interrupts enabled.

Return Values

0 Success.
EINVAL_HEAP_MODIFY The command or the execution environment is not valid.

196 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

ERANGE_HEAP_MODIFY Heap property is outside the supported range.

Related Information
The heap_create kernel service, heap_destroy kernel service.

hkeyset_add, hkeyset_replace, hkeyset_restore, or hkeyset_get Kernel
Service

Purpose
Manipulates the protection domain (page access as controlled by storage keys) in use for code execution
in the kernel environment.

Syntax
#include <sys/skeys.h>

hkeyset_t hkeyset_add (hkeyset_t keyset);
hkeyset_t hkeyset_replace (hkeyset_t keyset);
void hkeyset_restore (hkeyset_t keyset);
hkeyset_t hkeyset_get (void);

Parameters

keyset The hardware keyset to be activated.

Description
If storage protection keys are enabled, every memory page has a hardware storage protection key
associated with it. A keyset is a representation of the access rights to a set of storage protection keys. To
access a memory page, a hardware keyset containing the storage key associated with the memory page
must be active.

The hkeyset_add kernel service updates the protection domain by adding the hardware keyset specified
by the keyset parameter to the currently addressable hardware keyset. The previous hardware keyset is
returned.

The hkeyset_replace kernel service updates the protection domain by loading the hardware keyset
specified by the keyset parameter as the currently addressable storage set. The previous hardware keyset
is returned.

The hkeyset_restore kernel service restores a caller’s hardware keyset when returning from a module
entry point. It does not return any value.

The hkeyset_get kernel service reads the current hardware keyset without altering it.

Execution Environment
The hkeyset_add, hkeyset_replace, hkeyset_restore, or hkeyset_get kernel service can be called from
either the process environment or the interrupt environment.

Return Values
The hkeyset_add, hkeyset_replace, and hkeyset_get kernel services return the keyset value that was
active before the call. The hkeyset_restore kernel service does not return any value.

Chapter 1. Kernel Services 197

Related Information
Kernel Storage Protection Keys Concepts in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

hkeyset_restore_userkeys Kernel Service

Purpose
Restores the previous user-memory access.

Syntax
#include <sys/skeys.h>

kerrno_t hkeyset_restore_userkeys (oldset)
hkeyset_t oldset;

Parameters

oldset Specifies the previous hardware keyset returned by the hkeyset_update_userkeys kernel service.

Description
The hkeyset_restore_userkeys kernel service is a specialized protection gate that restores only the
user-mode portion of the current hardware keyset. This is normally done by the kernel after this kernel
service accesses user memory.

Execution Environment
The hkeyset_restore_userkeys kernel service can be called from the process environment only.

Return Values

0 Indicates a successful completion.
EINVAL_HKEYSET_RESTORE_USERKEYS Indicates that the execution environment is not valid.

Related Information
The hkeyset_update_userkeys kernel service.

hkeyset_update_userkeys Kernel Service

Purpose
Establishes accessibility to user memory.

Syntax
#include <sys/skeys.h>

kerrno_t hkeyset_update_userkeys (oldset)
hkeyset_t *oldset;

198 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

oldset Contains the returned previous hardware keyset. The valid parameter must be an 8-byte aligned
address.

Description
The hkeyset_update_userkeys kernel service is a specialized protection gate that alters only the
user-mode portion of the current hardware keyset. The user-mode storage keys for the currently running
thread is placed into the current hardware keyset. This is normally done by the kernel when this kernel
service accesses user memory.

The previous hardware keyset is returned in the memory specified by the oldset parameter. You can use
the hkeyset_restore_userkeys kernel service to remove the user accessibility when it is no longer
needed.

Important: Kernel services such as xmemin, xmemout, uiomove, copyin, and coypout are the
suggested ways to access user memory from the kernel. If possible, avoid using kernel code
to directly access user memory.

Execution Environment
The hkeyset_update_userkeys kernel service can be called from the process environment only.

Return Values

0 Indicates a successful completion.
EINVAL_HKEYSET_UPDATE_USERKEYS Indicates that the parameter or execution environment is not

valid.

Related Information
The hkeyset_restore_userkeys kernel service, xmemin kernel service, xmemout kernel service,
uiomove kernel service, copyin kernel service, copyout kernel service.

i_clear Kernel Service

Purpose
Removes an interrupt handler.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/intr.h>

void i_clear (handler)
struct intr *handler;

Parameter

handler Specifies the address of the interrupt handler structure passed to the i_init service.

Chapter 1. Kernel Services 199

Description
The i_clear service removes the interrupt handler specified by the handler parameter from the set of
interrupt handlers that the kernel knows about. ″Coding an Interrupt Handler″ in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts contains a brief description of interrupt handlers.

The i_mask service is called by the i_clear service to disable the interrupt handler’s bus interrupt level
when this is the last interrupt handler for the bus interrupt level. The i_clear service removes the interrupt
handler structure from the list of interrupt handlers. The kernel maintains this list for that bus interrupt
level.

Execution Environment
The i_clear kernel service can be called from the process environment only.

Return Values
The i_clear service has no return values.

Related Information
The i_init kernel service.

I/O Kernel Services, Understanding Interrupts in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

i_disable Kernel Service

Purpose
Disables interrupt priorities.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/intr.h>

int i_disable (new)
int new;

Parameter

new Specifies the new interrupt priority.

Description
Attention: The i_disable service has two side effects that result from the replaceable and pageable
nature of the kernel. First, it prevents process dispatching. Second, it ensures, within limits, that the
caller’s stack is in memory. Page faults that occur while the interrupt priority is not equal to INTBASE
crash the system.

Note: The i_disable service is very similar to the standard UNIX spl service.

The i_disable service sets the interrupt priority to a more favored interrupt priority. The interrupt priority is
used to control which interrupts are allowed.

200 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

A value of INTMAX is the most favored priority and disables all interrupts. A value of INTBASE is the least
favored and disables only interrupts not in use. The /usr/include/sys/intr.h file defines valid interrupt
priorities.

The interrupt priority is changed only to serialize code executing in more than one environment (that is,
process and interrupt environments).

For example, a device driver typically links requests in a list while executing under the calling process. The
device driver’s interrupt handler typically uses this list to initiate the next request. Therefore, the device
driver must serialize updating this list with device interrupts. The i_disable and i_enable services provide
this ability. The I_init kernel service contains a brief description of interrupt handlers.

Note: When serializing such code in a multiprocessor-safe kernel extension, locking must be used as well
as interrupt control. For this reason, new code should call the disable_lock kernel service instead
of i_disable. The disable_lock service performs locking only on multiprocessor systems, and helps
ensure that code is portable between uniprocessor and multiprocessor systems.

The i_disable service must always be used with the i_enable service. A routine must always return with
the interrupt priority restored to the value that it had upon entry.

The i_mask service can be used when a routine must disable its device across a return.

Because of these side effects, the caller of the i_disable service should ensure that:

v The reference parameters are pinned.

v The code executed during the disable operation is pinned.

v The amount of stack used during the disable operation is less than 1KB.

v The called programs use less than 1KB of stack.

In general, the caller of the i_disable service should also call only services that can be called by interrupt
handlers. However, processes that call the i_disable service can call the e_sleep, e_wait, e_sleepl,
lockl, and unlockl services as long as the event word or lockword is pinned.

The kernel’s first-level interrupt handler sets the interrupt priority for an interrupt handler before calling the
interrupt handler. The interrupt priority for a process is set to INTBASE when the process is created and is
part of each process’s state. The dispatcher sets the interrupt priority to the value associated with the
process to be executed.

Execution Environment
The i_disable kernel service can be called from either the process or interrupt environment.

Return Value
The i_disable service returns the current interrupt priority that is subsequently used with the i_enable
service.

Related Information
The disable_lock kernel service, i_enable kernel service, i_mask kernel service.

I/O Kernel Services, Understanding Execution Environments, Understanding Interrupts in AIX Version 6.1
Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 201

i_enable Kernel Service

Purpose
Enables interrupt priorities.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/intr.h>

void i_enable (old)
int old;

Parameter

old Specifies the interrupt priority returned by the i_disable service.

Description
The i_enable service restores the interrupt priority to a less-favored value. This value should be the value
that was in effect before the corresponding call to the i_disable service.

Note: When serializing a thread with an interrupt handler in a multiprocessor-safe kernel extension,
locking must be used as well as interrupt control. For this reason, new code should call the
unlock_enable kernel service instead of i_enable. The unlock_enable service performs locking
only on multiprocessor systems, and helps ensure that code is portable between uniprocessor and
multiprocessor systems.

Execution Environment
The i_enable kernel service can be called from either the process or interrupt environment.

Return Values
The i_enable service has no return values.

Related Information
The i_disable kernel service, unlock_enable kernel service.

Understanding Interrupts, I/O Kernel Services, Understanding Execution Environments in AIX Version 6.1
Kernel Extensions and Device Support Programming Concepts.

i_eoi Kernel Service

Purpose
Issues an End of Interrupt (EOI) for a given handler.

Syntax
int i_eoi(struct intr *handler)

Description
The i_eoi kernel service allows a device driver to issue an End of Interrupt (EOI) for its device explicitly.
For level-triggered interrupts, after the second level interrupt handler (SLIH) has completed, the kernel

202 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

issues an EOI on behalf of the device driver. For ISA (8259) edge-triggered interrupts, the kernel issues
the EOI on behalf of the device driver before calling the SLIH. However, in the case of some
edge-triggered interrupts (for example, PCI and PCI-E style edge-triggered interrupt), it is desirable that
the device driver checks for pending work before the EOI is issued, and the driver is required to check for
any additional work after the EOI is issued. The i_eoi kernel service facilitates such operations and issues
an EOI for an edge-triggered interrupt source. The i_eoi kernel service fails if called for a level-triggered
interrupt source.

Parameters

handler Pointer to the interrupt handler

Execution Environment
The i_eoi kernel service can be called from process or interrupt environment.

Return Values
INTR_SUCC if successful

INTR_FAIL if unsuccessful (the INTR_EDGE flag was not set on i_init()).

Virtual device drivers’ interrupt services are similar to the PCI interrupt services. Interrupts are registered
with a bus_type of BUS_BID. The primary difference is that the edge flag should be set for vdevices. For
example:
Parent CuDv "bus_id" VDEVICE bus BID
Device CuAt "bus_intr_lvl" Adapter interrupt level

intr.flags |= INTR_EDGE
intr.bus_type = BUS_BID
intr.bid = Parent_CuDv.bus_id
intr.level = Device_CuAt.bus_intr_lvl

PCI-E interrupts are Message Signalled Interrupts, and hence, they are edge-triggered. Therefore,
INTR_EDGE flag should be specified.

ifa_ifwithaddr Kernel Service

Purpose
Locates an interface based on a complete address.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/af.h>

struct ifaddr * ifa_ifwithaddr (addr)
struct sockaddr *addr;

Parameter

addr Specifies a complete address.

Chapter 1. Kernel Services 203

Description
The ifa_ifwithaddr kernel service is passed a complete address and locates the corresponding interface.
If successful, the ifa_ifwithaddr service returns the ifaddr structure associated with that address.

Execution Environment
The ifa_ifwithaddr kernel service can be called from either the process or interrupt environment.

Return Values
If successful, the ifa_ifwithaddr service returns the corresponding ifaddr structure associated with the
address it is passed. If no interface is found, the ifa_ifwithaddr service returns a null pointer.

Example
To locate an interface based on a complete address, invoke the ifa_ifwithaddr kernel service as follows:
ifa_ifwithaddr((struct sockaddr *)&ipaddr);

Related Information
The ifa_ifwithdstaddr kernel service, ifa_ifwithnet kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

ifa_ifwithdstaddr Kernel Service

Purpose
Locates the point-to-point interface with a given destination address.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/socket.h>
#include <net/if.h>

struct ifaddr * ifa_ifwithdstaddr (addr)
struct sockaddr *addr;

Parameter

addr Specifies a destination address.

Description
The ifa_ifwithdstaddr kernel service searches the list of point-to-point addresses per interface and locates
the connection with the destination address specified by the addr parameter.

Execution Environment
The ifa_withdstaddr kernel service can be called from either the process or interrupt environment.

Return Values
If successful, the ifa_ifwithdstaddr service returns the corresponding ifaddr structure associated with the
point-to-point interface. If no interface is found, the ifa_ifwithdstaddr service returns a null pointer.

204 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Example
To locate the point-to-point interface with a given destination address, invoke the ifa_ifwithdstaddr kernel
service as follows:
ifa_ifwithdstaddr((struct sockaddr *)&ipaddr);

Related Information
The ifa_ifwithaddr kernel service, ifa_ifwithnet kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

ifa_ifwithnet Kernel Service

Purpose
Locates an interface on a specific network.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/socket.h>
#include <net/if.h>

struct ifaddr * ifa_ifwithnet (addr)
register struct sockaddr *addr;

Parameter

addr Specifies the address.

Description
The ifa_ifwithnet kernel service locates an interface that matches the network specified by the address it
is passed. If more than one interface matches, the ifa_ifwithnet service returns the first interface found.

Execution Environment
The ifa_ifwithnet kernel service can be called from either the process or interrupt environment.

Return Values
If successful, the ifa_ifwithnet service returns the ifaddr structure of the correct interface. If no interface is
found, the ifa_ifwithnet service returns a null pointer.

Example
To locate an interface on a specific network, invoke the ifa_ifwithnet kernel service as follows:
ifa_ifwithnet((struct sockaddr *)&ipaddr);

Related Information
The ifa_ifwithaddr kernel service, ifa_ifwithdstaddr kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

Chapter 1. Kernel Services 205

if_attach Kernel Service

Purpose

Adds a network interface to the network interface list.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>

if_attach (ifp)
struct ifnet *ifp;

Parameter

ifp Points to the interface network (ifnet) structure that defines the network interface.

Description
The if_attach kernel service registers a Network Interface Driver (NID) in the network interface list.

Execution Environment
The if_attach kernel service can be called from either the process or interrupt environment.

Return Values
The if_attach kernel service has no return values.

Related Information
The if_detach kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

if_detach Kernel Service

Purpose
Deletes a network interface from the network interface list.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>

if_detach (ifp)
struct ifnet *ifp;

Parameter

ifp Points to the interface network (ifnet) structure that describes the network interface to delete.

206 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The if_detach kernel service deletes a Network Interface Driver (NID) entry from the network interface list.

Execution Environment
The if_detach kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates that the network interface was successfully deleted.
ENOENT Indicates that the if_detach kernel service could not find the NID in the network interface list.

Related Information
The if_attach kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

if_down Kernel Service

Purpose
Marks an interface as down.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>
void if_down (ifp)
register struct ifnet *ifp;

Parameter

ifp Specifies the ifnet structure associated with the interface array.

Description
The if_down kernel service:

v Marks an interface as down by setting the flags field of the ifnet structure appropriately.

v Notifies the protocols of the transaction.

v Flushes the output queue.

The ifp parameter specifies the ifnet structure associated with the interface as the structure to be marked
as down.

Execution Environment
The if_down kernel service can be called from either the process or interrupt environment.

Return Values
The if_down service has no return values.

Chapter 1. Kernel Services 207

Example
To mark an interface as down, invoke the if_down kernel service as follows:
if_down(ifp);

Related Information
Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

if_nostat Kernel Service

Purpose
Zeroes statistical elements of the interface array in preparation for an attach operation.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>

void if_nostat (ifp)
struct ifnet *ifp;

Parameter

ifp Specifies the ifnet structure associated with the interface array.

Description
The if_nostat kernel service zeroes the statistic elements of the ifnet structure for the interface. The ifp
parameter specifies the ifnet structure associated with the interface that is being attached. The if_nostat
service is called from the interface attach routine.

Execution Environment
The if_nostat kernel service can be called from either the process or interrupt environment.

Return Values
The if_nostat service has no return values.

Example
To zero statistical elements of the interface array in preparation for an attach operation, invoke the
if_nostat kernel service as follows:
if_nostat(ifp);

Related Information
Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

ifunit Kernel Service

Purpose
Returns a pointer to the ifnet structure of the requested interface.

208 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>

struct ifnet *
ifunit (name)
char *name;

Parameter

name Specifies the name of an interface (for example, en0).

Description
The ifunit kernel service searches the list of configured interfaces for an interface specified by the name
parameter. If a match is found, the ifunit service returns the address of the ifnet structure for that
interface.

Execution Environment
The ifunit kernel service can be called from either the process or interrupt environment.

Return Values
The ifunit kernel service returns the address of the ifnet structure associated with the named interface. If
the interface is not found, the service returns a null value.

Example
To return a pointer to the ifnet structure of the requested interface, invoke the ifunit kernel service as
follows:
ifp = ifunit("en0");

Related Information
Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

i_init Kernel Service

Purpose
Defines an interrupt handler.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/intr.h>

int i_init
(handler)
struct intr *handler;

Chapter 1. Kernel Services 209

Parameter

handler Designates the address of the pinned interrupt handler structure.

Description
Attention: The interrupt handler structure must not be altered between the call to the i_init service to
define the interrupt handler and the call to the i_clear service to remove the interrupt handler. The
structure must also stay pinned. If this structure is altered at those times, a kernel panic may result.

The i_init service allows device drivers to define an interrupt handler to the kernel. The interrupt handler
intr structure pointed to by the handler parameter describes the interrupt handler. The caller of the i_init
service must initialize all the fields in the intr structure. The /usr/include/sys/intr.h file defines these fields
and their valid values.

The i_init service enables interrupts by linking the interrupt handler structure to the end of the list of
interrupt handlers defined for that bus level. If this is the first interrupt handler for the specified bus
interrupt level, the i_init service enables the bus interrupt level by calling the i_unmask service.

The interrupt handler can be called before the i_init service returns if the following two conditions are met:

v The caller of the i_init service is executing at a lower interrupt priority than the one defined for the
interrupt.

v An interrupt for the device or another device on the same bus interrupt level is already pending.

On multiprocessor systems, all interrupt handlers defined with the i_init kernel service run by default on
the first processor started when the system was booted. This ensures compatibility with uniprocessor
interrupt handlers. If the interrupt handler being defined has been designed to be multiprocessor-safe, or is
an EPOW (Early Power-Off Warning) or off-level interrupt handler, set the INTR_MPSAFE flag in the flags
field of the intr structure passed to the i_init kernel service. The interrupt handler will then run on any
available processor.

Coding an Interrupt Handler

The kernel calls the interrupt handler when an enabled interrupt occurs on that bus interrupt level. The
interrupt handler is responsible for determining if the interrupt is from its own device and processing the
interrupt. The interface to the interrupt handler is as follows:

int interrupt_handler (handler)
struct intr *handler;

The handler parameter points to the same interrupt handler structure specified in the call to the i_init
kernel service. The device driver can pass additional parameters to its interrupt handler by declaring the
interrupt handler structure to be part of a larger structure that contains these parameters.

The interrupt handler can return one of two return values. A value of INTR_SUCC indicates that the
interrupt handler processed the interrupt and reset the interrupting device. A value of INTR_FAIL indicates
that the interrupt was not from this interrupt handler’s device.

Registering Early Power-Off Warning (EPOW) Routines

The i_init kernel service can also be used to register an EPOW (Early Power-Off Warning) notification
routine.

The return value from the EPOW interrupt handler should be INTR_SUCC, which indicates that the
interrupt was successfully handled. All registered EPOW interrupt handlers are called when an EPOW
interrupt is indicated.

210 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment
The i_init kernel service can be called from the process environment only.

Return Values

INTR_SUCC Indicates a successful completion.
INTR_FAIL Indicates an unsuccessful completion. The i_init service did not define the interrupt handler.

An unsuccessful completion occurs when there is a conflict between a shared and a nonshared
bus interrupt level. An unsuccessful completion also occurs when more than one interrupt priority is
assigned to a bus interrupt level.

Related Information
Understanding Interrupts, I/O Kernel Services, in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

i_mask Kernel Service

Purpose
Disables a bus interrupt level.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/intr.h>

void i_mask (handler)
struct intr *handler;

Parameter

handler Specifies the address of the interrupt handler structure that was passed to the i_init service.

Description
The i_mask service disables the bus interrupt level specified by the handler parameter.

The i_disable and i_enable services are used to serialize the execution of various device driver routines
with their device interrupts.

The i_init and i_clear services use the i_mask and i_unmask services internally to configure bus
interrupt levels.

Device drivers can use the i_disable, i_enable, i_mask, and i_unmask services when they must perform
off-level processing with their device interrupts disabled. Device drivers also use these services to allow
process execution when their device interrupts are disabled.

Execution Environment
The i_mask kernel service can be called from either the process or interrupt environment.

Return Values
The i_mask service has no return values.

Chapter 1. Kernel Services 211

Related Information
The i_unmask kernel service.

Understanding Interrupts, I/O Kernel Services, in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

init_heap Kernel Service

Purpose
Initializes a new heap to be used with kernel memory management services.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmalloc.h>
#include <sys/malloc.h>

heapaddr_t init_heap (area, size, heapp)
caddr_t area;
int size;
heapaddr_t *heapp;

Parameters

area Specifies the virtual memory address used to define the starting memory area for the heap. This address
must be page-aligned.

size Specifies the size of the heap in bytes. This value must be an integral number of system pages.
heapp Points to the external heap descriptor. This must have a null value. The base kernel uses this field is used

to specify special heap characteristics that are unavailable to kernel extensions.

Description
The init_heap kernel service is most commonly used by a kernel process to initialize and manage an area
of virtual memory as a private heap. Once this service creates a private heap, the returned heapaddr_t
value can be used with the xmalloc or xmfree service to allocate or deallocate memory from the private
heap. Heaps can be created within other heaps, a kernel process private region, or even on a stack.

Few kernel extensions ever require the init_heap service because the exported global kernel_heap and
pinned_heap are normally used for memory allocation within the kernel. However, kernel processes can
use the init_heap service to create private nonglobal heaps within their process private region for
controlling kernel access to the heap and possibly for performance considerations.

Execution Environment
The init_heap kernel service can be called from the process environment only.

Related Information
The xmalloc kernel service, xmfree kernel service.

Memory Kernel Services and Using Kernel Processes in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

212 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

initp Kernel Service

Purpose
Changes the state of a kernel process from idle to ready.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int initp
(pid, func, init_parms,
parms_length, name)
pid_t pid;
void (func) (int
flag, void* init_parms, int parms_length);
void * init_parms;
int parms_length;
char * name;

Parameters

pid Specifies the process identifier of the process to be initialized.
func Specifies the process’s initialization routine.
init_parm Specifies the pointer to the initialization parameters.
parms_length Specifies the length of the initialization parameters.
name Specifies the process name.

Description
The initp kernel service completes the transition of a kernel process from idle to ready. The idle state for a
process is represented by p_status == SIDL. Before calling the initp service, the creatp service is called
to create the process. The creatp service allocates and initializes a process table entry.

The initp service creates and initializes the process-private segment. The process is marked as a kernel
process by a bit set in the p_flag field in the process table entry. This bit, the SKPROC bit, signifies that
the process is a kernel process.

The process calling the initp service to initialize a newly created process must be the same process that
called the creatp service to create the new process.

″Using Kernel Processes″ in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts further explains how the initp kernel service completes the initialization process begun by the
creatp service.

The pid parameter identifies the process to be initialized. It must be valid and identify a process in the
SIDL (idle) state.

The name parameter points to a character string that names the process. The leading characters of this
string are copied to the user structure. The number of characters copied is implementation-dependent, but
at least four are always copied.

The func parameter indicates the main entry point of the process. The new process is made ready to run
this function. If the init_parms parameter is not null, it points to data passed to this routine. The parameter

Chapter 1. Kernel Services 213

structure must be agreed upon between the initializing and initialized process. The initp service copies the
data specified by the init_parm parameter (with the exact number of bytes specified by the parms_length
parameter) of data to the new process’s stack.

Execution Environment
The initp kernel service can be called from the process environment only.

Example
To initialize the kernel process running the function main_kproc, enter:
{
.
.
.
pid = creatp();
initp(pid, main_kproc, &node_num, sizeof(int), "tkproc");
.
.
}
void
main_kproc(int flag, void* init_parms, int parms_length)
{

.

.

.
int i;
i = *((int *)init_parms);
.
.
.

}

Return Values

0 Indicates a successful operation.
ENODEV The process could not be scheduled because it has a processor attachment that does not contain any

available processors. This can be caused by Dynamic Processor Deallocation.
ENOMEM Indicates that there was insufficient memory to initialize the process.
EINVAL Indicates an pid parameter that was not valid.

Related Information
The creatp kernel service.

The func subroutine.

Introduction to Kernel Processes , Process and Exception Management Kernel Services, and Dynamic
logical partitioning in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

initp Kernel Service func Subroutine

Purpose

Directs the process initialization routine.

214 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/types.h>
#include <sys/errno.h>

void func (flag, init_parms, parms_length)
int flag;
void * init_parms;
int parms_length;

Parameters

func Specifies the process’s initialization routine.
flag Has a 0 value if this subroutine is executed as a result of initializing a process with the initp

service.
init_parms Specifies the pointer to the initialization parameters.
parms_length Specifies the length of the initialization parameters.

Related Information
The initp kernel service.

Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

io_map Kernel Service

Purpose
Attach to an I/O mapping

Syntax
#include <sys/adspace.h>

void * io_map (io_handle)
io_handle_t io_handle;

Description
The io_map kernel service sets up addressibility to the I/O address space defined by the io_handle_t
structure. It returns an effective address representing the start of the mapped region.

The io_map kernel service is a replacement call for the iomem_att kernel service, which is deprecated on
AIX 6.1. However, the io_map kernel service might replace multiple iomem_att calls depending on the
device, the driver, and whether multiple regions were mapped into a single virtual segment. Like the
iomem_att kernel service, this service does not return any kind of failure. If something goes wrong, the
system crashes.

There is a major difference between io_map and iomem_att. iomem_att took an io_map structure
containing a bus address and returned a fully qualified effective address with any byte offset from the bus
address preserved and computed into the returned effective address. The io_map kernel service always
returns a segment-aligned effective address representing the beginning of the I/O segment corresponding
to io_handle_t. Manipulation of page and byte offsets within the segment are responsibilities of the device
driver.

The io_map kernel service is subject to nesting rules regarding the number of attaches allowed. A total
system number of active temporary attaches is 4. However, it is recommended that no more than one

Chapter 1. Kernel Services 215

active attach be owned by a driver calling the interrupt or DMA kernel services. It is also recommended
that no active attaches be owned by a driver when calling other kernel services.

Parameters

io_handle Received on a prior successful call to io_map_init. Describes the I/O space to attach to.

Execution Environment
The io_map kernel service can be called from the process or interrupt environment.

Return Values
The io_map kernel service returns a segment-aligned effective address to access the I/O address spaces.

Related Information
“io_map_init Kernel Service” on page 217, “io_map_clear Kernel Service,” and “io_unmap Kernel Service”
on page 218.

Programmed I/O (PIO) Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

io_map_clear Kernel Service

Purpose
Removes an I/O mapping segment.

Syntax
#include <sys/adspace.h>

void io_map_clear (io_handle)
io_handle_t io_handle;

Description
This service destroys all mappings defined by the io_handle_t parameter.

There should be no active mappings (outstanding io_map calls) to this handle when io_map_clear is
called. The segment previously created by an io_map_init call or multiple io_map_init calls, is deleted.

Parameters

io_handle Received on a prior successful call to io_map_init.
Describes the I/O space to be removed.

Execution Environment
The io_map_clear kernel service can be called from the process environment only.

Related Information
“io_map_init Kernel Service” on page 217, “io_map Kernel Service” on page 215, and “io_unmap Kernel
Service” on page 218.

216 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Programmed I/O (PIO) Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

io_map_init Kernel Service

Purpose
Creates and initializes an I/O mapping segment.

Syntax
#include <sys/adspace.h>
#include <sys/vm_types.h>

io_handle_t io_map_init (io_map_ptr, page_offset, io_handle)
struct io_map *io_map_ptr;
vpn_t page_offset;
io_handle_t io_handle;

struct io_map {
int key; /* structure version number */
int flags; /* flags for mapping */
int32long64_t size; /* size of address space needed */
int bid; /* bus ID */
long long busaddr; /* bus address */

};

Description
The io_map_init kernel service will create a segment to establish a cache-inhibited virtual-to-real
translation for the bus address region defined by the contents of the io_map struct. The flags parameter of
the io_map structure can be used to customize the mapping such as making the region read-only, using
the IOM_RDONLY flag.

The io_map_init kernel service returns a handle of an opaque type io_handle_t to be used on future
io_map or io_unmap calls. All services that use the io_handle returned by io_map_init must use the
handle from the most recent call. Using an old handle is a programming error.

The vpn_t type parameter represents the virtual page number offset to allow the caller to specify where, in
the virtual segment, to map this region. The offset must not conflict with a previous mapping in the
segment. The caller should map the most frequently accessed and performance critical I/O region at vpn_t
offset 0 into the segment. This is due to the fact that the subsequent io_map calls using this io_handle will
return an effective address representing the start of the segment (that is, page offset 0). The device driver
is responsible for managing various offsets into the segment. A single bus memory address page can be
mapped multiple times at different vpn_t offsets within the segment.

The io_handle_t parameter is useful when the caller wants to append a new mapping to an existing
segment. For the initial creation of a new I/O segment, this parameter must be NULL. For appended
mappings to the same segment, this parameter is the io_handle_t returned from the last successful
io_map_init call. If the mapping fails for any reason (offset conflicts with prior mapping, or no more room
in the segment), NULL is returned. In this case, the previous io_handle_t is still valid. If successful, the
io_handle_t returned should be used on all future calls. In this way, a device driver can manage multiple
I/O address spaces of a single adapter within a single virtual address segment, requiring the driver to do
only a single attach, io_map, to gain addressibility to all of the mappings.

Parameters

io_map_ptr Pointer to io_map structure describing the address region
to map.

Chapter 1. Kernel Services 217

page_offset Page offset at which to map the specified region into the
virtual address segment.

io_handle For the first call, this parameter should be NULL. When
adding to an existing mapping, this parameter is the
io_handle received on a prior successful call to
io_map_init.

Execution Environment
The io_map_init kernel service can be called from the process environment only.

Return Values

io_handle_t An opaque handle to the mapped I/O segment in the virtual memory that must be used in
subsequent calls to this service.

NULL Failed to create or append mapping.

Related Information
“io_map_clear Kernel Service” on page 216, “io_map Kernel Service” on page 215, and “io_unmap Kernel
Service.”

Programmed I/O (PIO) Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

io_unmap Kernel Service

Purpose
Detach from an I/O mapping

Syntax
#include <sys/adspace.h>

void io_unmap (eaddr)
void *eaddr;

Description
The io_unmap kernel service removes addressibility to the I/O address space defined by the eaddr
parameter. There must be a valid active mapping from a previous io_map call for this effective address.
The eaddr parameter can be any valid effective address within the segment, and it does not have to be
exactly the same as the address returned by io_map.

The io_unmap kernel service is a replacement call for the iomem_det kernel service, which is deprecated
on AIX 6.1. However, the io_unmap kernel service might replace multiple iomem_det calls depending on
the device, the driver, and whether multiple regions were mapped into a single virtual segment using the
io_map_init kernel service.

Parameters

eaddr Received on a prior successful call to io_map. Effective address for the I/O space to detach from.

218 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment
The io_unmap kernel service can be called from the process or interrupt environment.

Related Information
“io_map_init Kernel Service” on page 217, “io_map_clear Kernel Service” on page 216, and “io_map
Kernel Service” on page 215.

Programmed I/O (PIO) Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

iodone Kernel Service

Purpose
Performs block I/O completion processing.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

void iodone (bp)
struct buf *bp;

Parameter

bp Specifies the address of the buf structure for the buffer whose I/O has completed.

On a platform that supports storage keys, the passed in bp parameter must be in the KKEY_PUBLIC or
KKEY_BLOCK_DEV protection domain.

Description
A device driver calls the iodone kernel service when a block I/O request is complete. The device driver
must not reference or alter the buffer header or buffer after calling the iodone service.

The iodone service takes one of two actions, depending on the current interrupt level. Either it invokes the
caller’s individual iodone routine directly, or it schedules I/O completion processing for the buffer to be
performed off-level, at the INTIODONE interrupt level. The interrupt handler for this level then calls the
iodone routine for the individual device driver. In either case, the individual iodone routine is defined by the
b_iodone buffer header field in the buffer header. This iodone routine is set up by the caller of the device’s
strategy routine.

For example, the file I/O system calls set up a routine that performs buffered I/O completion processing.
The uphysio service sets up a routine that performs raw I/O completion processing. Similarly, the pager
sets up a routine that performs page-fault completion processing.

Setting up an iodone Routine

Under certain circumstances, a device driver can set up an iodone routine. For example, the logical
volume device driver can follow this procedure:

1. Take a request for a logical volume.

2. Allocate a buffer header.

3. Convert the logical volume request into a physical volume request.

Chapter 1. Kernel Services 219

4. Update the allocated buffer header with the information about the physical volume request. This
includes setting the b_iodone buffer header field to the address of the individual iodone routine.

5. Call the physical volume device driver strategy routine.

Here, the caller of the logical volume strategy routine has set up an iodone routine that is started when
the logical volume request is complete. The logical volume strategy routine in turn sets up an iodone
routine that is invoked when the physical volume request is complete.

The key point of this example is that only the caller of a strategy routine can set up an iodone routine and
even then, this can only be done while setting up the request in the buffer header.

The interface for the iodone routine is identical to the interface to the iodone service.

Execution Environment
The iodone kernel service can be called from either the process or interrupt environment.

Return Values
The iodone service has no return values.

Related Information
The iowait kernel service.

The buf structure.

Understanding Interrupts and I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

iostadd Kernel Service

Purpose
Registers an I/O statistics structure used for updating I/O statistics reported by the iostat subroutine.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/iostat.h>
#include <sys/devinfo.h>

int iostadd (devtype, devstatp)
int devtype;
union {

struct ttystat *ttystp;

struct dkstat *dkstp;

} devstatp;

Description
The iostadd kernel service is used to register the I/O statistics structure required to maintain statistics on
a device. The iostadd service is typically called by a tty, disk, or CD-ROM device driver to provide the

220 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

statistical information used by the iostat subroutine. The iostat subroutine displays statistic information for
tty and disk devices on the system. The iostadd service should be used once for each configured device.

In AIX 5.2, support for Multi-Path I/O (MPIO) was added to the iostadd kernel service and the dkstat
structure. The dkstat structure was expanded to accomodate the MPIO data. The iostadd kernel service
was modified to handle the new version of the dkstat structure as well as older, legacy versions. For an
MPIO device, the anchor is the disk’s dkstat structure. This must be the first dkstat structure registered
using the iostadd kernel service. Any path dkstat structures that are registered subsequently must
reference the address of the anchor dkstat (disk) structure in the dkstat.dk_mpio_anchor field.

For tty devices, the devtype parameter has a value of DD_tty. In this case, the iostadd service uses the
devstatp parameter to return a pointer to a ttystat structure.

For disk or CD-ROM devices with a devtype value of DD_DISK or DD_CD-ROM, the caller must provide a
pinned and initialized dkstat structure as an input parameter. This structure is pointed to by the devstatp
parameter on entry to the iostadd kernel service.

If the device driver support for a device is terminated, the dkstat or ttystat structure registered with the
iostadd kernel service should be deregistered by calling the iostdel kernel service.

I/O Statistics Structures

The iostadd kernel service uses two structures that are found in the usr/include/sys/iostat.h file: the
ttystat structure and the dkstat structure.

The ttystat structure contains the following tty-related fields:

Field Description
rawinch Count of raw characters received by the tty device
caninch Count of canonical characters generated from canonical processing
outch Count of the characters output to a tty device

The second structure used by the iostadd kernel service is the dkstat structure, which contains
information about disk devices. This structure contains the following fields:

Field Description
diskname 32-character string name for the disk’s logical device
dknextp Pointer to the next dkstat structure in the chain
dk_status Disk entry-status flags
dk_time Time the disk is active
dk_bsize Number of bytes in a block
dk_xfers Number of transfers to or from the disk
dk_rblks Number of blocks read from the disk
dk_wblks Number of blocks written to the disk
dk_seeks Number of seek operations for disks
dk_version Version of the dkstat structure
dk_q_depth Que depth
dk_mpio_anchor Pointer to the path data anchor (disk)
dk_mpio_next_path Pointer to the next path dkstat structure in the chain
dk_mpio_path_id Path ID

tty Device Driver Support

The rawinch field in the ttystat structure should be incremented by the number of characters received by
the tty device. The caninch field in the ttystat structure should be incremented by the number of input

Chapter 1. Kernel Services 221

characters generated from canonical processing. The outch field is increased by the number of characters
output to tty devices. These fields should be incremented by the device driver, but never be cleared.

Disk Device Driver Support

A disk device driver must perform these four tasks:

v Allocate and pin a dkstat structure during device initialization.

v Update the dkstat.diskname field with the device’s logical name.

v Update the dkstat.dk_bsize field with the number of bytes in a block on the device.

v Set all other fields in the structure to 0.

If a disk device driver supports MPIO, it must perform the following tasks:

v Allocate and pin a dkstat structure during device initialization.

v Update the dkstat.diskname field with the device’s logical name.

v Update the dkstat.dk_bsize field with the number of bytes in a block on the device.

v Set the value of dkstat.dk_version to dk_qd_mpio_magic.

v Set the value of dkstat.dk_mpio_anchor to 0 if the dkstat structure being added is the disk.

v Set the value of dkstat.dk_mpio_anchor to the address of the path’s anchor (disk) dkstat structure, and
set dkstat.dk_mpio_path_id to the path’s ID if the dkstat structure being added is a path.

v Set all other fields to 0.

If the device supports discrete seek commands, the dkstat.dk_xrate field in the structure should be set to
the transfer rate capability of the device (KB/sec). The device’s dkstat structure should then be registered
using the iostadd kernel service.

During drive operation update, the dkstat.dk_status field should show the busy/nonbusy state of the
device. This can be done by setting and resetting the IOST_DK_BUSY flag. The dkstat.dk_xfers field
should be incremented for each transfer initiated to or from the device. The dkstat.dk_rblks and
dkstat.dk_wblks fields should be incremented by the number of blocks read or written.

If the device supports discrete seek commands, the dkstat.dk_seek field should be incremented by the
number of seek commands sent to the device. If the device does not support discrete seek commands,
both the dkstat.dk_seek and dkstat.dk_xrate fields should be left with a value of 0.

The base kernel updates the dkstat.dk_nextp and dkstat.dk_time fields. They should not be modified by
the device driver after initialization. For MPIO devices, the base kernel also updates the
dkstat.dk_mpio_next_path field.

Note: The same dkstat structure must not be registered more than once.

In addition to basic tasks, a disk driver must perform the following tasks before calling the iostadd kernel
service if the driver supports the -D option of the iostat command:

v Set the value of dkstat.dk_version to dk_qd_service2_magic.

v Set the dkstat.ident.adapter field to the adapter name if the driver does not support MPIO.

During I/O operations, the driver must perform the following tasks:

v Increase the dkstat.__dk_rxfers field for each read transfer.

v Update the dkstat.dk_q_depth field with the number of I/O requests which are in progress.

v Increase the dkstat.dk_q_full field when the number of I/O requests which are in progress reaches the
maximum queue depth.

222 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

v Increase the dkstat.dk_rserv field by the service time which is the delta-time base value between when
the devstrat kernel service sends a read request to the adapter driver and when the iodone kernel
service returns the request from the adapter driver.

v Increase the dkstat.dk_rtimeout field when the driver retries a failed read request.

v Increase the dkstat.dk_rfailed field when the driver returns a failed read request as an error.

v Update the dkstat.dk_min_rserv field with the minimum service time for a read request.

v Update the dkstat.dk_max_rserv field with the maximum service time for a read request.

v Increase the dkstat.dk_wserv field by the service time which is the delta-time base value between when
the devstrat kernel service sends a write request to the adapter driver and when the iodone kernel
service returns the request from the adapter driver.

v Increase the dkstat.dk_wtimeout field when the driver retries a failed write request.

v Increase the dkstat.dk_wfailed field when the driver returns a failed write request as an error.

v Update the dkstat.dk_min_wserv field with the minimum service time for a write request.

v Update the dkstat.dk_max_wserv field with the maximum service time for a write request.

v Increase and decrease the dkstat.dk_wq_depth field when the driver enqueues and dequeues an I/O
request.

v Increase the dkstat.dk_wq_time field by the wait time which is the delta-time base value between when
the driver enqueues an I/O request and when the devstrat kernel service sends the request to the
adapter driver.

v Update the dkstat.dk_wq_min_time field with the minimum wait time.

v Update the dkstat.dk_wq_max_time field with the maximum wait time.

Parameters

devtype Specifies the type of device for which I/O statistics are kept. The various device types are defined in
the /usr/include/sys/devinfo.h file. Currently, I/O statistics are only kept for disks, CD-ROMs, and tty
devices. Possible values for this parameter are:

DD_DISK
For disks

DD_CD-ROM
For CD-ROMs

DD_TTY
For tty devices

devstatp Points to an I/O statistics structure for the device type specified by the devtype parameter. For a
devtype parameter of DD_tty, the address of a pinned ttystat structure is returned. For a devtype
parameter of DD_DISK or DD_CD-ROM, the parameter is an input parameter pointing to a dkstat
structure previously allocated by the caller.

On a platform that supports storage keys, the passed in devstatp parameter must be in the
KKEY_PUBLIC or KKEY_BLOCK_DEV protection domain.

Execution Environment
The iostadd kernel service can be called from the process environment only.

Return Values

0 Indicates that no error has been detected.
EINVAL Indicates that the devtype parameter specified a device type that is not valid. For MPIO devices,

indicates that an anchor for a path dkstat structure was not found.

Chapter 1. Kernel Services 223

Related Information
The iostat command.

The iostdel kernel service.

Kernel Extension and Device Driver Management Kernel Services in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

iostdel Kernel Service

Purpose
Removes the registration of an I/O statistics structure used for maintaining I/O statistics on a particular
device.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/iostat.h>

void iostdel (devstatp)
union {

struct ttystat *ttystp;
struct dkstat *dkstp;

} devstatp;

Description
The iostdel kernel service removes the registration of an I/O statistics structure for a device being
terminated. The device’s ttystat or dkstat structure should have previously been registered using the
iostadd kernel service. Following a return from the iostdel service, the iostat command will no longer
display statistics for the device being terminated.

In AIX 5.2, support for Multi-Path I/O (MPIO) was added to the iostdel kernel service. For an MPIO
device, the anchor is the disk’s dkstat structure. An anchor (disk) may have several paths associated with
it. Each of these paths can have a dkstat structure registered using the iostadd kernel service. The
semantics for unregistering a dkstat structure for an MPIO device are more restrictive than for a
non-MPIO device. All paths must unregister before the anchor (disk) is unregistered. If the anchor (disk)
dkstat structure is unregistered before all of the paths associated with it are unregistered, the iostdel
kernel service will remove the registration of the anchor (disk) dkstat structure and all remaining registered
paths.

Parameters

devstatp Points to an I/O statistics structure previously registered using the iostadd kernel service.

On a platform that supports storage keys, the passed in devstatp parameter must be in the
KKEY_PUBLIC or KKEY_BLOCK_DEV protection domain.

Execution Environment
The iostdel kernel service can be called from the process environment only.

Return Values
The iostdel service has no return values.

224 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
The iostat command.

The iostadd kernel service.

Kernel Extension and Device Driver Management Kernel Services in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

iowait Kernel Service

Purpose
Waits for block I/O completion.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

int iowait (bp)
struct buf *bp;

Parameter

bp Specifies the address of the buf structure for the buffer with in-process I/O.

On a platform that supports storage keys, the passed in bp parameter must be in the KKEY_PUBLIC or
KKEY_BLOCK_DEV protection domain.

Description
The iowait kernel service causes a process to wait until the I/O is complete for the buffer specified by the
bp parameter. Only the caller of the strategy routine can call the iowait service. The B_ASYNC bit in the
buffer’s b_flags field should not be set.

The iodone kernel service must be called when the block I/O transfer is complete. The buf structure
pointed to by the bp parameter must specify an iodone routine. This routine is called by the iodone
interrupt handler in response to the call to the iodone kernel service. This iodone routine must call the
e_wakeup service with the bp->b_events field as the event. This action awakens all processes waiting on
I/O completion for the buf structure using the iowait service.

Execution Environment
The iowait kernel service can be called from the process environment only.

Return Values
The iowait service uses the geterror service to determine which of the following values to return:

0 Indicates that I/O was successful on this buffer.
EIO Indicates that an I/O error has occurred.
b_error value Indicates that an I/O error has occurred on the buffer.

Chapter 1. Kernel Services 225

Related Information
The geterror kernel service, iodone kernel service.

The buf structure.

ip_fltr_in_hook, ip_fltr_out_hook, ipsec_decap_hook, inbound_fw,
outbound_fw Kernel Service

Purpose
Contains hooks for IP filtering.

Syntax
#define FIREWALL_OK 0 /* Accept IP packet */
#define FIREWALL_NOTOK 1 /* Drop IP packet */
#define FIREWALL_OK_NOTSEC 2 /* Accept non-encapsulated IP packet

(ipsec_decap_hook only) */
#include <sys/mbuf.h>
#include <net/if.h>

int (*ip_fltr_in_hook)(struct mbuf **pkt, void **arg)

int (*ipsec_decap_hook)(struct mbuf **pkt, void **arg)

int (*ip_fltr_out_hook)(struct ifnet *ifp, struct mbuf **pkt, int flags)

#include <sys/types.h>

#include <sys/mbuf.h>

#include <netinet/ip_var.h>

void (*inbound_fw)(struct ifnet *ifp, struct mbuf *m, inbound_fw_args_t *args)

void ipintr_noqueue_post_fw(struct ifnet *ifp, struct mbuf *m, inbound_fw_args_t *args)

inbound_fw_args_t *inbound_fw_save_args(inbound_fw_args_t *args)

int (*outbound_fw)(struct ifnet *ifp, struct mbuf *m0, outbound_fw_args_t *args)

int ip_output_post_fw(struct ifnet *ifp, struct mbuf *m0, outbound_fw_args_t *args)

outbound_fw_args_t *outbound_fw_save_args(outbound_fw_args_t *args)

Parameters

pkt Points to the mbuf chain containing the IP packet to be received (ip_fltr_in_hook, ipsec_decap_hook) or
transmitted (ip_fltr_out_hook). The pkt parameter may be examined and/or changed in any of the three
hook functions.

arg Is the address of a pointer to void that is locally defined in the function where ip_fltr_in_hook and
ipsec_decap_hook are called. The arg parameter is initially set to NULL, but the address of this pointer is
passed to the two hook functions, ip_fltr_in_hook and ipsec_decap_hook. The arg parameter may be set
by either of these functions, thereby allowing a void pointer to be shared between them.

ifp Is the outgoing interface on which the IP packet will be transmitted for the ip_fltr_out_hook function.
flags Indicates the ip_output flags passed by a transport layer protocol. Valid flags are currently defined in the

/usr/include/netinet/ip_var.h files. See the Flags section below.

226 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
These routines provide kernel-level hooks for IP packet filtering enabling IP packets to be selectively
accepted, rejected, or modified during reception, transmission, and decapsulation. These hooks are initially
NULL, but are exported by the netinet kernel extension and will be invoked if assigned non-NULL values.

The ip_fltr_in_hook routine is used to filter incoming IP packets, the ip_fltr_out_hook routine filters
outgoing IP packets, and the ipsec_decap_hook routine filters incoming encapsulated IP packets.

The ip_fltr_in_hook function is invoked for every IP packet received by the host, whether addressed
directly to this host or not. It is called after verifying the integrity and consistency of the IP packet. The
function is free to examine or change the IP packet (pkt) or the pointer shared with ipsec_decap_hook
(arg). The return value of the ip_fltr_in_hook indicates whether pkt should be accepted or dropped. The
return values are described in Expected Return Values below. If pkt is accepted (a return value of
FIREWALL_OK) and it is addressed directly to the host, the ipsec_decap_hook function is invoked next.
If pkt is accepted, but is not directly addressed to the host, it is forwarded if IP forwarding is enabled. If
ip_fltr_in_hook indicates pkt should be dropped (a return value of FIREWALL_NOTOK), it is neither
delivered nor forwarded.

The ipsec_decap_hook function is called after reassembly of any IP fragments (the ip_fltr_in_hook
function will have examined each of the IP fragments) and is invoked only for IP packets that are directly
addressed to the host. The ipsec_decap_hook function is free to examine or change the IP packet (pkt)
or the pointer shared with ipsec_decap_hook (arg). The hook function should perform decapsulation if
necessary, back into pkt and return the proper status so that the IP packet can be processed appropriately.
See the Expected Return Values section below. For acceptable encapsulated IP packets (a return value of
FIREWALL_OK), the decapsulated packet is processed again by jumping to the beginning of the IP input
processing loop. Consequently, the decapsulated IP packet will be examined first by ip_fltr_in_hook and,
if addressed to the host, by ipsec_decap_hook. For acceptable non-encapsulated IP packets (a return
value of FIREWALL_OK_NOTSEC), IP packet delivery simply continues and pkt is processed by the
transport layer. A return value of FIREWALL_NOTOK indicates that pkt should be dropped.

The ip_fltr_out_hook function is called for every IP packet to be transmitted, provided the outgoing IP
packet’s destination IP address is NOT an IP multicast address. If it is, it is sent immediately, bypassing
the ip_fltr_out_hook function. This hook function is invoked after inserting the IP options from the upper
protocol layers, constructing the complete IP header, and locating a route to the destination IP address.
The ip_fltr_out_hook function may modify the outgoing IP packet (pkt), but the interface and route have
already been assigned and may not be changed. The return value from the ip_fltr_out_hook function
indicates whether pkt should be transmitted or dropped. See the Expected Return Values section below. If
pkt is not dropped (FIREWALL_OK), it’s source address is verified to be local and, if pkt is to be
broadcast, the ability to broadcast is confirmed. Thereafter, pkt is enqueued on the interfaces (ifp) output
queue. If pkt is dropped (FIREWALL_NOTOK), it is not transmitted and EACCES is returned to the
process.

The inbound_fw and outbound_fw firewall hooks allow kernel extensions to get control of packets at the
place where IP receives them. If inbound_fw is set, ipintr_noqueue, the IP input routine, calls
inbound_fw and then exits. If not, ipintr_noqueue calls ipintr_noqueue_post_fw and then exits. If the
inbound_fw hook routine wishes to pass the packet into IP, it can call ipintr_noqueue_post_fw.
inbound_fw may copy its args parameter by calling inbound_fw_save_args, and may free its copy of its
args parameter by calling inbound_fw_free_args.

Similarly, ip_output calls outbound_fw if it is set, and calls ip_output_post_fw if not. The outbound_fw
hook can call ip_output_post_fw if it wants to send a packet. outbound_fw may copy its args parameter
by calling outbound_fw_save_args, and later free its copy of its args parameter by calling
outbound_fw_free_args.

Chapter 1. Kernel Services 227

Flags

IP_FORWARDING Indicates that most of the IP headers exist.
IP_RAWOUTPUT Indicates that the raw IP header exists.
IP_MULTICAST_OPTS Indicates that multicast options are present.
IP_ROUTETOIF Contains bypass routing tables.
IP_ALLOWBROADCAST Provides capability to send broadcast packets.
IP_BROADCASTOPTS Contains broadcast options inside.
IP_PMTUOPTS Provides PMTU discovery options.
IP_GROUP_ROUTING Contains group routing gidlist.

Expected Return Values

FIREWALL_OK Indicates that pkt is acceptable for any of the filtering functions. It will be
delivered, forwarded, or transmitted as appropriate.

FIREWALL_NOTOK Indicates that pkt should be dropped. It will not be received (ip_fltr_in_hook,
ipsec_decap_hook) or transmitted (ip_fltr_out_hook).

FIREWALL_OK_NOTSEC Indicates a return value only valid for the ipsec_decap_hook function. This
indicates that pkt is acceptable according to the filtering rules, but is not
encapsulated; pkt will be processed by the transport layer rather than processed
as a decapsulated IP packet.

Related Information
See Network Kernel Services AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

i_pollsched Kernel Service

Purpose
Queue a pseudo interrupt to an interrupt handler list.

Syntax
#include <sys/intr.h>
int i_pollsched (handler, pril)
struct intr *handler;
int pril;

Parameters

handler Pointer to the intr structure for which the interrupt is to be queued.
pril Processor level to queue logical interrupt for.

Description
The i_pollsched service allows device drivers to queue a pseudo interrupt to another interrupt handler.
The calling arguements are mutually exclusive. If handler is not NULL then it is used to generate a pril
value, via pal_i_genplvl subroutine. If the handler is NULL then the value in pril represents the processor
level of the target interrupt handler.

This service will not queue an interrupt to a funneled, or nonMPSAFE interrupt handler, unless the service
is executing on the MPMASTER processor. INTR_FAIL will be returned if not executing on MPMASTER
processor and the target interrupt handler is not MPSAFE.

228 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

This service should only be called on an RSPC based platform (running AIX 5.1 or earlier). Calling this
service on a non-RSPC machine will always result in a failure return code.

Execution Environment
The i_pollsched kernel service can be called from either the process of interrupt environments.

Return Values

INTR_SUCC Interrupted was queued.
INTR_FAIL Interrupt was not queued. This can be returned when the target list was NULL or the service was

called on an invalid platform.

i_reset Kernel Service

Purpose
Resets a bus interrupt level.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/intr.h>

void i_reset (handler)
struct intr *handler;

Parameter

handler Specifies the address of an interrupt handler structure passed to the i_init service.

Description
The i_reset service resets the bus interrupt specified by the handler parameter. A device interrupt handler
calls the i_reset service after resetting the interrupt at the device on the bus. See i_init kernel service for
a brief description of interrupt handlers.

Execution Environment
The i_reset kernel service can be called from either the process or interrupt environment.

Return Values
The i_reset service has no return values.

Related Information
The i_init kernel service.

Understanding Interrupts, I/O Kernel Services, Processing Interrupts in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

Chapter 1. Kernel Services 229

i_sched Kernel Service

Purpose
Schedules off-level processing.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/intr.h>

void i_sched (handler)
struct intr *handler;

Parameter

handler Specifies the address of the pinned interrupt handler structure.

Description
The i_sched service allows device drivers to schedule some of their work to be processed at a
less-favored interrupt priority. This capability allows interrupt handlers to run as quickly as possible,
avoiding interrupt-processing delays and overrun conditions. See the i_init kernel service for a brief
description of interrupt handlers.

Processing can be scheduled off-level in the following situations:

v The interrupt handler routine for a device driver must perform time-consuming processing.

v This work does not need to be performed immediately.

Attention: The caller cannot alter any fields in the intr structure from the time the i_sched service is
called until the kernel calls the off-level routine. The structure must also stay pinned. Otherwise, the
system may crash.

The interrupt handler structure pointed to by the handler parameter describes an off-level interrupt handler.
The caller of the i_sched service must set up all fields in the intr structure. The INIT_OFFLn macros in
the /usr/include/sys/intr.h file can be used to initialize the handler parameter. The n value represents the
priority class that the off-level handler should run at. Currently, classes from 0 to 3 are defined.

Use of the i_sched service has two additional restrictions:

First, the i_sched service will not re-register an intr structure that is already registered for off-level
handling. Since i_sched has no return value, the service will simply return normally without registering the
specified structure if it was already registered but not yet executed. The kernel removes the intr structure
from the registration list immediately prior to calling the off-level handler specified in the structure. It is
therefore possible for the off-level handler to use the structure again to register another off-level request.

Care must be taken when scheduling off-level requests from a second-level interrupt handler (SLIH). If the
off-level request is already registered but has not yet executed, a second registration will be ignored. If the
off-level handler is currently executing, or has already run, a new request will be registered. Users of this
service should be aware of these timing considerations and program accordingly.

Second, the kernel uses the flags field in the specified intr structure to determine if this structure is
already registered. This field should be initialized once before the first call to the i_sched service and
should remain unmodified for future calls to the i_sched service.

230 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Note: Off-level interrupt handler path length should not exceed 5,000 instructions. If it does exceed this
number, real-time support is adversely affected.

Execution Environment
The i_sched kernel service can be called from either the process or interrupt environment.

Return Values
The i_sched service has no return values.

Related Information
The i_init kernel service.

Understanding Interrupts, I/O Kernel Services, Processing Interrupts in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

i_unmask Kernel Service

Purpose
Enables a bus interrupt level.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/intr.h>

void i_unmask (handler)
struct intr *handler;

Parameter

handler Specifies the address of the interrupt handler structure that was passed to the i_init service.

Description
The i_unmask service enables the bus interrupt level specified by the handler parameter.

Execution Environment
The i_unmask kernel service can be called from either the process or interrupt environment.

Return Values
The i_unmask service has no return values.

Related Information
The i_init kernel service, i_mask kernel service.

Understanding Interrupts, I/O Kernel Services, Processing Interrupts in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

Chapter 1. Kernel Services 231

ldata_alloc Kernel Service

Purpose
Allocates a pinned storage element from an ldata pool.

Syntax
#include <sys/ldata.h>

void * ldata_alloc (ldatap)

ldata_t ldatap;

Description
The ldata_alloc kernel service allocates a pinned storage element from a ldata pool and returns the
address of the element. The ldata_alloc kernel service makes a pinned storage element from the ldata
pool available for use by the caller. The sub-pool from which the element is allocated corresponds to the
SRAD on which the call was made. If there are no free pinned elements, a new element cannot be
allocated and a NULL value is returned.

After it is allocated, the pinned storage element can be freed to the ldata pool through the ldata_free
kernel service.

Parameters

ldatap Specifies the handle of the ldata pool.

Execution Environment
The ldata_alloc kernel service can be called from the process or interrupt environment.

Return Values
Returns a pointer to a pinned storage element allocated from an ldata pool or NULL if no element could
be allocated.

Implementation Specifics
The ldata_alloc kernel service is part of the Base Operating System (BOS) Runtime.

Related Information
The ldata_create, ldata_grow, ldata_free kernel services.

ldata_create Kernel Service

Purpose
Creates a SRAD-aware pinned storage element pool (ldata pool) and returns its handle.

Syntax
#include <sys/ldata.h>

int ldata_create (size, initcount, maxcount, kkey, ldatap)

size_t size;

232 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

long initcount;
long maxcount;
kkey_t kkey;
ldata_t * ldatap;

Description
The ldata_create kernel service creates a SRAD-aware pool (ldata pool) of pinned storage elements,
each of the specified size, and returns a handle to the newly-allocated pool. An ldata pool consists of a
number of sub-pools (one per SRAD). Each sub-pool is physically backed with memory local to its
corresponding SRAD. The size of each sub-pool is equal to the value of the maxcount parameter
multiplied by the value of the size parameter. The parameter (initcount) specifies the number of pinned
storage elements in each sub-pool that should be pre-allocated.

The ldata pool can be created with a kernel storage protection key by specifying one through the kkey
parameter. For compatibility with previous releases, a kkey parameter of zero requests no protection.
When a protection key is specified, the caller must hold this key when calling any ldata service, including
the ldata_create kernel service.

After an ldata pool is created, its handle can be used to allocate pinned storage elements from the pool
through the ldata_alloc kernel service and free these elements to the pool through the ldata_free kernel
services. Elements are allocated and freed to the sub-pool corresponding to the SRAD on which
ldata_alloc and ldata_free are called. If a sub-pool is exhausted of its pinned storage elements, it can be
grown by calling the ldata_grow kernel service up to maxcount.

An ldata pool created through the ldata_create service can be destroyed by the ldata_destroy kernel
service.

Parameters

size Specifies the size, in bytes, of each pinned storage element of the ldata pool.
initcount Specifies the initial count of pinned storage elements, to be contained within the ldata

pool. Must be a positive integer.
maxcount Specifies the maximum count of pinned storage elements that can be contained with

the ldata pool. The value of maxcount must be positive and greater than or equal to
the value of initcount.

kkey Specifies the kernel storage protection key to be applied to the newly created ldata
pool. The value must be a valid kernel key number, or zero to indicate that storage
protection is not requested.

ldatap Specifies an address to be set on successful completion with the handle for the newly
created ldata pool.

Execution Environment
The ldata_create kernel service can be called only from the process environment.

Return Values

0 Completed successfully. The handle for ldata storage is
returned in ldatap.

EINVAL Invalid input parameters given. Invalid initcount, maxcount
or kkey. The ldatap parameter is undefined.

ENOMEM Error encountered. Insufficient memory to satisfy request.
The ldatap parameter is undefined.

Chapter 1. Kernel Services 233

Implementation Specifics
The ldata_create kernel service is part of the Base Operating System (BOS) Runtime.

Related Information
The ldata_destroy, ldata_grow, ldata_alloc, ldata_free kernel services.

ldata_destroy Kernel Service

Purpose
Destroys an ldata pool created by the ldata_create kernel service.

Syntax
#include <sys/ldata.h>

void ldata_destroy (ldatap)

ldata_t ldatap;

Description
The ldata_destroy kernel service destroys an ldata pool previously created by an ldata_create call. This
routine assumes that all elements allocated from the pool have been freed back to the pool and there are
no longer any active elements in the pool.

The ldata_destroy call unpins and frees all of the storage associated with the handle.

Parameters

ldatap Specifies the handle of the ldata pool to be destroyed.

Execution Environment
The ldata_destroy kernel service can be called from the process environment only.

Return Values
None.

Implementation Specifics
The ldata_destroy kernel service is part of the Base Operating System (BOS) Runtime.

Related Information
The ldata_create, ldata_grow, ldata_alloc, ldata_free kernel services.

ldata_free Kernel Service

Purpose
Frees a storage element that is pinned to an ldata pool.

234 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/ldata.h>

void ldata_free (ldatap, elementp)

ldata_t ldatap;
void * elementp;

Description
The ldata_free kernel service frees a pinned storage element that was previously allocated to an ldata
pool. The pinned storage element is identified through the elementp parameter. The element identified by
elementp is freed to the sub-pool corresponding to the SRAD that allocated the element.

Parameters

ldatap Specifies the handle of the ldata pool.
elementp Specifies the address of the pinned storage element to be freed.

Execution Environment
The ldata_free kernel service can be called from the process or interrupt environment.

Return Values
None.

Implementation Specifics
The ldata_free kernel service is part of Base Operating System (BOS) Runtime.

Related Information
The ldata_alloc kernel service.

ldata_grow Kernel Service

Purpose
Expands the count of available pinned storage elements contained within an ldata pool.

Syntax
#include <sys/ldata.h>

int ldata_grow (ldatap, count)

ldata_t ldatap;
long count;

Description
The ldata_grow kernel service increases the number of pinned storage elements contained within a
per-SRAD sub-pool associated with the ldata handle ldatap, by count. If the ldata_alloc call fails because
there are no more free pinned storage elements in a sub-pool, use the ldata_grow kernel service. The
ldata_grow kernel service pins additional count elements from the sub-pool and makes them available for
the ldata_alloc call. All of the sub-pools associated with the handle are grown. If count elements are not
available or there is not enough pinned memory available, the ldata_grow kernel service fails.

Chapter 1. Kernel Services 235

Parameters

ldatap Specifies the handle of the ldata pool.
count Specifies the additional number of storage elements to be pinned in the sub-pool. The

count value should be greater than 0 and should not increase the sub-pool size
beyond the value of maxcount specified with the ldata_create call.

Execution Environment
The ldata_grow kernel service can be called only from the process environment.

Return Values

0 Success.
-1 Error encountered. Illegal parameters or insufficient

resources.

Implementation Specifics
The ldata_grow kernel service is part of the Base Operating System (BOS) Runtime.

Related Information
The ldata_create kernel service.

ldmp_bufest, ldmp_timeleft, ldmp_xmalloc, ldmp_xmfree, and
ldmp_errstr Kernel Services

Purpose
Obtains information about the current live dump.

Syntax
#include <sys/livedump.h>

kerrno_t ldmp_bufest (id, cb, len)
dumpid_t id;
ras_block_t cb;
size_t *len;

kerrno_t ldmp_timeleft (id, timeleft)
dumpid_t id;
long *timeleft;

kerrno_t ldmp_xmalloc (id, size, align, p)
dumpid_t id;
size_t size;
uint align;
void **p;

kerrno_t ldmp_xmfree (id, p)
dumpid_t id;
void *p;

236 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

kerrno_t ldmp_errstr (id, cb, str)
dumpid_t id;
ras_block_t cb;
char *str;

Parameters

align Specifies the log base 2 of the desired alignment. The maximum allowed alignment is 12, 4096
byte alignment.

cb Specifies the ras_block_t for the component.
id Specifies the ID of the dump.
len Specifies the estimate of data in bytes that can still be buffered by the specified component in this

pass.
p Specifies the memory block to be allocated or freed.
size Specifies the memory size to be allocated.
str Specifies the error message.
timeleft Specifies the time, in nanoseconds, remaining for this pass. This value only has meaning for a

serialized dump. It can be negative.

Description
The ldmp_bufest kernel service estimates the number of bytes of dump buffer storage available to this
component.

The ldmp_timeleft kernel service estimates the time, in nanoseconds, remaining in this pass.

The ldmp_xmalloc kernel service allocates storage from the live dump heap.

The ldmp_xmfree kernel service frees live dump heap storage.

The ldmp_errstr kernel service records an error to be part of the live dump status reporting. The string is
contained in the live dump and reported in the error log entry if there is sufficient space.

Important: An error log entry has a maximum length of 2048 bytes. The error string is limited to 128
bytes, including the trailing NULL, and is truncated if too long. The component’s path name is
also logged.

Tip: The ldmp_errstr kernel service can be called multiple times to report multiple errors.
Components are encouraged to limit the size of error strings due to limited space in the error log entry.

Return Values

0 Indicates a successful completion.
EINVAL_RAS_xxx_BADARGS Indicates that the arguments for the service are not valid.
EFAULT_RAS_xxx_BADARGS Indicates that an address argument is not a valid address.
ENOMEM_RAS_LDMP_XMALLOC Indicates that there is insufficient space in the live dump heap to satisfy

this request.

Related Information
The livedump kernel service.

Chapter 1. Kernel Services 237

ldmp_freeparms Kernel Service

Purpose
Frees any data allocated by the live dump associated with an unused ldmp_parms_t data item.

Syntax
#include <sys/livedump.h>

kerrno_t ldmp_freeparms (parms)
ldmp_parms_t *parms;

Parameters

parms Points to an item of ldmp_parms_t type.

Description
The ldmp_freeparms kernel service is used in the event that you have partially set up the ldmp_parms_t
data item, but do not want to take a dump. You can use the ldmp_freeparms kernel service to clean up
any data allocated by the live dump subsystem. However, you can always call the ldmp_freeparms kernel
service after the livedump kernel service, and the ldmp_freeparms kernel service returns normally if
there is nothing to free.

Execution Environment
The ldmp_freeparms kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates a successful completion.
EINVAL_RAS_LDMP_FREEPARMS Indicates that the area is not a valid ldmp_parms_t data

area.
EFAULT_RAS_LDMP_FREEPARMS Indicates that a memory fault results.

Related Information
The ldmp_setupparms and livedump kernel services.

ldmp_setupparms Kernel Service

Purpose
Sets up the ldmp_parms_t parameter for the livedump kernel service.

Syntax
#include <sys/livedump.h>

kerrno_t ldmp_setupparms (parms)
ldmp_parms_t *parms;

Parameters

parms Points to an item of ldmp_parms_t type.

238 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The ldmp_setupparms kernel service simplifies the process of setting up a live dump by setting up the
ldmp_parms_t parameter. It does not allocate any storage.

The ldmp_setupparms kernel service performs the following setup for the ldmp_parms_t parameter:

Field Value
ldp_eyec eyecatcher for ldmp_parms
ldp_vers current version
ldp_flags 0
ldp_prio LDPP_CRITICAL
ldp_recov NULL
ldp_func NULL
ldp_namepref NULL
ldp_errcode 0
ldp_symptom NULL
ldp_title NULL
ldp_rsvd1 NULL

Execution Environment
The ldmp_setupparms kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates a successful completion.
EFAULT_RAS_LDMP_SETUPPARMS Indicates that the address is not valid.

Related Information
The livedump kernel service.

IS64U Kernel Service

Purpose
Determines if the current user-address space is 64-bit or not.

Syntax
#include <sys/types.h>
#include <sys/user.h>
int IS64U

Description
The IS64U kernel service returns 1 if the current user-address space is 64-bit. It returns 0 otherwise.

Execution Environment
The IS64U kernel service can be called from a process or interrupt handler environment. In either case, it
will operate only on the current user-address space.

Return Values

0 The current user-address space is 32-bits.

Chapter 1. Kernel Services 239

1 The current user-address space is 64-bits.

Related Information
The as_att64 kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

kcap_is_set and kcap_is_set_cr Kernel Service

Purpose
Determines if the given capability is present in an effective capability set.

Syntax
kcap_is_set (capability)
cap_value_t capability;

kcap_is_set_cr (capability, cred)
cap_value_t capability;
struct ucred *cred;

Parameters

capability Specifies the capability to be examined. Must be one of the capabilities named in the
sys/capabilities.h header file.

cred Pointer to the credentials to be examined.

Description
The kcap_is_set subroutine determines if the given capability is present in the current process’ effective
capability set. The kcap_is_set_cr subroutine determines if the given capability is present in the effective
capability set of the credentials structure referenced by the cred parameter. The cred parameter must be a
valid referenced credentials structure.

Return Values
The kcap_is_set and kcap_is_set_cr subroutines return 1 if the capability is present. Otherwise, they
return 0.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

kcid_curproc Kernel Service

Purpose
Returns the current workload partition ID associated with the calling process.

Syntax
#include <sys/wparid.h>

cid_t kcid_curproc ()

240 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The kcid_curproc kernel service returns the workload partition ID associated with the calling process. You
can use this service to determine whether the requesting process is operating within a workload partition
(WPAR).

Execution Environment
The kcid_curproc kernel service can be called from the process environment only.

Return Values
If the kcid_curproc kernel service is successful, it returns the workload partition ID associated with the
calling process. If the calling process is not operating within a WPAR, the ID returned is equivalent to the
WPAR_GLOBAL definition found in the wparid.h header file.

Related Information
The kwpar_r2vmap_pid kernel service, kwpar_v2rmap_pid kernel service.

kcred_genpagvalue Kernel Service

Purpose
Generates a system-wide unique PAG value for a given PAG type.

Syntax
int kcred_genpagvalue(crp, pag_type, pag_value, pag_flags);
cred_t *crp;
int pag_type;
uint64_t * pag_value;
int pag_flags;

Description
The kcred_genpagvalue kernel service generates a new PAG value for a given PAG type. It is essential
that for this function to succeed the PAG type must have been previously registered with the operating
system using the kcred_setpagname kernel service. The scope of the kcred_genpagvalue kernel service
is limited to maintaining information about the last generated PAG number and accordingly generating a
new number. This service optionally stores the PAG value in the cred structure. It does not monitor the
PAG values stored in the cred structure by other means.

The caller must convert a PAG name to a PAG type using the kcred_getpagid kernel service prior to
invoking the kcred_genpagvalue kernel service.

The pag_flags parameter with the PAG_SET_VALUE value set causes the generated value to be
atomically stored in the process’s credentials.

The PAG value returned is of size 64 bits. The number of significant bits is determined by the requested
PAG type. 32-bit PAGs have 32 significant bits. 64-bit PAGs have 62 significant bits.

Parameters

pag_type The pag_type parameter is the ID value associated with a PAG name.
pag_value This pointer points to a buffer where the OS will return the newly generated PAG value.
pag_flags This parameter must be 0 or the value PAG_SET_VALUE.

Chapter 1. Kernel Services 241

Return Values
A value of 0 is returned upon successful completion. A negative value is returned if unsuccessful.

Error Codes

EINVAL The PAG value cannot be generated because the named PAG type does not exist as part of
the table.

EPERM The named PAG type is a 32-bit PAG and the caller does not have the SET_PROC_DAC
privilege.

Related Information
“__pag_getid System Call” on page 1, “__pag_getname System Call” on page 1, “__pag_getvalue System
Call” on page 2, “__pag_setname System Call” on page 3, “__pag_setvalue System Call” on page 3,
“kcred_getpagid Kernel Service” on page 244, “kcred_getpagname Kernel Service” on page 246,
“kcred_setpagname Kernel Service” on page 250.

genpagvalue Subroutine in AIX Version 6.1 Technical Reference: Base Operating System and Extensions
Volume 1

kcred_getcap Kernel Service

Purpose
Copies a capability vector from a credentials structure.

Syntax
#include <sys/capabilities.h>

#include <sys/cred.h>

int kcred_getcap (crp, cap)
struct ucred * cr;
struct __cap_t * cap;

Parameters

crp Pointer to a credentials structure
cap Capabilities set

Description
The kcred_getcap kernel service copies the capability set from the credentials structure referenced by crp
into cap. crp must be a valid, referenced credentials structure.

Execution Environment
The kcred_getcap kernel service can be called from the process environment only.

Return Values

0 Success.
-1 An error has occurred.

242 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

kcred_getgroups Kernel Service

Purpose
Copies the concurrent group set from a credentials structure.

Syntax
#include <sys/cred.h>

int kcred_getgroups (crp, ngroups, groups)
struct ucred * cr;
int ngroups;
gid_t * groups;

Parameters

crp Pointer to a credentials structure
ngroups Size of the array of group ID values
groups Array of group ID values

Description
The kcred_getgroups kernel service returns up to ngroups concurrent group set members from the
credentials structure pointed to by crp. crp must be a valid referenced credentials structure.

Execution Environment
The kcred_getgroups kernel service can be called from the process environment only.

Return Values

>= 0 The number of concurrent groups copied to groups.
-1 An error has occurred.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

kcred_getpag or kcred_getpag64 Kernel Service

Purpose
Copies a process authentication group (PAG) ID from a credentials structure.

Syntax
#include <sys/cred.h>

int kcred_getpag (crp, which, pag)
struct ucred * cr;
int which;
int * pag;

Chapter 1. Kernel Services 243

int kcred_getpag64 (crp, which, pag)
struct ucred * cr;
int which;
uint64 * pag;

Parameters

crp Pointer to a credentials structure
which PAG ID to get
pag Process authentication group

Description
The kcred_getpag or kcred_getpag64 kernel service copies the requested PAG from the credentials
structure referenced by crp into pag. The value of which must be a defined PAG ID. The PAG ID for the
Distributed Computing Environment (DCE) is 0. crp must be a valid, referenced credentials structure.

Execution Environment
The kcred_getpag or kcred_getpag64 kernel service can be called from the process environment only.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned, and the errno
global variable is set to indicate the error.

Error Codes
Thekcred_getpag kernel service fails if the following condition is true:

-EOVERFLOW PAG value is 64-bit (should be using kcred_getpag64)

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

kcred_getpagid Kernel Service

Purpose
Returns the PAG identifier for a PAG name.

Syntax
int kcred_getpagid (name)
char *name;

Description
Given a PAG type name, the kcred_getpagid subroutine returns the PAG identifier for that PAG name.

Parameters

name A pointer to the name of the PAG type whose integer PAG identifer is to be returned.

244 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Return Values
A return value greater than or equal to 0 is the PAG identifier. A value less than 0 indicates an error.

Error Codes

ENOENT The name parameter doesn’t refer to an existing PAG entry.

Related Information
“__pag_getid System Call” on page 1, “__pag_getname System Call” on page 1, “__pag_getvalue System
Call” on page 2, “__pag_setname System Call” on page 3, “__pag_setvalue System Call” on page 3,
“kcred_getpagname Kernel Service” on page 246, and “kcred_setpagname Kernel Service” on page 250.

kcred_getpaginfo Kernel Service

Purpose
Returns a Process Authentication Group (PAG) flags for a given PAG type.

Syntax
#include <sys/cred.h>

int kcred_getpaginfo (type, infop, infosz)
int type;
struct paginfo * infop
int infosz;

Parameters

type PAG for which the flags are returned
infop Pointer to PAG info structure
infosz Size of paginfo structure

Description
The kcred_getpaginfo kernel service retrieves the flags for the specific PAG type and stores them in a
PAG info structure. The value of type must be a defined PAG ID. The PAG ID for the Distributed
Computing Environment (DCE) is 0. The infop parameter must be a valid, referenced PAG info structure of
the size specified by infosz.

Execution Environment
The kcred_getpaginfo kernel service can be called from the process environment only.

Return Values
A value of 0 is returned upon successful completion. Upon failure, a -1 is returned and errno is set to a
value that explains the error.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

Chapter 1. Kernel Services 245

kcred_getpagname Kernel Service

Purpose
Retrieves the name of a PAG.

Syntax
int kcred_getpagname (type, buf, size)
int type;
char *buf;
int size;

Description
The kcred_getpagname kernel service retrieves the name of a PAG type given its integer value.

Parameters

type The integer valued identifier representing the PAG type.
buf A char * to where the PAG name is copied.
size An int that specifies the size of buf in bytes. The size of the buffer must be

PAG_NAME_LENGTH_MAX+1.

Return Values
If successful, a 0 is returned. If unsuccessful, an error code value less than 0 is returned. The PAG name
associated with type is copied into the caller-supplied buffer buf.

Error Codes

EINVAL The value of id is less than 0 or greater than the maximum PAG identifier.
ENOENT There is no PAG associated with id.
ENOSPC The size parameter is insufficient to hold the PAG name.

Related Information
“__pag_getid System Call” on page 1, “__pag_getname System Call” on page 1, “__pag_getvalue System
Call” on page 2, “__pag_setname System Call” on page 3, “__pag_setvalue System Call” on page 3,
“kcred_getpagid Kernel Service” on page 244, and “kcred_setpagname Kernel Service” on page 250.

kcred_getppriv Kernel Service

Purpose
Copies a privilege vector from a credentials structure.

Syntax
#include <sys/priv.h>
#include <sys/cred.h>

int kcred_getppriv (crp, which, privset)
struct ucred *crp;
int which;
privg_t privset;

246 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

crp Points to a credentials structure.
which Specifies the privilege set to get.
privset Specifies the privilege set.

Description
The kcred_getppriv kernel service returns a single privilege set from the credentials structure referenced
by the crp parameter. The which parameter is one of the values of PRIV_EFFECTIVE, PRIV_MAXIMUM,
PRIV_INHERITED, PRIV_LIMITING, and PRIV_USED. The corresponding privilege set is copied to the
privset parameter. The crp parameter must be a valid, referenced credentials structure.

Execution Environment
The kcred_getppriv kernel service can be called from the process environment only.

Return Values

0 Success.
-1 An error has occurred.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

kcred_getpriv Kernel Service

Purpose
Copies a privilege vector from a credentials structure.

Syntax
#include <sys/priv.h>

#include <sys/cred.h>

int kcred_getpriv (crp, which, priv)
struct ucred * cr;
int which;
priv_t * priv;

Parameters

crp Pointer to a credentials structure
which Privilege set to get
priv Privilege set

Description
The kcred_getpriv kernel service returns a single privilege set from the credentials structure referenced
by crp. The which parameter is one of PRIV_BEQUEATH, PRIV_EFFECTIVE, PRIV_INHERITED, or
PRIV_MAXIMUM. The corresponding privilege set will be copied to priv. rp must be a valid, referenced
credentials structure.

Chapter 1. Kernel Services 247

Execution Environment
The kcred_getpriv kernel service can be called from the process environment only.

Return Values

0 Success. to priv.
-1 An error has occurred.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

kcred_setcap Kernel Service

Purpose
Copies a capabilities set into a credentials structure.

Syntax
#include <sys/capabilities.h>

#include <sys/cred.h>

void kcred_setcap (crp, cap)
struct ucred * cr;
struct __cap_t * cap;

Parameters

crp Pointer to a credentials structure
cap Capabilities set

Description
The kcred_setcap kernel service initializes the capability set in the credentials structure referenced by crp
with cap. rp must be a valid, referenced credentials structure and must not be the current credentials of
any process.

Execution Environment
The kcred_setcap kernel service can be called from the process environment only.

Return Values
The kcred_setcap kernel service has no return values.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

248 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

kcred_setgroups Kernel Service

Purpose
Copies a concurrent group set into a credentials structure.

Syntax
#include <sys/cred.h>

int kcred_setgroups (crp, ngroups, groups)
struct ucred * cr;
int ngroups;
gid_t * groups;

Parameters

crp Pointer to a credentials structure
ngroups Size of the array of group ID values
groups Array of group ID values

Description
The kcred_setgroups kernel service copies ngroups concurrent group set members into the credentials
structure pointed to by crp. crp must be a valid, referenced credentials structure and must not be the
current credentials of any process.

Execution Environment
The kcred_setgroups kernel service can be called from the process environment only.

Return Values

0 The concurrent group set has been copied successfully.
-1 An error has occurred.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

kcred_setpag or kcred_setpag64 Kernel Service

Purpose
Copies a process authentication group ID into a credentials structure.

Syntax
#include <sys/cred.h>

int kcred_setpag (crp, which, pag)
struct ucred * cr;
int which;
int pag;

Chapter 1. Kernel Services 249

int kcred_setpag64 (crp, which, pag)
struct ucred * cr;
int which;
uint64 * pag;

Parameters

crp Pointer to a credentials structure
which PAG ID to set
pag Process authentication group

Description
The kcred_setpag or kcred_setpag64 kernel service initializes the specified PAG in the credentials
structure referenced by crp with pag. The value of which must be a defined PAG ID. The PAG ID for the
Distributed Computing Environment (DCE) is 0. Crp must be a valid, referenced credentials structure. crp
may be a reference to the current credentials of a process.

Execution Environment
The kcred_setpag or kcred_setpag64 kernel service can be called from the process environment only.

Return Values

0 Success.
-1 An error has occurred.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

kcred_setpagname Kernel Service

Purpose
Copies a process authentication group ID into a credentials structure.

Syntax
int kcred_setpagname (name, flags, func)
char *name;
int flags;

Description
The kcred_setpagname kernel service registers the name of a PAG and returns the PAG type identifier. If
the PAG name has already been registered, the previously returned PAG type identifier is returned if the
flags and func parameters match their earlier values.

Parameters

name The name parameter is a 1 to 4 character, NULL-terminated name for the PAG type. Typical values
might include ″afs″, ″dfs″, ″pki″ and ″krb5.″

flags The flags parameter indicates if each PAG value is unique (PAG_UNIQUEVALUE) or multivalued
(PAG_MULTIVALUED). A multivalued PAG type allows multiple calls to the kcred_setpag kernel
service to be made to store multiple values for a single PAG type.

250 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

func The func parameter is a pointer to an allocating and deallocating function. The flag parameter to that
function is either PAGVALUE_ALLOC or PAGVALUE_FREE. The value parameter is the actual PAG
value. The func parameter will be invoked by the crfree kernel service with a flag value of
PAGVALUE_FREE on the last free value of a credential. Whenever a credentials structure is
initialized with new PAG values, func will be invoked by that function with a value of
PAGVALUE_ALLOC. This parameter may be ignored and an error returned if the value of func is
non-NULL.

Return Values
A value of 0 or greater is returned upon successful completion. This value is the PAG type identifier which
is used with other kernel services, such as the kcred_getpag and kcred_setpag subroutines . A negative
value is returned if unsuccessful.

Error Codes

ENOSPC The PAG table is full.
EEXISTS The named PAG type already exists in the table and the flags and func parameters do not match

their earlier values.
EINVAL The flags parameter is an invalid value.

Related Information
“__pag_getid System Call” on page 1, “__pag_getname System Call” on page 1, “__pag_getvalue System
Call” on page 2, “__pag_setname System Call” on page 3, “__pag_setvalue System Call” on page 3,
“kcred_getpagid Kernel Service” on page 244, and “kcred_getpagname Kernel Service” on page 246.

kcred_setppriv Kernel Service

Purpose
Copies a privilege vector into a credentials structure.

Syntax
#include <sys/priv.h>
#include <sys/cred.h>

int kcred_setppriv (crp, which, privset)
struct ucred *crp;
int which;
privg_t privset;

Parameters

crp Points to a credentials structure.
which Specifies the privilege set to set.
privset Specifies the privilege set.

Description
The kcred_setppriv kernel service sets one or more single privilege sets in the credentials structure
referenced by the crp parameter. The which parameter is the bitwise OR of one or more values of
PRIV_EFFECTIVE, PRIV_MAXIMUM, PRIV_INHERITED, PRIV_LIMITING, and PRIV_USED. The privset
parameter initializes the corresponding privilege sets. The crp parameter must be a valid, referenced
credentials structure and cannot be the current credentials of any process.

Chapter 1. Kernel Services 251

Execution Environment
The kcred_setppriv kernel service can be called from the process environment only.

Return Values

0 Success.
-1 An error has occurred.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

kcred_setpriv Kernel Service

Purpose
Copies a privilege vector into a credentials structure.

Syntax
#include <sys/priv.h>

#include <sys/cred.h>

int kcred_setpriv (crp, which, priv)
struct ucred * cr;
int which;
priv_t * priv;

Parameters

crp Pointer to a credentials structure
which Privilege set to set
priv Privilege set

Description
The kcred_setpriv kernel service sets one or more single privilege sets in the credentials structure
referenced by crp. The which parameter is one or more bit-wise ored values of PRIV_BEQUEATH,
PRIV_EFFECTIVE, PRIV_INHERITED, and PRIV_MAXIMUM. The corresponding privilege sets are
initialized from priv. crp must be a valid, referenced credentials structure and must not be the current
credentials of any process.

Execution Environment
The kcred_setpriv kernel service can be called from the process environment only.

Return Values

0 Success. to priv.
-1 An error has occurred.

252 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

kgethostname Kernel Service

Purpose
Retrieves the name of the current host.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int
kgethostname (name, namelen)
char *name;
int *namelen;

Parameters

name Specifies the address of the buffer in which to place the host name.
namelen Specifies the address of a variable in which the length of the host name will be stored. This parameter

should be set to the size of the buffer before the kgethostname kernel service is called.

Description
The kgethostname kernel service returns the standard name of the current host as set by the
sethostname subroutine. The returned host name is null-terminated unless insufficient space is provided.

Execution Environment
The kgethostname kernel service can be called from either the process or interrupt environment.

Return Value

0 Indicates successful completion.

Related Information
The sethostname subroutine.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

kgetpname Kernel Service

Purpose
Provides the calling process’s base program name.

Syntax
#include <sys/encap.h>
int kgetpname (char * Buffer, size_t *BufferSize);

Chapter 1. Kernel Services 253

Description
The kgetpname kernel service copies the program name of the calling process into the buffer specified by
Buffer. Including the null terminator, the service copies no more than the lesser of *BufferSize,
MAXCOMLEN, or the actual size of the program name in bytes into the buffer. If Buffer is NULL, or
*BufferSize is 0, no copy is performed. If the full program name is copied into the buffer, the total number
of bytes copied is written to *BufferSize. If kgetpname cannot copy the full program name into the buffer,
the size in bytes of the full program name is written to *BufferSize, and ENAMETOOLONG is returned.

Execution Environment
The kgetpname kernel service can only be called from the process environment.

Return Values

0 The full program name was successfully written to the buffer.
ENAMETOOLONG Only part of the full program name was written to the buffer, and kgetpname stored the

(positive) length in bytes (including the null character) of the full program name into
*BufferSize.

EINVAL Buffer is Null, BufferSize is NULL, or *BufferSize is 0.
ENOTSUP The kgetpname kernel service was called from inside an interrupt context.

kgetrlimit64 Kernel Service

Purpose
Controls maximum system resource consumption.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
#include <sys/resource.h>

void kgetrlimit64 (Resource1, RLP)
int Resource1;
struct rlimit64 *RLP;

254 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

Resource1 The Resource1 parameter can be one of the following values:

RLIMIT_AS
The maximum size of a process’s total available memory, in bytes. This limit is not
enforced.

RLIMIT_CORE
The largest size, in bytes, of a core file that can be created. This limit is enforced by the
kernel. If the value of the RLIMIT_FSIZE limit is less than the value of the RLIMIT_CORE
limit, the system uses the RLIMIT_FSIZE limit value as the soft limit.

RLIMIT_CPU
The maximum amount of central processing unit (CPU) time, in seconds, to be used by
each process. If a process exceeds its soft CPU limit, the kernel sends a SIGXCPU signal
to the process. After the hard limit is reached, the process is killed with SIGXCPU, even if
it handles, blocks, or ignores that signal.

RLIMIT_DATA
The maximum size, in bytes, of the data region for a process. This limit defines how far a
program can extend its break value with the sbrk subroutine. This limit is enforced by the
kernel.

RLIMIT_FSIZE
The largest size, in bytes, of any single file that can be created. When a process attempts
to write, truncate, or clear beyond its soft RLIMIT_FSIZE limit, the operation fails with the
errno variable set to EFBIG. If the environment variable XPG_SUS_ENV=ON is set in the
user’s environment before the process is issued, then the SIGXFSZ signal is also
generated.

RLIMIT_NOFILE
This is a number one greater than the maximum value that the system can assign to a
newly-created descriptor.

RLIMIT_STACK
The maximum size, in bytes, of the stack region for a process. This limit defines how far a
program stack region can be extended. The system automatically performs stack
extension. This limit is enforced by the kernel. When the stack limit is reached, the
process receives a SIGSEGV signal. If this signal is not caught by a handler using the
signal stack, the signal ends the process.

RLIMIT_RSS
The maximum size, in bytes, to which the resident set size of a process can grow. This
limit is not enforced by the kernel. A process might exceed its soft limit size without being
ended.

RLP Points to the rlimit64 structure where the requested limits are returned by the kgetrlimit64 kernel
service.

Description
The kgetrlimit64 kernel service returns the values of limits on system resources used by the current
process and its children processes.

Note: The initial values returned by the kgetrlimit64 kernel service are the ulimit values in effect when
the process was started. For maxdata programs the initial soft limit for data is set to the lower of
data ulimit value or a value corresponding to the number of data segments reserved for data
segments.

The rlimit64 structure specifies the hard and soft limits for a resource, as defined in the sys/resource.h
file. The RLIM64_INFINITY value defines an infinite value for a limit.

Chapter 1. Kernel Services 255

Execution Environment
The kgetrlimit64 kernel service can be called from either the process or interrupt environment.

Return Values
The kgetrlimit64 kernel service has no return values.

Related Information
The getrlimit64 subroutine in AIX Version 6.1 Technical Reference: Base Operating System and
Extensions Volume 1.

kgettickd Kernel Service

Purpose

Retrieves the current status of the systemwide time-of-day timer-adjustment values.

Syntax
#include <sys/types.h>

int kgettickd (timed, tickd, time_adjusted)
int *timed;
int *tickd;
int *time_adjusted;

Parameters

timed Specifies the current amount of time adjustment in microseconds remaining to be applied to
the systemwide timer.

tickd Specifies the time-adjustment rate in microseconds.
time_adjusted Indicates if the systemwide timer has been adjusted. A value of True indicates that the timer

has been adjusted by a call to the adjtime or settimer subroutine. A value of False
indicates that it has not. The use of the ksettimer kernel service has no effect on this flag.
This flag can be changed by the ksettickd kernel service.

Description
The kgettickd kernel service provides kernel extensions with the capability to determine if the adjtime or
settimer subroutine has adjusted or changed the systemwide timer.

The kgettickd kernel service is typically used only by kernel extensions providing time synchronization
functions. This includes coordinated network time (which is the periodic synchronization of all system
clocks to a common time by a time server or set of time servers on a network), where use of the adjtime
subroutine is insufficient.

Execution Environment
The kgettickd kernel service can be called from either the process or interrupt environment.

Return Values
The kgettickd service always returns a value of 0.

256 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
The ksettimer kernel service.

The adjtime subroutine, settimer subroutine.

Timer and Time-of-Day Kernel Services and Using Fine Granularity Timer Services and Structures in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

kkey_assign_private Kernel Service

Purpose
Requests a private kernel-key assignment.

Syntax
#include <sys/types.h>
#include <sys/skeys.h>
#include <sys/kerrno.h>

kerrno_t kkey_assign_private (id, instance, flags, kkey)
char *id;
long instance;
unsigned long flags;
kkey_t *kkey;

Parameters

id Specifies a null-terminated string. The kkey_assign_private kernel service uses the string value to
assign a private key. This normally contains a load module name associated with the calling kernel
subsystem, but you can specify any unique string.

instance Specifies a unique number for each private key requested by a subsystem. This must be an integer
value starting from 0 and increases with each kernel-key requested.

flags You must specify this parameter to zero.
kkey Contains the returned assigned kernel key. The valid pointer must be a 4-byte aligned address

(kkey_t’s natural alignment).

Description
The kkey_assign_private kernel service assigns a private kernel key to the caller. Private kernel keys are
used to limit data accessibility by external kernel code. The kkey_assign_private kernel service
distributes requests for private kernel keys among a predetermined range (from KKEY_PRIVATE1 to
KKEY_PRIVATE32). The intention is to perform a uniform distribution on behalf of requests by multiple
kernel subsystems. The assignment is made based on the id and instance parameters and might return
the same private key to multiple callers. It might also return the same private key when the instance
number is different.

The kkey_assign_private kernel service does not perform a resource allocation. It only provides a
recommended kernel key to use for data protection.

Execution Environment
The kkey_assign_private kernel service can be called from the process environment only.

Chapter 1. Kernel Services 257

Return Values

0 Indicates a successful completion.
EINVAL_KKEY_ASSIGN_PRIVATE Indicates that the parameter or execution environment is not valid.

kkeyset_add_key Kernel Service

Purpose
Adds a kernel key to a kernel keyset.

Syntax
#include <sys/kerrno.h>
#include <sys/skeys.h>

kerrno_t kkeyset_add_key (set, key, flags)
kkeyset_t set;
kkey_t key;
unsigned long flags;

Parameters

set Specifies the kernel keyset to which the kkeyset_add_key kernel service will add a key.
key Specifies the kernel key to add.
flags You can specify the flags parameter to one of the following values:

KA_READ
Specifies that the read access for the key is to be added.

KA_WRITE
Specifies that the write access for the key is to be added.

KA_RW
Specifies that both the read access and the write access are to be added. This is
equivalent to the value of KA_READ | KA_WRITE.

Description
The kkeyset_add_key kernel service adds a single kernel key specified by the key parameter to the
kernel keyset specified by the set parameter. You must specify the flags parameter to control the read or
write authority.

Execution Environment
The kkeyset_add_key kernel service can be called from the process environment only.

Return Values

0 Indicates a successful completion.
EINVAL_KKEYSET_ADD_KEY Indicates that the parameter or execution environment is not valid.

kkeyset_add_set Kernel Service

Purpose
Adds members of one kernel keyset to an existing kernel keyset.

258 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/kerrno.h>
#include <sys/skeys.h>

kerrno_t kkeyset_add_set (set, addset)
kkeyset_t set;
kkeyset_t addset;

Parameters

set Specifies an existing kernel keyset. This set contains the resulting union on completion.
addset Specifies the kernel keyset to add.

Description
The kkeyset_add_set kernel service adds a kernel keyset specified by the addset parameter to the kernel
keyset specified by the set parameter.

Execution Environment
The kkeyset_add_set kernel service can be called from the process environment only.

Return Values

0 Indicates a successful completion.
EINVAL_KKEYSET_ADD_SET Indicates that the parameter or execution environment is not valid.

kkeyset_create Kernel Service

Purpose
Creates and initializes a kernel keyset.

Syntax
#include <sys/kerrno.h>
#include <sys/skeys.h>

kerrno_t kkeyset_create (set)
kkeyset_t *set;

Parameters

set Contains the returned newly-created keyset.

Description
The kkeyset_create kernel service creates a new (empty) kernel keyset. You can add or remove the
access to an individual or groups of kernel keys using the kkeyset_add_key, kkeyset_remove_key,
kkeyset_add_set, and kkeyset_remove_set kernel services.

Important: The kkeyset_create kernel service allocates hidden kernel resources. You must release these
resources using the kkeyset_delete kernel service when the kernel keyset is no longer in use.
When creating a new set, the caller of the kkeyset_create kernel service must initialize the
storage that will contain the returned kernel keyset (*set) to the value of KKEYSET_INVALID.

Chapter 1. Kernel Services 259

Execution Environment
The kkeyset_create kernel service can be called from the process environment only.

Return Values

0 Indicates a successful completion.
ENOMEM_KKEYSET_CREATE Indicates that the available memory is not sufficient to satisfy the request.
EINVAL_KKEYSET_CREATE Indicates that the parameter or execution environment is not valid.

Related Information
The kkeyset_add_key kernel service, kkeyset_remove_key kernel service, kkeyset_add_set kernel
service, kkeyset_remove_set kernel service, kkeyset_delete kernel service.

kkeyset_delete Kernel Service

Purpose
Deletes a kernel keyset.

Syntax
#include <sys/kerrno.h>
#include <sys/skeys.h>

kerrno_t kkeyset_delete (set)
kkeyset_t set;

Parameters

set Specifies the keyset to be destroyed.

Description
The kkeyset_delete kernel service destroys a kernel keyset. The kernel service releases the hidden
resources associated with this keyset.

Execution Environment
The kkeyset_delete kernel service can be called from the process environment only.

Return Values

0 Indicates a successful completion.
EINVAL_KKEYSET_DELETE Indicates that the parameter or execution environment is not valid.

kkeyset_remove_key Kernel Service

Purpose
Removes a kernel key from a kernel keyset.

260 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/kerrno.h>
#include <sys/skeys.h>

kerrno_t kkeyset_remove_key (set, key, flags)
kkeyset_t set;
kkey_t key;
unsigned long flags;

Parameters

set Specifies the kernel keyset from which the kkeyset_remove_key kernel service will remove a key.
key Specifies the kernel key to remove.
flags You can specify the flags parameter to one of the following values:

KA_READ
Specifies that the read access for the key is to be removed.

KA_WRITE
Specifies that the write access for the key is to be removed.

KA_RW
Specifies that both the read access and the write access are to be removed. This is
equivalent to the value of KA_READ | KA_WRITE.

Description
The kkeyset_remove_key kernel service removes a single kernel key specified by the key parameter
from the kernel keyset specified by the set parameter. You must specify the flags parameter to control the
read or write authority.

Execution Environment
The kkeyset_remove_key kernel service can be called from the process environment only.

Return Values

0 Indicates a successful completion.
EINVAL_KKEYSET_REMOVE_KEY Indicates that the parameter or execution environment is not valid.

kkeyset_remove_set Kernel Service

Purpose
Removes members of one kernel keyset from an existing kernel keyset.

Syntax
#include <sys/kerrno.h>
#include <sys/skeys.h>

kerrno_t kkeyset_remove_set (set, removeset)
kkeyset_t set;
kkeyset_t removeset;

Chapter 1. Kernel Services 261

Parameters

set Specifies the kernel keyset from which the kkeyset_remove_set kernel service will remove a
keyset.

removeset Specifies the kernel keyset to remove.

Description
The kkeyset_remove_set kernel service removes a kernel keyset specified by the removeset parameter
from the kernel keyset specified by the set parameter.

Execution Environment
The kkeyset_remove_set kernel service can be called from the process environment only.

Return Values

0 Indicates a successful completion.
EINVAL_KKEYSET_REMOVE_SET Indicates that the parameter or execution environment is not valid.

kkeyset_to_hkeyset Kernel Service

Purpose
Computes the hardware keyset associated with a kernel keyset.

Syntax
#include <sys/kerrno.h>
#include <sys/skeys.h>

kerrno_t kkeyset_to_hkeyset (kkeyset, hkeyset)
kkeyset_t kkeyset;
hkeyset_t *hkeyset;

Parameters

kkeyset Specifies the input kernel keyset to be mapped.
hkeyset Specifies the hardware keyset that is mapped to. The valid pointer must be an 8-byte aligned

address.

Description
The kkeyset_to_hkeyset kernel service maps a kernel keyset to its associated hardware keyset.

Execution Environment
The kkeyset_to_hkeyset kernel service can be called from the process environment only.

Return Values

0 Indicates a successful completion.
EINVAL_KKEYSET_TO_HKEYSET Indicates that the parameter or execution environment is not valid.

262 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

klpar_get_info Kernel Service

Purpose
Retrieves the calling partition’s characteristics.

Syntax
#include <sys/dr.h>

int klpar_get_info (command, lparinfo, bufsize)
int command;
void *lparinfo;
size_t bufsize;

Parameters

command Specifies whether the user wants format1, format2, or processor module details.
lparinfo Pointer to the user-allocated buffer that is passed in.
bufsize Size of the buffer that is passed in.

Description
The klpar_get_info kernel service retrieves LPAR and Micro-Partitioning attributes of both low-frequency
use and high-frequency use and also retrieves processor module information. Because the low-frequency
attributes, as defined in the lpar_info_format1_t structure, are static in nature, a reboot is required to
effect any change. The high-frequncy attributes, as defined in the lpar_info_format2_t structure, can be
changed dynamically while the partition is running. The signature of this kernel service, its parameter
types, and the order of the member fields in both the lpar_info_format1_t and lpar_info_format2_t
structures are specific to the AIX platform. If you requests processor module information, the kernel
service provides this information as an array of proc_module_info_t structures. To obtain this information,
the caller must provide a buffer of the exact length to accommodate one proc_module_info_t structure
for each module type. You can obtain the module count using the NUM_PROC_MODULE_TYPES
command. The module count is in the form of a uint64_t type. Processor module information is reported
for the entire system. This information is available on POWER6 and later systems.

To see the complete structures of lpar_info_format1_t, lpar_info_format2_t, and proc_module_info_t,
refer to the dr.h header file.

Return Values
Upon success, the klpar_get_info kernel service returns a value of 0. Upon failure, the klpar_get_info
kernel service returns an error code.

Error Codes

EINVAL Invalid input parameter.
ENOSYS The hardware or the firmware level does not support this operation.
ENOTSUP The platform does not support this operation.

Related Information
The lpar_get_info subroutine.

Chapter 1. Kernel Services 263

kmod_entrypt Kernel Service

Purpose
Returns a function pointer to a kernel module’s entry point.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ldr.h>

void (*(kmod_entrypt (kmid, flags)))()
mid_t kmid;
uint flags;

Parameters

kmid Specifies the kernel module ID of the object file for which the entry point is requested. This parameter is
the kernel module ID returned by the kmod_load kernel service.

flags Flag specifying entry point options. The following flag is defined:

0 Returns a function pointer to the specified module’s entry point as specified in the module header.

Description
The kmod_entrypt kernel service obtains a function pointer to a specified module’s entry point. This
function pointer is typically used to invoke a routine in the module for initializing or terminating its
functions. Initialization and termination occurs after loading and before unloading. The module for which
the entry point is requested is specified by the kernel module ID represented by the kmid parameter.

Execution Environment
The kmod_entrypt kernel service can be called from the process environment only.

Return Values
A nonnull function pointer indicates a successful completion. This function pointer contains the module’s
entry point. A null function pointer indicates an error.

Related Information
The kmod_load kernel service.

Kernel Extension and Device Driver Management Kernel Services in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

kmod_load Kernel Service

Purpose
Loads an object file into the kernel or queries for an object file already loaded.

Syntax
#include <sys/ldr.h>
#include <sys/types.h>
#include <sys/errno.h>

264 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

int kmod_load (pathp,
flags,libpathp, kmidp)
caddr_t pathp;
uint flags;
caddr_t
libpathp;
mid_t * kmidp;

Parameters

pathp Points to a character string containing the path-name of the object file to load or query.
flags Specifies a set of loader flags describing which loader options to invoke. The following flags are

defined:

LD_USRPATH
The character strings pointed to by the pathp and libpathp parameters are in user address
space. If the LD_USRPATH flag is not set, the character strings are assumed to be in
kernel, or system, space.

LD_KERNELEX
Puts this object file’s exported symbols into the /usr/lib/boot/unix name space. Additional
object files loaded due to symbol resolution for the specified file do not have their exported
symbols placed in kernel name space.

LD_SINGLELOAD
When this flag is set, the object file specified by the pathp parameter is loaded into the
kernel only if an object file with the same path-name has not already been loaded. If an
object file with the same path-name has already been loaded, its module ID is returned
(using the kmidp parameter) and its load count incremented. If the object file is not yet
loaded, this service performs the load as if the flag were not set.

This option is useful in supporting global kernel routines where only one copy of the routine
and its data can be present. Typically, routines that export symbols to be added to kernel
name space are of this type.
Note: A path-name comparison is done to determine whether the same object file has
already been loaded. This service will erroneously load a new copy of the object file into the
kernel if the path-name to the object file is expressed differently than it was on a previous
load request.

If neither this flag nor the LD_QUERY flag is set, this service loads a new copy of the object
file into the kernel. This occurs even if other copies of the object file have previously been
loaded.

LD_QUERY
This flag specifies that a query operation will determine if the object file specified by the
pathp parameter is loaded. If not loaded, a kernel module ID of 0 is returned using the
kmidp parameter. Otherwise, the kernel module ID assigned to the object file is returned.

If multiple instances of this file have been loaded into the kernel, the kernel module ID of the
most recently loaded object file is returned.

The libpathp parameter is not used for this option.
Note: A path-name comparison is done to determine whether the same object file has been
loaded. This service will erroneously return a not loaded condition if the path-name to the
object file is expressed differently than it was on a previous load request.

If this flag is set, no object file is loaded and the LD_SINGLELOAD and LD_KERNELEX
flags are ignored, if set.

libpathp Points to a character string containing the search path to use for finding object files required to
complete symbol resolution for this load. If the parameter is null, the search path is set from the
specification in the object file header for the object file specified by the pathp parameter.

Chapter 1. Kernel Services 265

kmidp Points to an area where the kernel module ID associated with this load of the specified module is to
be returned. The data in this area is not valid if the kmod_load service returns a nonzero return
code.

Description
The kmod_load kernel service loads into the kernel a kernel extension object file specified by the pathp
parameter. This service returns a kernel module ID for that instance of the module.

You can specify flags to request a single load, which ensures that only one copy of the object file is loaded
into the kernel. An additional option is simply to query for a given object file (specified by path-name). This
allows the user to determine if a module is already loaded and then access its assigned kernel module ID.

The kmod_load service also provides load-time symbol resolution of the loaded module’s imported
symbols. The kmod_load service loads additional kernel object modules if required for symbol resolution.

Loader Symbol Binding Support

Symbols imported from the kernel name space are resolved with symbols that exist in the kernel name
space at the time of the load. (Symbols are imported from the kernel name space by specifying the
#!/unix character string as the first field in an import list at link-edit time.)

Kernel modules can also import symbols from other kernel object modules. These other kernel object
modules are loaded along with the specified object module if they are needed to resolve the imported
symbols.

Any symbols exported by the specified kernel object module are added to the kernel name space if the
flags parameter has the LD_KERNELEX flag set. This makes the symbols available to other subsequently
loaded kernel object modules. Kernel object modules loaded on behalf of the specified kernel object
module (to resolve imported symbols) do not have their exported symbols added to the kernel name
space.

Kernel export symbols specified (at link-edit time) with the SYSCALL keyword in the primary module’s
export list are added to the system call table. These kernel export symbols are available to application
programs as system calls.

Finding Shared Object Modules for Resolving Symbol References

The search path search string is taken from the module header of the object module specified by the
pathp parameter if the libpathp parameter is null. The module header of the object module specified by the
pathp parameter is used.

If the module header contains an unqualified base file name for the symbol (no / [slash] characters in the
name), a search string is used to find the location of the shared object module required to resolve the
import. This search string can be taken from one of two places. If the libpathp parameter on the call to the
kmod_load service is not null, then it points to a character string specifying the search path to be used.
However, if the libpathp parameter is null, then the search path is to be taken from the module header for
the object module specified by the pathp parameter.

The search path specification found in object modules loaded to resolve imported symbols is not used.
The kernel loader service does not support deferred symbol resolution. The load of the kernel module is
terminated with an error if any imported symbols cannot be resolved.

Execution Environment
The kmod_load kernel service can be called from the process environment only.

266 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Return Values
If the object file is loaded without error, the module ID is returned in the location pointed to by the kmidp
parameter and the return code is set to 0.

Error Codes
If an error results, the module is not loaded, and no kernel module ID is returned. The return code is set to
one of the following return values:

Return Value Description
EACCES Indicates that an object module to be loaded is not an ordinary file or that the mode of the

object module file denies read-only access.
EACCES Search permission is denied on a component of the path prefix.
EFAULT Indicates that the calling process does not have sufficient authority to access the data area

described by the pathp or libpathp parameters when the LD_USRPATH flag is set. This error
code is also returned if an I/O error occurs when accessing data in this area.

ENOEXEC Indicates that the program file has the appropriate access permission, but has an XCOFF
indicator that is not valid in its header. The kmod_load kernel service supports loading of
XCOFF (Extended Common Object File Format) object files only. This error code is also
returned if the loader is unable to resolve an imported symbol.

EINVAL Indicates that the program file has a valid XCOFF indicator in its header, but the header is
either damaged or incorrect for the machine on which the file is to be loaded.

ENOMEM Indicates that the load requires more kernel memory than allowed by the system-imposed
maximum.

ETXTBSY Indicates that the object file is currently open for writing by some process.
ENOTDIR Indicates that a component of the path prefix is not a directory.
ENOENT Indicates that no such file or directory exists or the path-name is null.
ESTALE Indicates that the caller’s root or current directory is located in a virtual file system that has

been unmounted.
ELOOP Indicates that too many symbolic links were encountered in translating the path or libpathp

parameter.
ENAMETOOLONG Indicates that a component of a path-name exceeded 255 characters, or an entire path-name

exceeded 1023 characters.
EIO Indicates that an I/O error occurred during the operation.

Related Information
The kmod_unload kernel service.

Kernel Extension and Device Driver Management Kernel Services in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

kmod_unload Kernel Service

Purpose
Unloads a kernel object file.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ldr.h>

int kmod_unload (kmid, flags)
mid_t kmid;
uint flags;

Chapter 1. Kernel Services 267

Parameters

kmid Specifies the kernel module ID of the object file to be unloaded. This kernel module ID is returned when
using the kmod_load kernel service.

flags Flags specifying unload options. The following flag is defined:

0 Unloads the object module specified by its kmid parameter and any object modules that were
loaded as a result of loading the specified object file if this file is not still in use.

Description
The kmod_unload kernel service unloads a previously loaded kernel extension object file. The object to
be unloaded is specified by the kmid parameter. Upon successful completion, the following objects are
unloaded or marked unload pending:

v The specified object file

v Any imported kernel object modules that were loaded as a result of the loading of the specified module

Users of these exports or system calls are modules bound to this module’s exported symbols. If there are
no users of any of the module’s kernel exports or system calls, the module is immediately unloaded. If
there are users of this module, the module is not unloaded but marked unload pending.

Marking a module unload pending removes the module’s exported symbols from the kernel name space.
Any system calls exported by this module are also removed. This prohibits new users of these symbols.
The module is unloaded only when all current users have been unloaded.

If the unload is successfully completed or marked pending, a value of 0 is returned. When an error occurs,
the specified module and any imported modules are not unloaded. A nonzero return value indicates the
error.

Execution Environment
The kmod_unload kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
EINVAL Indicates that the kmid parameter, which specifies the kernel module, is not valid or does not correspond

to a currently loaded module.

Related Information
The kmod_load kernel service.

Kernel Extension and Device Driver Management Kernel Services in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

kmsgctl Kernel Service

Purpose
Provides message-queue control operations.

268 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int kmsgctl (msqid, cmd, buf)
int msqid, cmd;
struct msqid_ds *buf;

Parameters

msqid Specifies the message queue ID, which indicates the message queue for which the control operation is
being requested for.

cmd Specifies which control operation is being requested. There are three valid commands.
buf Points to the msqid_ds structure provided by the caller of the kmsgctl service. Data is obtained either

from this structure or from status returned in this structure, depending on the cmd parameter. The
msqid_ds structure is defined in the /usr/include/sys/msg.h file.

Description
The kmsgctl kernel service provides a variety of message-queue control operations as specified by the
cmd parameter. The kmsgctl kernel service provides the same functions for user-mode processes in
kernel mode as the msgctl subroutine performs for kernel processes or user-mode processes in user
mode. The kmsgctl service can be called by a user-mode process in kernel mode or by a kernel process.
A kernel process can also call the msgctl subroutine to provide the same function.

The following three commands can be specified with the cmd parameter:

IPC_STAT Sets only documented fields. See the msgctl subroutine.
IPC_SET Sets the value of the following fields of the data structure associated with the msqid parameter to the

corresponding values found in the structure pointed to by the buf parameter:

v msg_perm.uid

v msg_perm.gid

v msg_perm.mode (only the low-order 9 bits)

v msg_qbytes

To perform the IPC_SET operation, the current process must have an effective user ID equal to the
value of the msg_perm.uid or msg_perm.cuid field in the data structure associated with the msqid
parameter. To raise the value of the msg_qbytes field, the calling process must have the appropriate
system privilege.

IPC_RMID Removes from the system the message-queue identifier specified by the msqid parameter. This
operation also destroys both the message queue and the data structure associated with it. To
perform this operation, the current process must have an effective user ID equal to the value of the
msg_perm.uid or msg_perm.cuid field in the data structure associated with the msqid parameter.

Execution Environment
The kmsgctl kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.

Chapter 1. Kernel Services 269

EINVAL Indicates either

v The identifier specified by the msqid parameter is not a valid message queue identifier.

v The command specified by the cmd parameter is not a valid command.
EACCES The command specified by the cmd parameter is equal to IPC_STAT and read permission is denied to

the calling process.
EPERM The command specified by the cmd parameter is equal to IPC_RMID, IPC_SET, and the effective user

ID of the calling process is not equal to that of the value of the msg_perm.uid field in the data structure
associated with the msqid parameter.

EPERM Indicates the following conditions:

v The command specified by the cmd parameter is equal to IPC_SET.

v An attempt is being made to increase to the value of the msg_qbytes field, but the calling process does
not have the appropriate system privilege.

Related Information
The msgctl subroutine.

Message Queue Kernel Services and Understanding System Call Execution in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

kmsgget Kernel Service

Purpose
Obtains a message queue identifier.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/stat.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int kmsgget (key, msgflg, msqid)
key_t key;
int msgflg;
int *msqid;

Parameters

key Specifies either a value of IPC_PRIVATE or an IPC key constructed by the ftok subroutine (or a similar
algorithm).

270 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

msgflg Specifies that the msgflg parameter is constructed by logically ORing one or more of these values:

IPC_CREAT
Creates the data structure if it does not already exist.

IPC_EXCL
Causes the kmsgget kernel service to fail if IPC_CREAT is also set and the data structure
already exists.

S_IRUSR
Permits the process that owns the data structure to read it.

S_IWUSR
Permits the process that owns the data structure to modify it.

S_IRGRP
Permits the process group associated with the data structure to read it.

S_IWGRP
Permits the process group associated with the data structure to modify it.

S_IROTH
Permits others to read the data structure.

S_IWOTH
Permits others to modify the data structure.

The values that begin with S_I... are defined in the /usr/include/sys/stat.h file. They are a
subset of the access permissions that apply to files.

msqid A reference parameter where a valid message-queue ID is returned if the kmsgget kernel service is
successful.

Description
The kmsgget kernel service returns the message-queue identifier specified by the msqid parameter
associated with the specified key parameter value. The kmsgget kernel service provides the same
functions for user-mode processes in kernel mode as the msgget subroutine performs for kernel
processes or user-mode processes in user mode. The kmsgget service can be called by a user-mode
process in kernel mode or by a kernel process. A kernel process can also call the msgget subroutine to
provide the same function.

Execution Environment
The kmsgget kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion. The msqid parameter is set to a valid message-queue identifier.

If the kmsgget kernel service fails, the msqid parameter is not valid and the return code is one of these
four values:

EACCES Indicates that a message queue ID exists for the key parameter but operation permission as specified by
the msgflg parameter cannot be granted.

ENOENT Indicates that a message queue ID does not exist for the key parameter and the IPC_CREAT command
is not set.

ENOSPC Indicates that a message queue ID is to be created but the system-imposed limit on the maximum
number of allowed message queue IDs systemwide will be exceeded.

EEXIST Indicates that a message queue ID exists for the value specified by the key parameter, and both the
IPC_CREAT and IPC_EXCL commands are set.

Chapter 1. Kernel Services 271

Related Information
The msgget subroutine.

Message Queue Kernel Services and Understanding System Call Execution in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

kmsgrcv Kernel Service

Purpose
Reads a message from a message queue.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int kmsgrcv
(msqid, msgp, msgsz,
msgtyp, msgflg, flags, bytes)
int msqid;
struct msgxbuf * msgp;

or struct msgbuf *msgp;
int msgsz;
mtyp_t msgtyp;
int msgflg;
int flags;
ssize_t * bytes;

Parameters

msqid Specifies the message queue from which to read.
msgp Points to either an msgxbuf or an msgbuf structure where the message text is placed. The type of

structure pointed to is determined by the values of the flags parameter. These structures are defined in
the /usr/include/sys/msg.h file.

msgsz Specifies the maximum number of bytes of text to be received from the message queue. The received
message is truncated to the size specified by the msgsz parameter if the message is longer than this
size and MSG_NOERROR is set in the msgflg parameter. The truncated part of the message is lost and
no indication of the truncation is given to the calling process.

msgtyp Specifies the type of message requested as follows:

v If the msgtyp parameter is equal to 0, the first message on the queue is received.

v If the msgtyp parameter is greater than 0, the first message of the type specified by the msgtyp
parameter is received.

v If the msgtyp parameter is less than 0, the first message of the lowest type that is less than or equal
to the absolute value of the msgtyp parameter is received.

272 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

msgflg Specifies a value of 0, or is constructed by logically ORing one of several values:

MSG_NOERROR
Truncates the message if it is longer than the number of bytes specified by the msgsz
parameter.

IPC_NOWAIT
Specifies the action to take if a message of the desired type is not on the queue:

v If IPC_NOWAIT is set, then the kmsgrcv service returns an ENOMSG value.

v If IPC_NOWAIT is not set, then the calling process suspends execution until one of the
following occurs:

– A message of the desired type is placed on the queue.

– The message queue ID specified by the msqid parameter is removed from the system.
When this occurs, the kmsgrcv service returns an EIDRM value.

– The calling process receives a signal that is to be caught. In this case, a message is not
received and the kmsgrcv service returns an EINTR value.

flags Specifies a value of 0 if a normal message receive is to be performed. If an extended message receive is
to be performed, this flag should be set to an XMSG value. With this flag set, the kmsgrcv service
functions as the msgxrcv subroutine would. Otherwise, the kmsgrcv service functions as the msgrcv
subroutine would.

bytes Specifies a reference parameter. This parameter contains the number of message-text bytes read from
the message queue upon return from the kmsgrcv service.

If the message is longer than the number of bytes specified by the msgsz parameter bytes but
MSG_NOERROR is not set, then the kmsgrcv kernel service fails and returns an E2BIG return value.

Description
The kmsgrcv kernel service reads a message from the queue specified by the msqid parameter and
stores the message into the structure pointed to by the msgp parameter. The kmsgrcv kernel service
provides the same functions for user-mode processes in kernel mode as the msgrcv and msgxrcv
subroutines perform for kernel processes or user-mode processes in user mode.

The kmsgrcv service can be called by a user-mode process in kernel mode or by a kernel process. A
kernel process can also call the msgrcv and msgxrcv subroutines to provide the same functions.

Execution Environment
The kmsgrcv kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
EINVAL Indicates that the ID specified by the msqid parameter is not a valid message queue ID.
EACCES Indicates that operation permission is denied to the calling process.
EINVAL Indicates that the value of the msgsz parameter is less than 0.
E2BIG Indicates that the message text is greater than the maximum length specified by the msgsz parameter

and MSG_NOERROR is not set.
ENOMSG Indicates that the queue does not contain a message of the desired type and IPC_NOWAIT is set.
EINTR Indicates that the kmsgrcv service received a signal.
EIDRM Indicates that the message queue ID specified by the msqid parameter has been removed from the

system.

Related Information
The msgrcv subroutine, msgxrcv subroutine.

Chapter 1. Kernel Services 273

Message Queue Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

Understanding System Call Execution in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

kmsgsnd Kernel Service

Purpose
Sends a message using a previously defined message queue.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int kmsgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
struct msgbuf * msgp;
int msgsz, msgflg;

Parameters

msqid Specifies the message queue ID that indicates which message queue the message is to be sent on.
msgp Points to an msgbuf structure containing the message. The msgbuf structure is defined in the

/usr/include/sys/msg.h file.
msgsz Specifies the size of the message to be sent in bytes. The msgsz parameter can range from 0 to a

system-imposed maximum.
msgflg Specifies the action to be taken if the message cannot be sent for one of several reasons.

Description
The kmsgsnd kernel service sends a message to the queue specified by the msqid parameter. The
kmsgsnd kernel service provides the same functions for user-mode processes in kernel mode as the
msgsnd subroutine performs for kernel processes or user-mode processes in user mode. The kmsgsnd
service can be called by a user-mode process in kernel mode or by a kernel process. A kernel process
can also call the msgsnd subroutine to provide the same function.

There are two reasons why the kmsgsnd kernel service cannot send the message:

v The number of bytes already on the queue is equal to the msg_qbytes member.

v The total number of messages on all queues systemwide is equal to a system-imposed limit.

There are several actions to take when the kmsgsnd kernel service cannot send the message:

v If the msgflg parameter is set to IPC_NOWAIT, then the message is not sent, and the kmsgsnd service
fails and returns an EAGAIN value.

v If the msgflg parameter is 0, then the calling process suspends execution until one of the following
occurs:

– The condition responsible for the suspension no longer exists, in which case the message is sent.

– The message queue ID specified by the msqid parameter is removed from the system. When this
occurs, the kmsgsnd service fails and an EIDRM value is returned.

– The calling process receives a signal that is to be caught. In this case, the message is not sent and
the calling process resumes execution as described in the sigaction kernel service.

274 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment
The kmsgsnd kernel service can be called from the process environment only.

The calling process must have write permission to perform the kmsgsnd operation.

Return Values

0 Indicates a successful operation.
EINVAL Indicates that the msqid parameter is not a valid message queue ID.
EACCES Indicates that operation permission is denied to the calling process.
EAGAIN Indicates that the message cannot be sent for one of the reasons stated previously, and the msgflg

parameter is set to IPC_NOWAIT.
EINVAL Indicates that the msgsz parameter is less than 0 or greater than the system-imposed limit.
EINTR Indicates that the kmsgsnd service received a signal.
EIDRM Indicates that the message queue ID specified by the msqid parameter has been removed from the

system.
ENOMEM Indicates that the system does not have enough memory to send the message.

Related Information
The msgsnd subroutine.

Message Queue Kernel Services and Understanding System Call Execution in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

kra_attachrset Subroutine

Purpose
Attaches a work component to a resource set.

Syntax
#include <sys/rset.h>
int kra_attachrset (rstype, rsid, rset, flags)
rstype_t rstype;
rsid_t rsid;
rsethandle_t rset;
unsigned int flags;

Description
The kra_attachrset subroutine attaches a work component specified by the rstype and rsid parameters to
a resource set specified by the rset parameter.

The work component is an existing process identified by the process ID or an existing kernel thread
identified by the kernel thread ID (tid). A process ID or thread ID value of RS_MYSELF indicates the
attachment applies to the current process or the current kernel thread, respectively.

The following conditions must be met to successfully attach a process to a resource set:

v The resource set must contain processors that are available in the system.

v The calling process must either have root authority or have CAP_NUMA_ATTACH capability.

v The calling process must either have root authority or the same effective userid as the target process.

v The target process must not contain any threads that have bindprocessor bindings to a processor.

v The resource set must be contained in (be a subset of) the target process’ partition resource set.

Chapter 1. Kernel Services 275

v The resource set must be a superset of all the thread’s rset in the target process.

The following conditions must be met to successfully attach a kernel thread to a resource set:

v The resource set must contain processors that are available in the system.

v The calling process must either have root authority or have CAP_NUMA_ATTACH capability.

v The calling process must either have root authority or the same effective userid as the target process.

v The target thread must not have bindprocessor bindings to a processor.

v The resource set must be contained in (be a subset of) the target thread’s process effective and
partition resource set.

If any of these conditions are not met, the attachment will fail.

Once a process is attached to a resource set, the threads in the process will only run on processors
contained in the resource set. Once a kernel thread is attached to a resource set, that thread will only run
on processors contained in the resource set.

The flags parameter can be set to indicate the policy for using the resources contained in the resource set
specified in the rset parameter. The only supported scheduling policy is R_ATTACH_STRSET, which is
useful only when the processors of the system are running in simultaneous multi-threading mode.
Processors like the POWER5 support simultaneous multi-threading, where each physical processor has
two execution engines, called hardware threads. Each hardware thread is essentially equivalent to a single
CPU, and each is identified as a separate CPU in a resource set. The R_ATTACH_STRSET flag indicates
that the process is to be scheduled with a single-threaded policy; namely, that it should be scheduled on
only one hardware thread per physical processor. If this flag is specified, then all of the available
processors indicated in the resource set must be of exclusive use. A new resource set, called an ST
resource set, is constructed from the specified resource set and attached to the process according to the
following rules:

v All offline processors are ignored.

v If all the hardware threads (CPUs) of a physical processor (when running in simultaneous
multi-threading mode, there will be more than one active hardware thread per physical processor) are
not included in the specified resource set, the other CPUs of the processor are ignored when
constructing the ST resource set.

v Only one CPU (hardware thread) resource per physical processor is included in the ST resource set.

Parameters

rstype Specifies the type of work component to be attached to the resource set specified by the rset parameter.
The rstype parameter must be the following value, defined in rset.h:

v R_PROCESS: existing process

v R_THREAD: existing kernel thread
rsid Identifies the work component to be attached to the resource set specified by the rset parameter. The rsid

parameter must be the following:

v Process ID (for rstype of R_PROCESS): set the rsid_t at_pid field to the desired process’ process ID.

v Kernel thread ID (for rstype of R_THREAD): set the rsid_t at_tid field to the desired kernel thread’s
thread ID.

rset Specifies which work component (specified by the rstype and rsid parameters) to attach to the resource
set.

flags Specifies the scheduling policy for the work component being attached.

The only supported value is R_ATTACH_STRSET value, which is only applicable if the rstype parameter is
set to R_PROCESS. The R_ATTACH_STRSET value indicates that the process is to be scheduled with a
single-threaded policy (only on one hardware thread per physical processor).

276 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Return Values
Upon successful completion, the kra_attachrset subroutine returns a 0. If unsuccessful, one or more of
the following are true:

EINVAL One of the following is true:

v The flags parameter contains an invalid value.

v The rstype parameter contains an invalid type qualifier.

v The R_ATTACH_STRSET flags parameter is specified and one or more processors in the rset
parameter are not assigned for exclusive use.

ENODEV The resource set specified by the rset parameter does not contain any available processors, or the
R_ATTACH_STRSET flags parameter is specified and the constructed ST resource set does not have
any available processors.

ESRCH The process or kernel thread identified by the rstype and rsid parameters does not exist.
EPERM One of the following is true:

v If the rstype is R_PROCESS, either the resource set specified by the rset parameter is not included
in the partition resource set of the process identified by the rstype and rsid parameters, or any of the
thread’s R_THREAD rset in this process is not a subset of the resource set specified by the rset
parameter.

v If the rstype is R_THREAD, the resource set specified by the rset parameter is not included in the
target thread’s process effective or partition (real) resource set.

v The calling process has neither root authority nor CAP_NUMA_ATTACH attachment privilege.

v The calling process has neither root authority nor the same effective user ID as the process
identified by the rstype and rsid parameters.

v The process or thread identified by the rstype and rsid parameters has one or more threads with a
bindprocessor processor binding.

Related Information
“kra_getrset Subroutine” on page 280, and “kra_detachrset Subroutine” on page 278.

For information on exclusive processors, see Exclusive use processor resource sets in Operating system
and device management.

kra_creatp Subroutine

Purpose
Creates a new kernel process and attaches it to a resource set.

Syntax
#include <sys/rset.h>
int kra_creatp (pid, rstype, rsid, flags)
pid_t *pid;
rstype_t rstype;
rsid_t rsid;
unsigned int flags;

Description
The kra_creatp kernel service creates a new kernel process and attaches it to a resource set. The
kra_creatp kernel service attaches the new kernel process to the resource set specified by the rstype and
rsid parameters.

The kra_creatp kernel service is similar to the creatp kernel service. See the “creatp Kernel Service” on
page 55 for details on creating a new kernel process.

Chapter 1. Kernel Services 277

The following conditions must be met to successfully attach a kernel process to a resource set:

v The resource set must contain processors that are available in the system.

v The calling process must either have root authority or have CAP_NUMA_ATTACH capability.

v The calling thread must not have a bindprocessor binding to a processor.

v The resource set must be contained in the calling process’ partition resource set.

Note: When the creatp kernel service is used, the new kernel process inherits its parent’s resource set
attachments.

Parameters

pid Pointer to a pid_t field to receive the process ID of the new kernel process.
rstype Specifies the type of resource the new process will be attached to. This parameter must be the

following value, defined in rset.h.

v R_RSET: resource set.
rsid Identifies the resource set the new process will be attached to.

v Resource set ID (for rstype of R_RSET): set the rsid_t at_rset field to the desired resource set.
flags Reserved for future use. Specify as 0.

Return Values
Upon successful completion, the kra_creatp kernel service returns a 0. If unsuccessful, one or more of the
following are true:

EINVAL One of the following is true:

v The rstype parameter contains an invalid type identifier.

v The flags parameter contains an invalid flags value.
ENODEV The specified resource set does not contain any available processors.
EFAULT Invalid address.
EPERM One of the following is true:

v The calling process has neither root authority nor CAP_NUMA_ATTACH attachment privilege.

v The calling process contains one or more threads with a bindprocessor processor binding.

v The specified resource set is not included in the calling process’ partition resource set.
ENOMEM Memory not available.

Related Information
The “creatp Kernel Service” on page 55, “initp Kernel Service” on page 213, and “kra_attachrset
Subroutine” on page 275.

kra_detachrset Subroutine

Purpose
Detaches a work component from a resource set.

Syntax
#include <sys/rset.h>
int kra_detachrset (rstype, rsid, flags)
rstype_t rstype;
rsid_t rsid;
unsigned int flags;

278 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The kra_detachrset subroutine detaches a work component specified by rstype and rsid from a resource
set.

The work component is an existing process identified by the process ID or an existing kernel thread
identified by the kernel thread ID (tid). A process ID or thread ID value of RS_MYSELF indicates the
detach command applies to the current process or the current kernel thread, respectively.

The following conditions must be met to detach a process or kernel thread from a resource set:

v The calling process must either have root authority or have CAP_NUMA_ATTACH capability.

v The calling process must either have root authority or the same effective userid as the target process.

If these conditions are not met, the operation will fail.

Once a process is detached from a resource set, the threads in the process can run on all available
processors contained in the process’ partition resource set. Once a kernel thread is detached from a
resource set, that thread can run on all available processors contained in its process effective or partition
resource set.

Parameters

rstype Specifies the type of work component to be detached from to the resource set specified by rset. This
parameter must be the following value, defined in rset.h:

v R_PROCESS: existing process

v R_THREAD: existing kernel thread
rsid Identifies the work component to be attached to the resource set specified by rset. This parameter must be

the following:

v Process ID (for rstype of R_PROCESS): set the rsid_t at_pid field to the desired process’ process ID.

v Kernel thread ID (for rstype of R_THREAD): set the rsid_t at_tid field to the desired kernel thread’s thread
ID.

flags For rstype of R_PROCESS, the R_DETACH_ALLTHRDS indicates that R_THREAD rsets are detached from
all threads in a specified process. The process’ effective rset is not detached in this case. Reserved for
future use. Specify as 0.

Return Values
Upon successful completion, the kra_detachrset subroutine returns a 0. If unsuccessful, one or more of
the following are true:

EINVAL One of the following is true:

v The flags parameter contains an invalid value.

v The rstype contains an invalid type qualifier.
ESRCH The process or kernel thread identified by the rstype and rsid parameters does not exist.
EPERM One of the following is true:

v The calling process has neither root authority nor CAP_NUMA_ATTACH attachment privilege.

v The calling process has neither root authority nor the same effective user ID as the process identified
by the rstype and rsid parameters.

Related Information
The “kra_attachrset Subroutine” on page 275.

Chapter 1. Kernel Services 279

kra_getrset Subroutine

Purpose
Gets the resource set to which a work component is attached.

Syntax
#include <sys/rset.h>
int kra_getrset (rstype, rsid, flags, rset, rset_type)
rstype_t rstype;
rsid_t rsid;
unsigned int flags;
rsethandle_t rset;
unsigned int *rset_type;

Description
The kra_getrset subroutine returns the resource set to which a specified work component is attached.

The work component is an existing process identified by the process ID or an existing kernel thread
identified by the kernel thread ID (tid). A process ID or thread ID value of RS_MYSELF indicates the
resource set attached to the current process or the current kernel thread, respectively, is requested.

Upon successful completion, one of the following types of resource set is returned into the rset_type
parameter:

v A value of RS_EFFECTIVE_RSET indicates the process was explicitly attached to the resource set.
This may have been done with the kra_attachrset subroutine.

v A value of RS_PARTITION_RSET indicates the process was not explicitly attached to a resource set.
However, the process had an explicitly set partition resource set. This may be set with the
krs_setpartition subroutine or through the use of WLM work classes with resource sets.

v A value of RS_DEFAULT_RSET indicates the process was not explicitly attached to a resource set nor
did it have an explicitly set partition resource set. The system default resource set is returned.

v A value of RS_THREAD_RSET indicates the kernel thread was explicitly attached to the resource set.
This might have been done with the ra_attachrset subroutine.

Parameters

rstype Specifies the type of the work component whose resource set attachment is requested. This parameter
must be the following value, defined in rset.h:

v R_PROCESS: existing process

v R_THREAD: existing kernel thread
rsid Identifies the work component whose resource set attachment is requested. This parameter must be the

following:

v Process ID (for rstype of R_PROCESS): set the rsid_t at_pid field to the desired process’ process ID.

v Kernel thread ID (for rstype of R_THREAD): set the rsid_t at_tid field to the desired kernel thread’s
thread ID.

flags Reserved for future use. Specify as 0.
rset Specifies the resource set to receive the work component’s resource set.
rset_type Points to an unsigned integer field to receive the resource set type.

Return Values
Upon successful completion, the kra_getrset subroutine returns a 0. If unsuccessful, one or more of the
following are true:

280 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

EINVAL One of the following is true:

v The flags parameter contains an invalid value.

v The rstype parameter contains an invalid type qualifier.
EFAULT Invalid address.
ESRCH The process or kernel thread identified by the rstype and rsid parameters does not exist.

Related Information
The “krs_getpartition Subroutine” on page 284.

krs_alloc Subroutine

Purpose
Allocates a resource set and returns its handle.

Syntax
#include <sys/rset.h>
int krs_alloc (rset, flags)
rsethandle_t *rset;
unsigned int flags;

Description
The krs_alloc subroutine allocates a resource set and initializes it according to the information specified
by the flags parameter. The value of the flags parameter determines how the new resource set is
initialized.

Parameters

rset Points to an rsethandle_t where the resource set handle is stored on successful completion.
flags Specifies how the new resource set is initialized. It takes one of the following values, defined in rset.h:

v RS_EMPTY (or 0 value): The resource set is initialized to contain no resources.

v RS_SYSTEM: The resource set is initialized to contain available system resources.

v RS_ALL: The resource set is initialized to contain all resources.

v RS_PARTITION: The resource set is initialized to contain the resources in the caller’s process partition
resource set.

Return Values
Upon successful completion, the krs_alloc subroutine returns a 0. If unsuccessful, one or more of the
following is returned:

EINVAL The flags parameter contains an invalid value.
ENOMEM There is not enough space to create the data structures related to the resource set.

Related Information
“krs_free Subroutine” on page 282, “krs_getinfo Subroutine” on page 283, and “krs_init Subroutine” on
page 286.

Chapter 1. Kernel Services 281

krs_free Subroutine

Purpose
Frees a resource set.

Syntax
#include <sys/rset.h>
void krs_free(rset)
rsethandle_t rset;

Description
The krs_free subroutine frees a resource set identified by the rset parameter. The resource set must have
been allocated by the krs_alloc subroutine.

Parameters

rset Specifies the resource set whose memory will be freed.

Related Information
The “krs_alloc Subroutine” on page 281.

krs_getassociativity Subroutine

Purpose
Gets the hardware associativity values for a resource.

Syntax
#include <sys/rset.h>
int krs_getassociativity (type, id, assoc_array, array_size)
unsigned int type;
unsigned int id;
unsigned int *assoc_array;
unsigned int array_size;

Description
The krs_getassociativity subroutine returns the array of hardware associativity values for a specified
resource.

This is a special purpose subroutine intended for specialized root applications needing the hardware
associativity value information. The krs_getinfo, krs_getrad, and krs_numrads subroutines are provided
for typical applications to discover system hardware topology.

The calling process must have root authority to get hardware associativity values.

Parameters

type Specifies the resource type whose associativity values are requested. The only value supported to
retrieve values for a processor is R_PROCS.

id Specifies the logical resource id whose associativity values are requested.
assoc_array Specifies the address of an array of unsigned integers to receive the associativity values.
array_size Specifies the number of unsigned integers in assoc_array.

282 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Return Values
Upon successful completion, the krs_getassociativity subroutine returns a 0. The assoc_array parameter
array contains the resource’s associativity values. The first entry in the array indicates the number of
associativity values returned. If the hardware system does not provide system topology data, a value of 0
is returned in the first array entry. If unsuccessful, one or more of the following are returned:

EINVAL One of the following occurred:

v The array_size parameter was specified as 0.

v An invalid type parameter was specified.
ENODEV The resource specified by the id parameter does not exist.
EFAULT Invalid address.
EPERM The calling process does not have root authority.

Related Information
“krs_getinfo Subroutine,” “krs_getrad Subroutine” on page 285, and “krs_numrads Subroutine” on page
287.

krs_getinfo Subroutine

Purpose
Gets information about a resource set.

Syntax
#include <sys/rset.h>
int krs_getinfo(rset, info_type, flags, result)
rsethandle_t rset;
rsinfo_t info_type;
unsigned int flags;
int *result;

Description
The krs_getinfo subroutine retrieves information about the resource set identified by the rset parameter.
Depending on the value of the info_type parameter, the krs_getinfo subroutine returns information about
the number of available processors, the number of available memory pools, or the amount of available
memory contained in the resource rset.

The subroutine can also return global system information such as the maximum system detail level, the
symmetric multiprocessor (SMP) and multiple chip module (MCM) system detail levels, and the maximum
number of processor or memory pool resources in a resource set.

Parameters

rset Specifies a resource set handle of a resource set the information should be retrieved from. This
parameter is not meaningful if the info_type parameter is R_MAXSDL, R_MAXPROCS,
R_MAXMEMPS, R_SMPSDL, or R_MCMSDL.

Chapter 1. Kernel Services 283

info_type Specifies the type of information being requested. One of the following values (defined in rset.h) can
be used:

v R_NUMPROCS: The number of available processors in the resource set is returned.

v R_NUMMEMPS: The number of available memory pools in the resource set is returned.

v R_MEMSIZE: The amount of available memory (in MB) contained in the resource set is returned.

v R_MAXSDL: The maximum system detail level of the system is returned.

v R_MAXPROCS: The maximum number of processors that may be contained in a resource set is
returned.

v R_MAXMEMPS: The maximum number of memory pools that may be contained in a resource set is
returned.

v R_SMPSDL: The system detail level that corresponds to the traditional notion of an SMP is
returned. A system detail level of 0 is returned if the hardware system does not provide system
topology data.

v R_MCMSDL: The system detail level that corresponds to resources packaged in an MCM is
returned. A system detail level of 0 is returned if the hardware system does not have MCMs or does
not provide system topology data.

flags Reserved for future use. Must be specified as 0.
result Points to an integer where the result is stored on successful completion.

Return Values
Upon successful completion, the krs_getinfo subroutine returns a 0, and the result field contains the
requested information. If unsuccessful, one or more of the following are returned:

EINVAL One of the following is true:

v The info_type parameter specifies an invalid resource type value.

v The flags parameter was not specified as 0.
EFAULT Invalid address.

Related Information
The “krs_numrads Subroutine” on page 287.

krs_getpartition Subroutine

Purpose
Gets the partition resource set to which a process is attached.

Syntax
#include <sys/rset.h>
int krs_getpartition (pid, flags, rset, rset_type)
pid_t pid;
unsigned int flags;
rsethandle_t rset;
unsigned int *rset_type;

Description
The krs_getpartition subroutine returns the partition resource set attached to the specified process. A
process ID value of RS_MYSELF indicates the partition resource set attached to the current process is
requested.

Upon successful completion, the type of resource set is returned into the rset_type parameter.

284 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

A value of RS_PARTITION_RSET indicates the process has a partition resource set that is set explicitly.
This may be set with the krs_setpartition subroutine or through the use of WLM work classes with
resource sets.

A value of RS_DEFAULT_RSET indicates the process did not have an explicitly set partition resource set.
The system default resource set is returned.

Parameters

pid Specifies the process ID whose partition rset is requested.
flags Reserved for future use. Specify as 0.
rset Specifies the resource set to receive the process’ partition resource set.
rset_type Points to an unsigned integer field to receive the resource set type.

Return Values
Upon successful completion, the krs_getpartition subroutine returns a 0. If unsuccessful, one or more of
the following are true:

EFAULT Invalid address.
ESRCH The process identified by the pid parameter does not exist.

Related Information
The “kra_getrset Subroutine” on page 280.

krs_getrad Subroutine

Purpose
Returns a system resource allocation domain (RAD) contained in an input resource set.

Syntax
#include <sys/rset.h>
int krs_getrad (rad, sdl, index, flags)
rsethandle_t rad;
unsigned int sdl;
unsigned int index;
unsigned int flags;

Description
The krs_getrad subroutine returns a system RAD at a specified system detail level and index.

The system RAD is specified by system detail level sdl and index number index.

The rad parameter must be allocated (using the krs_alloc subroutine) prior to calling the krs_getrad
subroutine.

Parameters

rad Specifies a resource set handle to receive the desired system RAD.
sdl Specifies the system detail level of the desired system RAD.
index Specifies the index of the system RAD that should be returned from among those at the specified sdl. This

parameter must belong to the [0, krs_numrads(rset, sdl, flags)- 1] interval.
flags Reserved for future use. Specify as 0.

Chapter 1. Kernel Services 285

Return Values
Upon successful completion, the krs_getrad subroutine returns a 0. If unsuccessful, one or more of the
following are true:

EINVAL One of the following is true:

v The flags parameter contains an invalid value.

v The sdl parameter is greater than the maximum system detail level.

v The RAD specified by the index parameter does not exist at the system detail level specified by the
sdl parameter.

EFAULT Invalid address.

Related Information
“krs_numrads Subroutine” on page 287, “krs_getinfo Subroutine” on page 283, “krs_alloc Subroutine” on
page 281, and “krs_op Subroutine” on page 287.

krs_init Subroutine

Purpose
Initializes a previously allocated resource set.

Syntax
#include <sys/rset.h>
int krs_init (rset, flags)
rsethandle_t rset;
unsigned int flags;

Description
The krs_init subroutine initializes a previously allocated resource set. The resource set is initialized
according to information specified by the flags parameter.

Parameters

rset Specifies the handle of the resource set to initialize.
flags Specifies how the resource set is initialized. It takes one of the following values, defined in rset.h:

v RS_EMPTY: The resource set is initialized to contain no resources.

v RS_SYSTEM: The resource set is initialized to contain available system resources.

v RS_ALL: The resource set is initialized to contain all resources.

v RS_PARTITION: The resource set is initialized to contain the resources in the caller’s process partition
resource set.

Return Values
Upon successful completion, the krs_init subroutine returns a 0. If unsuccessful, the following is returned:

EINVAL The flags parameter contains an invalid value.

Related Information
The “krs_alloc Subroutine” on page 281.

286 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

krs_numrads Subroutine

Purpose
Returns the number of system resource allocation domains (RADs) that have available resources.

Syntax
#include <sys/rset.h>
int krs_numrads(rset, sdl, flags)
rsethandle_t rset;
unsigned int sdl;
unsigned int flags;

Description
The krs_numrads subroutine returns the number of system RADs at system detail level sdl, that have
available resources contained in the resource set identified by the rset parameter.

The number of atomic RADs contained in the rset parameter is returned if the sdl parameter is equal to
the maximum system detail level.

Parameters

rset Specifies the resource set handle for the resource set being queried.
sdl Specifies the system detail level in which the caller is interested.
flags Reserved for future use. Specify as 0.

Return Values
Upon successful completion, the number of RADs is returned. If unsuccessful, a -1 is returned and one or
more of the following are true:

v The flags parameter contains an invalid value.

v The sdl parameter is greater than the maximum system detail level.

Related Information
“krs_getrad Subroutine” on page 285, and “krs_getinfo Subroutine” on page 283.

krs_op Subroutine

Purpose
Performs a set of operations on one or two resource sets.

Syntax
#include <sys/rset.h>
int krs_op (command, rset1, rset2, flags, id)
unsigned int command;
rsethandle_t rset1, rset2;
unsigned int flags;
unsigned int id;

Description
The krs_op subroutine performs the operation specified by the command parameter on resource set rset1,
or both resource sets rset1 and rset2.

Chapter 1. Kernel Services 287

Parameters

command Specifies the operation to apply to the resource sets identified by rset1 and rset2. One of the following
values, defined in rset.h, can be used:

v RS_UNION: The resources contained in either rset1 or rset2 are stored in rset2.

v RS_INTERSECTION: The resources that are contained in both rset1 and rset2 are stored in rset2.

v RS_EXCLUSION: The resources in rset1 that are also in rset2 are removed from rset2. On
completion, rset2 contains all the resources that were contained in rset2 but were not contained in
rset1.

v RS_COPY: All resources in rset1 whose type is flags are stored in rset2. If rset1 contains no
resources of this type, rset2 will be empty. The previous content of rset2 is lost, while the content of
rset1 is unchanged.

v RS_ISEMPTY: Test if resource set rset1 is empty.

v RS_ISEQUAL: Test if resource sets rset1 and rset2 are equal.

v RS_ISCONTAINED: Test if all resources in resource set rset1 are also contained in resource set
rset2.

v RS_TESTRESOURCE: Test if the resource whose type is flags and index is id is contained in
resource set rset1.

v RS_ADDRESOURCE: Add the resource whose type is flags and index is id to resource set rset1.

v RS_DELRESOURCE: Delete the resource whose type is flags and index is id from resource set
rset1.

v RS_STSET: Constructs an ST resource set by including only one hardware thread per physical
processor included in rset1 and stores it in rset2. Only available processors are considered when
constructing the ST resource set.

rset1 Specifies the resource set handle for the first of the resource sets involved in the command operation.
rset2 Specifies the resource set handle for the second of the resource sets involved in the command

operation. This resource set is also used, on return, to store the result of the operation, and its previous
content is lost. The rset2 parameter is ignored on the RS_ISEMPTY, RS_TESTRESOURCE,
RS_ADDRESOURCE, and RS_DELRESOURCE commands.

flags When combined with the RS_COPY command, the flags parameter specifies the type of the resources
that will be copied from rset1 to rset2. This parameter is constructed by logically ORing one or more of
the following values, defined in rset.h:

v R_PROCS: processors

v R_MEMPS: memory pools

v R_ALL_RESOURCES: processors and memory pools

If none of the above are specified for flags, R_ALL_RESOURCES is assumed.
id On the RS_TESTRESOURCE, RS_ADDRESOURCE, and RS_DELRESOURCE commands, the id

parameter specifies the index of the resource to be tested, added, or deleted. This parameter is ignored
on the other commands.

Return Values

0 Successful completion. The tested condition is not met for the RS_ISEMPTY, RS_ISEQUAL,
RS_ISCONTAINED, and RS_TESTRESOURCE commands.

1 Successful completion. The tested condition is met for the RS_ISEMPTY, RS_ISEQUAL, RS_ISCONTAINED,
and RS_TESTRESOURCE commands.

288 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

-1 Unsuccessful completion. One or more of the following are true:

v rset1 identifies an invalid resource set.

v rset2 identifies an invalid resource set.

v command identifies an invalid operation.

v flags identifies an invalid resource type.

v id specifies a resource index that is too large.

v Invalid address.

krs_setpartition Subroutine

Purpose
Sets the partition resource set of a process.

Syntax
#include <sys/rset.h>
int krs_setpartition(pid, rset, flags)
pid_t pid;
rsethandle_t rset;
unsigned int flags;

Description
The krs_setpartition subroutine sets a process’ partition resource set. The subroutine can also be used to
remove a process’ partition resource set.

The partition resource set limits the threads in a process to running only on the processors contained in
the partition resource set.

The work component is an existing process identified by process ID. A process ID value of RS_MYSELF
indicates the attachment applies to the current process.

The following conditions must be met to set a process’ partition resource set:

v The calling process must have root authority.

v The resource set must contain processors that are available in the system.

v The new partition resource set must be equal to, or a superset of the target process’ effective resource
set.

v The target process must not contain any threads that have bindprocessor bindings to a processor.

The flags parameter can be set to indicate the policy for using the resources contained in the resource set
specified in the rset parameter. The only supported scheduling policy is R_ATTACH_STRSET, which is
useful only when the processors of the system are running in simultaneous multi-threading mode.
Processors like the POWER5 support simultaneous multi-threading, where each physical processor has
two execution engines, called hardware threads. Each hardware thread is essentially equivalent to a single
CPU, and each is identified as a separate CPU in a resource set. The R_ATTACH_STRSET flag indicates
that the process is to be scheduled with a single-threaded policy; namely, that it should be scheduled on
only one hardware thread per physical processor. If this flag is specified, then all of the available
processors indicated in the resource set must be of exclusive use. A new resource set, called an ST
resource set, is constructed from the specified resource set and attached to the process according to the
following rules:

v All offline processors are ignored.

Chapter 1. Kernel Services 289

v If all the hardware threads (CPUs) of a physical processor (when running in simultaneous
multi-threading mode, there will be more than one active hardware thread per physical processor) are
not included in the specified resource set, the other CPUs of the processor are ignored when
constructing the ST resource set.

v Only one CPU (hardware thread) resource per physical processor is included in the ST resource set.

Parameters

pid Specifies the process ID of the process whose partition resource set is to be set. A value of RS_MYSELF
indicates the current process’ partition resource set should be set.

rset Specifies the partition resource set to be set. A value of RS_DEFAULT indicates the process’ partition
resource set should be removed.

flags Specifies the policy to use for the process. A value of R_ATTACH_STRSET indicates that the process is to
be scheduled with a single-threaded policy (only on one hardware thread per physical processor).

Return Values
Upon successful completion, the krs_setpartition subroutine returns a 0. If unsuccessful, one or more of
the following are true:

EINVAL The R_ATTACH_STRSET flags parameter is specified and one or more processors in the rset
parameter are not assigned for exclusive use.

ENODEV The resource set specified by the rset parameter does not contain any available processors, or the
R_ATTACH_STRSET flags parameter is specified and the constructed ST resource set does not have
any available processors.

ESRCH The process identified by the pid parameter does not exist.
EFAULT Invalid address.
ENOMEM Memory not available.
EPERM One of the following is true:

v The calling process does not have root authority.

v The process identified by the pid parameter has one or more threads with a bindprocessor
processor binding.

v The process identified by the pid parameter has an effective resource set and the new partition
resource set identified by the rset parameter does not contain all of the effective resource set’s
resources.

Related Information
“krs_getpartition Subroutine” on page 284 and “kra_attachrset Subroutine” on page 275.

For information about exclusive processors, see Exclusive use processor resource sets in Operating
system and device management.

ksettickd Kernel Service

Purpose
Sets the current status of the systemwide timer-adjustment values.

Syntax
#include <sys/types.h>
int ksettickd (timed, tickd, time_adjusted)
int *timed;
int *tickd;
int *time_adjusted;

290 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

timed Specifies the number of microseconds by which the systemwide timer is to be adjusted
unless set to a null pointer.

tickd Specifies the adjustment rate of the systemwide timer unless set to a null pointer. This rate
determines the number of microseconds that the systemwide timer is adjusted with each
timer tick. Adjustment continues until the time has been corrected by the amount specified
by the timed parameter.

time_adjusted Sets the kernel-maintained time adjusted flag to True or False. If the time_adjusted
parameter is a null pointer, calling the ksettickd kernel service always sets the kernel’s
time_adjusted parameter to False.

Description
The ksettickd kernel service provides kernel extensions with the capability to update the time_adjusted
parameter, and set or change the systemwide time-of-day timer adjustment amount and rate. The
timer-adjustment values indicated by the timed and tickd parameters are the same values used by the
adjtime subroutine. A call to the settimer or adjtime subroutine for the systemwide time-of-day timer sets
the time_adjusted parameter to True, as read by the kgettickd kernel service.

This kernel service is typically used only by kernel extensions providing time synchronization functions
such as coordinated network time where the adjtime subroutine is insufficient.

Note: The ksettickd service provides no serialization with respect to the adjtime and settimer
subroutines, the ksettimer kernel service, or the timer interrupt handler, all of which also use and
update these values. The caller of this kernel service must provide the necessary serialization to
ensure appropriate operation.

Execution Environment
The ksettickd kernel service can be called from either the process or interrupt environment.

Return Value
The ksettickd kernel service always returns a value of 0.

Related Information
The kgettickd kernel service, ksettimer kernel service.

The adjtime subroutine, settimer subroutine.

Timer and Time-of-Day Kernel Services and Using Fine Granularity Timer Services and Structures in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

ksettimer Kernel Service

Purpose
Sets the systemwide time-of-day timer.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/time.h>

int ksettimer (nct)
struct timestruc_t *nct;

Chapter 1. Kernel Services 291

Parameter

nct Points to a timestruc_t structure, which contains the new current time to be set. The nanoseconds member of
this structure is valid only if greater than or equal to 0, and less than the number of nanoseconds in a second.

Description
The ksettimer kernel service provides a kernel extension with the capability to set the systemwide
time-of-day timer. Kernel extensions typically use this kernel service to support network coordinated time,
which is the periodic synchronization of all system clocks to a common time by a time server or set of time
servers on a network. The newly set ″current″ time must represent the amount of time since 00:00:00
GMT, January 1, 1970.

Execution Environment
The ksettimer kernel service can be called from the process environment only.

Return Values

0 Indicates success.
EINVAL Indicates that the new current time specified by the nct parameter is outside the range of the systemwide

timer.
EIO Indicates that an error occurred while this kernel service was accessing the timer device.

Related Information
Using Fine Granularity Timer Services and Structures andTimer and Time-of-Day Kernel Services in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

kthread_kill Kernel Service

Purpose
Posts a signal to a specified kernel-only thread.

Syntax
#include <sys/thread.h>

void kthread_kill (tid, sig)
tid_t tid;
int sig;

Parameters

tid Specifies the target kernel-only thread. If its value is -1, the signal is posted to the calling thread.
sig Specifies the signal number to post.

Description
The kthread_kill kernel service posts the signal sig to the kernel thread specified by the tid parameter.
When the service is called from the process environment, the target thread must be in the same process
as the calling thread. When the service is called from the interrupt environment, the signal is posted to the
target thread, without a permission check.

292 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment
The kthread_kill kernel service can be called from either the process environment or the interrupt
environment.

Return Values
The kthread_kill kernel service has no return values.

Related Information
The sig_chk kernel service.

kthread_start Kernel Service

Purpose
Starts a previously created kernel-only thread.

Syntax
#include <sys/thread.h>

int kthread_start (tid, i_func, i_data_addr, i_data_len, i_stackaddr, i_sigmask)
tid_t tid;
int (*i_func) (void *);
void *i_data_addr;
size_t i_data_len;
void *i_stackaddr;
sigset_t *i_sigmask;

Parameters

tid Specifies the kernel-only thread to start.
i_func Points to the entry-point routine of the kernel-only thread.
i_data_addr Points to data that will be passed to the entry-point routine.
i_data_len Specifies the length of the data chunk.
i_stackaddr Specifies the stack’s base address for the kernel-only thread.
i_sigmask Specifies the set of signal to block from delivery when the new kernel-only thread begins

execution.

Description
The kthread_start kernel service starts the kernel-only thread specified by the tid parameter. The thread
must have been previously created with the thread_create kernel service, and its state must be TSIDL.

This kernel service initializes and schedules the thread for the processor. Its state is changed to TSRUN.
The thread is initialized so that it begins executing at the entry point specified by the i_func parameter, and
that the signals specified by the i_sigmask parameter are blocked from delivery.

The thread’s entry point gets one parameter, a pointer to a chunk of data that is copied to the base of the
thread’s stack. The i_data_addr and i_data_len parameters specify the location and quantity of data to
copy. The format of the data must be agreed upon by the initializing and initialized thread.

The thread’s stack’s base address is specified by the i_stackaddr parameter. If a value of zero is specified,
the kernel will allocate the memory for the stack (96K). This memory will be reclaimed by the system when

Chapter 1. Kernel Services 293

the thread terminates. If a non-zero value is specified, then the caller should allocate the backing memory
for the stack. Since stacks grow from high addresses to lower addresses, the i_stackaddr parameter
specifies the highest address for the thread’s stack.

The thread will be automatically terminated when it returns from the entry point routine. If it is the last
thread in the process, then the process will be exited.

Execution Environment
The kthread_start kernel service can be called from the process environment only.

Return Values
The kthread_start kernel service returns one of the following values:

0 Indicates a successful start.
ESRCH Indicates that the tid parameter is not valid.

Related Information
The thread_create kernel service.

Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

kvmgetinfo Kernel Service

Purpose
Retrieves Virtual Memory Manager (VMM) information.

Syntax
#include <sys/vminfo.h>

int kvmgetinfo (void *out, int command, int arg)

Description
The kvmgetinfo kernel service returns the current value of certain VMM parameters.

Parameters

out Specifies the address where VMM information should be returned.

294 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

command Specifies which information should be returned. The valid values for the command
parameter are decribed below:

VMINFO
The content of vminfo structure (described in sys/vminfo.h) will be returned.
The out parameter should point to a vminfo structure and the arg parameter
should be the size of this structure. The smaller of the arg or sizeof (struct
vminfo) parameters will be copied.

VMINFO_ABRIDGED
The content of the vminfo structure (described in the sys/vminfo.h file) is
returned. For this command, only the non-time consuming statistics are updated,
so this command must be used in performance-critical applications rather than
the VMINFO command. The out parameter must point to a vminfo structure and
the arg parameter must be the size of this structure. The smaller of the arg or
sizeof (struct vminfo) parameters are copied.

VM_PAGE_INFO
The size, in bytes, of the page backing the address specified in the addr field of
the vm_page_info structure (described in the sys/vminfo.h file) is returned. The
out parameter should point to a vm_page_info structure with the addr field set to
the desired address of which to query the page size. This address, addr, is
interpreted as an address in the address space of the current running process.
The arg parameter should be the size of the vm_page_info structure.

IPC_LIMITS
The content of the ipc_limits struct (described in the sys/vminfo.h file) is
returned. The out parameter should point to an ipc_limits structure and arg
should be the size of this structure. The smaller of the arg or sizeof (struct
ipc_limits) parameters will be copied. The ipc_limits struct contains the
inter-process communication (IPC) limits for the system.

VMINFO_GETPSIZES
Reports a system’s supported page sizes. When arg is 0, the out parameter is
ignored, and the number of supported page sizes is returned. When arg is
greater than 0, arg indicates the number of page sizes to report, and out must be
a pointer to an array with arg number of psize_t types. The array of psize_t types
is updated with the system’s supported page sizes in sorted order starting with
the smallest supported page size. The number of array entries updated with page
sizes is returned.

VMINFO_PSIZE
Reports detailed VMM statistics for a specified page size. The out parameter
must point to a vminfo_psize structure with the psize field set to a page size, in
bytes, for which to return statistics. The arg parameter should be the size of the
vminfo_psize structure.

arg An additional parameter that will depend upon the command parameter.

Execution Environment
The kvmgetinfo kernel service can be called from the process environment only.

Return Values
The following return values apply to all commands other than VMINFO_GETPSIZES:

0 Indicates successful completion.
ENOSYS Indicates the command parameter is not valid (or not yet implemented).
EINVAL When VM_PAGE_INFO is the command, the adr field of the vm_page_info structure is an

invalid address.

Chapter 1. Kernel Services 295

When VMINFO_GETPSIZES is specified as the command, -1 is returned if the kvmgetinfo() kernel
service is unsuccessful. Otherwise, the kvmgetinfo() kernel service returns a number of page sizes when
the VMINFO_GETPSIZES command is specified.

Related Information
Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

kwpar_checkpoint_status Kernel Service

Purpose
Provides a method for kernel services to inform the system that an event has occurred within a workload
partition (WPAR) that will deny or subsequently will re-allow a checkpoint of the WPAR.

Syntax
#include <sys/wparid.h>

int kwpar_checkpoint_status (kcid, cmd, varp)
cid_t kcid;
int cmd;
void * varp;

Parameters

cmd An integer command that informs the API what action to take on behalf of the caller.
kcid The WPAR ID where the command operation is to take place.
varp A void pointer to different elements depending on the cmd parameter.

v If the cmd parameter is set to the WPAR_CHECKPOINT_TRY value, the varp parameter
is a pointer to an integer variable containing the number of seconds that the caller is
willing to wait before a blocking event is removed.

v If the cmd parameter is set to the WPAR_CHECKPOINT_DENY value, the varp
parameter is a pointer to a null terminated character string that contains a user readable
reason for posting the event.

Cmd Types
The cmd parameter is supplied on input to the kwpar_checkpoint_status API and describes the type of
action or event notification the caller is expecting. The following cmd types are supported:

WPAR_CHECKPOINT_DENY The caller is experiencing an event within the WPAR identified by the kcid
parameter that would deny a checkpoint operation. The caller must supply a
pointer to a user readable character string in the varp parameter.

WPAR_CHECKPOINT_ALLOW The caller is clearing a previous checkpoint denial operation. Deny and allow
operations are cumulative and thus each denial operation must be matched with
an allow operation before a checkpoint is finally re-allowed.

WPAR_CHECKPOINT_TRY Used by the AIX 5.1 checkpoint system itself. The caller supplies the varp pointer
to an integer containing a “willing to wait” timeout in seconds before a checkpoint
denial operation is cleared.

WPAR_CHECKPOINT_CLEAR Used by the AIX 5.1 checkpoint system itself. The caller has completed a
checkpoint after a successful WPAR_TRY_CHKPNT operation.

WPAR_RESTART_CLEAR Used by the AIX 5.1 checkpoint system itself. The caller has completed a restart.
The WPAR restart state is initially set when the WPAR is recreated on the arrival
system.

296 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The kwpar_checkpoint_status kernel service provides a mechanism for kernel services to inform or
query the system about a checkpoint denial event. Kernel extensions that experience a temporary event
which prevents a WPAR from being the target of a checkpoint operation, must use this API to deny and
then to subsequently re-allow a checkpoint when the event clears. An example denial event might occur if
a device open is in an un-serialized interim state that cannot handle a checkpoint operation.

Execution Environment
The kwpar_checkpoint_status kernel service can be called from the process environment only.

Return Values

0 Success.
non-zero Failure.

Error Codes
The kwpar_checkpoint_status service fails if one or more of the following errors occur:

EINVAL The caller has supplied a not valid cmd or other parameter.
ENOENT No WPAR with the kcid ID is currently active in the system.
EBUSY Either of the following situations can lead to the EBUSY error.

v WPAR is in a checkpoint or restart state. The caller is unsuccessful in a
WPAR_CHECKPOINT_DENY operation.

v WPAR is in a state that cannot participate in a checkpoint. The caller is
unsuccessful in a WPAR_CHECKPOINT_TRY operation.

ETIMEDOUT The caller is waiting for a timeout period during a WPAR_CHECKPOINT_TRY
operation but the timer has expired.

Related Information
The WPAR_CKPT_QUERY (Checkpoint Query) Device Driver ioctl Operation

kwpar_getname Kernel Service

Purpose
Returns the workload partition name associated with the requested ID.

Syntax
#include<sys/wparid.h>
#include<sys/xmem.h>

int kwpar_getname(kcid, buffer, length, adspace)
cid_t kcid;
char * buffer;
size_t length;
int adspace;

Description
Get the name associated with the workload partition ID (kcid) and write it to the output buffer. The
maximum number of bytes to write is limited by the length parameter. The length parameter cannot exceed
MAXCORRALNAMELEN. The service writes to either user space or kernel space, depending on the value
specified for the adspace parameter.

Chapter 1. Kernel Services 297

Parameters

kcid Specifies the workload partition ID.
buffer Points to the buffer where the workload partition name is stored.
length Specifies the maximum number of bytes to return.
adspace Indicates in which part of memory the buffer parameter is located:

SYS_ADSPACE
Indicates that the buffer parameter is in the kernel memory.

USER_ADSPACE
Indicates that the buffer parameter is in the application memory.

Execution Environment
Process environment only.

Return Values

0 The command completed successfully.
EINVAL Invalid WPAR ID or specified length is greater than MAXCORRALNAMELEN.
EFAULT Error during copyout to user space.

Related Information
None.

kwpar_getrootpath Kernel Service

Purpose
Returns the root path of the workload partition associated with the requested ID.

Syntax
#include<sys/wparid.h>

int kwpar_getrootpath(kcid, length, buffer)
cid_t kcid;
size_t * length;
char * buffer;

Description
Get the root path of the workload partition associated with the kcid parameter and copy it to the output
buffer. On entry, the value specified for the length parameter indicates the size of the output buffer. On
return, the value specified for the length parameter, contains the size of the root path. If the value for the
length parameter on entry is smaller than the actual path length, then ENOSPC is returned. Then, the
length parameter is set to the actual length of the root path.

Parameters

kcid Specifies the workload partition ID.
length Specifies the maximum number of bytes to return.
buffer Points to the buffer where the workload partition root path will be stored.

298 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment
Process environment only.

Return Values

0 The command completed successfully.
EINVAL Error indicating that buffer is NULL, length is NULL, or *length is 0.
ENOENT Invalid WPAR ID specified for the kcid parameter.
ENOSPC Insufficient space in buffer to copy path.

Related Information
None.

kwpar_isappwpar Kernel Service

Purpose
Returns whether a workload partition is an application workload partition.

Syntax
#include <sys/wparid.h>

int kwpar_isappwpar(kcid)
cid_t kcid;

Description
Checks whether the workload partition associated with the kcid is an application workload partition.

Parameters

kcid Specifies the workload partition ID.

Execution Environment
Process environment only.

Return Values

1 Workload partition is an application workload partition.
0 Workload partition is not an application workload partition.
-1 Indicates that the command did not complete successfully.

Related Information
None.

kwpar_r2vmap_devno Kernel Service

Purpose
Maps a real device number to the corresponding virtual device number for a given workload partition
(WPAR).

Chapter 1. Kernel Services 299

Syntax
#include <sys/wparid.h>

int kwpar_r2vmap_devno (wparid, vdevno, rdevno)
cid_t wparid;
dev_t rdevno;
dev_t * vdevno;

Parameters

wparid WPAR identifier. This parameter is required.
rdevno Real device number. This parameter is required.
vdevno Points to the data area that will contain the virtual device number. This parameter is passed

by reference. This parameter is optional.

Description
The kwpar_r2vmap_devno kernel service provides the ability to translate a real device number,
maintained in the kernel device switch table, to the corresponding virtual device number maintained in the
user space. The caller must specify an existing WPAR identifier with the wparid parameter and a valid real
device number with the rdevno parameter. The kwpar_r2vmap_devno kernel service writes the
corresponding virtual device number to the data area pointed to by the vdevno parameter (if specified). If
the vdevno parameter is not specified, the return code indicates whether a mapping exists for the given
WPAR identifier and real device number.

A mapping for the specified virtual device number must exist for the kwpar_v2rmap_devno kernel service
to succeed.

Execution Environment
The kwpar_r2vmap_devno kernel service can be called from the process environment only.

Return Values

0 Success.
non-zero Failure.

Error Codes
The kwpar_r2vmap_devno service fails if one or more of the following errors occur:

EINVAL Either the wparid or rdevno argument is invalid.
ENXIO Unable to locate the WPAR device map associated with the given WPAR ID.
ESRCH Unable to locate a mapping for the given real device number rdevno.

Related Information
The kwpar_v2rmap_devno kernel service, kwpar_regdevno kernel service, kwpar_unregdevno kernel
service.

kwpar_r2vmap_pid Kernel Service

Purpose
Maps a real process ID to the equivalent virtual process ID assigned within a workload partition.

300 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/wparid.h>

pid_t kwpar_r2vmap_pid (kcidp, rpid)
cid_t * kcidp;
pid_t rpid;

Parameters

kcidp A pointer to a memory location where the workload partition (WPAR) ID associated with the
rpid parameter is returned.

rpid The real process ID on which to translate a real process ID to a virtual process ID.

Description
The kwpar_r2vmap_pid kernel service provides a mapping from a real process ID to a virtual process ID
assigned within the workload partition. In most instances, the real and virtual process IDs are the same
except in cases where the Workload Partition Mobility is in effect or for certain system services such as
the init command which always have different real and virtual process IDs.

Usually kernel services dealing with process IDs only accept real process IDs. However, in some instances
it might be necessary for kernel extensions, which communicate with other WPAR services or with
processes within the WPAR, to know and communicate with virtual process IDs.

Execution Environment
The kwpar_r2vmap_pid kernel service can be called from the process environment only.

Return Values
If the kwpar_r2vmap_pid kernel service succeeds, it returns the virtual pid_t value associated with the
rpid value provided on input. If the kernel service fails or if there is no virtual process ID associated with
the rpid value, the rpid value is returned.

Related Information
The kwpar_v2rmap_pid kernel service.

kwpar_r2vmap_tid Kernel Service

Purpose
Maps a real thread ID to the equivalent virtual thread ID assigned within a workload partition.

Syntax
#include <sys/wparid.h>

tid_t kwpar_r2vmap_tid (kcidp, rtid)
cid_t * kcidp;
tid_t rtid;

Parameters

kcidp A pointer to a memory location where the WPAR ID associated with the rtid parameter is
returned.

rtid The real thread ID on which to translate a real process ID to a virtual process ID.

Chapter 1. Kernel Services 301

Description
The kwpar_r2vmap_tid kernel service provides a mapping from a real thread ID to a virtual thread ID
assigned within the workload partition. In most instances, the real and virtual thread IDs are the same
except in cases where the Workload Partition Mobility is in effect.

Normally kernel services dealing with thread IDs accept only real thread IDs. However, in some instances
it might be necessary for kernel extensions, which communicate with other WPAR services or with
processes within the WPAR, to know and communicate with virtual thread IDs.

Execution Environment
The kwpar_r2vmap_tid kernel service can be called from the process environment only.

Return Values
If the kwpar_r2vmap_tid kernel service succeeds, it returns the virtual tid_t value associated with the rtid
value provided on input. If the kernel service fails or if there is no virtual process ID associated with the
rtid value, the rtid value is returned.

Related Information
The kwpar_v2rmap_tid kernel service.

kwpar_regdevno Kernel Service

Purpose
Registers a virtual device number for a given workload partition (WPAR) by mapping it to a real device
number in the device switch table.

Syntax
#include <sys/wparid.h>

int kwpar_regdevno (wparid, vdevno, rdevno)
cid_t wparid;
dev_t vdevno;
dev_t * rdevno;

Parameters

wparid WPAR ID. This parameter is required.
vdevno Virtual device number. This parameter is required.
rdevno Points to the data area that will contains the real device number. This parameter is passed

by reference. This parameter is required.

Description
The kwpar_regdevno kernel service provides the ability to register a virtual device number for a given
WPAR by mapping it to a real device number in the device switch table. The kwpar_regdevno kernel
service performs the following steps:

1. Locates a free slot in the kernel device switch table and reserves it for the WPAR specified by the
wparid parameter.

2. Creates a mapping between the virtual device number, which is specified by the vdevno parameter, to
the real device number reserved in the previous step.

302 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

3. The newly reserved real device number is passed back to the caller through the rdevno parameter.

Execution Environment
The kwpar_regdevno kernel service can be called from the process environment only.

Return Values

0 Success.
non-zero Failure.

Error Codes
The kwpar_regdevno kernel service fails if one or more of the following errors occur:

EINVAL Either the wparid or vdevno argument is not valid.
ENXIO Unable to locate the WPAR device map associated with the given WPAR ID.
ENOTEMPTY The virtual device number vdevno is already mapped.

Related Information
The kwpar_r2vmap_devno kernel service, kwpar_v2rmap_devno kernel service, kwpar_unregdevno
kernel service.

kwpar_reghook Kernel Service

Purpose
Registers a function callback with workload partition (WPAR) kernel services. Callback functions are
subsequently performed when specific WPAR conditions occur.

Syntax
#include <sys/wparid.h>

regkey_t kwpar_reghook (hooktype, hookp)
int hooktype;
void * hookp;

Parameters

hooktype Identifies the form of the hookp pointer.
hookp A pointer to a memory location that might contain function pointers or other structure

elements that are interpreted depending on the supplied hooktype value.

Hook Types
The hooktype parameter is supplied on input to the kwpar_reghook return and describes the form of the
second parameter. The supported hook types are as follows:

WPAR_NOTIFY_HOOK Identifies the form of the hookp parameter as being of type wpar_config_hook_t.

Chapter 1. Kernel Services 303

The wpar_config_hook_t structure contains the following fields:

uint current_hiwater On output from the kwpar_reghook service, this field contains the current upper number of
WPARs that have become active on this boot instance of AIX 5.1. WPAR IDs are allocated
in numeric order. Kernel subsystems that want to size internal components according to the
number of active WPARs must register a WPAR_NOTIFY_HOOK hook type and examine
the current_hiwater value for existing WPARs during registration. Future WPAR activation
after hook registration calls the specified configp function within the wpar_config_hook_t
element. See the WPARSTART flags later in this section for a further description of the
WPAR activation.

wpar_config_func_t
configp

On input, this field contains a pointer to a callback routine that is invoked by the WPAR
kernel services during the activation and the deactivation of workload partitions within the
AIX 5.1 kernel.

The syntax for the wpar_config_func_t is as follows:
#include <sys/wpar.h>

typedef int * wpar_config_func_t (flags, cid, corralp, unused)
int flags;
cid_t cid;
struct corral * corralp;
void * unused;

The parameters are as follows:

flags Information regarding the type of condition that is occurring within the workload partition.
cid The ID for the workload partition experiencing the condition.
corralp A pointer to a kernel copy of the corral structure that might have been supplied from the

user space at the start of the condition processing.
unused Currently unused and must be set to NULL. It might be expanded to contain additional

information in later revisions of this API.

The flags parameter can have the following potential values:

WPARSTART Signifies that the WPAR is undergoing activation. The callout to registered routines occurs
before any other kernel subsystem processing occurs. Kernel components registering and
desiring to see the WPAR activation are informed that a new WPAR with the cid parameter
set is going to enter the AIX 5.1 kernel system.

WPARSTOP Signifies that the WPAR has undergone deactivation. The callout to registered routines
occurs after all other kernel subsystem processing occurs. Kernel components registering
and desiring to see the WPAR deactivation are informed that an existing WPAR with the cid
parameter set has now left the AIX 5.1 kernel system.

Description
The kwpar_reghook kernel service provides a mechanism for other kernel services to register callbacks
and retrieve information when certain workload partition conditions occur.

Execution Environment
The kwpar_reghook kernel service can be called from the process environment only.

Return Values
If the kwpar_reghook kernel service is successful, it returns a registration key that can subsequently be
used with the kwpar_unreghook kernel service. If the kernel service fails, it returns a numeric value
equivalent to the BADREGKEY definition found in the wparid.h file.

304 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Error Codes
The kwpar_reghook kernel service fails if no space remains to record additional registration hook.

Related Information
The kwpar_unreghook kernel service.

kwpar_unregdevno Kernel Service

Purpose
Unregisters the mapping associated with a real device number for a given workload partition (WPAR).

Syntax
#include <sys/wparid.h>

int kwpar_unregdevno (wparid, rdevno)
cid_t wparid;
dev_t rdevno;

Parameters

wparid WPAR identifier. This parameter is required.
rdevno Real device number. This parameter is required.

Description
The kwpar_unregdevno kernel service provides the ability to unregister the mapping associated with a
real device number for a given WPAR. The kwpar_unregdevno kernel service will perform the following
steps:

1. Deletes the virtual-to-real mapping associated with the real device number specified by the rdevno
parameter for the WPAR specified by the wparid parameter.

2. Releases the reserve associated with the real device number specified by the rdevno parameter.

Execution Environment
The kwpar_unregdevno kernel service can be called from the process environment only.

Return Values

0 Success.
non-zero Failure.

Error Codes
The kwpar_unregdevno kernel service fails if one or more of the following errors occur:

EINVAL Either the wparid or rdevno argument is not valid.
ENXIO Unable to locate the WPAR device map associated with the given WPAR ID.
ESRCH Unable to locate the mapping for the given real device number rdevno.

Chapter 1. Kernel Services 305

Related Information
The kwpar_r2vmap_devno kernel service.

The kwpar_v2rmap_devno kernel service.

The kwpar_regdevno kernel service.

kwpar_unreghook Kernel Service

Purpose
Removes a previously registered workload partition (WPAR) callback hook.

Syntax
#include <sys/wparid.h>

int kwpar_unreghook (key)
regkey_t key;

Parameters

key The registration key of the hook that the caller wants to un-register. This key is equivalent to
the key returned from a hook registration with the kwpar_reghook kernel service.

Description
The kwpar_unreghook kernel service informs workload partitions that the caller no longer wants to
receive callouts for WPAR conditions.

Execution Environment
The kwpar_unreghook kernel service can be called from the process environment only.

Return Values

0 Success.
non-zero Failure.

Error Codes
The kwpar_unreghook service fails if one or more of the following errors occur:

EINVAL Not a valid registration key.
EPERM Not allowed to un-register this key.

Related Information
The kwpar_reghook kernel service.

306 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

kwpar_v2rmap_devno Kernel Service

Purpose
Maps a virtual device number to the corresponding real device number in the device switch table for a
given workload partition (WPAR).

Syntax
#include <sys/wparid.h>

int kwpar_v2rmap_devno (wparid, vdevno, rdevno)
cid_t wparid;
dev_t vdevno;
dev_t * rdevno;

Parameters

wparid WPAR identifier. This parameter is required.
vdevno Virtual device number. This parameter is required.
rdevno Points to the data area that will contain the real device number. This parameter is passed

by reference. This parameter is optional.

Description
The kwpar_v2rmap_devno kernel service provides the ability to translate a virtual device number
maintained in user space to the corresponding real device number maintained in the kernel device switch
table. The caller must specify an existing WPAR identifier with the wparid parameter and a valid virtual
device number with the vdevno parameter. The kwpar_v2rmap_devno kernel service will write the
corresponding real device number to the data area pointed to by the rdevno parameter if it is specified. If
the rdevno parameter is not specified, the return code will indicate whether a mapping exists for the given
WPAR identifier and virtual device number.

A mapping for the specified virtual device number must exist for the kwpar_v2rmap_devno kernel service
to succeed.

Execution Environment
The kwpar_v2rmap_devno kernel service can be called from the process environment only.

Return Values

0 Success.
non-zero Failure.

Error Codes
The kwpar_v2rmap_devno service fails if one or more of the following errors occur:

EINVAL Either the wparid or vdevno argument is not valid.
ENXIO Unable to locate the WPAR device map associated with the given WPAR id.
ENODEV Unable to locate the mapping for the given virtual device number.

Chapter 1. Kernel Services 307

Related Information
The kwpar_r2vmap_devno kernel service.

The kwpar_regdevno kernel service.

The kwpar_unregdevno kernel service.

kwpar_v2rmap_pid Kernel Service

Purpose
Maps a virtual process ID associated with a process within a workload partition to the equivalent real
process ID.

Syntax
#include <sys/wparid.h>

pid_t kwpar_v2rmap_pid (kcid, vpid)
cid_t kcid;
pid_t vpid;

Parameters

kcid The workload partition (WPAR) ID associated with the vpid parameter. Equivalent virtual
process IDs can be in use across different processes in different WPARs. Thus the caller
must provide the WPAR ID for which a virtual to real mapping is to occur.

vpid The virtual process ID on which to perform a virtual to real mapping.

Description
The kwpar_v2rmap_pid kernel service provides a mapping from a virtual process ID associated with a
process in a workload partition to the equivalent real process ID. In most instances, both the real and
virtual process IDs are the same, except in cases where the Workload Partition Mobility is in effect.

Normally, kernel services dealing with process IDs accept only real thread IDs. In some instances where a
kernel extension is communicating with other WPAR services or with processes within the WPAR, a
mapping from virtual to real process IDs might be needed.

Execution Environment
The kwpar_v2rmap_pid kernel service can be called from the process environment only.

Return Values
If the kwpar_v2rmap_pid kernel service succeeds, it returns the real pid_t value associated with the vpid
value provided on input. If the kernel service fails, or if there is no real thread ID associated with the vpid
value, then the vpid value is returned.

Related Information
The kwpar_r2vmap_pid kernel service.

308 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

kwpar_v2rmap_tid Kernel Service

Purpose
Maps a virtual thread ID associated with a thread within a workload partition to the equivalent real thread
ID.

Syntax
#include <sys/wparid.h>

tid_t kwpar_v2rmap_tid (kcid, vtid)
cid_t kcid;
tid_t vtid;

Parameters

kcid The workload partition (WPAR) ID associated with the vtid parameter. Equivalent virtual
thread IDs can be in use across different threads in different WPARs. Thus the caller must
provide the WPAR ID for which a virtual to real mapping is to occur.

vtid The virtual thread ID on which to perform a virtual to real mapping.

Description
The kwpar_v2rmap_tid kernel service provides a mapping from a virtual thread ID associated with a
thread in a workload partition to the equivalent real thread ID. In most instances, both the real and virtual
thread IDs are the same, except in cases where the Workload Partition Mobility is in effect. Normally,
kernel services dealing with thread IDs accept only real thread IDs. In some instances where a kernel
extension is communicating with other WPAR services or with processes within the WPAR, a mapping
from virtual to real thread IDs might be needed.

Execution Environment
The kwpar_v2rmap_tid kernel service can be called from the process environment only.

Return Values
If the kwpar_v2rmap_tid kernel service succeeds, it returns the real tid_t value associated with the vtid
value provided on input. If the kernel service fails, or if there is no real thread ID associated with the vtid
value then the vtid value is returned.

Related Information
The kwpar_r2vmap_tid kernel service.

limit_sigs or sigsetmask Kernel Service

Purpose
Changes the signal mask for the calling kernel thread.

Syntax
#include <sys/encap.h>

void limit_sigs (
siglist,

Chapter 1. Kernel Services 309

old_mask)
sigset_t *siglist;
sigset_t *old_mask;

void sigsetmask (old_mask)
sigset_t *old_mask;

Parameters

siglist Specifies the signal set to deliver.
old_mask Points to the old signal set.

Description
The limit_sigs kernel service changes the signal mask for the calling kernel thread such that only the
signals specified by the siglist parameter will be delivered, unless they are currently being blocked or
ignored.

The old signal mask is returned via the old_mask parameter. If the siglist parameter is NULL, the signal
mask is not changed; it can be used for getting the current signal mask.

The sigsetmask kernel service should be used to restore the set of blocked signals for the calling thread.
The typical usage of these services is the following:
sigset_t allowed = limited set of signals
sigset_t old;

/* limits the set of delivered signals */
limit_sigs (&allowed, &old);

/* do something with a limited set of delivered signals */

/* restore the original set */
sigsetmask (&old);

Execution Environment
The limit_sigs and sigsetmask kernel services can be called from the process environment only.

Return Values
The limit_sigs and sigsetmask kernel services have no return values.

Related Information
The kthread_kill kernel service.

livedump Kernel Service

Purpose
Starts a live dump.

Syntax
#include <sys/livedump.h>

kerrno_t livedump (parms)
ldmp_parms_t *parms;

310 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

parms Points to an item of ldmp_parms_t type.

Description
The livedump kernel service initiates a live dump. It can be called from either the kernel or a kernel
extension. Storage associated with the dump is not entirely freed until the dump has been written to disk,
or the livedump kernel service returns an error indicating the dump was not taken.

Execution Environment
The livedump kernel service can be called from either the process or interrupt environment. Only a
serialized, synchronous dump can be started from the interrupt level, and the dump is limited to one pass.

Return Values

0 Indicates a successful completion.
EINVAL_RAS_LIVEDUMP_PARM Indicates that one or more parameters are not valid.
EFAULT_RAS_LIVEDUMP_PARM Indicates that a memory fault occurs.
EINVAL_RAS_LIVEDUMP_COMP Indicates one or more components are not valid.
EINVAL_RAS_LIVEDUMP_NOCOMPS Indicates that no valid components were given.

Related Information
The ldmp_setupparms kernel service, dmp_compspec kernel service, dmp_eaddr kernel service,
dmp_context kernel service, dmp_tid kernel service, dmp_pid kernel service, dmp_errbuf kernel
service, dmp_mtrc kernel service, dmp_systrace kernel service, dmp_ct kernel service, and
dmp_kernext kernel service.

lock_alloc Kernel Service

Purpose
Allocates system memory for a simple or complex lock.

Syntax
#include <sys/lock_def.h>
#include <sys/lock_alloc.h>

void lock_alloc (lock_addr, flags, class, occurrence)
void *lock_addr;
int flags;
short class;
short occurrence;

Parameters

lock_addr Specifies a valid simple or complex lock address.

Chapter 1. Kernel Services 311

flags Specifies whether the memory allocated is to be pinned or pageable. Set this parameter as follows:

LOCK_ALLOC_PIN
Allocate pinned memory; use if it is not permissible to take a page fault while calling a
locking kernel service for this lock.

LOCK_ALLOC_PAGED
Allocate pageable memory; use if it is permissible to take a page fault while calling a
locking kernel service for this lock.

class Specifies the family which the lock belongs to.
occurrence Identifies the instance of the lock within the family. If only one instance of the lock is defined, this

parameter should be set to -1.

Description
The lock_alloc kernel service allocates system memory for a simple or complex lock. The lock_alloc
kernel service must be called for each simple or complex before the lock is initialized and used. The
memory allocated is for internal lock instrumentation use, and is not returned to the caller; no memory is
allocated if instrumentation is not used.

Execution Environment
The lock_alloc kernel service can be called from the process environment only.

Return Values
The lock_alloc kernel service has no return values.

Related Information
The lock_free kernel service, lock_init kernel service, simple_lock_init kernel service.

Understanding Locking and Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts

lock_clear_recursive Kernel Service

Purpose
Prevents a complex lock from being acquired recursively.

Syntax
#include <sys/lock_def.h>

void lock_clear_recursive (lock_addr)
complex_lock_t lock_addr;

Parameter

lock_addr Specifies the address of the lock word which is no longer to be acquired recursively.

Description
The lock_clear_recursive kernel service prevents the specified complex lock from being acquired
recursively. The lock must have been made recursive with the lock_set_recursive kernel service. The
calling thread must hold the specified complex lock in write-exclusive mode.

312 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment
The lock_clear_recursive kernel service can be called from the process environment only.

Return Values
The lock_clear_recursive kernel service has no return values.

Related Information
The lock_init kernel service, lock_done kernel service, lock_read kernel service, lock_read_to_write
kernel service, lock_write kernel service, lock_set_recursive kernel service.

Understanding Locking and Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts

lock_done Kernel Service

Purpose
Unlocks a complex lock.

Syntax
#include <sys/lock_def.h>

void lock_done (lock_addr)
complex_lock_t lock_addr;

Parameter

lock_addr Specifies the address of the lock word to unlock.

Description
The lock_done kernel services unlocks a complex lock. The calling kernel thread must hold the lock either
in shared-read mode or exclusive-write mode. If one or more kernel threads are waiting to acquire the lock
in exclusive-write mode, one of these kernel threads (the one with the highest priority) is made runnable
and may compete for the lock. Otherwise, any kernel threads which are waiting to acquire the lock in
shared-read mode are made runnable. If there was at least one kernel thread waiting for the lock, the
priority of the calling kernel thread is recomputed.

If the lock is held recursively, it is not actually released until the lock_done kernel service has been called
once for each time that the lock was locked.

Execution Environment
The lock_done kernel service can be called from the process environment only.

Return Values
The lock_done kernel service has no return values.

Related Information
The lock_alloc kernel service, lock_free kernel service, lock_init kernel service.

Understanding Locking and Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts

Chapter 1. Kernel Services 313

lock_free Kernel Service

Purpose
Frees the memory of a simple or complex lock.

Syntax
#include <sys/lock_def.h>
#include <sys/lock_alloc.h>

void lock_free (lock_addr)
void *lock_addr;

Parameter

lock_addr Specifies the address of the lock word whose memory is to be freed.

Description
The lock_free kernel service frees the memory of a simple or complex lock. The memory freed is the
internal operating system memory which was allocated with the lock_alloc kernel service.

Note: It is only necessary to call the lock_free kernel service when the memory that the corresponding
lock was protecting is released. For example, if you allocate memory for an i-node which is to be
protected by a lock, you must allocate and initialize the lock before using it. The memory may be
used with several i-nodes, each taken from, and returned to, the free i-node pool; the lock_init
kernel service must be called each time this is done.The lock_free kernel service must be called
when the memory allocated for the inode is finally freed.

Execution Environment
The lock_free kernel service can be called from the process environment only.

Return Values
The lock_free kernel service has no return values.

Related Information
The lock_alloc kernel service.

Understanding Locking and Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts

lock_init Kernel Service

Purpose
Initializes a complex lock.

Syntax
#include <sys/lock_def.h>

void lock_init (lock_addr, can_sleep)
complex_lock_t lock_addr;
boolean_t can_sleep;

314 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

lock_addr Specifies the address of the lock word.
can_sleep This parameter is ignored.

Description
The lock_init kernel service initializes the specified complex lock. This kernel service must be called for
each complex lock before the lock is used. The complex lock must previously have been allocated with the
lock_alloc kernel service. The can_sleep parameter is included for compatibility with OSF/1 1.1, but is
ignored. Using a value of TRUE for this parameter will maintain OSF/1 1.1 semantics.

Execution Environment
The lock_init kernel service can be called from the process environment only.

Return Values
The lock_init kernel service has no return values.

Related Information
The lock_alloc kernel service, lock_free kernel service.

Understanding Locking and Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts

lock_islocked Kernel Service

Purpose
Tests whether a complex lock is locked.

Syntax
#include <sys/lock_def.h>

int lock_islocked (lock_addr)
complex_lock_t lock_addr;

Parameter

lock_addr Specifies the address of the lock word to test.

Description
The lock_islocked kernel service determines whether the specified complex lock is free, or is locked in
either shared-read or exclusive-write mode.

Execution Environment
The lock_islocked kernel service can be called from the process environment only.

Return Values

TRUE Indicates that the lock was locked.
FALSE Indicates that the lock was free.

Chapter 1. Kernel Services 315

Related Information
The lock_init kernel service.

Understanding Locking and Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts

lockl Kernel Service

Purpose
Locks a conventional process lock.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/lockl.h>

int lockl (lock_word, flags)
lock_t *lock_word;
int flags;

Parameters

lock _word Specifies the address of the lock word.
flags Specifies the flags that control waiting for a lock. The flags parameter is used to control how

signals affect waiting for a lock. The four flags are:

LOCK_NDELAY
Controls whether the caller waits for the lock. Setting the flag causes the request to be
terminated. The lock is assigned to the caller. Not setting the flag causes the caller to
wait until the lock is not owned by another process before the lock is assigned to the
caller.

LOCK_SHORT
Prevents signals from terminating the wait for the lock. LOCK_SHORT is the default flag
for the lockl Kernel Service. This flag causes non-preemptive sleep.

LOCK_SIGRET
Causes the wait for the lock to be terminated by an unmasked signal.

LOCK_SIGWAKE
Causes the wait for the lock to be terminated by an unmasked signal and control
transferred to the return from the last operation by the setjmpx kernel service.

Note: The LOCK_SIGRET flag overrides the LOCK_SIGWAKE flag.

Description

Note: The lockl kernel service is provided for compatibility only and should not be used in new code,
which should instead use simple locks or complex locks.

The lockl kernel service locks a conventional lock

The lock word can be located in shared memory. It must be in the process’s address space when the
lockl or unlockl services are called. The kernel accesses the lock word only while executing under the
caller’s process.

316 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

The lock_word parameter is typically part of the data structure that describes the resource managed by the
lock. This parameter must be initialized to the LOCK_AVAIL value before the first call to the lockl service.
Only the lockl and unlockl services can alter this parameter while the lock is in use.

The lockl service is nestable. The caller should use the LOCK_SUCC value for determining when to call
the unlockl service to unlock the conventional lock.

The lockl service temporarily assigns the owner the process priority of the most favored waiter for the
lock.

A process must release all locks before terminating or leaving kernel mode. Signals are not delivered to
kernel processes while those processes own any lock. ″Understanding System Call Execution″ in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts discusses how system calls
can use the lockl service when accessing global data.

Execution Environment
The lockl kernel service can be called from the process environment only.

Return Values

LOCK_SUCC Indicates that the process does not already own the lock or the lock is not owned by another
process when the flags parameter is set to LOCK_NDELAY.

LOCK_NEST Indicates that the process already owns the lock or the lock is not owned by another process when
the flags parameter is set to LOCK_NDELAY.

LOCK_FAIL Indicates that the lock is owned by another process when the flags parameter is set to
LOCK_NDELAY.

LOCK_SIG Indicates that the wait is terminated by a signal when the flags parameter is set to LOCK_SIGRET.

Related Information
The unlockl kernel service.

Understanding Locking in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts

lock_mine Kernel Service

Purpose
Checks whether a simple or complex lock is owned by the caller.

Syntax
#include <sys/lock_def.h>

boolean_t lock_mine (lock_addr)
void *lock_addr;

Parameter

lock_addr Specifies the address of the lock word to check.

Chapter 1. Kernel Services 317

Description
The lock_mine kernel service checks whether the specified simple or complex lock is owned by the
calling kernel thread. Because a complex lock held in shared-read mode has no owner, the service returns
FALSE in this case. This kernel service is provided to assist with debugging.

Execution Environment
The lock_mine kernel service can be called from the process environment only.

Return Values

TRUE Indicates that the calling kernel thread owns the lock.
FALSE Indicates that the calling kernel thread does not own the lock, or that a complex lock is held in shared-read

mode.

Related Information
The lock_init kernel service, lock_islocked kernel service, lock_read kernel service, lock_write kernel
service, simple_lock kernel service.

Understanding Locking and Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts

lock_read or lock_try_read Kernel Service

Purpose
Locks a complex lock in shared-read mode.

Syntax
#include <sys/lock_def.h>

void lock_read (lock_addr)
complex_lock_t lock_addr;

boolean_t lock_try_read (lock_addr)
complex_lock_t lock_addr;

Parameter

lock_addr Specifies the address of the lock word to lock.

Description
The lock_read kernel service locks the specified complex lock in shared-read mode; it blocks if the lock is
locked in exclusive-write mode. The lock must previously have been initialized with the lock_init kernel
service. The lock_read kernel service has no return values.

The lock_try_read kernel service tries to lock the specified complex lock in shared-read mode; it returns
immediately if the lock is locked in exclusive-write mode, otherwise it locks the lock in shared-read mode.
The lock must previously have been initialized with the lock_init kernel service.

Execution Environment
The lock_read and lock_try_read kernel services can be called from the process environment only.

318 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Return Values
The lock_try_read kernel service has the following return values:

TRUE Indicates that the lock was successfully acquired in shared-read mode.
FALSE Indicates that the lock was not acquired.

Related Information
The lock_init kernel service, lock_islocked kernel service, lock_done kernel service.

Understanding Locking and Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts

lock_read_to_write or lock_try_read_to_write Kernel Service

Purpose

Upgrades a complex lock from shared-read mode to exclusive-write mode.

Syntax
#include <sys/lock_def.h>

boolean_t lock_read_to_write (lock_addr)
complex_lock_t lock_addr;

boolean_t lock_try_read_to_write (lock_addr)
complex_lock_t lock_addr;

Parameter

lock_addr Specifies the address of the lock word to be converted from read-shared to write-exclusive mode.

Description
The lock_read_to_write and lock_try_read_to_write kernel services try to upgrade the specified
complex lock from shared-read mode to exclusive-write mode. The lock is successfully upgraded if no
other thread has already requested write-exclusive access for this lock. If the lock cannot be upgraded, it
is no longer held on return from the lock_read_to_write kernel service; it is still held in shared-read mode
on return from the lock_try_read_to_write kernel service.

The calling kernel thread must hold the lock in shared-read mode.

Execution Environment
The lock_read_to_write and lock_try_read_to_write kernel services can be called from the process
environment only.

Return Values
The following only apply to lock_read_to_write:

TRUE Indicates that the lock was not upgraded and is no longer held.
FALSE Indicates that the lock was successfully upgraded to exclusive-write mode.

Chapter 1. Kernel Services 319

The following only apply to lock_try_read_to_write:

TRUE Indicates that the lock was successfully upgraded to exclusive-write mode.
FALSE Indicates that the lock was not upgraded and is held in read mode.

Related Information
The lock_init kernel service, lock_islocked kernel service, lock_done kernel service.

Understanding Locking and Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts

lock_set_recursive Kernel Service

Purpose
Prepares a complex lock for recursive use.

Syntax
#include <sys/lock_def.h>

void lock_set_recursive (lock_addr)
complex_lock_t lock_addr;

Parameter

lock_addr Specifies the address of the lock word to be prepared for recursive use.

Description
The lock_set_recursive kernel service prepares the specified complex lock for recursive use. A complex
lock cannot be nested until the lock_set_recursive kernel service is called for it. The calling kernel thread
must hold the specified complex lock in write-exclusive mode.

When a complex lock is used recursively, the lock_done kernel service must be called once for each time
that the thread is locked in order to unlock the lock.

Only the kernel thread which calls the lock_set_recursive kernel service for a lock may acquire that lock
recursively.

Execution Environment
The lock_set_recursive kernel service can be called from process environment only.

Return Values
The lock_set_recursive kernel service has no return values.

Related Information
The lock_init kernel service, lock_done kernel service, lock_write kernel service, lock_clear_recursive
kernel service.

Understanding Locking and Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts

320 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

lock_write or lock_try_write Kernel Service

Purpose
Locks a complex lock in exclusive-write mode.

Syntax
#include <sys/lock_def.h>

void lock_write (lock_addr)
complex_lock_t lock_addr;

boolean_t lock_try_write (lock_addr)
complex_lock_t lock_addr;

Parameter

lock_addr Specifies the address of the lock word to lock.

Description
The lock_write kernel service locks the specified complex lock in exclusive-write mode; it blocks if the
lock is busy. The lock must have been previously initialized with the lock_init kernel service. The
lock_write kernel service has no return values.

The lock_try_write kernel service tries to lock the specified complex lock in exclusive-write mode; it
returns immediately without blocking if the lock is busy. The lock must have been previously initialized with
the lock_init kernel service.

Execution Environment
The lock_write and lock_try_write kernel services can be called from the process environment only.

Return Values
The lock_try_write kernel service has the following parameters:

TRUE Indicates that the lock was successfully acquired.
FALSE Indicates that the lock was not acquired.

Related Information
The lock_init kernel service, lock_islocked kernel service, lock_done kernel service,
lock_read_to_write kernel service, lock_try_read_to_write kernel service, lock_write_to_read kernel
service.

Understanding Locking and Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts

lock_write_to_read Kernel Service

Purpose
Downgrades a complex lock from exclusive-write mode to shared-read mode.

Chapter 1. Kernel Services 321

Syntax
#include <sys/lock_def.h>

void lock_write_to_read (lock_addr)
complex_lock_t lock_addr;

Parameter

lock_addr Specifies the address of the lock word to be downgraded from exclusive-write to shared-read
mode.

Description
The lock_write_to_read kernel service downgrades the specified complex lock from exclusive-write mode
to shared-read mode. The calling kernel thread must hold the lock in exclusive-write mode.

Once the lock has been downgraded to shared-read mode, other kernel threads will also be able to
acquire it in shared-read mode.

Execution Environment
The lock_write_to_read kernel service can be called from the process environment only.

Return Values
The lock_write_to_read kernel service has no return values.

Related Information
The lock_init kernel service, lock_islocked kernel service, lock_done kernel service,
lock_read_to_write kernel service, lock_try_read_to_write kernel service, lock_try_write kernel service,
lock_write kernel service.

Understanding Locking and Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts

loifp Kernel Service

Purpose

Returns the address of the software loopback interface structure.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

struct ifnet *loifp ()

Description
The loifp kernel service returns the address of the ifnet structure associated with the software loopback
interface. The interface address can be used to examine the interface flags. This address can also be
used to determine whether the looutput kernel service can be called to send a packet through the
loopback interface.

322 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment
The loifp kernel service can be called from either the process or interrupt environment.

Return Values
The loifp service returns the address of the ifnet structure describing the software loopback interface.

Related Information
The looutput kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

longjmpx Kernel Service

Purpose

Allows exception handling by causing execution to resume at the most recently saved context.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int longjmpx (ret_val)
int ret_val;

Parameters

ret_val Specifies the return value to be supplied on the return from the setjmpx kernel service for the resumed
context. This value normally indicates the type of exception that has occurred.

Description
The longjmpx kernel service causes the normal execution flow to be modified so that execution resumes
at the most recently saved context. The kernel mode lock is reacquired if it is necessary. The interrupt
priority level is reset to that of the saved context.

The longjmpx service internally calls the clrjmpx service to remove the jump buffer specified by the
jump_buffer parameter from the list of contexts to be resumed. The longjmpx service always returns a
nonzero value when returning to the restored context. Therefore, if the value of the ret_val parameter is 0,
the longjmpx service returns an EINTR value to the restored context.

If there is no saved context to resume, the system crashes.

Execution Environment
The longjmpx kernel service can be called from either the process or interrupt environment.

Return Values
A successful call to the longjmpx service does not return to the caller. Instead, it causes execution to
resume at the return from a previous setjmpx call with the return value of the ret_val parameter.

Chapter 1. Kernel Services 323

Related Information
The clrjmpx kernel service, setjmpx kernel service.

Understanding Exception Handling in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

lookupvp, lookupname, lookupname_cur Kernel Services

Purpose
Retrieves the v-node that corresponds to the named path.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

int lookupvp (namep, flags, compvpp, crp)
char *namep;
int flags;
struct vnode **compvpp;
struct ucred *crp;

int lookupname (namep, seg, flags, dirvpp, compvpp, crp)
char *namep;
int seg;
int flags;
struct vnode **dirvpp;
struct vnode **compvpp;
struct cred *crp;

int lookupname_cur (namep, seg, flags, dirvpp, compvpp, curdvp, crp)
char *namep;
int seg;
int flags;
struct vnode **dirvpp;
struct vnode **compvpp;
struct vnode **curdvp;
struct cred *crp;

Parameters

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

namep Points to a character string path name.

324 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

flags Specifies lookup directives, including these six flags:

L_LOC The path-name resolution must not cross a mount point into another file system
implementation.

L_NOFOLLOW
If the final component of the path name resolves to a symbolic link, the link is not to be
traversed.

L_NOXMOUNT
If the final component of the path name resolves to a mounted-over object, the
mounted-over object, rather than the root of the next virtual file system, is to be returned.

L_CRT The object is to be created.

L_DEL The object is to be deleted.

L_EROFS
An error is to be returned if the object resides in a read-only file system.

seg Specifies whether the namep buffer is in user space (UIO_USERSPACE) or kernel space
(UIO_SYSSPACE).

compvpp Points to the location where the vnode pointer for the named object is to be returned to the calling
routine.

dirvpp Points to the location where the vnode pointer for the directory containing the named object is to be
returned.

curdvp Points to the vnode for a current directory to be used instead of u_cdir.

Description
The lookupvp kernel service provides translation of the path name provided by the namep parameter into
a virtual file system node. The lookupvp service provides a flexible interface to path-name resolution by
regarding the flags parameter values as directives to the lookup process. The lookup process is a
cooperative effort between the logical file system and underlying virtual file systems (VFS). Several v-node
and VFS operations are employed to:

v Look up individual name components

v Read symbolic links

v Cross mount points

The lookupvp kernel service determines the process’s current and root directories by consulting the
u_cdir and u_rdir fields in the u structure. Information about the virtual file system and file system
installation for transient v-nodes is obtained from each name component’s vfs or gfs structure. The
lookupvp kernel service assumes that the named path is in kernel address space.

The lookupname kernel service provides the same service as the lookupvp kernel service, but allows the
caller to specify whether the path name is in kernel or user space. It also provides the ability to retrieve
the vnode for the directory containing the named object. The lookupname_cur kernel service further
extends the interface by allowing the lookup to proceed relative to the given curdvp directory.

The vnodes returned by the lookup services are held. The calling routine is responsible for releasing the
hold by calling the vnop_rele entry point when it completes its operation.

Execution Environment
The lookup kernel services can be called from the process environment only.

Return Values

0 Indicates a successful operation.
errno Indicates an error. This number is defined in the /usr/include/sys/errno.h file.

Chapter 1. Kernel Services 325

Related Information
Understanding Data Structures and Header Files for Virtual File Systems in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

Virtual File System Overview in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

Virtual File System (VFS) Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

looutput Kernel Service

Purpose
Sends data through a software loopback interface.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int looutput (ifp, m0, dst)
struct ifnet *ifp;
struct mbuf *m0;
struct sockaddr *dst;

Parameters

ifp Specifies the address of an ifnet structure describing the software loopback interface.
m0 Specifies an mbuf chain containing output data.
dst Specifies the address of a sockaddr structure that specifies the destination for the data.

Description
The looutput kernel service sends data through a software loopback interface. The data in the m0
parameter is passed to the input handler of the protocol specified by the dst parameter.

Execution Environment
The looutput kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates that the data was successfully sent.
ENOBUFS Indicates that resource allocation failed.
EAFNOSUPPORT Indicates that the address family specified by the dst parameter is not supported.

Related Information
The loifp kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

326 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

ltpin Kernel Service

Purpose
Pins the address range in the system (kernel) space and frees the page space for the associated pages.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/pin.h>

int ltpin (addr, length)
caddr_t addr;
int length;

Parameters

addr Specifies the address of the first byte to pin.
length Specifies the number of bytes to pin.

Description
The ltpin (long term pin) kernel service pins the real memory pages touched by the address range
specified by the addr and length parameters in the system (kernel) address space. It pins the real-memory
pages to ensure that page faults do not occur for memory references in this address range. The ltpin
kernel service increments the long-term pin count for each real-memory page. While either the long-term
or short-term pin count is nonzero, the page cannot be paged out of real memory.

The ltpin kernel service pins either the entire address range or none of it. Only a limited number of pages
are pinned in the system. If there are not enough unpinned pages in the system, the ltpin kernel service
returns an error code. The ltpin kernel service is not a published interface.

Note: The operating system pins only whole pages at a time. Therfore, if the requested range is not
aligned on a page boundary, then memory outside this range is also pinned.

The ltpin kernel service can only be called for addresses within the system (kernel) address space.

Return Values

0 Indicates successful completion.
EINVAL Indicates that the length parameter has a negative value. Otherwise, the area of memory beginning at

the address of the first byte to pin (the addr parameter) and extending for the number of bytes specified
by the length parameter is not defined.

EIO Indicates that a permanent I/O error occurred while referencing data.
ENOMEM Indicates that the pin kernel service was unable to pin due to insufficient real memory or exceeding the

system-wide pin count.
ENOSPC Indicates insufficient file system or paging space.

Related Information
The ltunpin kernel service.

Chapter 1. Kernel Services 327

ltunpin Kernel Service

Purpose
Unpins the address range in system (kernel) address space and reallocates paging space for the specified
region.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/pin.h>

int ltunpin (addr, length)
caddr_t addr;
int length;

Parameters

addr Specifies the address of the first byte to unpin.
length Specifies the number of bytes to unpin.

Description
The ltunpin kernel service decreases the long-term pin count of each page in the address range. When
the long-term pin count becomes 0, the backing storage (paging space) for the memory region is allocated
and assigned to the pages. When both the long-term and short-term pin counts are 0, the page is no
longer pinned and the ltunpin kernel service will assert. If allocating backing pages would put the system
below the low paging space threshold, the call waits until paging space becomes available.

The ltunpin kernel service can only be called with addresses in the system (kernel) address space from
the process environment.

Return Values

0 Indicates successful completion.
EINVAL Indicates that the length parameter is a negative value.
EIO Indicates that a permanent I/O error occurred while referencing data.

Related Information
The ltpin kernel service.

m_adj Kernel Service

Purpose
Adjusts the size of an mbuf chain.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

void m_adj (m, diff)
struct mbuf *m;
int diff;

328 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

m Specifies the mbuf chain to be adjusted.
diff Specifies the number of bytes to be removed.

Description
The m_adj kernel service adjusts the size of an mbuf chain by the number of bytes specified by the diff
parameter. If the number specified by the diff parameter is nonnegative, the bytes are removed from the
front of the chain. If this number is negative, the alteration is done from back to front.

Execution Environment
The m_adj kernel service can be called from either the process or interrupt environment.

Return Values
The m_adj service has no return values.

Related Information
I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

mbreq Structure for mbuf Kernel Services

Purpose
Contains mbuf structure registration information for the m_reg and m_dereg kernel services.

Syntax
#include <sys/mbuf.h>

struct mbreq {
int low_mbuf;
int low_clust;
int initial_mbuf;
int initial_clust;

}

Parameters

low_mbuf Specifies the mbuf structure low-water mark.
low_clust Specifies the page-sized mbuf structure low-water mark.
initial_mbuf Specifies the initial allocation of mbuf structures.
initial_clust Specifies the initial allocation of page-sized mbuf structures.

Description
The mbreq structure specifies the mbuf structure usage expectations for a user of mbuf kernel services.

Related Information
The m_dereg kernel service, m_reg kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 329

mbstat Structure for mbuf Kernel Services

Purpose
Contains mbuf usage statistics.

Syntax
#include <sys/mbuf.h>

struct mbstat {
ulong m_mbufs;
ulong m_clusters;
ulong m_spare;
ulong m_clfree;
ulong m_drops;
ulong m_wait;
ulong m_drain;
short m_mtypes[256];
}

Parameters

m_mbufs Specifies the number of mbuf structures allocated.
m_clusters Specifies the number of clusters allocated.
m_spare Specifies the spare field.
m_clfree Specifies the number of free clusters.
m_drops Specifies the times failed to find space.
m_wait Specifies the times waited for space.
m_drain Specifies the times drained protocols for space.
m_mtypes Specifies the type-specific mbuf structure allocations.

Description
The mbstat structure provides usage information for the mbuf services. Statistics can be viewed through
the netstat -m command.

Related Information
The netstat command.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

m_cat Kernel Service

Purpose
Appends one mbuf chain to the end of another.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

void m_cat (m, n)
struct mbuf *m;
struct mbuf *n;

330 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

m Specifies the mbuf chain to be appended to.
n Specifies the mbuf chain to append.

Description
The m_cat kernel service appends an mbuf chain specified by the n parameter to the end of mbuf chain
specified by the m parameter. Where possible, compaction is performed.

Execution Environment
The m_cat kernel service can be called from either the process or interrupt environment.

Return Values
The m_cat service has no return values.

Related Information
I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

m_clattach Kernel Service

Purpose
Allocates an mbuf structure and attaches an external cluster.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

struct mbuf *
m_clattach(ext_buf, ext_free, ext_size, ext_arg, wait)
caddr_t ext_buf;
int (*ext_free)();
int ext_size;
int ext_arg;
int wait;

Parameters

ext_buf Specifies the address of the external data area.
ext_free Specifies the address of a function to be called when this mbuf structure is freed.
ext_size Specifies the length of the external data area.
ext_arg Specifies an argument to pass to the above function.
wait Specifies either the M_WAIT or M_DONTWAIT value.

Description
The m_clattach kernel service allocates an mbuf structure and attaches the cluster specified by the
ext_buf parameter. This data is owned by the caller. The m_data field of the returned mbuf structure points
to the caller’s data. Interrupt handlers can call this service only with the wait parameter set to
M_DONTWAIT.

Chapter 1. Kernel Services 331

Note: The m_clattach kernel service replaces the m_clgetx kernel service, which is no longer supported.

The calling function is required to fill out the mbuf structure sufficiently to support normal usage. This
includes support for the DMA functions during network transmission. To support DMA functions, the
ext_hasxm flag field needs to be set to true and the ext_xmemd structure needs to be filled out. For
buffers allocated from the kernel pinned heap, the ext_xmemd.aspace_id field should be set to
XMEM_GLOBAL.

Execution Environment
The m_clattach kernel service can be called from either the process or interrupt environment.

Return Values
The m_clattach kernel service returns the address of an allocated mbuf structure. If the wait parameter is
set to M_DONTWAIT and there are no free mbuf structures, the m_clattach service returns null.

Related Information
I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

m_clget Macro for mbuf Kernel Services

Purpose

Allocates a page-sized mbuf structure cluster.

Syntax
#include <sys/mbuf.h>

int m_clget (m)
struct mbuf *m;

Parameter

m Specifies the mbuf structure with which the cluster is to be associated.

Description
The m_clget macro allocates a page-sized mbuf cluster and attaches it to the given mbuf structure. If
successful, the length of the mbuf structure is set to CLBYTES.

Execution Environment
The m_clget macro can be called from either the process or interrupt environment.

Return Values

1 Indicates successful completion.
0 Indicates an error.

Related Information
The m_clgetm kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

332 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

m_clgetm Kernel Service

Purpose
Allocates and attaches an external buffer.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>
#include <net/net_globals.h>

int
m_clgetm(m, how, size)
struct mbuf *m;
int how;
int size;

Parameters

m Specifies the mbuf structure that the cluster will be associated with.
how Specifies either the M_DONTWAIT or M_WAIT value.
size Specifies the size of external cluster to attach. Any value less than MAXALLOCSAVE is valid. For larger

values, M_WAIT must be specified.

Description
The m_clgetm service allocates an mbuf cluster of the specified number of bytes and attaches it to the
mbuf structure indicated by the m parameter. If successful, the m_clgetm service sets the M_EXT flag.

Execution Environment
The m_clgetm kernel service can be called from either the process or interrupt environment.

An interrupt handler can specify the wait parameter as M_DONTWAIT only.

Return Values

1 Indicates a successful operation.

If there are no free mbuf structures, the m_clgetm kernel service returns a null value.

Related Information
The m_free kernel service, m_freem kernel service, m_get kernel service.

The m_clget macro.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

m_collapse Kernel Service

Purpose

Guarantees that an mbuf chain contains no more than a given number of mbuf structures.

Chapter 1. Kernel Services 333

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

struct mbuf *m_collapse (m, size)
struct mbuf *m;
int size;

Parameters

m Specifies the mbuf chain to be collapsed.
size Denotes the maximum number of mbuf structures allowed in the chain.

Description
The m_collapse kernel service reduces the number of mbuf structures in an mbuf chain to the number of
mbuf structures specified by the size parameter. The m_collapse service accomplishes this by copying
data into page-sized mbuf structures until the chain is of the desired length. (If required, more than one
page-sized mbuf structure is used.)

Execution Environment
The m_collapse kernel service can be called from either the process or interrupt environment.

Return Values
If the chain cannot be collapsed into the number of mbuf structures specified by the size parameter, a
value of null is returned and the original chain is deallocated. Upon successful completion, the head of the
altered mbuf chain is returned.

Related Information
I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

m_copy Macro for mbuf Kernel Services

Purpose
Creates a copy of all or part of a list of mbuf structures.

Syntax
#include <sys/mbuf.h>

struct mbuf *m_copy (m, off, len)
struct mbuf *m;
int off;
int len;

Parameters

m Specifies the mbuf structure, or the head of a list of mbuf structures, to be copied.
off Specifies an offset into data from which copying starts.
len Denotes the total number of bytes to copy.

334 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The m_copy macro makes a copy of the structure specified by the m parameter. The copy begins at the
specified bytes (represented by the off parameter) and continues for the number of bytes specified by the
len parameter. If the len parameter is set to M_COPYALL, the entire mbuf chain is copied.

Execution Environment
The m_copy macro can be called from either the process or interrupt environment.

Return Values
Upon successful completion, the address of the copied list (the mbuf structure that heads the list) is
returned. If the copy fails, a value of null is returned.

Related Information
The m_copydata kernel service, m_copym kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

m_copydata Kernel Service

Purpose
Copies data from an mbuf chain to a specified buffer.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

void m_copydata (m, off, len, cp)
struct mbuf * m;
int off;
int len;
caddr_t cp;

Parameters

m Indicates the mbuf structure, or the head of a list of mbuf structures, to be copied.
off Specifies an offset into data from which copying starts.
len Denotes the total number of bytes to copy.
cp Points to a data buffer into which to copy the mbuf data.

Description
The m_copydata kernel service makes a copy of the structure specified by the m parameter. The copy
begins at the specified bytes (represented by the off parameter) and continues for the number of bytes
specified by the len parameter. The data is copied into the buffer specified by the cp parameter.

Execution Environment
The m_copydata kernel service can be called from either the process or interrupt environment.

Return Values
The mcopydata service has no return values.

Chapter 1. Kernel Services 335

Related Information
The m_copy macro.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

m_copym Kernel Service

Purpose
Creates a copy of all or part of a list of mbuf structures.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

struct mbuf *
m_copym(m, off, len, wait)
struct mbuf m;
int off;
int len;
int wait;

Parameters

m Specifies the mbuf structure to be copied.
off Specifies an offset into data from which copying will start.
len Specifies the total number of bytes to copy.
wait Specifies either the M_DONTWAIT or M_WAIT value.

Description
The m_copym kernel service makes a copy of the mbuf structure specified by the m parameter starting at
the specified offset from the beginning and continuing for the number of bytes specified by the len
parameter. If the len parameter is set to M_COPYALL, the entire mbuf chain is copied.

If the mbuf structure specified by the m parameter has an external buffer attached (that is, the M_EXT
flag is set), the copy is done by reference to the external cluster. In this case, the data must not be altered
or both copies will be changed. Interrupt handlers can specify the wait parameter as M_DONTWAIT only.

Execution Environment
The m_copym kernel service can be called from either the process or interrupt environment.

Return Values
The address of the copy is returned upon successful completion. If the copy fails, null is returned. If the
wait parameter is set to M_DONTWAIT and there are no free mbuf structures, the m_copym kernel
service returns a null value.

Related Information
The m_copydata kernel service.

The m_copy macro.

336 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

m_dereg Kernel Service

Purpose
Deregisters expected mbuf structure usage.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

void m_dereg (mbp)
struct mbreq mbp;

Parameter

mbp Defines the address of an mbreq structure that specifies expected mbuf usage.

Description
The m_dereg kernel service deregisters requirements previously registered with the m_reg kernel service.
The m_dereg service is mandatory if the m_reg service is called.

Execution Environment
The m_dereg kernel service can be called from the process environment only.

Return Values
The m_dereg service has no return values.

Related Information
The mbreq Structure for mbuf Kernel Services.

The m_reg kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

m_free Kernel Service

Purpose
Frees an mbuf structure and any associated external storage area.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

struct mbuf *m_free(m)
struct mbuf *m;

Chapter 1. Kernel Services 337

Parameter

m Specifies the mbuf structure to be freed.

Description
The m_free kernel service returns an mbuf structure to the buffer pool. If the mbuf structure specified by
the m parameter has an attached cluster (that is, a paged-size mbuf structure), the m_free kernel service
also frees the associated external storage.

Execution Environment
The m_free kernel service can be called from either the process or interrupt environment.

Return Values
If the mbuf structure specified by the m parameter is the head of an mbuf chain, the m_free service
returns the next mbuf structure in the chain. A null value is returned if the structure specified by the m
parameter is not part of an mbuf chain.

Related Information
The m_get kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

m_freem Kernel Service

Purpose
Frees an entire mbuf chain.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

void m_freem (m)
struct mbuf *m;

Parameter

m Indicates the head of the mbuf chain to be freed.

Description
The m_freem kernel service starts the m_free kernel service for each mbuf structure in the chain headed
by the head specified by the m parameter.

Execution Environment
The m_freem kernel service can be called from either the process or interrupt environment.

Return Values
The m_freem service has no return values.

338 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
The m_free kernel service, m_get kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

m_get Kernel Service

Purpose
Allocates a memory buffer (mbuf) from the mbuf pool.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

struct mbuf *m_get (wait, type)
int wait;
int type;

Parameters

wait Indicates the action to be taken if there are no free mbuf structures. Possible values are:

M_DONTWAIT
Called from either an interrupt or process environment.

M_WAIT
Called from a process environment.

type Specifies a valid mbuf type, as listed in the /usr/include/sys/mbuf.h file.

Description
The m_get kernel service allocates an mbuf structure of the specified type. If the buffer pool is empty and
the wait parameter is set to M_WAIT, the m_get kernel service does not return until an mbuf structure is
available.

Execution Environment
The m_get kernel service can be called from either the process or interrupt environment.

An interrupt handler can specify the wait parameter as M_DONTWAIT only.

Return Values
Upon successful completion, the m_get service returns the address of an allocated mbuf structure. If the
wait parameter is set to M_DONTWAIT and there are no free mbuf structures, the m_get kernel service
returns a null value.

Related Information
The m_free kernel service, m_freem kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 339

m_getclr Kernel Service

Purpose
Allocates and zeroes a memory buffer from the mbuf pool.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

struct mbuf *m_getclr (wait, type)
int wait;
int type;

Parameters

wait This flag indicates the action to be taken if there are no free mbuf structures. Possible values are:

M_DONTWAIT
Called from either an interrupt or process environment.

M_WAIT
Called from a process environment only.

type Specifies a valid mbuf type, as listed in the /usr/include/sys/mbuf.h file.

Description
The m_getclr kernel service allocates an mbuf structure of the specified type. If the buffer pool is empty
and the wait parameter is set to M_WAIT value, the m_getclr service does not return until an mbuf
structure is available.

The m_getclr kernel service differs from the m_get kernel service in that the m_getclr service zeroes the
data portion of the allocated mbuf structure.

Execution Environment
The m_getclr kernel service can be called from either the process or interrupt environment. Interrupt
handlers can call the m_getclr service only with the wait parameter set to the M_DONTWAIT value.

Return Values
The m_getclr kernel service returns the address of an allocated mbuf structure. If the wait parameter is
set to the M_DONTWAIT value and there are no free mbuf structures, the m_getclr kernel service returns
a null value.

Related Information
The m_free kernel service, m_freem kernel service, m_get kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

m_getclust Macro for mbuf Kernel Services

Purpose

Allocates an mbuf structure from the mbuf buffer pool and attaches a page-sized cluster.

340 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/mbuf.h>

struct mbuf *m_getclust (wait, type)
int wait;
int type;

Parameters

wait Indicates the action to be taken if there are no available mbuf structures. Possible values are:

M_DONTWAIT
Called from either an interrupt or process environment.

M_WAIT
Called from a process environment only.

type Specifies a valid mbuf type from the /usr/include/sys/mbuf.h file.

Description
The m_getclust macro allocates an mbuf structure of the specified type. If the allocation succeeds, the
m_getclust macro then attempts to attach a page-sized cluster to the structure.

If the buffer pool is empty and the wait parameter is set to M_WAIT, the m_getclust macro does not
return until an mbuf structure is available.

Execution Environment
The m_getclust macro can be called from either the process or interrupt environment.

Return Values
The address of an allocated mbuf structure is returned on success. If the wait parameter is set to
M_DONTWAIT and there are no free mbuf structures, the m_getclust macro returns a null value.

Related Information
The m_getclustm kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

m_getclustm Kernel Service

Purpose

Allocates an mbuf structure and attaches a cluster of the specified size, both from the mbuf buffer pool.

Syntax
#include <sys/mbuf.h>
#include <net/net_globals.h>

struct mbuf *
m_getclustm(wait, type, size)
int wait;
int type;
int size;

Chapter 1. Kernel Services 341

Parameters

wait Specifies either the M_DONTWAIT or M_WAIT value.
type Specifies a valid mbuf type from the /usr/include/sys/mbuf.h file.
size Specifies the size of the external cluster to attach. Any value less than MAXALLOCSAVE is valid. For larger

values, M_WAIT must be specified.

Description
The m_getclustm service allocates an mbuf structure of the specified type. If successful, the
m_getclustm service then attempts to attach a cluster of the indicated size (specified by the size
parameter) to the mbuf structure. If the buffer pool is empty and the wait parameter is set to M_WAIT, the
m_get service does not return until an mbuf structure is available. Interrupt handlers should call this
service only with the wait parameter set to M_DONTWAIT.

Execution Environment
The m_getclustm kernel service can be called from either the process or interrupt environment.

An interrupt handler can specify the wait parameter as M_DONTWAIT only.

Return Values
The m_getclustm kernel service returns the address of an allocated mbuf structure on success. If the
wait parameter is set to M_DONTWAIT and there are no free mbuf structures, the m_getclustm kernel
service returns null.

Related Information
The m_clget kernel service, m_free kernel service, m_freem kernel service, m_get kernel service.

The m_getclust macro.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

m_gethdr Kernel Service

Purpose

Allocates a header memory buffer from the mbuf pool.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

struct mbuf *
m_gethdr (wait, type)
int wait;
int type;

Parameters

wait Specifies either the M_DONTWAIT or M_WAIT value.
type Specifies the valid mbuf type from the /usr/include/sys/mbuf.h file.

342 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The m_gethdr kernel service allocates an mbuf structure of the specified type. If the buffer pool is empty
and the wait parameter is set to M_WAIT, the m_gethdr kernel service will not return until an mbuf
structure is available. Interrupt handlers should call this kernel service only with the wait parameter set to
M_DONTWAIT. The M_PKTHDR flag is set for the returned mbuf structure.

Execution Environment
The m_gethdr kernel service can be called from either the process or interrupt environment.

An interrupt handler can specify the wait parameter as M_DONTWAIT only.

Return Values
The address of an allocated mbuf structure is returned on success. If the wait parameter is set to
M_DONTWAIT and there are no free mbuf structure, the m_gethdr kernel service returns null.

Related Information
The m_free kernel service, m_freem kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

M_HASCL Macro for mbuf Kernel Services

Purpose

Determines if an mbuf structure has an attached cluster.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

struct mbuf * m;
M_HASCL (m);

Parameter

m Indicates the address of the mbuf structure in question.

Description
The M_HASCL macro determines if an mbuf structure has an attached cluster.

Execution Environment
The M_HASCL macro can be called from either the process or interrupt environment.

Example
The M_HASCL macro can be used as in the following example:
struct mbuf *m;
if (M_HASCL(m))

printf("mbuf has attached cluster");

Chapter 1. Kernel Services 343

Related Information
I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

m_pullup Kernel Service

Purpose
Adjusts an mbuf chain so that a given number of bytes is in contiguous memory in the data area of the
head mbuf structure.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

struct mbuf *m_pullup (m, size)
struct mbuf *m;
int size;

Parameters

m Specifies the mbuf chain to be adjusted.
size Specifies the number of bytes to be contiguous.

Description
The m_pullup kernel service guarantees that the mbuf structure at the head of a chain has in contiguous
memory within its data area at least the number of data bytes specified by the size parameter.

Execution Environment
The m_pullup kernel service can be called from either the process or interrupt environment.

Return Values
Upon successful completion, the head structure in the altered mbuf chain is returned.

A value of null is returned and the original chain is deallocated under the following circumstances:

v The size of the chain is less than indicated by the size parameter.

v The number indicated by the size parameter is greater than the data portion of the head-size mbuf
structure.

Related Information
I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

m_reg Kernel Service

Purpose
Registers expected mbuf usage.

344 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

void m_reg (mbp)
struct mbreq mbp;

Parameter

mbp Defines the address of an mbreq structure that specifies expected mbuf usage.

Description
The m_reg kernel service lets users of mbuf services specify initial requirements. The m_reg kernel
service also allows the buffer pool low-water and deallocation marks to be adjusted based on expected
usage. Its use is recommended for better control of the buffer pool.

When the number of free mbuf structures falls below the low-water mark, the total mbuf pool is expanded.
When the number of free mbuf structures rises above the deallocation mark, the total mbuf pool is
contracted and resources are returned to the system.

Execution Environment
The m_reg kernel service can be called from the process environment only.

Return Values
The m_reg service has no return values.

Related Information
The mbreq structure for mbuf kernel services, the m_dereg kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

md_restart_block_read Kernel Service

Purpose
A copy of the RESTART_BLOCK structure in the NVRAM header will be placed in the caller’s buffer.

Syntax
#include <sys/mdio.h>

int md_restart_block_read (md)
struct mdio *md;

Chapter 1. Kernel Services 345

Parameters

md Specifies the address of the mdio structure. The mdio structure contains the following fields:

md_data
Pointer to the data buffer.

md_size
Number of bytes in the data buffer.

md_addr
Contains the value PMMode on return in the least significant byte.

Description
The RestartBlock which is in the NVRAM header will be copied to the user supplied buffer. This block is a
communication vehicle for the software and the firmware.

Return Values
Returns 0 for successful completion.

ENOMEM Indicates that there was not enough room in the user supplied buffer to contain the RestartBlock.
EINVAL Indicates this is not a PowerPC reference platform.

Prerequisite Information
Kernel Extensions and Device Driver Management Kernel Services in Kernel Extensions and Device
Support Programming Concepts.

Related Information
Machine Device Driver in AIX Version 6.1 Technical Reference: Kernel and Subsystems Volume 2.

md_restart_block_upd Kernel Service

Purpose
The caller supplied RestartBlock will be copied to the NVRAM header.

Syntax
#include <sys/mdio.h>

int md_restart_block_upd (md, pmmode)
struct mdio *md;
unsigned char pmmode;

Description
The 8-bit value in pmmode will be stored into the NVRAM header at the PMMode offset.The RestartBlock
which is in the caller’s buffer will be copied to the NVRAM after the RestartBlock checksum is calculated
and a new Crc1 value is computed.

Parameters

md Specifies the address of the mdio structure. The mdio structure contains the following fields:

md_data
Pointer to the RestartBlock structure..

pmmode Value to be stored into PMMode in the NVRAM header.

346 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Return Values
Returns 0 for successful completion.

EINVAL Indicates this is not a PowerPC reference platform.

Prerequisite Information
Kernel Extensions and Device Driver Management Kernel Services in Kernel Extensions and Device
Support Programming Concepts.

Related Information
Machine Device Driver in AIX Version 6.1 Technical Reference: Kernel and Subsystems Volume 2.

MTOCL Macro for mbuf Kernel Services

Purpose

Converts a pointer to an mbuf structure to a pointer to the head of an attached cluster.

Syntax
#include <sys/mbuf.h>

struct mbuf * m;
MTOCL (m);

Parameter

m Indicates the address of the mbuf structure in question.

Description
The MTOCL macro converts a pointer to an mbuf structure to a pointer to the head of an attached cluster.

The MTOCL macro can be used as in the following example:
caddr_t attcls;
struct mbuf *m;
attcls = (caddr_t) MTOCL(m);

Execution Environment
The MTOCL macro can be called from either the process or interrupt environment.

Related Information
The M_HASCL macro for mbuf kernel services.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 347

MTOD Macro for mbuf Kernel Services

Purpose

Converts a pointer to an mbuf structure to a pointer to the data stored in that mbuf structure.

Syntax
#include <sys/mbuf.h>

MTOD (m, type);

Parameters

m Identifies the address of an mbuf structure.
type Indicates the type to which the resulting pointer should be cast.

Description
The MTOD macro converts a pointer to an mbuf structure into a pointer to the data stored in the mbuf
structure. This macro can be used as in the following example:
char *bufp;

bufp = MTOD(m, char *);

Execution Environment
The MTOD macro can be called from either the process or interrupt environment.

Related Information
The DTOM macro for mbuf Kernel Services.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

M_XMEMD Macro for mbuf Kernel Services

Purpose

Returns the address of an mbuf cross-memory descriptor.

Syntax
#include <sys/mbuf.h>
#include <sys/xmem.h>

struct mbuf * m;

M_XMEMD (m);

Parameter

m Specifies the address of the mbuf structure in question.

Description
The M_XMEMD macro returns the address of an mbuf cross-memory descriptor.

348 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment
The M_XMEMD macro can be called from either the process or interrupt environment.

Example
The M_XMEMD macro can be used as in the following example:
struct mbuf *m;
struct xmem *xmemd;

xmemd = M_XMEMD(m);

Related Information
I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

mycpu Kernel Service

Purpose
Gets the bind ID of the processor we are running on.

Syntax
#include <sys/processor.h>

cpu_t myc ()

Description
The mycpu kernel service returns the bind ID of the processor we are currently running on.

Execution Environment
The mycpu kernel services can be called from either the process or interrupt environment. This routine
must be called disabled. Otherwise, the calling thread might be preempted and resume execution on a
different processor resulting in a stale value being returned.

Return Values
The mycpu kernel service returns the bind ID of the current processor.

Related Information
The bindprocessor kernel service.

net_attach Kernel Service

Purpose
Opens a communications I/O device handler.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <aixif/net_if.h>
#include <sys/comio.h>

int net_attach (kopen_ext, device_req, netid, netfpp)
struct kopen_ext * kopen_ext;

Chapter 1. Kernel Services 349

struct device_req * device_req;
struct netid_list * netid;
struct file ** netfpp;

Parameters

kopen_ext Specifies the device handler kernel open extension.
device_req Indicates the address of the device description structure.
netid Indicates the address of the network ID list.
netfpp Specifies the address of the variable that will hold the returned file pointer.

Description
The net_attach kernel service opens the device handler specified by the device_req parameter and then
starts all the network IDs listed in the address specified by the netid parameter. The net_attach service
then sleeps and waits for the asynchronous start completion notifications from the net_start_done
kernel service.

Execution Environment
The net_attach kernel service can be called from the process environment only.

Return Values
Upon success, a value of 0 is returned and a file pointer is stored in the address specified by the netfpp
parameter. Upon failure, the net_attach service returns either the error codes received from the
fp_opendev or fp_ioctl kernel service, or the value ETIMEDOUT. The latter value is returned when an
open operation times out.

Related Information
The net_detach kernel service, net_start kernel service, net_start_done kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

net_detach Kernel Service

Purpose
Closes a communications I/O device handler.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <aixif/net_if.h>

int net_detach (netfp)
struct file *netfp;

Parameter

netfp Points to an open file structure obtained from the net_attach kernel service.

350 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The net_detach kernel service closes the device handler associated with the file pointer specified by the
netfp parameter.

Execution Environment
The net_detach kernel service can be called from the process environment only.

Return Values
The net_detach service returns the value it obtains from the fp_close service.

Related Information
The fp_close kernel service, net_attach kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

net_error Kernel Service

Purpose
Handles errors for communication network interface drivers.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>
#include <sys/comio.h>

net_error (ifp, error_code, netfp)
struct ifnet *ifp;
int error_code;
struct file *netfp;

Parameters

error_code Specifies the error code listed in the /usr/include/sys/comio.h file.
ifp Specifies the address of the ifnet structure for the device with an error.
netfp Specifies the file pointer for the device with an error.

Description
The net_error kernel service provides generic error handling for communications network interface (if)
drivers. Network interface (if) kernel extensions call this service to trace errors and, in some instances,
perform error recovery.

Errors traced include those:

v Received from the communications adapter drivers.

v Occurring during input and output packet processing.

Execution Environment
The net_error kernel service can be called from either the process or interrupt environment.

Chapter 1. Kernel Services 351

Return Values
The net_error service has no return values.

Related Information
The net_attach kernel service, net_detach kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

net_sleep Kernel Service

Purpose
Sleeps on the specified wait channel.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/pri.h>

net_sleep (chan, flags)
int chan;
int flags;

Parameters

chan Specifies the wait channel to sleep upon.
flags Sleep flags described in the sleep kernel service.

Description
The net_sleep kernel service puts the caller to sleep waiting on the specified wait channel. If the caller
holds the network lock, the net_sleep kernel service releases the lock before sleeping and reacquires the
lock when the caller is awakened.

Execution Environment
The net_sleep kernel service can be called from the process environment only.

Return Values

0 Indicates that the sleeping process was not awakened by a signal.
1 Indicates that the sleeper was awakened by a signal.

Related Information
The net_wakeup kernel service, sleep kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

352 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

net_start Kernel Service

Purpose
Starts network IDs on a communications I/O device handler.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <aixif/net_if.h>
#include <sys/comio.h>

struct file *net_start (netfp, netid)
struct file *netfp;
struct netid_list *netid;

Parameters

netfp Specifies the file pointer of the device handler.
netid Specifies the address of the network ID list.

Description
The net_start kernel service starts all the network IDs listed in the list specified by the netid parameter.
This service then waits for the asynchronous notification of completion of starts.

Execution Environment
The net_start kernel service can be called from the process environment only.

Return Values
The net_start service uses the return value returned from a call to the fp_ioctl service requesting the
CIO_START operation.

ETIMEDOUT Indicates that the start for at least one network ID timed out waiting for start-done notifications from
the device handler.

Related Information
The fp_ioctl kernel service, net_attach kernel service, net_start_done kernel service,.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

net_start_done Kernel Service

Purpose

Starts the done notification handler for communications I/O device handlers.

Chapter 1. Kernel Services 353

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <aixif/net_if.h>
#include <sys/comio.h>

void net_start_done (netid, sbp)
struct netid_list *netid;
struct status_block *sbp;

Parameters

netid Specifies the address of the network ID list for the device being started.
sbp Specifies the status block pointer returned from the device handler.

Description
The net_start_done kernel service is used to mark the completion of a network ID start operation. When
all the network IDs listed in the netid parameter have been started, the net_attach kernel service returns
to the caller. The net_start_done service should be called when a CIO_START_DONE status block is
received from the device handler. If the status block indicates an error, the start process is immediately
aborted.

Execution Environment
The net_start_done kernel service can be called from either the process or interrupt environment.

Return Values
The net_start_done service has no return values.

Related Information
The net_attach kernel service, net_start kernel service.

The CIO_START_DONE status block.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

net_wakeup Kernel Service

Purpose
Wakes up all sleepers waiting on the specified wait channel.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

net_wakeup (chan)
int chan;

Parameter

chan Specifies the wait channel.

354 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The net_wakeup service wakes up all network processes sleeping on the specified wait channel.

Execution Environment
The net_wakeup kernel service can be called from either the process or interrupt environment.

Return Values
The net_wakeup service has no return values.

Related Information
The net_sleep kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

net_xmit Kernel Service

Purpose

Transmits data using a communications device handler .

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <aixif/net_if.h>

int net_xmit (ifp, m, netfp, lngth, m_ext)
struct ifnet * ifp;
struct mbuf * m;
struct file * netfp;
int lngth;
struct mbuf * m_ext;

Parameters

ifp Indicates an address of the ifnet structure for this interface.
m Specifies the address of an mbuf structure containing the data to transmit.
netfp Indicates the open file pointer obtained from the net_attach kernel service.
lngth Indicates the total length of the buffer being transmitted.
m_ext Indicates the address of an mbuf structure containing a write extension.

Description
The net_xmit kernel service builds a uio structure and then invokes the fp_rwuio service to transmit a
packet. The net_xmit_trace kernel service is an alternative for network interfaces that choose not to use
the net_xmit kernel service.

Execution Environment
The net_xmit kernel service can be called from either the process or interrupt environment.

Chapter 1. Kernel Services 355

Return Values

0 Indicates that the packet was transmitted successfully.
ENOBUFS Indicates that buffer resources were not available.

The net_xmit kernel service returns a value from the fp_rwuio service when an error occurs during a call
to that service.

Related Information
The fp_rwuio kernel service, net_xmit_trace kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

net_xmit_trace Kernel Service

Purpose
Traces transmit packets.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int net_xmit_trace (ifp, mbuf)
struct ifnet *ifp;
struct mbuf *mbuf;

Parameters

ifp Designates the address of the ifnet structure for this interface.
mbuf Designates the address of the mbuf structure to be traced.

Description
The net_xmit_trace kernel service traces the data pointed to by the mbuf parameter. This kernel service
was added for those network interfaces that choose not to use the net_xmit kernel service to transmit
packets. An application program (the iptrace command) reads the trace data and writes it to a file for the
ipreport command to interpret.

Execution Environment
The net_xmit_trace kernel service can be called from either the process or interrupt environment.

Return Values
The net_xmit_trace kernel service has no return values.

Related Information
The net_xmit kernel service.

The ipreport command.

The iptrace daemon.

356 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

NLuprintf Kernel Service

Purpose
Submits a request to print an internationalized message to a process’ controlling terminal.

Syntax
#include <sys/uprintf.h>

int NLuprintf (Uprintf)
struct uprintf *Uprintf;

Parameters

Uprintf Points to a uprintf request structure.

Description
The NLuprintf kernel service submits a internationalized kernel message request with the uprintf request
structure specified by the Uprintf parameter as input. Once the request has been successfully submitted,
the uprintfd daemon retrieves, converts, formats, and writes the message described by the uprintf
request structure to a process’ controlling terminal.

The caller must initialize the uprintf request structure before calling the NLuprintf kernel service. Fields in
the uprintf request structure use several constants. The following constants are defined in the
/usr/include/sys/uprintf.h file:

v UP_MAXSTR

v UP_MAXARGS

v UP_MAXCAT

v UP_MAXMSG

Chapter 1. Kernel Services 357

The uprintf request structure consists of the following fields:

Field Description
Uprintf->upf_defmsg Points to a default message format. The default message

format is a character string that contains either or both of two
types of objects:

v Plain characters, which are copied to the message output
stream

v Conversion specifications, each of which causes zero or
more items to be fetched from the Uprintf->arg value
parameter array

Each conversion specification consists of a % (percent sign)
followed by a character that indicates the type of conversion
to be applied:

% Performs no conversion. Prints a % character.

d, i Accepts an integer value and converts it to signed
decimal notation.

u Accepts an integer value and converts it to unsigned
decimal notation.

o Accepts an integer value and converts it to unsigned
octal notation.

x Accepts an integer value and converts it to unsigned
hexadecimal notation.

c Accepts and prints a char value.

s Accepts a value as a string (character pointer).
Characters from the string are printed until a \0 (null
character) is encountered.

Field-width or precision conversion specifications are not
supported.

The maximum length of the default message-format string
pointed to by the Uprintf->upf_defmsg field is the number of
characters specified by the UP_MAXSTR constant. The
Uprintf->upf_defmsg field must be a nonnull character.

The default message format is used in constructing the kernel
message if the message format described by the
Uprintf->upf_NLsetno and Uprint->upf_NLmsgno fields cannot
be retrieved from the message catalog specified by
Uprintf->upf_NLcatname. The conversion specifications
contained within the default message format should match
those contained in the message format specified by the
upf_NLsetno and upf_NLmsgno fields.

Uprintf->upf_arg[UP_MAXARGS] Specifies from zero to the number of value parameters
specified by the UP_MAXARGS constant. A Value parameter
may be a integer value, a character value, or a string value
(character pointer). Strings are limited in length to the number
of characters specified by the UP_MAXSTR constant. String
value parameters must be nonnull characters. The number,
type, and order of items in the Value parameter array should
match the conversion specifications within the message
format string.

358 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Field Description
Uprintf->upf_NLcatname Points to the message catalog file name. If the catalog file

name referred to by the Uprintf->upf_NLcatname field begins
with a / (slash), it is assumed to be an absolute path name. If
the catalog file name is not an absolute path name, the
process environment determines the directory paths to search.
The maximum length of the catalog file name is limited to the
number of characters specified by the UP_MAXCAT constant.
The value of the Uprintf->upf_NLcatname field must be a
nonnull character.

Uprintf->upf_NLsetno Specifies the set ID.
Uprintf->upf_NLmsgno Specifies the message ID. The Uprintf->upf_NLsetno and

Uprintf->upf_NLmsgno fields specify a particular message
format string to be retrieved from the message catalog
specified by the Uprintf->upf_NLcatname field.

The maximum length of the constructed kernel message is
limited to the number of characters specified by the
UP_MAXMSG constant. Messages larger then the number of
characters specified by the UP_MAXMSG constant are
discarded.

Execution Environment
The NLuprintf kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
ENOMEM Indicates that memory is not available to buffer the request.
ENODEV Indicates that a controlling terminal does not exist for the process.
ESRCH Indicates the uprintfd daemon is not active. No requests may be submitted.
EINVAL Indicates that the message catalog file-name pointer is null or the catalog file name is greater than the

number of characters specified by the UP_MAXCAT constant.
EINVAL Indicates that a string-value parameter pointer is null or the string-value parameter is greater than the

number of characters specified by the UP_MAXCAT constant.
EINVAL Indicates one of the following:

v Default message format pointer is null.

v Number of characters in the default message format is greater than the number specified by the
UP_MAXSTR constant.

v Number of conversion specifications contained within the default message format is greater than the
number specified by the UP_MAXARGS constant.

Related Information
The uprintf kernel service.

The uprintfd daemon.

Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

Chapter 1. Kernel Services 359

ns_add_demux Network Kernel Service

Purpose
Adds a demuxer for the specified type of network interface.

Syntax
#include <sys/ndd.h>
#include <sys/cdli.h>

int ns_add_demux (ndd_type, demux)
u_long ndd_type;
struct ns_demuxer * demux;

Parameters

ndd_type Specifies the interface type of the demuxer to be added.
demux Specifies the pointer to an ns_demux structure that defines the demuxer.

Description
The ns_add_demux network service adds the specified demuxer to the list of available network
demuxers. Only one demuxer per network interface type can exist. An interface type describes a certain
class of network devices that have the same characteristics (such as ethernet or token ring). The values of
the ndd_type parameter listed in the /usr/include/sys/ndd.h file are the numbers defined by Simple
Network Management Protocol (SNMP). If the desired type is not in the ndd.h file, the SNMP value should
be used if it is defined. Otherwise, any undefined type above NDD_MAX_TYPE may be used.

Note: The ns_demuxer structure must be allocated and pinned by the network demuxer.

Examples
The following example illustrates the ns_add_demux network service:
struct ns_demuxer demuxer;
bzero (&demuxer, sizeof (demuxer));
demuxer.nd_add_filter = eth_add_filter;
demuxer.nd_del_filter = eth_del_filter;
demuxer.nd_add_status = eth_add_status;
demuxer.nd_del_status = eth_del_status;
demuxer.nd_receive = eth_receive;
demuxer.nd_status = eth_status;
demuxer.nd_response = eth_response;
demuxer.nd_use_nsdnx = 1;
ns_add_demux(NDD_ISO88023, &demuxer);

Return Values

0 Indicates the operation was successful.
EEXIST Indicates a demuxer already exists for the given type.

Related Information
The ns_del_demux network service.

360 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

ns_add_filter Network Service

Purpose
Registers a receive filter to enable the reception of packets.

Syntax
#include <sys/cdli.h>
#include <sys/ndd.h>

int ns_add_filter (nddp, filter, len, ns_user)
struct ndd * nddp;
caddr_t filter;
int len;
struct ns_user * ns_user;

Parameters

nddp Specifies the ndd structure to which this add request applies.
filter Specifies the pointer to the receive filter.
len Specifies the length in bytes of the receive filter to which the filter parameter points.
ns_user Specifies the pointer to a ns_user structure that defines the user.

Description
The ns_add_filter network service registers a receive filter for the reception of packets and enables a
network demuxer to route packets to the appropriate users. The add request is passed on to the
nd_add_filter function of the demuxer for the specified NDD. The caller of the ns_add_filter network
service is responsible for relinquishing filters before calling the ns_free network service.

Examples
The following example illustrates the ns_add_filter network service:
struct ns_8022 dl;
struct ns_user ns_user;

dl.filtertype = NS_LLC_DSAP_SNAP;
dl.dsap = 0xaa;
dl.orgcode[0] = 0x0;
dl.orgcode[1] = 0x0;
dl.orgcode[2] = 0x0;
dl.ethertype = 0x0800;

ns_user.isr = NULL;
ns_user.isr_data = NULL;
ns_user.protoq = &ipintrq;
ns_user.netisr = NETISR_IP;
ns_user.ifp = ifp;
ns_user.pkt_format = NS_PROTO_SNAP;

ns_add_filter(nddp, &dl, sizeof(dl), &ns_user);

There are two ways a user (that is, the entity that is interested in receiving incoming packets) can be
invoked when a packet arrives. In the first method, a protocol queue can be defined in which incoming
packets are queued upon receipt, and the specified netisr is scheduled to let the user know that there are
new packets in the queue. For example, the preceding code assumes a network interrupt service request
(netisr) with the name NETISR_IP has been defined. When a packet arrives for the specified user, the

Chapter 1. Kernel Services 361

packet is queued on the specified protocol queue (in this case, ipintrq) and the NETISR_IP request is
scheduled to be executed. Because of its complexity, this mode is not currently being used by any network
user.

The preferred way of receiving incoming packets is by registering an interrupt service request (isr) function
that handles incoming packets; ns_user.isr points to the function that will get invoked whenever a packet
that matches the specified filter arrives. This function should expect the following four arguments:
void isr (ndd_t *nddp, mbuf *m, caddr_t macp, caddr_t extp)

where

nddp Pointer to the ndd structure representing the adapter where the packet was received.
m Pointer to the mbuf structure representing the packet that was received.
macp Pointer to the start of the MAC header of the packet that was received.
extp Pointer to the (optional) structure specified in ns_user.isr_data, or NULL if none was specified.

In the following code, the function bpf_cdli_tap will be called when a new packet arrives; a pointer to the
bp structure will be passed as the fourth parameter when bpf_cdli_tap is called.
dl.filtertype = NS_TAP;

ns_user.isr = bpf_cdli_tap;
ns_user.isr_data = (caddr_t) bp;
ns_user.protoq = (struct ifqueue *) NULL;
ns_user.netisr = 0;
ns_user.ifp = (struct ifnet *) NULL;
ns_user.pkt_format = NS_INCLUDE_MAC;

Note: Both modes of receiving packets are mutually exclusive. In other words, if the ns_user.protoq
member is non-null, the protocol queue method is used; otherwise, the direct isr function method is
used, and the ns_user.isr function pointer must be a valid function pointer.

In both cases, ns_user.ifp can optionally point to the ifnet structure of the interface where the packets will
be received. If it is non-null, the state of the interface will be verified when a packet is received. If the
interface is not up, the packet will be dropped and it will not be delivered to the user. If the interface is up,
the statistics for the number of received packets will be incremented, and the ifp will be saved in the
packet’s mbuf structure’s m_pkthdr.rcvif field.

The ns_user.pkt_format member determines how much of the MAC header the user is interested in
receiving. Its possible values are:

NS_PROTO Do not include the LLC header (but include the SNAP header, if there is one).
NS_PROTO_SNAP Do not include the LLC SNAP header (that is, remove the entire MAC header

and deliver only the data).
NS_INCLUDE_LLC Include the LLC header.
NS_INCLUDE_MAC Include the entire MAC header.

362 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

NS_HANDLE_HEADERS Instead of passing the specified ns_user.isr_data structure by itself, build an
isr_data_ext structure containing header information, as well as a pointer to the
specified ns_user.isr_data. These are the fields that will be set in the
isr_data_ext structure:

isr_data_ext.isr_data
Pointer to the structure passed as ns_user.isr_data.

isr_data_ext.dstp
Pointer to the destination MAC address.

isr_data_ext.dstlen
Length of the destination MAC address.

isr_data_ext.srcp
Pointer to the source MAC address.

isr_data_ext.seclen
Length of the source MAC address.

isr_data_ext.segp
Pointer to the routing segment.

isr_data_ext.seglen
Length of the routing segment.

isr_data_ext.llcp
Pointer to the LLC.

isr_data_ext.llclen
Length of the LLC.

It is possible to combine NS_HANDLE_HEADERS with one of the other flags by
means of a logical OR operator (for example, ns_user.pkt_format =
NS_INCLUDE_MAC | NS_HANDLE_HEADERS). The other flags, however, are mutually
exclusive.

Return Values

0 Indicates the operation was successful.

The network demuxer may supply other return values.

Related Information
The ns_del_filter network service.

ns_add_status Network Service

Purpose
Adds a status filter for the routing of asynchronous status.

Syntax
#include <sys/cdli.h>
#include <sys/ndd.h>

int ns_add_status (nddp, statfilter, len, ns_statuser)
struct ndd * nddp;

Chapter 1. Kernel Services 363

caddr_t statfilter;
int len;
struct ns_statuser * ns_statuser;

Parameters

nddp Specifies a pointer to the ndd structure to which this add request applies.
statfilter Specifies a pointer to the status filter.
len Specifies the length, in bytes, of the value of the statfilter parameter.
ns_statuser Specifies a pointer to an ns_statuser structure that defines this user.

Description
The ns_add_status network service registers a status filter. The add request is passed on to the
nd_add_status function of the demuxer for the specified network device driver (NDD). This network
service enables the user to receive asynchronous status information from the specified device.

Note: The user’s status processing function is specified by the isr field of the ns_statuser structure. The
network demuxer calls the user’s status processing function directly when asynchronous status
information becomes available. Consequently; the status processing function cannot be a scheduled
routine. The caller of the ns_add_status network service is responsible for relinquishing status
filters before calling the ns_free network service.

Examples
The following example illustrates the ns_add_status network service:
struct ns_statuser user;
struct ns_com_status filter;

filter.filtertype = NS_STATUS_MASK;
filter.mask = NDD_HARD_FAIL;
filter.sid = 0;
user.isr = status_fn;
user.isr_data = whatever_makes_sense;

error = ns_add_status(nddp, &filter, sizeof(filter), &user);

Return Values

0 Indicates the operation was successful.

The network demuxer may supply other return values.

Related Information
The ns_del_status network service.

ns_alloc Network Service

Purpose
Allocates use of a network device driver (NDD).

Syntax
#include <sys/ndd.h>

364 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

int ns_alloc (nddname, nddpp)
char * nddname;
struct ndd ** nddpp;

Parameters

nddname Specifies the device name to be allocated.
nddpp Indicates the address of the pointer to a ndd structure.

Description
The ns_alloc network service searches the Network Service (NS) device chain to find the device driver
with the specified nddname parameter. If the service finds a match, it increments the reference count for
the specified device driver. If the reference count is incremented to 1, the ndd_open subroutine specified
in the ndd structure is called to open the device driver.

Examples
The following example illustrates the ns_alloc network service:
struct ndd *nddp;
error = ns_alloc("en0", &nddp);

Return Values
If a match is found and the ndd_open subroutine to the device is successful, a pointer to the ndd
structure for the specified device is stored in the nddpp parameter. If no match is found or the open of the
device is unsuccessful, a non-zero value is returned.

0 Indicates the operation was successful.
ENODEV Indicates an invalid network device.
ENOENT Indicates no network demuxer is available for this device.

The ndd_open routine may specify other return values.

Related Information
The ns_free network service.

ns_attach Network Service

Purpose
Attaches a network device to the network subsystem.

Syntax
#include <sys/ndd.h>

int ns_attach (nddp)
struct ndd * nddp;

Parameters

nddp Specifies a pointer to an ndd structure describing the device to be attached.

Chapter 1. Kernel Services 365

Description
The ns_attach network service places the device into the available network service (NS) device chain.
The network device driver (NDD) should be prepared to be opened after the ns_attach network service is
called.

Note: The ndd structure is allocated and initialized by the device. It should be pinned.

Examples
The following example illustrates the ns_attach network service:
struct ndd ndd;
ndd.ndd_name = "en0";
ndd.ndd_addrlen = 6;
ndd.ndd_hdrlen = 14;
ndd.ndd_mtu = ETHERMTU;
ndd.ndd_mintu = 60;
ndd.ndd_type = NDD_ETHER;
ndd.ndd_flags =

NDD_BROADCAST | NDD_SIMPLEX;
ndd.ndd_open = entopen;
ndd.ndd_output = entwrite;
ndd.ndd_ctl = entctl;
ndd.ndd_close = entclose;
.
.
.
ns_attach(&ndd);

Return Values

0 Indicates the operation was successful.
EEXIST Indicates the device is already in the available NS device chain.

Related Information
The ns_detach network service.

ns_del_demux Network Service

Purpose
Deletes a demuxer for the specified type of network interface.

Syntax
#include <sys/ndd.h>

int ns_del_demux (ndd_type)
u_long ndd_type;

Parameters

ndd_type Specifies the network interface type of the demuxer that is to be deleted.

366 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
If the demuxer is not currently in use, the ns_del_demux network service deletes the specified demuxer
from the list of available network demuxers. A demuxer is in use if a network device driver (NDD) is open
for the demuxer.

Examples
The following example illustrates the ns_del_demux network service:
ns_del_demux(NDD_ISO88023);

Return Values

0 Indicates the operation was successful.
ENOENT Indicates the demuxer of the specified type does not exist.

Related Information
The ns_add_demux network service.

ns_del_filter Network Service

Purpose
Deletes a receive filter.

Syntax
#include <sys/cdli.h>
#include <sys/ndd.h>

int ns_del_filter (nddp, filter, len)
struct ndd * nddp;
caddr_t filter;
int len;

Parameters

nddp Specifies the ndd structure that this delete request is for.
filter Specifies the pointer to the receive filter.
len Specifies the length in bytes of the receive filter.

Description
The ns_del_filter network service deletes the receive filter from the corresponding network demuxer. This
disables packet reception for packets that match the filter. The delete request is passed on to the
nd_del_filter function of the demuxer for the specified network device driver (NDD).

Examples
The following example illustrates the ns_del_filter network service:
struct ns_8022 dl;

dl.filtertype = NS_LLC_DSAP_SNAP;
dl.dsap = 0xaa;
dl.orgcode[0] = 0x0;

Chapter 1. Kernel Services 367

dl.orgcode[1] = 0x0;
dl.orgcode[2] = 0x0;
dl.ethertype = 0x0800;
ns_del_filter(nddp, &dl, sizeof(dl));

Return Values

0 Indicates the operation was successful.

The network demuxer may supply other return values.

Related Information
The ns_add_filter network service, ns_alloc network service.

ns_del_status Network Service

Purpose
Deletes a previously added status filter.

Syntax
#include <sys/cdli.h>
#include <sys/ndd.h>

int ns_del_status (nddp, statfilter, len)
struct ndd * nddp;
caddr_t statfilter;
int len;

Parameters

nddp Specifies the pointer to the ndd structure to which this delete request applies.
statfilter Specifies the pointer to the status filter.
len Specifies the length, in bytes, of the value of the statfilter parameter.

Description
The ns_del_status network service deletes a previously added status filter from the corresponding
network demuxer. The delete request is passed on to the nd_del_status function of the demuxer for the
specified network device driver (NDD). This network service disables asynchronous status notification from
the specified device.

Examples
The following example illustrates the ns_del_status network service:
error = ns_add_status(nddp, &filter,
sizeof(filter));

Return Values

0 Indicates the operation was successful.

The network demuxer may supply other return values.

368 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
The ns_add_status network service.

ns_detach Network Service

Purpose
Removes a network device from the network subsystem.

Syntax
#include <sys/ndd.h>

int ns_detach (nddp)
struct ndd * nddp;

Parameters

nddp Specifies a pointer to an ndd structure describing the device to be detached.

Description
The ns_detach service removes the ndd structure from the chain of available NS devices.

Examples
The following example illustrates the ns_detach network service:
ns_detach(nddp);

Return Values

0 Indicates the operation was successful.
ENOENT Indicates the specified ndd structure was not found.
EBUSY Indicates the network device driver (NDD) is currently in use.

Related Information
The ns_attach network service.

ns_free Network Service

Purpose
Relinquishes access to a network device.

Syntax
#include <sys/ndd.h>

void ns_free (nddp)
struct ndd * nddp;

Parameters

nddp Specifies the ndd structure of the network device that is to be freed from use.

Chapter 1. Kernel Services 369

Description
The ns_free network service relinquishes access to a network device. The ns_free network service also
decrements the reference count for the specified ndd structure. If the reference count becomes 0, the
ns_free network service calls the ndd_close subroutine specified in the ndd structure.

Examples
The following example illustrates the ns_free network service:
struct ndd *nddp
ns_free(nddp);

Files

net/cdli.c

Related Information
The ns_alloc network service.

panic Kernel Service

Purpose
Crashes the system.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

panic (s)
char *s;

Parameter

s Points to a character string to be written to the error log.

Description
The panic kernel service is called when a catastrophic error occurs and the system can no longer
continue to operate. The panic service performs these two actions:

v Writes the character string pointed to by the s parameter to the error log.

v Performs a system dump.

The system halts after the dump. You should wait for the dump to complete, reboot the system, and then
save and analyze the dump.

Execution Environment
The panic kernel service can be called from either the process or interrupt environment.

Return Values
The panic kernel service has no return values.

370 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
RAS Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

pci_cfgrw Kernel Service

Purpose
Reads and writes PCI bus slot configuration registers.

Syntax
#include <sys/mdio.h>

int pci_cfgrw(bid, md, write_flag)
int bid;
struct mdio *md;
int write_flag;

Description
The pci_cfgrw kernel service provides serialized access to the configuration registers for a PCI bus. To
ensure data integrity in a multi-processor environment, a lock is required before accessing the
configuration registers. Depending on the value of the write_flag parameter, a read or write to the
configuration register is performed at offset md_addr for the device identified by md_sla.

The pci_cfgrw kernel service provides for kernel extensions the same services as the MIOPCFGET and
MIOPCFPUT ioctls provides for applications. The pci_cfgrw kernel service can be called from either the
process or the interrupt environment.

Parameters

bid Specifies the bus identifier.
md Specifies the address of the mdio structure. The mdio structure contains the following fields:

md_addr
Starting offset of the configuration register to access (0 to 0xFF for PCI/PCI-X, and 0 to
0xFFF for PCI-E).

md_data
Pointer to the data buffer.

md_size
Number of items of size specified by the md_incr parameter. The maximum size is 256
bytes for PCI/PCI-X, and 4096 for PCI-E.

md_incr
Access types, MV_BYTE, MV_WORD, or MV_SHORT.

md_sla Device Number and Function Number.

(Device Number * 8) + Function.
write_flag Set to 1 for write and 0 for read.

Return Values
Returns 0 for successful completion.

ENOMEM Indicates no memory could be allocated.
EINVAL Indicated that the bus, device/function, or size is not valid.
EPERM Indicates that the platform does not allow the requested operation

Chapter 1. Kernel Services 371

Related Information
Machine Device Driver in AIX Version 6.1 Technical Reference: Kernel and Subsystems Volume 2

pfctlinput Kernel Service

Purpose
Invokes the ctlinput function for each configured protocol.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/domain.h>

void pfctlinput (cmd, sa)
int cmd;
struct sockaddr *sa;

Parameters

cmd Specifies the command to pass on to protocols.
sa Indicates the address of a sockaddr structure that is passed to the protocols.

Description
The pfctlinput kernel service searches through the protocol switch table of each configured domain and
invokes the protocol ctlinput function if defined. Both the cmd and sa parameters are passed as
parameters to the protocol function.

Execution Environment
The pfctlinput kernel service can be called from either the process or interrupt environment.

Return Values
The pfctlinput service has no return values.

Related Information
Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

pffindproto Kernel Service

Purpose
Returns the address of a protocol switch table entry.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/domain.h>

372 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

struct protosw *pffindproto (family, protocol, type)
int family;
int protocol;
int type;

Parameters

family Specifies the address family for which to search.
protocol Indicates the protocol within the address family.
type Specifies the type of socket (for example, SOCK_RAW).

Description
The pffindproto kernel service first searches the domain switch table for the address family specified by
the family parameter. If found, the pffindproto service then searches the protocol switch table for that
domain and checks for matches with the type and protocol parameters.

If a match is found, the pffindproto service returns the address of the protocol switch table entry. If the
type parameter is set to SOCK_RAW, the pffindproto service returns the first entry it finds with protocol
equal to 0 and type equal to SOCK_RAW.

Execution Environment
The pffindproto kernel service can be called from either the process or interrupt environment.

Return Values
The pffindproto service returns a null value if a protocol switch table entry was not found for the given
search criteria. Upon success, the pffindproto service returns the address of a protocol switch table entry.

Related Information
Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

Understanding Socket Header Files in AIX Version 6.1 Communications Programming Concepts.

pgsignal Kernel Service

Purpose
Sends a signal to all of the processes in a process group.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

void pgsignal (pid, sig)
pid_t pid;
int sig;

Parameters

pid Specifies the process ID of a process in the group of processes to receive the signal.
sig Specifies the signal to send.

Chapter 1. Kernel Services 373

Description
The pgsignal kernel service sends a signal to each member in the process group to which the process
identified by the pid parameter belongs. The pid parameter must be the process identifier of the member
of the process group to be sent the signal. The sig parameter specifies which signal to send.

Device drivers can get the value for the pid parameter by using the getpid kernel service. This value is the
process identifier for the currently executing process.

The sigaction subroutine contains a list of the valid signals.

Execution Environment
The pgsignal kernel service can be called from either the process or interrupt environment.

Return Values
The pgsignal service has no return values.

Related Information
The getpid kernel service, pidsig kernel service.

The sigaction subroutine.

Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

pidsig Kernel Service

Purpose
Sends a signal to a process.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

void pidsig (pid, sig)
pid_t pid;
int sig;

Parameters

pid Specifies the process ID of the receiving process.
sig Specifies the signal to send.

Description
The pidsig kernel service sends a signal to a process. The pid parameter must be the process identifier of
the process to be sent the signal. The sig parameter specifies the signal to send. See the sigaction
subroutine for a list of the valid signals.

Device drivers can get the value for the pid parameter by using the getpid kernel service. This value is the
process identifier for the currently executing process.

374 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

The pidsig kernel service can be called from an interrupt handler execution environment if the process ID
is known.

Execution Environment
The pidsig kernel service can be called from either the process or interrupt environment.

Return Values
The pidsig service has no return values.

Related Information
The getpid kernel service, pgsignal kernel service.

The sigaction subroutine.

Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

pin Kernel Service

Purpose
Pins the address range in the system (kernel) space.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/pin.h>

int pin (addr, length)
caddr_t addr;
int length;

Parameters

addr Specifies the address of the first byte to pin.
length Specifies the number of bytes to pin.

Description
The pin service pins the real memory pages touched by the address range specified by the addr and
length parameters in the system (kernel) address space. It pins the real-memory pages to ensure that
page faults do not occur for memory references in this address range. The pin service increments the pin
count for each real-memory page. While the pin count is nonzero, the page cannot be paged out of real
memory.

The pin routine pins either the entire address range or none of it. Only a limited number of pages can be
pinned in the system. If there are not enough unpinned pages in the system, the pin service returns an
error code.

Note: If the requested range is not aligned on a page boundary, then memory outside this range is also
pinned. This is because the operating system pins only whole pages at a time.

The pin service can only be called for addresses within the system (kernel) address space. The xmempin
service should be used for addresses within kernel or user space.

Chapter 1. Kernel Services 375

Execution Environment
The pin kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
EINVAL Indicates that the value of the length parameter is negative or 0. Otherwise, the area of memory

beginning at the address of the first byte to pin (the addr parameter) and extending for the number of
bytes specified by the length parameter is not defined.

EIO Indicates that a permanent I/O error occurred while referencing data.
ENOMEM Indicates that the pin service was unable to pin due to insufficient real memory or exceeding the

systemwide pin count.
ENOSPC Indicates insufficient file system or paging space.

Related Information
The xmempin and xmemunpin kernel services.

Understanding Execution Environments and Memory Kernel Services in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

pin_context_stack or unpin_context_stack Kernel Service

Purpose
Pins and unpins hidden kernel stack region.

Syntax
#include <sys/pin.h>

kerrno_t pin_context_stack (flags)
long flags;

kerrno_t unpin_context_stack (flags)
long flags;

Parameters

flags Various flags to the kernel service. Must be set to 0.

Description
Kernel code that pins its system call stack should call this service before the first kernel stack pin and call
the unpin_context_stack() service after the last unpin. These services do not pin or unpin the C
execution stack, but instead pin or unpin a hidden stack resource used for the kernel-key support.

Execution Environment
These services must be called in the process environment.

Return Values

0 Indicates a successful completion.
ENOMEM_PIN_CONTEXT_STACK Indicates that the memory is not sufficient to satisfy the request.

376 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

ENOSPC_PIN_CONTEXT_STACK Indicates that the page space is not sufficient.
EINVAL_PIN_CONTEXT_STACK Indicates that the execution environment is not valid.
EINVAL_UNPIN_CONTEXT_STACK Indicates that the execution environment is not valid. (For example, the

service is not in the process environment or the kernel keys are not
enabled or the value of the flag parameter is not valid.)

Related Information
The vm_setseg_kkey, vm_protect_kkey, raschk_eaddr_kkey, xmgethkeyset, xmsethkeyset kernel
services.

pincf Kernel Service

Purpose
Manages the list of free character buffers.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

int pincf (delta)
int delta;

Parameter

delta Specifies the amount by which to change the number of free-pinned character buffers.

Description
The pincf service is used to control the size of the list of free-pinned character buffers. A positive value for
the delta parameter increases the size of this list, while a negative value decreases the size.

All device drivers that use character blocks need to use the pincf service. These drivers must indicate with
a positive delta value the maximum number of character blocks they expect to be using concurrently.
Device drivers typically call this service with a positive value when the ddopen routine is called. They
should call the pincf service with a negative value of the same amount when they no longer need the
pinned character blocks. This occurs typically when the ddclose routine is called.

Execution Environment
The pincf kernel service can be called in the process environment only.

Return Values
The pincf service returns a value representing the amount by which the service changed the number of
free-pinned character buffers.

Related Information
The waitcfree kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 377

pincode Kernel Service

Purpose
Pins the code and data associated with a loaded object module.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/pin.h>

int pincode (func)
int (*func) ();

Parameter

func Specifies an address used to determine the object module to be pinned. The address is typically that of a
function exported by this object module.

Description
The pincode service uses the pin service to pin the specified object module. The loader entry for the
object module is used to determine the size of both the code and data.

Execution Environment
The pincode kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
EINVAL Indicates that the func parameter is not a valid pointer to the function.
ENOMEM Indicates that the pincode service was unable to pin the module due to insufficient real memory.

When an error occurs, the pincode service returns without pinning any pages.

Related Information
The pin kernel service.

Understanding Execution Environments and Memory Kernel Services in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

pio_assist Kernel Service

Purpose
Provides a standardized programmed I/O exception handling mechanism for all routines performing
programmed I/O.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

378 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

int pio_assist (ioparms, iofunc, iorecov)
caddr_t ioparms;
int (*iofunc)();
int (*iorecov)();

Parameters

ioparms Points to parameters for the I/O routine.
iofunc Specifies the I/O routine function pointer.
iorecov Specifies the I/O recovery routine function pointer.

Description
The pio_assist kernel service assists in handling exceptions caused by programmed I/O. Use of the
pio_assist service standardizes the programmed I/O exception handling for all routines performing
programmed I/O. The pio_assist service is built upon other kernel services that routines access to provide
their own exception handling if the pio_assist service should not be used.

Using the pio_assist Kernel Service

To use the pio_assist service, the device handler writer must provide a callable routine that performs the
I/O operation. The device handler writer can also optionally provide a routine that can recover and log I/O
errors. The mainline device handler code would then call the pio_assist service with the following
parameters:

v A pointer to the parameters needed by the I/O routine

v The function pointer for the routine performing I/O

v A pointer for the I/O recovery routine (or a null pointer, if there is no I/O recovery routine)

If the pointer for the I/O recovery routine is a null character, the iofunc routine is recalled to recover from
I/O exceptions. The I/O routine for error retry should only be re-used if the I/O routine can handle being
recalled when an error occurs, and if the sequence of I/O instructions can be reissued to recover from
typical bus errors.

The ioparms parameter points to the parameters needed by the I/O routine. It is passed to the I/O routine
when the pio_assist service calls the I/O routine. It is also passed to the I/O recovery routine when the
I/O recovery routine is invoked by the pio_assist service. If any of the parameters found in the structure
pointed to by the ioparms parameter are modified by the iofunc routine and needed by the iorecov or
recalled iofunc routine, they must be declared as volatile.

Requirements for Coding the Caller-Provided I/O Routine
The iofunc parameter is a function pointer to the routine performing the actual I/O. It is called by the
pio_assist service with the following parameters:
int iofunc (ioparms)
caddr_t ioparms; /* pointer to parameters */

The ioparms parameter points to the parameters used by the I/O routine that was provided on the call to
the pio_assist kernel service.

If the pio_assist kernel service is used with a null pointer to the iorecov I/O recovery routine, the iofunc
I/O routine is called to retry all programmed I/O exceptions. This is useful for devices that have I/O
operations that can be re-sent without concern for hardware state synchronization problems.

Upon return from the I/O, the return code should be 0 if no error was encountered by the I/O routine itself.
If a nonzero return code is presented, it is used as the return code from the pio_assist kernel service.

Chapter 1. Kernel Services 379

Requirements for Coding the Caller-Provided I/O Recovery Routine
The iorecov parameter is a function pointer to the device handler’s I/O recovery routine. This iorecov
routine is responsible for logging error information, if required, and performing the necessary recovery
operations to complete the I/O, if possible. This may in fact include calling the original I/O routine. The
iorecov routine is called with the following parameters when an exception is detected during execution of
the I/O routine:
int iorecov (parms, action, infop)
caddr_t parms;/* pointer to parameters passed to iofunc*/
int action; /* action indicator */
struct pio_except *infop; /* pointer to exception info */

The parms parameter points to the parameters used by the I/O routine that were provided on the call to
the pio_assist service.

The action parameter is an operation code set by the pio_assist kernel service to one of the following:

PIO_RETRY Log error and retry I/O operations, if possible.
PIO_NO_RETRY Log error but do not retry the I/O operation.

The pio_except structure containing the exception information is platform-specific and defined in the
/usr/include/sys/except.h file. The fields in this structure define the type of error that occurred, the bus
address on which the error occurred, and additional platform-specific information to assist in the handling
of the exception.

The iorecov routine should return with a return code of 0 if the exception is a type that the routine can
handle. A EXCEPT_NOT_HANDLED return code signals that the exception is a type not handled by the
iorecov routine. This return code causes the pio_assist kernel service to invoke the next exception
handler on the stack of exception handlers. Any other nonzero return code signals that the iorecov routine
handled the exception but could not successfully recover the I/O. This error code is returned as the return
code from the pio_assist kernel service.

Return Codes by the pio_assist Kernel Service
The pio_assist kernel service returns a return code of 0 if the iofunc I/O routine does not indicate any
errors, or if programmed I/O exceptions did occur but were successfully handled by the iorecov I/O
recovery routine. If an I/O exception occurs during execution of the iofunc or iorecov routines and the
exception count has not exceeded the maximum value, the iorecov routine is called with an op value of
PIO_RETRY.

If the number of exceptions that occurred during this operation exceeds the maximum number of retries
set by the platform-specific value of PIO_RETRY_COUNT, the pio_assist kernel service calls the iorecov
routine with an op value of PIO_NO_RETRY. This indicates that the I/O operation should not be retried. In
this case, the pio_assist service returns a return code value of EIO indicating failure of the I/O operation.

If the exception is not an I/O-related exception or if the iorecov routine returns with the return code of
EXCEPT_NOT_HANDLED (indicating that it could not handle the exception), the pio_assist kernel
service does not return to the caller. Instead, it invokes the next exception handler on the stack of
exception handlers for the current process or interrupt handler. If no other exception handlers are on the
stack, the default exception handler is invoked. The normal action of the default exception handler is to
cause a system crash.

Execution Environment
The pio_assist kernel service can be called from either the process or interrupt environment.

380 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

0 Indicates that either no errors were encountered, or PIO errors were encountered and successfully handled.
EIO Indicates that the I/O operation was unsuccessful because the maximum number of I/O retry operations was

exceeded.

Related Information
Kernel Extension and Device Driver Management Kernel Services, User-Mode Exception Handling,
Kernel-Mode Exception Handling in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

Process State-Change Notification Routine

Purpose
Allows kernel extensions to be notified of major process and thread state transitions.

Syntax
void prochadd_handler (term, type, id)
struct proch *term;
int type;
long id;

void proch_reg_handler (term, type, id)
struct prochr *term;
int type;
long id;

Parameters

term Points to the proch structure used in the prochadd call or to the prochr structure used in the proch_reg
call.

Chapter 1. Kernel Services 381

type Defines the state change event being reported: process initialization, process termination, process exec,
thread initialization, or thread termination. These values are defined in the /usr/include/sys/proc.h file. The
values that may be passed as type also depend on how the callout is requested.

Possible prochadd_handler type values:

PROCH_INITIALIZE
Process is initializing.

PROCH_TERMINATE
Process is terminating.

PROCH_EXEC
Process is about to exec a new program.

THREAD_INITIALIZE
A new thread is created.

THREAD_TERMINATE
A thread is terminated.

Possible proch_reg_handler type values:

PROCHR_INITIALIZE
Process is initializing.

PROCHR_TERMINATE
Process is terminating.

PROCHR_EXEC
Process is about to exec a new program.

PROCHR_THREAD_INIT
A new thread is created.

PROCHR_THREAD_TERM
A thread is terminated.

id Defines either the process ID or the thread ID.

Description
The notification callout is set up by using either the prochadd or the proch_reg kernel service. If you
request the notification using the prochadd kernel service, the callout follows the syntax shown first as
prochadd_handler. If you request the notification using the proch_reg kernel service, the callout follows
the syntax shown second as proch_reg_handler.

For process initialization, the process state-change notification routine is called in the execution
environment of a parent process for the initialization of a newly created child process. For kernel
processes, the notification routine is called when the initp kernel service is called to complete initialization.

For process termination, the notification routines are called before the kernel handles default termination
procedures. The routines must be written so as not to allocate any resources under the terminating
process. The notification routine is called under the process image of the terminating process.

Related Information
The prochadd kernel service, prochdel kernel service, proch_reg kernel service, proch_unreg kernel
service.

Kernel Extension and Device Driver Management Kernel Services in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

382 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

proch_reg Kernel Service

Purpose
Registers a callout handler.

Syntax
#include <sys/proc.h>

int proch_reg(struct prochr *)

Note: The prochr structure contains the following elements that must be set prior to calling proch_reg:

void (* proch_handler)(struct prochr *, int, long)
unsigned int int prochr_mask

Parameters

int prochr_mask Specifies the set of kernel events for which a callout is
requested. Unlike the old_style interface, the callout is
invoked only for the specified events. This mask is formed
by ORing together any of these defined values:

PROCHR_INITIALIZE
Process created.

PROCHR_TERMINATE
Process terminated

PROCHR_EXEC
Process has issued the exec system call

PROCHR_THREADINIT
Thread created

PROCHR_THREADTERM
Thread terminated

proch_handler Specifies the callout function to be called when specified
kernel events occur.

Description
If the same struct prochr * is registered more than once, only the most recently specified information is
retained in the kernel.

The struct prochr * is not copied to a new location in memory. As a result, if the structure is changed,
results are unpredictable. This structure does not need to be pinned.

The primary consideration for the new-style interface is to improve scalability. A lock is only acquired when
callouts are made. A summary mask of all currently registered callout event types is maintained. This
summary mask is updated every time proch_reg or proch_unreg is called, even when registering an
identical struct prochr *. Further, the lock is a complex lock, so once callouts have been registered, there
is no lock contention in invoking them because the lock is held read-only.

When a callout to a registered handler function is made, the parameters passed are:

v a pointer to the registered prochr structure

v a callout request value to indicate the reason for the callout

v a thread or process ID

Chapter 1. Kernel Services 383

Return Values
On successful completion, the proch_reg kernel service returns a value of 0. The only error (non-zero)
return is from trying to register with a NULL pointer.

Execution Environment
The proch_reg kernel service can be called from the process environment only.

Related Information
The proch_unreg kernel service.

The Process State-Change Notification Routine.

Kernel Extension and Driver Management Kernel Services in AIX Version 6.1 Kernel Extensions and
Device Support Programming Concepts.

proch_unreg Kernel Service

Purpose
Unregisters a callout handler that was previously registered using the proch_reg kernel service.

Syntax
#include <sys/proc.h>

int proch_unreg(struct prochr *old_prochr);

Parameter

old_prochr Specifies the address of the proch structure to be unregistered.

Description
Unregisters an existing callout handler that was previously registered using the proch_reg() kernel
service.

Return Values
On successful completion, the proch_unreg kernel service returns a value of 0. An error (non-zero)
return occurs when trying to unregister a handler that is not presently registered.

Execution Environment
The proch_unreg kernel service can be called from the process environment only.

Related Information
The proch_reg kernel service.

Kernel Extension and Driver Management Kernel Services in AIX Version 6.1 Kernel Extensions and
Device Support Programming Concepts.

prochadd Kernel Service

Purpose
Adds a system-wide process state-change notification routine.

384 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/proc.h>

void prochadd (term)
struct proch *term;

Parameters

term Points to a proch structure containing a notification routine to be added from the chain of systemwide
notification routines.

Description
The prochadd kernel service allows kernel extensions to register for notification of major process state
transitions. The prochadd service allows the caller to be notified when a process:

v Has just been created.

v Is about to be terminated.

v Is executing a new program.

The complete list of callouts is:

Callout Description
PROCH_INITIALIZE Process (pid) created (initp, kforkx)
PROCH_TERMINATE Process (pid) terminated (kexitx)
PROCH_EXEC Process (pid) executing (execvex)
THREAD_INITIALIZE Thread (tid) created (kforkx, thread_create)
THREAD_TERMINATE Thread (tid) created (kexitx, thread_terminate)

The prochadd service is typically used to allow recovery or reassignment of resources when processes
undergo major state changes.

The caller should allocate a proch structure and update the proch.handler field with the entry point of a
caller-supplied notification routine before calling the prochadd kernel service. This notification routine is
called once for each process in the system undergoing a major state change.

The proch structure has the following form:
struct proch
{

struct proch *next
void *handler ();

}

Execution Environment
The prochadd kernel service can be called from the process environment only.

Related Information
The prochdel kernel service.

The Process State-Change Notification Routine.

Kernel Extension and Driver Management Kernel Services in AIX Version 6.1 Kernel Extensions and
Device Support Programming Concepts.

Chapter 1. Kernel Services 385

prochdel Kernel Service

Purpose
Deletes a process state change notification routine.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/proc.h>

void prochdel (term)
struct proch *term;

Parameter

term Points to a proch structure containing a notification routine to be removed from the chain of system-wide
notification routines. This structure was previously registered by using the prochadd kernel service.

Description
The prochdel kernel service removes a process change notification routine from the chain of system-wide
notification routines. The registered notification routine defined by the handler field in the proch structure
is no longer to be called by the kernel when major process state changes occur.

If the proch structure pointed to by the term parameter is not found in the chain of structures, the
prochdel service performs no operation.

Execution Environment
The prochdel kernel service can be called from the process environment only.

Related Information
The prochadd kernel service.

The Process State-Change Notification Routine.

Kernel Extension and Driver Management Kernel Services in AIX Version 6.1 Kernel Extensions and
Device Support Programming Concepts.

probe or kprobe Kernel Service

Purpose
Logs errors with symptom strings.

Library (for probe)
Run-time Services Library.

Syntax
#include <sys/probe.h>
or

386 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

#include <sys/sysprobe.h>
int probe (probe_p)
probe_t *probe_p

int kprobe (probe_p)
probe_t *probe_p

Description
The probe subroutine logs an entry to the error log. The entry consists of an error log entry as defined in
the errlog subroutine and the err_rec.h header file, and a symptom string.

The probe subroutine is called from an application, while kprobe is called from the Kernel and Kernel
extensions. Both probe and kprobe have the same interfaces, except for return codes.

IBM software should use the sys/sysprobe.h header file while non-IBM programs should include the
sys/probe.h file. This is because IBM symptom strings must conform to different rules than non-IBM
strings. It also tells any electronic support application whether or not to route the symptom string to IBM’s
Retain database.

Parameters

probe_p is a pointer to the data structure which contains the pointer and length of the error record, and the data
for the probe. The error record is described under the errlog subroutine and defined in err_rec.h.

The first word of the structure is a magic number to identify this version of the structure. The magic
number should be set to PROBE_MAGIC.
Note: PROBE_MAGIC is different between probe.h and sysprobe.h to distinguish an IBM symptom
string from a non-IBM string.

The probe data consists of flags which control probe handling, the number of symptom string
keywords, followed by an array consisting of one element for each keyword.

Flags

SSNOSEND indicates this symptom string shouldn’t be forwarded to automatic problem opening facilities. An
example where SSNOSEND should be used is in symptom data used for debugging purposes.

nsskwd This gives the number of keywords specified (i.e.), the number of elements in the sskwds array.

Chapter 1. Kernel Services 387

sskwds This is an array of keyword/value pairs. The keywords and their values are in the following table. The
I/S value indicates whether the keyword and value are informational or are part of the logged
symptom string. The number in parenthesis indicates, where applicable, the maximum string length.

keyword I/S value type Description

SSKWD_LONGNAME I char * (30) Product's long name
SSKWD_OWNER I char * (16) Product's owner
SSKWD_PIDS S char * (11) product id.(required for IBM symptom strings)
SSKWD_LVLS S char * (5) product level (required for IBM symptom strings)
SSKWD_APPLID I char * (8) application id.
SSKWD_PCSS S char * (8) probe id (required for all symptom strings)
SSKWD_DESC I char * (80) problem description
SSKWD_SEV I int severity from 1 (highest) to 4 (lowest). 3 is the default.
SSKWD_AB S char * (5) abend code
SSKWD_ADRS S void * address. If used at all, this should be a relative address.
SSKWD_DEVS S char * (6) Device type
SSKWD_FLDS S char * (9) arbitrary character string. This is usually a field name and

the SSKWD_VALUE keyword specifies the value.
SSKWD_MS S char * (11) Message number
SSKWD_OPCS S char * (8) OP code
SSKWD_OVS S char * (9) overwritten storage
SSKWD_PRCS S unsigned long return code
SSKWD_REGS S char * (4) Register name (e.g.) GR15 or LR unsigned long Value
SSKWD_VALU S
SSKWD_RIDS S char * (8) resource or module id.
SSKWD_SIG S . int Signal number
SSKWD_SN S char * (7) Serial Number
SSKWD_SRN S char * (9) Service Req. Number If specified, and no error is logged,

a hardware error is assumed.
SSKWD_WS S char * (10) Coded wait

Note: The SSKWD_PCCS value is always required. This is the probe id. Additionally, for IBM symptom
strings, the SSKWD_PIDS and SSKWD_LVLS keywords are also required

If either the erecp or erecl fields in the probe_rec structure is 0 then no error logging record is being
passed, and one of the default templates for symptom strings is used. The default template indicating a
software error is used unless the SSKWD_SRN keyword is specified. If it is, the error is assumed to be a
hardware error. If you don’t want to log your own error with a symptom string, and you want to have a
hardware error, and don’t want to use the SSKWD_SRN value, then you can supply an error log record
using the error identifier of ERRID_HARDWARE_SYMPTOM, see the /usr/include/sys/errids.h file.

Return Values for probe Subroutine

0 Successful
-1 Error. The errno variable is set to
EINVAL Indicates an invalid parameter
EFAULT Indicates an invalid address

Return Values for kprobe Kernal Service

0 Successful
EINVAL Indicates an invalid parameter

Execution Environment
probe is executed from the application environment.

kprobe is executed from the Kernel and Kernel extensions. Currently, kprobe must not be called with
interrupts disabled.

388 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Files

/usr/include/sys/probe.h Contains parameter definition.

Related Information
Error Logging Overview.

The errlog subroutines.

The errsave or errlast subroutines.

purblk Kernel Service

Purpose
Purges the specified block from the buffer cache.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

void purblk (dev, blkno)
dev_t dev;
daddr_t blkno;

Parameters

dev Specifies the device containing the block to be purged.
blkno Specifies the block to be purged.

Description
The purblk kernel service purges (that is, makes unreclaimable by marking the block with a value of
STALE) the specified block from the buffer cache.

Execution Environment
The purblk kernel service can be called from the process environment only.

Return Values
The purblk service has no return values.

Related Information
The brelse kernel service, geteblk kernel service.

Block I/O Buffer Cache Kernel Services: Overview in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 389

putc Kernel Service

Purpose
Places a character at the end of a character list.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

int putc (c, header)
char c;
struct clist *header;

Parameters

c Specifies the character to place on the character list.
header Specifies the address of the clist structure that describes the character list.

Description
Attention: The caller of the putc service must ensure that the character list is pinned. This includes
the clist header and all the cblock character buffers. Character blocks acquired from the getcf
service are also pinned. Otherwise, the system may crash.

The putc kernel service puts the character specified by the c parameter at the end of the character list
pointed to by the header parameter.

If the putc service indicates that there are no more buffers available, the waitcfree service can be used to
wait until a character block is available.

Execution Environment
The putc kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates successful completion.
-1 Indicates that the character list is full and no more buffers are available.

Related Information
The getcb kernel service, getcf kernel service, pincf kernel service, putcf kernel service, putcfl kernel
service, waitcfree kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

putcb Kernel Service

Purpose
Places a character buffer at the end of a character list.

390 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

void putcb (p, header)
struct cblock *p;
struct clist *header;

Parameters

p Specifies the address of the character buffer to place on the character list.
header Specifies the address of the clist structure that describes the character list.

Description
Attention: The caller of the putcb service must ensure that the character list is pinned. This includes
the clist header and all the cblock character buffers. Character blocks acquired from the getcf
service are pinned. Otherwise, the system may crash.

The putcb kernel service places the character buffer pointed to by the p parameter on the end of the
character list specified by the header parameter. Before calling the putcb service, you must load this new
buffer with characters and set the c_first and c_last fields in the cblock structure. The p parameter is
the address returned by either the getcf or the getcb service.

Execution Environment
The putcb kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates successful completion.
-1 Indicates that the character list is full and no more buffers are available.

Related Information
The getcb kernel service, getcf kernel service, pincf kernel service, putcf kernel service, putcfl kernel
service, waitcfree kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

putcbp Kernel Service

Purpose
Places several characters at the end of a character list.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

Chapter 1. Kernel Services 391

int putcbp (header, source, n)
struct clist *header;
char *source;
int n;

Parameters

header Specifies the address of the clist structure that describes the character list.
source Specifies the address from which characters are read to be placed on the character list.
n Specifies the number of characters to be placed on the character list.

Description
Attention: The caller of the putcbp service must ensure that the character list is pinned. This
includes the clist header and all of the cblock character buffers. Character blocks acquired from the
getcf service are pinned. Otherwise, the system may crash.

The putcbp kernel service operates on the characters specified by the n parameter starting at the address
pointed to by the source parameter. This service places these characters at the end of the character list
pointed to by the header parameter. The putcbp service then returns the number of characters added to
the character list. If the character list is full and no more buffers are available, the putcbp service returns
a 0. Otherwise, it returns the number of characters written.

Execution Environment
The putcbp kernel service can be called from either the process or interrupt environment.

Return Values
The putcbp service returns the number of characters written or a value of 0 if the character list is full, and
no more buffers are available.

Related Information
The getcb kernel service, getcf kernel service, pincf kernel service, putcf kernel service, putcfl kernel
service, waitcfree kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

putcf Kernel Service

Purpose
Frees a specified buffer.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

void putcf (p)
struct cblock *p;

Parameter

p Identifies which character buffer to free.

392 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The putcf kernel service unpins the indicated character buffer.

The putcf service returns the specified buffer to the list of free character buffers.

Execution Environment
The putcf kernel service can be called from either the process or interrupt environment.

Return Values
The putcf service has no return values.

Related Information
I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

putcfl Kernel Service

Purpose
Frees the specified list of buffers.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

void putcfl (header)
struct clist *header;

Parameter

header Identifies which list of character buffers to free.

Description
The putcfl kernel service returns the specified list of buffers to the list of free character buffers. The putcfl
service unpins the indicated character buffer.

Note: The caller of the putcfl service must ensure that the header and clist structure are pinned.

Execution Environment
The putcfl kernel service can be called from either the process or interrupt environment.

Return Values
The putcfl service has no return values.

Related Information
I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 393

putcx Kernel Service

Purpose
Places a character on a character list.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/cblock.h>

int putcx (c, header)
char c;
struct clist *header;

Parameters

c Specifies the character to place at the front of the character list.
header Specifies the address of the clist structure that describes the character list.

Description
The putcx kernel service puts the character specified by the c parameter at the front of the character list
pointed to by the header parameter. The putcx service is identical to the putc service, except that it puts
the character at the front of the list instead of at the end.

If the putcx service indicates that there are no more buffers available, the waitcfree service can be used
to wait until a character buffer is available.

Note: The caller of the putcx service must ensure that the character list is pinned. This includes the clist
header and all the cblock character buffers. Character blocks acquired from the getcf service are
pinned.

Execution Environment
The putcx kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates successful completion.
-1 Indicates that the character list is full and no more buffers are available.

Related Information
The getcb kernel service, getcf kernel service, pincf kernel service, putcf kernel service, putcfl kernel
service, waitcfree kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

query_proc_info Kernel Service

Purpose
Returns specific information about the current process or thread.

394 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/encap.h>

int query_proc_info (type)
int type;

Parameters

type Specifies the type of process or thread information requested. The type parameter can be one of
the following values:

QPI_XPG_SUS_ENV
Queries whether the calling process has SPEC 1170 environment active.

QTI_FUNNELLED
Queries whether the current thread is funneled.

Description
The query_proc_info kernel service returns information about the current process or thread.

When called with the value QPI_XPG_SUS_ENV as the type parameter, it returns TRUE (1) when the
process has SPEC 1170 active, that is, the process was issued with the environment variable
XPG_SUS_ENV defined. Otherwise, the routine returns FALSE (0). When called with the value
QTI_FUNNELLED as the type parameter, the query_proc_info kernel service returns TRUE (1) if the
current thread has been funneled. Otherwise, the routine returns FALSE (0).

Execution Environment
The query_proc_info kernel service can be called from either the process or interrupt environment.

Return Values

1 True.
0 False.

RAS_BLOCK_NULL Exported Data Structure

Purpose
Allows for the silent failure of ras_register calls due to memory allocation errors.

Syntax
#include <sys/ras.h>

extern const ras_block_t RAS_BLOCK_NULL

Description
The RAS_BLOCK_NULL data structure allows components to go through their normal code paths when
they receive an ENOMEM error from the ras_register kernel service. The presence of this data structure
does not need to be explicitly checked by callers of RAS functions. All RAS domain functions (such as
Component Tracing) are disabled with this control block.

Chapter 1. Kernel Services 395

Related Information
The ras_register and ras_unregister exported kernel services.

The ras_control exported kernel service.

The ras_customize exported kernel service.

The CT_HOOKx and CT_GEN macros.

The CT_TRCON macro.

ras_control Exported Kernel Service

Purpose
Controls component RAS characteristics.

Syntax
#include <sys/ras.h>

kerrno_t ras_control (
ras_block_t ras_blk,
ras_cmd_t command,
void * arg,
long argsize);

Description
The ras_control kernel service passes a command to the callback for the component referenced by the
ras_blk parameter. If the ras_blk parameter is not known, use the ras_path_control call.

Note: During the ras_control process, callbacks to the registrant of the component might be initiated for
changes that the RAS infrastructure makes to the component. The registrant should be aware of
this for locking purposes (for instance, the registrant should not hold any locks that the callback
needs).

If the ras_blk input parameter has a value of RAS_BLOCK_NULL, the ras_control kernel service returns
without errors and takes no action.

Parameters

ras_blk The target control block pointer.
command Command passed to the callback. Commands are specific to a given RAS domain,

such as Component Trace.
arg Optional argument for the command.
argsize Size of the argument, if a buffer or structure.

Execution Environment
The calling environment of the ras_control kernel service varies by individual command. The calling
environment of a particular command is documented with the command itself.

Return Values
The ras_control kernel service returns 0 for success and a non-zero error code for failure.

396 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
Component Trace Facility in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

The ras_callback registered callback.

The ras_register and ras_unregister exported kernel services.

The ras_customize exported kernel service.

The ras_path_control exported kernel service.

The RAS_BLOCK_NULL data structure.

ras_customize Exported Kernel Service

Purpose
Loads persistent customized properties for a RAS control block.

Syntax
#include <sys/ras.h>

kerrno_t ras_customize (ras_block_t ras_blk);

Description
The ras_customize kernel service checks for, and applies persistent customized properties for a given
ras_blk parameter. After applying any persistent properties, the ras_customize kernel service puts the
ras_blk parameter in a usable state. Registration is not complete without a call to the ras_customize
kernel service.

Note: During the ras_customize process, callbacks to the registrant might be initiated for changes that
the RAS infrastructure makes to the component. The registrant should be aware of this for locking
and initialization purposes (for example, the registrant should not be holding any locks that the
callback needs, and the private data for the callback should be initialized before ras_customize is
called).

If the ras_blk input parameter has a value of RAS_BLOCK_NULL, the ras_customize kernel service
returns without errors and takes no action.

Parameters

ras_blk The control block to act on. Must be previously allocated by the ras_register kernel
service.

Execution Environment
The ras_customize kernel service must be called from the process environment.

Return Values

0 Successful.
non-zero Unsuccessful.

Chapter 1. Kernel Services 397

Related Information
Component Trace Facility in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

The ras_callback registered callback.

The ras_register and ras_unregister exported kernel services.

The ras_control exported kernel service.

The RAS_BLOCK_NULL data structure.

ras_path_control Exported Kernel Services

Purpose
Controls component RAS characteristics.

Syntax
#include <sys/ras.h>

kerrno_t ras_path_control (
char * path,
ras_cmd_t command,
void * arg,
long argsize);

Description
The ras_path_control kernel service passes a command to the RAS component specified by the path
parameter.

Note: During the ras_path_control process, callbacks to the registrant of the component might be
initiated for changes that the RAS infrastructure makes to the component. The registrant should be
aware of this for locking purposes (for instance, the registrant should not be holding any locks the
callback needs).

Parameters

path The pathname of the component to receive the command parameter.
command Command passed to the callback. Commands are specific to a given RAS domain,

such as Component Trace.
arg Optional argument for the command.
argsize Size of the argument, if a buffer or structure.

Execution Environment
The calling environment of the ras_path_control kernel service varies by individual command. The calling
environment of a particular command is documented with the command itself.

Return Values

0 Successful.
non-zero Unsuccessful.

398 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
Component Trace Facility in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

The ras_control exported kernel service.

The ras_register and ras_unregister exported kernel services.

The ras_customize exported kernel service.

ras_register and ras_unregister Exported Kernel Services

Purpose
Registers and unregisters a RAS component.

Syntax
#include <sys/ras.h>

kerrno_t ras_register (
ras_block_t * rasbp,
char * name,
ras_block_t parent,
ras_type_t typesubtype,
char * desc,
long flags,
ras_callback_t ras_callback,
void * private_data);

kerrno_t ras_unregister (ras_block_t ras_blk);

Description
The ras_register kernel service and the ras_unregister kernel service register and unregister RAS
handlers which are invoked by the kernel when the system needs to communicate various RAS
commands to each component.

The ras_register kernel service registers a component with the given name under the parent provided. If
the parent is NULL, the ras_register kernel service registers name as a base component, but the
typesubtype parameter must be provided. The name parameter specifies the name for the subcomponent
or base component (it is not a full component path). The flags field is used to specify what aspects of RAS
the component understands. The ras_callback is the mechanism by which the RAS subsystem
communicates various commands to the component, depending on what aspects of RAS the component
understands. The desc parameter provides a short description for the component as a service aid.

The ras_register kernel service allocates a ras_block_t member and returns the control block for the
component through the rasbp argument. This control block can be used in ras_control calls and further
ras_register calls (to allocate children, for instance).

If the registration fails due to the system being out of memory, the value of the rasbp argument is set to
RAS_BLOCK_NULL. All RAS functions for this component are disabled. RAS kernel services accept
RAS_BLOCK_NULL control blocks but take no action. If the control block is set to
RAS_BLOCK_NULLRAS, domain related functions (such as the CT_HOOKx and CT_GEN macros) run
correctly but take no action. This action allows the ENOMEM type failures from the ras_register kernel
service to be safely ignored. The value of the rasbp argument for all other types of errors is undefined.

Chapter 1. Kernel Services 399

The ras_unregister kernel service unregisters a component previously registered with the ras_register
kernel service. The ras_blk parameter should have no further children.

Parameters

rasbp The newly allocated ras_block_t member.
name The name of the component, not its full pathname. Individual node names are limited

to the number of characters specified by the value of the RAS_NAME_MAX
parameter (including the terminating NULL character). The full component path (the
concatenated names of a child component and all of its ancestors) is limited to the
number of characters specified by the value of the RAS_PATH_MAX parameter
(including the terminating NULL character). The ras_register kernel service
reconstructs the full component path and rejects registrations for components whose
full path exceeds the value of the RAS_PATH_MAX parameter. Node names are
restricted to the character set “A-Z”,”a-z”,”0-9” and “_”.

parent An optional pointer to the parent component or NULL if none.
typesubtype If parent is NULL, mandatory parameter is used to categorize the component. The top

16-bits of the lower word of this field are the type, and the bottom 16-bits are the
subtype. The typesubtype is a ras_type_t member, which is an enum. See the
sys/ras_base.h file for a description of the types available. If parent is non-NULL, this
parameter is required to be the value of the RAS_TYPE_CHILD parameter.

desc A short description string for the component. The desc string is limited to the number
of characters specified by the value of the RAS_DESC_MAX parameter (including the
terminating null). The desc string has no character set restriction. Any static elements
of the string should be in U.S. English, but dynamic elements have no restriction.

flags Indicates what type of RAS systems this component is aware of. Valid choices are the
following:

v RASF_TRACE_AWARE: Component is Component Trace aware.

v RASF_ERROR_AWARE: Component is Error Checking aware.

These flags are defined in the sys/ras.h file.
ras_callback A function pointer provided by the registrant and called by the framework each time

an external event modifies a property of the component. See the ras_callback
interface specification.

private_data An optional pointer to a component private memory area passed to the ras_callback
function upon callback.

ras_blk The control block to remove.

Execution Environment
Both the ras_register kernel service and the ras_unregister kernel service must be called from the
process environment.

Return Values
The following are the return values of the ras_register kernel service.

0 Successful.
non-zero Unsuccessful.

The following are the return values of the ras_unregister kernel service.

0 Successful.
non-zero Unsuccessful.

400 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
Component Trace Facility in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

The ras_callback registered callback.

The ras_customize exported kernel service.

The ras_control exported kernel service.

The RAS_BLOCK_NULL data structure.

ras_ret_query_parms Kernel Service

Purpose
Returns callback parameters in the ras_query_parms structure.

Syntax
#include <sys/ras.h>

kerrno_t ras_ret_query_parms (retp, fmtstr, numstrings, descr)
ras_query_parms_t *retp;
char *fmtstr;
int numstrings;
char *descr[];

Parameters

retp Points to the ras_query_parms_t data item to be filled in.
fmtstr This is a format specifier. It has the following form:

spec-list

or

kywd=spec-list kywd=spec-list ...

Where the spec-list variable is of the form: spec,spec,... . Thespec variable must be %x, %xx, %d,
%dd, %s, or %ss. If the characters x, d, or s are doubled, for example, %xx, this indicates that
multiple values are allowed.

The following are some valid fmtstr values:

%x One hexidecimal value.

%x,%d One hexadecimal and one decimal value.

%xx Multiple hexadecimal values.

k1=%x,%d k2=%dd
Keyword k1 takes one hexadecimal value and one decimal value. Keyword k2 takes
multiple decimal values.

numstrings Specifies the number of strings in the descr string array. The value must be at least 1.

Chapter 1. Kernel Services 401

descr Specifies the component and parameters. There must be at least one string. The first string
describes the component’s function. If the component takes positional parameters, the following
string(s) describe those. If keyword parameters are supplied, each keyword must have a
corresponding descr string in the array describing that keyword.

The ras_ret_query_parms kernel service does not return an error if the number of the descr
strings does not match the format string. Instead, either the last keywords do not have help text, or
the excess help strings are simply displayed.

Description
The ras_ret_query_parms kernel service can be used by a callback to aid in filling in the
ras_query_parms_t structure when it receives the RASC_QUERY_PARMS call. This function formats the
help text and places it into the ras_query_parms_t structure. If there is insufficient space for the help text
in the provided ras_query_parms_t item, it returns ENOMEM_RASC_CONTROL_QUERYPARMS. The
callback then just returns this error code.

The help text provided must follow the following conventions:
component - first line of description
component:parameters - parameter(s) description

or
component - first line of description
component:kywd1=parms - kywd1:parms description
component:kywd2=parms - kywd2:parms description

Execution Environment
The ras_ret_query_parms kernel service can be called from the process environment only.

Return Values

0 Indicates a successful completion.
EINVAL_RAS_CONTROL_QUERYPARMS Indicates that one or more parameters was not valid.
EFAULT_RAS_CONTROL_QUERYPARMS Indicates that one or more parameter addresses was not

valid.
ENOMEM_RAS_CONTROL_QUERYPARMS Indicates that the rqp_text size was not large enough.

Related Information
The dmp_compspec kernel service.

raschk_eaddr_hkeyset Kernel Service

Purpose
Checks if an effective address can be referenced with a hardware keyset.

Syntax
#include <sys/raschk.h>
#include <sys/skeys.h>
#include <sys/kerrno.h>

402 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

kerrno_t rashchk_eaddr_hkeyset (eaddr, hset, flags)
void * eaddr;
hkeyset_t hset;
unsigned long flags;

Parameters

eaddr Effective address to validate. Only one byte is checked.
hset Hardware keyset to validate against.
flags The following flags are defined:

RCHK_EHK_NOFAULT
No page faults are permitted while performing this check.

RCHK_EHK_NOPAGEIN
No page in is performed during this check.

RCHK_EHK_READ
Validates for read access.

RCHK_EHK_WRITE
Validates for write access.

Description
The raschk_eaddr_hkeyset kernel service performs an advisory runtime check to determine if an
effective address can be referenced with a hardware keyset.

Read and write access checks are independently specified in the flags field. A check for read and write
access requires both flags to be set.

Execution Environment
The raschk_eaddr_hkeyset kernel service can be called from the process or interrupt environment.

Return Values

0 Successful.
EFAULT_RASCHK_EADDR_HKEYSET Operation failed because a page in or page fault was not

allowed.
EFAULT_RASCHK_EADDR_HKEYSET_PROT The address failed the protection check.
EINVAL_RASCHK_EADDR_HKEYSET The address to validate was determined to be invalid, or

neither READ nor WRITE checking was requested.

Related Information
The raschk_eaddr_kkey kernel service.

raschk_eaddr_kkey Kernel Service

Purpose
Checks if an effective address can be referenced with a kernel-key.

Syntax
#include <sys/raschk.h>
#include <sys/kerrno.h>

Chapter 1. Kernel Services 403

kerrno_t raschk_eaddr_kkey (eaddr, kkey, flags)
void * eaddr;
kkey_t kkey;
unsigned long flags;

Parameters

eaddr Effective address to validate. Only one byte is checked.
kkey Kernel-key to check.
flags The following flags are defined:

RCHK_EK_NOFAULT
No page faults of any kind are permitted while performing this check.

RCHK_EK_NOPAGEIN
No page in will be performed during this check.

Description
The raschk_eaddr_kkey kernel service performs an advisory runtime check to determine if an effective
address can be referenced with a kernel-key. Note that read/write attributes are not maintained at a page
granularity. This service only checks if the kernel-key assigned to an effective address matches the kkey
value.

Execution Environment
The raschk_eaddr_kkey kernel service can be called from the process or interrupt environment.

Return Values

0 Successful.
EFAULT_RASCHK_EADDR_KKEY Operation cannot be performed because a page in or page

fault was not allowed.
EINVAL_RASCHK_EADDR_KKEY The address to validate was determined to be invalid.
EINVAL_RASCHK_EADDR_KKEY_PROT The address failed the protection check.

Related Information
The raschk_eaddr_hkeyset kernel service.

raw_input Kernel Service

Purpose

Builds a raw_header structure for a packet and sends both to the raw protocol handler.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

void raw_input (m0, proto, src, dst)
struct mbuf * m0;
struct sockproto * proto;
struct sockaddr * src;
struct sockaddr * dst;

404 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

m0 Specifies the address of an mbuf structure containing input data.
proto Specifies the protocol definition of data.
src Identifies the sockaddr structure indicating where data is from.
dst Identifies the sockaddr structure indicating the destination of the data.

Description
The raw_input kernel service accepts an input packet, builds a raw_header structure (as defined in the
/usr/include/net/raw_cb.h file), and passes both on to the raw protocol input handler.

Execution Environment
The raw_input kernel service can be called from either the process or interrupt environment.

Return Values
The raw_input service has no return values.

Related Information
Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

raw_usrreq Kernel Service

Purpose
Implements user requests for raw protocols.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

void raw_usrreq (so, req, m, nam, control)
struct socket * so;
int req;
struct mbuf * m;
struct mbuf * nam;
struct mbuf * control;

Parameters

so Identifies the address of a raw socket.
req Specifies the request command.
m Specifies the address of an mbuf structure containing data.
nam Specifies the address of an mbuf structure containing the sockaddr structure.
control This parameter should be set to a null value.

Description
The raw_usrreq kernel service implements user requests for the raw protocol.

Chapter 1. Kernel Services 405

The raw_usrreq service supports the following commands:

Command Description
PRU_ABORT Aborts (fast DISCONNECT, DETACH).
PRU_ACCEPT Accepts connection from peer.
PRU_ATTACH Attaches protocol to up.
PRU_BIND Binds socket to address.
PRU_CONNECT Establishes connection to peer.
PRU_CONNECT2 Connects two sockets.
PRU_CONTROL Controls operations on protocol.
PRU_DETACH Detaches protocol from up.
PRU_DISCONNECT Disconnects from peer.
PRU_LISTEN Listens for connection.
PRU_PEERADDR Fetches peer’s address.
PRU_RCVD Have taken data; more room now.
PRU_RCVOOB Retrieves out of band data.
PRU_SEND Sends this data.
PRU_SENDOOB Sends out of band data.
PRU_SENSE Returns status into m.
PRU_SOCKADDR Fetches socket’s address.
PRU_SHUTDOWN Will not send any more data.

Any unrecognized command causes the panic kernel service to be called.

Execution Environment
The raw_userreq kernel service can be called from either the process or interrupt environment.

Return Values

EOPNOTSUPP Indicates an unsupported command.
EINVAL Indicates a parameter error.
EACCES Indicates insufficient authority to support the PRU_ATTACH command.
ENOTCONN Indicates an attempt to detach when not attached.
EISCONN Indicates that the caller tried to connect while already connected.

Related Information
The panic kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

reconfig_register, reconfig_register_ext, reconfig_unregister, or
reconfig_complete, reconfig_register_list Kernel Service

Purpose
Register and unregister reconfiguration handlers.

Syntax
#include <sys/dr.h>

int reconfig_register (handler, actions, h_arg, h_token, name)
int (*handler)(void *event, void *h_arg, int req, void *resource_info);

406 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

int actions;
void *h_arg;
ulong *h_token;
char *name;

int reconfig_register_ext (handler, actions, h_arg, h_token, name)
int (*handler)(void *event, void *h_arg, unsigned long long req, void *resource_info);
unsigned long long actions;
void *h_arg;
ulong *h_token;
char *name;

int reconfig_unregister (h_token)
ulong h_token;

void reconfig_complete (event, rc)
void *event;
int rc;

int reconfig_register_list (handler, event_list, list_size, h_arg, h_token, name)
int (*handler)(void *event, void *h_arg, dr_kevent_t event_in_prog, void *resource_info);
dr_kevent_t event_list[];
size_t list_size;
void *h_arg;
ulong *h_token;
char *name;

Description
The reconfig_register, reconfig_register_ext, reconfig_register_list and reconfig_unregister kernel
services register and unregister reconfiguration handlers, which are invoked by the kernel both before and
after DLPAR operations depending on the set of events specified by the kernel extension when registering.

Starting with AIX 6.1 with 6100-02, all future kernel extensions use the reconfig_register_list kernel
service when registering for DLPAR operations. The reconfig_register_list kernel service supports
previous and new DLPAR operations. The reconfig_register or reconfig_register_ext kernel services will
no longer support all future DLPAR operations.

The reconfig_complete kernel service is used to indicate that the request has completed. If a kernel
extension expects that the operation is likely to take a long time (several seconds), the handler must return
DR_WAIT to the caller, but proceed with the request asynchronously. In this case, the handler must
indicate that it has completed the request by invoking the reconfig_complete kernel service.

Chapter 1. Kernel Services 407

Parameters

actions Allows the kernel extension to specify which of the following events require notification:

v DR_PMIG_CHECK

v DR_PMIG_PRE

v DR_PMIG_POST

v DR_PMIG_POST_ERROR

v DR_CAP_ADD_CHECK

v DR_CAP_ADD_PRE

v DR_CAP_ADD_POST

v DR_CAP_ADD_POST_ERROR

v DR_CAP_REMOVE_CHECK

v DR_CAP_REMOVE_PRE

v DR_CAP_REMOVE_POST

v DR_CAP_REMOVE_POST_ERROR

v DR_CPU_ADD_CHECK

v DR_CPU_ADD_PRE

v DR_CPU_ADD_POST

v DR_CPU_ADD_POST_ERROR

v DR_CPU_REMOVE_CHECK

v DR_CPU_REMOVE_PRE

v DR_CPU_REMOVE_POST

v DR_CPU_REMOVE_POST_ERROR

v DR_MEM_ADD_CHECK

v DR_MEM_ADD_OP_POST

v DR_MEM_ADD_PRE

v DR_MEM_ADD_POST

v DR_MEM_ADD_POST_ERROR

v DR_MEM_REMOVE_CHECK

v DR_MEM_REMOVE_OP_POST

v DR_MEM_REMOVE_OP_PRE

v DR_MEM_REMOVE_PRE

v DR_MEM_REMOVE_POST

v DR_MEM_REMOVE_POST_ERROR
event Passed to the handler and intended to be used only when calling the reconfig_complete

kernel service.
event_list Specifies which events require notification. For the supported values, see the dr.h file.
handler Specifies the kernel extension function to be invoked.
h_arg Specified by the kernel extension, remembered by the kernel along with the function descriptor

for the handler, and passed to the handler when it is invoked. It is not used directly by the
kernel, but is intended to support kernel extensions that manage multiple adapter instances.
This parameter points to an adapter control block.

h_token An output parameter that is used when unregistering the handler.
list_size Specifies the memory size of the event_list array.
name Provided for information purposes and may be included within an error log entry, if the driver

returns an error. It is provided by the kernel extension and must be limited to 15 ASCII
characters.

rc Can be set to DR_FAIL or DR_SUCCESS.

408 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

resource_info Identifies the resource specific information for the current DLPAR request. If the request is cpu
based, the resource_info data is provided through a dri_cpu structure. Otherwise a dri_mem
structure is used.
On a Micro-Partitioning partition, if the request is CPU-capacity based, the resource_info data
is provided through a dri_cpu_capacity structure, which has the following format. The kernel
extensions are not notified of changes in variable capacity weight in an uncapped
Micro-Partitioning environment.

*/
struct dri_cpu_capacity {
uint64_t ent_capacity; /* partition current entitled capacity*/
int delta_ent_cap; /* delta capacity added/removed*/
int status; /* capacity update constrained or not */
};

/*
* dri_cpu_capacity.status flags.
*/
#define CAP_UPDATE_SUCCESS 0x0
#define CAP_UPDATE_CONSTRAINED 0x1

Note: The capacity update is constrained by the Hypervisor.

If the request is memory capacity based, the resource_info data is provided through a
dri_mem_capacity structure, which has the following format:

struct dri_mem_capacity {
size64_t mem_capacity; /* partition current entitled capacity*/
ssize64_t delta_mem_capacity;
uint flags;
int status; /* capacity update constrained or not */
uchar reserved[7];
};

/*
* dri_mem_capacity.status flags.
*/

#define CAP_UPDATE_SUCCESS 0x0
#define CAP_UPDATE_CONSTRAINED 0x1

Chapter 1. Kernel Services 409

req Indicates the following DLPAR operation to be performed by the handler:

v DR_PMIG_CHECK

v DR_PMIG_PRE

v DR_PMIG_POST

v DR_PMIG_POST_ERROR

v DR_CAP_ADD_CHECK

v DR_CAP_ADD_PRE

v DR_CAP_ADD_POST

v DR_CAP_ADD_POST_ERROR

v DR_CAP_REMOVE_CHECK

v DR_CAP_REMOVE_PRE

v DR_CAP_REMOVE_POST

v DR_CAP_REMOVE_POST_ERROR

v DR_CPU_ADD_CHECK

v DR_CPU_ADD_PRE

v DR_CPU_ADD_POST

v DR_CPU_ADD_POST_EEROR

v DR_CPU_REMOVE_CHECK

v DR_CPU_REMOVE_PRE

v DR_CPU_REMOVE_POST

v DR_CPU_REMOVE_POST_ERROR

v DR_MEM_ADD_CHECK

v DR_MEM_ADD_OP_POST

v DR_MEM_ADD_PRE

v DR_MEM_ADD_POST

v DR_MEM_ADD_POST_ERROR

v DR_MEM_REMOVE_CHECK

v DR_MEM_REMOVE_OP_POST

v DR_MEM_REMOVE_OP_PRE

v DR_MEM_REMOVE_PRE

v DR_MEM_REMOVE_POST

v DR_MEM_REMOVE_POST_ERROR

List of dr_kevent_t events
The following events are used with the reconfig_register_list() call for the event_list array:

v DR_KEVENT_CPU_ADD_CHECK

v DR_KEVENT_CPU_ADD_PRE

v DR_KEVENT_CPU_ADD_POST

v DR_KEVENT_CPU_ADD_POST_ERROR

v DR_KEVENT_CPU_RM_CHECK

v DR_KEVENT_CPU_RM_PRE

v DR_KEVENT_CPU_RM_POST

v DR_KEVENT_CPU_RM_POST_ERROR

v DR_KEVENT_MEM_ADD_CHECK

v DR_KEVENT_MEM_ADD_PRE

v DR_KEVENT_MEM_ADD_POST

410 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

v DR_KEVENT_MEM_ADD_POST_ERROR

v DR_KEVENT_MEM_RM_CHECK

v DR_KEVENT_MEM_RM_PRE

v DR_KEVENT_MEM_RM_POST

v DR_KEVENT_MEM_RM_POST_ERROR

v DR_KEVENT_MEM_ADD_RES

v DR_KEVENT_MEM_RM_RES

v DR_KEVENT_CPU_CAP_ADD_CHECK

v DR_KEVENT_CPU_CAP_ADD_PRE

v DR_KEVENT_CPU_CAP_ADD_POST

v DR_KEVENT_CPU_CAP_ADD_POST_ERROR

v DR_KEVENT_CPU_CAP_RM_CHECK

v DR_KEVENT_CPU_CAP_RM_PRE

v DR_KEVENT_CPU_CAP_RM_POST

v DR_KEVENT_CPU_CAP_RM_POST_ERROR

v DR_KEVENT_MEM_RM_OP_PRE

v DR_KEVENT_MEM_RM_OP_POST

v DR_KEVENT_MEM_ADD_OP_POST

v DR_KEVENT_PMIG_CHECK

v DR_KEVENT_PMIG_PRE

v DR_KEVENT_PMIG_POST

v DR_KEVENT_PMIG_POST_ERROR

v DR_KEVENT_PMIG_POST_INTERNAL

v DR_KEVENT_WMIG_CHECK

v DR_KEVENT_WMIG_PRE

v DR_KEVENT_WMIG_POST

v DR_KEVENT_WMIG_POST_ERROR

v DR_KEVENT_WMIG_CHECKPOINT_CHECK

v DR_KEVENT_WMIG_CHECKPOINT_PRE

v DR_KEVENT_WMIG_CHECKPOINT_DOIT

v DR_KEVENT_WMIG_CHECKPOINT_ERROR

v DR_KEVENT_WMIG_CHECKPOINT_POST

v DR_KEVENT_WMIG_CHECKPOINT_POST_ERROR

v DR_KEVENT_WMIG_RESTART_CHECK

v DR_KEVENT_WMIG_RESTART_PRE

v DR_KEVENT_WMIG_RESTART_DOIT

v DR_KEVENT_WMIG_RESTART_ERROR

v DR_KEVENT_WMIG_RESTART_POST

v DR_KEVENT_WMIG_RESTART_POST_ERROR

v DR_KEVENT_MEM_CAP_ADD_CHECK

v DR_KEVENT_MEM_CAP_ADD_PRE

v DR_KEVENT_MEM_CAP_ADD_POST

v DR_KEVENT_MEM_CAP_ADD_POST_ERROR

v DR_KEVENT_MEM_CAP_RM_CHECK

v DR_KEVENT_MEM_CAP_RM_PRE

Chapter 1. Kernel Services 411

v DR_KEVENT_MEM_CAP_RM_POST

v DR_KEVENT_MEM_CAP_RM_POST_ERROR

v DR_KEVENT_MEM_CAP_WGT_ADD_CHECK

v DR_KEVENT_MEM_CAP_WGT_ADD_PRE

v DR_KEVENT_MEM_CAP_WGT_ADD_POST

v DR_KEVENT_MEM_CAP_WGT_ADD_POST_ERROR

v DR_KEVENT_MEM_CAP_WGT_RM_CHECK

v DR_KEVENT_MEM_CAP_WGT_RM_PRE

v DR_KEVENT_MEM_CAP_WGT_RM_POST

v DR_KEVENT_MEM_CAP_WGT_RM_POST_ERROR

v DR_KEVENT_TOPOLOGY_PRE

v DR_KEVENT_TOPOLOGY_POST

v DR_KEVENT_AME_FACTOR_CHECK

v DR_KEVENT_AME_FACTOR_PRE

v DR_KEVENT_AME_FACTOR_POST

v DR_KEVENT_AME_FACTOR_POST_ERROR

Return Values
Upon successful completion, the reconfig_register, reconfig_register_ext and reconfig_unregister
kernel services return zero. If unsuccessful, the appropriate errno value is returned.

Execution Environment
The reconfig_register, reconfig_register_ext, reconfig_unregister, and handler interfaces are invoked
in the process environment only.

The reconfig_complete kernel service may be invoked in the process or interrupt environment.

Related Information
Making Kernel Extensions DLPAR-Aware in AIX Version 6.1 General Programming Concepts: Writing and
Debugging Programs.

refmon Kernel Service

Purpose
Performs various access checks such as privileges, authorizations, discretionary access control checks
and so on.

Syntax
#include <refmon.h>

int refmon (crp, action, flags, nargs, args[])
cred_t *crp;
rfm_action_t action;
uint_t flags;
int nargs;
void *args[];

412 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

crp Specifies the caller’s (subject) credentials; If NULL, then current process credentials are
referenced.

action Specifies the type of access check that needs to be carried out.
flags Enables auditing of this event. You can only set this parameter to the value of REFMON_AUDIT.
nargs Specifies the number of arguments in the args parameter.
args Specifies an array of void pointers used as input to the refmon kernel service based on the action

parameter.

Description
The refmon kernel service provides an interface to perform various access checks. You can call the
refmon kernel service to determine access to system resources. Most of the actions that are passed to
the refmon kernel service check for specific privileges. Many of the system calls and kernel services call
the refmon kernel service to check whether you are authorized or privileged to use such functions. The
action parameter determines which type of checks needs to be performed. The sys/refmon.h header file
contains a complete list of these actions and their corresponding description.

Execution Environment
The refmon kernel service can be called from the process environment only.

Return Values

0 Success.
EINVAL The action parameter is not valid or a value that is not allowed is passed in for an action.
EPERM The caller does not have permission to perform the intended action.

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

register_HA_handler Kernel Service

Purpose
Registers a High Availability Event Handler with the Kernel.

Syntax
#include <sys/high_avail.h>

int register_HA_handler (ha_handler)
ha_handler_ext_t * ha_handler;

Parameter

ha_handler Specifies a pointer to a structure of the type
ha_handler_ext_t as defined in /usr/include/sys/
high_avail.h.

Chapter 1. Kernel Services 413

Description
The register_HA_handler kernel registers the High Availability Event Handler (HAEH) function to those
kernel extensions that need to be made aware of high availability events such as processor deallocation.
This function is called by the kernel, at base level, when a high availability event is initiated, due to some
hardware fault.

The ha_handler_ext_t structure has 3 fields:

Field Description
_fun Contains a pointer to the high availability event handler

function.
_data Contains a user defined value which will be passed as an

argument by the kernel when calling the function.
_name Component name

When a high availability event is initiated, the kernel calls _fun() at base level (that is, process
environment) with 2 parameters:

v The first is the data the user passed in the _data field at registration time.

v The second is a pointer to a haeh_event_t structure defined in /usr/include/sys/high_avail.h.

The fields of interest in this structure are:

Field Description
_magic Identifies the event type. The only possible value is HA_CPU_FAIL.
dealloc_cpu The logical number of the CPU being deallocated.

The high availability even handler, in addition to user specific functions, must unbind its threads bound to
dealloc_cpu and stop the timer request blocks (TRB) started by those bound threads when applicable.

The high availability event handler must return one of the following values:

Value Description
HA_ACCEPTED The user processing of the event has succeeded.
HA_REFUSED The user processing of the event was not successful.

Any return value different from HA_ACCEPTED causes the kernel to abort the processing of the event. In
the case of a processor failure, the processor deallocation is aborted. In this case, a CPU_DEALLOC_ABORTED
error log entry is created, and the value passed in the _name field appears in the detailed data area of the
error log entry.

An extension may register the same HAEH N times (N > 1). Although it is considered as an incorrect
behaviour, no error is reported. The given HAEH is invoked N times for each HA event. This handler has
to be unregistered as many times as it was registered.

Since the kernel calls the HAEH in turn, it is possible for a HAEH to be called multiple times for the same
event. The kernel extensions should be ready to deal with this possibility. For example, two kernel
extensions K1 and K2 have registered HA Handlers. A CPU deallocation is initiated. The HAEH for K1
gets invoked, does its job and returns HA_ACCEPTED. K2 gets invoked next and for some reason returns
HA_REFUSED. The deallocation is aborted, and an error log entry reports K2 as the reason for failure. Later,
the system administer unloads K2 and restarts the deallocation by manually running ha_star. The result is
that the HAEH for K1 gets invoked again with the same parameters.

Execution Environment
The register_HA_handler kernel service can be called from the process environment only.

414 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

0 Indicates a successful operation.

A non zero value indicates an error.

Related Information
The unregister_HA_handler kernel service.

The RAS Kernel Services in the AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

rmalloc Kernel Service

Purpose
Allocates an area of memory from the real_heap heap.

Syntax
#include <sys/types.h>

caddr_t rmalloc (size, align)
int size
int align

Parameters

size Specifies the number of bytes to allocate.
align Specifies alignment characteristics.

Description
The rmalloc kernel service allocates an area of memory from the contiguous real memory heap. This area
is the number of bytes in length specified by the size parameter and is aligned on the byte boundary
specified by the align parameter. The align parameter is actually the log base 2 of the desired address
boundary. For example, an align value of 4 requests that the allocated area be aligned on a 16-byte
boundary.

The contiguous real memory heap, real_heap, is a heap of contiguous real memory pages located in the
low 16MB of real memory. This heap is virtually mapped into the kernel extension’s address space. By
nature, this heap is implicitly pinned, so no explicit pinning of allocated regions is necessary.

The real_heap heap is useful for devices that require DMA transfers greater than 4K but do not provide a
scatter/gather capability. Such a device must be given contiguous bus addresses by its device driver. The
device driver should pass the DMA_CONTIGUOUS flag on its d_map_init call in order to obtain
contiguous mappings. On certain platforms it is possible that a d_map_init call using the
DMA_CONTIGUOUS flag could fail. In this case, the device driver can make use of the real_heap heap
(using rmalloc) to obtain contiguous bus addresses for its device driver. Because the real_heap heap is a
limited resource, device drivers should always attempt to use the DMA_CONTIGUOUS flag first.

On unsupported platforms, the rmalloc service returns NULL if the requested memory cannot be
allocated.

The rmfree kernel service should be called to free allocation from a previous rmalloc call. The rmalloc
kernel service can be called from the process environment only.

Chapter 1. Kernel Services 415

Return Values
Upon successful completion, the rmalloc kernel service returns the address of the allocated area. A NULL
pointer is returned if the requested memory cannot be allocated.

Related Information
The rmfree kernel service.

rmfree Kernel Service

Purpose
Frees memory allocated by the rmalloc kernel service.

Syntax
#include <sys/types.h>

int rmfree (pointer, size)
caddr_t pointer
int size

Parameters

pointer Specifies the address of the area in memory to free.
size Specifies the size of the area in memory to free.

Description
The rmfree kernel service frees the area of memory pointed to by the pointer parameter in the contiguous
real memory heap. This area of memory must be allocated with the rmalloc kernel service, and the
pointer must be the pointer returned from the corresponding rmalloc kernel service call. Also, the size
must be the same size that was used on the corresponding rmalloc call.

Any memory allocated in a prior rmalloc call must be explicitly freed with an rmfree call. This service can
be called from the process environment only.

Return Values

0 Indicates successful completion.
-1 Indicates one of the following:

v The area was not allocated by the rmalloc kernel service.

v The heap was not initialized for memory allocation.

Related Information
The rmalloc kernel service.

rmmap_create Kernel Service

Purpose
Defines an Effective Address [EA] to Real Address [RA] translation region.

416 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/ioacc.h>
#include <sys/adspace.h>

int rmmap_create (eaddrp, iomp, flags)
void **eaddrp;
struct io_map *iomp;
int flags;

Parameters

eaddr Desired process effective address of the mapping region.
iomp The bus memory to which the effective address described by the eaddr parameter should correspond. For

real memory, the bus id should be set to REALMEM_BID and the bus address should be set to the real
memory address. The size field must be at least PAGESIZE, no larger than SEGSIZE, and a multiple of
PAGESIZE. The key should be set to IO_MEM_MAP. The flags field is not used.

flags The flags select page and segment attributes of the translation. Not all page attribute flags are compatible.
See below for the valid combinations of page attribute flags.

RMMAP_PAGE_W
PowerPC ″Write Through″ page attribute. Write-through mode is not supported, and if this flag is
set, EINVAL is reported.

RMMAP_PAGE_I
PowerPC ″Cache Inhibited″ page attribute. This flag is valid for I/O mappings, but is not allowed
for real memory mappings.

RMMAP_PAGE_M
PowerPC ″Memory Coherency Required″ page attribute. This flag is optional for I/O mappings;
however, it is required for memory mappings. The default operating mode for real memory pages
has this bit set.

RMMAP_PAGE_G
PowerPC ″Guarded″ page attribute. This flag is optional for I/O mappings, and must be 0 for real
memory mappings. Note that although optional for I/O, it is strongly recommended that this be set
for I/O mappings. When set, the processor will not make unnecessary (speculative) references to
the page. This includes out of order read/write operations and branch fetching. When clear, normal
PowerPC speculative execution rules apply. This bit does not exist on the PowerPC 601 RISC
Microprocessor (running AIX 5.1 or earlier) and is ignored.

RMMAP_RDONLY
When set, the page protection bits used in the HTAB will not allow write operations regardless of
the setting of the key bit in the associated segment register. Exactly one of RMMAP_RDONLY
and RMMAP_RDWR must be specified.

RMMAP_RDWR
When set, the page protection bits used in the HTAB will allow read and write operations
regardless of the setting of the key bit in the associated segment register. Exactly one of:
RMMAP_RDONLY, and RMMAP_RDWR must be specified.

RMMAP_PRELOAD
When set, the protection attributes of this region will be entered immediately into the hardware
page table. This is very slow initially, but prevents each referenced page in the region from faulting
in separately. This is only advisory. This flag is not maintained as an attribute of the map region, it
is used only during the current call.

RMMAP_INHERIT
When set, this specifies that the translation region created by this rmmap_create invocation
should be inherited on a fork operation, to the child process. This inheritance is achieved with
copy-semantics. That is to say that the child will have its own private mapping to the same I/O or
real memory address range as the parent.

Chapter 1. Kernel Services 417

Description
The translation regions created with rmmap_create kernel service are maintained in I/O mapping
segments. Any single such segment may translate up to 256 Megabytes of real memory or memory
mapped I/O in a single region. The only granularity for which the rmmap_remove service may be invoked
is a single mapping created by a single call to the rmmap_create.

There are constraints on the size of the mapping and the flags parameter, described later, which will cause
the call to fail regardless of whether adequate effective address space exists.

If rmmap_create kernel service is called with the effective address of zero (0), the function attempts to
find free space in the process address space. If successful, an I/O mapping segment is created and the
effective address (which is passed by reference) is changed to the effective address which is mapped to
the first page of the iomp memory.

If rmmap_create kernel service is called with a non-zero effective address, it is taken as the desired
effective address which should translate to the passed iomp memory. This function verifies that the
requested range is free. If not, it fails and returns EINVAL. If the mapping at the effective address is not
contained in a single segment, the function fails and returns ENOSPC. Otherwise, the region is allocated
and the effective address is not modified. The effective address is mapped to the first page of the iomp
memory. References outside of the mapped regions but within the same segment are invalid.

The effective address (if provided) and the bus address must be a multiple of PAGESIZE or EINVAL is
returned.

I/O mapping segments are not inherited by child processes after a fork subroutine.

I/O mapping segments are not inherited by child processes after a fork subroutine, except when
RMMAP_INHERIT is specified. These segments are deleted by exec, exit, or rmmap_remove of the last
range in a segment.

Only certain combinations of flags are permitted, depending on the type of memory being mapped. For
real memory mappings, RMMAP_PAGE_M is required while RMMAP_PAGE_W, RMMAP_PAGE_I, and
RMMAP_PAGE_G are not allowed. For I/O mappings, it is valid to specify only RMMAP_PAGE_M, with
no other page attribute flags. It is also valid to specify RMMAP_PAGE_I and optionally, either or both of
RMMAP_PAGE_M, and RMMAP_PAGE_G. RMMAP_PAGE_W is never allowed.

The real address range described by the iomp parameter must be unique within this I/O mapping segment.

Execution Environment
The rmmap_create kernel service can only be called from the process environment.

Return Values
On successful completion, rmmap_create kernel service returns zero and modifies the effective address
to the value at which the newly created mapping region was attached to the process address space.
Otherwise, it returns one of:

EINVAL Some type of parameter error occurred. These include, but are not limited to, size errors and mutually
exclusive flag selections.

ENOMEM The operating system could not allocate the necessary data structures to represent the mapping.
ENOSPC Effective address space exhausted in the region indicated by eaddr.
EPERM This hardware platform does not implement this service.

418 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Implementation Specifics
This service only functions on PowerPC microprocessors.

Related Information
The rmmap_remove kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

rmmap_getwimg Kernel Service

Purpose
Returns wimg information about a particular effective address range within an effective address to real
address translation region.

Syntax
#include <sys/adspace.h>

int rmmap_getwimg(eaddr, npages, results)
unsigned long long eaddr;
unsigned int npages;
char* results;

Parameters

eaddr The process effective address of the start of the desired mapping region. This address should point
somewhere inside the first page of the range. This address is interpreted as a 64-bit quantity if the
current user address space is 64-bits, and is interpreted as a 32-bit (not remapped) quantity if the
current user address space is 32-bits.

npages The number of pages whose wimg information is returned, starting from the page indicated by eaddr.
results This is an array of bytes, where the wimg information is returned. The address of this is passed in by

the caller, and rmmap_getwimg stores the wimg information for each page in the range in each
successive byte in this array. The size of this array is indicated by npages as specified by the caller.
The caller is responsible for ensuring that the storage allocated for this array is large enough to hold
npage bytes.

Description
The wimg information corresponding to the input effective address range is returned.

This routine only works for regions previously mapped with an I/O mapping segment as created by
rmmap_create.

npages should not be such that the range crosses a segment boundary. If it does, EINVAL is returned.

The wimg information is returned in the results array. Each element of the results array is a character.
Each character may be added with the following fields to examine wimg information: RMMAP_PAGE_W,
RMMAP_PAGE_I, RMMAP_PAGE_M or RMMAP_PAGE_G. The array is valid if the return value is 0.

Execution Environment
The rmmap_getwimg kernel service is called from the process environment only.

Chapter 1. Kernel Services 419

Return Values

0 Successful completion. Indicates that the results array is valid and should be examined.
EINVAL

An error occurred. Most likely the region was not mapped via rmmap_create previously..
EINVAL Input range crosses a certain boundary.
EINVAL The hardware platform does not implement this service.

Implementation Specifics
This service only functions on PowerPC microprocessors.

Related Information
The rmmap_create kernel service, the rmmap_remove kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

rmmap_remove Kernel Service

Purpose
Destroys an effective address to real address translation region.

Syntax
#include <sys/adspace.h>
int rmmap_remove (eaddrp);
void **eaddrp;

Parameters

eaddrp Pointer to the process effective address of the desired mapping region.

Description
Destroys an effective address to real address translation region. If rmmap_remove kernel service is called
with the effective address within the region of a previously created I/O mapping segment, the region is
destroyed. This service must be called from the process level.

Execution Environment
The rmmap_remove kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
EINVAL The provided eaddr does not correspond to a valid I/O mapping segment.
EINVAL This hardware platform does not implement this service.

Implementation Specifics
This service only functions on PowerPC microprocessors.

420 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
The rmmap_create Kernel Service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

rtalloc Kernel Service

Purpose
Allocates a route.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/route.h>

void rtalloc (ro)
register struct route *ro;

Parameter

ro Specifies the route.

Description
The rtalloc kernel service allocates a route, which consists of a destination address and a reference to a
routing entry.

Execution Environment
The rtalloc kernel service can be called from either the process or interrupt environment.

Return Values
The rtalloc service has no return values.

Example
To allocate a route, invoke the rtalloc kernel service as follows:
rtalloc(ro);

Related Information
Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

rtalloc_gr Kernel Service

Purpose
Allocates a route.

Chapter 1. Kernel Services 421

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/route.h>

void rtalloc_gr (ro, gidlist)
register struct route *ro;
struct gidstruct *gidlist;

Parameter

ro Specifies the route.
gidlist Points to the group list.

Description
The rtalloc_gr kernel service allocates a route, which consists of a destination address and a reference to
a routing entry.

A route can be allocated only if its group id restrictions specify that it can be used by a user with the gidlist
that is passed in.

Execution Environment
The rtalloc_gr kernel service can be called from either the process or interrupt environment.

Return Values
The rtalloc_gr service has no return values.

Example
To allocate a route, invoke the rtalloc_gr kernel service as follows:
rtalloc_gr (ro, gidlist);

Related Information
Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

The rtalloc kernel service.

rtfree Kernel Service

Purpose
Frees the routing table entry.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/route.h>

int rtfree (rt)
register struct rtentry *rt;

422 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameter

rt Specifies the routing table entry.

Description
The rtfree kernel service frees the entry it is passed from the routing table. If the route does not exist, the
panic service is called. Otherwise, the rtfree service frees the mbuf structure that contains the route and
decrements the routing reference counters.

Execution Environment
The rtfree kernel service can be called from either the process or interrupt environment.

Return Values
The rtfree kernel service has no return values.

Example
To free a routing table entry, invoke the rtfree kernel service as follows:
rtfree(rt);

Related Information
The panic kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

rtinit Kernel Service

Purpose
Sets up a routing table entry typically for a network interface.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/socket.h>
#include <net/route.h>

int rtinit (ifa, cmd, flags)
struct ifaddr * ifa;
int cmd, flags;

Parameters

ifa Specifies the address of an ifaddr structure containing destination address, interface address, and
netmask.

cmd Specifies a request to add or delete route entry.
flags Identifies routing flags, as defined in the /usr/include/net/route.h file.

Description
The rtinit kernel service creates a routing table entry for an interface. It builds an rtentry structure using
the values in the ifa and flags parameters.

Chapter 1. Kernel Services 423

The rtinit service then calls the rtrequest kernel service and passes the cmd parameter and the rtentry
structure to process the request. The cmd parameter contains either the value RTM_ADD (a request to
add the route entry) or the value RTM_DELETE (delete the route entry). Valid routing flags to set are
defined in the /usr/include/route.h file.

Execution Environment
The rtinit kernel service can be called from either the process or interrupt environment.

Return Values
The rtinit kernel service returns values from the rtrequest kernel service.

Example
To set up a routing table entry, invoke the rtinit kernel service as follows:

rtinit(ifa, RMT_ADD, flags (RTF_DYNAMIC);

Related Information
The rtrequest kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

rtredirect Kernel Service

Purpose
Forces a routing table entry with the specified destination to go through a given gateway.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>
#include <net/route.h>

rtredirect (dst, gateway, netmask, flags, src, rtp)
struct sockaddr *dst, *gateway, *netmask, *src;
int flags;
struct rtentry **rtp;

Parameters

dst Specifies the destination address.
gateway Specifies the gateway address.
netmask Specifies the network mask for the route.
flags Indicates routing flags as defined in the /usr/include/net/route.h file.
src Identifies the source of the redirect request.
rtp Indicates the address of a pointer to a rtentry structure. Used to return a constructed route.

424 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The rtredirect kernel service forces a routing table entry for a specified destination to go through the given
gateway. Typically, the rtredirect service is called as a result of a routing redirect message from the
network layer. The dst, gateway, and flags parameters are passed to the rtrequest kernel service to
process the request.

Execution Environment
The rtredirect kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates a successful operation.

If a bad redirect request is received, the routing statistics counter for bad redirects is incremented.

Example
To force a routing table entry with the specified destination to go through the given gateway, invoke the
rtredirect kernel service:
rtredirect(dst, gateway, netmask, flags, src, rtp);

Related Information
The rtinit kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

rtrequest Kernel Service

Purpose
Carries out a request to change the routing table.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>
#include <net/if.h>
#include <net/af.h>
#include <net/route.h>

int rtrequest (req, dst, gateway, netmask, flags, ret_nrt)
int req;
struct sockaddr *dst, *gateway, *netmask;
int flags;
struct rtentry **ret_nrt;

Parameters

req Specifies a request to add or delete a route.
dst Specifies the destination part of the route.
gateway Specifies the gateway part of the route.
netmask Specifies the network mask to apply to the route.
flags Identifies routing flags, as defined in the /usr/include/net/route.h file.

Chapter 1. Kernel Services 425

ret_nrt Specifies to return the resultant route.

Description
The rtrequest kernel service carries out a request to change the routing table. Interfaces call the
rtrequest service at boot time to make their local routes known for routing table ioctl operations. Interfaces
also call the rtrequest service as the result of routing redirects. The request is either to add (if the req
parameter has a value of RMT_ADD) or delete (the req parameter is a value of RMT_DELETE) the route.

Execution Environment
The rtrequest kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates a successful operation.
ESRCH Indicates that the route was not there to delete.
EEXIST Indicates that the entry the rtrequest service tried to add already exists.
ENETUNREACH Indicates that the rtrequest service cannot find the interface for the route.
ENOBUFS Indicates that the rtrequest service cannot get an mbuf structure to add an entry.

Example
To carry out a request to change the routing table, invoke the rtrequest kernel service as follows:
rtrequest(RTM_ADD, dst, gateway, netmask, flags, &rtp);

Related Information
The rtinit kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

rtrequest_gr Kernel Service

Purpose
Carries out a request to change the routing table.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>
#include <net/if.h>
#include <net/af.h>
#include <net/route.h>

int rtrequest_gr (req, dst, gateway, netmask, flags, ret_nrt, rt_parm)
int req;
struct sockaddr *dst, *gateway, *netmask;
int flags;
struct rtentry **ret_nrt;
struct rtreq_parm *rt_parm;

426 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

req Specifies a request to add or delete a route.
dst Specifies the destination part of the route.
gateway Specifies the gateway part of the route.
netmask Specifies the network mask to apply to the route.
flags Identifies routing flags, as defined in the /usr/include/net/route.h file.
ret_nrt Specifies to return the resultant route.
rt_parm Points to the rtreq_parm structure. The /usr/include/net/radix.h file contains the rtreq_parm

structure. Through this structure, the route attributes like group list, policy, weight, WPAR ID, interface
can be specified.

Description
The rtrequest_gr kernel service carries out a request to change the routing table. Interfaces call the
rtrequest_gr service at boot time to make their local routes known for routing table ioctl operations.
Interfaces also call the rtrequest_gr service as the result of routing redirects. The request is either to add
(if the req parameter has a value of RMT_ADD) or delete (the req parameter is a value of RMT_DELETE)
the route.

Execution Environment
The rtrequest_gr kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates a successful operation.
ESRCH Indicates that the route was not there to delete.
EEXIST Indicates that the entry the rtrequest_gr service tried to add already exists.
ENETUNREACH Indicates that the rtrequest_gr service cannot find the interface for the route.
ENOBUFS Indicates that the rtrequest_gr service cannot get an mbuf structure to add an entry.

Example
To carry out a request to change the routing table, invoke the rtrequest_gr kernel service as follows:
rtrequest_gr(RTM_ADD, dst, gateway, netmask, flags, &rtp, &rtreq);

Related Information
The rtinit kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

The rtrequest kernel service.

rusage_incr Kernel Service

Purpose
Increments a field of the rusage structure.

Syntax
#include <sys/encap.h>

Chapter 1. Kernel Services 427

void rusage_incr (field, amount)
int field;
int amount;

Parameters

field Specifies the field to increment. It must have one of the following values:

RUSAGE_INBLOCK
Denotes the ru_inblock field. This field specifies the number of times the file system performed
input.

RUSAGE_OUTBLOCK
Denotes the ru_outblock field. This field specifies the number of times the file system performed
output.

RUSAGE_MSGRCV
Denotes the ru_msgrcv field. This field specifies the number of IPC messages received.

RUSAGE_MSGSENT
Denotes the ru_msgsnd field. This field specifies the number of IPC messages sent.

amount Specifies the amount to increment to the field.

Description
The rusage_incr kernel service increments the field specified by the field parameter of the calling process’
rusage structure by the amount amount.

Execution Environment
The rusage_incr kernel service can be called from the process environment only.

Return Values
The rusage_incr kernel service has no return values.

Related Information
The getrusage subroutine.

schednetisr Kernel Service

Purpose

Schedules or invokes a network software interrupt service routine.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/netisr.h>

int schednetisr (anisr)
int anisr;

428 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameter

anisr Specifies the software interrupt number to issue. Refer to netisr.h for the range of values of anisr that are
already in use. Also, other kernel extensions that are not AIX and that use network ISRs currently running
on the system can make use of additional values not mentioned in netisr.h.

Description
The schednetisr kernel service schedules or calls a network interrupt service routine. The add_netisr
kernel service establishes interrupt service routines. If the service was added with a service level of
NET_OFF_LEVEL, the schednetisr kernel service directly calls the interrupt service routine. If the service
level was NET_KPROC, a network kernel dispatcher is notified to call the interrupt service routine.

Execution Environment
The schednetisr kernel service can be called from either the process or interrupt environment.

Return Values

EFAULT Indicates that a network interrupt service routine does not exist for the specified interrupt number.
EINVAL Indicates that the anisr parameter is out of range.

Related Information
The add_netisr kernel service, del_netisr kernel service.

Network Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

selnotify Kernel Service

Purpose

Wakes up processes waiting in a poll or select subroutine or in the fp_poll kernel service.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

void selnotify (id, subid, rtnevents)
int id;
int subid;
ushort rtnevents;

Parameters

id Indicates a primary resource identification value. This value along with the subidentifier (specified
by the subid parameter) is used by the kernel to notify the appropriate processes of the occurrence
of the indicated events. If the resource on which the event has occurred is a device driver, this
parameter must be the device major/minor number (that is, a dev_t structure that has been cast to
an int). The kernel has reserved values for the id parameter that do not conflict with possible
device major or minor numbers for sockets, message queues, and named pipes.

subid Helps identify the resource on which the event has occurred for the kernel. For a multiplexed
device driver, this is the number of the channel on which the requested events occurred. If the
device driver is nonmultiplexed, the subid parameter must be set to 0.

Chapter 1. Kernel Services 429

rtnevents Consists of a set of bits indicating the requested events that have occurred on the specified device
or channel. These flags have the same definition as the event flags that were provided by the
events parameter on the unsatisfied call to the object’s select routine.

Description
The selnotify kernel service should be used by device drivers that support select or poll operations. It is
also used by the kernel to support select or poll requests to sockets, named pipes, and message queues.

The selnotify kernel service wakes up processes waiting on a select or poll subroutine. The processes to
be awakened are those specifying the given device and one or more of the events that have occurred on
the specified device. The select and poll subroutines allow a process to request information about one or
more events on a particular device. If none of the requested events have yet happened, the process is put
to sleep and re-awakened later when the events actually happen.

The selnotify service should be called whenever a previous call to the device driver’s ddselect entry point
returns and both of the following conditions apply:

v The status of all requested events is false.

v Asynchronous notification of the events is requested.

The selnotify service can be called for other than these conditions but performs no operation.

Sequence of Events for Asynchronous Notification
The device driver must store information about the events requested while in the driver’s ddselect routine
under the following conditions:

v None of the requested events are true (at the time of the call).

v The POLLSYNC flag is not set in the events parameter.

The POLLSYNC flag, when not set, indicates that asynchronous notification is desired. In this case, the
selnotify service should be called when one or more of the requested events later becomes true for that
device and channel.

When the device driver finds that it can satisfy a select request, (perhaps due to new input data) and an
unsatisfied request for that event is still pending, the selnotify service is called with the following items:

v Device major and minor number specified by the id parameter

v Channel number specified by the subid parameter

v Occurred events specified by the rtnevents parameter

These parameters describe the device instance and requested events that have occurred on that device.
The notifying device driver then resets its requested-events flags for the events that have occurred for that
device and channel. The reset flags thus indicate that those events are no longer requested.

If the rtnevents parameter indicated by the call to the selnotify service is no longer being waited on, no
processes are awakened.

Execution Environment
The selnotify kernel service can be called from either the process or interrupt environment.

Return Values
The selnotify service has no return values.

430 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Implementation Specifics
The selnotify kernel service is part of Base Operating System (BOS) Runtime.

Related Information
The ddselect device driver entry point.

The fp_poll kernel service, fp_select kernel service, selreg kernel service.

The poll subroutine, select subroutine.

Kernel Extension and Device Driver Management Kernel Services in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

selreg Kernel Service

Purpose

Registers an asynchronous poll or select request with the kernel.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/poll.h>

int selreg (corl, dev_id, unique_id, reqevents, notify)
int corl;
int dev_id;
int unique_id;
ushort reqevents;
void (*notify) ();

Parameters

corl The correlator for the poll or select request. The corl parameter is used by the poll and select
subroutines to correlate the returned events in a specific select control block with a process’ file
descriptor or message queue.

dev_id Primary resource identification value. Along with the unique_id parameter, the dev_id parameter is
used to record in the select control block the resource on which the requested poll or select events
are expected to occur.

unique_id Unique resource identification value. Along with the dev_id parameter, the unique_id parameter
denotes the resource on which the requested events are expected to occur. For a multiplexed
device driver, this parameter specifies the number of the channel on which the requested events
are expected to occur. For a nonmultiplexed device driver, this parameter must be set to 0.

reqevents Requested events parameter. The reqevents parameter consists of a set of bit flags denoting the
events for which notification is being requested. These flags have the same definitions as the event
flags provided by the events parameter on the unsatisfied call to the object’s select subroutine (see
the sys/poll.h file for the definitions).
Note: The POLLSYNC bit flag should not be set in this parameter.

notify Notification routine entry point. This parameter points to a notification routine used for nested poll
and select calls.

Chapter 1. Kernel Services 431

Description
The selreg kernel service is used by select file operations in the top half of the kernel to register an
unsatisfied asynchronous poll or select event request with the kernel. This registration enables later calls
to the selnotify kernel service from resources in the bottom half of the kernel to correctly identify
processes awaiting events on those resources.

The event requests may originate from calls to the poll or select subroutine, from processes, or from calls
to the fp_poll or fp_select kernel service. A select file operation calls the selreg kernel service under the
following circumstances:

v The poll or select request is asynchronous (the POLLSYNC flag is not set for the requested event’s bit
flags).

v The poll or select request determines (by calling the underlying resource’s ddselect entry point) that the
requested events have not yet occurred.

A registered event request takes the form of a select control block. The select control block is a structure
containing the following:

v Requested event bit flags

v Returned event bit flags

v Primary resource identifier

v Unique resource identifier

v Pointer to a proc table entry

v File descriptor correlator

v Pointer to a notification routine that is non-null only for nested calls to the poll and select subroutines

The selreg kernel service allocates and initializes a select control block each time it is called.

When an event occurs on a resource that supports the select file operation, the resource calls the
selnotify kernel service. The selnotify kernel service locates all select control blocks whose primary and
unique identifiers match those of the resource, and whose requested event flags match the occurred
events on the resource. Then, for each of the matching control blocks, the selnotify kernel service takes
one of two courses of action, depending upon whether the control block’s notification routine pointer is
non-null (nested) or null (non-nested):

v In nested calls to the select or poll subroutines, the notification routine is called with the primary and
unique resource identifiers, the returned event bit flags, and the process identifiers.

v In non-nested calls to the select or poll subroutine (the usual case), the SSEL bit of the process
identified in the block is cleared, the returned event bit flags in the block are updated, and the process
is awakened. A process awakened in this manner completes the poll or select call in which it was
sleeping. The poll or select subroutine then collects the returned event bit flags in its processes’ select
control blocks for return to the user mode process, deallocates the control blocks, and returns tallys of
the numbers of requested events that occurred to the user process.

Execution Environment
The selreg kernel service can be called from the process environment only.

Returns Values

0 Indicates successful completion.
EAGAIN Indicates the selreg kernel service was unable to allocate a select control block.

432 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
The ddselect device driver entry point.

The fp_poll kernel service, fp_select kernel service, selnotify kernel service.

The poll subroutine, select subroutine.

Select and Poll Support and Kernel Extension and Device Driver Management Kernel Services in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

set_pag or set_pag64 Kernel Service

Purpose
Sets a Process Authentication Group (PAG) value for the current process.

Syntax
#include <sys/cred.h>

int set_pag (type, pag)
int type;
int pag;

int set_pag64 (type, pag)
int type;
uint64_t *pag;

Parameters

type PAG type to change
pag PAG value

Description
The set_pag or set_pag64 kernel service copies the requested PAG for the current process. The caller
must synchronize the set_pag and set_pag64 kernel services with validate_pag because set_pag and
set_pag64 do not lock process creation across the system. The value of type must be a defined PAG ID.
The PAG ID for the Distributed Computing Environment (DCE) is 0.

Execution Environment
The set_pag and set_pag64 kernel services can be called from the process environment only.

Return Values
A value of 0 is returned upon successful completion. Upon failure, a -1 is returned and errno is set to a
value that explains the error.

Error Codes
The set_pag and set_pag64 kernel services fails if one or both of the following conditions are true:

EINVAL Invalid PAG specification

Chapter 1. Kernel Services 433

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

setioctlrv Subroutine

Purpose
Sets a value to be returned by an ioctl routine.

Syntax
void setioctlrv (ioctlrv)
int ioctlrv;

Parameters

ioctlrv Specifies an integer value to be returned by a successful completion of the ioctl subroutine.

Description
The setioctlrv subroutine sets the value of the u_ioctlrv field in the uthread structure of the running
thread. The value in the u_ioctlrv field is returned by theioctl or fp_ioctl subroutine on a successful
completion. If the ioctl subroutine fails, an errno value is returned instead.

Return Values
The setioctlrv subroutine returns no return values.

Error Codes
The setioctlrv subroutine returns no error codes.

setjmpx Kernel Service

Purpose

Allows saving the current execution state or context.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int setjmpx (jump_buffer)
label_t *jump_buffer;

Parameter

jump_buffer Specifies the address of the caller-supplied jump buffer that was specified on the call to the
setjmpx service.

434 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The setjmpx kernel service saves the current execution state, or context, so that a subsequent longjmpx
call can cause an immediate return from the setjmpx service. The setjmpx service saves the context with
the necessary state information including:

v The current interrupt priority.

v Whether the process currently owns the kernel mode lock.

Other state variables include the nonvolatile general purpose registers, the current program’s table of
contents and stack pointers, and the return address.

Calls to the setjmpx service can be nested. Each call to the setjmpx service causes the context at this
point to be pushed to the top of the stack of saved contexts.

Execution Environment
The setjmpx kernel service can be called from either the process or interrupt environment.

Return Values

Nonzero value Indicates that a longjmpx call caused the setjmpx service to return.
0 Indicates any other circumstances.

Related Information
The clrjmpx kernel service, longjmpx kernel service.

Handling Signals While in a System Call, Exception Processing, Implementing Kernel Exception Handlers,
Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

setpinit Kernel Service

Purpose

Sets the parent of the current kernel process to the initialization process.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/device.h>

int setpinit()

Description
The setpinit kernel service can be called by a kernel process to set its parent process to the init process.
This is done to redirect the death of child signal for the termination of the kernel process. As a result, the
init process is allowed to perform its default zombie process cleanup.

The setpinit service is used by a kernel process that can terminate, but does not want the user-mode
process under which it was created to receive a death of child process notification.

Execution Environment
The setpinit kernel service can be called from the process environment only.

Chapter 1. Kernel Services 435

Return Values

0 Indicates a successful operation.
EINVAL Indicates that the current process is not a kernel process.

Related Information
Using Kernel Processes and Process and Exception Management Kernel Services in AIX Version 6.1
Kernel Extensions and Device Support Programming Concepts.

setuerror Kernel Service

Purpose
Allows kernel extensions to set the ut_error field for the current thread.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int setuerror (errno)
int errno;

Parameter

errno Contains a value found in the /usr/include/sys/errno.h file that is to be copied to the current thread
ut_error field.

Description
The setuerror kernel service allows a kernel extension in a process environment to set the ut_error field
in current thread’s uthread structure. Kernel extensions providing system calls available to user-mode
applications typically use this service. For system calls, the value of the ut_error field in the per thread
uthread structure is copied to the errno global variable by the system call handler before returning to the
caller.

Execution Environment
The setuerror kernel service can be called from the process environment only.

Return Codes
The setuerror kernel service returns the errno parameter.

Related Information
The getuerror kernel service.

Kernel Extension and Device Driver Management Kernel Services and Understanding System Call
Execution in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

shutdown_notify_reg Kernel Service

Purpose
Allows kernel extensions to register a shutdown notification.

436 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/reboot.h>

int shutdown_notify_reg(sn)
shutdown_notify_t *sn;

typedef struct _shutdown_notify {
struct _shutdown_notify *next; /* Next in the link-list */
int version; /* Version of structure */
int oper; /* Bit map of the operation being performed */
int status; /* The current status of this notify */
uchar cb_retry; /* Internal use */
uchar scope; /* Partition or system wide */
uchar reason; /* User initiated or EPOW */
uchar padding; /* padding */
long (*func)(); /* Function kernel calls to notify ext. */
void *uaddr; /* Address to help extension identify the object this structure refers to */
} shutdown_notify_t;

/* Valid values for shutdown_notify_t->oper */
#define SHUTDOWN_NOTIFY_PREPARE 0x1 /* Shutdown has started */
#define SHUTDOWN_NOTIFY_REBOOT 0x2 /* Final notify that shutdown will be a reboot */
#define SHUTDOWN_NOTIFY_HALT 0x4 /* Final notify that shutdown will be a halt */
#define SHUTDOWN_NOTIFY_QUERY 0x8 /* Check to see if finished shutdown */

/* Valid values for shutdown_notify_t->status and for SHUTDOWN_NOTIFY_QUERY return code */
#define SHUTDOWN_STATUS_PREPARE 0x1 /* Preparing for shutdown */
#define SHUTDOWN_STATUS_COMMENCE 0x2 /* Commencing shutdown */
#define SHUTDOWN_STATUS_FINISH 0x4 /* Finished shutdown */

#define SHUTDOWN_NOTIFY_VERSION 1 /* Increment by 1
* every time add more
* variables to
* shutdown_notify_t
*/

/* Valid values for shutdown_notify_t->scope */
#define SHUTDOWN_SCOPE_PARTITION 1
#define SHUTDOWN_SCOPE_SYSTEM 2

/* Valid values for shutdown_notify_t->reason */
#define SHUTDOWN_REASON_USER 1
#define SHUTDOWN_REASON_EPOW 2

/* Valid handler return codes during the SHUTDOWN_NOTIFY_PREPARE phase */
#define SHUTDOWN_RC_SUCCESS 0
#define SHUTDOWN_RC_DELAY 1

#define SHUTDOWN_NOTIFY_VERSION 2

Description
The shutdown notify subsystem has been extended to provide additional information during a shutdown
operation. During the SHUTDOWN_NOTIFY_PREPARE phase, the kernel provides information on the
scope and reason for the shutdown action. Additionally, when a handler is called, before its completion, it
can now delay the shutdown operation in order to finalize any outstanding jobs. The kernel again then
calls out to the handler after some small amount of time. This process continues until all handlers return
SHUTDOWN_RC_SUCCESS. This functionality is only present for shutdown_notify_t version 2 and
preceding handlers. For version 1 handlers, the new fields are not present and the return code from the
handler is ignored.

Parameters

cb_retry Internal use.

Chapter 1. Kernel Services 437

func Pointer to the function called to notify registered extension.
next Pointer to next shutdown_notify_t structure in list.
oper Bit map of operation(s) being performed.
padding Padding.
reason User initiated or EPOW event.
scope Shutdown at the partition or system level.
sn Pointer to a structure that the calling extension fills out when it registers.
status Current status of notify.
uaddr Place for extension to store an address to help it identify the object to

which this structure refers.
version Version of structure. Set to 1.
SHUTDOWN_NOTIFY_HALT A halt is occurring.
SHUTDOWN_NOTIFY_PREPARE Shutdown has started.
SHUTDOWN_NOTIFY_QUERY Check to see if finished shutdown.
SHUTDOWN_NOTIFY_REBOOT A reboot is occurring.
SHUTDOWN_NOTIFY_VERSION Version number of structure.
SHUTDOWN_RC_DELAY Return from registered handler to indicate its processing is not complete

and wants to delay the shutdown operation.
SHUTDOWN_RC_SUCCESS Return from registered handler to indicate all processing is complete and

the shutdown operation can proceed.
SHUTDOWN_REASON_EPOW EPOW event.
SHUTDOWN_REASON_USER User initiated shutdown.
SHUTDOWN_SCOPE_PARTITION Shutdown at the partition level.
SHUTDOWN_SCOPE_SYSTEM Shutdown at the system level.
SHUTDOWN_STATUS_COMMENCE Wrap up shutdown.
SHUTDOWN_STATUS_FINISH Shutdown has completed.
SHUTDOWN_STATUS_PREPARE Preparing for shutdown.

Execution Environment
Process environment only.

Return Values

0 Success.
EPERM Attempted to register after prepare notification has started.
EINVAL Invalid argument passed.

Related Information
“shutdown_notify_unreg Kernel Service.”

shutdown_notify_unreg Kernel Service

Purpose
Unregisters an extension from getting notified in the event of a shutdown.

Syntax
#include <sys/reboot.h>

int shutdown_notify_unreg(sn)
shutdown_notify_t *sn;

438 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The shutdown_notify_unreg kernel service unregisters an extension from getting notified in the event of
a shutdown. The extension passes in the shutdown_notify_t instance it wants to unregister. This function
will fail if it is called after the SHUTDOWN_NOTIFY_HALT and SHUTDOWN_NOTIFY_REBOOT
notification process has started.

Parameters

sn Pointer to a structure that the calling extension wants to unregister.

Execution Environment
Process environment only.

Return Values

0 Success
EPERM Attempted to unregister after final notification has started.
EINVAL Invalid argument passed.

Related Information
“shutdown_notify_reg Kernel Service” on page 436.

sig_chk Kernel Service

Purpose
Provides a kernel process the ability to poll for receipt of signals.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/signal.h>

int sig_chk ()

Description
Attention: A system crash will occur if the sig_chk service is not called by a kernel process.

The sig_chk kernel service can be called by a kernel thread in kernel mode to determine if any unmasked
signals have been received. Signals do not preempt threads because serialization of critical data areas
would be lost. Instead, threads must poll for signals, either periodically or after a long sleep has been
interrupted by a signal.

The sig_chk service checks for any pending signal that has a specified signal catch or default action. If
one is found, the service returns the signal number as its return value. It also removes the signal from the
pending signal mask. If no signal is found, this service returns a value of 0. The sig_chk service does not
return signals that are blocked or ignored. It is the responsibility of the kernel process to handle the signal
appropriately.

For kernel-only threads, the sig_chk kernel service clears the returned signal from the list of pending
signals. For other kernel threads, the signal is not cleared, but left pending. It will be delivered to the
kernel thread as soon as it returns to the user mode.

Chapter 1. Kernel Services 439

Understanding Kernel Threads in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts provides more information about kernel-only thread signal handling.

Execution Environment
The sig_chk kernel service can be called from the process environment only.

Return Values
Upon completion, the sig_chk service returns a value of 0 if no pending unmasked signal is found.
Otherwise, it returns a nonzero signal value indicating the number of the highest priority signal that is
pending. Signal values are defined in the /usr/include/sys/signal.h file.

Related Information
Introduction to Kernel Processes, Process and Exception Management Kernel Services, and Kernel
Process Signal and Exception Handling in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

simple_lock or simple_lock_try Kernel Service

Purpose
Locks a simple lock.

Syntax
#include <sys/lock_def.h>

void simple_lock (lock_addr)
simple_lock_t lock_addr;

boolean_t simple_lock_try (lock_addr)
simple_lock_t lock_addr;

Parameter

lock_addr Specifies the address of the lock word to lock.

Description
The simple_lock kernel service locks the specified lock; it blocks if the lock is busy. The lock must have
been previously initialized with the simple_lock_init kernel service. The simple_lock kernel service has
no return values.

The simple_lock_try kernel service tries to lock the specified lock; it returns immediately without blocking
if the lock is busy. If the lock is free, the simple_lock_try kernel service locks it. The lock must have been
previously initialized with the simple_lock_init kernel service.

Note: When using simple locks to protect thread-interrupt critical sections, it is recommended that you use
the disable_lock kernel service instead of calling the simple_lock kernel service directly.

Execution Environment
The simple_lock and simple_lock_try kernel services can be called from the process environment only.

440 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Return Values
The simple_lock_try kernel service has the following return values:

TRUE Indicates that the simple lock has been successfully acquired.
FALSE Indicates that the simple lock is busy, and has not been acquired.

Related Information
The disable_lock kernel service, lock_mine kernel service, simple_lock_init kernel service,
simple_unlock kernel service.

Understanding Locking and Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts

simple_lock_init Kernel Service

Purpose
Initializes a simple lock.

Syntax
#include <sys/lock_def.h>

void simple_lock_init (lock_addr)
simple_lock_t lock_addr;

Parameter

lock_addr Specifies the address of the lock word.

Description
The simple_lock_init kernel service initializes a simple lock. This kernel service must be called before the
simple lock is used. The simple lock must previously have been allocated with the lock_alloc kernel
service.

Execution Environment
The simple_lock_init kernel service can be called from the process environment only.

The simple_lock_init kernel service may be called either the process or interrupt environments.

Return Values
The simple_lock_init kernel service has no return values.

Related Information
The lock_alloc kernel service, lock_free kernel service, simple_lock kernel service, simple_lock_try
kernel service, simple_unlock kernel service.

Understanding Locking and Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts

Chapter 1. Kernel Services 441

simple_unlock Kernel Service

Purpose
Unlocks a simple lock.

Syntax
#include <sys/lock_def.h>

void simple_unlock (lock_addr)
simple_lock_t lock_addr;

Parameter

lock_addr Specifies the address of the lock word to unlock.

Description
The simple_unlock kernel service unlocks the specified simple lock. The lock must be held by the thread
which calls the simple_unlock kernel service. Once the simple lock is unlocked, the highest priority thread
(if any) which is waiting for it is made runnable, and may compete for the lock again. If at least one kernel
thread was waiting for the lock, the priority of the calling kernel thread is recomputed.

Note: When using simple locks to protect thread-interrupt critical sections, it is recommended that you use
the unlock_enable kernel service instead of calling the simple_unlock kernel service directly.

Execution Environment
The simple_unlock kernel service can be called from the process environment only.

Return Values
The simple_unlock kernel service has no return values.

Related Information
The lock_mine kernel service, simple_lock_init kernel service, simple_lock kernel service,
simple_lock_try kernel service, unlock_enable kernel service.

Understanding Locking and Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts

sleep Kernel Service

Purpose
Forces the calling kernel thread to wait on a specified channel.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/pri.h>
#include <sys/proc.h>

442 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

int sleep (chan, priflags)
void *chan;
int priflags;

Parameters

chan Specifies the channel number. For the sleep service, this parameter identifies the channel to wait for
(sleep on).

priflags Specifies two conditions:

v The priority at which the kernel thread is to run when it is reactivated.

v Flags indicating how a signal is to be handled by the sleep kernel service.

The valid flags and priority values are defined in the /usr/include/sys/pri.h file.

Description
The sleep kernel service is provided for compatibility only and should not be invoked by new code. The
e_sleep_thread or et_wait kernel service should be used when writing new code.

The sleep service puts the calling kernel thread to sleep, causing it to wait for a wakeup to be issued for
the channel specified by the chan parameter. When the process is woken up again, it runs with the priority
specified in the priflags parameter. The new priority is effective until the process returns to user mode.

All processes that are waiting on the channel are restarted at once, causing a race condition to occur
between the activated threads. Thus, after returning from the sleep service, each thread should check
whether it needs to sleep again.

The channel specified by the chan parameter is simply an address that by convention identifies some
event to wait for. When the kernel or kernel extension detects such an event, the wakeup service is called
with the corresponding value in the chan parameter to start up all the threads waiting on that channel. The
channel identifier must be unique systemwide. The address of an external kernel variable (which can be
defined in a device driver) is generally used for this value.

If the SWAKEONSIG flag is not set in the priflags parameter, signals do not terminate the sleep. If the
SWAKEONSIG flag is set and the PCATCH flag is not set, the kernel calls the longjmpx kernel service to
resume the context saved by the last setjmpx call if a signal interrupts the sleep. Therefore, any system
call (such as those calling device driver ddopen, ddread, and ddwrite routines) or kernel process that
does an interruptible sleep without the PCATCH flag set must have set up a context using the setjmpx
kernel service. This allows the sleep to resume in case a signal is sent to the sleeping process.

Attention: The caller of the sleep service must own the kernel-mode lock specified by the
kernel_lock parameter. The sleep service does not provide a compatible level of serialization if the
kernel lock is not owned by the caller of the sleep service.

Execution Environment
The sleep kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
1 Indicates that a signal has interrupted a sleep with both the PCATCH and SWAKEONSIG flags set in the

priflags parameter.

Chapter 1. Kernel Services 443

Related Information
Locking Strategy in Kernel Mode in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

subyte Kernel Service

Purpose
Stores a byte of data in user memory.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int subyte (uaddr, c)
uchar *uaddr;
uchar c;

Parameters

uaddr Specifies the address of user data.
c Specifies the character to store.

Description
The subyte kernel service stores a byte of data at the specified address in user memory. It is provided so
that system calls and device heads can safely access user data. The subyte service ensures that the user
has the appropriate authority to:

v Access the data.

v Protect the operating system from paging I/O errors on user data.

The subyte service should only be called while executing in kernel mode in the user process.

Execution Environment
The subyte kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
-1 Indicates a uaddr parameter that is not valid for one of the following reasons:

v The user does not have sufficient authority to access the data.

v The address is not valid.

v An I/O error occurs when the user data is referenced.

Related Information
The fubyte kernel service, fuword kernel service, suword kernel service.

Accessing User-Mode Data While in Kernel Mode and Memory Kernel Services in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

444 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

suser Kernel Service

Purpose
Determines the privilege state of a process.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int suser (ep)
char *ep;

Parameter

ep Points to a character variable where the EPERM value is stored on failure.

Description
The suser kernel service checks whether a process has any effective privilege (that is, whether the
process’s uid field equals 0).

Execution Environment
The suser kernel service can be called from the process environment only.

Return Values

0 Indicates failure. The character pointed to by the ep parameter is set to the value of
EPERM. This indicates that the calling process does not have any effective privilege.

Nonzero value Indicates success (the process has the specified privilege).

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

suword Kernel Service

Purpose
Stores a word of data in user memory.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int suword (uaddr, w)
int *uaddr;
int w;

Parameters

uaddr Specifies the address of user data.

Chapter 1. Kernel Services 445

w Specifies the word to store.

Description
The suword kernel service stores a word of data at the specified address in user memory. It is provided
so that system calls and device heads can safely access user data. The suword service ensures that the
user had the appropriate authority to:

v Access the data.

v Protect the operating system from paging I/O errors on user data.

The suword service should only be called while executing in kernel mode in the user process.

Execution Environment
The suword kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
-1 Indicates a uaddr parameter that is not valid for one of these reasons:

v The user does not have sufficient authority to access the data.

v The address is not valid.

v An I/O error occurs when the user data is referenced.

Related Information
The fubyte kernel service, fuword kernel service, subyte kernel service.

Memory Kernel Services and Accessing User-Mode Data While in Kernel Mode in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

talloc Kernel Service

Purpose
Allocates a timer request block before starting a timer request.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/timer.h>

struct trb *talloc()

Description
The talloc kernel service allocates a timer request block. The user must call it before starting a timer
request with the tstart kernel service. If successful, the talloc service returns a pointer to a pinned timer
request block.

Execution Environment
The talloc kernel service can be called from the process environment only.

446 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Return Values
The talloc service returns a pointer to a timer request block upon successful allocation of a trb structure.
Upon failure, a null value is returned.

Related Information
The tfree kernel service, tstart kernel service, tstop kernel service.

Timer and Time-of-Day Kernel Services and Using Fine Granularity Timer Services and Structures in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

tfree Kernel Service

Purpose
Deallocates a timer request block.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/timer.h>

void tfree (t)
struct trb *t;

Parameter

t Points to the timer request structure to be freed.

Description
The tfree kernel service deallocates a timer request block that was previously allocated with a call to the
talloc kernel service. The caller of the tfree service must first cancel any pending timer request associated
with the timer request block being freed before attempting to free the request block. Canceling the timer
request block can be done using the tstop kernel service.

Execution Environment
The tfree kernel service can be called from either the process or interrupt environment.

Note: Do not use the tfree kernel service to free the timer request block that is passed to the timer
completion handler.

Return Values
The tfree service has no return values.

Related Information
The talloc kernel service, tstart kernel service, tstop kernel service.

Timer and Time-of-Day Kernel Services and Using Fine Granularity Timer Services and Structures in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 447

thread_create Kernel Service

Purpose
Creates a new kernel thread in the calling process.

Syntax
#include <sys/thread.h>

tid_t thread_create ()

Description
The thread_create kernel service creates a new kernel-only thread in the calling kernel process. The
thread’s ID is returned; it is unique system wide.

The new thread does not begin running immediately; its state is set to TSIDL. The execution will start after
a call to the kthread_start kernel service. If the process is exited prior to the thread being made runnable,
the thread’s resources are released immediately. The thread’s signal mask is inherited from the calling
thread; the set of pending signals is cleared. Signals sent to the thread are marked pending while the
thread is in the TSIDL state.

If the calling thread is bound to a specific processor, the new thread will also be bound to the processor.

Execution Environment
The thread_create kernel service can be called from the process environment only. This service cannot
be called directly from a kernel extension.

Return Values
Upon successful completion, the new thread’s ID is returned. Otherwise, -1 is returned, and the error code
can be checked by calling the getuerror kernel service.

Error Codes

EAGAIN The total number of kernel threads executing system wide or the maximum number of kernel threads per
process would be exceeded.

ENOMEM There is not sufficient memory to create the kernel thread.
ENOTSUP The thread_create service was called directly from a kernel extension.

Related Information
The kthread_start kernel service.

Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

thread_self Kernel Service

Purpose
Returns the caller’s kernel thread ID.

448 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/thread.h>

tid_t thread_self ()

Description
The thread_self kernel service returns the thread process ID of the calling process.

The thread_self service can also be used to check the environment that the routine is being executed in.
If the caller is executing in the interrupt environment, the thread_self service returns a process ID of -1. If
a routine is executing in a process environment, the thread_self service obtains the thread process ID.

Execution Environment
The thread_self kernel service can be called from either the process or interrupt environment.

Return Values

-1 Indicates that the thread_self service was called from an interrupt environment.

The thread_self service returns the thread process ID of the current process if called from a process
environment.

Related Information
Process and Exception Management Kernel Services and Understanding Execution Environments in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

thread_setsched Kernel Service

Purpose
Sets kernel thread scheduling parameters.

Syntax
#include <sys/thread.h>
#include <sys/sched.h>

int thread_setsched (tid, priority, policy)
tid_t tid;
int priority;
int policy;

Parameters

tid Specifies the kernel thread.
priority Specifies the priority. It must be in the range from 0 to PRI_LOW; 0 is the most favored priority.

Chapter 1. Kernel Services 449

policy Specifies the scheduling policy. It must have one of the following values:

SCHED_FIFO
Denotes fixed priority first-in first-out scheduling.

SCHED_FIFO2
Allows a thread that sleeps for a relatively short amount of time to be requeued to the head,
rather than the tail, of its priority run queue.

SCHED_FIFO3
Causes threads to be enqueued to the head of their run queues.

SCHED_RR
Denotes fixed priority round-robin scheduling.

SCHED_OTHER
Denotes the default scheduling policy.

Description
The thread_setsched subroutine sets the scheduling parameters for a kernel thread. This includes both
the priority and the scheduling policy, which are specified in the priority and policy parameters. The calling
and the target thread must be in the same process.

When setting the scheduling policy to SCHED_OTHER, the system chooses the priority; the priority
parameter is ignored. The only way to influence the priority of a thread using the default scheduling policy
is to change the process nice value.

The calling thread must belong to a process with root authority to change the scheduling policy of a thread
to either SCHED_FIFO, SCHED_FIFO2, SCHED_FIFO3, or SCHED_RR.

Execution Environment
The thread_setsched kernel service can be called from the process environment only.

Return Values
Upon successful completion, 0 is returned. Otherwise, -1 is returned, and the error code can be checked
by calling the getuerror kernel service.

Error Codes

EINVAL The priority or policy parameters are not valid.
EPERM The calling kernel thread does not have sufficient privilege to perform the operation.
ESRCH The kernel thread tid does not exist.

Related Information
The thread_create kernel service.

Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

thread_set_smt_priority or thread_read_smt_priority System Call

Purpose
Sets or reads the current SMT thread priority for a user-thread.

450 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/errno.h>
#include <sys/thread.h>
#include <sys/processor.h>

int thread_set_smt_priority (Priority)
smt_thread_priority_t Priority;

#include <sys/errno.h>
#include <sys/thread.h>
#include <sys/processor.h>

smt_thread_priority_t thread_read_smt_priority ()

Description
The SMT thread priority associated with a logical CPU, SMT hardware thread, controls the relative priority
of the logical CPU in relation to the other logical CPUs residing on the same processor core. The relative
priority between the SMT hardware threads on a processor core determines how decode cycles are
granted to each SMT hardware thread. The SMT thread priority can be used to cause a particular
application thread to be favored over other application threads running on the other SMT hardware threads
in the same processor core. This is done by increasing the SMT thread priority of the logical CPU the
application is running on, or by lowering the SMT thread priority of the application threads running on the
other logical CPUs associated with the same processor core.

The thread_set_smt_priority and thread_read_smt_priority system calls provide a way to register and
read back the current desired SMT thread priority on a per process-thread basis.

Note:

These interfaces are not supported on some processor architectures.

If the process-thread is dispatched to a logical CPU running in non-SMT mode, the desired SMT
thread priority level will have no effect.

Callers of the thread_set_smt_priority system call with normal user-level privileges can set their SMT
thread priority level to one of the following levels

v LOW

v MEDIUM

v NORMAL

Callers that have RBAC PV_PROC_VARS privilege can set their priority level to one of the following levels

v VERY LOW

v LOW

v MEDIUM LOW

v NORMAL

v MEDIUM HIGH

v HIGH

The default thread priority level is NORMAL.

Note: The only supported means for altering the SMT thread priority level is through the use of the
thread_set_smt_priority system call. If an alternate means of setting the SMT priority is used, the
kernel will not know the process-thread’s current desired SMT priority level, and will overwrite the
desired SMT priority level without restoring it.

Chapter 1. Kernel Services 451

The thread_read_smt_priority system call returns the current SMT priority level registered by the process
thread. If the process thread has not registered a desired SMT priority level, then the default priority level
of NORMAL will be returned.

Parameters

Priority Used to specify one of the following parameters:

v T_VERYLOW_SMT_PRI

v T_LOW_SMT_PRI

v T_MEDIUMLOW_SMT_PRI

v T_NORMAL_SMT_PRI

v T_MEDIUMHIGH_SMT_PRI

v T_HIGH_SMT_PRI

Execution Environment
The thread_read_smt_priority and thread_set_smt_priority system calls can be called from the process
environment only.

Return Values
On successful completion, the thread_set_smt_priority system call returns 0. Otherwise, -1 is returned
and the errno global variable is set to indicate the error.

On successful completion, the thread_read_smt_priority system call returns the current desired SMT
priority. Otherwise, -1 is returned and the errno global variable is set to indicate the error.

Error Codes

EPERM The process attempted to set the SMT thread priority level to a value other than
T_LOW_SMT_PRI, T_MEDIUMLOW_SMT_PRI, or T_NORMAL_SMT_PRI and does not
have the necessary privileges.

EINVAL The desired priority value specified is invalid.
ENOSYS SMT thread priority level manipulation is not supported on this system.

thread_terminate Kernel Service

Purpose
Terminates the calling kernel thread.

Syntax
#include <sys/thread.h>

void thread_terminate ()

Description
The thread_terminate kernel service terminates the calling kernel thread and cleans up its structure and
its kernel stack. If it is the last thread in the process, the process will exit.

The thread_terminate kernel service is automatically called when a thread returns from its entry point
routine (defined in the call to the kthread_start kernel service).

452 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment
The thread_terminate kernel service can be called from the process environment only.

Return Values
The thread_terminate kernel service never returns.

Related Information
The kthread_start kernel service.

Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

timeout Kernel Service

Attention: This service should not be used in AIX Version 4, because it is not multi-processor safe.
The base kernel timer and watchdog services should be used instead. See talloc and w_init for more
information.

Purpose
Schedules a function to be called after a specified interval.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

void timeout (func, arg, ticks)
void (*func)();
caddr_t *arg;
int ticks;

Parameters

func Indicates the function to be called.
arg Indicates the parameter to supply to the function specified by the func parameter.
ticks Specifies the number of timer ticks that must occur before the function specified by the func parameter is

called. Many timer ticks can occur per second. The HZ label found in the /usr/include/sys/m_param.h file
can be used to determine the number of ticks per second.

Description
The timeout service is not part of the kernel. However, it is a compatibility service provided in the libsys.a
library. To use the timeout service, a kernel extension must have been bound with the libsys.a library.
The timeout service, like the associated kernel services untimeout and timeoutcf, can be bound and
used only in the pinned part of a kernel extension or the bottom half of a device driver because these
services use interrupt disable for serialization.

The timeout service schedules the function pointed to by the func parameter to be called with the arg
parameter after the number of timer ticks specified by the ticks parameter. Use the timeoutcf routine to
allocate enough callout elements for the maximum number of simultaneous active time outs that you
expect.

Note: The timeoutcf routine must be called before calling the timeout service.

Chapter 1. Kernel Services 453

Calling the timeout service without allocating a sufficient number of callout table entries can result in a
kernel panic because of a lack of pinned callout table elements. The value of a timer tick depends on the
hardware’s capability. You can use the restimer subroutine to determine the minimum granularity.

Multiple pending timeout requests with the same func and arg parameters are not allowed.

The func Parameter
The function specified by the func parameter should be declared as follows:
void func (arg)
void *arg;

Execution Environment
The timeout routine can be called from either the process or interrupt environment.

The function specified by the func parameter is called in the interrupt environment. Therefore, it must
follow the conventions for interrupt handlers.

Return Values
The timeout service has no return values.

Related Information
The untimeout kernel service.

The timeoutcf kernel subroutine.

The restimer subroutine.

Timer and Time-of-Day Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

timeoutcf Subroutine for Kernel Services

Attention: This service should not be used in AIX Version 4, because it is not multi-processor safe.
The base kernel timer and watchdog services should be used instead. See talloc and w_init for more
information.

Purpose
Allocates or deallocates callout table entries for use with the timeout kernel service.

Library
libsys.a (Kernel extension runtime routines)

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int timeoutcf (cocnt)
int cocnt;

454 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameter

cocnt Specifies the callout count. This value indicates the number of callout elements by which to increase or
decrease the current allocation. If this number is positive, the number of callout entries for use with the
timeout service is increased. If this number is negative, the number of elements is decreased by the
amount specified.

Description
The timeoutcf subroutine is not part of the kernel. It is a compatibility service provided in the libsys.a
library. To use the timeoutcf subroutine, a kernel extension must have been bound with the libsys.a
library. The timeoutcf subroutine, like the associated kernel libsys services untimeout and timeout, can
be bound and used only in the pinned part of a kernel extension or the bottom half of a device driver
because these services use interrupt disable for serialization.

The timeoutcf subroutine registers an increase or decrease in the number of callout table entries available
for the timeout subroutine to use. Before a subroutine can use the timeout kernel service, the timeoutcf
subroutine must increase the number of callout table entries available to the timeout kernel service. It
increases this number by the maximum number of outstanding time outs that the routine can have pending
at one time.

The timeoutcf subroutine should be used to decrease the amount of callout table entries by the amount it
was increased under the following conditions:

v The routine using the timeout subroutine has finished using it.

v The calling routine has no more outstanding time-out requests pending.

Typically the timeoutcf subroutine is called in a device driver’s open and close routine. It is called to
allocate and deallocate sufficient elements for the maximum expected use of the timeout kernel service
for that instance of the open device.

Attention: A kernel panic results under either of these two circumstances:

v A request to decrease the callout table allocation is made that is greater than the number of unused
callout table entries.

v The timeoutcf subroutine is called in an interrupt environment.

Execution Environment
The timeoutcf subroutine can be called from the process environment only.

Return Values

0 Indicates a successful allocation or deallocation of the requested callout table entries.
-1 Indicates an unsuccessful operation.

Related Information
The timeout kernel service.

Timer and Time-of-Day Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

Chapter 1. Kernel Services 455

trc_ishookon Exported Kernel Service

Purpose
Checks if a given trace hook word is being traced by system trace.

Syntax
#include <sys/trcmacros.h>

int trc_ishookon (int chan, long hkwd);

Description
The trc_ishookon kernel service informs the user if tracing is on and the specified hook word is being
traced.

Parameters

chan The channel to query with the range from 0 to 7.
hkwd The hook word to be traced by system trace.

Return Values

1 The hook word is being traced.
0 Hook word is not being traced or system trace is off.

Related Information
The trace daemon.

trcgenk Kernel Service

Purpose
Records a trace event for a generic trace channel.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/trchkid.h>

void trcgenk (chan, hk_word, data_word, len, buf)
unsigned int chan, hk_word, data_word, len;
char * buf;

Parameters

chan Specifies the channel number for the trace session. This number is obtained from the trcstart
subroutine.

456 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

hk_word An integer containing a hook ID and a hook type:

hk_id Before AIX 6.1 the hook identifier is a 12-bit value. On AIX 6.1 and above, the hook
identifier is a 16-bit value. A 16-bit value of the form hhh0 is equivalent to a 12-bit value of
the form hhh.

hk_type
A 4-bit hook type. The trcgenk service automatically records this information. This value is
only valid before AIX 6.1.

data_word Specifies a word of user-defined data.
len Specifies the length in bytes of the buffer specified by the buf parameter.
buf Points to a buffer of trace data. The maximum amount of trace data is 4096 bytes.

Description
The trcgenk kernel service records a trace event if a trace session is active for the specified trace
channel. If a trace session is not active, the trcgenk kernel service simply returns. The trcgenk kernel
service is located in pinned kernel memory.

The trcgenk kernel service is used to record a trace entry consisting of an hk_word entry, a data_word
entry, a variable number of bytes of trace data, and, in AIX 5L Version 5.3 with the 5300-05 Technology
Level and above, a time stamp.

Execution Environment
The trcgenk kernel service can be called from either the process or interrupt environment.

Return Values
The trcgenk kernel service has no return values.

Related Information
The trace daemon.

The trcgenkt kernel service.

The trcgen subroutine, trcgent subroutine, trchook subroutine, trcoff subroutine, trcon subroutine,
trcstart subroutine, trcstop subroutine.

RAS Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

trcgenkt Kernel Service

Purpose
Records a trace event, including a time stamp, for a generic trace channel.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/trchkid.h>

void trcgenkt (chan, hk_word, data_word, len, buf)
unsigned int chan, hk_word, data_word, len;
char * buf;

Chapter 1. Kernel Services 457

Parameters

chan Specifies the channel number for the trace session. This number is obtained from the trcstart
subroutine.

hk_word An integer containing a hook ID and a hook type:

hk_id Before AIX 6.1 the hook identifier is a 12-bit value. On AIX 6.1 and above, the hook
identifier is a 16-bit value. A 16-bit value of the form hhh0 is equivalent to a 12-bit value of
the form hhh.

hk_type
A 4-bit hook type. The trcgenkt service automatically records this information. This value
is only valid before AIX 6.1.

data_word Specifies a word of user-defined data.
len Specifies the length, in bytes, of the buffer identified by the buf parameter.
buf Points to a buffer of trace data. The maximum amount of trace data is 4096 bytes.

Description
The trcgenkt kernel service records a trace event if a trace session is active for the specified trace
channel. If a trace session is not active, the trcgenkt service simply returns. The trcgenkt kernel service
is located in pinned kernel memory.

The trcgenkt service records a trace entry consisting of an hk_word entry, a data_word entry, a variable
number of bytes of trace data, and a time stamp.

Execution Environment
The trcgenkt kernel service can be called from either the process or interrupt environment.

Return Values
The trcgenkt service has no return values.

Related Information
The trace daemon.

The trcgenk kernel service.

The trcgen subroutine, trcgent subroutine, trchook subroutine, trcoff subroutine, trcon subroutine,
trcstart subroutine, trcstop subroutine.

RAS Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

trcgenkt Kernel Service for Data Link Control (DLC) Devices

Purpose

Records a trace event, including a time stamp, for a DLC trace channel.

Syntax
#include <sys/trchkid.h>

void trcgenkt (chan, hk_word, data_word, len, buf)
unsigned int chan, hk_word, data_word, len;
char * buf;

458 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

chan Specifies the channel number for the trace session. This number is obtained from the trcstart
subroutine.

hk_word Contains the trace hook identifier defined in the /usr/include/sys/trchkid.h file. The types of link
trace entries registered using the hook ID include:

HKWD_SYSX_DLC_START
Start link station completions

HKWD_SYSX_DLC_TIMER
Time-out completions

HKWD_SYSX_DLC_XMIT
Transmit completions

HKWD_SYSX_DLC_RECV
Receive completions

HKWD_SYSX_DLC_HALT
Halt link station completions

data_word Specifies trace data format field. This field varies depending on the hook ID. Each of these
definitions are in the /usr/include/sys/gdlextcb.h file:

v The first half-word always contains the data link protocol field including one of these definitions:

DLC_DL_SDLC
SDLC

DLC_DL_HDLC
HDLC

DLC_DL_BSC
BISYNC

DLC_DL_ASC
ASYNC

DLC_DL_PCNET
PC Network

DLC_DL_ETHER
Standard Ethernet

DLC_DL_802_3
IEEE 802.3

DLC_DL_TOKEN
Token-Ring

Chapter 1. Kernel Services 459

v On start or halt link station completion, the second half-word contains the physical link protocol
in use:

DLC_PL_EIA232
EIA-232D Telecommunications

DLC_PL_EIA366
EIA-366 Auto Dial

DLC_PL_X21
CCITT X.21 Data Network

DLC_PL_PCNET
PC Network Broadband

DLC_PL_ETHER
Standard Baseband Ethernet

DLC_PL_SMART
Smart Modem Auto Dial

DLC_PL_802_3
IEEE 802.3 Baseband Ethernet

DLC_PL_TBUS
IEEE 802.4 Token Bus

DLC_PL_TRING
IEEE 802.5 Token-Ring

DLC_PL_EIA422
EIA-422 Telecommunications

DLC_PL_V35
CCITT V.35 Telecommunications

DLC_PL_V25BIS
CCITT V.25 bis Autodial for Telecommunications

v On timeout completion, the second half-word contains the type of timeout occurrence:

DLC_TO_SLOW_POLL
Slow station poll

DLC_TO_IDLE_POLL
Idle station poll

DLC_TO_ABORT
Link station aborted

DLC_TO_INACT
Link station receive inactivity

DLC_TO_FAILSAFE
Command failsafe

DLC_TO_REPOLL_T1
Command repoll

DLC_TO_ACK_T2
I-frame acknowledgment

460 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

v On transmit completion, the second half-word is set to the data link control bytes being sent.
Some transmit packets only have a single control byte; in that case, the second control byte is
not displayed.

v On receive completion, the second half-word is set to the data link control bytes that were
received. Some receive packets only have a single control byte; in that case, the second control
byte is not displayed.

len Specifies the length in bytes of the entry specific data specified by the buf parameter.
buf Specifies the pointer to the entry specific data that consists of:

Start Link Station Completions
Link station diagnostic tag and the remote station’s name and address.

Time-out Completions
No specific data is recorded.

Transmit Completions
Either the first 80 bytes or all the transmitted data, depending on the short/long trace
option.

Receive Completions
Either the first 80 bytes or all the received data, depending on the short/long trace option.

Halt Link Station Completions
Link station diagnostic tag, the remote station’s name and address, and the result code.

Description
The trcgenkt kernel service records a trace event if a trace session is active for the specified trace
channel. If a trace session is not active, the trcgenkt kernel service simply returns. The trcgenkt kernel
service is located in pinned kernel memory.

The trcgenkt kernel service is used to record a trace entry consisting of an hk_word entry, a data_word
entry, a variable number of bytes of trace data, and a time stamp.

Execution Environment
The trcgenkt kernel service can be called from either the process or interrupt environment.

Return Values
The trcgenkt kernel service has no return values.

Related Information
The trcgenk kernel service, trcgenkt kernel service.

The trace daemon.

Generic Data Link Control (GDLC) Environment Overview and RAS Kernel Services in AIX Version 6.1
Kernel Extensions and Device Support Programming Concepts.

tstart Kernel Service

Purpose
Submits a timer request.

Chapter 1. Kernel Services 461

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/timer.h>

void tstart (t)
struct trb *t;

Parameter

t Points to a timer request structure.

Description
The tstart kernel service submits a timer request with the timer request block specified by the t parameter
as input. The caller of the tstart kernel service must first call the talloc kernel service to allocate the timer
request structure. The caller must then initialize the structure’s fields before calling the tstart kernel
service.

Once the request has been submitted, the kernel calls the t->func timer function when the amount of time
specified by the t->timeout.it value has elapsed. The t->func timer function is called on an interrupt
level. Therefore, code for this routine must follow conventions for interrupt handlers.

The tstart kernel service examines the t->flags field to determine if the timer request being submitted
represents an absolute request or an incremental one. An absolute request is a request for a time out at
the time represented in the it_value structure. An incremental request is a request for a time out at the
time represented by now, plus the time in the it_value structure.

The caller should place time information for both absolute and incremental timers in the itimerstruc_t t.it
value substructure. The T_ABSOLUTE absolute request flag is defined in the /usr/include/sys/timer.h file
and should be ORed into the t->flag field if an absolute timer request is desired.

Modifications to the system time are added to incremental timer requests, but not to absolute ones.
Consider the user who has submitted an absolute timer request for noon on 12/25/88. If a privileged user
then modifies the system time by adding four hours to it, then the timer request submitted by the user still
occurs at noon on 12/25/88.

By contrast, suppose it is presently 12 noon and a user submits an incremental timer request for 6 hours
from now (to occur at 6 p.m.). If, before the timer expires, the privileged user modifies the system time by
adding four hours to it, the user’s timer request will then expire at 2200 (10 p.m.).

Execution Environment
The tstart kernel service can be called from either the process or interrupt environment.

Return Values
The tstart service has no return values.

Related Information
The talloc kernel service, tfree kernel service, tstop kernel service.

Timer and Time-of-Day Kernel Services and Using Fine Granularity Timer Services and Structures in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

462 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

tstop Kernel Service

Purpose
Cancels a pending timer request.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/timer.h>

int tstop (t)
struct trb *t;

Parameter

t Specifies the pending timer request to cancel.

Description
The tstop kernel service cancels a pending timer request. The tstop kernel service must be called before
a timer request block can be freed with the tfree kernel service.

In a multiprocessor environment, the timer function associated with a timer request block may be active on
another processor when the tstop kernel service is called. In this case, the timer request cannot be
canceled. A multiprocessor-safe driver must therefore check the return code and take appropriate action if
the cancel request failed.

In a uniprocessor environment, the call always succeeds. This is untrue in a multiprocessor environment,
where the call will fail if the timer is being handled by another processor. Therefore, the function now has a
return value, which is set to 0 if successful, or -1 otherwise. Funnelled device drivers do not need to check
the return value since they run in a logical uniprocessor environment. Multiprocessor-safe and
multiprocessor-efficient device drivers need to check the return value in a loop. In addition, if a driver uses
locking, it must release and reacquire its lock within this loop. A delay should be used between the release
and reacquiring the lock as shown below:
while (tstop(&trp)) {

release_any_lock;
delay_some_time;
reacquire_the_lock;

} /* null while loop if locks not used */

Execution Environment
The tstop kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates that the request was successfully canceled.
-1 Indicates that the request could not be canceled.

Related Information
The talloc kernel service, tfree kernel service, tstart kernel service.

Chapter 1. Kernel Services 463

Timer and Time-of-Day Kernel Services, Using Fine Granularity Timer Services and Structures, Using
Multiprocessor-Safe Timer Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

tuning Kernel Service

Purpose
Provides access to the kernel tunable variables through an easily accessible interface.

Syntax
typedef enum {

TH_MORE,
TH_EOF

} tmode_t;

#define TH_ABORT TH_EOF

typedef int (*tuning_read_t)(tmode_t mode, long *size, char **buf, void *context);
typedef int (*tuning_write_t)(tmode_t mode, long *size, char *buf, void *context);

tinode_t *tuning_register_handler (path, mode, readfunc, writefunc, context)
const char *path;
mode_t mode;
tuning_read_t readfunc;
tuning_write_t writefunc;
void * context;

tinode *tuning_register_bint32 (path, mode, variable, low, high)
const char *path;
mode_t mode;
int32 *variable;
int32 low;
int32 high;

tinode *tuning_register_bint32x (path, rfunc, wfunc, mode, low, high)
const char *path;
mode_t mode;
int32 (*rfunc)(void *);
int (*wfunc)(int32, void *);
void *context;
int32 low;
int32 high;

tinode *tuning_register_buint32 (path, mode,variable, low, high)
const char *path;
mode_t mode;
uint32 *variable;
uint32 low;
uint32 high;

tinode *tuning_register_buint32x (path, rfunc, wfunc, mode, low, high)
const char *path;
mode_t mode;
uint32 (*rfunc)(void *);
int (*wfunc)(uint32, void *);
void *context;
uint32 low;
uint32 high;

tinode *tuning_register_bint64 (path, mode, variable, low, high)
const char *path;
mode_t mode;
int64 *variable;
int64 low;
int64 high;

464 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

tinode *tuning_register_bint64x (path, rfunc, wfunc, mode, low, high)
const char *path;
mode_t mode;
int64 (*rfunc)(void *);
int (*wfunc)(int64, void *);
void *context;
in64 low;
in64 high;

tinode *tuning_register_buint64 (path, mode, variable, low, high)
const char *path;
mode_t mode;
uint64 *variable;
uint64 low;
uint64 high;

tinode *tuning_register_buint64x (path, rfunc, wfunc, mode, low, high)
const char *path;
mode_t mode;
uint64 (*rfunc)(void *);
int (*wfunc)(uint64, void *);
void *context;
uint64 low;
uint64 high;

void tuning_deregister (t)
tinode_t * t;

Description
The tuning_register_handler kernel service is used to add a file at the location specified by the path
parameter. When this file is read from or written to, one of the two callbacks passed as parameters to the
function is invoked.

Accesses to the file are viewed in terms of streams. A single stream is created by a sequence of one
open, one or more reads, and one close on the file. While the file is open by one process, attempts to
open the same file by other processes will be blocked unless O_NONBLOCK is passed in the flags to the
open subroutine.

The readfunc callback behaves like a producer function. The function is called when the user attempts to
read from the file. The mode parameter is equal to TH_MORE unless the user closes the file prematurely.
On entry, the size parameter is an integer containing the size of the buffer. The context parameter is the
context pointer passed to the registration function. Upon return, size should contain either the actual
amount of data returned, or a zero if an end-of-file condition should be returned to the user. The return
value of the function can also be used to signal end-of-file, as described below.

Note: It is expected that the readfunc callback has already done any necessary end-of-file cleanup when
it returns the end-of-file signal.

If the amount of data returned is nonzero, the buf parameter may be modified to point to a new buffer. If
this is done, the callback is responsible for freeing the new buffer.

If the buffer provided by the caller is too small, the caller may instead set buf to NULL. In this case, the
size parameter should be modified to indicate the size of the buffer needed. The caller will then re-invoke
the callback with a buffer of at least the requested size.

If the user closes the file before the callback indicates end-of-file, the callback will be invoked one last time
with mode equal to TH_ABORT. In this case, the size parameter is equal to 0 on entry, and any data
returned is discarded. The callback must reset its state because no further callbacks will be made for this
stream.

Chapter 1. Kernel Services 465

The writefunc callback behaves as a consumer function and is used when the user attempts to write to the
file. The mode parameter is set to TH_EOF if no further data can be expected on this stream (for example,
the user called the close subroutine on the file). Otherwise, mode is set to TH_MORE. The size parameter
contains the size of the data passed in the buffer. The buf parameter is the pointer to the buffer.

Note: There will be zero or more calls with the mode parameter set to TH_MORE and one call with the
mode parameter set to TH_EOF for every stream.

The buf parameter may change between invocations. Upon return from the callback, the size parameter
must be modified to reflect the amount of data consumed from the buffer, and the buffer must not be freed
even if all data is consumed. The function is expected to consume data in a linear (first in, first out)
fashion. Unconsumed data is present at the beginning of the buffer at the next invocation of the callback.
The size parameter will include the size of the unconsumed data.

Both callbacks’ return values are expected to be zero. If unsuccessful, a positive value will be placed into
the errno global variable (with the accompanying indication of an error return from the kernel service). If
the return value of a callback is less than 0, end-of-file will be signaled to the user, and the return value
will be treated as its unary negation (For example, -1 will be treated like 0). In this case, no further
callbacks will be made for this stream.

The tuning_register_bint32, tuning_register_buint32, tuning_register_bint64, and
tuning_register_buint64 kernel services are used to add a file at the location specified by the path
parameter that, when read from, will return the ASCII value of the integer variable pointed to by the
variable parameter. When written to, this file will set the integer variable to the value whose ASCII value
was written, unless that value does not satisfy the relation low <= value < high. In this case, the integer
variable is not modified, and an error is returned to the user through an error return of the kernel service
during which the invalid attempt is detected (probably either write or close).

The tuning_register_b*x functions operate similarly to their non-x variants, but they use a pair of
callbacks to retrieve (rfunc) and set (wfunc) the variable. The callback is passed the value (if setting) and
the context parameter. This permits more complex operations on read/write, such as serialization and
memory allocation and deallocation.

The tuning_get_context kernel service returns the context of the registration function used to create the
tinode_t structure referred to by the argument parameter.

The tuning_register kernel service is the basic interface by which a file can be added to the /proc/sys
directory hierarchy. This function is not exported to kernel extensions, and its direct use in the kernel is
strongly discouraged. The path parameter contains the path relative to the /proc/sys root at which the file
should appear. Intermediate path components are automatically created. The mode parameter contains the
UNIX permissions and the type of the file to be created (as per the st_mode field of the stat struct). If the
file type is not specified, it is assumed to be S_IFREG. In most cases this parameter will be 0644 or 0600.
The vnops parameter is used to dispatch all operations on the file.

The tuning_deregister kernel service is used to remove a file from the /proc/sys directory hierarchy. It is
exported to kernel extensions. It should only be used when a specific file’s implementation is no longer
available. The t parameter is a tinode_t structure as returned by tuning_register. If the file is currently
open, any further access to it after this call returns ESTALE.

Parameters

mode Is set to either TH_EOF if no further data is expected from the user for this change, or TH_MORE if
further data is expected.

size Contains the size of the data passed in the buffer.
buf Points to the buffer.
context Points to the context passed to the registration function.
path Specifies the location of the file to be added.

466 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

readfunc Behaves as a producer function.
rfunc Retrieves the variable.
wfunc Sets the variable.
writefunc Behaves as a consumer function.
variable Specifies the variable.
high Specifies the maximum value that the variable parameter can contain.
low Specifies the minimum value that the variable parameter can contain.
t A tinode_t structure as returned by tuning_register.

Return Values
Upon successful completion, the tuning_register kernel service returns the newly created tinode_t
structure. If unsuccessful, a NULL value is returned.

Examples
A user of this interface might include the following line in their initialization routine:
tuning_var = tuning_register_buint64 ("fs/jfs2/max_readahead", 0644 &j2_max_read_ahead, 0, 1024);

In this example tuning_var is a global variable of type tinode_t *. This causes the fs and fs/jfs2
directories to be created, and a file (pipe) to be created as fs/jfs2/max_readahead. The file returns the
value of j2_max_readahead in ASCII when read. The variable is read at the time of the first read. A write
would set the value of the variable, but only at the time of either the first newline being written or a close
function being performed. In order to write the variable after reading it, one must close the file and reopen
it for write. This file is not seekable.

ue_proc_check Kernel Service

Purpose
Determines if a process is critical to the system.

Syntax
int ue_proc_check (pid)
pid_t pid;

Description
The ue_proc_check kernel service determines if a particular process is critical to the system. A critical
process is either a kernel process or a process registered as critical by the ue_proc_register system call.
A process that is critical will cause the system to terminate if that process has an unrecoverable hardware
error associated with the process. Unrecoverable hardware errors associated with a process are
determined by the kernel machine check handler on systems that support UE-Gard error processing.

The ue_proc_check kernel service should be called only while executing in kernel mode in the user
process.

Parameters

pid Specifies the process’ ID to be checked as critical.

Execution Environment
The ue_proc_check kernel service can be called from the interrupt environment only.

Chapter 1. Kernel Services 467

Return Values

0 Indicates that the pid is not critical.
EINVAL Indicates that the pid is critical.
-1 Indicates that the pid parameter is not valid or the process no longer exists.

Related Information
The “ue_proc_register Subroutine.”

ue_proc_register Subroutine

Purpose
Registers a process as critical to the system.

Syntax
int ue_proc_register (pid, argument)
pid_t pid;
int argument;

Description
The ue_proc_register system call registers a particular process as critical to the system. A process that is
critical will cause the system to terminate if that process has an unrecoverable hardware error associated
with the process. Unrecoverable hardware errors associated with a process are determined by the kernel
machine check handler on systems that support UE-Gard error processing.

An execed process from a critical process must register itself to be critical. A fork from a process inherits
the critical registration unless the argument is set to NONCRITFORK.

If the value of the pid parameter is equal to (pid_t) 0, the subroutine is registering the calling process.

The ue_proc_register system call should be called only while executing with root authority in the user
process.

Parameters

pid Specifies the process’ ID to be registered critical.
argument Defined in the sys/proc.h header file. Can be the following value:

NONCRITFORK
The pid forks are not critical.

Execution Environment
The ue_proc_register system call can be called from the process environment only.

Return Values

0 Indicates successful completion.
EINVAL Indicates that the pid parameter is not valid or the process no longer exists.
EACCES Indicates that the caller does not have sufficient authority to alter the pid registration.

468 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
The “ue_proc_unregister Subroutine.”

ue_proc_unregister Subroutine

Purpose
Unregisters a process from being critical to the system.

Syntax
int ue_proc_register (pid)
pid_t pid;

Description
The ue_proc_unregister system call unregisters a particular process as being no longer critical to the
system. A process that has been previously registered critical will cause the system to terminate if that
process has an unrecoverable hardware error associated with the process. Unrecoverable hardware errors
associated with a process are determined by the kernel machine check handler on systems that support
UE-Gard error processing.

If the value of the pid parameter is equal to (pid_t) 0, the subroutine is unregistering the calling process.

The ue_proc_unregister service should be called only while executing with root authority in the user
process.

Parameters

pid Specifies the process’ ID to be unregistered.

Execution Environment
The ue_proc_unregister system call can be called from the process environment only.

Return Values

0 Indicates successful completion.
EINVAL Indicates that the pid parameter is not valid or the process no longer exists.
EACCES Indicates that the caller does not have sufficient authority to alter the pid registration.

Related Information
The “ue_proc_register Subroutine” on page 468.

uexadd Kernel Service

Purpose
Adds a systemwide exception handler for catching user-mode process exceptions.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/except.h>

Chapter 1. Kernel Services 469

void uexadd (exp)
struct uexcepth *exp;

Parameter

exp Points to an exception handler structure. This structure must be pinned and is used for registering user-mode
process exception handlers. The uexcepth structure is defined in the /usr/include/sys/except.h file.

Description
The uexadd kernel service is typically used to install a systemwide exception handler to catch exceptions
occurring during execution of a process in user mode. The uexadd kernel service adds the exception
handler structure specified by the exp parameter, to the chain of exception handlers to be called if an
exception occurs while a process is executing in user mode. The last exception handler registered is the
first exception handler called for a user-mode exception.

The uexcepth structure has:

v A chain element used by the kernel to chain the registered user exception handlers.

v A function pointer defining the entry point of the exception handler being added.

Additional exception handler-dependent information can be added to the end of the structure, but must be
pinned.

Attention: The uexcepth structure must be pinned when the uexadd kernel service is called. It must
remain pinned and unmodified until after the call to the uexdel kernel service to delete the specified
exception handler. Otherwise, the system may crash.

Execution Environment
The uexadd kernel service can be called from the process environment only.

Return Values
The uexadd kernel service has no return values.

Related Information
The uexdel kernel service and User-Mode Exception Handler for the uexadd Kernel Service.

User-Mode Exception Handling and Kernel Extension and Device Driver Management Services in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

User-Mode Exception Handler for the uexadd Kernel Service

Purpose
Handles exceptions that occur while a kernel thread is executing in user mode.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/except.h>

int func (exp, type, tid, mst)
struct excepth * exp;

470 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

int type;
tid_t tid;
struct mstsave * mst;

Parameters

exp Points to the excepth structure used to register this exception handler.
mst Points to the current mstsave area for the process. This pointer can be used to access the mstsave area to

obtain additional information about the exception.

tid Specifies the thread ID of the kernel thread that was executing at the time of the exception.
type Denotes the type of exception that has occurred. This type value is platform-specific. Specific values are

defined in the /usr/include/sys/except.h file.

Description
The user-mode exception handler (exp->func) is called for synchronous exceptions that are detected while
a kernel thread is executing in user mode. The kernel exception handler saves exception information in the
mstsave area of the structure. For user-mode exceptions, it calls the first exception handler found on the
user exception handler list. The exception handler executes in an interrupt environment at the priority level
of either INTPAGER or INTIODONE.

If the registered exception handler returns a return code indicating that the exception was handled, the
kernel exits from the exception handler without calling additional exception handlers from the list. If the
exception handler returns a return code indicating that the exception was not handled, the kernel invokes
the next exception handler on the list. The last exception handler in the list is the default handler. This is
typically signalling the thread.

The kernel exception handler must not page fault. It should also register an exception handler using the
setjmpx kernel service if any exception-handling activity can result in an exception. This is important
particularly if the exception handler is handling the I/O. If the exception handler did not handle the
exception, the return code should be set to the EXCEPT_NOT_HANDLED value for user-mode exception
handling.

Execution Environment
The user-mode exception handler for the uexadd kernel service is called in the interrupt environment at
the INTPAGER or INTIODONE priority level.

Return Values

EXCEPT_HANDLED Indicates that the exception was successfully handled.
EXCEPT_NOT_HANDLED Indicates that the exception was not handled.

Related Information
The uexadd kernel service.

User-Mode Exception Handling and Kernel Extension and Device Driver Management Kernel Services in
AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 471

uexblock Kernel Service

Purpose
Makes the currently active kernel thread nonrunnable when called from a user-mode exception handler.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/except.h>

void uexblock (tid)
tid_t *tid;

Parameter

tid Specifies the thread ID of the currently active kernel thread to be put into a wait state.

Description
The uexblock kernel service puts the currently active kernel thread specified by the tid parameter into a
wait state until the uexclear kernel service is used to make the thread runnable again. If the uexblock
kernel service is called from the process environment, the tid parameter must specify the current active
thread; otherwise the system will crash with a kernel panic.

The uexblock kernel service can be used to lazily control user-mode threads access to a shared serially
usable resource. Multiple threads can use a serially used resource, but only one process at a time. When
a thread attempts to but cannot access the resource, a user-mode exception can be set up to occur. This
gives control to an exception handler registered by the uexadd kernel service. This exception handler can
then block the thread using the uexblock kernel service until the resource is made available. At this time,
the uexclear kernel service can be used to make the blocked thread runnable.

Execution Environment
The uexblock kernel service can be called from either the process or interrupt environment.

Return Values
The uexblock service has no return values.

Related Information
The uexclear kernel service.

User-Mode Exception Handling and Kernel Extension and Device Driver Management Services in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

uexclear Kernel Service

Purpose

Makes a kernel thread blocked by the uexblock service runnable again.

472 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/except.h>

void uexclear (tid)
tid_t *tid;

Parameter

tid Specifies the thread ID of the previously blocked kernel thread to be put into a run state.

Description
The uexclear kernel service puts a kernel thread specified by the tid parameter back into a runnable state
after it was made nonrunnable by the uexblock kernel service. A thread that has been sent a SIGSTOP
stop signal is made runnable again when it receives the SIGCONT continuation signal.

The uexclear kernel service can be used to lazily control user-mode thread access to a shared serially
usable resource. A serially used resource is usable by more than one thread, but only by one at a time.
When a thread attempts to access the resource but does not have access, a user-mode exception can be
setup to occur.

This setup gives control to an exception handler registered by the uexadd kernel service. Using the
uexblock kernel service, this exception handler can then block the thread until the resource is later made
available. At that time, the uexclear service can be used to make the blocked thread runnable.

Execution Environment
The uexclear kernel service can be called from either the process or interrupt environment.

Return Values
The uexclear service has no return values.

Related Information
The uexblock kernel service.

User-Mode Exception Handling and Kernel Extension and Device Driver Management Services in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

uexdel Kernel Service

Purpose
Deletes a previously added systemwide user-mode exception handler.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/except.h>

void uexdel (exp)
struct uexcepth *exp;

Chapter 1. Kernel Services 473

Parameter

exp Points to the exception handler structure used to add the exception handler with the uexadd kernel service.

Description
The uexdel kernel service removes a user-mode exception handler from the systemwide list of exception
handlers maintained by the kernel’s exception handler.

The uexdel kernel service removes the exception handler structure specified by the exp parameter from
the chain of exception handlers to be called if an exception occurs while a process is executing in user
mode. Once the uexdel kernel service has completed, the specified exception handler is no longer called.
In addition, the uexcepth structure can be modified, freed, or unpinned.

Execution Environment
The uexdel kernel service can be called from the process environment only.

Return Values
The uexdel kernel service has no return values.

Related Information
The uexadd kernel service.

User-Mode Exception Handling and Kernel Extension and Device Driver Management Services in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

ufdcreate Kernel Service

Purpose
Allocates and initializes a file descriptor.

Syntax
#include <fcntl.h>
#include <sys/types.h>
#include <sys/file.h>

int ufdcreate (flags, ops, datap, type, fdp, cnp)

int flags;
struct fileops * ops;
void * datap;
short type;
int * fdp;
struct ucred *crp;

Parameters

flags Specifies the flags to save in a file structure. The file structure is defined in the sys/file.h file. If a read or
write subroutine is called with the file descriptor returened by this routine, the FREAD and FWRITE flags
must be set appropriately. Valid flags are defined in the fcntl.h file.

ops Points to the list of subsystem-supplied routines to call for the file system operations: read/write, ioctl,
select, fstat, and close. The fileops structure is defined in the sys/file.h file. See ″File Operations″ for
more information.

474 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

datap Points to type-dependent structures. The system saves this pointer in the file structure. As a result, the
pointer is available to the file operations when they are called.

type Specifies the unique type value for the file structure. Valid types are listed in the sys/file.h file.
fdp Points to an integer field where the file descriptor is stored on successful return.
crp Points to a credentials structure. This pointer is saved in the file struct for use in subsequent operations. It

must be a valid ucred struct. The crref() kernel service can be used to obtain a ucred struct.

Description
The ufdcreate kernel service provides a file interface to kernel extensions. Kernel extensions use this
service to create a file descriptor and file structure pair. Also, this service allows kernel extensions to
provide their own file descriptor-based system calls, enabling read/write, ioctl, select, fstat, and close
operations on objects outside the file system. The ufdcreate kernel services does not require the
extension to understand or conform to the synchronization requirements of the logical file system (LFS).

The ufdcreate kernel service provides a file descriptor to the caller and creates the underlying file
structure. The caller must include pointers to subsystem-supplied routines for the read/write, ioctl, select,
fstat, and close operations. If any of the operations are not needed by the calling subsystem, then the
caller must provide a pointer to an appropriate errno value. Typically, the EOPNOTSUPP value is used for
this purpose. See ″File Operations″ for information about the requirements for the subsystem-supplied
routines.

Removing a File Descriptor
There is no corresponding operation to remove a file descriptor (and the attendant structures) created by
the ufdcreate kernel service. To remove a file descriptor, use a call to the close subroutine. The close
subroutine can be called from a routine or from within the kernel or kernel extension. If the close is not
called, the file is closed when the process exits.

Once a call is made to the ufdcreate kernel service, the file descriptor is considered open before the call
to the service returns. When a close or exit subroutine is called, the close file operation specified on the
call to the ufdcreate interface is called.

File Operations

The ufdcreate kernel service allows kernel extensions to provide their own file descriptor-based system
calls, enabling read/write, ioctl, select, fstat, and close operations on objects outside the file system. The
fileops structure defined in the sys/file.h file provides interfaces for these routines.

read/write Requirements
The read/write operation manages input and output to the object specified by the fp parameter. The
actions taken by this operation are dependent on the object type. The syntax for the operation is as
follows:
#include <sys/types.h>
#include <sys/uio.h>

int (*fo_rw) (fp, rw, uiop, ext)

struct file *fp;
enum uio_rw rw;
struct uio *uiop;
int ext;

The parameters have the following values:

Value Description
fp Points to the file structure. This structure corresponds to the file descriptor used on the read or write

subroutine.

Chapter 1. Kernel Services 475

Value Description
rw Contains a UIO_READ value for a read operation or UIO_WRITE value for a write operation.
uiop Points to a uio structure. This structure describes the location and size information for the input and output

requested. The uio structure is defined in the uio.h file.
ext Specifies subsystem-dependent information. If the readx or writex subroutine is used, the value passed by

the operation is passed through to this subroutine. Otherwise, the value is 0.

If successful, the fo_rw operation returns a value of 0. A nonzero return value should be programmed to
indicate an error. See the sys/errno.h file for a list of possible values.

Note: On successful return, the uiop->uio_resid field must be updated to include the number of bytes of
data actually transferred.

ioctl Requirements
The ioctl operation provides object-dependent special command processing. The ioctl subroutine performs
a variety of control operations on the object associated with the specified open file structure. This
subroutine is typically used with character or block special files and returns an error for ordinary files.

The control operation provided by the ioctl operation is specific to the object being addressed, as are the
data type and contents of the arg parameter.

The syntax for the ioctl operation is as follows:
#include <sys/types.h>
#include <sys/ioctl.h>

int (*fo_ioctl) (fp, cmd, arg, ext, kflag)

struct file *fp;
int cmd, ext, kflag;
caddr_t arg;

The parameters have the following values:

Value Description
fp Points to the file structure. This structure corresponds to the file descriptor used by the ioctl subroutine.
cmd Defines the specific request to be acted upon by this routine.
arg Contains data that is dependent on the cmd parameter.
ext Specifies subsystem-specific information. If the ioctlx subroutine is used, the value passed by the

application is passed through to this subroutine. Otherwise, the value is 0.
kflag Determines where the call is made from. The kflag parameter has the value FKERNEL (from the fcntl.h

file) if this routine is called through the fp_ioctl interface. Otherwise, its value is 0.

If successful, the fo_ioctl operation returns a value of 0. For errors, the fo_ioctl operation should return a
nonzero return value to indicate an error. Refer to the sys/errno.h file for the list of possible values.

select Requirements
The select operation performs a select operation on the object specified by the fp parameter. The syntax
for this operation is as follows:
#include <sys/types.h>

int (*fo_select) (fp, corl, reqevents, rtneventsp, notify)

struct file *fp;
int corl;
ushort reqevents, *rtneventsp;
void (notify) ();

476 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

The parameters have the following values:

Value Description
fp Points to the file structure. This structure corresponds to the file descriptor used by the select

subroutine.
corl Specifies the ID used for correlation in the selnotify kernel service.
reqevents Identifies the events to check. The poll and select functions define three standard event flags and

one informational flag. The sys/poll.h file details the event bit definition. See the fp_select kernel
service for information about the possible flags.

rtneventsp Indicates the returned events pointer. This parameter, passed by reference, indicates the events
that are true at the current time. The returned event bits include the request events and an error
event indicator.

notify Points to a routine to call when the specified object invokes the selnotify kernel service for an
outstanding asynchronous select or poll event request. If no routine is to be called, this parameter
must be null.

If successful, the fo_select operation returns a value of 0. This operation should return a nonzero return
value to indicate an error. Refer to the sys/errno.h file for the list of possible values.

fstat Requirements
The fstat operation fills in an attribute structure. Depending on the object type specified by the fp
parameter, many fields in the structure may not be applicable. The value passed back from this operation
is dependent upon both the object type and what any routine that understands the type is expecting. The
syntax for this operation is as follows:
#include <sys/types.h>

int (*fo_fstat) (fp, sbp)

struct file *fp;
struct stat *sbp;

The parameters have the following values:

Value Description
fp Points to the file structure. This structure corresponds to the file descriptor used by the stat subroutine.
sbp Points to the stat structure to be filled in by this operation. The address supplied is in kernel space.

If successful, the fo_fstat operation returns a value of 0. A nonzero return value should be programmed to
indicate an error. Refer to the sys/errno.h file for the list of possible values.

close Requirements
The close operation invalidates routine access to objects specified by the fp parameter and releases any
data associated with that access. This operation is called from the close subroutine code when the file
structure use count is decremented to 0. For example, if there are multiple accesses to an object (created
by the dup, fork, or other subsystem-specific operation), the close subroutine calls the close operation
when it determines that there is no remaining access through the file structure being closed.

A file descriptor is considered open once a file descriptor and file structure have been set up by the LFS.
The close file operation is called whenever a close or exit is specified. As a result, the close operation
must be able to close an object that is not fully open, depending on what the caller did before the file
structure was initialized.

The syntax for the close operation is as follows:
#include <sys/file.h>

int (*fo_close) (fp)
struct file *fp;

Chapter 1. Kernel Services 477

The parameter is:

fp Points to the file structure. This structure corresponds to the file descriptor used by the close subroutine.

If successful, the fo_close operation returns a value of 0. This operation should return a nonzero return
value to indicate an error. Refer to the sys/errno.h file for the list of possible values.

Execution Environment
The ufdcreate kernel service can be called from the process environment only.

Return Values
If the ufdcreate kernel service succeeds, it returns a value of 0. If the kernel service fails, it returns a
nonzero value and sets the errno global variable.

Error Codes
The ufdcreate kernel service fails if one or more of the following errors occur:

Error Description
EINVAL The ops parameter is null, or the fileops structure does not have entries for for every operation.
EMFILE All file descriptors for the process have already been allocated.
ENFILE The system file table is full.

Related Information
The selnotify kernel service.

The close subroutine, exit, atexit, or _exit subroutine, ioctl subroutine, open subroutine, read subroutine,
select subroutine, write subroutine, fp_select subroutine.

Logical File System Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

ufdgetf Kernel Service

Purpose
Returns a pointer to a file structure associated with a file descriptor.

Syntax
#include <sys/file.h>

int ufdgetf(fd, fpp)
int fd;
struct file **fpp;

Parameters

fd Identifies the file descriptor. The descriptor must be for an open file.
fpp Points to a location to store the file pointer.

478 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The ufdgetf kernel service returns a pointer to a file structure associated with a file descriptor. The calling
routine must have a use count on the file descriptor. To obtain a use count on the file descriptor, the caller
must first call the ufdhold kernel service.

Execution Environment
The ufdget kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
EBADF Indicates that the fd parameter is not a file descriptor for an open file.

Related Information
The ufdhold kernel service.

ufdhold and ufdrele Kernel Service

Purpose
Increment or decrement a file descriptor reference count.

Syntax
int ufdhold(fd)
int fd;

int ufdrele(fd)
int fd;

Parameter

fd Identifies the file descriptor.

Description
Attention: It is extremely important that the calls to ufdhold and ufdrele kernel service are
balanced. If a file descriptor is held more times than it is released, the close subroutine on the
descriptor never completes. The process hangs and cannot be killed. If the descriptor is released
more times than it is held, the system panics.

The ufdhold and ufdrele kernel services increment and decrement a file-descriptor reference count.
Together, these kernel services maintain the file descriptor reference count. The ufdhold kernel service
increments the count. The ufdrele kernel service decrements the count.

These subroutines are supported for kernel extensions that provide their own file-descriptor-based system
calls. This support is required for synchronization with the close subroutine.

When a thread is executing a file-descriptor-based system call, it is necessary that the logical file system
(LFS) be aware of it. The LFS uses the count in the file descriptor to monitor the number of system calls
currently using any particular file descriptor. To keep the count accurately, any thread using the file
descriptor must increment the count before performing any operation and decrement the count when all
activity using the file descriptor is completed for that system call.

Chapter 1. Kernel Services 479

Execution Environment
These kernel services can be called from the process environment only.

Return Values

0 Indicates successful completion.
EBADF Indicates that the fd parameter is not a file descriptor for an open file.

Related Information
The ufdgetf kernel service.

The close subroutine.

uiomove Kernel Service

Purpose
Moves a block of data between kernel space and a space defined by a uio structure.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

int uiomove (cp, n, rw, uiop)
caddr_t cp;
int n;
uio_rw rw;
struct uio *uiop;

Parameters

cp Specifies the address in kernel memory to or from which data is moved.
n Specifies the number of bytes to move.
rw Indicates the direction of the move:

UIO_READ
Copies data from kernel space to space described by the uio structure.

UIO_WRITE
Copies data from space described by the uio structure to kernel space.

uiop Points to a uio structure describing the buffer used in the data transfer.

Description
The uiomove kernel service moves the specified number of bytes of data between kernel space and a
space described by a uio structure. Device driver top halves, especially character device drivers,
frequently use the uiomove service to transfer data into or out of a user area. The uio_resid and
uio_iovcnt fields in the uio structure describing the data area must be greater than 0 or an error is
returned.

The uiomove service moves the number of bytes of data specified by either the n or uio_resid parameter,
whichever is less. If either the n or uio_resid parameter is 0, no data is moved. The uio_segflg field in the
uio structure is used to indicate if the move is accessing a user- or kernel-data area, or if the caller

480 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

requires cross-memory operations and has provided the required cross-memory descriptors. If a
cross-memory operation is indicated, there must be a cross-memory descriptor in the uio_xmem array for
each iovec element.

If the move is successful, the following fields in the uio structure are updated:

Field Description
uio_iov Specifies the address of current iovec element to use.
uio_xmem Specifies the address of the current xmem element to use.
uio_iovcnt Specifies the number of remaining iovec elements.
uio_iovdcnt Specifies the number of already processed iovec elements.
uio_offset Specifies the character offset on the device performing the I/O.
uio_resid Specifies the total number of characters remaining in the data area described by the uio

structure.
iov_base Specifies the address of the data area described by the current iovec element.
iov_len Specifies the length of remaining data area in the buffer described by the current iovec

element.

Execution Environment
The uiomove kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
ENOMEM Indicates that there was no room in the buffer.
EIO Indicates a permanent I/O error file space.
ENOSPC Indicates insufficient disk space.
EFAULT Indicates a user location that is not valid.

Related Information
The uphysio kernel service, ureadc kernel service, uwritec kernel service.

unlock_enable Kernel Service

Purpose
Unlocks a simple lock if necessary, and restores the interrupt priority.

Syntax
#include <sys/lock_def.h>

void unlock_enable (int_pri, lock_addr)
int int_pri;
simple_lock_t lock_addr;

Parameters

int_pri Specifies the interrupt priority to restore. This must be set to the value returned by the
corresponding call to the disable_lock kernel service.

lock_addr Specifies the address of the lock word to unlock.

Chapter 1. Kernel Services 481

Description
The unlock_enable kernel service unlocks a simple lock if necessary, and restores the interrupt priority, in
order to provide optimized thread-interrupt critical section protection for the system on which it is
executing. On a multiprocessor system, calling the unlock_enable kernel service is equivalent to calling
the simple_unlock and i_enable kernel services. On a uniprocessor system, the call to the
simple_unlock service is not necessary, and is omitted. However, you should still pass the valid lock
address which was used with the corresponding call to the disable_lock kernel service. Never pass a
NULL lock address.

Execution Environment
The unlock_enable kernel service can be called from either the process or interrupt environment.

Return Values
The unlock_enable kernel service has no return values.

Related Information
The disable_lock kernel service, i_enable kernel service, simple_unlock kernel service.

Understanding Locking, Locking Kernel Services, Understanding Interrupts, I/O Kernel Services, Interrupt
Environment in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

unlockl Kernel Service

Purpose
Unlocks a conventional process lock.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

void unlockl (lock_word)
lock_t *lock_word;

Parameter

lock_word Specifies the address of the lock word.

Description

Note: The unlockl kernel service is provided for compatibility only and should not be used in new code,
which should instead use simple locks or complex locks.

The unlockl kernel service unlocks a conventional lock. Only the owner of a lock can unlock it. Once a
lock is unlocked, the highest priority thread (if any) which is waiting for the lock is made runnable and may
compete again for the lock. If there was at least one process waiting for the lock, the priority of the caller
is recomputed. Preempting a System Call discusses how system calls can use locking kernel services
when accessing global data.

The lockl and unlockl services do not maintain a nesting level count. A single call to the unlockl service
unlocks the lock for the caller. The return code from the lockl service should be used to determine when
to unlock the lock.

482 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Note: The unlockl kernel service can be called with interrupts disabled, only if the event or lock word is
pinned.

Execution Environment
The unlockl kernel service can be called from the process environment only.

Return Values
The unlockl service has no return values.

Example
A call to the unlockl service can be coded as follows:
int lock_ret; /* return code from lockl() */
extern int lock_word; /* lock word that is external

and was initialized to
LOCK_AVAIL */

...
/* get lock prior to using resource */
lock_ret = lockl(lock_word, LOCK_SHORT)
/* use resource for which lock was obtained */
...
/* release lock if this was not a nested use */
if (lock_ret != LOCK_NEST)

unlockl(lock_word);

Related Information
The lockl kernel service.

Understanding Locking in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Locking Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts

Preempting a System Call in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

Interrupt Environment in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

unpin Kernel Service

Purpose
Unpins the address range in system (kernel) address space.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/pin.h>

int unpin (addr, length)
caddr addr;
int length;

Parameters

addr Specifies the address of the first byte to unpin in the system (kernel) address space.
length Specifies the number of bytes to unpin.

Chapter 1. Kernel Services 483

Description
The unpin kernel service decreases the pin count of each page in the address range. When the pin count
is 0, the page is not pinned and can be paged out of real memory. Upon finding an unpinned page, the
unpin service returns the EINVAL error code and leaves any remaining pinned pages still pinned.

The unpin service can only be called with addresses in the system (kernel) address space. The
xmemunpin service should be used where the address space might be in either user or kernel space.

Execution Environment
The unpin kernel service can be called from either the process or interrupt environment.

Return Values

0 Indicates successful completion.
EINVAL Indicates that the value of the length parameter is negative or 0. Otherwise, the area of memory

beginning at the byte specified by the base parameter and extending for the number of bytes specified by
the len parameter is not defined. If neither cause is responsible, an unpinned page was specified.

Related Information
The pin, xmempin, and xmemunpin kernel services.

Understanding Execution Environments and Memory Kernel Services in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

unpincode Kernel Service

Purpose
Unpins the code and data associated with a loaded object module.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/pin.h>

int unpincode (func)
int (*func) ();

Parameter

func Specifies an address used to determine the object module to be unpinned. The address is typically that of a
function that is exported by this object module.

Description
The unpincode kernel service uses the ltunpin kernel service to decrement the pin count for the pages
associated with the following items:

v Code associated with the object module

v Data area of the object module that contains the function specified by the func parameter

The loader entry for the module is used to determine the size of both the code and the data area.

484 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment
The unpincode kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
EINVAL Indicates that the func parameter is not a valid pointer to the function.
EFAULT Indicates that the calling process does not have access to the area of memory that is associated with the

module.

Related Information
The unpin kernel service.

Understanding Execution Environments and Memory Kernel Services in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

unregister_HA_handler Kernel Service

Purpose
Removes from the kernel the registration of a High Availability Event Handler.

Syntax
#include <sys/high_avail.h>

int register_HA_handler (ha_handler)
ha_handler_ext_t * ha_handler;

Parameter

ha_handler Specifies a pointer to a structure of the type
ha_handler_ext_t defined in /usr/include/sys/
high_avail.h. This structure must be identical to the one
passed to register_HA_handler at the time of
registration.

Description
The unregister_HA_handler kernel service cancels an unconfigured kernel extensions that have
registered a high availability event handler, done by the register_HA_handler kernel service, so that the
kernel extension can be unloaded.

Failure to do so may cause a system crash when a high availability event such as a processor
deallocation is initiated due to some hardware fault.

Execution Environment
The unregister_HA_handler kernel service can be called from the process environment only.

An extension may register the same HAEH N times (N > 1). Although this is considered an incorrect
behaviour, no error is reported. The given HAEH will be invoked N times for each HA event. This handler
has to be unregistered as many times as it was registered.

Chapter 1. Kernel Services 485

Return Values

0 Indicates a successful operation.

A non-zero value indicates an error.

Related Information
The register_HA_handler kernel service.

The RAS Kernel Services in the AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

untimeout Kernel Service

Attention: This service should not be used in AIX Version 4, because it is not multi-processor safe.
The base kernel timer and watchdog services should be used instead. See talloc and w_init for more
information.

Purpose
Cancels a pending timer request.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

void untimeout (func, arg)
void (*func)();
caddr_t *arg;

Parameters

func Specifies the function associated with the timer to be canceled.
arg Specifies the function argument associated with the timer to be canceled.

Description
The untimeout kernel service is not part of the kernel. However, it is a compatibility service provided in
the libsys.a library. To use the untimeout service, a kernel extension must have been bound with the
libsys.a library. The untimeout service, like the associated kernel libsys services timeoutcf and timeout,
can be bound and used only in the pinned part of a kernel extension or the bottom half of a device driver
because these services use interrupt disable for serialization.

The untimeout kernel service cancels a specific request made with the timeout service. The func and arg
parameters must match those used in the timeout kernel service request that is to be canceled.

Upon return, the specified timer request is canceled, if found. If no timer request matching func and arg is
found, no operation is performed.

Execution Environment
The untimeout kernel service can be called from either the process or interrupt environment.

Return Values
The untimeout kernel service has no return values.

486 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
The timeout kernel service.

Timer and Time-of-Day Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

uphysio Kernel Service

Purpose
Performs character I/O for a block device using a uio structure.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>
#include <sys/uio.h>

int uphysio (uiop, rw, buf_cnt, devno, strat, mincnt, minparms)
struct uio * uiop;
int rw;
uint buf_cnt;
dev_t devno;
int (* strat)();
int (* mincnt)();
void * minparms;

Parameters

uiop Points to the uio structure describing the buffer of data to transfer
using character-to-block I/O.

rw Indicates either a read or write operation. A value of B_READ for
this flag indicates a read operation. A value of B_WRITE for this flag
indicates a write operation.

buf_cnt Specifies the maximum number of buf structures to use when
calling the strategy routine specified by the strat parameter. This
parameter is used to indicate the maximum amount of concurrency
the device can support and minimize the I/O redrive time. The value
of the buf_cnt parameter can range from 1 to 64.

devno Specifies the major and minor device numbers. With the uphysio
service, this parameter specifies the device number to be placed in
the buf structure before calling the strategy routine specified by the
strat parameter.

strat Represents the function pointer to the ddstrategy routine for the
device.

mincnt
Represents the function pointer to a routine used to reduce the data
transfer size specified in the buf structure, as required by the device
before the strategy routine is started. The routine can also be used
to update extended parameter information in the buf structure
before the information is passed to the strategy routine.

minparms Points to parameters to be used by the mincnt parameter.

Chapter 1. Kernel Services 487

Description
The uphysio kernel service performs character I/O for a block device. The uphysio service attempts to
send to the specified strategy routine the number of buf headers specified by the buf_cnt parameter.
These buf structures are constructed with data from the uio structure specified by the uiop parameter.

The uphysio service initially transfers data area descriptions from each iovec element found in the uio
structure into individual buf headers. These headers are later sent to the strategy routine. The uphysio
kernel service tries to process as many data areas as the number of buf headers permits. It then invokes
the strategy routine with the list of buf headers.

Preparing Individual buf Headers

The routine specified by the mincnt parameter is called before the buf header, built from an iovec
element, is added to the list of buf headers to be sent to the strategy routine. The mincnt parameter is
passed a pointer to the buf header along with the minparms pointer. This arrangement allows the mincnt
parameter to tailor the length of the data transfer described by the buf header as required by the device
performing the I/O. The mincnt parameter can also optionally modify certain device-dependent fields in the
buf header.

When the mincnt parameter returns with no error, an attempt is made to pin the data buffer described by
the buf header. If the pin operation fails due to insufficient memory, the data area described by the buf
header is reduced by half. The buf header is again passed to the mincnt parameter for modification before
trying to pin the reduced data area.

This process of downsizing the transfer specified by the buf header is repeated until one of the three
following conditions occurs:

v The pin operation succeeds.

v The mincnt parameter indicates an error.

v The data area size is reduced to 0.

When insufficient memory indicates a failed pin operation, the number of buf headers used for the
remainder of the operation is reduced to 1. This is because trying to pin multiple data areas
simultaneously under these conditions is not desirable.

If the user has not already obtained cross-memory descriptors, further processing is required. (The
uio_segflg field in the uio structure indicates whether the user has already initialized the cross-memory
descriptors. The usr/include/sys/uio.h file contains information on possible values for this flag.)

When the data area described by the buf header has been successfully pinned, the uphysio service
verifies user access authority for the data area. It also obtains a cross-memory descriptor to allow the
device driver interrupt handler limited access to the data area.

Calling the Strategy Routine

After the uphysio kernel service obtains a cross-memory descriptor to allow the device driver interrupt
handler limited access to the data area, the buf header is then put on a list of buf headers to be sent to
the strategy routine specified by the strat parameter.

The strategy routine specified by the strat parameter is called with the list of buf headers when:

v The list reaches the number of buf structures specified by the buf_cnt parameter.

v The data area described by the uio structure has been completely described by buf headers.

The buf headers in the list are chained together using the av_back and av_forw fields before they are sent
to the strategy routine.

488 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Waiting for buf Header Completion

When all available buf headers have been sent to the strategy routine, the uphysio service waits for one
or more of the buf headers to be marked complete. The IODONE handler is used to wake up the uphysio
service when it is waiting for completed buf headers from the strategy routine.

When the uphysio service is notified of a completed buf header, the associated data buffer is unpinned
and the cross-memory descriptor is freed. (However, the cross-memory descriptor is freed only if the user
had not already obtained it.) An error is detected on the data transfer under the following conditions:

v The completed buf header has a nonzero b_resid field.

v The b_flags field has the B_ERROR flag set.

When an error is detected by the uphysio service, no new buf headers are sent to the strategy routine.

The uphysio service waits for any buf headers already sent to the strategy routine to be completed and
then returns an error code to the caller. If no errors are detected, the buf header and any other completed
buf headers are again used to send more data transfer requests to the strategy routine as they become
available. This process continues until all data described in the uio structure has been transferred or until
an error has been detected.

The uphysio service returns to the caller when:

v All buf headers have been marked complete by the strategy routine.

v All data specified by the uio structure has been transferred.

The uphysio service also returns an error code to the caller if an error is detected.

Error Detection by the uphysio Kernel Service

When it detects an error, the uphysio kernel service reports the error that was detected closest to the
start of the data area described by the uio structure. No additional buf headers are sent to the strategy
routine. The uphysio kernel service waits for all buf headers sent to the strategy routine to be marked
complete.

However, additional buf headers may have been sent to the strategy routine between these two events:

v After the strategy routine detects the error.

v Before the uphysio service is notified of the error condition in the completed buf header.

When errors occur, various fields in the returned uio structure may or may not reflect the error. The
uio_iov and uio_iovcnt fields are not updated and contain their original values.

The uio_resid and uio_offset fields in the returned uio structure indicate the number of bytes transferred
by the strategy routine according to the sum of all (the b_bcount field minus the b_resid fields) fields in the
buf headers processed by the strategy routine. These headers include the buf header indicating the error
nearest the start of the data area described by the original uio structure. Any data counts in buf headers
completed after the detection of the error are not reflected in the returned uio structure.

Execution Environment
The uphysio kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
ENOMEM Indicates that no memory is available

for the required buf headers.

Chapter 1. Kernel Services 489

EAGAIN Indicates that the operation fails due to
a temporary insufficient resource
condition.

EFAULT Indicates that the uio_segflg field
indicated user space and that the user
does not have authority to access the
buffer.

EIO or the b_error field in a buf header Indicates an I/O error in a buf header
processed by the strategy routine.

Return code from the mincnt parameter Indicates that the return code from the
mincnt parameter if the routine
returned with a nonzero return code.

Related Information
The ddstrategy device driver entry point.

The geterror kernel service, iodone kernel service.

The mincnt routine.

The buf structure, uio structure.

uphysio Kernel Service mincnt Routine

Purpose
Tailors a buf data transfer request to device-dependent requirements.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

int mincnt (bp, minparms)
struct buf *bp;
void *minparms;

Parameters

bp Points to the buf structure to be tailored.
minparms Points to parameters.

Description
Only the following fields in the buf header sent to the routine specified by the uphysio kernel service
mincnt parameter can be modified by that routine:

v b_bcount

v b_work

v b_options

490 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

The mincnt parameter cannot modify any other fields without the risk of error. If the mincnt parameter
determines that the buf header cannot be supported by the target device, the routine should return a
nonzero return code. This stops the buf header and any additional buf headers from being sent to the
ddstrategy routine.

The uphysio kernel service waits for all buf headers already sent to the strategy routine to complete and
then returns with the return code from the mincnt parameter.

Related Information
The uphysio kernel service.

uprintf Kernel Service

Purpose
Submits a request to print a message to the controlling terminal of a process.

Syntax
#include <sys/uprintf.h>

int uprintf (Format [, Value, ...])
char *Format;

Parameters

Format Specifies a character string containing either or both of two types of objects:

v Plain characters, which are copied to the message output stream.

v Conversion specifications, each of which causes 0 or more items to be retrieved from the Value
parameter list. Each conversion specification consists of a % (percent sign) followed by a character
that indicates the type of conversion to be applied:

% Performs no conversion. Prints %.

d, i Accepts an integer Value and converts it to signed decimal notation.

u Accepts an integer Value and converts it to unsigned decimal notation.

o Accepts an integer Value and converts it to unsigned octal notation.

x Accepts an integer Value and converts it to unsigned hexadecimal notation.

s Accepts a Value as a string (character pointer), and characters from the string are printed
until a \ 0 (null character) is encountered. Value must be non-null and the maximum length of
the string is limited to UP_MAXSTR characters.

Field width or precision conversion specifications are not supported.

The following constants are defined in the /usr/include/sys/uprintf.h file:

– UP_MAXSTR

– UP_MAXARGS

– UP_MAXCAT

– UP_MAXMSG

The Format string may contain from 0 to the number of conversion specifications specified by the
UP_MAXARGS constant. The maximum length of the Format string is the number of characters
specified by the UP_MAXSTR constant. Format must be non-null.

The maximum length of the constructed kernel message is limited to the number of characters
specified by the UP_MAXMSG constant. Messages larger then the number of characters specified by
the UP_MAXMSG constant are discarded.

Chapter 1. Kernel Services 491

Value Specifies, as an array, the value to be converted. The number, type, and order of items in the Value
parameter list should match the conversion specifications within the Format string.

Description
The uprintf kernel service submits a kernel message request. Once the request has been successfully
submitted, the uprintfd daemon constructs the message based on the Format and Value parameters of
the request. The uprintfd daemon then writes the message to the process’ controlling terminal.

Execution Environment
The uprintf kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
ENOMEM Indicates that memory is not available to buffer the request.
ENODEV Indicates that a controlling terminal does not exist for the process.
ESRCH Indicates that the uprintfd daemon is not active. No requests may be submitted.
EINVAL Indicates that a string Value string pointer is null or the string Value parameter is greater than the number

of characters specified by the UP_MAXSTR constant.
EINVAL Indicates one of the following:

v Format string pointer is null.

v Number of characters in the Format string is greater than the number specified by the UP_MAXSTR
constant.

v Number of conversion specifications contained within the Format string is greater than the number
specified by the UP_MAXARGS constant.

Related Information
The NLuprintf kernel service.

The uprintfd daemon.

Process and Exception Management Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

ureadc Kernel Service

Purpose
Writes a character to a buffer described by a uio structure.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

int ureadc (c, uiop)
int c;
struct uio *uiop;

Parameters

c Specifies a character to be written to the buffer.

492 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

uiop Points to a uio structure describing the buffer in which to place a character.

Description
The ureadc kernel service writes a character to a buffer described by a uio structure. Device driver top
half routines, especially character device drivers, frequently use the ureadc kernel service to transfer data
into a user area.

The uio_resid and uio_iovcnt fields in the uio structure describing the data area must be greater than 0.
If these fields are not greater than 0, an error is returned. The uio_segflg field in the uio structure is used
to indicate whether the data is being written to a user- or kernel-data area. It is also used to indicate if the
caller requires cross-memory operations and has provided the required cross-memory descriptors. The
values for the flag are defined in the /usr/include/sys/uio.h file.

If the data is successfully written, the following fields in the uio structure are updated:

Field Description
uio_iov Specifies the address of current iovec element to use.
uio_xmem Specifies the address of current xmem element to use (used for cross-memory copy).
uio_iovcnt Specifies the number of remaining iovec elements.
uio_iovdcnt Specifies the number of iovec elements already processed.
uio_offset Specifies the character offset on the device from which data is read.
uio_resid Specifies the total number of characters remaining in the data area described by the uio

structure.
iov_base Specifies the address of the next available character in the data area described by the current

iovec element.
iov_len Specifies the length of remaining data area in the buffer described by the current iovec

element.

Execution Environment
The ureadc kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
ENOMEM Indicates that there is no room in the buffer.
EFAULT Indicates that the user location is not valid for one of these reasons:

v The uio_segflg field indicates user space and the base address (iov_base field) points to a location
outside of the user address space.

v The user does not have sufficient authority to access the location.

v An I/O error occurs while accessing the location.

Related Information
The uiomove kernel service, uphysio kernel service, uwritec kernel service.

The uio structure.

Memory Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

Chapter 1. Kernel Services 493

uwritec Kernel Service

Purpose
Retrieves a character from a buffer described by a uio structure.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

int uwritec (uiop)
struct uio *uiop;

Parameter

uiop Points to a uio structure describing the buffer from which to read a character.

Description
The uwritec kernel service reads a character from a buffer described by a uio structure. Device driver top
half routines, especially character device drivers, frequently use the uwritec kernel service to transfer data
out of a user area. The uio_resid and uio_iovcnt fields in the uio structure must be greater than 0 or an
error is returned.

The uio_segflg field in the uio structure indicates whether the data is being read out of a user- or
kernel-data area. This field also indicates whether the caller requires cross-memory operations and has
provided the required cross-memory descriptors. The values for this flag are defined in the
/usr/include/sys/uio.h file.

If the data is successfully read, the following fields in the uio structure are updated:

Field Description
uio_iov Specifies the address of the current iovec element to use.
uio_xmem Specifies the address of the current xmem element to use (used for cross-memory copy).
uio_iovcnt Specifies the number of remaining iovec elements.
uio_iovdcnt Specifies the number of iovec elements already processed.
uio_offset Specifies the character offset on the device to which data is written.
uio_resid Specifies the total number of characters remaining in the data area described by the uio

structure.
iov_base Specifies the address of the next available character in the data area described by the current

iovec element.
iov_len Specifies the length of the remaining data in the buffer described by the current iovec element.

Execution Environment
The uwritec kernel service can be called from the process environment only.

494 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Return Values
Upon successful completion, the uwritec service returns the character it was sent to retrieve.

-1 Indicates that the buffer is empty or the user location is not valid for one of these three reasons:

v The uio_segflg field indicates user space and the base address (iov_base field) points to a location outside
of the user address space.

v The user does not have sufficient authority to access the location.

v An I/O error occurred while the location was being accessed.

Related Information
The uiomove kernel service, uphysio kernel service, ureadc kernel service.

validate_pag or validate_pag64 Kernel Service

Purpose
Validates the Process Authentication Group (PAG) value.

Syntax
#include <sys/cred.h>

int validate_pag (type, pg, npags)
int type;
struct paglist pg[];
int npags;

int validate_pag64 (type, pg, npags)
int type;
struct paglist64 pg[];
int npags;

Parameters

type PAG type to validate
pg PAG list (must be in pinned memory)
npags Number of PAGs to validate

Description
The validate_pag or validate_pag64 kernel service validates the PAGs specified in pg. These services
support the garbage collection of data structures by kernel extensions associated with PAGs. These
structures are associated with a set_pag interface process. PAG values are inherited from parent to child
across the fork system call, so one kernel extension structure can map to many processes. This routine is
required to synchronize the execution of forks so that the process table can be scanned to identify a
particular PAG. The validate_pag and validate_pag64 kernel services cannot be used simultaneously
with the set_pag interface. The application is required to provide this synchronization.

The value of type must be a defined PAG ID. The PAG ID for the Distributed Computing Environment
(DCE) is 0. The pg parameter must be a valid, referenced PAG list in pinned memory.

Execution Environment
The validate_pag and validate_pag64 kernel services can be called from the process environment only.

Chapter 1. Kernel Services 495

Return Values
A value of 0 is returned upon successful completion. Upon failure, a -1 is returned and errno is set to a
value that explains the error.

Error Codes
The validate_pag and validate_pag64 kernel services fail if the following condition is true:

EINVAL Invalid PAG specification

Related Information
Security Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

vec_clear Kernel Service

Purpose
Removes a virtual interrupt handler.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

void vec_clear (levsublev)
int levsublev;

Parameter

levsublev Represents the value returned by vec_init kernel service when the virtual interrupt handler was
defined.

Description
The vec_clear kernel service is not part of the base kernel but is provided by the device queue
management kernel extension. This queue management kernel extension must be loaded into the kernel
before loading any kernel extensions referencing these services.

The vec_clear kernel service removes the association between a virtual interrupt handler and the virtual
interrupt level and sublevel that was assigned by the vec_init kernel service. The virtual interrupt handler
at the sublevel specified by the levsublev parameter no longer registers upon return from this routine.

Execution Environment
The vec_clear kernel service can be called from the process environment only.

Return Values
The vec_clear kernel service has no return values. If no virtual interrupt handler is registered at the
specified sublevel, no operation is performed.

Related Information
The vec_init kernel service.

496 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

vec_init Kernel Service

Purpose
Defines a virtual interrupt handler.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int vec_init (level, routine, arg)
int level;
void (*routine) ();
int arg;

Parameters

level Specifies the virtual interrupt level. This level value is not used by the vec_init kernel service and
implies no relative priority. However, it is returned with the sublevel assigned for the registered virtual
interrupt handler.

routine Identifies the routine to call when a virtual interrupt occurs on a given interrupt sublevel.
arg Specifies a value that is passed to the virtual interrupt handler.

Description
The vec_init kernel service is not part of the base kernel but provided by the device queue management
kernel extension. This queue management kernel extension must be loaded into the kernel before loading
any kernel extensions referencing these services.

The vec_init kernel service associates a virtual interrupt handler with a level and sublevel. This service
searches the available sublevels to find the first unused one. The routine and arg parameters are used to
initialize the open sublevel. The vec_init kernel service then returns the level and assigned sublevel.

There is a maximum number of available sublevels. If this number is exceeded, the vec_init service halts
the system. This service should be called to initialize a virtual interrupt before any device queues using the
virtual interrupt are created.

The level parameter is not used by the vec_init service. It is provided for compatibility reasons only.
However, its value is passed back intact with the sublevel.

Execution Environment
The vec_init kernel service can be called from the process environment only.

Return Values
The vec_init kernel service returns a value that identifies the virtual interrupt level and assigned sublevel.
The low-order 8 bits of this value specify the sublevel, and the high-order 8 bits specify the level. The
attchq kernel service uses the same format. This level value is the same value as that supplied by the
level parameter.

vfsrele Kernel Service

Purpose
Releases all resources associated with a virtual file system.

Chapter 1. Kernel Services 497

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int vfsrele (vfsp)
struct vfs *vfsp;

Parameter

vfsp Points to a virtual file system structure.

Description
The vfsrele kernel service releases all resources associated with a virtual file system.

When a file system is unmounted, the VFS_UNMOUNTED flag is set in the vfs structure, indicating that it
is no longer valid to do path name-related operations within the file system. When this flag is set and a
vnop_rele v-node operation releases the last active v-node within the file system, the vnop_rele v-node
implementation must call the vfsrele kernel service to complete the deallocation of the vfs structure.

Execution Environment
The vfsrele kernel service can be called from the process environment only.

Return Values
The vfsrele kernel service always returns a value of 0.

Related Information
Virtual File System Overview, Virtual File System (VFS) Kernel Services, Understanding Virtual Nodes
(V-nodes) in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

vm_att Kernel Service

Purpose
Maps a specified virtual memory object to a region in the current address space.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

caddr_t vm_att (vmhandle, offset)
vmhandle_t vmhandle;
caddr_t offset;

Parameters

vmhandle Specifies the handle for the virtual memory object to be mapped.
offset Specifies the offset in the virtual memory object and region.

498 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The vm_att kernel service performs the following tasks:

v Selects an unallocated region in the current address space and allocates it.

v Maps the virtual memory object specified by the vmhandle parameter with the access permission
specified in the handle.

v Constructs the address in the current address space corresponding to the offset in the virtual memory
object and region.

The vm_att kernel service assumes an address space model of fixed-size virtual memory objects and
address space regions.

Attention: If there are no more free regions, this call cannot complete and calls the panic kernel
service.

Execution Environment
The vm_att kernel service can be called from either the process or interrupt environment.

Return Values
The vm_att kernel service returns the address that corresponds to the offset parameter in the address
space.

Related Information
The as_geth kernel service, vm_det kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_cflush Kernel Service

Purpose
Flushes the processor’s cache for a specified address range.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

void vm_cflush (eaddr, nbytes)
caddr_t eaddr;
int nbytes;

Parameters

eaddr Specifies the starting address of the specified range.
nbytes Specifies the number of bytes in the address range. If this parameter is negative or 0, no lines are

invalidated.

Description
The vm_cflush kernel service writes to memory all modified cache lines that intersect the address range
(eaddr, eaddr + nbytes -1). The eaddr parameter can have any alignment in a page.

Chapter 1. Kernel Services 499

The vm_cflush kernel service can only be called with addresses in the system (kernel) address space.

Execution Environment
The vm_cflush kernel service can be called from both the interrupt and the process environment.

Return Values
The vm_cflush kernel service has no return values.

Related Information
Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_det Kernel Service

Purpose
Unmaps and deallocates the region in the current address space that contains a given address.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

void vm_det (eaddr)
caddr_t eaddr;

Parameter

eaddr Specifies the effective address in the current address space. The region containing this address is to be
unmapped and deallocated.

Description
The vm_det kernel service unmaps the region containing the eaddr parameter and deallocates the region,
adding it to the free list for the current address space.

The vm_det kernel service assumes an address space model of fixed-size virtual memory objects and
address space regions.

Attention: If the region is not mapped, or a system region is referenced, the system will halt.

Execution Environment
The vm_det kernel service can be called from either the process or interrupt environment.

Related Information
The vm_att kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

500 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

vm_flushp Kernel Service

Purpose
Flushes the specified range of pages.

Syntax
#include <sys/types.h>
#include <sys/errno.h>#include <sys/vmuser.h>

int vm_flushp (sid, pfirst, npages)
vmid_t sid;
vpn_t pfirst;
vpn_t npages;

Parameters

sid Identifies the base segment.
pfirst The first page number within the range.
npages The number of pages to flush starting from the pfirst value. All pages must be in the same segment.

Description
The vm_flushp kernel service routine initiates page-out for the specified page range in the virtual memory
object. I/O is initiated for the modified pages only. If page-out is initiated, or the pages are currently
undergoing page I/O, then they are flagged to have their page frames released upon completion. If the
pages are not modified, their page frames are immediately released.

The caller can wait for the completion of I/O initiated by this and prior calls by calling the vms_iowait
kernel service.

Note: The vm_flushp subroutine is not supported for use on large pages.

Execution Environment
The vm_flushp kernel service can be called from the process environment only.

This is intended for files, and might not be called for working storage segments.

Return Values

0 Indicates the completion of the flush operation.
EINVAL Indicates one of the following errors:

v pfirst < 0.

v npages < 0.

v Page interval not in one segment.

v Invalid sid parameter.

v Invalid segment type.

Related Information
The vm_write, vm_writep, vm_invalidatep and vms_iowait kernel services.

Chapter 1. Kernel Services 501

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_galloc Kernel Service

Purpose
Allocates a region of global memory in the 64-bit kernel.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_galloc (int type, vmsize_t size, ulong * eaddr)

Description
The vm_galloc kernel service allocates memory from the kernel global memory pool on the 64-bit kernel.
The allocation size is rounded up to the nearest 4K boundary. The default page protection key for global
memory segments is 00 unless overridden with the V_UREAD flag.

The type field may have the following values, which may be combined:

V_WORKING Required. Creates a working storage segment.
V_SYSTEM The new allocation is a global system area that does not

belong to any application. Storage reference errors to this
area will result in system crashes.

V_UREAD Overrides the default page protection of 00 and creates
the new region with a default page protection of 01.

V_NOEXEC Pages in the region will have no-execute protection by
default. Only supported on POWER4 and later hardware.

The vm_galloc kernel service is intended for subsystems that have large data structures for which
xmalloc is not the best choice for management. The kernel xmalloc heap itself does reside in global
memory.

Parameters

type Flags that may be specified to control the allocation.
size Specifies the size, in bytes, of the desired allocation.
eaddr Pointer to where vm_galloc will return the start address of

the allocated storage.

Execution Environment
The vm_galloc kernel service can be called from the process environment only.

Return Values

0 Successful completion. A new region was allocated, and
its start address is returned at the address specified by
the eaddr parameter.

EINVAL Invalid size or type specified.

502 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

ENOSPC Not enough space in the galloc heap to perform the
allocation.

ENOMEM Insufficient resources available to satisfy the request.

Related Information
The vm_gfree kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_gfree Kernel Service

Purpose
Frees a region of global memory in the kernel previously allocated with the vm_galloc kernel service.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_gfree (ulong eaddr, vmsize_t size)

Description
The vm_gfree kernel service frees up a global memory region previously allocated with the vm_galloc
kernel service. The start address and size must exactly match what was previously allocated by the
vm_galloc kernel service. It is not valid to free part of a previously allocated region in the vm_galloc
area.

Any I/O to or from the region being freed up must be quiesced before calling the vm_gfree kernel service.

Parameters

eaddr Start address of the region to free.
size Size in bytes of the region to free.

Execution Environment
The vm_gfree kernel service can be called from the process environment only.

Return Values

0 Successful completion. The region was freed.
EINVAL Invalid size or start address specified. This could mean

that the region is out of range of the vm_galloc heap,
was not previously allocated with vm_galloc, or does not
exactly match a previous allocation from vm_galloc.

Related Information
The vm_galloc kernel service.

Chapter 1. Kernel Services 503

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_guatt Kernel Service

Purpose
Attaches an area of global kernel memory to the current process’s address space.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_guatt (kaddr, size, key, flags, uaddr)
void * kaddr;
vmsize_t size;
vmkey_t key;
long flags;
void ** uaddr;

Parameters

kaddr Kernel address to be attached (returned from vm_galloc when the global memory was allocated).
size Length of the region to be inserted into the process address space, in bytes.
key Protection key that the process will use when accessing the attached region.
flags Type of vm_guatt operation; must be set to VU_ANYWHERE.
uaddr Pointer to user space address where the region was attached by vm_guatt. The location pointed to

by uaddr (*uaddr) must be null when the vm_guatt call is made.

Description
vm_guatt is a kernel service used to attach a region of global kernel memory that was allocated with
vm_galloc to a process’s address space. If the call is successful, the address in the process address
space where the memory was attached is returned in the location pointed to by uaddr.

key can be set to VM_PRIV or VM_UNPRIV. If it is set to VM_PRIV, the process will be able to read and
write the attached region. If it is set to VM_UNPRIV, the process will not be able to write the region and
will only be able to read it if the vm_galloc of the region was done with the V_UREAD flag on.

vm_guatt attachments are not inherited across a process fork.

Execution Environment
The vm_guatt kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
EINVAL Indicates one of the following errors:

v flags or key is not set to a valid value, size is 0, or the value pointed to by uaddr is non-NULL.

v Region indicated by kaddr and size does not lie within a region previously allocated by
vm_galloc.

504 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Implementation Specifics
The vm_guatt kernel service is part of Base Operating System (BOS) Runtime.

Related Information
“vm_galloc Kernel Service” on page 502, “vm_gudet Kernel Service,” Memory Kernel Services

vm_gudet Kernel Service

Purpose
Removes a region attached with vm_guatt from the current process’s address space.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_gudet (kaddr, uaddr, size, flags)
void * kaddr;
void * uaddr;
vmsize_t size;
long flags;

Parameters

kaddr Kernel address attached by vm_guatt.
uaddr Location in the process address space where the kernel region was attached.
size Length of the attached region, in bytes.
flags Type of vm_gudet operation, must be VU_ANYWHERE.

Description
vm_gudet is a kernel service that detaches a region of global kernel memory that was attached by
vm_guatt. This memory must still be allocated, detaching a region after it has been deallocated with
vm_gfree is an error. If the detach is successful, the global kernel memory region at kaddr will no longer
be addressable at uaddr by the calling process.

Execution Environment
The vm_gudet kernel service can be called from the process environment only.

Return Values

0 User address detached successfully.
EINVAL Indicates one of the following errors:

v Invalid flags.

v Region indicated by kaddr and size does not lie within a region allocated by vm_galloc.

Implementation Specifics
The vm_gudet kernel service is part of Base Operating System (BOS) Runtime.

Chapter 1. Kernel Services 505

Related Information
“vm_galloc Kernel Service” on page 502, “vm_gfree Kernel Service” on page 503, “vm_guatt Kernel
Service” on page 504, Memory Kernel Services

vm_handle Kernel Service

Purpose
Constructs a virtual memory handle for mapping a virtual memory object with a specified access level.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

vmhandle_t vm_handle (vmid, key)
vmid_t vmid;
int key;

Parameters

vmid Specifies a virtual memory object identifier, as returned by the vms_create kernel service.
key Specifies an access key. This parameter has a 1 value for limited access and a 0 value for unlimited access,

respectively.

Description
The vm_handle kernel service constructs a virtual memory handle for use by the vm_att kernel service.
The handle identifies the virtual memory object specified by the vmid parameter and contains the access
key specified by the key parameter.

A virtual memory handle is used with the vm_att kernel service to map a virtual memory object into the
current address space.

The vm_handle kernel service assumes an address space model of fixed-size virtual memory objects and
address space regions.

Execution Environment
The vm_handle kernel service can be called from the process environment only.

Return Values
The vm_handle kernel service returns a virtual memory handle type.

Related Information
The vm_att kernel service, vms_create kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

506 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

vm_invalidatep Kernel Service

Purpose
Releases page frames in the specified range for a non-journaled persistent segment or client segment.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_invalidatep (sid, pfirst, npages)
vmid_t sid;
vpn_t pfirst;
ulong npages;

Parameters

sid Identifies the base segment.
pfirst The first page number within the range.
npages The number of pages to invalidate starting from the pfirst value. All pages must be in the same segment.

Description
The vm_invalidatep kernel service routine discards any page frames associated with the virtual memory
object in the specified page range.

If a page within the specified range is found in page-in or page-out state, then the thread is synchronously
put to sleep until the page I/O completes. When the I/O is complete, any memory-resident page frame is
then freed.

Note: The vm_invalidatep subroutine is not supported for use on large pages.

Execution Environment
The vm_invalidatep kernel service can be called from the process environment only.

This is intended for files, and might not be called for working storage segments.

Return Values

0 Indicates the completion of the invalidating operations.
EINVAL Indicates one of the following errors:

v pfirst < 0.

v npages < 0.

v Page interval not in one segment.

v Invalid sid parameter.

v Invalid segment type.

Related Information
The vm_write, vm_writep, vm_flushp and vms_iowait kernel services.

Chapter 1. Kernel Services 507

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_ioaccessp Kernel Service

Purpose
Initiates asynchronous page-in or page-out for the range of pages specified.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_ioaccessp (bsid, pfirst, npages, modifier)
vmid_t bsid;
vpn_t pfirst;
vpn_t npages;
uint modifier;

Parameters

bsid Identifies the base segment.
pfirst The first page number within the range.
npages The number of pages to access starting from the pfirst value. All pages must be in the same segment.
modifier Flags passed in by the user. These flags are detailed below.

Description
The vm_ioaccessp kernel service routine enables a client file system with a thread-level strategy routine
to access the pages specified. This call is strictly advisory and might return without having done anything.
If you want to actually move the data, call the vm_uiomove kernel service. If you want to pre-page the
target, then call the vm_readp kernel service.

The flags passed in through the modifier parameter determine what type of action taken by the
vm_ioaccessp kernel service. For details of each flag’s purpose, see the table below.

The flags carry certain restrictions. You cannot request both a make and a flush operation. Also, if the
VM_IOACCESSP_WAITONLY flag is declared then you must specify at least one type of wait operation.
Finally, you cannot request a make or a flush operation if the VM_IOACCESSP_WAITONLY flag is
declared.

Flags

Value Name Purpose
0x0001 VM_IOACCESSP_MAKE Creates new pages in the page-in state in the specified range.

Can only make up to 1MB of pages.
0x0002 VM_IOACCESSP_FLUSH Flushes pages in the specified range.
0x0004 VM_IOACCESSP_PGINWAIT If a page in the specified range is in page-in state, then block

until page-in is complete.
0x0008 VM_IOACCESSP_PGOUTWAIT If a page in the specified range is in page-out state, then block

until page-out is complete.
0x0010 VM_IOACCESSP_WAITONLY Returns once the specified wait is complete. The

VM_IOACCESSP_PGINWAIT flag and the
VM_IOACCESSP_PGOUTWAIT flag must also be specified.

508 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment
The vm_ioaccessp kernel service can be called from the process environment only.

Return Values

0 Indicates the completion of the I/O access operations.
EINVAL Indicates one of the following errors:

v pfirst < 0.

v npages < 0.

v Page interval not in one segment.

v Invalid sid parameter.

v Page make requests > 1MB.

v Not a client file system.

v Unsupported flag used.

v Both the VM_IOACCESSP_MAKE and the VM_IOACCESSP_FLUSH flags are set.

v The VM_IOACCESSP_WAITONLY flag is set and the VM_IOACCESSP_PGINWAIT flag or the
VM_IOACCESSP_PGOUTWAIT flag is not set.

v The VM_IOACCESSP_WAITONLY flag and the VM_IOACCESSP_MAKE flag or the
VM_IOACCESSP_FLUSH flag are set.

Related Information
Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_makep Kernel Service

Purpose
Makes a page in client storage.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_makep (vmid, pno)
vmid_t vmid;
int pno;

Parameters

vmid Specifies the ID of the virtual memory object.
pno Specifies the page number in the virtual memory object.

Description
The vm_makep kernel service makes the page specified by the pno parameter addressable in the virtual
memory object without requiring a page-in operation. The vm_makep kernel service is restricted to client
storage.

The page is not initialized to any particular value. It is assumed that the page is completely overwritten. If
the page is already in memory, a value of 0, indicating a successful operation, is returned.

Chapter 1. Kernel Services 509

Execution Environment
The vm_makep kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
EINVAL Indicates a virtual memory object type or page number that is not valid.
EFBIG Indicates that the page number exceeds the file-size limit.

Related Information
Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_mount Kernel Service

Purpose
Adds a file system to the paging device table.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_mount (type, ptr, nbufstr)
int type;
int (*ptr)();
int nbufstr;

Parameters

type Specifies the type of device. The type parameter must have a value of D_REMOTE.
ptr Points to the file system’s strategy routine.
nbufstr Specifies the number of buf structures to use.

Description
The vm_mount kernel service allocates an entry in the paging device table for the file system. This
service also allocates the number of buf structures specified by the nbufstr parameter for the calls to the
strategy routine.

Execution Environment
The vm_mount kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
ENOMEM Indicates that there is no memory for the buf structures.
EINVAL Indicates that the file system strategy pointer is already in the paging device table.

510 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
The vm_umount kernel service, the vm_setdevid kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_mounte Kernel Service

Purpose
Adds a file system with a thread-level strategy routine to the paging device table.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_mounte (in_dtype, in_devid, in_thrinfop)
int in_dtype;
dev_t in_devid;
struct thrpginfo * in_thrinfop;

Parameters

in_dtype Specifies the type of device. Supported device types are D_REMOTE, D_LOGDEV, D_SERVER,
D_LOCALCLIENT. Other optional flags are detailed below.

in_devid If the type is D_LOGDEV, specifies a dev_t object of the block device. If the type is D_REMOTE
or D_SERVER, specifies a pointer to a strategy routine.

in_thrinfop Pointer to a thrpginfo structure.

Description
The vm_mounte kernel service allocates an entry in the paging device table for the device specified. The
vm_mounte kernel service can also mount a client file system with a thread-level strategy routine. This is
done by passing in the D_THRPGIO and the D_ENHANCEDIO flags.

Flags

Name Purpose
D_ENHANCEDIO Indicates an enhanced I/O-aware file system.
D_PREXLATE Enables pre-translation as the default for all but remote file systems.
D_THRPGIO Indicates a thread-level strategy routine.

Execution Environment
The vm_mounte kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
ENOMEM Indicates that there is no memory for the buf or the thrpginfo structure.

Chapter 1. Kernel Services 511

EINVAL Indicates one of the following errors:

v The file system strategy pointer is already in the paging device table, or in case of D_SERVER,
a server is already defined.

v The in_dtype parameter is set to the D_PAGING or the D_FILESYSTEM value.

v The thrpginfo structure has not been initialized correctly.

v The D_THRPGIO flag has been set without the D_ENHANCEDIO flag.

Related Information
The vm_umount kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_move Kernel Service

Purpose
Moves data between a virtual memory object and a buffer specified in the uio structure.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/uio.h>

int vm_move (vmid, offset, limit, rw, uio)
vmid_t vmid;
caddr_t offset;
int limit;
enum uio_rw rw;
struct uio * uio;

Parameters

vmid Specifies the virtual memory object ID.
offset Specifies the offset in the virtual memory object.
limit Indicates the limit on the transfer length. If this parameter is negative or 0, no bytes are transferred.
rw Specifies a read/write flag that gives the direction of the move. The possible values for this parameter

(UIO_READ, UIO_WRITE) are defined in the /usr/include/sys/uio.h file.
uio Points to the uio structure.

Description
The vm_move kernel service moves data between a virtual memory object and the buffer specified in a
uio structure.

This service determines the virtual addressing required for the data movement according to the offset in
the object.

The vm_move kernel service is similar to the uiomove kernel service, but the address for the trusted
buffer is specified by the vmid and offset parameters instead of as a caddr_t address. The offset size is
also limited to the size of a caddr_t address since virtual memory objects must be smaller than this size.

512 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Note: The vm_move kernel service does not support use of cross-memory descriptors.

I/O errors for paging space and a lack of paging space are reported as signals.

Execution Environment
The vm_move kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
EFAULT Indicates a bad address.
ENOMEM Indicates insufficient memory.
ENOSPC Indicates insufficient disk space.
EIO Indicates an I/O error.

Other file system-specific errno global variables are returned by the virtual file system involved in the
move function.

Related Information
The uiomove kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_mvc Kernel Service

Purpose
Reads or writes partial pages of files.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_mvc (in_sid, in_pno, in_pgoffs, in_count, in_cmd, in_xmemdp, in_ptr)
vmid_t in_sid;
vpn_t in_pno;
int in_pgoffs;
int in_count;
int in_cmd;
struct xmem * in_xmemdp;
void * in_ptr;

Parameters

in_sid The primary memory object, m1.
in_pno The m1 pno object. If it is a read operation, this parameter refers to the source. If not, it refers to a

target.
in_pgoffs The byte offset in the pno object.
in_count The number of bytes to zero or copy in memory.
in_cmd The reason for the function call. The possible values could be Zero, Zero(protect), read, or write.
in_xmemdp The xmem descriptor for the second memory object, m2.

Chapter 1. Kernel Services 513

in_ptr The byte offset in the xmem object.

Description
The vm_mvc kernel service is meant to be used by client file systems doing read or write operations to
partial pages of files, where the file is denoted by the m1 object and the read or write buffer by the m2
object. Such cases arise on EOF handling, fragments, compression, and holes among other situations.

Given two memory object, m1 and m2, the vm_mvc kernel service allows you to do one of the following
operations:

v Zero out bytes on the m1 object (VM_MVC_ZERO).

v Zero out and protect the m1 object (VM_MVC_PROTZERO).

v Copy bytes from the m1 object to the m2 object (VM_MVC_READ).

v Copy bytes from the m2 object to the m1 object (VM_MVC_WRITE).

The first memory object, m1, is characterized by a sid parameter and a pno parameter. The second
memory object, m2, is characterized by an xmem descriptor and a pointer for an offset. The second
memory object is a user or kernel buffer.

Note: The second memory object must be pinned.

Flags

in_cmd Purpose
VM_MVC_ZERO Zeros out the bytes on the m1 object.
VM_MVC_READ Copies bytes from the m1 object to the m2 object.
VM_MVC_WRITE Copies bytes from the m2 object to the m1 object.
VM_MVC_PROTZERO Zeros out and protects the m1 object.

Execution Environment
The vm_mvc kernel service can be called from the process environment only.

Return Values

0 Indicates that the I/O access operations completed successfully.
ENOENT Indicates that the (sid, pno) set was not mapped to a real frame.
EINVAL Indicates one of the following errors:

v The m1 object crosses page boundary.

v The in_cmd parameter does not contain a valid command.

Related Information
Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_pattr System Call and kvm_pattr Kernel Service

Purpose
Queries or modifies virtual memory attributes.

514 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Library
Standard C Library (libc.a)

Syntax
#include <sys/vmpattr.h>

int vm_pattr (
long cmd,
pid_t pid,
void * attr,
size_t attr_size);

int kvm_pattr (
long cmd,
pid_t pid,
void * attr,
size_t attr_size);

Description
The vm_pattr system call queries or modifies memory attributes of the calling process’s address space or
that of another user process.

The kvm_pattr kernel service provides the same function to kernel subsystems (kernel extensions, kernel
processes and so on) except that it cannot modify another kernel process’ memory attributes.

Parameters

cmd The following commands can be passed in:

VM_PA_SET_PSIZE or VM_PA_GET_PSIZE
These commands set or retrieve the page size used for a specified memory range.

VM_PA_GET_RMUSAGE
This command retrieves the amount of the real memory in bytes being used for a specified
memory range.

VM_PA_SET_PSPA or VM_PA_GET_PSPA
These commands set or retrieve the page size promotion aggressiveness factor for a specified
memory range.

VM_PA_GET_PSPA_ALIGN
This command retrieves the minimum memory alignment necessary for memory ranges
specified to the vm_pattr kernel service when using the VM_PA_SET_PSPA command.

VM_PA_CHECK_PSIZE
This command reports if a specified page size can be used for a memory range.

pid Specifies the ID of the process whose memory attributes are to be queried or modified. A value of -1
specifies the calling process. The root user can specify any process ID, but other users can only specify
processes they own (that is, the target process’s user ID must match the calling process's user ID).

The vm_pattr system call is only supported on user processes while the kvm_pattr kernel service can
target user processes or its own kernel process (for example, pid = -1).

Chapter 1. Kernel Services 515

attr A pointer to a structure describing the effective address range for the memory being queried or modified
and additional data depending on the command.

The range is specified through the following vm_pa_range structure:

struct vm_pa_range
{

ptr64_t rng_start;
size64_t rng_size;

};

The range specified must be in the target process’s address space and must correspond to one of
these process areas:

v Main program data (initialized, bss, or heap).

v Shared library data or private module load area data.

v Privately loaded text.

v Initial thread stack area.

v Anonymous shared memory (System V shared memory, extended System V shared through
EXTSHM, and POSIX real-time shared memory). The target process must have write access to the
memory in order to change the attributes of the shared memory range.

v Anonymous mmap memory.

If the memory range specified includes shared memory or mmap memory, the calling process must have
write access to the memory according to the shared memory descriptor or mapping attributes in order to
change the attributes of the range. The range can have additional restrictions based on the following
commands.

The structure specified through the attr parameter must be a pointer to one of the following structures:

VM_PA_SET_PSIZE or VM_PA_GET_PSIZE
These commands take a pointer to the following structure:

struct vm_pa_psize
{

struct vm_pa_range pa_range;
psize_t pa_psize;

};

For the VM_PA_SET_PSIZE command, the pa_psize parameter is the page size (in bytes) to
use for the given range. This is an advisory setting that might or might not be used at the
operating system's discretion. This must be a valid page size between the minimum and
maximum page sizes of all segments in the range. Additionally, the range must start and end
on a multiple of the specified page size. If an error occurs during the processing of this
command, any successfully altered page size settings can remain set.

For the VM_PA_GET_PSIZE command, the page size (in bytes) backing the specified memory
range is returned in the pa_psize parameter. The range must start and end on a multiple of the
smallest page size supported as reported by the sysconf(_SC_PAGE_SIZE) subroutine. If the
range is using multiple page sizes, the smallest page size in the range is reported. Unlike the
VM_PAGE_INFO command of the vmgetinfo subroutine that reports the segment’s base page
size, the page size reported by the VM_PA_GET_PSIZE command is the actual page size
being used at the time the vm_pattr system call was called. The page size reported is
transient because the operating system can change the backing page size at any time.
Therefore, the page size reported must be for informational purposes only.

516 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

attr
(continued) VM_PA_GET_RMUSAGE

This command takes a pointer to the following structure:

struct vm_pa_rmusage
{

struct vm_pa_range pa_range;
size64_t pa_rbytes;

};

This command reports the amount of real memory (in bytes) used for the given range in the
pa_rbytes field. This can help an application decide whether it needs to use a large page size
for a specific range based on how much real memory the range is using. For example, if a
64KB range is only using 4KB of real memory, then it does not make sense to try to use a
64KB page size for that range. But if it is using all 64KB or some large percentage of it, then
the application might decide to use a 64KB page size. The range specified for this command
has no alignment requirements for this command, and the command includes only those bytes
in the range that are using real memory.

VM_PA_SET_PSPA or VM_PA_GET_PSPA
These commands take a pointer to the following structure:

struct vm_pa_pspa
{

struct vm_pa_range pa_range;
int pa_pspa;

};

The VM_PA_SET_PSPA command can set the page size promotion aggressiveness for the
specified range. The pa_pspa setting is in the same units as the vmm_default_pspa vmo
tunable. This setting is the inverse of the real memory occupancy threshold needed to promote
to a large page size and ranges from -1 to 100. The value of -1 indicates that no page
promotion can occur regardless of the occupancy of the memory range. A value of 0 indicates
a page size promotion can only be done when the memory range is fully occupied. A value of
100 indicates a page promotion must be done at the first reference to the memory range.

This setting is only supported at a segment granularity, so the range must start and end on a
segment boundary. The alignment requirement for the range can be found using the
VM_PA_GET_PSPA_ALIGN command with the vm_pattr system call.

If an error occurs during the processing of the VM_PA_SET_PSPA command, the vm_pattr
system call can return after altering the page size promotion thresholds for part of the specified
range.

The VM_PA_GET_PSPA command retrieves the page size promotion aggressiveness factor for
the specified range. If the range spans multiple segments consisting of different page
promotion thresholds, the pa_pspa field is updated with the least aggressive PSPA setting (the
smallest PSPA setting across all of the segments).

The PSPA commands are not supported on mmap or EXTSHM memory ranges.

Chapter 1. Kernel Services 517

attr
(continued) VM_PA_GET_PSPA_ALIGN

This command takes a pointer to the following structure:

struct vm_pa_pspa_align
{

struct vm_pa_range pa_range;
size64_t pa_pspa_align;

};

The VM_PA_GET_PSPA_ALIGN command returns the minimum memory alignment
requirements of a memory range for the VM_PA_SET_PSPA command in the pa_pspa_align
field based on what segments are contained in the specified memory range. If a memory range
spans segments with different alignment requirements, this command returns the largest of the
alignment requirements.

The alignment requirements for the VM_PA_SET_PSPA command are as follows:
Process’s Memory Area Minimum Alignment
Main process data 256MB
Process stack 256MB
Shared Library data 256MB
Privately loaded module data 256MB
Privately loaded module text 256MB
POSIX Real-Time Shared Memory 256MB
Anonymous MMAP 256MB
Anonymous Extended System V Shared
memory

256MB

Anonymous System V Shared memory with
page sizes <= 256MB

256MB

Anonymous System V shared memory
backed with 16GB page size

1TB

VM_PA_CHECK_PSIZE
This command takes a pointer to the following structure:

struct vm_pa_psize_check
{

struct vm_pa_range pa_range;
psize_t pa_psize;
int pa_reason;

};

The VM_PA_CHECK_PSIZE command determines if a specific page size is allowed by the
VM_PA_SET_PSIZE command for a specified memory range. The VM_PA_CHECK_PSIZE
command can be used when the application wants more detailed information about why a
VM_PA_SET_PSIZE operation fails, or to check if a VM_PA_SET_PSIZE operation will
successfully modify the page size for the range specified.

This command must be used on a memory range that spans a single page and is aligned to
the page size specified by the pa_psize parameter. If the page size can be used for that range,
the pa_reason parameter is set to 0. Otherwise, it is set to a reason code defined in the
vmpattr.h header file.

VMPATTR_SET_PSIZE_VALID The specified page size can be used for
the specified range.

VMPATTR_INVALID_MPSS_PSIZE The specified page size is not supported in
mixed page size segments.

VMPATTR_NON_MPSS_SEGMENT The address range specified is from a
segment that does not support mixed page
sizes.

518 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

VMPATTR_NON_MPSS_PAGE The size of the target page cannot be
modified. For example, this reason code
can be returned when trying to set an
address range to a 64K page size if a
portion of the range has page protection
settings that do not match the rest of the
range.

VMPATTR_RDONLY_MEM The target range cannot be modified
because the caller does not have write
access to the memory specified.

attr_size The attr_size parameter must be the size of the structure needed (or greater) for the specified
command.

Return Values
When successful, these commands return 0. Otherwise, they return -1 and set the errno global variable to
indicate the error.

Error Codes

EPERM The calling process does not have the appropriate privilege to perform the
requested operation.

ESRCH The target process does not exist or is not in a valid state.
ENOMEM The range specified contains a hole. A hole is any part of the target process’s

address space that is not backed by a virtual memory segment or is outside
of the valid range of the virtual memory segment specified.

ENOTSUP Any of the following situations can cause the ENOTSUP error:

v The target process is a kernel process other than the calling process.

v The command specified was the VM_PA_SET_PSIZE command and the
page size specified is not supported for multiple page size segments.

v The command specified was either the VM_PA_GET_PSPA or the
VM_PA_SET_PSPA command and the specified memory range includes
mmap or EXTSHM segment(s).

EINVAL Any of the following situations can cause the EINVAL error:

v The attr_size parameter specified is less than the size of the structure
needed for this command.

v The range specified is outside the process’s address space (for example,
global kernel memory).

v The command specified was the VM_PA_SET_PSIZE command and the
page size specified was not a valid page size supported by the system.

v The command specified was the VM_PA_SET_PSPA command and the
address range specified was not aligned to the segment size backing the
range.

v The command specified was the VM_PA_SET_PSPA command and the
page promotion aggressiveness factor specified was not valid.

v The command specified was the VM_PA_CHECK_PSIZE command and
the address range specified was not aligned to the page size specified.

Related Information
Dynamic variable page size support in Performance management.

Chapter 1. Kernel Services 519

vm_protect_kkey Kernel Service

Purpose
Sets kernel-key on a kernel address range.

Syntax
#include <sys/types.h>
#include <sys/skeys.h>
#include <sys/vmuser.h>

kerrno_t vm_protect_kkey (eaddr, nbytes, kkey, flags)
void * eaddr;
size_t nbytes;
kkey_t kkey;
unsigned long flags;

Parameters

eaddr Starting address to protect.
nbytes Number of bytes to protect.
kkey Kernel-key value to set on memory.
flags Defined flag value is:

v VMPK_NO_CHECK_AUTHORITY – This flag indicates that extended authority checking will not be
performed.

Description
The vm_protect_kkey() kernel service is used to alter the kernel-key associated with a virtual memory
range. If set, any code that references the memory needs to include the kernel-key in their active keyset.
The kernel-key is set for all pages in the effective address range specified by eaddr to eaddr + nbytes - 1.
If the address range does not specify a page-aligned area consisting of an integral number of full pages,
an error will be returned.

By default, an authority check is performed when altering storage-keys. This check requires that the
vm_protect_kkey() caller has write access to the pages’ current kernel-key(s). This authority checking can
be overridden by setting the VMPK_NO_CHECK_AUTHORITY value, but this is not recommended since
the check can protect against some programming errors.

Execution Environment
The vm_protect_kkey kernel service can be called from the process environment only.

Return Values

0 Successful.
EINVAL_VM_PROTECT_KKEY Invalid parameter or execution environment.
EINVAL_VM_PROTECT_KKEY_PPAGE Request includes a partial page.
EFAULT_VM_PROTECT_KKEY Invalid address range.
EPERM_VM_PROTECT_KKEY Insufficient authority to perform the operation.

If the vm_protect_kkey() kernel service is unsuccessful because of a condition other than that specified
by the EINVAL_VM_PROTECT_KKEY error code, the kernel-key for some pages in the (eaddr, eaddr +
nbytes - 1) range might have been changed.

520 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
The vm_setseg_kkey kernel service.

vm_protectp Kernel Service

Purpose
Sets the page protection key for a page range.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_protectp (vmid, pfirst, npages, key)
vmid_t vmid;
int pfirst;
int npages;
int key;

Description
The vm_protectp kernel service is called to set the storage protect key for a given page range. The key
parameter specifies the value to which the page protection key is set. The protection key is set for all
pages touched by the specified page range that are resident in memory. The vm_protectp kernel service
applies only to client storage.

If a page is not in memory, no state information is saved from a particular call to the vm_protectp service.
If the page is later paged-in, it receives the default page protection key.

Note: The vm_protectp subroutine is not supported for use on large pages.

Parameters

vmid Specifies the identifier for the virtual memory object for which the page protection key is to be set.
pfirst Specifies the first page number in the designated page range.
npages Specifies the number of pages in the designated page range.
key Specifies the value to be used in setting the page protection key for the designated page range.

Execution Environment
The vm_protectp kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
EINVAL Indicates one of the following errors:

v Invalid virtual memory object ID.

v The starting page in the designated page range is negative.

v The number of pages in the page range is negative.

v The designated page range exceeds the size of virtual memory object.

v The target page range does not exist.

v One or more large pages lie in the target page range.

Chapter 1. Kernel Services 521

Related Information
Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_qmodify Kernel Service

Purpose
Determines whether a mapped file has been changed.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_qmodify (vmid)
vmid_t vmid;

Parameter

vmid Specifies the ID of the virtual memory object to check.

Description
The vm_qmodify kernel service performs two tests to determine if a mapped file has been changed:

v The vm_qmodify kernel service first checks the virtual memory object modified bit, which is set
whenever a page is written out.

v If the modified bit is 0, the list of page frames holding pages for this virtual memory object are examined
to see if any page frame has been modified.

If both tests are false, the vm_qmodify kernel service returns a value of False. Otherwise, this service
returns a value of True.

If the virtual memory object modified bit was set, it is reset to 0. The page frame modified bits are not
changed.

Execution Environment
The vm_qmodify kernel service can be called from the process environment only.

Return Values

FALSE Indicates that the virtual memory object has not been modified.
TRUE Indicates that the virtual memory object has been modified.

Related Information
Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

522 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

vm_qpages Kernel Service

Purpose
Returns the number of in-memory page frames associated with the virtual memory object.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

vpn_t vm_qpages (sid)
vmid_t sid;

Parameters

sid Identifies the base segment.

Description
The vm_qpages kernel service routine returns the number of page frames associated with the virtual
memory object with the sid parameter specified.

Execution Environment
The vm_qpages kernel service can be called from the process environment only.

This function can be run for persistent, client, and working storage segments.

Return Values

npages The number of page frames.
-1 Indicates an invalid sid parameter.

Related Information
Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_readp Kernel Service

Purpose
Initiates asynchronous page-in for the range of pages specified.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_readp (sid, pfirst, npages, flags)
vmid_t sid;
vpn_t pfirst;
vpn_t npages;
int flags;

Chapter 1. Kernel Services 523

Parameters

sid Identifies the base segment.
pfirst The first page number within the range.
npages The number of pages to read starting from the pfirst value. All pages must be in the same segment.
flags Flags used by the function.

Description
The vm_readp kernel service routine begins the process of reading a page. This call is strictly advisory
and might return without having done anything.

The only flag passed in through the flag parameter, VM_IOWAIT, tells the vm_readp kernel service to wait
for any page I/O in the range to complete before initiating the read operation. This flag is optional.

Execution Environment
The vm_readp kernel service can be called from the process environment only.

Return Values

0 Indicates that the I/O access operations completed successfully.
EINVAL Indicates one of the following errors:

v pfirst < 0.

v npages < 0.

v Page interval > Maximum file size.

v The sid parameter is not valid.

v Not a file or persistent storage segment.

Related Information
The vm_writep kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_release Kernel Service

Purpose
Releases virtual memory resources for the specified address range.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_release (vaddr, nbytes)
caddr_t vaddr;
int nbytes;

524 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The vm_release kernel service releases pages that intersect the specified address range from the vaddr
parameter to the vaddr parameter plus the number of bytes specified by the nbytes parameter. The value
in the nbytes parameter must be nonnegative and the caller must have write access to the pages specified
by the address range.

Each page that intersects the byte range is logically reset to 0, and any page frame is discarded. A page
frame in I/O state is marked for discard at I/O completion. That is, the page frame is placed on the free list
when the I/O operation completes.

Note: All of the pages to be released must be in the same virtual memory object.

Note: The vm_release subroutine is not supported for use on large pages.

Parameters

vaddr Specifies the address of the first byte in the address range to be released.
nbytes Specifies the number of bytes to be released.

Execution Environment
The vm_release kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
EACCES Indicates that the caller does not have write access to the specified pages.
EINVAL Indicates one of the following errors:

v The specified region is not mapped.

v The specified region is an I/O region.

v The length specified in the nbytes parameter is negative.

v The specified address range crosses a virtual memory object boundary.

v One or more large pages lie in the target page range.

Related Information
The vm_releasep kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_releasep Kernel Service

Purpose

Releases virtual memory resources for the specified page range.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

Chapter 1. Kernel Services 525

int vm_releasep (vmid, pfirst, npages)
vmid_t vmid;
int pfirst;
int npages;

Description
The vm_releasep kernel service releases pages for the specified page range in the virtual memory object.
The values in the pfirst and npages parameters must be nonnegative.

Each page of the virtual memory object that intersects the page range (pfirst, pfirst + npages -1) is
logically reset to 0, and any page frame is discarded. A page frame in the I/O state is marked for discard
at I/O completion.

For working storage, paging-space disk blocks are freed and the storage-protect key is reset to the default
value.

Note: All of the pages to be released must be in the same virtual memory object.

Note: The vm_releasep subroutine is not supported for use on large pages.

Parameters

vmid Specifies the virtual memory object identifier.
pfirst Specifies the first page number in the specified page range.
npages Specifies the number of pages in the specified page range.

Execution Environment
The vm_releasep kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
EINVAL Indicates one of the following errors:

v An invalid virtual memory object ID.

v The starting page is negative.

v Number of pages is negative.

v Page range crosses a virtual memory object boundary.

v One or more large pages lie in the target page range.

Related Information
The vm_release kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_segmap Kernel Service

Purpose
Creates the segments associated with a range of bytes in a file and attaches them to the kernel’s address
space.

526 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_segmap (basesid, pfirst, flags, basepp)
vmid_t basesid;
vpn_t pfirst;
uint flags;
caddr_t * basepp;

Parameters

basesid Identifies the base segment.
pfirst The first page number within the range. The pfirst parameter is non-negative.
flags Optional flags passed in by the user. .
basepp The offset of the object to be attached.

Description
The vm_segmap kernel service routine creates segments associated with a range of bytes in a file.
Afterwards, it uses the vm_att kernel service to map the specified virtual memory object to a region in the
virtual address space and returns the effective address of that object in the basepp parameter.

Execution Environment
The vm_segmap kernel service can be called from either the process or interrupt environment.

Return Values

caddr_t The effective address of the attached object.
EINVAL Indicates one of the following errors:

v pfirst < 0.

v Invalid sid parameter.
EFBIG Indicates the range of values is too large to create.

Related Information
Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_setdevid Kernel Service

Purpose
Modifies the paging device table entry for a virtual memory object.

Syntax
#include <sys/types.h>
#include <sys/kerrno.h>
#include <sys/vmuser.h>

kerrno_t vm_setdevid (vmid, type, ptr, flags)
vmid_t vmid;

Chapter 1. Kernel Services 527

int type;
int (*ptr)();
unsigned long flags;

Parameters

vmid Specifies the identifier for the virtual memory object for which the paging device table entry is to be set.
type Specifies the type of device. The type parameter must have a value of D_REMOTE.
ptr Points to the strategy routine of the file system.
flags Reserved. You must set the flags parameter to zero.

Description
The vm_setdevid kernel service binds the paging device table entry associated with the file system
strategy routine ptr, to the virtual memory object vmid. The paging device table entry must have already
been mounted as type D_REMOTE through a prior vm_mount kernel service call.

After the file system has called the vm_setdevid kernel service on a given virtual memory object,
subsequent paging I/O will be performed to or from the newly specified paging device table. Any
outstanding I/O’s to the paging device table formerly associated with the virtual memory object, remain
queued, and will complete asynchronously. After they complete, subsequent paging I/O to those file pages
will be performed to or from the newly specified paging device table.

The paging device table entry currently associated with the vmid object, on input to this call, must be valid
and of type D_REMOTE. Any flags specified when the vm_mount kernel service gets called must match
exactly any flags specified when the vm_mount kernel service gets called for the new paging device table
entry.

Execution Environment
The vm_setdevid kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
EINVAL_VM_SETDEVID1 Indicates that the vmid value is not a client segment, or the input type does not

have the value of D_REMOTE.
ENODEV_VM_SETDEVID2 Indicates that a file system with the strategy routine designated by the ptr

parameter is not in the paging device table.
EINVAL_VM_SETDEVID3 Indicates that the new paging device table entry is not D_REMOTE or is not valid.
EINVAL_VM_SETDEVID4 Indicates that the paging device table entry currently associated with the vmid

object is not D_REMOTE or is not valid.
EINVAL_VM_SETDEVID5 Indicates that the vm_mount flags for the current and new paging device table

entries differ.
EINVAL_VM_SETDEVID6 Indicates that this was called at interrupt level.
EINVAL_VM_SETDEVID7 Indicates that the input flags was nonzero.
EINVAL_VM_SETDEVID8 Indicates that the input vmid value is not valid.

Related Information
The vm_mount kernel service, vm_umount kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

528 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

vm_setseg_kkey Kernel Service

Purpose
Sets the default kernel-key for a segment.

Syntax
#include <sys/types.h>
#include <sys/kerrno.h>
#include <sys/vmuser.h>

kerrno_t vm_setseg_kkey (vmid, kkey)
vmid_t vmid;
kkey_t kkey;

Parameters

vmid Virtual memory object to act on.
kkey New kernel key for the virtual memory object.

Description
The vm_setseg_kkey kernel service alters the default kernel-key for newly allocated pages in a segment.
The kernel-key values for any existing pages in the segment are left unchanged.

Execution Environment
The vm_setseg_kkey kernel service can be called from the process environment only.

Return Values

0 Successful.
EINVAL_VM_SETSEG_KKEY Invalid parameter or execution environment.

Related Information
The vm_protect_kkey kernel service.

vm_thrpgio_pop Kernel Service

Purpose
Retrieves the latest context information.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

void vm_thrpgio_pop (in_ctxp)
ut_pgio_context_t * in_ctxp;

Chapter 1. Kernel Services 529

Parameters

in_ctxp The context structure used by the function.

Description
The vm_thrpgio_pop kernel service enables a client file system with a thread-level strategy routine to
copy information from a context structure to the current thread. Afterwards, it makes the current thread
point to the next context.

This service must be called if a client file system using a thread-level strategy routine has re-entered the
Virtual Memory Manager and wishes to return to its strategy routine. This service restores the context that
was saved using the vm_thrpgio_push kernel service.

Execution Environment
The vm_thrpgio_pop kernel service can only be used by client file systems using a thread-level strategy
routine.

Return Values
The vm_thrpgio_pop kernel service has no return values.

Related Information
The vm_thrpgio_push kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_thrpgio_push Kernel Service

Purpose
Saves some context information of the current thread.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

void vm_thrpgio_push (in_ctxp)
ut_pgio_context_t * in_ctxp;

Parameters

in_ctxp The context structure used by the function.

Description
The vm_thrpgio_push kernel service enables a client file system with a thread-level strategy routine to
save information about the current thread to a linked list. The linked list is a Last-In-First-Out (LIFO)
(stack) data structure, and is pointed to by the thread.

530 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

This service must be called if a client file system using a thread-level strategy routine has had its strategy
routine invoked and wishes to re-enter the Virtual Memory Manager. This could involve a page fault on
one of its client segments, or the use of one of the Virtual Memory Manager (VMM) services that operates
on client segments.

The vm_thrpgio_pop kernel service must be invoked when all such Virtual Memory Manager callbacks
are complete.

Execution Environment
The vm_thrpgio_push kernel service can only be used by client file systems using a thread-level strategy
routine.

Return Values
The vm_thrpgio_push kernel service has no return values.

Related Information
The vm_thrpgio_pop kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vms_create Kernel Service

Purpose
Creates a virtual memory object of the specified type, size, and limits.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vms_create (vmid, type, devgno, size, uplim, downlim)
vmid_t * vmid;
int type;
dev_t devgno;
int size;
int uplim;
int downlim;

Parameters

vmid Points to the variable in which the virtual memory object identifier is to be stored.
type Specifies the virtual memory object type and options as an OR of bits. The type parameter must have

the value of V_CLIENT. The V_INTRSEG flag specifies if the process can be interrupted from a page
wait on this object.

devgno Specifies the address of the g-node for client storage. If the type parameter has the value of
V_CLIENT, the third argument is a g-node ptr argument, otherwise, it is a devgno argument.

size Specifies the current size of the file (in bytes). This can be any valid file size. If the V_LARGE is
specified, it is interpreted as number of pages.

uplim Ignored. The enforcement of file size limits is done by comparing with the u_limit value in the u block.
downlim Ignored.

Chapter 1. Kernel Services 531

Description
The vms_create kernel service creates a virtual memory object. The resulting virtual memory object
identifier is passed back by reference in the vmid parameter.

The size parameter is used to determine the size in units of bytes of the virtual memory object to be
created. This parameter sets an internal variable that determines the virtual memory range to be
processed when the virtual memory object is deleted.

An entry for the file system is required in the paging device table when the vms_create kernel service is
called.

Execution Environment
The vms_create kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
ENOMEM Indicates that no space is available for the virtual memory object.
ENODEV Indicates no entry for the file system in the paging device table.
EINVAL Indicates incompatible or bad parameters.

Related Information
The vms_delete kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vms_delete Kernel Service

Purpose
Deletes a virtual memory object.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vms_delete (vmid)
vmid_t vmid;

Parameter

vmid Specifies the ID of the virtual memory object to be deleted.

Description
The vms_delete kernel service deallocates the temporary resources held by the virtual memory object
specified by the vmid parameter and then frees the control block. This delete operation can complete
asynchronously, but the caller receives a synchronous return code indicating success or failure.

532 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Releasing Resources
The completion of the delete operation can be delayed if paging I/O is still occurring for pages attached to
the object. All page frames not in the I/O state are released.

If there are page frames in the I/O state, they are marked for discard at I/O completion and the virtual
memory object is placed in the iodelete state. When an I/O completion occurs for the last page attached to
a virtual memory object in the iodelete state, the virtual memory object is placed on the free list.

Execution Environment
The vms_delete kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
EINVAL Indicates that the vmid parameter is not valid.

Related Information
The vms_create kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vms_iowait, vms_iowaitf Kernel Services

Purpose

Waits for the completion of all page-out operations for pages in the virtual memory object.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vms_iowait (vmid)
vmid_t vmid;
int vms_iowaitf (vmid, flags)
vmid_t vmid;
int flags;

Parameter

vmid Identifies the virtual memory object for which to wait.
flags Optional flags passed in by the user.

Description
The vms_iowait kernel service performs two tasks. First, it determines the I/O level at which all currently
scheduled page-outs are complete for the virtual memory object specified by the vmid parameter. Then,
the vms_iowait service places the current process in a wait state until this I/O level has been reached.

The I/O level value is a count of page-out operations kept for each virtual memory object.

Chapter 1. Kernel Services 533

The I/O level accounts for out-of-order processing by not incrementing the I/O level for new page-out
requests until all previous requests are complete. Because of this, processes waiting on different I/O levels
can be awakened after a single page-out operation completes.

If the caller holds the kernel lock, the vms_ iowait service releases the kernel lock before waiting and
reacquires it afterwards.

The vms_iowait function is a special case of the vms_iowaitf function with the V_WAITERR flag set.

Flags

Name Purpose
V_WAITERR Waits until the completion of all I/O unless an error occurs.
V_WAITALL Waits until the completion of all I/O regardless of any occurrence of I/O errors.

Execution Environment
The vms_iowait and vms_iowaitf kernel services can be called from the process environment only.

They can only be used by file segments.

Return Values

0 Indicates that the page-out operations completed.
EIO Indicates that an error occurred while performing I/O.

Related Information
Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_uiomove Kernel Service

Purpose
Moves data between a virtual memory object and a buffer specified in the uio structure.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/uio.h>

int vm_uiomove (vmid, limit, rw, uio)
vmid_t vmid;
int limit;
enum uio_rw rw;
struct uio *uio;

Parameters

vmid Specifies the virtual memory object ID.
limit Indicates the limit on the transfer length. If this parameter is negative or 0, no bytes are transferred.
rw Specifies a read/write flag that gives the direction of the move. The possible values for this parameter

(UIO_READ, UIO_WRITE) are defined in the /usr/include/sys/uio.h file.
uio Points to the uio structure.

534 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The vm_uiomove kernel service moves data between a virtual memory object and the buffer specified in
a uio structure.

This service determines the virtual addressing required for the data movement according to the offset in
the object.

The vm_uiomove kernel service is similar to the uiomove kernel service, but the address for the trusted
buffer is specified by the vmid parameter and the uio_offset field of offset parameters instead of as a
caddr_t address. The offset size is a 64 bit offset_t, which allows file offsets in client segments which are
greater than 2 gigabytes. vm_uiomove must be used instead of vm_move if the client filesystem supports
files which are greater than 2 gigabytes.

Note: The vm_uiomove kernel service does not support use of cross-memory descriptors.

I/O errors for paging space and a lack of paging space are reported as signals.

Execution Environment
The vm_uiomove kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
EFAULT Indicates a bad address.
ENOMEM Indicates insufficient memory.
ENOSPC Indicates insufficient disk space.
EIO Indicates an I/O error.

Other file system-specific errno global variables are returned by the virtual file system involved in the
move function.

Related Information
The uiomove kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_umount Kernel Service

Purpose
Removes a file system from the paging device table.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_umount (type, devid)
int type;
dev_t devid)();

Chapter 1. Kernel Services 535

Parameters

type Specifies the type of device. You can specify multiple values. But the type parameter must have a value of
D_REMOTE as one of its values. You can also specify the following optional value:

D_NOWAIT
Indicates that if I/O discovered during a prior vm_setdevid call has not yet completed, the paging
device table entry will be removed, asynchronously, at a future point in time when all such I/O to it
has completed. This particular vm_umount kernel service call will return without waiting for the I/O
to complete. Any buf structures associated with this paging device entry remain allocated until the
paging device entry is finally removed.

devid Points to the strategy routine.

Description
The vm_umount kernel service waits for all I/O for the device scheduled by the pager to finish. This
service then frees the entry in the paging device table. The associated buf structures are also freed.

Execution Environment
The vm_umount kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
EINVAL Indicates that a file system with the strategy routine designated by the devid parameter is not in the

paging device table.

Related Information
The vm_mount kernel service, the vm_setdevid kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_write Kernel Service

Purpose
Initiates page-out for a page range in the address space.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_write (vaddr, nbytes, force)
int vaddr;
int nbytes;
int force;

Description
The vm_write kernel service initiates page-out for pages that intersect the address range (vaddr, vaddr +
nbytes).

536 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

If the force parameter is nonzero, modified pages are written to disk regardless of how recently they have
been written.

Page-out is initiated for each modified page. An unchanged page is left in memory with its reference bit set
to 0. This makes the unchanged page a candidate for the page replacement algorithm.

The caller must have write access to the specified pages.

The initiated I/O is asynchronous. The vms_iowait kernel service can be called to wait for I/O completion.

Note: The vm_write subroutine is not supported for use on large pages.

Parameters

vaddr Specifies the address of the first byte of the page range for which a page-out is desired.
nbytes Specifies the number of bytes starting at the byte specified by the vaddr parameter. This parameter must

be nonnegative. All of the bytes must be in the same virtual memory object.
force Specifies a flag indicating that a modified page is to be written regardless of when it was last written.

Execution Environment
The vm_write kernel service can be called from the process environment only.

Return Values

0 Indicates a successful completion.
EINVAL Indicates one of these four errors:

v A region is not defined.

v A region is an I/O region.

v The length specified by the nbytes parameter is negative.

v The address range crosses a virtual memory object boundary.

v One or more large pages lie in the target page range.
EACCES Indicates that access does not permit writing.
EIO Indicates a permanent I/O error.

Related Information
The vm_writep kernel service, vms_iowait kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vm_writep Kernel Service

Purpose
Initiates page-out for a page range in a virtual memory object.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

Chapter 1. Kernel Services 537

int vm_writep (vmid, pfirst, npages)
vmid_t vmid;
int pfirst;
int npages;

Description
The vm_writep kernel service initiates page-out for the specified page range in the virtual memory object.
I/O is initiated for modified pages only. Unchanged pages are left in memory, but their reference bits are
set to 0.

The caller can wait for the completion of I/O initiated by this and prior calls by calling the vms_iowait
kernel service.

Note: The vm_writep subroutine is not supported for use on large pages.

Parameters

vmid Specifies the identifier for the virtual memory object.
pfirst Specifies the first page number at which page-out is to begin.
npages Specifies the number of pages for which the page-out operation is to be performed.

Execution Environment
The vm_writep kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
EINVAL Indicates any one of the following errors:

v The virtual memory object ID is not valid.

v The starting page is negative.

v The number of pages is negative.

v The page range exceeds the size of virtual memory object.

v One or more large pages lie in the target page range.

Related Information
The vm_write kernel service, vms_iowait kernel service.

Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vn_free Kernel Service

Purpose
Frees a v-node previously allocated by the vn_get kernel service.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

538 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

int vn_free (vp)
struct vnode *vp;

Parameter

vp Points to the v-node to be deallocated.

Description
The vn_free kernel service provides a mechanism for deallocating v-node objects used within the virtual
file system. The v-node specified by the vp parameter is returned to the pool of available v-nodes to be
used again.

Execution Environment
The vn_free kernel service can be called from the process environment only.

Return Values
The vn_free service always returns 0.

Related Information
The vn_get kernel service.

Virtual File System Overview and Virtual File System (VFS) Kernel Services in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

vn_get Kernel Service

Purpose
Allocates a virtual node.

Syntax
#include <sys/types.h>
#include <sys/errno.h>

int vn_get (vfsp, gnp, vpp)
struct vfs *vfsp;
struct gnode *gnp;
struct vnode **vpp;

Parameters

vfsp Points to a vfs structure describing the virtual file system that is to contain the v-node. Any returned v-node
belongs to this virtual file system.

gnp Points to the g-node for the object. This pointer is stored in the returned v-node. The new v-node is added to
the list of v-nodes in the g-node.

vpp Points to the place in which to return the v-node pointer. This is set by the vn_get kernel service to point to
the newly allocated v-node.

Description
The vn_get kernel service provides a mechanism for allocating v-node objects for use within the virtual file
system environment. A v-node is first allocated from an effectively infinite pool of available v-nodes.

Chapter 1. Kernel Services 539

Upon successful return from the vn_get kernel service, the pointer to the v-node pointer provided
(specified by the vpp parameter) has been set to the address of the newly allocated v-node.

The fields in this v-node have been initialized as follows:

Field Initial Value
v_count Set to 1.
v_vfsp Set to the value in the vfsp parameter.
v_gnode Set to the value in the gnp parameter.
v_next Set to list of others v-nodes with the same g-node.

All other fields in the v-node are zeroed.

Execution Environment
The vn_get kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
ENOMEM Indicates that the vn_get kernel service could not allocate memory for the v-node. (This is a highly

unlikely occurrence.)

Related Information
The vn_free kernel service.

Virtual File System Overview and Virtual File System (VFS) Kernel Services in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

waitcfree Kernel Service

Purpose
Checks the availability of a free character buffer.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/cblock.h>
#include <sys/sleep.h>

int waitcfree ()

Description
The waitcfree kernel service is used to wait for a buffer which was allocated by a previous call to the
pincf kernel service. If one is not available, the waitcfree kernel service waits until either a character
buffer becomes available or a signal is received.

The waitcfree kernel service has no parameters.

Execution Environment
The waitfree kernel service can be called from the process environment only.

540 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

EVENT_SUCC Indicates a successful operation.
EVENT_SIG Indicates that the wait was terminated by a signal.

Related Information
The pincf kernel service, putc kernel service, putcb kernel service, putcbp kernel service, putcf kernel
service, putcfl kernel service, putcx kernel service.

I/O Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

waitq Kernel Service

Purpose
Waits for a queue element to be placed on a device queue.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

struct req_qe *waitq (queue_id)
cba_id queue_id;

Parameter

queue_id Specifies the device queue identifier.

Description
The waitq kernel service is not part of the base kernel but is provided by the device queue management
kernel extension. This queue management kernel extension must be loaded into the kernel before loading
any kernel extensions referencing these services.

The waitq kernel service waits for a queue element to be placed on the device queue specified by the
queue_id parameter. This service performs these two actions:

v Waits on the event mask associated with the device queue.

v Calls the readq kernel service to make the most favored queue element the active one.

Processes can only use the waitq kernel service to wait for a single device queue. Use the et_wait
service to wait on the occurrence of more than one event, such as multiple device queues.

The waitq kernel service uses the EVENT_SHORT form of the et_wait kernel service. Therefore, a signal
does not terminate the wait. Use the et _wait kernel service if you want a signal to terminate the wait.

The readq kernel service can be used to read the active queue element from a queue. It does not wait for
a queue element if there are none in the queue.

Attention: The server must not alter any fields in the queue element or the system may halt.

Execution Environment
The waitq kernel service can be called from the process environment only.

Chapter 1. Kernel Services 541

Return Values
The waitq service returns the address of the active queue element in the device queue.

Related Information
The et_wait kernel service.

WPAR_CKPT_QUERY (Checkpoint Query) Device Driver ioctl Operation

Purpose
Queries a device driver about its checkpoint capabilities.

Syntax
#include <sys/ioctl.h>

int ioctl (FileDescriptor, WPAR_CKPT_QUERY, Arg)
int FileDescriptor;
wpar_ckpt_resp_t * Arg;

Parameters

FileDescriptor Open file descriptor that refers to the device being queried for the checkpoint capability.
WPAR_CKPT_QUERY The command that requests information on the device checkpoint capability.
Arg Pointer to a wpar_ckpt_resp_t structure which will contain a device driver response on the

checkpoint capability upon a successful return from the ioctl call.

Description
The WPAR_CKPT_QUERY operation allows a caller to ask a device driver connected to the ioctl input file
descriptor if it supports checkpoint and restart operations. If a device driver supports checkpoint and
restart operations, the returned answer can describe what operations are required to accomplish a
checkpoint and restart.

If the device is not checkpoint and restart capable, checkpoint-aware devices fail this ioctl request with the
ENOSYS error. Non-checkpoint-aware devices fail this ioctl request as an unknown ioctl. If the device is
checkpoint and restart capable, checkpoint-aware devices return success.

The arg parameter to a WPAR_CKPT_QUERY ioctl request allows the caller to receive specific
information regarding how the device supports checkpoint and restart if it is capable. The caller of a
WPAR_CKPT_QUERY ioctl request must supply a pointer to a structure of the wpar_ckpt_resp_t type in
the arg parameter.

wpar_ckpt_resp_t structure
The wpar_ckpt_resp_t structure is supplied as the input to the WPAR_CKPT_QUERY ioctl request.

#define WPAR_CKPT_OP_MAX 5
typedef struct wpar_ckpt_resp_t {
int opcnt;
wpar_ckpt_op_top [WPAR_CKPT_OP_MAX];
}wpar_ckpt_resp_t;

542 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

The fields of the wpar_ckpt_resp_t structure are as follows:

opcnt Returned from an WPAR_CKPT_QUERY ioctl request as the number of the
wpar_ckpt_op_t sub-structures that contain return information.

wpar_ckpt_op_top A sub-structure that contains specific information on operation types that must
occur on a device for it to save or restore its state correctly.

wpar_ckpt_op_t structure
The wpar_ckpt_op_t structure is a sub-structure of the wpar_ckpt_resp_t structure.

typedef struct wpar_ckpt_op_t {
int op;
int opt; /*extended options of openx*/
}wpar_ckpt_op_t;

The fields of the wpar_ckpt_op_t structure are as follows:

op Returned from a WPAR_CKPT_QUERY ioctl request. Defined as a set of one or
more operations that must be performed to successfully checkpoint and restart
the device.

opt Options to supply to the openx function if the device is to be re-opened on the
arrival server through the openx function.

wpar_ckpt_op_t op field

WPAR_CKPT_OP_NULL Device requires no special handling for checkpoint and restart operations.
WPAR_CKPT_OP_REOPEN Device needs to be re-opened through the open function with the access modes

applicable at checkpoint time.
WPAR_CKPT_OP_OPENX Device needs to be re-opened with the openx function. The opt field denotes the

desired extension argument to the openx function.

Return Values
Upon successful completion, this operation returns a value of 0. Otherwise, it returns a value of -1 and the
errno global variable is set to one of the following values:

ENOSYS Device cannot participate in checkpoint and restart operations.
EINVAL Device does not accept the WPAR_CKPT_QUERY operation.

Related Information
The kwpar_checkpoint_status kernel service.

w_clear Kernel Service

Purpose
Removes a watchdog timer from the list of watchdog timers known to the kernel.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/watchdog.h>

Chapter 1. Kernel Services 543

int w_clear (w)
struct watchdog *w;

Parameter

w Specifies the watchdog timer structure.

Description
The watchdog timer services, including the w_clear kernel service, are typically used to verify that an I/O
operation completes in a reasonable time.

When the w_clear kernel service removes the watchdog timer, the w->count watchdog count is no longer
decremented. In addition, the w->func watchdog timer function is no longer called.

In a uniprocessor environment, the call always succeeds. This is untrue in a multiprocessor environment,
where the call will fail if the watchdog timer is being handled by another processor. Therefore, the function
now has a return value, which is set to 0 if successful, or -1 otherwise. Funnelled device drivers do not
need to check the return value since they run in a logical uniprocessor environment. Multiprocessor-safe
and multiprocessor-efficient device drivers need to check the return value in a loop. In addition, if a driver
uses locking, it must release and reacquire its lock within this loop, as shown below:
while (w_clear(&watchdog))

release_then_reacquire_dd_lock;
/* null statement if locks not used */

Execution Environment
The w_clear kernel service can be called from the process environment only.

Return Values

0 Indicates that the watchdog timer was successfully removed.
-1 Indicates that the watchdog timer could not be removed.

Related Information
The w_init kernel service, w_start kernel service, w_stop kernel service.

Timer and Time-of-Day Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

w_init Kernel Service

Purpose
Registers a watchdog timer with the kernel.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/watchdog.h>

int w_init (w)
struct watchdog *w;

544 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameter

w Specifies the watchdog timer structure.

Description
The watchdog structure must be initialized prior to calling the w_init kernel service as follows:

v Set the next and prev fields to NULL.

v Set the func and restart fields to the appropriate values.

v Set the count field to 0.

Attention: The watchdog structure must be pinned when the w_init service is called. It must remain
pinned until after the call to the w_clear service. During this time, the watchdog structure must not
be altered except by the watchdog services.

The watchdog timer services, including the w_init kernel service, are typically used to verify that an I/O
operation completes in a reasonable time. The watchdog timer is initialized to the stopped state and must
be started using the w_start service.

In both uniprocessor and multiprocessor environments, the w_init kernel service always succeeds.

The calling parameters for the watchdog timer function are:
void func (w)
struct watchdog *w;

Execution Environment
The w_init kernel service can be called from the process environment only.

Return Values
The w_init kernel service returns 0 for compatibility with previous releases of AIX.

Related Information
The w_clear kernel service, w_start kernel service, w_stop kernel service.

Timer and Time-of-Day Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

w_start Kernel Service

Purpose
Starts a watchdog timer.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/watchdog.h>

void w_start (w)
struct watchdog *w;

Chapter 1. Kernel Services 545

Parameter

w Specifies the watchdog timer structure.

Description
The watchdog timers, including the w_start kernel service, are typically used to verify that an I/O operation
completes in a reasonable time. The w_start and w_stop kernel services are designed to allow the timer
to be started and stopped efficiently. The kernel decrements the w->count watchdog count every second.
The kernel calls the w->func watchdog timer function when the w->count watchdog count reaches 0. A
watchdog timer is ignored when the w->count watchdog count is less than or equal to 0.

The w_start kernel service sets the w->count watchdog count to a value of w->restart.

Attention: The watchdog structure must be pinned when the w_start kernel service is called. It must
remain pinned until after the call to the w_clear kernel service. During this time, the watchdog
structure must not be altered except by the watchdog services.

Execution Environment
The w_start kernel service can be called from the process and interrupt environments.

Return Values
The w_start kernel service has no return values.

Related Information
The w_clear kernel service, w_init kernel service, w_stop kernel service.

Timer and Time-of-Day Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

w_stop Kernel Service

Purpose
Stops a watchdog timer.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/watchdog.h>

void w_stop (w)
struct watchdog *w;

Parameter

w Specifies the watchdog timer structure.

Description
The watchdog timer services, including the w_stop kernel service, are typically used to verify that an I/O
operation completes in a reasonable time. The w_start and w_stop kernel services are designed to allow
the timer to be started and stopped efficiently. The kernel decrements the w->count watchdog count every

546 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

second. The kernel calls the w->func watchdog timer function when the w->count watchdog count
reaches 0. A watchdog timer is ignored when w->count is less than or equal to 0.

Attention: The watchdog structure must be pinned when the w_stop kernel service is called. It must
remain pinned until after the call to the w_clear kernel service. During this time, the watchdog
structure must not be altered except by the watchdog services.

Execution Environment
The w_stop kernel service can be called from the process and interrupt environments.

Return Values
The w_stop kernel service has no return values.

Related Information
The w_clear kernel service, w_init kernel service, w_start kernel service.

Timer and Time-of-Day Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

xlate_create Kernel Service

Purpose
Creates pretranslation data structures.

Syntax
int xlate_create (dp, baddr, count, flags)
struct xmem*dp;
caddr_t baddr;
int count;
uint flags;

Description
The xlate_create kernel service creates pretranslation data structures capable of pretranslating all pages
of the virtual buffer indicated by the baddr parameter for length of count into a list of physical page
numbers, appended to the cross memory descriptor pointed to by dp.

If the XLATE_ALLOC flag is set, only the data structures are created and no pretranslation is done. If the
flag is not set, in addition to the data structures being created, each page of the buffer is translated and
the access permissions verified, requiring read-write access to each page. The XLATE_ALLOC flag is
useful when the buffer will be pinned and utilized later, through the xlate_pin and xlate_unpin kernel
services.

The XLATE_SPARSE flag can be used to indicate that only selected portions of a pretranslated region
may be valid (pinned and pretranslated) at any given time. The XLATE_SPARSE flag can be used in
conjunction with the XLATE_ALLOC flag to preallocate the pretranslation data structures for an address
region that will be dynamically managed.

The xlate_create kernel service is primarily for use when memory buffers will be reused for I/O. The use
of this service to create a pretranslation for the memory buffer avoids page translation and access
checking overhead for all future DMAs involving the memory buffer until the xlate_remove kernel service
is called.

Chapter 1. Kernel Services 547

Parameters

dp Points to the cross memory descriptor.
baddr Points to the virtual buffer.
count Specifies the length of the virtual buffer.
flags Specifies the operation. Valid values are as follows:

XLATE_PERSISTENT
Indicates that the pretranslation data structures should be persistent across calls to
pretranslation services.

XLATE_ALLOC
Indicates that the pretranslation data structures should be allocated only, and no translation
should be performed.

XLATE_SPARSE
Indicates that the pretranslation information will be sparse, allowing for the coexistence of
valid (active) pretranslation regions and invalid (inactive) pretranslation regions.

Return Values

ENOMEM Unable to allocate memory
XMEM_FAIL No physical translation, or No Access to a Page
XMEM_SUCC Successful pretranslation created

Execution Environment
The xlate_create kernel service can only be called from the process environment. The entire buffer must
be pinned (unless the XLATE_ALLOC flag is set), and the cross memory descriptor valid.

Related Information
“xlate_remove Kernel Service” on page 549, “xm_mapin Kernel Service” on page 551, “xm_det Kernel
Service” on page 551, “xlate_pin Kernel Service,” or “xlate_unpin Kernel Service” on page 550.

xlate_pin Kernel Service

Purpose
Pins all pages of a virtual buffer.

Syntax
int xlate_pin (dp, baddr, count, rw)
struct xmem *dp;
caddr_t baddr;
int count;
int rw;

Description
The xlate_pin kernel service pins all pages of the virtual buffer indicated by the baddr parameter for
length of count and also appends pretranslation information to the cross memory descriptor pointed to by
the dp parameter.

The xlate_pin kernel service results in a short-term pin, which will support mmap and shmatt allocated
memory buffers.

548 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

In addition to pinning and translating each page, the access permissions to the page are verified according
to the desired access (as specified by the rw parameter). For a setting of B_READ, write access to the
page must be allowed. For a setting of B_WRITE, only read access to the page must be allowed.

The caller can preallocate pretranslation data structures and append them to the cross memory descriptor
prior to the call (through a call to the xlate_create kernel service) , or have this service allocate the
necessary data structures. If the cross memory descriptor is already of type XMEM_XLATE, it is assumed
that the data structures are already allocated. If callers want to have the pretranslation data structures
persist across the subsequent xlate_unpin call, they should also set the XLATE_PERSISTENT flag on the
call to the xlate_create kernel service.

Parameters

dp Points to the cross memory descriptor.
baddr Points to the virtual buffer.
count Specifies the length of the virtual buffer.
rw Specifies the access permissions for each page.

Return Values
If successful, the xlate_pin kernel service returns 0. If unsuccessful, one of the following is returned:

EINVAL Invalid cross memory descriptor or parameters.
ENOMEM Unable to allocate memory.
ENOSPC Out of Paging Resources.
XMEM_FAIL Page Access violation.

Execution Environment
The xlate_pin kernel service is only callable from the process environment, and the cross memory
descriptor must be valid.

Related Information
“xlate_create Kernel Service” on page 547, “xlate_remove Kernel Service,” “xm_det Kernel Service” on
page 551, “xm_mapin Kernel Service” on page 551, or “xlate_unpin Kernel Service” on page 550.

xlate_remove Kernel Service

Purpose
Removes physical translation information from an xmem descriptor from a prior xlate_create call.

Syntax
caddr_t xlate_remove (dp)
struct xmem *dp;

Description
See the xlate_create kernel service.

Parameters

dp Points to the cross memory descriptor.

Chapter 1. Kernel Services 549

Return Values

XMEM_FAIL No pretranslation information present in the xmem descriptor.
XMEM_SUCC Pretranslation successfully removed.

Execution Environment
The xlate_remove kernel service can only be called from the process environment.

Related Information
“xlate_create Kernel Service” on page 547, “xm_mapin Kernel Service” on page 551, “xm_det Kernel
Service” on page 551, “xlate_pin Kernel Service” on page 548, or “xlate_unpin Kernel Service.”

xlate_unpin Kernel Service

Purpose
Unpins all pages of a virtual buffer.

Syntax
int xlate_unpin (dp, baddr, count)
struct xmem *dp;
caddr_t baddr;
int count;

Description
The xlate_unpin kernel service unpins pages from a prior call to the xlate_pin kernel service based on
the baddr and count parameters. It does this by utilizing the pretranslated real page numbers appended to
the cross memory descriptor pointed to by dp.

If the XLATE_PERSISTENT flag is not set in the prexflags flag word of the pretranslation data structure,
the pretranslation data structures are also freed.

Parameters

dp Points to the cross memory descriptor.
baddr Points to the virtual buffer.
count Specifies the length of the virtual buffer.

Return Values
If successful, the xlate_unpin kernel service returns 0. If unsuccessful, one of the following is returned:

EINVAL Invalid cross memory descriptor or parameters.
ENOSPC Unable to allocate paging space (case of mmap segment).
ENOSPC Out of Paging Resources.
XMEM_FAIL Page Access violation.

Related Information
“xlate_create Kernel Service” on page 547, “xlate_remove Kernel Service” on page 549, “xm_det Kernel
Service” on page 551, “xm_mapin Kernel Service” on page 551, or “xlate_pin Kernel Service” on page
548.

550 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

xm_det Kernel Service

Purpose
Releases the addressability to the address space described by an xmem descriptor.

Syntax
void xm_det (baddr, dp)
caddr_t baddr;
struct xmem *dp;

Description
See the xm_mapin Kernel Service for more information.

Parameters

baddr Specifies the effective address previously returned from the xm_mapin kernel service.
dp Cross memory descriptor that describes the above memory object.

Related Information
“xlate_create Kernel Service” on page 547, “xlate_remove Kernel Service” on page 549, “xm_mapin Kernel
Service,” “xlate_pin Kernel Service” on page 548, or “xlate_unpin Kernel Service” on page 550.

xm_mapin Kernel Service

Purpose
Sets up addressability in the current process context.

Syntax
#include <sys/adspace.h>

int xm_mapin (dp, baddr, count, eaddr)
struct xmem *dp;caddr_t baddr;
size_t count;
caddr_t *eaddr;

Description
The xm_mapin kernel service sets up addressability in the current process context to the address space
indicated by the cross memory descriptor pointed to by the dp parameter for the addresses [baddr, baddr
+ count - 1].

This service is created specifically for Client File Systems, or others who need to setup addressability to
an address space defined by an xmem descriptor.

If the requested mapping spans a segment boundary, no mapping will be performed, and a return code of
EAGAIN is returned to indicate that individual calls to the xm_mapin kernel service are necessary to map
the portions of the buffer in each segment. The xm_mapin kernel service must be called again with the
original baddr and a count indicating the number of bytes to the next segment. (The number of bytes to
the next segment boundary can be obtained using the xm_maxmap kernel service.) This will provide an
effective address to use for accessing this portion of the buffer. Then, iteratively, xm_mapin must be
called with the segment boundary address (previous baddr + count), and a new count indicating the
remainder of the buffer or the next segment boundary, whichever is smaller. This will provide another
effective address to use for accessing the next portion of the buffer.

Chapter 1. Kernel Services 551

Each address set up by the xm_mapin kernel service must be undone with the xm_det kernel service
when it is no longer needed because the xm_mapin kernel service currently uses the vm_att kernel
service.

Parameters

dp Points to the cross memory descriptor.
baddr Points to the virtual buffer.
count Specifies the length of the virtual buffer to map.
eaddr Points to where the effective address to access the data buffer is returned.

Return Values

0 Successful. (Reference Parameter eaddr contains the
address to use)

XMEM_FAIL Invalid cross memory descriptor.
EAGAIN Segment boundary crossing encountered. Caller should

make separate xm_mapin calls to map each segments
worth.

Execution Environment
The xm_mapin kernel service can be called from the process or interrupt environments.

Related Information
“xlate_create Kernel Service” on page 547, “xlate_remove Kernel Service” on page 549, “xlate_pin Kernel
Service” on page 548, “xlate_unpin Kernel Service” on page 550, “xm_det Kernel Service” on page 551,
“vm_att Kernel Service” on page 498 and “xm_maxmap Kernel Service.”

xm_maxmap Kernel Service

Purpose
Determines the maximum permissible count value for a subsequent call to xm_mapin.

Syntax
#include <sys/adspace.h>

int xm_maxmap (dp, uaddr, len)
struct xmem *dp;
void *uaddr;
size_t *len;

Parameters

dp Points to the cross memory descriptor.
uaddr Points to the virtual buffer.
len Points to where the maximum permissible count is returned.

Description
The xm_maxmap kernel service determines the maximum permissible count value (in bytes) for a
subsequent xm_mapin call. The value is determined based on the input cross-memory descriptor dp and

552 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

the starting address uaddr, and it is returned in the len parameter. There is no guarantee that xm_mapin
will succeed; however, it is guaranteed that uaddr + *len - 1 is in the same segment as uaddr, and
therefore xm_mapin will not return EAGAIN.

Execution Environment
The xm_maxmap interface can be called from the process or interrupt environment.

Return Values

XMEM_SUCC Successful (Reference parameter len contains the maximum permissible value for a
subsequent xm_mapin call)

XMEM_FAIL Invalid cross memory descriptor.
EAGAIN Segment boundary crossing encountered. Caller should make separate xm_mapin calls to

map each segment’s worth.

Related Information
The “xm_mapin Kernel Service” on page 551.

xmalloc Kernel Service

Purpose
Allocates memory.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/malloc.h>

caddr_t xmalloc (size, align, heap)
int size;
int align;
caddr_t heap;

Parameters

size Specifies the number of bytes to allocate.
align Specifies the alignment characteristics for the allocated memory.
heap Specifies the address of the heap from which the memory is to be allocated.

Description
The xmalloc kernel service allocates an area of memory out of the heap specified by the heap parameter.
This area is the number of bytes in length specified by the size parameter and is aligned on the byte
boundary specified by the align parameter. The align parameter is actually the log base 2 of the desired
address boundary. For example, an align value of 4 requests that the allocated area be aligned on a 2^4
(16) byte boundary.

There are multiple heaps provided by the kernel for use by kernel extensions. Two primary kernel heaps
are kernel_heap and pinned_heap. Kernel extensions should use the kernel_heap value when allocating
memory that is not pinned, and should use the pinned_heap value when allocating memory that should
always be pinned or pinned for long periods of time. When allocating from the pinned_heap heap, the
xmalloc kernel service will pin the memory before a successful return. The pin and unpin kernel services

Chapter 1. Kernel Services 553

should be used to pin and unpin memory from the kernel_heap heap when the memory should only be
pinned for a limited amount of time. Memory from the kernel_heap heap must be unpinned before freeing
it. Memory from the pinned_heap heap should not be unpinned.

The kernel_heap heap points to one of the following heaps: kernel_heap_4K_64K and
kernel_heap_16M. The pinned_heap heap points to one of the following heaps: pinned_heap_4K_64K
and pinned_heap_16M. Each of the target heaps differ in the size of the pages that back them.
kernel_heap_4K_64K or pinned_heap_4K_64K will be backed by either medium (64 KB) or regular (4
KB) pages, depending on the page size supported by the machine. kernel_heap_16M or
pinned_heap_16M will return memory backed by large pages if large page heaps are enabled. If large
page heaps are not enabled, kernel_heap or pinned_heap will point to the default heap. If the size of the
backing pages are not important, use the kernel_heap value and the pinned_heap value. They will point
to the heap that you prefer. For more information about large page heap support, see vmo.

Kernel extensions can use these services to allocate memory out of the kernel heaps. For example, the
xmalloc (128,3,kernel_heap) kernel service allocates a 128-byte double word aligned area out of the
kernel heap.

A kernel extension must use the xmfree kernel service to free the allocated memory. If it does not,
subsequent allocations eventually are unsuccessful.

The xmalloc kernel service has two compatibility interfaces: malloc and palloc.

The following additional interfaces to the xmalloc kernel service are provided:

v malloc (size) is equivalent to xmalloc (size, 0, kernel_heap).

v palloc (size, align) is equivalent to xmalloc (size, align, kernel_heap).

Execution Environment
The xmalloc kernel service can be called from the process environment only.

Return Values
Upon successful completion, the xmalloc kernel service returns the address of the allocated area. A null
pointer is returned under the following circumstances:

v The requested memory cannot be allocated.

v The heap has not been initialized for memory allocation.

Related Information
The xmfree kernel service.

Memory Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

xmattach Kernel Service

Purpose
Attaches to a user buffer for cross-memory operations.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmem.h>

554 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

int xmattach (addr, count, dp, segflag)
char * addr;
int count;
struct xmem * dp;
int segflag;

Parameters

addr Specifies the address of the user buffer to be accessed in a cross-memory operation.
count Indicates the size of the user buffer to be accessed in a cross-memory operation.
dp Specifies a cross-memory descriptor. The dp->aspace_id variable must be set to a value of

XMEM_INVAL.
segflag Specifies a segment flag. This flag is used to determine the address space of the memory that the

cross-memory descriptor applies to, as well as for other purposes. The valid values for this flag can be
found in the /usr/include/xmem.h file.

Description
The xmattach kernel service prepares the user buffer so that a device driver can access it without
executing under the process that requested the I/O operation. A device top-half routine calls the xmattach
kernel service. The xmattach kernel service allows a kernel process or device bottom-half routine to
access the user buffer with the xmemin or xmemout kernel services. The device driver must use the
xmdetach kernel service to inform the kernel when it has finished accessing the user buffer.

The kernel remembers which segments are attached for cross-memory operations. Resources associated
with these segments cannot be freed until all cross-memory descriptors have been detached. ″Cross
Memory Kernel Services″ in Memory Kernel Services in in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts describes how the cross-memory kernel services use cross-memory
descriptors.

Note: When the xmattach kernel service remaps user memory containing the cross-memory buffer, the
effects are machine-dependent. Also, cross-memory descriptors are not inherited by a child
process.

Storage-key protection can be enforced on memory regions described by a cross-memory descriptor. The
enforcement is done during normal access checking performed by cross-memory services, such as the
xmemdma kernel service. A kernel keyset can be contained in the cross-memory descriptor to limit
memory accessibility. When a keyset is associated with a cross-memory descriptor, access to the memory
region is limited by that keyset. A keyset is required because a cross-memory descriptor can describe a
virtual memory region with multiple keys assigned to the pages it contains. Normally, a keyset describes
the accessibility of the context that the attach was initiated for. For example, a cross-memory attached to
user-space contains a description of the user-mode accessibility (keyset). Adding keysets to kernel
cross-memory descriptors can also enhance system RAS, since they limit kernel access by the
cross-memory descriptor. Typically it is limited to that of the xmattach caller or to specific key(s), to catch
cases where a cross-memory descriptor is misused.

User-mode storage-keys are always associated with descriptors attached using USER_SPACE or
USERI_SPACE segflag. These flags were always required to attach to the user address space, so no
explicit update is required to enable storage-key protection on user memory attaches. Once attached,
existing kernel services that require cross-memory descriptors enforce the user keyset saved at attach
time when performing memory accesses or checking user accessibility.

For kernel memory, a keyset is not used to restrict regions attached with SYS_ADSPACE. Attaching a
region with SYS_ADSPACE_ASSIGN_KEYSET associates the caller’s keyset with the cross-memory
region.

Chapter 1. Kernel Services 555

Execution Environment
The xmattach kernel service can be called from the process environment only.

Return Values

XMEM_SUCC Indicates a successful operation.
XMEM_FAIL Indicates one of the following errors:

v The buffer size indicated by the count parameter is less than or equal to 0.

v The cross-memory descriptor is in use (dp->aspace_id != XMEM_INVAL).

v The area of memory indicated by the addr and count parameters is not defined.

Related Information
The uphysio kernel service, xmdetach kernel service, xmemin kernel service, and xmemout kernel
service.

The xmsethkeyset, xmgethkeyset kernel services.

Cross Memory Kernel Services, and Memory Kernel Services.

xmdetach Kernel Service

Purpose
Detaches from a user buffer used for cross-memory operations.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmem.h>

int xmdetach (dp)
struct xmem *dp;

Parameter

dp Points to a cross-memory descriptor initialized by the xmattach kernel service.

Description
The xmdetach kernel service informs the kernel that a user buffer can no longer be accessed. This
means that some previous caller, typically a device driver bottom half or a kernel process, is no longer
permitted to do cross-memory operations on this buffer. Subsequent calls to either the xmemin or
xmemout kernel service using this cross-memory descriptor result in an error return. The cross-memory
descriptor is set to dp->aspace_id = XMEM_INVAL so that the descriptor can be used again. ″Cross
Memory Kernel Services″ in Memory Kernel Services in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts describes how the cross-memory kernel services use cross-memory
descriptors.

Execution Environment
The xmdetach kernel service can be called from either the process or interrupt environment.

556 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

XMEM_SUCC Indicates successful completion.
XMEM_FAIL Indicates that the descriptor was not valid or the buffer was not defined.

Related Information
The xmattach kernel service, xmemin kernel service, xmemout kernel service.

Cross Memory Kernel Services and Memory Kernel Services in AIX Version 6.1 Kernel Extensions and
Device Support Programming Concepts.

xmemdma Kernel Service

Purpose
Prepares a page for direct memory access (DMA) I/O or processes a page after DMA I/O is complete.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmem.h>

int xmemdma (xp, xaddr, flag)
struct xmem *xp;
caddr_t xaddr;
int flag;

Parameters

xp Specifies a cross-memory descriptor.
xaddr Identifies the address specifying the page for transfer.
flag Specifies whether to prepare a page for DMA I/O or process it after DMA I/O is complete. Possible values

are:

XMEM_ACC_CHK
Performs access checking on the page. When this flag is set, the page protection attributes are
verified.

XMEM_DR_SAFE
Indicates that the use of the real memory address is DLPAR safe.

XMEM_HIDE
Prepares the page for DMA I/O. For cache-inconsistent platforms, this preparation includes hiding
the page by making it inaccessible.

XMEM_UNHIDE
Processes the page after DMA I/O. Also, this flag reveals the page and makes it accessible for
cache-inconsistent platforms.

XMEM_WRITE_ONLY
Marks the intended transfer as outbound only. This flag is used with XMEM_ACC_CHK to indicate
that read-only access to the page is sufficient.

Chapter 1. Kernel Services 557

Description
The xmemdma kernel service operates on the page specified by the xaddr parameter in the region
specified by the cross-memory descriptor. If the cross-memory descriptor is for the kernel, the xaddr
parameter specifies a kernel address. Otherwise, the xaddr parameter specifies the offset in the region
described in the cross-memory descriptor.

The xmemdma kernel service is provided for machines that have processor-memory caches, but that do
not perform DMA I/O through the cache. Device handlers for Micro Channel DMA devices use the
d_master service and d_complete kernel service instead of the xmemdma kernel service.

If the flag parameter indicates XMEM_HIDE (that is, XMEM_UNHIDE is not set) and this is the first hide
for the page, the xmemdma kernel service prepares the page for DMA I/O by flushing the cache and
making the page invalid. When the XMEM_UNHIDE bit is set and this is the last unhide for the page, the
following events take place:

1. The page is made valid.

If the page is not in pager I/O state:

2. Any processes waiting on the page are readied.

3. The modified bit for the page is set unless the page has a read-only storage key.

The page is made not valid during DMA operations so that it is not addressable with any virtual address.
This prevents any process from reading or loading any part of the page into the cache during the DMA
operation.

The page specified must be in memory and must be pinned.

If the XMEM_ACC_CHK bit is set, then the xmemdma kernel service also verifies access permissions to
the page. If the page access is read-only, then the XMEM_WRITE_ONLY bit must be set in the flag
parameter.

Note:

1. The xmemdma kernel service does not hide or reveal the page nor does it perform any cache
flushing. The service’s primary function is for real-address translation.

2. This service is not supported for large-memory systems with greater than 4GB of physical
memory addresses. For such systems, xmemdma64 should be used.

Execution Environment
The xmemdma kernel service can be called from either the process or interrupt environment.

Return Values
On successful completion, the xmemdma service returns the real address corresponding to the xaddr and
xp parameters.

Error Codes
The xmemdma kernel service returns a value of XMEM_FAIL if one of the following are true:

v The descriptor was invalid.

v The page specified by the xaddr or xp parameter is invalid.

v Access is not allowed to the page.

Related Information
Cross Memory Kernel Services and Memory Kernel Services in AIX Version 6.1 Kernel Extensions and
Device Support Programming Concepts.

558 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Understanding Direct Memory Access (DMA) Transfer.

Dynamic Logical Partitioning in AIX Version 6.1 General Programming Concepts: Writing and Debugging
Programs.

xmemdma64 Kernel Service

Purpose
Prepares a page for direct memory access (DMA) I/O or processes a page after DMA I/O is complete.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmem.h>

unsigned long long xmemdma64 (
struct xmem *dp,
caddr_t xaddr,>
int flags)

Parameters

dp Specifies a cross-memory
descriptor.

xaddr Identifies the address specifying the page for transfer.
flags Specifies whether to prepare a page for DMA I/O or process it after DMA I/O is

complete. Possible values are:

XMEM_HIDE
Prepares the page for DMA I/O. If cache-inconsistent, then the data cache is
flushed, the memory page is hidden, and the real page address is returned. If
cache-consistent, then the modified bit is set and the real address of the page
is returned.

XMEM_UNHIDE
Processes the page after DMA I/O. Also, this flag reveals the page, readies any
processes waiting on the page, and sets the modified bit accordingly.

XMEM_ACC_CHK
Performs access checking on the page. When this flag is set, the page
protection attributes are verified.

XMEM_WRITE_ONLY
Marks the intended transfer as outbound only. This flag is used with
XMEM_ACC_CHK to indicate that read-only access to the page is sufficient.

Description
The xmemdma64 kernel service operates on the page specified by thexaddr parameter in the region
specified by the cross-memory descriptor. If the cross-memory descriptor is for the kernel, the xaddr
parameter specifies a kernel address. Otherwise, the xaddr parameter specifies the offset in the region
described in the cross-memory descriptor.

The xmemdma64 kernel service is provided for machines that have processor-memory caches, but that
do not perform DMA I/O through the cache. Device handlers for Micro Channel DMA devices (running AIX
5.1 or earlier) use the d_master service and d_complete kernel service instead of the xmemdma64
kernel service.

Chapter 1. Kernel Services 559

If the flag parameter indicates XMEM_HIDE (that is, XMEM_UNHIDE is not set) and this is the first hide
for the page, the xmemdma64 kernel service prepares the page for DMA I/O by flushing the cache and
making the page invalid. When the XMEM_UNHIDE bit is set and this is the last unhide for the page, the
following events take place:

1. The page is made valid.

If the page is not in pager I/O state:

2. Any processes waiting on the page are readied.

3. The modified bit for the page is set unless the page has a read-only storage key.

The page is made not valid during DMA operations so that it is not addressable with any virtual address.
This prevents any process from reading or loading any part of the page into the cache during the DMA
operation.

The page specified must be in memory and must be pinned.

If the XMEM_ACC_CHK bit is set, then the xmemdma64 kernel service also verifies access permissions
to the page. If the page access is read-only, then the XMEM_WRITE_ONLY bit must be set in the flag
parameter.

Note: The xmemdma64 kernel service does not hide or reveal the page, nor does it perform any cache
flushing. The service’s primary function is for real-address translation.

Execution Environment
The xmemdma64 kernel service can be called from either the process or interrupt environment.

Return Values
On successful completion, the xmemdma64 service returns the real address corresponding to the xaddr
and xp parameters.

Error Codes
The xmemdma64 kernel service returns a value of XMEM_FAIL if one of the following are true:

v The descriptor was invalid.

v The page specified by the xaddr or xp parameter is invalid.

v Access is not allowed to the page.

Related Information
Cross Memory Kernel Services and Memory Kernel Services in AIX Version 6.1 Kernel Extensions and
Device Support Programming Concepts.

Understanding Direct Memory Access (DMA) Transfer.

xmempin Kernel Service

Purpose
Pins the specified address range in user or system memory.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

560 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

int xmempin(base, len, xd)
caddr_t base;
int len;
struct xmem *xd;

Parameters

base Specifies the address of the first byte to pin.
len Indicates the number of bytes to pin.
xd Specifies the cross-memory descriptor.

Description
The xmempin kernel service is used to pin pages backing a specified memory region which is defined in
either system or user address space. Pinning a memory region prohibits the pager from stealing pages
from the pages backing the pinned memory region. Once a memory region is pinned, accessing that
region does not result in a page fault until the region is subsequently unpinned.

The cross-memory descriptor must have been filled in correctly prior to the xmempin call (for example, by
calling the xmattach kernel service).

Execution Environment
The xmempin kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
EFAULT Indicates that the memory region as specified by the base and len parameters is not within the address

space specified by the xd parameter.
EINVAL Indicates that the value of the length parameter is negative or 0. Otherwise, the area of memory

beginning at the byte specified by the base parameter and extending for the number of bytes specified by
the len parameter is not defined.

ENOMEM Indicates that the xmempin kernel service is unable to pin the region due to insufficient real memory or
because it has exceeded the systemwide pin count.

Related Information
The pin kernel service, unpin kernel service, xmemunpin kernel service.

Understanding Execution Environments and Memory Kernel Services in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

xmemunpin Kernel Service

Purpose
Unpins the specified address range in user or system memory.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

Chapter 1. Kernel Services 561

int xmemunpin (base, len, xd)
caddr_t base;
int len;
struct xmem *xd;

Parameters

base Specifies the address of the first byte to unpin.
len Indicates the number of bytes to unpin.
xd Specifies the cross-memory descriptor.

Description
The xmemunpin kernel service unpins a region of memory. When the pin count is 0, the page is not
pinned and can be paged out of real memory. Upon finding an unpinned page, the xmemunpin kernel
service returns the EINVAL error code and leaves any remaining pinned pages still pinned.

The xmemunpin service should be used where the address space might be in either user or kernel
space.

The cross-memory descriptor must have been filled in correctly prior to the xmempin call (for example, by
calling the xmattach kernel service).

Execution Environment
The xmemunpin kernel service can be called in the process environment when unpinning data that is in
either user space or system space. It can be called in the interrupt environment only when unpinning data
that is in system space.

Return Values

0 Indicates successful completion.
EFAULT Indicates that the memory region as specified by the base and len parameters is not within the address

specified by the xd parameter.
EINVAL Indicates that the value of the length parameter is negative or 0. Otherwise, the area of memory

beginning at the byte specified by the base parameter and extending for the number of bytes specified by
the len parameter is not defined. If neither cause is responsible, an unpinned page was specified.

Related Information
The pin kernel service, unpin kernel service, xmempin kernel service.

Understanding Execution Environments and Memory Kernel Services in AIX Version 6.1 Kernel Extensions
and Device Support Programming Concepts.

xmemzero Kernel Service

Purpose
Zeros a buffer described by a cross memory descriptor.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

562 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

int xmemzero (dp, uaddr, count)
struct xmem * dp;
caddr_t uaddr;
long count;

Parameters

dp The cross memory descriptor.
uaddr The address in the buffer to begin zeroing.
count The number of bytes to be zeroed.

Description
The xmemzero kernel service zeros a buffer described by a cross memory descriptor. The page specified
must be in memory.

Execution Environment
The xmemzero kernel service can be called from a process or an interrupt environment.

Return Values

XMEM_SUCC Indicates the area in the buffer has been zeroed.
XMEM_FAIL Indicates one of the following errors:

v The descriptor is marked by XMEM_REMIO.

v The descriptor is not marked by XMEM_PROC and XMEM_GLOBAL.

v Count < 0.

Related Information
Memory Kernel Services and Understanding Virtual Memory Manager Interfaces in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

xmemin Kernel Service

Purpose
Performs a cross-memory move by copying data from the specified address space to kernel global
memory.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmem.h>

int xmemin (uaddr, kaddr, count, dp)
caddr_t * uaddr;
caddr_t * kaddr;
int count;
struct xmem * dp;

Parameters

uaddr Specifies the address in memory specified by a cross-memory descriptor.

Chapter 1. Kernel Services 563

kaddr Specifies the address in kernel memory.
count Specifies the number of bytes to copy.
dp Specifies the cross-memory descriptor.

Description
The xmemin kernel service performs a cross-memory move. A cross-memory move occurs when data is
moved to or from an address space other than the address space that the program is executing in. The
xmemin kernel service copies data from the specified address space to kernel global memory.

The xmemin kernel service is provided so that kernel processes and interrupt handlers can safely access
a buffer within a user process. Calling the xmattach kernel service prepares the user buffer for the
cross-memory move.

The xmemin kernel service differs from the copyin and copyout kernel services in that it is used to
access a user buffer when not executing under the user process. In contrast, the copyin and copyout
kernel services are used only to access a user buffer while executing under the user process.

Execution Environment
The xmemin kernel service can be called from either the process or interrupt environment.

Return Values

XMEM_SUCC Indicates successful completion.
XMEM_FAIL Indicates one of the following errors:

v The user does not have the appropriate access authority for the user buffer.

v The user buffer is located in an address range that is not valid.

v The segment containing the user buffer has been deleted.

v The cross-memory descriptor is not valid.

v A paging I/O error occurred while the user buffer was being accessed.

If the user buffer is not in memory, the xmemin kernel service also returns an XMEM_FAIL error
when executing on an interrupt level.

Related Information
The xmattach kernel service, xmdetach kernel service, xmemout kernel service.

Cross Memory Kernel Services and Memory Kernel Services in AIX Version 6.1 Kernel Extensions and
Device Support Programming Concepts.

xmemout Kernel Service

Purpose
Performs a cross-memory move by copying data from kernel global memory to a specified address space.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmem.h>

int xmemout (kaddr, uaddr, count, dp)
caddr_t * kaddr;

564 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

caddr_t * uaddr;
int count;
struct xmem * dp;

Parameters

kaddr Specifies the address in kernel memory.
uaddr Specifies the address in memory specified by a cross-memory descriptor.
count Specifies the number of bytes to copy.
dp Specifies the cross-memory descriptor.

Description
The xmemout kernel service performs a cross-memory move. A cross-memory move occurs when data is
moved to or from an address space other than the address space that the program is executing in. The
xmemout kernel service copies data from kernel global memory to the specified address space.

The xmemout kernel service is provided so that kernel processes and interrupt handlers can safely
access a buffer within a user process. Calling the xmattach kernel service prepares the user buffer for the
cross-memory move.

The xmemout kernel service differs from the copyin and copyout kernel services in that it is used to
access a user buffer when not executing under the user process. In contrast, the copyin and copyout
kernel services are only used to access a user buffer while executing under the user process.

Execution Environment
The xmemout kernel service can be called from either the process or interrupt environment.

Return Values

XMEM_SUCC Indicates successful completion.
XMEM_FAIL Indicates one of the following errors:

v The user does not have the appropriate access authority for the user buffer.

v The user buffer is located in an address range that is not valid.

v The segment containing the user buffer has been deleted.

v The cross-memory descriptor is not valid.

v A paging I/O error occurred while the user buffer was being accessed.

If the user buffer is not in memory, the xmemout service also returns an XMEM_FAIL error
when executing on an interrupt level.

Related Information
The xmattach kernel service, xmdetach kernel service, xmemin kernel service.

Cross Memory Kernel Services and Memory Kernel Services in AIX Version 6.1 Kernel Extensions and
Device Support Programming Concepts.

xmempsize Kernel Service

Purpose
Reports the page size being used for a specified address range on the 64-bit kernel.

Chapter 1. Kernel Services 565

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmem.h>

long long xmempsize (dp, uaddr, count)

struct xmem * dp;
void * uaddr;
size_t count;

Description
The xmempsize kernel service returns the size, in bytes, of the virtual memory pages contained in the
memory range starting at uaddr and continuing for count number of bytes. If the memory range consists of
virtual memory pages of different sizes, the size of the smallest pages contained in the range is returned.

The cross-memory descriptor, dp, must have been previously initialized to describe the buffer containing
the specified range of memory. The xmattach() kernel service prepares a buffer and cross-memory
descriptor for use with the xmempsize() kernel service.

Parameters

dp Specifies the cross-memory descriptor.
uaddr Specifies the starting address of the memory range.
count Specifies the number of bytes.

Execution Environment
The xmempsize kernel service can be called from either the process or interrupt environment.

The xmempsize kernel service is only supported on the 64-bit kernel.

Return Values
On successful completion, the xmempsize() kernel service returns a page size in bytes.

Otherwise, the xmempsize() kernel service returns XMEM_FAIL.

Related Information
The xmattach kernel service.

Cross Memory Kernel Services and Memory Kernel Services in AIX Version 6.1 Kernel Extensions and
Device Support Programming Concepts.

xmfree Kernel Service

Purpose
Frees allocated memory.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/malloc.h>

566 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

int xmfree (ptr, heap)
caddr_t ptr;
caddr_t heap;

Parameters

ptr Specifies the address of the area in memory to free.
heap Specifies the address of the heap from which the memory was allocated.

Description
The xmfree kernel service frees the area of memory pointed to by the ptr parameter in the heap specified
by the heap parameter. This area of memory must be allocated with the xmalloc kernel service. In
addition, the ptr pointer must be the pointer returned from the corresponding xmalloc call.

For example, the xmfree (ptr, kernel_heap) kernel service frees the area in the kernel heap allocated by
ptr=xmalloc (size, align, kernel_heap).

A kernel extension must explicitly free any memory it allocates. If it does not, eventually subsequent
allocations are unsuccessful. Pinned memory must also be unpinned before it is freed if allocated from the
kernel_heap. The kernel does not keep track of which kernel extension owns various allocated areas in
the heap. Therefore, the kernel never automatically frees these allocated areas on process termination or
device close.

An additional interface to the xmfree kernel service is provided. The free (ptr) is equivalent to xmfree (ptr,
kernel_heap).

Execution Environment
The xmfree kernel service can be called from the process environment only.

Return Values

0 Indicates successful completion.
-1 Indicates one of the following errors:

v The area to be freed was not allocated with the xmalloc kernel service.

v The heap was not initialized for memory allocation.

Related Information
The xmalloc kernel service.

Memory Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

xmgethkeyset Kernel Service

Purpose
Retrieves the hardware keyset associated with a cross-memory descriptor.

Chapter 1. Kernel Services 567

Syntax
#include <sys/types.h>
#include <sys/kerrno.h>
#include <sys/xmem.h>
#include <sys/skeys.h>

kerrno_t xmgethkeyset (dp, keyset, flags)
struct xmem * dp;
hkeyset_t * hkeyset;
long flags;

Parameters

dp Specifies a valid cross-memory descriptor.
hkeyset Pointer to returned hardware keyset associated with the cross-memory descriptor.
flags Must be set to zero.

Description
The xmgethkeyset() kernel service can be used to obtain the keyset associated with a cross-memory
descriptor.

Kernel-key protection can be enforced on memory regions described by a cross-memory descriptor. The
enforcement is done during normal access checking performed by cross-memory services, such as
xmemdma() service.

Execution Environment
The xmgethkeyset kernel service can be called from the process or interrupt environment.

Return Values

0 Successful.
EINVAL_XMGETHKEYSET Invalid parameter.

Related Information
The xmsethkeyset, xmattach kernel services.

xmsethkeyset Kernel Service

Purpose
Alters hardware keyset associated with a cross-memory descriptor.

Syntax
#include <sys/types.h>
#include <sys/kerrno.h>
#include <sys/xmem.h>
#include <sys/skeys.h>

kerrno_t xmsethkeyset (dp, hkeyset, flags)
struct xmem * dp;
hkeyset_t hkeyset;
long flags;

568 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

dp Specifies a valid cross-memory descriptor.
hkeyset Hardware keyset to assign to the cross-memory descriptor.
flags Must be set to zero.

Description
The xmsethkeyset() kernel service can be used to modify the keyset associated with a cross-memory
descriptor.

Kernel-key protection can be enforced on memory regions described by a cross-memory descriptor. The
enforcement is done during normal access checking performed by cross-memory services, such as the
xmemdma() service.

Execution Environment
The xmsethkeyset kernel service can be called from the process environment only.

Return Values

0 Successful.
EINVAL_XMSETHKEYSET Invalid parameter or execution environment.

Related Information
The xmgethkeyset, xmattach kernel services.

Chapter 1. Kernel Services 569

570 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Chapter 2. Device Driver Operations

Standard Parameters to Device Driver Entry Points

Purpose
Provides a description of standard device driver entry points parameters.

Description
There are three parameters passed to device driver entry points that always have the same meanings: the
devno parameter, the chan parameter, and the ext parameter.

The devno Parameter

This value, defined to be of type dev_t, specifies the device or subdevice to which the operation is
directed. For convenience and portability, the /usr/include/sys/sysmacros.h file defines the following
macros for manipulating device numbers:

Macro Descriptionf
major(devno) Returns the major device number.
minor(devno) Returns the minor device number.
makedev(maj, min). Constructs a composite device number in the format of devno from the major and

minor device numbers given.

The chan Parameter

This value, defined to be of type chan_t, is the channel ID for a multiplexed device driver. If the device
driver is not multiplexed, chan has the value of 0. If the driver is multiplexed, then the chan parameter is
the chan_t value returned from the device driver’s ddmpx routine.

The ext Parameter

The ext parameter, or extension parameter, is defined to be of type int. It is meaningful only with calls to
such extended subroutines as the openx, readx, writex, and ioctlx subroutines. These subroutines allow
applications to pass an extra, device-specific parameter to the device driver. This parameter is then
passed to the ddopen, ddread, ddwrite, and ddioctl device driver entry points as the ext parameter. If
the application uses one of the non-extended subroutines (for example, the read instead of the readx
subroutine), then the ext parameter has a value of 0.

Note: Using the ext parameter is highly discouraged because doing so makes an application program less
portable to other operating systems.

Related Information
The ddioctl device driver entry point, ddmpx device driver entry point, ddopen device driver entry point,
ddread device driver entry point, ddwrite device driver entry point.

The close subroutine, ioctl subroutine, lseek subroutine, open subroutine, read subroutine, write
subroutine.

Device Driver Kernel Extension Overview in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

© Copyright IBM Corp. 1997, 2009 571

Programming in the Kernel Environment Overview in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

buf Structure

Purpose
Describes buffering data transfers between a program and the peripheral device

Introduction to Kernel Buffers
For block devices, kernel buffers are used to buffer data transfers between a program and the peripheral
device. These buffers are allocated in blocks of 4096 bytes. At any given time, each memory block is a
member of one of two linked lists that the device driver and the kernel maintain:

List Description
Available buffer queue (avlist) A list of all buffers available for use. These buffers do

not contain data waiting to be transferred to or from a
device.

Busy buffer queue (blist) A list of all buffers that contain data waiting to be
transferred to or from a device.

Each buffer has an associated buffer header called the buf structure pointing to it. Each buffer header has
several parts:

v Information about the block

v Flags to show status information

v Busy list forward and backward pointers

v Available list forward and backward pointers

The device driver maintains the av_forw and av_back pointers (for the available blocks), while the kernel
maintains the b_forw and b_back pointers (for the busy blocks).

572 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

buf Structure Variables for Block I/O
The buf structure, which is defined in the /usr/include/sys/buf.h file, includes the following fields:

b_flags Flag bits. The value of this field is constructed by logically ORing 0 or more of the following
values:

B_WRITE
This operation is a write operation.

B_READ
This operation is a read data operation, rather than write.

B_DONE
I/O on the buffer has been done, so the buffer information is more current than other
versions.

B_ERROR
A transfer error has occurred and the transaction has aborted.

B_BUSY
The block is not on the free list.

B_INFLIGHT
This I/O request has been sent to the physical device driver for processing.

B_AGE
The data is not likely to be reused soon, so prefer this buffer for reuse. This flag
suggests that the buffer goes at the head of the free list rather than at the end.

B_ASYNC
Asynchronous I/O is being performed on this block. When I/O is done, release the
block.

B_DELWRI
The contents of this buffer still need to be written out before the buffer can be reused,
even though this block may be on the free list. This is used by the write subroutine
when the system expects another write to the same block to occur soon.

B_NOHIDE
Indicates that the data page should not be hidden during direct memory access (DMA)
transfer.

B_SETMOD
Allows an enhanced I/O file system to cause a page to be considered modified.

B_STALE
The data conflicts with the data on disk because of an I/O error.

B_ XREADONLY
Indicates a read-only page in the external pager buffer list.

B_MORE_DONE
When set, indicates to the receiver of this buf structure that more structures are
queued in the IODONE level. This permits device drivers to handle all completed
requests before processing any new requests.

B_SPLIT
When set, indicates that the transfer can begin anywhere within the data buffer.

b_forw The forward busy block pointer.
b_back The backward busy block pointer.
av_forw The forward pointer for a driver request queue.
av_back The backward pointer for a driver request queue.
b_iodone Anyone calling the strategy routine must set this field to point to their I/O done routine. This

routine is called on the INTIODONE interrupt level when I/O is complete.
b_dev The major and minor device number.
b_bcount The byte count for the data transfer.

Chapter 2. Device Driver Operations 573

b_un.b_addr The memory address of the data buffer.
b_blkno The block number on the device.
b_resid Amount of data not transferred after error.
b_event Anchor for event list.
b_xmemd Cross-memory descriptor.

Related Information
The ddstrategy device driver entry point.

The write subroutine.

The bufx structure.

Device Driver Kernel Extension Overview in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

Programming in the Kernel Environment Overview in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

Cross Memory Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

bufx Structure

Purpose
Extends the buf structure to accommodate new fields as needed for performance and RAS reasons.

Description
The bufx structure is available for use by the 64-bit kernel and 64-bit kernel extensions. The 32-bit kernel
and 32-bit kernel extensions only have the option of using the buf structure.

574 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

bufx Structure Variables for Block I/O
The bufx structure, which is defined in the /usr/include/sys/buf.h file, includes the following fields:

b_flags Flag bits. The value of this field is constructed by the logical OR operation with 0 or more of the
following values:

B_WRITE
This operation is a write operation.

B_READ
This operation is a read data operation.

B_DONE
I/O on the buffer is done, so the buffer information is more current than other versions.

B_ERROR
A transfer error occurred and the transaction aborted.

B_BUSY
The block is not on the free list.

B_INFLIGHT
This I/O request was sent to the physical device driver for processing.

B_AGE
The data is not likely to be reused soon, so prefer this buffer for reuse. This flag
suggests that the buffer goes at the head of the free list rather than at the end.

B_ASYNC
Asynchronous I/O is being performed on this block. When I/O is done, release the
block.

B_DELWRI
The contents of this buffer still need to be written out before the buffer can be reused,
even though this block may be on the free list. This is used by the write subroutine
when the system expects another write to the same block to occur soon.

B_NOHIDE
Indicates that the data page should not be hidden during direct memory access (DMA)
transfer.

B_STALE
The data conflicts with the data on disk because of an I/O error.

B_MORE_DONE
When set, indicates to the receiver of this bufx structure that more structures are
queued in the IODONE level. This permits device drivers to handle all completed
requests before processing any new requests.

B_SPLIT
When set, indicates that the transfer can begin anywhere within the data buffer.

B_BUFX
A buffer is identified as an extended buf structure if all of the following conditions are
met:

v B_BUFX bit is set in the b_flags field.

v The pointer obtained by recombining the bx_refptrtop field and the bx_refptrbot
field points to the beginning of the structure.

v The bx_eyecatcher field, which identifies whether the buf structure is extended or
not, is equal to the ASCII string ″bufx″.

B_BUFX_INITIAL
When set, indicates that the buf is extended.

b_forw The forward busy block pointer.
b_back The backward busy block pointer.
av_forw The forward pointer for a driver request queue.

Chapter 2. Device Driver Operations 575

av_back The backward pointer for a driver request queue.
b_iodone Anyone calling the strategy routine must set this field to point to their I/O done routine. This

routine is called on the INTIODONE interrupt level when I/O is complete.
b_dev The major and minor device number.
b_bcount The byte count for the data transfer.
b_un.b_addr The memory address of the data buffer.
b_blkno The block number on the device.
b_resid The amount of data not transferred after error.
b_event The anchor for event list.
b_xmemd The cross-memory descriptor.
bx_refptrtop The top half of the reference pointer.
bx_refptrbot The bottom half of the reference pointer.
bx_version The version of the bufx structure.
bx_eyecatcher The field contains the string ″bufx″, allowing for easy identification of the bufx structure in KDB

when dumping data and for structure verification in addition to using the BUFX_VALIDATE
macro.

bx_flags Bufx flags with a 64-bit field that can be used for bufx-specific flags that are yet to be defined.
bx_io_priority If the underlying storage devices do not support I/O priority, this value is ignored. The

bx_io_priority must be either the value of IOPRIORITY_UNSET (0) or a value from 1 to 15.
Lower I/O priority values are considered to be more important than higher values. For example,
a value of 1 is considered the highest priority and a value of 15 is considered the lowest
priority. The value of IOPRIORITY_UNSET is defined in the sys/extendio.h file.

bx_io_cache_hint If the underlying storage devices do not support I/O cache hints, this value is ignored. The
bx_io_cache_hint must be either the value of CH_AGE_OUT_FAST or the value of CH_PAGE_WRITE
(defined in the sys/extendio.h file). These values are mutually exclusive. If CH_AGE_OUT_FAST is
set, the I/O buffer can be aged out quickly from the storage device buffer cache. This is useful
in the situations where the application is already caching the I/O buffer and redundant caching
within the storage layer can be avoided. If CH_PAGE_WRITE is set, the I/O buffer is written only to
the storage device cache and not to the disk.

Related Information
The buf structure.

Character Lists Structure
Character device drivers, and other character-oriented support that can perform character-at-a-time I/O,
can be implemented by using a common set of services and data buffers to handle characters in the form
of character lists. A character list is a list or queue of characters. Some routines put characters in a list,
and others remove the characters from the list.

Character lists, known as clists, contain a clist header and a chain of one or more data buffers known as
character blocks. Putting characters on a queue allocates space (character blocks) from the common pool
and links the character block into the data structure defining the character queue. Obtaining characters
from a queue returns the corresponding space back to the pool.

A character list can be used to communicate between a character device driver top and bottom half. The
clist header and the character blocks that are used by these routines must be pinned in memory, since
they are accessed in the interrupt environment.

Users of the character list services must register (typically in the device driver ddopen routine) the number
of character blocks to be used at any one time. This allows the kernel to manage the number of pinned
character blocks in the character block pool. Similarly, when usage terminates (for example, when the
device driver is closed), the using routine should remove its registration of character blocks. The pincf
kernel service provides registration for character block usage.

576 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

The kernel provides four services for obtaining characters or character blocks from a character list: the
getc, getcb, getcbp, and getcx kernel services. There are also four services that add characters or
character blocks to character lists: the putc, putcb, putcbp, and putcx kernel services. The getcf kernel
services allocates a free character block while the putcf kernel service returns a character block to the
free list. Additionally, the putcfl kernel service returns a list of character buffers to the free list. The
waitcfree kernel service determines if any character blocks are on the free list, and waits for one if none
are available.

Using a Character List
For each character list you use, you must allocate a clist header structure. This clist structure is defined
in the /usr/include/sys/cblock.h file.

You do not need to be concerned with maintaining the fields in the clist header, as the character list
services do this for you. However, you should initialize the c_cc count field to 0, and both character block
pointers (c_cf and c_cl) to null before using the clist header for the first time. The clist structure defines
these fields.

Each buffer in the character list is a cblock structure, which is also defined in the /usr/include/sys/
cblock.h file.

A character block data area does not need to be completely filled with characters. The c_first and c_last
fields are zero-based offsets within the c_data array, which actually contains the data.

Only a limited amount of memory is available for character buffers. All character drivers share this pool of
buffers. Therefore, you must limit the number of characters in your character list to a few hundred. When
the device is closed, the device driver should make certain all of its character lists are flushed so the
buffers are returned to the list of free buffers.

Related Information
The getc kernel service, getcb kernel service, getcbp kernel service, getcf kernel service, getcx kernel
service, pincf kernel service, putc kernel service, putcb kernel service, putcbp kernel service, putcf
kernel service, putcfl kernel service, putcx kernel service, waitcfree kernel service.

Device Driver Kernel Extension Overview in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

Programming in the Kernel Environment Overview in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

uio Structure

Purpose
Describes a memory buffer to be used in a data transfer.

Introduction

The user I/O or uio structure is a data structure describing a memory buffer to be used in a data transfer.
The uio structure is most commonly used in the read and write interfaces to device drivers supporting
character or raw I/O. It is also useful in other instances in which an input or output buffer can exist in
different kinds of address spaces, and in which the buffer is not contiguous in virtual memory.

The uio structure is defined in the /usr/include/sys/uio.h file.

Chapter 2. Device Driver Operations 577

Description

The uio structure describes a buffer that is not contiguous in virtual memory. It also indicates the address
space in which the buffer is defined. When used in the character device read and write interface, it also
contains the device open-mode flags, along with the device read/write offset.

The kernel provides services that access data using a uio structure. The ureadc, uwritec, uiomove, and
uphysio kernel services all perform data transfers into or out of a data buffer described by a uio structure.
The ureadc kernel service writes a character into the buffer described by the uio structure. The uwritec
kernel service reads a character from the buffer. These two services have names opposite from what you
would expect, since they are named for the user action initiating the operation. A read on the part of the
user thus results in a device driver writing to the buffer, while a write results in a driver reading from the
buffer.

The uiomove kernel service copies data to or from a buffer described by a uio structure from or to a
buffer in the system address space. The uphysio kernel service is used primarily by block device drivers
providing raw I/O support. The uphysio kernel service converts the character read or write request into a
block read or write request and sends it to the ddstrategy routine.

The buffer described by the uio structure can consist of multiple noncontiguous areas of virtual memory of
different lengths. This is achieved by describing the data buffer with an array of elements, each of which
consists of a virtual memory address and a byte length. Each element is defined as an iovec element. The
uio structure also contains a field specifying the total number of bytes in the data buffer described by the
structure.

Another field in the uio structure describes the address space of the data buffer, which can either be
system space, user space, or cross-memory space. If the address space is defined as cross memory, an
additional array of cross-memory descriptors is specified in the uio structure to match the array of iovec
elements.

The uio structure also contains a byte offset (uio_offset). This field is a 64 bit integer (offset_t); it
allows the file system to send I/O requests to a device driver’s read & write entry points which have logical
offsets beyond 2 gigabytes. Device drivers must use care not to cause a loss of significance by assigning
the offset to a 32 bit variable or using it in calculations that overflow a 32 bit variable.

The called routine (device driver) is permitted to modify fields in the uio and iovec structures as the data
transfer progresses. The final uio_resid count is in fact used to determine how much data was
transferred. Therefore this count must be decremented, with each operation, by the number of bytes
actually copied.

The uio structure contains the following fields:

Field Description
uio_iov A pointer to an array of iovec structures describing the user buffer for the data transfer.
uio_xmem A pointer to an array of xmem structures containing the cross-memory descriptors for the iovec

array.
uio_iovcnt The number of yet-to-be-processed iovec structures in the array pointed to by the uio_iov

pointer. The count must be at least 1. If the count is greater than 1, then a scatter-gather of the
data is to be performed into or out of the areas described by the iovec structures.

uio_iovdcnt The number of already processed iovec structures in the iovec array.
uio_offset The file offset established by a previous lseek, llseek subroutine call. Most character devices

ignore this variable, but some, such as the /dev/mem pseudo-device, use and maintain it.
uio_segflg A flag indicating the type of buffer being described by the uio structure. This flag typically

describes whether the data area is in user or kernel space or is in cross-memory. Refer to the
/usr/include/sys/uio.h file for a description of the possible values of this flag and their
meanings.

578 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Field Description
uio_fmode The value of the file mode that was specified on opening the file or modified by the fcntl

subroutine. This flag describes the file control parameters. The /usr/include/sys/fcntl.h file
contains specific values for this flag.

uio_resid The byte count for the data transfer. It must not exceed the sum of all the iov_len values in the
array of iovec structures. Initially, this field contains the total byte count, and when the
operation completes, the value must be decremented by the actual number of bytes
transferred.

The iovec structure contains the starting address and length of a contiguous data area to be used in a
data transfer. The iovec structure is the element type in an array pointed to by the uio_iov field in the uio
structure. This array can contain any number of iovec structures, each of which describes a single unit of
contiguous storage. Taken together, these units represent the total area into which, or from which, data is
to be transferred. The uio_iovcnt field gives the number of iovec structures in the array.

The iovec structure contains the following fields:

Field Description
iov_base A variable in the iovec structure containing the base address of the contiguous data area in the

address space specified by the uio_segflag field. The length of the contiguous data area is specified
by the iov_len field.

iov_len A variable in the iovec structure containing the byte length of the data area starting at the address
given in the iov_base variable.

Related Information
The ddread device driver entry point, ddwrite device driver entry point.

The uiomove kernel service, uphysio kernel service, ureadc kernel service, uwritec kernel service.

The fcntl subroutine, lseek subroutine.

Device Driver Kernel Extension Overview in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

Programming In the Kernel Environment Overview in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

Cross Memory Kernel Services in AIX Version 6.1 Kernel Extensions and Device Support Programming
Concepts.

ddclose Device Driver Entry Point

Purpose

Closes a previously open device instance.

Syntax

#include <sys/device.h>
#include <sys/types.h>
int ddclose (devno, chan)
dev_t devno;
chan_t chan;

Chapter 2. Device Driver Operations 579

Parameters

devno Specifies the major and minor device numbers of the device instance to close.
chan Specifies the channel number.

Description
The ddclose entry point is called when a previously opened device instance is closed by the close
subroutine or fp_close kernel service. The kernel calls the routine under different circumstances for
non-multiplexed and multiplexed device drivers.

For non-multiplexed device drivers, the kernel calls the ddclose routine when the last process having the
device instance open closes it. This causes the g-node reference count to be decremented to 0 and the
g-node to be deallocated.

For multiplexed device drivers, the ddclose routine is called for each close associated with an explicit
open. In other words, the device driver’s ddclose routine is invoked once for each time its ddopen routine
was invoked for the channel.

In some instances, data buffers should be written to the device before returning from the ddclose routine.
These are buffers containing data to be written to the device that have been queued by the device driver
but not yet written.

Non-multiplexed device drivers should reset the associated device to an idle state and change the device
driver device state to closed. This can involve calling the fp_close kernel service to issue a close to an
associated open device handler for the device. Returning the device to an idle state prevents the device
from generating any more interrupt or direct memory access (DMA) requests. DMA channels and interrupt
levels allocated for this device should be freed, until the device is re-opened, to release critical system
resources that this device uses.

Multiplexed device drivers should provide the same device quiescing, but not in the ddclose routine.
Returning the device to the idle state and freeing its resources should be delayed until the ddmpx routine
is called to deallocate the last channel allocated on the device.

In all cases, the device instance is considered closed once the ddclose routine has returned to the caller,
even if a nonzero return code is returned.

Execution Environment
The ddclose routine is executed only in the process environment. It should provide the required
serialization of its data structures by using the locking kernel services in conjunction with a private lock
word defined in the driver.

Return Values
The ddclose entry point can indicate an error condition to the user-mode application program by returning
a nonzero return code. This causes the subroutine call to return a value of -1. It also makes the return
code available to the user-mode application in the errno global variable. The return code used should be
one of the values defined in the /usr/include/sys/errno.h file.

The device is always considered closed even if a nonzero return code is returned.

When applicable, the return values defined in the POSIX 1003.1 standard for the close subroutine should
be used.

580 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
The ddopen device driver entry point.

The fp_close kernel service, i_clear kernel service, i_disable kernel service.

The close subroutine, open subroutine.

Device Driver Kernel Extension Overview in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

Programming in the Kernel Environment Overview in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

ddconfig Device Driver Entry Point

Purpose

Performs configuration functions for a device driver.

Syntax

#include <sys/device.h>
#include <sys/types.h>

int ddconfig (devno, cmd, uiop)
dev_t devno;
int cmd;
struct uio *uiop;

Parameters

devno Specifies the major and minor device numbers.
cmd Specifies the function to be performed by the ddconfig routine.
uiop Points to a uio structure describing the relevant data area for configuration information.

Description
The ddconfig entry point is used to configure a device driver. It can be called to do the following tasks:

v Initialize the device driver.

v Terminate the device driver.

v Request configuration data for the supported device.

v Perform other device-specific configuration functions.

The ddconfig routine is called by the device’s Configure, Unconfigure, or Change method. Typically, it is
called once for each device number (major and minor) to be supported. This is, however,
device-dependent. The specific device method and ddconfig routine determines the number of times it is
called.

The ddconfig routine can also provide additional device-specific functions relating to configuration, such
as returning device vital product data (VPD). The ddconfig routine is usually invoked through the
sysconfig subroutine by the device-specific Configure method.

Chapter 2. Device Driver Operations 581

Device drivers and their methods typically support these values for the cmd parameter:

Value Description
CFG_INIT Initializes the device driver and internal data areas. This typically involves the minor number specified

by the devno parameter, for validity. The device driver’s ddconfig routine also installs the device
driver’s entry points in the device switch table, if this was the first time called (for the specified major
number). This can be accomplished by using the devswadd kernel service along with a devsw
structure to add the device driver’s entry points to the device switch table for the major device
number supplied in the devno parameter.

The CFG_INIT command parameter should also copy the device-dependent information (found in the
device-dependent structure provided by the caller) into a static or dynamically allocated save area for
the specified device. This information should be used when the ddopen routine is later called.

The device-dependent structure’s address and length are described in the uio structure pointed to by
the uiop parameter. The uiomove kernel service can be used to copy the device-dependent structure
into the device driver’s data area.

When the ddopen routine is called, the device driver passes device-dependent information to the
routines or other device drivers providing the device handler role in order to initialize the device. The
delay in initializing the device until the ddopen call is received is useful in order to delay the use of
valuable system resources (such as DMA channels and interrupt levels) until the device is actually
needed.

CFG_TERM Terminates the device driver associated with the specified device number, as represented by the
devno parameter.The ddconfig routine determines if any opens are outstanding on the specified
devno parameter. If none are, the CFG_TERM command processing marks the device as terminated,
disallowing any subsequent opens to the device. All dynamically allocated data areas associated with
the specified device number should be freed.

If this termination removes the last minor number supported by the device driver from use, the
devswdel kernel service should be called to remove the device driver’s entry points from the device
switch table for the specified devno parameter.

If opens are outstanding on the specified device, the terminate operation is rejected with an
appropriate error code returned. The Unconfigure method can subsequently unload the device driver
if all uses of it have been terminated.

To determine if all the uses of the device driver have been terminated, a device method can make a
sysconfig subroutine call. By using the sysconfig SYS_QDVSW operation, the device method can
learn whether or not the device driver has removed itself from the device switch table.

CFG_QVPD Queries device-specific vital product data (VPD).

For this function, the calling routine sets up a uio structure pointed at by the uiop parameter to the
ddconfig routine. This uio structure defines an area in the caller’s storage in which the ddconfig
routine is to write the VPD. The uiomove kernel service can be used to provide the data copy
operation.

The data area pointed at by the uiop parameter has two different purposes, depending on the cmd
function. If the CFG_INIT command has been requested, the uiop structure describes the location and
length of the device-dependent data structure (DDS) from which to read the information. If the CFG_QVPD
command has been requested, the uiop structure describes the area in which to write vital product data
information. The content and format of this information is established by the specific device methods in
conjunction with the device driver.

The uiomove kernel service can be used to facilitate copying information into or out of this data area. The
format of the uio structure is defined in the /usr/include/sys/uio.h file and described further in the uio
structure.

582 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment
The ddconfig routine and its operations are called in the process environment only.

Return Values
The ddconfig routine sets the return code to 0 if no errors are detected for the operation specified. If an
error is to be returned to the caller, a nonzero return code should be provided. The return code used
should be one of the values defined in the /usr/include/sys/errno.h file.

If this routine was invoked by a sysconfig subroutine call, the return code is passed to its caller (typically
a device method). It is passed by presenting the error code in the errno global variable and providing a -1
return code to the subroutine.

Related Information
The sysconfig subroutine.

The ddopen device driver entry point.

The devswadd kernel service, devswdel kernel service, uiomove kernel service.

The uio structure.

Device Driver Kernel Extension Overview in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

Programming in the Kernel Environment Overview in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

dddump Device Driver Entry Point

Purpose
Writes system dump data to a device.

Syntax
#include <sys/device.h>

int dddump (devno, uiop, cmd, arg, chan, ext)
dev_t devno;
struct uio * uiop;
int cmd, arg;
chan_t chan;
int ext;

Parameters

devno Specifies the major and minor device numbers.
uiop Points to the uio structure describing the data area or areas to be dumped.
cmd The parameter from the kernel dump function that specifies the operation to be performed.
arg The parameter from the caller that specifies the address of a parameter block associated with the kernel

dump command.
chan Specifies the channel number.
ext Specifies the extension parameter.

Chapter 2. Device Driver Operations 583

Description
The kernel dump routine calls the dddump entry point to set up and send dump requests to the device.
The dddump routine is optional for a device driver. It is required only when the device driver supports a
device as a target for a possible kernel dump.

If this is the case, it is important that the system state change as little as possible when performing the
dump. As a result, the dddump routine should use the minimal amount of services in writing the dump
data to the device.

The cmd parameter can specify any of the following dump commands:

Dump Command Description
DUMPINIT Initialization a device in preparation for supporting a system dump. The specified device instance

must have previously been opened. The arg parameter points to a dumpio_stat structure,
defined in /usr/include/sys/dump.h. This is used for returning device-specific status in case of
an error.

The dddump routine should pin all code and data that the device driver uses to support dump
writing. This is required to prevent a page fault when actually performing a write of the dump
data. (Pinned code should include the dddump routine.) The pin or pincode kernel service can
be used for this purpose.

DUMPQUERY Determines the maximum and minimum number of bytes that can be transferred to the device in
one DUMPWRITE command. For network dumps, the address of the write routine used in
transferring dump data to the network dump device is also sent. The uiop parameter is not used
and is null for this command. The arg parameter is a pointer to a dmp_query structure, as
defined in the /usr/include/sys/dump.h file.

The dmp_query structure contains the following fields:

min_tsize
Minimum transfer size (in bytes).

max_tsize
Maximum transfer size (in bytes).

dumpwrite
Address of the write routine.

The DUMPQUERY command returns the data transfer size information in the dmp_query
structure pointed to by the arg parameter. The kernel dump function then uses a buffer between
the minimum and maximum transfer sizes (inclusively) when writing dump data.

If the buffer is not the size found in the max_tsize field, then its size must be a multiple of the
value in the min_tsize field. The min_tsize field and the max_tsize field can specify the same
value.

DUMPSTART Suspends current device activity and provide whatever setup of the device is needed before
receiving a DUMPWRITE command. The arg parameter points to a dumpio_stat structure,
defined in /usr/include/sys/dump.h. This is used for returning device-specific status in case of
an error.

DUMPWRITE Writes dump data to the target device. The uio structure pointed to by the uiop parameter
specifies the data area or areas to be written to the device and the starting device offset. The arg
parameter points to a dumpio_stat structure, defined in /usr/include/sys/dump.h. This is used
for returning device-specific status in case of an error. Code for the DUMPWRITE command
should minimize its reliance on system services, process dispatching, and such interrupt services
as the INTIODONE interrupt priority or device hardware interrupts.
Note: The DUMPWRITE command must never cause a page fault. This is ensured on the part
of the caller, since the data areas to be dumped have been determined to be in memory. The
device driver must ensure that all of its code, data and stack accesses are to pinned memory
during its DUMPINIT command processing.

DUMPEND Indicates that the kernel dump has been completed. Any cleanup of the device state should be
done at this time.

584 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Dump Command Description
DUMPTERM Indicates that the specified device is no longer a selected dump target device. If no other devices

supported by this dddump routine have a DUMPINIT command outstanding, the DUMPTERM
code should unpin any resources pinned when it received the DUMPINIT command. (The unpin
kernel service is available for unpinning memory.) The DUMPTERM command is received before
the device is closed.

DUMPREAD Receives the acknowledgment packet for previous DUMPWRITE operations to a communications
device driver. If the device driver receives the acknowledgment within the specified time, it returns
a 0 and the response data is returned to the kernel dump function in the uiop parameter. If the
device driver does not receive the acknowledgment within the specified time, it returns a value of
ETIMEDOUT.

The arg parameter contains a timeout value in milliseconds.

Execution Environment
The DUMPINIT dddump operation is called in the process environment only. The DUMPQUERY,
DUMPSTART, DUMPWRITE, DUMPEND, and DUMPTERM dddump operations can be called in both the
process environment and interrupt environment.

Return Values
The dddump entry point indicates an error condition to the caller by returning a nonzero return code.

Related Information
The devdump kernel service, dmp_add kernel service, dmp_del kernel service, pin kernel service,
pincode kernel service, unpin kernel service.

The dump special file.

The uio structure.

Device Driver Kernel Extension Overview in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

Programming in the Kernel Environment Overview in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

ddioctl Device Driver Entry Point

Purpose
Performs the special I/O operations requested in an ioctl or ioctlx subroutine call.

Syntax
#include <sys/device.h>

int ddioctl (devno, cmd, arg, devflag, chan, ext)
dev_t devno;
int cmd;
void *arg;
ulong devflag;
chan_t chan;
int ext;

Chapter 2. Device Driver Operations 585

Description
When a program issues an ioctl or ioctlx subroutine call, the kernel calls the ddioctl routine of the
specified device driver. The ddioctl routine is responsible for performing whatever functions are requested.
In addition, it must return whatever control information has been specified by the original caller of the ioctl
subroutine. The cmd parameter contains the name of the operation to be performed.

Most ioctl operations depend on the specific device involved. However, all ioctl routines must respond to
the following command:

IOCINFO Returns a devinfo structure (defined in the /usr/include/sys/devinfo.h file) that describes the device.
(Refer to the description of the special file for a particular device in the Application Programming
Interface.) Only the first two fields of the data structure need to be returned if the remaining fields of
the structure do not apply to the device.

The devflag parameter indicates one of several types of information. It can give conditions in which the
device was opened. (These conditions can subsequently be changed by the fcntl subroutine call.)
Alternatively, it can tell which of two ways the entry point was invoked:

v By the file system on behalf of a using application

v Directly by a kernel routine using the fp_ioctl kernel service

Thus flags in the devflag parameter have the following definitions, as defined in the /usr/include/sys/
device.h file:

DKERNEL Entry point called by kernel routine using the fp_ioctl service.
DREAD Open for reading.
DWRITE Open for writing.
DAPPEND Open for appending.
DNDELAY Device open in nonblocking mode.

Parameters

devno Specifies the major and minor device numbers.
cmd The parameter from the ioctl subroutine call that specifies the operation to be performed.
arg The parameter from the ioctl subroutine call that specifies an additional argument for the cmd

operation.
devflag Specifies the device open or file control flags.
chan Specifies the channel number.
ext Specifies the extension parameter.

Execution Environment
The ddioctl routine is executed only in the process environment. It should provide the required
serialization of its data structures by using the locking kernel services in conjunction with a private lock
word defined in the driver.

Return Values
The ddioctl entry point can indicate an error condition to the user-mode application program by returning
a nonzero return code. This causes the ioctl subroutine to return a value of -1 and makes the return code
available to the user-mode application in the errno global variable. The error code used should be one of
the values defined in the /usr/include/sys/errno.h file.

When applicable, the return values defined in the POSIX 1003.1 standard for the ioctl subroutine should
be used.

586 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
The fp_ioctl kernel service.

The fcntl subroutine, ioctl or ioctlx subroutine, open subroutine.

Device Driver Kernel Extension Overview in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

Virtual File System Kernel Extensions Overview in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

Special Files Overview in AIX Version 6.1 Files Reference.

Programming in the Kernel Environment Overview in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

ddmpx Device Driver Entry Point

Purpose

Allocates or deallocates a channel for a multiplexed device driver.

Syntax
#include <sys/device.h>
#include <sys/types.h>

int ddmpx (devno, chanp, channame)
dev_t devno;
chan_t *chanp;
char *channame;

Parameters

devno Specifies the major and minor device numbers.
chanp Specifies the channel ID, passed by reference.
channame Points to the path name extension for the channel to be allocated.

Description
Only multiplexed character class device drivers can provide the ddmpx routine, and every multiplexed
driver must do so. The ddmpx routine cannot be provided by block device drivers even when providing
raw read/write access.

A multiplexed device driver is a character class device driver that supports the assignment of channels to
provide finer access control to a device or virtual subdevice. This type of device driver has the capability to
decode special channel-related information appended to the end of the path name of the device’s special
file. This path name extension is used to identify a logical or virtual subdevice or channel.

When an open or creat subroutine call is issued to a device instance supported by a multiplexed device
driver, the kernel calls the device driver’s ddmpx routine to allocate a channel.

The kernel calls the ddmpx routine when a channel is to be allocated or deallocated. Upon allocation, the
kernel dynamically creates g-nodes (in-core i-nodes) for channels on a multiplexed device to allow the
protection attributes to differ for various channels.

Chapter 2. Device Driver Operations 587

To allocate a channel, the ddmpx routine is called with a channame pointer to the path name extension.
The path name extension starts after the first / (slash) character that follows the special file name in the
path name. The ddmpx routine should perform the following actions:

v Parse this path name extension.

v Allocate the corresponding channel.

v Return the channel ID through the chanp parameter.

If no path name extension exists, the channame pointer points to a null character string. In this case, an
available channel should be allocated and its channel ID returned through the chanp parameter.

If no error is returned from the ddmpx routine, the returned channel ID is used to determine if the channel
was already allocated. If already allocated, the g-node for the associated channel has its reference count
incremented. If the channel was not already allocated, a new g-node is created for the channel. In either
case, the device driver’s ddopen routine is called with the channel number assigned by the ddmpx
routine. If a nonzero return code is returned by the ddmpx routine, the channel is assumed not to have
been allocated, and the device driver’s ddopen routine is not called.

If a close of a channel is requested so that the channel is no longer used (as determined by the channel’s
g-node reference count going to 0), the kernel calls the ddmpx routine. The ddmpx routine deallocates
the channel after the ddclose routine was called to close the last use of the channel. If a nonzero return
code is returned by the ddclose routine, the ddmpx routine is still called to deallocate the channel. The
ddclose routine’s return code is saved, to be returned to the caller. If the ddclose routine returned no
error, but a nonzero return code was returned by the ddmpx routine, the channel is assumed to be
deallocated, although the return code is returned to the caller.

To deallocate a channel, the ddmpx routine is called with a null channame pointer and the channel ID
passed by reference in the chanp parameter. If the channel g-node reference count has gone to 0, the
kernel calls the ddmpx routine to deallocate the channel after invoking the ddclose routine to close it. The
ddclose routine should not itself deallocate the channel.

Execution Environment
The ddmpx routine is called in the process environment only.

Return Values
If the allocation or deallocation of a channel is successful, the ddmpx routine should return a return code
of 0. If an error occurs on allocation or deallocation, this routine returns a nonzero value.

The return code should conform to the return codes described for the open and close subroutines in the
POSIX 1003.1 standard, where applicable. Otherwise, the return code should be one defined in the
/usr/include/sys/errno.h file.

Related Information
The ddclose device driver entry point, ddopen device driver entry point.

The close subroutine, open or creat subroutine.

Device Driver Kernel Extension Overview in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

Programming in the Kernel Environment Overview in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

588 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

ddopen Device Driver Entry Point

Purpose

Prepares a device for reading, writing, or control functions.

Syntax

#include <sys/device.h>
int ddopen (devno, devflag, chan, ext)
dev_t devno;
ulong devflag;
chan_t chan;
int ext;

Parameters

devno Indicates major and minor device numbers.
devflag Specifies open file control flags.
chan Specifies the channel number.
ext Specifies the extension parameter.

Description
The kernel calls the ddopen routine of a device driver when a program issues an open or creat
subroutine call. It can also be called when a system call, kernel process, or other device driver uses the
fp_opendev or fp_open kernel service to use the device.

The ddopen routine must first ensure exclusive access to the device, if necessary. Many character
devices, such as printers and plotters, should be opened by only one process at a time. The ddopen
routine can enforce this by maintaining a static flag variable, which is set to 1 if the device is open and 0 if
not.

Each time the ddopen routine is called, it checks the value of the flag. If the value is other than 0, the
ddopen routine returns with a return code of EBUSY to indicate that the device is already open.
Otherwise, the ddopen routine sets the flag and returns normally. The ddclose entry point later clears the
flag when the device is closed.

Since most block devices can be used by several processes at once, a block driver should not try to
enforce opening by a single user.

The ddopen routine must initialize the device if this is the first open that has occurred. Initialization
involves the following steps:

1. The ddopen routine should allocate the required system resources to the device (such as DMA
channels, interrupt levels, and priorities). It should, if necessary, register its device interrupt handler for
the interrupt level required to support the target device. (The i_init and d_init kernel services are
available for initializing these resources.)

2. If this device driver is providing the head role for a device and another device driver is providing the
handler role, the ddopen routine should use the fp_opendev kernel service to open the device
handler.

Note: The fp_opendev kernel service requires a devno parameter to identify which device handler to
open. This devno value, taken from the appropriate device dependent structure (DDS), should
have been stored in a special save area when this device driver’s ddconfig routine was called.

Chapter 2. Device Driver Operations 589

Flags Defined for the devflag Parameter
The devflag parameter has the following flags, as defined in the /usr/include/sys/device.h file:

DKERNEL Entry point called by kernel routine using the fp_opendev or fp_open kernel service.
DREAD Open for reading.
DWRITE Open for writing.
DAPPEND Open for appending.
DNDELAY Device open in nonblocking mode.

Execution Environment
The ddopen routine is executed only in the process environment. It should provide the required
serialization of its data structures by using the locking kernel services in conjunction with a private lock
word defined in the driver.

Return Values
The ddopen entry point can indicate an error condition to the user-mode application program by returning
a nonzero return code. Returning a nonzero return code causes the open or creat subroutines to return a
value of -1 and makes the return code available to the user-mode application in the errno global variable.
The return code used should be one of the values defined in the /usr/include/errno.h file.

If a nonzero return code is returned by the ddopen routine, the open request is considered to have failed.
No access to the device instance is available to the caller as a result. In addition, for nonmultiplexed
drivers, if the failed open was the first open of the device instance, the kernel calls the driver’s ddclose
entry point to allow resources and device driver state to be cleaned up. If the driver was multiplexed, the
kernel does not call the ddclose entry point on an open failure.

When applicable, the return values defined in the POSIX 1003.1 standard for the open subroutine should
be used.

Related Information
The ddclose device driver entry point, ddconfig device driver entry point.

The fp_open kernel service, fp_opendev kernel service, i_enable kernel service, i_init kernel service.

The close subroutine, creat subroutine, open subroutine.

Device Driver Kernel Extension Overview in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

Programming in the Kernel Environment Overview in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

ddread Device Driver Entry Point

Purpose

Reads in data from a character device.

Syntax

#include <sys/device.h>
#include <sys/types.h>

590 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

int ddread (devno, uiop, chan, ext)
dev_t devno;
struct uio *uiop;
chan_t chan;
int ext;

Parameters

devno Specifies the major and minor device numbers.
uiop Points to a uio structure describing the data area or areas in which to be written.
chan Specifies the channel number.
ext Specifies the extension parameter.

Description
When a program issues a read or readx subroutine call or when the fp_rwuio kernel service is used, the
kernel calls the ddread entry point.

This entry point receives a pointer to a uio structure that provides variables used to specify the data
transfer operation.

Character device drivers can use the ureadc and uiomove kernel services to transfer data into and out of
the user buffer area during a read subroutine call. These services receive a pointer to the uio structure
and update the fields in the structure by the number of bytes transferred. The only fields in the uio
structure that cannot be modified by the data transfer are the uio_fmode and uio_segflg fields.

For most devices, the ddread routine sends the request to the device handler and then waits for it to
finish. The waiting can be accomplished by calling the e_sleep kernel service. This service suspends the
driver and the process that called it and permits other processes to run until a specified event occurs.

When the I/O operation completes, the device usually issues an interrupt, causing the device driver’s
interrupt handler to be called. The interrupt handler then calls the e_wakeup kernel service specifying the
awaited event, thus allowing the ddread routine to resume.

The uio_resid field initially contains the total number of bytes to read from the device. If the device driver
supports it, the uio_offset field indicates the byte offset on the device from which the read should start.

The uio_offset field is a 64 bit integer (offset_t); this allows the file system to send I/O requests to a
device driver’s read & write entry points which have logical offsets beyond 2 gigabytes. Device drivers
must use care not to cause a loss of significance by assigning the offset to a 32 bit variable or using it in
calculations that overflow a 32 bit variable.

If no error occurs, the uio_resid field should be 0 on return from the ddread routine to indicate that all
requested bytes were read. If an error occurs, this field should contain the number of bytes remaining to
be read when the error occurred.

If a read request starts at a valid device offset but extends past the end of the device’s capabilities, no
error should be returned. However, the uio_resid field should indicate the number of bytes not transferred.
If the read starts at the end of the device’s capabilities, no error should be returned. However, the
uio_resid field should not be modified, indicating that no bytes were transferred. If the read starts past the
end of the device’s capabilities, an ENXIO return code should be returned, without modifying the
uio_resid field.

When the ddread entry point is provided for raw I/O to a block device, this routine usually translates
requests into block I/O requests using the uphysio kernel service.

Chapter 2. Device Driver Operations 591

Execution Environment
The ddread routine is executed only in the process environment. It should provide the required
serialization of its data structures by using the locking kernel services in conjunction with a private lock
word defined in the driver.

Return Values
The ddread entry point can indicate an error condition to the caller by returning a nonzero return code.
This causes the subroutine call to return a value of -1. It also makes the return code available to the
user-mode program in the errno global variable. The error code used should be one of the values defined
in the /usr/include/sys/errno.h file.

When applicable, the return values defined in the POSIX 1003.1 standard for the read subroutine should
be used.

Related Information
The ddwrite device driver entry point.

The e_sleep kernel service, e_wakeup kernel service, fp_rwuio kernel service, uiomove kernel service,
uphysio kernel service, ureadc kernel service.

The uio structure.

The read, readx subroutines.

Select/Poll Logic for ddwrite and ddread Routines.

Device Driver Kernel Extension Overview in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

Programming in the Kernel Environment Overview in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

ddrevoke Device Driver Entry Point

Purpose
Ensures that a secure path to a terminal is provided.

Syntax
#include <sys/device.h>
#include <sys/types.h>

int ddrevoke (devno, chan, flag)
dev_t devno;
chan_t chan;
int flag;

Parameters

devno Specifies the major and minor device numbers.
chan Specifies the channel number. For a multiplexed device driver, a value of -1 in this parameter means

access to all channels is to be revoked.
flag Currently defined to have the value of 0. (Reserved for future extensions.)

592 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The ddrevoke entry point can be provided only by character class device drivers. It cannot be provided by
block device drivers even when providing raw read/write access. A ddrevoke entry point is required only
by device drivers supporting devices in the Trusted Computing Path to a terminal (for example, by the
/dev/ lft and /dev/tty files for the low function terminal and teletype device drivers). The ddrevoke routine
is called by the frevoke and revoke subroutines.

The ddrevoke routine revokes access to a specific device or channel (if the device driver is multiplexed).
When called, the ddrevoke routine should terminate all processes waiting in the device driver while
accessing the specified device or channel. It should terminate the processes by sending a SIGKILL signal
to all processes currently waiting for a specified device or channel data transfer. The current process is not
to be terminated.

If the device driver is multiplexed and the channel ID in the chan parameter has the value -1, all channels
are to be revoked.

Execution Environment
The ddrevoke routine is called in the process environment only.

Return Values
The ddrevoke routine should return a value of 0 for successful completion, or a value from the
/usr/include/errno.h file on error.

Files

/dev/lft Specifies the path of the LFT special file.
/dev/tty Specifies the path of the tty special file.

Related Information
The frevoke subroutine, revoke subroutine.

LFT Subsystem Component Structure Overview , Device Driver Kernel Extension Overview, Programming
in the Kernel Environment Overview, in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

The TTY Subsystem Overview in AIX Version 6.1 General Programming Concepts: Writing and Debugging
Programs.

ddselect Device Driver Entry Point

Purpose
Checks to see if one or more events has occurred on the device.

Syntax
#include <sys/device.h>
#include <sys/poll.h>

int ddselect (devno, events, reventp, chan)
dev_t devno;
ushort events;
ushort *reventp;
int chan;

Chapter 2. Device Driver Operations 593

Parameters

devno Specifies the major and minor device numbers.
events Specifies the events to be checked.
reventp Returned events pointer. This parameter, passed by reference, is used by the ddselect routine to

indicate which of the selected events are true at the time of the call. The returned events location
pointed to by the reventp parameter is set to 0 before entering this routine.

chan Specifies the channel number.

Description
The ddselect entry point is called when the select or poll subroutine is used, or when the fp_select
kernel service is invoked. It determines whether a specified event or events have occurred on the device.

Only character class device drivers can provide the ddselect routine. It cannot be provided by block
device drivers even when providing raw read/write access.

Requests for Information on Events
The events parameter represents possible events to check as flags (bits). There are three basic events
defined for the select and poll subroutines, when applied to devices supporting select or poll operations:

Event Description
POLLIN Input is present on the device.
POLLOUT The device is capable of output.
POLLPRI An exceptional condition has occurred on the device.

A fourth event flag is used to indicate whether the ddselect routine should record this request for later
notification of the event using the selnotify kernel service. This flag can be set in the events parameter if
the device driver is not required to provide asynchronous notification of the requested events:

Event Description
POLLSYNC This request is a synchronous request only. The routine need not call the selnotify kernel service for

this request even if the events later occur.

Additional event flags in the events parameter are left for device-specific events on the poll subroutine
call.

Select Processing
If one or more events specified in the events parameter are true, the ddselect routine should indicate this
by setting the corresponding bits in the reventp parameter. Note that the reventp returned events
parameter is passed by reference.

If none of the requested events are true, then the ddselect routine sets the returned events parameter to
0. It is passed by reference through the reventp parameter. It also checks the POLLSYNC flag in the
events parameter. If this flag is true, the ddselect routine should just return, since the event request was a
synchronous request only.

However, if the POLLSYNC flag is false, the ddselect routine must notify the kernel when one or more of
the specified events later happen. For this purpose, the routine should set separate internal flags for each
event requested in the events parameter.

When any of these events become true, the device driver routine should use the selnotify service to notify
the kernel. The corresponding internal flags should then be reset to prevent re-notification of the event.

594 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Sometimes the device can be in a state in which a supported event or events can never be satisfied (such
as when a communication line is not operational). In this case, the ddselect routine should simply set the
corresponding reventp flags to 1. This prevents the select or poll subroutine from waiting indefinitely. As a
result however, the caller will not in this case be able to distinguish between satisfied events and
unsatisfiable ones. Only when a later request with an NDELAY option fails will the error be detected.

Note: Other device driver routines (such as the ddread, ddwrite routines) may require logic to support
select or poll operations.

Execution Environment
The ddselect routine is executed only in the process environment. It should provide the required
serialization of its data structures by using the locking kernel services in conjunction with a private lock
word defined in the driver.

Return Values
The ddselect routine should return with a return code of 0 if the select or poll operation requested is valid
for the resource specified. Requested operations are not valid, however, if either of the following is true:

v The device driver does not support a requested event.

v The device is in a state in which poll and select operations are not accepted.

In these cases, the ddselect routine should return with a nonzero return code (typically EINVAL), and
without setting the relevant reventp flags to 1. This causes the poll subroutine to return to the caller with
the POLLERR flag set in the returned events parameter associated with this resource. The select
subroutine indicates to the caller that all requested events are true for this resource.

When applicable, the return values defined in the POSIX 1003.1 standard for the select subroutine should
be used.

Related Information
The ddread device driver entry point, ddwrite device driver entry point.

The fp_select kernel service, selnotify kernel service.

The poll subroutine, select subroutine.

Programming in the Kernel Environment Overview and Device Driver Kernel Extension Overview in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

ddstrategy Device Driver Entry Point

Purpose
Performs block-oriented I/O by scheduling a read or write to a block device.

Syntax
void ddstrategy (bp)
struct buf *bp;

Parameter

bp Points to a buf structure describing all information needed to perform the data transfer.

Chapter 2. Device Driver Operations 595

Description
When the kernel needs a block I/O transfer, it calls the ddstrategy strategy routine of the device driver for
that device. The strategy routine schedules the I/O to the device. This typically requires the following
actions:

v The request or requests must be added on the list of I/O requests that need to be processed by the
device.

v If the request list was empty before the preceding additions, the device’s start I/O routine must be
called.

Required Processing
The ddstrategy routine can receive a single request with multiple buf structures. However, it is not
required to process requests in any specific order.

The strategy routine can be passed a list of operations to perform. The av_forw field in the buf header
describes this null-terminated list of buf headers. This list is not doubly linked: the av_back field is
undefined.

Block device drivers must be able to perform multiple block transfers. If the device cannot do multiple
block transfers, or can only do multiple block transfers under certain conditions, then the device driver
must transfer the data with more than one device operation.

Kernel Buffers and Using the buf Structure
An area of memory is set aside within the kernel memory space for buffering data transfers between a
program and the peripheral device. Each kernel buffer has a header, the buf structure, which contains all
necessary information for performing the data transfer. The ddstrategy routine is responsible for updating
fields in this header as part of the transfer.

The caller of the strategy routine should set the b_iodone field to point to the caller’s I/O done routine.
When an I/O operation is complete, the device driver calls the iodone kernel service, which then calls the
I/O done routine specified in the b_iodone field. The iodone kernel service makes this call from the
INTIODONE interrupt level.

The value of the b_flags field is constructed by logically ORing zero or more possible b_flags field flag
values.

Attention: Do not modify any of the following fields of the buf structure passed to the ddstrategy
entry point: the b_forw, b_back, b_dev, b_un, or b_blkno field. Modifying these fields can cause
unpredictable and disastrous results.

Attention: Do not modify any of the following fields of a buf structure acquired with the geteblk
service: the b_flags, b_forw, b_back, b_dev, b_count, or b_un field. Modifying any of these fields can
cause unpredictable and disastrous results.

Execution Environment
The ddstrategy routine must be coded to execute in an interrupt handler execution environment (device
driver bottom half). That is, the routine should neither touch user storage, nor page fault, nor sleep.

Return Values
The ddstrategy routine, unlike other device driver routines, does not return a return code. Any error
information is returned in the appropriate fields within the buf structure pointed to by the bp parameter.

When applicable, the return values defined in the POSIX 1003.1 standard for the read and write
subroutines should be used.

596 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
The geteblk kernel service, iodone kernel service.

The buf structure.

The read subroutine, write subroutine.

Device Driver Kernel Extension Overview, Understanding Device Driver Structure and Understanding
Device Driver Classes, Programming in the Kernel Environment Overview in AIX Version 6.1 Kernel
Extensions and Device Support Programming Concepts.

ddwrite Device Driver Entry Point

Purpose
Writes out data to a character device.

Syntax
#include <sys/device.h>
#include <sys/types.h>

int ddwrite (devno, uiop, chan, ext)
dev_t devno;
struct uio * uiop;
chan_t chan;
int ext;

Parameters

devno Specifies the major and minor device numbers.
uiop Points to a uio structure describing the data area or areas from which to be written.
chan Specifies the channel number.
ext Specifies the extension parameter.

Description
When a program issues a write or writex subroutine call or when the fp_rwuio kernel service is used, the
kernel calls the ddwrite entry point.

This entry point receives a pointer to a uio structure, which provides variables used to specify the data
transfer operation.

Character device drivers can use the uwritec and uiomove kernel services to transfer data into and out of
the user buffer area during a write subroutine call. These services are passed a pointer to the uio
structure. They update the fields in the structure by the number of bytes transferred. The only fields in the
uio structure that are not potentially modified by the data transfer are the uio_fmode and uio_segflg fields.

For most devices, the ddwrite routine queues the request to the device handler and then waits for it to
finish. The waiting is typically accomplished by calling the e_sleep kernel service to wait for an event. The
e_sleep kernel service suspends the driver and the process that called it and permits other processes to
run.

When the I/O operation is completed, the device usually causes an interrupt, causing the device driver’s
interrupt handler to be called. The interrupt handler then calls the e_wakeup kernel service specifying the
awaited event, thus allowing the ddwrite routine to resume.

Chapter 2. Device Driver Operations 597

The uio_resid field initially contains the total number of bytes to write to the device. If the device driver
supports it, the uio_offset field indicates the byte offset on the device from where the write should start.

The uio_offset field is a 64 bit integer (offset_t); this allows the file system to send I/O requests to a
device driver’s read & write entry points which have logical offsets beyond 2 gigabytes. Device drivers
must use care not to cause a loss of significance by assigning the offset to a 32 bit variable or using it in
calculations that overflow a 32 bit variable.

If no error occurs, the uio_resid field should be 0 on return from the ddwrite routine to indicate that all
requested bytes were written. If an error occurs, this field should contain the number of bytes remaining to
be written when the error occurred.

If a write request starts at a valid device offset but extends past the end of the device’s capabilities, no
error should be returned. However, the uio_resid field should indicate the number of bytes not transferred.
If the write starts at or past the end of the device’s capabilities, no data should be transferred. An error
code of ENXIO should be returned, and the uio_resid field should not be modified.

When the ddwrite entry point is provided for raw I/O to a block device, this routine usually uses the
uphysio kernel service to translate requests into block I/O requests.

Execution Environment
The ddwrite routine is executed only in the process environment. It should provide the required
serialization of its data structures by using the locking kernel services in conjunction with a private lock
word defined in the driver.

Return Values
The ddwrite entry point can indicate an error condition to the caller by returning a nonzero return value.
This causes the subroutine to return a value of -1. It also makes the return code available to the
user-mode program in the errno global variable. The error code used should be one of the values defined
in the /usr/include/sys/errno.h file.

When applicable, the return values defined in the POSIX 1003.1 standard for the write subroutine should
be used.

Related Information
The ddread device driver entry point.

The CIO_GET_FASTWRT ddioctl.

The e_sleep kernel service, e_wakeup kernel service, fp_rwuio kernel service, uiomove kernel service,
uphysio kernel service, uwritec kernel service.

The uio structure.

The write and writex subroutines.

Device Driver Kernel Extension Overview, Understanding Device Driver Roles, Understanding Interrupts,
Understanding Locking in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

598 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Select/Poll Logic for ddwrite and ddread Routines

Description
The ddread and ddwrite entry points require logic to support the select and poll operations. Depending
on how the device driver is written, the interrupt routine may also need to include this logic as well.

The select/poll logic is required wherever code checks on the occurrence of desired events. At each point
where one of the selection criteria is found to be true, the device driver should check whether a notification
is due for that selection. If so, it should call the selnotify kernel service to notify the kernel of the event.

The devno, chan, and revents parameters are passed to the selnotify kernel service to indicate which
device and which events have become true.

Related Information
The ddread device driver entry point, ddselect device driver entry point, ddwrite device driver entry point.

The selnotify kernel service.

The poll subroutine, select subroutine.

Device Driver Kernel Extension Overview and Programming in the Kernel Environment Overview in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

Chapter 2. Device Driver Operations 599

600 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Chapter 3. File System Operations

List of Virtual File System Operations
The following entry points are specified by the virtual file system interface for performing operations on vfs
structures:

Entry Point Description
vfs_aclxcntl Issues ACL related control operations for a file system.
vfs_cntl Issues control operations for a file system.
vfs_init Initializes a virtual file system.
vfs_mount Mounts a virtual file system.
vfs_root Finds the root v-node of a virtual file system.
vfs_statfs Obtains virtual file system statistics.
vfs_sync Forces file system updates to permanent storage.
vfs_umount Unmounts a virtual file system.
vfs_vget Gets the v-node corresponding to a file identifier.

The following entry points are specified by the Virtual File System interface for performing operations on
v-node structures:

Entry Point Description
vnop_access Tests a user’s permission to access a file.
vnop_close Releases the resources associated with a v-node.
vnop_create Creates and opens a new file.
vnop_create_attr Creates and opens a new file with initial attributes.
vnop_fclear Releases portions of a file (by zeroing bytes).
vnop_fid Builds a file identifier for a v-node.
vnop_finfo Returns pathconf information about a file or file system.
vnop_fsync Flushes in-memory information and data to permanent storage.
vnop_fsync_range Flushes in-memory information and data for a given range to permanent storage.
vnop_ftrunc Decreases the size of a file.
vnop_getacl Gets information about access control, by retrieving the access control list.
vnop_getattr Gets the attributes of a file.
vnop_getxacl Gets information about access control by retrieving the ACL. Provides an advanced interface

when compared to vnop_getacl.
vnop_hold Assures that a v-node is not destroyed, by incrementing the v-node’s use count.
vnop_ioctl Performs miscellaneous operations on devices.
vnop_link Creates a new directory entry for a file.
vnop_lockctl Sets, removes, and queries file locks.
vnop_lookup Finds an object by name in a directory.
vnop_map Associates a file with a memory segment.
vnop_map_lloff Associates a file with a memory segment using 64 bit offset.
vnop_memcntl Manages physical attachment of a file.
vnop_mkdir Creates a directory.
vnop_mknod Creates a file of arbitrary type.
vnop_open Gets read and/or write access to a file.
vnop_rdwr Reads or writes a file.
vnop_rdwr_attr Reads or writes a file and returns attributes.
vnop_readdir Reads directory entries in standard format.
vnop_readdir_eofp Reads directories and returns end of file indication.
vnop_readlink Reads the contents of a symbolic link.
vnop_rele Releases a reference to a virtual node (v-node).
vnop_remove Unlinks a file or directory.

© Copyright IBM Corp. 1997, 2009 601

Entry Point Description
vnop_rename Renames a file or directory.
vnop_revoke Revokes access to an object.
vnop_rmdir Removes a directory.
vnop_seek Moves the current offset in a file.
vnop_select Polls a v-node for pending I/O.
vnop_setacl Sets information about access control for a file.
vnop_setattr Sets attributes of a file.
vnop_setxacl Sets information about access control for a file. Provides an advanced interface compared to

vnop_setacl.
vnop_strategy Reads or writes blocks of a file.
vnop_symlink Creates a symbolic link.
vnop_unmap Destroys a file or memory association.

vfs_aclxcntl Entry Point

Purpose
Implements access-control-specific control operations for a file system.

Syntax
int vfs_aclxcntl (vfsp, vp, cmd, uiop, argsize, crp)

struct vfs *vfsp;
struct vnode *vp;
int cmd;
struct uio *uiop;
size_t *argsize;
struct ucred *crp;

Description
The vfs_aclxcntl entry point is invoked to perform various ACL-specific control operations on the
underlying physical file system. If a file system is implemented to support this interface, it needs to adhere
to the various commands and arguments defined for the interface. A file system implementation can define
cmd parameter values and corresponding control functions that are specific to the file system. The cmd
parameter for these functions has values defined globally for all the physical file systems. These control
operations can be issued with the ACL library interfaces.

Parameters

vfsp Points to the file system for which the control operation is to be issued.
vp Points to the virtual node pointer to the file path of the file system for which the control operation is

being requested.

602 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

cmd Specifies which control operation to perform. Has one of the following values:

ACLCNTL_GETACLXTYPES
Returns the various ACL types supported for the file system instance. This area is of the
following structure type:

typedef struct _acl_types_list_t {
uint32_t num_entries; // in the buffer to follow
uint32_t pad; // reserved space
acl_type_t entries[MAX_ACL_TYPES]; // Array of ACL types

} acl_types_list_t ;

If the buffer space is not enough to accommodate ACL types supported by the physical file
system, errno is set to ENOSPC and the necessary size of the buffer is returned in argsize.

ACLCNTL_GETACLXTYPEINFO
Returns the characteristics information related to an ACL type for the file system instance.
This area is of the following structure type:

typedef struct _acl_type_info_t {
acl_type_t acl_type; // ACL type for which info is needed
uint8_t acl_type_info; // Start of ACL characteristics data

} _acl_type_info_t ;

acl_type_info is the start byte of the ACL-related characteristics information. ACL
characteristics information depends on the ACL type. ACL characteristics for NFS4 ACL type
have the following structure:

typedef struct _nfs4_acl_type_info_t {
uint32_t version; // Version of this structure
uint32_t acl_suport; // Support of Access control entry types.

} nfs4_acl_type_info_t ;

If the buffer space is not enough to accommodate the ACL types supported by the physical
file system, errno is set to ENOSPC and the necessary size of the buffer is returned in
argsize.

uiop Identifies data specific to the control operation. If the cmd parameter has a value of
ACLCNTL_GETACLXTYPES, uiop points to a buffer area where the file system stores the supported
ACL types. If the cmd parameter has a value of ACLCNTL_GETACLXTYPEINFO, uiop points to a
buffer area where the file system stores the ACL characteristics information.

argsize Identifies the length of the data specified by the arg parameter. This buffer is used to return the
necessary buffer size, in case the buffer size provided by the user is not enough.

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Execution Environment
The vfs_aclxcntl entry point can be called from the process environment only.

Return Values
Upon successful completion, the vfs_aclxcntl entry point returns 0. Nonzero return values are returned
from the /usr/include/sys/errno.h file to indicate failure.

EACCES The cmd parameter requires a privilege that the current process does not have.
EINVAL Indicates that the cmd parameter is not a supported control, or the arg parameter is not a

valid argument for the command.
ENOSPC The input buffer was not sufficient for storing the requested information.

Chapter 3. File System Operations 603

Related Information
Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vfs_cntl Entry Point

Purpose
Implements control operations for a file system.

Syntax
int vfs_cntl (vfsp, cmd, arg, argsize, crp)
struct vfs * vfsp;
int cmd;
caddr_t arg;
unsigned long argsize;
struct ucred * crp;

Parameters

vfsp Points to the file system for which the control operation is to be issued.
cmd Specifies which control operation to perform.
arg Identifies data specific to the control operation.
argsize Identifies the length of the data specified by the arg parameter.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description
The vfs_cntl entry point is invoked by the logical file system to request various control operations on the
underlying file system. A file system implementation can define file system-specific cmd parameter values
and corresponding control functions. The cmd parameter for these functions should have a minimum value
of 32768. These control operations can be issued with the fscntl subroutine.

Note: The only system-supported control operation is FS_EXTENDFS. This operation increases the file
system size and accepts an arg parameter that specifies the new size. The FS_EXTENDFS
operation ignores the argsize parameter.

Execution Environment
The vfs_cntl entry point can be called from the process environment only.

Return Values

0 Indicates success.

Non-zero return values are returned from the /usr/include/sys/errno.h file to indicate failure. Typical
values include:

EINVAL Indicates that the cmd parameter is not a supported control, or the arg parameter is not a valid argument
for the command.

EACCES Indicates that the cmd parameter requires a privilege that the current process does not have.

604 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
The fscntl subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vfs_hold or vfs_unhold Kernel Service

Purpose
Holds or releases a vfs structure.

Syntax
#include <sys/vfs.h>

void vfs_hold(vfsp)
struct vfs *vfsp;

void vfs_unhold(vfsp)
struct vfs *vfsp;

Parameter

vfsp Points to a vfs structure.

Description
The vfs_hold kernel service holds a vfs structure and the vfs_unhold kernel service releases it. These
routines manage a use count for a virtual file system (VFS). A use count greater than 1 prevents the virtual
file system from being unmounted.

Execution Environment
These kernel services can be called from the process environment only.

Return Values
None

vfs_init Entry Point

Purpose
Initializes a virtual file system.

Syntax
int vfs_init (gfsp)
struct gfs *gfsp;

Parameter

gfsp Points to a file system’s attribute structure.

Chapter 3. File System Operations 605

Description
The vfs_init entry point is invoked to initialize a file system. It is called when a file system implementation
is loaded to perform file system-specific initialization.

The vfs_init entry point is not called through the virtual file system switch. Instead, it is called indirectly by
the gfsadd kernel service when the vfs_init entry point address is stored in the gfs structure passed to
the gfsadd kernel service as a parameter. (The vfs_init address is placed in the gfs_init field of the gfs
structure.) The gfs structure is defined in the /usr/include/sys/gfs.h file.

Note: The return value for the vfs_init entry point is passed back as the return value from the gfsadd
kernel service.

Execution Environment
The vfs_init entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The gfsadd kernel service.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

vfs_mount Entry Point

Purpose
Mounts a virtual file system.

Syntax
int vfs_mount (vfsp)
struct vfs *vfsp;
struct ucred * crp;

Parameter

vfsp Points to the newly created vfs structure.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description
The vfs_mount entry point is called by the logical file system to mount a new file system. This entry point
is called after the vfs structure is allocated and initialized. Before this structure is passed to the
vfs_mount entry point, the logical file system:

v Guarantees the syntax of the vmount or mount subroutines.

v Allocates the vfs structure.

v Resolves the stub to a virtual node (v-node). This is the vfs_mntdover field in the vfs structure.

606 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

v Initializes the following virtual file system fields:

Field Description
vfs_flags Initialized depending on the type of mount. This field takes the following values:

VFS_MOUNTOK
The user has write permission in the stub’s parent directory and is the owner of the
stub.

VFS_SUSER
The user has root user authority.

VFS_NOSUID
Execution of setuid and setgid programs from this mount are not allowed.

VFS_NODEV
Opens of devices from this mount are not allowed.

vfs_type Initialized to the / (root) file system type when the mount subroutine is used. If the vmount
subroutine is used, the vfs_type field is set to the type parameter supplied by the user. The
logical file system verifies the existence of the type parameter.

vfs_ops Initialized according to the vfs_type field.
vfs_mntdover Identifies the v-node that refers to the stub path argument. This argument is supplied by the

mount or vmount subroutine.
vfs_date Holds the time stamp. The time stamp specifies the time to initialize the virtual file system.
vfs_number Indicates the unique number sequence representing this virtual file system.
vfs_mdata Initialized with the vmount structure supplied by the user. The virtual file system data is

detailed in the /usr/include/sys/vmount.h file. All arguments indicated by this field are
copied to kernel space.

Execution Environment
The vfs_mount entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The mount subroutine, vmount subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

vfs_root Entry Point

Purpose
Returns the root v-node of a virtual file system (VFS).

Syntax
int vfs_root (vfsp, vpp, crp)
struct vfs *vfsp;
struct vnode **vpp;
struct ucred *crp;

Chapter 3. File System Operations 607

Parameters

vfsp Points to the vfs structure.
vpp Points to the place to return the v-node pointer.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description
The vfs_root entry point is invoked by the logical file system to get a pointer to the root v-node of the file
system. When successful, the vpp parameter points to the root virtual node (v-node) and the v-node hold
count is incremented.

Execution Environment
The vfs_root entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
Virtual File System Overview, Virtual File System Kernel Extensions Overview, Understanding Data
Structures and Header Files for Virtual File Systems, Logical File System Overview, Understanding Virtual
Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

vfs_search Kernel Service

Purpose
Searches the vfs list.

Syntax
int vfs_search (vfs_srchfcn, srchargs)
(int (*vfs_srchfcn)(struct vfs *, caddr_t);
caddr_t srchargs;

Parameters

vfs_srchfcn Points to a search function. The search function is identified by the vfs_srchfcn parameter. This
function is used to examine or modify an entry in the vfs list. The search function is called once
for each currently active VFS. If the search function returns a value of 0, iteration through the
vfs list continues to the next entry. If the return value is nonzero, vfs_search kernel service
returns to its caller, passing back the return value from the search function.
When the system invokes this function, the system passes it a pointer to a virtual file system
(VFS) and the srchargs parameter.

srchargs Points to data to be used by the search function. This pointer is not used by the vfs_search
kernel service but is passed to the search function.

608 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The vfs_search kernel service searches the vfs list. This kernel service allows a process outside the file
system to search the vfs list. The vfs_search kernel service locks out all activity in the vfs list during a
search. Then, the kernel service iterates through the vfs list and calls the search function on each entry.

The search function must not request locks that could result in deadlock. In particular, any attempt to do
lock operations on the vfs list or on other VFS structures could produce deadlock.

The performance of the vfs_search kernel service may not be acceptable for functions requiring quick
response. Iterating through the vfs list and making an indirect function call for each structure is inherently
slow.

Execution Environment
The vfs_search kernel service can be called from the process environment only.

Return Values
This kernel service returns the value returned by the last call to the search function.

vfs_statfs Entry Point

Purpose
Returns virtual file system statistics.

Syntax
int vfs_stafs (vfsp, stafsp, crp)
struct vfs *vfsp;
struct statfs *stafsp;
struct ucred *crp;

Parameters

vfsp Points to the vfs structure being queried. This structure is defined in the /usr/include/sys/vfs.h file.
stafsp Points to a statfs structure. This structure is defined in the /usr/include/sys/statfs.h file.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description
The vfs_stafs entry point is called by the logical file system to obtain file system characteristics. Upon
return, the vfs_statfs entry point has filled in the following fields of the statfs structure:

Field Description
f_blocks Specifies the number of blocks.
f_files Specifies the total number of file system objects.
f_bsize Specifies the file system block size.
f_bfree Specifies the number of free blocks.
f_ffree Specifies the number of free file system objects.
f_fname Specifies a 32-byte string indicating the file system name.
f_fpack Specifies a 32-byte string indicating a pack ID.
f_name_max Specifies the maximum length of an object name.

Fields for which a vfs structure has no values are set to 0.

Chapter 3. File System Operations 609

Execution Environment
The vfs_statfs entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The statfs subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Understanding Data
Structures and Header Files for Virtual File Systems, Logical File System Overview, Understanding Virtual
Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts.

vfs_sync Entry Point

Purpose
Requests that file system changes be written to permanent storage.

Syntax
int vfs_sync (* gfsp)
struct gfs *gfsp;

Parameter

gfsp Points to a gfs structure. The gfs structure describes the file system type. This structure is defined in the
/usr/include/sys/gfs.h file.

Description
The vfs_sync entry point is used by the logical file system to force all data associated with a particular
virtual file system type to be written to its storage. This entry point is used to establish a known consistent
state of the data.

Note: The vfs_sync entry point is called once per file system type rather than once per virtual file system.

Execution Environment
The vfs_sync entry point can be called from the process environment only.

Return Values
The vfs_sync entry point is advisory. It has no return values.

Related Information
The sync subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

610 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

vfs_umount Entry Point

Purpose
Unmounts a virtual file system.

Syntax
int vfs_umount (vfsp, crp)
struct vfs *vfsp;
struct ucred *crp;

Parameters

vfsp Points to the vfs structure being unmounted. This structure is defined in the /usr/include/sys/vfs.h file.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description
The vfs_umount entry point is called to unmount a virtual file system. The logical file system performs
services independent of the virtual file system that initiate the unmounting. The logical file system services:

v Guarantee the syntax of the uvmount subroutine.

v Perform permission checks:

– If the vfsp parameter refers to a device mount, then the user must have root user authority to
perform the operation.

– If the vfsp parameter does not refer to a device mount, then the user must have root user authority
or write permission in the parent directory of the mounted-over virtual node (v-node), as well as write
permission to the file represented by the mounted-over v-node.

v Ensure that the virtual file system being unmounted contains no mount points for other virtual file
systems.

v Ensure that the root v-node is not in use except for the mount. The root v-node is also referred to as
the mounted v-node.

v Clear the v_mvfsp field in the stub v-node. This prevents lookup operations already in progress from
traversing the soon-to-be unmounted mount point.

The logical file system assumes that, if necessary, successful vfs_umount entry point calls free the root
v-node. An error return from the vfs_umount entry point causes the mount point to be re-established. A 0
(zero) returned from the vfs_umount entry point indicates the routine was successful and that the vfs
structure was released.

Execution Environment
The vfs_umount entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The umount subroutine, uvmount subroutine, vmount subroutine.

Chapter 3. File System Operations 611

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Virtual File System Kernel
Extensions Overview, Understanding Data Structures and Header Files for Virtual File Systems, Logical
File System Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and
Device Support Programming Concepts.

vfs_vget Entry Point

Purpose
Converts a file identifier into a virtual node (v-node).

Syntax
int vfs_vget (vfsp, vpp, fidp, crp)
struct vfs *vfsp;
struct vnode **vpp;
struct fileid *fidp;
struct ucred *crp;

Parameters

vfsp Points to the virtual file system that is to contain the v-node. Any returned v-node should belong to this virtual
file system.

vpp Points to the place to return the v-node pointer. This is set to point to the new v-node. The fields in this
v-node should be set as follows:

v_vntype
The type of v-node dependent on private data.

v_count
Set to at least 1 (one).

v_pdata
If a new file, set to the private data for this file system.

fidp Points to a file identifier. This is a file system-specific file identifier that must conform to the fileid structure.
Note: If the fidp parameter is invalid, the vpp parameter should be set to a null value by the vfs_vget entry
point.

crp Points to the cred structure. This structure contains data that the file system can use to validate access
permission.

Description
The vfs_vget entry point is called to convert a file identifier into a v-node. This entry point uses
information in the vfsp and fidp parameters to create a v-node or attach to an existing v-node. This v-node
represents, logically, the same file system object as the file identified by the fidp parameter.

If the v-node already exists, successful operation of this entry point increments the v-node use count and
returns a pointer to the v-node. If the v-node does not exist, the vfs_vget entry point creates it using the
vn_get kernel service and returns a pointer to the new v-node.

Execution Environment
The vfs_vget entry point can be called from the process environment only.

Return Values

0 Indicates success.

612 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. A typical
value includes:

EINVAL Indicates that the remote virtual file system specified by the vfsp parameter does not support chained
mounts.

Related Information
The vn_get kernel service.

The access subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_access Entry Point

Purpose
Requests validation of user access to a virtual node (v-node).

Syntax
int vnop_access (vp, mode, who, crp)
struct vnode *vp;
int mode;
int who;
struct ucred *crp;

Parameters

vp Points to the v-node.
mode Identifies the access mode.
who Specifies the IDs for which to check access. This parameter should be one of the following values, which are

defined in the /usr/include/sys/access.h file:

ACC_SELF
Determines if access is permitted for the current process. The effective user and group IDs and the
supplementary group ID of the current process are used for the calculation.

ACC_ANY
Determines if the specified access is permitted for any user, including the object owner. The mode
parameter must contain only one of the valid modes.

ACC_OTHERS
Determines if the specified access is permitted for any user, excluding the owner. The mode
parameter must contain only one of the valid modes.

ACC_ALL
Determines if the specified access is permitted for all users. (This is a useful check to make when
files are to be written blindly across networks.) The mode parameter must contain only one of the
valid modes.

crp Points to the cred structure. This structure contains data that the file system can use to validate access
permission.

Chapter 3. File System Operations 613

Description
The vnop_access entry point is used by the logical volume file system to validate access to a v-node.
This entry point is used to implement the access subroutine. The v-node is held for the duration of the
vnop_access entry point. The v-node count is unchanged by this entry point.

In addition, the vnop_access entry point is used for permissions checks from within the file system
implementation. The valid types of access are listed in the /usr/include/sys/access.h file. Current modes
are read, write, execute, and existence check.

Note: The vnop_access entry point must ensure that write access is not requested on a read-only file
system.

Execution Environment
The vnop_access entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. A typical
value includes:

EACCES Indicates no access is allowed.

Related Information
The access subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_close Entry Point

Purpose
Closes a file associated with a v-node (virtual node).

Syntax
int vnop_close (vp, flag, vinfo, crp)
struct vnode *vp;
int flag;
caddr_t vinfo;
struct ucred *crp;

Parameters

vp Points to the v-node.
flag Identifies the flag word from the file pointer.
vinfo This parameter is not used.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

614 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Description
The vnop_close entry point is used by the logical file system to announce that the file associated with a
given v-node is now closed. The v-node continues to remain active but will no longer receive read or write
requests through the vnop_rdwr entry point.

A vnop_close entry point is called only when the use count of an associated file structure entry goes to 0
(zero).

Note: The v-node is held over the duration of the vnop_close entry point.

Execution Environment
The vnop_close entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Note: The vnop_close entry point may fail and an error will be returned to the application. However, the
v-node is considered closed.

Related Information
The close subroutine.

The vnop_open entry point, vnop_rele entry point.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_create Entry Point

Purpose
Creates a new file.

Syntax
int vnop_create (dp, vpp, flag, pname, mode, vinfop, crp)
struct vnode * dp;
struct vnode ** vpp;
int flag;
char * pname;
int mode;
caddr_t * vinfop;
struct ucred * crp;

Parameters

dp Points to the virtual node (v-node) of the parent directory.
vpp Points to the place in which the pointer to a v-node for the newly created file is returned.
flag Specifies an integer flag word. The vnop_create entry point uses this parameter to open the file.

Chapter 3. File System Operations 615

pname Points to the name of the new file.
mode Specifies the mode for the new file.
vinfop This parameter is unused.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description
The vnop_create entry point is invoked by the logical file system to create a regular (v-node type VREG)
file in the directory specified by the dp parameter. (Other v-node operations create directories and special
files.) Virtual node types are defined in the /usr/include/sys/vnode.h file. The v-node of the parent
directory is held during the processing of the vnop_create entry point.

To create a file, the vnop_create entry point does the following:

v Opens the newly created file.

v Checks that the file system associated with the directory is not read-only.

Note: The logical file system calls the vnop_lookup entry point before calling the vnop_create entry
point.

Execution Environment
The vnop_create entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The vnop_lookup entry point.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_create_attr Entry Point

Purpose
Creates a new file.

Syntax
int
vnop_create_attr (dvp, vpp, flags, name, vap, vcf, finfop, crp)
struct vnode *dvp;
struct vnode *vpp;
int flags;
char *name;
struct vattr *vap;

616 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

int vcf;
caddr_t finfop;
struct ucred *crp;

Parameters

dvp Points to the directory vnode.
vpp Points to the newly created vnode pointer.
flags Specifies file creation flags.
name Specifies the name of the file to create.
vattr Points to the initial attributes.
vcf Specifies create flags.
finfop Specifies address of finfo field.
crp Specifies user’s credentials.

Description
The vnop_create_attr entry point is used to create a new file. This operation is similar to the vnop_create
entry point except that the initial file attributes are passed in a vattr structure.

The va_mask field in the vattr structure identifies which attributes are to be applied. For example, if the
AT_SIZE bit is set, then the file system should use va_size for the initial file size. For all vnop_create_attr
calls, at least AT_TYPE and AT_MODE must be set.

The vcf parameter controls how the new vnode is to be activated. If vcf is set to VC_OPEN, then the new
object should be opened. If vcf is VC_LOOKUP, then the new object should be created, but not opened. If
vcf is VC_DEFAULT, then the new object should be created, but the vnode for the object is not activated.

File systems that do not define GFS_VERSION421 in their gfs flags do not need to supply a
vnop_create_attr entry point. The logical file system will funnel all creation requests through the old
vnop_create entry point.

Execution Environment
The vnop_create_attr entry point can be called from the process environment only.

Return Values

Zero Indicates a successful operation; *vpp contains a pointer to the new vnode.
Nonzero Indicates that the operation failed; return values should be chosen from the /usr/include/sys/errno.h

file.

Related Information
The open subroutine, mknod subroutine.

Virtual File System Overview, Logical File System Overview, Understanding Virtual Nodes (V-nodes), and
Virtual File System Kernel Extensions Overview.

List of Virtual File System Operations.

vnop_fclear Entry Point

Purpose
Releases portions of a file.

Chapter 3. File System Operations 617

Syntax
int vnop_fclear (vp, flags, offset, len, vinfo, crp)
struct vnode * vp;
int flags;
offset_t offset;
offset_t len;
caddr_t vinfo;
struct ucred * crp;

Parameters

vp Points to the virtual node (v-node) of the file.
flags Identifies the flags from the open file structure.
offset Indicates where to start clearing in the file.
len Specifies the length of the area to be cleared.
vinfo This parameter is unused.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description
The vnop_fclear entry point is called from the logical file system to clear bytes in a file, returning whole
free blocks to the underlying file system. This entry point performs the clear regardless of whether the file
is mapped.

Upon completion of the vnop_fclear entry point, the logical file system updates the file offset to reflect the
number of bytes cleared.

Execution Environment
The vnop_fclear entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The fclear subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_fid Entry Point

Purpose
Builds a file identifier for a virtual node (v-node).

618 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
int vnop_fid (vp, fidp, crp)
struct vnode *vp;
struct fileid *fidp;
struct ucred *crp;

Parameters

vp Points to the v-node that requires the file identifier.
fidp Points to where to return the file identifier.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description
The vnop_fid entry point is invoked to build a file identifier for the given v-node. This file identifier must
contain sufficient information to find a v-node that represents the same file when it is presented to the
vfs_get entry point.

Execution Environment
The vnop_fid entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_finfo Entry Point

Purpose
Returns information about a file.

Syntax
int
vnop_finfo (vp, cmd, bufp, length, crp)
struct vnode *vp;
int cmd;
void *bufp;
int length;
struct ucred *crp;

Parameters

vp Points to the vnode to be queried.

Chapter 3. File System Operations 619

cmd Specifies the command parameter.
bufp Points to the buffer for the information.
length Specifies the length of the buffer.
crp Specifies user’s credentials.

Description
The vnop_finfo entry point is used to query a file system. It is used primarily to implement the pathconf
and fpathconf subroutines. The command parameter defines what type of query is being done. The
query commands and the associated data structures are defined in <sys/finfo.h>. If the file system does
not support the particular query, it should return ENOSYS.

File systems that do not define GFS_VERSION421 in their gfs flags do not need to supply a vnop_finfo
entry point. If the command is FI_PATHCONF, then the logical file system returns generic pathconf
information. If the query is other than FI_PATHCONF, then the request fails with EINVAL.

Execution Environment
The vnop_finfo entry point can be called from the process environment only.

Return Values

Zero Indicates a successful operation.
Nonzero Indicates that the operation failed; return values should be chosen from the /usr/include/sys/errno.h

file.

Related Information
The pathconf, fpathconf subroutine.

Virtual File System Overview, Logical File System Overview, Understanding Virtual Nodes (V-nodes) in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts, and Virtual File System Kernel
Extensions Overview.

vnop_fsync, vnop_fsync_range Entry Points

Purpose
Flushes file data from memory to disk.

Syntax
int vnop_fsync (vp, flags, vinfo, crp)
struct vnode *vp;
long flags;
long vinfo;
struct ucred *crp;

int vnop_fsync_range (vp, flags, vinfo, offset, length, crp)
struct vnode *vp;
long flags;
long vinfo;
offset_t offset;
offset_t length;
struct ucred *crp;

620 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

vp Points to the virtual node (v-node) of the file.
flags Identifies flags from the open file plus flags that govern the action to be taken. It can be one of the

following values:

FDATASYNC
Writes file data and metadata to retrieve the data for the specified range.

FFILESYNC
Writes all modified file data and metadata for the specified range.

FNOCACHE
Writes the data in the range and releases full memory pages in the byte range. The data
will no longer be in the cache.

vinfo This parameter is currently not used.
offset Specifies the starting offset in the file of the data to be flushed.
length Specifies the length of the data to be flushed.
crp Points to the cred structure. This structure contains data that the file system can use to validate

access permission.

Description
The vnop_fsync entry point is called by the logical file system to request that all modifications associated
with a given v-node to be flushed out to permanent storage. This must be done synchronously so that the
caller can assure that all I/O has completed successfully. The vnop_fsync_range entry point provides the
same function but limits the data to be written to a specified range in the file.

Execution Environment
The vnop_fsync and vnop_fsync_range entry points can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The fsync subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_ftrunc Entry Point

Purpose
Truncates a file.

Syntax
int vnop_ftrunc (vp, flags, length, vinfo, crp)
struct vnode * vp;
int flags;

Chapter 3. File System Operations 621

offset_t length;
caddr_t vinfo;
struct ucred * crp;

Parameters

vp Points to the virtual node (v-node) of the file.
flags Identifies flags from the open file structure.
length Specifies the length to which the file should be truncated.
vinfo This parameter is unused.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description
The vnop_ftrunc entry point is invoked by the logical file system to decrease the length of a file by
truncating it. This operation is unsuccessful if any process other than the caller has locked a portion of the
file past the specified offset.

Execution Environment
The vnop_ftrunc entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The ftruncate subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_getacl Entry Point

Purpose
Retrieves the access control list (ACL) for a file.

Syntax
#include <sys/acl.h>

int vnop_getacl (vp, uiop, crp)
struct vnode *vp;
struct uio *uiop;
struct ucred *crp;

Description
The vnop_getacl entry point is used by the logical file system to retrieve the access control list (ACL) for
a file to implement the getacl subroutine.

622 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

vp Specifies the virtual node (v-node) of the file system object.
uiop Specifies the uio structure that defines the storage for the ACL.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Execution Environment
The vnop_getacl entry point can be called from the process environment only.

Return Values

0 Indicates a successful operation.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. A valid value
includes:

ENOSPC Indicates that the buffer size specified in the uiop parameter was not large enough to hold the ACL. If this
is the case, the first word of the user buffer (data in the uio structure specified by the uiop parameter) is
set to the appropriate size.

Related Information
The chacl subroutine, chmod subroutine, chown subroutine, statacl subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_getattr Entry Point

Purpose
Gets the attributes of a file.

Syntax
int vnop_getattr (vp, vap, crp)
struct vnode *vp;
struct vattr *vap;
struct ucred *crp;

Parameters

vp Specifies the virtual node (v-node) of the file system object.
vap Points to a vattr structure.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Chapter 3. File System Operations 623

Description
The vnop_getattr entry point is called by the logical file system to retrieve information about a file. The
vattr structure indicated by the vap parameter contains all the relevant attributes of the file. The vattr
structure is defined in the /usr/include/sys/vattr.h file. This entry point is used to implement the stat,
fstat, and lstat subroutines.

Note: The indicated v-node is held for the duration of the vnop_getattr subroutine.

Execution Environment
The vnop_getattr entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The statx subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_getxacl Entry Point

Purpose
Retrieves the access control list (ACL) for a file. This is an advanced version of vnop_getacl interface.

Syntax
#include <sys/acl.h>
int vnop_getxacl (vp, ctl_flags, acl_type, uiop, acl_len, mode_info, crp)

struct vnode *vp;
uint64_t ctl_flags;
acl_type_t *acl_type;
struct uio *uiop;
size_t *acl_len;
mode_t *mode_info;
struct ucred *crp;

Description
The vnop_getxacl entry point retrieves the access control list (ACL) for a file system object. It is an
advanced version of vnop_getacl interface and provides for ACL-type-based operations. Note that this
interface can be used to obtain the ACL type and length information, without actually retrieving the ACL
data (see the ctl_flags description for more details).

Parameters

vp Specifies the virtual node (v-node) of the file system object.

624 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

acl_type Points to buffer space for file systems to return the ACL type associated with the file
system object. The value should normally be set to ACL_ANY or 0 when the call is
made. Some physical file systems can solicit ACL requests for a particular ACL
type. In such cases, the caller provides the ACL type requested in this buffer.
Note: The latter issue is file system implementation specific. For example, when
ACL information is requested with an input ACL type, a physical file system might
return an error if the existing ACL associated with the file system object is of a
different ACL type. Or, the file system might emulate an ACL of the type requested
and return.

acl_len Pointer to a length variable. The space pointed to is used as an input, as well as
output, parameter. As input, the value will indicate the size of buffer uiop. When the
call returns, this space holds the actual length of the ACL (true for when the call is
successful or when the call fails with errno set to ENOSPC).

ctl_flags A 64-bit bit mask that provides control over the ACL retrieval and for any future
variations in the interface. The following value is defined for these flags:

GET_ACLINFO_ONLY
Gets only the ACL type and length information from the underlying file
system. When this bit is set, arguments such as mode_info can be set to
NULL. All other cases must be valid buffer pointers or else an error is
returned. If this bit is not specified, all the other information about the ACL
(such as ACL data and mode information) is returned.

uiop Specifies the uio structure that provides space for the store of the ACL.
mode_info This value indicates any mode word information that needs to be retrieved for the

file system object as part of this ACL get operation.
crp Points to the cred structure. This structure contains data that the file system can

use to validate access permission.

Execution Environment
The vnop_getxacl entry point can be called from the process environment only.

Return Values
Upon successful completion, the vnop_getxacl entry point returns 0. Nonzero return values are returned
from the /usr/include/sys/errno.h file to indicate failure.

ENOSPC Indicates that the buffer size specified in the uiop parameter was not large enough to hold
the ACL.

Note: This list of error numbers is not complete and is dependent on the particular physical file system
implementation supporting the ACL.

Related Information
The chacl subroutine, chown subroutine, chmod subroutine, statacl subroutine, “vnop_getacl Entry Point”
on page 622, “vnop_setxacl Entry Point” on page 650.

The uio structure.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

Chapter 3. File System Operations 625

vnop_hold Entry Point

Purpose
Assures that a virtual node (v-node) is not destroyed.

Syntax
int vnop_hold (vp)
struct vnode *vp;

Parameter

vp Points to the v-node.

Description
The vnop_hold entry point increments the v_count field, the hold count on the v-node, and the v-node’s
underlying g-node (generic node). This incrementation assures that the v-node is not deallocated.

Execution Environment
The vnop_hold entry point can be called from the process environment only.

Return Values
The vnop_hold entry point cannot fail and therefore has no return values.

Related Information
Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes), Understanding Generic I-nodes (G-nodes) in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

vnop_ioctl Entry Point

Purpose

Requests I/O control operations on special files.

Syntax
int vnop_ioctl (vp, cmd, arg, flags, ext, crp)
struct vnode * vp;
int cmd;
caddr_t arg;
int flags, ext;
struct ucred * crp;

Parameters

vp Points to the virtual node (v-node) on which to perform the operation.
cmd Identifies the specific command. Common operations for the ioctl subroutine are defined in the

/usr/include/sys/ioctl.h file. The file system implementation can define other ioctl operations.
arg Defines a command-specific argument. This parameter can be a single word or a pointer to an argument

(or result structure).
flags Identifies flags from the open file structure.

626 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

ext Specifies the extended parameter passed by the ioctl subroutine. The ioctl subroutine always sets the ext
parameter to 0.

crp Points to the cred structure. This structure contains data that the file system can use to validate access
permission.

Description
The vnop_ioctl entry point is used by the logical file system to perform miscellaneous operations on
special files. If the file system supports special files, the information is passed down to the ddioctl entry
point of the device driver associated with the given v-node.

Execution Environment
The vnop_ioctl entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. A valid value
includes:

EINVAL Indicates the file system does not support the entry point.

Related Information
The ioctl subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_link Entry Point

Purpose
Requests a hard link to a file.

Syntax
int vnop_link (vp, dp, name, crp)
struct vnode *vp;
struct vnode *dp;
caddr_t *name;
struct ucred *crp;

Parameters

vp Points to the virtual node (v-node) to link to. This v-node is held for the duration of the linking process.
dp Points to the v-node for the directory in which the link is created. This v-node is held for the duration of the

linking process.
name Identifies the new name of the entry.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Chapter 3. File System Operations 627

Description
The vnop_link entry point is invoked to create a new hard link to an existing file as part of the link
subroutine. The logical file system ensures that the dp and vp parameters reside in the same virtual file
system, which is not read-only.

Execution Environment
The vnop_link entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_lockctl Entry Point

Purpose
Sets, checks, and queries record locks.

Syntax
int vnop_lockctl (vp, offset, lckdat, cmd, retry_fn, retry_id, crp)
struct vnode * vp;
offset_t offset;
struct eflock * lckdat;
int cmd;
int (* retry_fn)();
caddr_t retry_id;
struct ucred * crp;

Parameters

vp Points to the file’s virtual node (v-node).
offset Indicates the file offset from the open file structure. This parameter is used to establish where the

lock region begins.
lckdat Points to the elock structure. This structure describes the lock operation to perform.
cmd Identifies the type of lock operation the vnop_lockctl entry point is to perform. It is a bit mask that

takes the following lock-control values:

SETFLCK
If set, performs a lock set or clear. If clear, returns the lock information. The l_type field in
the eflock structure indicates whether a lock is set or cleared.

SLPFLCK
If the lock is unavailable immediately, wait for it. This is only valid when the SETFLCK flag is
set.

628 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

retry_fn Points to a subroutine that is called when a lock is retried. This subroutine is not used if the lock is
granted immediately.
Note: If the retry_fn parameter is not a null value, the vnop_lockctl entry point will not sleep,
regardless of the SLPFLCK flag.

retry_id Points to the location where a value can be stored. This value can be used to correlate a retry
operation with a specific lock or set of locks. The retry value is only used in conjunction with the
retry_fn parameter.
Note: This value is an opaque value and should not be used by the caller for any purpose other
than a lock correlation. (This value should not be used as a pointer.)

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Description
The vnop_lockctl entry point is used to request record locking. This entry point uses the information in
the eflock structure to implement record locking.

If a requested lock is blocked by an existing lock, the vnop_lockctl entry point should establish a sleeping
lock with the retry subroutine address (specified by the retry_fn parameter) stored in the entry point. The
vnop_lockctl entry point then returns a correlating ID value to the caller (in the retry_id parameter), along
with an exit value of EAGAIN. When the sleeping lock is later awakened, the retry subroutine is called with
the retry_id parameter as its argument.

eflock Structure
The eflock structure is defined in the /usr/include/sys/flock.h file and includes the following fields:

Field Description
l_type Specifies type of lock. This field takes the following values:

F_RDLCK
Indicates read lock.

F_WRLCK
Indicates write lock.

F_UNLCK
Indicates unlock this record. A value of F_UNLCK starting at 0 until 0 for a length of 0
means unlock all locks on this file. Unlocking is done automatically when a file is closed.

l_whence Specifies location that the l_start field offsets.
l_start Specifies offset from the l_whence field.
l_len Specifies length of record. If this field is 0, the remainder of the file is specified.
l_vfs Specifies virtual file system that contains the file.
l_sysid Specifies value that uniquely identifies the host for a given virtual file system. This field must be filled

in before the call to the vnop_lockctl entry point.
l_pid Specifies process ID (PID) of the lock owner. This field must be filled in before the call to the

vnop_lockctl entry point.

Execution Environment
The vnop_lockctl entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. Valid values
include:

Chapter 3. File System Operations 629

EAGAIN Indicates a blocking lock exists and the caller did not use the SLPFLCK flag to request that the operation
sleep.

ERRNO Returns an error number from the /usr/include/sys/errno.h file on failure.

Related Information
Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_lookup Entry Point

Purpose
Returns a v-node for a given name in a directory.

Syntax
int vnop_lookup (dvp, vpp, name, vattrp , crp)
struct vnode * dvp;
struct vnode ** vpp;
char * name;
struct vattr * vattrp;
struct ucred * crp;

Parameters

dvp Points to the virtual node (v-node) of the directory to be searched. The logical file system verifies that this
v-node is of a VDIR type.

name Points to a null-terminated character string containing the file name to look up.
vattrp Points to a vattr structure. If this pointer is NULL, no action is required of the file system implementation.

If it is not NULL, the attributes of the file specified by the name parameter are returned at the address
passed in the vattrp parameter.

vpp Points to the place to which to return the v-node pointer, if the pointer is found. Otherwise, a null
character should be placed in this memory location.

crp Points to the cred structure. This structure contains data that the file system can use to validate access
permission.

Description
The vnop_lookup entry point is invoked by the logical file system to find a v-node. It is used by the kernel
to convert application-given path names to the v-nodes that represent them.

The use count in the v-node specified by the dvp parameter is incremented for this operation, and it is not
decremented by the file system implementation.

If the name is found, a pointer to the desired v-node is placed in the memory location specified by the vpp
parameter, and the v-node hold count is incremented. (In this case, this entry point returns 0.) If the file
name is not found, a null character is placed in the vpp parameter, and the function returns a ENOENT
value. Errors are reported with a return code from the /usr/include/sys/errno.h file. Possible errors are
usually specific to the particular virtual file system involved.

Execution Environment
The vnop_lookup entry point can be called from the process environment only.

630 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_map Entry Point

Purpose
Validates file mapping requests.

Syntax
int vnop_map (vp, addr, length, offset, flags, crp)
struct vnode * vp;
caddr_t addr;
uint length;
uint offset;
uint flags;
struct ucred * crp;

Parameters

Note: The addr, offset, and length parameters are unused in the current implementation. The file system
is expected to store the segment ID with the file in the gn_seg field of the g-node for the file.

vp Points to the virtual node (v-node) of the file.
addr Identifies the location within the process address space where the mapping is to begin.
length Specifies the maximum size to be mapped.
offset Specifies the location within the file where the mapping is to begin.
flags Identifies what type of mapping to perform. This value is composed of bit values defined in the

/usr/include/sys/shm.h file. The following values are of particular interest to file system implementations:

SHM_RDONLY
The virtual memory object is read-only.

SHM_COPY
The virtual memory object is copy-on-write. If this value is set, updates to the segment are
deferred until an fsync operation is performed on the file. If the file is closed without an fsync
operation, the modifications are discarded. The application that called the vnop_map entry point
is also responsible for calling the vnop_fsync entry point.
Note: Mapped segments do not reflect modifications made to a copy-on-write segment.

crp Points to the cred structure. This structure contains data that applications can use to validate access
permission.

Description
The vnop_map entry point is called by the logical file system to validate mapping requests resulting from
the mmap or shmat subroutines. The logical file system creates the virtual memory object (if it does not
already exist) and increments the object’s use count.

Chapter 3. File System Operations 631

Execution Environment
The vnop_map entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The shmat subroutine, vnop_fsync entry point.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_map_lloff Entry Point

Purpose
Announces intention to map a file.

Syntax
int
vnop_map_lloff (vp, addr, length, offset, mflags, fflags, crp)
struct vnode *vp;
caddr_t addr;
offset_t length;
offset_t offset;
int mflags;
int fflags;
struct ucred *crp;

Parameters

vp Points to the vnode to be queried.
addr Unused.
length Specifies the length of the mapping request.
offset Specifies the starting offset for the map request.
mflags Specifies the mapping flags.
fflags Specifies the file flags.
crp Specifies user’s credentials.

Description
The vnop_map_lloff entry point is used to tell the file system that the file is going to be accessed by
memory mapped loads and stores. The file system should fail the request if it does not support memory
mapping. This interface allows applications to specify starting offsets that are larger than 2 gigabytes.

File systems that do not define GFS_VERSION421 in their gfs flags do not need to supply a
vnop_map_lloff entry point.

632 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment
The vnop_map_lloff entry point can be called from the process environment only.

Return Values

Zero Indicates a successful operation.
Nonzero Indicates that the operation failed; return values should be chosen from the /usr/include/sys/errno.h

file.

Related Information
The shmat and mmap subroutines.

Virtual File System Overview, Logical File System Overview, Understanding Virtual Nodes (V-nodes) in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts, and Virtual File System Kernel
Extensions Overview.

vnop_memcntl Entry Point

Purpose
Changes or queries the physical attachment of a file.

Syntax
#include <sys/vnode.h>
#include <sys/fcntl.h>

int vnop_memcntl (vnode, cmd, arg, crp)
struct gnode * vnode;
int cmd;
void * arg;
struct ucred * crp;

Parameters

vnode Points to the virtual node of the file
cmd Specifies the operation to be performed. The cmd parameter can be one of the following values:

v F_ATTACH

v F_DETACH

v F_ATTINFO
arg Points to a structure containing the attach_desc_t, detach_desc_t or attinfo_desc_t information

according to the specified cmd parameter.
F_ATTACH attach_desc_t
F_DETACH detach_desc_t
F_ATTINFO attinfo_desc_t

crp Points to the cred structure. This structure contains data that the file system can use to validate
access permission.

Description
The vnop_memcntl entry point requests memory attachment operations as specified by the cmd
parameter. The cmd parameter determines the arg structure.

Chapter 3. File System Operations 633

Execution Environment
The vnop_memcntl entry point can be called from the process environment only.

Return Values

0 Success.
non-zero Failure.

Related Information
Workload management in Operating system and device management.

vnop_mkdir Entry Point

Purpose
Creates a directory.

Syntax
int vnop_mkdir (dp, name, mode, crp)
struct vnode *dp;
caddr_t name;
int mode;
struct ucred *crp;

Parameters

dp Points to the virtual node (v-node) of the parent directory of a new directory. This v-node is held for the
duration of the entry point.

name Specifies the name of a new directory.
mode Specifies the permission modes of a new directory.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description
The vnop_mkdir entry point is invoked by the logical file system as the result of the mkdir subroutine.
The vnop_mkdir entry point is expected to create the named directory in the parent directory associated
with the dp parameter. The logical file system ensures that the dp parameter does not reside on a
read-only file system.

Execution Environment
The vnop_mkdir entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The mkdir subroutine.

634 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_mknod Entry Point

Purpose
Creates a special file.

Syntax
int vnop_mknod (dvp, name, mode, dev, crp)
struct vnode * dvp;
caddr_t * name;
int mode;
dev_t dev;
struct ucred * crp;

Parameters

dvp Points to the virtual node (v-node) for the directory to contain the new file. This v-node is held for the
duration of the vnop_mknod entry point.

name Specifies the name of a new file.
mode Identifies the integer mode that indicates the type of file and its permissions.
dev Identifies an integer device number.
crp Points to the cred structure. This structure contains data that applications can use to validate access

permission.

Description
The vnop_mknod entry point is invoked by the logical file system as the result of a mknod subroutine.
The underlying file system is expected to create a new file in the given directory. The file type bits of the
mode parameter indicate the type of file (regular, character special, or block special) to be created. If a
special file is to be created, the dev parameter indicates the device number of the new special file.

The logical file system verifies that the dvp parameter does not reside in a read-only file system.

Execution Environment
The vnop_mknod entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The mknod subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

Chapter 3. File System Operations 635

vnop_open Entry Point

Purpose
Requests that a file be opened for reading or writing.

Syntax
int vnop_open (vp, flag, ext, vinfop, crp)
struct vnode * vp;
int flag;
caddr_t ext;
caddr_t vinfop;
struct ucred * crp;

Parameters

vp Points to the virtual node (v-node) associated with the desired file. The v-node is held for the duration of
the open process.

flag Specifies the type of access. Access modes are defined in the /usr/include/sys/fcntl.h file.
Note: The vnop_open entry point does not use the FCREAT mode.

ext Points to external data. This parameter is used if the subroutine is opening a device.
vinfop This parameter is not currently used.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description
The vnop_open entry point is called to initiate a process access to a v-node and its underlying file system
object. The operation of the vnop_open entry point varies between virtual file system (VFS)
implementations. A successful vnop_open entry point must leave a v-node count of at least 1.

The logical file system ensures that the process is not requesting write access (with the FWRITE or
FTRUNC mode) to a read-only file system.

Execution Environment
The vnop_open entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The open subroutine.

The vnop_close entry point.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

636 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

vnop_rdwr, vnop_rdwr_attr Entry Points

Purpose
Requests file I/O.

Syntax
int vnop_rdwr (vp, op, flags, uiop, ext, vinfo, vattrp, crp)
struct vnode * vp;
enum uio_rw op;
int flags;
struct uio * uiop;
int ext;
caddr_t vinfo;
struct vattr * vattrp;
struct ucred * crp;

int vnop_rdwr_attr (vp, op, flags, uiop, ext, vinfo, vpre, vpost, crp)
struct vnode * vp;
enum uio_rw op;
long flags;
struct uio * uiop;
ext_t ext;
caddr_t vinfo;
struct vattr * vpre;
struct vattr * vpost;
struct ucred * crp;

Parameters

vp Points to the virtual node (v-node) of the file.
op Specifies a number that indicates a read or write operation. This parameter has a value of either

UIO_READ or UIO_WRITE. These values are found in the /usr/include/sys/uio.h file.
flags Identifies flags from the open file structure.
uiop Points to a uio structure. This structure describes the count, data buffer, and other I/O information.
ext Provides an extension for special purposes. Its use and meaning are specific to virtual file systems, and

it is usually ignored except for devices.
vinfo This parameter is currently not used.
vattrp Points to a vattr structure. If this pointer is NULL, no action is required of the file system implementation.

If it is not NULL, the attributes of the file specified by the vp parameter are returned at the address
passed in the vattrp parameter.

vpre Points to an attributes structure for pre-operation attributes.
vpost Points to an attributes structure for post-operation attributes.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description
The vnop_rdwr entry point is used to request that data to be read or written from an object represented
by a v-node. The vnop_rdwr entry point does the indicated data transfer and sets the number of bytes not
transferred in the uio_resid field. This field is 0 (zero) on successful completion.

The vnop_rdwr_attr kernel service performs the same function as the vnop_rdwr kernel service but also
allows the caller to retrieve attributes of the object either before the I/O, after or both.

Chapter 3. File System Operations 637

Execution Environment
The vnop_rdwr and vnop_rdwr_attr entry points can be called from the process environment only.

Return Values
Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. The
vnop_rdwr entry point returns an error code if an operation did not transfer all the data requested. The
only exception is if an end of file is reached on a read request. In this case, the operation still returns 0.

Related Information
The vnop_create entry point, vnop_open entry point.

The read subroutine, write subroutine.

Virtual File System Overview, Logical File System Overview, Understanding Virtual Nodes (V-nodes), and
Virtual File System Kernel Extensions Overview in AIX Version 6.1 Kernel Extensions and Device Support
Programming Concepts.

vnop_readdir Entry Point

Purpose
Reads directory entries in standard format.

Syntax
int vnop_readdir (vp, uiop, crp)
struct vnode *vp;
struct uio *uiop;
struct ucred *crp;

Parameters

vp Points to the virtual node (v-node) of the directory.
uiop Points to the uio structure that describes the data area into which to put the block of dirent structures. The

starting directory offset is found in the uiop->uio_offset field and the size of the buffer area is found in the
uiop->uio_resid field.

crp Points to the cred structure. This structure contains data that the file system can use to validate access
permission.

Description
The vnop_readdir entry point is used to access directory entries in a standard way. These directories
should be returned as an array of dirent structures. The /usr/include/sys/dir.h file contains the definition
of a dirent structure.

The vnop_readdir entry point does the following:

v Copies a block of directory entries into the buffer specified by the uiop parameter.

v Sets the uiop->uio_resid field to indicate the number of bytes read.

The End-of-file character should be indicated by not reading any bytes (not by a partial read). This
provides directories with the ability to have some hidden information in each block.

The virtual file system-specific implementation is also responsible for setting the uio_offset field to the
offset of the next whole block to be read.

638 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment
The vnop_readdir entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The readdir subroutine.

The uio structure.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Virtual File System Kernel
Extensions Overview, Logical File System Overview, and Understanding Virtual Nodes (V-nodes) in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts.

vnop_readdir_eofp Entry Point

Purpose
Returns directory entries.

Syntax
int
vnop_readdirr_eofp (vp, uiop, eofp, crp)
struct vnode *vp;
struct uio *uiop;
int *eofp;
struct ucred *crp;

Parameters

vp Points to the directory vnode to be processed.
uiop Points to the uiop structure describing the user’s buffer.
eofp Points to a word that places the eop structure.
crp Specifies user’s credentials.

Description
The vnop_readdir_eofp entry point is used to read directory entries. It is similar to vnop_readdir except
that it takes the additional parameter, eofp. The location pointed to by the eofp parameter should be set to
1 if the readdir request reached the end of the directory. Otherwise, it should be set to 0.

File systems that do not define GFS_VERSION421 in their gfs flags do not need to supply a
vnop_readdir_eofp entry point.

Execution Environment
The vnop_readdir_eofp entry point can be called from the process environment only.

Chapter 3. File System Operations 639

Return Values

Zero Indicates a successful operation.
Nonzero Indicates that the operation failed; return values should be chosen from the /usr/include/sys/errno.h

file.

Related Information
The readdir subroutine.

Virtual File System Overview, Logical File System Overview, Understanding Virtual Nodes (V-nodes) in AIX
Version 6.1 Kernel Extensions and Device Support Programming Concepts, and Virtual File System Kernel
Extensions Overview.

vnop_readlink Entry Point

Purpose
Reads the contents of a symbolic link.

Syntax
int vnop_readlink (vp, uio, crp)
struct vnode *vp;
struct uio *uio;
struct ucred *crp;

Parameters

vp Points to a virtual node (v-node) structure. The vnop_readlink entry point holds this v-node for the duration of
the routine.

uio Points to a uio structure. This structure contains the information required to read the link. In addition, it
contains the return buffer for the vnop_readlink entry point.

crp Points to the cred structure. This structure contains data that the file system can use to validate access
permission.

Description
The vnop_readlink entry point is used by the logical file system to get the contents of a symbolic link, if
the file system supports symbolic links. The logical file system finds the v-node (virtual node) for the
symbolic link, so this routine simply reads the data blocks for the symbol link.

Execution Environment
The vnop_readlink entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

640 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_rele Entry Point

Purpose
Releases a reference to a virtual node (v-node).

Syntax
int vnop_rele (vp,)
struct vnode *vp;

Parameter

vp Points to the v-node.

Description
The vnop_rele entry point is used by the logical file system to release the object associated with a
v-node. If the object was the last reference to the v-node, the vnop_rele entry point then calls the vn_free
kernel service to deallocate the v-node.

If the virtual file system (VFS) was unmounted while there were open files, the logical file system sets the
VFS_UNMOUNTING flag in the vfs structure. If the flag is set and the v-node to be released is the last
v-node on the chain of the vfs structure, then the virtual file system must be deallocated with the
vnop_rele entry point.

Execution Environment
The vnop_rele entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The vn_free kernel service.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_remove Entry Point

Purpose
Unlinks a file or directory.

Chapter 3. File System Operations 641

Syntax
int vnop_remove (vp, dvp, name, crp)
struct vnode *vp;
struct vnode *dvp;
char *name;
struct ucred *crp;

Parameters

vp Points to a virtual node (v-node). The v-node indicates which file to remove and is held over the duration of
the vnop_remove entry point.

dvp Points to the v-node of the parent directory. This directory contains the file to be removed. The directory’s
v-node is held for the duration of the vnop_remove entry point.

name Identifies the name of the file.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description
The vnop_remove entry point is called by the logical file system to remove a directory entry (or link) as
the result of a call to the unlink subroutine.

The logical file system assumes that the vnop_remove entry point calls the vnop_rele entry point. If the
link is the last reference to the file in the file system, the disk resources that the file is using are released.

The logical file system ensures that the directory specified by the dvp parameter does not reside in a
read-only file system.

Execution Environment
The vnop_remove entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The unlink subroutine.

The vnop_rele entry point.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_rename Entry Point

Purpose
Renames a file or directory.

642 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
int vnop_rename (srcvp, srcdvp, oldname, destvp, destdvp, newname, crp)
struct vnode * srcvp;
struct vnode * srcdvp;
char * oldname;
struct vnode * destvp;
struct vnode * destdvp;
char * newname;
struct ucred * crp;

Parameters

srcvp Points to the virtual node (v-node) of the object to rename.
srcdvp Points to the v-node of the directory where the srcvp parameter resides. The parent directory for the

old and new object can be the same.
oldname Identifies the old name of the object.
destvp Points to the v-node of the new object. This pointer is used only if the new object exists. Otherwise,

this parameter is the null character.
destdvp Points to the parent directory of the new object. The parent directory for the new and old objects can

be the same.
newname Points to the new name of the object.
crp Points to the cred structure. This structure contains data that applications can use to validate access

permission.

Description
The vnop_rename entry point is invoked by the logical file system to rename a file or directory. This entry
point provides the following renaming actions:

v Renames an old object to a new object that exists in a different parent directory.

v Renames an old object to a new object that does not exist in a different parent directory.

v Renames an old object to a new object that exists in the same parent directory.

v Renames an old object to a new object that does not exist in the same parent directory.

To ensure that this entry point routine executes correctly, the logical file system guarantees the following:

v File names are not renamed across file systems.

v The old and new objects (if specified) are not the same.

v The old and new parent directories are of the same type of v-node.

Execution Environment
The vnop_rename entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The rename subroutine.

Chapter 3. File System Operations 643

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_revoke Entry Point

Purpose
Revokes all access to an object.

Syntax
int vnop_revoke (vp, cmd, flag, vinfop, crp)
struct vnode * vp;
int cmd;
int flag;
caddr_t vinfop;
struct ucred * crp;

Parameters

vp Points to the virtual node (v-node) containing the object.
cmd Indicates whether the calling process holds the file open. This parameter takes the following values:

0 The process did not have the file open.

1 The process had the file open.

2 The process had the file open and the reference count in the file structure was greater than 1.
flag Identifies the flags from the file structure.
vinfop This parameter is currently unused.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description
The vnop_revoke entry point is called to revoke further access to an object.

Execution Environment
The vnop_revoke entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The frevoke subroutine, revoke subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

644 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

vnop_rmdir Entry Point

Purpose
Removes a directory.

Syntax
int vnop_rmdir (vp, dp, pname, crp)
struct vnode *vp;
struct vnode *dp;
char *pname;
struct ucred *crp;

Parameters

vp Points to the virtual node (v-node) of the directory.
dp Points to the parent of the directory to remove.
pname Points to the name of the directory to remove.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description
The vnop_rmdir entry point is invoked by the logical file system to remove a directory object. To remove a
directory, the directory must be empty (except for the current and parent directories). Before removing the
directory, the logical file system ensures the following:

v The vp parameter is a directory.

v The vp parameter is not the root of a virtual file system.

v The vp parameter is not the current directory.

v The dp parameter does not reside on a read-only file system.

Note: The vp and dp parameters’ v-nodes (virtual nodes) are held for the duration of the routine.

Execution Environment
The vnop_rmdir entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The rmdir subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

Chapter 3. File System Operations 645

vnop_seek Entry Point

Purpose
Validates file offsets.

Syntax
int vnop_seek (vp, offsetp, crp)
struct vnode * vp;
offset_t * offp;
struct ucred * crp;

Parameters

vp Points to the virtual node (v-node) of the file.
offp Points to the location of the new offset to validate.
crp Points to the user’s credential.

Description

Note: The vnop_seek Entry Point applies to AIX 4.2 and later releases.

The vnop_seek entry point is called by the logical file system to validate a new offset that has been
computed by the lseek, llseek, and lseek64 subroutines. The file system implementation should check the
offset pointed to by offp and if it is acceptable for the file, return zero. If the offset is not acceptable, the
routine should return a non-zero value. EINVAL is the suggested error value for invalid offsets.

File systems which do not wish to do offset validation can simply return 0. File systems which do not
provide the vnop_seek entry point will have a maximum offset of OFF_MAX (2 gigabytes minus 1)
enforced by the logical file system.

Execution Environment
The vnop_seek entry point is be called from the process environment only.

Return Values

0 Indicates success.
Nonzero Return values are returned the /usr/include/sys/errno.h file to indicate failure.

Related Information
The lseek, llseek, and, lseek64 subroutines.

The Large File Enabled Programming Environment Overview.

vnop_select Entry Point

Purpose
Polls a virtual node (v-node) for immediate I/O.

646 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Syntax
int vnop_select (vp, correl, e, re, notify, vinfo, crp)
struct vnode * vp;
int correl;
int e;
int re;
int (* notify)();
caddr_t vinfo;
struct ucred * crp;

Parameters

vp Points to the v-node to be polled.
correl Specifies the ID used for correlation in the selnotify kernel service.
e Identifies the requested event.
re Returns an events list. If the v-node is ready for immediate I/O, this field should be set to indicate the

requested event is ready.
notify Specifies the subroutine to call when the event occurs. This parameter is for nested polls.
vinfo Is currently unused.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Description
The vnop_select entry point is invoked by the logical file system to poll a v-node to determine if it is
immediately ready for I/O. This entry point is used to implement the select and poll subroutines.

File system implementation can support constructs, such as devices or pipes, that support the select
semantics. The fp_select kernel service provides more information about select and poll requests.

Execution Environment
The vnop_select entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The poll subroutine, select subroutine.

The fp_select kernel service, selnotify kernel service.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_setacl Entry Point

Purpose
Sets the access control list (ACL) for a file.

Chapter 3. File System Operations 647

Syntax
#include <sys/acl.h>

int vnop_setacl (vp, uiop, crp)
struct vnode *vp;
struct uio *uiop;
struct ucred *crp;

Description
The vnop_setacl entry point is used by the logical file system to set the access control list (ACL) on a file.

Parameters

vp Specifies the virtual node (v-node) of the file system object.
uiop Specifies the uio structure that defines the storage for the call arguments.
crp Points to the cred structure. This structure contains data that the file system can use to validate access

permission.

Execution Environment
The vnop_setacl entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure. Valid values
include:

ENOSPC Indicates that the space cannot be allocated to hold the new ACL information.
EPERM Indicates that the effective user ID of the process is not the owner of the file and the process is not

privileged.

Related Information
The uio structure.

The chacl subroutine, chown subroutine, chmod subroutine, statacl subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_setattr Entry Point

Purpose
Sets attributes of a file.

Syntax
int vnop_setattr (vp, cmd, arg1, arg2, arg3, crp)
struct vnode * vp;
int cmd;

648 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

int arg1;
int arg2;
int arg3;
struct ucred * crp;

Description
The vnop_setattr entry point is used by the logical file system to set the attributes of a file. This entry
point is used to implement the chmod, chownx, and utime subroutines.

The values that the arg parameters take depend on the value of the cmd parameter. The vnop_setattr
entry point accepts the following cmd values and arg parameters:

Possible cmd Values for the vnop_setattr Entry Point

Command V_OWN V_UTIME V_MODE

arg1 int flag; int flag; int mode;

arg2 int uid; timestruc_t *atime; Unused

arg3 int gid; timestruc_t *mtime; Unused

Note: For V_UTIME, if arg2 or arg3 is NULL, then the corresponding time field, atime and mtime, of the
file should be left unchanged.

Parameters

vp Points to the virtual node (v-node) of the file.
cmd Defines the setting operation. This parameter takes the following values:

V_OWN
Sets the user ID (UID) and group ID (GID) to the UID and GID values of
the new file owner. The flag argument indicates which ID is affected.

V_UTIME
Sets the access and modification time for the new file. If the flag
parameter has the value of T_SETTIME, then the specific values have not
been provided and the access and modification times of the object should
be set to current system time. If the T_SETTIME value is not specified, the
values are specified by the atime and mtime variables.

V_MODE
Sets the file mode.

The /usr/include/sys/vattr.h file contains the definitions for the three
command values.

arg1, arg2, arg3 Specify the command arguments. The values of the command arguments depend
on which command calls the vnop_setattr entry point.

crp Points to the cred structure. This structure contains data that the file system can
use to validate access permission.

Execution Environment
The vnop_setattr entry point can be called from the process environment only.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Chapter 3. File System Operations 649

Related Information
The chmod subroutine, chownx subroutine, utime subroutine.

Virtual File System Kernel Extensions Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1
Kernel Extensions and Device Support Programming Concepts.

vnop_setxacl Entry Point

Purpose
Sets the access control list (ACL) for a file system object. This is an advanced interface compared to
vnop_setacl and provides for ACL-type-based operations.

Syntax
#include <sys/acl.h>
int vnop_setxacl (vp, ctl_flags, acl_type, uiop, mode_info, crp)

struct vnode *vp;
uint64_t ctl_flags;
acl_type_t acl_type;
struct uio *uiop;
mode_t mode_info;
struct ucred *crp;

Description
The vnop_setxacl entry point sets the access control list (ACL) on a file. It is an advanced version of
vnop_setacl interface and provides for ACL-type-based operations. This interface can also be used to
manage special bits in mode word (such as SUID, SGID and SVTX) in case the ACL type does not
support these bits through ACL. For more details about the various ACL types, refer to Security.

Parameters

vp Specifies the virtual node (v-node) of the file system object for which the ACL needs
to be set.

acl_type Specifies the ACL type of the ACL information that needs to be set for the file
system object.
Note: If the underlying physical file system does not support the ACL type being
requested, the system could return an error.

acl_len Pointer to a length variable. The space pointed to is used as an input, as well as
output, parameter. As input, the value will indicate the size of buffer uiop. When the
call returns, this space holds the actual length of the ACL (true for when the call is
successful or when the call fails with errno set to ENOSPC).

ctl_flags This 64-bit bit mask provides for control over the ACL setting and for any future
variations in the interface. The following flag values have been defined:

SET_MODE_S_BITS
Indicates that the mode_info value is set by the caller and the ACL put
operation must consider this value to complete the ACL put operation.

SET_ACL
Indicates that the ACL arguments point to valid ACL data that must be
considered while the ACL put operation is being performed.

Note: Both of the preceding values can be specified by the caller by ORing the two
masks.

uiop Specifies the uio structure that defines the storage for the call arguments.

650 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

mode_info This value indicates any mode word information that needs to be set for the file
system object as part of this ACL put operation. When mode bits are altered by
specifying the SET_MODE_S_BITS flag (in ctl_flags), the entire ACL put operation
will fail if the caller does not have the required privileges.

crp Points to the cred structure. This structure contains data that the file system can
use to validate access permission.

Execution Environment
The vnop_setxacl entry point can be called from the process environment only.

Return Values
Upon successful completion, the vnop_setxacl entry point returns 0. Nonzero return values are returned
from the /usr/include/sys/errno.h file to indicate failure.

EPERM Indicates that the effective user ID of the process is not authorized to change the ACL on
the specified file system object.

EINVAL Invalid operation. File system might not support the ACL type being set.

Note: This list of error numbers is not complete and is dependent on the particular physical file system
implementation supporting the ACL.

Related Information
The chacl subroutine, chown subroutine, chmod subroutine, statacl subroutine, “vnop_setacl Entry Point”
on page 647, “vnop_getxacl Entry Point” on page 624.

The uio structure.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

List of Virtual File System Operations.

vnop_strategy Entry Point

Purpose
Accesses blocks of a file.

Syntax
int vnop_strategy (vp, bp, crp)
struct vnode *vp;
struct buf *bp;
struct ucred *crp;

Description

Note: The vnop_strategy entry point is not implemented in Version 3.2 of the operating system.

The vnop_strategy entry point accesses blocks of a file. This entry point is intended to provide a
block-oriented interface for servers for efficiency in paging.

Chapter 3. File System Operations 651

Parameters

vp Points to the virtual node (v-node) of the file.
bp Points to a buf structure that describes the buffer.
crp Points to the cred structure. This structure contains data that applications can use to validate access

permission.

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_symlink Entry Point

Purpose
Creates a symbolic link.

Syntax
int vnop_symlink (vp, linkname, target, crp)
struct vnode *vp;
char *linkname;
char *target;
struct ucred *crp;

Description
The vnop_symlink entry point is called by the logical file system to create a symbolic link. The path name
specified by the linkname parameter is the name of the new symbolic link. This symbolic link points to the
object named by the target parameter.

Parameters

vp Points to the virtual node (v-node) of the parent directory where the link is created.
linkname Points to the name of the new symbolic link. The logical file system guarantees that the new link

does not already exit.
target Points to the name of the object to which the symbolic link points. This name need not be a fully

qualified path name or even an existing object.
crp Points to the cred structure. This structure contains data that the file system can use to validate

access permission.

Execution Environment
The vnop_symlink entry point can be called from the process environment only.

652 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

0 Indicates success.

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
The symlink subroutine.

Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

vnop_unmap Entry Point

Purpose
Unmaps a file.

Syntax
int vnop_unmap (vp, flag, crp)
struct vnode *vp;
ulong flag;
struct ucred *crp;

Description
The vnop_unmap entry point is called by the logical file system to unmap a file. When this entry point
routine completes successfully, the use count for the memory object should be decremented and (if the
use count went to 0) the memory object should be destroyed. The file system implementation is required
to perform only those operations that are unique to the file system. The logical file system handles
virtual-memory management operations.

Parameters

vp Points to the v-node (virtual node) of the file.
flag Indicates how the file was mapped. This flag takes the following values:

SHM_RDONLY
The virtual memory object is read-only.

SHM_COPY
The virtual memory object is copy-on-write.

crp Points to the cred structure. This structure contains data that the file system can use to validate access
permission.

Execution Environment
The vnop_unmap entry point can be called from the process environment only.

Return Values

0 Indicates success.

Chapter 3. File System Operations 653

Nonzero return values are returned from the /usr/include/sys/errno.h file to indicate failure.

Related Information
Virtual File System Overview, Virtual File System Kernel Extensions Overview, Logical File System
Overview, Understanding Virtual Nodes (V-nodes) in AIX Version 6.1 Kernel Extensions and Device
Support Programming Concepts.

654 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Dept. LRAS/Bldg. 003
11400 Burnet Road
Austin, TX 78758-3498
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

© Copyright IBM Corp. 1997, 2009 655

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be the trademarks or service marks of others.

656 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Index

Special characters
__pag_getid system call 1
__pag_getname System Call 1
__pag_getvalue system call 2
__pag_setname System Call 3
__pag_setvalue system call 3

A
access control lists

retrieving 622, 624
setting 602, 647, 650

acct_add_LL Kernel Service 4
acct_get_projid Kernel Service 5
acct_get_usage Kernel Service 5
acct_interval_register Kernel Service 7
acct_interval_unregister Kernel Service 7
acct_put Kernel Service 8
acct_zero_LL Kernel Service 4
add_domain_af kernel service 10
add_input_type kernel service 11
add_netisr kernel service 13
add_netopt macro 14
address families

adding 10
deleting 65
searching for 372

address ranges
pinning 327, 375, 560
setting storage protect key for 521
unpinning 328, 483, 561

address space
kernel memory

allocating 14
deallocating 15
mapping 14, 24
obtaining handles 16, 17, 18
releasing 23
unmapping 15

advanced accounting
acct_add_LL Kernel Service 4
acct_get_projid Kernel Service 5
acct_get_usage Kernel Service 5
acct_interval_register Kernel Service 7
acct_interval_unregister Kernel Service 7
acct_put Kernel Service 8
acct_zero_LL Kernel Service 4

allocate memory
rmalloc 415

allocated memory
freeing 566

allocating memory
rmfree 416

as_att64 kernel service
described 14

as_det64 kernel service 15
as_geth kernel service 16

as_geth64 kernel service 17
as_getsrval64 kernel service 18
as_lw_att64 Kernel Service 19
as_lw_det64 Kernel Service 21
as_lw_pool_init Kernel Service 22
as_puth64 kernel service 23
as_seth64 kernel service 24
asynchronous processing

notify routine and 165
asynchronous requests

registering 431
attach-device queue management routine 25
audit records

appending to 26
completing 27
initiating 27
writing 27

audit_svcbcopy kernel service 26
audit_svcfinis kernel service 27
audit_svcstart kernel service 27

B
bawrite kernel service 29
bdwrite kernel service 29
bflush kernel service 30
binding a process to a processor 31
bindprocessor kernel service 31
binval kernel service 32
blkflush kernel service 33
block I/O

buf headers
completion of 489
preparing 488

buf structures 572
calling 488
character I/O for blocks

performing 487
completion

waiting for 225
requests

completing 219
block I/O buffer cache

assigning blocks 34
assigning buffer 174
buf structures 572
buffers

header address 179
purging block from 389

clearing 46
flushing 33
freeing 36
nonreclaimable blocks 32
read-ahead block 35
reading blocks into 34, 35
releasing 29
write-behind blocks 30
writing 39

© Copyright IBM Corp. 1997, 2009 657

block I/O buffer cache (continued)
writing contents asynchronously 29
zeroing-out 46

blocked processes
clearing 472

blocking a process 472
blocks

purging from buffer 389
bread kernel service 34
breada kernel service 35
brelse kernel service 36
bsr_alloc Kernel Service 37
bsr_free Kernel Service 38
bsr_query Kernel Service 38
buf headers

completion of 489
preparing 488
sending to a routine 490

buf structures 572
buffer cache 29
buffers 177

allocating 179
determining status 179
freeing 392
freeing buffer lists 393
header address of 179

bufx structure 574
bus interrupt levels

disabling 211
enabling 231
resetting 229

bwrite kernel service 39
bytes

retrieving 172
storing 444

C
caller’s buffer

md_restart_block_read 345
callout table entries

registering changes in 454
cancel pending timer requests 486
cancel-queue-element queue management routine 40
cascade processing 166
cfgnadd kernel service 41
cfgncb control block

adding 41
removing 43

cfgncb kernel service 42
cfgndel kernel service 43
chan parameter 571
channel numbers

finding 148
character data

reading from device 590
character device driver

character lists 576
clist structure 576

character I/O
freeing buffers 177

character I/O (continued)
getting buffer addresses 175
performing for blocks 487
placing character buffers 390
placing characters 391, 394
placing characters in list 390
retrieving a character 175
retrieving from buffers 494
retrieving last character 178
retrieving multiple characters 176
uio structures 578
writing to buffers 492

character lists
removing first buffer 175
structure of 576
using 576

check-parameters queue management routine 44
close subroutine

device driver 579
clrbuf kernel service 46
clrjmpx kernel service 46
common_reclock kernel service 47
communication I/O device handler

opening 349
communications device handlers

closing 350
transmitting data to 355

compare_and_swap kernel service 49
compare_and_swaplp kernel service 49
configuration notification control block 42
contexts

saving 434
conventional locks

locking 316
copyin kernel service 50
copying to NVAM header

md_restart_block_upd Kernel Service 346
copyinstr kernel service 51
copyout kernel service 52
creatp kernel service 55
cross-memory move

performing 564
ctlinput function

invoking 372
curtime kernel service 61

D
d_align kernel service 62
d_alloc_dmamem kernel service 62
d_cflush kernel service 63
d_free_dmamem kernel service 77
d_map_attr kernel service 80
d_map_clear kernel service 81
d_map_disable kernel service 82
d_map_enable 82
d_map_init kernel service 83
d_map_init_ext kernel service 84
d_map_list kernel service 85
d_map_page kernel service 87
d_map_slave 89

658 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

d_roundup kernel service 104
d_sync_mem kernel service 104
d_unmap_list kernel service 106
d_unmap_page kernel service 108
d_unmap_slave 107
data

memory
moving to kernel global memory 563

moving
from kernel global memory 564

moving between VMO and buffer 512
retrieving a byte 172
sending to DLC 169
word

retrieving 173
data blocks

moving 480
ddclose entry point 579
ddconfig entry point 581
dddump entry point

calling 69
writing to a device 583

ddioctl entry point 585
ddmpx entry point 587
ddopen entry point 589
ddread entry point

reading data from a character device 590
ddrevoke entry point 592
ddselect entry point

occurring on a device 593
ddselect routine

calling fp_select kernel service 165
ddstrategy entry point

block-oriented I/O 595
calling 70

ddwrite entry point
writing to a character device 597

de-allocate resource
d_unmap_slave 107

deallocates resources
d_map_clear 81
d_unmap_list 106

del_domain_af kernel service 65
del_input_type kernel service 66
del_netisr kernel service 67
delay kernel service 64
destination addresses

locating 204
devdump kernel service 69
device driver 571

access
revoking 592

buf structures 572
character data

reading 590
closing 579
configuration data

requesting 581
configuring 581
data

writing 597

device driver (continued)
events

checking for 593
iodone kernel service 219
memory buffers 578
multiplexed

allocating channels 587
deallocating channels 587

performing block-oriented I/O 595
performing special operations 585
preparing for control functions 589
preparing for reading 589
preparing for writing 589
read logic

reads and writes 599
select logic

reads and writes 599
terminating 581
uio structures 577

device driver entry points
ddclose 579
ddconfig

writing to a device 581
dddump

writing to a device 583
ddioctl 585
ddmpx 587
ddopen 589
ddread 590
ddrevoke 592
ddselect 593
ddstrategy 595
ddwrite 597
standard parameters 571

device driver management
dddump entry point

calling 69
ddstrategy entry point

calling 70
device entry

status 76
disk driver tasks 222
dkstat structure 221
entry points

adding 72
deleting 74
function pointers 264

exception handlers
deleting system-wide 473
system-wide 469

exception information
retrieving 180

kernel object files
loading 264
unloading 267

notification routines
adding 384
deleting 386

poll request
support for 429

Index 659

device driver management (continued)
processes

blocking 472
clearing blocked 472

programmed I/O
exceptions caused by 378

registering asynchronous requests 431
registering notification routine 41
removing control blocks 43
select request

support for 429
statistics structures

registering 220
removal 224

symbol binding support 266
ttystat structure 221
u_error fields 184
ut_error field

setting 436
device handlers

ending a start 354
pio_assist kernel service 379
starting network ID on 353

device numbers
finding 148

device queue management
attchq kernel service support 25
control block structure 42
detchq kernel service support 69
queue elements

placing into queue 138
waiting for 541

virtual interrupt handlers
defining 497
removing 496

device switch table
altering a 73

devices
select request on 164

devno parameter 571
devstrat kernel service 70
devswadd kernel service 72
devswchg kernel service 73
devswdel kernel service 74
devswqry kernel service 76
direct memory access 62
directories

creating 634
entries

reading 638
removing 645
renaming 642
unlinking 641

disable DMA
d_map_disable 82

disable_lock kernel service 78
disablement_checking_resume Kernel Service 79
disablement_checking_suspend Kernel Service 79
disk driver support 222
dkstat structure 221

DLC kernel services
fp_ioctl 151
fp_open 156
fp_write 169
trcgenkt 458

DLC management
channel

disabling 146
device manager

opening 156
file pointers

sending kernel data to 169
trace channels

recording events 458
transferring commands to 151

DMA
disable

d_map_disable 82
enable

d_map_enable 82
DMA management

address ranges
pinning 375, 560
unpinning 561

buffer cache
maintaining 104

cache
flushing 63

cache-line size 62
processor cache

flushing 499
DMA master devices

deallocates resources
d_unmap_page 108

mapping
d_map_page 87

DMA operations
allocates and initializes resources

d_map_init 83
dmp_add kernel service 90
dmp_compext kernel service 92
dmp_compspec kernel service 92
dmp_context kernel service 100
dmp_ct kernel service 100
dmp_ctl kernel service 94
dmp_del kernel service 99
dmp_eaddr kernel service 100
dmp_errbuf kernel service 100
dmp_kernext kernel service 103
dmp_mtrc kernel service 100
dmp_pid kernel service 100
dmp_systrace kernel service 100
dmp_tid kernel service 100
dr_reconfig system call 108
DTOM kernel service 105

E
e_assert_wait kernel service 112
e_block_thread kernel service 112
e_clear_wait kernel service 113

660 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

e_sleep kernel service 114
e_sleep_thread kernel service 117
e_sleepl kernel service 116
e_wakeup kernel service 121
e_wakeup_one kernel service 121
e_wakeup_w_result kernel service 121
e_wakeup_w_sig kernel service 122
EEH Kernel Services

eeh_broadcast 123
eeh_clear 124
eeh_disable_slot 125
eeh_enable_dma 126
eeh_enable_pio 127
eeh_enable_slot 128
eeh_init 129
eeh_init_multifunc 131
eeh_read_slot_state 133
eeh_reset_slot 135
eeh_slot_error 136

eeh_broadcast Kernel Service 123
eeh_clear Kernel Service 124
eeh_disable_slot Kernel Service 125
eeh_enable_dma Kernel Service 126
eeh_enable_pio Kernel Service 127
eeh_enable_slot Kernel Service 128
eeh_init Kernel Service 129
eeh_init_multifunc Kernel Service 131
eeh_read_slot_state Kernel Service 133
eeh_reset_slot Kernel Service 135
eeh_slot_error Kernel Service 136
enable DMA

d_map_enable 82
End of Interrupt (EOI) kernel services

i_eoi 202
enque kernel service 138
entry points

function pointers
obtaining 264

error logs
writing entries 140

error logs, writing entries 386
errresume kernel service 139
errsave kernel service 140
et_post kernel service 119
et_wait kernel service 120
event management

shared events
waiting for 114

exception handlers
system-wide

deleting 473
systemwide 469

exception information
retrieving 180

exception management
contexts

saving 434
creating a process 55
execution flows

modifying 323

exception management (continued)
internationalized kernel message requests

submitting 357
locking 316
parent

setting to init process 435
putting process to sleep 442
sending a signal 373
states

saving 434
unmasked signals

determining if received 439
exceptions 55
execution flows

modifying 323
execution states

saving 434
ext parameter 571
external storage

freeing 337

F
fetch_and_add kernel services 141
fetch_and_and kernel service 142
fetch_and_or kernel service 142
fidtovp kernel service 143
file attributes

getting 147
file operation requirements 475
file systems 149, 188
file-mode creation mask 185
files 157

access control lists
retrieving 622
setting 647

accessing blocks 651
attributes

getting 623
checking access permission 144
closing 145
creating 615
descriptor flags 185
descriptors 478, 479
determining if changed 522
hard links

requesting 627
interface to kernel services 474
mappings

validating 631
opening 151, 153, 155
opening for reading 636
opening for writing 636
pointers

retrieving 149
read subroutine 161
reading 161, 162, 163
readv subroutine 162
releasing portions of 617
renaming 642

Index 661

files (continued)
size limit

retrieving 181
truncating 621
unlinking 641
unmapping 653
writing 163, 168

find_input_type kernel service 144
fp_access kernel service 144
fp_close kermel service

GDLC 146
fp_close kernel service 145

device driver 579
fp_fstat kernel service 147
fp_fsync kernel service 147
fp_getdevno kernel service 148
fp_getf kernel service 149
fp_hold kernel service 150
fp_ioctl kernel service 151
fp_ioctlx kernel service 153
fp_lseek kernel service 154
fp_open kernel service

opening GDLC 156
opening regular files 155

fp_opendev kernel service 157
fp_poll kernel service 159
fp_read kernel service 161
fp_readv kernel service 162
fp_rwuio kernel service 163
fp_select kernel service

cascaded support 164
invoking 165
notify routine and 165
returning from 167

fp_select kernel service notify routine 167
fp_write kernel service

data sent to DLC 169
open files 168

fp_writev kernel service 171
free-pinned character buffers

sizing 377
fstatx subroutine

fp_fstat kernel service 147
fubyte kernel service 172
func subroutine 214, 215
fuword kernel service 173

G
GDLC channels

disabling 146
get_pag Kernel Service 182
get_pag64 Kernel Service 182
get_umask kernel service 185
getblk kernel service 174
getc kernel service 175
getcb kernel service 175
getcbp kernel service 176
getcf kernel service 177
getcx kernel service 178
geteblk kernel service 179

geterror kernel service 179
getexcept kernel service 180
getfslimit kernel service 181
getpid kernel service 183
getppidx kernel service 183
getuerror kernel service 184
getufdflags kernel service 185
gfsadd kernel service 186
gfsdel kernel service 188
gn_closecnt Subroutine 188
gn_common_memcntl Subroutine 189
gn_mapcnt Subroutine 190
gn_opencnt Subroutine 191
gn_unmapcnt Subroutine 192
groupmember Subroutine 192
groupmember_cr Subroutine 192

H
heap_create kernel service 193
heap_destroy kernel service 195
heap_modify kernel service 196
heaps

initializing virtual memory 212
hkeyset_restore_userkeys kernel service 198
hkeyset_update_userkeys kernel service 198
host names

obtaining 253
hread_set_smtpriority system call 450

I
i_clear kernel service 199
i_disable kernel service 200
i_enable kernel service 202
i_eoi Kernel Service 202
i_init kernel service 209
i_mask kernel service 211
i_pollsched kernel service 228
i_reset kernel service 229
i_sched kernel service 230
i_unmask kernel service 231
I/O 175, 179, 199, 211

buffer cache
purging block from 389

buffers
freeing 392

character
retrieving 178

character buffer
waiting for free 540

character lists
using 576

characters
placing 390, 394

completion
waiting for 225

early power-off warning 210
free-pinned character buffers 377
freeing buffer lists 393

662 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

I/O (continued)
header memory buffers

allocating 342
interrupt handler

coding an 210
mbreq structures 329
mbuf chains

adjusting 344
appending 330
copying data from 335
freeing 338

mbuf clusters
allocating 333
allocating a page-sized 332

mbuf structures
allocating 331, 339, 340, 341, 342
attaching 341
clusters 343
converting pointers 348
creating 336
cross-memory descriptors 348
deregistering 337
freeing 337
initial requirements 344
pointers 347
removing 334
usage statistics 330

off-level processing
enabling 230

placing character buffers 390
placing characters 391

I/O levels
waiting on 533

identifiers
message queue 270

idle to ready 213
IDs

getting current process 183
getting parent 183

if_attach kernel service 206
if_detach kernel service 206
if_down kernel service 207
if_nostat kernel service 208
ifa_ifwithaddr kernel service 203
ifa_ifwithdstaddr kernel service 204
ifa_ifwithnet kernel service 205
ifnet structures

address of 322
ifunit kernel service 208
init_heap kernel service 212
initp kernel service 213
initp kernel service func subroutine 214
input packets

building header for 404
input types

adding new 11
interface 205
interface drivers

error handling 351
interfaces

files 474

interfaces (continued)
network

adding 206
internationalized kernel message requests

submitting 357
interrupt environment services

d_cflush 63
getcx 178
if_attach 206
net_start_done 354
tstart 461

interrupt handlers 496
avoiding delays 230
coding 210
defining 209
queuing pseudo interrupts to 228
removing 199

interrupt priorities
disabling 200
enabling 202

io_map kernel service 215
io_map_clear kernel service 216
io_map_init kernel service 217
io_unmap kernel service 218
iodone kernel service 219
iodone routine

setting up 219
iostadd kernel service 220
iostdel kernel service 224
iowait kernel service 225
ip filtering hooks 226
ip_fltr_in_hook, ip_fltr_out, ipsec_decap_hook kernel

service 226
ipthreadsn 637, 638
IS64U kernel service 239

K
kcap_is_set kernel service 240
kcap_is_set_cr kernel service 240
kcid_curproc kernel service 240
kcred_genpagvalue Kernel Service 241
kcred_getpag Kernel Service 243
kcred_getpag64 Kernel Service 243
kcred_getpagid kernel service 244
kcred_getpaginfo Kernel Service 245
kcred_getpagname kernel service 246
kcred_getppriv kernel service 246
kcred_setpag Kernel Service 249
kcred_setpag64 Kernel Service 249
kcred_setpagname kernel service 250
kcred_setppriv kernel service 251
kernel buffers 572
kernel memory

address ranges
pinning 327, 375, 560
releasing intersecting pages 524
setting storage protect key for 521
unpinning 328, 483, 561

address space
allocating 14

Index 663

kernel memory (continued)
address space (continued)

deallocating 15
deselecting 15
mapping 14, 24
obtaining handles 16, 17, 18
releasing 23
selecting 14
unmapping 15

bytes
retrieving 172

character data
copying into 51

characters
retrieving from buffers 494
writing to buffers 492

copying from 52
copying into 50
data

moving between VMO and buffer 512
retrieving a byte 172
retrieving a word 173
storing bytes 444

files
determining if changed 522

header memory buffers
allocating 342

heaps
initializing 212

I/O levels
waiting on 533

mbuf chains
adjusting 344
adjusting size of 328
appending 330
copying data from 335
freeing 338
reducing structures in 333

mbuf clusters
allocating 333
allocating a page-sized 332

mbuf structures
allocating 331, 339, 340, 341, 342
attaching 341
clusters 343
converting addresses in 105
converting pointers 348
copying 334
creating 336
cross-memory descriptors 348
deregistering 337
freeing 337
initial requirements 344
pointers 347
removing 334

object modules
pinning 378

page ranges
initiating page-out 536

page-out
determining I/O level 533

kernel memory (continued)
page-ranges

initiating page-out 537
pages

making without page-in 509
releasing several 525

paging device tables
adding file system to 510
freeing entries in 535

pin counts
decrementing 484

storing words 445
user buffer

preparing for access 554
user-address space, 64-bit det 239
virtual memory handles

constructing 506
virtual memory manager 294
virtual memory objects

creating 531
deleting 532
mapping to a region 498

virtual memory resources
releasing 525

words
retrieving 173

kernel messages
printing to terminals 491

kernel object files
loading 264
unloading 267

kernel process state
changing 213

kernel processes
creation support 214, 215

kernel service
pin_context_stack 376
unpin_context_stack 376

kernel services
as_att64 kernel service 14
as_det64 kernel service 15
as_geth kernel service 16
as_geth64 kernel service 17
as_getsrval64 kernel service 18
as_puth64 kernel service 23
as_seth64 kernel service 24
bindprocessor 31
compare_and_swap 49
compare_and_swaplp 49
disable_lock 78
e_assert_wait 112
e_block_thread 112
e_clear_wait 113
e_sleep_thread 117
e_wakeup 121
e_wakeup_one 121
e_wakeup_w_result 121
e_wakeup_w_sig 122
et_post 119
et_wait 120
fetch_and_add 141

664 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

kernel services (continued)
fetch_and_addlp 141
fetch_and_and 142
fetch_and_or 142
file interface to 474
IS64U 239
kcred_getpagid 244
kcred_getpagname 246
kcred_setpagname 250
kthread_kill 292
kthread_start 293
limit_sigs 309
lock_addr 317
lock_alloc 311
lock_clear_recursive 312
lock_done 313
lock_free 314
lock_init 314
lock_islocked 315
lock_read 318
lock_read_to_write 319
lock_set_recursive 320
lock_try_read 318
lock_try_read_to_write 319
lock_try_write 321
lock_write 321
lock_write_to_read 321
ltpin 327
ltunpin 328
rusage_incr 427
simple_lock 440
simple_lock_init 441
simple_lock_try 440
simple_unlock 442
thread_create 448
thread_setsched 449
thread_terminate 452
tstop 463
tuning 464
ufdgetf 478
ufdhold 479
ufdrele 479
unlock_enable 481
user-mode exception handler for uexadd 470

kgethostname kernel service 253
kgetpname Kernel Service 253
kgetrlimit64 kernel service 254
kgettickd kernel service 256
kkey_assign_private kernel service 257
kkeyset_add_key kernel service 258
kkeyset_add_set kernel service 258
kkeyset_create kernel service 259
kkeyset_delete kernel service 260
kkeyset_remove_key kernel service 260
kkeyset_remove_set kernel service 261
kkeyset_to_hkeyset kernel service 262
klpar_get_info kernel service 263
kmod_entrypt kernel service 264
kmod_load kernel service 264
kmod_unload kernel service 267
kmsgctl kernel service 268

kmsgget kernel service 270
kmsgsnd kernel service 274
kmsrcv kernel service 272
kprobe kernel service 386
kra_attachrset Subroutine 275
kra_creatp subroutine 277
kra_detachrset Subroutine 278
kra_getrset Subroutine 280
krs_alloc Subroutine 281
krs_free Subroutine 282
krs_getassociativity Subroutine 282
krs_getinfo Subroutine 283
krs_getpartition Subroutine 284
krs_getrad Subroutine 285
krs_init Subroutine 286
krs_numrads Subroutine 287
krs_op Subroutine 287
krs_setpartition Subroutine 289
ksettickd kernel service 290
ksettimer kernel service 291
kthread_kill kernel service 292
kthread_start kernel service 293
kvm_pattr Kernel Service 514
kvmgetinfo kernel service 294
kwpar_checkpoint_status kernel service 296
kwpar_getname Kernel Service 297
kwpar_getrootpath Kernel Service 298
kwpar_isappwpar Kernel Service 299
kwpar_r2vmap_devno kernel service 299
kwpar_r2vmap_pid kernel service 300
kwpar_r2vmap_tid kernel service 301
kwpar_regdevno kernel service 302
kwpar_reghook kernel service 303
kwpar_unregdevno kernel service 305
kwpar_unreghook kernel service 306
kwpar_v2rmap_devno kernel service 307
kwpar_v2rmap_pid kernel service 308
kwpar_v2rmap_tid kernel service 309

L
ldata_alloc Kernel Service 232
ldata_create Kernel Service 232
ldata_destroy Kernel Service 234
ldata_free Kernel Service 234
ldata_grow Kernel Service 235
ldmp_bufest kernel service 236
ldmp_errstr kernel service 236
ldmp_freeparms kernel service 238
ldmp_setupparms kernel service 238
ldmp_timeleft kernel service 236
ldmp_xmalloc kernel service 236
ldmp_xmfree kernel service 236
limit_sigs kernel service 309
livedump kernel service 310
lock_addr kernel service 317
lock_alloc kernel service 311
lock_clear_recursive kernel service 312
lock_done kernel service 313
lock_free kernel service 314
lock_init kernel service 314

Index 665

lock_islocked kernel service 315
lock_read kernel service 318
lock_read_to_write kernel service 319
lock_set_recursive kernel service 320
lock_try_read kernel service 318
lock_try_read_to_write kernel service 319
lock_try_write kernel service 321
lock_write kernel service 321
lock_write_to_read kernel service 321
locking 47
lockl kernel service 316
logical file system

channel numbers
finding 148

device numbers
finding 148

file attributes
getting 147

file descriptors
status of 159

file pointers
retrieving 149
status of 159

files
checking access permissions 144
closing 145
opening 151, 153, 155
reading 162, 163
writing 163, 168, 171

message queues
status of 159

notify routine
registering 167

offsets
changing 154

open subroutine
support for 155

poll request 164
read subroutine

interface to 161
readv subroutine

interface to 162
select operation 164
special files

opening 157
use count

incrementing 150
write subroutine 168
writev subroutine

interface to 171
loifp kernel service 322
longjmpx kernel service 323
lookupname kernel service 324
lookupname_cur kernel service 324
lookupvp kernel service 324
looutput kernel service 326
ltpin kernel service 327
ltunpin kernel service 328

M
m_adj kernel service 328
m_cat kernel service 330
m_clattach kernel service 331
m_clget macro 332
m_clgetm kernel service 333
m_collapse kernel service 333
m_copy macro 334
m_copydata kernel service 335
m_copym kernel service 336
m_dereg kernel service 337
m_freem kernel service 338
m_get kernel service 339
m_getclr kernel service 340
m_getclust macro 340
m_getclustm kernel service 341
m_gethdr kernel service 342
M_HASCL kernel service 343
m_pullup kernel service 344
m_reg kernel service 344
M_XMEMD macro 348
macros

add_netopt 14
del_netopt 68
DTOM 105
m_clget 332
m_getclust 340
M_HASCL 343
MTOCL 347
MTOD 348

maps DMA master devices
d_map_page 87

mbreq structure
format of 329

mbuf chains
adjusting 344
adjusting size of 328
appending 330
copying 335
freeing 338
removing structures from 334

mbuf clusters
allocating 333
allocating a page-sized 332
page-sized

attaching 341
mbuf structures

address to header 105
allocating 331, 339, 340, 341, 342
attaching a cluster 341
clusters

determining presence of 343
converting pointers 348
copying 334, 336
cross-memory descriptors

obtaining address of 348
deregistering 337
freeing 337
initial requirements 344
mbreq structure 329
mbstat structure 330

666 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

mbuf structures (continued)
pointers

converting 347
registration information 329
removing 334
usage statistics 330

memory
allocating 553
buffers (device drivers) 577
freeing 566
pages

preparing for DMA 557, 559
processing after DMA I/O 557, 559

performing a cross-memory move 563, 564
rmfree 416
uio structures 578
user buffer

detaching from 556
memory allocation

rmalloc 415
memory manager

kvmgetinfo 294
memory mapped I/O

rmmap_create 416
rmmap_remove 420

message queues
control operations

providing 268
identifiers

obtaining 270
messages

reading 272
sending 274

Micro-Partitioning
lpar_get_info kernel service 263

MTOCL macro 347
MTOD macro 348
multiplexed device driver

allocating 587
deallocating 587

mycpu kernel service 349

N
net_attach kernel service 349
net_detach kernel service 350
net_error kernel service 351
net_sleep kernel service 352
net_start kernel service 353
net_start_done kernel service 353
net_wakeup kernel service 354
net_xmit kernel service 355
net_xmit_trace kernel service 356
network

ctlinput function
invoking 372

current host name 253
demuxers

adding 360
deleting 366
disabling 367

network (continued)
demuxers (continued)

enabling 361
destination addresses

locating 204
device drivers

allocating 364
relenquishing 369

device handlers
closing 350
ending a start 353
opening 349
starting ID on 353

devices
attaching 365
detaching 369

ID
ending a start 353

ifnet structures
address of 322

input packets
building header for 404

interface
adding 206

interface drivers
error handling 351

putting caller to sleep 352
raw protocols

implementing user requests for 405
raw_header structures

building 404
receive filters

adding 361
deletiing 367

routes
allocating 421

routing table entries
changing 425, 426
creating 423
forcing through gateway 424
freeing 422

software interrupt service routines
invoking 428
scheduling 428

start operation
ending 353

status filters
adding 363
deleting 368

transmit packets
tracing 356

waking sleeping processes 354
network address families

adding 10
deleting 65
searching for 372

network device handlers
transmitting packets 355

network input types
adding 11
deleting 66

Index 667

network interfaces
deleting 206
locating 203, 205
marking as down 207
pointers

obtaining 208
software loopback

obtaining address 322
sending data through 326

zeroing statistic elements 208
network option structures

adding 14
deleting 68

network packet types
finding 144

network software interrupt service
adding 13
deleting 67

NLuprint kernel service 357
notify routine

registering 167
from fp_select kernel service 165

ns_add_demux network service 360
ns_add_filter network service 361
ns_add_status network service 363
ns_alloc network service 364
ns_attach network service 365
ns_del_demux network service 366
ns_del_filter network service 367
ns_del_status network service 368
ns_detach network service 369
ns_free network service 369

O
object modules

pinning 378
off-level processing 230
offset

changing 154
open subroutine

support for 155

P
packet types

finding 144
packets

transmitting 355
page-out

determining I/O level 533
page-ranges

initiating page-out 536
pages

making without page-in 509
releasing several 525

paging device tables
adding file system to 510
freeing entries in 535

panic kernel service 370
PCI bus slot configuration registers 371

pci_cfgrw kernel service 371
pfctlinput kernel service 372
pffindproto kernel service 372
pgsignal kernel service 373
pidsig kernel service 374
pin counts

decrementing 484
pin kernel service 375
pin_context_stack kernel service 376
pincf kernel service 377
pincode kernel service 378
pio_assist kernel service 378
pipes

select request on 164
poll request

registering asynchronous 431
support for 429

power-off warnings
registering early 210

privileges
checking effective 445

probe kernel service 386
process 55
process environment services

d_cflush 63
ddread entry point 590
getcx 178
i_disable 200
if_attach 206
iostdel 224
net_attach 349
net_start_done 354
tstart 461

process management
blocking a process 472
calling process IDs 183
checking effective privileges 445
clearing blocked processes 472
contexts

removing 46
saving 434

creating a process 55
execution flows

modifying 323
forcing a wait 114
idle to ready

transition of 213
internationalized kernel message requests

submitting 357
locking 316
parent

setting to init process 435
parent process IDs

getting 183
process initialization routine

directing 214
process state-change notification routine 384
putting process to sleep 442
shared events

waiting for 116

668 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

process management (continued)
signals

sending 373, 374
signals, sending 374
state transition notification 381
state-change notification routine

deleting 386
states

saving 434
suspending processing 64
unlocking

conventional processes 482
unmasked signals

determining if received 439
wait

for shared event 116
waking up processes 429

process state-change notification routine 381
processor cache

flushing 499
proch structure 385
proch_unreg kernel service 384
prochadd kernel service 384
prochdel kernel service 386
programmed I/O

exceptions caused by 378
purblk kernel service 389
putc kernel service 390
putcb kernel service 390
putcbp kernel service 391
putcf kernel service 392
putcfl kernel service 393
putcx kernel service 394

Q
query_proc_info kernel service 394
queue elements

checking validity 44
cleanup 40
placing into queue 138
waiting for 541

queue management routines
attach-device 25
cancel-queue-element 40
detach-device 69
parameter checking 44

R
RAS kernel services

error logs
writing entries in 140

master dump table
deleting entry from 99

RAS services
system crash

performing system dump of 370
trace events

recording 456, 457
RAS_BLOCK_NULL Exported Data Structure 395

ras_control Exported Kernel Service 396
ras_customize Exported Kernel Service 397
ras_path_control Exported Kernel Service 398
ras_register Exported Kernel Service 399
ras_ret_query_parms kernel service 401
ras_unregister Exported Kernel Service 399
raschk_eaddr_hkeyset kernel service 402
raschk_eaddr_kkey kernel service 403
raw protocols

implementing user requests for 405
raw_header structures

building 404
raw_input kernel service 404
raw_usrreq kernel service 405
rawinch field 221
read subroutine

interface to 161
read-ahead block

starting I/O on 35
readv subroutine

interface to 162
ready to idle 213
reconfig_complete kernel service 406
reconfig_register kernel service 406
reconfig_register_ext kernel service 406
reconfig_unregister kernel service 406
record locking 47
record locks

controlling 628
refmon kernel service 412
regions

unmapping virtual memory 500
Resource Set APIs

kra_attachrset 275
kra_creatp 277
kra_detachrset 278
kra_getrset 280
krs_alloc 281
krs_free 282
krs_getassociativity 282
krs_getinfo 283
krs_getpartition 284
krs_getrad 285
krs_init 286
krs_numrads 287
krs_op 287
krs_setpartition 289

resources
virtual file system

releasing 497
rmalloc kernel service 415
rmfree kernel service 416
rmmap_create kernel service 416
rmmap_remove kernel service 420
routes

allocating 421
routing table entries

changing 425, 426
creating 423
forcing through gateway 424
freeing 422

Index 669

rtalloc kernel service 421
rtfree kernel service 422
rtinit kernel service 423
rtredirect kernel service 424
rtrequest kernel service 425, 426
rusage_incr kernel service 427

S
schednetisr kernel service 428
scheduling functions 453
security subroutines

kcred_genpagvalue 241
select request

registering asynchronous 431
support for 429

selnotify kernel service 429
selreg kernel service 431
set_pag Kernel Service 433
set_pag64 Kernel Service 433
setioctlrv Subroutine 434
setjmpx kernel service 434
setpinit kernel service 435
setuerror kernel service 436
setufdflags kernel service 185
shared events

waiting for 116
shared memory

controlling access to 316
shared object modules

symbol resolution 266
shutdown kernel services

shutdown_notify_reg 436
shutdown_notify_unreg 438

shutdown_notify_reg kernel kervice 436
shutdown_notify_unreg kernel service 438
sig_chk kernel service 439
signals

sending 373
simple_lock kernel service 440
simple_lock_init kernel service 441
simple_lock_try kernel service 440
simple_unlock kernel service 442
sleep kernel service 442
sockets

select request on 164
software interrupt service routines

invoking 428
scheduling 428

software loopback interfaces
obtaining address of 322
sending data through 326

software-interrupt level 13
special files

creating 635
opening 157
requesting I/O control operations 626

standard parameters
device driver 571

statistics structures
registering 220

statistics structures (continued)
removal 224

strategy routine
calling 488

subyte kernel service 444
suser kernel service 445
suword kernel service 445
switch table 76
symbol binding support 266
symbol resolution and shared object modules 266
symbolic links

reading contents of 640
synchronization functions

providing 256
system call events

auditing 27
system calls

__pag_getid 1
__pag_getname 1
__pag_getvalue 2
__pag_setname 3
__pag_setvalue 3
thread_set_smtpriority 450

system dump kernel services
dmp_add 90
dmp_ctl 94

system dumps
adding and removing master dump table entries 94
adding to master dump table 90
performing 370
specifying contents 90

systemwide time
setting 291

T
talloc kernel service 446
tfree kernel service 447
thread_create kernel service 448
thread_read_smtpriority system calls 450
thread_self subroutine 448
thread_setsched kernel service 449
thread_terminate kernel service 452
time

allocating time request blocks 446
callout table entries

registering changes in 454
canceling pending timer requests 486
current

reading 61
scheduling functions 453
submitting timer request 461
suspending processing 64
synchronization functions

providing 256
systemwide

setting 291
time request blocks

deallocating 447
time-adjustment value 256

updating 290

670 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

time (continued)
watchdog timers

registering 544
removing 543
stopping 546

timeout kernel service 453
timeoutcf kernel subroutine 454
timer

watchdog timers
starting 545

trace events
recording 456, 457, 458

transfer requests
tailoring 490

transmit packets
tracing 356

trc_ishookon Exported Kernel Service 456
trcgenk kernel service 456
trcgenkt kernel service

DLC 458
recording for a generic trace channel 457

tstart kernel service 461
tstop kernel service 463
tty device driver support 221
ttystat structure 221
tuning kernel service 464

U
ue_proc_check kernel service 467
ue_proc_register subroutine 468
ue_proc_unregister subroutine 469
uexadd kernel service

adding an exception handler 469
uexblock kernel service 472
uexclear kernel service 472
uexdel kernel service 473
ufdcreate kernel service 474
ufdgetf kernel service 478
ufdhold kernel service 479
ufdrele kernel service 479
uio structures 355, 577
uiomove kernel service 480
unlock_enable kernel service 481
unlocking conventional processes 482
unlockl kernel service 482
unpin kernel service 483
unpin_context_stack kernel service 376
unpincode kernel service 484
untimeout kernel service 486
uphysio kernel mincnt service 490
uphysio kernel service

described 487
error detection by 489
mincnt routine 490

uprintf kernel service 491
uprintf structure 358
ureadc kernel service 492
use count

incrementing 150

user buffer
detaching from 556
preparing for access 554

user-address space 239
user-mode exception handler for uexadd kernel

service 470
ut_error field

retrieving 184
ut_error fields

setting 436
uwritec kernel service 494

V
v-node operations 623, 626, 630, 634, 644, 645

retrieving 324
v-nodes 623

allocating 539
closing associated files 614
count

incrementing 626
file identifier conversion to 612
file identifiers

building 618
finding by name 630
freeing 538
modifications

flushing to storage 620
obtaining root 607
polling 646
releasing references 641
validating access to 613

validate_pag Kernel Service 495
validate_pag64 Kernel Service 495
vec_clear kernel service 496
vec_init kernel service 497
VFS 623

access control lists
retrieving 622

allocating virtual nodes 539
building file identifiers 618
changes

writing to storage 610
checking record locks 628
control operations

implementing 604
creating directories 634
creating special files 635
file attributes

getting 623
file system types

adding 186
removing 188

files
accessing blocks 651
converting identifiers 612
creating 615
hard links 627
opening 636
releasing portions of 617
renaming 642

Index 671

VFS (continued)
files (continued)

requesting I/O 637
setting access control 647
setting attributes 648
truncating 621
validating mapping requests 631

finding v-nodes by name 630
flushing v-node modifications 620
freeing virtual nodes 538
incrementing v-node counts 626
initializing 605
mounting 606
nodes

pointer to root 607
retrieving 324

polling v-nodes 646
querying record locks 628
reading directory entries 638
releasing v-node references 641
removing directories 645
renaming directories 642
resources

releasing 497
revoking access 644
searching 608
setting record locks 628
special files

I/O control operations on 626
statistics

obtaining 609
structures, holding and releasing 605
unmounting 611

VFS operations
vfs_cntl 604
vfs_hold 605
vfs_init 605
vfs_mount 606
vfs_root 607
vfs_search 608
vfs_statfs 609
vfs_sync 610
vfs_umount 611
vfs_unhold 605
vfs_vget 612
vnop_access 613
vnop_close 614
vnop_create 615
vnop_fclear 617
vnop_fid 618
vnop_fsync 620
vnop_fsync_range 620
vnop_ftrunc 621
vnop_getacl 622
vnop_hold 626
vnop_link 627
vnop_lockctl 628
vnop_mknod 635
vnop_open 636
vnop_rdwr 637
vnop_rdwr_attr 637

VFS operations (continued)
vnop_readdir 638
vnop_readlink 640
vnop_remove 641
vnop_rename 642
vnop_select 646
vnop_setacl 647
vnop_setattr 648
vnop_strategy 651
vnop_symlink 652
vnop_unmap 653

vfs_aclxcntl entry point 602
vfsrele kernel service 497
virtual file system 186, 622
virtual interrupt handlers

defining 497
removing 496

virtual memory
regions

unmapping 500
virtual memory handles

constructing 506
virtual memory objects

creating 531
deleting 532
managing addresses 14
mapping 24
mapping to a region 498
obtaining handles 16, 17, 18
page-out for range in 537
releasing 23
unmapping 15

virtual memory resources
releasing 524

vm_att kernel service 498
vm_cflush kernel service 499
vm_det kernel service 500
vm_flushp kernel service 501
vm_guatt Kernel Service 504
vm_gudet Kernel Service 505
vm_handle kernel service 506
vm_invalidatep kernel service 507
vm_ioaccessp kernel service 508
vm_makep kernel service 509
vm_mount kernel service 510
vm_mounte kernel service 511
vm_mvc kernel service 513
vm_pattr System Call 514
vm_protect_kkey kernel service 520
vm_protectp kernel service 521
vm_qmodify kernel service 522
vm_qpages kernel service 523
vm_readp kernel service 523
vm_release kernel service 524
vm_releasep kernel service 525
vm_segmap kernel service 526
vm_setdevid kernel service 527
vm_setseg_kkey kernel service 529
vm_thrpgio_pop kernel service 529
vm_thrpgio_push kernel service 530
vm_umount kernel service 535

672 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

vm_write kernel service 536
vm_writep kernel service 537
vms_create kernel service 531
vms_delete kernel service 532
vms_iowait kernel service 533
vms_iowaitf kernel service 533
vn_free kernel service 538
vn_get kernel service 539
vnop_getxacl entry point 624
vnop_ioctl entry point 626
vnop_memcntl Entry Point 633
vnop_seek Entry Point 646
vnop_setxacl entry point 650
vnop_symlink entry point 652

W
w_clear kernel service 543
w_init kernel service 544
w_start kernel service 545
w_stop kernel service 546
wait channels

putting caller to sleep on 352
waitcfree kernel service 540
waiting for free buffer 540
waitq kernel service 541
waking sleeping processes 354
watchdog timers

registering 544
removing 543
starting 545
stopping 546

words
retrieving 173
storing in kernel memory 445

workload partition (WPAR) 100, 108, 240, 296, 299,
300, 301, 302, 303, 305, 306, 307, 308, 309

write subroutine
interface to 168

writev subroutine
interface to 171

X
xlate_create kernel service 547
xlate_pin kernel service 548
xlate_remove kernel service 549
xlate_unpin kernel service 550
xm_det kernel service 551
xm_mapin 551
xm_maxmap Kernel Service 552
xmalloc kernel service

described 553
xmattach kernel service 554
xmdetach kernel service 556
xmemdma kernel service 557
xmemdma64 kernel service 559
xmemin kernel service 563
xmemout kernel service 564
xmempin kernel service 560
xmempsize Kernel Service 565

xmemunpin kernel service 561
xmemzero kernel service 562
xmfree kernel service 566
xmgethkeyset kernel service 567
xmsethkeyset kernel service 568

Index 673

674 AIX Version 6.1 Technical Reference: Kernel and Subsystems, Volume 1

Readers’ Comments — We’d Like to Hear from You

AIX Version 6.1
Technical Reference: Kernel and Subsystems, Volume 1

Publication No. SC23-6612-02

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM
business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the
personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send your comments via e-mail to: pserinfo@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
SC23-6612-02

SC23-6612-02

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department 04XA-905-6B013
11501 Burnet Road
Austin, TX 78758-3400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in U.S.A.

SC23-6612-02

	Contents
	About This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	32-Bit and 64-Bit Support for the Single UNIX Specification
	Related Publications

	Chapter 1. Kernel Services
	__pag_getid System Call
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	__pag_getname System Call
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	__pag_getvalue System Call
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	__pag_setname System Call
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	__pag_setvalue System Call
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	acct_add_LL or acct_zero_LL Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	acct_get_projid Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	acct_get_usage Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	acct_interval_register or acct_interval_unregister Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	acct_put Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	add_domain_af Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	add_input_type Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Examples
	Related Information

	add_netisr Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	add_netopt Macro
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	as_att64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	as_det64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	as_geth Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	as_geth64 Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	as_getsrval64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	as_lw_att64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	as_lw_det64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	as_lw_pool_init Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	as_puth64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	as_seth64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	attach Device Queue Management Routine
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	audit_svcbcopy Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	audit_svcfinis Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	audit_svcstart Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	bawrite Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	bdwrite Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	bflush Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Related Information

	bindprocessor Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Error Codes
	Execution Environment
	Related Information

	binval Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	blkflush Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	bread Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	breada Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	brelse Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Related Information

	bsr_alloc Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	bsr_free Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	bsr_query Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	bwrite Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	cancel Device Queue Management Routine
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment

	cfgnadd Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Related Information

	cfgncb Configuration Notification Control Block
	Purpose
	Syntax
	Parameters
	Description
	Related Information

	cfgndel Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	check Device Queue Management Routine
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	clrbuf Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	clrjmpx Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	common_reclock Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	compare_and_swap Kernel Services
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	copyin Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	copyinstr Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	copyout Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	crcopy Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	crdup Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	creatp Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	CRED_GETEUID, CRED_GETRUID, CRED_GETSUID, CRED_GETLUID, CRED_GETEGID, CRED_GETRGID, CRED_GETSGID and CRED_GETNGRPS Macros
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Related Information

	crexport Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	crfree Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	crget Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	crhold Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	crref Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	crset Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	curtime Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	d_align Kernel Service
	Purpose
	Library
	Syntax
	Description
	Execution Environment
	Related Information

	d_alloc_dmamem Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	d_cflush Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	delay Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	del_domain_af Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Value
	Example
	Related Information

	del_input_type Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Examples
	Related Information

	del_netisr Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	del_netopt Macro
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	detach Device Queue Management Routine
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	devdump Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	devstrat Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	devswadd Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	devswchg Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	devswdel Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	devswqry Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	d_free_dmamem Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	disable_lock Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	disablement_checking_resume Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	disablement_checking_suspend Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	d_map_attr Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	d_map_clear Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Related Information

	d_map_disable Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	d_map_enable Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	d_map_init Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	d_map_init_ext Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	d_map_list Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	d_map_page Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	d_map_slave Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	dmp_add Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	dmp_compspec and dmp_compext Kernel Services
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	dmp_ctl Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	dmp_del Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	dmp_eaddr, dmp_context, dmp_tid, dmp_pid, dmp_errbuf, dmp_mtrc, dmp_systrace, and dmp_ct Kernel Services
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	dmp_kernext Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	d_roundup Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Related Information

	d_sync_mem Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	DTOM Macro for mbuf Kernel Services
	Purpose
	Syntax
	Parameter
	Description
	Example
	Related Information

	d_unmap_list Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Related Information

	d_unmap_slave Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	d_unmap_page Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Related Information

	dr_reconfig System Call
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	e_assert_wait Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	e_block_thread Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	e_clear_wait Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	e_sleep Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	e_sleepl Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	e_sleep_thread Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Flags
	Return Values
	Execution Environment
	Related Information

	et_post Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	et_wait Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	e_wakeup, e_wakeup_one, or e_wakeup_w_result Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	e_wakeup_w_sig Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	eeh_broadcast Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_clear Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_disable_slot Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_enable_dma Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_enable_pio Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_enable_slot Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_init Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_init_multifunc Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_read_slot_state Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_reset_slot Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	eeh_slot_error Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	enque Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	errresume Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Related Information

	errsave or errlast Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fetch_and_add Kernel Services
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fetch_and_and or fetch_and_or Kernel Services
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fidtovp Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	find_input_type Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_access Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_close Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	fp_close Kernel Service for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	fp_fstat Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_fsync Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	fp_getdevno Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_getf Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_hold Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Related Information

	fp_ioctl Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_ioctl Kernel Service for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	fp_ioctlx Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	fp_lseek, fp_llseek Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_open Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_open Kernel Service for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	fp_opendev Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_poll Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_read Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_readv Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_rwuio Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_select Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_select Kernel Service notify Routine
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	fp_write Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fp_write Kernel Service for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	fp_writev Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	fubyte Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	fuword Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	getblk Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	getc Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	getcb Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	getcbp Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	getcf Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	getcx Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	geteblk Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	geterror Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	getexcept Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	getfslimit Kernel Service
	Purpose
	Syntax
	Description
	Return Values
	Related Information

	get_pag or get_pag64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	getpid Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	getppidx Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	getuerror Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	getufdflags and setufdflags Kernel Services
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	get_umask Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	gfsadd Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	gfsdel Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	gn_closecnt Subroutine
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Error Codes
	Related Information

	gn_common_memcntl Subroutine
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Error Codes

	gn_mapcnt Subroutine
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Error Codes
	Related Information

	gn_opencnt Subroutine
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Error Codes
	Related Information

	gn_unmapcnt Subroutine
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Error Codes
	Related Information

	groupmember, groupmember_cr Subroutines
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Error Codes
	Related Information

	heap_create Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	heap_destroy Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	heap_modify Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	hkeyset_add, hkeyset_replace, hkeyset_restore, or hkeyset_get Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	hkeyset_restore_userkeys Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	hkeyset_update_userkeys Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	i_clear Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	i_disable Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Value
	Related Information

	i_enable Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	i_eoi Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values

	ifa_ifwithaddr Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	ifa_ifwithdstaddr Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	ifa_ifwithnet Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	if_attach Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	if_detach Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	if_down Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	if_nostat Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	ifunit Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	i_init Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	i_mask Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	init_heap Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	initp Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Example
	Return Values
	Related Information

	initp Kernel Service func Subroutine
	Purpose
	Syntax
	Parameters
	Related Information

	io_map Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	io_map_clear Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Related Information

	io_map_init Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	io_unmap Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Related Information

	iodone Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	iostadd Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	iostdel Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	iowait Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	ip_fltr_in_hook, ip_fltr_out_hook, ipsec_decap_hook, inbound_fw, outbound_fw Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Flags
	Expected Return Values
	Related Information

	i_pollsched Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	i_reset Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	i_sched Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	i_unmask Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	ldata_alloc Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	ldata_create Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	ldata_destroy Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	ldata_free Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	ldata_grow Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	ldmp_bufest, ldmp_timeleft, ldmp_xmalloc, ldmp_xmfree, and ldmp_errstr Kernel Services
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	ldmp_freeparms Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ldmp_setupparms Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	IS64U Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	kcap_is_set and kcap_is_set_cr Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	kcid_curproc Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	kcred_genpagvalue Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	kcred_getcap Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kcred_getgroups Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kcred_getpag or kcred_getpag64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	kcred_getpagid Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	kcred_getpaginfo Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kcred_getpagname Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	kcred_getppriv Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kcred_getpriv Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kcred_setcap Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kcred_setgroups Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kcred_setpag or kcred_setpag64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kcred_setpagname Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	kcred_setppriv Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kcred_setpriv Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kgethostname Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Value
	Related Information

	kgetpname Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values

	kgetrlimit64 Kernel Service
	Purpose
	Library
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kgettickd Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kkey_assign_private Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	kkeyset_add_key Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	kkeyset_add_set Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	kkeyset_create Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kkeyset_delete Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	kkeyset_remove_key Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	kkeyset_remove_set Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	kkeyset_to_hkeyset Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	klpar_get_info Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Error Codes
	Related Information

	kmod_entrypt Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kmod_load Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	kmod_unload Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kmsgctl Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kmsgget Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kmsgrcv Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kmsgsnd Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kra_attachrset Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	kra_creatp Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	kra_detachrset Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	kra_getrset Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	krs_alloc Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	krs_free Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	krs_getassociativity Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	krs_getinfo Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	krs_getpartition Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	krs_getrad Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	krs_init Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	krs_numrads Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	krs_op Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values

	krs_setpartition Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ksettickd Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Value
	Related Information

	ksettimer Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	kthread_kill Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kthread_start Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kvmgetinfo Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	kwpar_checkpoint_status Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	kwpar_getname Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	kwpar_getrootpath Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	kwpar_isappwpar Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	kwpar_r2vmap_devno Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	kwpar_r2vmap_pid Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kwpar_r2vmap_tid Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kwpar_regdevno Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	kwpar_reghook Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	kwpar_unregdevno Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	kwpar_unreghook Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	kwpar_v2rmap_devno Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	kwpar_v2rmap_pid Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	kwpar_v2rmap_tid Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	limit_sigs or sigsetmask Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	livedump Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	lock_alloc Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	lock_clear_recursive Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	lock_done Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	lock_free Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	lock_init Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	lock_islocked Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	lockl Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	lock_mine Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	lock_read or lock_try_read Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	lock_read_to_write or lock_try_read_to_write Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	lock_set_recursive Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	lock_write or lock_try_write Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	lock_write_to_read Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	loifp Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	longjmpx Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	lookupvp, lookupname, lookupname_cur Kernel Services
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	looutput Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ltpin Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	ltunpin Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	m_adj Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	mbreq Structure for mbuf Kernel Services
	Purpose
	Syntax
	Parameters
	Description
	Related Information

	mbstat Structure for mbuf Kernel Services
	Purpose
	Syntax
	Parameters
	Description
	Related Information

	m_cat Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_clattach Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_clget Macro for mbuf Kernel Services
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	m_clgetm Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_collapse Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_copy Macro for mbuf Kernel Services
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_copydata Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_copym Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_dereg Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	m_free Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	m_freem Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	m_get Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_getclr Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_getclust Macro for mbuf Kernel Services
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_getclustm Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_gethdr Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	M_HASCL Macro for mbuf Kernel Services
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Example
	Related Information

	m_pullup Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	m_reg Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	md_restart_block_read Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Prerequisite Information
	Related Information

	md_restart_block_upd Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Prerequisite Information
	Related Information

	MTOCL Macro for mbuf Kernel Services
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Related Information

	MTOD Macro for mbuf Kernel Services
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	M_XMEMD Macro for mbuf Kernel Services
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Example
	Related Information

	mycpu Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	net_attach Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	net_detach Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	net_error Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	net_sleep Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	net_start Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	net_start_done Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	net_wakeup Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	net_xmit Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	net_xmit_trace Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	NLuprintf Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ns_add_demux Network Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Return Values
	Related Information

	ns_add_filter Network Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Return Values
	Related Information

	ns_add_status Network Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Return Values
	Related Information

	ns_alloc Network Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Return Values
	Related Information

	ns_attach Network Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Return Values
	Related Information

	ns_del_demux Network Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Return Values
	Related Information

	ns_del_filter Network Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Return Values
	Related Information

	ns_del_status Network Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Return Values
	Related Information

	ns_detach Network Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Return Values
	Related Information

	ns_free Network Service
	Purpose
	Syntax
	Parameters
	Description
	Examples
	Files
	Related Information

	panic Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	pci_cfgrw Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pfctlinput Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	pffindproto Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	pgsignal Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	pidsig Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	pin Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	pin_context_stack or unpin_context_stack Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	pincf Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	pincode Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	pio_assist Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	Process State-Change Notification Routine
	Purpose
	Syntax
	Parameters
	Description
	Related Information

	proch_reg Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Execution Environment
	Related Information

	proch_unreg Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Return Values
	Execution Environment
	Related Information

	prochadd Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Related Information

	prochdel Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Related Information

	probe or kprobe Kernel Service
	Purpose
	Library (for probe)
	Syntax
	Description
	Parameters
	Flags
	Return Values for probe Subroutine
	Return Values for kprobe Kernal Service
	Execution Environment
	Files
	Related Information

	purblk Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	putc Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	putcb Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	putcbp Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	putcf Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	putcfl Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	putcx Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	query_proc_info Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	RAS_BLOCK_NULL Exported Data Structure
	Purpose
	Syntax
	Description
	Related Information

	ras_control Exported Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	ras_customize Exported Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	ras_path_control Exported Kernel Services
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	ras_register and ras_unregister Exported Kernel Services
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	ras_ret_query_parms Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	raschk_eaddr_hkeyset Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	raschk_eaddr_kkey Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	raw_input Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	raw_usrreq Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	reconfig_register, reconfig_register_ext, reconfig_unregister, or reconfig_complete, reconfig_register_list Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	List of dr_kevent_t events
	Return Values
	Execution Environment
	Related Information

	refmon Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	register_HA_handler Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	rmalloc Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	rmfree Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	rmmap_create Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	rmmap_getwimg Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	rmmap_remove Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	rtalloc Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	rtalloc_gr Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	rtfree Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	rtinit Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	rtredirect Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	rtrequest Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	rtrequest_gr Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	rusage_incr Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	schednetisr Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	selnotify Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	selreg Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Returns Values
	Related Information

	set_pag or set_pag64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	setioctlrv Subroutine
	Purpose
	Syntax
	Parameters
	Description
	Return Values
	Error Codes

	setjmpx Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	setpinit Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	setuerror Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Codes
	Related Information

	shutdown_notify_reg Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	shutdown_notify_unreg Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	sig_chk Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	simple_lock or simple_lock_try Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	simple_lock_init Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	simple_unlock Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	sleep Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	subyte Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	suser Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	suword Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	talloc Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	tfree Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	thread_create Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	thread_self Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	thread_setsched Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	thread_set_smt_priority or thread_read_smt_priority System Call
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Error Codes

	thread_terminate Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	timeout Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	timeoutcf Subroutine for Kernel Services
	Purpose
	Library
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	trc_ishookon Exported Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	trcgenk Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	trcgenkt Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	trcgenkt Kernel Service for Data Link Control (DLC) Devices
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	tstart Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	tstop Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	tuning Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples

	ue_proc_check Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	ue_proc_register Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	ue_proc_unregister Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	uexadd Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	User-Mode Exception Handler for the uexadd Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	uexblock Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	uexclear Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	uexdel Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	ufdcreate Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Removing a File Descriptor
	File Operations
	Execution Environment
	Return Values
	Error Codes
	Related Information

	ufdgetf Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ufdhold and ufdrele Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	uiomove Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	unlock_enable Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	unlockl Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Example
	Related Information

	unpin Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	unpincode Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	unregister_HA_handler Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	untimeout Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	uphysio Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	uphysio Kernel Service mincnt Routine
	Purpose
	Syntax
	Parameters
	Description
	Related Information

	uprintf Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ureadc Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	uwritec Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	validate_pag or validate_pag64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	vec_clear Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vec_init Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	vfsrele Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vm_att Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_cflush Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_det Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Related Information

	vm_flushp Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_galloc Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vm_gfree Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vm_guatt Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	vm_gudet Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Implementation Specifics
	Related Information

	vm_handle Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_invalidatep Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_ioaccessp Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Flags
	Execution Environment
	Return Values
	Related Information

	vm_makep Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_mount Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_mounte Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Flags
	Execution Environment
	Return Values
	Related Information

	vm_move Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_mvc Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Flags
	Execution Environment
	Return Values
	Related Information

	vm_pattr System Call and kvm_pattr Kernel Service
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	vm_protect_kkey Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_protectp Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vm_qmodify Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vm_qpages Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_readp Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_release Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vm_releasep Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vm_segmap Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_setdevid Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_setseg_kkey Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_thrpgio_pop Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_thrpgio_push Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vms_create Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vms_delete Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vms_iowait, vms_iowaitf Kernel Services
	Purpose
	Syntax
	Parameter
	Description
	Flags
	Execution Environment
	Return Values
	Related Information

	vm_uiomove Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_umount Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vm_write Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vm_writep Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vn_free Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vn_get Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	waitcfree Kernel Service
	Purpose
	Syntax
	Description
	Execution Environment
	Return Values
	Related Information

	waitq Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	WPAR_CKPT_QUERY (Checkpoint Query) Device Driver ioctl Operation
	Purpose
	Syntax
	Parameters
	Description
	wpar_ckpt_resp_t structure
	wpar_ckpt_op_t structure
	wpar_ckpt_op_t op field
	Return Values
	Related Information

	w_clear Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	w_init Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	w_start Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	w_stop Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	xlate_create Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Execution Environment
	Related Information

	xlate_pin Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Execution Environment
	Related Information

	xlate_remove Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Execution Environment
	Related Information

	xlate_unpin Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	xm_det Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	xm_mapin Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Execution Environment
	Related Information

	xm_maxmap Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	xmalloc Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	xmattach Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	xmdetach Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	xmemdma Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	xmemdma64 Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Error Codes
	Related Information

	xmempin Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	xmemunpin Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	xmemzero Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	xmemin Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	xmemout Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	xmempsize Kernel Service
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	xmfree Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	xmgethkeyset Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	xmsethkeyset Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	Chapter 2. Device Driver Operations
	Standard Parameters to Device Driver Entry Points
	Purpose
	Description
	The devno Parameter
	The chan Parameter
	The ext Parameter
	Related Information

	buf Structure
	Purpose
	Introduction to Kernel Buffers
	buf Structure Variables for Block I/O
	Related Information

	bufx Structure
	Purpose
	Description
	bufx Structure Variables for Block I/O
	Related Information

	Character Lists Structure
	Using a Character List
	Related Information

	uio Structure
	Purpose
	Introduction
	Description
	Related Information

	ddclose Device Driver Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ddconfig Device Driver Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	dddump Device Driver Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ddioctl Device Driver Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	ddmpx Device Driver Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ddopen Device Driver Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ddread Device Driver Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ddrevoke Device Driver Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Files
	Related Information

	ddselect Device Driver Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	ddstrategy Device Driver Entry Point
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	ddwrite Device Driver Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	Select/Poll Logic for ddwrite and ddread Routines
	Description
	Related Information

	Chapter 3. File System Operations
	List of Virtual File System Operations
	vfs_aclxcntl Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vfs_cntl Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vfs_hold or vfs_unhold Kernel Service
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values

	vfs_init Entry Point
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vfs_mount Entry Point
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vfs_root Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vfs_search Kernel Service
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values

	vfs_statfs Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vfs_sync Entry Point
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vfs_umount Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vfs_vget Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_access Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_close Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_create Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_create_attr Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_fclear Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_fid Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_finfo Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_fsync, vnop_fsync_range Entry Points
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_ftrunc Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_getacl Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vnop_getattr Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_getxacl Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vnop_hold Entry Point
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_ioctl Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_link Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_lockctl Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_lookup Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_map Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_map_lloff Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_memcntl Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_mkdir Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_mknod Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_open Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_rdwr, vnop_rdwr_attr Entry Points
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_readdir Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_readdir_eofp Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_readlink Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_rele Entry Point
	Purpose
	Syntax
	Parameter
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_remove Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_rename Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_revoke Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_rmdir Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_seek Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_select Entry Point
	Purpose
	Syntax
	Parameters
	Description
	Execution Environment
	Return Values
	Related Information

	vnop_setacl Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vnop_setattr Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vnop_setxacl Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vnop_strategy Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	vnop_symlink Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	vnop_unmap Entry Point
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	Appendix. Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Readers’ Comments — We′d Like to Hear from You

