
AIX Version 7.1

Technical Reference: Communications,
Volume 3

SC23-6777-00

���

AIX Version 7.1

Technical Reference: Communications,
Volume 3

SC23-6777-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 53.

First Edition (September 2010)

This edition applies to AIX Version 7.1 and to all subsequent releases and modifications until otherwise indicated in
new editions.

A reader's comment form is provided at the back of this publication. If the form has been removed, address
comments to Information Development, Department 04XA-905-6B013, 11501 Burnet Road, Austin, Texas 78758-3400.
To send comments electronically, use this commercial Internet address: pserinfo@us.ibm.com. Any information that
you supply may be used without incurring any obligation to you.

© Copyright IBM Corporation 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Highlighting v
Case-sensitivity in AIX v
ISO 9000. v
Related Publications vi

Technical Reference: Communications,
Volume 3 1
Introduction 1

Scope 1
Terms. 1

Hardware considerations 1
Software considerations. 2

Libraries 2
Configuration 2
Commands 2

Communication Manager Overview 3
Resources (objects) operated on by Verbs 4

Available communication operations 4
Transport modes 5

Connection Establishment through RDMA_CM . . . 5
Client Operation 5
Server Operation 6

Open sources connection setup application examples 7
Rping. 7
An example using RDMA_CM module 7

Verbs API 13
Functions (Verbs) 14

Librdmacm Library 14
Libibverbs 31

Notices 53
Trademarks 55

Index 57

© Copyright IBM Corp. 2010 iii

iv AIX Version 7.1: Technical Reference: Communications, Volume 3

About this document

This book provides experienced C programmers with complete detailed information about programming
with OFED (Open Fabrics Enterprise Distribution) verbs over iWARP/RNIC fabrics in AIX®.

To use the book effectively, you should be familiar with commands, system calls, subroutines, file
formats, and special files. This publication is also available on the documentation CD that is shipped with
the operating system.

This book is part of the six-volume technical reference set, AIX Version 6.1 Technical Reference, that
provides information on system calls, kernel extension calls, and subroutines in the following volumes:
v AIX Version 6.1 Technical Reference: Base Operating System and Extensions Volume 1 and AIX Version

6.1 Technical Reference: Base Operating System and Extensions Volume 2 provide information on
system calls, subroutines, functions, macros, and statements associated with base operating system
runtime services.

v AIX Version 6.1 Technical Reference: Communications Volume 1 and AIX Version 6.1 Technical
Reference: Communications Volume 2 provide information on entry points, functions, system calls,
subroutines, and operations related to communications services.

v AIX Version 6.1 Technical Reference: Kernel and Subsystems Volume 1 and AIX Version 6.1 Technical
Reference: Kernel and Subsystems Volume 2 provide information about kernel services, device driver
operations, file system operations, subroutines, the configuration subsystem, the communications
subsystem, the low function terminal (LFT) subsystem, the logical volume subsystem, the M-audio
capture and playback adapter subsystem, the printer subsystem, the SCSI subsystem, and the serial
DASD subsystem.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items whose names are
predefined by the system. Also identifies graphical objects such as buttons, labels, and icons that the user
selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see displayed,
examples of portions of program code similar to what you might write as a programmer, messages from
the system, or information you should actually type.

Case-sensitivity in AIX
Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the
system responds that the command is not found. Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 2010 v

Related Publications
v Operating system and device management
v Networks and communication management
v AIX Version 6.1 General Programming Concepts: Writing and Debugging Programs
v AIX Version 6.1 Communications Programming Concepts
v AIX Version 6.1 Kernel Extensions and Device Support Programming Concepts
v AIX Version 6.1 Files Reference

vi AIX Version 7.1: Technical Reference: Communications, Volume 3

Technical Reference: Communications, Volume 3

Experienced C programmers can find complete detailed information about programming with OFED
(Open Fabrics Enterprise Distribution) verbs over iWARP/RNIC fabrics in AIX.

To use the information effectively, you must be familiar with commands, system calls, subroutines, file
formats, and special files. This topic is also available on the documentation CD that is shipped with the
operating system.

To view or download the PDF version of this topic, select Technical Reference: Communications, Volume
3.

Downloading Adobe Reader: You need Adobe® Reader installed on your system to view or print this
PDF. You can download a free copy from the Adobe website (www.adobe.com/products/acrobat/
readstep.html).

Introduction
The Technical Reference: Communications, Volume 3 book enables you to get started with OFED RNIC
verbs programming over Chelsio RDMA RNIC fabrics in the AIX operating system. It enables
applications that require high throughput and low latency to use the RDMA feature to the best.

Scope
The scope of this document is to give information on how to get started with the programming of OFED
verbs over Chelsio RDMA iWARP/RNIC fabrics in the AIX operating system. The OFED programming
enables applications that require high throughput and low latency to take advantage of RDMA.

Note: The verb layer for OFED verbs are common for iWARP, the InfiniBand architecture, and verbs
derived from the InfiniBand architecture. Many InfiniBand terms are used but a few are not implemented
for iWARP.

Terms
You can find the list of terms and their full forms used in the Technical Reference: Communications,
Volume 3 book.

CM Communications Manager

iWARP Internet Wide Area RDMA Protocol also known as RDMA over Ethernet

RDMA Remote Direct Memory Access

RNIC RDMA Network Interface Controller (RNIC) - A network I/O adapter or embedded controller with
iWARP, and Verbs functionality

OFED Open Fabrics Enterprise Distribution

VERB Abstract definition of functionality; not an API

Hardware considerations
AIX platforms support RDMA Network Interface Controller (RNIC) with 10 Gbps Internet Wide Area
RDMA Protocol (iWARP), also called as RDMA over IP or ethernet.

© Copyright IBM Corp. 2010 1

Software considerations
The AIX OFED Verbs is based on the OFED 1.4 code of OpenFabrics Alliance. Currently, only
iWARP/RNIC is supported. The 32-bit, and 64-bit user applications are supported. The following libraries
are linked with the application.
v Librdmacm
v Libibverbs

Libraries

Librdmacm
The librdmacm library provides the connection management functionality and a generic RDMA set of
CM interfaces that runs over iWARP .

A single /dev/rdma/rdma_cm device node is used by the user space to communicate with the kernel,
regardless of the number of adapters or ports present.

Applications that wish to run over any RDMA device must use this library.

Libibverbs
Libibverbs is a library that enables user-space processes to use RDMA verbs.

Libibverbs is a library that enables user-space processes to use RDMA verbs as described in the
InfiniBand Architecture Specification (see, http://www.infinibandta.org) and the RDMA Protocol Verbs
Specification (see, http://tools.ietf.org/html/draft-hilland-rddp-verbs-00).

Several /dev/rdma/uverbsN character device nodes are used to handle communication between the library
libibverbs and the kernel ib_uverbs layer. There is one such device per RNIC adapter registered with
OFED core (uverbs1, uverbs2, etc). The library writes commands corresponding to the verb to execute on
the appropriate device.

Configuration
A file named cxgb3.driver must exist in the directory /etc/libibverbs.d, which enables you to use the
driver for the Chelsio T3 Ethernet adapter 10 GB iWARP, by default.

The cxgb3.driver file must contain the following code:
cat /etc/libibverbs.d/cxgb3.driver
driver cxgb3

Use the environment variable IBV_CONFIG_DIR to use another directory than the /etc/libibverbs.d/
directory.

Commands

ibv_devices command
Lists the RDMA devices available for use from user space.

ibv_devinfo command
Prints information about RNIC devices available for use from user space.

Syntax
ibv_devinfo [-v] { [-d<dev>] [-i<port>] } | [-l]

Flags

2 AIX Version 7.1: Technical Reference: Communications, Volume 3

http://www.infinibandta.org
http://tools.ietf.org/html/draft-hilland-rddp-verbs-00

-d dev Uses RDMA device <dev> (default first device found).
-i port Uses port <port> of RDMA device (default all ports).
-l Prints only the RDMA devices name.
-v Prints all the attributes of the RDMA device(s).

ofedctrl command
Loads and unloads the kernel extension, ofed_core.

Syntax
ofedctrl { [-k <kernext-name>] -l | u | q } | -h

Flags

-k kernext-name Specifies the kernel extension path. The default is /usr/lib/drivers/ofed_core.
-l Loads the kernext.
-u Unloads the kernext.
-q Indicates whether the kernext is loaded or not.
-h Specifies the usage.

rping command
Tests the RDMA CM connection by using the RDMA ping-pong test.

Syntax
rping -s [-v] [-V] [-d] [-P] [-a address] [-p port] [-C message_count] [-S message_size]

rping -c [-v] [-V] [-d] -a address [-p port] [-C message_count] [-S message_size]

Description

The rping command establishes a reliable RDMA connection between two nodes using the librdmacm
library. Optionally the rping command also performs RDMA transfers between the nodes, then
disconnects.

Flags

-s Runs as the server.
-c Runs as the client.
-a address Specifies the network address to bind the connection to, on the server and specifies the server address to

connect to, on the client.
-p Specifies the port number for the listening server.
-v Displays the ping data.
-V Validates the ping data.
-d Displays the debug information.
-C message_count Specifies the number of messages to transfer over each connection. By default, the value is infinite.
-S message_size Specifies the size of each message transferred, in bytes. By default, the value is 100.
-P Runs the server in persistent mode. This allows multiple rping clients to connect to a single server instance

and the server will run until the instance is killed.

Communication Manager Overview
The communication manager (RDMA_CM) is used to setup reliable connection data transfers.

The communication manager provides an RDMA transport neutral interface for establishing connections.
The API is based on sockets, but adapted for queue pair (QP) based semantics: communication is over a
specific RDMA device, and data transfers are message based.

Technical Reference: Communications, Volume 3 3

The RDMA CM via the librdmacm library provides only the communication management (connection
setup and teardown) portion of an RDMA API. It works in conjunction with the verbs API via the
libibverbs library for data transfers.

Resources (objects) operated on by Verbs
You can find the list of resources and their descriptions operated on by verbs.

Completion Queue (CQ):
A queue (FIFO) which contains CQEs. Associated with a queue pair, they are used to receive
completion notifications and events.

Completion Queue Entry (CQE):
An entry in the CQ that describes the information about the completed WR (status, size, etc.)

Event Channel:
Used to report communication events. Each event channel is mapped to a file descriptor. The
associated file descriptor can be used and manipulated like any other fd to change its behavior.
Users may make the fd non-blocking, poll, or select the fd, etc.

Memory Region (MR):
A set of memory buffers that are already registered with access permissions. These buffers require
registration in order for the network adapter to make use of them.

Protection Domain (PD):
Protection domains enable a client to associate multiple resources, such as queue pairs, and
memory regions, within a domain of trust. The client can then grant access rights for
sending/receiving data within the protection domain to others that are on the RDMA fabric.

Queue Pair (QP):
Queue pairs (QPs) contain a send queue, for sending outbound messages and requesting RDMA
operations, and a receive queue for receiving incoming messages or immediate data.

Scatter /Gather Elements (SGE):
An entry to a pointer to a full or a part of a local registered memory block. The element holds the
start address of the block, size, and lkey (with its associated permissions).

S/G Array:
An array of S/G elements which exists in a Work Request (WR) that according to the used
opcode either collects data from multiple buffers and sends them as a single stream or takes a
single stream and breaks it down to numerous buffers.

Work Queue (WQ):
Send Queue or Receive Queue.

Work Queue Element (WQE):
An element in a work queue.

Work Request (WR):
A request that was posted by a user to a work queue.

Available communication operations

Send / Send with immediate
The send operation enables you to send data to the receive queue of a remote QP. The receiver must have
previously posted a receive buffer to receive the data. The sender does not have any control over where
the data resides in the remote host.

Optionally, an immediate 4 byte value is transmitted with the data buffer. This immediate value is
presented to the receiver as part of the receive notification, and is not contained in the data buffer.

4 AIX Version 7.1: Technical Reference: Communications, Volume 3

Receive
The receive operation is the corresponding operation to a send operation. The receiving host is notified
that a data buffer has been received with an inline immediate value. The receiving application is
responsible for receive buffer maintenance and posting.

RDMA read
The RDMA read operation reads a memory region from the remote host. You must specify the remote
virtual address and a local memory address where the read information is copied. Prior to performing
the RDMA operations, the remote host must provide appropriate permissions to access its memory. Once
these permissions are set, RDMA read operations are conducted with no notification to the remote host.

RDMA write / RDMA write with immediate
The RDMA write operation is similar to the RDMA read operation, but the data is written to the remote
host. RDMA write operations are performed with no notification to the remote host. RDMA write with
immediate operations do notify the remote host of the immediate value.

Atomic Operations
The atomic operations are not supported by the iWARP specifications.

The InfiniBand architecture supports these operations.

Note: The InfiniBand architecture is not supported now.

Transport modes
Transport modes supports only Reliable Connection (RC).

The available transport modes are:
v Queue Pair is associated with only one other QP.
v Messages transmitted by the send queue of one QP are reliably delivered to receive queue of the other

QP.
v Packets are delivered in a order.
v An RC connection is very similar to a TCP connection.

Connection Establishment through RDMA_CM
The RDMA CM only provides the communication management (connection setup and teardown) portion
of an RDMA API. It works in conjunction with the verbs API defined by the libibverbs library. The
libibverbs library provides the interfaces required to send and receive data.

Client Operation
The client operation section provides a general overview of the basic operation for the active, or client
side of communication.

A general connection flow is described in the following:

rdma_create_event_channel
Creates a channel to receive events.

rdma_create_id
Allocates an rdma_cm_id that is conceptually similar to a socket.

rdma_resolve_addr
Obtains a local RDMA device to reach the remote address.

rdma_get_cm_event
Waits for the RDMA_CM_EVENT_ADDR_RESOLVED event.

Technical Reference: Communications, Volume 3 5

rdma_ack_cm_event
Acknowledges the received event.

rdma_create_qp
Allocates a QP for the communication.

rdma_resolve_route
Determines the route to the remote address.

rdma_get_cm_event
Waits for the RDMA_CM_EVENT_ROUTE_RESOLVED event.

rdma_ack_cm_event
Acknowledges the received event.

rdma_connect
Connects to the remote server.

rdma_get_cm_event
Waits for the RDMA_CM_EVENT_ESTABLISHED event.

rdma_ack_cm_event
Acknowledges the received event.

Performs data transfer over the connection.

rdma_disconnect
Tears down the connection.

rdma_get_cm_event
Waits for the RDMA_CM_EVENT_DISCONNECTED event.

rdma_ack_cm_event
Acknowledges the event.

rdma_destroy_qp
Destroys the QP.

rdma_destroy_id
Releases the rdma_cm_id.

rdma_destroy_event_channel
Releases the event channel.

Note: The example shows the client initiating the disconnect, but either side of a connection might
initiate the disconnect process.

Server Operation
This section provides a general overview of the basic operation for the passive, or server, side of
communication.

A general connection flow would be:

rdma_create_event_channel
Creates a channel to receive events.

rdma_create_id
Allocates an rdma_cm_id that is conceptually similar to a socket.

rdma_bind_addr
Sets the local port number to listen on.

rdma_listen
Begins listening for connection requests.

6 AIX Version 7.1: Technical Reference: Communications, Volume 3

rdma_get_cm_event
Waits for the RDMA_CM_EVENT_CONNECT_REQUEST event with a new rdma_cm_id.

rdma_create_qp
Allocates a QP for the communication on the new rdma_cm_id.

rdma_accept
Accepts the connection request.

rdma_ack_cm_event
Acknowledges the event.

rdma_get_cm_event
Waits for the RDMA_CM_EVENT_ESTABLISHED event.

rdma_ack_cm_event
Acknowledges the event.

Performs the data transfer over the connection.

rdma_get_cm_event
Waits for the RDMA_CM_EVENT_DISCONNECTED event.

rdma_ack_cm_event
Acknowledges the event.

rdma_disconnect
Tears down the connection.

rdma_destroy_qp
Destroys the QP.

rdma_destroy_id
Releases the connected rdma_cm_id.

rdma_destroy_id
Releases the listening rdma_cm_id.

rdma_destroy_event_channel
Releases the event channel.

Open sources connection setup application examples
The best way to start the OFED programming is to go through the libibverbs and librdmacm man pages
along with some code examples and doing some runs. Specifically, the rping command example that uses
both libibverbs and librdmacm for the connected service.

Rping
The rping command sets an RDMA CM connection and does an RDMA ping-pong test.

You can find more information on the rping command in Open Source OpenFabrics Alliance OFED 1.4 at
http://www.openfabrics.org/

An example using RDMA_CM module
You can find a simple example presented to the OFED community during the LinuxConf.eu 2007.

You can find a simple example presented to the OFED community during the LinuxConf.eu 2007 at
http://www.digitalvampire.org/rdma-tutorial-2007/

Client (active) example
An example where the client is active.

Technical Reference: Communications, Volume 3 7

http://www.openfabrics.org/
http://www.digitalvampire.org/rdma-tutorial-2007/

/*
* build:
* cc -o client client.c -lrdmacm -libverbs
*
* usage:
* client <servername> <val1> <val2>
*
* connects to server, sends val1 via RDMA write and val2 via send,
* and receives val1+val2 back from the server.
*/

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <arpa/inet.h>

#include <rdma/rdma cma.h>
enum {

RESOLVE TIMEOUT MS = 5000,
};
struct pdata {

uint64_t buf va;
uint32_t buf rkey;

};

int main(int argc, char *argv[])
{

struct pdata server pdata;
struct rdma_event channel *cm_channel;
struct rdma_cm_id *cm_id;
struct rdma_cm_event *event;
struct rdma_conn_param conn_param = { };
struct ibv_pd *pd;
struct ibv_comp_channel *comp_chan;
struct ibv_cq *cq;
struct ibv_cq *evt_cq;
struct ibv_mr *mr;
struct ibv_qp_init_attr qp attr = { };
struct ibv_sge sge;
struct ibv_send_wr send_wr = { };
struct ibv_send_wr *bad send wr;
struct ibv_recv_wr recv wr = { };
struct ibv_recv_wr *bad recv wr;
struct ibv_wc wc;
void *cq context;
struct addrinfo *res, *t;
struct addrinfo hints = {

.ai_family = AF INET,

.ai_socktype = SOCK STREAM
};

int n;
uint32_t *buf;
int err;
/* Set up RDMA CM structures */
cm_channel = rdma_create_event_channel();
if (!cm_channel) return 1;
err = rdma_create_id(cm_channel, &cm_id, NULL, RDMA_PS_TCP);
if (err)

return err;
n = getaddrinfo(argv[1], "20079", &hints, &res);
if (n < 0)

return 1;

/* Resolve server address and route */

8 AIX Version 7.1: Technical Reference: Communications, Volume 3

for (t = res; t; t = t->ai next) {
err = rdma_resolve_addr(cm_id, NULL, t->ai_addr, RESOLVE_TIMEOUT_MS);
if (!err)

break;
}
if (err)

return err;
err = rdma_get_cm_event(cm_channel, &event);
if (err)

return err;
if (event->event != RDMA_CM_EVENT_ADDR_RESOLVED)

return 1;
rdma_ack_cm_event(event);
err = rdma_resolve_route(cm_id, RESOLVE_TIMEOUT_MS);
if (err)

return err;
err = rdma_get_cm_event(cm_channel, &event);
if (err)

return err;
if (event->event != RDMA_CM_EVENT_ROUTE_RESOLVED)

return 1;
rdma_ack_cm_event(event);

/* Create verbs objects now that we know which device to use */
pd = ibv_alloc_pd(cm_id->verbs);
if (!pd)

return 1;
comp chan = ibv_create_comp_channel(cm_id->verbs);
if (!comp_chan)

return 1;
cq = ibv_create_cq(cm_id->verbs, 2,NULL, comp_chan, 0);
if (!cq)

return 1;

if (ibv_req_notify_cq(cq, 0))
return 1;

buf = calloc(2, sizeof (uint32_t));
if (!buf)

return 1;
mr = ibv_reg_mr(pd, buf,2 * sizeof(uint32_t), IBV_ACCESS_LOCAL_ WRITE);
if (!mr)

return 1;
qp_attr.cap.max send_wr = 2;
qp_attr.cap.max send_sge = 1;
qp_attr.cap.max recv_wr = 1;
qp_attr.cap.max recv_sge = 1;
qp_attr.send_cq = cq;
qp_attr.recv_cq = cq;
qp_attr.qp_type = IBV_QPT_RC;
err = rdma_create_qp(cm_id, pd, &qp_attr);
if (err)

return err;
conn_param.initiator_depth = 1;
conn_param.retry_count = 7;

/* Connect to server */
err = rdma_connect(cm_id, &conn_param);
if (err)

return err;
err = rdma_get_cm_event(cm_channel,&event);
if (err)

return err;
if (event->event != RDMA_CM_EVENT_ESTABLISHED)

return 1;
memcpy(&server_pdata, event->param.conn.private_data, sizeof server_pdata);
rdma_ack_cm_event(event);

Technical Reference: Communications, Volume 3 9

/* Prepost receive */
sge.addr = (uintptr_t) buf;
sge.length = sizeof (uint32_t);
sge.lkey = mr->lkey;
recv_wr.wr_id = 0;
recv_wr.sg_list = &sge;
recv_wr.num_sge = 1;
if (ibv_post_recv(cm_id->qp, &recv_wr, &bad_recv_wr))

return 1;

/* Write/send two integers to be added */
buf[0] = strtoul(argv[2], NULL, 0);
buf[1] = strtoul(argv[3], NULL, 0);
printf("%d + %d = ", buf[0], buf[1]);
buf[0] = htonl(buf[0]);
buf[1] = htonl(buf[1]);

sge.addr = (uintptr_t) buf;
sge.length = sizeof (uint32_t);
sge.lkey = mr->lkey;
send_wr.wr_id = 1;
sendwr.opcode = IBV_WR_RDMA_WRITE;
send _wr.sg_list = &sge;
send_wr.num_sge = 1;
send_wr.wr.rdma.rkey = ntohl(server_pdata.buf_rkey);
send_wr.wr.rdma.remote_addr = ntohll(server_pdata.buf_va);
if (ibv post send(cm id->qp, &send_wr, &bad_send_wr))

return 1;
sge.addr = (uintptr_t) buf + sizeof (uint32_t);
sge.length = sizeof (uint32_t);
sge.lkey = mr->lkey;
send_wr.wr_id = 2;
send_wr.opcode = IBV_WR_SEND;
send_wr.send_flags = IBV_SEND_SIGNALED;
send_wr.sg_list =&sge;
send_wr.num_sge = 1;
if (ibv_post_send(cm_id->qp, &send_wr,&bad_send_wr))

return 1;

/* Wait for receive completion */
while (1) { if (ibv_get_cq_event(comp_chan,&evt_cq, &cq_context))

return 1;
if (ibv_req_notify_cq(cq, 0))

return 1;
if (ibv_poll_cq(cq, 1, &wc) != 1)

return 1;
if (wc.status != IBV_WC_SUCCESS)

return 1;
if (wc.wr_id == 0) {

printf("%d\n", ntohl(buf[0]));
return 0;

}
}
return 0;

}

Server (passive) example
/*
* build:
* cc -o server server.c -lrdmacm -libverbs
*
* usage:
* server
*
* waits for client to connect, receives two integers, and sends their
* sum back to the client.

10 AIX Version 7.1: Technical Reference: Communications, Volume 3

*/
#include <stdlib.h>
#include <stdint.h>
#include <arpa/inet.h>
#include <rdma/rdma cma.h>
enum {

RESOLVE_TIMEOUT_MS = 5000,
};

struct pdata {
uint64_t buf_va;
uint32_t buf_rkey;

};
int main(int argc, char *argv[])
{

struct pdata rep_pdata;
struct rdma_event_channel *cm_channel;
struct rdma_cm_id *listen_id;
struct rdma_cm_id *cm_id;
struct cm_event *event;
struct rdma_conn_param conn_param = { };
struct ibv_pd *pd;
struct ibv_comp_channel *comp_chan;
struct ibv_cq *cq;
struct ibv_cq *evt_cq;
struct ibv_mr *mr;
struct qp_init_attr qp_attr = { };
struct ibv_sge sge;
struct ibv_send_wr send_wr = { };
struct ibv_send_wr *bad_send_wr;
struct ibv_recv_wr recv_wr = { };
struct recv_wr *bad_recv_wr;
struct ibv_wc wc;
void *cq_context;
struct sockaddr_in sin;
uint32_t *buf;
int err;

/* Set up RDMA CM structures */
cm_channel = rdma_create_event_channel();
if (!cm_channel)

return 1;
err = rdma_create_id(cm_channel,&listen_id, NULL, RDMA_PS_TCP);
if (err)

return err;
sin.sin_family = AF_INET;
sin.sin_port = htons(20079);
sin.sin_addr.s_addr = INADDR_ANY;

7
/* Bind to local port and listen for connection request */
err = rdma_bind_addr(listen_id, (struct sockaddr *) &sin);
if (err)

return 1;
err = rdma_listen(listen_id, 1);
if (err)

return 1;
err = rdma_get_cm_event(cm_channel, &event);
if (err)

return err;
if (event->event != RDMA_CM_EVENT_CONNECT_REQUEST)

return 1;
cm_id = event->id;
rdma_ack_cm_event(event);

/* Create verbs objects now that we know which device to use */
pd = ibv_alloc_pd(cm_id->verbs);
if (!pd)

Technical Reference: Communications, Volume 3 11

return 1;
comp_chan = ibv_create_comp_channel(cm_id->verbs);
if (!comp_chan)

return 1;
cq = ibv_create_cq(cm_id->verbs, 2, NULL, comp_chan, 0);
if (!cq)

return 1;
if (ibv_req_notify_cq(cq, 0))

return 1;
buf = calloc(2, sizeof (uint32_t));
if (!buf)

return 1;
mr = ibv_reg_mr(pd, buf, 2 * sizeof (uint32_t),

IBV_ACCESS_LOCAL_WRITE |
IBV_ACCESS_REMOTE_READ |
IBV_ACCESS_REMOTE_WRITE);

if (!mr)
return 1;

qp_attr.cap.max_send_wr = 1;
qp_attr.cap.max_send_sge = 1;
qp_attr.cap.max_recv_wr = 1;
qp_attr.cap.max_recv_sge = 1;
qp_attr.send_cq = cq;
qp_attr.recv_cq = cq;
qp_attr.qp_type = IBV_QPT_RC;

err = rdma_create_qp(cm_id, pd, &qp_attr);
if (err)

return err;

/* Post receive before accepting connection */
sge.addr = (uintptr_t) buf + sizeof (uint32_t);
sge.length = sizeof (uint32_t);
sge.lkey = mr->lkey;
recv_wr.sg_list = &sge;
recv_wr.num_sge = 1;
if (ibv_post_recv(cm_id->qp, &recv_wr, &bad_recv_wr))

return 1;
rep_pdata.buf_va = htonll((uintptr_t) buf);
rep_pdata.buf_rkey = htonl(mr->rkey);
conn_param.responder_resources = 1;
conn_param.private_data = &rep_pdata;
conn_param.private_data_len = sizeof rep_pdata;

/* Accept connection */
err = rdma_accept(cm_id, &conn_param);
if (err)

return 1;
err = rdma_get_cm_event(cm_channel, &event);
if (err)

return err;
if (event->event != RDMA_CM_EVENT_ESTABLISHED)

return 1;
rdma_ack_cm_event(event);

/* Wait for receive completion */
if (ibv_get_cq_event(comp_chan, &evt_cq, &cq_context))

return 1;
if (ibv_req_notify_cq(cq, 0))

return 1;
if (ibv_poll_cq(cq, 1, &wc) < 1)

return 1;
if (wc.status != IBV_WC_SUCCESS)

return 1;

/* Add two integers and send reply back */

12 AIX Version 7.1: Technical Reference: Communications, Volume 3

buf[0] = htonl(ntohl(buf[0]) + ntohl(buf[1]));
sge.addr = (uintptr_t) buf;
sge.length = sizeof (uint32_t);
sge.lkey = mr->lkey;

send_wr.opcode = IBV_WR_SEND;
send_wr.send_flags = IBV_SEND_SIGNALED;
send_wr.sg_list = &sge;
send_wr.num_sge = 1;
if (ibv_post_send(cm id->qp, &send_wr, &bad_send_wr))

return 1;

/* Wait for send completion */
if (ibv_get_cq_event(comp_chan, &evt_cq, &cq_context))

return 1;
if (ibv_poll_cq(cq, 1, &wc) < 1)

return 1;
if (wc.status != IBV_WC_SUCCESS)

return 1;
ibv_ack_cq_events(cq, 2);

return 0;
}

Verbs API
If an AIX application needs to determine which verbs API to use (OFED iWARP/RNIC verbs or AIX IB
verbs) to communicate with a specific destination, here is an example in pseudo-code, to test the result of
the rdma_resolve_addr command on the required remote address to know if OFED iWARP/RNIC verbs
can be used.

The code returns:
v 0, if the destination is reachable using OFED iWARP/RNIC verbs.
v An error, if the communication with the destination cannot be established through an RNIC device, but

might be possible with the InfiniBand architecture.
/*The following check_ofed_verbs_support routine does:
/* - Call rdma_create_event_channel to open a channel event */
/* - Calls rdma_create_id() to get a cm_id */
/* - And then calls rdma_resolve_addr() */
/* - Get the communication event */
/* - Returns the event status: */
/* 0: OK */
/* error: NOK output device may be not a RNIC device */
/* - Calls rdma_destroy_id() to delete the cm_id created */
/* - Call rdma_destroy_event_channel to close a channel event */

int check_ofed_verbs_support (struct sockaddr *remoteaddr)
{

struct rdma_event channel *cm_channel;
struct rdma_cm_id *cm_id;
int ret=0;
cm_channel = rdma_create_event_channel();
if (!cm_channel) {

fprintf(stderr,"rdma_create_event_channel error\n");
return -1;

}
ret = rdma_create_id(cm_channel, &cm_id, NULL, RDMA_PS_TCP);
if (ret) {

fprintf(stderr,"rdma_create_id: %d\n", ret);
rdma_destroy_event_channel(cm_channel);
return(ret);

}
ret = rdma_resolve_addr(cm_id, NULL, remoteaddr, RESOLVE_TIMEOUT_MS);
if (ret) {

fprintf(stderr,"rdma_resolve_addr: %d\n", ret);

Technical Reference: Communications, Volume 3 13

goto out;
}
ret = rdma_get_cm_event(cm_channel, &event);
if (ret) {

fprintf(stderr," rdma_get_cm_event() failed\n");
goto out;

}
ret = event->status;
rdma_ack_cm_event(event);

out:
rdma_destroy_id(cm_id);
rdma_destroy_event_channel(cm_channel);
return(ret);

}

Functions (Verbs)

Librdmacm Library
The API user space is described in the /usr/include/rdma/rdma_cma.h file.

Manual pages have been created to describe the various interfaces and test programs that are available.
For a full list of interfaces and test programs, refer to the rdma_cm manual page.

Returned Error Rules
The librdmacm functions return 0 to indicate success, and a negative value to indicate failure.

If a function operates asynchronously, a return value of 0 means that the operation was successfully
started. The operation might still return an error. You must check the status of the related event. If the
return value is -1, then errno can be examined for additional information of the failure. If the return
value is < -1, then additional error reasons can be obtained by comparing the returned value with the
values listed in include/sys/errno.h.

=0 Success
= -1 Error - see include/sys/errno*.h for errno
< -1 Error - see include/sys/errno*.h

-ENOSYS Non-supported verbs

Supported Verbs
You can find a list of supported verbs.

Event Channel Operations:

rdma_create_event_channel:

Opens a channel that is used to report communication events.

Syntax
#include <rdma/rdma_cma.h>
struct rdma_event_channel *rdma_create_event_channel(void);

Description

The rdma_create_event_channel function reports the asynchronous events through event channels. Each
event channel maps to a file descriptor.

Notes:

14 AIX Version 7.1: Technical Reference: Communications, Volume 3

v Event channels are used to direct all events on an rdma_cm_id. You might require multiple event
channels when you are managing a large number of connections or CM ids.

v All created event channels must be destroyed by calling the rdma_destroy_event_channel function.
You must call the rdma_get_cm_event function to retrieve events on an event channel.

Parameters

void No arguments.

Return Value

The rdma_create_event_channel function returns 0 on success, and NULL if the request fails.

rdma_destroy_event_channel:

Closes an event communication channel.

Syntax
#include <rdma/rdma_cma.h>
void rdma_destroy_event_channel(struct rdma_event_channel *channel);

Description

The rdma_destroy_event_channel function releases all resources associated with an event channel and
closes the associated file descriptor.

Note: All rdma_cm_ids associated with the event channel must be destroyed, and all returned events
must be acknowledged before calling this function.

Parameters

channel Specifies the communication channel to be destroyed.

Return Value

There is no return value.

Connection Manager (CM) ID Operations:

rdma_create_id:

Allocates a communication identifier.

Syntax
#include <rdma/rdma_cma.h>
int rdma_create_id(struct rdma_event_channel *channel, struct rdma_cm_id **id, void *context, enum rdma_port_space ps);

Description

The rdma_create_id function creates an identifier that is used to track communication information.

Notes:

v The rdma_cm_ids are conceptually equivalent to a socket for RDMA communication. The difference is
that the RDMA communication requires explicit binding to a specified RDMA device before
communicating, and most operations are asynchronous in nature.

Technical Reference: Communications, Volume 3 15

v You must release the rdma_cm_id by calling the rdma_destroy_id function.

Port Spaces: RDMA_PS_TCP provides reliable, connection-oriented QP. Unlike TCP, the RDMA port
space provides stream based communication.

Parameters

channel Specifies the communication channel that the events associated with the allocated rdma_cm_id are reported
on.

id Specifies a reference where the allocated communication identifier will be returned.
context Indicates the user specified context associated with the rdma_cm_id.
ps Specifies the RDMA port space.

Return Values

The rdma_create_id function returns the following values:

0 On success.

-1 Error, see errno.

-EINVAL If the channel or id parameter is NULL or unable to query RDMA device.

-EPROTONOSUPPORT ps is not RDMA_PS_TCP.

-ENOMEM There is not enough memory to allocate the id by malloc.

-ENODATA The write operation on channel->fd failed.

-ENODEV Unable to get the RDMA device .

rdma_destroy_id:

Releases a communication identifier.

Syntax
#include <rdma/rdma_cma.h>
int rdma_destroy_id(struct rdma_cm_id *id);

Description

The rdma_destroy_id function destroys the specified rdma_cm_id and cancels any outstanding
asynchronous operation.

Note: You must free any associated QP with the rdma_cm_id before calling the rdma_destroy_id routine
and acknowledge an related events.

Parameters

id Specifies the communication identifier to destroy.

Return Values

The rdma_destroy_id function returns the following values:

16 AIX Version 7.1: Technical Reference: Communications, Volume 3

0 On success.

-1 Error, see errno.

-EINVAL If the channel or id parameter is NULL.

-ENODATA The write operation on id->channel->fd failed.

rdma_migrate_id:

Moves an rdma_cm_id to a new event channel.

Syntax
#include <rdma/rdma_cma.h>
int rdma_migrate_id(struct rdma_cm_id *id, struct rdma_event_channel *channel);

Description

The rdma_migrate_id function migrates a communication identifier to a different event channel and
moves any pending events associated with the rdma_cm_id to the new channel.

Notes:

v You must not poll for events on the rdma_cm_id's current event channel or run any other routines on
the rdma_cm_id while migrating between channels.

v The rdma_migrate_id operation stops if there are any unacknowledged events on the current event
channel.

Parameters

id Specifies the communication identifier to migrate.
channel Specifies the new event channel for the rdma_cm_id events.

Return Values

The rdma_migrate_id function returns the following values:

0 On success.

-1 Error, see errno.

-EINVAL If the channel or id parameter is NULL.

-ENODATA The write operation on channel->fd failed.

rdma_bind_addr:

Binds an RDMA identifier to a source address.

Syntax
#include <rdma/rdma_cma.h>
int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr);

Description

The rdma_bind_addr function associates a source address with an rdma_cm_id. The address might be a
wildcard value. If an rdma_cm_id is bound to a local address, the identifier is also bound to a local
RDMA device.

Notes:

Technical Reference: Communications, Volume 3 17

v The rdma_bind_addr routine is called before calling the rdma_listen routine to bind to a specific port
number. It might also be called on the active side of a connection before calling the rdma_resolve_addr
routine to bind to a specific address.

v If the rdma_bind_addr routine is used to bind to port 0, the rdma_cm selects an available port that can
be retrieved with rdma_get_src_port.

Parameters

id Specifies the RDMA identifier.
addr Specifies the local address information. Wildcard values are permitted.

Return Values

The rdma_bind_addr function returns the following values:

0 On success.

-1 Error, see errno.

-EINVAL If the id parameter is NULL or the family is a Bad Protocol family.

-ENODATA The write operation on id->channel->fd failed.

-ENOMEM The memory is not enough to allocate by malloc.

rdma_resolve_addr:

Resolves the destination and optional source addresses.

Syntax
#include <rdma/rdma_cma.h>
int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, struct sockaddr *dst_addr, int timeout_ms);

Description

The rdma_resolve_addr function resolves the destination and optional source addresses from IP address
to an RDMA address. If successful, the specified rdma_cm_id is bound to a local device.

Notes:

v The rdma_resolve_addr routine is used to map a given destination IP address to a usable RDMA
address. The IP to RDMA address mapping is done using the local routing tables, or via ARP.

v If a source address is given, the rdma_cm_id is bound to that address, and the situation is same as if
rdma_bind_addr was called. If no source address is given, and the rdma_cm_id has not yet been
bound to a device, then the rdma_cm_id will be bound to a source address based on the local routing
tables.

v The rdma_resolve_addr routine is run from the active side of a connection, before calling
rdma_resolve_route and rdma_connect.

Parameters

18 AIX Version 7.1: Technical Reference: Communications, Volume 3

id Specifies the RDMA identifier.
src_addr Specifies the source address information and this parameter might be NULL.
dst_addr Specifies the destination address information.
timeout_ms Specifies the time of resolution.

Return Values

The rdma_resolve_addr function returns the following values:

0 On success.

-1 Error, see errno.

-EINVAL If the id parameter is NULL or the family is a Bad Protocol family.

-ENODATA The write operation on id->channel->fd failed.

rdma_resolve_route:

Resolves the route information required to establish a connection.

Syntax
#include <rdma/rdma_cma.h>
int rdma_resolve_route(struct rdma_cm_id *id, int timeout_ms);

Description

The rdma_resolve_route function resolves an RDMA route to the destination address in order to establish
a connection. The destination address must have already been resolved by calling the rdma_resolve_addr
subroutine.

Note: The rdma_resolve_route routine is called on the client side of a connection, after calling the
rdma_resolve_addr routine, but before calling the rdma_connect routine.

Parameters

id Specifies the RDMA identifier.
timeout_ms Specifies the time of resolution.

Return Values

The rdma_resolve_route function returns the following values:

0 On success.

-1 Error, see errno.

-EINVAL If the id parameter is NULL.

-ENODATA The write operation on id->channel->fd failed.

rdma_connect:

Initiates an active connection request.

Syntax
#include <rdma/rdma_cma.h>
int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param);

Technical Reference: Communications, Volume 3 19

Description

The rdma_connect function initiates a connection request to a remote destination.

Note: You must have resolved a route to the destination address by calling rdma_resolve_route before
calling the rdma_connect routine.

Connection Properties

The following properties are used to configure the communication specified by the conn_param parameter
when connecting or establishing a datagram communication.

private_data:
References a user-controlled data buffer. The contents of the buffer are copied and transparently
passed to the remote side as part of the communication request. private_data might be NULL if it
is not required.

private_data_len:
Specifies the size of the user-controlled data buffer.

responder_resources:
The maximum number of outstanding RDMA read operations that the local side accepts from the
remote side. Applies only to RDMA_PS_TCP. The responder_resources value must be less than or
equal to the local RDMA device attribute max_qp_rd_atom and remote RDMA device attribute
max_qp_init_rd_atom. The remote endpoint can adjust this value when accepting the connection.

initiator_depth:
The maximum number of outstanding RDMA read operations that the local side has to the
remote side. Applies only to RDMA_PS_TCP. The initiator_depth value must be less than or
equal to the local RDMA device attribute max_qp_init_rd_atom and remote RDMA device
attribute max_qp_rd_atom. The remote endpoint can adjust this value when accepting the
connection.

flow_control:
Specifies if the hardware flow control is available. The flow_control value is exchanged with the
remote peer and is not used to configure the QP. Applies only to RDMA_PS_TCP, and is specific
to the InfiniBand architecture.

retry_count:
The maximum number of times that a data transfer operation must be tried on the connection
when an error occurs. The retry_count setting controls the number of times to retry send RDMA,
and atomic operations when time outs occur. Applies only to RDMA_PS_TCP, and is specific to
the InfiniBand architecture.

rnr_retry_count:
The maximum number of times that a send operation from the remote peer is tried on a
connection after receiving a receiver not ready (RNR) error. RNR errors are generated when a
send request arrives before a buffer is posted to receive the incoming data. Applies only to
RDMA_PS_TCP, and is specific to the InfiniBand architecture.

srq: Specifies if the QP associated with the connection is using a shared receive queue. The srq field is
ignored by the library if a QP is created on the rdma_cm_id. Applies only to RDMA_PS_TCP and
is currently not supported.

qp_num:
Specifies the QP number associated with the connection. The qp_num field is ignored by the
library if a QP is created on the rdma_cm_id. Applies only to RDMA_PS_TCP.

iWARP specific:
Connections established over iWARP RDMA devices currently require that the active side of the
connection send the first message.

20 AIX Version 7.1: Technical Reference: Communications, Volume 3

Parameters

id Specifies the RDMA identifier.
conn_param Specifies the connection parameters.

Return Values

The rdma_connect function returns the following values:

0 On success.

-1 Error, see errno.

-EINVAL
v If the id or conn_param parameter is NULL

v If the parameter conn_param->responder_resources is bigger than the local RDMA device attribute
max_qp_rd_atom, and remote RDMA device attribute max_qp_init_rd_atom

v If the parameter onn_param->initiator_depth is bigger than the local RDMA device attribute
max_qp_init_rd_atom, and remote RDMA device attribute max_qp_rd_atom

-EPROTONOSUPPORT id->ps is not RDMA_PS_TCP.

-ENODATA The write operation on id->channel->fd failed.

rdma_listen:

Listens for incoming connection requests.

Syntax
#include <rdma/rdma_cma.h>
int rdma_listen(struct rdma_cm_id *id, int backlog);

Description

The rdma_listen function initiates a listen for incoming connection requests lookup. The listen operation
is restricted to the locally bound source addresses.

Notes:

v You must have bound the rdma_cm_id to a local address by calling rdma_bind_addr before calling the
rdma_listen routine.

v If the rdma_cm_id is bound to a specific IP address, the listen operation is restricted to that address
and the associated RDMA device.

v If the rdma_cm_id is bound to an RDMA port number only, the listen operation occurs across all
RDMA devices.

Parameters

id Specifies the RDMA identifier.
backlog Specifies the backlog of incoming connection requests.

Return Values

The rdma_listen function returns the following values:

Technical Reference: Communications, Volume 3 21

0 On success.

-1 Error, see errno.

-EINVAL If the id parameter is NULL.

-ENODATA The write operation on id->channel->fd failed.

-ENOMEM There is not enough space to allocate by malloc.

-ENODEV Unable to get an RDMA device.

rdma_accept:

Accepts a connection request.

Syntax
#include <rdma/rdma_cma.h>
int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param);

Description

The rdma_accept function is called from the listening side to accept a connection lookup request.

Notes:

v The rdma_accept routine is not called on a listening rdma_cm_id, unlike the socket accept routine.
Instead, after calling rdma_listen, you have to wait for a connection request event to occur.

v Connection request events gives you a newly created rdma_cm_id, similar to a new socket, but the
rdma_cm_id is bound to a specific RDMA device. The rdma_accept routine is called on the new
rdma_cm_id.

Connection Properties

See, the rdma_connect routine.

Parameters

id Specifies the connection identifier associated with the request.
conn_param Specifies the information required to establish the connection.

Return Values

The rdma_accept function returns the following values:

0 On success.

-1 Error, see errno.

-EINVAL The error occurs:

v If the id, conn_param, id->qp, or id->qp->context parameter is NULL.

v If conn_param->responder_resources is bigger than the local RDMA device attribute,
max_qp_rd_atom, and remote RDMA device attribute, max_qp_init_rd_atom.

v If conn_param->initiator_depth is bigger than the local RDMA device attribute,
max_qp_init_rd_atom, and remote RDMA device attribute, max_qp_rd_atom.

-EPROTONOSUPPORT The id->ps is not RDMA_PS_TCP.

-ENODATA The write operation on id->channel->fd failed.

rdma_reject:

22 AIX Version 7.1: Technical Reference: Communications, Volume 3

Rejects a connection request.

Syntax
#include <rdma/rdma_cma.h>
int rdma_reject(struct rdma_cm_id *id, const void *private_data, uint8_t private_data_len);

Description

The rdma_reject function is called from the listening side to reject a connection lookup request.

Note: After receiving a connection request event, you might call rdma_reject to reject the request. If the
underlying RDMA transport supports private data in the reject message, the specified data is passed to
the remote side.

Parameters

id Specifies the connection identifier associated with the request.
private_data Specifies the optional private data to send with the reject message.
private_data_len Specifies the size of private_data to send, in bytes.

Return Values

The rdma_reject function returns the following values:

0 On success.

-1 Error, see errno.

-EINVAL The error occurs if the id is NULL.

-ENODATA The write operation on id->channel->fd failed.

rdma_disconnect:

Disconnects a connection.

Syntax
#include <rdma/rdma_cma.h>
int rdma_disconnect(struct rdma_cm_id *id);

Description

The rdma_disconnect function disconnects a connection and transitions any associated QP to the error
state that will flush posted work requests to the completion queue. This routing might be called by both
the client and server side of a connection. After successfully disconnection, an
RDMA_CM_EVENT_DISCONNECTED event is generated on both sides of the connection.

Parameters

Technical Reference: Communications, Volume 3 23

id Specifies the connection identifier associated with the request.

Return Values

The rdma_disconnect function returns the following values:

0 On success.

-1 Error, see errno.

-EINVAL The error occurs if the id or id->qp is NULL or bad transport type.

-ENODATA The write operation on id->channel->fd failed.

rdma_get_src_port:

Returns the local port number of a bound rdma_cm_id.

Syntax
#include <rdma/rdma_cma.h>
uint16_t rdma_get_src_port(struct rdma_cm_id *id)

Description

The rdma_get_src_port function returns the local port number for an rdma_cm_id that has been bound to
a local address.

Parameters

id Specifies the connection identifier associated with the request.

Return Values

The rdma_get_src_port function returns the following values:

local port number On success.

0 The error occurs if the id is NULL.

rdma_get_dst_port:

Returns the remote port number of a bound rdma_cm_id.

Syntax
#include <rdma/rdma_cma.h>
uint16_t rdma_get_dst_port(struct rdma_cm_id *id)

Description

The rdma_get_dst_port function returns the remote port number for an rdma_cm_id that has been bound
to a remote address.

Parameters

24 AIX Version 7.1: Technical Reference: Communications, Volume 3

id Specifies the connection identifier associated with the request.

Return Values

The rdma_get_dst_port function returns the following values:

local port number On success.

0 The error occurs if the id is NULL.

rdma_get_local_addr:

Returns the local IP address of a bound rdma_cm_id.

Syntax
#include <rdma/rdma_cma.h>
struct sockaddr *rdma_get_local_addr(struct rdma_cm_id *id)

Description

The rdma_get_local_addr function returns the local IP address for an rdma_cm_id that is bound to a local
device.

Parameters

id Specifies the RDMA identifier.

Return Values

The rdma_get_local_addr function returns the following values:

local port number On success.

0 The error occurs if the id is NULL.

rdma_get_peer_addr:

Returns the remote IP address of a bound rdma_cm_id.

Syntax
#include <rdma/rdma_cma.h>
struct sockaddr *rdma_get_peer_addr(struct rdma_cm_id *id)

Description

The rdma_get_peer_addr function returns the remote IP address associated with an rdma_cm_id.

Parameters

Technical Reference: Communications, Volume 3 25

id Specifies the RDMA identifier.

Return Values

The rdma_get_peer_addr function returns the following values:

local port number On success.

0 The error occurs if the id is NULL.

Event Handling Operations:

rdma_get_cm_event:

Retrieves the next pending communication event.

Syntax
#include <rdma/rdma_cma.h>
int rdma_get_cm_event(struct rdma_event_channel *channel, struct rdma_cm_event **event);

Description

The rdma_get_cm_event function retrieves a communication event. If no events are pending, by default,
the call blocks until an event is received.

Notes:

v You can modify the file descriptor associated with the given channel and change the default
synchronous behavior of the rdma_get_cm_event routine.

v All events that are reported must be acknowledged by calling rdma_ack_cm_event.
v Destruction of an rdma_cm_id is blocked until related events are acknowledged.

Parameters

channel Specifies the event channel to check for events.
event Specifies the allocated information about the next communication event.

Return Values

0 On success.

-1 Error, see errno.

-EINVAL The error occurs if channel or event is NULL.

-ENODATA The write operation on channel->fd failed.

-ENOMEM There is not enough space to allocate by malloc.

-ENODEV Unable to get RDMA device

Event Data

Communication event details are returned in the rdma_cm_event structure. This structure is allocated by
the rdma_cm and released by the rdma_ack_cm_event routine. Details of the rdma_cm_event structure
are given below.

26 AIX Version 7.1: Technical Reference: Communications, Volume 3

id Specifies the rdma_cm identifier associated with the event. If the event type is
RDMA_CM_EVENT_CONNECT_REQUEST, then the id references a new id for that communication.

listen_id Specifies the corresponding listening request identifier for the RDMA_CM_EVENT_CONNECT_REQUEST event
types.

event Specifies the type of communication event that occurred. See Event Types.

status Returns any asynchronous error information associated with an event. The status is zero unless the corresponding
operation fails.

param Provides additional details based on the type of event. You must select the conn subfield based on the
rdma_port_space of the rdma_cm_id associated with the event. See Conn Event Data.

Conn Event Data

Event parameters are related to the connected QP services, RDMA_PS_TCP. The connection related event
data is valid for RDMA_CM_EVENT_CONNECT_REQUEST and RDMA_CM_EVENT_ESTABLISHED
events.

private_data References any user-specified data associated with the event. The data referenced by this field matches the
value specified by the remote side when calling rdma_connect or rdma_accept. The private_data field is
NULL if the event does not include private data. The buffer referenced by this pointer is deallocated when
calling rdma_ack_cm_event.

private_data_len Specifies the size of the private data buffer. You must note that the size of the private data buffer might be
larger than the amount of private data sent by the remote side. Any additional space in the buffer is
zeroed out.

responder_resources Specifies the number of responder resources requested of the recipient. The responder_resources field
matches the initiator depth specified by the remote node when calling rdma_connect and rdma_accept.

initiator_dept Specifies the maximum number of outstanding RDMA read operations that the recipient might have. The
initiator_dept field matches the responder resources specified by the remote node when calling
rdma_connect and rdma_accept.

flow_control Indicates if the hardware level flow control is provided by the sender (specific to the InfiniBand
architecture).

retry_count Indicates the number of times that the recipient must retry a send operation that is specific to
RDMA_CM_EVENT_CONNECT_REQUEST events (specific to the InfiniBand architecture).

rnr_retry_count Indicates the number of times that the recipient must retry receiver not ready (RNR) NACK errors (specific
to the InfiniBand architecture).

srq Specifies if the sender is using a shared-receive queue. Currently the field is not supported.

qp_num Indicates the remote QP number for the connection.

Event Types

The following types of communication events might be reported.

RDMA_CM_EVENT_ADDR_RESOLVED Indicates the address resolution (rdma_resolve_addr) completed successfully.

RDMA_CM_EVENT_ADDR_ERROR Indicates that the address resolution (rdma_resolve_addr) failed.

RDMA_CM_EVENT_ROUTE_RESOLVED Indicates that the route resolution (rdma_resolve_route) completed successfully.

RDMA_CM_EVENT_ROUTE_ERROR Indicates that the route resolution (rdma_resolve_route) failed.

RDMA_CM_EVENT_CONNECT_REQUEST Indicates that there is a new connection request on the passive side.

RDMA_CM_EVENT_CONNECT_RESPONSE Indicates that the there is a successful response to a connection request on the
active side. It is only generated on rdma_cm_ids that do not have a QP associated
with them.

RDMA_CM_EVENT_CONNECT_ERROR Indicates that an error has occurred trying to establish a connection. Might be
generated on the active or passive side of a connection.

RDMA_CM_EVENT_UNREACHABLE Indicates that the remote server is not reachable or unable to respond to a
connection request on the active side.

Technical Reference: Communications, Volume 3 27

RDMA_CM_EVENT_REJECTED Indicates that a connection request or response was rejected by the remote end
point.

RDMA_CM_EVENT_ESTABLISHED Indicates that a connection is established with the remote end point.

RDMA_CM_EVENT_DISCONNECTED Indicates that the connection is disconnected.

RDMA_CM_EVENT_DEVICE_REMOVAL Indicates that the local RDMA device associated with the rdma_cm_id is removed.
Upon receiving this event, you must destroy the related rdma_cm_id.

RDMA_CM_EVENT_TIMEWAIT_EXIT Indicates that the QP associated with a connection has exited its timewait state and
is now ready to be reused. After a QP is disconnected, it is maintained in a
timewait state to allow any in flight packets to exit the network. After the timewait
state is complete, the rdma_cm reports this event.

rdma_ack_cm_event:

Frees a communication event.

Syntax
#include <rdma/rdma_cma.h>
int rdma_ack_cm_event(struct rdma_cm_event *event);

Description

All events that are allocated by rdma_get_cm_event must be released. There must be a one-to-one
correspondence between successful gets and acks. The rdma_ack_cm_event call frees the event structure
and any memory that it references.

Parameters

event Specifies the event to be released.

Return Values

The rdma_ack_cm_event function returns the following values:

0 On success.

-EINVAL If event is NULL.

rdma_event_str:

Returns a string representation of an RDMA CM event.

Syntax
#include <rdma/rdma_cma.h>
const char *rdma_event_str(enum rdma_cm_event_type event);

Description

The rdma_event_str routine returns a string representation of an asynchronous event.

Parameters

28 AIX Version 7.1: Technical Reference: Communications, Volume 3

event Specifies an asynchronous event.

Return Values

The rdma_event_str function returns the following values:

A string
representation

On known events.

UNKNOWN EVENT On unknown events.

Queue Pair Management:

rdma_create_qp:

Allocates a QP.

Syntax
#include <rdma/rdma_cma.h>
int rdma_create_qp(struct rdma_cm_id *id, struct ibv_pd *pd, struct ibv_qp_init_attr *qp_init_attr);

Description

The rdma_create_qp function allocates a QP associated with a specified rdma_cm_id, and transitions it
for sending and receiving.

Notes:

v The rdma_cm_id must be bound to a local RDMA device before calling the rdma_create_qp function,
and the protection domain must be for that same device.

v QPs allocated to an rdma_cm_id are automatically transitioned by the librdmacm through their states.
After being allocated, the QP is ready to handle posting of receives. If the QP is unconnected, it will be
ready to post sends.

Parameters

id Specifies the communication identifier to destroy.
pd Specifies the protection domain for the QP.
qp_init_attr Specifies the initial QP attributes.

Return Values

The rdma_create_qp function returns the following values:

0 On success.

-1 Error, see errno.

-EINVAL If the id, pd, or qp_init_attr parameter is NULL or bad parameter in ibv_qp_init_attr such as,
cap.max_inline_data limited to 64 for Chelsio Boards.

-ENOMEM There is not enough space to allocate by malloc.

rdma_destroy_qp:

Releases a QP.

Technical Reference: Communications, Volume 3 29

Syntax
#include <rdma/rdma_cma.h>
void rdma_destroy_qp(struct rdma_cm_id *id);

Description

The rdma_destroy_qp function destroys a QP allocated on the rdma_cm_id.

Note: You must destroy any QP associated with an rdma_cm_id before destroying the ID.

Parameters

id Specifies the RDMA identifier.

Return Value

There is no return value.

Device Management:

rdma_get_devices:

Gets a list of RDMA devices that are available.

Syntax
#include <rdma/rdma_cma.h>
struct ibv_context **rdma_get_devices(int *num_devices);

Description

The rdma_get_devices function returns a NULL-terminated array of open RDMA devices. You can use
this routine to allocate resources on specific RDMA devices that will be shared across multiple
rdma_cm_ids.

Note: The returned array must be released by calling the rdma_free_devices routine. Devices remain
opened while the librdmacm library is loaded.

Parameters

num_devices Specifies the number of devices returned if the value is not NULL.

Return Values

A NULL-terminated array On success

NULL On failure

rdma_free_devices:

Frees the list of devices returned by the rdma_get_devices routine.

Syntax
#include <rdma/rdma_cma.h>
void rdma_free_devices(struct ibv_context **list);

30 AIX Version 7.1: Technical Reference: Communications, Volume 3

Description

The rdma_free_devices function frees the device array returned by the rdma_get_devices routine.

Parameters

list Specifies the list of devices returned from the rdma_get_devices routine.

Return Value

There is no return value.

Verbs not supported by librdmacm
You can find the list of verbs that are not supported by the librdmacm library.

The following is the list of not supported verbs.

rdma_notify Notifies the librdmacm library of an asynchronous event.

rdma_join_multicast Joins a multicast group.

rdma_leave_multicast Leaves a multicast group.

rdma_set_option Sets options for an rdma_cm_id.

Libibverbs
You can find information about the libibverbs library in the /usr/include/rdma/verbs.h file delivered
with the libibverbs library sources.

See chapters 10 and 11 of the InfiniBand specifications. Man pages are also created to describe the various
interfaces and test programs available. For a full list, you can refer to the verbs man page.

Returned Error Rules
Most commands return 0 on success. The commands return NULL, -1, or the value of the errno variable
that indicates the reason of failure. The commands return ENOSYS when the verb is not supported.

Supported Verbs
You can find a list of supported verbs.

Device Management:

ibv_get_device_list, ibv_free_device_list:

Gets and releases the list of available RDMA devices.

Syntax
#include <rdma/verbs.h>
struct ibv_device **ibv_get_device_list(int *num_devices);
void ibv_free_device_list(struct ibv_device **list);

Description

ibv_get_device_list() returns a NULL-terminated array of RDMA devices currently available. The
argument num_devices is optional and if it is NULL, it is set to the number of devices returned in the
array.

ibv_free_device_list() frees the array of devices list returned by ibv_get_device_list().

Technical Reference: Communications, Volume 3 31

Note: Client code must open all the devices it intends to use with ibv_open_device() before calling
ibv_free_device_list(). Once the ibv_free_device_list() function frees the array, The system will be able to
use only the open devices and the pointers to unopened devices will no longer be valid.

Output Parameters

num_devices (Optional) If not null, the number of devices returned in the array will be stored here.

Return Value

ibv_get_device_list() returns the array of available RDMA devices, or NULL if the request fails.

ibv_free_device_list() returns no value.

ibv_get_device_name:

Gets the RDMA device's name.

Syntax
#include <rdma/verbs.h>
const char *ibv_get_device_name(struct ibv_device *device);

Description

ibv_get_device_name returns a pointer to the device name contained within the ibv_device struct.

Parameters

device struct ibv_device for desired device.

Return Value

ibv_get_device_list() returns a pointer to the device name char string on success, and NULL if the
request fails.

ibv_get_device_guid:

Returns string describing the event_type, node_type, and port_state enum values.

Syntax
#include <rdma/verbs.h>
uint64_t ibv_get_device_guid(struct ibv_device *device);

Description

ibv_get_device_guid returns the devices 64 bit Global Unique Identifier (GUID) in the network byte
order.

Parameters

32 AIX Version 7.1: Technical Reference: Communications, Volume 3

device struct ibv_device for the desired device.

Return Value

The ibv_get_device_guid function returns uint64_t on success, and 0 on failure.

If device=NULL, operation open, or write failed on the OFED admin device /dev/rdma/ofed_adm.

ibv_open_device, ibv_close_device:

Opens, and closes an RDMA device context.

Syntax
#include <rdma/verbs.h>
struct ibv_context *ibv_open_device(struct ibv_device *device);
int ibv_close_device(struct ibv_context *context);

Description

The ibv_open_device() routine opens the device device, and creates a context for further use.

The ibv_close_device() routine closes the device context context.

Note: The ibv_close_device() routine does not release all the resources allocated using the parameter
context. To avoid resource leaks, you must release all associated resources before closing a context.

Parameter

devices struct ibv_device for the required device.

Return Value

The ibv_open_device, and ibv_close_device functions return a verbs context that can be used for future
operations on the device, on success, and returns NULL if the device=NULL or the open operation fails.

ibv_query_device:

Queries the attributes of an RDMA device.

Syntax
#include <rdma/verbs.h>
int ibv_query_device(struct ibv_context *context, struct ibv_device_attr *device_attr)

Description

The ibv_query_device() routine returns the attributes of the device with context context. The parameter
device_attr is a pointer to an ibv_device_attr struct, as defined in <rdma/verbs.h>.

Note: The maximum values returned by the ibv_query_device() function are the upper limits of
supported resources by the device. It might not be possible to use these maximum values, since the
actual number of any resource that can be created is limited by the machine configuration, the amount of
host memory, user permissions, and the amount of resources already in use.

Input Parameter

Technical Reference: Communications, Volume 3 33

context struct ibv_context from ibv_open_device.

Output Parameter

device_attr struct ibv_device_attr containing device attributes.

Return Values

0 On success.

errno On failure.

EINVAL If context parameter or device_attr is NULL

ibv_query_port:

Queries the attributes of an RDMA port.

Syntax
#include <rdma/verbs.h>
int ibv_query_port(struct ibv_context *context, uint8_t port_num, struct ibv_port_attr *port_attr)

Description

The ibv_query_port() routine returns the attributes of port port_num for device context context through
the pointer port_attr. The parameter port_attr is an ibv_port_attr struct, as defined in <rdma/verbs.h>.

struct ibv_port_attr:
struct ibv_port_attr {

enum ibv_port_state state; /* Logical port state */
enum ibv_mtu max_mtu; /* Max MTU supported by port */
enum ibv_mtu active_mtu; /* Actual MTU */
int gid_tbl_len; /* Length of source GID table */
uint32_t port_cap_flags; /* Port capabilities */
uint32_t max_msg_sz; /* Maximum message size */
uint32_t bad_pkey_cntr; /* Bad P_Key counter */
uint32_t qkey_viol_cntr; /* Q_Key violation counter */
uint16_t pkey_tbl_len; /* Length of partition table */
uint16_t lid; /* Base port LID */
uint16_t sm_lid; /* SM LID */
uint8_t lmc; /* LMC of LID */
uint8_t max_vl_num; /* Maximum number of VLs */
uint8_t sm_sl; /* SM service level */
uint8_t subnet_timeout; /* Subnet propagation delay */
uint8_t init_type_reply; /* Type of initialization performed by SM */
uint8_t active_width; /* Currently active link width */
uint8_t active_speed; /* Currently active link speed */
uint8_t phys_state; /* Physical port state */

};

Input Parameters

34 AIX Version 7.1: Technical Reference: Communications, Volume 3

context struct ibv_context from ibv_open_device.
port_num physical port number (1 is the first port)

Output Parameter

port_attr struct ibv_port_attr containing port attributes.

Return Values

0 On success.

errno On failure.

EINVAL If context parameter or port_attr is NULL

ibv_query_pkey:

Queries the P_Key table of an RDMA port.

Syntax
#include <rdma/verbs.h>
int ibv_query_pkey(struct ibv_context *context, uint8_t port_num, int index, uint16_t *pkey)

Description

The ibv_query_pkey() routine returns the P_Key value in the entry index of port port_num for device
context context through the pointer pkey.

Input Parameters

context Valid context pointer returned by ibv_open_device().
port_num Valid port number for the device returned by ibv_query_device().
index Valid index for port_num from attributes returned by ibv_query_port().

Output Parameter

pkey Valid pointer to store protection key.

Return Values

0 On success.

-1 If the request fails because, the context or pkey parameter is NULL or the open or write operation failed on
the OFED admin device /dev/rdma/ofed_adm.

ibv_query_gid:

Gets GID, which is the NIC's MAC address.

Syntax
#include <rdma/verbs.h>
int ibv_query_gid(struct ibv_context *context, uint8_t port_num, int index, union ibv_gid *gid)

Description

The ibv_query_gid() routine returns the NIC's MAC address in subnet_prefix and 0 in the interface_id.

Technical Reference: Communications, Volume 3 35

Input Parameters

context Specifies the context pointer returned by ibv_open_device().
port_num Specifies port number for the device returned by ibv_query_device().
index Specifies index for port_num deduced from attributes returned by ibv_query_port().

Output Parameter

gid Specifies the pointer to store GID.

Return Values

0 On success.

-1 If the request fails because, the context or gid parameter is NULL or the open or write operation failed on
the OFED admin device /dev/rdma/ofed_adm.

ibv_gid
union ibv_gid
{

uint8_t raw[16];
struct
{

uint64_t subnet_prefix;
uint64_t interface_id;

} global;
};

Queue Pair Management:

ibv_create_qp, ibv_destroy_qp:

Creates or destroys a queue pair (QP).

Syntax
#include <rdma/verbs.h>
struct ibv_qp *ibv_create_qp(struct ibv_pd *pd, struct ibv_qp_init_attr *qp_init_attr);
int ibv_destroy_qp(struct ibv_qp *qp)

Description

ibv_create_qp() creates a queue pair (QP) associated with the protection domain pd. The argument
qp_init_attr is an ibv_qp_init_attr struct, as defined in <rdma/verbs.h>.

struct ibv_qp_init_attr {

void *qp_context; /*Associated context of the QP*/

struct ibv_cq *send_cq; /*CQ to be associated with the Send Queue (SQ)*/

struct ibv_cq *recv_cq; /*CQ to be associated with the Receive Queue (RQ)*/

struct ibv_srq *srq; /*Not Supported*/

struct ibv_qp_cap cap; /*QP capabilities*/

enum ibv_qp_type qp_type; /*QP Transport Service Type: IBV_QPT_RC,*/

int sq_sig_all; /*If set, each Work Request (WR) submitted to the SQ*/

/*generates a completion entry */

struct ibv_xrc_domain xrc_domain; /*Not supported*/

struct ibv_qp_cap {

uint32_t max_send_wr; /*Requested max number of outstanding*/

36 AIX Version 7.1: Technical Reference: Communications, Volume 3

/*WRs in the SQ*/

uint32_t max_recv_wr; /*Requested max number of outstanding*/

/*WRs in the RQ*/

uint32_t max_send_sge; /*Requested max number of scatter/gather*/

/*(s/g) elements in*/

/*a WR in the SQ*/

uint32_t max_recv_sge; /*Requested max number of s/g elements*/

/*in a WR in the SQ*/

uint32_t max_inline_data; /*Requested max number of data (bytes)*/

/*that can be posted*/

/*inline to the SQ, otherwise 0*/

The function ibv_create_qp() updates the qp_init_attr->cap struct with the actual QP values of the QP
that was created; the values will be greater than or equal to the values requested. ibv_destroy_qp()
destroys the QP qp.

Input Parameters

pd struct ibv_pd from ibv_alloc_pd.
qp_init_attr Initial attributes of queue pair.

Output Parameters

qp_init_attr Actual values are filled in.

Return Value

ibv_create_qp() returns a pointer to the created QP on success, or NULL if the request fails.

ibv_destroy_qp() returns 0 on success, or the value of errno on failure (which indicates the failure
reason).

ibv_modify_qp:

Modifies the attributes of a queue pair (QP).

Syntax
#include <rdma/verbs.h>
int ibv_modify_qp(struct ibv_qp *qp, struct ibv_qp_attr *attr, enum ibv_qp_attr_mask attr_mask)

Queue pairs (QP) must be taken through an incremental sequence of states prior to use them for
communication.

QP States:

RESET Newly created, queues empty.

INIT Basic information set. Ready for posting to receive queue.

RTR Ready to Receive. Remote address info set for connected QPs, QP may now receive packets.

RTS Ready to Send. Timeout and retry parameters set, QP might now send packets.

The state transitions are accomplished by using the ibv_modify_qp command.

Technical Reference: Communications, Volume 3 37

Description

The ibv_modify_qp() function modifies the attributes of a QP qp with the attributes in attr according to
the mask attr_mask. The parameter attr is an ibv_qp_attr struct, as defined in <rdma/verbs.h>.

The parameter attr_mask specifies the QP attributes to be modified. The argument is either 0 or the
bitwise OR of one or more of the following flags:

IBV_QP_STATE
Modify qp_state

IBV_QP_CUR_STATE
Set cur_qp_state

IBV_QP_EN_SQD_ASYNC_NOTIFY
Set en_sqd_async_notify

IBV_QP_ACCESS_FLAGS
Set qp_access_flags

IBV_QP_PKEY_INDEX
Set pkey_index

IBV_QP_PORT
Set port_num

IBV_QP_QKEY
Set qkey

IBV_QP_AV
Set ah_attr

IBV_QP_PATH_MTU
Set path_mtu

IBV_QP_TIMEOUT
Set timeout

IBV_QP_RETRY_CNT
Set retry_cnt

IBV_QP_RNR_RETRY
Set rnr_retry

IBV_QP_RQ_PSN
Set rq_psn

IBV_QP_MAX_QP_RD_ATOMIC
Set max_rd_atomic

IBV_QP_ALT_PATH
Set the alternative path via: alt_ah_attr, alt_pkey_index, alt_port_num, alt_timeout

IBV_QP_MIN_RNR_TIMER
Set min_rnr_timer

IBV_QP_SQ_PSN
Set sq_psn

IBV_QP_MAX_DEST_RD_ATOMIC
Set max_dest_rd_atomic

IBV_QP_PATH_MIG_STATE
Set path_mig_state

38 AIX Version 7.1: Technical Reference: Communications, Volume 3

IBV_QP_CAP
Set cap

IBV_QP_DEST_QPN
Set dest_qp_num

Notes:

v If any of the modify attributes or the modify mask is invalid, none of the attributes are modified
(including the QP state).

v Not all devices support resizing QPs. To check if a device supports it, check if the
IBV_DEVICE_RESIZE_MAX_WR bit is set in the device capabilities flags.

v Not all devices support alternate paths. To check if a device supports it, check if the
IBV_DEVICE_AUTO_PATH_MIG bit is set in the device capabilities flags.

v The following tables indicate for QP Transport Service Type IBV_QPT_RC, the minimum list of
attributes that must be changed upon transitioning QP state from Reset --> Init --> RTR --> RTS.

Next state Required attributes

Init IBV_QP_STATE, IBV_QP_PKEY_INDEX, IBV_QP_PORT, IBV_QP_ACCESS_FLAGS

RTR IBV_QP_STATE, IBV_QP_AV, IBV_QP_PATH_MTU, IBV_QP_DEST_QPN, IBV_QP_RQ_PSN,
IBV_QP_MAX_DEST_RD_ATOMIC, IBV_QP_MIN_RNR_TIMER

RTS IBV_QP_STATE, IBV_QP_SQ_PSN, IBV_QP_MAX_QP_RD_ATOMIC, IBV_QP_RETRY_CNT,
IBV_QP_RNR_RETRY, IBV_QP_TIMEOUT

Input Parameters

qp Specifies the struct ibv_qp from ibv_create_qp.
attr Specifies the QP attributes.
attr_mask Specifies the bit mask that defines which attributes within attr is set for this call.

Return Values

0 On success.

EINVAL The error occurs when qp, qp->context, or attr is NULL.

ibv_post_recv:

Posts a list of work requests (WRs) to a receive queue.

Syntax
#include <rdma/verbs.h>
int ibv_post_recv(struct ibv_qp *qp, struct ibv_recv_wr *wr, struct ibv_recv_wr **bad_wr)

Description

The ibv_post_recv() routine posts the linked list of work requests (WRs) starting with wr to the receive
queue of the queue pair qp. The routine stops processing WRs from the list at the first failure that can be
detected immediately while requests are being posted, and returns the failing WR through bad_wr.

The argument wr is an ibv_recv_wr struct, as defined in <rdma/verbs.h>.
struct ibv_recv_wr {

uint64_t wr_id; /* User defined WR ID */
struct ibv_recv_wr *next; /* Pointer to next WR in list, NULL if last WR */
struct ibv_sge *sg_list; /* Pointer to the s/g array */
int num_sge; /* Size of the s/g array */

Technical Reference: Communications, Volume 3 39

};

struct ibv_sge {
uint64_t addr; /* Start address of the local memory buffer */
uint32_t length; /* Length of the buffer */
uint32_t lkey; /* Key of the local Memory Region */

};

Note: The buffers used by a WR can only be safely reused after the request is complete and a work
completion is retrieved from the corresponding completion queue (CQ).

Input Parameters

qp Specifies the struct ibv_qp from ibv_create_qp.
wr Specifies the first work request (WR) containing receive buffers.

Output Parameter

bad_wr Specifies the pointer to first rejected WR.

Return Values

0 On success.

errno On failure.

EINVAL If qp, qp->context, wr, or wr->sg_list is NULL.

ibv_post_send:

Posts a list of work requests (WRs) to a send queue.

Syntax
#include <rdma/verbs.h>
int ibv_post_send(struct ibv_qp *qp, struct ibv_send_wr *wr, struct ibv_send_wr **bad_wr)

Description

The ibv_post_recv() routine posts the linked list of work requests (WRs) starting with wr to the receive
queue of the queue pair qp. The routine stops processing WRs from the list at the first failure that can be
detected immediately while requests are being posted, and returns the failing WR through bad_wr.

The argument wr is an ibv_send_wr struct, as defined in <rdma/verbs.h>.

RC Transport Service Type supports following opcodes:

OPCODE IBV_QPT_RC

IBV_WR_SEND Supported

IBV_WR_SEND_WITH_IMM Supported

IBV_WR_RDMA_WRITE Supported

IBV_WR_RDMA_WRITE_WITH_IMM Supported

IBV_WR_RDMA_READ Supported

IBV_WR_ATOMIC_CMP_AND_SWP Not supported

IBV_WR_ATOMIC_FETCH_AND_ADD Not supported

40 AIX Version 7.1: Technical Reference: Communications, Volume 3

The attribute send_flags describes the properties of the WR . It is either 0 or the bitwise OR of one or
more of the following flags:

IBV_SEND_FENCE
Sets the fence indicator. The IBV_SEND_FENCE flag is valid only for QPs with Transport Service
Type IBV_QPT_RC.

IBV_SEND_SIGNALED
Sets the completion notification indicator. The IBV_SEND_SIGNALED flag is relevant only if QP
was created with sq_sig_all=0.

IBV_SEND_SOLICITED
Sets the solicited event indicator. The IBV_SEND_SOLICITED flag is valid only for Send and
RDMA Write with immediate.

IBV_SEND_INLINE
Sends data in given gather list as inline data in a send WQE. The IBV_SEND_INLINE flag is
valid only for Send and RDMA Write. The L_Key is not checked.

Note: The buffers used by a WR can only be safely reused after the request is complete and a work
completion is retrieved from the corresponding completion queue (CQ).

Input Parameters

qp Specifies the struct ibv_qp from ibv_create_qp.
wr Specifies the first work request (WR).

Output Parameter

bad_wr Specifies the pointer to first rejected WR.

Return Values

0 On success.

EINVAL Error, if qp, qp->context, wr, or wr->sg_list is NULL.

ENOTSUP Error, if wr->opcode is not one of :IBV_WR_SEND, IBV_WR_RDMA_WRITE, or IBV_WR_RDMA_READ.

Completion Queue Management:

ibv_create_cq, ibv_destroy_cq:

Creates or destroys a completion queue (CQ).

Syntax

#include <rdma/verbs.h>

struct ibv_cq *ibv_create_cq(struct ibv_context *context, int cqe, void *cq_context, struct ibv_comp_channel *channel,
int comp_vector)

int ibv_destroy_cq(struct ibv_cq *cq)

Description

ibv_create_cq creates a completion queue (CQ). A completion queue holds completion queue events
(CQE). Each Queue Pair (QP) has an associated send and receive CQ. A single CQ can be shared for
sending, receiving, and sharing across multiple QPs.

Technical Reference: Communications, Volume 3 41

The parameter cqe defines the minimum size of the queue. The actual size of the queue might be larger
than the specified value.

The parameter cq_context is a user defined value. If specified during CQ creation, this value is returned as
a parameter in ibv_get_cq_event when using a completion channel (CC).

The parameter channel is used to specify a CC. A CQ is merely a queue that does not have a built in
notification mechanism. When using a polling paradigm for CQ processing, a CC is not required. The
user simply polls the CQ at regular intervals. However, if you wish to use a pend paradigm, a CC is
required. The CC is a mechanism that allows the user to be notified that a new CQE is on the CQ.

The CQ will use the completion vector comp_vector for signaling completion events; it must be at least
zero and less than context->num_comp_vectors.

ibv_destroy_cq() destroys the CQ cq.

Notes:

v ibv_create_cq() might create a CQ with size greater than or equal to the requested size. Check the cqe
attribute in the returned CQ for the actual size.

v ibv_destroy_cq() fails if any queue pair is still associated with this CQ.

Parameters

context struct ibv_context from ibv_open_device.
cqe Minimum number of entries CQ supports.
cq_context (Optional) User defined value returned with completion events.
channel (Optional) Completion channel.
comp_vector (Optional) Completion vector.

Return Value

ibv_create_cq() returns a pointer to the CQ, or NULL if the request fails.

ibv_destroy_cq() returns 0 on success, or the value of errno on failure (which indicates the failure
reason).

ibv_req_notify_cq:

Requests the completion notification on a completion queue (CQ).

Syntax
#include <rdma/verbs.h>
int ibv_req_notify_cq(struct ibv_cq *cq, int solicited_only);

Description

The ibv_req_notify_cq() routine requests a completion notification on the completion queue (CQ) cq.

Upon addition of a new CQ entry (CQE) to cq, a completion event is added to the completion channel
associated with the CQ. If the argument solicited_only is zero, a completion event is generated for any
new CQE. If solicited_only is non-zero, an event is generated for a new CQE that is considered solicited. A
CQE is solicited if it is a receive completion for a message with the Solicited Event header bit set, or if
the status is not successful. All other successful receive completions, or any successful send completion is
unsolicited.

42 AIX Version 7.1: Technical Reference: Communications, Volume 3

Note: The request for notification is only once. Only one completion event is generated for each call to
ibv_req_notify_cq().

Parameters

cq Specifies the struct ibv_cq from ibv_create_cq.
solicited_only Notifies only if WR is flagged as solicited.

Return Values

0 On success.

EINVAL Error, if cq, or cq->context is NULL.

ibv_poll_cq:

Polls a completion queue (CQ).

Syntax
#include <rdma/verbs.h>
int ibv_poll_cq(struct ibv_cq *cq, int num_entries, struct ibv_wc *wc)

Description

The ibv_poll_cq() routine polls the CQ cq for work completions and returns the first num_entries (or all
available completions if the CQ contains fewer than this number) in the array wc. The argument wc is a
pointer to an array of ibv_wc structs, as defined in <rdma/verbs.h>.
struct ibv_wc {

uint64_t wr_id; /* ID of the completed Work Request (WR) */
enum ibv_wc_status status; /* Status of the operation */
enum ibv_wc_opcode opcode; /* Operation type specified in the completed WR */
uint32_t vendor_err; /* Vendor error syndrome */
uint32_t byte_len; /* Number of bytes transferred */
uint32_t imm_data; /* Immediate data (in network byte order) */
uint32_t qp_num; /* Local QP number of completed WR */
uint32_t src_qp; /* Source QP number (remote QP number) */

/* of completed WR */
enum ibv_wc_flags wc_flags; /* Flags of the completed WR */
uint16_t pkey_index; /* P_Key index (valid only for GSI QPs) */
uint16_t slid; /* Source LID */
uint8_t sl; /* Service Level */
uint8_t dlid_path_bits; /* DLID path bits (not applicable for multicast */

/* messages) */
};
enum ibv_wc_flags wc_flags; /* Flags of the completed WR */

The attribute wc_flags describes the properties of the work completion. It is either 0 or the bitwise OR of
one or more of the following flags:

IBV_WC_GRH
GRH is present.

IBV_WC_WITH_IMM
Immediate data value is valid.

Not all wc attributes are always valid. If the completion status is other than IBV_WC_SUCCESS, only the
wr_id, status, qp_num, and vendor_err attributes are valid.

Technical Reference: Communications, Volume 3 43

Note: Each polled completion is removed from the CQ and cannot be returned to it. You must consume
work completions at a rate that prevents CQ overrun from occurrence. In case of a CQ overrun, the async
event IBV_EVENT_CQ_ERR is triggered, and the CQ cannot be used.

Input Parameters

cq Specifies the struct ibv_cq from ibv_create_cq.
num_entries Specifies the maximum number of completion queue entries (CQE) to return.

Output Parameters

wc Specifies the CQE array.

Return Values

On success, the ibv_poll_cq() function returns a non negative value equal to the number of completions
found. On failure, a negative value is returned.

-EINVAL Error, if cq, or cq->context is NULL.

ibv_get_cq_event, ibv_ack_cq_events:

Gets and acknowledges completion queue (CQ) events.

Syntax
#include <rdma/verbs.h>
int ibv_get_cq_event(struct ibv_comp_channel *channel, struct ibv_cq **cq, void **cq_context);
void ibv_ack_cq_events(struct ibv_cq *cq, unsigned int nevents);

Description

ibv_get_cq_event() waits for the next completion event in the completion event channel channel. The
argument cq is used to return the CQ that caused the event and cq_context is used to return the context of
the CQ.

ibv_ack_cq_events() acknowledges nevents events on the CQ cq.

Notes:

v All completion events that ibv_get_cq_event() returns must be acknowledged using
ibv_ack_cq_events().

v To avoid races, when you destroy a CQ, the CQ waits for the completion of the events. This guarantees
a one-to-one correspondence between acknowledgements and successful gets.

v When you call the ibv_ack_cq_events() function, it might be relatively expensive in the datapath, since
it must take a mutex. Therefore it might be better to amortize this cost by keeping a count of the
number of events needing acknowledgement and acknowledging several completion events in one call
to ibv_ack_cq_events().

Input Parameters

44 AIX Version 7.1: Technical Reference: Communications, Volume 3

channel struct ibv_comp_channel from ibv_create_comp_channel.

Output Parameters

cq Pointer to the completion queue (CQ) associated with event.
cq_context User supplied context set in ibv_create_cq.

Return Value

The ibv_get_cq_event, and ibv_ack_cq_events functions return 0 on success, and -1 if the request fails.

Examples

1. The following code example demonstrates one possible way to work with completion events. It
performs the following steps:
a. Preparation

1) Creates a CQ.
2) Requests for notification upon a new (first) completion event.

b. Completion handling routine
1) Waits for the completion event and ack it.
2) Requests for notification upon the next completion event.
3) Empties the CQ.

Note: An extra event might be triggered without having a corresponding completion entry in the
CQ. This occurs if a completion entry is added to the CQ between requesting for notification and
emptying the CQ, and then the CQ is emptied.

cq = ibv_create_cq(ctx, 1, ev_ctx, channel, 0);
if (!cq) {

fprintf(stderr, "Failed to create CQ\n");
return 1;

}

/* Request notification before any completion can be created */
if (ibv_req_notify_cq(cq, 0)) {

fprintf(stderr, "Couldn’t request CQ notification\n");
return 1;

}

.

.

.
/* Wait for the completion event */
if (ibv_get_cq_event(channel, &ev_cq, &ev_ctx)) {

fprintf(stderr, "Failed to get cq_event\n");
return 1;

}

/* Ack the event */
ibv_ack_cq_events(ev_cq, 1);

/* Request notification upon the next completion event */
if (ibv_req_notify_cq(cq, 0)) {

fprintf(stderr, "Couldn’t request CQ notification\n");
return 1;

}

/* Empty the CQ: poll all of the completions from the CQ (if any exist) */
do {

ne = ibv_poll_cq(cq, 1, &wc);

Technical Reference: Communications, Volume 3 45

if (ne < 0) {
fprintf(stderr, "Failed to poll completions from the CQ\n");
return 1;

}
if (wc.status != IBV_WC_SUCCESS) {

fprintf(stderr, "Completion with status 0x%x was found\n", wc.status);
return 1;

}
} while (ne);

2. The following code example demonstrates one possible way to work with completion events in
nonblocking mode. It performs the following steps:
a. Sets the completion event channel in the non-blocked mode.
b. Polls the channel until there it has a completion event.
c. Gets the completion event and acknowledges it.
/* change the blocking mode of the completion channel */
flags = fcntl(channel->fd, F_GETFL);
rc = fcntl(channel->fd, F_SETFL, flags | O_NONBLOCK);
if (rc < 0) {

fprintf(stderr, "Failed to change file descriptor of completion event channel\n");
return 1;

}
/*
* poll the channel until it has an event and sleep ms_timeout
* milliseconds between any iteration
*/
my_pollfd.fd = channel->fd;
my_pollfd.events = POLLIN;
my_pollfd.revents = 0;

do {

rc = poll(&my_polfd;, 1, ms_timeout);
} while (rc == 0);
if (rc < 0){ fprintf(stderr, "poll failed\n");
return 1;
}
ev_cq = cq;
/* Wait for the completion event */
if (ibv_get_cq_event(channel, &ev_cq, &ev_ctx)) {

fprintf(stderr, "Failed to get cq_event\n");
return 1;

}
/* Ack the event */
ibv_ack_cq_events(ev_cq, 1);

Protection Domain Management:

ibv_alloc_pd, ibv_dealloc_pd:

Allocates or de-allocates a protection domain (PD).

Syntax
#include <rdma/verbs.h>
struct ibv_pd *ibv_alloc_pd(struct ibv_context *context)
int ibv_dealloc_pd(struct ibv_pd *pd)

Description

ibv_alloc_pd() allocates a PD for the RDMA device context context. ibv_dealloc_pd() de-allocates the PD
pd.

46 AIX Version 7.1: Technical Reference: Communications, Volume 3

Note: ibv_dealloc_pd() might fail if any other RDMA resource is still associated with the PD being freed.

Parameters

context struct ibv_context from ibv_open_device.

Return Value

ibv_alloc_pd() returns a pointer to the allocated PD, or NULL if the request fails. ibv_dealloc_pd()
returns 0 on success, or the value of errno on failure (which indicates the failure reason).

Memory Region Management:

ibv_reg_mr:

Registers or releases a memory region (MR).

Syntax
#include <rdma/verbs.h>
struct ibv_mr *ibv_reg_mr(struct ibv_pd *pd, void *addr,size_t length,enum ibv_access_flags access);
int ibv_dereg_mr(struct ibv_mr *mr);

Description

The ibv_reg_mr() function registers a memory region (MR) associated with the protection domain pd. The
MR's starting address is addr and its size is length. The parameter access describes the required memory
protection attributes that is either 0 or the bitwise OR of one or more of the following flags:

The attribute wc_flags describes the properties of the work completion. It is either 0 or the bitwise OR of
one or more of the following flags:

IBV_ACCESS_LOCAL_WRITE
Enables Local Write Access

IBV_ACCESS_REMOTE_WRITE
Enable Remote Write Access

IBV_ACCESS_REMOTE_READ
Enable Remote Read Access

IBV_ACCESS_REMOTE_ATOMIC
Enable Remote Atomic Operation Access (Not supported)

IBV_ACCESS_MW_BIND
Enable Memory Window Binding(Not supported)

If IBV_ACCESS_REMOTE_WRITE, or IBV_ACCESS_REMOTE_ATOMIC is set, then
IBV_ACCESS_LOCAL_WRITE must be set too.

Note: Local read access is always enabled for the MR.

The ibv_dereg_mr() function release the MR mr.

Parameters

Technical Reference: Communications, Volume 3 47

pd Specifies the protection domain, struct ibv_pd from ibv_alloc_pd.
addr Specifies the memory base address.
length Specifies the length of memory region in bytes.
access Specifies the access flags.

Return Values

The ibv_reg_mr() function returns a pointer to the registered MR on success, and NULL if the request
fails. The local key (L_Key) field lkey is used as the lkey field of struct ibv_sge when posting buffers with
ibv_post_* verbs, and the remote key (R_Key) field rkey is used by remote processes to perform RDMA
operations. The remote process places this rkey as the rkey field of struct ibv_send_wr passed to the
ibv_post_send function.

The ibv_dereg_mr() function returns 0 on success, and the value of errno on failure that indicates the
failure reason.

Event Management:

ibv_create_comp_channel, ibv_destroy_comp_channel:

Creates or destroys a completion event channel.

Syntax
#include <rdma/verbs.h>
struct ibv_comp_channel *ibv_create_comp_channel(struct ibv_context *context)
int ibv_destroy_comp_channel(struct ibv_comp_channel *channel)

Description

ibv_create_comp_channel() creates a completion event channel for the RDMA device context, context. A
completion channel is a mechanism for the user to receive notifications when new Completion Queue
Event (CQE) has been placed on a completion queue (CQ).

ibv_destroy_comp_channel() destroys the completion event channel, channel.

Notes:

v A completion channel is an abstraction introduced by libibverbs that does not exist in the InfiniBand
Architecture verbs specification. A completion channel is essentially file descriptor that is used to
deliver completion notifications to a userspace process. When a completion event is generated for a
completion queue (CQ), the event is delivered via the completion channel attached to that CQ. This
might be useful to steer completion events to different threads by using multiple completion channels.

v ibv_destroy_comp_channel() fails if any CQs are still associated with the completion event channel
being destroyed.

Parameters

context struct ibv_context from ibv_open_device.

Return Value

ibv_create_comp_channel() returns a pointer to the created completion event channel, or NULL if the
request fails.

ibv_destroy_comp_channel() returns 0 on success, or the value of errno on failure (which indicates the
failure reason).

48 AIX Version 7.1: Technical Reference: Communications, Volume 3

ibv_get_async_event, ibv_ack_async_event:

Gets or acknowledges asynchronous events.

Syntax
#include <rdma/verbs.h>
int ibv_get_async_event(struct ibv_context *context, struct ibv_async_event *event);
void ibv_ack_async_event(struct ibv_async_event *event);

Description

ibv_get_async_event() waits for the next async event of the RDMA device context, context and returns it
through the pointer, event, which is an ibv_async_event struct, as defined in <rdma/verbs.h>.
struct ibv_async_event {

union {
struct ibv_cq *cq; /* CQ that got the event */
struct ibv_qp *qp; /* QP that got the event */
struct ibv_srq *srq; /* SRQ that got the event (Not Supported)*/
int port_num; /* port number that got the event */

} element;
enum ibv_event_type event_type; /* type of the event */

};

The function ibv_create_qp() updates the qp_init_attr->cap struct with the actual QP values of the QP
that was created; the values will be greater than or equal to the values requested. ibv_destroy_qp()
destroys the QP qp.

One member of the element union is valid, depending on the event_type member of the structure.
event_type is one of the following events:

QP events
IBV_EVENT_QP_FATAL Error occurred on a QP and it transitions to error state.
IBV_EVENT_QP_REQ_ERR Invalid request local work queue error.
IBV_EVENT_QP_ACCESS_ERR Local access violation error.
IBV_EVENT_COMM_EST Communication is established on a QP.
IBV_EVENT_SQ_DRAINED Send Queue is drained of outstanding messages in progress.
IBV_EVENT_PATH_MIG A connection is migrated to an alternate path.
IBV_EVENT_PATH_MIG_ERR A connection failed to migrate to the alternate path.
CQ events
IBV_EVENT_CQ_ERR CQ is in error (CQ overrun).
Port events
IBV_EVENT_PORT_ACTIVE Link became active on a port.
IBV_EVENT_PORT_ERR Link became unavailable on a port.
IBV_EVENT_LID_CHANGE LID is changed on a port.
IBV_EVENT_PKEY_CHANGE The P_Key table is changed on a port.
CA events
IBV_EVENT_DEVICE_FATAL CA is in FATAL state.

ibv_ack_async_event() acknowledges the async event, event.

Notes:

v All async events that ibv_get_async_event() returns must be acknowledged using
ibv_ack_async_event(). To avoid races, destroying an object (CQor QP) will wait for all affiliated
events for the object to be acknowledged; this avoids an application retrieving an affiliated event after
the corresponding object has already been destroyed.

Technical Reference: Communications, Volume 3 49

v The ibv_get_async_event() function is a blocking function. If multiple threads call this function
simultaneously, then when an async event occurs, only one thread will receive it, and it is not possible
to predict which thread receives it.

Input Data

struct ibv_context *context struct ibv_context from ibv_open_device.
struct ibv_async_event *event event pointer.

Return Value

ibv_get_async_event() returns 0 on success, and -1 if the request fails.

ibv_ack_async_event() returns no value.

Example

The following code example demonstrates one possible way to work with async events in nonblocking
mode. It performs the following steps:
1. Sets the async events queue in non-blocked work mode.
2. Polls the queue until it has an async event.
3. Gets the async event and acknowledges it.
/* change the blocking mode of the async event queue */
flags = fcntl(ctx->async_fd, F_GETFL);
rc = fcntl(ctx->async_fd, F_SETFL, flags | O_NONBLOCK);
if (rc < 0) {

fprintf(stderr, "Failed to change file descriptor of async event queue\n");
return 1;

}
/*
* poll the queue until it has an event and sleep ms_timeout
* milliseconds between any iteration
*/

my_pollfd.fd = ctx->async_fd;
my_pollfd.events = POLLIN;
my_pollfd.revents = 0;

do {
rc = poll(&my_pollfd;,1, ms_timeout);

} while (rc == 0);
if (rc < 0) {

fprintf(stderr, "poll failed\n");
return 1;

}

/* Get the async event */
if (ibv_get_async_event(ctx, &async_event)) {

fprintf(stderr, "Failed to get async_event\n");
return 1;

}
/* Ack the event */

ibv_ack_async_event(&async_event);

ibv_event_type_str(3):

Returns string describing the event_type, node_type, and port_state enum values.

50 AIX Version 7.1: Technical Reference: Communications, Volume 3

Syntax
const char *ibv_event_type_str(enum ibv_event_type event_type);
const char *ibv_node_type_str(enum ibv_node_type node_type);
const char *ibv_port_state_str(enum ibv_port_state port_state);

Description

ibv_node_type_str() returns a string describing the node type enum value, node_type.

ibv_port_state_str() returns a string describing the port state enum value, port_state.

ibv_event_type_str() returns a string describing the event type enum value, event_type.

Return Value

The ibv_node_type_str(), ibv_port_state_str(), and ibv_event_type_str() functions return a constant string
that describes the enum value passed as their argument.

<<unknown>> string is passed if the enum value is not known.

Verbs not supported by libibverbs
You can find the list of verbs that are not supported by the libibverbs library.

Following are the verbs that are not supported.

ibv_resize_cq Resizes a completion queue (CQ).

ibv_query_qp Gets the attributes of a queue pair (QP).

ibv_attach_mcast,
ibv_detach_mcast

Attaches and detaches a queue pair (QPs) to/from a multicast group.

ibv_fork_init Initializes libibverbs to support fork().

Technical Reference: Communications, Volume 3 51

52 AIX Version 7.1: Technical Reference: Communications, Volume 3

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this

© Copyright IBM Corp. 2010 53

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Dept. LRAS/Bldg. 903
11501 Burnet Road
Austin, TX 78758-3400
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

54 AIX Version 7.1: Technical Reference: Communications, Volume 3

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

INFINIBAND, InfiniBand Trade Association, and the INFINIBAND design marks are trademarks and/or
service marks of the INFINIBAND Trade Association.

Other company, product, or service names may be trademarks or service marks of others.

Notices 55

http://www.ibm.com/legal/us/en/copytrade.shtml

56 AIX Version 7.1: Technical Reference: Communications, Volume 3

Index

A
accept connection request 22
acknowledges asynchronous events 49
allocates a protection domain 46
allocates a QP 29
attributes of a queue pair 37
attributes of an RDMA device 33
attributes of an RDMA port 34

B
binds RDMA identifier 17

C
client example 8
client operations 5
closes event channel 15
communication identifier 15
completion notification 42
completion queue event 44
create completion queue 41
creates a completion event channel 48
Creates a queue pair 36

D
de-allocates a protection domain 46
destroy completion queue 41
destroys a completion event channel 48
destroys a queue pair 36
device name 32
diconnect 23

E
enum values 32, 51
example using RDMA CM module 7

F
free a communication event 28
free a list of devices 30

G
gets asynchronous events 49

I
ibv_ack_async_event 49
ibv_alloc_pd 46
ibv_create_comp_channel 48
ibv_create_cq 41
ibv_create_qp 36
ibv_dealloc_pd 46
ibv_destroy_comp_channel 48

ibv_destroy_cq 41
ibv_destroy_qp 36
ibv_event_type_str 51
ibv_get_async_event 49
ibv_get_cq_event 44
ibv_get_device_guid 32
ibv_get_device_list 31
ibv_get_device_name 32
ibv_modify_qp 37
ibv_open_device 33
ibv_poll_cq 43
ibv_post_recv 39
ibv_post_send 40
ibv_query_device 33
ibv_query_gid 35
ibv_query_pkey 35
ibv_query_port 34
ibv_reg_mr 47
ibv_req_notify_cq 42
incoming connection request 21
initiates a connection request 19

L
local IP address 25
local port number 24

M
memory region 47
migrate 17

N
NIC MAC address 35

O
open channel 14

P
P_key table 35
pending communication event 26
polls a completion queue 43

R
RDMA CM event 28
RDMA device context 33
RDMA devices 30, 31
rdma_accept 22
rdma_ack_cm_event 28
rdma_bind_addr 17
rdma_connect 19
rdma_create_event_channel 14
rdma_create_id 15
rdma_create_qp 29

© Copyright IBM Corp. 2010 57

rdma_destroy_event_channel 15
rdma_destroy_id 16
rdma_destroy_qp 30
rdma_disconnect 23
rdma_event_str 28
rdma_free_devices 30
rdma_get_cm_event 26
rdma_get_devices 30
rdma_get_dst_port 24
rdma_get_local_addr 25
rdma_get_peer_addr 25
rdma_get_src_port 24
rdma_listen 21
rdma_migrate_id 17
rdma_reject 23
rdma_resolve_addr 18
rdma_resolve_route 19
reject connection requests 23
releases communication identifier 16
releases QP 30
remote IP address 25
remote port number 24
route 19

S
server example 10
source addresses 18

W
work requests 39, 40

58 AIX Version 7.1: Technical Reference: Communications, Volume 3

����

Printed in USA

SC23-6777-00

	Contents
	About this document
	Highlighting
	Case-sensitivity in AIX
	ISO 9000
	Related Publications

	Technical Reference: Communications, Volume 3
	Introduction
	Scope
	Terms

	Hardware considerations
	Software considerations
	Libraries
	Librdmacm
	Libibverbs

	Configuration
	Commands
	ibv_devices command
	ibv_devinfo command
	ofedctrl command
	rping command

	Communication Manager Overview
	Resources (objects) operated on by Verbs
	Available communication operations
	Send / Send with immediate
	Receive
	RDMA read
	RDMA write / RDMA write with immediate
	Atomic Operations

	Transport modes

	Connection Establishment through RDMA_CM
	Client Operation
	Server Operation

	Open sources connection setup application examples
	Rping
	An example using RDMA_CM module
	Client (active) example
	Server (passive) example

	Verbs API
	Functions (Verbs)
	Librdmacm Library
	Returned Error Rules
	Supported Verbs
	Verbs not supported by librdmacm

	Libibverbs
	Returned Error Rules
	Supported Verbs
	Verbs not supported by libibverbs

	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	W

