
-

The Unix I/O System

Dennis M. Ritchie
Bell Telephone Laboratories

This paper gives an overview of the workings of the Unix I/O system. It was written with an eye toward providing
guidance to writers of device driver routines, and is oriented more toward describing the environment and nature of
device drivers than the implementation of that part of the file system which deals with ordinary files.

It is assumed that the reader has a good knowledge of the overall structure of the file system as discussed in the pa-
per ‘‘The Unix Time-sharing System.’’ Moreover the present document is intended to be used in conjunction with a
copy of the system code, since it is basically an exegesis of that code.

Device Classes

There are two classes of device: block and character. The block interface is suitable for devices like disks, tapes,
and DECtape which work, or can work, with addressible 512-byte blocks. Ordinary magnetic tape just barely fits in
this category, since by use of forward backward spacing any block can be read, even though blocks can be written
only at the end of the tape. Block devices can at least potentially contain a mounted file system. The interface to
block devices is very highly structured; the drivers for these devices share a great many routines as well as a pool of
buffers.

Character-type devices have a much more straightforward interface, although more work must be done by the driver
itself.

Devices of both types are named by a major and a minor device number. These numbers are generally stored as a
word with the minor device number as the low byte and the major device number as the high byte. The major device
number selects which driver will deal with the device; the minor device number is not used by the rest of the system
but is passed to the driver at appropriate times. Typically the minor number selects a subdevice attached to a given
controller, or one of several similar hardware interfaces.

The major device numbers for block and character devices are used as indices in separate tables; they both start at 0
and therefore overlap.

Overview of I/O

The purpose of the open and creat system calls is to set up entries in three separate system tables. The first of these
is the u ofile table, which is stored in the system’s per-process data area u. This table is indexed by the file descrip-
tor returned by the open or creat, and is accessed during a read, write, or other operation on the open file. An entry
contains only a pointer to the corresponding entry of the file table, which is a per-system data base. There is one en-
try in the file table for each instance of open or creat. This table is per-system because the same instance of an open
file must be shared among the several processes which can result from forks after the file is opened. A file table en-
try contains flags which indicate whether the file was open for reading or writing or is a pipe, and a count which is
used to decide when all processes using the entry have terminated or closed the file (so the entry can be abandoned).
There is also a 32-bit file offset which is used to indicate where in the file the next read or write will take place. Fi-
nally, there is a pointer to the entry for the file in the inode table, which contains a copy of the file’s i-node. Notice
that an entry in the file table corresponds precisely to an instance of open or creat; if the same file is opened several
times, it will have sev eral entries in this table. However, there is at most one entry in the inode table for a given file.
Also, a file may enter the inode table not only because it is open, but also because it is the current directory of some
process or because it is a special file containing a currently-mounted file system.

An entry in the inode table differs somewhat from the corresponding i-node as stored on the disk; the modified and
accessed times are not stored, and the entry is augmented by a flag word containing information about the entry, a
count used to determine when it may be allowed to disappear, and the device and i-number whence the entry came.

-

2 - Unix I/O System

During the processing of an open or creat call for a special file, the system always calls the device’s open routine to
allow for any special processing required (rewinding a tape, turning on the data-terminal-ready lead of a modem,
etc.). However, the close routine is called only when the last process closes a file, that is, when the i-node table en-
try is being deallocated. Thus it is not feasible for a device to maintain, or depend on, a count of its users, although
it is quite possible to implement an exclusive-use device which cannot be reopened until it has been closed.

When a read or write takes place, the user’s arguments and the file table entry are used to set up the variables
u.u base, u.u count, and u.u offset which respectively contain the (user) address of the I/O target area, the byte-
count for the transfer, and the current location in the file. If the file referred to is a character-type special file, the ap-
propriate read or write routine is called; it is responsible for transferring data and updating the count and current lo-
cation appropriately as discussed below. Otherwise, the current location is used to calculate a logical block number
in the file. If the file is an ordinary file the logical block number must be mapped (possibly using an indirect block)
to a physical block number; a block-type special file need not be mapped. In any event, the resulting physical block
number is used, as discussed below, to read or write the appropriate device.

Character device drivers

The cdevsw table specifies the interface routines present for character devices. Each device provides five routines:
open, close, read, write, and special-function. Any of these may be missing. If a call on the routine should be ig-
nored, (e.g. open on non-exclusive devices which require no setup) the cdevsw entry can be given as nulldev; if it
should be considered an error, (e.g. write on read-only devices) nodev is used.

The open routine is called each time the file is opened with the full device number as argument. The second argu-
ment is a flag which is non-zero only if the device is to be written upon.

The close routine is called only when the file is closed for the last time, that is when the very last process in which
the file is open closes it. This means it is not possible for the driver to maintain its own count of its users. The first
argument is the device number; the second is a flag which is non-zero if the file was open for writing in the process
which performs the final close.

When write is called, it is supplied the device as argument. The per-user variable u.u count has been set to the num-
ber of characters indicated by the user; for character devices, this number may be 0 initially. u.u base is the address
supplied by the user from which to start taking characters. The system may call the routine internally, so the flag
u.u segflg is supplied which indicates, if on, that u.u base refers to the system address space instead of the user’s.

The write routine should copy up to u.u count characters from the user’s buffer to the device, decrementing
u.u count for each character passed. For most drivers, which work one character at a time, the routine

cpass()

is used to pick up characters from the user’s buffer. Successive calls on it return the characters to be written until
u.u count goes to 0 or an error occurs, when it returns −1. Cpass takes care of interrogating u.u segflg and updating
u.u count.

Write routines which want to transfer a probably large number of characters into an internal buffer may also use the
routine

iomove(buffer, offset, count, flag)

which is faster when many characters must be moved. Iomove transfers up to count characters into the buffer start-
ing offset bytes from the start of the buffer; flag should be B WRITE (which is 0) in the write case. Caution: the
caller is responsible for making sure the count is not too large and is non-zero. As an efficiency note, iomove is
much slower if any of buffer+offset, count or u.u base is odd.

The device’s read routine is called under conditions similar to write, except that u.u count is guaranteed to be non-
zero. To return characters to the user, the routine

passc(c)

is available; it takes care of housekeeping like cpass and returns −1 as the last character specified by u.u count is re-
turned to the user; before that time, 0 is returned. Iomove is also usable as with write; the flag should be B READ
but the same cautions apply.

The ‘‘special-functions’’ routine is invoked by the stty and gtty system calls as follows:

-

Unix I/O System - 3

(*p) (dev, v)

where p is a pointer to the device’s routine, dev is the device number, and v is a vector. In the gtty case, the device is
supposed to place up to 3 words of status information into the vector; this will be returned to the caller. In the stty
case, v is 0; the device should take up to 3 words of control information from the array u.u arg[0...2].

Finally, each device should have appropriate interrupt-time routines. When an interrupt occurs, it is turned into a C-
compatible call on the devices’s interrupt routine. The interrupt-catching mechanism makes the low-order four bits
of the ‘‘new PS’’ word in the trap vector for the interrupt available to the interrupt handler. This is conventionally
used by drivers which deal with multiple similar devices to encode the minor device number. After the interrupt has
been processed, a return from the interrupt handler will return from the interrupt itself.

A number of subroutines are available which are useful to character device drivers. Most of these handlers, for ex-
ample, need a place to buffer characters in the internal interface between their ‘‘top half’’ (read/write) and ‘‘bottom
half ’’ (interrupt) routines. For relatively low data-rate devices, the best mechanism is the character queue main-
tained by the routines getc and putc. A queue header has the structure

struct {
int c cc; /* character count */
char *c cf; /* first character */
char *c cl; /* last character */

} queue;

A character is placed on the end of a queue by

putc(c, &queue)

where c is the character and queue is the queue header. The routine returns −1 if there is no space to put the charac-
ter, 0 otherwise. The first character on the queue may be retrieved by

getc(&queue)

which returns either the (non-negative) character or −1 if the queue is empty.

Notice that the space for characters in queues is shared among all devices in the system and in the standard system
there are only some 600 character slots available. Thus device handlers, especially write routines, must take care to
avoid gobbling up excessive numbers of characters.

The other major help available to device handlers is the sleep-wakeup mechanism. The call

sleep(event, priority)

causes the process to wait (allowing other processes to run) until the event occurs; at that time, the process is marked
ready-to-run and the call will return when there is no process with higher priority.

The call

wakeup(event)

indicates that the event has happened, that is, causes processes sleeping on the event to be awakened. The event is an
arbitrary quantity agreed upon by the sleeper and the waker-up. By convention, it is the address of some data area
used by the driver, which guarantees that events are unique.

Processes sleeping on an event should not assume that the event has really happened; they should check that the con-
ditions which caused them to sleep no longer hold.

Priorities can range from 127 to −127; a higher numerical value indicates a less-favored scheduling situation. A pro-
cess sleeping at negative priority cannot be terminated for any reason, although it is conceivable that it may be
swapped out. Thus it is a bad idea to sleep with negative priority on an event which might never occur. On the other
hand, calls to sleep with non-negative priority may never return if the process is terminated by some signal in the
meantime. Incidentally, it is a gross error to call sleep in a routine called at interrupt time, since the process which is
running is almost certainly not the process which should go to sleep. Likewise, none of the variables in the user area
‘‘u.’’ should be touched, let alone changed, by an interrupt routine.

If a device driver wishes to wait for some event for which it is inconvenient or impossible to supply a wakeup, (for
example, a device going on-line, which does not generally cause an interrupt), the call

-

4 - Unix I/O System

sleep(&lbolt, priority)

may be given. Lbolt is an external cell whose address is awakened once every 4 seconds by the clock interrupt rou-
tine.

The routines

spl4(), spl5(), spl6(), spl7()

are available to set the processor priority level as indicated to avoid inconvenient interrupts from the device.

If a device needs to know about real-time intervals, then

timeout(func, arg, interval)

will be useful. This routine arranges that after interval sixtieths of a second, the func will be called with arg as argu-
ment, in the style

(*func)(arg)

Timeouts are used, for example, to provide real-time delays after function characters like new-line and tab in type-
writer output, and to terminate an attempt to read the 201 Dataphone dp if there is no response within a specified
number of seconds. Notice that the number of sixtieths of a second is limited to 32767, since it must appear to be
positive, and that only a bounded number of timeouts can be going on at once. Also, the specified func is called at
clock-interrupt time, so it should conform to the requirements of interrupt routines in general.

An example

The driver for the paper-tape reader/punch is worth examining as a fairly simple example of many of the techniques
used in writing character device handlers. The pc11 structure contains a state (used for the reader), an input queue,
and an output queue. A structure, rather than three individual variables, was used to cut down on the number of ex-
ternal symbols which might be confused with symbols in other routines.

When the file is opened for reading, the open routine checks to see if its state is not CLOSED; if so an error is re-
turned since it is considered a bad idea to let several people read one tape simultaneously. The state is set to WAIT-
ING, the interrupt is enabled, and a character is requested. The reason for this gambit is that there is no direct way
to determine if there is any tape in the reader or if the reader is on-line. In these situations an interrupt will occur
immediately and an error indicated. As will be seen, the interrupt routine ignores errors if the state is WAITING, but
if a good character comes in while in the WAITING state the interrupt routine sets the state to READING. Thus open
loops until the state changes, meanwhile sleeping on the ‘‘lightning bolt’’ lbolt. If it did not sleep at all, it would
prevent any other process from running until the reader came on-line; if it depended on the interrupt routine to wake
it up, the effect would be the same, since the error interrupt is almost instantaneous.

The open-write case is much simpler; the punch is enabled and a 100-character leader is punched using pcleader.

The close routine is also simple; if the reader was open, any uncollected characters are flushed, the interrupt is
turned off, and the state is set to CLOSED. In the write case a 100-character trailer is punched. The routine has a
bug in that if both the reader and punch are open close will be called only once, so that either the leftover characters
are flushed or the trailer is punched, but not both. It is hard to see how to fix this problem except by making the
reader and punch separate devices.

The pcread routine tries to pick up characters from the input queue and passes them back until the user’s read call is
satisfied. If there are no characters it checks whether the state has gone to EOF, which means that the interrupt rou-
tine detected an error in the READ state (assumed to indicate the end of the tape). If so, pcread returns; either during
this call or the next one no characters will be passed back, indicating an end-of-file. If the state is still READING the
routine enables another character by fiddling the device’s reader control register, provided it is not active, and goes to
sleep.

When a reader interrupt occurs and the state is WAITING, and the device’s error bit is set, the interrupt is ignored; if
there is no error the state is set to READING, as indicated in the discussion of pcread. If the state is READING and
there is an error, the state is set to EOF; it is assumed that the error represents the end of the tape. If there is no er-
ror, the character is picked up and stored in the input queue. Then, provided the number of characters already in the
queue is less than the high-water mark PCIHWAT, the reader is enabled again to read another character. This strate-
gy keeps the tape moving without flooding the input queue with unread characters. Finally, the top half is awakened.

-

Unix I/O System - 5

Looking again at pcread, notice that the priority level is raised by spl4() to prevent interrupts during the loop. This
is done because of the possibility that the input queue is empty, and just after the EOF test is made an error interrupt
occurs because the tape runs out. Then sleep will be called with no possibility of a wakeup. In general the processor
priority should be raised when a routine is about to sleep awaiting some condition where the presence of the condi-
tion, and the consequent wakeup, is indicated by an interrupt. The danger is that the interrupt might occur between
the test for the condition and the call to sleep, so that the wakeup apparently never happens.

At the same time it is a bad idea to raise the processor priority level for an extended period of time, since devices
with real-time requirements may be shut out so long as to cause an error. The pcread routine is perhaps overzealous
in this respect, although since most devices have a priority level higher than 4 this difficulty is not very important.

The pcwrite routine simply gets characters from the user and passes them to pcoutput, which is separated out so that
pcleader can call it also. Pcoutput checks for errors (like out-of-tape) and if none are present makes sure that the
number of characters in the output queue does not exceed PCOHWAT; if it does, sleep is called. Then the character
is placed on the output queue. There is a small bug here in that pcoutput does not check that the character was suc-
cessfully put on the queue (all character-queue space might be empty); perhaps in this case it might be a good idea to
sleep on the lightning-bolt until things quiet down. Finally pcstart is called, which checks to see if the punch is cur-
rently busy, and if not starts the punching of the first character on the output queue.

When punch interrupts occur, pcpint is called; it starts the punching of the next character on the output queue, and if
the number of characters remaining on the queue is less than the low-water mark PCOLWA T it wakes up the write
routine, which is presumably waiting for the queue to empty.

The Block-device Interface

Handling of block devices is mediated by a collection of routines which manage a set of buffers containing the im-
ages of blocks of data on the various devices. The most important purpose of these routines is to assure that several
processes which access the same block of the same device in multiprogrammed fashion maintain a consistent view
of the data in the block. A secondary but still important purpose is to increase the efficiency of the system by keep-
ing in-core copies of blocks which are being accessed frequently. The main data base for this mechanism is the table
of buffers buf. Each buffer header contains a pair of pointers (b forw, b back) which maintain a doubly-linked list
of the buffers associated with a particular block device, and a pair of pointers (av forw, av back) which generally
maintain a doubly-linked list of blocks which are ‘‘free,’’ that is, eligible to be reallocated for another transaction.
Buffers which have I/O in progress or are busy for other purposes do not appear in this list. The buffer header also
contains the device and block number to which the buffer refers, and a pointer to the actual storage associated with
the buffer. There is a word count which is the negative of the number of words to be transferred to or from the
buffer; there is also an error byte and a residual word count used to communicate information from an I/O routine to
its caller. Finally, there is a flag word with bits indicating the status of the buffer. These flags will be discussed be-
low.

Six routines constitute the most important part of the interface with the rest of the system. Given a device and block
number, both bread and getblk return a pointer to a buffer header for the block; the difference is that bread is guaran-
teed to return a buffer actually containing the current data for the block, while getblk returns a buffer which contains
the data in the block only if it is already in core (whether it is or not is indicated by the B DONE bit; see below). In
either case the buffer, and the corresponding device block, is made ‘‘busy,’’ so that other processes referring to it are
obliged to wait until it becomes free. Getblk is used, for example, when a block is about to be totally rewritten, so
that its previous contents are not useful; still, no other process can be allowed to refer to the block until the new data
is placed into it.

Given a pointer to a buffer, the brelse routine makes the buffer again available to other processes. It is called, for ex-
ample, after data has been extracted following a bread. There are three subtly-different write routines, all of which
take a buffer pointer as argument, and all of which logically release the buffer for use by others and place it on the
free list. Bwrite puts the buffer on the appropriate device queue, waits for the write to be done, and sets the user’s er-
ror flag if required.

Bawrite places the buffer on the device’s queue, but does not wait for completion, so that errors cannot be reflected
directly to the user. Bdwrite does not start any I/O operation at all, but merely marks the buffer so that if it happens
to be grabbed from the free list to contain data from some other block, the data in it will first be written out.

Bwrite is used when one wants to be sure that I/O takes place correctly, and that errors are reflected to the proper us-
er; it is used, for example, when updating i-nodes. Bawrite is useful when more efficiency is desired (because no

-

6 - Unix I/O System

wait is required for I/O to finish) but when it is reasonably certain that the write is really required. Bdwrite is used
when there is doubt that the write is needed at the moment. For example, bdwrite is called when the last byte of a
write system call falls short of the end of a block, on the assumption that another write will be given soon which will
re-use the same block. On the other hand, as the end of a block is passed, bawrite is called, since probably the block
will not be accessed again soon and one might as well start the writing process as soon as possible.

In any event, notice that the routines getblk and bread dedicate the given block exclusively to the use of the caller,
and make others wait, while one of brelse, bwrite, bawrite, or bdwrite must eventually be called to free the block for
use by others.

As mentioned, each buffer header contains a flag word which indicates the status of the buffer. Since they provide
one important channel for information between the drivers and the block I/O system, it is important to understand
these flags. The following names are manifest constants which select the associated flag bits.

B READ

This bit is set when the buffer is handed to the device strategy routine (see below) to indicate a read operation. The
symbol B WRITE is defined as 0 and does not define a flag; it is provided as a mnemonic convenience to callers of
routines like swap which have a separate argument which indicates read or write.

B DONE

This bit is set to 0 when a block is handed to the the device strategy routine and is turned on when the operation
completes, whether normally as the result of an error. It is also used as part of the return argument of getblk to indi-
cate if 1 that the returned buffer actually contains the data in the requested block.

B ERROR

This bit may be set to 1 when B DONE is set to indicate that an I/O or other error occurred. If it is set the b error
byte of the buffer header may contain an error code if it is non-zero. If b error is 0 the nature of the error is not
specified. Actually no driver at present sets b error; the latter is provided for a future improvement whereby a more
detailed error-reporting scheme may be implemented.

B BUSY

This bit indicates that the buffer header is not on the free list, i.e. is dedicated to someone’s exclusive use. The
buffer still remains attached to the list of blocks associated with its device, however. When getblk (or bread, which
calls it) searches the buffer list for a given device and finds the requested block with this bit on, it sleeps until the bit
clears.

B WANTED

This flag is used in conjunction with the B BUSY bit. Before sleeping as described just above, getblk sets this flag.
Conversely, when the block is freed and the busy bit goes down (in brelse) a wakeup is given for the block header
whenever B WANTED is on. This strategem avoids the overhead of having to call wakeup ev ery time a buffer is
freed on the chance that someone might want it.

B ASYNC

This bit is set by bawrite to indicate to the appropriate device driver that the buffer should be released when the write
has been finished, usually at interrupt time. The difference between bwrite and bawrite is that the former starts I/O,
waits until it is done, and frees the buffer. The latter merely sets this bit and starts I/O. The bit indicates that relse
should be called for the buffer on completion.

B DELWRI

This bit is set by bdwrite before releasing the buffer. When getblk, while searching for a free block, discovers the bit
is 1 in a buffer it would otherwise grab, it causes the block to be written out before reusing it.

B XMEM

This is actually a mask for the pair of bits which contain the high-order two bits of the physical address of the origin

-

Unix I/O System - 7

of the buffer; these bits are an extension of the 16 address bits elsewhere in the buffer header.

B RELOC

This bit is currently unused; it previously indicated that a system-wide relocation constant was to be added to the
buffer address. It was needed during a period when addresses of data in the system (including the buffers) were
mapped by the relocation hardware to a physical address differing from its virtual address.

Block Device Drivers

The bdevsw table contains the names of the interface routines and that of a table for each block device.

Just as for character devices, block device drivers may supply an open and a close routine called respectively on
each open and on the final close of the device. Instead of separate read and write routines, each block device driver
has a strategy routine which is called with a pointer to a buffer header as argument. As discussed, the buffer header
contains a read/write flag, the core address (including extended-memory bits), the block number, a (negative) word
count, and the major and minor device number. The rôle of the strategy routine is to carry out the operation as re-
quested by the information in the buffer header. When the transaction is complete the B DONE (and possibly the
B ERROR) bits should be set. Then if the B ASYNC bit is set, brelse should be called; otherwise, wakeup. In cases
where the device is capable, under error-free operation, of transferring fewer words than requested, the device’s
word-count register should be placed in the residual count slot of the buffer header; otherwise, the residual count
should be set to 0. This particular mechanism is really for the benefit of the magtape driver; when reading this de-
vice records shorter than requested are quite normal, and the user should be told the actual length of the record.
[However the mechanism has not been integrated into normal I/O even on magtape and is used only in ‘‘raw’’ I/O as
discussed below.]

Notice that although the most usual argument to the strategy routines is a genuine buffer header allocated as dis-
cussed above, all that is actually required is that the argument be a pointer to a place containing the appropriate in-
formation. For example the swap routine, which manages movement of core images to and from the swapping de-
vice, uses the strategy routine for this device. Care has to be taken that no extraneous bits get turned on in the flag
word.

The device’s table specified by bdevsw has a byte to contain an active flag and an error count, a pair of links which
constitute the head of the chain of buffers for the device (b forw, b back), and a first and last pointer for a device
queue. Of these things, all are used solely by the device driver itself except for the buffer-chain pointers. Typically
the flag encodes the state of the device, and is used at a minimum to indicate that the device is currently engaged in
transferring information and no new command should be issued. The error count is useful for counting retries when
errors occur. The device queue is used to remember stacked requests; in the simplest case it may be maintained as a
first-in first-out list. Since buffers which have been handed over to the strategy routines are never on the list of free
buffers, the pointers in the buffer which maintain the free list (av forw, av back) are also used to contain the point-
ers which maintain the device queues.

A couple of routines are provided which are useful to block device drivers.

iodone(bp) ,

arranges that the buffer to which bp points be released or awakened, as appropriate, when the strategy module has
finished with the buffer, either normally or after an error. (In the latter case the B ERROR bit has presumably been
set.)

When the device conforms to some rather loose standards adhered to by certain DEC hardware, the routine

devstart(bp, devloc, devblk, hbcom)

is useful. Here bp is the address of the buffer header, devloc is the address of the slot in the device registers which
accepts a perhaps-encoded device block number, devblk is the block number, and hbcom is a quantity to be stored in
the high byte of the device’s command register. It is understood, when using this routine, that the device registers
are laid out in the order

command register
word count
core address
block (or track or sector)

-

8 - Unix I/O System

where the address of the last corresponds to devloc. Moreover, the device should correspond to the RP, RK, and RF
devices with respect to its layout of extended-memory bits and structure of read and write commands.

The routine

geterror(bp)

can be used to examine the error bit in a buffer header and arrange that any error indication found therein is reflected
to the user. It may be called only in the non-interrupt part of a driver when I/O has completed (B DONE has been
set).

An example

The RF disk driver is worth studying as the simplest example of a block I/O device. Its strategy routine checks to
see if the requested block lies beyond the end of the device; the size of the disk, in this instance, is indicated by the
minor device number. If the request is plausible, the buffer is placed at the end of the device queue, and if the disk is
not running, rfstart is called.

Rfstart merely returns if there is nothing to do, but otherwise sets the device-active flag, loads the address extension
register, and calls devstart to perform the remaining tasks attendant on beginning a data transfer.

When a completion or error interrupt occurs, rfintr is called. If an error is indicated, and if the error count has not
exceeded 10, the same transaction is reattempted; otherwise the error bit is set. If there was no error or if 10 failing
transfers have been issued the queue is advanced and rfstart is called to begin another transaction.

Raw Block-device I/O

A scheme has been set up whereby block device drivers may provide the ability to transfer information directly be-
tween the user’s core image and the device without the use of buffers and in blocks as large as the caller requests.
The method involves setting up a character-type special file corresponding to the raw device and providing read and
write routines which set up what is usually a private, non-shared buffer header with the appropriate information and
call the device’s strategy routine. If desired, separate open and close routines may be provided but this is usually un-
necessary. A special-function routine might come in handy, especially for magtape.

A great deal of work has to be done to generate the ‘‘appropriate information’’ to put in the argument buffer for the
strategy module; the worst part is to map relocated user addresses to physical addresses. Most of this work is done
by

physio(strat, bp, dev, rw)

whose arguments are the name of the strategy routine strat, the buffer pointer bp, the device number dev, and a read-
write flag rw whose value is either B READ or B WRITE. Physio makes sure that the user’s base address and count
are even (because most devices work in words) and that the core area affected is contiguous in physical space; it de-
lays until the buffer is not busy, and makes it busy while the operation is in progress; and it sets up user error return
information.

The magtape driver is the only one which as of this writing provides a raw I/O capability; given physio, the work in-
volved is trivial, and amounts to passing back to the user information on the length of the record read or written.
(There is some funniness because the magtape, uniquely among DEC devices, works in bytes, not words.) Putting in
raw I/O for disks should be equally trivial except that the disk address has to be carefully checked to make sure it
does not overflow from one logical device to another on which the caller may not have write permission.

