Analyzing
DG/UX" System
Performance

Analyzing DG/UX® System
Performance

069-701142-03

For the latest enhancements, cautions, documentation changes, and other
information on this product, please see the Release Notice (085-series)
and/or Update Notice (078-series) supplied with the software.

Produced by Data General, A Division of EMC Corporation.

Copyright ©Data General, A Division of EMC Corporation, 1997, 1998, 1999, 2000
Rev. 03 , January 2000

Ordering No. 069-701142

Notice

DATA GENERAL, A DIVISION OF EMC CORPORATION (DG), HAS PREPARED THIS DOCUMENT FOR
USE BY DG PERSONNEL, CUSTOMERS, AND PROSPECTIVE CUSTOMERS. THE INFORMATION
CONTAINED HEREIN SHALL NOT BE REPRODUCED IN WHOLE OR IN PART WITHOUT DG’S
PRIOR WRITTEN APPROVAL.

DG reserves the right to make changes in specifications and other information contained in this document
without prior notice, and the reader should in all cases consult DG to determine whether any such changes
have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DG HARDWRE PRODUCTS AND THE
LICENSING OF DG SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DG AND ITS CUSTOMERS. NO REPRESENTATION OR OTHER
AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY, RESPONSE-TIME, SUITABILITY FOR USE OR
PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY
DG FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY OF DG WHA'SOEVER.

IN NO EVENT SHALL DG BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR

CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)

ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT,

ngN IFI‘&]I:\)/[i(I}{ASS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF
UCH D. ES.

NUMALIiiINE and THiiN are trademarks and AViiON and DG/UX are U.S. registered

trademarks of Data General, a Division of EMC Corporation. AV/Alert and NTAlert are
service marks of EMC Corporation.

Symmetrix and CLARiiON are U.S. registered trademarks of EMC Corporation.

UNIX s a U.S. registered trademark of The Open Group.
NFS is a U.S. registered trademark and ONC is a trademark of Sun Microsystems, Inc.

Analyzing DG/UX® System Performance
069-701142-03

Revision History: Effective with:

Original Release — October 1997 DG/UX System Release 4.20MU01
First Revision — September 1998 DG/UX System Release 4.20MU03
Second Revision — March 1999 DG/UX System Release 4.20MU04
Third Revision - January 2000 DG/UX System Release 4.20MU06

This manual replaces 093-701129. A vertical bar in the margin of a page
indicates substantive technical change from the previous revision.

Preface

This manual describes how to analyze DG/UX system performance and
fine-tune your system. It also explains how the DG/UX system
implements the major abstractions of a computer: a CPU, virtual
memory, a file system, and I/O devices.

How this manual is organized

This manual contains seven chapters and a glossary of terms:
Chapter 1 Introduces DG/UX system performance.
Chapter 2 Describes the CPU and processes.
Chapter 3 Discusses memory.
Chapter 4 Describes the DG/UX operating system’s file system and disk I/O.
Chapter 5 Describes terminal I/O.
Chapter 6 Discusses networking.

Chapter 7 Describes the ccNUMA technology implemented in the DG/UX
system and how to monitor and optimize DG/UX systems with
ccNUMA.

Glossary Defines concepts and terms used in this manual.

Related Data General manuals
Within this manual, we refer to the following manuals:

Managing Mass Storage Devices and DG/UX® File Systems
(069-701144). Explains how to manage disk and tape drives. Also [|
explains DG/UX file systems, virtual disks, mirrors, and caching.

Managing TCP/IP on the DG/UX’ System (069-701137). Explains how [|
to prepare for the installation of Data General’s TCP/IP (DG/UX)
package. Tells how to tailor the software for your site, and use sysadm

to manage the package and troubleshoot system problems.

Managing the DG/ UX® System (069-701141). Explains how to manage
the DG/UX system. Includes information about the Class Scheduling
Facility (CSF).

iv Format conventions

Format conventions

We use the following format conventions in this manual:

Convention

boldface

monospace

italic

i

[1]

$ and %

Meaning

Indicates text (including punctuation) that you
type verbatim.

All DG/UX commands, pathnames, and names
of files, directories, and manual pages appear in
this typeface.

Represents a system response (such as a
message or prompt), a file or program listing, or
a menu path.

Represents variables for which you supply
values; for example, the name of a directory or
file, your username or password, and explicit
arguments to commands.

Braces indicate a choice of arguments. You must
enter one of the enclosed arguments. Do not
type the braces; they only set off the choices.

These brackets surround an optional argument.
Don’t type the brackets; they only set off what is
optional.

Boldface brackets are literal characters that you
must type.

Means you can repeat the preceding argument
as many times as appropriate.

Represent the system command prompts for the
Bourne and C shells, respectively. Note that
your system might use different symbols for the
prompts.

Represents the Enter key. (On some keyboards
this key is called Return or New Line.)

Angle brackets distinguish a command
sequence or a keystroke (such as <Ctrl-D>,
<Esc>, and <3dw>) from surrounding text.
Don’t type the angle brackets.

Contacting Data General v

<, >, > These boldface symbols are redirection
operators, used for redirecting input and
output. Boldface angle brackets are literal
characters that you must type.

Contacting Data General

Data General wants to assist you in any way it can to help you use its
products. Please feel free to contact the company as outlined below.

Manuals

If you require additional manuals, please contact your local Data General
sales representative.

Telephone assistance

If you are unable to solve a problem using any manual you received
with your system, telephone support is available with your hardware
warranty and with Support Plus and Hotline Software Support service
contracts. If you are within the United States or Canada, contact the
Data General Customer Support Center (CSC) by calling
1-800-DG-HELPS. Lines are open from 8:00 a.m. to 5:00 p.m., your
time, Monday through Friday. The center will put you in touch with a
member of Data General’s telephone assistance staff who can answer
your questions.

For telephone assistance outside the United States or Canada, ask your
Data General sales representative for the appropriate telephone
number.

Data General on the World Wide Web

Data General’s comprehensive information library provides Internet
users with access to virtually all of Data General’s publicly available
information and to a variety of feature articles and white papers on
critical issues in computing. Browse through product and service
catalogs, our Solutions Directory, partner and customer profiles, and
other publications.

Internet users can reach Data General’s web server at
http://www.dg.com. In addition, you can send us e-mail at

Vi

Data General Users Group

aviion@dg.com.

Data General’s Customer Support Center (CSC) provides Internet
users with access to a Service Request Menu, Electronic Search
Program, a Bulletin Board, Monthly Newsletters, Weekly Bulletins,
Maintenance Updates, patches, and important information on a variety
of operating systems. An active support contract may be required for
certain features.

Internet users can reach the CSC web server at
http://www.csc.dg.com.

Data General Users Group

NADGUG, the Independent Data General Users Group, is a unique
network of Data General users who wish to discover more about
working computer environments and how to use them. As a
professional, user—-run organization, NADGUG members make contacts
with colleagues, share expertise and perspectives, and influence the
companies that provide products and services. The User Group is your
connection to expert users of Data General products. Getting just one
solution from a fellow member can more than pay for the cost of
belonging to NADGUG. To join or for more information, call
1-800-253-3902.

End of Preface

Contents

Chapter 1- DG/UX System Performance

Monitoring and Analyzing System Performance 1-1
System Resourcescoiuiiiiiii 1-2
CPU o 1-2
Memory ... 1-2
File Systems and Disk /O i 1-2
Terminal /O 1-2
NetWorKingttt e e e e 1-2
ccNUMA DG/UX Systemsouirniiiieiieiiieiiennennn. 1-2
Sources of Performance Data 1-3
System Activity: sar, nsar, nSar_ nNumMaoveuun.... 1-3
Process Activity: ops, nps, timex, acet, prof........................ 1-3
System Activity and Debugging: UX/RPM, Mxdb, mxprof 1-4
Configuration Variables and Performance Tuning 14
General Performance Strategies, 1-5
Job Scheduling and Backups During Off-Peak Hours 1-5
Efficiency of Search Path Variables 1-6
Reduction of Directory Sizes 1-7
Resource Questions and Performance Strategies 1-7
Process Performance Questions, 1-7
Memory Performance Questionsc...... 1-8
File System and Disk I/O Performance Questions 1-9
Terminal I/O Performance Questions 1-11
Networking Performance Questions 1-11
ccNUMA Performance Considerations 1-12

Chapter 2—- CPU and Processes

CPU and Process Termsiiiiiie it 2-1
Scheduling 2-3
Medium Term Scheduler (MTS), 2-5
CPU USage ..ottt e e e e e 2-7
CPU Time Interruptions it 2-9
System Load Averageouiiiiiieineiniinenaan. 2-12

Run Queues 2-13

viii

Process Tracingoouiiiii 2-13
Specifying the System Callsto Trace 2-13
Tracing Processes in Running Programs 2-14
Controlling dg_strace Command Output 2-14
dg_strace Command Caveatsccoiiiiiiininnennn.. 2-14

Per-Process Statistics i 2-15

Per—LWP Statisticsoooiii 2-21

System-Wide Process Statistics, 2-23

Configuration Variables i 2-29
CPU and Process Configuration Variables 2-29
Scheduler Configuration Variables 2-33
Message Configuration Variables 2-35
Semaphore Configuration Variables 2-35

ccNUMA Process Management and Scheduling 2-36

Chapter 3— Memory

Typical DG/UX Memory System Behavior 3-1
W APPIIE .« . ottt et e 3-6
Thrashing e 3-7
Hard Page Faults i 3-8
Per-Process Memory Statistics 3-8
System-Wide Memory Statistics, 3-9

System Paging Statistics i 3-16
Memory Configuration Variables, 3-19
Shared Memory Configuration Variables 3-20
ccNUMA Memory Managementcouuiiieiineinneennnenn.. 3-21

Chapter 4 — File Systems and Disk I/O

File System and Disk I/O Terms, 4-1
DISKS oo 4-3
Buffering 4-4
Metadata Buffering 4-4
File Systemo 4-6
File Data Element Sizes i, 4-6
Keeping Data Close Together 4-7
Fragmentation 4-8
File System Size i 4-9
Virtual Diskso 4-10

Balancing the Disk Load i, 4-10

ix

Balancing the Load Between Controllers

Disk Caching. ...

Software Data Striping

Software Disk Mirroringccoiuiiiniiinennennnann.

Memory File Systems i

Fast Recovery File Systems i,

Other Concerns .
File System Tools
mkfs

cpd ...
Disk Arrays
Disk I/O Statistics

File System Configuration Variables
VDM Configuration Variables i,
ccNUMA Virtual Disk Managementovviin..

Chapter 5— Terminal I/O

Terminal Lines

Terminal Port Interrupts i

Editread
Terminal I/0 Statistics

Pseudo—Device Unit Count Variables

Chapter 6 — Networking

Networking Terms

Introduction to Network Analysis,

Analysis Tools . ..
Network Environment
Ethernet

Token Ringand FDDI

Subnetting

Routing Considerations,

Gateways and Data Transfers,

Network Connectionst

Local System Environment

CPU Performance

4-11
4-12
4-17
4-18
4-19
4-19
4-20
4-21
4-21
4-21
4-21
4-21
4-22
4-22
4-24
4-30
4-34
4-36

5-2
5-2
5-2
5-3
5-4

6-3

6-3
6-13
6-14
6-14
6-15
6-16
6-18
6-19
6-19
6-20

Disk Performance i 6-20
Diskless Client Performance, 6-20
TCP/IP and Its Utilities ...t i 6-21
Telnet and rlogin i 6-21
BT P o 6-22
TCP/TP TUNING . .o o ittt ettt e 6-23
NS o 6-26
Analyzing NFSUsaget 6-26
STREAMS oo 6-28
STREAMS Configuration Variables 6-29
ccNUMA Communications Management 6-31

Chapter 7—- ccNUMA System Performance

Key Concepts for Improving ccNUMA Performance 7-1
Load Balancing i 7-1
Memory ... 7-2
Files and File Systems i, 7-2

Process Management on ccNUMA Systems 7-2
Scheduling Processesoiiiiiiiiiin i 7-2
Initial Home Fork and Exec Placement Configuration Variables 7-3
Process Poaching and Migration Configuration Variable 7-5
Load Balancing Configuration Variables 7-6
Interactive Level Computation Configuration Variable 7-7
Defining Application Start-Up Characteristics with

the Class Scheduling Facility 7-8

Memory Management on ccNUMA Systems 7-10
Page Placement Policy Configuration Variables 7-10
Frame Hog Prevention Configuration Variables 7-11
Page Monopoly Prevention Configuration Variables................ 7-12
Alternate System Placement Policies 7-13

Virtual Disk Management on ccNUMA Systems 7-14
Tuning Disk /O 7-15
Disk I/O Performancecoiiiiiiiiiiiiiinnn.. 7-15
Disk High Availability 7-16
Disk Path Repair i 7-16

File System Management on ccNUMA Systems 7-16
File System Buffer Configuration Variables 7-17

Communications Management on ccNUMA Systems 7-17

STREAMS Configuration Variable 7-18

Xi

TCP/IP

Multi-Connected LAN
Monitoring ccNUMA Performance with nsar numa
ccNUMA Performance Adjustment Tools

Controlling Process Locale Affinity with dg_affine and CSF

Controlling Interrupt-to-CPU Targeting with adminterrupt

Activating Configuration Variable Changes with admkernelparam ..

Performance Benchmark Tests and Characteristics

AIM-7 Benchmark
TPC—-C Benchmark
TPC-D Benchmark

Glossary

Index

7-18
7-20
7-21
7-22
7-22
7-22
7-23
7-24
7-24
7-25
7-26

Xii

Tables

Table

4-1
4-2

7-1

RAID Level Performance Advantages
RAID Level Performance Disadvantages

ccNUMA Alternate Policy Selection Algorithms

Figures

Figure
2-1

3-1

Processes, Threads, LWPs, and CPUs

Swap Space

4-23
4-24

7-14

2-2

3-4

1 DG/UX System Performance

This manual is intended to help you monitor and improve the
performance of your DG/UX systems. Gathering and analyzing
performance statistics for the operating system can help you improve
both system and application performance. This manual explains how
you can use system operation performance data to understand and
improve system and application performance.

This chapter discusses:

e How to monitor and analyze system performance
e System resources

e Sources of performance data

e Tuning configuration variables

e General performance strategies

e Resource questions and performance strategies

The other chapters in the manual explain how the DG/UX system
implements the major abstractions of a computer — a CPU, virtual
memory, a file system, and I/O devices — and how you monitor and
adjust these resources to improve system performance.

Monitoring and Analyzing System Performance

First, you should understand what constitutes normal performance for
your system and system resources, as well as average and peak system
workloads. Although this manual often gives general guidelines
regarding normal performance, you should determine what the
particular threshold values are for your system.

Then, use this manual to generate system performance statistics and
analyze the statistics to find areas where you can improve performance.
Your goal is to maximize efficiency and eliminate system bottlenecks.
However, you probably will reach a point at which you achieve
maximum system performance — at that point, further work on your
part leads to diminishing returns.

Finally, once you understand normal performance and average and
peak workloads on your systems, you will be better able to detect
performance problems. Use this manual to figure out where the
problems lie, and how and what you can adjust to fix them.

1-2

System Resources

System Resources

This section explains where to find information about your system
resources in this manual.

CPU

Chapter 2 explains how the DG/UX system allocates CPU resources to
processes. The chapter covers the concepts of threads, lightweight
processes (LWPs), LWP groups, the Medium Term Scheduler, context
switching, and interrupt handling.

Memory

Chapter 3 explains how the DG/UX system uses physical memory and a
swapping device so that each process has access to a large virtual
address space. The chapter describes the concepts of page faults,
purging, and swapping.

File Systems and Disk I/O

Chapter 4 explains how the DG/UX system supports its file system, file
system metadata caching, and raw device I/O. The chapter tells how to
organize data on a disk for efficient access.

Terminal I/O
Chapter 5 explains how the DG/UX system supports terminal I/O.

Networking

Chapter 6 explains the most important and common factors affecting
network performance.

ccNUMA DG/UX Systems

Data General ships the DG/UX Cache-Coherent Non-Uniform Memory
Access (ccNUMA) technology on its AV 20000 and 25000 series
machines. Fundamentally an extension to the DG/UX Symmetric
Multi-Processor (SMP) architecture, DG/UX ccNUMA offers significant
performance improvements with no required modifications to existing
SMP applications.

For detailed information about DG/UX ccNUMA system technology and
how to modify configuration variables to improve ccNUMA system
performance, see Chapter 7.

Sources of Performance Data 1-3

Sources of Performance Data

Most performance data comes in raw form from DG/UX system calls
such as dg_sys_info(), dg_paging_info (), dg_process_info(),
dg_lwp_info(), dg_vm_process_info(), dg_cpu_info(), getrusage(),
ioctl(), and dg_syscall_info (). The include files found in
/usr/include/sys describe the raw numbers these calls generate. For
more information about one of these system calls, see its manual page.

Performance analysis tools bundled with the DG/UX operating system
are sar, nsar, ops, nps, timex, prof, and, for ccNUMA systems,
nsar_numa. You can also use optional, value-added tools such as
UX/RPM (the DG/UX Real-time Performance Monitor) and Mxdb (Data
General’s Multi—extensible Debugger).

System Activity: sar, nsar, nsar_numa

You can review statistics on CPU performance, disk and terminal I/O,
memory usage, process communication and execution, and other
activity with the sar (system activity reporter) command.

The nsar command displays system activity statistics as well. In
addition to the information displayed by sar, nsar displays data such
as DG/UX virtual memory statistics, kernel memory allocation activity,
page-out activity, and virtual disk I/O statistics. The nsar_numa
command extends nsar to display ccNUMA locale-specific statistics; for
more information about nsar_numa, see Chapter 7.

Note that if you have DG/UX Clusters (an optional DG/UX product),
nsar statistics are reported only for the one cluster node where the tool
is run. If you want a cluster-wide view of disk I/O performance, you
must run nsar on each cluster node and combine the data.

The System —> System Activity menu of sysadm provides operations
for starting and stopping system activity monitoring, deleting old data
collection files, and reviewing reports. You use sar, nsar, and
nsar_numa at the command line; read the man pages for details.

Process Activity: ops, nps, timex, acct, prof

The ops command prints information about active processes. In
addition to the information displayed by ops, nps prints DG/UX
process and LWP information (LWPs are defined in Chapter 2). The
System —> Process menu of sysadm provides operations for listing and
deleting processes as well as changing process priority. You can also use
nps and ops at the command line; read the manual pages for more
information.

1-4

Configuration Variables and Performance Tuning

You can measure the elapsed, user, and system time of a command,
report process data, and report system activity with the timex
command. The given command is executed; the elapsed time, user time
and system time spent in execution are reported (in seconds).
Optionally, you can choose to list or summarize process accounting data
for the command and all its children (see the acet(1M) man page for
accounting information). You can also receive a report of total system
activity during the execution interval. See the timex manual page.

The prof command interprets a profile file produced by the
monitor(3C) function. See the manual pages for prof and monitor.

System Activity and Debugging: UX/RPM, Mxdb,
mxprof

UX/RPM collects and displays system and disk performance
information as well as process data. The data is presented through a
series of screens, and the performance data can be logged to disk for
later playback. UX/RPM can also produce data interchange format
(DIF) files from logs for analysis by standard spreadsheet tools.

Another profiling command, mxprof, works with Elf executables that
use shared objects, and does not require special compilation or linking.
mxprof is available in the separate product Mxdb.

Configuration Variables and Performance Tuning

Tunable configuration variables set various table sizes and system
thresholds to handle the load on your system. You'll find that the
default values of configuration variables are adequate for most
configurations and applications. If your applications or your computing
environments have special performance needs, you may have to
experiment with different variable settings to achieve optimal system
performance.

Chapters 2 through 6 list relevant tunable configuration variables at
the end of each chapter. Chapter 7 describes ccNUMA-specific tunable
configuration variables in each subsystem section.

General Performance Strategies 1-5

To set or modify a configuration variable, you do one of two things:

e Change the configuration variable value in your system file and
then build a new kernel (use the sysadm System —> Kernel —>
Build menu option) to make the value take effect. General
information about DG/UX kernel configuration variables is
available in /usr/etc/master.d/*. For how to change a configuration
variable and build a new kernel, see Managing the DG/ UX System.

e Use the admkernelparam command to change and activate a
configuration variable value while the system is up and running
without rebuilding the kernel, and to save parameter values to be
restored at the next reboot. The command can modify only certain
configuration variables; to see a list of the tunable variables that it
can modify, enter admkernelparam -o list at the command
line. See the admkernelparam(1M) man page for more detail.

General Performance Strategies

This section explains general strategies with which you can experiment
to improve performance.

To ensure maximum system performance, you should first monitor
system performance on a daily basis — establish your criteria for good
system performance and note your system thresholds. Then you should
check for:

e Jobs running during peak hours that could just as well run during
off-peak hours; less important jobs interfering with more important
jobs.

e Backups of data during critical times.
e The efficiency of the PATH environment variable.

e Directories or file systems that are very large.

Job Scheduling and Backups During Of-Peak
Hours

During the busiest times of the day for your system, see which
processes are less critical and might be run at a different time of day.
Note that there is generally increased activity just before lunch and at
the end of the workday.

If you regularly run processes that take a very long time to execute,
consider using cron(1M) or at(1) to execute the job during off-hours, or
use batch(1) to execute the job when system load level permits.

General Performance Strategies

Use the crontab command to examine users’ crontab files to see if
there are jobs scheduled for peak hours that could just as well run
during off hours.

Encourage users to run large, noninteractive jobs (such as program
compilations) at off-peak hours. You may also want to run such jobs
with a low priority by using the nice(1) or batch(1) commands. As
superuser, you can always change a job’s priority with the renice(1M)
command.

Whenever possible, do backups of data during off-peak hours.

Efficiency of Search Path Variables

Every shell process has a path or PATH environment variable that
lists the directories that the system should search when looking for a
command invoked by the user. Every time the user issues a command,
the system scans the directories in the path to see where the command
resides. If the command invokes other commands, the system has to
scan the search path for them too. These searches require both
processor and disk time; thus, changes here can help performance.

Some things that you should check for in user search path variables
are:

Path efficiency
The system searches the path directories in the order listed, so
your most commonly used directories should appear first in the
path. Make sure that a directory is not searched more than
once for a command.

Local versus NFS file systems
Putting directories that are on NFS mounted file systems after
those that are on local disks improves performance.

Path length
In general, the search path should have the least number of
required entries. Use link files where possible to avoid
increasing search path size.

Large directory searches
Avoid searching large directories if possible. Put any large
directories at the end of the search path.

IMPORTANT Do not put the current directory, represented by a
dot (.), on any superuser search path. In user search paths, the
current directory should always appear last, if at all. Placing the
current directory on your path may cause you to inadvertently
execute a nonsecure script or program that has the same name as a
common command.

Resource Questions and Performance Strategies 1-7

Reduction of Directory Sizes

If possible, break up large directories into smaller directories. Use the
find command to search for large directories (those with more than
1000 entries) and consider breaking them up into smaller directories.

A common mistake that users make is to place an application, source
code, and object code all in the same directory. To reduce directory
search time, the solution is to create three directories: one for the
application executables, one for the source code, and one for the object
code. Then, for a normal user, only include the application executables
directory in the search path.

Use the following find command to search for and list large local
directories:

find / -type d -size +15 -local -print | more

To get a quick file count for a large directory, ed to the directory and
execute this command:

1ls -al | we -1

Resource Questions and Performance Strategies

This section explains questions about system resources that you can
explore to find ways of improving performance, and recommends
strategies to deal with what you find. See the other chapters in this
manual for detailed explanations of these system resources. Refer to
other chapters and also to other manuals in the DG/UX documentation
set for how to make recommended system modifications.

If you decide to make adjustments to your system, we strongly
recommend making one adjustment at a time, not all modifications at
once. If you make only one adjustment and then check performance
statistics, you can get a good idea of how that particular modification
affects your system.

Process Performance Questions

For detailed information about processes, CPUs, and how they
influence system performance, see Chapter 2.

1. Are there unbound runnable processes?

If there are many unbound runnable processes, there is not enough
physical memory in the system to keep it running smoothly. Look at
this statistic using the nsar —q command.

1

8

Resource Questions and Performance Strategies

2. Are there any problems with CPU usage, per-process or
system-wide?

Use the time(1), timex(1), or ps command to obtain the
per-process CPU usage, and the nsar —u command to get the
system-wide CPU usage. On a ccNUMA system, use the
nsar_numa -u command to obtain the per-locale CPU statistics. If
the load is not balanced between ccNUMA locales, consider making
load balancing more aggressive or affining processes to different
locales.

3. What is the rate of context switches?

Use the nsar -w command to find out the number of context
(process) switches per second. These context switches can be due to
the time slice expiring, the process stalling on a contended resource
such as a semaphore or kernel level lock, or the process waiting for
an I/O operation to finish. The time slice can be increased with the
MAXSLICE configuration variable. If there is too much contention
for a single shared resource, consider distributing the load across
multiple resources.

4. What is the average number of processes?

The nsar —-v command tells how many processes are active. If this
number suddenly increases, there may be runaway processes that
are failing to terminate. You can use the ps command to see the
status of all system processes.

5. Are there any process table overflows?

The nsar —v command shows the current number of processes and
the limit of the number of processes. If the limit has been reached
under normal circumstances, consider increasing the value of the
NPROC configuration variable. Making NPROC too large wastes
system memory, so it should be only as large as needed.

Memory Performance Questions

For detailed information about memory and related system
performance, see Chapter 3.

1. Is the freeswap value between 15% and 30% of the total
physical memory and swap area on the system?

Use the nsar —-r command to look at free memory and freeswap
statistics. If the minimum and average free swap values are
consistently higher than 30% of this total, you may be able to
improve performance by decreasing swap space and thereby
increasing the amount of free disk space.

Resource Questions and Performance Strategies 1-9

2. Is thrashing a problem?

For information about thrashing and what to do about it, see
Chapter 3. One alternative for fixing a thrashing problem is to
decrease the PERCENTBUF value to avoid excessive paging; for
detailed information about PERCENTBUF, see Chapter 4.

3. Is the rate of hard faults acceptable?

A high hard fault rate usually indicates that there is not enough
memory in the system to effectively cache disk data. Use the
nsar -p command to see the hard fault rate.

File System and Disk I/O Performance Questions

For detailed information about file system and disk I/O performance
analysis and issues, see Chapter 4. For comprehensive information
about disk storage devices and DG/UX file systems, see Managing Mass
Storage Devices and DG/UX"® File Systems.

1. What is the average %rcache ratio?

If the average is near 100%, you may see a performance
improvement by adjusting PERCENTSYSBUF to bring the ratio
down to 97-98%. This frees system memory used unnecessarily for
file system metadata buffering. Use the nsar -b command to get
this data. See Chapter 4 for more details.

2. What is the rate of inode entry searches?
Use the nsar —a command to get this value.
3. Does there seem to be a problem with fragmentation?

Disk fragmentation occurs incrementally over time. As files are
deleted and disk space is freed, new files tend to be stored in more
and more non-contiguous blocks across the available memory space.
As file fragmentation increases, disk access rates also increase and
cause progressive degradation of system performance.

If the free data blocks histogram displayed by dumpfs shows many
small blocks and not very many large blocks for file systems, your
disk space is fragmented. Defragmenting a system by backing up
and then restoring its data can improve system performance.

1-10 Resource Questions and Performance Strategies

4. Are many volatile file systems concentrated on a few
physical disks?

The command nsar —-d ~-WD=v can help you determine virtual disk
usage.

If you determine that most disk I/O is occurring on a few physical
disks, a major disk reorganization that distributes the I/O load
more evenly may improve performance. The goal of such a
reorganization is to create a similar ratio of active to inactive
virtual disks on each physical disk. Disk reorganization can yield
significant performance improvement.

To reorganize the disks, use the nsar command noted above to
figure out which virtual disks are most active and use the command
admpdisk -o list —p to get the current disk layout. Based on this
information, determine which virtual disks should go on which
physical disks. Second, archive each file system carefully with
dump, dump2, or some other backup utility. Third, set up the new
virtual disk organization on the physical disks. Fourth, restore each
file system.

If your computing environment uses NFS for remote file system
mounts, you should notify other system administrators of your disk
reorganization plans and of any changes you make to file system
names during the disk reorganization. Depending on the changes
you make, they may need to remount or rename mount points they
have to your file systems

5. Is the percentage used of each read-write file system under
80%?

Performance degrades on file systems that are over 80% full. If the
percentage used of a file system is over 80%, you can reduce the
percentage by deleting or archiving unnecessary files or by
expanding the file system size.

Use the command admfsinfo —o diskuse -1 to get a quick listing of
local file systems and their inode and block usage.

6. How are the service, wait, and response times for the
physical disks?

The higher these numbers, the longer it takes your system to
process a request. High numbers are likely to appear for physical
disks with much memory fragmentation. Defragmenting the
system or the physical disks generating high numbers is likely to
improve performance and lower the numbers.

Resource Questions and Performance Strategies 1-11

You need to balance service time against run queue length when
looking at disk performance. Long run queues mean a heavier load
and, coupled with high service times, can reduce performance. The
ideal run queue length for a physical disk is 1 (one). A striped
logical unit can handle a higher run queue length than a single
unstriped disk.

7. Is the swap area on one physical disk?

If yes, redistributing the swap area across several physical disks
and storage processors may balance the swap workload and
improve performance. You can create up to a total of eight swap
partitions to spread across the physical disks.

Terminal I/0 Performance Questions

For detailed information about terminal I/O performance analysis and
issues, see Chapter 5. For comprehensive information about terminal
management on the DG/UX system, see Setting Up and Managing
Terminals on the DG/UX System.

1. Do the output and input character rates seem normal?

Use the nsar -y command to get the input and output character
rates.

2. Do you regularly monitor the size and contents of the
letc/wtmp directory?

If not, check the directory for files that are no longer needed and
delete them. Freeing the disk space may improve performance.

Networking Performance Questions

For detailed information about network performance analysis and
issues, see Chapter 6. For comprehensive information about
networking on the DG/UX system, see Managing ONC/NFS and Its
Facilities on the DG/ UX System and Managing TCP/IP on the DG/UX
System.

1. Is the ratio of input datagrams dropped to the total number
of datagrams received below 0.05%?

Use the command netstat —s to get this information.

2. Is the number of bytes in the send queue 0 (zero) for most
connections?

Use the command netstat to get this information.

1-12

Resource Questions and Performance Strategies

. Is the number of input errors 0.025% of the total number of

input packets?

Use the command netstat —i to get this information.

. Is the number of output errors 0.025% of the total number of

output packets?

Use the command netstat —i to get this information.

. Are there excessive collisions present for any Ethernet

interfaces?

Use the command snmpgettab hostname public dot3StatsTable
to get this information.

. Are any of the numbers in the bad checksum fields greater

than an extremely small percentage (hundredths of a
percent) of the total number of packets received?

To get this information, use the netstat —s command and review
the bad checksums fields under the udp, tep, icmp, and ip
headings in the output.

. Is the retrans field greater than 5% of the total number of

client NFS calls?

To get this information, use the command nfsstat and review the
output under the Client rpc heading. If yes, also check the badxid
number. A high retrans percentage and high badxid number can
indicate latencies in the network.

ccNUMA Performance Considerations

The overall performance of ccNUMA DG/UX systems improves with
particular attention to memory management, file systems, and load
balancing. For information about improving ccNUMA system
performance, see Chapter 7.

End of Chapter

2 CPU and Processes

The DG/UX system, like most general-purpose operating systems,
provides the abstraction of a virtual CPU to processes running on it.
Each process appears to have the processor and a virtual address space
to itself.

This chapter describes how your system deals with processes. These
topics are covered:

e CPU usage, including system calls, context switches, and signals
e Lightweight processes (LWPs) and LWP groups

e Medium Term Scheduler

e Per-process statistics

o Per-LWP statistics

e System-wide process statistics

e Configuration variables (CPU/process, message, semaphore, and
scheduler)

CPU and Process Terms

Here are some terms that will be used in the following sections:

A process consists of an address space with one or more threads
executing within that address space and their required system
resources.

A thread is a single flow of control within a process. Each thread has its
own thread ID number, its own scheduling priority and class, and its
own stack, which the thread uses to store local variables. Threads are
equal siblings that share the resources of a process. This sharing
reduces significantly the thread’s overhead and simplifies inter-thread
communication.

An LWP is a “lightweight process.” Each thread has a corresponding
LWP in kernel space. These highly optimized LWPs have very low
memory overhead. In this manual, LWP denotes a thread at the kernel
level that is an active executing entity.

An LWP group is a set of computationally related LWPs sharing the
same global priority, global scheduling class, CPU accounting, and
scheduling time slice.

2-2

CPU and Process Terms

A job processor (JP) is one CPU in a Data General computer system.
AViiON computers are available with up to 64 JPs. Contact your Data
General account representative for information about additional CPU
expansion capabilities for your specific hardware.

The Medium Term Scheduler (MTS) is a kernel LWP that schedules
LWP groups. LWP groups are scheduled globally against other LWP
groups in the system based upon their global scheduling priority and
class. Each LWP group has one or more LWPs that are scheduled
locally within the LWP group, based upon their local scheduling
priority and class.

The dispatcher runs LWP groups, then LWPs within LWP groups.
Multiple processors may execute LWPs from the same LWP group at
the same time. The hardware implementation (actual number of
physical processors) becomes irrelevant to the higher levels of the
kernel.

Figure 2—-1 shows the general design.

Multi-threaded Process . Single-threaded Process

- Threads ——>»»

User
Space
[LWP| [LWP| [LWP | '««— LWP Groups —3 LwpP
Kernel
Space
Y
CPU CPU CPU coes CPU
Figure 2-1 Processes, Threads, LWPs, and CPUs

A VP (virtual processor) is the dispatcher-level component of an LWP.
The dispatcher maps every LWP to a VP.

Scheduling 2-3

The code for the kernel’s dispatch scheduler runs on each JP in a
multiprocessor system. A JP may reschedule globally (among LWP
groups) or locally (within LWP groups) depending on the event that
provoked the rescheduling. When an LWP within an LWP group
suspends itself, the JP reschedules locally. Otherwise,when a JP is
available, it reschedules globally by looking at the scheduling queues to
determine which LWP group to run next.

A scheduling queue contains a list of eligible LWP groups. There may
be multiple scheduling queues, depending upon the number of CPUs in
your system and the complexity of the cache hierarchy. The kernel
dispatch code looks at the queues and loads the highest priority LWP
group eligible to run on the available JPs.

You can control some aspects of scheduling with the Class Scheduling
Facility (CFS). For information about how to use CSF as implemented
on the DG/UX system, see Managing the DG/UX System. Chapter 7 in
this manual discusses ccNUMA-specific enhancements to CSF.

Scheduling

The DG/UX system supports symmetric multiprocessing and uses a
multi-level scheduler. The Medium Term Scheduler (MTS) determines
the policy, while the actual scheduling is done by the dispatcher.

The MTS binds an LWP group by giving it one or more wired transient
data sections. It is called transient data because it is only used by an
LWP for one trip inside the kernel. An LWP group must be bound in
order to be dispatched. If there are more LWP groups than available
transient data, the MTS decides which subset of the LWP groups will
be bound. The dispatcher then decides how to distribute transient data
among LWPs in an LWP group. An LWP must have transient data in
order to run on a processor.

Once an LWP enters the kernel for a normal system call or interrupt, it
keeps its transient data until it leaves the kernel or exits. An LWP that
suspends itself in user space is free to give up its transient data to
other LWPs in its LWP group.

Scheduling

To see if your system is severely loaded, check the unbound runnable
LWP groups (Unbound Runnable Processes using UX/RPM, swpq—sz
using nsar —-q). For example, use this nsar command to query the
system three times at 10-second intervals (see the nsar or sar man
page for more information about command arguments):

o

% nsar -q 10 3 J

15:35:07 rung-sz %runocc swpg-sz %swpocc

15:35:17 226.0 100 0.00 0
15:35:27 225.0 100 0.00 0
15:35:37 225.0 100 0.00 0
Average 225.3 100 0.00 0

A value other than zero indicates one of two conditions:

¢ MAXBOUND (the configured number of bound transient data
sections) is set too low. If it is consistently the case that more LWP
groups need bound transient data sections, it is a good idea to
increase the number of LWPs that can be ready to run in the kernel
with the MAXBOUND parameter in your system configuration file.
MAXBOUND specifies the maximum number of user LWPs that
can be ready to run in the kernel, which is the same as the number
of bound transient data sections.

e The MTS has detected thrashing (LWP groups competing
simultaneously for inadequate resources) and has temporarily
reduced the available number of bound transient data sections in
order to ease the system load. The system load due to the current
number of bound runnable LWPs is too great to support adequate
progress. When thrashing occurs, increasing MAXBOUND will not
help. The common correction to reduce thrashing is to either
increase MINBOUND or increase the amount of memory on the
system.

The MTS is tuned to deal with fairness issues in a normal time-sharing
environment. Therefore, its algorithms are slanted towards that
environment. There are, however, other environments where fairness is
not the main goal. In these areas the MTS may be hindering more than
helping. There are several tuning parameters that can either adjust
some of the MTS algorithms or completely turn them off. These tuning
parameters all have default values; if you do not set the parameters,
their default values will tune the MTS for a normal time-sharing
environment.

Scheduling 2-5

If you feel that the MTS is obstructing (rather than helping) your
particular environment, you can change configuration parameters to
tune the MTS towards that environment. For example, if you want the
MTS to unbind fewer transient data sections, you could increase
MINBOUND (the minimum number of bound transient data sections).
If you want the MTS to bind fewer transient data sections (perhaps you
feel that the system is thrashing), you could decrease MAXBOUND.

To get approximate numbers for bound transient data sections, you can
use crash to read these values:

mts_current_bound_transients : Current number of bound
transients.

mts_min_allowed_bound_transients : Minimum; equal to
MINBOUND if set, calculated by the MTS if not.

mts_max_allowed_bound_transients : Maximum; equal to
MAXBOUND if set, calculated by the MTS if not.

mts_allowed_bound_transients: Current maximum number of
allowed bound transients. The MTS will not allow any more bound
transients than mts_allowed_bound_transients. This value will range
between mts_min_allowed_bound_transients and
mts_max_allowed_bound_transients.

For example, after invoking crash, type this command:

> mr mts current bound transients 1 d .
mts_current bound transients: 121

If the MTS believes the system is thrashing, it will decrease
mts_allowed_bound_transients down to a minimum of
mts_min_allowed_bound_transients. If the MTS believes the system is
not thrashing, it will increase mts_allowed_bound_transients up to a
maximum of mts_max_allowed_bound_transients.

As long as mts_current_bound_transients is less than
mts_allowed_bound_transients, the MTS has some available transient
data sections. In other words, no processes that are ready to run are
being deprived of transient data sections.

If mts_allowed_bound_transients is less than
mts_current_bound_transients, increase the parameter MINBOUND.

Medium Term Scheduler (MTS)

One role of the MTS is to maintain interactive response and
non-interactive throughput. It accomplishes this by regulating the
execution of non-interactive LWP groups to ensure that they do not
simultaneously compete for inadequate resources (a condition known as
“thrashing”).

2-6

Scheduling

The MTS tries to detect over-subscription of some of the basic system
resources such as memory and the CPU. Once the MTS has identified a
resource problem, it reduces the number of available bound transient
data sections to prevent thrashing and consequently maintain system
throughput. By reducing the number of available bound transient data
sections, the MTS reduces the number of dispatchable LWP groups,
thereby effectively eliminating some of the system load.

As long as the MTS detects thrashing, it will gradually reduce the
number of available bound transient data sections down to the
configurable low-water mark, MINBOUND. When the MTS identifies
that the system is once again stable, it will gradually increase the
number of available bound transients up to configurable high-water
mark, MAXBOUND.

Additionally, the MTS tries to be fair to timeshare LWP groups by
adjusting their priorities so that:

e Users are treated fairly. If LWP groups must be unbound to prevent
thrashing, the MTS selects the groups to unbind. It first selects
bound LWP groups that have no runnable LWPs, and then selects
bound runnable LWP groups with the worst priority.

e Aging and languishing processes are boosted. If an LWP group is
runnable but unbound for more than 8 seconds, it is said to be
aging. When an LWP group is aged, it is given a temporary priority
boost. If, after the boost, the LWP group has a better priority than a
bound runnable LWP group, the MTS unbinds transient data from
the bound runnable LWP group and binds it to the aged unbound
runnable LWP group. Once the aged LWP group has made some
progress, its aging priority boost is removed. You can turn off the
aging check with the NOLANGUISHING configuration variable.

If an LWP group is bound and runnable, but has not made any
progress for 8 seconds, it is said to be languishing in the dispatcher.
If a runnable timeshare LWP group has not been given any CPU
cycles because it is languishing behind higher priority runnable
LWP groups, the MTS gives it a temporary priority boost to allow it
to make progress. This allows the LWP group to process any
pending signals or get its state updated. Once the languishing LWP
group has made some progress, its languishing priority boost is
removed. You can turn off the languishing check with the

CPU Usage 2-7

NOLANGUISHING configuration variable; however, be aware that
since CPU time is required for an LWP group to recognize and
process its pending signals, a low priority LWP group may not die
for a long time from either a kill command or a console interrupt.

e Interactive process response time is maintained. The MTS gives
priority boosts to interactive LWP groups. A highly interactive LWP
group tends to release its processor before its time slice has expired,
whereas a CPU-intensive LWP group will use the entire slice. For
example, when an interactive LWP group is doing terminal or
process I/O, you want the response time to be minimal. On the
other hand, CPU intensive processes are not very interactive and
will not get much of a boost, if any. You can turn off the
interactivity level adjustments with the NOILEVEL configuration
variable.

Some related statistics that you can view are the process priority (PRI
using UX/RPM, or nps -1) and the process utilization field (C using nps
—-o putil, ops -1, or i using UX/RPM). The process utilization field
denotes the priority boost that the MTS gives an LWP group due to
aging/languishing and interactivity; higher process utilization values
mean higher priority boosts.

CPU Usage

The DG/UX system measures the CPU resources that a process
receives by the amount of time its LWPs spend executing instructions
(CPU time).

You can measure CPU time consumed by a process or by the system as
a whole. To measure CPU time per-process, use the nps command or
the UX/RPM process screen. The data under TIME is the CPU time. To
get a list of the ten processes having the highest cumulative CPU
execution times, use the command line

% nps—-ellgrep-vUID|sed-e”s,:,.,” |sort-rn+9-10[head-10 .

UX/RPM provides a process screen that automatically shows the
highest CPU usage per-process over a selected time period, as well as a
breakdown of idle, system, and user times.

CPU Usage

Note that using a lot of shell scripts on a system can result in forking
many processes such as tput, cat, stty, awk, and grep. Even though
these processes are short-lived (often a second or less), their overhead
can be very expensive. If you think that these short-lived processes may
be a system problem, turn on accounting (in sysadm, System —>
Accounting —> Start) and analyze the accounting file; see the acctcom
man page. Reducing the size of the configuration variable MAXSLICE
can improve the situation, since MAXSLICE specifies the maximum
time in milliseconds a user process’s LWPs can run before being
suspended.

To measure CPU usage system-wide, use the command
nsar —u sample_time_in_seconds . The output will look similar to this:

15:47:13 susr $sys $idle
15:47:43 64 24 12

The data under %sys is the percent system time—the relative amount
of time spent executing instructions in system (not user) code. (You can
get the same data from all UX/RPM data screens.) A high percentage of
system time indicates that applications are requesting CPU-intensive
kernel services. Context switching between LWP groups and frequent
process synchronization via IPCs are common examples of
CPU-intensive kernel operations. Check processes’ system time versus
user time.

The data under %idle is the time spent by the system waiting for
something to do. Ideally, you want the idle time to be rather low—for
example, around 20%. However, if the system load is low, the idle time
will be high, which is to be expected. If the idle time and the system
load are both high, you probably have a memory problem. You could
also have disk- or network-related I/O problems. If your system has
zero or very low idle time, your system might have a runaway process
or it might just be fully loaded.

An application that uses one single-LWP process cannot run any faster
than a single processor can execute that process. A quad-processor
system that is 75% idle may be executing a process as fast as it can be
executed.

The data under %usr is the relative amount of time spent executing
instructions in user code. A high percentage of user time indicates that
one or more user applications are CPU-intensive. To find out which
ones, look for processes with high CPU times per-process. By default,
UX/RPM screens sort processes’ CPU usage in descending order,
highlighting the most active processes.

CPU Usage 2-9

Short-lived processes can consume the CPU but exit before appearing
in more than one nps sample. To check for this, look at the difference in
the process ID numbers of consecutive nps commands or the difference
in the fork rate with nsar —c. Because process ID numbers are
assigned sequentially, the difference tells you the number of processes
that have been created between nps invocations. See the acet(1M)
man page for more information about per—process CPU usage.

CPU Time Interruptions

Interruptions of user CPU time can also affect performance. Sequential
execution of instructions by an LWP in a user process may be
interrupted in any of four ways:

1. System calls

2. Context switches
3. Interrupts

4. Signals

IMPORTANT Note that on many Data General computers, and
UNIX systems in general, the clock ticks only about 100 times per
second. Thus, the time values returned by various system calls and
commands are not exact. This leads to wide variability in reported
times, for shorter processes especially.

System Calls

Whenever an LWP calls for system services by making a system call,
the process accumulates CPU time for the time spent executing
instructions in the kernel address space on the process’s behalf.

System calls vary widely in what they do and how long they take.
However, even the simplest system call requires a fair amount of
overhead. This overhead includes saving user registers, loading kernel
registers, switching the clock to record system time as opposed to user
time, performing the actual operation, switching the clock back,
restoring registers, and returning.

In general, system calls such as read(), write(), open(), and select()
that cause disk I/O, cause network I/O, or wait for a rendezvous are
most expensive in terms of resources.

2-10

CPU Usage

Context Switches

The basic unit of scheduling is the LWP group—each process has at
least one LWP group (containing one or more LWPs). LWP groups in
the system compete for global processor resources. The DG/UX
operating system manages to run many LWPs at once by

e scheduling LWP groups on all the processors available,

e stopping an LWP group after it has run a certain time and letting
another LWP group run, and

e running another LWP group that is ready to run whenever all of an
LWP group’s LWPs are waiting for input or some other event.

An LWP group may not perform well, however, if there are many other
LWP groups competing with it for a processor. A lot of context
switching (LWP groups being switched onto a physical processor to run)
is a waste of time; unfortunately, this is often hard to control.

Look at the number of context switches (pswch/s using nsar -w,
Process Switches using UX/RPM). When this rate gets into the
thousands per second per processor, the system is spending a lot of time
switching between LWP groups rather than running LWPs. Hence,
LWP groups are not getting much time in any given time slice. Note
that this rate is very system dependent and some systems can support
a higher rate with no decline in performance.

The measures of how many LWP groups are competing for the
processors on a system are

e Number of bound/eligible/bound runnable LWP groups (Bound
Processes, Eligible Processes, and Bound Runnable Processes using
UX/RPM; rung—sz using nsar —q sample_time_in_seconds)

e Load average (described in the next section)

e Number of processes, which indicates the total but not how many
are competing (Processes using UX/RPM; proc—sz using nsar -v)

e Percent CPU time per—process—the amount of CPU time used
divided by the product of the elapsed time and the number of
processors (%CPU using UX/RPM)

If an LWP group has little competition for the CPU and is using the
CPU exclusively, but performance is still below what you expect,
examine the process to find inefficiencies in its implementation.
Consider these things:

CPU Usage 2-11

1. Can you revise an application to eliminate context switches?

a. Can you buffer more data so that the system can do more
efficient processing?

b. Can fewer programs do the processing? This can help eliminate
the need for such things as IPCs, pipes, reads, and writes.

c¢. Can you eliminate or postpone flush or sync operations?

d. Can you revise the programs to reduce the number of
semaphore, message queue, or signal processing calls? Look at
the rate of message operations and semaphore operations.
Some systems perform well while doing a few thousand
message and semaphore operations per second, while other
systems have poor performance doing a few hundred per
second. This is very application and system dependent.

2. Is the application a good threads candidate?
a. Are you doing a large amount of I/0O?

b. Isthere a large task that could be split up into multiple threads
and run on separate CPUs?

c. Are there large numbers of processes that could be condensed
into a single multi-threaded process?

3. Should you consider a CPU upgrade?

Interrupts

Interrupts are caused by hardware events external to a processor. They
include timer expiration and disk device events. Interrupts change the
instruction stream suddenly to an interrupt handler that quickly

records essential information pertaining to the hardware event. If no
other LWP with a higher priority is waiting to execute, the LWP I
executing at the time of the interrupt then resumes execution.

Signals

Signals provide asynchronous interrupts to a process. They are not
intended to be used for process synchronization and have not been
optimized to provide the performance expected from common
synchronization calls.

2-12

CPU Usage

System Load Average

The system load average is the average number of eligible LWP groups
over a time period, normalized for processors. An LWP group is eligible
if it has at least one LWP that is

e not waiting for any external event such as keyboard input,
e not waiting of its own accord (including stopped for I/0), and
e scheduled.

In other words, the load average only counts LWP groups that would
run if a CPU were available.

If your system has TCP/IP networking and each system on the local
network is running the rwhod daemon, you can use the ruptime
command to show the one-, five-, and fifteen-minute load averages for
each host on the local network:

% ruptime
abc
def
ghi
jk1
mno

server

up 14+23:39, 1 user, load 1.00, 1.08, 0.99
up 35+20:38, 1 user, load 0.07, 0.15, 0.17
down 12+20:55

up 13+21:14, 2 users, load 1.21, 0.53, 0.37
up 21+02:51, 0 users, load 0.00, 0.02, 0.16
up 19+23:54, 4 users, load 0.02, 0.09, 0.12

You can also get the same information for a system from UX/RPM.
Here’s sample UX/RPM output:

LOAD AVERAGING:
Over 1 Minute:
Over 5 Minutes:
Over 15 Minutes:

(RS
N oY

Check the system load average regularly to determine normal system
loads for your system and other systems on your network. If your
system performance seems to be poor, check the system load average.
Note whether the load average is rising or falling—if it is falling, wait
for a while to see if performance improves to a normal level for your
system.

As stated earlier, the load average is normalized for the number of
processors. A lower load average results if the number of LWP groups
does not increase with the number of processors.

Process Tracing 2-13

Run Queues

Another way to get a general idea of system load is to check run
queues. You can use nsar —q to get this information; the example below
queries the system six times at 10-second intervals:

% nsar -q 10 6 J

14:46:58 rung-sz 3%runocc Swpg-Sz 3%SwWpOCC

14:47:08 336.0 100 0.0 0
14:47:18 336.0 100 0.0 0
14:47:28 336.0 100 0.0 0
14:47:38 336.0 100 0.0 0
14:47:48 336.0 100 0.0 0
14:47:58 336.0 100 0.0 0
Average 336.0 100 0.0 0

The average length of the run queue for a time interval is shown under
rung-sz; longer run queues mean a heavier load. Again, determine
what is normal for your system by monitoring this value. The runq-sz
column shows how many LWP groups the scheduler thought were
runnable, including LWP groups that were waiting for resources but
have not exhausted their await interval. Most of the kernel LWPs fit
into this category.

The percentage of time that the run queue is occupied is shown under
%runocc; ideally, this percentage should be high. If your system seems
to be performing poorly, but the run queue is empty, look for memory or
I/O problems.

UX/RPM reports rung—sz as Bound Runnable Processes.

Process Tracing

You can use the dg_strace command to intercept and record the
system calls and responses that a process sends and receives. See the
dg_strace(1M) on-line manual page for detailed information.

Specifying the System Calls to Trace

The —e option of the dg_strace command lets you specify the system
calls to trace. This feature is useful if you want to know how a process
uses particular calls. It limits the dg_strace output to the system calls
you specify, which makes finding relevant information easier.

2-14

Process Tracing

You can specify a system call by name or by class. The option -L
provides a list of all classes known to dg_strace. For example, the file
class contains the system calls that perform operations on files. The
command line option —-e trace=file traces all file calls, while the option
—-e trace=read,write traces only the calls made to read() and write().

Tracing Processes in Running Programs

In addition to starting a target program on the dg_strace command
line, you attach dg_strace to running programs by using the —p option
and specifying the target process’s PID.

The dg_strace command can attach to as many as 128 single-threaded
processes during a single session. The command counts trace targets,
not processes. Each thread of a process is counted as one target; each
thread of a multi-threaded process is traced individually. The total
number of processes that can be traced is limited by the number of
threads in each process.

Controlling dg_strace Command Output

The dg_strace command prints the name of each system call, its
arguments, and its return value on standard error by default. Tracing
output is marked by the prefix [pid.thread-id] on each line of output.

For easier analysis, you can redirect dg_strace output to a file with the
—o filename option. If you specify the option —ff with the option —o, the
output from each traced process goes into a separate file called
filename.pid. The option —ff implies —f, which causes the command to
trace forked children of its target processes.

In addition to printing the command line arguments for the read and
write calls, the dg_strace command dumps the data read and written
on a per-file descriptor basis. For example, the option -e read=2,3
dumps all data read from file descriptors 2 and 3, and the option

—-e write=2,3 dumps all data written to descriptors 2 and 3. The output
generated by these options can be large, so they are best used in
conjunction with the option —o (redirected to a file for later analysis).

dg_strace Command Caveats

The dg_strace command uses the DG/UX debugging mechanism to
stop each thread of a traced process at every system call entry and exit.
In doing so, it adds overhead to each system call. For simple system
calls such as getpid(), the time spent tracing the call can be greater
than the time spent executing the call. This behavior should be taken
into account when you use the dg_strace command to analyze
performance problems.

Per-Process Statistics 2-15

The time per call reported by the —¢ option may be incorrect because of
the granularity of the system clock. The —c option suppresses the usual
output and prints a summary of system calls made and the time per
call after the tracing session ends. The elapsed time of a call may be
measured as 0.0 seconds because it was completed within one tick of
the system clock. This behavior is also apparent with the option —t,
which adds a time stamp to each line of output, and the option -T,
which shows the elapsed time with each line of output.

Per-Process Statistics

Descriptions of per-process statistics follow, with CPU, system, user,
and elapsed time listed first — the rest are in alphabetical order.
Per-process statistics are the sums of statistics from processes’ LWP
groups. Note that the application that you use or the command that
you type is shown to the left of the colon; the field of interest to you is
on the right of the colon and should not be typed in:

CPU time Percent UX/RPM: %CPU

Amount of CPU time used divided by the product of the elapsed
time and the number of processors. Look at which processes are
using the most CPU time. See if you can run those processes’
LWPs during off-peak hours or adjust their priorities.

Time UX/RPM: cpu
nps: TIME
ops: TIME

Sum of user time and system time.

System time UX/RPM: system
nps —o systime: SYSTIME

Amount of time that the kernel was running on behalf of the
process.

User time UX/RPM: user
nps —o utime: UTIME

Amount of time the process’s LWPs were running in user space.

Elapsed time UX/RPM: start time
nps —o etime: ETIME

Amount of time elapsed since the process started.

2-16 Per-Process Statistics

Binds

Command
name

Context
Switches

Floating
point
exceptions

IDs

UX/RPM: binds
nps —o nbind: NBIND

Number of times a process’s LWP groups have been bound.

UX/RPM: command
nps —o cmd: CMD
ops -1: CMD

Command name of the process.

Involuntary UX/RPM: iv_switch
nps —o nswtch: NSWTCH

Number of involuntary context switches.

Involuntary (LWP) nps —o Inswtch: LNSWTCH

Number of involuntary context switches associated with a globally
scheduled LWP (“~” for locally scheduled LWPs).

Voluntary UX/RPM: v_switch
nps —o vswtch: VSWTCH

Number of voluntary context switches.

Voluntary (LWP) nps —o lvswtch: LVSWTCH

Number of voluntary context switches associated with a globally
scheduled LWP (“~” for locally scheduled LWPs).

UX/RPM: fpex
nps —o fpx: FPX

Floating point exception count.

Process ID UX/RPM: pid
nps —f or nps -1: PID
ops —f or ops —1: PID

The process ID.

Parent process ID UX/RPM: ppid
nps —f or nps -1: PPID
ops —f or ops -1: PPID

The parent process ID.

Per-Process Statistics 2-17

Memory

Process state

Process size UX/RPM: size
nps —1: SZ and RSS
ops —1: SZ

The number of 4096-byte pages that are resident in memory for a
process. A process’s resident memory requirements are a good
indication of how much stress it places on the memory system.

In nps, the SZ field is the size of the process’s mapped address
space in kilobytes. The RSS field is the size of the resident portion
of the process’s address space in kilobytes. See Chapter 3 for more
information about memory.

Use the following command line to get a list of the 10 processes
using the most resident memory:

% nps—ellgrep-vUIDIsed—e”s,:,.,” | sort—-rn +5 -6 1\
head -10 .

The UX/RPM process screen can sort processes by resident
memory size, in descending order.

Swap space UX/RPM: swap
nps —o swap: SWAP

Amount, in pages, of anonymous memory (swap space) reserved
for use by the process, whether actually used or not. This value is
a process’ contribution to the Reserved Anonymous Pages statistic
discussed in Chapter 3.

UX/RPM: s
nps -1: S
ops —1: S

State of the process’s initial LWP group:
- Non-existent

Intermediate

Runnable

Sleeping

Stopped

Waiting

Terminated (Zombie)

N=+HnxoH

Sleeping and waiting LWP groups are usually waiting for
keyboard input. Waiting LWP groups are candidates for becoming
unbound. The process state becomes important to consider if the
system begins binding and unbinding LWP groups that are
otherwise runnable.

2-18 Per-Process Statistics

Process
utilization

Scheduling

Zombie (also referred to as terminated or defunct) LWP groups are
LWP groups that are waiting for their parent process to get a
termination IPC (Interprocess Communication). They disappear
either when their parent process calls wait(2) or when the parent
process is killed.

UX/RPM: i
nps —o putil: C
ops —f or ops -1: C

Process utilization represented by an integer from 0 to 4. This
number is the sum of the initial LWP group’s interactive level and
its languishing level and aging level as determined by the MTS.
Each successive process utilization level results in an additional
priority boost being applied to the initial LWP group of the
process. Therefore, the higher the process utilization, the more
priority the initial thread group of the process has for being loaded
onto a processor. A process utilization of 4 means that a process is
highly interactive, while a process utilization of 0 means that a
process is CPU intensive.

Class UX/RPM: SC
nps —c: CLS
ops —c: CLS

Scheduling class; based on the process’s initial LWP group. The
value can be pFF (FIFO), pRR (round robin), dTS (time share),
dLF (DG/UX LIFO), or dFF (DG/UX FIFO). However, you’ll almost
always see dT'S. The FIFO scheduling class provides fixed-priority
scheduling. A FIFO LWP group has an infinitely long time slice;
once its LWPs are executing on CPUs, the LWP group stays there
until the LWPs complete, are preempted by a higher priority LWP
group, are blocked by actions that they take, or voluntarily give up
the CPUs.

The round robin class supports fixed-priority, time-sharing LWP
groups. With one exception, the rules for the round robin class are
the same as the rules for FIFO class: the round robin class
includes the concept of the time slice, which promotes fair
scheduling by helping prevent LWP groups of the same priority
from monopolizing a CPU.

The DG/UX time share class is very similar to the round robin
class, except that round robin class LWP groups have a fixed
priority—the MTS does not change their priorities as it can for
time share LWP groups. You will most often see time share class.

Per-Process Statistics 2-19

The DG/UX FIFO class is provided for developers or users who
require absolute control over the way LWP groups are scheduled.
LWP groups in this class can be assigned any priority. If you use
this class, take care not to inadvertently set the priority of an LWP
group higher than that of a critical kernel LWP.

The DG/UX LIFO class is identical to the DG/UX FIFO class,
except that unblocked LWPs are placed before blocked LWPs when
the process awakens.

Nice value UX/RPM: nice
nps —o nice : NI
ops —1: NI

Nice value used in priority computation; based on the process’s
initial LWP group. The nice values can range from 0 to 39. The
higher the nice value, the lower the priority of a process. This
reduces the demand that the process makes on the system. The
default nice priority value is 20. This means that you can specify a
maximum value of 19 or a minimum value of —20 (if you are
superuser) when you issue a nice command. Only superusers can
specify that a process’s LWPs should execute at a higher priority.

Also, if you are superuser, you can use renice to force a process to
a lower priority level. If a process’s virtual memory requirements
are very large, however, don’t force it to a lower priority level; that
will only make it linger in your system.

2-20

Per-Process Statistics

Signals

User

Process priority UX/RPM: pri

nps —c: PRI

ops —c: PRI
Priority of the process’s initial LWP group; higher numbers mean
better priority. This number changes dynamically. The system
reduces the priority of LWP groups that require a lot of CPU time.

The priority of a process’s initial LWP group is the sum of its base
scheduling priority and its scheduling boost. The default base
scheduling priority for the dTS scheduling class is 0x4FF (1279).

The scheduling boost is derived from this equation:
((MAXNICE - nice_value) * nice_scale) + (process_utilization * 14)

where MAXNICE = 39, nice_value = nice value, nice_scale = the
value of mts_nice_scale (you can get this value from crash; it is
often 11), process_utilization = process utilization, and 14
represents the “fair scheduling level gap.”

So, for a process with a dTS initial LWP group, a nice value of 20,
and a process utilization of 4, the priority would be

1279 + (((39 — 20) * 11) + (4 * 14)) = 1544

UX/RPM: sigs
nps —o nsig: NSIG

Number of times a signal has been caught.

ID nps —1: UID
ops —-1: UID

User ID of the process.

Name UX/RPM: user
nps —f: UID
ops —f: UID

User name for the user ID of the process, if available from NIS or
the password file. Otherwise, the user ID.

Per—LWP Statistics 2-21

Per-LWP Statistics

CPU

LwpP

Descriptions of per-LWP statistics follow. Note that this information
applies directly to a process’s corresponding threads (which have the
same IDs as the LWPs):

ID nps —-WL: CPU

The CPU upon which the LWP is running; “-” when the LWP is not on
a CPU.

Time nps —L: LTIME
The total CPU time for globally scheduled LWPs.

Active LWPs UX/RPM: lwps
nps —f: NLWP

The number of LWPs active in the process.

ID nps —L: LWP
The ID of the LWP.

Joining nps —WL: NJOIN
The number of LWPs waiting for the LWP to terminate; “—” if none.

Join Target ID nps —WL: JNTARG

The LWP ID of the LWP that this LWP is waiting for to terminate; “-”
if none.

Mutex nps —-WL: MUTEX

The hexadecimal address of the mutex upon which the LWP is waiting
or the mutex associated with a conditional variable (if waiting upon a
condition); “~” otherwise.

Priority nps —o lprior: LPRI

The scheduling priority of the LWP. The priority depends upon
whether the LWP was locally or globally scheduled; globally scheduled
LWPs have dedicated LWP groups.

2-22

Per-LWP Statistics

Scheduling Class nps —o Isclass: LCLS

Scheduling class of the LWP. The value can be pFF (FIFO), pRR
(round robin), dTS (time share), dLF (DG/UX LIFO), or dFF (DG/UX
FIFO). However, you’ll almost always see dTS. “G” or “L.” is appended
for globally or locally scheduled LWPs, respectively.

State nps —WL: K U SPECL

The state of the LWP. The K column refers to kernel space, the U
column refers to user space and the SPECL column displays special
annotations about the LWP state. For most single-threaded processes
and kernel LWPs, LWP states reflect kernel space only. For
multi-threaded processes, LWPs tend to have both kernel and user
states.

In kernel (K) space:

R runnable
X exiting
W waiting

In user (U) space:
runnable
exiting
waiting
sleeping

n =X

The special (SPECL) annotations:

Y yielded

I software interrupted

T stopped

D detached

c canceled

Variable nps —-WL: CONDVAR

The hexadecimal address of the conditional variable upon which the
LWP is waiting; “~” if the LWP is not waiting upon a condition.

System-Wide Process Statistics 2-23

System-Wide Process Statistics

Descriptions of system process statistics follow with idle, system, and
user time first — the rest follow in alphabetical order:

Idle time

System time

UX/RPM: Idle
nsar —u: %idle
sar —u: %idle

Time spent by the system waiting for something to do. If no LWP
can run because it is waiting for devices or timeouts, the DG/UX
system runs the idle LWP. Idle LWPs may run on each processor;
therefore an application with three single-LWP processes on a
quad processor system may be completely CPU-bound but
nonetheless show 25% idle time.

Ideally, you want the idle time to be rather low — for example,
around 20%. However, if the system load is low, the idle time will
be high, which is to be expected. If the idle time and the system
load are both high, you probably have a lack-of-memory problem.
You could also have disk- or network-related I/O problems.

If your system has zero or very low idle time, your system might
have a runaway process (one that uses progressively more system
resources over a period of time while you are monitoring it). An
example is a process that takes over a single CPU and that has a
parent PID of 1, which indicates that the parent died and was
inherited by init.

On the other hand, the system might just be fully loaded.

UX/RPM: Sys
nsar —u: %sys
sar —u: %sys

Relative amount of time spent executing instructions in kernel
(not user) code. The time spent waiting for devices is not charged
to system time.

2-24

System-Wide Process Statistics

User time

Binds

A high percentage of system time indicates that applications are
requesting CPU-intensive kernel services. Context switching
caused by forks and frequent process synchronization via IPCs are
common examples of CPU-intensive kernel operations. Check
processes’ system time versus user time.

A system that is spending a large percentage (perhaps 65%) of its
time in the system state might be doing a lot of disk I/O, system
call processing, scheduling, or handling a saturated resource such
as memory. If the system time continues to be high, determine
where the time is being spent. Consider using kernel profiling; see
the prfld(1M) manual page for more information. See System
Calls in this section for related information.

UX/RPM: User
nsar —u: %usr
sar —u: %usr

Relative amount of time spent executing instructions in user code.
Time spent waiting for devices or executing kernel services is not
billed to user time. There are exceptions to this that are normally
not significant. For example, user time is billed for the time it
takes to handle interrupts that occur while an LWP is running. A
high percentage of user time indicates that one or more user
applications are CPU-intensive. To find out which ones, look for
processes with high percentages of CPU time.

UX/RPM: Process Binds/sec
nsar —w: swpin/s
sar —w: swpin/s

Rate at which LWP groups are being bound, usually caused by
fork(2) calls but also caused when the MTS must manage more
LWP groups. Binding and unbinding incur overhead and, if they
persist, result in lowered system efficiency. An LWP group that
has been unbound will be bound only when it is runnable. See
Bound LWP Groups and Unbinds.

System-Wide Process Statistics 2-25

Bound LWP
groups

Bound
runnable
LWP groups

Context
switches

Eligible LWP
groups

UX/RPM: Bound Processes

Number of LWP groups bound at the time of the sample. LWP
groups must be bound before their LWPs can run. Therefore, the
LWPs of bound LWP groups are able to run at lower cost than the
LWPs of unbound LWP groups, which must first be bound. This
number increases with forks and decreases with exits.

The number of bound LWP groups is limited by the number of
bound transient data sections, determined by the static system

configuration variable MAXBOUND. This is similar to NVPS in
previous releases.

UX/RPM: Bound Runnable
Processes

nsar —q: runq—sz

sar —q: runq-sz

Number of bound LWP groups that have LWPs ready to run. See
Unbound Runnable LWP Groups.

UX/RPM: Process
Switches/Sec
nsar —w: pswch/s
sar —w: pswch/s

Number of times LWP groups are switched onto a CPU to run;
previously known as process switches. High numbers (thousands
per second per JP) indicate that LWP groups are not getting much
time in any given time slice. Adjusting the kernel parameters
MAXSLICE and MAXLATENCY may improve this situation.
This number will go up with the number of CPUs.

UX/RPM: Eligible Processes

Number of LWP groups having LWPs that are either running or
that have been chosen to run when a CPU is available. Although
its maximum value is limited by the MTS, this number is a
measure of system load. See also Bound Runnable LWP Groups
and Unbound Runnable LWP Groups.

2-26 System-Wide Process Statistics

Exec system UX/RPM: Exec System
calls Calls/Sec

nsar —c: exec/s

sar —c: exec/s

Number of exec(2) system calls. An exec call typically follows a
fork. Because it typically starts a new executable program, exec
creates demands on a system to read in the new program’s pages.

Fork system UX/RPM: Fork System
calls Calls/Sec

nsar —c: fork/s

sar —c: fork/s

Number of fork(2) and vfork(2) system calls. Forks create new
LWP groups and therefore create a demand for additional memory
and, potentially, CPU resources.

Load UX/RPM:

averages One Minute Load Average,
Five Minute Load Average,
Fifteen Minute Load Average

The average number of eligible LWP groups over the last one, five,
or fifteen minutes; this average is normalized by the number of
CPUs. A load average greater than 1 indicates more eligible
processes than available CPUs; check the idle time to ensure that
CPUs are not saturated with demand.

Message UX/RPM: Message Operations
operations nsar —m: msg/s
sar —m: msg/s

Number of msgsnd calls; msgget and msgrev calls are not
counted in this number.

Process table Overflow UX/RPM: Process Table
Overflows
nsar —v: ov
sar —v: ov

Number of attempts to create more than Process Table Size
processes. A non-zero value may indicate an insufficient NPROC
value; see Process Table Size.

System-Wide Process Statistics 2-27

Processes

Processors

Semaphore
operations

Size nsar —v: proc—sz (2nd
number)
sar —v: proc—sz (2nd number)

Value of a static system configuration variable, NPROC, that is
the upper bound on the number of user processes. Configuring a
kernel with a high NPROC value is not without cost because some
resources, particularly memory, are allocated for per process
whether they are used or not. You can change this value in the
system configuration file (follow the sysadm path System —>
Kernel —> Build option).

UX/RPM: Processes

nsar —v: proc—sz (1st number)
sar —v: proc—sz (1st number)
dg_sysreport —p \
num_processors_functional

Number of user processes existing at the time of the sample.

UX/RPM: CPU Count

Number of active CPUs on the monitored system.

UX/RPM: Semaphore
Operations

nsar —m: sema’/s

sar —m: sema/s

Number of semaphore operations performed by the semop system
call. If the rate of semaphore operations is high (on the order of
500/CPU/sec) and your system seems underutilized, you may have
a bottleneck among processes that are heavily contending for
semaphores (and resources that are protected by the semaphores).
The solution to this problem is to understand what resources are
causing the contention and either reduce dependency on the
problem resources, provide more of them, or divide the resource
into smaller components that each have their own semaphore.

2-28 System-Wide Process Statistics

System calls

Unbinds

Unbound
LWP groups

Unbound
runnable
LWP groups

UX/RPM: System Calls/Sec
nsar —c: scalls/s
sar —c: scalls/s

Number of system calls made by LWPs. The rate and type of
system calls may determine the amount of CPU time being used
by the DG/UX system. This value is very dependent on the
application and can range from a few hundred to two hundred
thousand. If the system is spending a lot of time executing
instructions in user code and this value is high (say, greater than
5000 system calls per CPU), applications could be making
excessive system calls.

See System Time, User Time, and Context Switches.

UX/RPM: Process
Unbinds/sec

nsar —w: swpot/s
sar —w: swpot/s

Rate at which LWP groups are being unbound, caused by the MTS.
Binding and unbinding incur overhead and, if they persist, result
in lowered system efficiency. An LWP group that has been
unbound will be bound again only when it is runnable and there is
a transient data section available.

UX/RPM: Unbound Processes

Number of LWP groups that are not bound; see Bound LWP
Groups.

UX/RPM: Unbound Runnable
Processes

nsar —q: SWpq—Ssz

sar —q: SWpQq—sz

LWP groups having LWPs that could run, but are not bound.
When this number is not zero, your system most likely has a
performance problem. Either MAXBOUND or MINBOUND may
be set too low, or the MTS has detected system thrashing and has
temporarily restricted the number of bound transients.

Configuration Variables 2-29

Configuration Variables

CPU and Process Configuration Variables

The CPU and process configuration variables are also listed in the file
lusr/etc/master.d/dgux. To find out which of these variables are

tunable with the admkernelparam command while the system is I
running, enter admkernelparam -o list at the command line.

NCPUS
Specifies the number of processors to run. If set to 0 (the
default), all available CPUs will be used. Any other value
specifies that number of CPUs to run. If the value specified is
more or less than the number of CPUs present, a message to
that effect is printed when the kernel is booted. Notice that on a
uniprocessor system, this parameter has no effect since the one
processor will always be run. I

NPROC

Specifies the maximum number of user processes the system
can have at one time. This number depends on the number of
terminal lines available, the number of processes spawned by
each user, and the number of system processes and network
daemons. If the maximum number of processes is used up, the
fork(2) or vfork(2) system call will result in a process table
overflow and will fail. The default value of NPROC is 2048.

NLWP
Specifies the maximum number of user LWPs the system can
have at any one time. If set to 0 (the default), this value is
dynamically calculated based on the amount of available
memory in the system.

NLWPGROUPS
Specifies the maximum number of user LWP groups the system
can have at any one time. If set to 0 (the default), this value is
dynamically calculated based on the amount of available
memory in the system. An LWP group is a set of locally
scheduled LWPs from the same process that share the same
accounting and global scheduling parameters.

2-30

Configuration Variables

MAXUP

Specifies the maximum number of processes that a user (other
than root) can have in existence at one time. The default is 50.
This value should not exceed the value of NPROC (NPROC
should be at least 10% more than MAXUP). This value is per
user identification number, not per terminal. For example, if
ten people logged in with the same user ID, the default limit
would be reached very quickly.

MAXULWP

Specifies the maximum number of LWPs that a user (other
than root) can have in existence at one time. By default, there
is no per-user limit.

MAXULWPGROUPS

Specifies the maximum number of LWP groups that a user
(other than root) can have in existence at one time. By default,
there is no per-user limit.

SDESLIM

Specifies the default (soft) number of file descriptors a process
is allowed to have at one time. A non-superuser process may
change its soft limit up to the value of the hard limit
(HDESLIM). The default is 64. It is a good idea to keep the
default value; you can code any applications that require
additional file descriptors to use the system call setrlimit(),
which sets resource limits.

Do not set the value of the kernel parameter SDESLIM
(cf_cm_soft_descriptor_limit) above 2048 for the following
reasons:

e Many programs (such as statd, networker, named,
ypbind, ttymon, lpsched, and some X applications) will
not start if SDESLIM is set above 2048. They cannot
handle the large number of file descriptors (for example,
the select() system call may fail).

e Performance may suffer since all processes include a large
number of file descriptors if SDESLIM is set above 2048.

Configuration Variables 2-31

To allow more file descriptors on your system, do the following:

e In your application, define FD_SETSIZE to be the
maximum number of descriptors that you will ever open at
one time.

e Recompile the application.

e Be sure that the value used for HDESLIM is large enough
to accommodate the maximum number of descriptors that
your program will open. By default, the DG/UX system is
shipped with HDESLIM and FD_SETSIZE set to 2048 as
shown below:

#ifndef FD SETSIZE
#define FD_SETSIZE 2048
#endif

In this way, an application that needs more file descriptors can
use the system call setrlimit() to change the number of
descriptors it needs to use (bounded by the HDESLIM value).

If an open() system call fails with an EMFILE error (which
means that the open file descriptor limit has been exceeded),
perform the getrlimit(RLIMIT NOFILE,
@ptr_to_rlim_t_structure) call to find out the hard and soft
descriptor limits in the structure. Then, do a setrlimit
(RLIMIT _NOFILE,@ptr_to_rlim_t_structure) call to
increase the value of the soft limit. For correct program
behavior, the new soft limit must not be larger than HDESLIM
or FD_SETSIZE.

For more information, refer to the select(2) man page.

HDESLIM
Specifies the maximum (hard) number of file descriptors a
non-superuser process is ever allowed to have at one time. The
default is 1024.

MAXGLOBALSQS
Specifies the maximum number of global synchronization
queues that can be used for user process-shared mutexes and
condition variables. The default is 32768.

2-32

Configuration Variables

INITCPUMASK

Specifies the set of CPUs on which the kernel demons and the
initial user processes may run. You can use this to reserve
some CPUs in the system for later exclusive use by a dedicated
application. If this mask is 0 (default), the kernel demons and
user processes are allowed to run on all CPUs in the system. In
a specified mask, the low-order bit (0x1) specifies CPUOQ. On
machines with more than 32 processors, INITCPUMASKO is
used for the first 32 processors and INITCPUMASK]1 is used
for the second 32 processors.

NSTRDEMONS

The number of STREAMS demons to start at initialization. If
set to zero, one demon per every 2 CPUs is run (rounded up so
that there is 1 demon if 1 CPU, 2 if 3 CPUs, etc.) If
NSTRDEMONS is greater than the number of active CPUs, one
demon per active CPU is run. The default is zero.

On systems with 6 or more JPs, you might try reducing the
number of STREAMS demons to 2 (you must have at least 1).
Measure your CPU activity before and after reducing the
number of STREAMS demons. If the system time goes down
and the idle time goes up, keeping NSTRDEMONS at a lower
number will not adversely affect your tty access, both local and
network.

STRDEMONSCPUMASK

Specifies the set of CPUs on which the STREAMS demons may
run. You can use this to keep STREAMS demons away from
certain CPUs in the system. If the CPU mask does not specify
any CPU (0, the default), then the STREAMS demons are
allowed to run on any CPU specified by INITCPUMASK above
(default is all). In a specified mask, the low-order bit (0x1)
specifies CPUO. On machines with more than 32 processors,
STRDEMONSCPUMASKO is used for the first 32 processors
and STRDEMONSCPUMASKI1 is used for the second 32
processors.

Configuration Variables 2-33

Scheduler Configuration Variables

The following scheduler configuration variables are also listed in
lusr/etc/master.d/dgux. To find out which of these variables are
tunable with the admkernelparam command while the system is
running, enter admkernelparam -o list at the command line.

MAXSLICE
Specifies the dispatcher round-robin time slice used for the
SCHED_OTHER (timesharing) and SCHED_RR scheduling
policies. If a user LWP or LWP group runs for this amount of
time, it will yield the CPU to other LWPs or LWP groups with
the same priority. Note that the round-robin time slice is
essentially infinite for SCHED_FIFO and SCHED_DG_LIFO
scheduling policies. The default is 100 (1/10 second). You should
adjust MAXSLICE along with MAXLATENCY — if
MAXSLICE decreases, MAXLATENCY should also decrease,
and vice versa.

MAXAFFINITYSLICE
Specifies the time slice (in real-time) that an LWP group may
stay transiently joined to a given JP set before its affinity
relationship is reset. This affinity time slice is used to
implement a load balancing algorithm for timesharing LWP
groups — the smaller the value, the smoother the load
balancing at the expense of better throughput, and vice versa.

This time slice does not affect realtime LWP groups because
they are never allowed (by default) to migrate below the root of
the JP set hierarchy — thus, they have no specific affinity.
Also, manual affinity assignments are not broken by this time
slice. This time slice only breaks migrations within the manual
or default constraints imposed on the LWP group.

In summary, the LWP group is brought up to the highest level
in the JP set hierarchy that makes sense for that LWP group
and the cache architecture. The default value for this
parameter is 10000 (10 real-time seconds).

MAXLATENCY
Specifies the maximum time the current VP will run before
being interrupted to check for preemption due to another JP
adding a VP to an eligible list. The default is 50 milliseconds.

2-34

Configuration Variables

MINBOUND

Specifies the minimum number of user LWPs that can be ready
to run in the kernel, which is the same as the minimum
number of bound transient data sections (i.e., wired kernel
stacks). If this parameter is set to 0 (the default), the minimum
number of bound transients is determined dynamically based
on system load. The minimum bound can never be larger than
the maximum bound. If MAXBOUND is not 0 and
MINBOUND is not 0, the minimum bound is the smaller of
MINBOUND and MAXBOUND.

MAXBOUND

Specifies the maximum number of user LWPs that can be ready
to run in the kernel, which is the same as the maximum
number of bound transient data sections (i.e., wired kernel
stacks). By default, this parameter is set to the size of physical
memory (in MB) * 16. This configuration parameter
corresponds most closely to NVPS in previous releases. The
maximum bound can never be less than the minimum bound.
If MINBOUND is not 0 and MAXBOUND is not 0, the
maximum bound is the larger of MINBOUND and
MAXBOUND.

NOLANGUISHING

Specifies to allow or disallow languishing for timeshare LWP
groups. The default (1) is to detect, and try to correct,
languishing for a timeshare LWP group by giving it a
temporary priority boost until it makes progress. If the value of
this variable is 0, the scheduler does not do anything about
runnable timeshare LWP groups that are not making progress.

NOILEVEL

Specifies to allow or disallow interactive level computations for
timeshare LWP groups. The default (1) is to automatically
adjust the interactive level of timeshare LWP groups. If the
value of this variable is 0, interactive level adjustments for
timeshare LWP groups will not be made.

Without interactive level adjustments, the DG/UX operating
system does not adjust priority based on LWP groups’ CPU
utilization. Instead, LWP groups are scheduled in a round-robin
nature at the same priority level.

Configuration Variables 2-35

USEFILEPURGES
Specifies whether data file purges should be used in addition to
program frame purges to detect thrashing. The default (0) is to
only use program frames to detect thrashing.

LIFO
Specifies whether to set the dispatcher level scheduling policy
for timeshare LWP groups as FIFO or LIFO. The default (0) for
timeshare LWP groups is to use FIFO. If the value of this
variable is 1, timeshare LWP groups are scheduled LIFO at the
same priority within the dispatcher.

Message Configuration Variables

These variables are also listed in /usr/etc/master.d/dgux. They are
dynamic variables that set the message parameters shown in the
following list.

MSGMNI
Specifies the maximum number of message queues that may
exist in the system at one time. The default is 1024.

MSGTQL
Specifies the maximum number of outstanding messages that
may exist in the system at one time. The default is 1024.

MSGMNB
Specifies the maximum number of bytes that a message queue
may contain. The default is 4096.

MSGMAX
Specifies the maximum number of bytes that a message may
contain. The default 2048.

Semaphore Configuration Variables

The following semaphore configuration variables are also listed in
lusr/etc/master.d/dgux; they are dynamic variables:

SEMMNI
Specifies the maximum number of unique semaphore sets that
may be active at any one time on the system. The default is
1024.

SEMMSL
Specifies the maximum number of semaphores that a
semaphore set may contain. The default is 256.

2-36

ccNUMA Process Management and Scheduling

SEMOPM
Specifies the maximum number of semaphore operations that
can be executed per semop(2) system call. The default is 10.

SEMVMX
Specifies the maximum value a semaphore may have. The
default is the maximum value for this parameter, 32767.

SEMUME
Specifies the maximum number of undo entries per undo
structure. The default is 10.

SEMAEM
Specifies the maximum value of the adjustment for
adjust-on-exit. The value is used whenever a semaphore value
becomes greater than or equal to the absolute value of
semop(2), unless the program has set its own value. The
default value is the maximum value for this parameter, 16384.

SEMAPM
The maximum number of processes that may specify
semaphore operation with SEM_UNDO option. The default is
16384.

ccNUMA Process Management and Scheduling

You have additional process management considerations if you are
running the DG/UX system with ccNUMA. For detailed information
about process management and scheduling on ccNUMA systems, see
Chapter 7.

End of Chapter

3 Memory

This chapter describes the many facets of virtual memory and file
system buffering that influence a DG/UX system’s performance. After a
general discussion of memory, it lists memory statistics and shared
memory configuration variables.

Effective use of memory is critical to system performance because the
system can reference data cached in memory much more quickly than
it can reference data on a disk. At this time in technology development,
memory access speeds are increasing at a faster rate than disk I/O
speeds.

A DG/UX system uses its physical memory to implement a large virtual
address space and to cache the computer’s file system. The system tries
to keep the physical memory filled with processes’ address space and
file system objects; doing so avoids having to read from a disk.

In this discussion, all forms of secondary storage are referred to as
“disks” at the risk of some inaccuracy. For instance, file system and
swap devices may include remote NFS-mounted file systems, swap
areas on a diskless client’s server, or even devices that are implemented
by NVRAM (non-volatile random access memory).

Some applications do not use file system buffering, so the memory
statistics reported by the DG/UX system do not apply to them.
Database management systems, for example, may have no choice about
whether their data may be cached before writing to a disk; an update
transaction may require that data reach a disk before the transaction is
considered complete. These database management systems typically
bypass file system buffering by using raw disk I/O, described in
Chapter 4. Also, memory used for file system metadata (described in
Chapter 4) and file system buffering is not reported by the memory
statistics.

Typical DG/UX Memory System Behavior

A program begins execution when the DG/UX system overlays the
address space of a process with the segments of a program file (called
mapping). DG/UX memory statistics are reported in terms of pages. A
page is the smallest unit of memory that supports access control,
mapping to secondary storage devices, and modified/unmodified and
age attributes; a page is 4096 bytes.

Typical DG/UX Memory System Behavior

As a program begins execution, it references instructions or data on the
pages of its address space. These pages may already be in
memory—this occurs when the program is being executed or has
recently been executed by another process. If the pages are already in
memory, those pages (referred to as “resident pages”) do not need to be
read from disk; only the page table entry, which maps the program file
pages into the process’s address, needs to be set up. This operation,
called a soft page fault, is much less expensive than referencing a page
that is not in memory and which must then be read from a disk (called
a hard page fault).

Pages that are executable and mapped to a file in the file system are
called program file pages. The DG/UX system reports the number of
program file pages that are resident and the numbers of various
memory operations performed on these pages. Program file pages are
read-only; this is important because these pages stay “clean”. A clean
page may be replaced in memory without first writing a copy of the
page to disk.

Program files in the Executable and Linking Format (ELF) may specify
that several portions of a process’s address space should come from
other files called shared libraries . With shared libraries, program file
pages may be shared among many executing programs. You can load
shared libraries into memory once and then many programs can
reference the libraries when using common routines. Shared libraries
may dramatically reduce the size of a program file in comparison to
static libraries, and correspondingly reduce the pages necessary for
many programs to run simultaneously. See 1d(1) for more information
about shared libraries and ec(1) for information about ELF.

Memory resident pages from files that are only read from or written to
(in other words, files that are not executed) are called data file pages. A
process can access such pages via the read() or write() system calls or
by using the mmap() system call to map pages from those files directly
into the process’s address space. Data file pages are typically shared
amongst all processes that are accessing the file in question, and
changes made to the file by any of the processes are immediately seen
by all the processes.

Typical DG/UX Memory System Behavior 3-3

A process can map a file so that it can share the pages from the file
with other users of the file until the process modifies the page. When it
modifies the page, it takes a copy-on-write (COW) fault, at which time
the process receives a private copy of the page in question, which it
may then freely modify. Such a feature is commonly used with file
pages to properly handle the initialized data section of a program (the
.data section of an executable). As long as the initialized data is
unchanged, it may be shared by several processes; once a process
modifies its initialized data, it creates a private copy of the page. This
is also how the MAP_PRIVATE option of mmap() is implemented.

A program’s uninitialized data (which includes the “.bss” section of an
executable) is not stored in the executable file at all, and therefore does
not occupy file pages. The pages available for uninitialized data, along
with an initial allotment of pages for a stack, are known as private
anonymous pages; these pages are allocated in a system’s swap area.
When allocating these pages, the system does not actually access a
disk. The disk is accessed only when a page has been modified (become
dirty) and the dirty page must be purged—that is, removed to make
room for another page.

Private anonymous pages from the swap area are counted as reserved
anonymous pages. Any time that you make a request for space (for
example, by calling malloc() or extending a stack), you decrease the
freeswap count (the amount of available swap space). The DG/UX
system uses the number of reserved anonymous pages to guard against
running out of swap space. Swap space consists of the swap area on
disk and a portion of physical memory; this is also known as total
anonymous pages. If you try to allocate a number of anonymous pages
that would make the reserved anonymous pages exceed the total
anonymous pages, the system reports the error message “out of swap
space.” Thus, an allocation request may fail even if there is unused
swap space if that swap space is reserved by an earlier allocation
request. This prevents the situation where an application finds out
later that there is not enough swap space for its existing requests.

3-4

Typical DG/UX Memory System Behavior

Total Anonymous Pages

(SWAP SPACE) >

Freeswap | Reserved Anonymous Pages |

(Total — Reserved
Anonymous Pages)

Figure 3-1

Swap Space

Other private anonymous pages are allocated during program
execution, most commonly by touching new pages on the stack and by
calling malloc(), which allocates memory. These calls to malloc()
increase the number of reserved anonymous pages and may fail if that
would cause the reserved anonymous pages to exceed the number of
total anonymous pages.

Shared anonymous pages, as the name implies, may be shared by many
processes. Interprocess communication through shared memory
segments is a common use of this type of page.

Once exec() has loaded a program and allocated memory for the
executable portion, the initialized data portion, and the uninitialized
data portion, the I/O caused by the program depends on the following:

e On what pages are the instructions that the program executes?
e Which data pages does the program touch?

e How does the program handle stack and heap allocation, and how
much memory is available for creating new pages?

e Which files does the program read?

Reading from a file causes the required pages to be brought into
memory if they are not resident pages. Memory operations resulting
from calls to read() and write() are counted as non-fault operations.
The amount of physical memory available for these pages is controlled
by the PERCENTBUF configuration parameter.

Typical DG/UX Memory System Behavior 3-5

It is possible for a program to execute from beginning to end without
ever requiring disk I/O. The following must be true:

e The text and data pages for the program are already in memory
from a previous execution.

e There are enough free pages in the swap area so that the system
can create copy-on-writes and new stack and heap pages without
throwing out dirty pages.

e The file pages being read from and written to are already in
memory.

Although pages written to the file system by a program may not reach
the disk while the program runs, eventually the data is written to disk.
The DG/UX system accomplishes this with a kernel process called the
page cleaning daemon. This daemon runs periodically to make the file
system memory image and the disk consistent. This policy ensures that
in case of a system crash, data that programs have written to the file
system at the time the page cleaning daemon last ran can be recovered
from the disk. The MAXBUFAGE configuration parameter governs the
age of unwritten file system data and the frequency at which the page
cleaning daemon runs.

You are now familiar with the four classifications of memory that the
DG/UX system uses to report memory statistics: program file pages,
data file pages, private anonymous pages, and shared anonymous
pages. A fifth classification, kernel anonymous pages, consists of
memory in use by the kernel. This section has considered typical uses
of each of the four classifications of user-accessible memory, but other
usage patterns may show up in the statistics. For example, the memctl
and mmap system calls allow programs to create portions of their
address space with any of the page classifications we’ve discussed (with
the exception of kernel anonymous pages). Some forms of I/O, such as
that for metadata, are not reported by the memory statistics.

When the last LWP of a process exits, the process’s anonymous pages
may be reclaimed, but the file system pages (program file and data file
pages) remain in memory for some time, depending on the demand for
memory. A second execution of the same program will encounter mostly
soft faults, and typically will execute much more quickly.

Swapping

Here is a summary of the five types of pages:

Program file pages Pages that are executable and
mapped to a file in the file system.
These pages are read-only.

Data file pages Memory resident pages from files
that are only read from or written to
(in other words, files that are not
executed). These pages are typically
shared amongst all processes that
are accessing the file in question,
and changes made to the file by any
of the processes are immediately
seen by all the processes.

Private anonymous pages Pages available for uninitialized
data, along with an initial allotment
of pages for a stack. These pages are
allocated in a system’s swap area.

Shared anonymous pages Pages that may be shared by many
processes. Interprocess
communication through shared
memory segments is a common use
of this type of page.

Kernel anonymous pages Memory in use by the kernel.

Swapping

As described above, a program’s data is eventually written to disk.
However, when the system is extremely short of memory, the memory
of active LWPs may be “swapped out”; that is, the LWP data is moved
from memory to disk so that other LWPs can run.

Adding swap areas on disks where there are not currently any may
improve performance; see the sysadm File System —> Swap Area
menu. Do not skimp on the system’s swap area to save disk space.
Performance never improves when you must go to disk, since pages are
written to the swap area because there is not enough memory to
accommodate all LWPs running at a given time. If your system mixes
high-speed disks and low-speed disks, use the fastest disks for all your
swapping.

The best way to distribute traffic evenly over several disks is to use
several equal swap areas, one per disk. The reason to keep these areas
roughly equal in size is to keep their percentage of free space roughly
equal as well. Greater free space percentages imply less fragmentation,
which improves efficiency.

Thrashing 3-7

In addition, you should distribute swap areas over storage processors
(SPs) if your system has more than one. For example, if you have four
SPs and four swap areas, it is best for performance to place each swap
area on a separate disk attached to each separate SP.

You can use the freeswap value reported by nsar -r to find out how
much swap space is available. (Multiplying freeswap by 512, then
dividing by 108 converts blocks to megabytes.) As a rule, the freeswap
value should be 15-30% of the total physical memory and swap area on
the system. For example, if your system has 256 MB of physical
memory and 384 MB of swap area space, the sum is 640 MB.

15% of 640 MB = 96 MB, or 196,608 blocks
30% of 640 MB = 192 MB, or 393,216 blocks

For this system, if the freeswap value is usually under 200,000 blocks
(or frequently under 100,000 blocks), you should probably increase the
swap area space. On the other hand, if the freeswap value is typically
over 400,000 blocks (and rarely under 300,000 blocks), you can
probably decrease the amount of swap space to recover disk space.

Systems with large bursts of swap usage will need a reserve larger
than 15-30%, while systems with more static swap usage will need a
smaller reserve. Note that swap space requirements are highly
application dependent.

Another technique to detect if a swap area is filling up is to monitor the
percentage of swap allocated reported by nsar -W O%swap or
UX/RPM (Percent swap allocated). If the percentage of swap allocated
is greater than 75%, identify processes with large swap allocations. You
may also want to increase swap areas.

For detailed information about setting up and managing swap areas,
see Managing the DG/UX System.

Thrashing

If interactive users notice long pauses in response time, the pauses may
be the result of anti-thrashing measures by the kernel. (Thrashing is
when non-interactive LWP groups simultaneously compete for
inadequate resources.) To verify this, check to see if the number of
unbound runnable LWP groups is consistently non-zero (Unbound
Runnable Processes using UX/RPM, or swpq—sz using nsar —q).

3-8

Hard Page Faults

If these statistics lead you to believe that slow response time is the
result of anti-thrashing measures, consider increasing memory,
examining applications that seem to cause high frames purged and
page fault rates (for per-process page fault statistics, try nps —eo
cmd,hfault,sfault), or increasing the value of MINBOUND (the
minimum number of user LWPs that can be ready to run in the kernel).
Note that by default, the system determines MINBOUND dynamically
based upon system load; by specifying this value yourself and
guaranteeing that a specific number of LWPs can be ready to run, you
are overriding system algorithms. This can either improve performance
or increase thrashing. See Chapter 2 for a description of MINBOUND.

Another form of thrashing is when swap area write activity is equal to
read activity. If the number of blocks written to and read from the swap
area are roughly equal, pages are likely being written to swap and read
back into memory. To monitor swap activity, monitor your system’s
virtual disk with nsar or UX/RPM. If swap area read and write activity
are roughly equivalent, you might consider installing additional
memory to improve performance.

Hard Page Faults

As a basic guideline, hard page faults should be kept to a minimum. A
high rate of hard page faults generally indicates increased disk I/O and
unnecessary faulting.

You should determine your system’s hard page fault threshold value by
regularly monitoring system paging activity statistics. You can monitor
hard page faults with UX/RPM’s Hard Page Faults or nsar —p’s vflt/s
statistic.

Per-Process Memory Statistics

Descriptions of per-process memory statistics are given below. Note
that the application that you use or the command that you type is
shown to the left of the colon; the field of interest to you is on the right
of the colon and should not be typed in:

File system Input UX/RPM: fsn ops
operations nps —o fsiops: FSIOPS

Number of file system input operations.

Output UX/RPM: fsout ops
nps —o fsoops: FSOOPS

Number of file system output operations.

System-Wide Memory Statistics 3-9

Page faults

Resident
memory

Resident
shared
memory

Resident
unshared
memory

Hard UX/RPM: hard fault
nps —o hfault: HFAULT

Number of hard page faults.

Soft UX/RPM: soft fault
nps —o sfault: SFAULT

Number of soft page faults.

Current size UX/RPM: size (frames)
nps —o rss: RSS

Size of the resident portion of the process’s address space, in

kilobytes.

Maximum size UX/RPM: maxrss (frames)
nps —o maxrss: MAXRSS

Maximum resident set size, in kilobytes.

nps —o xrss: XRSS

Sum of shared program file, data file, and shared anonymous pages,
in kilobytes.

Size, excluding stack pages nps —o drss: DRSS

Private unshared or COW-shared anonymous pages, excluding
stack pages, in kilobytes.

Size, stack pages nps —o srss: SRSS
Private unshared or COW-shared stack pages, in kilobytes.

UX/RPM has shared anonymous private data, private stack, and
private mapped resident memory sizes statistics available.

System-Wide Memory Statistics

Descriptions of system-wide memory statistics are given below:

3-10

System-Wide Memory Statistics

Anonymous Allocated UX/RPM: Percent Swap Allocated

pages

Bound
frames
purged

nsar —W O%swap: %swap

Percentage of total swap space that has been allocated.

Free UX/RPM: Free Anonymous
(frames)
nsar -r: freeswp
sar —r: freeswp

Number of 512-byte blocks that are available in swap space.

Reserved UX/RPM: Reserved Anonymous

Number of anonymous pages that have been reserved, but not
necessarily accessed. Applications reserve anonymous pages for
their uninitialized or bss data sections, for heap space when they
call malloc(3C) or brk(2), for stack frames, and when they modify
initialized data pages. Attempts to reserve anonymous pages that
would make this number equal Total Anonymous Pages will fail and
cause the system to report that it is out of swap space.

You can configure more swap space by using swapon(1), available
from sysadm(1M).

Total UX/RPM: Total Anonymous

Number of pages of physical memory and on the swap device that
may be used for virtual address space. Anonymous pages are
distinct from file pages. Anonymous pages must be written to disk
when they are removed from memory.

UX/RPM: Bound Frames Purged
nsar —w: bswot/s
sar —w: bswot/s

Number of resident pages that were taken away from bound LWP
groups.

Purging bound pages is expensive because bound LWP groups will
likely run again soon and require access to the purged pages,
resulting in hard page faults. The DG/UX system favors reclaiming
pages from unbound LWP groups. A non-zero value of this statistic
indicates insufficient memory.

System-Wide Memory Statistics 3-11

Frames
purged

UX/RPM: Frames Purged
nsar —g: pgfree/s
sar —p: rclm/s

The number of pages removed from main memory by the system to
make room for other pages. Purging is initiated when the number of
free memory frames reaches a minimum level. The frame purger
then scans memory frames, looking for the least recently used
eligible frames to replace. This number includes all purged pages,
such as anonymous, bound, and unbound pages (see Bound Frames
Purged). Pages freed voluntarily, such as pages belonging to an
exiting LWP, are not counted as purged.

Kernel parameters that may assist in decreasing high values
(values that indicate poor system performance on your machine) are
MAXBUFAGE and PERCENTBUF. If applications on your system
are writing randomly to a large number of pages, decreasing
MAXBUFAGE from the default of 60 seconds to 30 seconds may
improve overall performance by making the frame cleaner run more
often, with less to do in each pass. However, performance may
decrease due to the increase in disk activity.

If a lot of file I/O on your system is causing programs to be pushed
out of memory, decreasing PERCENTBUF from its default of 100%
helps executables remain in memory longer.

To determine a reasonable value for PERCENTBUF, monitor the
number of data file pages through UX/RPM or nsar.

With large memory configurations, the page cleaning daemon can
use a substantial amount of time searching for modified data pages.
The amount of time is based upon MAXBUFAGE and
PERCENTBUEF. If you suspect that your system time is high due to
page cleaning, increase MAXBUFAGE and PERCENTBUF.

Other kernel parameters that may need fine tuning are
MAXPAGEOUTS, MAXSLICE, and HOGFILESIZE.

See Chapter 4 for descriptions of MAXBUFAGE, PERCENTBUF,
and HOGFILESIZE; see Chapter 2 for a description of MAXSLICE.
MAXPAGEOUTS is described later in this chapter.

Other solutions are to add more physical memory, redesign
applications to use memory more efficiently, or reduce the number of
users allowed on the system at one time. UX/RPM displays the
number of users on its overview screen.

3-12

System-Wide Memory Statistics

Free
memory
frames

Kernel
Memory
Allocation

UX/RPM: Free Memory (frames)
nsar —r: freemem
sar —1: freemem

Number of memory pages available for immediate allocation,
including pages in memory objects that are not mapped by bound
LWP groups, and pages of non-open files. Except for a few dedicated
memory areas like the free memory pool, the DG/UX system will use
all of memory for buffering, unless you've set PERCENTBUF. If
you've set PERCENTBUF, using the free memory frames value to
evaluate memory usage is difficult. Also, the DG/UX system tries to
keep potentially useful information such as recently executed
programs and recently read files in memory. Using the rate of
frames purged and swap partition activity are a better indicator of
how busy your memory system is; see Frames Purged.

Non-pageable Allocation nsar —k: (npg mem) alloc

Number of bytes allocated to requests from the kernel for
non-pageable memory.

Non-pageable Memory Pool nsar —k: npg mem

Non-pageable memory pool size, in bytes. The memory pool size is
dynamic and will always be larger than allocations from it.

Non-pageable Request nsar —k: (npg mem) fail
Failure

Number of requests for non-pageable memory that have failed.

Pageable Allocation nsar —k: (pg mem) alloc

Number of bytes allocated to requests from the kernel for pageable
memory.

Pageable Memory Pool nsar —-k: pg mem

Pageable memory pool size, in bytes. The memory pool size is
dynamic and will always be larger than allocations from it.

Pageable Request Failure nsar —k: (pg mem) fail

Number of requests for pageable memory that have failed.

System-Wide Memory Statistics 3-13

Memory
Usage

Page Faults

Data File Pages UX/RPM: Data Pages
nsar —W Odfile—res: dfile

Number of resident pages that are data file pages. The number of
data file pages will vary depending on file system activity and the
value of PERCENTBUF.

Kernel Anonymous Pages UX/RPM: Kernel Anon
nsar —W Okanon-res: kanon

Number of resident pages that are kernel anonymous pages. These
pages include not only pages allocated from the memory pools, but
also all of the kernel wired text and data that is initially loaded
from the boot image. A significant amount of kernel data structures
are dynamically allocated from the wired memory pool in particular
(for example, STREAMS and device driver structures).

Program File Pages UX/RPM: Program Pages
nsar —W Opfile—res: pfile

Number of resident pages that are program file pages.

User Private Anonymous UX/RPM: Private Anon
Pages nsar —W Oupanon-res: upanon

Number of resident pages that are user private anonymous pages.

User Shared Anonymous UX/RPM: Shared Anon
Pages nsar —W Ousanon-res: usanon

Number of resident pages that are user shared anonymous pages.
These pages may exist in the address space of more than one
process, such as a shared memory segment.

User UX/RPM: User Faults/Sec
nsar —w: bswin/s
sar —w: bswin/s

Number of page faults accumulated by user processes (the faults are
actually taken by LWPs). This number includes hard page faults,
faults satisfied by pages already in memory (soft page faults), and
copy-on-write faults. It also includes faults on pages of remote
mounted file systems. It does not include page faults taken by the
DG/UX kernel.

3-14

System-Wide Memory Statistics

Hard UX/RPM: Hard Faults/Sec
nsar —p: vflt/s
sar —p: vilt/s

Page faults due to referencing pages not in memory and which must
then be read from disk, either from local or remote-mounted file
systems. These faults are rather expensive: there is the disk read
cost and the file system overhead.

See Frames Purged.

Fill from file UX/RPM: Fill Faults/Sec
sar —p: pgfil/s

Number of hard page faults satisfied by reading from a file as
opposed to reading from the swap area. This includes hard faults on
all mapped files, whether mapped by exec(2) or mmap(2). The
difference between Hard Page Faults and Fill From File Page
Faults is the number of swap area page faults.

An increase in forks can increase this value since pages that
contain code and initialized data must be read in from disk.

Soft UX/RPM: soft faults
nsar —p: atch/s

Page faults satisfied by reclaiming a page already in memory. These
faults occur when a page is mapped in the address space of a
process, but is not marked resident because it has not been
referenced yet by that process (even though the page is resident in
memory). Such a fault obviously does not require I/O, but does
require that the page table entry for the faulting process be changed
to reflect the residency of the page being mapped. You incur the cost
of taking the exception and changing the page table entry, but you
needn’t go to disk to service the fault. These faults are inexpensive.

System-Wide Memory Statistics 3-15

Page-In

Page-Out

Copy on write UX/RPM: COW/Sec
nsar —p: pflt/s
sar —p: pflt/s

User page faults that result in the creation of private copies of
shared pages. The shared pages copied by these operations fall into
two categories:

1. File pages that have been mapped private by either an exec(2)
function or mmap(2) and then have been modified, such as when a
program assigns a new value to an initialized variable for the first
time.

2. Privately-mapped anonymous pages that are shared among
multiple processes as a consequence of fork(2).

Copy-on-write faults may also be hard faults, and always require
copying a page. A copy-on-write fault is hard when the page to be
copied from is not in memory and must be fetched. This value
generally goes up as the fork rate goes up.

Pages nsar —p: ppgin/s

Pages paged-in per second (system-wide). Each request can bring in
more than one page.

Requests nsar —p: pgin/s

Number of page-in requests (system-wide). This number includes
hard page faults and file faults (such as file page-ins due to read
and write system calls).

Operations nsar —g: pgout/s

Number of page-out operations.

Pages UX/RPM: Pages Paged Out
nsar —g: ppgout/s

Number of pages paged-out per second. This value may be greater
than the number of page-out operations because a single operation
may page-out several pages.

3-16

System-Wide Memory Statistics

System Paging Statistics

In addition to the standard statistics listed above, nsar reports
statistics on system paging activity. The following statistics describe
system paging activity, both in terms of the number of pages affected
and the number of paging operations. The syntax of the nsar command
for system paging activity is:

nsar -W Qoperation-pagetype-units

where operation is a paging operation type, pagetype is a page type, and
units is a units type. Each of the variables is referred to as a syllable.

System-Wide Memory Statistics 3-17

These are the paging operation types:

Syllable Name Description
hfault hard faults Requires physical I/O (read from disk and/or
the file system).
sfault soft faults Requires page table manipulation but no
physical I/0.
hnfault hard non—faults Page-in operation that is not caused by a
page fault.
snfault soft non—faults Explicit request that references a resident or
zero-fill-on-demand page.
cfault copy—on—write Operations in which a private copy of a page
page faults is created. Each of these operations will have
already been counted in one the the four
previous types.
rdirty replace dirty New pages made available by writing
page modified or “dirty” pages to backing store.
rclean replace clean New pages made available by making
page unmodified or “clean” pages non-resident.
fclean forced page Explicit request to clean a “dirty page.”
clean Modified pages written to backing store by
the mementl(2) MC_SYNC operation or
fsync(2).
uclean unforced file Modified file pages written to backing store

page clean

by the file page cleaning daemon.

3-18 System-Wide Memory Statistics

The syllables for page types are:

Syllable Name

kanon Kernel anonymous pages
upanon User private anonymous pages
usanon User shared anonymous pages
pfile Program file pages

dfile Data file pages

The syllables for specifying the units of these statistics are:

Syllable Name
op Number of operations or requests
PP Number of pages affected. The number of pages affected is

always greater than the number of operations/requests
because each operation can affect multiple pages.

Here is an example of using nsar to report paging statistics (three
times at 10-second intervals:

% nsar —W Ohfault-pfile—op,hfault-dfile—op,hfault-upanon-op 10 3 4

This reports the number of hard faults in program file pages, data file
pages, and user private anonymous pages. For each sample this will
print a line of the form

00:00:05 hf-pf-op/s hf-df-op/s hp-up-op/s
00:00:15 2 0 12

UX/RPM presents these system paging statistics on additional virtual
memory windows. Both system paging requests and operations per
second are displayed.

On ccNUMA systems, a version of nsar called nsar_ numa provides
system activity data relevant to ccNUMA systems and components. For
information about nsar_numa, see Chapter 7.

Memory Configuration Variables 3-19

Memory Configuration Variables

The following message configuration variables are also listed in
lusr/etc/master.d/dgux.

PERCENTLOCKABLE
Specifies the percentage of physical memory available for
locking by user processes, provided through the mementl(2)
system call. The kernel automatically rounds down any
reservation requests that would otherwise impinge on memory
used for the kernel itself. The default is 10. Note that reserving
and then locking large amounts of memory may deadlock the
system. Conversely, not reserving enough may cause programs
that need to lock memory to fail.

UPOOL_MIN
Specifies the minimum size, in megabytes, to make the kernel
pageable memory pool. A value of 0 (the default) tells the
system to choose a reasonable size based on the size of physical
memory. Certain small memory systems that use certain
classes of devices may need to set this value. Note that
unnecessarily setting this value on a small memory system will
increase the amount of memory used by the kernel.

CONFMEM
Specifies the configured amount of physical memory, in
megabytes, in the system. A value of 0 (the default) tells the
system to use all the available physical memory in the system.
Specifying a non—zero value allows the system to be configured
to use less than the amount of usable physical memory (mostly
useful for stress testing).

P6_EPA_OVERRIDE
Determines if the P6 extended physical address mode is used
on P6 systems with less than four gigabytes of memory. The
default mode is off when a P6 system has less than four
gigabytes of memory. If system memory is four gigabytes or
greater, the default is on. Some benchmarks get better
performance if this flag is set to on, even if these systems have
less than four gigabytes of memory.

3-20

Shared Memory Configuration Variables

MAXPAGEOUTS

Specifies the maximum number of concurrent pageout I/O
operations that the system can have outstanding at one time.
The default is 0, indicating that the system should pick a
reasonable value based on the amount of physical memory
present on the system.

This assumes that the system’s effective pageout throughput is
relatively balanced with main memory size. A small memory
system which pages out to a large number of disk spindles may
achieve better performance by increasing this value.
Conversely, a large memory system which has few spindles
effectively used in pageouts may achieve better performance by
decreasing this value.

A reasonable guideline is to set this variable to a small multiple
of (one to three times) the number of disk spindles which are
actively involved in pageouts. This excludes disks which are
written to less than others, as well as disks written using only
raw or unbuffered I/O (which database management software
often uses).

Setting this value too high can cause high latencies for other
accesses to the disks used in pageouts. Setting this value too
low can artificially limit the system’s effective pageout
throughput, which can cause delays for memory allocation.

Shared Memory Configuration Variables

The tunable parameters shown below are associated with interprocess
communication shared memory; they are dynamic variables. These
parameters are also defined in the /usr/etc/master.d/dgux file.

SHMMNI

Specifies the maximum number of shared memory identifiers
system wide. Each entry contains 52 bytes. The default is 1024.

SHMSEG

Specifies the number of attached shared memory segments per
process. The default is 256.

ccNUMA Memory Management 3-21

SHMMAX
Specifies the maximum shared memory segment size in bytes.
The default is 4%¥1024%1024 (4 MB). The shared memory
maximum should be equal to or greater than the size of the
shared memory area defined by an application system.

SHMMIN
Specifies the minimum shared memory segment size in bytes.

The default is 1 byte.

ccNUMA Memory Management

You have additional memory management considerations if you are
running the DG/UX system with ccNUMA. For detailed information
about memory management on ccNUMA systems, see Chapter 7.

End of Chapter

4 File Systems and Disk I/O

This chapter discusses several topics related to I/O and file systems,
including:

e Disks

e File systems

e Virtual disks

e File system tools

e Disk I/O statistics

e File system configuration variables

For comprehensive information about disks and file systems, see
Managing Mass Storage Devices and DG/UX" File Systems.

File System and Disk I/O Terms

Here are some terms that are used in this chapter.

To increase DG/UX file system performance, the disk storage of a file
system is divided into Disk Allocation Regions (DARs). To access a file,
the DG/UX file system alternately reads a file’s inode (to find where the
file’s blocks are stored) and the blocks themselves. By using DARs, a
file system can keep a file’s data blocks and inodes physically close
together, minimizing seek time.

Disk Allocation Region (DAR)

LRRN |

I\B/lltap Inodes Data Elements

iy
File File File File
Data Data Data Data
Blocks Blocks Blocks Blocks

4-2

File System and Disk I/O Terms

An inode contains all the information pertaining to the mode, type,
owner, size, and location (of the blocks) of a file. A unique inode number
identifies each file in a UNIX system’s flat file structure. Pointers in an
inode tell the file system’s Flat File Manager (FFM) where a file’s data
elements are stored.

A data block is a block of data that is stored on a virtual disk. Data
blocks are 512 bytes, and are typically equal to the underlying physical
disk’s sector size.

A data element is the logical granularity at which the DG/UX file
system transfers a file’s data. The default data element size on DG/UX
systems is 8 KB, which is sixteen 512 byte disk sectors. As the figure
shows, data blocks are stored as data elements in a Disk Allocation
Region.

A virtual disk is a software abstraction that enables you to construct a
file system that appears as if it were a single sequential collection of
disk blocks, even though it may span multiple physical disks. All
virtual disks are associated with one or more physical devices, usually
disks. Virtual disks enable the DG/UX operating system to manage files
the same way, regardless of how the files are stored physically.
Additionally, you can manipulate virtual disks online (such as
renaming, copying, moving, and expanding them).

In order for a virtual disk to be accessible for mounting as a file system,
the virtual disk must be a volume. Every virtual disk created with a
non-null name is made a volume by default. Virtual disks that are
volumes have device node entries such as /dev/dsk/foo and
/dev/rdsk/foo; it is via these nodes that virtual disks are accessed.

File system metadata, in the context of the DG/UX demand-paged file
I/O system, is “data about data.” This is data, such as inodes, index
elements, and directory information, that the file system uses to
describe and locate files. File system metadata is cached in the kernel’s
data cache.

Mirroring is the technique of writing the same data to separate virtual
or physical disks at the same time. If one disk fails, the data is still
available on the mirror disk. Mirrored disks can also perform read
operations faster than single disks because the system can
simultaneously read from each of the mirrors. You can set up software
disk mirroring (described in this chapter) or hardware disk mirroring
(described in disk-array documentation).

Disks 4-3

Disks

Striping is the technique of distributing (or interleaving) data across
several disks so that data can be accessed in parallel, increasing disk
I/0 performance. The DG/UX operating system supports striping at
both the software and hardware levels. Software-level striping works
within virtual disks. The Data General high availability disk systems
support hardware-level striping across disk modules in a disk group.
Hardware-level striping is part of the RAID 5 design, which provides
uninterrupted access to data if a disk module in the array fails.

A raw disk is a disk that is being accessed in character mode.
Character I/O can be used with disks to allow unbuffered transfers of
an arbitrary number of disk sectors. Applications can bypass virtual
memory by performing character I/O operations to disk. For example, a
database management program might use character I/O to manage its
own disk transfers. Disk transfers are subject to a device’s alignment
and granularity requirements (usually 512 bytes). Physical disks and
virtual disks are accessible in character mode; character nodes for
physical disks are in /dev/rpdsk, those for virtual disks are in
/dev/rdsk.

A block disk is a disk that is being accessed in block mode—block I/O
transfers are of a fixed size and must go through virtual memory. Disks
accessed in block mode have no alignment or granularity requirements.
For example, you can read a single byte from a block disk. Physical
disks and virtual disks are accessible in block mode; block nodes for
physical disks are in /dev/pdsk, those for virtual disks are in/dev/dsk.

The best way to improve I/O performance is to avoid going to disk. This
is accomplished by using a large enough buffer cache, using correct
element sizes, and keeping frequently used data in close proximity.

If heavy data file usage is hampering system performance by provoking
excessive paging, you may want to reduce the configuration parameter
PERCENTBUF (which specifies the maximum percentage of physical
memory that can be occupied by data files). The idea is to free memory
used by file I/O to allow more memory for code.

4-4

Disks

Buffering

Buffering is best when it is used to hold shared data. Database
products need special consideration. Generally, database data is private
to the database, and the database software controls and provides access
to all users. Since the database software should have the ability to best
understand the use of the data and its buffering needs, database
applications often achieve the best performance by allowing the
database software to buffer the data internally. Hence, the following
tips are important for tuning a system supporting database
applications:

e Increase the data buffer size of the database. Since database tuning
varies from product to product, please refer to your database
administrator’s manual.

e Decrease the value of PERCENTBUF to avoid excessive paging as
described above and leave memory available for allocation by the
database application.

e Set up the database to use raw disk (i.e., /dev/rdsk/foo). I/O to a
raw disk is faster than synchronous I/O to a buffered disk, and the
additional buffering gained by using the file system does not help if
the database is doing a fair job of buffering the data.

When using block disks, the maximum size of a buffered I/O operation
is equal to the data element size assigned to the block special file node
that represents the disk. When using raw disks, you can attempt to
write up to 2 GB (although data types may be a limiting factor).
However, the system will break a large request into smaller ones if it
cannot safely allocate enough wired memory to support the request, or
if the disks, the disk protocol, or the host bus adapter interface cannot
support the requested transfer size.

Metadata Buffering

Using nsar -b, get the average %rcache and %wcache for your system;
these file system cache hit ratios measure the effectiveness of file
system metadata buffering. On most systems, you should expect an
average %rcache ratio of 95 or better. The %wcache is generally much
lower (down to around 65%), depending on the size of data files and the
type of I/O being done.

IMPORTANT If you use DG/UX Clusters, nsar statistics are
reported only for the one cluster node where the tool is run. If you
want a cluster-wide view of disk I/O performance, you must run
nsar on each cluster node and combine the data.

Disks 4-5

If your system’s cache hit ratios fall beneath these percentages, it may
be possible for you to improve these rates by increasing the kernel
parameter PERCENTSYSBUF (which specifies the percentage of
physical memory reserved for system buffers) and decreasing
MAXSYSBUFAGE (which specifies the maximum time that metadata
will remain in system buffer caches before being written to stable
storage).

On the other hand, if your system’s read cache hit ratio is consistently
99-100%, you might want to decrease PERCENTSYSBUF so that
%rcache is 97-98%. To determine the maximum percentage of physical
memory reserved for system buffers, you can use erash to read the
value of cf_bm_percent_memory_for_system_buffers. For example,
after invoking crash, enter this command:

> mr cf bm percent memory for system buffers 1 b J
cf bm percent memory for system buffers: 05

Using nsar -a, get the rate of inode entry searches (iget/s, or Iget Calls
using UX/RPM). If this number seems high (greater than 100 per
second), there may be unnecessary file searches or heavy NFS activity
(typically, there is one inode entry search per NF'S operation). Keep in
mind that UNIX systems do not hash filenames within directories.
Studies have shown that for directory sizes found in typical UNIX
environments, a simple sequential search is quicker than a hashing
implementation. If a directory contains thousands of files, then the
sequential search can be quite slow and can adversely affect file lookup
operations.

In particular, the /dev directory may be very large—this is especially a
problem when you try to use ttyname(3C); if you need to know your
TTY device name frequently, set the $TTY environmental variable and
use that to retrieve the name.

The login procedure uses ttyname to search the /dev directory. To set
the device name for the TTY that you are logging onto, use login with
the —d device option. You can modify _pmtab directly for your ttymon
(look in /etc/saf) and add this option to each login line.

On ccNUMA systems, you may also want to change the balancing of
buffers between blocks to improve performance. You can balance these
buffers by adjusting MAX_PERCENT_BUF_RELEASE_TRIGGER and
MAX_BUF_BLOCKS_TO_FREE_PER_LOCALE, which are
dynamically configurable. We recommend adjusting the parameters
after the completion of a long job or application affined to only one
locale so that the system rebalances the buffers, and then resetting the
parameters to be less aggressive after the balancing is done. Balancing
buffers this way ensures that a NUMA locale never suffers from buffer
starvation.

4

6

File System

File System

The following sections describe how files are made on the DG/UX file
system.

File Data Element Sizes

The size of the file system’s buffered I/O operations to disk is based on
file data element sizes. The default data element size for a file system
is 8 KB (16 blocks), but can be modified on a per file system basis by
using either the mkfs or tunefs command. The data element size for a
file can be specified at file creation by using the dg_mknod() call. Data
element sizes must be a power of 2, and should be greater than 4 KB
for better efficiency. The default data element size and other
information about a file system can be dumped by using the dumpfs
command; this command can be run by the root user with the file
system still mounted.

The default element size is based upon the assumption that I/O is often
sequential; after a read operation, another read is very likely to occur.

When data access is random and done with read/write operations that
are much smaller than 8-KB units, adjusting the data element size
becomes important. For example, if a program is doing random, 4-KB
reads from a very large database (in relation to the size of the file
system buffers) whose data elements are 8 KB,

o The system is reading an extra 4 KB of data for every 4 KB of data
that is likely to be used.

e The extra 4 KB of data is wasting buffer cache that could be better
used for another I/O request.

By adjusting the data element size to 4 KB, you can effectively increase
the buffer cache size (more buffers are available) and improve the
speed of the disk (4-KB reads instead of 8-KB reads). 4 KB is the
smallest buffer size that the kernel will use for a file; using a data
element size smaller than 4 KB will increase disk I/O and adversely
affect performance.

In most situations, the default of 8 KB (16 blocks) is fine.

File System 4-7

Keeping Data Close Together

The location of data in a file can affect the time it takes to access the
data. The first ten data elements are directly accessed. Then,
depending on the file’s data element size and how deep into the file the
data is located, the remaining data elements are accessed through
single, double, or triple indirect pointers.

You can keep frequently used data in close proximity on a disk two
ways. The first way is to group frequently used file systems close
together.

The second way is to adjust anniversary sizes so that large, more
permanent type files all have their data in the same Disk Allocation
Region (DAR). As a file grows in size, the file system allocates more and
more blocks out of the DAR that contains the file, until the file reaches
its first anniversary size. The first anniversary size is a limit that,
when reached by a file, tells the file system to start allocating a file’s
data into another DAR. The anniversary size limit protects against
having any one DAR too heavily subscribed. The second anniversary
size is the size limit that, when reached, causes the file system to stop
allocating data blocks from the secondary DAR and starts allocating
from another DAR.

Generally, small file systems work well with the default anniversary
sizes. However, file systems greater than 300 MB and containing a few
files work better when the first and second anniversary sizes equal the
DAR size.

Note that disk fragmentation is unavoidable, but DG/UX file systems
minimize the effect by limiting fragmentation to a DAR (see
“Fragmentation” below). Building a file system with the wrong size
DAR can inappropriately spread a file’s data across a disk —
distributing a file’s data into multiple DARs. By adjusting the size of
the DAR and/or the anniversary size, you can enjoy the benefits of the
DAR without the side effect of frequent, long seeks between DARs
when reading a single file.

4-8

File System

Correctly setting the DAR size and anniversary size is more critical for
sequentially accessed data than for data stored in large (or very small)
data files that are randomly accessed. The Average Service (avserv
using nsar -d or aver serv using UX/RPM) time can help you
determine how close data is stored. As these times go up, the disk is
having to do longer seeks. For example, on some SCSI disks, a 14
millisecond access is theoretically possible. For individual SCSI disks,
Average Service times less than 20 milliseconds are excellent. Average
Service times in the 25-35 millisecond time range are not bad. High
values may indicate on-disk cache misses or, if you are using a striped
file system, that the file system’s DARs are misaligned, causing higher
seek rates.

The DAR size should be an integer multiple of the data element size.
The recommended size is a multiple of 8 KB (16 blocks).

If there is one large file, use a single DAR. If there are a few large files,
consider using a single DAR or fewer DARs than the default. However,
using only one or two DARs on very large virtual disks may increase
the time needed to search bitmaps and increase the CPU time required
to process a write request.

Fragmentation

Fragmentation generally worsens over time as files are deleted and
created. You should periodically look for and archive (or delete)
unnecessary files, such as duplicate file names, log files, accounting
system files, and idle files.

Multiple volatile file systems on one disk can cause “ping-pong”
fragmentation. Each file system has its own free space, which routines
must skip over to reach other file systems on the same disk. Try to
balance the load per disk by storing a mix of static and volatile file
systems on each.

You can use the dumpfs command to display information about DARs;
the root user can run this command with a file system still mounted.
When the “free data blocks histogram” shows that a DAR does not
contain any large blocks (block sizes of 16 or larger), fragmentation
may be an issue. Also, mixing files of different data element sizes hurts
overall disk subsystem performance. You can eliminate fragmentation
by archiving and then restoring the files in the affected file system.

The dump (or dump2) and restore commands are a good way to
eliminate fragmentation. Files are restored one at a time, so a file’s
data is pretty much contiguous. In addition, dump (or dump2) and
restore maintain file “holes”: empty file data elements that increase a
file’s extent, created by seeks. These holes use index pointer space but
do not use data blocks.

File System 4-9

Note that since tar and cpio see these holes as null data, those
commands archive the nulls and restore them; after reloading via tar
or cpio, a file that originally contained holes will actually consume
more data blocks and the holes will no longer exist.

File System Size

By default, DG/UX file systems allow only the root user to write to a
file system that is more than 90% full. This limit can be overridden
with mkfs, tunefs, or epd. Reducing the minimum free space reclaims
some disk storage. However, the more full the system becomes, the
longer it takes to find free space; also, data element sizes may become
smaller. Searches for files whose data element sizes are smaller than 8
KB take longer than 8-KB searches (searches have been optimized for
the default file system data element size). In general, try to keep
read-write file systems less than 80% full.

Increasing the minimum free space probably will not increase disk
performance; 10% is optimum for most situations.

To display the percentages of blocks and inodes that are in use for each
mounted local file system (as well as the total number of blocks and
inodes and the number of free blocks and inodes), use this command:

admfsinfo -o diskuse -1 J

When planning a virtual disk’s size, you need to consider file system
overhead for the kind of file system (if any) you intend to put on the
virtual disk. File system overhead refers to internal data structures,
such as data allocation tables, that the operating system requires to
manage file access in the file system.

When planning a virtual disk for a DG/UX file system, you need to
make it at least 17% larger than the amount of space you intend to use
in the file system. This 17% overhead includes the 10% reserved free
space buffer and the internal structures that the operating system
requires for tracking files and directories. For example, if you need a
file system large enough to hold 100 MB of data, you should create a
file system 117 MB in size. With no files, the file system will be around
4% full. After adding 100 MB of data, the file system will be around
90% full.

If a file system will contain read-only static data, you can decrease the
amount of free space. Also, if a file system is extremely large (1 GB or
more), you may want to decrease the amount of free space.

Note that the root file system in particular can fill up and then panic
the system or cause other system problems.

4-10 Virtual Disks

Virtual Disks

Once you reduce disk accesses, the next most important activity is to
improve the speed of the disk accesses. This means that you may need
to:

e Balance the load between disks.

e Balance the load between controllers.
e Use or tune disk caching

o Use data striping

o Use disk mirroring

o Use memory file systems

o Use fast recovery file systems

e Consider other concerns, such as bad blocks, write verification, and
file synchronization.

Balancing the Disk Load

You determine the disk load by looking at disk data such as percent
busy (%busy using nsar -d or UX/RPM), average wait (avwait using
nsar -d), and average response (aver resp using UX/RPM). The busy
data gives you an idea of how much time the disk is spending servicing
requests; generally, this statistic should be under 30%. Faster machines
and servers are able to push %busy to larger values. The average wait
time gives you an idea of how long requests are waiting in a queue
before getting sent to the disk subsystem. For good system response,
this value should be less than 15-20 milliseconds on individual disks.

For response time, 40 milliseconds is considered good for an individual
disk. For a system disk (the disk that contains root) or a RAID 5 unit,
60 milliseconds is generally good. As with other threshold values, the
best values to use are developed over time by monitoring performance
and noting average disk response times. If performance degrades,
measure the response time against your established threshold to
determine whether a disk is a bottleneck.

Also look at the average queue (avque using nsar —-d, and aver queue
using UX/RPM) disk data: for good system response, it is important for
the disk subsystem to be able to keep this number in the low single
digits. If this number seems high, your system may need more disk
modules, controllers, disk striping, and adjustment of file system
parameters like DAR size and data element sizes. As this queue length
increases, the average wait time will also increase.

Virtual Disks 4-11

With a multi-disk configuration of similar disks, the number of
requests should be balanced across the disk units; writes are
particularly expensive. Check the read and write requests (r+w/s using
nsar -d, and % tot using UX/RPM). Overall system performance could
be bottlenecked if one or a few disk units in a multi-disk configuration
handle most of the I/O load. To balance the load, check which file
systems are mounted on the most heavily used disks and attempt to
better distribute those file systems. You may need disk striping
(discussed later in this chapter) to better distribute the load across
disks. To see which file systems reside on each physical disk, use
sysadm (Device—>Disk—>Physical->List, answering “partitions” to the
Listing Style query) or the command admpdisk -o list —p.

You can determine which virtual disks are bottlenecks by listing the I/O
statistics per virtual disk with the command nsar -d ~-WD=v or with
the UX/RPM disk screen. For nsar to list a virtual disk, it must be a
volume. As described earlier in this chapter, every virtual disk created
with a non-null name is made a volume by default. However, if a
virtual disk is not a volume, you can use the admvdisk command with
the —o modify —vy option to make it a volume.

It is quite possible for the system physical disk (the disk that contains
the root virtual disk) to become a bottleneck. Normally, the system disk
contains the first piece of swap, /tmp, and /var; many administrative
log files are also written to the system disk. An application that does a
lot of sorting can overtax /var/tmp. Also, print spooling uses the /var
directory. Here are some possible solutions:

e Move /tmp and /var to less active physical disks. Those two virtual
disks might be good candidates for software striping if they are
heavily used.

e Create other swap virtual disk areas, up to a total of eight, on less
frequently used physical disks (one area per disk). Using several
swap areas of equal size allows DG/UX to optimize swapping
operations by using a round-robin system between areas. For
detailed information about setting up and managing swap areas, I
see Managing the DG/UX System.

e Do not put application executables on the same physical disk as
root.

Balancing the Load Between Controllers

Balancing the load between controllers means that you want to keep all
controllers as busy as possible, without overtaxing them. It is best to
distribute data over multiple controllers. Refer to the specification
guides for the type of disks and controllers you are using to determine
limits. Also look at the disk I/O statistics from nsar and UX/RPM.

4-12

Virtual Disks

On a CLARIiiON, the dual-SP configuration may provide better
performance and higher availability than a single-SP configuration.
Using dual-SP, one host and one SCSI-2 adapter with one channel is
connected by the SCSI-2 bus to two SPs.

To improve performance on the dual-SP, you can bind some disks on
one SP and the other disks on the other SP. The SP that binds a
physical disk determines the primary storage-system route to that disk;
the route through the other SP will be available if a component in the
primary route fails.

For related information specific to ccNUMA systems, see the virtual
disk management (VDM) content in Chapter 7.

Disk Caching

Disk caching increases access rates to disk media by combining small
fast storage devices (nonvolatile RAM or disks) with large slow disks.
An application uses a fast device for read and write operations, while
the operating system duplicates these operations on a larger device.
The purpose of the configuration is to accelerate file system access for
I/O-intensive applications without risking data integrity.

The primary caching configuration consists of a nonvolatile RAM
(NVRAM) or battery backed-up random access memory (BBURAM)
board functioning as the fast device (the frontend) while a physical disk
functions as the slow device (the backend). Although the RAM board
has a relatively small storage capacity, its superior I/O performance can
boost the performance of I/O-intensive applications such as database
management systems. The DG/UX system also supports the use of a
disk drive, preferably a fast one, as a frontend device.

RAM-based caches introduce the risk that a failure could lose the data
in the cache before the system has a chance to write it to the more
stable backend device. The ideal frontend device is nonvolatile or
battery backed-up RAM or a fast disk, which provides the required
speed as well as stability.

The disk functioning as the backend, meanwhile, provides greater
storage capacity than a RAM device or fast disk device and has the
added stability normally attributed to disk drives. The backend device
must be a local disk.

The DG/UX system optimizes disk caching for accessing DG/UX file
systems rather than for other data structures (such as databases built
directly on virtual or physical disks). You may, nevertheless, use cached
disks for any purpose that benefits from the accelerated I/O
performance.

Virtual Disks 4-13

Note that caching a virtual disk may be redundant with file system
buffering, which will cause no performance improvement. You may
consider running your applications both with and without disk caching,
then comparing results to see which configuration offers the best
performance. With virtual disks, you can add and remove a cache from
a file system while it is active and in use. You can experiment with disk
caching without having to shut down your application or file system.

The following section tells how to get the most out of a cached disk
configuration.

How Caching Works

As I/O requests arrive for the cached disk, the system allocates buffers
in the frontend device to hold data for the backend device. These
allocated buffers are considered either clean or dirty. A clean buffer is
one whose data matches the corresponding buffer on the backend. For
example, a buffer that was copied from the backend to the frontend for
a read operation is considered clean because it contains the same data
that is on the backend. A dirty buffer contains data that is inconsistent
with the backend. For example, a buffer that was written by an
application but has not yet been flushed to the backend is considered
dirty.

As T/0 access to the cached disk continues, the system allocates more
buffers until the frontend device becomes full. Then, the cache flushes a
dirty buffer from the frontend to the backend to make room for
additional buffers. There is an asynchronous flushing LWP running in
the background that does much of this flushing so that buffers are
usually immediately available on the frontend.

The process of freeing buffers involves seeking out which buffers are
the least frequently accessed and flushing their contents to disk (if
dirty) and then flagging them as unallocated. The system is then free to
allocate them for more I/O requests.

To determine which buffers are the least frequently accessed, the
system maintains an access weight number for each buffer. Each time
an I/O request accesses the buffer, the system increments its access
weight number. When the time comes to reclaim buffers, the system
can then compare the access weight numbers of the buffers to see
which are most frequently accessed (and should stay in the cache) and
which are least frequently accessed (and may be freed).

4-14

Virtual Disks

Tuning a Cached Disk

The DG/UX system’s disk caching feature provides several parameters
you can tune to optimize cache efficiency. These parameters are:

Cache reads
Specify if reading from the cache is enabled. Answering “yes”
causes data to be shipped from the backend device to the
frontend for reading. Otherwise, data is read directly from the
slow backend device.

Cache writes
Specify if writing to the cache is enabled (when possible).
Answering “yes” causes data to be written directly to the
frontend, which subsequently sends the data to the backend.
Otherwise, data is written directly to the slow backend device.

Asynchronous write policy
This parameter is meaningful only if writes are cached. You
can request direct writes from the frontend to the backend
device without caching it under certain conditions:

Never: The system will never write data directly to the
backend. The advantage is that no redundant disk activity
takes place, but the disadvantage is that cache performance
may degrade if the frontend gets full.

All writes: Any time a buffer is written to the cache, the
buffer is flushed to the backend device. This may improve
performance in caches doing more reads than writes. A
disadvantage of this operation is that substantial redundant
disk activity may take place.

First write: The first time a new buffer is written to the
cache, it is flushed to the backend device. This helps to keep
the cache clean when there are a lot of buffers that are written
only once, such as for large sequential writes. However, it
minimizes disk activity for those blocks that are written
repeatedly. In general, “first write” is the best policy.

Virtual Disks 4-15

Cache only file system metadata
Metadata includes important file system data such as file
system inodes, size, the date stamp, and owner. There are
several instances in which caching file system data may not be
useful, but caching the metadata is useful. For example,

1) A database manager application is responsible for regulating
its own data transfers. Allowing the DG/UX system to cache
file system data would be superfluous and probably ineffective.

2) An NFS server using a cache over a LAN also regulates its
own buffering needs. Data received over a LAN would likely
flood a cache’s buffers.

Caching metadata only is useful in instances such as these. File
system data is read from and written to the slow backend
device directly, bypassing the frontend entirely.

Caching both file system data and its metadata is desired for a
local file system.

If the cache is to contain a non—DG/UX file system, such as a
database, do not elect to cache file system metadata only. Such
a selection would prevent any data caching.

Read weight
Use the read weight parameter to assign relative priority to
read operations that occur in a frontend device; a larger weight
means higher priority. When a cache is searched for available
space, buffers with lower weights are reused first. Thus,
buffers with a high read rates can be retained in the cache
longer.

If multiple cached virtual disks share a frontend, you can
assign a higher priority to one cache by increasing its read and
write weight values. Conversely, you may assign a lower
priority to one or more remaining caches by decreasing their
read and write weight values. The maximum read weight is
100; the default is 1.

4-16

Virtual Disks

Write weight

Use the write weight parameter to assign relative priority to
write operations that occur in a frontend device; a larger weight
means higher priority. When a cache is searched for available
space, buffers with lower weights are reused first. Thus,
buffers with high write rates can be retained in the cache
longer.

If multiple cached virtual disks share a frontend, you can
assign a higher priority to one cache by increasing its write and
read weight values. Conversely, you may assign a lower
priority to one or more remaining caches by decreasing their
write and read weight values. The maximum write weight is
100; the default is 1.

Search Percentage

This is the percentage of the cache’s frontend that the system
searches when it is looking for a clean buffer or data block with
the lowest read or write weight. If the system does not find a
clean buffer, it flushes and reuses a dirty buffer with the lowest
read or write weight. On the next search for a clean buffer, the
search will begin where the last search ended, so eventually the
entire cache will be searched. Setting the percentage to zero
causes the first available buffer to be used. By default, when
creating a cache, the search percentage is 10 percent.

Ideally, a cached disk provides a performance improvement by
satisfying disk accesses using much faster memory accesses. There are
two obstacles, however, that prevent disk caching from reaching this
ideal level of performance:

The frontend device is not large enough to contain all the data that
applications will require of it; therefore, some I/O requests will
require accessing the backend device for data not currently in the
frontend. The ratio of I/O requests satisfied by the frontend device
(cache hits) to the total number of I/O requests is called the cache
hit rate. You want the cache hit rate, which is expressed as a
percentage, to be as high as possible.

In a cache used for writing as well as reading, the cache must at
some point write, or flush, the data in its buffers to disk. If your
application accesses the cache during a flush, or if your application
causes a flush, it will have to wait, or stall, until the flush
completes. You want stalls to occur as seldom as possible.
Increasing the search percentage will bring down the occurrence of
stalls.

Virtual Disks 4-17

By experimenting with the various parameters, you can find ways to
maximize the cache hit rate and minimize the frequency of stalls for
your cached disk. For how to view cache and disk performance
statistics or adjust cache and disk operating parameters, see Managing
Mass Storage Devices and DG/UX" File Systems.

If you have a CLARiiON system configured as RAID 3 or RAID 5, there
is a cache option available that can help performance significantly. If
you have a lot of output to the disks, you may want to configure all the
cache as write cache instead of configuring it as read/write cache.

Software Data Striping

Depending on the nature of your applications, you may find that data
striping improves disk I/O performance. You can implement data
striping through the hardware (if you have a disk array) or through
software. Software disk striping differs from hardware disk-array
striping. For information on hardware disk-array striping, see the
documentation for your disk-array storage system.

To implement software data striping, you need to create a virtual disk
with this purpose in mind. Once you have created a striped virtual disk
and its file system, striping is transparent to your applications. You use
and manage the striped file system just like any other file system. The
only difference is that you cannot change the size of a striped virtual
disk; you cannot expand or shrink it.

Applications that perform a lot of random I/O (reads as well as writes)
and applications that perform a lot of sequential reads can benefit from
data striping. Also, striping is often used to balance disk load.

If your application does not appear suited to striping, do not attempt to
implement it, because striping can have a negative impact on
performance for inappropriate applications. Data striping may not help
applications that perform a lot of sequential writes. For example,
software striping does not improve I/O for applications that perform
intensive sequential writes, as is the case with database log writing.

Data striping involves placing consecutive file data elements in the file
system so that they alternate from one partition of the virtual disk to
the next. For example, in the case of a striped aggregation of partitions,
each partition must be the same size and each must reside on a
different physical disk. The system will place the first data element in
the first partition, the second data element in the second partition, and
the third data element in the third partition, and so on. The data
elements alternate this way so that consecutive data elements are
stored on alternating disks.

4-18

Virtual Disks

The performance advantage results not only because you have
distributed the I/O load across three disks, but also because you are
using the hardware’s read-ahead implementation to get the next
sectors on that disk and the operating system’s read-ahead
implementation to get the next data element, even before you have
explicitly requested it.

The partitions must all be the same size, and the size must be a
multiple of the stripe size (16 blocks by default). The stripe size must
be no smaller than the data element size, and it must be a multiple of
the data element size (16 blocks by default).

IMPORTANT Rotate the starting address of the first piece of each
virtual disk across multiple physical disks, using a number that is
a multiple of the stripe size. The root (/) and /usr file systems must
not be on striped virtual disks if you intend to boot images from
them.

For additional information about setting up software data striping, see
Managing Mass Storage Devices and DG/UX"® File Systems. For
information on hardware data striping, see your disk array
documentation.

Software Disk Mirroring

You can improve the reliability and availability of your Data General
system by using disk mirrors. A software disk mirror offers high
availability through redundant data images. A mirror comprises up to
four virtual disks that are identical images of each other — they all
contain the same data.

You can set up disk mirroring through the hardware (if you have a disk
array), through the software, or both. Software disk mirroring involves
maintaining redundant virtual disks where all are “mirror images” of
each other; they all contain the same data. The system manages access
to the disks in a manner that is transparent to users.

Disk mirrors provide higher data availability by allowing your system
to continue service to users even when disk errors occur. Disk mirrors
also protect data integrity by maintaining redundant images of the
same data.

Disk mirrors whose images lie on different physical disks offer
increased throughput (and thus improve overall system performance)
in environments where multiple concurrently running applications
perform intensive reads of the mirror. This benefit arises because the
system can use the images of the mirror as individual virtual disks
during concurrent read operations, using one image to satisfy one read
request while using another image to satisfy a different read request.
Thus, the mirror distributes the I/O load across multiple disk drives.

Virtual Disks 4-19

While a single running application will not exhibit increased
performance, the system overall will show an improved performance.
This benefit does not occur in environments where only one running
application reads the mirror at a time, nor does it occur in
environments where the images do not reside on different physical
disks.

Mirroring can slow performance of applications that are write
intensive, because when a user or application writes to a file on a
mirrored virtual disk, the system duplicates the write operation on
each mirror image.

For information on how to create software disk mirrors, see Managing
Mass Storage Devices and DG/UX® File Systems. For information on
hardware disk mirroring, see your disk-array documentation.

Memory File Systems

For applications that would benefit from very fast access to relatively
small databases, you can use memory file systems. A memory file
system is a portion of your computer’s physical memory that is
mounted. A memory file system behaves like a disk that has no
rotational, seek, or controller overhead. You can access it the same as
any file system. Also, memory file systems can speed access to files on
diskless workstations. However, memory file systems are volatile—if
the system loses power, the data in the memory file system is lost. For
this reason, you should be able to recreate these file systems. For more
information on how to create memory file systems, see Managing Mass
Storage Devices and DG/UX" File Systems.

Fast Recovery File Systems

To reduce the amount of time that the system requires to recover a file
system after a failure, mount the file system with fsck logging turned
on. With fsck logging, the system logs file system modifications to
reduce the amount of time that fsck requires to verify the integrity of
the file system. This feature is desirable for systems where rapid
recovery and high availability are crucial. However, running with fsck
logging turned on will incur a runtime performance penalty.

If you select fsck logging, the operation later prompts you for log size.
Specify the log size in 512-byte blocks (32 or 64 blocks is average).
There is a tradeoff in performance between log files of different sizes. A
large log file improves run time performance but prolongs recovery
time. A small log file degrades run time performance but reduces
recovery time.

4-20

Virtual Disks

Other Concerns

Other concerns about structuring virtual disks for efficiency are bad
blocks, write verification, and file synchronization.

Bad Blocks

The presence of bad blocks can mean that the bad blocks are getting
remapped, thus decreasing performance. You can check for bad blocks
by using the sysadm operation Device —> Disk —> Physical —>

Bad Blocks —> List.

When the DG/UX system detects a flaw on a disk, it flags the block (a
512-byte portion of disk space) as bad. If a write operation was
performed, DG/UX finds a good block to replace the bad block. The
operating system takes care of redirecting reads and writes intended
for the bad block so that they go to the replacement block instead. A
part of the disk called the bad block remap area contains good blocks
reserved specifically for this purpose: to replace blocks that go bad
elsewhere on the disk.

With the DG/UX system, you can choose not to install remapping on
disks that do it themselves, such as CLARiiON disk arrays. This
increases performance slightly because blocks do not need to be
checked before I/O to see if they are remapped.

Write Verification

In applications where data integrity is vital, you can benefit from write
verification. By turning write verification on for a physical disk (use
the dketl command with the wehk option), you can be sure that data
written to the disk is readable. You can enable write verification only
for SCSI disks that support the feature; see your disk hardware
documentation.

The disk hardware verifies every write operation by reading the
written data off of the disk and comparing it to the data as originally
received. However, the additional verification overhead in the hardware
can have a significant negative impact on the performance of
write-intensive applications.

File Synchronization

If you specify the fsync_on_close option to the mount command,
whenever a file in the mounted file system is closed, all modified data
and attributes of that file are written to disk. This option decreases the
likelihood of data loss in the event of a system crash, but may degrade
performance.

File System Tools 4-21

File System Tools

There are several tools available to help you tune file systems. What
follows is an overview of each. For more information, consult the online
manual pages.

Take care when tuning file systems, since file system performance may
be improved for one application, but degraded for another.

mkfs

This utility is used to create an empty file system on a virtual or
physical disk. The mkfs utility limits a file system to a maximum of 60
DARs by default (you can override this number), but if you grow the file
system, this may increase. There are several options you can use to
override the default file system settings such as the following:

e Inode density, which controls the number of inodes per DAR. The
default is one inode per 3500 bytes (the actual density will be
rounded down to an integral multiple of 64 inodes per DAR).

e Size, in blocks, of the DARs. The default DAR size is 1/60th of file
system size if the file system is greater than or equal to 241,920
blocks; the smallest DAR size is 4032 blocks.

e Data and index element size for files

e Data and index element size for directories

e First anniversary size; the default is (DAR_size + 32)/ 63

e Second anniversary size; the default is (DAR_size + 2)/ 4

tunefs

This utility allows you to alter the data and index element sizes and
anniversary sizes of any already existing file system. Running this
utility will not affect files that are already stored in the file system, but
the altered parameters will be applied to subsequent files. Note that
the file system must not be mounted.

dg_mknod

With this system call, you can create a file and specify the data and
index element sizes. You can control the data element size for a single
file with dg_mknod, whereas mkfs and tunefs affect a complete file
system.

dumpfs

This utility displays information about a file system. It shows you the
settings of various file parameters, as well as a map of how blocks are
allocated on a file system.

4-22

Disk Arrays

cpd

This utility displays the current allocation and the maximum allocation
of blocks and file nodes for each control point directory named on the
command line. You can also set the allocation limits for a control point
directory. Since the root of every file system is a control point directory,
you can use this command to change the maximum number of file
nodes and blocks that a user can allocate.

Disk Arrays

In the context of disk subsystems, a disk array is a collection of one or
more groups of disk modules and one or more SCSI or fibre channel
busses that participate in a RAID redundancy scheme. Each group in
an array appears to the operating system as a single physical disk. To
improve performance on systems with disk arrays, the following may be
helpful:

e Partition write-intensive portions of applications onto hardware
disk mirrors (not software disk mirrors), if writes to the disk are
primarily sequential. For example, for typical database
applications, you would want to have a mirrored pair for the system
disk, work directories, and the database journal file, and one or
more RAID5 groups for the read-intensive database files. A RAID5
group should not contain a swap area; that should be included in
the system disk mirrored pair. For information on hardware disk
mirroring, see your disk array documentation.

e If the disk array experiences much random usage such as usually
occurs in multi-user environments, use a hardware stripe (RAID
1/0). The hardware stripe size should be larger than the data
element size. Partitions should be a multiple of this size and should
start on a stripe boundary. For information on hardware data
striping, see your disk array documentation.

e Generally, if your hardware is striped or mirrored, striping or
mirroring the software is redundant. However, software striping
can be combined with hardware mirroring or RAID5. Such a
combination allows better I/O balance among the various disks and
can improve performance. A software striped RAID5 configuration
has been described as a “plaid” configuration. This type of
configuration requires very careful planning and alignment.

Disk Arrays

4-23

Tables 4—1 and 4-2 show the advantages and disadvantages of
different RAID levels:

Table 4-1 RAID Level Performance Advantages

RAID 1/0 RAID 0 RAID 1 RAID 3 RAID 5

Maintains high ~ Maintains high Maintains high Maintains high Maintains high

I/0 throughput in I/O throughput I/O throughput data throughput I/O throughput in

write-intensive in in in large file read-intensive

applications write-intensive write-intensive transfer applications
applications applications applications

No write penalty No write No write Parity See

from storing penalty from penalty from information can disadvantages

parity storing parity storing parity be stored with a

Most efficient for
combined
read/write
operations

Suited for “fault
tolerant”
environments
where cost is less
of an issue

High-availability
striping without
calculating parity

Most efficient
for combined
read/write
operations

Suited for “fault
tolerant”
environments
where cost is
less of an issue

Can mirror root
and swap
virtual disks

single write
operation

Most efficient
for transferring

large contiguous
files

Suited for data
transfer
applications
such as imaging
and graphics

Cost-effective
data
redundancy for
high-
availability
solution

Most efficient for
random reads of
many small files

Suited for
transaction-
oriented
applications

Cost-effective
data redundancy
for high-
availability
solution

4-24 Disk 1/O Statistics

Table 4-2 RAID Level Performance Disadvantages

RAID 1/0 RAID 0 RAID 1 RAID 3 RAID 5
100% Failure & 100% overhead All drives are Write penalty when
overhead for reliability not for data locked together, storing data; 4
data addressed redundancy eliminating operations instead
redundancy benefits of of 1

multiple

actuators
Most Not capable of Most expensive Performs poorly Minimum
expensive automatic redundancy with high performance
redundancy rebuild of data solution numbers of small benefit with
solution if one disk lost random reads single-threaded I/O

operations

Requires a Loss of one Requires a higher Dedicated parity
higher disk means number of drives disk can become
number of loss of to achieve a bottleneck
drives to everythingina redundancy
achieve stripe
redundancy

Disk I/O Statistics

Descriptions of disk I/O statistics are given below. Note that the
application that you use or the command that you type is shown to the
left of the colon; the field of interest to you is on the right of the colon
and should not be typed in:

Busy UX/RPM: %busy
nsar —d: %busy
sar —d: %busy

The percentage of time the specified disk subsystem has spent
handling requests over the interval between samples.

Directory UX/RPM: Directory Block Reads
blocks nsar —a: dirblk/s
sar —a: dirblk/s

Number of reads of directory blocks.

Disk 1/O Statistics 4-25

File System
Cache misses

File table
size

Inode table
size

Metadata

UX/RPM: Iget Calls
nsar —a: iget/s
sar —a: iget/s

Number of times there was a file system name cache miss. It does
not indicate the number of times the file system media was
accessed. If this number seems high (perhaps over 100 per second),
the file system may contain large directories—it possible, avoid
searching large directories and put them at the end of your search
path. Also, a search path variable (path or PATH), which lists the
directories that the system should search when looking for a
command, may be too long or not efficient.

UX/RPM: File Table Size
nsar —v: file—sz
sar —v: file—sz

Number of distinct open file descriptors. It includes descriptors for
sockets, pipes, and local and NFS—mounted files.

UX/RPM: Inode Table Size

nsar —v: inod-sz

sar —v: inod—sz
The size of an internal local file system hash table. This value has
very little application-level interpretation.

Logical reads UX/RPM: Log. Block Reads

Number of blocks of metadata transferred by logical reads. This
includes blocks that are cached and blocks that require physical
reads from the disk. Metadata includes inodes and directory
blocks.

Logical writes UX/RPM: Log. Block Writes

Number of blocks of metadata transferred by logical writes. This
includes blocks that are cached or physically written to the disk.
Metadata includes inodes and directory blocks.

Physical reads UX/RPM: Phys. Block Reads

Number of blocks of metadata transferred by physical reads. These
are blocks that are read from disk.

4-26 Disk 1/O Statistics

Pathnames

Queue

Physical read requests UX/RPM: Phys. Read Requests
nsar —b: pread/s
sar —b: pread/s

Number of metadata read requests from the disk.

Physical writes UX/RPM: Phys. Block Writes

Number of blocks of metadata transferred by physical writes to the
disk.

Physical write requests UX/RPM: Phys. Write Requests
nsar —b: pwrit/s
sar —b: pwrit/s

Number of metadata write requests to the disk.

Read cache nsar —b: %rcache
sar —b: %rcache

The read cache hit ratio, i.e., the fraction of the number of logical
reads which were found in the buffer cache.

Write cache nsar —b: %wcache
sar —b: %wcache

The write cache hit ratio, i.e., the fraction of the number of logical
writes which were found in the buffer cache.

UX/RPM: Pathname Searches
nsar —a: namei/s
sar —a: namei/s

Number of times pathnames have been resolved.

UX/RPM: aver queue

nsar —d: avque

sar —d: avque
The average number of requests waiting to be serviced. This is the
ratio of change in response time to change in busy time.

For good system response, it is important for the disk subsystem to
be able to keep this value low.

Disk 1/O Statistics 4-27

Read system
calls

Reads

Reads and
Writes

Bytes transferred UX/RPM: Total Characters Read
nsar —c: rchar/s
sar —c: rchar/s

Number of bytes transferred by the read system call. This does
not include all input to user applications, only that done by
read(2) and readv(2).

This number can range from zero to a few million and includes
terminal I/O as well as disk I/O. See Write System Calls.

Number of reads UX/RPM: Read System Calls/Sec
nsar —c: sread/s
sar —c: sread/s

Number of read system calls. The ratio of the number of bytes
transferred by reads to this statistic indicates the average size of
read calls. A small number of bytes per read may indicate a
performance bottleneck because system call overhead contributes
most to the cost of read. If the circumstances permit an
application to read many bytes at once, it would probably perform
better.

Number of reads UX/RPM: blocks read
nsar —W Odrblock: rblks/s

The number of 512-byte blocks read from the specified disk.

Requests nsar —W Odrreq: reads/s

The number of separate read requests from the specified disk.

Blocks nsar —d: blks/s
sar —d: blks/s

The number of blocks read from and written to the specified
device. This is an indication of how much time the disk subsystem
is spending actually transferring data. Some disk subsystems read
much faster than they write. On such disks, you should consult the
individual read and write statistics listed below.

4-28 Disk 1/O Statistics

Response
time

Service time

Wait

Requests UX/RPM: # of requests
nsar —d: r+w/s
sar —d: r+w/s

The number of read and write requests to the specified device.
Because a single request may transfer a small or large amount of
data, the number of blocks transferred should also be consulted.
The number of requests is an indication of time the disk
subsystem may spend seeking.

UX/RPM: aver resp

The average time (in milliseconds) a disk request spends being
processed. This is the sum of wait time and service time on the
specified disk subsystem.

Computed by dividing the change in response time by the number
of requests in the interval.

UX/RPM: aver serv
nsar —d: avserv
sar —d: avserv

The average time (in milliseconds) a disk request spends being
processed by a disk unit. This does not include time spent in the
device driver or in the disk queue. This is a measure of the actual
disk speed, which varies with seek distance, amount of data
transferred, and characteristics of the specified disk subsystem.

Computed by dividing the change in busy time by the number of
requests in the interval.

nsar —d avwait
sar —d: avwait

The average time (in milliseconds) a disk request spends waiting
to be serviced. This is a measure of contention for the specified
disk subsystem. If there is a sudden burst of I/O on a disk’s file
systems, the wait time on that disk may become very large for a
short time. To verify this, check the disk’s average queue—it will
be larger than normal.

Computed from the change in response time minus the change in
busy time (which represents only requests that are waiting, not
those being serviced) divided by the number of requests in the
interval.

Disk I/O Statistics 4-29

Write system Bytes transferred UX/RPM: Total Characters

calls

Writes

Written
nsar —c: wchar/s
sar —c: wchar/s

Number of bytes transferred by the write system call. This does
not include all output from user applications, only that done by
write(2).

This number can range from zero to a few million (includes
terminal I/O as well as disk I/O), but is usually less than the rate
of bytes transferred by read system calls under a normal system
load. Compare the two values to get an idea of the percentage of
reads versus writes for an application. For example, you might
have an application that issues ten read calls and five write calls;
however, each application read call may physically read from disk
twice—the ratio would be four reads for every write. If you change
the application, check these values to monitor the effects of your
changes.

Number of writes UX/RPM: Write System Calls/Sec
nsar —c: swrit/s
sar —c: swrit/s

The ratio of the number of bytes transferred by writes to this
statistic indicates the average size of write calls. A small number
of bytes per write may indicate a performance bottleneck because
system call overhead contributes most to the cost of write. If the
circumstances permit an application to write many bytes at once,
it would probably perform better.

Number of writes UX/RPM: blocks written
nsar —W Odwblock: wblks/s

The number of 512-byte blocks written to the specified disk.

Requests UX/RPM: Write Requests
nsar —W Odwreq: writes/s

The number of separate write requests to the specified disk.

4-30 File System Configuration Variables

File System Configuration Variables

The file system configuration variables are also listed in
/usr/etc/master.d/dgux. These variables set the file system
parameters shown in the list below. To find out which of these variables
are tunable with the admkernelparam command while the system is
running, enter admkernelparam -o list at the command line.

ACCTON, ACCTOFF
If the free space in the file system in which the accounting file
resides becomes less than the percentage specified by
ACCTOFTF, no further accounting records will be written. When
the free space reaches the percent specified by ACCTON, the
writing of accounting records will resume. ACCTOFF should
always be smaller than ACCTON. The default for ACCTON is
5. The default for ACCTOFF is 2.

MAXBUFAGE
Specifies the maximum amount of time, in seconds, that
modified system data will remain in the buffer caches before
being written to stable storage. The default is 60. Setting the
value higher lets data remain in the cache for longer periods
without being cleaned, which can result in higher performance.
However, because it is not flushed as often, the data may not
make it to disk if there is a crash of the system.

MAXSYSBUFAGE
Specifies the maximum amount of time, in seconds, that
modified system data will remain in system buffer caches
before being written to stable storage. If this parameter is 0,
the default, the system uses the same maximum age value for
system buffers that it uses for user buffers (as set in
MAXBUFAGE). If you set MAXSYSBUFAGE to a value greater
than MAXBUFAGE, the system ignores it and uses
MAXBUFAGE for all buffers.

MAX SYSBUF_HASH_BUCKETS
Specifies the maximum number of hash buckets to use in each
table that hashes system buffers. The default value is used
then this parameter is set to 0 (zero). The kernel may choose a
bucket count smaller than a non-zero value specified here, but
never chooses a larger value. The default is 0.

File System Configuration Variables 4-31

HASH_SYSBUFS_PER_FS
Specifies a Boolean value that, when clear (equal to 0), causes
all system buffers (see PERCENTSYSBUF) to be hashed by a
single per-system table. When set (equal to 1), it causes system
buffers to be hashed by per-file system tables. The default is 1.

PERCENTBUF
Specifies the maximum percentage of physical memory that can
be occupied by data files. The default is 100, meaning data files
can use as much physical memory as their usage pattern
dictates. There should be no need to configure this variable
unless heavy data file usage is hampering system performance
by provoking an undesirable amount of other paging. For
example, this condition might occur on an NFS server whose
physical memory resources are small relative to the amount of
file data accessed over a period of several minutes. With large
memory configurations, setting PERCENTBUF too low will
cause additional file page cleaner overhead.

PERCENTSYSBUF
Specifies the percentage of physical memory (after
initialization) that is reserved for system buffers. System
buffers hold directory, inode, file index, and bitmap data. The
default, 0, causes the system to select a reasonable value for
the system.

MAXFILEUNITSIZE
Specifies the number of bytes of physical memory to use to hold
the corresponding data element size of a file on disk. If the data
element size of a file is larger, the data is paged in or out in
MAXFILEUNITSIZE increments. Valid values are decimal
numbers up to 1 (one) megabyte and should be a power of two.
The default is 65536.

HOGFILESIZE
Specifies the maximum number of bytes of physical memory
that can be used by a given data file before that file will be
treated unfavorably for physical memory resource allocation.
The default is 262144. When the system is forced to page data
out to meet requests for memory, data files having more than
HOGFILESIZE bytes buffered will be aggressively chosen to be
paged out, and will be restrained in their ability to consume
free memory.

4-32

File System Configuration Variables

NFSDEMONSCPUMASK
Specifies the set of CPUs on which the NFS daemons may run.
You can use this to keep NFS daemons from running on certain
CPUs in the system. For example, on a multiple CPU system,
disk I/O interrupts may be serviced by CPUO. To avoid running
the NF'S daemons on CPUO, set the mask to 65534 (decimal).
This parameter has no effect if the system is not a
multiprocessor system, or if the mask does not specify any
processors to run on. Note that this parameter can improve
performance only on heavily loaded systems that are dedicated
NFS servers; otherwise, you should not attempt to use this
mask.

CDLIMIT
Specifies the maximum size in bytes that a nonsuperuser file
may attain. The default is the constant INT32_MAX, which is
equal to 2,147,483,647.

NFSLOCKUSERLIMIT
Specifies the maximum number of remote processes that can
hold record locks concurrently. The default is 512.

USERLOCKLIMIT
Specifies the maximum user locks that a process can hold. The
default is 2048.

FREERNODE
Specifies the maximum ratio of in-use rnodes (remote-mounted
inodes) to free rnodes in the system. To improve performance on
systems where you open a large number of remote files
repeatedly, set this parameter to a higher value. The default
is 4.

NCLIENTOPS
Specifies the maximum number of handles of a given RPC type
available on the system. The default is 6.

CHOWN_REST
A Boolean variable indicating whether or not the POSIX
feature _POSIX_CHOWN_RESTRICTED is present for the
system. The default is 0 (FALSE). Use 1 for TRUE. If the
feature is present, then additional POSIX-style restrictions are
placed on the chown(2) system call.

File System Configuration Variables 4-33

SRVNOTNEEDED
A Boolean variable indicating whether or not the DG/UX file
system should hold on to buffers read from NFS clients. The
default is 0 (FALSE). If this value is 1 (TRUE), then the server
will mark buffers read by NFS clients as not needed anymore,
which makes them more likely to be reused than other pages in
the cache.

FULL_IS09660
A Boolean variable indicating whether or not Full ISO 9660
filenames will be used for files on High Sierra compact discs.
Unless this behavior is turned on, the High Sierra file manager
will map upper case characters in filenames to lower case, and
map “;” characters in filenames to “-” characters. The default is
0 (FALSE). Use 1 for TRUE. The default mapping is

advantageous in a DG/UX environment.

MAX BUF_BLOCKS_TO_FREE_PER_LOCALE
The maximum number of blocks released every time the bm
daemon runs, if the number of buffers released on a given
ccNUMA locale exceeds the amount determined by
MAX_PERCENT_BUF_RELEASE_TRIGGER. The default
value is 16.

MAX PERCENT BUF_RELEASE_TRIGGER
The maximum percentage of released buffers (clean and
unreferenced but still allocated) allowed before the bm daemon
deallocates MAX_BUF_BLOCKS_TO_FREE_PER_LOCALE
blocks per iteration.

A value of 100 means that the number of released buffers can
be as large as the total number of buffers allocated to bm. On a
non-ccNUMA system, a value of 0 sets the bm daemon to
deallocate up to MAX_PERCENT_BUF_RELEASE_TRIGGER
blocks per iteration. On a ccNUMA system, a value of 0 directs
the kernel to determine a reasonable setting automatically to
load-balance the system. The default value is 0 (zero).

4-34 VDM Configuration Variables

VDM Configuration Variables

Four kernel configuration variables in the DG/UX system file control
various Virtual Disk Management (VDM) operations:

AFFINE_IO_TO_THREAD
FAVORLOCALINACTIVEPATHS
IOSTATS

ZERODISKBLOCKS

These variables are dynamically controllable, so you can change their
settings while the system is running. Of these four variables, two affect
performance, as described here.

AFFINE_IO_TO_THREAD

The AFFINE_IO_TO_THREAD variable controls the locale in
which an I/0 request is executed on ccNUMA (Cache-Coherent
Non-Uniform Memory Access) systems. The term locale is a
software abstraction used to describe a portion of a ccNUMA
system. Locales generally map to a set of processors, memory,
and I/O devices.

The default for the configuration variable is 0, which means
that I/O requests are not affined to the locale in which the
issuing thread is running. Instead, the VDM dynamically
determines the resident locale for the I/O memory buffers and
executes the I/O using a disk controller in that locale. This
feature eliminates cross-locale memory accesses during
execution of I/O requests and provides the best general system
performance. Tests with raw I/O, which does not use operating
system buffers, show performance improvements when
AFFINE_IO_TO_THREAD is set to 1.

If the variable is set to 1, the VDM will execute I/O requests in
the locale in which the issuing thread is running, regardless of
the locale in which the memory buffers for the I/O reside. This
can cause cross—locale memory accesses that may slow down
system performance. However, this setting may provide better
performance for some types of applications.

This variable affects synchronous and asynchronous I/0 issued
to raw virtual disks only (/dev/rdsk/* entries). It does not affect
DG/UX file systems, virtual memory swapping, or buffered
virtual disk access (/dev/dsk/* entries). It is designed to be
used with specialized applications.

VDM Configuration Variables 4-35

FAVORLOCALINACTIVEPATHS
The FAVORLOCALINACTIVEPATHS variable controls the
behavior of disk multi-path I/O relationships when all active
paths in a ccNUMA locale fail.

If all active paths fail when the variable is set to 1, the system
attempts to use an inactive path within the same locale,
trespassing on it if necessary. If the variable is set to 0, the
system tries to use an active path in another locale. If these
attempts fail, the system tries active or inactive paths in any
locale. The default setting is 1.

IOSTATS
The IOSTATS variable affects gathering of disk performance
statistics. This variable controls whether the VDM will gather
I/O performance statistics on virtual disk I/O.

These statistics are reported for each virtual disk by the
dskiocusage command; they include the number of read and
write requests, the number of blocks read and written, and the
device busy and response times. These statistics are reported by
the nsar(1) performance tool, among others.

The default for this configuration variable is 1, which means
that I/O statistics should be gathered. If the variable is set to O,
no I/O statistics will be gathered by the VDM. Disabling I/0
statistics-gathering may result in a small performance
improvement, but it invalidates some of the reporting done by
the nsar(1) tool and other, similar tools.

The VDM shares the configuration variable with the disk
device drivers. Its setting affects both the VDM and the disk
drivers simultaneously.

ZERODISKBLOCKS
The ZERODISKBLOCKS variable enables zeroing of file
system blocks as they are allocated to files, zeroing of free space
on physical disks when they are initialized (soft-formatted),
zeroing of virtual disks when they are deleted, and zeroing of
virtual disks when they are shrunk.

Zeroing the disk blocks ensures that no other process or user
can read the data that was on those locations on the medium. A
value of 1 enables zeroing; 0 (zero) disables zeroing. The default
setting is 0.

4-36 ccNUMA Virtual Disk Management

For more information on these dynamic kernel configuration variables,
as well as how to change their settings, refer to the following man
pages: admkernelparam (1M), dg_sysctl(2), vdm(7), and
vdmphys(7).

ccNUMA Virtual Disk Management

You have additional virtual disk management considerations if you are
running the DG/UX system with ccNUMA. For detailed information
about virtual disk management on ccNUMA systems, see Chapter 7.

End of Chapter

5

Terminal I/0

This chapter discusses terminal I/O (including statistics) and
pseudo-terminals.

Just as the disk or any other device can become a system bottleneck,
the asynchronous I/O controllers can slow terminal performance.
Although the I/O rates of the controller will vary according to line
discipline settings, the controller should be able to output several
thousand characters per second. Check rate of output characters
(outch/s using nsar -y or Output Characters/Sec using UX/RPM).

Input rates are much slower. Look at the number of characters read
from terminal devices and processed in canonical mode vs. raw mode.

If you notice higher than normal characters/second rates after
installing a new modem or multiplexor, check that it is not caught in an
infinite loop. Also check that the setup is correct in /etc/ttydefs. For
more information, refer to the online manual pages for ttydefs.

The most effective way to prepare a new device description is by
imitating the description of a similar device in terminfo and building
up the new description gradually, testing whether vi works with the
compiled description. Begin by creating a terminfo source terminal file;
you can obtain the source description for a given device by using the —I
option of infocmp. You may copy and edit this description to accurately
describe the device that you wish to enter into the terminfo database.
Next, use the tic command to recompile the terminfo source terminal
file. By default, the resulting binary files are placed under the directory
lusr/share/lib/terminfo. However, if the environment variable
TERMINFO is set, the compiled results are placed under the directory
specified by the value of that variable.

For maximum terminal performance, make sure that your terminals
and TERM environment variables are set to the most powerful
emulations. For example, if you have a terminal that provides DEC
VT52, VT100, and VT320 emulations, take advantage of the VT320
emulation. In this case, ensure that the TERM environment variable is
set to “vt320” instead of the default “vt100.”

Another problem that causes poor terminal performance is issuing a
high amount of stty setting commands. Applications should use library
calls (as few as possible) to change terminal settings.

Also, avoid changing back and forth between canonical and raw input
modes as much as possible.

5

2

Terminal Lines

Terminal Lines

You should not add a ttymon port service on a line that is not connected
to a terminal. Lines connected to devices such as printers, the
asynchronous port on an uninterruptible power supply unit, or ports
used for mterm(1) connections may produce noise on the line.
Unterminated lines also chatter back to the system. Noise on the line
can cause the port monitor to consume inordinate amounts of CPU
time.

Terminal Port Interrupts

During normal operation, you should monitor the size of /etc/wtmp
because this is the file from which the connect accounting is generated.
If the file grows rapidly, execute acetconl (see the manual page) to see
which tty line is the noisiest. Use a command line similar to this:

acctconl -1 outfile < /etc/wtmp

The output file outfile helps track line usage, identify bad lines, and
find software and hardware oddities. Termination of login(1) and
termination of the login shell generate logoff records, so the number of
logoffs is often three to four times the number of sessions.

Generally, interrupts occur when a port service is first enabled and the
system goes to multi-user mode. If the number of logoffs exceeds the
number of sessions by a large factor, it usually indicates a faulty or
failing multiplexer, modem, or cable connection. An unconnected cable
dangling from the multiplexer can cause this as well. If interruption is
occurring at a rapid rate, it can affect general system performance.

Editread

The editread command line history and editing facility of the Bourne
shell (sh) and C shell (esh) can affect general system performance.
When the Bourne or C shell prompts you to enter a command,
editread changes the terminal settings to process characters in raw
mode. After you finish entering the command line, editread changes
the terminal settings back to canonical input mode before the shell
runs the command. If many people actively use editread, the frequent
changing of input modes can put additional load on the system.
Conversely, high system load can cause poor editread performance.

Terminal I/O Statistics 5-3

To see if editread is contributing to a high system load, have the
system users turn off editread and then you can monitor system
performance without it. To turn off editread for an individual shell
session, type this command:

% enable=OFF"R .
The “*R” represents editread’s reconfig command.

To turn off editread for several shell sessions, put the following
commands in the indicated files:

EDITREAD="enable=0FF” export EDITREAD # /etc/profile

setenv EDITREAD ”“enable=0OFF” # /etc/login.csh

To turn off editread for the long term, delete the .editreadrc files in
users’ home directories.

The Korn shell (ksh), which provides emacs and vi interfaces,
performs better than the Bourne shell with the editread interface. In
particular, vi command line editing uses raw input mode only when
you specifically activate it by typing the control mode key (the Escape
key). For this reason, the Korn shell vi editing facility has a lower
impact on system performance than editread.

If your users prefer the C shell interface and you decide that editread
is causing a decline in system performance, system users can still
access the history and command line substitution features of csh.
While the line-oriented interface to these features may not be as
convenient as editread’s interface, using esh’s features has a
negligible impact on system performance. Consult the ksh(1) and
csh(1) manual pages for more information on these alternative history
and line editing mechanisms.

Terminal I/O Statistics

Descriptions of terminal I/O statistics are given below. Note that the
application that you use or the command that you type is shown to the
left of the colon; the field of interest to you is on the right of the colon
and should not be typed in:

Characters Canonical mode UX/RPM: TTY Canonical Input
Chars
nsar —y: canch/s
sar —y: canch/s

Number of characters read from terminal devices and processed in
canonical mode. If this number is over a few hundred, investigate
modem or multiplexor setups. See Raw mode.

5-4

Pseudo—Device Unit Count Variables

Modem
interrupts

Interrupts

Output UX/RPM: TTY Output Characters
nsar —y: outch/s
sar —y: outch/s

Number of characters output to terminal devices.

Raw mode UX/RPM: TTY Raw Input
Characters
nsar —y: rawch/s
sar —y: rawch/s

Number of characters read in raw mode from terminal devices. Note
that SYAC devices do not distinguish raw input characters from
canonical input characters. See Canonical mode.

UX/RPM: Modem Interrupts
nsar —y: mdmin/s
sar —y: mdmin/s

Number of modem interrupts.

Received UX/RPM: Receive Interrupts
nsar -y rcvin/s
sar —y: revin/s

Number of receive interrupts from terminal devices.

Transmitted UX/RPM: Transmit Interrupts
nsar —y: xmtin/s
sar —y: xmtin/s

Number of transmit interrupts to terminal devices.

Pseudo—-Device Unit Count Variables

The PTYCOUNT configuration variable controls the number of
pseudo-terminals that get created at system initialization time; the
default is 64. Each pseudo-terminal causes device entries to appear in
the /dev directory upon system booting. Pseudo-terminals are used for
telnet, rlogin, and PTCs.

Pseudo-Device Unit Count Variables 5-5

The PTYCOUNT configuration variable can affect the performance of
database management software (DBMS) and other applications:

e If the application must search through the /dev directory for tty or
other device entries, having many pseudo-terminals may increase
the search time. Directories are searched linearly, so the search
time increases linearly with the number of pseudo-terminals. This
is the most likely cause of negative performance impact. [|

e Creating more pseudo-terminals causes a modest amount of
additional kernel memory to be allocated. Allocating additional
kernel memory for pseudo-terminals may decrease the memory I
available for other applications and negatively impact performance.

With the default value of 64, the DG/UX system supports up to 64
pseudo-terminals, namely

0-9a—1
0-9a—1
0-9a—11
0-9a—1

However, you can give PTYCOUNT a value of up to 3500. An increased I

ttyp
ttyq
ttyr
ttys

_ o — —

PTYCOUNT value will increase the number of tty and pts entries in
/dev.

There are more than 16 /dev/ttyp* entries in /dev. This is because
there are three distinct name spaces: BCS, DG/UX, and SVR4. BCS
names are created in /dev and have the form tty[p-za-n][0-9a—f1;
DG/UX names are created in /dev and have the form ttypXXX where
XXX is an integer; SVR4 names are created in /dev/pts and have the
form XXX where XXX is an integer.

There is some overlap in the DG/UX and BCS name space
(ttypO—ttyp9).

When PTYCOUNT is 64:

e 64 BCS name space pseudo-terminals are created, as described
above.

¢ 64 DG/UX name space pseudo-terminals are created.

e 64 SVR4 name space pseudo-terminals are created.

End of Chapter

6

Networking

Connecting computers and peripherals together with a network is a
useful strategy for a large number of user communities. The network
enables sharing and better utilization of the available resources and
may allow data coherency to be more easily maintained.

The advantages of networking must be weighed against the potential
disadvantages. I/O across the network will generally take longer than
the same operation performed on the local host. The extra delay may be
so small as to be imperceptible, or so large as to be intolerable. This
chapter attempts to provide you with enough information so that the
latter situation is avoided or at least minimized. It also suggests uses of
the network that will minimize the load on the local and remote
computer systems.

Networks, like most systems, have greater delays as utilization
increases. Optimizing network performance can be difficult for a
number of reasons such as:

e Connections are made over different media that have different
characteristics such as Ethernet, Token Ring, and FDDI.

e You may need special equipment, such as a Network Analyzer, for
measuring utilization.

e Network traffic passes from the local host, through intermediate
hosts and equipment, to the remote host and then passes back.

e Different vendors’ hardware and software may perform in different
ways.

It is therefore critical that you take an analytical approach and utilize
the tools available to you as fully as possible.

After reading this chapter, you should know the most important and
common factors affecting network performance. You will also learn how
to perform basic network traffic analysis and how to take steps toward
improving performance.

6-2 Networking Terms

This chapter covers the following topics:

e Network analysis

e Network environment

e Local system environment
o TCP/IP utilities

e NFS

¢ STREAMS

Networking Terms

Here are some of the basic terms that are used in this chapter.

A network enables two or more computer systems to communicate. A
network includes the hardware and software that make up the
interconnections between computer systems and between a computer
and its peripheral devices. Network communication between computers
takes place over media such as coaxial cable, twisted-pair phone lines,
or microwave.

A host is a computer system to which a graphics screen or a number of
terminals or other smaller computers are connected, and which
provides computation access to files and other services. A local host is
one to which you are directly connected. A remote host is one you access
through a network.

A local area network (LAN) is a network within a small area, such as
within a building. A wide area network (WAN) is a network of hosts
that are far apart. A WAN usually requires connections through public
communication facilities (such as the phone company). The Internet
network is a collection of local networks and gateways that use TCP/IP
to function as a wide area network.

Nearly every network system has its layers set up hierarchically. The
number of layers and each layer’s function vary from network to
network. In all networks, each layer provides services to higher layers,
without the higher layers knowing the details of how the services are
provided. An interface consists of the types and forms of messages that
each layer uses to communicate with the layer above or below it. A
protocol specifies how programs on different computers but at the same
layer communicate. The set of layers, interfaces, and protocols that
govern communication is called the network’s architecture.

Introduction to Network Analysis 6-3

Introduction to Network Analysis

When you analyze your network, you're not just analyzing a single
system. You have a local host, a remote host, and possibly one or more
routers or bridges. To find the source of the problem or bottleneck, the
best way is through the process of elimination.

If operations that do not use the network take place at a normal rate,
but network operations seem slow, suspect a network problem. For
instance, if it takes minutes to save a file over the network or you
repeatedly receive messages such as “NF'S server not responding,” that
is a sign that there are some problems.

First, a remote system that you are trying to reach through the
network must be “up.” For DG/UX systems, this means that the system
is connected to the network and is at run level 3 or higher. To check on
a system, use the command ping remote_machine, which should
display “remote_machine is alive”. If instead you get the message “no
answer from remote_machine,” and you have reason to believe that the
remote system and all intermediate systems are up, and that some of
the systems are heavily loaded or the connections are over long
distances (such as across the country), you may want to try ping with a
larger timeout argument. For example, ping remote_machine 120
would allow 120 seconds for the system to receive a response.

If you get a messages other than “remote_machine is alive” you should
probably operate on the assumption that the problem is not one of
performance; consult the troubleshooting section of Managing TCP/IP
on the DG/UX® System.

Once you know that your system and a remote system can, in fact,
communicate, continue by using some analysis tools.

Alternatively, you can use the command
traceroute -w 5 —-m 24 remote_machine

to determine if a host or an intermediate host is having problems. This
command’s output shows the path that a packet takes to reach a
remote host.

Analysis Tools

The best way to minimize network problems is to analyze your
computing tasks and properly plan the network layout and equipment
that you need. You can contact your Data General Sales representative
for information on the network planning and installation services
offered by Data General, which may help you avoid problems.

6-4

Introduction to Network Analysis

This section describes tools you can use to analyze your network:
tepdump, a network analyzer, traceroute, nfc, netstat, ttcp, and
SNMP. The nfsstat command, which analyzes NFS usage, is described
in the section “NFS” later in this chapter.

tecpdump

The tepdump command provides a user interface to the Berkeley
Packet Filter (BPF), a kernel interface that allows raw data to be read
from the network. You should use this command to begin the analysis
of your network if you do not have another network analyzer.

IMPORTANT BPF is available by default on the DG/UX system. If
the entry /dev/bpf0 does not exist, see the bpf(4) man page.

This tcpdump command allows any machine on the network to
function as an Ethernet, FDDI, or Token Ring Analyzer. You can choose
to decode a subset of packets or store them for later decoding. Note that
you must have appropriate privilege to use this command.

By default, all packets are dumped. You can choose for tcpdump to
filter packets by giving the command a filter expression. The filter
expression (a Boolean expression) can consist of a protocol name (such
as ip, tcp, or telnet), a command (such as host machl), or an arbitrary
comparison of the contents of each packet.

When tepdump terminates, the number of packets dropped by the
kernel is printed. The following is a list of possible solutions that may
prevent dropped packets and possibly improve system performance:

e If you are only interested in packets sent to or from the local host,
use tcpdump’s —p option to prevent the interface from being put
into “promiscuous” mode (promiscuous mode makes tcpdump see
all packets). This will improve system performance as well as
reduce or eliminate the number of dropped packets.

e Use tcpdump’s -w option to write packets to a capture file. You
can then use the —r option to decode and print the packets from the
capture file later. Decoding and printing packets can be time
consuming and cause other packets to be dropped.

e Use the filter expression to filter out as many packets as possible.
For example, the expression *tcp’ will filter out more packets than
’ip’ because TCP packets are a subset of IP packets.

e Increase the priority of tcpdump (see Chapter 2).

In this example, tcpdump writes the information about two NFS
packets sent to or from the local host to the file /tmp/dumpfile.

Introduction to Network Analysis

6-5

tepdump -c 2 -p -w /tmp/dumpfile ’‘nfs’ J
tcpdump: listening on dgenO

42 packets received by filter

0 packets dropped by kernel

Next, the information is decoded and printed:

tepdump -r /tmp/dumpfile .
22:25:16.37

ip: saturn-s>bojangles

udp: 1011->nfs

nfs: e310d: 112 getattr fh
383a303a.31623a66.663a303a.3738000a
22:25:16.38

ip: bojangles->saturn

udp: nfs->1011

nfs: e310d: reply ok 96

For more information, see the tcpdump(1M) man page.

Network Analyzer

A Network Analyzer, sometimes called a LANalyzer, is a specialized
piece of equipment that can monitor, capture, and generate network
traffic. Depending on the network media, you will require a specific
network analyzer (for example, FDDI) or a specific network analyzer

board (for example, Ethernet and Token Ring). They can aid in
characterizing network performance in ways that general purpose
computers cannot. Though not inexpensive, you may want to
investigate leasing or buying a Network Analyzer if your network is
large enough or down time and poor performance would be serious
problems.

If you suspect that the network is shorted or open, a network analyzer
may be used to verify that condition. A network analyzer sends signals
down the network and waits for them to bounce back (a technique
known as Time Delay Reflectometry); by measuring the interval
between the initial signal and its reflection, the analyzer can tell you
approximately how far away the problem is.

Introduction to Network Analysis

Network analyzers are also capable of determining the percentage of
the media’s theoretical maximum bandwidth being utilized.
Determining network utilization is an important part of optimizing
network performance. Checking for fragmented packets, misaligned
packets, monitoring communication between host pairs, and
interpreting the network protocol information are among the other
useful features that network analyzers provide.

If you have a service contract, are able to capture an instance of the
problem with the network analyzer, and need assistance in interpreting
the data or correcting the problem, send your support center the output
on a diskette (make sure the support center has hardware that can
read your diskette) and also send the output on hardcopy.

traceroute

Use traceroute to display the route that packets take to reach a
network host. The traceroute command launches probe packets and
then listens for replies from a gateway; it continues until it either
reaches the host or reaches the maximum number of hops (either
specified or the default (30)). When viewing this command’s output, you
should consider these questions:

o Is the path optimal? The number of routers that the packet must
take should be minimized.

e Are there alternative routes that may be faster?

For more information about this command, see the traceroute(1M)
man page.

nfc

The network file converter (nfec) command converts files containing raw
network data from one format to another. The current file conversions
that are supported are:

e Converting from a tepdump capture file to a Network General
Sniffer save file.

o Converting from a Network General Sniffer file to a tepdump file.

This command makes it possible to capture network traffic at one site
using tepdump and to later analyze that information at another site
using the Network General Sniffer. See the nfe(1M) man page for more
information.

Introduction to Network Analysis 6-7

netstat

The netstat command provides network status information such as
per—interface statistics, per—protocol statistics, per—socket statistics,
and routing table entries. To monitor the traffic on interfaces, use
netstat followed by an interval argument (the number of seconds you
want netstat to pause before updating the display). This command
shows the number of incoming packets, outgoing packets, incoming
errors, outgoing errors, and collisions (meaningful on Ethernet only).

% netstat 10 J
input (dpenl) output input (Total) output
packets errs packets errs colls packets errs packets errs colls
7175938 0 6995810 0 26868 11753764 4 10033847 1 129987
64 0 24 0 0 67 0 26 0 0
3 0 3 0 0 13 0 4 0 0
66 0 64 0 0 88 0 77 0 1
53 0 50 0 2 55 0 50 0 2
6 0 6 0 0 15 0 7 0 0
13 0 13 0 0 26 0 15 0 0
10 0 11 0 0 14 0 13 0 0

This display shows two groups of columns: one for the first interface on
the interface list (dpenl here), and one for all interfaces. The first line
of information contains a summary of activity since the system was last
rebooted. Subsequent lines of output show values accumulated over the
preceding interval. When you do not want to see any more statistics,
press Ctrl-C.

Issue the netstat —s command to display statistics for the ip, icmp, tcp
and udp protocols. Reported parameters include input datagrams
dropped because of flow control, bad header checksums, packets with
incorrect lengths, fragments, retransmitted data packets, and window
probe packets.

6-8

Introduction to Network Analysis

o

udp:

% netstat

0
0
0

8152926 datagrams received
78198 datagrams received for non-existent port
7064176 transmit datagrams requested

74 input datagrams dropped because of flow control

-8 | more J

bad header checksums
incomplete headers
bad data length fields

If a system cannot store input datagrams because it cannot perform
the operation quickly enough or because it has run out of buffer space
in which to store the data, that information is displayed “xxx input
datagrams dropped because of flow control.” Make note of the number
xxx. The ratio of dropped packets to the total number of datagrams
received should be low (0.05%). A larger percentage than that indicates
overload.

You can also issue netstat with no options:

% netstat

Active connections

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tep 0 0 host-1588 xyz-telnet ESTABLISHED
tcp 0 0 host-1038 def-1059 ESTABLISHED
tcp 0 94 host-login ghi-1023 ESTABLISHED
tep 0 0 host-login mno-1023 ESTABLISHED

The report shows one line for every currently active connection using
the Internet protocol family. The important statistic is the number of
bytes in the send queue. This number should be 0 for most of the
connections that netstat lists. However, ftp transfers can cause large
numbers to appear in the send queue—this does not necessarily mean
that your network is congested. Conversely, NF'S endpoints always
report 0 bytes in the send queue. Issue the netstat command
repeatedly; if the send queue is consistently large for many of the
connections, the network is congested.

Issue the command netstat —i and look at the Ierrs and Oerrs columns.
Sample output follows:

Introduction to Network Analysis 6-9

o

% netstat
Name Mtu
hkenl 1500
hken0O 1500
loop0 4136

-id
Network Address Ipkts Ierrs Opkts Oerrs Collis
one-lan asystem-alt 7111958 0 6928265 0 26753
two-lan asystem 4519759 4 2999458 1 103033
loopback-net localhost 7910 0 7910 0 0

Input errors includes all errors that occurred as a result of receiving
packets from the network since the system was last rebooted. If an
input error occurs, the network interface just discards the packet and
trusts the sender to replace it. A large number of input errors usually
means that there is faulty hardware on the network. Faulty hardware
can mean anything from another computer system that is generating
packets improperly to a bad connector or terminator.

A large number of output errors means that your system’s network
interface is faulty. The problem may be in your system’s network
controller, the LAN drop, or virtually anything between your CPU and
the main LAN cable. Output errors are not caused by other systems. If
you see output errors, the problem is local.

In normal operation, the acceptable number of input or output errors is
extremely low: 0.025% of the total number of input or output packets.
You can expect to see higher numbers if you are plugging or unplugging
cables, or if a power failure or some other situation causes all of your
systems to boot simultaneously. In these situations, a large number of
output errors is normal.

SNMP

SNMP (Simple Network Management Protocol) can be used in place of
netstat to collect information from various hosts on the network. You
can use the following commands to query an SNMP agent for statistics:

e snmpgetone

e snmpgetnext
e snmpgetmany
¢ snmpgettab

It is possible to collect statistics from any host from a central location.

You can use the snmpgettab command to get the interface table from
a host, as shown in this abbreviated example (usually, there are
multiple index numbers—this only shows index 1):

6-10

Introd

uction to Network Analysis

o
3

snmpgettab hostname public ifTable .

ifIndex.1 =1
ifDescr.1 = loopO
ifType.1 = 24
ifMtu.1l = 4136
ifSpeed.1 = 0

ifPhysAddress.1
ifAdminStatus.1
ifOperStatus.1
ifLastChange.1l
ifInOctets.1

ifInUcastPkts.1
1fInNUcastPkts.

ifInDiscards.1l

ifInErrors.1
1fInUnknownProt

ifOutOctets.1

ifOutUcastPkts.
ifOutNUcastPkts

ifOutDiscards.1

ifOutErrors.1

ifoutQLen.1 0

ifSpecific.1

1
1
0
351960231

772424

1 0

0
0

os.1l 0

360540

1 67394

.1 0

0

nullSpecific

This section describes objects of particular interest from the above
example. You can view descriptions of other objects in
luasr/etc/snmp/rfc1213.mib. This file is compressed (denoted by the .Z
extension); to restore the file with uncompress, see the compress(1)
man page.

ifInOctets — The total number of octets (bytes) received on the
interface, including framing characters.

ifInUcastPkts — The number of subnetwork-unicast packets delivered
to a higher-layer protocol.

ifInNUcastPkts — The number of non-unicast (such as
subnetwork-broadcast or subnetwork-multicast) packets delivered to a
higher-layer protocol.

ifInDiscards — The number of inbound packets that were chosen to be
discarded (even though no errors had been detected) to prevent their
being deliverable to a higher-layer protocol. One possible reason for
discarding such a packet could be to free up buffer space.

Introduction to Network Analysis 6-11

ifInErrors — The number of inbound packets that contained errors
preventing them from being deliverable to a higher-layer protocol.

ifInUnknownProtos — The number of packets received via the
interface that were discarded because of an unknown or unsupported
protocol.

You can also use SNMP to check collision rates. SNMP provides more
thorough information than netstat about Ethernet devices; in
particular, it can differentiate between single, multiple, and excessive
collisions.

First, get the names of the interfaces in order to get their corresponding
index numbers.

% snmpgetmany hostname public ifDescr .|
ifDescr.
ifDescr.
ifDescr.

ifDescr.

1

2
3
4

= loopO
= ipenl ()
= dpenl ()

= dpen2 ()

There are two Ethernet interfaces, dpenl and dpen2, which have index
numbers of 3 and 4, respectively.

The next example shows how to display the Ethernet statistics table.
There are two groups of statistics, one for interface 3 and the other for
interface 4.

6-12 Introduction to Network Analysis

o

% snmpgettab hostname public dot3StatsTable J
dot3StatsIndex.3 = 3
dot3StatsAlignmentErrors.3 = 10
dot3StatsFCSErrors.3 = 2
dot3StatsSingleCollisionFrames.3 = 356641
dot3StatsMultipleCollisionFrames.3 = 409168
dot3StatsSQETestErrors.3 = 5572824
dot3StatsDeferredTransmissions.3 = 7

dot3StatslLateCollisions.3 = 7

dot3StatsExcessiveCollisions.3 = 176
dot3StatsInternalMacTransmitErrors.3 = 0
dot3StatsCarrierSenseErrors.3 = 1

dot3StatsFrameToolongs.3 = 5

dot3StatsInternalMacReceiveErrors.3 = 0

dot3StatsIndex.4 = 4
dot3StatsAlignmentErrors.4 = 9
dot3StatsFCSErrors.4 = 3
dot3StatsSingleCollisionFrames.4 = 340505
dot3StatsMultipleCollisionFrames.4 = 296619
dot3StatsSQETestErrors.4 = 13287186
dot3StatsDeferredTransmissions.4 = 7

dot3StatsLateCollisions.4 = 7

dot3StatsExcessiveCollisions.4 = 1
dot3StatsInternalMacTransmitErrors.4 = 0
dot3StatsCarrierSenseErrors.4 = 111

dot3StatsFrameToolLongs.4 = 0

dot3StatsInternalMacReceiveErrors.4 = 0

These statistics are of interest:

dot3StatsSingleCollisionFrames — A count of successfully
transmitted frames on a particular interface for which transmission is
inhibited by exactly one collision.

dot3StatsMultipleCollisionFrames — A count of successfully
transmitted frames on a particular interface for which transmission is
inhibited by more than one collision.

dot3StatsExcessiveCollisions — A count of frames for which
transmission on a particular interface fails due to excessive collisions.

Network Environment 6-13

When excessive collisions are present, it means that the Ethernet
interface attempted to transmit a packet sixteen times, and each
attempt failed due to a collision. Excessive collisions result in dropped
packets, resulting in performance degradation.

See /usr/etc/snmp/rfc1398.mib for a description of other objects in the
statistics table. This file is compressed (denoted by the .Z extension); to
restore the file with uncompress, see the compress(1) man page.

ttcp

ttep is a traffic generator that can be used for testing end-to-end
throughput. Cooperating processes are started on two hosts. They open
a tcp connection and transfer a high volume of data. Then, delay and
throughput are calculated. Contact your Data General Sales
representative for information on how to obtain ttep.

Network Environment

This section reviews some of the choices that you must make regarding
network installation and configuration that affect performance. We
then discuss some performance problems that can arise in a networked
environment. It is beyond the scope of this manual to offer more than
an introduction to some of the resources available to you.

One of the first choices you must make is which type or types of media
to use. The relative performance of different media must be weighed
against the relative cost of the equipment and installation. You may
also be presented with choices regarding whether to have a general
purpose computer perform a particular networking task or whether
specialized hardware would better suit your needs. The network must
provide enough bandwidth to satisfy the needs of the network’s users.
If the network does not have enough bandwidth, the amount of time
needed to transfer data between any two points gets excessively long.

While the next sections on different media note the maximum speed of
each medium, it is not valid to assume that the time it takes to perform
the same task on networks of different media will be proportional to
their media speeds. For example, characters will probably not be
echoed ten times faster for a telnet session over a FDDI ring versus one
over Ethernet.

The following sections go into more detail about the network
environment.

6-14

Network Environment

Ethernet

Ethernet was developed in the late 1970’s at Xerox PARC and is
comparatively simple and inexpensive. An Ethernet network is a type
of local area network that consists of cable and interface hardware that
connects hosts. The original Ethernet transmission speed was 10
megabits per second (10 Mbps). Later Ethernet standards and
implementations provide transmission speeds of 100 megabits per
second.

Before transmitting a message, a system waits until it hears no other
system transmitting. If it senses no carrier from another system, it will
then send the message. Since there is the possibility that another
system will decide to transmit at roughly the same time, the sending
system monitors the network to hear if its own message appears on the
network ungarbled. Ifit detects a collision with another message, it
intentionally sends a jam signal to ensure propagation of the collision
throughout the Ethernet to all other transmitting systems. The
colliding systems each back off a random length of time before
attempting transmission again.

To see if your network is consistently overcrowded, use SNMP to
retrieve the dot3StatsTable (as described previously) and examine the
dot3StatsExcessiveCollisions statistic. Collisions are normal events
and do not indicate hardware problems. However, when a network is
overloaded, the number of excessive collisions increases and packets
take longer to get through the network. To solve this problem, you can
try to rearrange the network and applications that use the network in a
way that reduces traffic.

Token Ring and FDDI

Token ring networks were first developed in the early 1980’s by IBM.
Systems are connected into a ring, but cabling is simplified by using a
single cable for each system’s interface that goes to a passive
concentrator, or multiple access unit (MAU). A transmission speed of 4
Mbps was originally used for token ring, but more recent versions use
16 Mbps.

Network Environment 6-15

Only one system on the ring is allowed to transmit at a time; its
message is retransmitted by each system around the ring. When no
system on the ring has any data to transmit, a short 3-byte message
known as a free token circulates around the ring. When a station
decides to transmit a packet, it waits for the free token and then
transmits its packet instead of the free token. When its message comes
back around the ring, the originating system reinserts the free token
onto the ring. In addition to the simple token passing algorithm, token
ring uses a priority scheme implemented with a 3-bit priority field and
a 3-bit reservation priority field that are present in every message.

The time required to repeat the frame at a station is called latency. The
ring latency is the sum of the latency at each station plus the
propagation delay around the ring. As the number of stations in the
ring and the size of the ring increase, so will the ring latency.

Fiber Distributed Data Interface (FDDI) is a newer technology than
Ethernet and token ring, uses fiber optic cable as the transmission
media, and has a 100 Mbps transmission speed. Like token ring, it
uses a ring topology, uses token passing to control access and is subject
to the same type of ring latency. FDDI networks usually have a dual,
counter-rotating ring topology for reasons of greater fault tolerance,
fault isolation, and higher availability. Should the primary ring fail, the
other ring ensures that the network stays in operation.

FDDI is designed to handle large amounts of data and is often used as
a backbone LAN which connects other LANS.

Subnetting

Regardless of which types of media you use, you may want to consider
whether the use of subnets may improve network performance.
Subnets are an extension of the Internet addressing scheme that allows
a site to use a single Internet address portion of its host address field as
a subnet field. Outside the site, routing divides the destination address
into an Internet portion and a local portion. Routers and hosts inside a
site that uses subnets interpret the local portion of the address by
dividing it into a physical network portion and a host portion. Thus, a
site can present a single local network number to the world, but still
maintain distinct physical networks and routing internally.

6-16

Network Environment

When a large number of systems must be connected to the network,
dividing the systems among several subnets has several performance
advantages over having them all connected to the same LAN. First,
since there are fewer systems on the subnet, the time it takes for a
system to gain access to the LAN is reduced because of less contention.
In the case of Ethernet, once a system begins transmitting there is a
lower probability of a collision. In the case of token ring and FDDI,
there are fewer systems introducing the delay needed to repeat the
message. Finally, physically shorter LANs have shorter propagation
delays.

In planning which systems should be on which subnet, the main
principle to follow is that a system should be on the same subnet as the
systems it shares data with routinely. The best example of this is
operating system servers and their diskless clients. The division often
falls along lines of different departments having different subnets.
Each time systems on different subnets interact, traffic is introduced on
at least two subnets, any intermediate routers introduce some delay,
and the load on each router is increased. Of course the total cessation
of information flowing between subnets and departments is probably
not desirable because of possible consequences more serious than a
little network congestion.

One of the goals of planning subnets is to minimize the number of hops
that any two systems must make to reach each other. Taken to an
extreme, this would mean all systems would make just one hop to their
destinations (i.e., just one LAN); this goal must be balanced against
having too much traffic on any subnetwork. One solution is for each
subnet to have a router that connects it to a backbone LAN populated
with only routers. Thus each system is 3 hops, at most, from the
destination.

Routing Considerations

Any time traffic needs to flow between different subnets or networks,
give special attention to the routing of network traffic in order to
minimize delays and the load on intermediate subnets and routers.
Improperly administered routing tables can cause packets destined for
a system across a building to follow a path across the country and then
back again to reach their destination, though somewhat later than the
optimum.

TCP/IP on the DG/UX system supports two dynamic routing programs,
routed(1M) and gated(1M). gated is recommended because it
supports multiple routing protocols, implements superior algorithms
for route path fault detection, and provides more flexibility. For more
information about these programs, see Managing TCP/IP on the
DG/UX® System.

Network Environment 6-17

Use traceroute to see the route a packet takes between two hosts.

o

% traceroute toe.cs.berkeley.edu .

traceroute to toe.cs.berkeley.edu (128.32.149.117), 30 hops max, 40 byte

packets
1 dgrtpgw2-2 (128.11.2.39) 10 ms 0 ms 10 ms
2 /Jcisco (128.11.1.204) 20 ms O ms 10 ms
3 dgrtpgw3-1 (128.11.250.8) 50 ms 10 ms O ms
4 wing-alt3.us.dg.com (128.12.123.2) 20 ms 20 ms 30 ms
5 sprint-gw.us.dg.com (128.12.137.29) 30 ms 30 ms 40 ms
6 sl-dc-1-s2-384k.sprintlink.net (144.228.11.97) 40 ms 40 ms 40 ms
7 icm-dc-2-f0-100m.icp.net (144.228.1.36) 40 ms 40 ms 50 ms
8 icm-fix-e-h0-t3.icp.net (192.157.65.122) 50 ms 50 ms 40 ms
9 192.203.229.246 (192.203.229.246) 50 ms 40 ms 40 ms
10 t3-2.washington-dc-cnss58.t3.ans.net (140.222.58.3) 80 ms 50 ms \
40 ms
11 t3-3.washington-dc-cnss56.t3.ans.net (140.222.56.4) 40 ms 50 ms \
50 ms
12 t3-0.new-york-cnss32.t3.ans.net (140.222.32.1) 50 ms 140 ms 50 ms
13 t3-l.cleveland-cnss40.t3.ans.net (140.222.40.2) 60 ms 60 ms 60 ms
14 t3-2.chicago-cnss24.t3.ans.net (140.222.24.3) 70 ms 70 ms 70 ms
15 t3-1l.san-francisco-cnss8.t3.ans.net (140.222.8.2) 110 ms 110 ms \
110 ms
16 mf-0.san-francisco-cnss9.t3.ans.net (140.222.8.193) 120 ms 110 ms \
110 ms
17 t3-0.enssl28.t3.ans.net (140.222.128.1) 110 ms 110 ms 130 ms
18 su-a.barrnet.net (192.31.48.200) 110 ms 110 ms 130 ms
19 wucb.barrnet.net (131.119.5.2) 120 ms 150 ms 110 ms
20 1inr-108-dmz.berkeley.edu (192.31.161.22) 120 ms 110 ms 120 ms
21 inr-111.berkeley.edu (128.32.120.111) 130 ms 130 ms 130 ms
22 toe.cs.berkeley.edu (128.32.149.117) 110 ms 130 ms 130 ms

Use netstat -r to check the routing tables.

o

Des
loc
def

doc

% netstat -r J

tination Gateway Flags Refcnt Use Interface
alhost localhost UH 39 2671599 loopO
ault dgrtpgw2-2 UG 0 0 hkeno

-lan dgrtpgw2-2 UG 1 33349 hkeno

6-18

Network Environment

The flags field shows the state of the route (“U” if up), whether the
route is to a gateway (“G”), or whether the route is to a particular host
(“H”).

The system will automatically set up routes for each local interface
listed in /etc/tepip.params. Additional routes may be managed
through sysadm using one of two methods. You may add individual
static routes using TCP/IP —> Routes or you may start a routing
Daemon using TCP/IP —> Daemons.

Gateways and Data Transfers

Gateways between networks are an additional source of errors. Use the
netstat —s command to find out if gateways are causing data
corruption. The command output includes bad checksums fields
under the udp, tep, icmp, and ip headings; these fields indicate
packets that were corrupted while flowing through a network gateway.

When your system is not operating on Ethernet media, checksum
errors may be the result of media errors; there may not be a problem on
the gateway. For example, a SLIP link may introduce checksum
errors.

o

udp:

tcp:

icmp:

ip:

% netstat -s J

0 bad header checksums

8155017 datagrams received

703826 packets received

0 discarded for bad checksums

0 bad checksums

11460668 total packets

6 bad header checksums

Gateway corruption should be an extremely small percentage
(hundredths of a percent or less) of the total number of packets
received.

If your system is using only the Ethernet network interface, the error
percentage should be less than 2 x 10716,

Local System Environment 6-19

When a system receives a bad packet from the network, it detects the
error and usually drops the bad packet. The sender does not receive the
expected acknowledgement and must retransmit the packet. When a
large percentage of network packets are damaged en route,
performance declines for two reasons:

e Timeout delays (while the sender waits for the receiver to
acknowledge the packet).

e Increased load due to retransmissions.

Your system network must be able to transfer data correctly. If it
cannot, you must isolate the faulty equipment (i.e., a network interface,
transceiver, connector, or cable). Carefully follow the guidelines for
LAN hardware installation, including such things as cable length and
cable grounding. Also, make sure that cables are attached securely to
their connectors.

Network Connections

In some cases, the number of packets dropped by the network can be
greatly reduced by moving server machines from a multidrop box onto
a direct transceiver connection. The netstat command can help you
identify networking problems. As discussed in the previous section, use
netstat —s to look for the number of tcp retransmissions, checksum
errors, and timeouts. Using netstat —i, view the Ierrs and Oerrs
columns.

Local System Environment

The local environment of each system through which network traffic
travels has some effect on the time it takes to perform an operation
over the network. For example, when transferring a file from the local
system to a remote system, all of these play a part:

e The time it takes to read data from the local disk

e The time it takes the local LAN interface to transmit the data
e The time it takes for the destination to receive the data

e Time it takes the destination to write the data to its disk.

If routers are involved there will also be time required for each one to
write the data to buffers and then read from the buffers in addition to
receiving and transmitting the packets on the LAN. This section
examines the impact of different hardware components on tasks
performed over network.

6-20

Local System Environment

CPU Performance

The availability of CPU cycles on the local system, remote destination,
and any intermediate computers that perform routing affect
performance. If a system’s CPU is heavily loaded, the instructions to
read and write network data may be performed slowly. In the case of
receiving data from the network, if a write to a buffer cannot be
performed quickly enough, the data is dropped. This event introduces
a delay for the sending system to note the lack of an acknowledgement
during a specified period (a timeout) and for the sender to retransmit
the data.

For Data General systems you can refer to the CPU performance
chapter of this manual to find methods of analyzing and improving
CPU performance. For other vendors’ systems, consult that vendor’s
reference material.

Disk Performance

When network tasks involve reading and writing large amounts of data
to and from disk, the disk performance can play a significant part in
the completion time for the task.

For Data General systems you can refer to the disk performance
chapter of this manual to find methods of analyzing and improving disk
performance. For detailed information about disk management on Data
General systems, see Managing Mass Storage Devices and DG/UX"
File Systems. For disk performance and management on other vendors’
systems, consult that vendor’s reference material.

Diskless Client Performance

If you have users on diskless workstations, bear this in mind: diskless
workstations use the network for all paging and swapping activity. If
these workstations do not have enough local memory to minimize
paging and swapping, they can easily consume a lot of network
bandwidth. Workstation users will notice sharply degraded
performance whenever their workstation is paging.

If you suspect that a diskless workstation is paging too much, you
should consider adding more memory to the workstation or offloading
some of the processing from the diskless system to the server. For
example, large X Window System applications may perform better
when running on the server and displaying to the workstation than
when running on the workstation.

Use subnets to reduce LAN traffic. Diskless workstations should
always be on the same subnetwork as their server.

TCP/IP and lts Utilities 6-21

Since diskless workstations remote mount their file systems, you may
wish to see the section “NFS” later in this chapter.

TCP/IP and Its Utilities

TCP/IP stands for Transmission Control Protocol and Internet Protocol.
The Internet Protocol is a kernel-level protocol that defines unreliable,
connectionless delivery of datagrams. An IP datagram contains the
addresses of its source and destination, and the data transmitted.
Connectionless service means that the protocol treats each datagram as
a separate entity; the protocol can deliver packets out of sequence, or
can drop packets. IP defines the exact format of data as it travels
through a network, but delivery of data is not guaranteed.

Transmission Control Protocol is a kernel-level protocol that defines
reliable, end-to-end delivery of datagrams. TCP is connection-based
because it establishes a connection between communicating hosts
before transmitting data. TCP allows a process on one host to send data
to a process on another through a byte stream. TCP uses the Internet
Protocol to transmit information along an Internet network and also
provides flow control, which ensures that either side of the connection
will send data at a rate that is acceptable to the other side.

An understanding of your applications that run over TCP/IP may help
you to optimize performance. A discussion of telnet, rlogin, and ftp
follows.

Telnet and rlogin

Telnet and rlogin are user-level protocols accessed through the telnet
and rlogin commands, respectively. With both, you can interact with a
remote host as if your local host’s terminal were directly connected to
the remote host.

If you use either utility extensively, you should understand how they
work and how their performance can be affected. Typically, input and
output for telnet and rlogin is sent a character at a time in separate
packets across the network. If telnet performance is very poor and
other means of improving performance have not helped or do not seem
appropriate, some vendors (including Data General) enable you to
specify the use of line-at-a-time echoing. However, using line-at-a-time
echoing in a multi-vendor heterogeneous environment may result in
unexpected side effects.

6-22

TCP/IP and Its Utilities

One definition of latency is the amount of time needed to send a single
byte of data between two systems, which is sometimes referred to as
per—packet overhead. Given that, you can appreciate that latency is
important to telnet and rlogin performance. Contributing factors
include software efficiency and CPU speed. Benchmarks that estimate
the number of round trips per second may help estimate how telnet and
rlogin will perform.

To improve telnet’s software efficiency, Data General has moved some of
the server functionality into kernel space. Therefore, if both telnet and
rlogin are available on your client system, choosing to connect to a Data
General server with telnet (rather than rlogin) produces less load on
the server.

Finally, you may want to consider alternatives to using the host-based
telnet—LAN controller combination that might relieve CPU load (for
example, the PTC/1024 controller). You can obtain more information
on the PTC/1024 from the spac(7) manual page and from your Data
General Sales Representative.

For information about communications management on ccNUMA
systems, see Chapter 7.

FTP

FTP is a user-level protocol accessed through the ftp command. You
can transfer files from one host to another with FTP.

If you use FTP extensively, you should understand how it works and
how its performance can be affected. When ftp is used to transfer a file,
generally the data must be read from disk and transmitted by the LAN
controller on the source system, received, buffered, and transmitted by
any intermediate routers, and then received and written to disk by the
destination system. See the disk performance chapter for methods of
evaluating and improving disk performance.

If large numbers of small files are transferred, latency may have
significant affects on FTP performance. As transfers tend toward
larger and larger files, the network throughput becomes increasingly
important. Throughput is the amount of data that can be delivered over
the network in a given amount of time. Contributing factors are the
DMA capability of a communication controller and the efficiency of
data-size-dependent software. Thus the per-byte overhead multiplied
by each byte of a large file can become significant in an FTP transfer.

TCP/IP and lts Utilities 6-23

Some workarounds are available for reducing the time and impact of
transferring data with FTP. Users that routinely transfer files over
networks that span many hops and long distances find that
compressing files with utilities such as compress, gzip, and possibly
pack reduces the transfer time. Shifting transfers to times of low
network and system loads is another alternative that you can
implement automatically using the cron or bftp utilities.

A transfer of a large file may start out with no problems (for example,
you can connect to the remote system’s ftp daemon), but may tend to
fail repeatedly prior to completion of the transfer, thus increasing the
network traffic load because of your retries. You may want to consider
using the ftp restart capability, which restarts the last transfer where it
was aborted.

TCP/IP Tuning

Tuning TCP means reducing the latency (how long a process waits) and
increasing throughput (how much data a process can send). Tuning in
favor of reducing latency usually results in higher numbers of small
packets. This increases the network overhead and reduces throughput.
Tuning for throughput reduces the number of small packets in favor of
large packets in order to reduce overhead. This increases latency
because the transport engine will wait until enough data for full size
packets is collected.

To improve TCP performance, you should understand the costs of
sending and receiving data. These costs include fixed costs such as
protocol headers, protocol state processing and process context
switching—costs that are the same per packet, regardless of size.
Variable costs are those that are proportional to the amount of data.
These include copying data to and from buffers, data collation,
checksumming the data, and transmitting the data

Buffer size, Nagle small packet avoidance, and TCP delayed
acknowledgements are parameters that can affect TCP performance.

Keep in mind that the best performance measurement tools are your
applications.

Buffers

The larger the receive buffer, the more data TCP may receive before the
user application must be scheduled to read the received data.

A larger send buffer permits TCP to queue more data for transmission.
This reduces the amount of time TCP must wait for the user
application to be scheduled to write data, which has a positive effect on
throughput.

6-24

TCP/IP and Its Utilities

You can control the receive and send buffer sizes by using the socket
level options SO_RCVBUF and SO_SNDBUF, respectively. This code
example sets the receive and send buffers to 32 Kbytes:

int rcvbuf = 32*(1024);
int sndbuf = 32*(1024) ;

ind sd;

sd = socket (AF;INET, SOCK_STREAM, 0);

setsockopt (sd, SOL_SOCKET, SO RCVBUF, (char *)&rcvbuf,
sizeof (int)) ;

setsockopt (sd, SOL_SOCKET, SO SNDBUF, (char *)&sndbuf,
sizeof (int)) ;

You can also set buffers for applications using the sendpipe and
recupipe options of the route(1M) command. For details, see the
route(1M) man page.

Take care when using large receive and send buffers because transient
memory allocation failures can occur. Failures occur because of the
increased STREAMS memory requirements of larger buffers. If
ENOMEM is returned, your applications should be prepared to retry
the write() call.

Nagle Small Packet Avoidance

The Nagle Small Packet Avoidance algorithm attempts to collect output
data into a TCP Maximum Segment Size (MSS) block to be transmitted
as a single TCP packet. This reduces network overhead and improves
throughput performance.

Some highly interactive applications send relatively small requests
(less the TCP MSS). The TCP protocol engine attempts to batch these
requests to save network bandwidth. This improves batch throughput,
but degrades interactive response time.

To deactivate the Nagle algorithm, use the TCP option
TCP_NODELAY. The default setting for this option is off, which means
“delay transmission while collecting data.” Turning on this option
reduces the bulk transfer throughput, but reduces latency. You should
only turn this option on for highly interactive applications. These
applications must include code similar to this code to control the delay
algorithm:

TCP/IP and lts Utilities 6-25

int onoff = 1;
int sd;
sd = SOCket(AFilNET, SOCK_STREAM, 0);

/* Turn the TCP NODELAY option on */
setsockopt (sd, IPPROTO TCP, TCP_NODELAY, (char *)&onoff,
sizeof (int)) ;

TCP Delayed Acknowledgement

The TCP protocol engine will normally delay acknowledging data
received on the premise that data going in the reverse direction will
soon be available. An acknowledgement is “piggybacked” on the reverse
data flow when possible. If data is not available within the timeout
period, an acknowledgement-only packet is transmitted.

The combination of Nagle small packet avoidance and TCP Delayed
Acknowledgement can adversely affect applications that transmit
multiple small packets before waiting for reverse traffic. In this case,
the data sender should either combine small writes into larger writes
or set the TCP_NODELAY option as previously described.

If those solutions are not available, the data receiver can set the
TCP_NODELAYACK option. This has the effect of transmitting an
acknowledgement as soon as data is received, which in turn prompts
the data sender to transmit more data. This code example turns the
TCP_NODELAYACK option on:

int onoff = 1;
int sd;
sd = Socket(AFilNET,SOCKisTREAM, 0);

setsockopt (sd, IPPROTO TCP, TCP_NODELAYACK, (char *)&onoff,
sizeof (int)) ;

6-26

NFS

NFS

NFS is a service that allows many users to share file systems over a
network.

When I/O is being done to an NFS mounted file system, there are
several additional factors that need consideration.

e The NFS revision 2 default transfer size is 8 Kbytes.

e The NFS revision 3 default transfer size is negotiated by the NFS
client and server during the mount of the remote file system.

e The default maximum transfer size for a DG/UX NFS revision 3
client or server is 32 Kbytes.

This can be overridden when mounting the file system, but experience
shows that it takes no longer to transfer a large block over a LAN than
it takes to transfer a smaller block. The option of specifying NFS read
and write block size was supplied to prevent swamping a client, server,
slow link, slow/overloaded gateway, or slow/overloaded bridge with
data.

To even out the network traffic, it may help to reduce the value of
MAXBUFAGE on the client. See “File System Configuration Variables”
in Chapter 4 for a description of MAXBUFAGE.

Although NFS can do some operations asynchronously, other operations
are synchronous and/or unbuffered. For example, NFS will read ahead
and write behind data as well as buffer the data; thus, reads and writes
(particularly sequential ones) can be relatively inexpensive.

On the other hand, closes, some lookups, and file status operations are
synchronous. Closes will not be completed until all the data has been
flushed to disk.

You can improve the performance of NFS exported file systems by using
disk caching. Set up the cache to cache only file system metadata for
the best performance. See the disk caching section of Chapter 4 for
more details.

TCP/IP performance can have a big effect on NFS performance. Note
that the network will retry operations several times (indicated by the
console message “server not responding”) before an error is returned to
NFS, but if the network is frequently returning errors to NFS, the NFS
backoff/retry can result in cumulative delays that are quite expensive.
To minimize these delays, it is important to ensure your network is set
up correctly.

Analyzing NFS Usage

The following sections tell you how to analyze your system’s NFS
usage.

NFS 6-27

Using nfsstat

You can obtain a summary of NFS operations and NFS visible network
errors with the nfsstat command:

o

Server rpc:
calls

4606507

Server nfs:
calls
4606495
null

0 0%
wrcache

0 0%
mkdir

31 0%
Client rpc:
calls
69067
Client nfs:
calls

69067

null

0 0%
wrcache

0 0%
mkdir

0 0%

% nfsstat A

badcalls
0

badcalls
0
getattr
2558832 55%
write
1045531 22%
rmdir
330

0%

badcalls
0

badcalls
4

getattr
33528 48%
write

28 0%
rmdir

0 0%

nullrecv

0

setattr
24784 O
create
11957 O
readdir

55475 1%

retrans

25797

nclget
77841
setattr
19 0%
create
7 0%
readdir

5970 8%

o
<

o
<

badlen
0

root

0 0%
remove
23750
fsstat

1684 0%

badxid
16

nclsleep
0

root

0 0%
remove

2 0%
fsstat

86 0%

o

xdrcall

lookup

505736 10%

rename

4617 0%

timeout

25797

lookup
20633 29%

rename
1 0%

readlink
5648

link
946

0%

0%

wait

readlink
328
link

0%

0 0%

read
364845 7%
symlink

2329 0%

newcred

0

read
8465 12%
symlink
0 0%

These values are only reset at boot time.

After issuing the nfsstat command, check the retrans field under
“Client rpc”; this indicates the number of packets that this host
retransmitted as an RPC client—the number of retransmissions it
made while reading or writing an NF'S file. If this field is greater than
5% of the total number of client NFS calls, you may have a problem.

6-28

STREAMS

Compare the retrans number to the value of badxid, which reports
the number of times a server’s reply did not match the client’s RPC call.
If the numbers are about equal, one or more of the network’s NFS
servers is having trouble keeping up with the client’s demands. If the
retrans number is high, but the badxid number is relatively low (as
shown in the example above), the problem is the network itself—the
network is either slow or suffering from data corruption.

UX/RPM Data

With UX/RPM, you can observe various current NFS usage statistics.

STREAMS

DG/UX TCP/IP is implemented using the STREAMS mechanism; in
some cases, your network usage may call for tuning STREAMS
variables. A Stream is a full duplex processing and data transfer path
between a driver in the kernel space and a process in the user space.
STREAMS provides a standard framework for network protocol stack
implementation.

The DG/UX system dynamically allocates STREAMS data structures. If
memory were allocated statically at system initialization, it would not
be generally available and performance could suffer. To ensure that
STREAMS does not use an overly large amount of the system memory,
you can set the PERCENTSTR STREAMS configuration variable
(which specifies the maximum percentage of system memory that can
be allocated to STREAMS); it is, by default, 20% of the system’s total
memory. Although this should be sufficient to handle heavy network
loads, you may want to experiment with larger values if your system
often uses the X Window System and other network services. However,

this parameter will only affect performance if you are running out of
STREAMS memory.

The stream head module, the driver (usually), and each stream module
in between the stream head and driver have a queue pair (a read queue
and a write queue) allocated. A queue pair is used whenever a module
is pushed on the stream such as when protocol stacks are built and
when network connections are made. A queue pair is freed whenever a
module is popped such as when a network connection is broken and a
network protocol stack is torn down.

STREAMS 6-29

These are the network STREAMS requirements:
e Each socket requires 2 queue pairs.
e FEach TLI (Transport Layer Interface) requires 3 queue pairs.

o Each telnet server connection requires 14 queue pairs, 2 mux links,
and 1 pseudo tty.

e Each rlogin connection requires 9 queue pairs and 1 pseudo tty.

The NQUEUE STREAMS configuration variable specifies the
maximum number of STREAMS queue pairs (232 — 1).

STREAMS Configuration Variables

The STREAMS configuration variables are associated with STREAMS
processing. These variables are also listed in /usr/etc/master.d/dgux.
They set the STREAMS parameters shown in the following list.

PERCENTSTR
Specifies the maximum percentage of physical system memory
(after initialization) that can be used for STREAMS buffers.
The default is 20.

NSTRPUSH
Specifies the maximum number of STREAMS modules that
may be pushed on any one stream. This is used to prevent an

errant user process from consuming all the available queue
pairs on a single STREAMS module. The default is 9.

STRMSGSZ

Specifies the maximum number of bytes allowed in the message
portion of a stream. A module maximum packet size of INFPSZ
(defined in /usr/include/sys/stream.h) defaults the maximum
packet size to this value. The default is 0, which means that
there is no default maximum message length. In this case, the
size of the message is only restricted by what the queues on the
stream will accept.

STRMCTLSZ
Specifies the maximum number of bytes allowed in the control
portion of a stream. The control part of a message created with
putmsg is not subject to the constraints of the minimum or
maximum packet size, so this value is the only way of providing
a limit for the control part of a message. The default is 1024.

6-30

STREAMS

NSTRDEMONS

Specifies the number of STREAMS demons to start at
initialization. If set to 0 (zero), one demon per every two CPUs
is run (rounded up so that there is 1 demon if 1 CPU, 2 demons
if 3 CPUs, and so on.) If NSTRDEMONS is greater than the
number of active CPUs, one demon per active CPU is run. The
default is 0 (zero). For more information about this parameter,
see the CPU and process configuration variable descriptions in
Chapter 2.

NMUXLINK

Specifies the maximum number active multiplexors that may
exist at any one time on the system. The default is 1024. As a
guideline, allow at least 2 multiplexors per pseudo tty used, 2
per communication stack (TCP/IP, UDP, etc.), and 2 per
network interface (loop, dgen, etc.); round the total up to a
power of 2. If that total is greater than the default value,
increase NMUXLINK.

Specifies the maximum number of log devices available. The
default is 16.

Specifies the maximum number of STREAMS pipe devices
available. The default is 64. Note that this does not affect IPCs
created by using pipe(). If you receive the message “Cannot
create pipe,” increasing NPIPE probably will not help; the
system could not allocate memory for the pipe. Also, large
NPIPE values may adversely affect ttyname lookup times and
increase CPU usage since increasing NPIPE increases the size
of the /dev directory. You may want to try decreasing NPIPE to
8 or so.

Specifies the maximum number of log messages allowed to be
enqueued on a log driver’s read queue. The default is 20. This
prevents being swamped by log messages during peaks.

ccNUMA Communications Management 6-31

NSTREVENT
Specifies the maximum number of signal delivery requests
(established with the I_SETSIG ioctl command) allowed to be
enqueued on the signal event list. The default is 2048.

ccNUMA Communications Management

You have additional communications management considerations if you
are running the DG/UX system with ccNUMA. For detailed information
about communications management on ccNUMA systems, see

Chapter 7.

End of Chapter

7 ccNUMA System Performance

DG/UX Cache-Coherent Non-Uniform Memory Access (ccNUMA)
technology offers significant performance improvements over other
high-end architectures and operating systems. Designed to avoid shared
bus bottlenecks and reduce latency, it connects processors and their
associated cache, shared memory, and a per-locale Far Memory Cache
(FMC) into unified SMP locales with a single address space.

Since DG/UX ccNUMA technology is an extension to the DG/UX
Symmetric Multi-Processor (SMP) architecture, applications designed to
take advantage of DG/UX SMP features use DG/UX ccNUMA features
with no modification. This makes more processors and a larger single
address space automatically available to SMP applications running on
DG/UX ccNUMA systems.

IMPORTANT DG/UX ccNUMA features are available only on
high-end AViiON systems such as multi-block versions of the
AV 20000 and AV 25000.

To achieve maximum system performance, you must be able to adjust
application interaction with processes, memory, virtual disks, and
communications pipelines. You can monitor and optimize these
components on DG/UX ccNUMA systems with tunable configuration
variables and commands provided for ccNUMA system control.

This chapter describes DG/UX ccNUMA features and the configuration
variables and commands that you use to control ccNUMA systems. The
chapter also recommends alternate settings for configuration variables
based on the similarity of your computing environment to performance
benchmark environments that are described at the end of the chapter.

Key Concepts for Improving ccNUMA Performance

You can improve the overall performance of DG/UX ccNUMA systems by
taking key concepts about memory, file systems, and load balancing into
account when customizing and tuning your system.

Load Balancing

Distribute system load by setting the load balance, migration aggression,
and other scheduler system parameters. You can use the dg_affine(1M)
command or the Class Scheduling Facility, esf(1M), to shift the time and
locality of applications. Tuning the scheduler balances the extremes of
excessive movement and idle processors.

7-2

Process Management on ccNUMA Systems

Initially placing an application in a new locale is less expensive than
moving it after it has gathered extensive memory resources. Moving an
application from one locale to another incurs a performance penalty
because the application’s memory resources must also be transferred to
the new locale. However, if there are processors (CPUs) with no work to
do, moving applications to these processors can balance the system load
and provide greater throughput.

For detailed information about load balancing, see the process
management and scheduling section later in this chapter.

Memory

When possible, assign the same memory locale to processes and their
associated CPU and I/O operations. On a ccNUMA system, near memory
accesses (accesses within a single locale) take less time to finish than far
memory accesses. Assigning the same memory locale to processes and
associated resources keeps latency to a minimum.

Files and File Systems

When possible, define several small file systems instead of only a few
large ones, and split very large files into smaller files. Each DG/UX file is
locked when a process accesses it with write or modification privileges,
and some operations also lock the file system where the file resides.
Keeping file systems and files small reduces the likelihood of latencies
caused by contention for system resources.

For more information about managing files and file systems to improve
performance, see Chapter 4.

Process Management on ccNUMA Systems

Because of latency discrepancies on ccNUMA systems in memory access
timing between near and far memory, process management and
scheduling are vital to system performance. This section describes the
ccNUMA kernel features in the DG/UX system for process management
and load balancing.

Scheduling Processes

Scheduling is the act of deciding which processes are allowed to run on
which processors, or conversely, which processors are allowed to execute
processes.

Process Management on ccNUMA Systems 7-3

The DG/UX scheduler defines the concepts of home locale and current
locale for each process. The home locale is where the process originated
and is expected to execute most of the time. The current locale is where
the process is currently executing or executed most recently. In most
cases, the home and current locales are the same.

The DG/UX scheduler:
e Determines the initial home scheduling locale of a process

e Determines which processes are the best candidates for poaching
(running on a processor other than one in its home locale) when
there is a processor load imbalance

e Determines which processes to migrate from their home locale to
their current locale

e Periodically balances the system load for processor, memory and
priority

To achieve optimal performance, it may seem logical that the system
always run processes and acquire memory from their home locale. In
practice, however, this is not always possible and can cause performance
degradation. Due to limitations of the availability of memory and CPU
resources, a better option may be to run a process on a CPU that is far
from its home locale, or to allocate memory from a locale other than its
home locale.

Optimal ccNUMA system performance can often be achieved by allowing
the system to allocate memory and CPU resources dynamically, based on
per-locale loads. However, because you have the best knowledge of the
application mix and computing needs of your environment, you need to
have control over the use of resource allocation policies.

To give you control over ccNUMA process management and scheduling,
the DG/UX system provides several tunable algorithms that determine
run-time allocation of CPU and memory resources.

Initial Home Fork and Exec Placement
Configuration Variables

Initial home fork and exec placement determines the initial home
scheduling locale of a process. The home scheduling locale is important
because the DG/UX scheduler gives preference to running processes on
CPUs in the same locale. In addition, memory management acquires
physical memory for pages faulted-in by processes from its home
scheduling locale. The fork(2) and exec(2) man pages describe fork and
exec operations in detail.

7-4

Process Management on ccNUMA Systems

On ccNUMA systems, two configuration variables allow you to select a
default initial home scheduling locale for processes.

FORK_POLICY
The method used to determine where to assign the initial home
locale for a new fork(2) process. In benchmark environments
such as TPC-D, TPC-C, and AIM-7, setting FORK_POLICY to
INHERIT PLACEMENT improves performance. The
performance of UniVerse benchmark tests improves when
FORK_POLICY is set to ROUND_ROBIN_PLACEMENT, but
only if EXEC_POLICY is also set to INHERIT_PLACEMENT.

EXEC_POLICY
The method used to determine where to assign the initial home
locale for an exec(2) process. The default policy of
EXEC_POLICY is LEAST _LOAD_PLACEMENT because
benchmarks such as AIM—7 and TPC-C perform well with this
setting. Performance studies involving the TPC-D benchmark
suggest setting EXEC_POLICY to INHERIT_PLACEMENT.
The performance of UniVerse benchmark tests improves when
EXEC_POLICY is set to INHERIT PLACEMENT, but only if
FORK_POLICY is also set to ROUND_ROBIN_PLACEMENT.

These two configuration variables impact performance most when you
are using neither affinity nor class scheduling tools to direct processes to
specific locales.

Variable Settings for Initial Home Fork and Exec Placement

You can set FORK_POLICY and EXEC_POLICY to one of three
placement policies:

e INHERIT PLACEMENT - Allows the new process to inherit its
home locale from its parent. This is the default policy for
FORK_POLICY.

¢ LEAST LOAD_PLACEMENT - Selects the home locale of the new
process based on the utilization of each locale in the system. The
utilization of each locale is determined by the CPU usage, the

composite memory available, and priority loads. This is the default
policy for EXEC_POLICY.

¢ ROUND_ROBIN_PLACEMENT - Determines the home locale of
the new process by circulating through all of the locales on the
system in round-robin fashion.

Process Management on ccNUMA Systems 7-5

Home Locale Bias Configuration Variables

If you set the value of FORK_POLICY or EXEC_POLICY to

LEAST LOAD_PLACEMENT, you can also control the selection bias
towards the inherited scheduling locale of the processes with these
configuration variables:

EXECHOMEBIAS
Sets the weight given to the home locale in the placement
algorithms used when executing a process. The default is 10.

FORKHOMEBIAS
Sets the weight given to the home locale in the placement
algorithms used when forking a process. The default is 10.

Valid values for these variables are the range 0 (zero) to 100. A value of 0
(zero) gives the current home locale no bias in the placement algorithm
and ensures that the process is given a home locale that satisfies the
placement policy criteria. A value of 100 gives the current home locale
the maximum bias in the placement algorithm and effectively ensures
that the process inherits its home locale.

Process Poaching and Migration Configuration
Variable

Sometimes a process is invoked, but the CPU that is best for it to run on
based on kernel parameter settings or affinity policies is busy. If this
happens, the system either:

o Makes the process wait until a CPU near to its memory within its
home locale is free to run it.

e Runs the process temporarily on a CPU whose memory is not near to
the process, resulting in significant far memory access.

The second situation is poaching. When poaching occurs, the system is
trying to balance memory and CPU utilization. The system can assign a
waiting process in one locale to an idle CPU in another locale. Poaching
increases CPU utilization but may have a negative effect on overall
system performance because it increases system time and resources
spent on far memory access.

7-6

Process Management on ccNUMA Systems

Once a process is poached, the DG/UX scheduler must decide to either
send it to its home locale when possible or change its home scheduling
locale to its poached locale, called migration. The migration decision is
based on:

e The length of time the process has run outside of its home
e The load on its home locale’s memory and CPUs
e The amount of poached memory that the process uses

You can set the MIGRATIONAGGR configuration variable to control
poaching and migration.

MIGRATIONAGGR
Tells the DG/UX scheduler how long to wait before looking at
other levels in the scheduling tree for work and controls how
aggressively the system migrates poached processes across
ccNUMA locales. Valid values are numbers between 0 (zero) and
100. A value of 0 (zero) disables migration, while a value of 100
causes a poached process to migrate automatically. The default
setting is 30. However, in cases such as the AIM-7 benchmark, a
more aggressive MIGRATIONAGGR setting of 50 or 70 increases
performance of high-end systems.

Load Balancing Configuration Variables

Periodically, the system analyses the loads of all of the locales. If there is
a large disparity in the loads, the system forces the migration of some
processes to promote balance.

In the DG/UX system, three configuration variables allow you to adjust
the frequency and aggressiveness of automatic load balancing:

LOADBALAGGR
A percentage value that controls how aggressively the ccNUMA
scheduling algorithm balances a load. LOADBALAGGR has valid
values between 0 (zero) and 100. A value of 0 (zero) effectively
disables the load balancing feature. A value of 100 causes the
load balancing algorithm to evenly balance loads across all of the
scheduling locales. The default for LOADBALAGGR is 35.
However, studies using the AIM-7 benchmark indicate that a
more aggressive setting of 50 or 70 yields better performance on
high-end systems.

Process Management on ccNUMA Systems 7-7

LOADBALMAXRSS
A percentage value that regulates the selection of lightweight
process or thread groups during ccNUMA scheduling and load
balancing. Any thread group whose resident set size occupies
more than LOADBALMAXRSS of the total memory in the
scheduling locale is not eligible for automatic load balancing. The
valid range of LOADBALMAXRSS is 0 (zero) to 100.

MAXAFFINITYSLICE
The amount of time in milliseconds that an LWP group can stay
affined to a locale before its affinity relationship is reset to
improve timesharing among LWP groups. The smaller the value,
the smoother the load balancing at the expense of better
throughput, and vice versa. The default value for this variable is
10000 (10 real-time seconds). For more information about this
variable, see the configuration variable descriptions in
Chapter 2.

Interactive Level Computation Configuration
Variable

Interactive level computations for timeshare processes are controlled by
the kernel configuration variable NOILEVEL.

NOILEVEL
Enables and disables automatic adjustment of interactive level
timeshare processes. The default value, 1 (one), enables
interactive level computations, causing the system to adjust
priority based on process CPU utilization. The value 0 (zero)
disables these computations and causes the system to schedule
processes in a round-robin fashion at the same priority level.

Activating interactive level computations (i.e., NOILEVEL=1) can have a
positive performance impact in computing environments with limited
numbers of interactive users and mostly batch or background jobs that
run in a set of scripts or routines. Automatic adjustment of interactive
level timeshare processes works well in large database environments
with a mixture of interactive users and batch jobs.

7-8

Process Management on ccNUMA Systems

Deactivating interactive level computations (i.e., NOILEVEL=0) can
improve performance when the majority of activity on a system is
database access by background CPU-intensive jobs. Some performance
studies also suggest disabling interactive level computations in large
database environments when the database applications do their own
locking, as the locking mechanisms of the application may conflict with
the NOILEVEL adjustments.

For more information about the NOILEVEL variable, see Chapter 2.

Defining Application Start-Up Characteristics with
the Class Scheduling Facility

In the DG/UX system, you can define the startup characteristics (such as
affinity, priority, and so on) of each individual application using the Class
Scheduling Facility (CSF). The CSF provides a flexible mechanism to
establish a load balancing policy and allows you to change the start-up
characteristics of an application without code modification or
recompilation.

This section discusses the basic CSF and its ccNUMA-specific
enhancements. For more information about CSF, see Managing the
DG/UX System.

Class Scheduling Facility Overview

You can use the CSF to define scheduling classes that specify scheduling
characteristics such as initial priority, allowable execution times,
directed execution locales, and processor affinities. Membership in a
scheduling class is specified by euid, egid, full program pathname, or
any combination of these.

At execution time, when the DG/UX kernel determines that a program is
a member of a scheduling class, the program is executed following the
rules of its scheduling class. In addition, if a child process is forked, then
it inherits the scheduling class of its parent.

You define scheduling classes with the admesfclass(1M) command and
class instances with the admesfmember(1M) command. After you
define a scheduling class and instances, you activate the class with the
admesf(1M) command.

Process Management on ccNUMA Systems 7-9

Class Scheduling Facility for ccNUMA

To effectively support a ccNUMA system, the CSF includes the start-up
ccNUMA locale affinity attribute. This locale attribute allows an
application to affine itself to a ccNUMA locale and limit its execution to
CPUs close to the memory in that locale.

When ccNUMA systems are balanced in this fashion, there is less
interconnect traffic and better overall system performance. Therefore
existing applications can take advantage of ccNUMA with no code
changes or recompilations.

Defining a CSF class and adding members
Class scheduling involves these steps:

1. Create the class name.

2. Define the class.

3. Add members to the class.

For example, to create a class name LOCO for locale 0 on a 32-CPU
8-block system containing the CPUs 0, 1, 2, and 3 on that locale, you
enter the following command:

admcsfclass -o add -r “select { . }” -a “cpu=0,1,2,3” LOCO

The following example script defines a class for each of the locales on a
32-CPU 8-block system:

#!/usr/bin/ksh

let x1=0

let x2=1

let x3=2

let x4=3

for i in 01 2 3 45 6 7
do

let x1=x1+$1i

let x2=x2+$1

let x3=x3+$1

let x4=x4+$1

admcsfclass -o delete LOCSi
admcsfclass -o add -r “select { . }” -a “cpu=$x1,$x2,$x3, $x4”
LOCS$1i
done
admcsfclass -o list

The following example adds a member (in this case, a program) to class
LOCS5 or the class which forces everything to run on locale 5:

admcsfmember -o add -u LOC5 -p /home/progname -c LOC5
admcsfmember -o list

7-10 Memory Management on ccNUMA Systems

Memory Management on ccNUMA Systems

The memory management features of the operating system are
responsible for mapping physical memory to processes’ logical address
spaces. On a ccNUMA system, memory management determines the
locale for allocating the physical memory. You can manage memory to
enhance ccNUMA system performance.

Page Placement Policy Configuration Variables

When a process wires or faults in a page of memory, the page placement
policy determines the locale from which the physical frame is acquired.
Placement decisions are based on the type of page and the policy
configured for the page type.

The page placement policy enforced by the DG/UX system for private and
shared pages is determined by these two kernel configuration variables:

PRIVATE_POLICY
Determines where a process’s private data is located in physical
memory. If the memory locale selected by the specific policy is
oversubscribed (for example, if the percentage of memory
available is less than the value of the variable
PRIVATE_PERCENT_LIMIT), the DG/UX system overrides the
private placement policy and chooses memory based on an
alternate policy selection algorithm. The default policy for
PRIVATE_POLICY is HOME_PLACEMENT, which produces
the best performance in most benchmark environments.
However, TPC-D benchmark performance improves after setting
PRIVATE_POLICY to CURRENT_PLACEMENT.

SHARED_POLICY
Determines where data shared among processes is located in
physical memory (code file, data file, shared memory). If the
resident set size of the object attempting to allocate additional
physical memory exceeds a memory locale threshold (for
example, the value of CODE_FILE_LIMIT, DATA_FILE_LIMIT,
or SHARED_MEM_LIMIT), the DG/UX system overrides the
placement policy and chooses memory based on an alternate
policy selection algorithm. The default policy for
SHARED_POLICY is HOME_PLACEMENT, which produces
the best performance in most benchmark environments.

Memory Management on ccNUMA Systems 7-11

Variable Settings for Page Placement Policies

You can set PRIVATE_POLICY and SHARED_POLICY to one of these
four page placement policies:

¢ HOME_PLACEMENT - Favors placing the memory requirements
for a process in its home scheduling locale.

¢ CURRENT_PLACEMENT - Directs the DG/UX system to acquire
memory for a process from the current locale where the process is
executing.

e DISTRIBUTE_PLACEMENT - Determines page placement by
circulating through all of the locales on the system in round-robin
fashion.

¢ RUNNABLE_PLACEMENT - Similar to the policy
DISTRIBUTE_PLACEMENT, but searches only those locales
where the process is allowed to execute.

Frame Hog Prevention Configuration Variables

Three configuration variables prevent a hog or runaway process from
using all of the frames in a particular locale for shared file use, private
use, or shared memory use:

FILE_PERCENT_LIMIT
Denotes the minimum percentage of free memory for the DG/UX
system, using the shared placement policy, to acquire a page for
shared file use in the selected locale. If the value of
FILE_PERCENT_LIMIT is greater than the percentage of
memory available, the shared placement policy is overridden.
The default value of FILE_PERCENT_LIMIT is 15. TPC-C
benchmarks suggest setting FILE_ PERCENT_LIMIT to 1 (one).
Valid values are 0 (zero) to 100.

PRIVATE_PERCENT_LIMIT
Denotes the minimum percentage of free memory for the DG/UX
system, using the shared placement policy, to acquire a page for
private data in the selected locale. If the value of
PRIVATE_PERCENT_LIMIT is greater than the percentage of
memory available, the private placement policy is overridden.
The default value of PRIVATE_ PERCENT_LIMIT is 10. TPC-C
benchmarks suggest setting PRIVATE_PERCENT_LIMIT to 1
(one). Valid values are 0 (zero) to 100.

7-12 Memory Management on ccNUMA Systems

SHARED_ PERCENT_LIMIT
Denotes the minimum percentage of free memory for the DG/UX
system, using the shared placement policy, to acquire a page for
shared memory in the selected locale. If the value of
SHARED_PERCENT_LIMIT is greater than the percentage of
memory available, the shared placement policy is overridden.
The default value of SHARED_PERCENT_LIMIT is 20. TPC-C
benchmarks suggest setting SHARED_PERCENT_LIMIT to 1
(one). Valid values are 0 (zero) to 100.

Page Monopoly Prevention Configuration
Variables

Five configuration variables prevent a large shared object from
monopolizing the pages of the target locale as determined by the shared
page placement policy. These variables define maximum thresholds that
limit the number of pages an individual shared memory object, text file,
or code file can occupy in a given locale. The variables are:

HOGFILESIZE
The maximum number of bytes of physical memory used by a
given data file before that file is treated unfavorably for physical
memory resource allocation. The default is 262144. When the
system is forced to page data out to meet requests for memory, it
aggressively restrains data files having more than
HOGFILESIZE bytes in buffer from consuming free memory.

If you have a popular file that exceeds HOGFILESIZE, the
system may not keep it resident. Access to the file then requires
more disk accesses, which can cause greater latency. If you have
files larger than HOGFILESIZE that are accessed a lot, you
should increase the value of the variable.

If HOGFILESIZE is exceeded, the shared placement policy is
overridden by an alternate placement policy. The memory
management information in this chapter explains placement
policies and policy overrides.

MAXFILEUNITSIZE
The number of bytes of physical memory used to hold the
corresponding data element size of a file on disk. If the data
element size of the file is larger than MAXFILEUNITSIZE, the
data is paged in and out in MAXFILEUNITSIZE increments,
resulting in more disk accesses and greater latency. You should

Memory Management on ccNUMA Systems 7-13

increase the value of the variable if the data element size is
larger than MAXFILEUNITSIZE and the file is accessed a lot.
The default value for MAXFILEUNITSIZE is 65536. Any other
value you assign to MAXFILEUNITSIZE should be a power of
two.

CODE_FILE_LIMIT
The maximum allowed number of resident kilobytes, per shared
code or text file object, before the shared placement policy is
overridden. The default for CODE_FILE_LIMIT is 512. In
certain environments, a larger limit is better.

DATA_FILE_LIMIT
The maximum allowed number of resident kilobytes per shared
data file object before the shared placement policy is overridden.
The default for DATA_FILE_LIMIT is 512. In certain
environments, a larger limit is better. DATA_FILE_LIMIT comes
into play if HOGFILESIZE is exceeded, and causes an override of
the shared placement policy by an alternate placement policy.

SHARED _MEM_LIMIT
The maximum allowed number of resident kilobytes per shared
memory object before the shared placement policy is overridden.
The default for SHARED_MEM_LIMIT is 512. In database
environments, a larger limit may improve performance by
preventing memory distribution and keeping the database
manager process on the same locale as its memory.

Alternate System Placement Policies

For each policy placement, the ccNUMA DG/UX system defines an
alternate least-load policy based on selecting the locale with the most
available frames. It uses the alternate policy only when the currently
configured policy exceeds a pre-configured limit.

7-14 Virtual Disk Management on ccNUMA Systems

Table 7-1 lists the alternate policy selection algorithms.

Table 7-1 ccNUMA Alternate Policy Selection Algorithms

Policy Frame Alternate Policy

Usage
HOME_PLACEMENT private System least load.
HOME_PLACEMENT shared DISTRIBUTE_PLACEMENT
CURRENT_PLACEMENT private System least load
CURRENT_PLACEMENT shared DISTRIBUTE_PLACEMENT

RUNNABLE_PLACEMENT private System least load
RUNNABLE_PLACEMENT shared DISTRIBUTE_PLACEMENT
DISTRIBUTE_PLACEMENT private System least load
DISTRIBUTE_PLACEMENT shared System least load

The primary policy should be the best performing policy for the situation
in which it is defined. While the alternate policy is not the most optimal,
it can reduce the amount of time that system resources are idle and
decrease latency for low-priority processes.

Virtual Disk Management on ccNUMA Systems

The Virtual Disk Manager (VDM) provides high level disk services. It
controls partitions, aggregations, software mirrors, software caches,
multi-path I/O, and software bad-block remapping. All disk I/O on the
system goes through VDM, which maps the I/O through the various
virtual disks and issues I/O operations to the appropriate physical disks.

VDM routes disk I/O over disk paths, each of which is the combination of
a disk controller, I/O bus, and a disk. Each disk path represents the
hardware path an I/O operation takes to access the disk.

VDM on ccNUMA implements a fully connected multi-path I/O model:
Each ccNUMA locale has at least one disk controller that can directly
access each disk connected to the system. Because each disk is fully
connected in a ccNUMA system, there are many paths to each disk.

Virtual Disk Management on ccNUMA Systems 7-15

The VDM automatically performs most of the disk management required
to control the hundreds of possible disk paths on ccNUMA systems. Most
of the setup and configuration of disk paths is done automatically when
the system boots and when you perform administrative operations on a
disk. For example, when you soft-format a disk on a ccNUMA system,
VDM automatically configures all paths to the disk, activates multi-path
mode, and enables load balancing.

Tuning Disk I/O

You tune disk I/O on ccNUMA systems just as you tune disk I/O on the
non-ccNUMA DG/UX systems. You first examine disks as they perform
to note which physical disks have high response times. Then you adjust
configuration variables to better manage or distribute the I/O load
among disks.

For how to examine disks for high response times and for information
about the configuration variables you adjust to manage and distribute

I/0 load, see Chapter 4. For detailed information about disk

management on DG/UX systems, see Managing Mass Storage Devices I
and DG/UX" File Systems.

Disk I/O Performance

System interconnects among locales and disks can be I/O bottlenecks.
The fully connected multi-path I/O on ccNUMA systems avoids locale
interconnect traffic by allowing direct access from any locale to any disk.
This avoidance of locale interconnect traffic keeps I/O latency to a
minimum.

If a locale has more than one disk controller, VDM balances the I/0
request load among the disk controllers in the locale on a round-robin
basis. This reduces the I/O load on any given disk controller in a locale
and helps to improve overall system throughput and performance.

Disk I/O operations for a process in a fully connected configuration are
performed in one of two locales: where the process is running or where
the memory allocated to the process resides. When a process is poached
out of its home locale, it retains use of the memory allocated to it in the
original home locale. Splitting a process and its memory over two locales
will increase interconnect traffic and may decrease performance.

7-16 File System Management on ccNUMA Systems

Disk High Availability

If there are no disk paths available in a given locale, the VDM
automatically starts choosing active and inactive paths in other locales to
process the I/O requests. By accessing disk paths in other locales, the
VDM continues to execute I/O requests from any locale in the system
using remaining working disk controllers. While this situation causes
performance degradation on the system because the I/O requests cause
far memory references, the I/O requests succeed and applications are
unaffected.

The VDM compensates for hardware failures of controllers and busses in
the disk path by noticing a failure when a user attempts to access the
failed device. It then tries alternate paths to the desired disk and retries
the I/O until it finds a path that works. The caller never sees attempted
retries of the I/O; messages are sent only to the operator’s console that
corresponds to the failed hardware component. If all paths to a disk fail,
the VDM automatically attempts to reset all of them. The reset often
clears the problem.

Disk Path Repair

If you experience a hardware failure in a disk path, we recommend first
repairing the hardware and then repairing all disk paths to restore
maximum I/O performance. Hardware failures in disk paths can involve
physical disks, storage processors, SCSI hubs, and I/O controllers.

You repair disk paths with the sysadm operation Disk —> Physical —>
Multi-Path Disks —> Device —> Repair Path(s). This operation resets all
active paths to their originally configured paths and deactivates backup
paths. For more details, see Managing Mass Storage Devices and

I DG/UX" File Systems.

File System Management on ccNUMA Systems

locales. As your system loads change, we recommend that you review the

On ccNUMA systems, file system buffer caches are distributed across
file system buffer distribution for ways to improve performance.

Communications Management on ccNUMA Systems 7-17

File System Buffer Configuration Variables

Balancing the distribution of file system buffer caches between blocks
can improve ccNUMA system performance. You balance these buffers by
adjusting the parameters MAX_PERCENT_BUF_RELEASE_TRIGGER
and MAX_BUF_BLOCKS_TO_FREE_PER_LOCALE, which are
dynamically configurable. We recommend adjusting these parameters
after the completion of a long job or application affined to only one locale
so that the system rebalances the buffers, and then resetting them to be
less aggressive after the balancing is done. Balancing buffers this way
ensures that a NUMA locale never suffers from buffer starvation.

MAX BUF_BLOCKS_TO_FREE_PER_LOCALE
The maximum number of blocks released every time the bm
daemon runs, if the number of buffers released on a given
ccNUMA locale exceeds the amount determined by
MAX_PERCENT_BUF_RELEASE_TRIGGER. The default value
is 16.

MAX PERCENT BUF_RELEASE_TRIGGER
The maximum percentage of released buffers (clean and
unreferenced but still allocated) allowed before the bm daemon
deallocates MAX_BUF_BLOCKS_TO_FREE_PER_LOCALE
blocks per iteration.

A value of 100 means that the number of released buffers can be
as large as the total number of buffers allocated to bm. On a
ccNUMA system, a value of 0 directs the kernel to determine a
reasonable setting automatically to load-balance the system. The
default value is 0 (zero).

Communications Management on ccNUMA Systems

The DG/UX communications software that handles system I/O traffic
includes STREAMS, TCP/IP, NFS, and various networking device
drivers.

ccNUMA enhancements for DG/UX communications software allow
parallelism and user-directed load balancing of communications services.
These enhancements include modifying global data structures (such as
locks and queues) and duplicating communication service daemons on a
per-locale basis. These enhancements help the system avoid costly
cross-locale direct memory access (DMA).

7-18

Communications Management on ccNUMA Systems

STREAMS Configuration Variable

STREAMS is a general facility and set of tools for the development of
DG/UX communications services. It supports the implementation of
services ranging from complete networking protocol suites to individual
device drivers and defines the infrastructure for the majority of DG/UX
communications, including TCP/IP and asynchronous terminals.

The ccNUMA modifications listed below for STREAMS affect all
STREAMS-based applications, protocols, and devices including DG/UX
layered applications such as X.25, NetBIOS, and third-party
applications.

The DG/UX system allows users to control the number and affinity of the
STREAMS daemons using the NSTRDEMONS configuration variable.
While the variable is functionally unchanged, ccNUMA systems require
that at least one STREAMS daemon be started on every active locale.

For some workloads, you can achieve better performance by limiting the
number of STREAMS daemons to one (1) per locale. The default setting
of NSTRDEMONS is two (2) per locale.

For more information about the NSTRDEMONS variable, see Chapter 6.

TCP/IP

The DG/UX implementation of TCP/IP is based on STREAMS. Therefore
the STREAMS enhancements for ccNUMA also apply to TCP/IP. In
addition, the DG/UX TCP/IP implementation itself was changed to
improve ccNUMA system performance.

Endpoint Locales for TCP/IP

On non-ccNUMA systems, network services run on any available
processor. In a ccNUMA environment, applications ideally run on the
same locale as the network device. This avoids cross-locale I/O and DMA,
which can increase latency. To facilitate application affinity, TCP/IP
stores the locale of the network interface in the endpoint for each new
connection and the inetd daemon uses the information to affine services.

Affining inetd Applications

The inetd daemon listens to the network for connection requests and
launches applications. On ccNUMA systems, inetd gets locale
information from the endpoint and the server process according to the
appropriate placement or scheduling policy. This means that the majority
of the network services, such as telnet, rlogin, and FTP, are properly
affined to the locale of the network device.

Communications Management on ccNUMA Systems 7-19

Applications started by inetd are also affined. Applications not started
by inetd do not require changes but may benefit from the affinity
placement policy. You can use the Class Scheduling Facility or the
dg_affine command to control application affinity. For information
about the Class Scheduling Facility, see Managing the DG/UX System.
For details about the dg_affine command, see the dg_affine man page.

Controlling Affinity of TCP/IP Services

The majority of TCP/IP servers are started by inetd. The DG/UX kernel
includes enhancements allowing inetd to determine the locale on which
a request for TCP service arrived. By default, inetd starts server
processes using soft affinity, which sets the home locale for the process to
run. FTP is started with hard affinity, which causes it to run only on the
node where the network request arrives.

Networking performance tests indicate that processes running on the
same node as the network adapter may improve by 30% to 50%.
High-bandwidth services such as FTP benefit from a hard affinity.

To give you control of the affinity that inetd uses, a configuration file,
letc/inetd.numa.conf, allows you to specify hard, soft, or no affinity for
any TCP-based service.

The /etc/inetd.numa.conf file contains the affinity for services that
inetd(1M) starts. Each entry is a single line of the form:

service-name protocol attribute-type
Where the variables are:

service-name
The name of a service. Valid service names are in the /etc/inetd.conf
file.

protocol
The name of the protocol. Only TCP/IP is supported.

attribute-type
The affinity attribute for this service. Valid values for at¢tribute-type are
none, soft, or hard.

7-20

Communications Management on ccNUMA Systems

Multi-Connected LAN

The LAN connects non-ccNUMA systems that are in close physical
proximity to one another. In a ccNUMA LAN, the DG/UX system allows
users to build interfaces on multiple physical devices to minimize
cross-locale DMA and to balance the load across ccNUMA locales.

The pseudo-device called Multi-Connected LAN (MCL) provides a limited
form of fully connected LAN I/O. MCL allows several physical devices
(one in each ccNUMA locale) to join into a single TCP/IP interface. MCL
directs outbound TCP/IP traffic to the device in the same locale as the
memory buffer. This avoids cross-locale DMA, reducing the traffic on the
SCI interconnect and thereby reducing the I/O latency.

MCL responds to Address Resolution Protocol (ARP) requests in a
round-robin fashion to balance the incoming access across the ccNUMA
system. This form of load balancing works well in an environment where
there is a large server with many clients. In other environments, such as
a server behind a router or a LAN with a few large clients, it is more
effective if each interface has its own IP address.

In some On-line Transaction Processing (OLTP) environments, it is
beneficial to limit network I/O to a single locale in the system, reserving
other locales for disk I/0 and data processing. Unlike disk 1/O, there is
not a single LAN solution for every networking application or topology.

Multi-Path LAN

Multi-Path LAN (MPL) lets you configure a primary and secondary LAN
device for high availability. If the primary LAN interface fails, the
DG/UX system automatically switches from the primary LAN interface
to a backup LAN interface. The process is transparent to applications

and protects systems from both LAN interface failures and I/O channel
failures. MPL works on both Ethernet and FDDI LAN devices.

Telnet

The DG/UX system provides a host-based telnet server capable of
handling hundreds of telnet sessions. If you need thousands of telnet
connections, we recommend using Pseudo-Terminal Controller (PTC)
cards in your system, such as the PT'C/1024. PTCs implement the telnet
protocol on the board and appear to the operating system as regular
terminal controllers. PTCs take over telnet processing from a ccNUMA
system, making more resources available for other work. For related
information, see the spac(7) man page.

Monitoring ccNUMA Performance with nsar_numa 7-21

In configurations with one PTC per block, you may improve performance
if you affine users to the locale where their PTC resides. You do this by
affining one or more ttymons associated with the physical PTC.

For example, this script can identify the ttymons that belong to specific

PTCs:
for 1 in 'find /etc/saf -depth -name pid -print’
do
echo $i is ’‘cat $i’
done

The script lists the ttymon name and its PID number. Once you have this
information, you can use the dg_affine command to affine each ttymon
with the locale to which its physical PTC is affined. For how to use the
command, see the dg_affine man page.

Monitoring ccNUMA Performance with nsar_numa

The DG/UX system produces activity data containing a number of
counters that increment as various system actions occur. These counters
monitor CPU utilization, paging activity, buffer usage, disk and tape I/O
activity, switching and system calls, file access, queue activity, and
interprocess communications. DG/UX mechanisms like nsar routinely
access this activity data.

A ccNUMA-specific version, nsar_numa, accesses system activity data
that reflects both the system as a whole and each locale in a ccNUMA
machine. In addition, an nsar_numa option reports NUMA-related
activity of the DG/UX scheduler.

You can use nsar_numa to compare the overall system statistics with
those of individual locales or blocks. The —u option shows the idle time
for each locale. Ideally, these should be balanced.

The following example shows the output on a two-block system running
the nsar_numa -S command. In this case, the system shows a high but
reasonably balanced load.

dgux aldrin R4.20MU04 generic AViiON 01/03/99
18:19:22 cpu 1ld mem 1d pri 1d mig fork, away exec: home, away send stay
cpu_1d mem 1d pri 1d mig fork load exec load bal load forks execs

18:19:22 0 0 0 0 171 0 167 0 2 0
Loc. O 75 100 81 88 84 88 85 88 84
Loc. 1 100 94 100 97 98 97 98 83 83

For more detailed information about nsar_ numa, see the
nsar_numa(l) manual page.

7-22 ccNUMA Performance Adjustment Tools

ccNUMA Performance Adjustment Tools

After you determine the location of performance bottlenecks in a
ccNUMA system, you can adjust the DG/UX system to alleviate the
problems and improve performance. The dg_affine command and the
Class Scheduling Facility (CSF) allow you to affine processes to specific
locales. The adminterrupt command lets you affine interrupts to
various CPUs. The admkernelparam command enables modification of
some configuration variables without rebooting the system.

Controlling Process Locale Affinity with dg_affine
and CSF

In environments where data is modified frequently, you can enhance
system performance by grouping those processes that share data on the
same locale. You can control where processes execute and thus balance
the system load with the dg_affine command or the Class Scheduling
Facility.

The dg_affine command lets you affine a process to a specific CPU or
locale. It can also report how processes are currently affined. For detailed
information about the dg_affine command, see the dg_affine(1M) man

page.

The Class Scheduling Facility also allows you to affine processes to
specific locales. For how to use CSF, see the Class Scheduling Facility
section in this chapter and the CSF information in Managing the
DG/UX System.

IMPORTANT Database benchmarks indicate that you may improve
performance in a heavy-traffic OLTP environment by affining the
database and its memory to one or a set of locales, then affining
users to the locale of their PTC.

Controlling Interrupt-to-CPU Targeting with
adminterrupt

The CPU distribution of interrupt handling in a ccNUMA system can
affect its performance. Some performance degradation may result when
systems have many devices attached to the same physical interrupt line.
In these situations, simply assigning the interrupt to a different CPU
through software affects all of the devices attached to that interrupt line,
which may not be desirable.

ccNUMA Performance Adjustment Tools 7-23

The problem is better addressed by rearranging the peripheral adapter
cards according to the hardware specifications to avoid sharing interrupt
lines. In a ccNUMA system, the physical slot where a controller is placed
is a factor in determining which devices share interrupt lines. Therefore,
changing the slot location of the adapter card may improve system
performance.

While in most cases it is better for software to handle the CPU
distribution of interrupt handling, you can list and change
interrupt-to-CPU targeting manually with the adminterrupt command.
The command allows you to spread interrupt handling over all of the
system CPUs, so you can apply various strategies to improve
performance. Note that interrupts always occur on the same locale as the
I/0 device; this means that the adminterrupt command can change
only the routing to a CPU in that locale.

The adminterrupt command lists how the system is currently handling
interrupts when entered with the option —o list:

adminterrupt -o list

For detailed information about the adminterrupt command, see the
adminterrupt(1M) man page.

Activating Configuration Variable Changes with
admkernelparam

In a large ccNUMA system, it is not practical to constantly rebuild
kernels and reboot when a ccNUMA-specific kernel decision strategy
changes. The admkernelparam command allows you to change a
number of configuration variables that control various ccNUMA kernel
policies, such as load balancing and fork policy, while the system is
running and without rebooting.

For a list of the tunable configuration variables that you can modify and
activate with the admkernelparam command, enter:

admkernelparam -o list

For detailed information about the admkernelparam command, see the
admkernelparam(1M) man page.

7-24 Performance Benchmark Tests and Characteristics

Performance Benchmark Tests and Characteristics

This chapter refers to several performance benchmark tests and how the
results of these tests on ccNUMA systems suggest configuration variable
settings for optimal performance. If your computing environment has
characteristics similar to one of the benchmark tests, you may want to
use the recommended settings.

AlIM-7 Benchmark

AIM-7 refers to the AIM™ Multiuser Benchmark—Suite VII tests
designed by AIM Technology to measure performance of multi-user
computing environments.

Multi-user computing environments have the following characteristics:

A large number of tasks run concurrently.

Much system time is spent in common runtime libraries, and sorting
and searching through large amounts of data.

Data is used and then written back to disk for use as a shared
resource.

Numerically intense applications are rarely performed.

As the number of users increases, disk storage needs increase
dramatically.

The computing environment modeled by the AIM-7 benchmark has
characteristics found in the following system setups:

A multi-user or shared system running office automation
applications that support word and data processing, spreadsheets,
email, databases, and payroll.

A server environment that uses large amounts of data, performs
large numbers of floating point calculations, or processes large
amounts of interprocess communications (IPC) for graphics.

A large database environment with a lot of disk I/O, data in memory,
and IPC via shared memory.

A file server environment with a heavy concentration of integer
compute file system operations.

Performance Benchmark Tests and Characteristics 7-25

Results of AIM-7 benchmark tests suggest that you can improve
performance on high-end systems with these configuration variable
settings:

EXEC_POLICY = LEAST LOAD_PLACEMENT
FORK_POLICY = INHERIT_PLACEMENT
LOADBALAGGR = 50 or 70

MIGRATIONAGGR = 50 or 70

NOILEVEL =0

NOLANGUISHING =0

TPC-C Benchmark

TPC Benchmark™ C (TPC—-C) tests computing environments set up to
support complex On-Line Transaction Processing (OLTP) applications.
It simulates the business activity of processing an order with its many
internal transactions.

The computing environment modeled by the TPC-C benchmark is
characterized by:

Simultaneous execution of many transaction types of varied
complexity, on-line and deferred transaction execution modes, and
transaction integrity requirements.

Databases consisting of many tables with a wide variety of sizes,
attributes, and relationships; non-uniform distribution of data access
through primary and secondary keys.

Significant disk I/O in terms of high random read and write I/Os per
second, and contention on data access and update.

Many on-line terminal sessions.
Moderate system and application execution time per transaction.

Significant shared memory access by database processes to shared
database buffers, locks, and latches.

Results of TPC—C benchmark tests suggest that you can improve
performance with these configuration variable settings:

EXEC_POLICY = LEAST LOAD_PLACEMENT
FORK_POLICY = INHERIT_PLACEMENT
FILE_PERCENT_LIMIT =1
PRIVATE_PERCENT_LIMIT =1
SHARED_PERCENT_LIMIT =1

7-26

Performance Benchmark Tests and Characteristics

TPC-D Benchmark

TPC Benchmark™ D (TPC-D) tests computing environments set up to
act primarily as decision support systems. Decision support systems
typically execute highly-complex queries on large databases to yield
answers to critical business questions. The queries generate intense
activity on the part of the database server component of the system.

The computing environment modeled by the TPC-D benchmark has the
following characteristics:

The decision support database is continuously available — 24 hours
a day, 7 days a week — for ad-hoc queries from many end-users and
updates against all tables, except possibly during infrequent (e.g.,
once a month) maintenance sessions.

The decision support database is closely synchronized with a
separate on-line production database undergoing continual updates.

Due to the world-wide nature of the business data stored in the
decision support database, queries and the updates may be executed
against it at any time. Since queries and updates may execute
concurrently, the mix of queries and updates is subject to specific
transaction integrity requirements.

To achieve the optimal compromise between performance and
operational requirements, the database administrator can set the
locking levels and the concurrent scheduling rules for queries and
updates.

Very high I/O rates in terms of parallel sequential reads (in
megabytes per second), and low I/O write rates.

Significant interprocess communication among cooperating database
query processes taking the form of data streaming through shared
memory.

Results of TPC-D benchmark tests suggest that you can improve
performance with these configuration variable settings:

EXEC_POLICY = INHERIT_PLACEMENT
FORK_POLICY = INHERIT_PLACEMENT
PRIVATE_POLICY = CURRENT_PLACEMENT

End of Chapter

Glossary

The terms defined in this section are important to performance
measurement and tuning.

Address space A contiguous block of logical pages, all of which are accessible by a

Affine

ccNUMA

Channel

Chatter

CLARIiON

process, but not all of which are necessarily valid. The address space
associated with a process defines the address mappings for that
process.

To link or bind in a very close relationship; to assign processes to
specific processors or locales.

Cache-Coherent Non-Uniform Memory Access: A type of NUMA
architecture in which all distributed pieces of memory are linked
together to act as a single, very large memory map. There are no
redundant copies of data on different memory locations. To users, this
architecture mimics an SMP environment.

In the context of the DG/UX operating system’s kernel, channels
provide I/O access paths between application programs and files.
Channels are managed by the Channel Manager.

Random data generated by electrical noise or some other malfunction.
Chatter usually appears on unused terminal lines that aren’t
terminated properly. Chatter can easily swamp a system because each
meaningless character has to be processed.

A disk-array storage system that provides a compact, high capacity,
high availability source of disk storage. It offers high availability disk
storage, in up to 20 disk modules that you can replace under power.

CPU (Central Processing Unit) The hardware that fetches, decodes, and executes

instructions, and performs arithmetic and logical operations.

Current locale The scheduling locale where a process is running. Generally the

current locale is equal to the home locale of a process unless the system
detects a need, due to locale CPU load or memory load imbalance, to
run a process in a different locale. See also Home locale and Poaching.

Glossary-2

Cylinder

In the context of disk hardware, a cylinder contains all of the sectors in
like-numbered tracks on all of the disk’s platter surfaces (data is
typically stored on both surfaces of a platter). Some people use the
terms cylinder and track interchangeably, but theyre really not the
same—a track is one concentric circle of data on a single platter’s

surface.

\ ¢ Cylinder
‘ ! (Popped Up)
Track

Disk Platters

Spindle ——»»

DAR (Disk Allocation Region) To increase DG/UX file system performance, the

disk storage of a file system is divided into Disk Allocation Regions
(DARs). To access a file, the file system alternately reads a file’s inode
(to find where the file’s blocks are stored) and the blocks themselves. By
using DARs, a file system can keep a file’s data blocks and inodes
physically close together, which minimizes physical disk mechanical
latency (seek time).

File System
DAR

FMIA | DAR<“0” DAR“N’ | Entry (F:'V"A
Table | P

| \ | \ m
Inod Data
nodes Blocks

Glossary-3

The File Management Information Area (FMIA) contains information

about the file system, including the DAR size, the number of inodes per

DAR, and the default element size for files and directories. A backup

copy of the FMIA is stored at the end of a file system.

Data block In the DG/UX system, a term used to describe a block of data that is
stored in a virtual disk. Data blocks are 512 bytes, and are typically
equal to the underlying physical disk’s sector size.

Data element The logical granularity at which the DG/UX file system transfers a

file’s data. You can set the size of a file’s data elements from 512 bytes

to several megabytes. The default data element size on DG/UX systems

is 8 KB, which is sixteen 512 byte disk sectors. As the figure shows,
data blocks are stored as data elements in a Disk Allocation Region

(DAR).

Disk Allocation Region (DAR)

T TTTT] |

,\B,l'; Inodes Data Elements

il |
Data Data Data Data
Blocks Blocks Blocks Blocks
Qeee 15 48 eee 63 16 eee 31 32eee 47

Daemon A program that is invisible to users but provides important system
services. Daemons manage everything from paging to networking to
notification of incoming mail. Daemons normally spend most of their
time sleeping or waiting for something to do, so that they don’t account
for a lot of CPU load. However, some daemons can be a substantial
load, such as routed and rwhod.

Disk array In the context of disk subsystems, a collection of one or more groups of

disk modules and one or more SCSI or fibre channel busses that
participate in a RAID (Redundant Array of Independent Disks)
redundancy scheme. Each group in an array appears to the operating
system as a single physical disk.

Disk module (or spindle) A self-contained disk-drive unit. As opposed to the
generic term disk, which could refer to a virtual disk or a physical disk.
Disk drive controllers can support different numbers of disk modules.

Glossary-4

Disk sectors The granularity at which disk drives and controllers work. Disk

sectors are a fixed size; in AViiON systems, a disk sector is 512 bytes.
(Sectors for other random access devices, such as optical disks, can
have different sector sizes.) Not to be confused with data elements.

Disk transfer rate The time that it takes a disk to read or write data once the heads

I DMA

are over the proper track and sector. Typical disk transfer rates are in
the range of 1MB/second to 2.5MB/second. A disk’s transfer rate is a
function of the number of sectors per track, interleaving, bit density,
and rotational speed. At the same rotational speed and interleaving, a
disk with more sectors per track has a higher transfer rate than a disk
with fewer sectors per track. The transfer rate of an entire disk
subsystem must include the transfer rate (bandwidth) of the disk
controller’s data channel.

Direct Memory Access. A technique for transferring data from main
memory to a device without passing it through the CPU.

ELF (Executable and Linking Format) The successor to the System V COFF

Ethernet

(Common Object File Format), which are a set of System V de facto
rules for portable object files (files produced by compilers and linkers).
ELF extensions support dynamic linking and shared library
capabilities. The DG/UX system supports both the older COFF format
and the newer ELF format.

A Local Area Network (LAN) standard, based on original work by
Xerox, DEC, and Intel. Ethernet’s commercial success resulted in the
development of the IEEE 802.3 standard, which is based on Ethernet.
Physically, Ethernet supports “thick” cabling, “thin” cabling, and
twisted-pair cabling.

Far memory Memory accessed by a CPU or set of CPUs over a system bus or other

coherent memory interconnect mechanism. This type of memory is
accessed with a longer latency and a potentially lower bandwidth. See
also Near memory.

Fibre channel A high-speed, full-duplex data communication protocol that offers an

alternative to the SCSI parallel bus standard. Fibre channel technology
offers a practical means of data transfer in a high-speed serial link.
Fibre channel runs on both copper and optical fiber cables and is
media-independent.

Glossary-5

File system Within a file system, files are organized in a hierarchical, inverted tree
structure, as shown in the following figure. The top of the inverted tree
is the root, which is represented by the slash character (/).

/
\ |
usr bin dev
\
global doe who dsk
| |
bin test
Frame In the context of main memory, a container that holds a page or part of

a page. In current AViiON computers, the frame size is 4KB. Distinct
from a page, which is a virtual memory construct.

FFM (Flat File Manager) The component of the DG/UX file system that stores all of
a file system’s files in one directory, where each file is identified by an
inode. The FFM is not user visible.

ftp (File Transfer Protocol) A TCP/IP-based application program used to transfer
files among computer systems. ftp provides features for format
translation and transfer control.

Fully-connected 1/0 A multi-path I/O implementation in which each system or
system locale has at least one disk controller that can directly access
each disk connected to the system, providing many paths to each disk.

Group In the context of disk subsystems, three or more disk modules that
work together in a RAID (Redundant Array of Independent Disks)
configuration. A group represents one column in a disk array. The
operating system sees each group in an array as a physical disk.

Glossary-6

Heads, sectors, and tracks Disk systems read and write data with movable heads,
which “fly” just off the surface of a disk’s platters. Data is stored on
cylindrical tracks, which are further broken up into sectors.

D Head
™

Sectors Tracks

High-availability disk system A disk system that minimizes application downtime
if a single component in the disk system fails.

Application downtime can occur when an application cannot access its
program or data files. For example, when:

[An application cannot access its files, even if the computer
system is still running. Examples are when an application’s file
system is mounted on a disk system that failed or when a disk
system bus fails.

[A computer system has to be shut down so that a component,
such as a failed disk module, can be replaced.

(1 An application’s data is being restored from a backup after a
disk module is replaced.

Although high availability disk systems don’t guarantee that they’ll
eliminate all downtime, they still provide much of the functionality of
fault tolerant systems. High availability configurations provide a very
cost-effective way of filling the gap between unprotected systems and
fault tolerant systems.

A

Fault
High Tolerant
Increased Availability Systems
Application Systems
Availability Traditional

Systems

Glossary-7

Home locale The scheduling locale where a process prefers to run. Generally the
home locale is equal to the current locale of a process unless the system
detects a need, due to locale CPU load or memory load imbalance, to
run a process in a different locale. See also Current locale and
Poaching.

inode In a UNIX system’s flat file structure, each file is identified by a unique
index node (inode) number. Pointers in an inode tell the file system’s
Flat File Manager (FFM) where a file’s data elements are stored.

Applications Programs

v
Hierarchical File System

Directory Manager

Flat File System Y Inode Numbers

Flat File Manager 102|[103| | 104|[105| |106|eee| N

File
System

Internet The global collection of publicly addressable data communication
networks that are able to exchange data through a common set of
protocols (such as TCP/IP) and gateways. The Internet consists of
thousands of networks worldwide, containing millions of computers. I

IPC (Interprocess Communication) Any of a variety of mechanisms that enable
processes to pass or share information or data. Examples in UNIX are
message queues, sockets, pipes, and shared memory.

Glossary-8

Kernel

The core, hardware dependent, operating system in UNIX. Usually
refers to the operating system code below the system call boundary.

Kernel

Hardware

Kernel Data Cache A small part of an AViiON computer’s main memory that the

Latency

Locale

DG/UX operating system uses to cache file system metadata. File
system metadata is “data about data”—data that the file system uses to
describe and locate files.

Any characteristic that increases real or perceived response time
beyond the response time desired. Briefly, latency is delay or wait time.
Specific contributors to latency include mismatches in data speed
between the microprocessor and I/O devices, and inadequate data
buffering. In networks and within a computer, each juncture in routing
or temporary holding of data introduces a possibility for latency.

A set of CPUs, I/0 controllers, and the common near memory that is
accessible to them. A ccNUMA system has two or more locales.

Maximum resident memory size The sum of resident shared and resident

unshared memory of all processes. Shared memory is counted only
once, even if it is used by multiple processes.

Memory mapping A technique that enables you to eliminate the overhead of

copying data from memory into a program’s data space (which occurs
when programs use the read system call). With memory mapping
(using the DG/UX mmap system call), application programs can map
the virtual addresses of a file into their address spaces, rather than
making copies of the data.

The mmap system call enables an application program to treat a
region (or all) of a file as an array. A call to mmap maps the part of the
file that you specify into virtual memory. You can access that part of the
file directly (without using traditional read and write system calls).

Glossary-9

Memory object A contiguous set of logical pages optionally backed by permanent

backing store. Two types of memory objects are defined: file objects and
anonymous objects. File objects map permanent (file) data; anonymous
objects map anonymous data. For example, anonymous data is any
data that is part of a program’s address space but not a copy of a file
that appears in the file system (such as a static variable in the
program, the program’s stack and heap, and memory segments that are
shared between processes). An anonymous object is either shared or
private; all file objects are shared. Users can associate a shared object
with many map entries, thereby allowing mapping in many address
spaces. A private memory object is mapped in only one address space
(at contiguous addresses within that address space).

Message queue A System V IPC (Interprocess Communication) mechanism,

Metadata

Mirroring

supported by the DG/UX system, that allows processes to exchange
data by putting messages onto a message queue and getting messages
from the queue. Message queues can be shared by more than two
processes with the msgget, msgrcv, and msgsnd system calls.

“Data about data.” In the context of the DG/UX demand-paged file I/O
system, file system metadata is data, such as inodes, index elements,
and directory information, that the file system uses to describe and
locate files. File system metadata is cached in the kernel’s data cache.

The technique of writing the same data to separate virtual or physical
disks at the same time. If one disk fails, the data is still available on
the mirror-copy disk. Mirrored disks can also perform read operations
faster than single disks because the system can simultaneously read
from each of the mirrors. RAID-1 provides support for disk mirroring.

Near memory Memory accessed by a CPU or set of CPUs through some sort of local

bus. This type of memory is accessed with low latency. See also Far
memory.

NFS (Network File System) A distributed file system product developed and

licensed by Sun Microsystems. NFS is the key component in the Sun
ONC (Open Network Computing) product set. NFS implements a
subset of UNIX file system semantics, and has been ported to a variety
of UNIX and non-UNIX systems. For most UNIX file system
operations, NFS gives users the ability to access files over a
communications link as if they were resident on the user’s local
machine. NFS is typically found running over Ethernet LANS.

Glossary-10

NFS client A computer that accesses file systems hosted by other machines on the

network (server machines). A single machine can act as both an NFS
server and an NFS client.

NFS server A computer that hosts file systems accessed by users on other machines

on the network (client machines).

NIS (Network Information Services (formerly Yellow Pages)) One of the ONC

NUMA

Page

Paging area

(Open Network Computing) services that provides network-wide lookup
services identifying computer hosts and their users.

Non-Uniform Memory Access, a computer architecture, implemented
on high-end Data General computers such as the AV 20000 and

AV 25000, in which access times to a distributed memory system are
not uniform based on physical locale.

A unit of virtual memory with which a virtual memory system allocates
and transfers data. Page size must be a multiple of the frame size. In
the DG/UX system, the page size is 4KB (1 x frame size).

See Swap area.

Physical disk What the DG/UX operating system recognizes as a single disk. A

Pipe

Poaching

physical disk can be a single disk module, a mirrored pair of RAID
disks (RAID 1), or a group of disk modules in a RAID 5 array.

A UNIX interprocess communication (IPC) mechanism that connects
two processes. The output from one process is used as input to the
other, without the user having to manage temporary files. A pipeline
can include two or more processes connected by pipes. The pipe
mechanism can be used at the shell command level to string commands
together on a command line. A procedural interface is also available for
use within programs.

The running of a process in a locale other than its defined home locale.
Generally the home locale is equal to the current locale of a process
unless the system detects a need, due to locale CPU load or memory
load imbalance, to run the process in a different locale. See also
Current locale and Home locale.

Glossary-11

RAID (Redundant Array of Independent Disks) A group or groups of disk modules
that are connected together to offer high availability. There are six
RAID implementations defined:

Level 1/0 — mirrored disk array with striping, duplicated data, and
no parity (data is duplicated on the mirrors, eliminating
the need for parity protection)

Level 0 — disk array with striping, but no parity protection

Level 1 — mirrored disk array with duplicated data

Level 2 — disk array with bit-level striping and Hamming code
protection

Level 3 — disk array with byte-interleaved data and parity on
one disk

Level 4 — disk array with block-interleaved data and parity on
one disk

Level 5 — disk array with block-interleaved data and distributed
parity

RAM disk A technique that uses main memory (RAM) as a virtual disk drive. The
DG/UX file system supports RAM disks with the memory file system
option. The RAM disk technique differs from disk caching in that a
RAM disk is static—the memory is used by a few high usage programs
or data files, which are loaded explicitly into RAM disk and stay there
until they are explicitly removed. Main memory that is used for a disk
cache is dynamic because it keeps in memory only the most recently
used programs or data.

Retransmission A network’s way of guaranteeing that all data arrives correctly. If
a packet of network data doesn’t make it to its destination or if it is
damaged en route, the originator usually replaces the missing data by
retransmitting the packet.

Rotational latency The time that it takes for a disk sector (with the data that you

want) to revolve under the head. Rotational latency is a function of the
speed at which a disk spins. Currently, most popular disks spin at 3600
RPM, so their average latency time is 8.33 milliseconds—the time it
takes for a disk to spin one-half revolution. Seek time and rotational
latency, taken together, represent the time it takes a disk to actually
find data on a disk and send the data to the disk controller. See also
Disk transfer rate.

Glossary-12

RPC (Remote Procedure Call) A layer of distribution service that intercepts a

service request on one system in a network, packages the request for
transmission over the net, unpackages the request on another system
in the network for execution, then passes back the results to the
original requestor. RPC is one of the bases on which a service such as
NFS is built. Other system services can be built using RPC, and
distributed applications may choose to use RPC.

Scheduling Arranging processes by priority and class to run on a CPU or CPUs, or

SCsSI

Sector

Seek time

Semaphore

conversely, determining which processes a given CPU is allowed to run.

Acronym for Small Computer Systems Interface, pronounced “scuzzy.”
SCSI is a standard interface to disk and tape controllers for small
devices. Providing faster transfer speeds than the SCSI interface,
SCSI-2 is an improved definition of the SCSI interface. Either resides
directly on the computer’s CPU board or is an independent board in the
computer. A SCSI interface supports up to seven devices attached to
the computer in a serial configuration. A SCSI-2 interface (wide-SCSI
16-bit bus addressing) supports up to 15 devices.

See Heads, sectors, and tracks.

The time that it takes to move a disk drive’s heads between tracks.
Seek times are usually expressed in terms of track-to-track (minimum),
the average, and the maximum. The minimum seek time is the time it
takes to move to an adjacent track. The maximum seek time is the time
it takes to move the heads from the innermost track to the outermost
track.

A System V IPC (Interprocess Communication) mechanism,
supported by the DG/UX system, that allows processes to synchronize
operations by signalling an event and waiting for an event (known as P
and V operations). A process that performs a P operation increments
the integer value of the semaphore; a V operation decrements the value
of the semaphore. Semaphore system calls include semctl, semget,
and semop.

Shared library A way of storing, in one library, subroutines that are used by two

or more programs. Shared libraries provide savings in disk space and
in the time that it takes to load a program.

Shared memory A System V IPC (Interprocess Communication) mechanism,

supported by the DG/UX system, that allows processes to communicate
by having the same physical memory in their virtual address spaces.
See also Memory mapping.

Glossary-13

SMP Symmetric Multi-Processor. A processor configuration in which many
processors symmetrically share a single image of memory and
operating system.

Spindle See Disk module

Stripe unit The amount of data that is stored on each disk module in a stripe. The
stripe unit size in current high availability disk systems is 800 sectors
(400KB). The stripe unit for soft striping is specified when you create a
virtual disk.

Striping The technique of distributing (or interleaving) data across several disks
so that data can be accessed in parallel, increasing disk I/O
performance. The DG/UX operating system supports striping at both
the software and hardware levels. Software-level striping works within
virtual disks. The Data General high availability disk systems support
hardware-level striping across disk modules in a disk group.
Hardware-level striping is part of the RAID 1/0, 0, 3, and 5 design,
which provides uninterrupted access to data if a disk module in the
array fails.

Virtual Disk
—
0 0-63 64-127 128-191 192-255
@ 256-319 || 320-383 | 384-447 || 448-511
o
]
o 512-575 || 576-639 || 640-703 | 704-767 lgm Stripe
s
a 768-831 || 832-895 | 896-959 || 960-1023
N-1
L

Disk 1 Disk 2 Disk 3 Disk 4

)) B/ \O

Swap area Refers to a part of a disk (or other secondary storage) that the kernel
reserves and uses to store memory pages that must be removed from
memory to make room for pages that an LWP wants to access.

Glossary-14

Swap space The system-wide resource for supporting virtual memory that
includes physical memory and swap areas.

Tracks See Heads, sectors, and tracks.

VDM (Virtual Disk Manager) The VDM allows users to create and manage virtual
disks. Virtual disks function just as physical disks do, but provide an
abstraction to data, as well as many high—availability features, such as
partitioning and fault isolation. The VDM maps the I/O through virtual
disks and issues operations to physical disks. See the vdm(7) man page
for a full description.

End of Glossary

Index

A Application startup, ccNUMA, 7-8
Archiving files, fi tati d, 4-8
Access weight number, 413 rchiving files, fragmentation an

. asynchronous I/O, affected by
Accounting, 2-8, 4-30, 5-2 AFFINE_IO_TO_THREAD, 4-34

acct, 2-9 at, 1-5
acctcom, 2-8

acctconl, 5-2 B
ACCTOFF parameter, 4-30

Backups, scheduling, 1-6
ACCTON parameter, 4-30

Balancing

Activating parameter changes, 7-23 disk load, 4-10
Address space, 2-1, 3-19, Glossary-1 load between controllers, 4-11
load on ccNUMA, 7-1
admesfclass, 7-8
batch, 1-5

admecesfmember, 7-8

. Batch jobs, 1-5
adminterrupt, 7-22, 7-23

Benchmark tests, 7-24
admkernelparam, 7-23 AIM-7, 7-24

admvdisk, 4-11 TCP-C, 7-25
Affine, Glossary-1 TCP-D, 7-26

Berkeley Packet Filter, 6-4
AFFINE_IO_TO_THREAD parameter, ereley backet TIen
4-34 Binds, 2-3, 2-24
per-process, 2-16

Affinity '
process locale, ccNUMA, 7-22 Block disk, 4-3
time slice, 2-33 Block I/O, 4-3
AIM-7 benchmark test, 7-24 Bound transients
recommended variable settings, 7-25 current, 2-5
Analysis tools, 1-3, 6-3 maximum, 2-5

minimum, 2-5

Anniversary size, 4-7
Bourne shell, editread and, 5-2

Anonymous pages
allocated, 3-10 bpf, 6-4
available, 3-10 BSIZE parameter, 6-30
kernel, 3-5, 3-13
o aa o Buffering, 4-4
private, 3-3, 3-13 metadata, 4-4

Is'iierz\:iedé-i-%j';o raw disk and, 4-4

total, 3-3, 3-10 Buffers, TCP/IP and, 6-23

Index-2

Cc

C shell, editread and, 5-2
Cache, hit rates, 4-5
Caching. See Disk caching

Canonical input mode, 5-1, 5-2, 5-3
statistics, 5-3

cc, 3-2

ccNUMA, Glossary-1
alternate page placement policy, 7-13
communications, 7-17
description, 7-1
disk I/O, 7-14
file systems, 7-2
files, 7-2
interactive level computations, 7-7
key performance concepts, 7-1
LAN, 7-20
load balancing, 7-1, 7-6
locales, 7-1
memory, 7-2
memory latencies, 7-2
memory management, 7-10
networking, 7-17
page placement policy, 7-10, 7-11
performance adjustment tools, 7-22
placement policies, 7-4
process management, 7-2
STREAMS, 7-18
system performance, 7-1
TCP/IP, 7-18
telnet, 7-20
VDM, 7-14
virtual disk management, 7-14

ccNUMA system performance, 7-1
CDLIMIT parameter, 4-32
Channel, Glossary-1

Character 1/0, 4-3

Chatter, Glossary-1
CHOWN_REST parameter, 4-32
CLARIiON, Glossary-1

Class Scheduling Facility, 7-8

Clean pages, 3-2

CODE_FILE_LIMIT parameter, 7-13

Collisions, network, 6-11, 6-14

Command name, 2-16

Commands, format conventions, iv

Communications software, ccNUMA,
7-17

Compact discs and ISO 9660, 4-33

Conditional variable, 2-22

Configuration variables
activating changes, 7-23
ccNUMA, 7-1
CPU, 2-29
file system, 4-30
memory, 3-19
message, 2-35
process, 2-29
pseudo-terminal, 5-4
scheduler, 2-33
semaphore, 2-35
shared memory, 3-20
STREAMS, 6-29
VDM, 4-34

CONFMEM parameter, 3-19
Connections, network, 6-19
Contacting Data General, v

Context switches, 2-10, 2-25
per—process
involuntary, 2-16
involuntary (LWP), 2-16
voluntary, 2-16
voluntary (LWP), 2-16

Controllers, 4-11
Copy on write page faults, 3-3, 3-15

COW fault. See Copy on write page
faults

cpd, 4-9, 4-22
cpio, 4-9

CPU, 1-2, 2-1, 2-2, Glossary-1
configuration variables, 2-29
context switches, 2-10

Index-3

interrupts, 2-11
interrupts on ccNUMA, 7-22
load average, 2-12
lockable system memory, 3-19
maximum LWP groups, 2-29
maximum LWPs, 2-29
maximum processes, 2-29
networking and, 6-20
number of processors, 2-29
on which LWP is running, 2-21
pageout I/O operations, 3-20
signals, 2-11
system calls, 2-9
time, 2-15
per-LWP, 2-21
time interruptions, 2-9
time slice, 2-33
total time, 2-15
usage, 2-7
per—process, 2-7
system-wide, 2-8

CPU set, initial processes and, 2-32
cron, 1-5

CSF, 7-8

csh, editread and, 5-2

Current locale, Glossary-1
Customer Support Center (CSC), v
Cylinder, Glossary-2

D

Daemon, Glossary-3

DAR, 4-1, 4-7, Glossary-2
anniversary size, 4-7
displaying information, 4-8
fragmentation, 4-8

Data
initialized, 3-3
interleaving across several disks, 4-3
performance, 1-3
uninitialized, 3-3
writing to disks simultaneously, 4-2

Data block, 4-2, Glossary-3

Data element, 4-2, 4-6, Glossary-3
Data file pages, 3-2, 3-13

Data General, contacting, v

Data General on the World Wide Web,
A%

Data location, 4-7

Data transfers, 6-18
DATA_FILE_LIMIT parameter, 7-13
Database products, 4-4

DBMS, 5-5

Decision support benchmark test, 7-26
Device descriptions, 5-1

dg_affine, 7-22

dg_mknod, 4-6, 4-21

dg_strace command, 2-13
Directories, breaking up large, 1-7
Directory block reads, 4-24

Dirty pages, 3-3

Disk, 4-3

average service, 4-8

bad blocks, 4-20
remapping, 4-20

block, 4-3

fragmentation, 4-7, 4-8

percent busy, 4-24

performance questions, 1-9

raw, 4-3

read and write requests, 4-28

read requests, 4-27

reads, 4-27

reads and writes, 4-27

requests waiting to be serviced, 4-26

response time, 4-28

service time, 4-28

virtual, 4-2, 4-10
I/O statistics, 4-11
volume, 4-2

wait time, 4-28

write requests, 4-29

Index-4

Disk (continued)
write verification, 4-20
writes, 4-29

Disk allocation region. See DAR
Disk array, 4-22, Glossary-3

Disk caching, 4-12
access weight number, 4-13
backend, 4-12
frontend, 4-12
metadata and, 4-15
networks and, 6-26
tuning and, 4-14

Disk 1/0, 1-2, 4-1
ccNUMA, 7-14
statistics, 4-24

Disk load, 4-10

Disk Memory Access, Glossary-4
Disk mirroring, 4-18

Disk module, Glossary-3

Disk paths, 7-14

Disk performance, networking and,
6-20

Disk performance, gathering statistics,
4-35

Disk sectors, Glossary-4
Disk striping, 4-17
Disk transfer rate, Glossary-4

Diskless client performance,
networking and, 6-20

Dispatcher, 2-2
FIFO policy, 2-35
latency, 2-33
LIFO policy, 2-35

dketl, 4-20
DMA, Glossary-4
Document sets, iii
dskiocusage, 4-35
dump, 4-8

dump2, 4-8
dumpfs, 4-6, 4-8, 4-21

E

editread, 5-2

Elapsed time, 2-15
Element, data, 4-2, 4-6
ELF, Glossary-4

ELF executable, 3-2
emacs, 5-3

Environment
local system, 6-19
network, 6-13

Ethernet, 6-14, Glossary-4
statistics, 6-11

exec system calls, 2-26
EXEC_POLICY parameter, 7-4, 7-5
EXECHOMEBIAS parameter, 7-5
Extended physical address mode, 3-19

F

Far memory, 7-1, Glossary-4
Fast recovery file systems, 4-19

FAVORLOCALINACTIVEPATHS
parameter, 4-34, 4-35

FDDI, 6-15
FFM, Glossary-5
Fiber Distributed Data Interface, 6-15
Fibre channel, Glossary-4
File
anniversary size, 4-7
ccNUMA, 7-2

creating, 4-21
location of data in, 4-7

File data element sizes, 4-6
modifying, 4-6

Index-5

specifying, 4-6

File descriptors
hard, 2-31
soft, 2-30

File size, 4-32
File synchronization, 4-20

File system, 1-2, 4-1, 4-6, Glossary-5
accounting, 4-30
buffers and NFS clients, 4-33
ccNUMA, 7-2
configuration variables, 4-30
creating, 4-21
displaying information, 4-6
fast recovery, 4-19
maximum buffer age, 4-30
maximum metadata age, 4-30
memory, 4-19
metadata, 4-2
modifying, 4-21
performance questions, 1-9
size, 4-9

File system name cache miss, 4-25

File system operations
input, per-process, 3-8
output, per-process, 3-8

File system tools, 4-21
File table size, 4-25

FILE_PERCENT_LIMIT parameter,
7-11

Files, open
default, 2-30
maximum, 2-31

Fill from file page faults, 3-14
Floating point exceptions, 2-16
fork system calls, 2-26
FORK_POLICY parameter, 7-4
FORKHOMEBIAS parameter, 7-5
Format conventions, iv
Fragmentation, 4-7, 4-8

Frame, Glossary-5

Frames purged, 3-11
bound, 3-10

Free memory frames, 3-12
FREERNODE parameter, 4-32
Freeswap, 3-3, 3-7

fsck logging, 4-19

FTP, 6-22
compress and, 6-23
pack and, 6-23
scheduling transfers, 6-23

ftp, Glossary-5
FULL_IS0O9660 parameter, 4-33
Fully—connected 1/0, Glossary-5

G

gated routing daemon, 6-16
Gateways, 6-18
Group, Glossary-5

H

Handles, 4-32

Hard descriptor limit, 2-31

Hard page faults, 3-2, 3-8, 3-14

per-process, 3-9

HASH_SYSBUFS_PER_FS parameter,
4-31

HDESLIM parameter, 2-31

Heads, Glossary-6

High-availability disk system,
Glossary-6

HOGFILESIZE parameter, 7-12

HOGSFILESIZE parameter, 4-31

Home locale, Glossary-7

Host, 6-2
collecting information from, 6-9
local, 6-2
remote, 6-2
checking, 6-3
logging in to, 6-21
transferring files to, 6-22

Index-6

I/0
disk, 4-1
input rate, 5-1
output rate, 5-1, 5-4
terminal, 5-1

I/O request, controlling locale, 4-34
Idle time, 2-8, 2-23
INITCPUMASK parameter, 2-32
Inode table size, 4-25

Inodes, 4-2, Glossary-7

remote-mounted, in-use versus free,
4-32

Input mode
canonical, 5-1, 5-2, 5-3
raw, 5-1, 5-2, 5-4

Input rates, 5-1

Interactive level adjustments, 2-34
ccNUMA, 7-7

Interface, 6-2
monitoring traffic on, 6-7

Internet, v, vi, 6-2, Glossary-7

Interrupts, 2-11
ccNUMA, 7-22
modem, 5-4
port service, 5-2
terminal devices

received from, 5-4
transmitted to, 5-4

IOSTATS parameter, 4-35
IPC, Glossary-7

J

Job Processor (JP), definition of, 2-2
Job scheduling, 1-5

K

Kernel, Glossary-8
activating parameter changes, 7-23

Kernel anonymous pages, 3-5, 3-13
Kernel data cache, Glossary-8
Kernel memory allocation, 3-12
Kernel pageable memory pool, 3-19
Korn shell, 5-3

L
LAN, 6-2
ccNUMA, 7-20
LANalyzer, 6-5
Languishing, 2-6, 2-34

Latency, 6-15, 6-22, Glossary-8,
Glossary-11
ccNUMA, 7-2

1d, 3-2

LIFO parameter, 2-35
Lightweight process. See LWPs
Lines, terminal, 5-2

Load average, 2-12, 2-26

Load balancing, ccNUMA, 7-1, 7-6
LOADBALAGGR parameter, 7-6
LOADBALMAXRSS parameter, 7-7
Local area network, 6-2

Local host, 6-2

Local system environment, 6-19

Locale, Glossary-8
ccNUMA description, 7-1
controlling for I/O request, 4-34

Locks
held by remote processes, 4-32
process maximum, 4-32

Logging in to a remote host, 6-21
Logical reads, 4-25

Index-7

Logical writes, 4-25

LWP groups, 2-1
binding, 2-3
binds, 2-24
bound, 2-25
bound runnable, 2-25
context switches, 2-10
eligible, 2-3, 2-25
running, 2-2
scheduling, 2-2
unbinding, 2-6
unbinds, 2-28
unbound, 2-28
unbound runnable, 2-4, 2-28
user maximum, 2-30

LWPs, 2-1
active, 2-21
conditional variable, 2-22
ID, 2-21
join target 1D, 2-21
joining, 2-21
maximum ready to run, 2-34
minimum ready to run, 2-34
mutex, 2-21
priority, 2-21
running, 2-2
scheduling class, 2-22
state, 2-22
statistics, 2-21
user maximum, 2-30
waiting, 2-21

m

malloc, 3-4
Mapping, 3-1, Glossary-8
master.d directory, 1-5

MAX BUF_BLOCKS_TO_FREE_PER_
LOCALE parameter, 4-5, 4-33, 7-17

MAX_PERCENT_BUF _RELEASE_TR
IGGER parameter, 4-5, 4-33, 7-17

MAX_SYSBUF_HASH_BUCKETS
parameter, 4-30

MAXAFFINITYSLICE parameter,
2-33, 7-7

MAXBOUND parameter, 2-4, 2-34

MAXBUFAGE parameter, 3-5, 3-11,
4-30
NFS and, 6-26

MAXFILEUNITSIZE parameter, 4-31,
7-13

MAXGLOBALSQS parameter, 2-31

Maximum resident memory size,
Glossary-8

MAXLATENCY parameter, 2-25, 2-33
MAXPAGEOUTS parameter, 3-20
MAXSLICE parameter, 2-8, 2-25, 2-33

MAXSYSBUFAGE parameter, 4-5,
4-30

MAXULWP parameter, 2-30
MAXULWPGROUPS parameter, 2-30
MAXUP parameter, 2-30

MCL, 7-20

Medium Term Scheduler. See MTS

Memory, 1-2, 3-1
available swap space, 3-7
ccNUMA, 7-2, 7-10
configuration variables, 3-19
kernel
non-pageable requests, 3-12
failed, 3-12
non-pageable memory pool, 3-12
pageable memory pool, 3-12, 3-19
pageable requests, 3-12
failed, 3-12
latencies on ccNUMA, 7-2
maximum bytes per file data
element, 4-31
maximum per file, 4-31
percent occupied by data files, 4-31
percent reserved for system buffers,
4-31
performance questions, 1-8
physical, 3-19
process size, 2-17

Index-8

Memory (continued)
resident, per-process, 3-9
resident pages, 3-2
resident shared, 3-9
resident unshared, 3-9
stack pages, 3-9
shared
configuration variables, 3-20
memory identifiers, 3-20
memory segments, 3-20
maximum size, 3-21
minimum size, 3-21
statistics, 3-9
per-process, 3-8
swap space, per-process, 2-17
swapping, 3-6
thrashing, 3-7

Memory file systems, 4-19

Memory frames, free, 3-12

Memory mapping, Glossary-8

Memory object, Glossary-9

Message operations, 2-26

Message queue, 2-35, Glossary-9
size, 2-35

Messages
configuration variables, 2-35
maximum, 2-35
size, 2-35

Metadata, 4-2, Glossary-9
logical reads, 4-25
logical writes, 4-25
physical read requests, 4-26
physical reads, 4-25
physical write requests, 4-26
physical writes, 4-26
read cache, 4-26
write cache, 4-26

Metadata buffering, 4-4

Migration, process on ccNUMA, 7-6
MIGRATIONAGGR parameter, 7-6
MINBOUND parameter, 2-5, 2-34, 3-8
Mirroring, 4-2, 4-18, Glossary-9

mkfs, 4-6, 4-9, 4-21
mmap, 3-3

Modem interrupts, 5-4
statistics, 5-4

monitor, 1-4

mount, 4-20

MPL, 7-20

MSGMAX parameter, 2-35
MSGMNB parameter, 2-35
MSGMNTI parameter, 2-35
MSGTQL parameter, 2-35
MTS, 2-2, 2-3, 2-5
Multi—Connected LAN, 7-20
Multi—Path LAN, 7-20
Multiuser benchmark test, 7-24
Mutex, 2-21

Mxdb, 1-4

mxprof, 1-4

N

Nagle Small Packet Avoidance, 6-24
NCLIENTOPS parameter, 4-32
NCPUS parameter, 2-29

Near memory, 7-2, Glossary-9
netstat, 6-7

Network, 6-2
architecture, 6-2
ccNUMA, 7-17
collisions, 6-11, 6-14
connections, 6-19
detecting bad packets, 6-19
disk caching and, 6-26
displaying routes, 6-6
displaying status information, 6-7,

6-9
Ethernet, 6-14
statistics, 6-11

FDDI, 6-15

Index-9

gateways, 6-18

Internet, 6-2

local area, 6-2

media choice, 6-13
monitoring traffic on, 6-7
performance questions, 1-11
protocol statistics, 6-7
reading data from, 6-4
routing, 6-16

statistics, 6-9

subnets, 6-15

testing end-to-end throughput, 6-13
token ring, 6-14

traffic generator, 6-13

wide area, 6-2

Network analysis, 6-3
tools, 6-3

Network analyzer, 6-5
Network environment, 6-13
Network file converter. See nfc

Networking, 1-2, 6-1
ccNUMA, 7-17
CPU performance and, 6-20
disk performance and, 6-20
diskless client performance and, 6-20
ftp, 6-22
NFS, 6-26
analyzing usage, 6-26
performance questions, 1-11
rlogin, 6-21
STREAMS, 6-28
requirements, 6-29
TCP/IP, 6-21
tuning, 6-23
telnet, 6-21
UX/RPM data, 6-28

nfc, 6-6

NFS, 6-26
analyzing usage, 6-26
displaying
NF'S operations, 6-27
NFS visible network errors, 6-27
nfsstat, 6-27

retransmissions, 6-27

NFS, Glossary-9
client, Glossary-10
server, Glossary-10

NFS daemons, CPU set, 4-32

NFSDEMONSCPUMASK parameter,
4-32

NFSLOCKUSERLIMIT parameter,
4-32

nfsstat, 6-27

nice, 1-6, 2-19

Nice value, 2-19

NIS, Glossary-10

NLOG parameter, 6-30

NLWP parameter, 2-29
NLWPGROUPS parameter, 2-29
NMUXLINK parameter, 6-30
NOILEVEL parameter, 2-34, 7-7

NOLANGUISHING parameter, 2-7,
2-34

Non-fault operations, 3-4
NPIPE parameter, 6-30
NPROC parameter, 2-29
nps, 1-3

NQUEUE parameter, 6-29
nsar, 1-3

nsar(1) performance tool, for statistics
reporting, 4-35

nsar(1) performance tool, ccNUMA
version, 7-21

nsar_numa(l) performance tool, 7-21

NSTRDEMONS parameter, 2-32, 6-30,
7-18

NSTREVENT parameter, 6-31
NSTRPUSH parameter, 6-29
NUMA, server, Glossary-10

Index-10

(0

OLTP, 7-25

OLTP benchmark test, 7-25

On-Line Transaction Processing, 7-25
ops, 1-3

Output rates, 5-1, 5-4
statistics, 5-4

P

P6_EPA_OVERRIDE parameter, 3-19

Packets
displaying routes of, 6-6
information about, 6-4

Page, 3-1, Glossary-10
Page cleaning daemon, 3-5

Page fault

copy on write, 3-3, 3-15

fill from file, 3-14

hard, 3-2, 3-8, 3-14
per-process, 3-9

soft, 3-2, 3-14
per-process, 3-9

user, 3-13

Page placement, 7-10, 7-11
alternate policies, 7-13

Pages

anonymous
allocated, 3-10
available, 3-10
reserved, 3-3, 3-10
total, 3-3, 3-10

clean, 3-2

data file, 3-2, 3-13

dirty, 3-3

kernel anonymous, 3-5, 3-13

paged-in, 3-15
requests, 3-15

paged-out, 3-15
operations, 3-15, 3-20

alternate placement policy on
ccNUMA, 7-13

placement policy on ccNUMA, 7-10,
7-11

private anonymous, 3-3, 3-13

program file, 3-2, 3-13

reserved anonymous, 3-3

resident, 3-2

shared anonymous, 3-4, 3-13

total anonymous, 3-3

Paging area. See Swap area
Paging statistics, system, 3-16
Parameters, system, 1-4

PATH environment variable, 1-6
Pathname resolution, 4-26

PERCENTBUF parameter, 1-9, 3-4,
3-11, 4-3, 4-31

PERCENTLOCKABLE parameter,
3-19

PERCENTSTR parameter, 6-28, 6-29

PERCENTSYSBUF parameter, 4-5,
4-31

Performance
adjustment tools, ccNUMA, 7-22
analysis tools, 1-3, 7-21
benchmark tests, 7-24
AIM-7, 7-24
TCP-C, 7-25
TCP-D, 7-26
ccNUMA, 7-1
data, 1-3
disk I/O questions, 1-9
file system questions, 1-9
general tips, 1-5
introduction, 1-1
memory questions, 1-8
networking questions, 1-11
terminal I/O questions, 1-11
tunable parameters, 1-4

Performance, gathering statistics, 4-35
Physical disk, Glossary-10

Physical memory, 3-1
configured, 3-19

Index-11

extended address mode (P6), 3-19
percent lockable, 3-19

Physical read requests, 4-26
Physical reads, 4-25
Physical write requests, 4-26
Physical writes, 4-26

ping, 6-3

Pipe, Glossary-10

Pipe devices, 6-30

Poaching, 7-5, Glossary-10
Port services, 5-2

POSIX and chown, 4-32
Priority, lowering, 1-6
Private anonymous pages, 3-3, 3-13

PRIVATE_PERCENT_LIMIT
parameter, 7-11

PRIVATE_POLICY parameter, 7-10,
7-11

Process, 2-1
ccNUMA
locale affinity, 7-22
management, 7-2
migration, 7-6
poaching, 7-5
command name, 2-16
configuration variables, 2-29
CPU usage, 2-7
ID, 2-16
languishing, 2-34
memory statistics, 3-8
nice value, 2-19
parent ID, 2-16
performance questions, 1-7
priority value, 2-20
scheduling class, 2-18
size, 2-17
state, 2-17
statistics
per-process, 2-15
system-wide, 2-23
swap space, 2-17

tracing, 2-13
user ID, 2-20
user name, 2-20
utilization, 2-18
Process statistics, 1-3
Process switches. See Context switches

Process table
overflow, 2-26
size, 2-27

Processes, 2-1, 2-27

binds. See LWP groups, binds

bound. See LWP groups, bound

bound runnable. See LWP groups,
bound runnable

ccNUMA, 7-2

eligible. See LWP groups, eligible

interactive, 2-18, 2-34

short-lived, 2-8, 2-9

unbinds. See LWP groups, unbinds

unbound. See LWP groups, unbound

unbound runnable. See LWP groups,
unbound runnable

user maximum, 2-30

Processors, 2-27

prof, 1-4

Profiling, 1-4

Proformance, process questions, 1-7
Program file pages, 3-2, 3-13

Protocol, 6-2
displaying statistics, 6-7

ps, 1-3

Pseudo-terminals, 5-4
configuration variables, 5-4

PTYCOUNT parameter, 5-4
Purging, 3-10

R
RAID, Glossary-11
RAID5, 4-22

RAM disk, Glossary-11

Index-12

Raw disk, 4-3 ruptime, 2-12
buffering and, 4-4 rwhod, 2-12
Raw input mode, 5-1, 5-2, 5-4
statistics, 5-4

Read cache, 4-4, 4-26 S

read system calls, 4-27 sar, 1-3
bytes transferred, 4-27 Scheduler, configuration variables,
2-33

Related manuals, iii

Remote host, 6-2
checking, 6-3

Scheduling, 2-3, 2-5, Glossary-12
LWP groups, 2-2

logging in, 6-21 Scheduling class, 2-18
renice, 1-6, 2-19 i%gﬁirzl_%;vith CSF, 7-8
Requests waiting for service, 4-26 Scheduling jobs, 1-5
Reserved anonymous pages, 3-3 Scheduling priority, 2-20
Resident memory LWP, 2-21

maximum size, per-process, 3-9 Scheduling queue, 2-3

size, per-process, 3-9
perp SCSI, Glossary-12

SDESLIM parameter, 2-30
Search path variables, 1-6

Resident pages, 3-2
Resident shared memory, 3-9

Resident unshared memory, 3-9 Sectors, Glossary-6

Resourqes Seek time, Glossary-12
questions about performance, 1-7
system, 1-2 SEMAEM parameter, 2-36
Response time, 4-28 Semaphore operations, 2-27
restore, 4-8 Semaphore sets, 2-35

Semaphores, Glossary-12
adjust-on-exit, 2-36

Retransmission, Glossary-11 configuration variables, 2-35

rlogin, 6-21 maximum number of, 2-35

maximum value, 2-36

processes and adjust-on-exit, 2-36

routed routing daemon, 6-16 semop call and, 2-36

undo entries, 2-36

SEMAPM parameter, 2-36
SEMMNI parameter, 2-35

Restoring files, fragmentation and, 4-8

Rotational latency, Glossary-11

Routes, displaying with traceroute, 6-6
Routing, 6-16

Routing daemons

gated, 6-16 SEMMSL parameter, 2-35
routed, 6-16 SEMOPM parameter, 2-36
RPC, Glossary-12 SEMUME parameter, 2-36

Run queues, 1-11, 2-13 SEMVMX parameter, 2-36

Index-13

Service, disk, 4-8, 4-28

sh, editread and, 5-2

Shared anonymous pages, 3-4, 3-13
Shared libraries, 3-2

Shared library, Glossary-12

Shared memory, Glossary-12
configuration variables, 3-20
memory identifiers, 3-20
memory segments, 3-20

maximum size, 3-21
minimum size, 3-21

SHARED_MEM_LIMIT parameter,
7-13

SHARED_PERCENT_LIMIT
parameter, 7-12

SHARED_POLICY parameter, 7-10,
7-11

Shell scripts, 2-8

SHMMAX parameter, 3-21
SHMMIN parameter, 3-21
SHMMNI parameter, 3-20
SHMSEG parameter, 3-20
Short-lived processes, 2-8, 2-9

Signals, 2-11
per-process, 2-20

Simple Network Management Protocol.

See SNMP

SMP, Glossary-13
relationship to ccNUMA, 7-1

SNMP, 6-9
displaying Ethernet statistics, 6-11
using to check collision rates, 6-11

Soft descriptor limit, 2-30

Soft page faults, 3-2, 3-14
per-process, 3-9

Spindle, Glossary-3
SRVNOTNEEDED parameter, 4-33

Statistics

and nsar(1) performance tool, 4-35
anonymous pages
allocated, 3-10
available, 3-10
reserved, 3-10
total, 3-10
binds, 2-24
per-process, 2-16
canonical mode, 5-3
command name, 2-16
context switches, 2-25
per—process
involuntary, 2-16
involuntary (LWP), 2-16
voluntary, 2-16
voluntary (LWP), 2-16
CPU time
per-process, 2-15
total per-process, 2-15
directory block reads, 4-24
disk, percent busy, 4-24
disk I/0, 4-24
elapsed time, per-process, 2-15
exec system calls, 2-26
file system name cache miss, 4-25
file system operations, 3-8
file table size, 4-25
floating point exceptions, 2-16
fork system calls, 2-26
frames purged, 3-11
bound, 3-10
free memory frames, 3-12
gathering for disk performance, 4-35
idle time, 2-23
inode table size, 4-25
kernel memory, 3-12
load averages, 2-26
LWP groups
binds, 2-24
bound, 2-25
bound runnable, 2-25
eligible, 2-25
unbinds, 2-28
unbound, 2-28
unbound runnable, 2-28

Index-14

Statistics (continued)
LWPs, 2-21
active LWPs, 2-21
conditional variable, 2-22
CPUID, 2-21
CPU time, 2-21
join target LWP ID, 2-21
LWP ID, 2-21
LWP state, 2-22
mutex, 2-21
priority, 2-21
scheduling class, 2-22
waiting LWPs, 2-21
memory, 3-9
per-process, 3-8
message operations, 2-26
metadata
logical reads, 4-25
logical writes, 4-25
physical read requests, 4-26
physical reads, 4-25
physical write requests, 4-26
physical writes, 4-26
read cache hits, 4-26
write cache hits, 4-26
modem interrupts, 5-4
nice value, 2-19
output rates, 5-4
page faults
copy on write, 3-15
fill from file, 3-14
hard, 3-14
per-process, 3-9
soft, 3-14
user, 3-13
parent process ID, 2-16
pathname resolution, 4-26
process
per-process, 2-15
system-wide, 2-23
process class, 2-18
process 1D, 2-16
process priority value, 2-20
process size, 2-17
process state, 2-17
process table
overflow, 2-26

size, 2-27
process utilization, 2-18
processes, 2-27
processors, 2-27
queue, 4-26
raw mode, 5-4
read and write requests, 4-28
read requests, 4-27
read system calls, 4-27
bytes transferred, 4-27
reads, 4-27
reads and writes, 4-27
requests waiting for service, 4-26
resident memory, 3-9
shared, 3-9
unshared, 3-9
response time, 4-28
semaphore operations, 2-27
service time, 4-28
signals, 2-20
swap space
allocated, 3-10
per-process, 2-17
system calls, 2-28
system paging, 3-16
system time, 2-23
per-process, 2-15
terminal devices
receive interrupts, 5-4
transmit interrupts, 5-4
terminal I/O, 5-3
user ID, 2-20
user name, 2-20
user time, 2-24
per-process, 2-15
wait time, 4-28
write requests, 4-29
write system calls, 4-29
bytes transferred, 4-29
writes, 4-29

STRDEMONSCPUMASK parameter,

2-32

STREAMS, 6-28

ccNUMA, 7-18

configuration variables, 6-29, 7-18
CPUs and, 2-32

demons at initialization, 2-32, 6-30

Index-15

log devices, 6-30
log messages, 6-30
message

control portion, 6-29

data portion, 6-29
multiplexors, 6-30
physical system memory, 6-29
pipe devices, 6-30
requirements, 6-29
signal delivery requests, 6-31
system memory and, 6-28

STREAMS queues, 6-29

Stripe unit, Glossary-13
Striping, 4-3, 4-17, Glossary-13
STRMCTLSZ parameter, 6-29
STRMSGSZ parameter, 6-29
stty, 5-1

Subnets, 6-15
routing, 6-16

Swap area, 3-3, Glossary-13
adding, 3-6
using equal, 3-6

Swap pages, 3-10

Swap space, 3-3, 3-7, Glossary-14
available, 3-3
per-process, 2-17
percent allocated, 3-10
running out of, 3-3

Swapping, 3-6
Switches, context, 2-10

Symmetric Multi—Processor
architecture, Glossary-13

Synchronization queues, maximum,

2-31
synchronous I/O, affected by

AFFINE_IO_TO_THREAD, 4-34

sysadm, 1-3
System, CPU usage, 2-8

System activity statistics, 1-3

System calls, 1-3, 2-9, 2-28
tracing, 2-13

System load average. See Load average
System paging statistics, 3-16
System parameters, 1-4

System performance
ccNUMA, 7-1
introduction, 1-1

System resources, 1-2
CPU, 1-2
disk I/O, 1-2
file system, 1-2
memory, 1-2
networking, 1-2
terminal I/O, 1-2

System time, 2-8, 2-23
per-process, 2-15

T

tar, 4-9
TCP Delayed Acknowledgement, 6-25

TCP/IP, 6-21
buffers and, 6-23
ccNUMA, 7-18
ftp, 6-22
Nagle Small Packet Avoidance, 6-24
rlogin, 6-21
TCP Delayed Acknowledgement,
6-25
telnet, 6-21
ccNUMA, 7-20
tuning, 6-23

tecpdump, 6-4
converting capture file to Network
General Sniffer file, 6-6

Telnet, 6-21
ccNUMA, 7-20

TERM environment variable, 5-1

Index-16

Terminal devices
receive interrupts, 5-4
statistics, 5-4
transmit interrupts, 5-4
statistics, 5-4

Terminal I/0, 1-2, 5-1
performance questions, 1-11
statistics, 5-3

Terminal lines, 5-2
Terminal port interrupts, 5-2

Thrashing, 1-9, 2-5, 3-7
using data file purges to detect, 2-35

Threads, 2-1, 2-11
kernel-level, 2-1

Throughput, 6-22
testing, 6-13

Time
idle, 2-8
system, 2-8
user, 2-8
timex, 1-4
Tips, general performance, 1-5
Token ring network, 6-14

Tools
file system, 4-21
network analysis, 6-3
performance analysis, 1-3

Total anonymous pages, 3-3

TPC—C benchmark test, 7-25
recommended variable settings, 7-25

TPC-D benchmark test, 7-26
recommended variable settings, 7-26

traceroute, 6-3, 6-6, 6-17
Tracing processes, 2-13
Tracks, Glossary-6
Transferring files, 6-22

Transient data, 2-3
bound, 2-6

ttep traffic generator, 6-13

Tty lines
identifying bad, 5-2
tracking usage, 5-2

ttymon port services, 5-2
ttyname, 4-5
tunefs, 4-6, 4-9, 4-21

U

Unbinds, 2-6, 2-28

Unbound runnable LWP groups, 2-4,
2-28

UPOOL_MIN parameter, 3-19
USEFILEPURGES parameter, 2-35
User ID, 2-20
User name, 2-20
User page faults, 3-13
User search path variables, 1-6
User time, 2-8, 2-24

per-process, 2-15
USERLOCKLIMIT parameter, 4-32
UX/RPM, 1-4

v

VDM
ccNUMA, 7-14
configuration variables, 4-34
controlling locale of I/O request, 4-34
gathering statistics for disk
performance, 4-35
operations, 4-34
vi, 5-3
Virtual disk, ccNUMA, 7-14
Virtual disk, 4-2, 4-10
I/0 statistics, 4-11
size, 4-9
gathering statistics for I/O, 4-35
volume, 4-2

Index-17

Virtual Disk Management operations, World Wide Web, Data General on the,
4-34 v, vi
Virtual Disk Management operations, Write cache, 4-26
ccNUMA, 7-14
write system calls, 4-29
Volume, 4-2 bytes transferred, 4-29
VP, 2-2
Write verification, 4-20
w
Wait time, 4-28 Z
WAN, 6-2

ZERODISKBLOCKS parameter, 4-34,
Wide area network, 6-2 4-35

Analyzing DG/UX® System Performance

069-701142-03
N YOO AR

Analyzing DG/UX®° System Performance

	Analyzing DG/UX System Performance
	Notice
	Preface
	How this manual is organized
	Related Data General manuals
	Format conventions
	Contacting Data General
	Manuals
	Telephone assistance

	Data General on the World Wide Web
	Data General Users Group

	Contents
	Tables
	Figures

	Chapter 1 - DG/UX System Performance
	Monitoring and Analyzing System Performance
	System Resources
	CPU
	Memory
	File Systems and Disk I/O
	Terminal I/O
	Networking

	ccNUMA
	DG/UX Systems

	Sources of Performance Data
	System Activity: sar, nsar, nsar_numa
	Process Activity: ops, nps, timex, acct, prof
	System Activity and Debugging: UX/RPM, Mxdb, mxprof

	Configuration Variables and Performance Tuning
	General Performance Strategies
	Job Scheduling and Backups During Off-Peak Hours
	Efficiency of Search Path Variables
	Reduction of Directory Sizes

	Resource Questions and Performance Strategies
	Process Performance Questions
	Memory Performance Questions
	File System and Disk I/O Performance Questions
	Terminal I/O Performance Questions
	Networking Performance Questions
	ccNUMA Performance Considerations

	Chapter 2 - CPU and Processes
	CPU and Process Terms
	Scheduling
	Medium Term Scheduler (MTS)

	CPU Usage
	CPU Time Interruptions
	System Load Average
	Run Queues

	Process Tracing
	Specifying the System Calls to Trace
	Tracing Processes in Running Programs
	Controlling dg_strace Command Output
	dg_strace Command Caveats

	Per-Process Statistics
	Per–LWP Statistics
	System-Wide Process Statistics
	Configuration Variables
	CPU and Process Configuration Variables
	Scheduler Configuration Variables
	Message Configuration Variables
	Semaphore Configuration Variables

	ccNUMA Process Management and Scheduling

	Chapter 3 - Memory
	Typical DG/UX Memory System Behavior
	Swapping
	Thrashing
	Hard Page Faults
	Per-Process Memory Statistics
	System-Wide Memory Statistics
	System Paging Statistics

	Memory Configuration Variables
	Shared Memory Configuration Variables
	ccNUMA Memory Management

	Chapter 4 - File Systems and Disk I/O
	File System and Disk I/O Terms
	Disks
	Buffering
	Metadata Buffering

	File System
	File Data Element Sizes
	Keeping Data Close Together
	Fragmentation
	File System Size

	Virtual Disks
	Balancing the Disk Load
	Balancing the Load Between Controllers
	Disk Caching
	Software Data Striping
	Software Disk Mirroring
	Memory File Systems
	Fast Recovery File Systems
	Other Concerns

	File System Tools
	mkfs
	tunefs
	dg_mknod
	dumpfs
	cpd

	Disk Arrays
	Disk I/O Statistics
	File System Configuration Variables
	VDM Configuration Variables
	ccNUMA Virtual Disk Management

	Chapter 5 - Terminal I/O
	Terminal Lines
	Terminal Port Interrupts
	Editread
	Terminal I/O Statistics
	Pseudo–Device Unit Count Variables

	Chapter 6 - Networking
	Networking Terms
	Introduction to Network Analysis
	Analysis Tools

	Network Environment
	Ethernet
	Token Ring and FDDI
	Subnetting
	Routing Considerations
	Gateways and Data Transfers
	Network Connections

	Local System Environment
	CPU Performance
	Disk Performance
	Diskless Client Performance

	TCP/IP and Its Utilities
	Telnet and rlogin
	FTP
	TCP/IP Tuning

	NFS
	Analyzing NFS Usage

	STREAMS
	STREAMS Configuration Variables

	ccNUMA Communications Management

	Chapter 7 - ccNUMA System Performance
	Key Concepts for Improving ccNUMA Performance
	Load Balancing
	Memory
	Files and File Systems

	Process Management on ccNUMA Systems
	Scheduling Processes
	Initial Home Fork and Exec Placement Configuration Variables
	Process Poaching and Migration Configuration Variable
	Load Balancing Configuration Variables
	Interactive Level Computation Configuration Variable
	Defining Application Start-Up Characteristics with the Class Scheduling Facility

	Memory Management on ccNUMA Systems
	Page Placement Policy Configuration Variables
	Frame Hog Prevention Configuration Variables
	Page Monopoly Prevention Configuration Variables
	Alternate System Placement Policies

	Virtual Disk Management on ccNUMA Systems
	Tuning Disk I/O
	Disk I/O Performance
	Disk High Availability
	Disk Path Repair

	File System Management on ccNUMA Systems
	File System Buffer Configuration Variables

	Communications Management on ccNUMA Systems
	STREAMS Configuration Variable
	TCP/IP
	Multi-Connected LAN

	Monitoring ccNUMA Performance with nsar_numa
	ccNUMA Performance Adjustment Tools
	Controlling Process Locale Affinity with dg_affine and CSF
	Controlling Interrupt-to-CPU Targeting with adminterrupt
	Activating Configuration Variable Changes with admkernelparam

	Performance Benchmark Tests and Characteristics
	AIM–7 Benchmark
	TPC–C Benchmark
	TPC–D Benchmark

	Glossary
	Index

