
Whitesmiths, Ltd.

IDRIS PROGRAMMERS* MANUAL

Date; January 1985

yh/O*?

The C language was developed at Bell Laboratories by Dennis Ritchie;
Whitesmiths, Ltd. has endeavored to remain as faithful as possible to
his language specification. The external specifications of the IDRIS
operating system, and of most of its utilities, are based heavily on
those of UNIX, which was also developed at Bell Laboratories by Dennis
Ritchie and Ken Thompson. Whitesmiths, Ltd. gratefully acknowledges
the parentage of many of the concepts we have commercialized, and we
thank Western Electric Co. for waiving patent licensing fees for use
of the UNIX protection mechanism.

The successful implementation of Whitesmiths' compilers, operating
systems, and utilities, however, is entirely the work of our program
ming staff and allied consultants.

For the record, UNIX is a trademark of Bell Laboratories; IAS,
RSTS/E, VAX, VMS, P/OS, PDP-11, RT-11, RSX-11M, and nearly every other
term with an 11 in it all are trademarks of Digital Equipment Corpora
tion; CP/M is a trademark of Digital Research Co.; MC68000 and VER-
SAdos are trademarks of Motorola Inc.; ISIS and iRMX are trademarks

of Intel Corporation; A-Natural, IDRIS, and ctext are trademarks of
Whitesmiths, Ltd. C is not.

Copyright (c) 1978, 1979, 1980, 1981, 1982, 1983, 1981, 1985

by Whitesmiths, Ltd.

All rights reserved.

SECTIONS

I. Whitesmlthlng

II. IDRIS System Interface

III, Programming File Formats

IV, IDRIS Support Library

SCOPE

This manual is meant to familiarize the more technically sophisticated
user with the IDRIS program development environment. Section I
provides tutorial descriptions introducing the environment and tools

used to build new programs. Section II contains descriptions of the
system calls and other routines that constitute the IDRIS system in
terface across various machines. Section III details the formats of

numerous files used by the IDRIS resident or utilities that are of
particular note to programmers, while Section IV documents library
routines developed for use with the IDRIS utilities.

Tutorials and detailed descriptions of standard utilities, as well as
the System Administration Guide, may be found in the IDRIS Users*
Manual, More succinct documentation for the programming utilities,
may be found in the C Interface Manual for the appropriate target
machine; and the machine dependent aspects of each IDRIS implementa
tion are discussed in the IDRIS Interface Manual for each target
machine.

TABLE OF CONTENTS

I. Whitesmlthlng

Process rules for an IDRIS program 1-1
Link using link and related tools 1-5
Compile using the multi-pass compiler driver 1-8
Debug using the binary editor db I - 14
Headers standard include files 1-21

II. IDRIS System Interface

Interface IDRIS system interface II - 1
Conventions IDRIS system subroutines II - 4
_j)name program name II - 6
bkr set system break to address II - 7
chdir change working directory II - 8
chmod change mode of file II - 9
chown change owner of file II - 10
close close file 11-11

creat make new file II - 12

create open an empty instance of file II - 13
dup duplicate file descriptor II - 14
execl execute file with argument list II - 15
execv execute file with argument vector II - 17
exit terminate program execution II - 18
fork create new process 11-19
fstat get status of open file II - 20
getcsw get console switches II - 21
getegid get effective groupid. II - 22
geteuid get effective userid II - 23
getgid get real groupid II - 24
getmod get mode of file II - 25
getpid get processid II - 26
getuid get real userid II - 27
gtty get tty status II - 28
kill send signal to process II - 31
link create link to file II - 32
Iseek set file read/write pointer II - 33
mkexec make file executable II - 34

mknod make special inode II - 35
mount mount filesystem II - 36
nice set priority II - 37
onexit call function on program exit II - 38

onintr

open

pipe
profil
read

remove

sbreak

seek

setgid
setuid

signal
sleep
stat

stime

stty
sync

time

times

amount

uname

unlink

wait

write

xecl

xecv

capture interrupts II - 39
open file II - 'tO
set up data pipe II - '♦I
set profiler parameters II - ^2
read from file II - ^3
remove file....... II -
set system break II - ^5
set file read/write pointer II - 46
set groupid II - 47
set userid II - 48
capture signals II - 49
delay for awhile II - 50
get status of named file. 11-51
set system time II - 52
set tty status II - 53
synchronize disks with memory II - 54
get system time II - 55
get process times II - 56
unmount filesystem II - 57
create unique file name II - 58
erase link to file II - 59
wait for child to terminate II - 60
write to file 11-61
execute file with argument list II - 62
execute file with argument vector II - 63

III. Programming File Formats

Files - 1

bnames block device names pseudo file - 2

cnames character device names pseudo file - 3
core core dump format - 4

inodes resident inode list pseudo file - 5
kmem kernel memory pseudo file - 6

library standard library format - 7
mem user memory pseudo file - 8
mount resident mount list pseudo file... - 9

mm myps current user process status pseudo file - 10

object relocatable object file format - 11

profile profile dump format - 13
ps process status psuedo file - 14

IV. IDRIS Support Library

Conventions the IDRIS support library - 1

_penable control function entry counts in profiling - 2

_proend end profiling - 3

_profil start profiling -

askpw ask for password - 5

asure get user response to question - 6

atime convert time vector to ASCII string - 7

baudcode return code given speed text - 8

baudlist list of speeds supported by IDRIS drivers - 9

baudtext return text speed given speed code - 10

clrbuf clear standard sized buffer - 11

codepw encode password - 12

cpyi copy inode converting between native
and fllesystem - 13

cwd get current working directory - 14

devname get device name - 15

ename get pathname of entry in directory - 16

flushi flush out any pending inode writes - 17

ftime find modified or accessed time of file - 18

getblk get filesystem block - 19
getdn get device name - 20

geti get inode from filesystem - 21

getlinks read and sort directory - 22

getpw retrieve field from password file - 23
inblk find home block of inode - 24

ioff get inode offset within block - 25

Isize get size of file - 26

Islin convert inode information to readable form - 27
Itime convert system time to local time - 29
mapblk map logical block to physical - 30

mesg turn on or off messages to current terminal.... - 31
mkdir make directory - 32
QV move file - 33
parent get parent name of file. - 34
perm test permissions of file - 35

putblk put filesystem block - 36

puti put inode to filesystem - 37

rdir read directory on unmounted filesystem - 38

rmdir remove directory - 39

shell execute shell command escape - 40

vtime convert system time to Greenwich Mean Time - 41

wdir write directory to unmount filesystem - 42

who read and sort who file - 43

SECTION ONE

WHITESMITHING

Whitesmlthing Process

NAME

Process - rules for an Idris program

FUNCTION

Idris provides a relatively clean and simple execution environment.
Memory layout is straightforward, input/output is made to look identical
for a large variety of devices and files, and system services are packaged
as functionally cohesive routines. Programs thus tend to be small,
numerous, and reusable.

Such a world is sufficiently uncommon that it warrants a few introductory
remarks:

MEMORY

The execution of a program under Idris is called a "process", a term so
fundamental that it is used with a variety of connotations. Abstractly, a
process is the elaboration, over time, of the instructions spelled out in
a program file. More pragmatically, it is a piece of memory, together
with some control registers and secret notes kept by the resident, that is
initialized from a program file and that changes as the program executes.
Specifically, the secret notes in the resident are sometimes referred to
as the process; and at other times, the piece of memory plus control
registers that get copied about is called the process.

Regardless, the concept of a memory image evolving over time lies at the
heart of the matter. Idris confuses the issue greatly by supporting any
number of simultaneously executing processes, so the resident is con
stantly copying images about memory and even to a "swap" area on disk.
The image itself is thus the most concrete thing about a process.

The memory image that a programmer sees comes in two chunks, known as text
(instructions, or I-space) and data (variables, or D-space). The text
section (chunk) holds all the machine instructions for the program; if
produced by a compiler such as C or Pascal, these instructions are further
clumped into separate "functions". Idris cares little about this internal
structure. It commences program execution by transferring control to the
start of the text section, and it reserves the right to disallow changes
to the text section (i.e., it may write protect it). That's about it.

The data section is more elaborate. Its lowest (addressed) portion is
initialized from the data portion of the program file, parts of which may
remain unchanged (constants, tables) and parts of which may be altered in
time (variables). A program file may also specify that a certain number
of bytes, right above the initialized data area, be set aside and filled
with zeros at program startup; this "bss area" merely serves to save space
in the program file. Above the bss area is a space reserved for the bss
area to be expanded upward, to grow a "heap", and for a "stack" to grow
downward.

The stack is a last-in/first-out queue of local storage frames to support
recursive function calls. Both C and Pascal make extensive use of the

I - 1

Process Whitesmithing

stack. A heap is a data area from which chunks of storage can be al
located and freed in arbitrary order. Idris supports heap roamagement by
maintaining a "data break" address (part of the secret notes kept on
behalf of a process memory image); the data break is moved up only upon
request of the running program, to make room for more heap storage.
Should the heap (data break) and stack (stack pointer) ever meet or cross,
the process is deemed out of memory and is aborted. (It is sent the sig
nal SIGSEG, to be precise, which usually forces the process to terminate
abruptly.)

There is one further nicety about a process memory image. At program
startup, up to 512 characters worth of NUL terminated strings may be writ
ten at the very top of memory (bottom of stack), with pointers to these
strings pushed on the stack. Such strings are arguments passed to the new
program by the program that caused it to startup. They can be ignored or
modified as the new program sees fit, but usually they are used as a
highly convenient channel for obtaining input parameters.

So this text plus data, together with registers such as the stack pointer
and program counter, form the virtual machine upon which a process runs.
Depending upon the implementation of Idris, the text portion may be loaded
starting at location zero (in I-space), or both text and data may be
loaded at separate location zeros (separate I-space and D-space), or
neither may truly begin at zero. In the last case, the resident is
usually obliged to alter the program image at startup time, to
"rerelocate" it for the load address chosen. Once load addresses are

determined, however, they cannot change for the life of a program, lest
computed addresses be invalidated.

PROCESS

How are processes born? All of them are descendants of an initial
"process 1", concocted by the resident at system startup. A descendant is
spawned by a program requesting the system to "fork", or make a second
process that is almost the identical twin of the requesting process. This
alone is not very useful, except that the newer of the twins can request
the system to "exec" a new program file, passing it designated argument
strings. Here is the genesis of "program startup", mentioned several
times above.

So the basic drill is: a running program (process) determines that
another program should be run as well. It forks, instructing its child
(descendant almost-twin) to exec the new program. The child memory image
is overlaid with that of the new program, plus cleared bss area, plus

space reservation for heap plus stack, plus arguments passed to it. And
the torch is passed on.

There are other kinds of requests that a program can make of the system,
about forty of them in fact. The requests are known as "system calls",
which can be treated much like (highly sophisticated) machine instructions

added to the instruction set of the target machine. Perhaps a third of
these deal with process administration; the rest deal with various

1-2

Vfhitesmithing Process

aspects of input/output.

The other important system calls in the process administration area are:
"exit", to bring a process to a tidy conclusion and report back its
status; "wait", to synchronize with a child process performing an exit

^ and collect its status report; "kill", to send a brief but powerful mes
sage to a related process; and "signal", to specify how such powerful
messages are to be handled. This is pretty much the extent to which

tm processes may directly communicate, except through file I/O, It is
usually sufficient.

«■»

INPUT/OUTPUT

^ The Idris Users' Manual has a lot to say about how various forms of I/O
can be made to look almost identical by reducing everything to text
streams. And the C Programmers' Manual describes a standard system inter-
face which is modelled almost directly by the Idris resident. A few
points are worth reeraphasizing here, however.

fOOf
First is the fact that the Idris resident converts between disk blocks and
streams of bytes for the programmer, and it optimizes such operations
across time and across multiple processes. Per-process memory space thus
need not be cluttered with multiple buffers to achieve the joint goals of
simple I/O requests and efficient operation.

^ Then there is the hierarchical filesystem, which makes it easier to impose
structure on collections of files and which greatly simplifies the rules
for forming filenames. The protection machinery is largely concentrated

.mn in the file access modes, so it is easier to make a system secure.

About half the I/O system calls deal with files by name. All use exactly
the same conventions for specifying filenames to the resident. The
remaining I/O system calls deal with "file descriptors". Like those in
the standard C system interface, Idris file descriptors are small non-
negative integers which specify which previously opened file is to be used

^ for an operation. Any information on the file status is kept in resident
memory, so it is far less susceptible to corruption.

To some extent, the underlying structure of file input/output shows
through: directories are conventionally read as ordinary files, in the
absence of any special system calls for walking directories; the struc
ture of a filesystem "inode" is made visible as part of the status
returned for a file; and internal codes for physical devices appear in
file status and in conjunction with special file inodes. Nonetheless,
most of this information can be, and is, largely ignored by the bulk of

Ml programs that run under Idris.

1-3

Process Whitesmithing

CONVENTIONS

Some of the generality of the Idris environment is cheerfully sacrificed
in the interest of standardizing the requirements for a program. Here are
a few arbitrary limitations that are almost universally adopted:

Three file descriptors are assumed to correspond to opened files at
program startup: STDIN (0) is the standard source of input, STDOUT (1) is
the standard destination for output, and STDERR (2) is the standard
destination for error messages. It should be possible to open upwards of
a dozen more files, simultaneously within any program.

There is always at least one argument string at program startup. It is
taken as the name by which the program was invoked.

Filenames should not be longer than 64 characters, counting the ter
minating NUL. Text lines should not be longer than 512 characters, coun
ting the terminating newline. And the last character of a text file, if
any, should always be a newline (i.e. there should be no partial last
line).

1-4

Vniitesmithing Link

NAHE

Link - using link and related tools

FUNCTION

Several tools are available for building programs, under Idris and for the
Idris environment. These are known as "compilers", for translating high
level languages such as Pascal and C, "assemblers", for translating
machine specific low level languages, and various tools for dealing with
"relocatable object modules". All of them focus on delivering up to a
program builder, called link, all the pieces needed to put together a
program file that is digestible by the Idris exec system call.

The approach supported by these tools is a traditional one, centered
around the concept of "separate compilation", much like the environment
implied for FORTRAN or PL/I. It is by no means the only way to build
programs. There are interpreters, for languages like Basic and APL,
monolithic language systems, for COBOL and standard Pascal, and more ambi
tious schemes, for the language Ada. Separate compilation is generally
more efficient than interpreters, more flexible than monolithic systems,
and much simpler than the ambitious approach. Its major drawback is that
it imposes a different, and usually much weaker, set of rules for com
bining modules into a program than for combining functions into a module.

At any rate, separate compilation permits a program to be put together, as
described above, from an assortment of pieces. Some of these pieces can
be the output of a C compiler, still others can be generated from hand
written assembler code. Some modules can be linked unconditionally, still

others can be selected only as needed from libraries of useful functions.
All input to link, regardless of its source, must be reduced to standard
object modules, which are then combined to produce the program file.

The same version of link is used, by the way, regardless of target
machine. The standard object module header contains a format byte which
specifies gross properties of the target machine, such as byte order
within words and word size, link adopts the first format byte it encoun
ters and uses it to adapt to the associated target environment.

One of the great strengths of the Idris link utility is that its output
is, or can be, in the same format as its input. Thus, a program can be
built up in several stages, possibly with special handling at some of the
stages. Such special handling is rarely if ever needed in building a
program for execution under Idris, but link is much more ambitious. It
can be used, for example, to build programs that can run free standing,
such as the system bootstraps and the Idris resident. It can be used to
build programs for execution under other operating systems, such as CP/M.
And it can be used to build shared libraries, or to make ROM images that
are loaded one place in memory but are designed to execute somewhere else.

As a side effect of producing files that can be reprocessed, link retains
information in the final program file that can be quite useful. The sym
bol table, or list of external identifiers, is handy when debugging
programs; the programming utility db makes use of this, and the utility
rel can be made to produce a readable list of symbols from an object file.
There are also "relocation bits", information on how to alter the instruc-

1-5

Link vniitesmlthing

tions and initialized data if they must be moved to a different place in
memory. db uses the relocation bits to refine its output when disassem
bling machine instructions; and some versions of the Idris resident
demand such information so they can have more flexibility in utilizing
memory. Finally, each object module has in its header useful information
such as text and data sizes.

On the other hand, link produces no memory map (the rel utility comes
closest to doing that). It has no provision for overlays. And it can
only deal with code contributions to two sections, text and data, link
should be thought of as simple, but flexible.

IDRIS

Building a program for execution under Idris is straightforward. The text
and data sections of Idris correspond exactly to those manipulated by
link, and compilers and assemblers are predisposed to put machine instruc
tions in the text section and variables in data. There are even entries
in the object file header (oddly enough) for specifying bss and heap plus
stack sizes.

The major concern, for programs written in C or Pascal, is that the events
at program startup don't mesh well with the high level language environ
ment. Control is simply transferred to the start of the text section,
with some pointers to strings pushed on the stack. This must be trans
lated into a call to the C function main, with information on the argument
strings as arguments to main. And if main returns, its return value must
be used as the status to provide on a call to exit. Such minor adaptation
is performed by a small runtime startup sequence, coded in assembler, that
is carefully fed first to link, so that it ends up at the start of the
text section.

System calls are all packaged as separately compiled modules, each
callable from C, which are collected into ordered libraries. Libraries
are constructed by the programming utility lib, whose file format is known
to link. Moreover, link presumes that any library file it encounters,
among its file arguments, contains modules that are to be loaded only if
there are pending references to undefined symbols, which references can be
satisfied by the library module in question.

What this means is that a large corpus of modules can be assembled, each
of which is occasionally useful but all of which, taken together, would be
too much of a burden to inflict on every program. The programming utility
rel can be used to produce a module-by-module list of symbols defined and
symbols required. This list is fed to the programming utility lord, which
determines an ordering of the modules such that later ones in the sequence
don't require earlier ones. The ordering produced by lord is fed as in
structions to lib to construct a library, suitable for conditional loading
by link.

Got that?

1-6

Whitesmithlng Link

So the sequence of files presented to link is: header file to adapt to C
environment, program specific object files, then one or more libraries of
object modules Implementing system calls and other generally usable func
tions.

All of this machinery is well hidden, by the way, by the compiler driver
scripts provided with Idrls, They see to It that, given simple instruc
tions about the files Involved, various source files get compiled to ob
ject modules; then they arrange a call to link which brings all the
necessary Items together to build a program file.

SEE ALSO

The programming utilities are documented In Section II of the C Interface
Manual for each target machine.

1-7

Compile Whitesmithing

NAME

Compile - using the multi-pass compiler driver

FUNCTION

Compilers under Idris each consist of three or more separate programs,
which must be run in sequence, and which communicate via intermediate
files. The multi-pass command driver, c, standardizes the way in which
the components of a given compiler are run, and eases the process of
changing standard parameters for existing compilers, or extending them,
for new ones.

Any driver meant to automate the invocation of a multi-pass program like a
compiler should perform at least the following tasks:

1) naming the programs (such as compiler passes) to be run, and running
them in the correct sequence.

2) specifying invariant parameters, such as flags, that are to be passed
to a given program every time it is run in this particular applica
tion.

3) associating user-specified parameters, such as optional flags or
source filenames, with at least the first program in the series to be
run.

4) passing the output from one program to the next program in sequence,
which must accept it as input.

5) end processing, which must include at least the naming of the final
output file so that the user (or a later processor) can easily find
it, and which might include the running of an optional linker or
loader program over all of the files earlier processed.

c performs these tasks by reading an ordinary textfile, or "prototype
script", containing a series of prototype command lines, each of which
names one of the programs c is to run. Usually, a separate prototype
script is provided for each kind of compilation to be done, and each
script is given a mnemonic name, with the suffix ".proto". By convention,
the script to perform native C compiles for the host machine is called
"c.proto"; one to do Pascal cross-compilation for the 8080 might be
called "pcx80.proto", and so on. The names can be anything at all; only
the ".proto" suffix is normally required, and even that convention can be
overridden when c is run.

Given the existence of these scripts, c is then installed by creating one
link to it (i.e., an "alias") corresponding to each script, and sharing
the same name. When c is run, it examines the alias under which it was
invoked, and (by default) tries to find a corresponding prototype script,
which it looks for using the same rules by which the shell searches for a
command. In the standard case, what happens is this:

1) the user types to the shell one of the aliases under which c is in
stalled (like c or pcx80), followed by the names of the source or ob
ject files to be compiled or linked.

1-8

Whitesmlthing Compile

2) If the alias given contained a slash (i.e., if it was a pathname),
the shell tries to execute c under exactly that name; otherwise, it
looks for a file with that name in each directory on the user's ex
ecution path.

3) once the specified alias for c is found, c is run, and examines its
command line to discover what alias was given.

4) by default, c then appends ".proto" to the given alias, and mimics
the shell: if the resulting name contains a slash, then c tries to
read a script having exactly that filename; otherwise, it looks for
a file with that name in each directory on the execution path, and
reads the first one that it finds.

Most of the time, both the aliases for c and the corresponding scripts
reside in the same system-wide binary directory (such as /etc/bin).
However, c permits two other arrangements, which can be quite powerful if
carefully used. Additional links to c may exist in other (perhaps
private) directories, with their own scripts; or local scripts may be
created with the same name as "official" ones, and privately installed.
So long as these private directories are placed on the user's execution
path, they will be read automatically whenever c is invoked.

Once the script has been located, c executes in sequence the programs
named on successive lines, passing to the first program the name of one of
the files that the user originally gave to c, then passing to each subse
quent program the name of a temporary file produced by the previous
program. This process is repeated for each filename the user specifies.

A line in a script has one of the following formats:

<prefix> : <pname> <pargs> [: <pargs>]

or

<prefix> :: <pname> <pargs> [: <pargs>]

In either format, <prefix> is a string of characters that is matched
against the suffix of each command line filename (i.e., the characters in
the name following the rightmost dot). Thus a prefix of 'c' would match
filenames ending in ".c", 'o' would match names ending in ".o", and so on.
Some conventional suffixes are:

Suffix Type of File

.p Pascal source

.c C source

.s assembler source

.o object file (assembler output)

However, any non-null string may be used to suffix input files, and be
given as a prefix; multi-character strings are perfectly acceptable.

1-9

Compile Whitesmithing

The rest of each prototype line is used to construct a command line that c
will execute for each matching input file. <pname> specifies the name
(generally the full pathname) of the program to be run. The first group
of <pargs> is one or more strings that will be used as the opening argu
ments of the command line executed. The first string becomes argument
zero, the program name actually passed to the program. The colon fol
lowing, if present, marks the point at which each user-specified filename
will be inserted in the command line, while the second group of <pargs> is
zero or more strings that will follow the filename on the command line.
If the colon and second <pargs> are omitted, then each input filename is
appended to the command line. Here, for instance, is a typical script for
native C compilation on a PDP-11:

c:/etc/bin/pp pp -x -i /lib/I../
:/odd/pi pi
:/odd/p2.11 p2
s:/etc/bin/as.11 as. 11

o::/etc/bin/link link -et_etext -ed_edata -eb_end -lc.11 /lib/Crts.11

For each file specified by the user, c searches the script for a line
whose prefix matches the file's suffix. It inserts the filename as in
structed into the matching line, then starts executing the commands in the
script from that point; any previous lines are skipped. The script shown
might begin execution at any of three places, depending on the suffix of
each input file. For ".c" files, it would start at the first line (which
has the matching prefix 'c'), while for ".s" files it would begin at the
fourth line, and for ".o" files at the last one.

Thus, if this script were installed at c.proto, and the user typed:

% c prog.c

the first line of the script would match the input file, and c would
create, then execute, the following command line:

pp -o /tmp/xxxxxcl -X -i/lib/|../ prog.c

c adds the flag -o in order to specify the name of a file in which the
program being run will place its output (which means that any program used
under c must accept the -o convention). If another program is still to be
run, then this filename is passed to it as input. Here, if pp returned
success, pi would be executed, with this command line:

pi -o /tmp/xxxxxc2 /tmp/xxxxxcl

Then, presuming pi returned success, its output file would be passed to
the following program, and so on. If a program being run returns failure,
then the rest of the script is skipped for the current file, and c moves
on to the next file given on its command line.

Assembler source files could also be assembled with this script. For each
".s" file given, c would skip the first three prototype lines, and begin
by executing the fourth one, thus running as.11, but not any of the com
piler passes.

1-10

Whitesmithing Compile

By default, c acknowledges the start of processing of each input file by
outputting the filename to STDOUT, followed by a colon and a newline.
When (and if) the link line program explained below is run, c outputs its
name in the same manner. The flag -v causes c to output each command line
generated as well, as it is executed. This verbose option can be used to
double-check new scripts, or just to see exactly what command series c
generates for a given input file:

J c -V prog.c

The final line in the script shown is a special one, called a "link" line,
as indicated by the double colon following its prefix. The program named
on a link line is not run for each command line file. Instead, the output
files resulting from each command line file are stored on the link line;
then the link line is executed after all the command line files have been

processed, presuming that all of the processing succeeded. If any execu
tion of a previous program failed, then the link line program is not run.

The link line accumulates three kinds of files: those output by the
preceding program in the script, command line files whose suffix matches
its prefix, and any files that are unmatched by the other prototype lines.
Hence, the line in the script above would accumulate all the files output
by as.11, and ".o" files named by the user, as well as any files with
names not ending in ".c" or ".s".

A link line has one other special characteristic, namely that each file
output by the program immediately preceding it is made permanent, rather
than being temporary like the files output by prior programs. The perma
nent file output is given the same name as the input file originally
specified by the user, but with its suffix changed to be the prefix of the
link line.

For instance, the use of c shown above would normally result in as.11
being executed with the command line

as.11 -o prog.o /tmp/xxxxxcl

The name of the assembler's output file would be taken from the input file
prog.c, and its suffix, from the prefix 'o' of the link line.

The link line thus serves as a "terminus" for all previous processing,
since it causes the final output from each command line file to be
separately stored in a permanent file. Because of this, and because it
accumulates all files that "fall through" to it from prior lines in the
script, any link line present must be the last line in a script. However,
any line in a script having a non-null prefix can be treated as a terminus
for a particular run, simply by giving its prefix to c. Then, each time
the preceding line is executed, its output will be directed to a permanent
file with a suffix given by the prefix of the terminus, c then skips any
lines remaining in the script, and starts processing its next input file.

If, for example, the above script were run by typing:

1-11

Compile Whltesmithing

% c +s prog.c

The line labelled 's' would be considered the terminus of the pass through
the script, and so the preceding line would create a permanent output file
named prog.s, which would contain the symbolic assembly code generated for
prog.c. Neither of the last two script lines would be executed.
Similarly, typing:

% c +o prog.c

would cause execution of the script to stop with the line before the link
line, which would create a permanent output file named prog.o containing
the object code resulting from prog.c.

Note that c expects to submit each of its input files to at least one
prototype command. An input file not matching one of the commands
preceding the current terminus will cause an error.

Any prefix can play the additional role of execution terminus. In fact,
another type of script is one whose final line contains only a terminating
prefix, and thus serves solely to provide a suffix for the output files of
the preceding line. Such scripts are useful for compilations in which
linking together the individual output files is not desirable. For in
stance, a script to cross-compile C source files under Idris for assembly
and loading under VERSAdos might look like:

c:/etc/bin/pp pp -x -dUTEXT -i /lib/I../
:/odd/pi pi -al -n8 -u
:/odd/p2x.68k p2
s:

Here, only one usage of the script is possible: each ".c" file given will
be processed by the three compiler passes, and the output from each run of
p2 will be directed to a corresponding ".s" (VERSAdos assembler source)
file.

In addition to the compile-only and link-line scripts presented so far,
scripts can be used whose last line is a full prototype line, but not a
link line. When such a script is run, the output from the last program is
directed to a temporary file, and so the script produces no permanent out
put files. For example, a script to do C syntax checking only, with no
code generation, might be:

c:/etc/bin/pp pp -x -i/lib/
:/odd/pi pi

Since c was designed to automate compilation, it contains features to aid
the orderly generation of output files. The flag -o may be used to name
the output file of the link line program specified by a given script; and
-p may be used to specify a pathname that will be used to prefix all the
permanent output files from a given run. Thus the command

% c -o prog prog.c

1-12

Whitesmlthing Compile

would cause the executable file produced by link to be given the name
prog, while

% c +o -p /ship/c780/obj/ *.c

would compile each of the ",c" files in the current directory into a cor
responding ".o" file in the directory /ship/c780/obj, permitting the
source directory to be treated as read-only. If both -o and -p are given,
the prefix is also added to the link line output filename, if the name
doesn't already contain a slash. Hence, the command

% c -o prog -p/ship/c780/obj/ prog.c

would place the executable output of link in the file /ship/c780/obj/prog
(and would create /ship/c780/obj/prog.o along the way).

Finally, the normal lookup procedure for a prototype script can be over
ridden by naming with a -f flag exactly the script desired for a par
ticular run. A script named in this way need not have the suffix
".proto";

% c -f myscript prog.c

If the script name given is then a script will be read from STDIN.

The most effective way to learn about c is simply to use it, perhaps with
-V specified so that its internal operation can be seen. With the command
driver, the flexible use of existing compilers is trivial, while the use
of new compilers depends solely on setting up a new prototype script. And
because scripts are ordinary textfiles, existing ones can be varied at
will to obey local conventions. Most important of all, numerous compilers
can be run in exactly the same way, with the same options and conventions.
Learning c once is learning it for all of them.

BUGS

c does not currently permit flags to be passed to the programs named in a
prototype script. The only way to change the flags with which one of the
named programs is run is to use a changed version of the script.

1-13

Whitesnithing

NAHE

Debug - using the binary editor db

FUNCTION

db is an interactive editor for binary files that is loosely patterned
after the text editor e. It is most useful in working with relocatable or
executable object files in standard format, but can also be used to
manipulate any direct-access file, db makes available different sets of
commands and addressing facilities according to what "mode" it is used in;

1) "absolute" mode, to examine or modify an arbitrary file;

2) "standard" mode, to inspect or patch a relocatable or executable file
in standard format; or

3) "debug" mode, to inspect a core image generated by Idris, in conjunc
tion with the executable file whose contents it represents.

This essay presumes some familiarity on the reader's part with the com
mands and addressing conventions of e; where db provides close parallels
to them, neither instance will be discussed at length here. Nor will this
essay provide a complete summary of all the commands db makes available
(which can be found on the db manual page). Rather, the emphasis will be
on how db differs from e, and in particular, how it can be used effec
tively as a truly portable binary editor and debugger.

Like e, db reads a series of single-character commands from STDIN, and
writes any output to STDOUT. Just as commands in e may be preceded by
line addresses, db commands may be preceded by byte addresses, whose syn
tax is a superset of e address syntax. A byte address refers to the start
of an item, which may be an integer of length one, two, or four bytes, or
a disassembled machine instruction, db supports a large subset of the
editing commands provided in e, except that they operate on such items,
instead of on lines of text. Given this underlying difference, the two
editors in fact have very similar user interfaces. In db, editing
generally centers around a "current item" (addressed by a dot the
counterpart of the current line in e. And in general, the addresses
preceding a given command designate the range of items on which it will
operate.

In absolute mode, db considers its input file to be a series of items, of
arbitrary length, which may be updated at will. In standard mode, db
honors standard object file format, meaning that it restricts the scope of
updates to the file being edited, but makes full use of any available sym
bol table or relocation information in interpreting addresses. In debug
mode, db operates similarly, and also provides a set of commands to access
run-time information saved in the core file, such as the machine registers
and user stack.

Initialization

The mode in which db operates is established at the start of each run.
Normally, the file to be edited is specified on the command line, perhaps
preceded by flags detailing how it is to be accessed. If the flag -a is

1-14

Whitesoithing Debug

given, or if the coiranand line file cannot be interpreted as an object file
in standard format, db comes up in absolute mode, and outputs a heading
line noting the fact.

Otherwise, if -c is given, db operates in debug mode, and expects the com
mand line file to be a standard object file; the associated core file
must reside in the current directory, under the name "core". In debug
mode, db usually accesses only one of the two input files at a time; ini
tially, db accesses the core file.

If -c is not given and the command line file is in standard format, db
operates in standard mode (and so edits an object file alone). In debug
mode or standard mode, db outputs a header giving the length (in decimal)
of the text, data and bss segments of the object file being edited.

For instance, either of the following exchanges would open a disk image
directly for editing;

% db /dev/rmO

/dev/rmO: absolute

or:

% db -a /dev/rmO

/dev/rmO: absolute

While the following would edit the executable file myprog, and the core
file it generated when run:

% db -c myprog
myprog: 10438T + 1124D + OB

External Interface

Unlike e, db does not make an internal copy of the file(s) being edited.
Instead, it interacts directly with the permanent version of each file,
meaning that any changes are made immediately to that version. This also
means that db can edit files of arbitrarily large size. In particular,
files edited in absolute mode have no pre-defined maximum size; an at

tempt to access a given item succeeds if the necessary I/O does.

With this significant difference, db supports a set of absolute mode com
mands for interacting with external files that is analogous to the set e
provides. The command 'e', followed by a filename, closes the file cur
rently open for editing and opens the file named. The new file will al
ways be accessed in the same mode as the previous one. The command 'r',
followed by a filename, overwrites some part of the current file with the
contents of the file named. The command may be preceded with an address
specifying the first item to be overwritten; if no address is given, the
external file overwrites the current file starting at the current item.

The command 'w', followed by a filename, writes some part of the current
file to the file named, which the command always newly creates. The com

mand may be preceded by one or two addresses specifying the range of bytes

1-15

Whitesmithing

that will be output; by default, all of the current file is output. The
file named in the 'r' or 'w' commands may not be the file being edited.
Finally, the command may be used to display the name of the current
file.

Of these commands, only 'f may be used in standard mode or debug mode,
except that db always permits one initial 'e' command to be given.

Addressing

In absolute mode, the byte addresses used to access the input file closely
correspond to the line addresses used in e. Only two differences exist:
bytes are numbered starting at zero, and there is no pre-defined "last
byte", so that the symbol '$' has only part of its meaning in e. In
general, \&'$' can be used only as the second of two addresses specifying
a range of items, and can never appear alone.

Byte addresses themselves (as their name implies) designate nothing more
than byte offsets within the file. Depending on the current input/output
format, the item itself may be of varying length, but the address itself
is always counted in bytes.

In debug mode or standard mode, addressing is more complicated. Interac
ting with an object or core file means examining particular locations
within the text or data segment the file contains, and not merely looking
at a physical location inside the file. So in these cases, an address has
two components; first, an indicator of which segment (text or data) it
refers to, and second, the runtime location in "memory" that a given item
would start at, if the object file were actually loaded.

db obtains the biases of the text and data segments from the standard file
header, whence it also gets their lengths; any bss segment is presumed to
immediately follow the data segment. Two ranges of addresses are then
accessible: those in the text segment, which extend from the text bias up
for as many bytes as the segment is long, and those in the data/bss seg
ment, which extend similarly upward from the data bias. An access to a
given address is mapped to the physical offset in the object or core file
to which the address corresponds; the segment component of an address
unambiguously indicates to which range it belongs.

In an object file, reading an address in the bss region returns all
zeroes, and addresses in that region cannot be written to. In a core
file, the data/bss segment is interpreted differently. The data segment
extends from the core file data bias up to the "system break" (i.e., the
highest dynamically-allocated storage) in use at the time of the dump.
The bss segment extends from the system break up to the end of the user
process image (i.e., the base of the runtime stack, which extends downward
from the "top" of memory).

All residents currently allocate to a process a single swatch of memory,
so that its data segment immediately follows its text segment. No overlap
or gap between the two ranges of addresses is possible. Object and core
files under an 'R» resident will always have a text bias of zero, since
exec-time relocation is unnecessary. Under a 'B' or 'S' resident,

1-16

Whitesmlthing Debug

however, core files will always have a non-zero text bias, which is the
actual location at which the process ran, since the resident makes no use
of memory management hardware. And object files may be linked with a non
zero text bias for reasons of efficiency.

When the current output format is machine instructions, these complica
tions are largely hidden from the user. If a symbol table and relocation
streams are available in the object file, the disassembler will always
output relocatable addresses as a symbol name plus a decimal byte offset,
so long as a symbol exists with a value less than or equal to the address,
and the same relocation base. If no relocation information is present,
any symbol table available will still be used, but constants imbedded in
the instruction stream may be mistaken for addresses, since db will have
no way to tell them apart.

In debug mode, db presumes that the text and static data areas of a core
file are "parallel" to those in the original object file, so it is able to
find relocatable addresses in the core file by using the object's reloca
tion streams. If the core file has a different text bias than the object
file, the offset between them will be applied as needed to make the object
file symbol table usable for core file address references, db will not
tell an out and out lie — if an address from such a core file cannot be

output symbolically, then db will output its numeric value as stored in
the file. But if the address, when altered, can be output symbolically,
then the symbolic form will be used.

Address Terms

Addresses in db are composed of one or more address terms, which may be
combined by the same rules e uses. However, db provides a slightly ex
panded set of terms. First, in standard or debug mode, \&'$' always
refers to the last address of the current segment, text or data/bss.
Since in this context has a well-defined value, it can be used by it
self, though items cannot be read past the end of a segment.

Also, when a symbol table is available in the object file being edited, db
permits symbols to be specified as address terms. A symbol specifies the
address location indicated by its value, and has the segment component in
dicated by its relocation base. A text-relative symbol refers to the text
segment; data or bss-relative symbols refer to the data/bss segment.

Not all address terms have explicit segment components. An offset from
or refers to the same segment as dot currently does. A symbol

that is not text, data, or bss-relative, or a number appearing alone as an
address, refers to the same segment as the last previous address given for
the same command, or to the segment that dot refers to, if no previous
address was given.

In both standard and debug mode, db provides three constants to simplify
the use of object or core file addresses. The constant 'T' has the value
of the first address in the current text segment, while *D' and *B' have
the value of the start of the data segment and bss segments, respectively.
All three also have the appropriate segment component. Two main uses for
these constants are to ease access to an item at a given offset from the

1-17

Debug Whltesolthing

start of a segment, or to force the current item address (dot) into one
segment or the other, so a subsequent command will work properly. Thus to
look at an item 10 bytes into data segment, you might type:

DIG 1

while to set dot to the start of the text segment, and then print several
instructions, you could use:

T:+50 pm

Finally, a note about numbers: db outputs all numbers that are part of an
address using the conventions of the language C. That is, numbers in hex
adecimal are preceded by "Ox", numbers in octal by "0", and numbers in
decimal by nothing at all. The same conventions are used for numbers in
put as address terms. However, these conventions apply only to addresses;

the contents of an item are output without a prefix, even when output in
hexadecimal or octal. Likewise, items must be input without C-style
prefixes. (See Editing, below.)

Items

Items are the units into which db divides the data in its input file,
which means they're also the units on which many editing commands operate.
However, an "item" is not defined statically, but in terms of the current
input/output format, which can be changed at will. This format specifies
the length of an item (one, two, or four bytes, or the word length of the
target machine), and defines how each item is to be converted on input or
output. Items can be treated as integers in the three common bases, or as
strings of ASCII characters. Alternatively, items may consist of disas
sembled machine instructions, output in conventional symbolic form. An
input/output format is named as a base code followed by a size code:

Base code Item output as: Size code Item length:

a ASCII characters c char (1 byte)

h hexadecimal s short (2 bytes)
o octal i int (2 or 4 bytes)
u unsigned decimal 1 long (4 bytes)
m machine instruction

A base code may be given with no size, in which case the size defaults to
int; or a size code may be given with no base, causing the base to be
taken as signed decimal. The base code 'm' may not be followed by a size,
since the size of each item in this format is Just the length of the
disassembled instruction. Thus a format of "al" defines long items output

as strings of ASCII characters, while a format of 'h' calls for int items
to be output as hexadecimal integers, and 's' calls for short items output
in signed decimal. Note that the base code 'a' converts characters like
the '1' command in e. Characters with values in the range [0, 7] are out
put as "\[0-7]"» those in the range [8, 133 are output as "\[btnvlr]", and
any other character that is not printable ASCII is output as a '\' fol
lowed by the three-digit octal number giving its value.

1-18

Whltesoithing Debug

Editing

Items can be examined with the db commands '1' and 'p*, which are rough
analogues to their namesakes in e. In db, the difference between the two
is that 'p' (for "print") sets the current item address (dot) equal to the
last location examined, while '1' (for "look") leaves dot unchanged. The
current input/output format may be changed by following either command
letter with the appropriate base and size codes. For instance, to print
three shorts in hexadecimal, starting at the current item address:

.,+5 phs
0x100 81cc

0x102 0002

0x104 1401

When, as here, items are treated as integers, db converts as necessary
from the native byte order of the target machine. When items are being
output in ASCII, however, each item is treated as a array of characters,
which are output in order of increasing index in the array. Thus, depen
ding on the target machine, the order of the characters output may differ
from the order in which the same bytes would appear in an integer output
format. Here the results of four examinations of a long written for a
FDP-11 (using dbll):

. lal

0x200 abed

. Ihl

0x200 62616463

.,+3 lbs
0x200 6261

0x202 6463

.,+3 Ihc

0x200 61

0x201 62

0x202 63
0x203 64

Note that the preceding the first two '1' commands is unnecessary,
since by default 'p' or *1' display only the current item.

Items may be changed with the commands 's' and 'u'. The 'u* command (for
"update") is the single db equivalent of the e commands 'a*, 'c', and 'i'.
It replaces some series of items in the file being edited with items read
from STDIN using the current input/output format. Items are read as
ordinary text strings, one per line, until a is read on a line by it
self. Each line may contain only characters legal in the current format;
each is converted to exactly one item of the correct length. Again,
prefixes are not recognized here, so items entered in hexadecimal should
not be preceded with "Ox" (nor octal ones with a "0").

1-19

Debug Whitesmlthlng

db will convert integers to native byte order before writing them to the
file. Integer values too large to fit in the current item length will be
truncated without comment. If the input format is ASCII, however, a line
specifying too many characters to fit in an item will not be accepted.
Also, if input is given in this format, a line containing too few charac
ters to fill an item will be right padded with NULs.

The 's' command closely resembles its counterpart in e. It is followed by
a target string to be searched for, and a second string that will replace
any occurrences of the target. As in e, the target may be a regular
expression. The command then converts each item it examines to output
representation (using the current input/output format), replaces any oc
currences of the text of the target string with the text of the replace
ment string, and converts the result back to internal format. In that
form, it replaces the original item, by the same rules as given above for
the 'u' command. Note that in db the 's' command always outputs the
revised item that contained the last instance of the target string. (That
is, in terms of the 's' command in e, the command in db always acts as if
it were suffixed with 'p'.)

Items cannot be updated as machine instructions, since the disassembler
has no counterpart for interpreting input assembly code. Hence, neither
's' nor 'u' may be used if the current input/output format is machine in
structions.

1-20

WhltesDithlng Headers

NAME

Headers - standard include files

SYNOPSIS

^include <std.h>

^include <sys.h>
etc.

FUNCTION

Information to be shared among C source files is conventionally concen
trated in one or more "header" files, to be //include'd as needed at the
top of each source file. All such files provided with Idris are in the
standard library /lib, and the various C compiler drivers are wired to
search /lib for any include files written in angle brackets.

Of all these files, std.h is by far the most important. It is included in
all source files for the compilers and Idris. It defines the notation
used throughout these manuals. And it provides definitions used by all
the other header files. (See Section II of the C Programmers' Manual for
a description of its contents.) Consequently, it should be included in
every source file written to interact with the standard C environment, and
it should be named before any other files.

The file sys.h plays a similar role, for programs that must interact with
the Idris resident. It defines all the constants and data structures that

cross the interface between programs and the resident. And it provides
definitions used by the more specialized header files. (See Section II of
this manual for a description of its contents.) Thus, it should be in
cluded in every source file written to interact with the Idris environ
ment, and it should be named right after std.h.

The complete list of header files provided with Idris is;

bio.h block I/O within the resident. Used by some device handlers.

clo.h character I/O, primarily tty style, within the resident. Used by
some device handlers.

cpu.h process management, within the resident. Used to interpret files
such as /dev/rayps and /dev/ps.

dump.h dump file format. Used by dump and restor.

fio.h file I/O, within the resident. Used to interpret files such as
/dev/inodes and /dev/mount.

ino.h filesystera format. Used by programs that must manipulate
filesysteras directly.

mount.h mount file format. Used by programs that must manipulate the ex
ternal mount table.

pan*.h panel layout for registers within a core file, dumped by the resi
dent. Used by the resident and db to interpret core dumps. There is

1-21

Headers Whitesnithing

a different file for each target machine, such as panll.h, panSO.h,
etc.

pascal.h file I/O, within the Pascal runtime. Used by Pascal runtime
library to administer files.

pat.h pattern matching codes. Used by programs that use the standard
library functions araatch, makpat, and match to match regular expres
sions.

res.h resident conventions. Used in all resident source files to define
system wide constants and types. Sort of an internal sys.h.

sh.h shell conventions. Used in all shell source files, and by programs
that invoke other programs via the standard Idris functions xecl and
xecv.

sort.h sort key conventions. Used by programs that use the standard
library function getkeys to define sort keys.

std.h the universal header file, as described above. Used to implement
the standard C environment.

sup.h filesystem format. Used by resident source files that must
manipulate the filesystem directly. Sort of an internal ino.h.

swp.h timer and space management structures, within the resident. Used by
various Idris schedulers.

sys.h the Idris interface header file, as described above. Used to imple
ment the standard Idris environment.

time.h time and date structure. Used by the Idris support library func
tions atime, Itime, and vtime to manipulate time information.

usr.h per-process information swapped with the process image, within the
resident. Used by resident source files that must manipulate the
process image.

who.h log and who file formats. Used by programs that must manipulate the
administrative files /adm/log and /adm/who.

Most of these files can be ignored most of the time. But when a program
must interact with an existing corpus of code, including the relevant
header files is a safe and convenient way to enforce the necessary conven
tions.

1-22

m

ftfii

I**

MR-

m

^ SECTION TWO

IDRIS SYSTEM INTERFACE

1M(-

-m

M

IDRIS System Interface Interface

NAME

Interface - Idris system interface

FUNCTION

The functions in this section define the Idris system interface that is
visible to a C program, regardless of target machine. It is actually the
union of two interfaces:

1) the standard portable C system interface, as documented in Section
III of the C Programmers' Manual, and

2) the system calls supported by all Idris implementations, provided as
C callable functions. Each Idris Interface Manual describes the ac

tual machine level system call formats for a given target machine.

By writing in C, and observing the conventions outlined in this section,
the progranmer can be assured that code written for one Idris implementa
tion should work on all current and future implementations.

TYPES

A number of special data types are used to help document the Idris system
interface. The more heavily used of these are defined in the standard
system header file sys.h. The special types are:

DEV an unsigned short integer, whose more significant byte is the "major
number" of a physical device and whose less significant byte is the
"minor number". The major number is used to index into one of two
resident device tables (for block special or character special
devices) to select a device handler. The device number DEV is tucked

in an odd corner of a block or character special inode, is provided
as part of the file status delivered up for stat (or fstat), and is
passed to the selected device handler in case it deals with multiple
devices. Note that a device number is written on disk less sig
nificant byte first, regardless of target machine.

DIR a directory link entry, consisting of a two-byte inode number and a
It-byte link name. No system call delivers up a DIR, but such crea
tures are frequently read when scanning directories. Note that the
inode number is written on disk less significant byte first, regard
less of target machine. Defined in <sys.h>.

ERROR a short integer, capable of holding any error return code from the
resident. Zero or a positive number usually indicates success; Idris
error code is usually negated. Defined in <sys.h>.

PID a short integer, capable of holding any processid. Valid processids
are always positive, nonzero.

SIG a character, capable of holding any signal.

II - 1

Interface IDRIS System Interface

STAT the file status returned by the fstat or stat system calls. Defined pm
in <sys.h> and described along with fstat. ^ -

TTY the tty status returned by gtty and expected by stty. Defined in ^
<sys.h> and described along with gtty.

fm

UID an unsigned character* capable of holding any userid or groupid. - -

Extensive use is also made of two more conventional C types: '

FILE a short integer* capable of holding a negated error code or any valid p"*!
file descriptor returned by Idris.

TEXT • a pointer to character* usually to the first of a NUL-terminated
string of characters variously known as a string* filename* or path
name. Note that this declaration is sometimes used merely to in— P"*
dicate a pointer with unknown storage boundary constraints* as an ar
bitrary user memory address.

ERROR

An important group of system parameters is the error codes. These are
returned* when a system call fails* to indicate the general nature of the
failure. Most system calls can return a variety of error codes* and most
error codes can be returned by a variety of system calls* so no attempt is
made to correlate the two groups. The error codes are:

E2BIG (7) argument list too big for exec.
EACCES (13) file access prohibited. ^
EAGAIN (11) exec or fork failed* but may work if you try again.
EBADF (9) bad file descriptor.
EBUSY (16) can't mount or unmount busy filesystem.
ECHILD (10) no children to wait for.
EDOM (33) math function argument outside defined domain.
EEXIST (17) file already exists.
EFAULT (11) can't access argument on system call. |i""i
EFBIG (27) file too big.
EINTR (1) system call was interrupted.
EINVAL (22) illegal argument value on system call. ^
EIO (5) unrecoverable physical I/O error.
EISDIR (21) file is a directory. pp
EMFILE (21) too many files opened by process.
EMLINK (31) too many links to a file. ^
ENFILE (23) no system storage left to represent opened file. -—
ENODEV (19) not a defined operation for the device.
ENOENT (2) directory entry does not exist. ^
ENOEXEC (8) wrong file format for exec.
ENOMEM (12) not enough memory to exec program or to grow heap.
ENOSPC (28) no space on filesystem.
ENOTBLK (15) not a block special device.
ENOTDIR (20) not a directory.
ENOTTY (25) not a tty.

II - 2

IDRIS System Interface Interface

tm

ENXIO (6) nonexistent I/O device.

EPERM (1) user lacks permission.
EPIPE (32) write to broken pipe.
ERANGE (S'J) math function result outside representable range.
EROFS (30) readronly filesystera.

^ ESPIPE (29) can't seek on a pipe.
ESRCH (3) can't find process to signal.
ETXTBSY (26) shared text portion of file is in use by exec.

^ EXDEV (18) can't link across filesystems.

fM|

SIGNALS

mm

There are also a number of signals that can be sent to processes, for standard
Ml system action or for handling by the program itself. These are:

SIGALRM (14) alarm clock timeout.

SIGBUS (10) bus error, as for nonexistent memory.
SIGDOM (7) domain error for a math function.

Mi SIGFPT (8) floating point arithmetic error.
SIGHUP (1) hangup, as when dataphone disconnects.

^ SIGILIN (4) illegal instruction.
SIGINT (2) interrupt, as when DEL is typed.
SIGKILL (9) kill request.

^ SIGPIPE (13) broken pipe.
SIGQUIT (3) quit, as when ctl-\ is typed.

^ SIGRNG (6) range error for a math function.
SIGSEG (11) segmentation, or memory protection, violation.
SIGSYS (12) bad system call.

mm SIGTERM (15) terminate request, a catchable variant of kill.
SIGTRC (5) instruction execution trace.

Along with the signals is defined the special user memory address: NOSIG (1)
signal is to be ignored.

NOSIG is to be distinguished from the other special pointer value, NULL, which

Ml calls for standard system handling of a signal. Any other pointer value is
used as the address of a function to handle the signal in question. See the
manual page on signal for more information.

BUGS

All of the types used in this section should appear in <sys.h>.

II - 3

Conventions IDRIS System Interface ^

NAHE mm

Conventions - Idris system subroutines • -

SYNOPSIS JT*
^include <sys.h>

FUNCTION

All standard system library functions callable from C follow a set of ^
uniform conventions, many of which are supported at compile time by in
cluding a standard header file, <sys.h>, at the top of each program. Note
that this header is used in addition to the standard header <std.h>. The ^
system header defines various system parameters and a useful macro or two.

mm

Herewith the principal definitions:

DIRSIZE - m, the maximum directory name size ^
E2BIG - 7, the error codes returned by system calls
EACCES - 13

EAGAIN - 11

EBADF - 9 ^
EBUSY - 16 ^
ECHILD - 10

EDOM - 33

EEXIST - 17

EFAULT - 11 ^
EFBIG - 27 „
EINTR - 1

EINVAL - 22 !*»

EIO - 5

EISDIR - 21 ^
EMFILE - 21 1 -

EMLINK - 31
ENFILE - 23 ^
ENODEV - 19

ENOENT - 2

ENOEXEC - 8

ENOMEM - 12

ENOSPC - 28 ^
ENOTBLK - 15

ENOTDIR - 20 mm

ENOTTY - 25

ENXIO - 6

EPERM - 1 ^
EPIPE - 32
ERANGE - 31 ^
EROFS - 30 —

ESPIPE - 29 ^
ESRCH - 3 —

ETXTBSY - 26

EXDEV - 18 ^

NAMSIZE - 61, the maximum filename size, counting NUL at end
NSIG - 16, the number of signals, counting signal 0
SIGALRM - 11, the signal numbers
SIGBUS - 10

II - 1 M

IDRIS System Interface Conventions

SIGDOM - 7

SIGFPT - 8

SIGHUP - 1

SIGILIN - 4

SIGINT - 2

SIGKILL - 9
SIGPIPE - 13

SIGQUIT - 3
SIGRNG - 6

SIGSEG - 11

SIGSYS - 12

SIGTERM - 15

SIGTRC - 5

The macro isdir(mod) is a boolean rvalue that is true if the mode mod, ob
tained by a getmod call, is that of a directory. Similarly isblk(mod)
tests for block special devices, and ischr(mod) tests for character spe
cial devices.

II - 5

jptname IDRIS System Interface

NAME

_pname - program name

SYNOPSIS

TEXT *pname;

FUNCTION

_pnarae is the (NUL terminated) name by which the program was invoked, as
obtained from the command line argument zero. It overrides any name sup
plied by the program at compile time.

It is used primarily for labelling diagnostic printouts.

II - 6

IDRIS System Interface brk

NAHE

brk - set system break to address

rm SYNOPSIS

TEXT «brk(addr)
« TEXT *addr;

FUNCTION

brk sets the system break, at the top of the data area, to addr. Ad
dresses between the system break and the current top of stack are not con
sidered part of the valid process image; they may or may not be
preserved. It is considered an error for the top of stack ever to extend
below the system break.

RETURNS

If successful, brk returns the old system break; otherwise the value
returned is -1.

EXAMPLE

if (brk(end + nsyms • sizeof (symbol)) == -1)
{
putstr(STDERR, "not enough room!\n", NULL);
exit(NO);
1

SEE ALSO

sbreak

II - 7

ohdir IDRIS System Interface

NAME

chdir - change working directory

SYNOPSIS

ERROR chdir(fname)

TEXT *fname;

FUNCTION

chdir changes the working directory to fname.

RETURNS

chdir returns zero if successful, else a negative number, which is the
Idris error return code, negated.

EXAMPLE

chdir CVtmp");

II - 8

IDRIS System Interface chmod

NAME

chmod - change mode of file

SYNOPSIS

ERROR chmod(fname, mode)
TEXT *fnarae;
BITS mode;

FUNCTION

chmod changes the mode of the file fname to match mode. Only the low
order twelve bits of mode are used, to specify ugtrwxrwxrwx, where u is
the set userid bit, g is the set groupid bit, t is the save text image
bit, and the rwx groups give access permissions for the file. Access per
missions are r for read, w for write, and x for execute (or scan permis
sion for a directory); the first group applies to the owner of the file,
the second to the group that owns the file, and the third to the hoi pol-
loi.

RETURNS

chmod returns zero if successful, else a negative number, which is the
Idris error return code, negated.

EXAMPLE

To make a file executable:

chmod("xeq", 0777);

SEE ALSO

getmod

II - 9

ohown IDRIS System Interface

NAME

ohown - change owner of file

SYNOPSIS

ERROR chown(fname, owner)
TEXT *fname;
UCOUNT owner;

FUNCTION

chown changes the owner of file fnarae to be the less significant byte of
owner, and changes its group to be the more significant byte of owner.
Only the superuser succeeds with this call,

RETURNS

chown returns zero if successful, else a negative number, which is the
Idris error return code, negated.

EXAMPLE

To give ownership of a file to the person who invoked you:

chown(newfile, getuidO I getgidO « 8);

SEE ALSO

getgid, getuid

II - 10

IDRIS System Interface close

NAME

close - close a file

SYNOPSIS

error close(fd)

FILE fd;

FUNCTION

close closes the file associated with the file descriptor fd, making fd
available for future open or create calls.

RETURNS

close returns zero, if successful, or a negative number, which is the
Idris error return code, negated.

EXAMPLE

To copy an arbitrary number of files:

while (0 < ac && 0 <= (fd = open(av[—ac], READ, 0)})
{
while (0 < (n = readCfd, buf, BUFSIZE)))

write(STDOUT, buf, n);
close(fd);

}

SEE ALSO

create, open, remove, uname

II - 11

oreat IDRIS System Interface

NAHE

Great - make a new file

SYNOPSIS

FILE createfname, perm)
TEXT *fname;
BITS perm;

FUNCTION

creat makes a new file with name fnarae, if it did not previously exist, or
truncates the existing file to zero length. In the former case, the file
is given access permission specified by perm; in the latter, the access
permission is left unchanged. Access permissions are described under
chmod. The file is opened for writing.

RETURNS

creat returns a file descriptor for the created file or a negative number,
which is the Idris error return code, negated.

EXAMPLE

if ((fd = creatC'xeq", 0777)) < 0)
putstrCSTDERR, "can't creat xeq\n", NULL);

SEE ALSO

chmod, close, create, open, remove, uname

II - 12

IDRIS System Interface create

NAME

create - open an empty instance of a file

SYNOPSIS

FILE create(fname, mode, rsize)
TEXT *fname;
COUNT mode;
BYTES rsize;

FUNCTION

create makes a new file with name fname, if it did not previously exist,
or truncates the existing file to zero length. An existing file has its
permissions left alone; otherwise if the filename returned by uname is a
prefix of fname, the (newly created) file is given restricted access
(0600); if not, the file is given general access (0666). If (mode == 0)
the file is opened for reading, else if (mode == 1) it is opened for
writing, else (mode == 2) of necessity and the file is opened for updating
(reading and writing).

rsize is the record size in bytes, which must be nonzero on many systems
if the file is not to be interpreted as ASCII text. It is ignored by
Idris, but should be present for portability.

RETURNS

create returns a file descriptor for the created file or a negative num
ber, which is the Idris error return code, negated.

EXAMPLE

if ((fd = createCxeq", WRITE, 1)) < 0)
putstr(STDERR, "can't create xeq\n", NULL);

SEE ALSO

close, open, remove, uname

II - 13

dup IDRIS System Interface

NAME

dup - duplicate a file descriptor

SYNOPSIS

FILE dup(fd)
FILE fd;

FUNCTION

dup allocates a file descriptor that points at the same file, and has the
same current offset, as the file descriptor fd. It is promised that the
smallest available file descriptor is allocated on any creat, dup, open,
or pipe call, so file descriptors can be rearranged by judicious use of
dup and close calls.

RETURNS

dup returns the newly allocated file descriptor or a negative number,
which is the Idris error return code, negated.

EXAMPLE

To redirect STDIN from fd:

close(STDIN);
dup(fd);
close(fd);

SEE ALSO

close, creat, create, open, pipe

II - 14

IDRIS System Interface execl

NAME

execl - execute a file with argument list

SYNOPSIS

ERROR execl(fname, sO, si, ..., NULL)
TEXT *fname, *sO, *s1, ...

FUNCTION

execl invokes the executable program file fnarae and passes it the NULL
terminated list of string arguments specified in the argument list sO, si,
etc. The invoked file overlays the current program, inheriting all its
open files and ignored signals; the current program is forever gone. Sig
nals that were caught by the current program revert to system handling.

If the set userid bit in the mode for fnarae is set, the effective userid
of the invoked file becomes that of the owner of the file; the effective
groupid may be changed in a similar manner by the set groupid bit. (The
save text bit is currently ignored.)

The invoked program begins execution at the start of the text section,
with the string arguments at the top of user memory, just above the stack,
i.e., on the stack is initially pushed a NULL fence, followed by pointers
to the stacked strings in reverse order, followed by a count of the number
of strings passed as arguments. Thus, for a machine with two-byte in
tegers:

0(sp) is the count of arguments, typically > 0.
2(sp) points to the zeroeth argument string
il(sp) points to the first argument string, etc.

Note that the stack is not well conditioned for direct entry into a C
function; the C runtime startup header is usually linked at the start of
the text section. It enforces conventions such as setting _pname,
isolating the execution search path, calling the C main function, and cal
ling exit. Note also that the fence, placed at the end of the stacked ar
gument strings, is -1 under UNIX/V6, and not NULL.

By convention, the zeroeth argument is always present and is taken as the
name _pname by which the file is invoked; if it contains a vertical bar
'I *, the string before the first vertical bar is taken as argument zero
and the string after that bar is taken as a search path, or concatenation
of filename prefixes separated by vertical bars, used for locating ex
ecutable files. Additional arguments are typically optional; their in
terpretation is left purely to the whim of the invoked program.

RETURNS

execl will return only if the file cannot be invoked, in which case the
value returned is the Idris error return code, negated. Specifically,
E2BIG means that too many argument characters are being sent, ENOMEM means
that the program is too large for available memory, and ENOEXEC means that
the program has execute permission but is not a proper binary object
module.

II - 15

exeol IDRIS System Interface

EXAMPLE

exeol("/bin/mv", file, direc, NULL);
putstr(STDERR, "can't exec mv\n", NULL);
exlt(NO);

SEE ALSO

_pname, execv, exit, fork

BUGS

Only 512 characters of argument strings may be sent, counting terminating
NULs.

II - 16

IDRIS System Interface execv

NAME

execv - execute a file with argument vector

SYNOPSIS

COUNT execv(fname, args)
TEXT •fnarae, ••args;

FUNCTION

execv invokes the executable program file fname and passes it the NULL
terminated list of string arguments specified in the vector args. Its
behavior is otherwise identical to execl.

EXAMPLE

avec[0] = "mv";
avec[1] s file;
avec[2] s direc;

avec[3] - NULL;
execv("/bin/mv", avec);
putstr(STDERR, "can't exec rav\n", NULL);
exit(NO);

SEE ALSO

execl

II - 17

Qxit IDRIS System Interface

NAME

exit - terminate program execution

SYNOPSIS

VOID exit(sucoess)
BOOL success;

FUNCTION

exit calls all functions registered with onexit, then terminates program
execution. If success is non-zero (YES), a zero byte is returned to the
invoker, which is the normal Idris convention for successful termination.
If success is zero (NO), a one is returned to the invoker.

RETURNS

exit will never return to the caller.

EXAMPLE

if ((fd = openC'file", READ)) < 0)
{
putstr(STDERR, "can't open file\n", NULL);
exit(NO);
}

SEE ALSO

onexit

II - 18

IDRIS System Interface fork

NAME

fork - create a new process

SYNOPSIS

FID forkO

FUNCTION

fork creates a new process which is identical to the initial process, ex
cept for the value returned. All open files and all signal settings are
the same in both processes. It is customary for the child process to in
voke a program file via execl or execv, shortly after birth, while the
parent either waits to learn the termination status of the child or
proceeds on to other matters.

RETURNS

In the child process, fork returns a zero. In the parent process, fork
returns the processid of the child if successful, or a negative number,
which is the Idris error return code, negated. Failure occurs only if the
system is out of resident heap space or (possibly) out of swap space.

EXAMPLE

if ((pid = forkO) < 0)
putstrCSTDERR, "try again\n", NULL);

else if (pid)
while (wait(&status) !: pid)

t

else

{
execlC'prog", "prog", NULL);
putstr(STDERR, "can't exec prog\n", NULL);
exit(NO);

}

SEE ALSO

execl, execv, wait

BUGS

If the parent never waits, the dead child will remain a zombie until the
parent dies. A prolific parent can thus overpopulate the system.

II - 19

fstat IDRIS System Interface

NAME

fstat - get status of open file

SYNOPSIS

ERROR fstat(fd, buf)
FILE fd;
struct {

UCOUNT dev; ino;
BITS mode;
UTINY nlinks;
UID uidt gid;

UTINY msize;
UCOUNT Isize, addr[8];
ULONG actime, modtime;
} *buf;

FUNCTION

fstat obtains the status of the opened file fd in the structure pointed to
by buf. The structure is essentially that of a filesystera inode, preceded
by the device dev and the inode number ino on that device. The less sig-
nicant byte of dev is the device minor number, the more significant byte
is its major number,

mode takes the form •a'zzlugtrwx'rwxi-wx*, where a is set to indicate that
the file is allocated, zz is 00 for a plain file, 01 for character spe
cial, 10 for a directory, and 11 for block special, 1 is set for a large
(UO96 <s size) file. The remaining bits give access permissions as
described under chmod,

nlinks counts the number of directory entries that point at this inode.
uid is the userid of the owner, and gid is the groupid of the owning
group. The size of the file in bytes is ((LONG)msize « 16) + Isize,

For character and block special files, addr[0] contains the device major
and minor numbers, the latter in the less significant byte. The eight
block addresses are otherwise magic from the standpoint of most users.

The last accessed time, actirae, and last modified time, modtime, are both
in seconds from the 1 Jan 1970 epoch,

RETURNS

fstat returns zero if successful, or a negative number, which is the Idris
error return code, negated,

EXAMPLE

if (fstat(STDIN, &sbuf) < 0 || buf,dev != dev)
putstr(STDERR, "wrong filesystem\n", NULL);

SEE ALSO

chmod, getmod, stat

II - 20

IDRIS System Interface getosw

NAME

getosw - get console switches

SYNOPSIS

BYTES getcswO

FUNCTION

getosw reads the console switches.

RETURNS

getosw always succeeds in reading the console switches, even if they don't
exist.

EXAMPLE

if (getcswO =s OI7303O)
sync();

BUGS

Many systems have no console switches in real life.

II - 21

getegid IDRIS System Interface

NAME

getegid - get effective groupid

SYNOPSIS

UID getegid()

FUNCTION

getegid obtains the current effective groupid.

RETURNS

getegid always returns the effective groupid.

EXAMPLE

To forget who invoked you;

setgid(getegid());

SEE ALSO

getgid, setgid

II - 22

IDRIS System Interface geteuid

NAME

geteuid - get effective userid

SYNOPSIS

UID geteuid()

FUNCTION

geteuid obtains the current effective userid.

RETURNS

geteuid always returns the effective userid.

EXAMPLE

To forget who invoked you:

setuid(geteuid(});

SEE ALSO

getuid, setuid

II - 23

getgid IDRIS System Interface

NAHE

getgid - get real groupid

SYNOPSIS

UID getgid()

FUNCTION

getgid obtains the current real groupid.

RETURNS

getgid always returns the real groupid.

EXAMPLE

To revert ownership to whoever invoked you!

setgidCgetgidO);

SEE ALSO

getegid, setgid

II - 24

IDRIS System Interface getmod

NAME

getmod - get mode of file

SYNOPSIS

BITS getmod(fname)
TEXT *fname;

FUNCTION

getmod obtains the mode of the file fname. The low order twelve bits of
mode are used to specify access permissions as described for chmod.

RETURNS

getmod returns the (always non zero) mode of the file if successfult else
zero.

EXAMPLE

To copy the mode of a file:

chmod(newfile, getmod(oldfile));

SEE ALSO

chmod

II - 25

getpld IDRIS System Interface

NAME

getpid - get processld

SYNOPSIS

FID getpid()

FUNCTION

getpid obtains the processid of the currently running process, which is
not very meaningful but has the virtue of being unique among all living
processes. Hence it serves as a useful seed for temporary filenames.

RETURNS

getpid returns the (always positive) processid.

EXAMPLE

name[itob(name, getpidO, 10)] = *\0';
fd = create(name, WRITE);

SEE ALSO

uname

II - 26

IDRIS System Interface getuid

NAME

getuid - get real userid

SYNOPSIS

UID getuid()

FUNCTION

getuid obtains the current real userid.

RETURNS

getuid always returns the real userid.

EXAMPLE

To revert ownership to whoever invoked you:

setuid(getuid()):

SEE ALSO

geteuid, setuid

11-27

gtty IDRIS System Interface

NAME

gtty - get tty status

SYNOPSIS

ERROR gtty(fd, buf)
FILE fd;

struct {

BITS t_speeds;
TEXT t_erase, t_kill;
BITS t_raode;
} *buf;

FUNCTION

gtty obtains the status of a tty or other character special device, under
control of fd, that responds to stty system calls. For a tty, six bytes
of status are returned for the character special file fd, the information
being written in the structure pointed at by buf. Other character special
devices may refuse to honor a gtty request, or they return other than six
characters, depending strongly upon the device. If the device is a tty,
the information can be interpreted as follows:

mask value meaning of speeds field

S ISPEED OxOOOf input speed

S IBREAK 0x0010 break received

S ILOST 0x0020 input lost (overrun) 0m

S IMASK1 0x0010 reserved

S IREADY 0x0080 input ready to be read

S OSPEED OxOfOO output speed I

S OBREAK 0x1000 send break char

S ONXON 0x2000 don't output X-ON/X-OFF codes
pni

S 0MASK1 0x1000 reserved

S OREADY 0x8000 output is finished

The input speed and output speed are codes for baudrates of the set: (0,
50, 75, 110, 131.5, 150, 200, 300, 600, 1200, 1800, 2100, 1800, 9600,
19200, 38100}. A baud rate of 0 calls for the tty to hangup. By no means
do all devices support all speeds.

break received and input lost flags are reset after the gtty is done, in
put ready, if set, assures that a read of the terminal will not roadblock,
output ready assures that the output queues are empty, and that the trans

mitter is ready for another character, output break is reset when the
break character is sent. Since all devices cannot generate break charac
ters, this bit may be ignored (and left set).

erase is the character which, if typed in other than raw mode, calls for
the preceding character on the current line (if any) to be deleted. kill
is the character which calls for the entire current line to be deleted.

Defaults are '\b' (backspace) and '\25' (ctl-u). If the sign bit of
either erase or kill is set, the sequence backspace-space-backspace used
to erase characters on a CRT screen will be inhibited.

II - 28

IDRIS System Interface gtty

mask value meaning of mode field

M RARE 0x0001 rare mode

M XTABS 0x0002 expand tabs
M LCASE 0x0004 map uppercase to lowercase
M ECHO 0x0008 echo input
M CRMOD 0x0010 map carriage return to linefeed

M RAW 0x0020 raw mode

M ODDP 0x0040 generate odd parity
M EVENP 0x0080 generate even parity

tm M NL3 0x0300 newline delay
M HT3 OxOcOO horizontal tab delay
M CR3 0x3000 carriage return dealy
M FF1 0x4000 form feed delay
M BS1 0x8000 backspace delay

rare (the least significant bit) puts the handler in a semi-transparent
mode. DEL and FS characters cause interrupt signals, X-ON and X-OFF cause
output to start and stop, and proper parity is generated on output.
Parity bits are not removed on input.

expand tabs calls for each tab to be expanded to spaces, lease maps all
uppercase characters typed in to lowercase, and all lowercase characters
typed out to uppercase, echo steers all characters typed in back out for
full duplex operation, crmod accepts carriage returns CR as linefeeds LF,
and expands all typed out LFs to CR-LF sequences.

raw instructs the handler to ignore interpretation of input characters,
including the processing of erase and kill characters, the recognition of
interrupt codes DEL and FS, and the treatment of EOT as end of file.
Characters are read and written transparently as eight-bit bytes, with no
parity checking or mapping, and with no typeout delays.

evenp and oddp control parity generation on output. If even and odd are

off, the parity is zero. If even and odd are on, the parity is one.
Otherwise, even selects even parity and odd selects odd parity.

Various typeout delays may be requested, for newlines with nl3, horizontal
tabs with ht3, carriage returns with cr3, formfeeds and vertical tabs with
ffl, and for backspaces with bsl. Actual delays are in multiples of 1/60
second ticks. The ranges are (0, 1, 8, 12) ticks for horizontal tabs,
newlines, and carrage returns; (0, 64) for formfeeds and vertical tabs;
and (0, 16) for backspaces.

RETURNS

gtty returns zero if successful, else a negative number which is the Idris
error return code, negated.

EXAMPLE

To put a tty in raw mode, with minimum perturbation:

gttyCfd, &stat);
stat.t_mode =| M_RAW;
sttyCfd, &stat);

II - 29

gtty IDRIS System Interface

SEE ALSO

stty

II - 30

IDRIS System Interface kill

NAHE

kill - send signal to a process

SYNOPSIS

ERROR kilKpid, sig)
FID pid;
SIG signo;

FUNCTION

kill sends the signal signo to the process identified by processid pid.
The sender must either have the same effective userid as the receiver or

be the superuser; if pid is zero, the signal is sent to all processes un
der control of the same tty as the sender. A process cannot, however,
kill itself.

The signals that may be sent are:

NAME VALUE MEANING
rm

SIGHUP 1 hangup
SIGINT 2 interrupt

mm SIGQUIT 3 quit (core dump)
SIGILIN H illegal instruction (core dump)

mm
SIGTRC 5 trace trap (core dump)
SIGRNG 6 range error (core dump)
SIGDOM 7 domain error (core dump)

mm SIGFPT 8 floating point exception (core dump)
SIGKILL 9 kill

SIGBUS 10 bus error (core dump)
SIGSEG 11 segmentation violation (core dump)
SIGSYS 12 bad system call (core dump)

mm SIGPIPE 13 broken pipe
SIGALRM 14 alarm clock

SIGTERM 15 terminate

A core dump may not occur on those signals that have been caught or ig
nored by the receiving process. Note that SIGALRM and SIGTERM are not
defined in UNIX/V6, and that SIGRNG and SIGDOM have somewhat less general
meaning on that system.

RETURNS

kill returns zero if successful, else a negative number which is the Idris
error return code, negated.

EXAMPLE

To hangup a long-idle terminal (as superuser):

kilKpid, 1);

SEE ALSO

signal

BUGS

kill is a misnomer, as it can be used to perform many other functions.

II - 31

link IDRIS System Interface

NAHE

link - create link to file

SYNOPSIS

ERROR link(old, new)
TEXT *old, *new;

FUNCTION

link creates a new directory entry for a file with existing name old; the
added name is new. No checks are made for whether this is a good idea.

RETURNS

link returns zero if successful, else a negative number, which is the
Idris error return code, negated.

EXAMPLE

if (link(new, old) < 0 && unlink(old) < 0)
putstrCSTDERR, "can't move file\n", NULL);

SEE ALSO

unlink

BUGS

A program executing as superuser can scramble a directory structure by in-
Judicious calls on link.

II - 32

IDRIS System Interface Iseek

NAME

Iseek - set file read/write pointer

SYNOPSIS

COUNT lseek(fd, offset, sense)
FILE fd;
LONG offset;
COUNT sense;

FUNCTION

Iseek uses the long offset provided to modify the read/write pointer for
the file fd, under control of sense. If (sense == 0) the pointer is set
to offset, which should be positive; if (sense =5 1) the offset is al
gebraically added to the current pointer; otherwise (sense == 2) of
necessity and the offset is algebraically added to the length of the file
in bytes to obtain the new pointer. Idris uses only the low order 21 bits
of the offset; the rest are ignored.

The call lseek(fd, OL, 1) is guaranteed to leave the file pointer un
modified and, more important, to succeed only if Iseek calls are both ac
ceptable and meaningful for the fd specified. Other Iseek calls may ap
pear to succeed, but without effect, as when rewinding a terminal.

RETURNS

Iseek returns the file descriptor if successful, or a negative number,
which is the Idris error return code, negated.

EXAMPLE

To read a 512-byte block:

BOOL getblock(buf, blkno)
TEXT *buf;
BYTES blkno;

{
lseek(STDIN, (LONG) blkno « 9, 0);
return (read(STDIN, buf, 512) != 512);
}

II - 33

mkexec IDRIS System Interface

NAME

mkexec - make file executable

SYNOPSIS

BOOL mkexec(fname)

TEXT *fname;

FUNCTION

mkexec adds "execute" permissions to the file fnarae. "Read" and "write"
permissions are left unchanged.

RETURNS

mkexec returns YES if the file fname exists and permits its mode to be
changed. Otherwise it returns NO.

EXAMPLE

if (loadU) && load2())
return (mkexec(xfile));

II - 3^

'm

m

IDRIS System Interface mknod

NAME

mknod - make a special inode

SYNOPSIS

ERROR mknod(fname, mode, dev)
TEXT *fname;
BITS mode;
DEV dev;

FUNCTION

Mft mknod creates an empty instance of a file with pathname fname, setting its
mode bits to mode and its first address entry to dev. If (mode

0140777) for instance, the new file will be a directory with general per-
^ missions; dev had better be zero in this case. If (mode =s 0160644), the

new file will be a block special device that can be read by all, but writ-

ims ten only by the superuser; dev then specifies the major/minor device num
bers, the minor number in the less significant byte.

Only the superuser may perform this call successfully.

mm RETURNS
mknod returns zero if successful, else a negative number which is the

^ Idris error return code, negated.

EXAMPLE

^ mknod("/dev/tty9", 0120622, major « 8 I minor);

mt

pm

^ 11-35

mount IDRIS System Interface

NAME

mount - mount a file system

SYNOPSIS

ERROR mount(spec» fname» ronly)
TEXT *spec, •fnarae;
BOOL ronly;

FUNCTION

mount associates the root of the filesystem written on the block special
device spec with the pathname fname; henceforth the mounted filesystem is
reachable via pathnames through fname. If ronly is nonzero, the
filesystem is mounted read only, i.e. all files are write protected and
access times are not updated.

name must already exist; its contents are rendered inaccessible by the
mount operation.

Only the superuser succeeds with this call.

RETURNS

mount returns zero if successful, else a negative number which is the

Idris error return code, negated.

EXAMPLE

mountCVdev/rkl", "/usr", 0);

SEE ALSO

umount

II - 36

IDRIS System Interface nice

NAME

nice - set priority

SYNOPSIS

ERROR nice(pri)
TINY pri;

FUNCTION

nice sets the scheduling priority of the process to pri* which must be in
the range [0, 20] for all but the superuser. The higher the number, the
lower the priority [sic]; default is zero.

On some implementations, a sufficiently negative pri will lock a process
into memory, so that it is never swapped out.

RETURNS

nice returns zero if successful, else a negative number which is the Idris
error return code, negated.

EXAMPLE

To be polite when running a long program:

nice(l);

BUGS

nice is a misnomer, since it can be used to do unnice things.

II - 37

onexit IDRIS System Interface

NAHE

onexit - call function on program exit

SYNOPSIS

VOID (*onexit())(pfn)
VOID (•(*pfn)())();

FUNCTION

onexit registers the function pointed at by pfn, to be called on program
exit. The function at pfn is obliged to return the pointer returned by
the onexit call, so that any previously registered functions can also be
called.

RETURNS

onexit returns a pointer to another function; it is guaranteed not to be
NULL.

EXAMPLE

IMPORT VOID (*(*nextguy)())(), (*thisguy())();

if (Inextguy)
nextguy = onexit(Athisguy);

SEE ALSO

exit, onintr

BUGS

The type declarations defy description, and are still wrong.

II - 38

IDRIS System Interface onintr

NAHE

onintr - capture interrupts

SYNOPSIS

VOID onintr(pfn)
VOID (•pfn)();

FUNCTION

onintr ensures that the function at pfn is called on a broken pipe, or on
the occurrence of an interrupt (DEL key) or hangup generated from the key
board of a controlling terminal. Any earlier call to onintr is overrid
den.

The function is called with one integer argument, whose value is always
zero, and must not return; if it does, a message is output to STDERR and
an immediate error exit is taken.

If (pfn NULL) then these interrupts are disabled (turned off). Any
disabled interrupts are not, however, turned on by a subsequent call with
pfn not NULL.

RETURNS

Nothing.

EXAMPLE

A common use of onintr is to ensure a graceful exit on early termination:

onexit(&rmtemp);
onintr(&exit);
• • •

VOID rratempO
{

remove(unameO);

}

Still another use is to provide a way of terminating long printouts, as in
an interactive editor:

while (!enter(docmd, NULL))
putstr(STDOUT, »?\n", NULL);

• • •

VOID docmd()

{
onintr(&leave);

SEE ALSO

onexit

II - 39

open IDRIS System Interface

NAHE

open - open a file

SYNOPSIS

FILE open(fname, mode, rsize)
TEXT *fname;
COUNT mode;
BYTES rsize;

FUNCTION

open opens a file with name fname and assigns a file descriptor to it. If
(mode == 0) the file is opened for reading, else if (mode == 1) it is
opened for writing, else (mode == 2} of necessity and the file is opened
for updating (reading and writing).

rsize is the record size in bytes, which must be nonzero on many systems
if the file is not to be treated as ASCII text. It is ignored by Idris,
but should be present for portability.

RETURNS

open returns a file descriptor for the opened file or a negative number,
which is the Idris error return code, negated.

EXAMPLE

if ((fd = openC'xeq", WRITE, D) < 0)
putstr(STDERR, "can't open xeq\n", NULL);

SEE ALSO

close, create

II - "0 r"

IDRIS System Interface pipe

NAME

pipe - setup a data pipe

SYNOPSIS

FILE pipe(fds)
FILE fds[2];

FUNCTION

pipe sets up a pipeline, i.e. a data transfer mechanism that can be read
by one file descriptor and written by another. fds[0] is the read file
descriptor, fds[1] is the write file descriptor.

Since children spawned by fork inherit all open files, it is possible with
pipe to set up a communication link between processes having a common
parent. The pipe mechanism synchronizes reading and writing, allowing the
producer to get ahead up to 4096 bytes before being made to wait.

Reading an empty pipe with no writers left results in an end of file
return; a pipe with no readers causes a broken pipe signal and, if the
signal is ignored, causes an error return on subsequent writes.

RETURNS

pipe writes the read file descriptor in fds[0] and the write file descrip
tor in fds[1] if successful. The value of the function is fdsCO] if
successful or a negative number, which is the Idris error return code,
negated.

EXAMPLE

To hook a child to STDOUT:

pipe(fds);
if (pid = forkO)

{
close(STDOUT);
dup(fds[1]);
close(fdsCoi);
close(fds[1]);

}
else

{
close(STDIN);
dupCfdsCO]);
closeCfdsCO]);
close(fds[l]);
execK"child", "child", NULL);
exit(NO);
}

SEE ALSO

close, creat, create, dup, execl, execv, open, read, write

II - 41

profil IDRIS System Interface

NAME

profil - set profiler parameters —

SYNOPSIS ^
VOID profiKbuft size, offset, scale)

COUNT *buf; f—»
BYTES size, offset, scale;

FUNCTION ^
profil sets the parameters used by the system for execution time profiling
of the user mode program counter. On each clock tick (60 times per **
second), offset is subtracted from the user program counter and the result
multiplied by scale, which is taken as an unsigned binary fraction in the
interval [0, 1), If the result is in the interval [0, size), it is used
as an index to select the element of buf to increment.

Unlike UNIX, Idris assumes that the binary fraction is always one less
(when taken as an integer) than a power of two. That is, the resident ^
considers only the highest order bit set in scale, and assumes that all
bits to the right of it are ones. This difference should be transparent
to all known uses of profil.

If scale is 0, profiling is turned off. ,

RETURNS

Nothing.

EXAMPLE i»(r

To profile to a resolution of four code bytes per counter: -

profiKbuf, size, 0, ((BYTES)-I » 2) + 1); /• [sic] */

II - 42

lORIS System Interface read

NAME

read - read from a file

SYNOPSIS

COUNT readCfd, buf, size)
FILE fd;
TEXT »buf;
BYTES size;

FUNCTION

read reads up to size characters from the file specified by fd into the
buffer starting at buf.

RETURNS

If an error occurs, read returns a negative number which is the Idris er
ror code, negated; if end of file is encountered, read returns zero;
otherwise the value returned is between 1 and size, inclusive. When
reading from a disk file, size bytes are read whenever possible.

EXAMPLE

To copy a file:

while (0 < (n = read(STDIN, buf, BUFSIZE)))
write(STDOUT, buf, n);

SEE ALSO

write

II - 43

remove IDRIS System Interface

NAME

remove - remove a file

SYNOPSIS

FILE remove(fname)
TEXT *fname;

FUNCTION

remove deletes the file fname from the Idris directory structure. If no
other names link to the file, the file is destroyed. If the file is
opened for any reason, however, destruction will be postponed until the
last close on the file.

If the file is a directory, remove will not attempt to remove it.

RETURNS

remove returns zero, if successful, or a negative number, which is the
Idris error return code, negated.

EXAMPLE

if (removeC'temp.c") < 0)
putstr(STDERR, "can't remove temp file\n", NULL);

SEE ALSO

create

II - 44

IDRIS System Interface sbreak

NAME

sbreak - set system break

SYNOPSIS

TEXT *sbreak(size)
BYTES size;

FUNCTION

sbreak moves the system break, at the top of the data area, algebraically
up by size bytes, rounded up as necessary to placate memory management
hardware.

RETURNS

If successful, sbreak returns a pointer to the start of the added data
area; otherwise the value returned is NULL.

EXAMPLE

if (!(p = sbreak(nsyms • sizeof (symbol)}))
{
putstrCSTDERR, "not enough roomlXn", NULL);
exit(NO);
}

II - 45

seek IDRIS System Interface

NAHE

seek - set file read/write pointer

SYNOPSIS

ERROR seek(fd, offset, sense)
FILE fd;

COUNT offset, sense;

FUNCTION

seek uses the offset provided to modify the read/write pointer for the
file fd, under control of sense. If (sense == 0) the pointer is set to
offset, which is treated as an unsigned integer; if (sense == 1) the off
set is algebraically added to the current pointer; if (sense == 2) the
offset is algebraically added to the length of the file in bytes to obtain
the new pointer.

If (sense is between 3 and 5 inclusive), the offset is multiplied by 512L
and the resultant long offset is used with (sense - 3). Idris uses only
the low order 24 bits of the offset; the rest are ignored. Block offsets
are primarily of use in machines with short pointers.

RETURNS

seek returns zero if successful, or a negative number, which is the Idris
error return code, negated.

EXAMPLE

To read a 512-byte block:

BOOL getblock(buf, blkno)
TEXT »buf;
BYTES blkno;
I
seek(STDIN, blkno, 3);
return (fread(STDIN, buf, 512) != 512);
}

SEE ALSO

Iseek

II - 46

IDRIS System Interface setgid

NAME

setgid - set groupid

SYNOPSIS

ERROR setgid(gid)
UID gid;

FUNCTION

setgid sets the groupid» both real and effective, of the current process
to gid. Only the superuser may change the gid.

RETURNS

setgid returns zero if successful, else a negative number which is the
Idris error return code, negated.

EXAMPLE

To revert effective groupid back to real:

setgid(getgid());

SEE ALSO

getgid

II - 47

setuid IDRIS System Interface

NAME

setuid - set userld

SYNOPSIS

ERROR setuid(uid)

UID uid;

FUNCTION

setuid sets the userid, both real and effective, of the current process to
uid. Only the superuser may change the uid.

RETURNS

setuid returns zero if successful, else a negative number which is the
Idris error return code, negated.

EXAMPLE

To revert effective userid back to real:

setuidCgetuidO);

SEE ALSO

getuid

II - 48

mm

IDRIS System Interface signal

NAME

signal - capture signals

SYNOPSIS

VOID (*signal(sig, pfunc))()
SIG sig;
VOID (*pfunc)();

FUNCTION

signal changes the handling of the signal sig according to pfunc. Legal
values of sig are described under the kill system call. If pfunc is NULL,
normal system handling occurs, i.e. the process is terminated when the
signal occurs, possibly with a core dump; if pfunc is NOSIG (ie. 1), the
signal is ignored; otherwise pfunc is taken as a pointer to a code se
quence to be entered in the user program when the signal occurs.

Note that the code sequence may not, in general, be a C function, since
registers may not be properly saved and the stack may not be prepared for
an orderly return; to return properly to the interrupted code, a machine
dependent code sequence roust often be performed. If a system call was in
terrupted and the signal handler returns properly to the interrupted code,
the system call reports an abnormal termination with the EINTR error code.

Except for illegal instruction and trace trap, all signals revert to
system handling after each occurrence; all signals revert to system hand
ling on an execl or execv, but not on a fork.

RETURNS

signal returns the old pfunc if successful, else -1.

EXAMPLE

To prevent hangups:

signald, NOSIG);

SEE ALSO

execl, execv, fork, kill

II - 49

sleep IDRIS System Interface

NAME

sleep <- delay for awhile

SYNOPSIS

VOID sleep(sees)
UCOUNT sees;

FUNCTION

sleep suspends execution of the current process for sees seconds.

RETURNS

sleep returns zero if successful (clock is enabled), or a negative number,
which is the Idris error return code, negated.

EXAMPLE

while ((fd = creatC'lock", 044D) < 0)

sleep(5);

II - 50

IDRIS System Interface stat

NAME

stat - get status of named file

SYNOPSIS

ERROR stat(fname, buf)
TEXT •fname;
struct {

UCOUNT dev; ino;
BITS mode;
UTINY nlinks;
DID uid, gid;
UTINY msize;
UCOUNT Isize, addr[8];
ULONG actime, modtime;
} *buf;

FUNCTION

stat obtains the status of the file fname in the structure pointed to by
buf. The structure is essentially that of a filesystem lnode» preceded by
the device dev and the inode number ino on that device; it is described
under fstat.

RETURNS

stat returns zero if successful, or a negative number, which is the Idris
error return code, negated.

EXAMPLE

if (stat(av[1], &sbuf) < 0 I! !isdir(sbuf.mode))
putstrCSTDERR, av[1], " is not a directoryXn", NULL);

SEE ALSO

chmod, fstat, getmod

fsm

II - 51

stioe IDRIS System Interface

NAME

stime - set system time

SYNOPSIS

ERROR stime(tirae)

ULONG time;

FUNCTION

stime sets the system time to time, which is the number of seconds since
the 1 Jan 1970 epoch. Only the superuser succeeds with this call.

RETURNS

stime returns zero if successful, else a negative number which is the
Idris error return code, negated.

EXAMPLE

To backup an hour:

stimeCtimeO - 60 * 60);

SEE ALSO

time

II - 52

IDRIS System Interface stty

NAME

stty - set tty status

SYNOPSIS

ERROR stty(fd, buf)
FILE fd;

struct {

BITS t_speeds;
TEXT t__erase, t_kill;
BITS t_niode;
} »buf;

FUNCTION

stty sets the status of a tty or other character special device« under
control of the file descriptor fd, to the values in the structure pointed
at by buf. The structure is the same as described under gtty.

Any type ahead is discarded if a transition is made from rare or raw mode
to normal mode, and vice-versa. Transistions between rare and raw mode do

not cause a buffer flush.

RETURNS

stty returns zero if successful, else a negative number which is the Idris
error return code, negated.

EXAMPLE

To change a tty speed, with minumum perturbation:

gttyCfd, &stat);
stat.t_speeds =& •'(T_OSPEED|T_ISPEED);
stat.t_speeds =| ospeed « 8 ! ispeed;
stty(fd, &stat);

SEE ALSO

gtty

II - 53

sync IDRIS System Interface

NAME

sync - synchronize disks with memory

SYNOPSIS

VOID syncO

FUNCTION

sync ensures that all delayed writes are performed by the system, so that
disk integrity is assured before taking the system down. It updates all
inodes that have been modified since the last sync, and writes all data
blocks not correctly represented on open or mounted block special devices.

If a filesystera is to be accessed other than through the block special
file on which it is mounted, sync should first be performed to ensure that
the disk image is current.

RETURNS

Nothing.

EXAMPLE

A simple "sync daemon" is:

FOREVER

{
sync();
sleep(30);
}

II - 54

IDRIS System Interface time

NAME

time - get system time

SYNOPSIS

ULONG timeO

FUNCTION

time gets the system time, which is the number of seconds since the 1 Jan
1970 epoch*

RETURNS

time returns the system time as a long integer.

EXAMPLE

To backup an hour:

stimeCtimeO - 60 * 60);

SEE ALSO

stime

II - 55

times IDRIS System Interface

NAME

times - get process times

SYNOPSIS

ERROR times(buf)

struct {
UCOUNT putime, pstime;
ULONG cutime, cstime;
} *buf;

FUNCTION

times returns the cumulative times consumed by the current process and all
its dead children in the structure pointed at by buf. putime is the user
mode time consumed by the process proper; pstime is its system mode time,
cutime and cstime are the cumulative user and system times consumed by all
the children that have been laid to rest by wait system calls, including
the times of all their children thus interred.

All times are in 1/60 second ticks.

RETURNS

times writes the process times in the structure pointed at by buf. times
returns zero if successful, else a negative number which is the Idris er
ror return code, negated.

EXAMPLE

times(&vec);
putfmtCSystem: }.1f User: S.lfXn", vec.cstime/60.0, vec.cutime/60.0);

SEE ALSO

time

II - 56

IDRIS System Interface umount

NAME

umount - unmount a filesystem

SYNOPSIS

ERROR umount(spec)
TEXT *spec;

FUNCTION

umount disassociates the root of the filesystem written on the block spe
cial device spec with whatever node it was mounted on; henceforth the
filesystem is no longer reachable via the directory tree.

Only the superuser succeeds with this call.

RETURNS

umount returns zero if successful, else a negative number which is the
Idris error return code, negated.

EXAMPLE

umount ("/dev/rk 1'*);

SEE ALSO

mount

II - 57

uname IDRIS System Interface

NAME

uname - create a unique file name

SYNOPSIS

TEXT *uname()

FUNCTION

uname returns a pointer to the start of a NUL terminated

guaranteed not to conflict with normal user filenames,
fact, unique to each Idris process, and may be modified by
that a family of process-unique files may be dealt with,
used as the first argument to a create, or subsequent open, call, so long
as any such files created are removed before program termination. It is
considered bad manners to leave scratch files lying about.

name which is

The name is, in
a suffix, so

The name may be

RETURNS

uname returns the same pointer on every call during a
vocation. It takes the form "/trap/t#####" where
octal. The pointer will never be NULL.

given program in-
is the processid in

EXAMPLE

if ((fd = create(uname(), WRITE, 1)) < 0)
putstrOTDERR, "can't create sort temp\n", NULL);

SEE ALSO

close, create, open, remove

BUGS

A program invoked by the exec system call, without a fork, inherits the
Idris processid used to generate unique names. Collisions can occur if
files so named are not meticulously removed.

II - 58

IDRIS System Interface unlink

NAME

unlink - erase link to file

SYNOPSIS

ERROR unlink(fname)
TEXT *fname;

FUNCTION

unlink removes the link specified by the file fname. No checks are made
for whether this is a good idea. Only the superuser may unlink a direc
tory.

RETURNS

unlink returns zero if successful» else a negative number, which is the
Idris error return code, negated.

EXAMPLE

if (!isdir(getmod(file)))
unlink(file);

SEE ALSO

link, remove

BUGS

A program executing as superuser can scramble a directory structure by in-
Judicious calls on unlink.

II - 59

wait IDRIS System Interface

NAME

wait - wait for child to terminate

SYNOPSIS

FID wait(pstat)
COUNT *pstat;

FUNCTION

wait suspends execution of the calling program until a child process ter
minates » so that it can return the child's termination status at pstat and
its processid as the value of the function. Children remain in limbo
(zombie status, actually) until laid to rest by a waiting parent.

The status returned contains the number of the terminating signal, if any,
in its less significant byte, and the status reported back by the child's
exit call in its more significant byte. By convention, a status word of
all zeros means normal termination; if (*pstat & 0200) then a core dump
has been made,

RETURNS

wait returns the processid of the child whose status is written at pstat,
if any, else -1 if the caller has no children,

EXAMPLE

if (0 < (pid = forkO))
while (waitC&status) !s pid)

SEE ALSO

fork

II - 60

IDRIS System Interface write

NAHE

write - write to a file

SYNOPSIS

COUNT write(fd, buf, size)
FILE fd;
TEXT *buf;
BYTES size;

FUNCTION

write writes size characters starting at buf to the file specified by fd.

RETURNS

If an error occurs, write returns a negative number which is the Idris er
ror code, negated; otherwise the value returned should be size.

EXAMPLE

To copy a file:

while (0 < (n s read(STDIN, buf, size)))
write(STDOUT, buf, n);

SEE ALSO

read

II - 61

xecl IDRIS System Interface

I

NAME

xecl - execute a file with argument list

SYNOPSIS

COUNT xecKfname, sin, sout, flags, sO, si NULL)
TEXT *fnarae;
FILE sin, sout;
COUNT flags;
TEXT *sO, *s1, ...

FUNCTION

xecl invokes the program file fname, connecting its STDIN to sin and
STDOUT to sout and passing it the string arguments sO, si, ... If
(!(flags & 3)) fname is invoked as a new process; xecl will wait until
the command has completed and will return its status to the calling
program. If (flags & 1) fname is invoked as a new process and xecl will
not wait, but will return the processid of the child. If (flags & 2)
fname is invoked in place of the current process, whose image is forever
gone. In this case, xecl will never return to the caller.

To the value of flags may be added a 1 if the processing of interrupt and
quit signals for fname is to revert to system handling. The value of
flags may also be incremented by 8 if the effective userid is to be made
the real userid before fname is executed. If sin is not equal to STDIN,
or if sout is not equal to STDOUT, the file (sin or sout) is closed before
xecl returns.

If fname does not contain a '/', then xecl will search an arbitrary series
of directories for the file specified, by prepending to fname each path
specified by the global variable _paths before trying to execute it.
_paths is of type pointer to TEXT, and points to a NUL terminated series
of directory paths separated by '|'s.

If the file eventually found has execute permission, but is not in ex
ecutable format, /bin/sh is invoked with the current prefixed version of
fname as its first argument and, following fname, an argument vector com
posed of sO, si, ...

RETURNS

If fname cannot be invoked, xecl will fail. If (!(flags & 3)) xecl
returns YES if the command executed successfully, otherwise NO; if (flags
& 1) xecl returns the id of the child process, if one exists, otherwise
zero; if (flags & 2) xecl will never return to the caller.

In all cases, if fname cannot be executed, an appropriate error message is
written to STDERR.

EXAMPLE

if (IxecKpgm, STDIN, create(file, WRITE), 0, f1, f2, NULL))
putstr(STDERR, pgra, " failedXn", NULL);

SEE ALSO

xecv

II - 62

IDRIS System Interface xecv

NAME

xecv - execute a file with argument vector

SYNOPSIS

COUNT xecvCfname, sin, scut, flags, av)
TEXT *fnarae;
FILE sin, sout;

^ COUNT flags;
TEXT **av;

FUNCTION

xecv invokes the program file fname, connecting its STDIN to sin and
mm STDOUT to sout and passing it the string arguments specified in the NULL

terminated vector av. Its behavior is otherwise identical to xecl.

^ SEE ALSO
xecl

II - 63

1

SECTION THREE

PR06RAHMING FILE FORMATS

(*<

Progranming File Formats Files

NAME

Files - special file formats

FUNCTION

The files documented in this section are those used in the process of
developing programs under Idris, or those which are likely to be usable
only by people with some knowledge of progrananing. All formats presented
here are dictated, to a greater or lesser extent, by the Idris resident;
most are produced or read directly by the resident.

Many other file formats of a more general nature may be found
III of the Idris Users' Manual.

in Section

III - 1

bnames Programming File Formats

NAHE

bnames - block device names pseudo file

SYNOPSIS

/dev/bnames

FUNCTION

/dev/bnames is a character special file which reads out the names of the
block special device handlers.

It consists of a concatenation of text lines, one for each entry in the
table of block special devices; the first line corresponds to major
device number 0.

/dev/bnames cannot be written.

SEE ALSO

cnames

III - 2

Programming File Formats enames

NAHE

enames - character device names pseudo file

SYNOPSIS

/dev/cnames

FUNCTION

/dev/cnames is a character special file which reads out the names of the
character special device handlers.

It consists of a concatenation of text lines, one for each entry in the
table of character special devices; the first line corresponds to major
device number 0.

/dev/cnames cannot be written.

SEE ALSO

bnames

III - 3

®®''® Progranming File Formats

NAME

core - core dump format

FUNCTION

core is the ancient term for main computer storage, dating back to the
widespread use of magnetic cores to implement random access memory. A
core dump, by extension, is an image of process memory, together with
register contents and other status information, that is preserved when a
process comes to an untimely end and may be in need of post mortem
analysis, Idris can be coerced by a variety of means into producing a
core dump, always into a file called "core" in the current directory.
Such a file is best interpreted by the post mortem debugger, db, described
in the C Interface Manual for the host machine.

A core dump image consists of a header followed by the user alterable por
tion of a process address space.

The header consists of an identification byte Ox9b, a configuration byte,
a short int giving the size of the header in bytes, and six unsigned ints
containing! the number of bytes defined by any separate text segment (or
0 if none), the number of bytes defined by the data segment (or combined
text/data segment), the number of bytes between the end of the data seg
ment and the top of stack at the time of the dump, the number of bytes
between top of stack and the end of the address space (base of stack), the
offset of any separate text segment, and the offset of the data segment
(or combined text/data segment). The remainder of the header consists of
an int giving the cause of death of the process, a machine—dependent panel
containing the registers at the time of the dump, and sufficient filler
bytes to bring the header length to the value indicated earlier.

The byte order and size of all ints in the header are determined by the
configuration byte, which has the format given in the description of stan
dard object files.

The dumped process image following the header contains the entirety of
user alterable address space. If a separate "I-space" existed during the
run, its contents are not dumped; otherwise, the text segment of the
process is dumped immediately preceding its data segment.

SEE ALSO

object

III - 4

Progranning File Formats inodes

NAME

inodes - resident inode list pseudo file

SYNOPSIS

/dev/inodes

FUNCTION

/dev/inodes is a character special file which reads out the resident list
of inode. It is used by the standard utility ps to display the informa
tion in a format more or less palatable to human beings, or at least to
gurus.

It consists of a concatenation of INODE entries, as documented in the
resident header file /lib/fio.h.

/dev/inodes cannot be written.

SEE ALSO

mount

III - 5

Progranning File Formats

NAME

kmera - kernel memory pseudo file

SYNOPSIS

/dev/kmem

FUNCTION

/dev/kmem is a character special device that reads and writes kernel
memory (where the Idris resident lives) as if it were a file. Nonexistent
memory may be written, with no ill effect even in the presence of hardware
trapping; nonexistent memory reads, if trapped, as all ones.

Its primary use is for on-the-fly inspection and patching of the resident,
preferably by a guru armed with at least a symbol table.

SEE ALSO

mem

BUGS

It always accesses memory a byte at a time, which can confuse primitive
memory mapped peripheral controllers wired only for word accesses.

Ill - 6

Programming File Formats library

NAME

library - standard library format

FUNCTION

Standard libraries are administered by the programming utility lib,
primarily for conditional linking of object modules by the utility link,
(Both utilities are documented in the C Interface Manual for any target
machine.) They permit any number of files, typically object modules but
possibly anything, to be administered as a single file; any file can be
extracted by scanning the library for a matching name or other desirable
properties. Standard library files are written in a machine independent
fashion, so that they can be used unchanged across various implementations
of Idris, plus other systems for which the portable C interface is sup
ported.

The standard library format consists of a two-byte header having the value
0177565, written less significant byte first, followed by zero or more en
tries. Each entry consists of a fourteen-byte name, left justified and
NUL padded, followed by a two-byte unsigned file length, also stored less
significant byte first, followed by the file contents proper. If a name
begins with a NUL byte, it is taken as the end of the library file.

Note that this differs in several small ways from UNIX/V6 archive file
format, which has a header of 0177555, an eight-byte name, six bytes of
miscellaneous UNIX-specific file attributes, and a two-byte file length.
Moreover, a file whose length is odd is followed by a NUL padding byte in
the UNIX format, while no padding is used in standard library format.

UNIX/V7 format is characterized by a header of 0177545, a fourteen-byte
name, eight bytes of UNIX-specific file attributes, and a four-byte
length. Odd length files are also padded to even.

The utility lib is capable of administering any of these formats.

BUGS

There should be a NUL at the end of all libraries, so that they are
properly terminated even when written on a diskette.

Ill - 7

mem Programming File Formats

NAME

mem - user memory pseudo file

SYNOPSIS

/dev/mem

FUNCTION

/dev/mem is a character special device that reads and writes per process
(user) memory as if it were a file. This is seldom wise but occasionally
useful.

Its behaviour in the presence of illegal access requests is the same as
kmem.

SEE ALSO

kmem

III - 8

Progransning File Formats mount

NAME

mount - resident mount list pseudo file

SYNOPSIS

/dev/mount

FUNCTION

/dev/mount is a character special file which reads out the resident list
of mounted filesystems. It is used by the standard utility ps to deter
mine the number of filesystems actually mounted; it is capable of
delivering even more information.

It consists of a concatenation of MOUNT entries, as documented in the
resident header file /lib/fio.h.

/dev/mount cannot be written.

SEE ALSO

inodes

III - 9

myps Programning File Formats

NAME

myps - current user process status psuedo file

SYNOPSIS

/dev/rayps

FUNCTION

/dev/myps is a character special file which reads out the resident process
list. It is used by the standard utility ps to determine the status of
processes started at a given terminal.

Its behaviour is identical to /dev/pst except that only processes having
the same controlling teletype as the reader are read out.

SEE ALSO

ps

III - 10

Programming File Formats object

NAME

object - relocatable object file format

FUNCTION

For a file to be executable under Xdris, it must look like an "object
file", a file produced by or for the program builder utility called link,
which is described in the C Interface Manual for the target machine. This
is a (possibly) special case of a "relocatable" object file, one that con
tains sufficient information to be combined (by link) with other object

files and/or altered to execute properly in different parts of memory.
Thus, object files are widespread, and form an important part of the Idris
environment.

Note that a file may have execute permission and still not be an object
file — it may be a directory with scan permission or it may be a command
script to be interpreted by the shell. Nor is an object file necessarily
executable — it may be a bootstrap file (image of the resident), or a
file executable on another machine, or a file that must be combined by
link with other object files to make a complete program (its name probably
ends in ".o" in this case).

A relocatable object image consists of a header, followed by a text seg
ment, a data segment, the symbol table, and relocation information.

The header consists of an identification byte 0x99t a configuration byte,
a short int containing the number of symbol table bytes, and six unsigned
ints giving: the number of bytes of object code defined by the text seg
ment, the number of bytes of object code defined by the data segment, the
number of bytes needed by the bss segment, the number of bytes needed for
stack plus heap, the text segment offset, and the data segment offset.
Byte order and size of all ints in the header are determined by the con
figuration byte.

The configuration byte contains all information needed to fully represent
the header and remaining information in the file. Its value val defines
the following fields: ((val & 07) « 1) + 1 is the number of characters
in the symbol table name field, so that values [0, 73 provide for odd
lengths in the range [1, 153. If (val & QIC) then ints are four bytes;
otherwise they are two bytes. If (val & 020) then ints are represented
least significant byte first, otherwise, most significant byte first;
byte order is assumed to be purely ascending or purely descending, (val &
0140) » 5 is the strongest enforced storage bound restriction; values of
0, 1, 2, 3 provide for bounds that are multiples of 0, 2, 4, 8 bytes,
respectively. If (val & 0200) no relocation information is present in
this file.

The text segment is relocated relative to the text segment offset given in
the header (usually zero), while the data segment is relocated relative to
the data segment offset (usually the end of the text segment). In all
cases the bss segment is relocated relative to the end of the data seg
ment.

Relocation information consists of two sucessive byte streams, one for the
text segment and one for the data segment, each terminated by a zero con-

III - 11

object Prograoming File Formats

trol byte. Control bytes in the range [1, 31] cause that many bytes in
the corresponding segment to be skipped; bytes in the range [32, 63] skip
32 bytes, plus 256 times the control byte minus 32, plus the number of
bytes specified by the relocation byte following.

All other control bytes control relocation of the next short or long int
in the corresponding segment. If the 1-weighted bit is set in such a con
trol byte, then a change in load bias must be subtracted from the int.
The 2-weighted bit is set if a long int is being relocated instead of a
short int. The value of the control byte right-shifted two places, minus
16, constitutes a "symbol code".

A symbol code of 47 is replaced by a code obtained from the byte or bytes
following in the relocation stream. If the next byte is less than 128,
then the symbol code is its value plus 47. Otherwise, the code is that
byte minus 128 plus 175, the sum times 256, plus the value of the next
relocation byte after that one.

A symbol code of zero calls for no further relocation; 1 means that a
change in text bias must be added to the item (short or long int); 2
means that a change in data bias must be added; 3 means that a change in

bss bias must be added. Other symbol codes call for the value of the sym
bol table entry indexed by the symbol code minus 4 to be added to the
item.

Each symbol table entry consists of a value int, a flag byte, and a name
padded with trailing NULs. Meaningful flag values are 0 for undefined, 4
for defined absolute, 5 for defined text relative, 6 for defined data
relative, and 7 for defined bss relative. To this is added 010 if the

symbol is to be globally known. If an undefined symbol has a non-zero
value, it is taken as a request to reserve at least that many bytes for
the symbol in the bss area, starting at the strongest required storage
boundary.

SEE ALSO

core

III - 12

Programning File Formats profile

NAME

profile - profile dump format

FUNCTION

A profile of a program is a histogram over time, showing how often each
portion of the program was caught in execution, plus a list of entry
counts for each of the instrumented functions that comprise the program.
It is used by programmers, in conjunction with the prof post processor
described in the C Interface Manual for the target machine, to debug and
tune programs in an execution environment.

A profile dump file is produced at the end of an instrumented program ex
ecution. Its format is uniform across implementations of Idris, con
sisting of a header, followed by the profiling buffer and an array of
function entry counts.

The header consists of an identification byte Ox9a, a configuration byte,
a short int giving the number of bytes in the entry count array, and six
unsigned ints giving: the (now meaningless) run-time address of the
profiling buffer, the size of the buffer in bytes, the run-time offset
subtracted from the pc to index the buffer, the scaling factor applied to
the modified pc (given as a binary fraction in the interval [0, 1)), the
text segment offset, and the offset from each function entry point of the
corresponding address in the entry count array. Note that the first four
ints are just the arguments to the prof system call, which is described in
Section II of this manual.

The byte order and size of all ints in the header (and the byte order of
ints elsewhere) are determined by the configuration byte, which has the
format given in the description of standard object files. The header is
immediately followed by a buffer of the size indicated, consisting of an
array of short ints each of which contains a count of the clock ticks at

which the pc was observed in the range of addresses corresponding to that
element of the array.

Following the buffer is an array indicating the number of entries made to
profiled functions during the run. Each element of the array is a struc
ture with a pointer, called addr, and a long integer, called count. addr
indicates the function to which this descriptor applies, and count con
tains the number of calls made to it. Specifically, addr contains the
return address visible to the counting routine called at the start of each
function, and so points some small (currently fixed) number of bytes above
the actual entry point of the function. Its offset from the entry point
is indicated by the final int in the dump file header. Note that the size
of the pointer, and the byte ordering, in this record are determined by
the configuration byte.

SEE ALSO

core, object

III - 13

ps Progracmlng File Formats ^

NAME

ps - process status psuedo file

SYNOPSIS

/dev/ps

FUNCTION

/dev/ps is a character special file which reads out the resident process
list. It is used by the standard utility ps to determine the status of -
all processes in the system.

It consists of a concatenation of PROG plus ZLIST entries, one set for
each of the processes administered by the resident. The structures
delivered up are exact images, in native byte order, of the structures as —'
documented in the resident header file /lib/cpu.h. ^

A PROG structure is followed by a list of zombies, or ZLIST structures,
only if the pjzlist pointer is not NULL; the last ZLIST structure for a -pn
given process has a next field of NULL. Similarly, the PROG list ends —
with a structure having a next field of NULL. ^

/dev/ps cannot be written.

SEE ALSO

myps .

7^

III -

*!

jm

im SECTION FOUR

IDRIS SUPPORT LIBRARY

m-

P««l

IDRIS Support Library Conventions

NAME

Conventions - the Idris support library

SYNOPSIS

/lib/libi*

FUNCTION

The functions documented in this section are kept in a library, separate
from the standard C library, with a name whose prefix is /lib/libi (and
whose suffix is machine dependent). They are used extensively in the con
struction of standard Idris utilities, to perform common functions
uniformly and to enforce communication protocols among utilities. They
are thus quite useful to anyone wishing to add utilities that are to
cooperate with the existing community.

Most of the notation used here is the same as in earlier sections of this

manual, but there are a few additional types that creep in from various
header files:

BLOCK an unsigned short, capable of holding any filesystem block number.
Block 0 is often taken as the absence of a block number. Defined in

/lib/ino.h.

FINOOE a filesystem inode, possibly as represented on the disk or possibly
in native byte order. Defined in /lib/ino.h.

INUM an unsigned short, capable of holding any filesystem inode number.
Inode 0 does not exist. Defined in /lib/ino.h.

TVEC a time vector, used to communicate parsed dates among library func
tions. Defined in /lib/time.h as:

typedef struct {
BYTES sees; / seconds [0, 60) */

BYTES mins; / minutes [0, 60) •/
BYTES hrs; / hours [0, 2^4) »/

BYTES dmth; / day of month [1, 31] */
BYTES mth; / month of year [0, 12) */
BYTES yr; / years since 1900 [70, 131) •/
BYTES dwk; / day of week, Sunday = 0 [0, 7) */
BYTES dyr; / day of year [0, 365] */
BOOL dstf; / non-zero if daylight savings time •/
} TVEC;

Also included in this library is a version of putf (the internal routine
_putf to be exact) that cannot deal with the floating point conversions Jd
and %f. This is provided so that utilities can perform formatted output
— using decode, errfmt, putf, and putfmt — without dragging in (possibly
extensive) floating point runtime support code that will never be needed.
Be warned, however, that automatically including the Idris support library
with the standard compile and link scripts will lead to puzzling behavior
in a program that expects to perform floating output.

IV - 1

jpenable IDRIS Support Library

NAME

_penable - control function entry counts in profiling

SYNOPSIS

TBOOL _penable;

FUNCTION

_penable is used by the function entry counting routine of the profiling
package, to control whether or not calls to the routine actually will
record function entries. If _penable is non-zero, function entries will
be counted; otherwise, the counting routine returns without doing
anything.

_profil() sets jpenable to 1 just before returning. _proend() clears
_penable just after being called.

SEE ALSO

_proend, _profil

n

IV - 2

IDRIS Support Library _proend

NAME

_proend - end profiling

SYNOPSIS

VOID (*proend())()

FUNCTION

_proend terminates profiling, by clearing the one-byte flag jpenable to
disable function entry counting, calling profilO to end time profiling,
and writing out the time profiling and entry count buffers to the file
named in the last preceding call to _j>rofil().

RETURNS

Since _proend() is linked into the chain of programs to be called on
program exit or interrupt, it returns the address of the next one to call.

SEE ALSO

_j>enable, _profil

tm

IV - 3

_profil IDRIS Support Library

NAME

_profil - start profiling

SYNOPSIS

TEXT •_profil(p)
struct {

UCOUNT config, esize;
BYTES pbuf, psize, offset, scale, tbias, ebias;
TEXT *fname;
} *p;

FUNCTION

_profil performs a number of useful housekeeping functions preparatory to
commencing program profiling. Its single argument, p, is a pointer to a
standard profile file header, which is immediately followed by the name of
the file to be generated by _proend().

_j)rofil computes file header parameters psize and scale, allocates space
for the time profiling and entry count buffers at pbuf, calls profilO to
initiate time profiling, and ensures that _proend() is called on program
interrupt or exit. Finally, it enables function entry counting by setting
the one-byte flag _penable to 1.

RETURNS

_profil returns the address of the first byte past the end of the buffer
space it allocated at pbuf.

SEE ALSO

__penable, _proend

IV - 4

IDRIS Support Library askpw

NAME

askpw •> ask for a password

SYNOPSIS

TEXT *askpw(kbufy key)
TINY kbuf[8];
TEXT »key;

FUNCTION

askpw fills kbuf with the NUL terminated password at key, or if (key ==
NULL) reads a line from STOIN to fill kbuf. Before reading a line from a
terminal as STDIN, askpw will drain outstanding input by performing an
stty, prompt with the string "\7password:\ and accept the subsequent
line, echoing only the trailing newline.

In any case, the first eight characters of the password are used; a short
string is padded on the right with NULs.

Note that a password may thus be obtained from any of three sources: from
an argument to the function, from a terminal with prompting and with prin
ting suppressed, or from a noninteractive STDIN with no prompting.

RETURNS

askpw returns the address of kbuf, which contains the NUL padded password.

EXAMPLE

bldksCks, askpw(kbuf, NULL));

SEE ALSO

codepw

IV - 5

asure IDRIS Support Library

NAME

asure - get user response to question

SYNOPSIS

BOOL asure(p)
TEXT *p;

FUNCTION

If STDIN looks like a terminal, asure drains its input by performing an
stty, writes the NUL terminated string at *p to STDERR, followed by a
space, then reads up to 32 characters from STDIN.

This meticulous sequence of events is useful when a program needs to be
assured that a conscious human accomplice is present.

RETURNS

If the line read begins with a 'y' or 'Y', or if STDIN is not a terminal,
asure returns YES; otherwise it returns NO.

EXAMPLE

if (asureC'are you sure?"))
scrog();

IV - 6

IDRIS Support Library atime

NAME

atime - convert time vector to ASCII string

SYNOPSIS

TEXT *atime(vt, s)
TVEC •vt;
TEXT *s;

FUNCTION

atime converts the time vector at vt to a 24 character string at s» having
the form:

Thu Aug 12 09:53:12 1980

There is no terminating NUL or newline.

RETURNS

atime writes the date in ASCII at s[0] through sC23]r and returns s.

EXAMPLE

To print the date:

IMPORT LONG timeO;
IMPORT TEXT »_est, "..edt;
INTERN TEXT buf[] {"012345678901234567890123 ");
TVEC tvec;

ltime(&tvec, time(NULL));
putstr(STDOUT, atime(&tvec, buf), tvec.dstf ? _edt : _est,

"\n", NULL);

SEE ALSO

Itimep vtime

IV - 7

baudcode IDRIS Support Library

NAME

baudcode - return code given speed text

SYNOPSIS

UCOUNT baudcode(s)
TEXT *s;

FUNCTION

baudcode compares the text string s with the table baudlist and returns
the index of the matching string.

RETURNS

The speed code in the range [0, 15], or 16, if the lookup fails.

EXAMPLE

finclude <sys.h>

BITS s;
SGTTY tbuf;
TEXT *speed = NULL;

getflags(&ac, &av, "s*:F", &speed);
gtty(fd, Atbuf);
if (speed && (s = baudcode(speed)) < 16)

{

tbuf.t_speeds =4 ~(T_OSPEED|T_ISPEED);
tbuf.t_speeds =! s « 8 I s;
stty(fd, 4tbuf);
}

else

reroark(speed, unavailable baudrate");

SEE ALSO

baudlist, baudtext

IV - 8

IDRIS Support Library baudlist

NAME

baudlist - list of speeds supported by Idris drivers

SYNOPSIS

TEXT baudlist[NBAUD] {
"0", "50", "75", "110"

"13^.5", "150", "200", "300",
"600", "1200", "1800", "2400",
"4800", "9600", "19200", "38400"};

FUNCTION

baudlist is a table of text speeds supported by Idris drivers. The table
is indexed by a code in the range [0, 15],

SEE ALSO

baudcode, baudtext

IV - 9

baudtext IDRIS Support Library

NAME

baudtext - return text speed given speed code

SYNOPSIS

TEXT *baudtext(c)
UCOUNT c;

FUNCTION

baudtext returns a pointer to the speed text string corresponding to the
baudrate code c. The actual strings live in the table baudlistC].

RETURNS

A pointer to the speed text string, or NULL if code was not in the range
[0, 15].

SEE ALSO

baudcode, baudlist

IV - 10

IDRIS Support Library clrbuf

NAHE

clrbuf - clear a standard sized buffer

SYNOPSIS

VOID clrbuf(buf)

TEXT buf[BUFSIZE];

FUNCTION

clrbuf writes zeros throughout a 512-byte buffer beginning at buf.

RETURNS

Nothing, except a clear buffer.

EXAMPLE
clrbuf(p->Jbuf);

IV - 11

oodepw IDRIS Support Library

NAME

codepw - encode a password

SYNOPSIS

TEXT *codepw(loginid, kbuf)
TEXT »loginid, kbuf[8];

FUNCTION

codepw encrypts the password in kbuf, then translates it to a printable
form, suitable for storing in a textfile. The encrypted form is obtained
by using the DES algorithm to encrypt the first eight characters of the
file /adm/salt, exclusive-ored character by character with the NUL ter
minated string at loginid, using the password as a key. If the salt file
is not readable, the string "password" is used in its stead.

The resulting eight-character encrypted string is repacked as twelve six-
bit characters, using the alphabet [0-9a-zA-Z/,]. For convenience, a NUL
is placed at the end of this string.

RETURNS

codepw returns a pointer to the NUL terminated, twelve-character encoded
password which is stored in an internal buffer.

EXAMPLE

if (!cmpstr(codepw("root", askpw(kbuf, NULL)), getpw("root", 0, 1)))
errorC'sorry", NULL);

FILES

/adm/salt for the string to be encrypted.

SEE ALSO

askpw, getpw

IV - 12

IDRIS Support Library opyi

NAME

cpyi - copy an inode converting between native and filesystem

SYNOPSIS

FINODE *cpyi(dest, src)
FINODE *dest, *src;

FUNCTION

cpyi copies the entire FINODE structure pointed to by src into the struc
ture at destf ensuring that all fields are converted if native byte order
differs from filesystem byte order. For portability, its use is en
couraged even on machines that need no conversion.

It is permissible for src and dest to be the same.

RETURNS

cpyi returns dest.

EXAMPLE

To get a pointer to an inode in native order:

FINODE *getino(fd, ino)
FILE fd;
INUM ino;

{
INTERN FINODE buf[BUFSIZE / sizeof (FINODE)], ibuf;

if (!getblk(fd, buf, Inblk(ino)))
return (NULL);

else

return (cpyi(&ibuf, ioff(buf, ino)));
1

IV - 13

owd IDRIS Support Library

NAME

cwd - get current working directory

SYNOPSIS

COUNT cwd(tbuf)

TEXT tbufCNAMSIZE];

FUNCTION

cwd determines the absolute pathname of the current working directory by
tracing .. entries from . back to the root. The result is placed in tbuf
as a NUL terminated string. If the current directory is on a mounted
filesystem the mount history file /adm/mtab is used to determine the
prefix of the absoute pathname.

If the path to the root of the filesystem becomes longer than 64 charac
ters, including the terminating NUL, cwd returns the system error code
-E2BIG. If cwd cannot find an entry in a directory that it needs it
returns the system error code -EMLINK. If an error occurs while trying to
open any directories for reading, the partially formed path is left in
tbuf and cwd returns the appropriate system return code.

RETURNS

cwd writes a NUL terminated string at tbuf. If successful, the return
value is zero; otherwise, the return value is a negative number in
dicating cwd's displeasure (as one of the Idris error return codes,
negated).

EXAMPLE

To map a pathname to absolute form:

if (naraeCO] == '/')

cpystr(abuf, name, NULL);
else if (cwd(build) < 0)

errorC'broken directory tree", NULL);
else

cpystr(abuf, build, "/", name, NULL);

FILES

/adm/mtab for mounted filesystems, . for current directory, \&..[/..]'^ for
parents.

IV - 14

Mt

IDRIS Support Library devname

NAME

^ devname - get device name

4m SYNOPSIS
BOOL devnameCs, mdev, cspec)

TEXT *3;
^ UCOUNT mdev;

BOOL cspec;

■4m
FUNCTION

devname fills the buffer pointed to by s with the NUL terminated device
name in the /dev directory matching the major/minor device code contained
in mdev. If cspec is nonzero» the device must be a character special

W device; otherwise, the device must be a block special device.

^ RETURNS
devname returns YES if it could find the appropriate device entry. The
buffer at s is filled in with the device name, written as a 14-character

^ link right filled with NULs.

^ EXAMPLE
The terminal message control function is:

^ BOOL mesg(new)
BOOL new;
{
FAST BOOL old;
STAT node;
TEXT buf[20];

^ if (fstat(STDERR, Anode) < 0)
return (NO);

old s (node.sjnode & 022) ? YES : NO;
cpybufCbuf, "/dev/", 5);
buf[19] = *\0';
if (devnameCbuf + 5, node.s_addr[0], YES))

chmod(buf, new ? 0622 : 0600);
return (old);
}

m

IV - 15

ename IDRIS Support Library

NAME

ename - get pathname of an entry in a directory

SYNOPSIS

TEXT *ename(pname, dname, pdir)
TEXT *pname» *dname;
DIR *pdir;

FUNCTION

ename creates a fully qualified pathname consisting of the directory named
dname to which is appended a '/' and the entry name pointed at by pdir.
This NUL terminated pathname is returned at pname.

pname should be large enough to hold lenstr(dname) + 16 characters, coun
ting the terminating NUL.

RETURNS

ename returns a pointer to the entry name.

EXAMPLE

ifdcmpstrC'.", pdir->d_narae) && !cmpstr(". pdir->d_name))
remove(ename(entry, dir, pdir));

IV - 16

IDRIS Support Library flush!

NAHE

flushi - flush out any pending inode writes

SYNOPSIS

VOID flushi(fd)
FILE fd;

FUNCTION

flushi writes the in-core buffer used by geti and puti to the filesystem
controlled by fd. If there have been no changes to the buffer» no output
is performed. In any case, the buffer is disqualified, and the next geti
or puti is guarenteed to read a fresh block from the filesystem.

RETURNS

If there is pending output, and it cannot be written, the writerr condi
tion is raised.

EXAMPLE

To process the entire inode list of a filesystem:

for (i = isize « 4; 1 <= i; —i>
if (process(pi s geti(fd, &ibuf, i)))

puti(fd, pi, i);
flushi(fd);

SEE ALSO

geti, puti

IV - 17

ftlme IDRIS Support Library

NAME

ftlme - find modified or accessed time of a file

SYNOPSIS

LONG fbime(fd, modflag)
FILE fd;
BOOL modflag;

FUNCTION

ftime finds the time of last access, or the time of last modification if
modflag is true, to the file under control of fd.

RETURNS

ftime returns the time specified by modflag in seconds since 1 Jan 1970,
or zero if the file status is unobtainable.

EXAMPLE

To print the date on which file "xeq" was last modified:

INTERN TEXT buf[] {"012345678901234567890123"};
FILE fd = open("xeq", READ, 0);
TVEC tvec;

putstrCSTDOUT, atime(ltime(4tvec, ftimeCfd, YES)), buf),
"\n", NULL);

SEE ALSO

atime, Itime

IV - 18

IDRIS Support Library getblk

NAHE

getblk - get filesystem block

SYKOPSIS

BOOL getblk(fd, buf, bno)
FILE fd;

TEXT "buf;
BLOCK bno;

FUNCnON

getblk reads the 512-byte block whose number Is bno into buf from the file
under control of fd.

RETURNS

getblk returns YES only if exactly 512 characters were read.

EXAMPLE

if (IgetblkCfd, superbuf, 1})
error("can*t read filsys", NULL);

SEE ALSO

mapblk, putblk

IV - 19

getdn IDRIS Support Library

NAME

getdn - get device name

SYNOPSIS

FILE getdn(s, fname, mode)
TEXT *s, •fname;
BOOL mode;

FUNCTION

getdn opens a block or character special device using mode as the mode ar
gument to the open call* If the file fname exists and is a block or
character special device, it is opened. If the file fname does not exist,
to it is prepended "/dev/" for a second try. If fname does exist but is
not block or character special, then the block or character special device
on which fname exists is opened instead, if that can be determined by
calls to devname.

RETURNS

getdn returns a file descriptor for the opened file, or a negative number
which is the Idris return code, negated. The name of the opened file, or
the best guess at one on failure, is copied to s.

EXAMPLE

if ((fd = getdnCbuf, fname, pflag ? UPDATE : READ)) < 0)
error("invalid pathname: ", buf);

SEE ALSO

devname, stat

IV - 20

IDRIS Support Library geti

NAME

^ geti - get inode from filesystem

SYNOPSIS

FINODE *geti(fd, buf, ino)
FILE fd;
FINODE *buf;
INUM bno;

FUNCTION

geti reads the inode whose number is ino from the filesystem under control
of fd. It then copies the inode into buf, converting from filesystem for
mat to in-core format in the process.

geti shares an in-core buffer of 16 inodes (1 block) with puti, and will
use the contents of the buffer when appropriate. Thus, the buffer should
be disqualified by calling flushi before switching filesystems.

RETURNS

If geti cannot read the necessary inode it will raise the readerr condi
tion. If there is pending inode output from puti and the inode cannot be
written, the writerr condition will be raised. Otherwise, geti will

return buf, the pointer to the in-core inode.

EXAMPLE

To process the entire inode list of a filesystem:

for'(i = isize « 4; 1 <= i; —i)
if (process(pi = geti(fd, &ibuf, i)))

puti(fd, pi, i);
flushi(fd);

SEE ALSO

flushi, puti

IV - 21

getllnks IDRIS Support Library

NAME

getllnks - read and sort a directory

SYNOPSIS fmi
DIR *getlinks(dlrnaine, nentries, size) —

TEXT *dirnaine;
BYTES "nentries; ^
LONG size;

FUNCTION

getlinks allocates an array of size bytes, reads a directory into it, then ^
sorts the entries in lexical order on link names, but with zero inodes at
the end. The number of non-null entries in the directory, including .
and .. is written at nentries. size is the size in bytes of the direc- ^
tory, dirname. —

RETURNS

getlinks returns a pointer to the first directory entry (usually .), or
NULL if the directory cannot be read. The pointer is suitable for later ^
use on a free call. ^

EXAMPLE

To print all the entries in a directory, and then free the
allocated space: ^

IMPORT LONG IsizeO;
BYTES nentries; —
DIR "pdir, "p;
STAT dstat; ^
TEXT "dirname;

n
if (statCdirname, &dstat) < 0) —

putstrCSTDERR, dirname, " does not exist\n", NULL); «
else _

{
pdir = getlinks(dirname, &nentries, lsize(&dstat->s_mode));
for (p = pdir; nentries—; ++p)

putstr(STDOUT, p->d_name, "\n", NULL); ^
free(pdir, NULL);
}

IV - 22

IDRIS Support Library getpw

NAME

getpw - retrieve a field from the password file

SYNOPSIS

TEXT *getpw(matchstr, matchfld, wantfld)
BYTES matchfld, wantfld;
TEXT •matchstr;

FUNCTION

getpw scans the system password file for a line with a field, specified by
matchfld, that matches the NUL terminated string pointed at by matchstr.

Fields in the password file are separated by colons on a text line, as
follows:

FIELD CONTENTS

0 loginid
1 encrypted password
2 user number

3 group number
4 long name
5 home directory
6 shell

Lines are assumed to be no longer than 128 bytes.

getpw remembers the last password line obtained in an internal buffer;
consequently multiple calls leading to the same line are reasonably ef
ficient. The line should not be corrupted by the calling program,
however, nor should its contents be trusted if other getpw calls inter
vene.

RETURNS

getpw returns a pointer to the field specified by wantfld, in the matched
field. If no match is found, NULL is returned. If the field is found,
but the desired field does not exist, the returned pointer will be poin
ting at newline.

EXAMPLE

To find the loginid of user number 5:

TEXT "p, id[8];

if ((p = getpw("5", 2, 0))
{
len = instrCp, "xXn");
cpybuf(id, p, minden, sizeof (id));

}

FILES

/adm/passwd for the password file.

BUGS

Lines should be up to 512 bytes in the password file.

IV - 23

Inblk IDRIS Support Library

NAHE

inblk - find home block of an inode

SYNOPSIS

BLOCK inblk(ino)

INUM ino;

FUNCTION

inblk locates the block number containing ino for any desired inode.

RETURNS

inblk returns the correct block number.

EXAMPLE

To get an inode:

FINODE *getino(fd, ino)
FILE fd;
INUM ino;

{
INTERN FINODE buf[BUFSIZE / sizeof (INO)];

if (tgetblkCfd, buf, inblk(ino)))
return (NULL);

else

return (ioff(buf, ino);

}

SEE ALSO

ioff

IV - 24

IDRIS Support Library ioff

NAHE

ioff - get inode offset within block

SYNOPSIS

TEXT *ioff(s, ino)
TEXT *8;
INUM ino;

FUNCTION

ioff locates inode number ino within the 512-byte block at s, assuming the
correct block has already been read into s.

RETURNS

ioff returns a pointer to the first byte of the inode.

EXAMPLE

To get an inode:

FINODE *getino(fd, ino)
FILE fd;
INUM ino;

{
INTERN FINODE buf[BUFSIZE / sizeof (INO)];

if (!getblk(fd, buf, inblk(lno)))
return (NULL);

else

return (ioff(buf, ino);
}

SEE ALSO

inblk

IV - 25

Isize IDRIS Support Library

NAME

Isize - get size of a file

SYNOPSIS

LONG Isize(pi)
FXNODE *pi;

FUNCTION

Isize obtains the size of a file in bytes from the sizeO and sizel fields
in the inode at pi. The inode is assumed to be in native byte order, such
as is returned as part of a stat (or fstat) system call.

RETURNS

Isize returns the size as a long integer.

EXAMPLE

IMPORT LONG IsizeO;

nblocks s lsize(&ps->s_mode) » 9;

IV - 26

IDRIS Support Library Islin

NAME

Islin - convert inode information to readable form

SYNOPSIS

TEXT •lslin(buf, pnode, grp, atim)
TEXT »buf;
FINODE •pnode;
BOOL grp, atim;

FUNCTION

Islin fills a 43 character buffer pointed at by buf with a printable
representation of information from the file system inode pointed at by
pnode. The inode is assumed to be in native byte order, such as is
returned as part of a stat (or fstat) system call.

The first character in the returned buffer is the inode type;

for a plain file
»c' for a character special device
»d' for a directory
*b' for a block special device

The next nine characters of this first field specify the read 'r', write
*w' and execute 'x' permissions for the owner, the owner's group and all
others, in that order. A in any position indicates that the as
sociated permission is denied. An 's' in place of an 'x' means: set
userid if in the owner field, set groupid if in the group field, save text
if in the others field. An 'e' in place of an 'x' means much the same,
except that the corresponding execute permission is not present.

The next 3 character field specifies the number of links to the inode,
right justified.

A space follows.

The loginid occupies the next 8 character field, left justified. If (grp)
then the loginid corresponds to the first password file entry whose
groupid matches that of the file; otherwise the loginid is for the first
entry whose userid matches. If the loginid is not obtainable from the
password file, the above key is printed as a decimal number, left
justified in the field.

If the inode is not a special device, the next eight character field
specifies the size, in bytes, of the file. Otherwise the device's major
and minor inode numbers are printed, right justified and separated by a
comma.

In either case, a space follows.

The last field is 12 characters long and contains the month, day and time
of the date last accessed, if atim is nonzero; otherwise the date of last
update. If this time is more than half a year ago, the time subfield is
replaced with the year of last update.

IV - 27

IDRIS Support Library

RETURNS

Islin returns buf, whose contents are replaced.

EXAMPLE

stat(*av, &fl);
lslin(buf, &p->s_mode, YES);
putfmt("%.43p %p\n", buf, •av);

which might print:

-r-sr-xr-x 1 root 18678 May 06 1980 /bin/rm

SEE ALSO

atime

IV - 28

IDRIS Support Library Itlme

NAME

Itime - convert system time to local time

SYNOPSIS

TVEC *ltime(pv, It)
TVEC *pv;
LONG It;

FUNCTION

Itime converts It, the number of seconds elapsed since 00:00 Jan 1 1970,
to a structure at pv giving the time components in local time.

The timezone is determined from the timezone file, if it can be read; it
will be read at most once. Otherwise, the default internal values are
used, which are correct for Secaucus NJ. Timezone information is
available in the external variables:

BOOL _dst {YES}; /* non-zero enables daylight savings •/
BYTES _timezone {5); /* hours west of Greenwich */
BYTES _tzmins {0}; /* minutes west of standard •/
TEXT *_edt ("EDT"};
TEXT *_est {"EST"};

The initial values shown are the defaults. Note that fractional

timezones, such as for Surinam, are supported.

If (12 <= _timezone) Itime subtracts 24 for use in its computation. Thus
to get the correct time east of Greenwich, the timezone should be set to
24 minus the number of hours east of Greenwich. The timezone for Japan is
15 (24-9).

RETURNS

Itime returns the pointer pv and fills in the structure at pv.

EXAMPLE

To print the date:

IMPORT LONG timeO;
IMPORT TEXT »_est, •_edt;
TVEC tvec;

INTERN TEXT buf[] {"012345678901234567890123 "};

ltime(&tvec, time(NULL));
putstr(STDOUT, atirae(&tvec, buf), tvec.dstf ? _edt : _est,

"\n", NULL);

FILES

/adm/zone for the timezone.

SEE ALSO

atime, vtime

BUGS

This will fail after Feb 28, 2100.

IV - 29

mapblk IDRIS Support Library

NAME

mapblk > map logical block to physical

SYNOPSIS

BLOCK mapblk(fd, pi, Ibn)
FILE fd;
FINODE *pi;
BLOCK Ibn;

FUNCTION

mapblk determines the physical block number corresponding to the logical
block number Ibn in the file whose inode is at pi. It reads indirect
blocks as necessary from the fllesystera under control of fd.

RETURNS

mapblk returns the physical block number, if present. Zero is returned if
Ibn is off the end or inside a hole in the file.

EXAMPLE

n = lsize(&ino) + 0777 » 9,
for (Ibn = 0; Ibn < n; ■»-+lbn)

{
if (pbn = mapblkCfd, &ino, Ibn)

getblkCfd, buf, pbn);
else

clrbuf(buf);
write(STDOUT, buf, BUFSIZE);
)

SEE ALSO
getblk, putblk

fm

IV - 30

IDRIS Support Library mesg

NAME

tnesg - turn on or off messages to current terminal

SYNOPSIS

BOOL mesg(new)
BOOL new;

FUNCTION

mesg allows other users to write to the current terminal when new is non

zero; otherwise it prevents other users from writing to this terminal.

RETURNS

mesg returns YES If the terminal had write permission when the function
was called.

EXAMPLE

old = mesg(NO);
printO;
mesg(old);

SEE ALSO

devname

IV - 31

nkdir IDRIS Support Library

NAME

mkdir - make a directory

SYNOPSIS

ERROR mkdir(dname)
TEXT "dname;

FUNCTION

mkdir makes the directory dname, with two entries, ., linking dname to it
self, and linking dname to its parent, mkdir can only be used by the
superuser.

RETURNS

mkdir returns 0 if successful, else a negative number which is the Idris
error code negated.

EXAMPLE

if (mkdir(name) < 0)

putstr(STDERR, "can't make directory: ", name, "\n", NULL);

IV - 32

IDRIS Support Library mv

NAME

mv - move a file

SYNOPSIS

ERROR mv(old, new)
TEXT *old, *new;

FUNCTION

mv creates the link new to a file and removes the link old. If a file
named new already exists, it is removed. If old and new are on different
filesystems and old is a plain file mv will copy old to new; otherwise,
if old is a character or block special device, mv will make the ap
propriate device; in either case, old is removed. A directory cannot be
moved to another filesystem, or to a subtree of itself.

RETURNS

mv returns zero if successful, else a negative number, which is the Idris
error return code, negated.

EXAMPLE

if (mv("a.out", "xeq") < 0)
putstr(STDERR, "can't move a.out\n", NULL);

fli*

pm

IV - 33

parent IDRIS Support Library

NAME

parent - get parent name of a file

SYNOPSIS

TEXT •parent(buf, path)
TEXT *buf, *path;

FUNCTION

parent creates a NUL terminated string at buf which is the
parent of the file named path. The parent is created by a)
trailing '/' characters; b) stripping off trailing
stripping off and remembering trailing strings; d)
until there are no more to be stripped; e) partitioning

name of the

stripping off
strings; c)
repeating a-c

the remainder
into LEFT '/' RIGHT, where LEFT is NULL if there is not at least one
slash, and RIGHT contains no slash, f) determining the "base" parent by
the following table:

LEFT SLASH RIGHT PARENT

none no none .. (or / if path started with a /) fm

none no • • •

none no • 9

none no other • --

none yes any /

any yes any <LEFT>

g) adding back the trailing "/.." strings that were stripped in c. h)
stripping off leading "./" strings;

For example:

FILENAME

abc

x/y
/a

a/b/..

. ./c

PARENT

X

/

a/..

Note that parent is sufficiently cautious about writing into buf, that
parent(name, name) is meaningful, and will work as expected.

RETURNS

parent returns buf.

EXAMPLE

stateparent(buf, path), Apstat);
if (!perm(&pstat, 02))

putstr(STDERR, "can't remove ", path, "\n", NULL);

IV - 34

IDRIS Support Library perm

NAME

perm - test permissions of a file

SYNOPSIS

BOOL permCpst, mask)
STAT •pst;
COUNT mask;

FUNCTION

perm determines if the current process has all of the permissions re
quested by maskt for the file whose status, as returned by stat, is
pointed at by pst. mask is the inclusive or of 04, to check read permis
sion, 02, to check write permission, and 01, to check execute permission.
The permissions are checked according to the real userid and groupid of
the process. This means that perm may be called by set-userid programs to
test whether the invoker of the program has the required permissions. If
the userid of the file is the same as the real userid then the "user
access" bits are checked; otherwise, if the groupid of the file matches
the real groupid, the "group access" bits are checked; otherwise, the
"other access" bits are checked.

RETURNS

perm returns YES if the file has all of the requested permissions. If the
user is the superuser, perm returns YES, unless mask requests execute per
mission and none of the execute permissions are turned on for the file.

EXAMPLE

if (!perm(&filestat, 02))
putstr(STDERR, "can't writeNn", NULL);

am

IV - 35

putblk IDRIS Support Library

NAME

putblk - put filesystem block

SYNOPSIS

BOOL putblkCfd, buf, bno)
FILE fd;
TEXT "buf;
BLOCK bno;

FUNCTION

putblk writes the 512-byte block whose number is bno from buf to the file
under control of fd. If the write fails, the function returns NO.

RETURNS

putblk returns YES if it can write the whole block else NO.

EXAMPLE

if (Iputblk(fd, superbuf, 1))
error("can't write superblock", NULL);

SEE ALSO

getblk, mapblk

IV - 36

^ IDRIS Support Library puti

la-t NAME

puti - put inode to filesystera

SYKOPSIS

VOID putKfd, pi, ino)
FILE fd;
FINODE *pi;

M INUM ino;

FUNCTION

puti writes the in-core inode pointed at by pi to the filesystera con
trolled by fd, after converting the inode to filesystera forraat, puti

^ shares an in-core buffer of 16 inodes (1 block) with geti, and pi is ac
tually just copied and converted into this buffer. Thus, flushi must be
called before closing fd, to insure that any pending output is completed.

RETURNS

m If there is pending output for another inode block, and it cannot be writ
ten, the writerr condition is raised. If the appropriate inode block is

^ not in the buffer shared between geti and puti and it cannot be read, the
readerr condition is raised. In any case, there is no useful return value
from puti.

EXAMPLE

^ To process the entire inode list of a filesystera:

for (i = isize « 4; 1 <= i; —i)
if (processCpi = getiCfd, &ibuf, i)))

puti(fd, pi, i);
^ flushi(fd);

SEE ALSO

flushi, geti

IV - 37

rdir IDRIS Support Library

NAHE

rdir - read directory on unmounted filesystem

SYNOPSIS

DIR *rdir(fd, pi, Ino)
FILE fd;
FINODE *pi;
BYTES Ino;

FUNCTION

rdir obtains the directory entry whose ordinal position is Ino within the
directory, counting from zero, by reading the unmounted filesystem at fd.
It is assumed that pi points at the directory's inode, in native byte
order. If Ino is zero, or if the block differs from that remembered on
the last call to rdir, a new block is obtained by reading from the file
under control of fd.

Note well that this function is designed for sequential processing of one
directory at a time.

RETURNS

rdir returns a pointer to the link within its current block in memory. If
the list is off the end of the directory, rdir returns NULL.

EXAMPLE

for (i = 0; pd = rdir(fd, &ino, i); ++i)
process(pd);

SEE ALSO

wdir

IV - 38

IDRIS Support Library rmdlr

NAME

rmdir - remove a directory

SYNOPSIS

COUNT rmdir(dname)
TEXT •dname;

FUNCTION

rmdir removes an empty directory, (i.e., one with at most one . entry and
at most one .. entry). Directories can only be removed by the superuser.

RETURNS

rmdir returns zero if successful; otherwise: -ENOENT if dname does not
exist, -ENOTDIR if dname is not a directory, -EISDIR if directory is not
empty, or -EPERM if user does not have write permission for the parent
directory.

EXAMPLE

if (rmdir(fname) < 0)

putstr(STDERR, "can't remove ", fname, "\n", NULL);

IV - 39

shell IDRIS Support Library

NAME

shell - execute a shell cotmnand escape

SYNOPSIS

COUNT shell(ctnd, fname, flags)
TEXT *cmd, •fname;
COUNT flags;

FUNCTION

shell Invokes the shell command interpreter to parse and execute cmd. It
is most often used within programs offering a "! cmd" shell escape or
within programs offering a "-c cmd" flag.

Any trailing '\n' before the trailing NUL on cmd is ignored. If fname is
not NULL, any occurrence of the sequence "\f" within cmd will be replaced
by the string fname.

If the first 3 characters of cmd are "cd\ " then a chdir system call is
done with the rest of cmd as an argument. This will affect the caller.

If the first 3 characters of cmd are not "cd\ " then the shell command in
terpreter is invoked as "sh -c cmd" under the current execution path. If
({(flags & 3)) cmd is invoked as a new process; shell will wait until the
command has completed and will return its status to the calling program.
If (flags & 1) cmd is invoked as a new process and shell will not wait,
but will return the processid of the child. If (flags & 2) cmd is invoked
in place of the current process, whose image is forever gone. In this
case, shell will never return to the caller.

To the value of flags may be added a 'I if the processing of interrupt and
quit signals for cmd is to revert to system handling. They are normally
turned off in both the invoker and any new process for the duration of
cmd. The value of flags may also be incremented by 8 if the effective
userid is to be made the real userid before cmd is executed.

RETURNS

If a chdir is requested, shell will return what chdir does. If cmd cannot
be Invoked, shell will return failure; If ({(flags & 3)) shell returns
YES if the command executed successfully, otherwise NO; if (flags & 1)
shell returns the id of the child process, if one exists, otherwise zero;
if (flags & 2) shell will never return to the caller.

In all cases, if cmd cannot be executed, an appropriate error message is
written to STDERR.

SEE ALSO

xecl, xecv

IV - 40

IDRIS Support Library vtlme

NAME

vtime - convert system time to Greenwich Mean Time

SYNOPSIS

TVEC •vtime(pv, It)
TVEC "pv;
LONG It;

FUNCTION

vtime converts It, the number of seconds elapsed since 00:00 Jan 1 1970,
to a structure at pv giving the time components in GMT.

RETURNS

vtime returns the pointer pv and fills in the structure at pv.

EXAMPLE

To print the date:

IMPORT LONG tiraeO;
TVEC tvec;
INTERN TEXT buf[] {"012345678901231567890123 GMT\n"};

putstr(STDOUT, atime(vtime(&tvec, tirae(NULL)), buf), NULL);

SEE ALSO

atime, Itime

IV - 111

wdir IDRIS Support Library

NAME

wdir - write directory to unmounted filesystem

SYNOPSIS

VOID wdir(fd, pi)
FILE fd;
FINODE *pi;

FUNCTION

wdir writes the last block obtained by rdir to the unmounted filesystem
under control of fd. It is presumed that- pi points at the inode that rdir
has been reading.

Note well that this function is designed for sequential processing of one
directory at a time, in conjunction with rdir.

RETURNS

Nothing.

EXAMPLE

for (i = 0; pd = rdir(fd, &ino, i); -f+i)
if (badlink(pd)}

{
fixlink(pd);
wdir(fd, &ino);
}

SEE ALSO

rdir

IV - 42

IDRIS Support Library who

NAME

who - read and sort who file

SYNOPSIS

WHO *who(n, fname)
COUNT *n;
TEXT •fname;

FUNCTION

who allocates a buffer large enough to hold the specified file, reads the
file contents into it, sorts the entries by tty name, then sets the in
teger at pn to the number of non-null entries found. The file is presumed
to have records like the standard who and log files.

RETURNS

who returns a pointer to the allocated buffer if successful, otherwise
Nua.

EXAMPLE

To print the names of the current system users:

IMPORT WHO »who();
WHO "pwho, "p;
COUNT n;

pwho s who(&n, WHOFILE);
for (p = pwho; 0 <= —n; ++pwho)

putfmt("%b\n", p->w_uname, sizeof (p->w_uname));
free(pwho, NULL);

IV - 43

