
pro

Code Watch*
Reference Manual

INTERACTIVE
• • • • • • • • • • • • • •

A Kodak Company

Code Watch*

Reference Manual

This manual provides specific information Cor using
LPI's source-level debugger.

COPYRIGHT e 1989, by Language Processors, Inc.

All rights reserved. Printed in U.S.A.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, or otherwise, without the prior written
permission of Language Processors, Inc.

The information in this document is subject to change without prior notice.
INTERACTIVE Systems Corporation and Language Processors, Inc. shall
not be responsible for any damage (including consequential) caused by any
errors that may appear in this document.

THIS NOTIFICATION DESCRIDES THE GOVERNMENT'S RIGHTS
IN TECHNICAL DATA AND CO:MPUTER SOFTWARE PROVIDED
WITH THE EQUIPMENT DELIVERED.

Unless otherwise specified, any Technical Data and Computer Software is
supplied to the government with Restricted rights as defined in the
Defense FAR supplement 52.227-7013. All software and related
documentation has been developed at private expense and is not in the
public domain. This notification is provided in addition to the marking
of specific software or data items with the following legend:

RESTRICTED RIGHTS LEGEND

"Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subdivision (b) (3) (ii) of the Rights in
Technical Data and Computer Software clause at 52.227-7013 ."

Component Architecture, Language Processors, Inc. , LPI,
LPI-BASIC, LPI-C, LPI-COBOL, CodeWatch, CoEdit, LPI-FORTRAN,

LPI-P ASCAL, LPI-PL/I, LPI-RPG II, and the logo of
Language Processors, Inc. are trademarks of

Language Processors, Inc.
959 Concord St.

Framingham, MA 01701

UNIX is a registered trademark of AT&T in the United States
and other countries.

MS-DOS and XENIX are registered trademarks of Microsoft Corporation
in the United States and other countries.

Contents

Preface: Using This Manual xi

Chapter 1: Overview

Source-Level Debugging • • • • . . • 1-1
Summary of Features • • • . . . • • • • • • • . • 1-1
CodeWatch Commands and Options • • • • • • • • • • • • • • • • 1-3

Chapter 2: Using CodeWatch

Installing Code Watch • • • • • . . . • • • • • . • 2-1
Program Preparation • • • . • . • • • • . • • • • • . • • • . • • • • • • • • • • • • . 2-1
Invoking Code Watch • • • • • • • • . • • . • 2-2

The STB File • • . . • • • • . • • • • . • . • 2-3
In Search of Source and STB Files • 2-3
Start-up Files . 2-4

Ending a debugging Session • 2-5
Debugging a Program with Multiple Modules • • • • • • • • • • • • • • • 2-5

Command Line Format • 2-6
Command Variations • 2-8

Entering Code Watch Commands • . • 2-9
Using Action Lists • . • • 2-10
Pointer Concepts . • 2-10

The Execution Pointer • 2-10
The Source File Pointer . • . . • • • • • • • . • • . • • • • . 2-11

iii

Chapter 2: Using CodeWatch (Cont.)

Environment Concepts • • • • • . . • • • • • • • • • . • • • • • • • • • • • . • • • 2-1 1
Program Blocks • • • • • • • • • • • • • • • • • • . • • • • • • • • • . • • • • • 2-1 1
Block Activation Numbers • • • • • . • • • • • • • • . • • • • • • . . • . • . 2-1 1

Absolute Activation Numbers . • • • . • • • • • • • • • . • . • • • • • 2-12
Relative Activation Numbers • . • • • • • . • • • • • • • • • • • • • • 2-12
Using Activation Numbers • • • • • • • • • • • . • • • • • • • • • • • • 2-12

Statement Identifiers • . • • • • • • 2-12
Line Numbers • . 2-13
Labels • • • • • • • . . • • • • • • • • • • • • • • • • • . • • • • . • • • • • . 2-13
Line Number and Statement OCCsets • • • • • • • • • • • • • • • • • 2-14
Entry and Exit Points • 2-14
Statement Qualification by Environment • • • • • • . • • • • • • • 2-1 5

Referencing Included o r Copied Files • • • • • • • • • • • • • • • . 2-15
Code Watch Error Messages • • • • • • • • • . • . • • • • • • • • • • • • • • • • • 2-15

Aborted Program Recovery • • • • • • • • • . • • • • • • • • • • • • • • • . 2-17

Chapter 3: Code Watch Functionality

Program Control • . • • • • • • . 3-1
The Breakpoint Commands • • • . • • • • • • • • . • • • • • • • • • • • • • • 3-2
The Catching Commands • • • • . . • • • • • . . . • • • . • . . • • • • • • • 3-2
The Stepping Commands . • • • . . • . . . • • . • • • • . • • • . . • . • . 3-2 . 1
The Tracing Commands • • • • • • • • . . • • . • • • • • • . • • • • . • • . 3-2 .1
The Watchpoint Commands • • • . • • • • • . . . • • . • • . • . . • . • • 3-2.2
Controlling Program Execution • . . • • • . • . . . • • • • . • • 3-2.2

Environment Control • • • • • • • • • • . . • • • • • • • • • • • • . • • • . • 3-4
The ENVIRONMENT Commands • • • • • • • • • • • • • • • • • . • • • • 3-4
The STACK Command • · • • 3-5

Symbolic Access • • • • • • • • • • . • • • • • • • • . . • • • • • • • • • • • • • • • • • 3-5
Variable Names 3-5

Referencing Elements of Arrays and Tables • • • • • • . • • • • • • 3-5
The ARGUMENTS Command • 3-6
The EVALUATE Command • • • • • • • . • • • • • • • • • • • . • • • • • • 3-6
The LET Command • • • . • • . • • • . • • • • • . • . • • • • 3-6

iv

Chapter 3: Code W ateh Functionality (Cont.)

The RETURN Commands •
The TYPE Command . • .

Examining the Source Program
The FIND Command
The WHERE Command
The POINT Command
The PRINT Command
The SOURCE Commands

Other Functionality • • •
MACROS Facility • • • • • •

Listing Macros
Removing Macros

Debugger Command Files
Online Help • • • • • • • .

• 3-7
• • • 3-7

• • 3-7
. 8-7

. 3-7
. 3-8

. 3-8

. 3-8
• • 3-8

• • • 3-8
. 3-9

• • • 3-9
. 3-9

. 3-9
Invoking the Command Interpreter • • • • • • • • • . • . • . . . • • . . • 3-10

Chapter 4: CodeWateh Commands

Overview • • • • • • •
ARGUMENTS
BREAKPOINT

. 4-1
• • • • 4-2

. 4-3
CATCH • • .
CONTINUE

. 4-6 . 1

DSTEP
ENVIRONMENT
EVALUATE
FIND
GOTO
HELP
LBREAKPOINT

. 4-7
• • • • 4-9

. 4- 1 1

. 4- 13

. 4- 16

. 4-18

. 4-20
• • 4-22

LCATCH
LENVIRONMENT
LET

. 4-23 .1

LMACRO

v

• • 4-24
• • • 4-25

. 4-27

Chapter 4: Code Watch Commands (Cont.)

LOG • • • • . . • . • • • • • • • . . . • • • • • . . • • . . . • • • • . • • . . • . • 4-28
LRETURN . . • • • • • • . • • • • • • • • . • • • • • • • . . • • • • • . 4-30
LSOURCE . . • • • • . . • • • • • • • . . • . • • . . • • . . . • • • • . 4-31
LSTEP • . . • • • • • • • • . • • . . • 4-33
LWATCH • . . • . . • • • • . • • • • • . • • . • . • . . . • 4-33 . 1
MACRO . . • . . • • • • • • • • . . . • . . • • • • . . • • . 4-34
NBREAKPOINT • • . • • • . . • • • • • • • • . . • . . • . • • • 4-36
NCATCH • • . . • • • • • . • • • • 4-37 .1
NLOG • 4-38
NMACRO • • . . • . . . • • • . . • • • . • • • • • • • • • • • • . . • • . 4-40
NTRACE • • • • • • • • • . . . • • • • • • • • . . • • • • • • • • . • • . • • . • 4-41
NW ATCH • . • • • • • • • • . • • . • . • . • . • . • • • . . • • • • • 4-41 . 1
POINT • • . • • . . • • • • • • . • • . . • • • • • • • • • • • • . • . . • • • • • . 4-42
PRINT • • • . • • • . . . • . • • • • . 4-44
QUIT • • • • . • • • • . . . 4-46
READ . • • • . . . • • • 4-47
RELOAD • . • 4-49
RETURN . . • . . • • • • . • 4-51
SOURCE • • • • • • • • • . • . 4-53
STACK • • • • • • • • • . 4-55
STEP • • . . • • • • . . . • • • . . • • . . . • • • . . • • . • • . • • • • • • . . . 4-57
TRACE ENTRY • . . . • • . . • • • . . • • • • • . • • . • . . . • • • • . . • 4-60
TRACE STATEMENT • • • • • • • • • • • • . • • • • • • • • • • • • . • • 4-62
TYPE • • • • • • • • • • • • . • • • • • • • • • . . • . • • . . • • • • • • • • • • • 4-63
WATCH . . . • • • . . . • • • . • • • • . . . • • • • . • • . 4-64.1
WimRE • . • • . . • • • • • . • • • • • • • • . . • • . . • • • • • . • • 4-65
! . 4-67

Chapter 5: Debugging LPI-BASIC Programs

Specific Ways to Use Code Watch Features • • • • • • • • • • • • • • • • • • . 5-1
Program Blocks • . • • . • • • • 5-1

vi

Chapter 5: Debugging LPI-BASIC Programs

(Cont.)

Built-in Function Support • 5-1
Referencing krays and Aggregate Structures • • • • • • • • • • • • • • 5-2

Sample Code Watch Session Using LPI-BASIC • • • . • • • • • • • • • • • • • 5-2
Program Listings . • • • . • . • • • • • • . • • • • • • • • • • • • • • • • • • . • • • . 5-9

Chapter 6: Debugging LPI-C Programs

Specific Ways to Use Code Watch Features • • • • • • • • • • • • • • • • • • • 6-1
Program Blocks • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • 6-1
Built-in Function Support • 6-1
Referencing krays and Aggregate Structures • • • • • • • • • • • • . • 6-1
Modifying Variables • • • • • • • • • • • • • . . • • • • • • • • • • • • • . . . • 6-1

Sample Code Watch Session Using LPI-C • . • • • • • • • • • • • • • • • . . . • 6-2
Program Listings • • • • • • • • • • • . • . • • • • • • . • • • • . • • • • • • . 6-9

Chapter 7: Debugging LPI-COBOL Programs

Specific Ways to Use CodeWatch Features • • • • • • • • • • • • • • • • • • • 7-1
Program Blocks • . • • 7-1
Referencing krays and Aggregate Structures . • • • • • • • • • • • . • 7-1
Procedure Division Paragraph-Names • . . • • • . • • • . • • • • • • . . . 7-1
Group Item Assignments • • • • • • • • • • . . • • • . • . . . • • • • • • . . . 7-2

Representation of LPI-COBOL Data Types in Code Watch • • • • • • • • 7-2
Sample CodeWatch Session Using LPI-COBOL • • • • • • • • • • • • • • • • 7-3
Program Listings • 7-10

vii

Chapter 8: Debugging LPI-FORTRAN

Programs

Specific Ways to Use CodeWatch Features • • • • • • • • • • • • • • • • • • • 8-1
Program Blocks . 8-1
Referencing A:Lrays and Aggregate Structures • • • • • • • • • • • • • • 8-1
Built-in Function Support • 8-1

Sample CodeWatch Session for LPI-FORTRAN Program • • • • • • • • • 8-2
Program Listings . 8-8

Chapter 9: Debugging LPI-P ASCAL Programs

Specific Ways to Use CodeWatch Features • • • • • • • • • • • • • • • • • • • 9-1
Program Blocks . 9-1

Block Names . 9-1
Referencing Nested Blocks • 9-1

Built-in Function Support • 9-4
Referencing A:Lrays and Aggregate Structures • • • • • • • • • • • • • • 9-4

Sample Code Watch Session Using LPI-P ASCAL • • • • • • • • • • • • • • • 9-4
Program Listings . 9-10

Chapter 10: Debugging LPI-PL/1 Programs

Specific Ways to Use CodeWatch Features • • • • • • • • • • • • • • • • • • • 10-1
Program Blocks . 10-1

Block Names . 10-1
Referencing Nested Blocks • 10-1

Built-In Function Support • 10-4
Referencing A:Lrays and Aggregate Structures • • • • • • • • • • • • • • 10-4

Sample CodeWatch Session Using LPI-PL/1 • • • • • • • • • • • • • • • • • • 10-4
Program Listings • 1 0- 1 1

viii

Glossary

Index

ix

Preface: Using This Manual

Product Information

CodeWatch provides an interactive source-level debugging capability for
a number of high-level source languages including LPI-BASIC, LPI-C,
LPI-COBOL, LPI-FORTRAN, LPI-P ASCAL and LPI-PL/1. Language
Proces�ors, Inc. , implements these languages on a variety of computers
using different operating systems.

This manual provides general information describing the use of
CodeWatch in the UNIX:XENIX; and MS-DOS*operating system
environments. Within this manual, the name UNIX is used when
referring to either UNIX or XENIX commands.

Related Documentation

LPI also provides user's guides describing source language information
for specific implementations in order to use LPI languages on your
particular system, as well as language reference manuals describing each
LPI programming language.

Intended Audience

This manual is intended for experienced programmers and analysts.
While the approach is not tutorial, the manual is organized so that a
programmer who is familiar with one or more of the LPI languages
should have no difficulty understanding and using all of the features of
CodeWatch. Before you start, it may be helpful to read Chapters 1
through 4, and then go through the sample session (provided in each of
the language-specific chapters) in the language with which you are most
familar. These sessions present a step-by-step analysis of the debugging
process using sample programs to illustrate the various commands and
features of the debugger.

xi

Organization of Information

Chapter 1 introduces the features and commands of CodeWatch.
Chapter 2 presents the CodeWatch command-line format and the
fundamentals of a debugging session. Chapter 3 explains CodeWatch
functionality. Chapter 4 provides descriptions of each of the debugger
commands. Chapters 5-10 provide language-specific information for
debugging LPI-BASIC, LPI-C, LPI-COBOL, LPI-FORTRAN,
LPI-PASCAL, and LPI-PL/1, respectively.

The glossary contains definitions of key CodeWatch concepts. The index
helps you to locate information quickly on specific CodeWatch features.

Syntax Conventions

The following syntax conventions are used in this manual.

1 . Debugger commands are printed in uppercase. You may enter
debugger commands using either uppercase or lowercase characters.

2. Bold text indicates the abbreviations that you may use for
Code Watch keywords, for example,

WHERE

where WH is the abbreviation.

3 . Text strings enclosed in angle brackets are optional items, for
example,

PRINT < n >

4. Variable information is printed in italica, for example,

FIND atring

5 . Type names or expressions that are enclosed by braces " { } " are
required.

xii

6. A choice between alternatives is indicated by a vertical bar , for
example,

DSTEP <IN I OVER>

xiii

Chapter 1: Overview

Source-Level Debugging • • • • • • • • • • • • • • • • • • • • • • • • . . • . • 1-1
Summary of Features . • . • . • • • • . • . 1-1
CodeWateh Commands and Options . • . • • • • • . • • . • . • • • • • • . . • . 1-3

Chapter 1: Overview

Source-Level Debugging

Effective source-level debugging can help shorten the time spent on
fmding programming errors. A program may behave abnormally even
after being successfully compiled. Although such a program's syntax is
correct, the program still contains programming errors that cause
unpredictable consequences such as unintended changes to the values of
variables, infmite loops, incorrect output, or abnormal program
termination.

Debugging is the process of discovering these bugs and eliminating them.
Source-level debugging involves examining and modifying the source
language elements of a program while it executes.

CodeWatch is a powerful software development tool that can help you,
as a programmer or analyst, locate bugs in programs. When invoked,
CodeWatch takes control of the execution of the program. Since the
debugger is interactive, it enables you to issue CodeWatch commands
from the keyboard. You can monitor what is happening, modify values,
and evaluate results immediately.

Code Watch keeps track of variables , subprograms, subroutines, and data
types in terms of the symbols used in the source language. You can
reference these items without having to consider the underlying machine
language or architecture. You can use CodeWatch to access the source
text of the program, to identify and reference program entities, and to
detect errors in the program's algorithms and logic.

Summary of Features

The following is a list of CodeWatch features.

• Controlling Program Execution: CodeWatch has control over the
execution of the program. Program execution can be started at a
specified point, stopped and resumed at different points, transferred
from one point to another, and terminated at any point.

Overview 1-1

- Breakpointing: Breakpoints can be set to suspend execution at
specified source program statements. The status or the program
can then be evaluated or modified by entering other CodeWatch
commands.

- Catching: Process control can be returned to the debugger when a
given signal is generated.

- Stepping: Program execution can be stepped by one or more
source program statements at a time. The debugger can also be
stepped into, over, or out or a called procedure.

- Tracing: Tracepoints can be set at statements or at procedure
and block entries to track program execution.

- Watchpointing: Watchpoints can be set to monitor given
variables. When the contents or the watched variable change,
program execution stops and control is returned to the debugger.

• Examining the Source Program: CodeWatch allows you to examine
the source program by finding specified text strings, moving to
specified line numbers, examining included source files, and displaying
specified segments or the source program.

• Environment Control: CodeWatch allows you to set the environment
it uses to reference a specific instance or a variable or statement.

• Symbolic Access: The value or a variable can be examined and/or
altered as program execution continues. Expressions can be
evaluated. Procedure entries and exits can be monitored at the
debugger command level.

• Action Lists: One or more or the debugger commands can be
combined as a unit and executed by the debugger.

• Macro Facility: Macros can be defined as a sequence or debugger
commands that will be used repeatedly throughout a debugging
session. The macros can then be used like any other debugger
command.

• Command Files: Debugger command files can be created with a text
editor or by logging commands to a specified file during a debugging
session. These command files can then be used to execute the
predermed sequence or debugging commands automatically during a
debugging session.

• Issuing Error Messages: CodeWatch identifies error conditions and
issues meaningful, complete sentence error messages.

1-2 Overview

CodeWatch Commands and Options

CodeWatch recognizes certain keywords as having special meaning or as
specifying an action to be taken. These keywords are Code Watch
commands and command options.

A keyword can be abbreviated to one character or a minimum string of
characters that makes it unique within the set of keywords. Note that
partial spelling beyond the abbreviation is also acceptable. Table 1-1
lists the CodeWatch commands, options, and arguments.

TABLE 1-1 CodeWateh Commands, Options, and Arguments

COMMANDS OPTIONS (If any) ARGUMENTS

ARGUMENTS environment

BREAKPOINT /IF=logical-expr statement- id +
/IGNORE [action lis t]
/NIGNORE
fSKIP=n

CATCH /IGNORE < signal >
/NIGNORE
/DEFAULT

CONTINUE
D STEP IN [ac tion list]

OVER

ENVmoNMENT environment

EVALUATE /ASCII expression +
/BIT
/FLOAT
/HEX
/INTEGER
/OCTAL

FIND string +

Overview 1-3

TABLE 1-1 CodeWateh Commands, Options, and Arguments
(Cont.)

COMMANDS OPTIONS (If any) ARGUMENTS

GOTO statement- id +

HELP

LBREAKPOINT /ALL statement- id :j:

LCATCH /ALL < signal >

LENVmoNMENT /ALL

LET name = expression

LMACRO /ALL macro-name :j:

LOG file -name

LRETURN

LSOURCE /ALL
/FULL

LSTEP

LWATCH /ALL < variable >

MACRO macro-name = [ac tion lis t]

NBREAKPOINT /ALL B tatement- id :j:

NCATcH /ALL < signal>

NLOG

NMACRO /ALL macro-name :j:

NTRACE ENTRY

NTRACE STATEMENT

NWATCH /ALL < variable >

POINT + I- number

PRINT number

QUIT

READ file -name

RELOAD /ARGUMENTS command-line-arguments

RETURN expression
SOURCE file-name

1-4 Overview

TABLE 1-1 CodeWateh Commands, Options, and Arguments
(Cont.)

COMMANDS OPTIONS (If any) ARGUMENTS

STACK /ALL nframes
/ARGUMENTS
/LOCALS

STEP IN [ac tion list]
OVER step-count
OUT

TRACE ENTRY /IF=logical-e zpr [action lis t]

TRACE STATEMENT

TYPE /FULL expression

WATCH /SILENT < variable >
/IGNORE
/NIGNORE
/SKIP=n
/ACTION [action list]
/IF=logical-e zpr

WHERE /ACTION statement-id

l command

+ indicates required arguments.
:j: indicates either the argument or the /ALL option is required.

Notes
Command and option abbreviations are indicated by bold text.
Variable information that the user supplies is indicated by italics.

Overview 1-5

Chapter 2: Using CodeWatch

Installing Code Watch • • • • • • . • • . • . • • • . . . • • • • • • • • • • • • • • • • 2-1
Program Preparation • • • • • . • . • • • • . • • • . • • • • • • . • • • • • • • • • • 2-1
Invoking Code Watch • . . . • . • . • • . . . • • • . • . • • • • . • • . . . • • • . . 2-2

The STB File • • • . . • . . • • . . . • • • • • . . • • • • • • • • • • • • • • . • • 2-3
In Search of Source and STB Files • . • • • • . • . • • • • • • • • . • • . • 2-3
Start-up Files • • . • • • • • • • • • • • • • • . • • • • • • • • • • . • • • • . . • • 2-4

Ending a Debugging Session • • . • • • • • . • • • • • • • • • • . • • • • . • • • . • 2-5
Debugging a Program with Multiple Modules . . • • • • • • • • • • • • • 2-5

Command Line Format • • . • • • • • • • • • • • . • • • • • • • . • • • . • • . • • • 2-6
Command Variations • • . • • • • • • • • • . • • • • • • • • . • • • • • • • • • 2-8

Entering Code Watch Commands • 2-9
Using Action Lists • • • • . • . • . • • . • 2-10
Pointer Concepts • . • • • • • • • • • • • • • • • • • • • . • • • • • • • . • • • • • • 2-10

The Execution Pointer • • • • • • • • • . . . • • • . . . • • • • . • 2-10
The Source File Pointer • • • • • • • • • • • • • • . • . . 2-1 1

Environment Concepts • • • . • . • • . . • • • . • • • • • • . • . • • . • • 2-1 1
Program Blocks . . • • • . . • • • • . • • • • • • . • • • • • . • • • • 2-11
Block Activation Numbers . . • • • . • • . . . • • . • . . • • • • • . • • • • 2-1 1

Absolute Activation Numbers • • • • • • • . • . • • . • • • • • . • • . 2-12
Relative Activation Numbers • • • • • • . • . • • • . • • • • • . • • • 2-12
Using Activation Numbers • • • • • • . • . . • • • • • • . • • . • • . • 2-12

Statement Identifiers • 2-12
Line Numbers • • . . • 2-13
Labels • . • • • • . • • • • . • 2-13
Line Number and Statement Offsets . . • . • • . • • . . • • • • • • 2-14
Entry and Exit Points . • • . . . • • . . • • • • • • • . • • . . • 2-14
Statement Qualification by Environment • . • • • . . • • • • • . . 2-15

Referencing Included or Copied Files • . . . • . . . • . 2-15
Code Watch Error Messages . . . • • • • • • . . . • . . . • • • • • • • • • • • • • 2-15

Aborted Program Recovery • • • . • • • • . • . • • • • • • • • . . • 2-17

Chapter 2: Using CodeWatch

Installing Code Watch

To install Codewatch follow the installation procedures in your Release
Notes.

A copy of the release notes for this product can be found on your system
in the LPI directory in the me dbgxxxxxx.info for UNIX systems and in
the C:\LPI directory in the me dbxxxxxx.inf for MS-DOS systems, where
zzzzzz is the version number of the release. For example, release notes
for CodeWatch version 04.01 .00 would be found in the me
dbg040100.info on the release media for UNIX systems and dg040100.inf
on MS-DOS systems.

Program Preparation

A program must be compiled using the -deb option before it can be run
under the control of the debugger. This is because the compiler generates
a data base me referred to as the STB me, which contains symbolic
information that the debugger needs to reference and manipulate source
program symbols and entities, set breakpoints and tracepoints, and
control program execution. A program is referred to as being compiled in
debug mode when one or more of the program modules have been
compiled with the -deb option.

It is helpful to have a current source listing available before using
CodeWatch. A listing is obtained by specifying the -I option at compile
time. For example, an LPI-COBOL program contained in a source file
named amort.cob is compiled in debug mode, with a listing generated, by
entering the following command line.

lpicobol amort.cob -deb -1

The program is then linked as described in your LPI User's Guide.

Using Code Watch 2-1

Invoking Code Watch

Once the program has been compiled in debug mode and linked, you can
use CodeWatch to debug your program. To invoke CodeWatch, the
following command format is used:

where:

codewatch < -e >
< -srcpath < source_directory < :source_directory > • . . > >
< -stbpath < STB_directory < :STB_directory > . . . > >
< -path < directory < : directory > . . • > >
< program-name >
< program-arguments >

-e (echo) specifies that every debugger command entered will be
echoed back to the terminal.

-scrpath, -stbpath, and -path specify directory paths to be
searched for source and STB files.

program-name is the name of the executable file to be debugged.

program-arguments are command line arguments to be passed to
the program.

If the debugger is invoked without a program-name argument on a UNIX
system, then the a.out file in the current directory will be used if it
exists. Systems running under MS-DOS require program-name to be
specified as there is no default program name.

A debugging session for the COBOL amort program compiled in debug
mode is invoked by entering the following command.

codewatch amort

When the debugger is invoked and is in control of the program, it
prompts for debugger commands with the following:

DEB >

2-2 Using Code Watch

The STB File

When a program source file is compiled in debug mode, a file called the
STB file (symbol table file) is created which contains important
information needed by the debugger during the debugging session. The
name of this file is constructed by replacing the extension of the source
file name (for example, .pll for a PL/1 program), with a .stb extension.
This STB file is placed by default in the directory in which the
compilation took place.

In Search of Source and STB Files

Mter the program is linked and CodeWatch is invoked with the loaded
executable file as an argument, the debugger requires access to both the
program source file(s) and the STB file(s).

The source file(s) will, by default, be searched for first in the directory
which was specified to the compiler relative to the current directory, and
if not found, then in the current directory.

The STB file(s) will, by default, be searched for only in the current
directory.

It is possible through the use of debugger command line arguments
and/or environment variables to specify alternate directories in which to
search for both source and STB files before the default places are
searched.

The CodeWatch command line options -srcpath and/or -stbpath followed
by a list of directory names separated by colons (:) for UNIX systems and
semicolons (;) for MS-DOS systems, may be given to specify a list of
directories to be searched before any other directories are searched.
These directory lists will be searched (in order) for source files and/or
STB files respectively. H a directory list starts with a colon or
semicolon, then the current directory (.) is assumed to be rust (a trailing
colon or semicolon is ignored). The command line option -path followed
by a directory list will be used in place of the -srcpath option and/or the
-stbpath option if one or both is not given.

H the source and/or STB files are not yet found after searching any
directories specified on the command line, then the debugger will search
directories specified by environment variables in a similar manner. The
environment variables CODEWATCH.....SRCPATH and/or

Using Code Watch. 2-3

CODEW ATCH.....STBP ATH may be set to a list of directory names,
separated by colons or semicolons. These directory lists will be searched
(in order) for source files and/or STB files respectively. The
environment variable CODEWATCHJ>ATH followed by a directory list
will be used in place of the CODEWATCH.....SRCPATH environment
variables and/or the CODEWATCH_8TBPATH environment variables
if one or both is not given.

For example, using UNIX syntax, the command:

codewatch -srcpath :/pllprogs/src:/src/pllprogs
-stbpath jpllprogs/stb :/pllprogs/obj program-name

will cause the debugger to search for the source files in the following
directories in order: (.) current directory, /pllprogs/src, /src/pllprogs,
and the directory specified on compilation command line. The debugger
will search for the STB files in the following directories in order:
jpllprogsjstb , /pllprogs/obj, and (.) current directory.

Using MS-DOS syntax, the command:

codewatch -srcpath ; \pll progs \src; \src \pll progs
-stbpath \pllprogs\stb ;\pllprogs\obj program-name

will cause the debugger to search for the source files in the following
directories in order: (.) current directory, \pllprogs\src, \src\pllprogs,
and the directory specified on compilation command line. The debugger
will search for the STB files in the following directories in order:
\pllprogs\stb , \pllprogs\obj, and (.) current directory.

Start-up Files

Upon invocation of the debugger, a command file containing debugger
commands is automatically executed, if present. The debugger searches
for this file in the following locations in the following order:

(1) In the file specified by the environment variable CODEWATCHJNIT.
(2) In the file .codewatch in the user's current directory.
(3) In the file .codewatch in the user's home directory (not applicable for

systems running under MS-DOS) .

2-4 Using Code Watch

AB soon as one of these files is found, the debugger commands contained
within are executed, after which normal interactive debugging may
continue. It is not required that a start-up file exist.

Ending a Debugging Session

To end a debugging session, enter the QUIT command.

DEB > QUIT

This causes normal termination of the debugger and the termination of
your program. Once the debugging session has been terminated, the
system prompt will be displayed.

Keyboard interrupts while the debugger is accepting commands are
ignored, but a keyboard quit will terminate the debugging session.

Programs which terminate normally while running under the control of
Code Watch, will automatically be re-initialized with any explicitly set
breakpoints (and any associated actions lists) preserved, so that execution
may start from the beginning if desired. The exit status with which the
program exited is given. Refer to your UNIX Programmer's Manual
(exit (2)) or your MS-DOS Technical Reference, depending on your
operating system, for more information.

Debugging a Program with Multiple Modules

Not all source modules need to be compiled in debug mode in order to
use CodeWatch. You may compile in debug mode only those modules
you want to debug.

IC you debug a program with multiple modules and the main program is
compiled in debug mode, then the initial environment will always be the
main program.

IC the main program is not compiled in debug mode, the initial
environment will be the first debug module specified in the link step.

U8ing Code Wateh 2-5

The COBOL program, amort.cob, used in Chapter 7 , "Debugging
LPI-COBOL Programs, n is an example of a program with multiple
modules. To debug just the subprogram mpcalc, only mpcalc needs to be
compiled in debug mode. To do this, use the following command
sequence.

$ lpicobol amort.cob
$ lpicobol mpcalc.cob -deb
$ lpild amort.o mpcalc.o -o amort
$ codewatch amort

The debugger is then invoked with mpcalc as the evaluation environment
with the following message displayed.

CodeWatch setting up "amort " . Wait . . .

**
* CodeWatch, Revision 4.2.0
* --------------------------

*
*

* Copyright(c) Language Processors, Inc. 1987 *
**
Evaluation environment is MPCALC: (inactive)
DEB>

Object files generated on systems running under MS-DOS have an .OBJ
suffix. For example, the link command line used in the previous example
would appear as follows on a MS-DOS system.

$lpild amort.OBJ mpcalc.OBJ -o amort

Command Line Format

The debugger recognizes certain symbols as having special meaning
within the context of a command line. Table 2-1 lists the symbols and
their meanings.

2-6 Using Code Watch

TABLE 2-1 CodeWateh Special Symbols

SYMBOL DEFINITION

+ Unary plus sign, and addition

[l

'or n

I

\

%

Unary minus sign, and subtraction

Command separator

Action list delimiters

String delimiters (' or " depending on source language)

Command option indicator

Statement reference qualifier

Command line continuator, statement label indicator,
procedure entry point, and exit point indicator

Activation number indicator

A debugger command is made up oC one or two keywords. The debugger
command line contains a debugger command and optional or required
arguments, depending on the command.

In the general format Cor the debugger command line, optional items are
enclosed in angle brackets. Note that the bold square brackets in the
action list argument are required delimiters.

The general command line format is:

where:

c ommand < I option > < argument > < [ac tion list) >

command -- Names the specific debugger action to be performed

I option -- Modifies the action or the command

Using Code Watch 2-7

argument -- Supplies required or optional information to the
command

[action liat] -- Lists one or more debugger commands

Two examples of CodeWatch command lines, using special symbols
follow.

Example 1

BREAKPOINT 90 [EVALUATE varl ; E var2]

This example sets a breakpoint at line 90. The program variables "var l "
and "var2" will b e evaluated when this breakpoint is encountered.

Example 2

BREAKPOINT LABELl + 8; LBREAKPOINT /ALL

This example sets a breakpoint eight statements past the label LABELl
and then lists all breakpoints.

Command Variations

Many of the debugger commands allow a number of prenxes which
specify a variation of the command function. An explanation of these
prefiXes follows.

Lcommand
Dcommand
Ncommand

For example,

LMACRO

DSTEP

NBREAKPOINT

2-8

• Lists information on command.
• Sets the default values for command.
• Removes instances of command.

• Lists information on the current macro
dennitions.

• Sets the default values for the STEP
command.

• Removes breakpoints.

Using Code Watch

Entering Code Watch Commands

Commands may be entered in either upper or lowercase. Case is
unimportant to the debugger except in quoted literals. (However, for the
purposes of the manual's syntax conventions, commands will be shown in
uppercase.)

Enter debugger commands at the keyboard in response to the debugger
prompt (DEB>) . For example, the PRINT command displays the
current line from the source program:

DEB > PRINT

Several commands can be entered on a single line, separated by
semicolons, as shown in the following example:

DEB > BREAKPOINT 25; EVALUATE DISTANCE

Using abbreviations, the previous command line can also be written as:

DEB > B 25; E DISTANCE

Commands are executed one at a time, from left to right. If any
command causes an error message to be displayed, the rest of the
command line may be discarded. If any command causes the program to
resume execution, the rest of the command line will be executed when the
debugger resumes control. For example, the following series of commands
will be executed only until CONTINUE is reached.

DEB > B 93; FIND COUNT; CONTINUE; EVAL COUNT

If a command line is too long for a single line, it can be continued on the
next line by entering a blank and a percent sign n % " as the last
character on the line followed by a carriage return. The percent sign is
not part of the command. It simply informs the debugger that you want
to continue entering commands. The debugger prompts with n • • • > n

indicating it is ready for the continuation of command input. For
example:

DEB > BREAKPOINT 123 [STEP IN; FIND EXPENSES; %
• • . > EVALUATE EXPENSES; CONTINUE]

UBing Code Watch 2-9

Using Action Lists

An action list is a set of one or more CodeWatch commands specified for
execution at breakpoints, after steps, or at tracepoints. You specify an
action list by enclosing one or more debugger commands within brackets
(" [] "). The commands must be separated by semicolons. You may use
spaces after semicolons to aid readability. The commands that you enter
in an action list are not checked for correctness until they are executed.
For example, the commands in the action list in the previous example
will not be evaluated until program execution reaches the breakpoint set
at line 123 . The format for the action list is:

[command1; commandf; • • . ; commandn]

A typical action list that could be set at a breakpoint is:

[EVALUATE COUNTER; STEP; EVALUATE DISTANCE;
CONTINUE]

In more advanced debugging, commonly used sequences of commands can
be defined as an action list with the MACRO command. The single
macro name can then be used repeatedly throughout the debugging
session to refer to a complex series of actions. (For an explanation of
derming macros, see Chapter 3 .)

Pointer Concepts

The debugger maintains two pointers, the execution pointer, and the
source file pointer. This section explains these pointers and how they are
used during a debugging session.

The Execution Pointer

The debugger maintains a pointer to the current execution point. This is
the point at which execution resumes or begins following a STEP or
CONTINUE command. The execution pointer is reset during execution of
the program. The RELOAD command sets the execution pointer to the
start of the program. The GOTO command and the RETURN command
are the only commands that can directly reset the execution pointer. The
WHERE command used without any arguments will display the current
execution point.

2-10 UBing Code Watch

The Source File Pointer

The debugger also maintains a pointer to the current line in the source
file currently being displayed. The SOURCE command changes the
current source file being displayed. The POINT and PRINT commands
change and display the source file pointer respectively. The
ENVIRONMENT command without any arguments resets the source file
pointer to the current execution point.

Environment Concepts

The environment is a frame of reference for the debugger to identify
program entities such as certain instances of statements and variables.

This section explains these entities and how to refer to them in the
context of a debugging session.

Program Blocks

Program blocks are units of code that provide scope and context for the
debugger. Program blocks are defined according to the source language.
Refer to the appropriate language chapter for language specific
definitions of program blocks.

Block Activation Numbers

Activation numbers only pertain to recursive procedures and to
languages that allow recursive procedures.

A procedure is active when it has been called during program execution.
Each new call to a procedure counts as a new activation. The activation
number specifies a unique activation of a procedure when more than one
activation exists. Multiple activations occur when a procedure is
recursive (A calls A) or indirectly recursive (A calls B calls A) .
Activation numbers are either absolute or relative.

Using Code Watch 2-1 1

Absolute Ac.tivation Numbers

An absolute activation number is simply a positive integer. Number 1
denotes the first activation of a procedure, number 2 the second, and so
forth. To refer to an activation of a procedure using absolute activation
numbers, the procedure name is followed by a colon " : " and the positive
integer that denotes the activation.

Relative Aetivation Numbers

A relative activation number is either sero or a negative integer. A
relative activation number specifies the number of activations to count
backwards from the most recent activation. The number 0 denotes the
most recent activation. The activation directly preceding the most recent
activation is denoted by "-1 " . H there have been five activations of the
procedure FACTO RIAL, then "F ACTORIAL:O" refers to the fifth
activation and "FACTORIAL:-2 " refers to the third activation. This
activation can also be referred to as "FACTORIAL:3" (that is , using the
absolute activation number 3) .

Using Aetivation Numbers

Each activation of a procedure has its own distinct values for automatic
(or local) data, and each activation may have different actual parameters
or arguments. An activation number can be used to specify the
environment for evaluating or displaying variables and procedure
arguments. An activation number can also be used when setting a
breakpoint in a particular activation of a procedure.

H the activation number is omitted from the name, then the debugger
uses a default of 0, the most recent activation. The only exception to this
is the BREAKPOINT command, where omitting the activation number
means that a breakpoint is to be taken on every activation of the
procedure.

Statement Identifiers

Commands such as BREAKPOINT require identification of statements
within the program being debugged. Statement identifiers are either
source line numbers or statement labels.

2-1 2 UBing Code Watch.

Line Numbers

The simplest way to refer to a statement is by using its source line
number, that is, the physical line number in the source me on which the
statement starts.

Ir an unqualified source me line number is specified (no environment
reference} , the rll'st executable statement on the specified line, if present,
or the rll'st executable line following that line is used by the debugger.

Ir a source me line number is qualified by an environment reference, for
example, SIFT\18 , the translation of the line number to an executable
statement is executed in the same manner as described for unqualified
line numbers, except the set of executable statements the line number can
be translated to is restricted to those contained in the specified
environment block.

Labels

The way to refer to a labeled statement is to use its statement label. For
any language in which statement labels are numbers, such as Pascal or
FORTRAN, a percent sign (%} must be used in front of the statement
label. For example, in the following Pascal code:

325:
326: 9999: writeln('ERROR: INVALID DATA. '} ;
327: end. {Program Terminates}

the statement reference 326 and %9999 both refer to the writeln
statement. In the following PL/I code:

9: DUMMY:
10: %INCLUDE 'MYFILE.PL1 ' ; /* PL/I sample */
1 1 : CHKPAGE:
12 : i f I = 66 then
13: do; put skip ; I = 0; goto DONEIT;
14: end;
15: I = I + 1 ; DONEIT: J = 0; K = 0;
16: L = 0;

the statement reference 11 and CHKP AGE both refer to the same labeled
line or code.

Uaing Code Watch 2-13

Line Number and Statement OfTsets

A line number offset can be used to locate a statement when it is not
labeled or its source line number is unknown. A line number offset is
formed by placing a plus sign (+) followed by a positive integer after a
source line number or a statement label. For example, line 15 in the PL/1
code can be referred to by the program as " 1 1 + 4" or as " CHKP AGE +
4". OC course, "15 + O" refers to the same line.

A statement oCCset must be used to refer to an unlabeled statement that
is not the f:arst statement on a line. A statement offset is formed by
placing a period followed by a positive integer (indicating the number or
statements from the beginning or the line) after the line number offset.
(H the line number oCCset equals zero, then the plus must be used.) For
example, the K = 0 statement on line 15 of the PL/1 code can be
referred to by the debugger as " 15 + 0.3" or CHKPAGE + 4.3 " .

Entry and Exit Points

Every procedure has two special statements, the entry point to and the
exit point from the procedure. The entry point is the place during
execution at which the procedure has been called, but before other
prelude code has run. A procedure's entry point is referred to within
CodeWatch by specifying the procedure name followed by a backslash
and "%ENTRY" (or simply "%E") , Cor example,
READJNPUT\%ENTRY. The entry point to the current activation of
a procedure may simply be referred to as "%ENTRY" (or "%E") .

The exit point is the place after which the return value (iC any) has been
computed and the return statement has been executed. All local variables
are still defmed. An exit point is referred to by the procedure name
followed by a backslash and "%EXIT" (or "%EX"), Cor example,
READJNPUT\%EXIT. The exit point to the current activation or a
procedure may be referred to by "%EXIT" (or "%EX").

Entry and exit points may not be referred to in conjunction with
statement orrsets.

Refer to Chapter 7, "Debugging LPI-COBOL Programs, " Cor information
regarding the COBOL STOP RUN statement and exit points.

2-14 Using Code Watch.

Statement Qualification by Environment

A statement reference may need to be qualified by a reference to the
environment in which the statement occurs. This is done by putting the
block name of the environment (with an optional activation number) and
a backslash in front of the statement reference. Using just the backslash
without the block name refers to the environment containing the current
execution point. For example:

PRINT_OUT\10

Referencing Included or Copied Files

Many source programs have the contents of separate files inserted into
the program at compile time. Programs written in BASIC, C,
FORTRAN, Pascal, or PL/1 use a INCLUDE statement for this purpose;
COBOL programs use a COPY statement. The debugger handles all
these statements in essentially the same way.

When the debugger encounters one of these statements in a program, you
can display the contents of the included or copied me by entering the
SOURCE command followed by the rllename cited in the INCLUDE or
COPY statement. The lines in the rlle will be numbered consecutively
from the first line in the me. Executable code contained within included
rlles cannot be debugged with CodeWatch.

To return to displaying lines from the source me containing the current
environment, simply enter the SOURCE command with no arguments.

See also the discussion on "Examining the Source Program" in Chapter
3 .

Code Watch Error Messages

When CodeWatch encounters an error condition, a message is displayed
at your terminal. The error message contains two lines of text: the first
line explains the error; and the second line echoes the command line as it
was entered, with a caret indicating the approximate location of the
error. Mter displaying an error message, the debugger issues a prompt
and waits for another command.

Using Code Watch 2-15

There are three general categories of error messages, as follows.

1 . When the debugging session cannot begin, the debugger will display
an error message at invocation. This indicates that a ruename
required by Code Watch is in error because:

- It does not exist or is not in the current directory.

- The program rue specified to be debugged is not an executable
rue.

- None of the program modules in the program rue was generated
from a compilation using the -deb option.

- The necessary debugger information rues cannot be found in
any of the specified or default directories. Refer to the section,
nin Search of Source and STB Files, n earlier in this chapter Cor
further information.

2 . When the debugging has started, the debugger issues a message
when the command syntax is incorrect. Samples follow:

DEB> TYPEPRIMES
Error Invalid Command
TYPEPRIMES

DEB> TRACE EMTRY
* *Error** Syntax error
TRACE EMTRY

3. The third kind of error occurs when the debugger cannot correctly
interpret a command line because of an incorrect variable name, an
invalid argument, or some similar problem. Two samples are shown
here:

2-16

DEB > EVALUATE ths_prime
* *Error* * Undefmed variable or built-in function
E ths_prime

..

DEB> BREAKPOINT 100000
* *Error* * Statement 100000 not found in procedure

Using Code Watch

Aborted Program Recovery

CodeWatch has the ability to recover from and to reasonably debug user
programs which have stopped due to certain operating system errors.
When this occurs, the following are indicated by the debugger:

- the error which caused the program to stop ,

- the current user program counter (the machine address of the
execution point)

- the name of the routine in which the error occurred.

H the routine in which the program stopped was compiled in debug
mode, then the source file line number of the execution point at the time
of the error will also be given. The current evaluation environment will
automatically be set to this environment and the debugging session may
continue.

If the routine in which the program stopped was NOT compiled in debug
mode, then the environment of the most recently called routine which
WAS compiled in debug mode, is indicated, and the current evaluation
environment is set to that environment. In this case, most debugger
actions are allowed, including continuing execution (using the
CONTINUE command) from the point at which the program received
the error. Note that it is not legal to STEP or GOTO from a non-debug
routine.

Using the STACK command, a stack traceback may be used to indicate
the sequence of subroutine calls up to the time of the error.

Using Code Watch. 2-17

Chapter 3: Code Watch Functionality

Program Control • . • • • • • • • • • • • • • • • 3-1
The Breakpoint Commands • • • . • • • . • • • • • • • • • • • • • • • • • • • 3-2
The Catching Commands • • • • . • . . • . • • • • • • • • • • . • • • • • • • 3-2
The Stepping Commands . • • • • • • • • • . . • • • • • • • . . • • • • • • 3-2 .1
The Tracing Commands • . • • • • • • . . • . . • • . • • • • . . • • • . • • 3-2 .1
The Watch point Commands • • • • • • • • . • • • • • • • • • • • • • . • • 3-2.2
Controlling Program Execution • . • • . • • • • • • . . . • • • • • 3-2.2

Environment Control . • • . . • • • • . . • . . . • • • . • • • • • • • • . . . • • • . 3-4
The ENVffiONMENT Commands . • • • • . . • . . . • • • . . . 3-4
The STACK Command • • • • • • • • . • • • • • • • • . . • • • • . . . • • . . 3-5

Symbolic Access • • • • • • • • • • • • • • • • • • • . • • • • • • • • • • . • • • . • • • 3-5
Variable Names • • • • • • • . . . • . • • . • . • • • • • • • • • • • • • • . • • • 3-5

Referencing Elements of Arrays and Tables • • • • • • • • • • • • • 3-5
The ARGUMENTS Command . • . . . • • . • • • • • • • • • • • • • • . • • 3-6
The EVALUATE Command • . • • • • . • • • • • • • • • • • • • . • • • • • 3-6
The LET Command • • • • • • . • • • . • . • • . . . • • • • • • • • • • • • • . 3-6
The RETURN Commands . . • • • . . • • • • • • • • • • • • • • • • • • • . • 3-7
The TYPE Command • • • • • . . • • • . . • • • . . • 3-7

Examining the Source Program . . • . . • • • . . • • . • • • • . • • • . • • . • . 3-7
The FIND Command • . • . . • • • • • • 3-7
The WIIERE Command • • • • • • • • • . • • • • . • • • • • • • • • . 3-7
The POINT Command • • • • • • • • • • . • • • • • • • • . . • . . . • • . . . 3-8
The PRINT Command • . • • • • • • • • . 3-8
The SOURCE Commands • • . • • . . • • • • • • • • • • • • • • • • • • . • • 3-8

Other Functionality • • • • • • • • • . . • • . . • • . • • • • • • • • • • • • • • • • • 3-8
MACROS Facility • • • • • • • • . • • • • • • • • • • • • • . • • • • • . • . . . 3-8

Listing Macros • • • • . . • 3-9
Removing Macros • . • . • • • • • • • • . . • • • • • • • • • • • • • • • • • 3-9

Debugger Command Files • • • • . • • • • • . • • • • • • . . . • . . . 3-9
Online Help • • . • • • • • • • . • • . • • • • . • . • • . • . 3-9
Invoking the Command Interpreter . • • 3-10

Chapter 3: Code Watch Functionality

The rust section of this chapter describes the commands that let you
control the execution of your program. The second section discusses
environment control issues. The third section explains how to examine,
modify, and evaluate the contents of data items. The last section of this
chapter describes other functionality, such as the macros facility,
debugger command files, and online help .

Some of the important concepts that are referred to in this chapter
include:

• pointer to the current execution point. Execution pointer
Source file pointer • pointer to the current line in the current source

file.

Program Control

This section explains the CodeWatch commands that are used to control
program execution. You may control the execution of your program in
the following ways:

• stepping through one or more executable statements at a time

• setting breakpoints to suspend program execution at any executable
statement

• catching signals to return process control to the debugger

• setting watchpoints to monitor changes in specified variables

Statement tracing and entry tracing give you the ability to monitor
every executable statement and the entry and exit points of programs.

Code Watch Functionality 3-1

The Breakpoint Commands

Breakpointing is used to suspend program execution at specified locations
so that you can interact with the program using debugger commands.

The BREAKPOINT command is used to set a breakpoint at a specified
statement or to modify the characteristics of a breakpoint already set at
that statement. Up to 64 breakpoints can be active at any one time.

A breakpoint counter is associated with each breakpoint. When the
breakpoint is created, the counter is set to zero; each time the breakpoint
is encountered, the counter is incremented by one. All breakpoint
counters are set to zero when a program is reloaded.

The NBREAKPOINT command removes either a specified breakpoint or
all breakpoints.

The LBREAKPOINT command lists information on a single breakpoint
or on all breakpoints.

The Catching Commands

The CATCH command, with a signal name and no arguments specifies
that process control will return to the debugger when the given signal is
generated. The signal name can be either a signal mnemonic or the
signal number corresponding to that mnemonic.

The NCATCH command stops process control from returning to the
debugger when the specified signal is generated. The child {user) process
continues without interruption, as if the given signal had been generated.

The LCATCH command with no arguments lists all the signals which are
currently set to be caught. When used with the fALL option, LCATCH
lists two sets of signals, those which are currently set to be caught and
those which are currently set to not be caught.

8-2 Co de Watch Func tionality

The Stepping Commands

The STEP command starts program execution at the current location of
the execution pointer and stops execution after one or a specified number
of statements.

The DSTEP command sets the default mode for stepping. With DSTEP,
the default action of stepping over calls to routines can be changed to
stepping into called routines. The DSTEP command is also used to
specify the default action list for the STEP command.

The LSTEP command lists the current mode of stepping, that is, either
IN or OVER called routines, and the default action list.

The Tracing Commands

Tracing enables information about all procedure and block entries and
statements to be reported as the program executes.

The TRACE ENTRY command sets tracepoints that enable tracing of
all procedure and block entries and exits by printing a message each time
a procedure or block is entered or exited .

The TRACE STATEMENT command sets tracepoints that enable the
tracing of every statement by printing a message identifying the
statement.

At each statement, if there is no other action to be performed (that is, if
there is no breakpoint, entry trace, single step action, and so on) , the
identifying message is printed and execution continues.

The NTRACE command disables entry or statement tracing.

Code Watch. Functionality 3-2. 1

The W atchpoint Commands

Watchpointing is used to monitor specified variables. The WATCH
command designates the given variable to be watched. When the
contents of the watched variable change, program execution stops and
control is returned to the debugger.

A watchpoint counter is associated with each watchpoint. When the
watchpoint is created, the counter is set to zero; each time the
watchpoint is incurred, the counter is incremented by one. When a
program is reloaded, all counters are set to zero.

The LWATCH command lists information on the given watchpoint(s) . If
the I ALL option is specified, information is listed on all of the current
watch points.

The NWATCH command removes watchpoints for the given variable(s) .
If the I ALL option is specifed, all watch points currently set are removed.

Controlling P rogram Execution

During a debugging session, CodeWatch maintains a pointer that tracks
the current point of program execution. When execution of the program
has been halted by a debugger action, the pointer maintains the location
as the current execution point. The current execution point can always be
determined using the WHERE command. This allows you to control the
execution of the program by using one of several simple debugger
commands.

The CONTINUE command is used to begin program execution or to
resume execution following a breakpoint or a step operation.

The GOTO command moves the execution pointer to a specified
statement. Program execution resumes at this point when a CONTINUE
or STEP command is issued.

The statement is specified by a line number, a simple statement label, or
a statement label followed by a line number offset or statement offset.
The named statement must exist in the current program block.

3-2.2 Code Watch Functionality

When the GOTO command is executed, the debugger displays the new
execution point.

The RELOAD command reloads the user program, preserving any
explicitly set breakpoints and any associated action lists. A subsequent
CONTINUE or STEP will start program execution from the beginning of
the program.

The RETURN command transfers the current execution point to the exit
point of the current procedure. If the procedure returns a value, an
expression must be given indicating the value to be returned. Refer to
the section, "The RETURN Commands" later in this chapter for more
information.

The QUIT command causes termination of the debugging session.

Code Watch Functionality 3-3

Environment Control

In many cases during a debugging session, it is necessary to refer to an
environment to establish a frame of reference for identifying variables or
statement identifiers. An environment is simply a program block which
the program refers to by specifying the name of the block or any
statement within the block. This allows the debugger to find a specific
instance of a variable or statement. Usually, a simple block name is
adequate to specify an environment. It refers to the most recent
activation of that block. To establish some other activation of the block
as an environment, use a block activation number.

An active environment exists on the program stack as a stack frame,
containing automatic data for the environment. However, environments
that do not exist on the program stack can also be referenced. Such
environments are called inactive environments. For example, a procedure
that has not been called, and thus has no stack frame, is inactive.
Another example of an inactive environment is one that is referenced by
a block name followed by an activation number that is higher than the
current activation of the block. It is possible to examine static and
external data in inactive environments and to set breakpoints in them.
An active environment must be specified to examine automatic data or
procedure arguments.

The ENVIRONMENT Commands

The ENVIRONMENT command sets the current evaluation environment
to provide scope to the debugger for identifying variables and
statements.

The environment specified in the command can be a simple block name
or a block name followed by an activation number or a statement
identifier. An activation number is used to establish, as an environment,
an activation of a block other than the most recent one. A statement
identifier is merely a convenient means of identifying the block which
immediately contains the statement. If the environment argument is not
specified, the evaluation environment is set to the environment
containing the current execution point.

Whenever the debugger is reentered after program execution pauses for a
breakpoint, or single step , and so on, the evaluation environment is reset
to the environment containing the current execution point.

3-4 Code Watch Functionality

The LENVffiONMENT command lists the current evaluation
environment or all the evaluation environments.

The STACK Command

The STACK command is used to print a traceback of a specified number
of stack frames.

Symbolic Access

This section describes the various methods and commands to access,
modify, and display symbolic information.

Variable Names

The rules for identifying variables in the debugger are almost the same
as the rules dermed for the evaluation language. The same naming
conventions are used, and all type and scope rules apply. The one
exception is that an environment name followed by a backslash may be
used to reference a variable in another program block. The names of
variables are case-sensitive or case-insensitive depending on the language
of the module in which they are contained.

Refereneing Elements of Arrays and Tables

Elements of arrays and tables are referenced using the constructs of the
source language. For example, the tenth element of the array primes,
used in the Pascal program in Chapter 9 would be evaluated with the
following command:

DEB > EVALUATE primes(lO)

CodeWatch allows you to access slices of arrays in programs written in
LPI-COBOL, LPI-P ASCAL, and LPI-PL/1 by using the following syntax:

array-name [m:n]

or

array-name (m:n)

Code Watck Functionality 3-5

where m is the first array element and n is the last element to be
referenced. An asterisk (*) used in place of the m:n syntax, specifies that
the entire array slice be referenced.

The ARGUMENTS Command

The ARGUMENTS command prints the arguments to an environment.
The environment specified in the command must be the name of an
active procedure (see the section, "Environment Control," earlier in this
chapter) . If an environment argument is omitted, the debugger defaults
to the current evaluation environment.

The EVALUATE Command

The EVALUATE command is used to evaluate and print the resultant
value of expressions in the source language program. When the
expression is evaluated, appropriate conversions are performed.

If the /display mode option is omitted, the debugger derives a default
display mode from the resultant type of the expression. When the
expression has been evaluated, the debugger prints the value in the
specified display mode.

The LET Command

The LET command assigns a value of an expression to a name.

When the expression is evaluated, appropriate type conversions are
performed according to the rules of the appropriate language. The
resultant value is assigned to the named variable. If the type conversion
is illegal then the debugger will issue an error message.

Note
If the current environment is within a module compiled by LPI- C , the LET command

is equivalent to the EVALUATE command. (In C , assignments are merely expression

operators with side effects.)

3-6 Code Watch Func tionality

The RETURN Commands

The RETURN command allows you to set the return values of
procedures. RETURN transfers the current execution pointer to the exit
point of the current procedure and accepts expressions indicating the
return value when the procedure returns a value.

The LRETURN command lists the return value of a procedure and is
used when the current execution point is at the exit point of a procedure.

The TYPE Command

The TYPE command prints the resultant data type of an expression in
terms of the data descriptions of the current source language.

Examining the Source Program

This section describes the CodeWatch commands for searching, printing,
and displaying different locations in the source file(s) .

The FIND Command

The FIND command locates a line in the source file containing a
specified pattern of characters and reports that line.

The debugger finds the first occurrence of the character pattern after the
current file position in the source listing file, then prints the line
containing that occurrence of the pattern. The FIND command is case
sensitive and matches character patterns exactly.

The WHERE Command

The WHERE command reports either a specified location or the current
point of execution. The specified location may be the either a name of a
routine, a line number, or a statement label.

Code Watch Functionality 3-7

The POINT Command

The POINT command locates a line number within the debug listing file
and reports that line. H no line number is specified, the line
corresponding to the current source file pointer is printed.

The PRINT Command

The PRINT command prints a specified number of source lines from the
current debug listing file or prints the current source line.

The SOURCE Commands

The SOURCE command changes the name of the source file to be
displayed.

The SOURCE command is needed when you want to look at the contents
of COPY or INCLUDE riles. Referencing these riles is discussed in the
earlier section "Referencing Included or Copied Files. "

The LSOURCE command lists the name of the source rile currently being
displayed.

Other Functionality

This section describes additional features of CodeWatch.

MACRO S Facility

The MACRO command is used to define a macro as shorthand for a
series of debugger commands that might be reused during the debugging
session. Sixteen macros may be defined at any one time.

Note
Do not choose a macro-name that is the same as a debugger command name because
the macro-name will override the debugger command.

The series of debugger commands is specified as an action list (see
Chapter 2, "Using Action Lists") .

3-8 Code Watch Functionality

Once a macro has been dermed, its name may be used just like any other
debugger command name. The macro in the command line is replaced by
the debugger commands specified in the action list. Those commands are
then executed normally.

H the last (or only) command in the series of debugger commands does
not end with a semicolon, any additional arguments which appear on the
command line after the macro name, are supplied as arguments to the
last command.

Listing Macros

The LMACRO command lists the definition of one or more specified
macros or the definitions for all currently defined macros.

The debugger lists the series of debugger commands that was dermed for
the macro.

Removing Macros

The NMACRO command removes the dermition of one or more specified
macros or the definitions of all currently dermed macros.

Debugger Command Files

The LOG command can be used to create debugger command files by
causing all subsequent debugger commands to be logged to a specified
file.

The NLOG command ends the logging of debugger commands to a rile.

The READ command is used to execute debugger command files,
displaying each command to the screen as the command is executed.

Online Help

The HELP command lists the available debugger commands.

Code Watch. Fu.nctionalitv 3-9

Invoking the Command Interpreter

The I command invokes the command interpreter to read the remainder
or the line following the ! command.

This command is not available under the MS-DOS operating system.

3-10 Code Watch. Fv.nc:tionalit71

Chapter 4: Code Watch Commands

Overview
ARGUMENTS
BREAKPOINT

• • 4-1
• • 4-2

. 4-3
CATCH • • •
CONTINUE

. 4-6 . 1

DSTEP • • • •
ENVmONMENT
EVALUATE
FIND
GOTO
HELP
LBREAKPOINT

. 4-7
• • • • 4-9

. 4-1 1
. 4- 13

• . 4-1 6
• . 4-18

. 4-20

. 4-22
LCATCH • • • • • • • • 4-23 .1
LENVmONMENT
LET
LMACRO
LOG • • • • •
LRETURN

. 4-24
• • • 4-25

. 4-27

. 4-28
• . 4-30

LSOURCE • • 4-31
LSTEP • • • • • 4-33
LWATCH . • • • • . • . • • . . . • • . 4-33 .1
MACRO • • • . • • . 4-34
NBREAKPOINT . 4-36
NCATCH • . • • • . • • • • • • • . • 4-37 . 1
NLOG • • • 4-38
NMACRO • . 4-40
NTRACE • . 4-41
NWATCH
POINT

. 4-41 . 1

PRINT
QUIT
READ
RELOAD
RETURN
SOURCE
STACK
STEP
TRACE ENTRY
TRACE STATEMENT

• . 4-42
. 4-44

. 4-46

. 4-47
• • . 4-49

. 4-51

. 4-53

. 4-55

. 4-57

. 4-60

. 4-62

Chapter 4: Code Watch Commands (Cont.)

TYPE • • • • • • • • • • • • . • • • • • • • • . • • • • • . • • • • • . . . • • • • • 4-63
WATCH . • • 4-64.1
WHERE • . • • . • • • • . • • • . • . . • • • • • 4-65
! . 4-67

Chapter 4: Code Watch Commands

Overview

This chapter lists and describes all the CodeWatch commands. The
commands are presented in alphabetical order by their command name.
Each command definition starts on a new page. The definitions consist of
subsections that contain information on use, format, a brief description
of the command, and an example.

Code Watch Commands 4-1

ARGUMENTS ARG

Use

Prints the arguments of a specified procedure environment.

Format

ARGUMENTS < environment >

where:

environment is a name of an active procedure.

Description

The ARGUMENTS command prints the arguments to a named
procedure environment. The procedure environment can be any program
block. Refer to the section "Environment Control" in Chapter 2 .

If environment is omitted, the debugger defaults to the current
evaluation environment.

Example

In this example, the arguments to the sift procedure are displayed.

4-2

DEB > ARGUMENTS sift
N = 10 { INTEGER }

Code Watch Commands

B BREAKPOINT

Use

Suspends program execution to allow for debugger actions.

Format

where:

BREAKPOINT < Btatement-id > < [ac tion list] >
< /SKIP=n > < /IGNORE > < /NIGNORE >
< /IF=logical-e zpr >

statement-id identifies the statement at which the breakpoint will
be set or modified.

Description

The BREAKPOINT command is used to set a breakpoint at a specified
statement or modify the characteristics of a. breakpoint already set a.t
that statement. If statement-id is omitted, the breakpoint will be set a.t
the current execution point, that is , the statement to be executed when
program execution is resumed. The maximum number of breakpoints
that can be active a.t one time is 64.

Breakpoints can be set a.t the entry point (%ENTRY) of external
routines which have not been compiled in debug mode.

Code Watch Commands 4-3

BREAKPOINT B

continued

Breakpoints can be set only at lines containing executable statements
within routines compiled in debug mode. For example, lines containing
only comments or declarations, or only the keyword ELSE are not valid
breakpoint locations. H you try to set a breakpoint at one of these
locations, the debugger will set the breakpoint at the rust executable
statement after the one named in the command.

• H the statement-id is qualified by a block name with an explicit
activation number, the breakpoint applies only to that activation. If a
block activation number is not specified, the breakpoint will be taken
on every activation of the specified statement. The numbered
activation may be higher than the most recent activation of the
block. Relative activation numbers are converted to absolute
activation numbers when the BREAKPOINT command is entered.
Refer to the section "Block Activation Numbers" in Chapter 2 .

• H an action list is present, i t is set as the action to be performed
when the breakpoint is taken. To remove action list, simply specify a
null action list, that is, BREAKPOINT [] . An action list of
[CONTINUE] causes the breakpoint to act like a simple tracepoint; at
each execution of the statement a message identifies the statement
and execution continues.

A breakpoint counter is associated with each breakpoint. When the
breakpoint is created, the counter is set to zero; each time the breakpoint
is encountered the counter is incremented by one. All breakpoints are set
to zero when a program is reloaded.

• Ir the /SKIP=n option is present, a breakpoint skip counter is set to
the value specified by n, causing the breakpoint to be skipped n
number of times. Once the breakpoint skip counter is set, it remains
in effect until its value decreases to zero.

4-4 Code Watch. Commands

B BREAKPOINT

continued

• H the /IGNORE option is present, the breakpoint is flagged to be
ignored and is not executed when it is encountered. The /IGNORE
option is useful to temporarily disable a breakpoint. The /NIGNORE
option cancels the ignore flag so the breakpoint will be in effect.

• An IF condition may be used to qualify the breakpoint. H present, the
IF condition must be the last element on the command line.

When a breakpoint with the /IF= option is set at a particular program
statement, the executing program will be suspended and the debugger
will be activated whenever that program statement is about to be
executed. The following will then occur:

• The IF condition is evaluated; the evaluation always takes place in
the environment and language of the program statement. If the IF
condition is false, program execution continues. H the IF condition is
true, the debugger performs the following actions:

- The breakpoint counter is incremented.

- H the /IGNORE flag is on for this breakpoint, execution
continues.

- H the skip count for this breakpoint is non-zero, the count is
decremented and execution continues. However, the skip count for
an IGNOREd breakpoint is not affected.

- The debugger reports an announcement of the breakpoint.

- H an action list is specified, it is executed. The action list may
specify that program execution is to continue. H not,

- The debugger prints its prompt and waits for commands.

Code Watch Oommanda 4-5

BREAKPOINT

continued

Example

In the following example a breakpoint is set at the exit point of the
MPCALC procedure.

DEB> BREAKPOINT MPCALC\%EXIT

B

In the following example the breakpoint is only executed if the value of
MAXV is 5 .

DEB > B READJNPUT\18 /IF= MAXV = 5

4-6 Code Watch Command8

CAT CATCH

Use

Returns process control to the debugger when the given signal is
generated.

Format

or

where:

CATCH [/NIGNORE I /IGNORE] < signal >

CATCH /DEFAULT

signal can be either a signal name mnemonic (such as SIGALRM,
SIGINT, and so on) or the signal number corresponding to that
mnemonic. Signal names may be specified in either uppercase or
lowercase.

Description

The CATCH command, with a signal name and no arguments, specifies
that process control will return to the debugger when the given signal is
incurred. When the child (user) process is subsequently resumed (for
example, by using the CONTINUE or STEP commands), it will continue
as if it had incurred the given signal.

The /IGNORE option allows the debugger to catch the signal (that is ,
stop the child process) but disregard the signal. In other words, when
the child process is resumed, it will continue as if it had never incurred
the given signal. The /NIGNORE option allows the debugger to

Code Watch Commands 4-6 . 1

CATCH CAT

continued

recognize the signal so that when the child process is resumed, it will
continue as iC it had incurred the given signal. The /DEFAULT option
sets all CATCH settings back to the debugger's default settings. Refer to
the NCATCH and LCATCH commands Cor more information.

By default, certain signals are caught by the debugger; Cor a listing of
these signals type LCATCH /ALL.

Note
The signals SIGILL and SIGTRAP are actually set to be ignored by the debugger.
These are special signals because they are used by the debugger for breakpointing.
The settings for these two signals are not modifiable by the user.

Examples

In the following example, process control will return from the child
process to the debugger when SIGALRM is generated.

DEB> CATCH /IGNORE SIGALRM
Changing SIGALRM to be caught and ignored.

When the child process resumes, it will ignore the SIGALRM and
continue as iC it had never generated a SIGALRM.

In this example, the number 28 represents the signal SIGWINCH.
Process control will return from the child process to the debugger when a
SIGWINCH is generated.

DEB> CATCH /NIGNORE 28
Changing SIGWINCH to be caught and not ignored.

When the child process resumes, it will recognize the signal SIGWINCH
and continue as iC it had incurred a SIGWINCH.

4-6.2 Code Watch Oommanda

c CONTINUE

Use

Begins or continues program execution.

Format

CONTINUE

Description

The CONTINUE command is used to begin program execution initially
or following a reload operation, or to resume program execution
following a breakpoint or a step operation.

The CONTINUE command is often the last command in an action list.

Example

In this example, program execution is continued until the breakpoint at
line 112 is encountered.

DEB > CONTINUE
Break at AMORT\112

Code Watch. Commands 4-7

CONTINUE

continued

In this example, CONTINUE is the last command executed in
conjunction with the STEP command. Refer also to the sections
describing the STEP and PRINT commands later in this chapter.

DEB > STEP [PRINT; CONTINUE]
Step at MPCALC\23

23: Sl SECTION.
Break at MPCALC\%EXIT

c

4-8 Code Watch Commands

DS DSTEP

Use

Sets the default mode and/or action list for the STEP command.

Format

DSTEP < IN I OVER > < [action li&t) >

Description

The DSTEP command sets the default stepping mode to either IN or
OVER called routines; and/or the default action list for the STEP
command. H DSTEP is not used, OVER is the default stepping mode.

Example

In this example, the default stepping mode is set to IN and the PRINT,
TRACE ENTRY, and CONTINUE commands are set as the default
actions to be executed at each step. When the subsequent STEP is
executed the current execution point is displayed, program execution
continues, and tracing information is displayed. Refer to the sections on
PRINT, TRACE ENTRY, and CONTINUE in this chapter.

Code Watch Commands 4-9

DSTEP

continued

DEB> DSTEP IN [PRINT; TRACE ENTRY; CONTINUE]
DEB> STEP
Step at PRINT_OUT\51

51 : J=l
* * * * PRINT_OUT\%EXIT
** * * SIFT\%EXIT

DS

4-10 Code Watch Commands

ENV ENVIRONMENT

Use

Sets the current evaluation environment.

Format

ENVIRONMENT < environment >

where:

environment can be a simple block name or a block name followed
by an activation number or a statement identifier.

Description

The ENVIRONMENT command sets the current evaluation environment
to provide scope to the debugger for identifying variables and
statements.

An activation number is used to establish, as an environment, an
activation of a block other than the most recent one. If the environment
argument is not specified, the evaluation environment is set to the
environment containing the current execution point and the current
source me pointer is set to the current execution point.

Whenever the environment changes during program execution, the
evaluation environment is reset to the environment containing the
current execution point.

Code Watch Commands 4-11

ENVIRONMENT ENV

continued

Example

In the following example, the environment is set to MAIN and then reset
to the environment containing the current execution point, which in this
example is the read_jnput routine.

4-12

DEB > ENVIRONMENT MAIN
DEB > ENV
Environment reset to read_jnput

Code Wateh. Commands

E EVALUATE

Use

Evaluates and prints the resultant value of expressions.

Format

where:

EVALUATE < /display mode > < expression >

expression can be any expression that may occur in the source
language program including references to simple as well as
aggregate (such as array, record, and structure elements) type
variables.

Description

The EVALUATE command is used to evaluate and print the resultant
value of expressions in the source language program. If expression is
omitted, then EVALUATE uses the previous expression that was
evaluated. If no previous expression was evaluated, then an error message
is generated.

The display mode is the mode in which the value of the expression is to
be printed. The valid display modes are Ascii, BIT, FLOAT, HEX,
INTEGER, and OCTAL. Table 4-1 defines these display modes.

Code Watch. Commands 4-13

EVALUATE

continued

TABLE 4-1 Display Modes

Display Mode

ASCII

BIT

FLOAT

HEX

INTEGER

O CTAL

Definition

Displays the value as a series of ASCII characters.

Displays each bit in the value as a 1 or a zero.

Displays the value as a single-precision
floating-point number.

Displays the value as a series of hexadecimal
numbers.

Displays the value as a series of signed decimal
numbers.

Displays the value as a series of unsigned octal
numbers.

E

A specified range of an array can be evaluated using the following syntax
when debugging LPI-COBOL, LPI-PASCAL, and LPI-PL/I programs.

EVALUATE array-name [m:nJ

or

EVALUATE array-name (m:n)

where m is the starting point of the array range and n is the ending
point of the array range.

4-14 Code Watch Commands

E EVALUATE

continued

An asterisk (*) specifies that all elements of a dimension are to be
evaluated. For example,

EVALUATE array-name [*,3:5]

or

EVALUATE array-name (* ,3:5)

displays the values of each element of the first dimension and the third
through fifth elements of the second dimension of a two dimensional
array.

Specifying only the array name for these languages will cause the
evaluation of every element of every dimension of the array. Similarly,
specifying a structure, record or group name for these languages will
cause the evaluation of every member of the group.

Examples

In this example, the value of the variable count is evaluated.

DEB > EVALUATE count
COUNT= 5 INTEGER

In this example, the third through fifth elements of the array, primes, are
evaluated.

DEB > EVALUATE primes [3 :5]
PRIMES(3)= 3 INTEGER
PRIMES(4)= 5 INTEGER
PRIMES(5)= 7 INTEGER

Code Watch Commands 4-1 5

FIND

Use

Locates and prints a specified string.

Format

FIND < string >

Description

The FIND command locates a line in the source file containing a
specified string and reports that line.

F

Quotation marks may be used to delimit string and are required for
strings that contain spaces. If string is not specified, the default value
will be the string specified in the previous FIND command. If there is no
string specified in the first instance of the FIND command an error
message will be generated.

The debugger finds the first occurrence of string after the current file
position in the source file, then prints the line containing that occurrence
of the string. The FIND command is case sensitive, so that string ABC
differs from abc and Abc.

If string is not found the current source file pointer is positioned at the
last line of the user program.

4-1 6 Code Watch Commands

F

Example

In this example, the string "Main" is located.

DEB > FIND Main
6: * Main Program

FIND

continued

If Btring is not identical in terms of case to the string in the source file it
will not be found. For example,

DEB > FIND main
94: BOTTOM

Code Watch Commands 4-17

GOTO G O

Use

Moves the execution pointer to a specified statement.

Format

G OTO statement-id

where:

statement-id can be a line number, a simple statement label, or a
statement label followed by a line number offset or statement
offset.

Description

The GOTO command moves the execution pointer to a specified
statement. Program execution resumes at this point when a CONTINUE
or STEP command is issued.

The named statement must exist in the current program block.

Notes
It is not valid to put an activation number on the statement-id. If the activation
number of an existing previous block invocation is put on the statement-id, it is
ignored; otherwise, the error message • specified activation does not exist• is
displayed.

It is not possible to use the GOTO command to go to the %EXIT point of a block.
The RETURN command can be used to go to the %EXIT point, however.

When the GOTO command is executed, the debugger displays the
current execution point.

4-18 Code Watch Commands

G O GOTO

continued

Example

In this example, the execution point is changed to line 19, from the
previous execution point as displayed by the WHERE command. Refer to
the description of the WHERE command later in this chapter.

DEB> WHERE
Current execution point is READJNPUT\%ENTRY
DEB > GOTO 19
Execution point is now READJNPUT\19

Code Watch Commands 4-19

HELP

Use

Lists all of the debugger commands and options.

Format

HELP

Description

The HELP command lists debugger commands and options information
on the screen.

H

4-20 Code Watch. Commanda

H HELP

continued

Example

The following example is a partial list of the help command display.

DEB > HELP
CodeWatch Commands ---

ARGuments
< environment >

Breakpoint
< statement_jd >
[actionJist]
/IF=logicaLexpr
/SKIP=n
/Nignore I /Ignore

CATch < signal>
/Ignore I /Nignore
/DEFault

Continue
DStep In I Over

[actionJist]
ENVironment < env..Jlame >
Evaluate /display ...JII.Ode

< expression >
Find < string >
Goto statement_jd
Help
LBreakpoint

statement_jd I /All
LENVironment /All

Code Watch Commands

Let
LCATch /All I < signal >
LMAcro /All I name
LOg file..Jlame
LRETurn
LSOurce /All I /Full
LStep
LWAtch /All I < variable >
MAcro

name = [actionJist]
NBreakpoint

statement_jd I /All
NCATch < signal >
NLOg
NMAcro /All I name
NTRace Entry
NTRace Statement
NW Atch variable I /All
POint < +n I -n I n >
Print < nJines >
Quit
REAd command_.file
Reload /ARGuments

4-21

LBREAKPOINT LB

Use

Lists information on breakpoints.

Format

LBREAKPOINT < Btatement-id I I ALL >

where:

Btatement-id names the statement at which the breakpoint is to be
listed.

Description

The LBREAKPOINT command lists information on a single breakpoint
or on all breakpoints.

If atatement-id is omitted, information is listed on the breakpoint at the
current execution point. If I ALL is specified, information is listed on all
breakpoints. The information listed includes the skip count, execution
count (the number of times the breakpoint has been encountered) and
any specified action list.

4-22 Code Watch Commands

LB

Example

In this example, all breakpoints are listed.

DEB> LBREAKPOINT /ALL
Break set at MAIN\95 (count = 2)

LBREAKPOINT

continued

Break set at READJNPUT\%ENTRY (count = 1) [E maxv]

In this example, only the breakpoint at line 95 is listed.

DEB> LBREAKPOINT 95
Break set at MAIN\95 (count = 2)

Code Watch Commands 4-23

LCATCH LCAT

Use

Lists CATCH settings for a given signal.

Format

LCATCH [/ALL I < a ignal >]

where:

aignal can be either a signal name mnemonic (such as SIGALRM,
SIGINT, and so on) or the signal number corresponding to that
signal. Signal names may be specified in either uppercase or
lowercase.

Description

The LCATCH command with no arguments lists all the signals which are
currently set to be caught . When used with the /ALL option , LCATCH
lists two sets of signals, those which are currently set to be caught and
those which are currently set to not be caught . The LCATCH command,
with a signal name specified, lists CATCH settings for that given signal.

Refer to the CATCH and NCATCH commands for more information .

Examples

In the following example, the current CATCH settings for the signal
SIGIO are listed using the /LCATCH command.

4-23.1 Code Watch Commanda

LCAT LCATCH

continued

DEB> LCATCH SIGIO
SIGIO being caught and not ignored.

In this example, the signals currently set to be caught and those that are
set to not be caught are listed.

DEB > LCATCH /ALL
CATCHing signals :
SIGINT SIGQUIT SIGILL SIGTRAP SIGIOT SIGBUS
SIGTTOU SIGSYS SIGPIPE SIGTERM SIGURG SIGSTOP
SIGTTIN SIGIO SIGXCPU SIGXFSZ SIGVTALRM SIGPROF
SIGSEGV

Not CATCHing signals :
SIGHUP SIGEMT SIGFPE SIGKILL SIGALRM SITSTP
SIGCONT SIGCHLD SIGWINCH SIGLOST SIGUSRl
SIGUSR2

Code Watch Commands 4-23.2

LENVIRONMENT

Use

Lists the current evaluation environment.

Format

LENVIRONMENT I ALL

Description

The LENVIRONMENT command lists the current evaluation
environment.

The I ALL option lists all environments within the source file.

LENV

Refer to the earlier section describing the ENVIRONMENT command.

Example

In this example, the current evaluation environment displayed is MAIN.

DEB> LENVIRONMENT
Evaluation environment is MAIN: (inactive)

4-24 Code Watch Commands

L LET

Use

Assigns a value of an expression to a name.

Format

where:

LET name = ezpreBilion

name is the name of any variable or destination construct (such as
a substring or based reference in PL/1) that occurs in the source
language program. ezpreaaion can be any expression allowed by
the source language whose value can be converted to the data type
of the named variable.

Description

The LET command assigns a value of an expression to a name.

When the expression is evaluated, appropriate type conversions are
performed. The resultant value is assigned to the named variable. If the
type conversion is illegal then the debugger will issue an error message.

The value of a character string constant can be changed by enclosing the
expression within single or double quotes depending on the source
language.

Code Watch. Commands 4-25

LET

continued

Refer to Chapter 6, "Debugging LPI-C Programs," for specific
information on assigning values to variables in C.

Example

In this example, the value of maxv is assigned a new value (maxv /2).

DEB > LET maxv = maxv/2

L

4-26 Code Watch Commands

LMA LMACRO

Use

Lists the macro definitions.

Format

LMACRO { macro1, macro2, . . . , macron I I ALL }

Description

The LMACRO command lists the definition of one or more specified
macros or the definitions for all currently defined macros.

The debugger lists the action list that was defined for the macro.

Either the indicated macro-names or I ALL must be specified.

Example

In this example, the definition of the macro named top is listed .

DEB> LMACRO top
top = (POINT 1 ; PRINT 5]

Code Watch Commands 4-27

LOG LO

Use

Logs debugger commands to a specified file.

Format

LOG file -name

where:

file-name is the pathname of any file allowing write permission to
the user.

Description

The LOG command causes all subsequent debugger commands to be
appended to a specified file. See also the descriptions of the NLOG and
READ commands.

To log commands to a new file after initiallly logging commands to
file -name, use either NLOG followed by LOG with a new file-name or
simply use LOG with a new file-name.

4-28 Code Watch Commands

LO

Example

DEB > LOG debug.history
Logging debugger commands to " debug.history"
DEB> FIND do while
99: do while (n > 1)
DEB > PRINT 4
99: do while (n > 1)

100: call sift(n) ;
101 : call readJnput(n) ;
102: end;
DEB > LBREAKPOINT /ALL
Break set at PRIMES\95 (count = 1)
Break set at PRIMES.SIFT\74 (count = 14)
DEB > CONTINUE
Break set at PRIMES.SIFT\ 7 4

Code Wateh. Commands

LOG

eontinued

4-29

LRETURN LRET

Use

Lists the return value of a function.

Format

LRETURN

Description

When the current execution point is at the exit point of a function, the
LRETURN command prints the value to be returned by the function.

Example

In this example, the return value for the isprime function is listed.

DEB > LRETURN
Return value for PRJMES.ISPRIME is 15 {INTEGER*4}

4-30 Code Watch. Commands

L S O LSOURCE

Use

Prints the name of the current source me being displayed.

Format

L S OURCE < I ALL > < /FULL >

Description

The LSOURCE command prints the name of the source me currently
being displayed. If the source me being displayed does not contain the
current evaluation environment, LSOURCE will also display the source
me which does contains the current evaluation environment.

If the /FULL option is specified, the name of the symbol table file
associated with the source me containing the current evaluation
environment will also be displayed.

If the I ALL option is specified, all the source mes in the program being
debugged , which were compiled in debug mode, will be displayed.

Code Watch Commands 4-3 1

LSOURCE L S O

continued

Example

In this example, the name of the symbol table file associated with the
source file containing the current evaluation environment, the source file,
and the source file currently being displayed are listed .

4-32

DEB > LSOURCE /FULL
Current display source file is "mpcalc.cob " (COBOL)
Symbol table file is "mpcalc.stb "

Code Watch Commands

LS LSTEP

Use

Lists the current stepping mode and the default action list.

Format

LSTEP

Description

The LSTEP command lists the current mode of stepping, that is, either
IN or OVER, and the default action list.

Example

In this example, the default stepping mode is IN and the action list
contains the PRINT, TRACE ENTRY, and CONTINUE commands.

DEB > LSTEP
Step IN; Action = [PRINT; TRACE ENTRY; CONTINUE]

Code Watch Commands 4-33

LWATCH LWA

Use

Lists information on watchpoints.

Format

L WATCH [< variable > I /ALL]

where:

variable specifies the variable to be watched.

Description

The LW ATCH command lists information on the given watch point. If
the /ALL option is specified , information is listed on all watchpoints .
The information listed includes the skip count, execution count (the
number of times the watchpoint has been incurred) , specified switch
settings, and any specified action list. Refer to the WATCH and
NW ATCH commands for more information .

Examples

In the following example, all of the existing watchpoints are listed .

DEB > LWATCH /ALL
Watchpoint set for MP /NSILENT /NIGNORE
Watchpoint set for LOAN /SILENT /NIGNORE
Watchpoint set for MONTHLY-RATE /NSILENT /IGNORE
Watchpoint set for CURRENT-BALANCE /SILENT /IGNORE

4-33 . 1 Co de Watch Commands

LWA LWATCH

continued

In this example, only the information concerning the LOAN watchpoint
is listed.

DEB > LWATCH LOAN
Watchpoint set for LOAN /SILENT /NIGNORE

Code Watch Commands 4-33.2

MACRO MA

Use

Defines a macro.

Format

MACRO macro-name = [ac tion list)

Description

The MACRO command is used to define a macro as shorthand for an
action list. Sixteen macros can be defined at any one time.

Note
Do not choose a macro-name which is the same as a debugger command name because
the macro-name will override the debugger command.

The action lis t is specified in the usual way (see Chapter 2 , "Using
Action Lists") .

Once a macro has been dermed, its name may be used just like any other
debugger command name. The macro in the command line is replaced by
the debugger commands specified in the action list. Those commands are
then executed normally.

If the last (or only) command in the action list does not end with a
semicolon, any additional arguments to that command can appear on a
command line after the macro name. For example, suppose a macro

FOO = [LET A = A +]

has been dermed, the command 'FOO 3 ' can then be entered to add 3 to
A.

4-34 Code Watch Commands

MA MACRO

continued

Example

In this example, the macro top is defined to point to the rust line o£ the
program and print 5 lines. The macro is then used.

DEB> MACRO top = [POINT 1; PRINT 5]
DEB> top

1 :
1 :
2 : PROGRAM main;
3 :
4 : CONST
5: max_value = 1000;

Code Watch Commands 4-35

NBREAKPOINT

Use

Removes breakpoints.

Format

where:

NBREAKPOINT < statement-id I I ALL >

Btatement-id is used to name the statement at which the
breakpoint is to be removed.

Description

NB

The NBREAKPOINT command removes the breakpoint at the named
statement.

If Btatement-id is omitted, the breakpoint at the current execution point
is removed. If I ALL is specified, all breakpoints currently set are
removed.

Example

In this example, the breakpoint at line 74 is removed.

DEB > NBREAKPOINT 74

4-36 Code Watch. OommandB

NB NBREAKPOINT

continued

In this example, all breakpoints are removed.

DEB> NBREAKPOINT /ALL

Code Watch. OommandiJ 4-37

NCATCH NCAT

Use

Prevents process control from returning to the debugger when the given
signal is generated.

Format

where:

NCATCH (/ALL I < signal > j

signal can be either a signal name mnemonic (such as SIGALRM,
SIGINT, and so on) or the signal number corresponding to that
signal. Signal names may be specified in either uppercase or
lowercase.

Description

The NCATCH command prevents process control from returning to the
debugger when the given signal is generated. The child (user) process
continues without interruption, as if the given signal had been generated.
This implies that user-defined handlers will be executed. Refer to the
CATCH and LCATCH commands for more information.

Example

In the following example, the process control will not return from the
child process to the debugger when a SIGSEGV is generated.

4-37 .1 Code Watch Commands

NCAT NCATCH

continued

DEB > NCATCH SIGSEGV
Changing SIGSEGV to now not be caught.

AB a result, NCATCH allows the child process to continue uninterrupted
when a SIGSEGV is generated. If the user process has its own signal
handler for a SIGSEGV, then the signal handler will be executed.

Code Watch Commands 4-37 .2

NLOG NL O

Use

Stops the logging of debugger commands to a file.

Format

NL O G

Description

The LOG command ceases the logging of debugger commands to a file
specified in the previous LOG command.

See also the description of the LOG command.

4-38 Code Watch Commands

NLO

Example

DEB > LOG debug.history
Logging debugger commands to " debug.history"
DEB > FIND do while
99: do while (n > 1)
DEB > PRINT 4
99: do while (n > 1)

100: call sift(n);
101 : call read_jnput(n);
102: end;
DEB > LBREAKPOINT /ALL
Break set at PRIMES\95 (count = 1)
Break set at PRIMES.SIFT\74 (count = 14)
DEB > CONTINUE
Break set at PRIMES.SIFT\ 7 4
DEB > NLOG
Ending commands logging to "debug.history"

Code Watch Commands

NLO G

continued

4-39

NMACRO NMA

Use

Removes macro definitions.

Format

NMACRO { macro1, macro�!, . . • , macron I /ALL }

Description

The NMACRO command removes the dermition of one or more specified
macros or the definitions of all currently dermed macros.

Either the specific macro-name(s) or /ALL must be specified.

Example

In this example, the macro named top is removed.

DEB > NMACRO top

In this example, all macro definitions are removed.

DEB > NMACRO /ALL

4-40 Code Watch Commands

(NTR E or NTR S) NT RACE

Use

Disables entry or statement tracing.

Format

NTRACE { ENTRY I STATEMENT }

Description

The NTRACE command disables entry or statement tracing.

If ENTRY is specified, any action list and IF condition are removed as
well.

Example

In this example, TRACE ENTRY and TRACE STATEMENT are
disabled.

DEB > NTRACE ENTRY
DEB > NTRACE STATEMENT

Code Watch Commands 4-41

NWATCH NWA

Use

Removes watchpoints.

Format

NW ATCH [< variable > I /ALL J

where:

variable specifies the variable being watched.

Description

The NWATCH command removes the watchpoint for the given variable.
If the /ALL option is specified, all watch points currently set are
removed.

Refer to the WATCH and LWATCH commands for more information.

Examples

In the following example, the watchpoint for the variable LOAN is
removed from the current listing.

DEB > LWATCH /ALL
Watchpoint set for LOAN /SILENT /NIGNORE
Watchpoint set for MONTHLY-RATE jNSILENT /IGNORE
DEB > NWATCH LOAN
DEB > LWATCH /ALL
Watchpoint set for MONTHLY-RATE /NSILENT /IGNORE

4-41 . 1 Code Watch Commands

NWA

In this example, all current watchpoints are removed.

DEB > LWATCH /ALL
Watchpoint set for CURRENT-BALANCE
Watchpoint set for MP /NSILENT /NIGNORE

NWATCH

continued

Watchpoint set for MONTHLY-RATE /NSILENT /IGNORE
DEB > NWATCH /ALL
DEB > LWATCH /ALL
No watchpoints are currently set.

Oode Watch Oommands 4-41 .2

POINT P O

Use

Resets and displays the source file pointer within the current source file.

Format

P O INT < +n I - n I n >

Description

The POINT command relocates the source file pointer within the current
source file and prints that line.

If a sign is specified, the debugger relocates the source file pointer to the
line which is n lines before (-) or after (+) the current source file pointer.
Otherwise, the debugger relocates the source file pointer to the line
specified by n and prints that line. If n is omitted, the source file pointer
is reset to the current execution point.

Example

In this example, the source file pointer is reset to line 25 and displayed.

4-42

DEB > POINT 25
25: 05 FILLER PIC X(8) VALUE SPACES.

Code Watch Commands

PO POINT

continued

In this example, the source file line three lines before the current source
file pointer is displayed.

DEB> PO -3
22 : 05 H2 PIC X(8) VALUE "INTEREST" .

Code Watch. Command8 4-43

PRINT p

Use

Prints a specified number of lines from the current source file.

Format

PRINT < n >

where:

n indicates the number of source lines to be printed.

Description

The PRINT command prints a specified number of source lines from the
current debug listing file.

Printing starts at the current line. The current source line is reset to the
last line printed. If argument n is omitted, only the current source line is
printed.

4-44 Code Watch Oommanda

p PRINT

Example

In this example, 10 lines of the Primes program are printed.

DEB > PRINT 10
1 : REM ** Primes * *

2:
3 : DEF read_jnput
4: INTEGER read_jnput, maxv

continued

5 : 10 INPUT 11 Input maximum prime boundary " ; maxv
6 : IF maxv < = max_value THEN GOTO 12
7 : PRINT toobig$: GOTO 10
8 : 12 read_jnput = maxv
9: FEND
10:

Code Watch Oommanda 4-45

QUIT

Use

Terminates a debugging session.

Format

QUIT

Description

The QUIT command causes termination of the debugging session.

Example

This example shows the message the debugger displays as it exits.

DEB > QUIT
CodeWatch Quit . . . Bye!

Q

4-46 Code Watch. OommandB

REA READ

Use

Reads and executes debugger commands from a specified file.

Format

READ file-name

where:

file-name is any file containing debugger commands. If the file is
not in the current working directory, its pathname must be
specified.

Description

The READ command is used to execute debugger commands which are
contained in file -name. Each command is printed to the terminal as it is
executed.

Seven levels of READ commands may be nested in debugger command
files.

See also the descriptions of the LOG and NLOG commands.

Code Watch Commands 4-47

READ

continued

Example

DEB > READ debugger.history
Reading debugger commands from "debug.history" . . .
DEB > FIND do while
99: do while (n > 1)
DEB > PRINT 4
99: do while (n > 1)

100: call sift (n) ;
101 : call read_jnput(n) ;
102: end;
DEB > LBREAKPOINT /ALL
Break set at PRIMES\95 (count = 1)
Break set at PRIMES.SIFT\74 (count = 14)
DEB > CONTINUE
Break set at PRIMES.SIFT\ 7 4
DEB> NLOG
Done reading commands from "debug.history"

REA

4-48 Code Watch. Commands

R RELOAD

Use

Reloads the user program.

Format

RELOAD < I ARGUMENTS command-line-arguments >

Description

The RELOAD command will reinitialize the user program while
preserving any explicitly set breakpoints and any associated action lists.
All breakpoint counters will be reset to zero.

A subsequent CONTINUE or STEP command will execute the user
program from the beginning.

If the I ARGUMENTS option is not given then the program will be
initialized with the command line arguments specified when CodeWatch
was invoked. If I ARGUMENTS is specified, the arguments which follow
the option will be used as command line arguments to the reinitialized
program. If more than one argument is specified, they must be separated
by a space.

Code Watch Commands 4-49

RELOAD

continued

Example

In this example, the debugging session is restarted in the original
evaluation environment, with all breakpoints preserved, and without
returning to the system level.

* * * * sift\%ENTRY
Break at sift\%57
DEB > RELOAD
Reloading . . .
Evaluation environment is primes: (inactive)
DEB>

R

4-50 Code Watch Commands

RET RETURN

Use

Transfers the execution pointer to the exit point of the current procedure
and allows a return value to be set.

Format

RETURN < expreaaion >

Description

The RETURN command transfers the current execution pointer to the
exit point (%EXIT) of the current procedure. If the procedure returns a
value than an expression indicating the return value must be given. An
expression is not given if the procedure does not return a value.

If the current execution point is already at the exit point of the current
procedure, no action is taken if the procedure does not return a value, or
the return value is set to expreaaion if the procedure does return a value.

See also the description of the LRETURN command.

Code Watch Commanda 4-51

RETURN RET

continued

Example

In this example, the return value of the isprime routine is set to 15 .

4-52

Break at PRIMES.ISPRIME\%ENTRY
DEB > RETURN 15

Code Watch Commands

so SOURCE

Use

Changes the current source file to be displayed.

Format

S O URCE < file-name >

where:

file-name is the name of the source file to be displayed.

Description

The SOURCE command changes the source file to be displayed. The
SOURCE command is used , for instance, when you want to look at the
contents of "COPY" or "INCLUDE" files. Referencing these files is
discussed in Chapter 3 .

H file -name is omitted, the current source file is set to the source me
associated with the current execution point. The current source me
pointer is not explicitly set. To reset the current source me pointer to the
curent execution pointer use the ENVIRONMENT command without any
arguments.

The SOURCE command applies to the current debugger action only. Its
effect is lost when the program resumes execution, that is, the current
source file is set to the source file associated with the current execution
point.

Code Watch. Commands 4-53

SOURCE s o

continued

Example

In this example, the execution point is printed, which is line 2 of the
main module of the amort program. The source file to be displayed is
changed to mpcalc.cob and two lines are printed. The debugger returns
to the location of the execution pointer when the SOURCE command is
used without an argument. The execution point, which remains line 2 of
amort, is printed .

4-54

DEB > PRINT
2: PROGRAM-ID. AMORT

DEB > SOURCE mpcalc.cob
DEB> P 2

1 : IDENTIFICATION DIVISION
2 : PROGRAM-ID. MPCALC.

DEB > SO
DEB > P

2: PROGRAM-ID. AMORT

Code Watch Commands

STAC STACK

Use

Displays information on a specified number of stack frames.

Format

where:

STACK < nframes I /ALL > < /ARGUMENTS >
< /LOCALS >

nframes is an integer specifying the count of the most recent stack
frames to be displayed.

Description

The STACK command is used to display information on a specified
number or stack frames.

IC the /ALL option is specified, all stack frames back to the outermost
procedure are displayed. There may be a number of " invisible" stack
frames below the user's main program which are of no consequence. If
neither nframes nor /ALL is specified, then only the current stack frame
is displayed.

If the /ARGUMENTS option is specified, the arguments to each
procedure are displayed. IC /LOCALS is specified, all local variables for
each stack frame are displayed.

Code Watch Commands 4-55

STACK STAC

continued

Example

In this example, information is displayed on the current stack frame and
the arguments to the procedure.

4-56

DEB > STACK /ARG
Stack contains 4 frames.
Current execution point is MPCALC\%EXIT

4: Owner is "MPCALC"
Arguments:

LOAN = 6000.00 {right overpunch (10)}
TERM = 4 {right overpunch (4)}
RATE = 0.120000 {right overpunch (10)}
MP = 158.00 {right overpunch (8)}

Called from AMORT\78

Code Watch Commands

s STEP

Use

Executes a specified number of statements.

Format

STEP < OUT > < IN I OVER > < count > < [action lis t) >

where:

count is an integer specifying the number of statements to be
executed.

Description

The STEP command starts program execution at the current location of
the execution pointer and stops execution after one or a specified number
of statements.

• To execute a single statement, use the STEP command with no
options specified. To execute a number of statements, use the STEP
command with count number of statements specified.

Code Watch Commands 4-57

STEP s

continued

• If OUT is specified, the debugger steps to the exit point of the current
routine. If OUT is specified with a count, the first step is the exit
point of the current routine and each step thereafter is to a
succeeding statement in the calling routine. Thus, if the execution
pointer is in a called routine and you want to step to the next
executable statement in the calling routine, issue STEP OUT 2. The
first step is to the exit point of the current routine and the second
step returns and steps forward in the calling routine. If the execution
pointer is already at the exit point of the called routine, issuing STEP
OUT causes the execution pointer to step to the exit point of the
calling routine.

• If IN is specified and the current execution point is at a subroutine
call, the debugger steps to the entry point of the called routine. If IN
with a count is specified, the entry point is the first step , the first
executable statement is another, and so on. If OVER is specified, the
debugger steps over calls to routines. OVER is the default mode for
the STEP command.

• If an action list is present, it is performed at the last step and is set
as the action to be taken for any other STEP command. To remove
an action list at STEP, supply a null action list as an argument to
the STEP command. Use the DSTEP command to do this without
stepping.

• At the completion of a step operation, the debugger issues a message
indicating the current execution point in the following format:

Step at x

where x is the location of the current execution point, that is , the
statement that is about to be executed.

4-58 Code Watch Commands

s STEP

continued

Note
When using Code Watch the STEP command cannot be invoked when the current
execution point of the user program is at a non-local goto.

Example

In this example, the default stepping mode is listed as IN with an action
list containing the PRINT command. Two step commands are executed
(the second command with a count of 2), followed by a STEP OUT
command.

DEB > LSTEP
Step IN; Action = [PRINT;]
DEB> STEP
Step at print_out\40

40: printf (" Number of primes found was %d\n \n" ,total);
DEB> STEP 2
Number of primes found was 5

Step at print_out\42
42: printf ("%7 d 1 1 ,values [i]) ;

DEB > STEP OUT
1 2 3 5 7

Step at print_out\%EXIT
47: }

Code Watch Commands 4-59

TRACE ENTRY TR E

Use

Displays all procedure and block entries information during program
execution.

Format

TRACE ENTRY < [ac tion list] > < /IF=logical- expr >

Description

Tracing enables information about all procedure and block entries to be
reported as the program executes.

The TRACE ENTRY command sets tracepoints which enable tracing of
all procedure and block entries by printing a message each time a
procedure or block is entered.

When entry tracing is enabled, the debugger will be activated as each
procedure or block is entered, and activated again as each procedure or
block is exited . The specified action list applies only to the entry
tracepoint; exit tracepoints always print a message and continue.

II action list is specified, the debugger will process the commands and
print the results. II action list is omitted, a default action list of
[CONTINUE] is supplied. A common action list is [ARGUMENTS;
CONTINUE] . An action list may not refer to statements or variables in
a way that is dependent on scope. To take a breakpoint and enter
interactive debugging at each entry, supply an explicit null action list,
that is, TRACE ENTRY [] .

4-60 Code Watch Commands

TR E TRACE ENTRY

continued

Example

In this example, entry tracing is turned on and program execution
continues. The read_jnput procedure is entered and the program is
waiting for input from the user.

DEB > TRACE ENTRY
DEB > CONTINUE
* * * *read_jnput\%ENTRY
Input maximum prime boundary:

Code Watch Commands 4-61

TRACE STATEMENT TR S

Use

Sets tracepoints.

Format

TRACE STATEMENT

Description

The TRACE STATEMENT command sets tracepoints which enable the
tracing of every statement by printing a message identifying the
statement.

At each statement, if there is no other action to be performed (if there is
no breakpoint, entry trace, single step action, and so on), the identifying
message is printed and execution continues.

Example

In this example, statement tracing is turned on and program execution is
continued. Statements are traced until the breakpoint at line 28 is
encountered.

4-62

DEB > TRACE STATEMENT
DEB> CONTINUE
* * * *MPCALC\24
* * * *MPCALC\26
* * * *MPCALC\27
Break at MPCALC\28

Code Watch. Commands

TY TYPE

Use

Displays the resultant type of an expression.

Format

where:

TYPE < /FULL> expression

expression can be any expression that occurs in the source
language program.

Description

The TYPE command prints the resultant type of an expression.

If expression refers to a structure or record, then the /FULL option can
be used to display the entire structure or record, when debugging an
LPI-COBOL, LPI-P ASCAL, or LPI-PL/1 program.

Example

In this example, type information is displayed on the array primes.

DEB > TYPE primes
auto int primes (500]

Code Watch Commands 4-63

TYPE

continued

In this example, type information is displayed on the elements of the
array primes.

DEB > TYPE primes [count]
int

TY

4-64 Oode Watch. Commands

WA

Use

Sets watchpoints on specified variables .

Format

WATCH < variable > [/SILENT I /NSILENT]
[/IGNORE I NIGNORE] [/SKIP=n]

WATCH

[action list I /ACTION [ac tion list]] [/IF=logical-expr]

where:

variable specifies the variable to be watched.

Description

Watchpoints are used to monitor any changes to data. The WATCH
command designates the given variable to be watched. When the
contents of the watched variable change, program execution stops and
control is returned to the debugger. The maximum number of
watchpoints that can be active at one time is 64.

A watchpoint counter is associated with each watchpoint. When the
watchpoint is created, the counter is set to zero; each time the
watchpoint is incurred , the counter is incremented by one. When a
program is reloaded, all counters are set to zero.

Code Watch Commands 4-64.1

WATCH WA

continued

The /Sll..ENT option will not output modified variables when a
watchpoint is encountered; the output simply reports that the program
has stopped due to a watchpoint. The /NSll..ENT option allows the
debugger to output the modified variable, the location of the change, and
the old and new values of the watched variable.

The /IGNORE option allows the debugger to disregard a. watched
variable. In other words, when the given wa.tchpoint is encountered, it
will not be reported and the program will continue without interruption.
The /NIGNORE option allows the debugger to recognize and report any
encounter with the given wa.tchpoint.

The /SKIP=n option assigns a. wa.tchpoint skip counter to the given
variable, which is set to the value specified by n. As a result, the
wa.tchpoint will be skipped the specified (n) number of times . Once the
wa.tchpoint skip counter is set, it remains in effect until the value
decreases (resets) to zero.

An action list is one or more of the debugger commands separated by a.
semicolon, which may specify that program execution is to continue.
Any specified action list is executed when a. wa.tchpoint is incurred.

Note
The /ACTION { action list) syntax is necessary to avoid ambiguity with array
subscripts in C and P ascal, but may also be used for other languages .

An IF condition may be used to qualify the wa.tchpoint; it must be the
last option on the command line. When a. wa.tchpoint with the IF option
is set, the executing program will be suspended and the debugger will be
activated whenever the watched variable is changed. The IF condition is
then evaluated. The evaluation always takes place in the environment
and language of the program statement. If the IF condition is false,

4-64.2 Co de Watch Commands

WA WATCH

continued

program execution continues and the watchpoint is never reported. If
the IF condition is true, the debugger incurs a watchpoint as usual.

A watchpoint is incurred when a watched variable has changed, the skip
counter is either zero or not specified, and the /IGNORE option is not
specified. When a watchpoint is encountered , the following occurs:

• If an IF condition is specified, it is evaluated .

• The watchpoint counter i s incremented.

• If the /IGNORE option is set for the given watchpoint, execution
continues.

• If the skip count for this watchpoint is non-zero, the count is
decremented and execution is continued; the skip count for an ignored
watchpoint is not affected.

• The debugger announces the occurrence of the watchpoint. Output
from the WATCH command includes the block name, the activation
number, the line number where the change occurred , and the new and
old hexadecimal values of the variable.

• If an action list is specified, it is executed.

• The debugger prompt appears on the screen .

Refer to the LWATCH and NWATCH commands for more information.

Example

In the following example, LW ATCH lists information concerning the
given watchpoint. The /NSILENT and /NIGNORE options allow the
debugger to output the occurrence of a watchpoint and any modifications
to that watchpoint.

Code Watch Commands 4-64.3

WATCH

continued

DEB > WATCH MONTHLY-RATE
DEB > LWATCH MONTHLY-RATE

WA

Watchpoint set for MONTHLY-RATE /NSn..ENT /NIGNORE
DEB > CONTINUE
Program stopped due to a watchpoint.
Watched variable MONTHLY-RATE modified about line

AMORT\84

Old Value: 00 00 00 00 00 00
New Value : 00 00 00 00 15 OC

4-64.4 Code Watch Commands

WH WHERE

Use

Displays either the current execution point or the location of a specified
statement.

Format

WHERE < atatement-id >

where:

Btatement-id is a statement label or a source line number

Description

The WHERE command prints a location as the name or a routine
followed by a statement label.

Ir statement-id is a statement label, then the name or the routine
containing the label and the source line number of the label are printed.
Ir the statement-id is a source line number, then the name or the routine
is printed. Ir the statement-id argument is omitted , then the name or the
routine and the line number or the current execution point are printed.

Code Watch Commands · 4-65

WHERE WH

continued

Example

In this example, the location of the statement label, P AGEHEADER, is
displayed.

DEB > WHERE PAGEHEADER
AMORT\108

In this example, the current execution point is displayed.

DEB> WHERE
Current execution point is AMORT\100

In this example, the location of the ISPRIME routine entry point is
displayed.

4-66

DEB > WHERE ISPRIME\%ENTRY
ISPRIME\ %ENTRY {line 36)

Code Watch Commands

Use

Invokes the host operating system command interpreter to perform a
specified command.

Format

I command

Description

The I command invokes the command interpreter to read the remainder
of the line following the I command. Refer to the Svstem V
Programmer 's Manual Cor information on UNIX commands.

The I command followed by the UNIX sh command pushes to a new
command interpreter. To return to the debugger press < ctrl> < d > .

Note
This command is only available on machines using the UNIX or XENIX operating
system.

Example

In this example, the UNIX pwd command is invoked, which lists the
current working directory.

DEB > lpwd
/usr/maryfpllprogs

Code Watch. Commands 4-67

Chapter 5 : Debugging LPI-BASIC Programs

Specific Ways to Use CodeWatch Features . • • • • • • • • • . • • • • • • • • 5-1
Program Blocks • • • • • • • • • • • . • • • . • • • • • • • • • • • • • • • • • • • 5-1
Built-in Function Support • . . • 5-1
Referencing .A:rrays and Aggregate Structures • • • • • • • • • • • • • • 5-2

Sample CodeWatch Session Using CodeWatch • • • • • • • • • • • • • • • • • 5-2
Program Listings • 5-9

Chapter 5: Debugging LPI-BASIC Programs

Specific Ways to Use CodeWatch Features

This section describes Code Watch features that relate to debugging
LPI-BASIC programs. The second section contains a sample debugging
session of an LPI-BASIC program. The third section contains the listing
of the program used in the sample debugging session.

Program Blocks

Program blocks are units of code that provide scope and context for the
debugger. A LPI-BASIC program block is a main program or subroutine
or function subroutine. The main program or subroutine is referred to
by the name of that program or subroutine.

Built-in Function Support

The following BASIC built-in functions are supported by CodeWatch:

ABS
ASC
ATN

CHR$
cos
EXP

INT
LEFT$
LEN

LOG
MID$
RIGHT$

SGN
SIN
SQR

STR$
STRING$
TAN

VAL

The following CBASIC specific built-in functions are supported by
Code Watch:

FLOAT
INT%

MATCH
MOD

SADD
SHIFT

UCASE$

The following MBASIC specific built-in functions are supported by
Code Watch:

OINT
CSNG
CSRLIN
CVD

CVI
cvs
DATE$
FIX

HEX$
INSTR
MKD$
MKI$

Debugging LPI-BASIC Programs

MKS$
OCT$
SPACE$
TIME$

5-1

Referencing Arrays and Aggregate Structures

References to both arrays and array elements are allowed in the TYPE
command only. For example,

TYPE A(lO)
TYPE A()

• refers to element 1 of array A
• refers to array A

Slices of arrays cannot be referenced.

Sample CodeWatch Session Using CodeWatch

This debugging session illustrates how to use the commands and features
of CodeWatch when debugging LPI-BASIC programs. Following the
session is the source listing of the sample CBASIC program.

The sample program, primes.cbas, calculates the number of prime
numbers within a given range. The program has been compiled using the
-deb option to produce the necessary information for the debugger and
the -1 option to produce a listing file, the -cbext option to enable the
CBASIC extensions, and has been linked. For example,

lpibasic primes.cbas -deb -1 -cbext
lpild primes.o -o primes

Object files are given the suffix .obj on systems running under MS-DOS.
For example, the following link line is applicable to MS-DOS systems.

lpild primes.obj -o primes

In this sample session, comments (which are not part of the session) are
the bulleted items. The system prompt is $. For clarity, the abbreviated
form of the commands is used only after the command has been
previously spelled out in its entirety.

5-2 Debugging LPI-BASIC Programs

• Invoke CodeWatch at the system prompt.

$ codewatch primes
CodeWatch setting up "primes" . Wait . . .

* * * * * * * ********** * * * * *** ** ** ***** * ** * ** * * * * * * * * * * * * * * ** * * *
* CodeWatch, Revision 4.2 .0
. --------------------------

*
*

* Copyright(c) Language Processors, Inc. 1987 *
* * * * * * * * * ** * * * * * * * ** * * * * * ** * * ** * * * * * * * * * * * * * * * * ** * * * * ** * * *
Evaluation environment is primes: (inactive)

• Find the main program.

DEB > FIND Main
49 REM * * Main Program **

• Print 20 lines.

DEB > PRINT 20
76 REM ** Main Program **
77 INTEGER max_value, ma.x_primes, n
78 REM REAL a
79
80
81
82
83

max_value = 1000
ma.x_primes = 500
too big$ = n Value too big. Try again. n

84 PRINT
85 PRINT " * * * Sieve of Eratosthenes * * * "
86 PRINT
87
88 n = read_jnput
89
90
91
92
93
94
95
96

40 IF n <= 1 THEN GOTO 50
CALL sift(n)
n = read_jnput
GOTO 40

50 END

Debugging LPI-BASIC Programs 5-3

• Set a breakpoint at line 91 of the program.

DEB> BREAKPOINT 91

• Enable entry tracing and begin program execution.

DEB> TRACE ENTRY
DEB > CONTINUE
* * * * primes\%ENTRY

* * * Sieve of Erathosthenes * * *

* * * * primes.READJNPUT\%ENTRY
Input maximum prime boundary: 10
* * * * primes.READJNPUT\%EXIT
Break at primes\91

• Set a breakpoint at line 71 of the SIFT routine and continue program
execution.

DEB > B 7 1
DEB> C
* * * * primes.SIFT\%ENTRY
Break at primes.SIFT\ 71

• Evaluate data items in the SIFT routine.

DEB > EVALUATE i
1 1 { integer }

DEB > E this_prime
10 { integer }

• Evaluate the mod of this_prime and i.

DEB> E MOD (this_prime, i)
10 {integer}

• Evaluate the floating point division of i by 3.

DEB> E i/3
3 .6666666666666E+OOO {floating point decimal}

5-4 Debugging LPI-BASIO Programs

• Evaluate the integer division of i by 3.

DEB> E i\3
3 {integer}

• Display type information about various data items.

DEB> TYPE count
{ < static> integer }
DEB> TY primes
{ < static array of> integer }

• Display all traceback information, including the arguments, to SIFT.

DEB > STACK /ARGUMENTS /ALL

Stack contains 4 frames.
Current execution point is primes.SIFT\71

4: Owner is "primes.SIFT"
Arguments:

N = 10 { integer }
Called from primes\in 91

3: Owner i s "primes"
Arguments: None
Main program

• Set the default stepping mode to step in and the stepping action list
to print the current source line.

DEB> DSTEP IN [PJ

• Step one statement.

DEB> STEP
Step at primes.PRINT_OUT\%ENTRY
32: DEF print_out(total)

Debugging LPI-BASIO Programs 5-5

• Step out of the print_out routine.

DEB > STEP OUT
Number of primes found was (prime) 5

1 2 3 5 7
Step at primes.PRINT_OUT\%EXIT

42: FEND

• Set a breakpoint at the entry point of the readJnput procedure with
an action list evaluating the value of maxv and stepping one
statement. Continue program execution.

DEB> B readJnput\%ENTRY [E maxv, S]
DEB > C
* * * * primes.SIFT\%EXIT
Break at primes.readJnput\%ENTRY

10 { integer }
Step at primes.READJNPUT\1 1

1 1 :

• Modify the value o f maxv.

DEB> LET maxv = maxv\2

• Evaluate the character string, toobig$.

DEB > E too big$
' Value too big. Try again. ' {character string (27)}

• Modify the character string to read "large" instead of 11 big. 11

DEB> LET toobig$ = MID$(toobig$, 1 , 1 1) + 'large' +
MID$(toobig$,15 ,13)

• Evaluate the new value of toobig$.

DEB > E toobig$
' Value too large. Try again. ' {character string {29)}

5-6 Debugging LPI-BASIO Programs

• Go to line 1 3 and continue program execution using the new value of
maxv and toobig$.

DEB > GOTO 13
Execution point is now primes.READJNPUT\13
DEB> C
* * * * primes.READJNPUT\ %EXIT
Break at primes\91

• Remove all previously set breakpoints, set a breakpoint at the entry
point of the isprime procedure, and continue execution.

DEB > B isprime%\%entry
DEB > C
* * * * primes.SIFT\%ENTRY
** * * primes.PRINT_OUT\%ENTRY

Number of primes found was
Break at primes.ISPRIME\ %ENTRY

• Set the return value of isprime to 15 .

DEB > RETURN 15

• List the return value of isprime.

DEB > LRETURN
Return value for primes.ISPRIME is 15 {integer}

• Define a macro that removes all breakpoints, removes the default
stepping action list, removes all macros, disables tracing, moves the
current source file pointer to line 1 of the source program, and prints
5 lines.

DEB > MACRO refresh = [NB /ALL; DS 0; NMA /A; NTR E;
POINT 1; P 5]

Debugging LPI-BASIC Programs 5-7

• Use the macro.

DEB > refresh

1 REM
1 REM
2

** Sieve of Eratosthenes **
** Sieve of Eratosthenes **

3
4
5

INTEGER primes(1), fiags(1)
DIM fiags(100), primes(100)

• Quit the debugging session.

DEB > QUIT
Code Watch Quit • . . Bye!

5-8 Debugging LPI-BASIC Programs

Program Listings

Source File: primes.cbas
Compiled: 01-Jan-85 12 :00:01 by LPI-BASIC, Rev 1 .00.00
Options: deb opt 2 1 cbext

Compiler & Runtime Library Products,
Copyright (c) Language Processors, Inc. 1987.

1 REM
2

** Sieve of Eratosthenes **

3 INTEGER primes(1) , fiags(1)
4 DIM fiags(100), primes(100)
5
6 REM
7

* * FUNCTION readJnput **

8 DEF read_input
9
10 INTEGER read_jnput, maxv
11
12
13
14
1 5
16
1 7

10 INPUT n Input maximum prime boundary: " ; maxv
IF maxv < = ma.x_value THEN GOTO 12
PRINT toobig$: GOTO 10

1 2 readJnput = maxv
FEND

18 REM
19

* * Is Prime * *

20
21
22

DEF isprime% (number)
INTEGER number, n

for n=1 to number
23 if number = primes(n) then isprime = number:
24
25
26
27
28 FEND
29
30
31 REM
32

RETURN
NEXT n
isprime = -1
RETURN

** Print Out **

33 DEF print_out(total)
34 INTEGER total, i
35 PRINT "Number of primes found was " ;

Debugging LPI-BASIC Programs 5-9

36
37
38
39
40
41
42
43
44

if isprime%(total) >= 0 then PRINT " (prime) 11 ;

PRINT total:PRINT:PRINT
for i=l to total

PRINT primes(i);
if MOD(i,10}=0 then PRINT

NEXT i
PRINT

FEND

45 REM
46

* * FUNCTION sift **

47 DEF
48

sift(n)

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

INTEGER n, i, k, count, flags(l), primes(l) , this_prime

FOR i = 1 TO n
flags(i) = 0

NEXT i

count = 1
primes(l) = 1

FOR i = 2 TO n
IF flags(i) = 1 THEN goto 20

this_prime = i
count = count + 1
primes(count) = this_prime
k = i + this_prime

66 15
67

WHILE (k < n)
flags(k) = 1

68
69
70
71

k = k + this_prime
WEND

20 NEXT i

72 CALL print_out(count-1)
73 FEND
74
75
76
77 REM * * Main Program **
78 INTEGER max_value, max_primes, n
79 REM REAL a

5-10 Debugging LPI-BASIC Programs

80
81 max_value = 1000
82 max_:primes = 500
83 too big$ = " Value too big. Try again. "
84
85 PRINT
86
87
88

PRINT " * * * Sieve of Eratosthenes * * * "
PRINT

n = readJnput

40 IF n < = 1 THEN GOTO 50
CALL sift(n)

89
90
91
92
93 n = readJnput
94 GOTO 40
95
96
97

50 END

Debugging LPI-BASIG Programs 5-11

Chapter 6: Debugging LPI-0 Programs

Specific Ways to Use CodeWatch Features • • • • • . . • • • . • • • • • . . • 6-1
Program Blocks • • . • • • . . . • • . • . . • • . . . • • • . • . • • . • 6-1
Built-in Function Support • • • • • • • • • . . . • • . • • • • • • • • • • . . • 6-1
Referencing Arrays and Aggregate Structures • • • • • • • . • • • • • • 6-1
Modifying Variables • 6-1

Sample Code Watch Session Using LPI-0 • 6-2
Program Listings • • • • • • • • • • • • • • • . . . • • • • • • • • • • • • • • • • • • • 6-9

Chapter 6 : Debugging LPI-C Programs

Specific Ways to Use CodeWatch Features

This section describes CodeWatch features that relate to debugging C
programs. The second section contains a sample debugging session of an
LPI-C program. The third section contains the listing of the program
used in the sample debugging session.

Program Blocks

Program blocks are units of code that provide scope and context for the
debugger. A C program block is a function delimited by matching left
and right braces, { and }. Function blocks are identified by the entry
name. Functions in C cannot be nested.

Built-in Function Support

CodeWatch does not support any LPI-C built-in functions.

Referencing Arrays and Aggregate Structures

Arrays and aggregate structures cannot be referenced in their entirety,
but only by fully qualified references to a structure member or array
element. Slices of arrays cannot be referenced.

Modifying Variables

In C, assignments are merely expression operators with side effects.
Therefore, the EVALUATE command provides the same functionality as

the LET command in other languages. For example,

DEB > EVALUATE total
10 { int }

Debugging LPI- C Programs

• displays the value of total

6-1

DEB> E total = 5
5 { int }

DEB> E ++total
6 { int }

DEB> E total++
6 { int }

DEB> E total
7 { int }

• modifies and displays the
value of total

• increments and displays the
value of total (preriX)

• displays and increments the
value of total (postriX)

Sample CodeWatch Session Using LPI-C

This debugging session illustrates how to use the commands and features
of CodeWatch when debugging C programs. Following the session is the
source listing of the sample program.

The sample program, primes.c, calculates the number of prime numbers
within a given range. The program has been compiled using the -deb
option to produce the necessary information for the debugger, and the -1
option to produce a listing r.Ie. The program has also been linked. For
example,

lpic primes.c -deb -1
lpild primes.o -o primes

Object r.Ies are given the sufriX .obj on systems running under MS-DOS.
For example, the following link line is applicable to MS-DOS systems.

lpild primes.obj -o primes

In this sample session, explanatory comments (which are not part of the
session) are the bulleted items. The system prompt is $. For clarity, the
abbreviated form of the commands is used only after the command has
been previously spelled out in its entirety.

6-2 Debugging LPI- 0 Programs

• Invoke CodeWatch at the system prompt.

$ codewatch primes
CodeWatch setting up 11primes11 • Wait . . .

**** * ****************************** * * * * * * * * * * * ** * * * * * * * * *
* CodeWatch, Revision 4.2.0
* ------------------------

*
*

* Copyright(c) Language Processors, Inc. 1 987 *

Evaluation environment is main: (inactive)

• Find the call to the readJnput routine.

DEB> FIND readJnput
106: readJnput(&n) ;

• Print 6 lines.

DEB> PRINT 6
106: readJnput (&n) ;

while (n > 1) {
107:
108:
109:
1 10 :
1 1 1 : }

sift (n) ;
readJnput (&n) ;

• Set a breakpoint at line 108 of the main program.

DEB > BREAKPOINT 108

Debugging LPI-0 Programs 6-3

• Enable entry tracing and begin program execution.

DEB > TRACE ENTRY
DEB > CONTINUE
* * * * main_jnput\%ENTRY

* * * Sieve of Erathosthenes * * *

* * ** read_jnput\%ENTRY
Input maximum prime boundary: 10

* * * * read_jnput\%EXIT
Break at main \108

• Set a breakpoint at line 95 of the sift routine if count is greater than
0 and continue program execution.

DEB > B sift\95 /TF= count > 0
DEB > C
* * * * sift\%ENTRY
Break at sift\ 95

• Evaluate the value of count in the sift routine.

DEB > EVALUATE count
5 { int }

• Modify the value of count by an increment of 1 .

DEB > E ++count
6 { int }

• Print the integer value of flag [O] .

DEB > E (int)(*flags)
-1 { int }

• Evaluate a logical expression.

6-4

DEB > E flags [5] == *((flags) + (5))
TRUE { < logical> }

Debugging LPI-C Programs

• Use the logical AND , the NOT operator, and the MOD operator.

DEB> E 1 && 2
TRUE { < logical> }
DEB> E ! 1
FALSE { < logical> }
DEB > E 7%3

1 { int }

• Use the bitwise AND , OR, NOT, and EXCLUSIVE OR operators.

DEB > E OxAA & (OxAO I Ox9) A Ox7
175 {int}

• Display declaration information about various data items.

DEB > TYPE primes
auto int primes [500]

DEB > TY flags
auto char flags [1000]

• Display stack frame information and the arguments to the sift procedure.

DEB > STACK /ARGUMENTS /ALL

Stack contains 4 frames.
Current execution point is sift\95

4: Owner is "sift"
Arguments:

10 { int }
Called from main\109

3: Owner is "main"
Arguments: None
Main program

• Set the default stepping mode to step in and the stepping action list
to print the current source line.

DEB > DSTEP IN [P]

Debugging LPI- C Programs 6-5

• Step one statement.

DEB> STEP
Step at print_out\%ENTRY

46: print_out(values,total)

• Step to next executable statement.

DEB > S
Step at print_out\52

52: print£ (" Number o£ primes found was ") ;

• Step out o£ the print_out routine.

DEB > STEP OUT
Number o£ primes found was 5

1 2 3 5 7

Step at print_out\%EXIT

• Set a breakpoint at the entry point o£ the readjnput procedure with
an action list evaluating the value o£ maxv. Continue program
execution.

DEB> B readjnput\%ENTRY (E *maxv]
DEB> C
•••• sift\ %EXIT
Break at readjnput\%ENTRY

10 { int }

• Modify the value o£ maxv.

DEB> E *maxv = •maxv/2
5 { int }

• Change the current evaluation environment to primes and evaluate
the new value o£ N. Continue program execution.

6-6

DEB > ENVIRONMENT main
DEB> E n

5 { int }

Debugging LPI-0 ProgramB

• Reset the current evaluation environment to the previous evaluation
environment by using the ENVIRONMENT command without an
argument.

DEB> ENV
Environment reset to readjnput

• Go to line 21 and continue program execution.

DEB> GOTO 21
Execution point is now readjnput\21
DEB> C
Input upper boundary: 10

* * * * readjnput\%EXIT
Break at main\108

• Remove the breakpoint at line 108, set a new breakpoint at the entry
point of the isprime procedure, and continue execution.

DEB > NB 108
DEB> B isprime\%entry
DEB > C
* * * * sift\%ENTRY
** * * print_out\%ENTRY
Number of primes found was Break at isprime\%ENTRY

• Set the return value of isprime to 15.

DEB> RETURN 15

• List the return value of isprime.

DEB > LRETURN
Return value for isprime is 15 { int }

• Define a macro that lists all breakpoints, the current evaluation
environment, all macros, and the current execution point.

DEB > MACRO info = [LB /A; LENV; LMA /A; WH]

Debugging LPI- C Programs 6-7

• Use the macro.

DEB > info
Break set at sift\95 /IF= count > 0 (count = 1)
Break set at isprime\%ENTRY (count = 1)
Break set at readJnput\%ENTRY (count = 1) [E *maxv;]
Evaluation environment is isprime

info = [LB /ALL; LENV; LMA /ALL; WHERE]
Current execution point is isprime\%EXIT

• Quit the debugging session.

6-8

DEB > QUIT
CodeWatch Quit • . . Bye!

Debugging LPI- C Programs

Program Listings

Source File: primes.c
Compiled: 1-Jan-85 12 :00:01 by LPI-C, Rev 1 .00.00
Options: deb opt 2 1

Compiler Ill Runtime Library Products,
Copyright (c) Language Processors, Inc. 1985.

1
2 #include < stdio.h >
3
4 #define FALSE (0)
5
6
7
8

#derme TRUE (-1)
#derme MAX_VALUE 1000
#define MAX_PRIMES 500

9 typedef int bool;
10 typedef char
1 1 typedef int
12

sieve [MAX_ VALUE] ;
results[MAX...PRIMES] ;

1 3
14
15
16
17
18
1 9
20
21
22
23
24
25
26
27

void
readJnput(maxv)
int *maxv;
{

bool ok;

ok = FALSE;

do {
printf (" Input maximum prime boundary: ") ;
scanf ("%d" ,maxv);
if (*maxv > MAX_VALUE)

printf(" Value too big. Try again.O);
else

28
29 }
30

ok = TRUE;
} while (!ok);

31
32
33
34
35

int
isprime (number,values,total)
int *values;
int total;
{

De bugging LPI- 0 Programs 6-9

36 int i;
37
38 for (i = 0 ; i < total ; i++) {
39 if (number == values[i])
40 return (number);
41 }
42 return (-1);
43 }

void
print_out(values,total)
int *values;
int total;
{

int i;

44
45
46
47
48
49
50
51
52
53
54
55

printf (" Number of primes found was ");
if (isprime(total,values,total) > = 0)

printf (" (prime)") ;

56
57
58
59
60
61
62
63
64
65 }
66
67 void
68 sift(n)
69 int n;
70 {
71
72
73
74
75
76
77
78
79

6-10

printf (" %d" ,total);

printf ("O);

for (i = 0 ; i < total ; i++) {
printf ("%7d" ,values [i]);
if (((i + 1) % 10) == 0)

printf("O);
}
printf ("0);

int i, k, count;
sieve flags;
results primes;
int this_prime;

for (i = 0 ; i < n ; i++)
fiags [i] = TRUE;

count = 0;

Debugging LPI- C Programs

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96 }
97

primes [O] = 1;

for (i = 0 ; i < n ; i++) {

}

if (flags [i]) {

}

this...:prime = i + 2 ;
count++;
primes [count] = this...:prime;
k = i + this...:prime;
while (k < n) {

}

/* cancel all multiples * /
flags [k] = FALSE;
k += this...:prime;

print_out (primes,count);

98 main()
99 {

100
101
102
103
104
105
106
107
108
109
110
1 1 1
112 }

int n;

setbuf(stdout,NULL);

printf(" *** Sieve of Eratosthenes * **O);

readJnput (&n);

while (n > 1) {

}

sift (n);
readJnput(&n);

Debugging LPI- 0 Programs 6-1 1

Chapter 7: Debugging LPI-COBOL Programs

Specific Ways to Use CodeWatch Features . • • • • • • • • • • • • • • • • • • 7-1
Program Blocks . • • . • • • . • . • • • • . • 7-1
Referencing Arrays and Aggregate Structures • • • • • • • • • • • • • • 7-1
Procedure Division Paragraph-Names • • • • • • • • • • • • • . . • . • • • 7-1
Group Item Assignments • 7-2

Representation of LPI-COBOL Data Types in CodeWatch • • • • • • • • 7-2
Sample CodeWatch Session Using LPI-COBOL • • • • • • • • • • . • • • • • 7-3
Program Listings • . • • . • . . • • • • • . • . . • • • • . • . • • . • • • • • • • • . 7-10

Chapter 7: Debugging LPI-COBOL Programs

Specific Ways to Use CodeWatch Features

The rll'st two sections of this chapter describe CodeWatch features that
relate to debugging LPI-COBOL programs. The third section contains a
sample debugging session of an LPI-COBOL program. The fourth section
contains the listings of the programs used in the sample debugging
session.

Program Blocks

Program blocks are units of code that provide scope and context for the
debugger. An LPI-COBOL program block is a complete paragraph whose
name is the name given in the PROGRAM-ill PARAGRAPH.

Referencing Arrays and Aggregate Structures

Arrays or lists and aggregates or groups can be referenced in their
entirety by referring to them by their list or group name, or individual
subfields or members can be referenced using conventional COBOL
syntax as in "P-NO IN PAGE-LINE" . A subfield can be referenced
directly as long as its name is unique. Slices of arrays can be referenced
as described under the "EVALUATE" section in Chapter 4.

Procedure Division Paragraph-Names

PROCEDURE DIVISION paragraph-names can be referenced and are
equivalent to statement labels in other languages; thus, paragraph-names
serve debugging purposes in ways analogous to statement labels in other
languages. For example,

DEB > GOTO PAGE-HEADER

Debugging LPI- COBOL Programs 7-1

Group Item Assignments

The LET command cannot be used to assign a string to a group item.

ReP-resentation of LPI-COBOL Data Types in
CoaeWatch

Table 7-l lists the LPI-COBOL data types and the way that they are
represented by CodeWatch. The debugger representation also contains a
numerical value in parentheses that stands for the precision of the data
item based on its data type. The LPI-COBOL data types are explained in
the USAGE clause section in the LPI- COBOL Language Refe rence
Manual.

TABLE '1-1 LPI- C OBOL Data Types in CodeWateh

LPI-COBOL
DATA TYPE

COMPUTATIONAL PIC S9 (n)

COMPUTATIONAL PIC 9 (n)

COMPUTATIONAL-!

COMPUTATIONAL-2

COMPUTATIONAL-3 PIC S9 (n)

COMPUTATIONAL-3 PIC 9 (n)

COMPUTATIONAL-6 (n)

DISPLAY PIC 9 (n)

DISPLAY PIC S9 (N)
SIGN TRAILING

DISPLAY PIC S9 (n)
SIGN TRAILING SEPARATE

7-2

CODEWATCH
REPRESENTATION

computational

computational unsigned

float binary

float binary

riXed decimal

riXed decimal unsigned

riXed decimal unsigned

decimal unsigned

right overpunch

right separate

Debugging LPI- COBOL Programs

LPI-COBOL CODEWATCH
DATA TYPE REPRESENTATION

DISPLAY PIC S9(n) left overpunch
SIGN LEADING

DISPLAY PIC S9(n) left separate
SIGN LEADING SEPARATE

PIC S9 (n) right overpunch

PIC S9 (n)V9(n) right overpunch

PIC X(n) character

PIC X(n) JUSTIFIED character justified

PIC ZZZ99 picture

PIC XX/XX/XX character pictured

INDEX rrxed binary

Sample CodeWatch Session Using LPI-COBOL

This debugging session illustrates how to use the commands and features
of CodeWatch when debugging COBOL programs. Following the session
are the source listings of the two programs used.

The main program AMORT calculates a loan amortization schedule and
writes the results to the file OUTALL. AMORT also calls the
subprogram MPCALC which computes the monthly payment given the
amount of the loan, the interest rate, and the term of the loan (in years).

The programs have been separately compiled using the -deb option to
produce the necessary information for the debugger , the -1 option to
produce a listing file, and have been linked into a single run unit called
amort. For example,

Debugging LPI- OOBOL Programa 7-3

lpicobol amort.cob -deb -1
lpicobol mpcalc.cob -deb -1
lpild amort.o mpcalc.o -o amort

Object files are given the sufrlx .obj on systems running under MS-DOS.
For example, the following link line is applicable to MS-DOS systems.

lpild amort.o mpcalc.o -o amort

In this sample session, comments (which are not part of the session) are
the bulleted items. The system prompt is $. For clarity, the abbreviated
form of the commands is used only after the command has been
previously spelled out in its entirety.

• Invoke CodeWatch at the system prompt.

$ codewatch amort

* * * * * * * * * * * * * ********************** * * * * * * * * * * ** * * * * * * * * * * *
* CodeWatch, Revision 4.2.0
* ------------------------

*
*

* Copyright(c) Language Processors, Inc. 1987 *
* * * * * * * * * * * * * *************************
Evaluation environment is AMORT:(inactive)

• Find where MPCALC is called.

DEB > FIND MPCALC
78: CALL "MPCALC" USING LOAN, TERM, RATE, MP.

• Set a breakpoint at the CALL to MPCALC.

DEB> BREAKPOINT 78

• Set a breakpoint at the exit point of MPCALC.

DEB > B MPCALC\%EXIT

7-4 Debugging LPI-COBOL Programs

• Enable entry tracing and display arguments, if any, and begin
program execution.

DEB> TRACE ENTRY [ARGUMENTS]
DEB> CONTINUE
**** AMORT\%ENTRY
No arguments

• Continue program execution.

DEB > C
ENTER LOAN AMOUNT: 6000.00
ENTER TERM IN YEARS: 4
ENTER INTEREST RATE: .12
Break at AMORT\78

• Print the present source line.

DEB> PRINT
78: CALL "MPCALC" USING LOAN, TERM, RATE, MP.

• Evaluate a data item before entering the called program.

DEB > EVALUATE LOAN
LOAN = 6000.00 {right overpunch (10)}

• Step into the called program.

DEB > STEP IN
Step at MPCALC\%ENTRY

• Step, print one line, and continue.

DEB> S ; P; C
Step at MPCALC\23

23: S1 SECTION.
Break at MPCALC\ %EXIT

Debugging LPI-OOBOL Programs 7-5

• Display the data items specified in the USING phrase.

DEB> ARG MPCALC
LOAN = 6000.00 {right overpunch (10)}
TERM = 4 {right overpunch (4)}
RATE = 0.120000 {right overpunch (10)}
MP = 158 .00 {right overpunch (8)}

• List the current evaluation environment.

DEB > LENVffiONMENT
Evaluation environment is MPCALC

• List the name of the current source file using the /FULL option to display
the name of the symbol table file.

DEB > LSOURCE /FULL
Current display source file is 11mpcalc.cob 11 (COBOL)
Symbol table file is "mpcalc.stb "

• Set a breakpoint, enable statement tracing, and continue.

DEB > B 28
DEB > TRACE STATEMENT
DEB > C
* * * *MPCALC\24
*** *MPCALC\26
* * * *MPCALC\27
Break at MPCALC\28

• Display stack frame information on the called program.

7-6

DEB > STACK
Current execution point is MPCALC\28

Stack contains 4 frames
4: Owner is "MPCALC"
Called from AMORT\78

Debugging LPI-COBOL Programs

• Set a breakpoint in the calling program and step out of the called
program.

DEB > B AMORT\80
DEB> S OUT
Step at MPCALC\ %EXIT

• Evaluate a data item that was passed to the calling program.

DEB > E MP
MP = 158.00 {right overpunch (8)}

• Disable statement tracing, and step and print one source line.

DEB > NTR S; S ; P
Step at AMORT\79

79 : OPEN OUTPUT OUT-FILE.

• Define and use a MACRO.

DEB> MACRO sp = [s ; p]
DEB > sp
Step (and break) at AMORT\80

80: PERFORM PAGE-HEADER.

• Where is the paragraph-name PAGE-HEADER?

DEB > WHERE PAGE-HEADER
AMORT\108

• Point to the line containing PAGE-HEADER and print 5 source lines.

DEB > POINT 108
108: PAGE-HEADER.

DEB > P 5
PAGE-HEADER.
ADD 1 TO PAGE-COUNT.

108:
109:
1 10:
1 1 1 :

MOVE PAGE-COUNT TO P-NO IN PAGE-LINE.
WRITE OUT-REO FROM PAGE-LINE AFTER

ADVANCING PAGE.
112 : MOVE 0 TO LINE-COUNT.

Debugging LPI- COBOL Programs 7-7

• Where is the current execution point?

DEB> WH
Current execution point is AMORT\80

• Use the macro, set a breakpoint, and continue.

DEB> sp
Step at AMORT\108
108: PAGE-HEADER.
DEB > B 112
DEB > C
Break at AMORT\112

• Evaluate 2 data items.

DEB> E PAGE-COUNT
PAGE-COUNT = 1 {computational (4)}
DEB > E OUT-REO
OUT-REO IN IN OUT-FILE n PAGE 0001 "

{character (70)}

• Set a breakpoint at source line 94 to evaluate CURRENT-BALANCE
each time through the PERFORM loop and continue program
execution.

DEB> B 94 [E CURRENT-BALANCE]
DEB> C
Break at AMORT\94
CURRENT-BALANCE = 6000.00 {fiXed decimal (10,2)}
DEB > C
Break at AMORT\94
CURRENT-BALANCE = 5902.00 {fiXed decimal (10,2)}

• Set another breakpoint with an action list.

DEB> B 106 [E OUT-REO)
DEB > C
Break at AMORT\106
OUT-REO IN IN OUT-FILE n 3 59 .02 98.98 5803.02 119 .02 1 1

{character (70)}

7-8 Debugging LPI-OOBOL Programs

• Evaluate and modify the value of the data item MONTHLY-RATE,
and continue.

DEB > E MONTHLY-RATE
MONTHLY-RATE = 0.010000 {fiXed decimal} (10,6)}
DEB> LET MONTHLY-RATE = .015
DEB> C
Break at AMORT\94
CURRENT-BALANCE = 5803.02 {fiXed decimal (10,2)}
DEB> C
Break at AMORT\106
OUT-REC IN IN OUT-Fll..E " 2 87.05 70.95 5732.07 206.07 11

{character (70)}

• List all breakpoints.

DEB > LB /ALL
Break set at AMORT\79 (count = 1)
Break set at MPCALC\28 (count ·= 1)
Break set at AMORT\80 (count = 1)
Break set at AMORT\112 (count = 1)
Break set at AMORT\94 (count = 3) [E CURRENT-BALANCE; 1
Break set at AMORT\106 (count = 2) [E OUT-REC; 1

• Quit the debugging session.

DEB > QUIT
CodeWatch Quit . . . Bye!

Debugging LPI-COBOL Programa 7-9

Program Listings

Source File: amort.cob
Compiled: 01-Jan-85 12 :00:01 by LPI-COBOL, Rev 1 .00.00
Options: deb opt 2 I

Compiler Runtime Library Products,
Copyright(c) Language Processors,lnc. 1985.

1 IDENTIFICATION DMSION.
2 PROGRAM-ID. AMORT.
3 ENVIRONMENT DIVISION.
4 CONFIGURATION SECTION.
5 SOURCE-COMPUTER. XXX.
6 OBJECT-COMPUTER. XXX.
7 INPUT-OUTPUT SECTION.
8 FILE-CONTROL.
9 SELECT OUT-FILE
10 ASSIGN TO PRINTER
11 ORGANIZATION SEQUENTIAL.
12 DATA DIVISION.
13 FILE SECTION.
14 FD OUT-FILE
15 LABEL RECORDS STANDARD
16 VALUE OF FILE-ID IS OUT-FNAME.
17 01 OUT-REC PIC X(70) .
18 WORKING-STORAGE SECTION.
19 01 HEADER-LINE.
20 05 H1 PIC X(7) VALUE "PAYMENT" .
2 1 05 FILLER PIC X(4) VALUE SPACES.
22 05 H2 PIC X(8) VALUE " INTEREST" .
23 05 FILLER PIC X(6) VALUE SPACES.
24 05 H3 PIC X(9) VALUE "PRINCIPAL " .
2 5 0 5 FILLER PIC X(8) VALUE SPACES .
26 05 H4 PIC X(7) VALUE "BALANCE" .
2 7 0 5 FILLER PIC X(5) VALUE SPACES.
28 05 H5 PIC X(12) VALUE "TOT INTEREST" .
29 01 PAGE-LINE.
30 05 FILLER PIC X(50) VALUE SPACES.
31 05 H1 PIC X(6) VALUE "PAGE " .
3 2 05 P-NO PIC X(4) .
33 01 DESCRIP-LINE.
34 05 FILLER PIC X(3) VALUE SPACES.
35 05 DESCRIP PIC X(16) .
36 05 FILLER PIC X(2) VALUE • : " ·
37 05 NVAL PIC Z(8) .9(2) .
38 05 TVAL REDEFINES NVAL PIC Z(ll) .
39 01 DASH-LINE PIC X(70) VALUE ALL "-- " .
40 01 MONTHLY-RATE PIC S9(4)V9(6) COMP-3.
41 01 TERM-IN-MONTHS PIC S9(4) COMP-3.
42 01 LOAN PIC S9(8)V9(2) .

7-10 Debugging LPI-COBOL Programs

43 01 TERM PIC S9(4) .
44 01 RATE PIC S9 (4)V9 (6) .
45 01 MP PIC S9(6)V9(2) .
46 01 TWELVE PIC S9(4) COMP-3 VALUE 12.0.
47 01 C-ONE PIC S9(4) COMP-3 VALUE 1.0.
48 01 CURRENT-BALANCE PIC S9(8)V9(2) COMP-3.
49 01 THIS-INTEREST PIC S9(8)V9(2) COMP-3.
50 01 THIS-PRINCIPAL PIC S9(8)V9(2) COMP-3.
51 01 TOTAL-INTEREST PIC S9(8)V9(2) COMP-3 VALUE 0.0.
52 01 PAYMENT-NUMBER PIC S9(4) COMP VALUE 1 .
53 01 OUT-LINE.
54 05 OUT-PAYMENT-NUMBER PIC Z (3) .
55 05 FILLER PIC X(4) VALUE SPACES.
56 05 OUT-THIS-INTEREST PIC Z(8) .9(2) .
57 05 FILLER PIC X(4) VALUE SPACES .
58 05 OUT-THIS-PRINCIPAL PIC Z (8) .9(2) .
59 05 FILLER PIC X(4) VALUE SPACES .
60 05 OUT-CURRENT-BALANCE PIC Z(8) .9(2) .
61 05 FILLER PIC X(4) VALUE SPACES .
62 05 OUT-TOTAL-INTEREST PIC Z(8) .9(2) .
63 77 PAGE-COUNT PIC S9 (4) COMP VALUE 0 .
64 77 LINE-COUNT PIC S9(4) COMP VALUE 0 .
65 77 MAX-LINES PIC S9(4) COMP VALUE 50.
66 77 OUT-FNAME PIC X(40) VALUE "OUTALL" .
67 PROCEDURE DMSION.
68 Sl SECTION.
69 Pl .

71 DISPLAY "ENTER LOAN AMOUNT: " NO ADVANCING.
72 ACCEPT LOAN.
73 DISPLAY "ENTER TERM IN YEARS: • NO ADVANCING.
74 ACCEPT TERM.
75 DISPLAY "ENTER INTEREST RATE: " NO ADVANCING .
76 ACCEPT RATE.
77
78 CALL "MPCALC" USING LOAN, TERM, RATE, MP.
79 OPEN OUTPUT OUT-FILE.
80 PERFORM PAGE-HEADER.
81 PERFORM WRITE-DESCRIP .
82 PERFORM DETAIL-HEADER.
83
84 COMPUTE MONTHLY-RATE = RATE / TWELVE.
85 COMPUTE TERM-IN-MONTHS = TERM * TWELVE.
86 MOVE LOAN TO CURRENT-BALANCE.
87 PERFORM ONE-PAYMENT-CALC TERM-IN-MONTHS TIMES .
88 STOP RUN.
89
90 ONE-PAYMENT-CALC.
91 COMPUTE THIS-INTEREST ROUNDED
92 = CURRENT-BALANCE * MONTHLY-RATE.
93 COMPUTE THIS-PRINCIPAL = MP - THIS-INTEREST.
94 COMPUTE CURRENT-BALANCE = CURRENT-BALANCE - THIS-PRINCIPAL.
95 COMPUTE TOTAL-INTEREST = TOTAL-INTEREST + THIS-INTEREST.
96 PERFORM WRITE-ONE-LINE.
97 ADD 1 TO PAYMENT-NUMBER.

Debugging LPI-COBOL Programa 7-1 1

99 WRITE-ONE-LINE.
100 MOVE PAYMENT-NUMBER TO OUT-PAYMENT-NUMBER.
101 MOVE THIS-INTEREST TO OUT-THIS-INTEREST.
102 MOVE THIS-PRINCIPAL TO OUT-THIS-PRINCIPAL.
103 MOVE CURRENT-BALANCE TO OUT-CURRENT-BALANCE.
104 MOVE TOTAL-INTEREST TO OUT-TOTAL-INTEREST.
105 MOVE OUT-LINE TO OUT-REC.
106 PERFORM WRITE-DETAIL.
107
108 PAGE-HEADER.
109 ADD 1 TO PAGE-COUNT.
110 MOVE PAGE-COUNT TO P-NO IN PAGE-LINE.
111 WRITE OUT-REC FROM PAGE-LINE AFTER ADVANCING PAGE.
112 MOVE 0 TO LINE-COUNT.
113
114 WRITE-DESCRIP.
115 MOVE "LOAN " TO DESCRIP IN DESCRIP-LINE.
116 MOVE LOAN TO NVAL IN DESCRIP-LINE.
117 WRITE OUT-REC FROM DESCRIP-LINE
118 AFTER ADVANCING 2 .
119 MOVE "INTEREST RATE" TO DESCRIP IN DESCRIP-LINE.
120 MOVE RATE TO NVAL IN DESCRIP-LINE.
121 WRITE OUT-REC FROM DESCRIP-LINE.
122 MOVE " MONTHLY PAYMENT" TO DESCRIP IN DESCRIP-LINE.
123 MOVE MP TO NV AL IN DESCRIP-LINE.
124 WRITE OUT-REC FROM DESCRIP-LINE.
125 MOVE "TERM (YEARS) • TO DESCRIP IN DESCRIP-LINE.
126 MOVE TERM TO TVAL IN DESCRIP-LINE.
127 WRITE OUT-REC FROM DESCRIP-LINE.
128 MOVE SPACES TO OUT-REC.
129 WRITE OUT-REC AFTER ADVANCING 2 .
130 ADD 7 TO LINE-COUNT.
131
132 WRITE-DETAIL.
133 WRITE OUT-REC.
134 ADD 1 TO LINE-COUNT.
135 IF LINE-COUNT GREATER MAX-LINES
136 PERFORM PAGE-HEADER
137 PERFORM DETAIL-HEADER.
138
139 DETAIL-HEADER.
140 WRITE OUT-REC FROM HEADER-LINE AFTER ADVANCING 2 .
141 WRITE OUT-REC FROM DASH-LINE.
142

7-12 Debugging LPI-COBOL Programs

Source File: mpcalc.cob
Compiled: 01-Jan-85 12:00:01 by LPI-COBOL, Rev 1 .00.00
Options: deb opt 2 1

Compiler Runtime Library Products,
Copyright(c) Language Processors,Inc. 1986.

1 IDENTIFICATION DMSION.
2 PROGRAM-ID. MPCALC.
3 ENVIRONMENT DMSION.
4 CONFIGURATION SECTION.
5 SOURCE-COMPUTER. XXX.
6 OBJECT-COMPUTER. XXX.
7 DATA DMSION.
8 WORKING-STORAGE SECTION.
9 01 TWELVE PIC S9(4) COMP-3 VALUE 12.0.
10 01 C-ONE PIC S9(4) COMP-3 VALUE 1 .0.
11 01 FACTOR! PIC S9(1)V9(8) COMP-3.
12 01 FACTOR2 PIC S9(4)V9(8) COMP-3.
13 01 FACTOR3 PIC S9(4)V9(8) COMP-3.
14 01 FACTOR4 PIC S9(2)V9(8) COMP-3.
15 01 FACTORS PIC S9(7)V9(7) COMP-3.
16 01 FLOAT2 COMP-2.
17 LINKAGE SECTION.
18 01 LOAN PIC S9(8)V9(2) .
19 01 TERM PIC S9(4).
20 01 RATE PIC S9(4)V9(6).
21 01 MP PIC S9(6)V9(2) .
22 PROCEDURE DMSION USING LOAN, TERM, RATE, MP.
23 Sl SECTION.
24 Pl .
25
26 COMPUTE FACTOR! = RATE I TWELVE.
27 COMPUTE FLOAT2 = (C-ONE + FACTOR!) * * (TERM * TWELVE).
28 MOVE FLOAT2 TO FACTOR2.
29 COMPUTE F ACTOR3 = F ACTOR2 - C-ONE.
30 COMPUTE F ACTOR4 = ((FACTOR I * F ACTOR2)) I F ACTOR3.
31 COMPUTE MP = LOAN * F ACTOR4.
32
33 P2.
34 EXIT PROGRAM.
35

Debugging LPI- COBOL Programs 7-1 3

Chapter 8 : Debugging LPI-FOR TRAN
Programs

Specific Ways to Use CodeWatch Features . • • • • • • • • • • • • • • . . • • 8-1
Program Blocks . • • • • • • • • • • . • 8-1
Referencing Axrays and Aggregate Structures • • • • • • • • • • • • • • 8-1
Built-in Function Support • 8-1

Sample CodeWatch Session for LPI-FORTRAN Program • • • • • • • • • 8-2
Program Listings • • • • . . • 8-8

Chapter 8: Debugging LPI-FORTRAN

Programs

Specific Ways to Use CodeWatch Features

This section describes CodeWatch features that relate to debugging
FORTRAN programs. The second section contains a sample debugging
session of an LPI-FORTRAN program. The third section contains the
listing of the program used in the sample debugging session.

Program Blocks

Program blocks are units of code that provide scope and context for the
debugger. A block in FORTRAN is a main program or a subroutine or
function subprogram. An unnamed main program block is referred to by
the name MAIN . A subroutine or function subprogram is referred to by
the external name of that subroutine or function.

Referencing Arrays and Aggregate Structures

To reference common block names in the TYPE command, the name
must be surrounded by slashes (/) . For example,

TYPE jcommonl/

Common block names cannot be referenced by the EVALUATE
command. Individual array elements can be referenced, but not slices of
arrays.

Built-in Function Support

All FORTRAN built-in functions including the scientific functions such
as sine and cosine, are available when debugging a FORTRAN program.
Refer to the LPI-FOR TRAN Language Reference Manual for information
on built-in functions.

Debugging LPI-FOR TRAN Programs 8-1

Sample CodeWatch Session for LPI-FORTRAN
Program

This debugging session illustrates how to use the commands and features
of CodeWatch when debugging FORTRAN programs. The source listing
of the sample program follows the session.

The sample program, primes.ftn, calculates the number of prime
numbers within a given range. The program has been compiled using the
-deb option to produce the necessary information for the debugger, the -1
option to produce a listing file and has been linked. For example,

lpifortran primes.ftn -deb -1
lpild primes.o -o primes

Object files are given the sufriX .obj on systems running under MS-DOS.
For example, the following link line is applicable to MS-DOS systems.

lpild primes.obj -o primes

In this sample session, comments (which are not part of the session) are
the bulleted items. The system prompt is $. For clarity, the abbreviated
form of the commands is used only after the command has been
previously spelled out in its entirety.

• Invoke CodeWatch at the system prompt.

$ codewatch primes
CodeWatch setting up "primes" . Wait . . .

* * * * * * * * * * * * * * * * * ** * * * * * ** * * * * ***
* CodeWatch, Revision 4.2.0
* --------------------------

*
*

* Copyright(c) Language Processors, Inc. 1987 *
*
Evaluation environment is PRIMES: (inactive)

• Find the string "Main. n

8-2

DEB > FIND Main
6: * Main Program

Debugging LPI-FOR TRAN Programs

• Print 10 lines.

DEB > PRINT 10
6 * Main Program
7 * =

8 *
9 10

10
11
12
13 20
14
1 5 *

CALL READJNPUT(N, MAX...PRIMES)
IF (N .LE. 0) GOTO 20
CALL SIFT(N)
GOTO 10
STOP

END

• Set a breakpoint at line 10.

DEB > BREAKPOINT 10

• Set a breakpoint at line 92 of the sift routine.

DEB > B 92

• Enable entry tracing and begin program execution.

DEB > TRACE ENTRY
DEB> CONTINUE
*** * PRIMES\%ENTRY
* * * * READJNPUT\%ENTRY
Input upper boundary:
10
* * * * READJNPUT\%EXIT
Break at PRIMES\10

• Continue program execution.

DEB > C
* * * * SIFT\%ENTRY
Break at SIFT\92

Debugging LPI-FOR TRAN Programs 8-3

• Evaluate data items in the sift routine.

DEB > EVALUATE count
5 {INTEGER*2}

DEB > E fiags(count)
.TRUE. {LOGICAL*!}

• Evaluate a logical expression.

DEB > E fiags(count) .AND . . FALSE .
. FALSE. {LOGICAL*4}

• Evaluate an equivalenced integer to a logical value (represented by
the variable LV ALUE).

DEB > E LVALUE
- 1 {INTEGER*4}

• Display declaration information about various data items.

DEB > TYPE this_prime
THIS ...PRIME
Class = variable Size = 2
DEB> TY primes
PRIMES

INTEGER*2 < auto>

Class = array Size = 2000 INTEGER *2 < auto>

• Display stack frame information.

8-4

DEB > STACK /ALL

Stack contains 4 frames.
Current execution point is SIFT\92

4: Owner is "SIFT"
Called from PRIMES\11

3 : Owner is "PRIMES"
Main program

Debugging LPI-FOR TRAN Programs

• Set a breakpoint in the print_out routine and continue program
execution.

DEB > B 62
DEB> C
* * * * PRINT_OUT\%ENTRY
* * * * ISPRIME\%ENTRY
* * * * ISPRIME\%ENTRY
Number of primes found was 5 (prime)
Break at PRINT_OUT\62

• Evaluate the rust 24 characters in the variable line.

DEB > E line(l :24)
' 1 2 3 ' {CHARACTER*24}

• Set the default stepping mode to step in and the stepping action list
to print the current source line.

DEB > DSTEP IN [P]

• Step one statement.

DEB > STEP
1 2 3 5 7

Step at PRINT_OUT\63
63: J = 1

• Step two statements.

DEB> S 2
Step at PRINT_OUT\65

65: 40 CONTINUE

Debugging LPI-FOR TRAN Programs 8-5

• Set a breakpoint at the entry point of the READJNPUT procedure
with an action list evaluating the value of MAXV. Continue program
execution.

DEB > B read_jnput\%ENTRY [E MAXVJ
DEB > C
* * * * PRINT_OUT\%EXIT
* * * * SIFT\%EXIT
Break at READJNPUT\%ENTRY

10 {INTEGER*4}

• Modify the value of MAXV.

DEB> LET MAXV = MAXV /2

• Change the current evaluation environment to primes and evaluate
the new value of N.

DEB > ENVffiONMENT primes
DEB > E n

5 {INTEGER*4}

• Remove all previously set breakpoints, set a breakpoint at the entry
point of the isprime procedure, and continue execution.

DEB > NB /ALL
DEB > B isprime\%entry
DEB > C
Input upper boundary:
10
**** READJNPUT\%EXIT
* * * * PRIMES.SIFT\%ENTRY
* * * * PRIMES.PRINT_OUT\%ENTRY
Break at PRIMES.ISPRIME\%ENTRY

• Set the return value of isprime to 15 .

DEB > RETURN 15

8-6 Debugging LPI-FOR TRAN Programs

• List the return value of isprime.

DEB > LRETURN
Return value for PRIMES.ISPRIME is 15 {INTEGER*4}

• Derme a macro that lists all breakpoints, the current evaluation
environment, all macros, the current execution point, and invokes the
shell for a directory listing.

DEB > MACRO info = [LB /A; LENV; LMA /A; WHERE]

• Use the macro.

DEB > info
Break set at ISPRIME\%ENTRY (count = 1)
Evaluation environment i s ISPRIME

info = [LB /A; LENV; LMA /A; WHERE]
Current execution point is ISPRIME\%EXIT

• Quit the debugging session.

DEB > QUIT
CodeWatch Quit . . . Bye!

Debugging LPI-FOR TRAN Programs 8-7

Program Listings

Source File: primes.ftn
Compiled: 01-Jan-85 1 2:00:01 by LPI-FORTRAN, Rev 1 .01 .00
Options: deb opt 2 1

Compiler Runtime Library Products,
Copyright (c) Language Processors, Inc. 1985.

1 •
2 PROGRAM PRIMES
3 •
4 PARAMETER (MAX.....PRIMES=1000)
5 •

6 • Main Program
7 • = = = = = = = = = = = = ========= = = = =

8 •
9 10 CALL READJNPUT(N, MAX.....PRIMES)
10 IF (N .LE. 0) GOTO 20
11 CALL SIFT(N)
12 GOTO 10
13 20 STOP
14 END
15 •
16 • Read Input from Terminal
17 • = = = = = = = = = ========== = = = = = =

18 •
19 SUBROUTINE READJNPUT(MAXV,MAX_VALUE)
20 30 PRINT •, 1 Input upper boundary: 1

21 READ *, MAXV
22 IF (MAXV .LE. MAX_ VALUE) RETURN
23 •
24 PRINT • , 1 Value too big. Try again. 1

25 GOTO 30
26 END
27 •
28 • Determine if the given number is prime
29 • = = = = ==

30 •
31 INTEGER*4 FUNCTION ISPRIME(NUMBER, VALUES, TOTAL)
32 INTEGER*2 NUMBER, VALUES, TOTAL
33 DIMENSION VALUES (MAX.....PRIMES)
34 INTEGER*4 I
35 DO 35 I = 1 , TOTAL
36 IF (NUMBER .EQ. V ALUES(I)) THEN
37 ISPRIME = NUMBER

8-8 Debugging LPI-FOR TRAN Programs

38
39
40 35
41
42
43 *
44 *
45 *
46 *
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65 40
66
67 *
68 *
69 *
70 *
71
72
73
74
75
76
77
78
79
80 50
81
82
83
84
85
86

RETURN
END IF

CONTINUE
ISPRIME = - 1
END

Print out Prime Numbers from Sieve
= = = = = = == = = = = = = = = = = = = = = = = =

SUBROUTINE PRINT_OUT(VALUES, TOTAL)
INTEGER*2 VALUES, TOTAL
DIMENSION VALUES (MAXYRIMES)
CHARACTER*80 LINE
INTEGER*4 I, J
LINE = I I

IF (ISPRIME(TOTAL,VALUES,TOTAL) .GE. 0) THEN
LINE(1 :8) = 0 (prime) 0

END IF
PRINT *, • Number of primes found was • , TOTAL, LINE
J = 1
DO 40 I = 1 , TOTAL

WRITE(LINE(J: J + 7), ' (18) ') VALUES(!)
J = J + 8
IF ((MOD(!, 9) .EQ. 0) .OR. (I .EQ. TOTAL)) THEN

PRINT * , LINE(l:J-1)
J = 1

END IF
CONTINUE

END

Sift the Sieve and rmd prime numbers
=

SUBROUTINE SIFT(N)
PARAMETER (MAX_VALUE=lOOO)
LOGICAL*l FLAGS(O:MAX_VALUE)
EQUIVALENCE (LV ALUE, FLAGS)
INTEGER *2 SIZE,I,K, THISYRIME,COUNT
INTEGER*2 PRIMES
DIMENSION PRIMES(MAX_ VALUE)
DO 50 I = o, N

FLAGS(!) = .TRUE.
CONTINUE

COUNT = 1
PRIMES(l) = 1
DO 90 I = 2, N

IF (FLAGS(!)) THEN
COUNT = COUNT + 1
PRIMES(COUNT) = I

Debugging LPI-FOR TRAN Programs 8-9

87 DO 80 K = 1*2, N, I
88 FLAGS(K) = .FALSE. ! Cancel all multiples
89 80 CONTINUE
90 END IF
91 90 CONTINUE
92 CALL PRINT_OUT(PRIMES, COUNT)
93 END
94

8-10 Debugging LPI-FOR TRAN ProgramB

Chapter 9 : Deb ugging LPI-P AS CAL Programs

Specific Ways to Use Code Watch Features • • . • • • • • • • . • • • • • • • • 9-1
Program Blocks • • • • • • . • 9-1

Block Names • • • . • 9-1
Referencing Nested Blocks • 9-1

Built-in Function Support • 9-4
Referencing Arrays and Aggregate Structures • • • • • • • • • • • • • • 9-4

Sample Code Watch Session Using LPI-P AS CAL • • • • • • • • • • • • • • • 9-4
Program Listings . . • • . • • • . . • • . • • • • • • • • • • 9-10

Chapter 9: Debugging LPI-P ASCAL Programs

Specific Ways to Use CodeWatch Features

The first section describes CodeWatch features that relate to debugging
LPI-P ASCAL programs. The second section contains a sample debugging
session of an LPI-P AS CAL program. The third section contains the
listing of the program used in the sample debugging session.

P rogram Blocks

Program blocks are units of code that provide scope and context for the
debugger. An LPI-PASCAL program block is a procedure block or a
begin block.

Block Names

A procedure block is referred to by the name of that procedure.

Referencing Nested Blocks

LPI-P ASCAL program blocks may be nested. Rules for naming nested
blocks are as follows:

1 . If a block dermed within the compilation unit is contained within
or contains the debugger's current evaluation environment, the
block may be referred to simply by its name. The name may need
to be qualified to make it unique within the external procedure.

If the block contains the debugger's current evaluation
environment, the search for the referenced block begins from the
current environment and continues through each successive
containing (parent) block until the referenced block is found.

Debugging LPI-PASCAL Programs 9-1

2. I f a block i s i n some other external procedure, i t must be qualified
with at least the external procedure name, and it may require
further qualification. Furthermore, a fully qualified name to a
block in some other external procedure may be the same as a
p artially qualified block name in the current procedure. To force
the debugger to search outside the current procedure, qualify the
block name with " %EXTERN". (This is seldom necessary if
ambiguous naming is avoided.)

For example:

pro c e dure A ; < • 1 • >
< • 2 • >
< • 3 • >
< • 4 • >

pro c e dure B ; < • 8 • >
pro c e dure B ; pro c e dure C ; < • 9 • >

pro c e dure c ·
pro c e dure D ;
e nd ;

e nd ;
end ;
p r o c e dure C ; (• 6 •)

pro c e dure B ; (• 6 •)
pro c e dure C · (• 7 •)
end ;

e n d ;
e n d ;

pro c e dure D ;
end ;

end ;
pro c e dure B ·

pro c e dure A ;
pro c e dure A ;

p r o c e dure
end ;

e n d ;
end ;

end ;

< • 1 0

< • 1 1
< • 1 2
< • 1 3

B · < • 1 4

e n d ; end ;

The following table describes how each block can be referenced given the
current evaluation environment is in the external procedure
" %EXTERN.A" (block 1) .

BLOCK

1

2

3

4

5

6

REFERENCE

"A" or " %EXTERN.A"

" A.B" , "B " , or "%EXTERN.A.B"

"B.C " , "A.B.C " , or "%EXTERN.A.B. C " .

"D " , " C .D " , "B.C.D " , "A.B.C.D " , "%EXTERN.A.B .C.D " ,
"B.D " , "A.B.D " , "%EXTERN.A.B.D " , "A.D " ,
" %EXTERN.A.D"

" C " , "A. C " , "%EXTERN.A.C"

" C .B" , "A.C.B " , "%EXTERN.A.C.B"

•)

•)
•)
•)
•)

9-2 Debugging LPI-PASCAL Programs

BLOCK REFERENCE

7 "C .C " , "C .B.C " , "A.C.C" , "%EXTERN.A.C.C " , "A.C.B.C " ,
" %EXTERN.A.C.B.C"

8

9

10

1 1

1 2

1 3

1 4

"%EXTERN .B"

" %EXTERN.B.C"

" %EXTERN.B.D " , "%EXTERN.B.C.D "

"B.B" or "%EXTERN.B.B"

"B.B.A" or "%EXTERN.B.B.A"

"B.A.A" , "B.B.A.A" , "%EXTERN.B.A.A" ,
"%EXTERN.B.B.A.A n

"B.B.B" "B.A.B" , "B.A.A.B" , "B.B.A.B" , "B.B.A.A.B" ,
" %EXTERN.B.B.B" , "%EXTERN.B.A.B" ,
" %EXTERN.B.A.A.B" , "%EXTERN.B.B.A.B" , or
"%EXTERN.B.B.A.A.B"

H the current evaluation environment is in the internal procedure block
" %EXTERN.A.B.C.D " (block 4), then the following is true in the
debugger:

"B" refers to block 2

"B.C" refers to block 3

"C " refers to block 3

" %EXTERN.B.A" is an ambiguous reference (block 12 or 13)

"%EXTERN.B.B.A" refers to block 12

" %EXTERN.B.C" refers to block 9

H the current evaluation environment is in the external procedure block
" %EXTERN.B" (block 8), then the following is true in the debugger:

- "A.B.C.D" refers to block 1

- "A" is an ambiguous reference (block 12 or 13)

Debugging LPI-PASCAL Programs 9-3

"B"

"B.A"

"A.B"

"B.A.B"

refers to block 1 1

refers to block 1 2

refers to block 14

refers to block 14

Built-in Function Support

CodeWatch does not support any of the LPI-PASCAL built-in functions.

Referencing Arrays and Aggregate Structures

Arrays and aggregates structures can be referenced in their entirety by
referring to them by their array or record name, or individual subfields
or members can be referenced. A subfield reference must be fully
qualified. Array slices can be referenced as described in the
"EVALUATE" section of Chapter 4.

Enumerated types can be referenced directly. Sets cannot be
manipulated.

Sam�le Code Watch Session Using
LPI-PASCAL

This debugging session illustrates how to use the commands and features
of Code Watch when debugging LPI-P AS CAL programs. Following the
session is the source listing of the sample program.

The sample program, primes.pas, calculates the number of prime
numbers within a given range. The program has been compiled using the
-deb option to produce the necessary information for the debugger and
the -1 option to produce a listing rile. The program has also been linked.
For example,

lpipascal primes.pas -deb -1
lpild primes.o -o primes

Object riles are given the suffix .obj on systems running under MS-DOS.
For example, the following link line is applicable to MS-DOS systems.

9-4 Debugging LPI-PASGAL Programs

lpild primes.obj -o primes

In this sample session, explanatory comments (which are not part of the
session) are the bulleted items. The system prompt is $. The abbreviated
form of the commands is used after the command has been previously
spelled out in its entirety.

• Invoke CodeWatch at the system prompt.

codewatch primes
CodeWatch setting up "primes " . Wait . . .

*
* CodeWatch, Revision 4.2.0
* --------------------------

*
*

* Copyright(c) Language Processors, Inc. 1987 *
* * * * * * * * * * * * **
Evaluation environment is MAIN:(inactive)

• Find the string "main program" .

DEB > FIND main program
128 : begin (* main program *)

• Print 1 1 lines.

DEB > PRINT 1 1
1 2 8 : begin (* main program *)
129 :
130:
1 3 1 :
132 :

writeln (' * * * Sieve of Erathosthenes * * * ') ;
writeln;

133 : read_jnput(n);
1 34:
135 :
136 :
137 :
1 38 :

while (n > 1) do begin
sift (n);
read_jnput(n);

end;

• Set a conditional breakpoint when the variable n is greater than 1, at
line 135 of the main program.

DEB > BREAKPOINT 135 /IF= n > 1

Debugging LPI-PASCAL ProgramB 9-5

• Enable entry tracing and begin program execution.

DEB> TRACE ENTRY
DEB > CONTINUE
** * * MAIN\%ENTRY
* * * Sieve of Erathosthenes * * *

* * ** MAIN.READJNPUT\%ENTRY
Input upper boundary:
10

* * * * MAIN.READJNPUT\%EXIT
Break at MAIN\135

• Set a breakpoint at line 120 of the sift routine and continue program
execution.

DEB > B sift\120
DEB> C
* * * * MAIN.SIFT\%ENTRY
Break at MAIN.SIFT\120

• Evaluate data items in the sift routine.

DEB > EVALUATE count
COUNT = 5 INTEGER

DEB> E flags [count]
TRUE BOOLEAN

• Display type information about various data items.

DEB > TYPE primes
PRIMES(1 :1000) RESULTS
DEB > TY results
ARRAY OF INTEGER

• Display the entire structure or record.

9-6

DEB> TY /FULL primes
PRIMES(1:1000) automatic
INTEGER INTEGER

Debugging LPI-PASOAL Programs

• Display stack frame information including argument information.

DEB > STACK /ARGUMENTS /ALL

Stack contains 4 frames.
Current execution point is MAIN.SIFT\120

4: Owner is "MAIN.SIFT"
Arguments:

N = 10 INTEGER
Called from MAIN\136

3 : Owner is "MAIN"
Arguments: None
Main program

• Display the arguments to sift.

DEB > ARGUMENTS
N = 10 INTEGER

• Set the default stepping mode to step in and the stepping action list
to print the current source line.

DEB > DSTEP IN [P]

• Step one statement.

DEB > STEP
Step at MAIN.PRINT_OUT\%ENTRY

67: procedure print_out(values: results; total: integer) ;

• Step out of the print_out routine.

DEB > STEP OUT
Number of primes found was (prime) 5

1 2 3 5 7

Step at MAIN.PRINT_OUT\%EXIT
86: end: (* print_out *)

Debugging LPI-PASCAL Program8 9-7

• Set a breakpoint at the entry point of the read_jnput procedure with
an action list evaluating the value of maxv. Continue program
execution.

DEB > B readjnput\%ENTRY [E maxv]
DEB > C
* * * * MAIN.SIFT\%EXIT
Break at readjnput\%ENTRY
MAXV = 10 INTEGER

• Modify the value of maxv.

DEB > LET maxv = maxv/2

• Change the current evaluation environment to primes and evaluate
the new value of N. Continue program execution.

DEB > ENVIRONMENT main
DEB > E n
N = 5 INTEGER

• Reset the current evaluation environment to the previous evaluation
environment by using the ENVffiONMENT command without an
argument.

DEB > ENV
Environment reset to MAIN.READJNPUT

• Go to line 26 and continue program execution.

DEB > GOTO 26
Execution point is now MAIN.READJNPUT\26
DEB > C
Input upper prime boundary: 10

* * * * MAIN.READJNPUT\%EXIT
Break at main \135

• Remove the breakpoint at line 120, set a new breakpoint at the entry
point of the isprime procedure, and continue execution.

DEB > NB 120

9-8 Debugging LPI-PASCAL Programs

DEB > B isprime\%entry
DEB > C
* * * * MAIN.SIFT\%ENTRY
* * * * MAIN.PRINT_OUT\%ENTRY
Break at MAIN.ISPRIME\%ENTRY

• Set the return value of isprime to 15 .

DEB > RETURN 15

• List the return value of isprime.

DEB > LRETURN
Return value for MAIN.ISPRIME is 15 INTEGER

e Define a macro that removes all breakpoints, removes the default
stepping action list, disables tracing, moves the current source file
pointer to line 1 or the source program, and prints 10 lines.

DEB > MACRO fresh = [NB /ALL; DS [] ; NTR E; PO 1; P 10]

• Use the macro.

DEB > fresh

1 : (* Sieve of Erathoshenes *)
1 : (* Sieve of Erathoshenes *)
2 :
3 : program main;
4 :
5 :
6 :
7 :
8 :

const
max_value = 1000;
max_primes = 1000;

9: type
10 sieve = ARRAY [O . . max_value] of boolean;

• Quit the debugging session.

DEB > QUIT
CodeWatch Quit . . . Bye!

Debugging LPI-PASCAL Programs 9-9

Program Listings

Source File: primes.pas
Compiled: 12-May-87 14:46 :43 by LPI-Pascal, Rev 02 .04.03
Options: deb opt 2 1

Compiler & Runtime Library Products,
Copyright (c) Language Processors, Inc. 1986.

1 (* Sieve of Eratosthenes *)
2
3 program main;
4
5 const
6 max_value = 1000;
7 max_primes = 1000;
8
9 type
10
1 1
12

sieve
results

= ARRAY [O • • max_value] of boolean;
= ARRAY [l . .max_primes] of integer;

13 var
14
15

n : integer;

16 * (* ---
17* * PROCEDURE read_jnput
18 *)
19
20 procedure read_jnput (var maxv: integer);
2 1
22 var ok : boolean;
23
24 begin
25
26 repeat
27 writeln ('Input upper prime boundry');
28 readln (maxv);
29 if (maxv > max_value) then
30 writeln ('Value too big. Try again.')
31 else
32 ok := true
33 until (ok) ;
34
35 end; (* read_jnput *)
36
35

9-10 Debugging LPI-PASCAL Programs

37. (. ---
38* * FUNCTION isprime
39 *)
40
41 function isprime (number: integer; values: results; total: integer):integer;
42
43 var n : integer;
44
45 label 999;
46
47 begin
48
49 for n := 1 to total do begin
50 if number = values [n] then begin
5 1 isprime := number;
52 goto ggg
53 end;
54 end;
55
56 isprime := -1 ;
57
58 999:
59
60 end; (* isprime *)
61
62
63 * (* ---
64* * PROCEDURE print_out
65 *)
66
67 procedure print_out (values: results; total: integer) ;
68
69 var i : integer;
70
71 begin
72 write ('Number of primes found was ') ;
73 if isprime (total,values,total} >= 0 then
74 write (' (prime)') ;
75 writeln (total);
76 writeln;
77
78 for i := 1 to total do begin
79 write (values [i]) ;
80 if (i mod 10) = 0 then
81 writeln;
82 end;
83 writeln;
84 writeln;
85

Debugging LPI-PASCAL Programs 9-1 1

86 end; (* print_out *)
87
88. (. ---

89* * PROCEDURE sift
90 *)
91
92 procedure sift (n: integer);
93
94 var
95 i, k, count : integer;
96 flags : sieve;
97 primes : results;
98 this_prime : integer;
99
100 begin
101
102 for i := 0 to n do
103 flags[i] := true;
104
105 count := 1;
106 primes[1] := 1 ;
107
108 for i := 2 to n do begin
109 if flags[i] then begin
110 this_prime := i;
1 1 1 count := count + 1 ;
1 12 primes[count] := this_prime;
113 k := i + this_prime;
1 14 while (k < = n) do begin
1 15 flags[k] := false;
116 k := k + this_prime;
117 end;
118 end;
119 end;
120 print_out (primes, count);
121
122 end; (* sift *)
123
124. (* ---
125* * PROGRAM main
126 *)
127
1 28 begin (* main program *)
129
130 writeln ('* * * Sieve of Erathosthenes * * * ') ;
131 writeln;
132
133 read_jnput (n);
134

9-12 Debugging LPI-PASCAL Programs

135 while (n > 1} do begin
136 sift (n};
137 read_jnput (n) ;
138 end;
139
140 end. (* main program *)

Debugging LPI-PASOAL Programs 9-1 3

Chapter 10: Debugging LPI-PL/1 Programs

Specific Ways to Use Code Watch Features • • • • . . • • • • • • • • • • • • • 10- 1
Program Blocks • 10- 1

Block Names • • • • • • • • • • • . • • . • • • • • • • • • • • • • • • • • • • 10- 1
Referencing Nested Blocks • 10- 1

Built-In Function Support • • • • • • • • • • • • • . • • • • • • • • • • • • • 10-4
Referencing Axrays and Aggregate Structures • • • • • • • • • • • • • • 10-4

Sample CodeWatch Session Using LPI-PL/1 • • • • • • • • • • • • • • • • • • 10-4
Program Listings . • • • • • • • . . • . • . • . • 10- 1 1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 10: Debugging LPI-PL/I Programs

Specific Ways to Use CodeWatch Features

This section describes CodeWatch features that relate to debugging PL/1
programs. The second section contains a sample debugging session of a
LPI-PL/I program. The third section contains the listing of the program
used in the sample debugging session.

Program Blocks

Program blocks are units of code that provide scope and context for the
debugger. An LPI-PL/1 program block is a procedure block or a begin
block.

Block Names

A procedure block is referred to by the name of that procedure. A begin
block is referred to by its label (if present) or by the string " %BEGIN"
followed immediately by the line number on which the the block begins.
For example, an unlabeled begin block which starts on line 1 1 9 of the
source file is referred to as "%BEGIN119 " .

Referencing Nested Blocks

LPI-PL/1 program blocks may be nested. Rules for naming nested blocks
are as follows:

1 . If a block defined within the compilation unit is contained within
or contains the debugger's current evaluation environment, the
block may be referred to simply by its name. The name may need
to be qualified to make it unique within the external procedure.

Debugging LPI-PL/1 Programs 10- 1

I£ the block contains the debugger's current evaluation
environment, the search for the referenced block begins from the
current environment and continues through each successive
containing (parent) block until the referenced block is found.

2. If a block is in some other external procedure, it must be qualified
with at least the external procedure name, and it may require
further qualification. Furthermore, a fully qualified name to a
block in some other external procedure may be the same as a
partially qualified block name in the current procedure. To force
the debugger to search outside the current procedure, qualify the
block name with "%EXTERN" . (This is seldom necessary if
ambiguous naming is avoided.)

For example:

A : pro c ; I • 1 • I B : pro c ; I • 8 • I
B : pro c ; I • 2 • I C : pro c ; I • 9 • I

C : pro c ; I • 3 • I D : pro c ; I • 1 0
D : pro c ; I • 4 • I end D ;
end D ; end C ;

e nd C ; B : pro c ; I • 1 1
e nd B ; A : pro c ; I • 1 2
C : pro c : I • 6 • I A : pro c ; I • 1 3

B : pro c ; I • 6 • I B : pro c ; I • 1 4
C : pro c ; I • 7 • I e nd B ;
e nd C ; end A ;

e nd B · . a nd A ;
end C ; end B ;

end A ; end B ;

The following table describes how each block can be referenced given the
current evaluation environment is in the external procedure
"%EXTERN.A" (block 1) .

BLOCK REFERENCE

1 nAn or "%EXTERN.A"

2 "A.B" , "B" , or "%EXTERN.A.B"

3 "B.C" , "A.B.C" , or "%EXTERN.A.B.C" .

• I

• I
• I
• I
• I

10-2 Debugging LPI-PL/I Programs

BLOCK REFERENCE

4 "D " , "C .D " , "B.C.D " , "A.B.C.D " , " %EXTERN.A.B.C.D " ,
"B.D " , "A.B.D " , "%EXTERN.A.B.D" , "A.D " ,
"%EXTERN.A.D"

5 "C " , "A.C" , "%EXTERN.A.C"

6 "C .B" , "A.C.B" , "%EXTERN.A.C.B"

7 "C .C " , "C .B.C " , "A.C.C " , "%EXTERN.A.C.C " , "A.C.B.C 11 ,
"%EXTERN.A.C.B.C"

8

9

10

11

12

13

14

" %EXTERN.B"

" %EXTERN.B.C"

" %EXTERN.B.D" , "%EXTERN.B.C.D"

"B.B" or "%EXTERN.B.B"

"B.B.A n or "%EXTERN.B.B.A"

"B.A.A" "B.B.A.A" , "%EXTERN.B.A.A" , or
"%EXTERN.B.B.A.A n

"B.B.B" "B.A.B" "B.A.A.B" , "B.B.A.B" ,
" %EXTERN.B.B.B" , "%EXTERN.B.A.B" ,
"%EXTERN.B.A.A.B" , "%EXTERN.B.B.A.B" , or
" %EXTERN.B.B.A.A.B"

If the current evaluation environment is in the internal procedure block
" %EXTERN.A.B.C.D" (block 4), then the following is true in the
debugger:

- "B" refers to block 2

- "B.C " refers to block 3

- "C " refers to block 3

- " %EXTERN.B.A n is an ambiguous reference (block 1 2 or 13)

- " %EXTERN.B.B.A" refers to block 12

Debugging LPI-PL/1 Programs 10-3

- n%EXTERN.B.Cn refers to block 9

Ir the current evaluation environment is in the external procedure block
n%EXTERN.Bn (block 8), then the following is true in the debugger:

n A.B.C.D n refers to block 1

- nan

- na.An

- nA.Bn

- na.A.Bn

is an ambiguous reference (block 12 or 13)

refers to block 1 1

refers to block 12

refers to block 14

refers to block 14

Built-In Function Support

The following PL/I built-in functions are supported by CodeWatch:

ADDR
BINARY
BIT
BYTE
CHAR

DECIMAL
DIMENSION
FIXED
FLOAT
HBOUND

INDEX
LBOUND
LENGTH
NULL
RANK

SIZE
SUBSTR
TRIM
UNSPEC
VERIFY

Referencing Arrays and Aggregate Structures

Arrays and aggregate structures can be referenced in their entirety by
referring to them by their array or structure name, or individual
subfields or members can be referenced using the conventional PL/I
syntax as in "REC__NAME.FIELDn . A subfield can be referenced directly
as long as its name is unique.

Array slices can be referenced as described in the "EVALUATE" section
in Chapter 4.

Sample CodeWatch Session Using LPI-PL/1

This debugging session illustrates how to use the commands and features
of CodeWatch when debugging PL/I programs. Following the session is
the source listing of the sample program.

10-4 Debugging LPI-PL/1 Programs

The sample program, primes.pll , calculates the number of prime
numbers within a given range. The program has been compiled using the
-deb option to produce the necessary information for the debugger, and
the -1 option to produce a listing file. The program has also been linked.
For example,

lpipll primes.pll -deb -1
lpild primes.o -o primes

Object files are given the sufriX .obj on systems running under MS-DOS.
For example, the following link line is applicable to MS-DOS systems.

lpild primes.obj -o primes

In this sample session, explanatory comments (which are not part of the
session) are the bulleted items. The system prompt is $. For clarity, the
abbreviated form of the commands is used only after the command has
been previously used spelled out in its entirety.

• Invoke CodeWatch at the system prompt.

$ codewatch primes
CodeWatch setting up "primes" . Wait . . .

* **
* CodeWatch, Revision 4.2.0 *
* -------------------------- *
* Copyright(c) Language Processors, Inc. 1987 *
*
Evaluation environment is PRIMES:(inactive)

• Find the string 11main n .

DEB > FIND main
108: /* main procedure * /

Debugging LPI-PL/1 Programs 10-5

• Print 15 lines.

DEB > PRINT 15
108 : /* main procedure * /
109:
1 10:
1 1 1 :
1 12 :
1 1 3 :
1 14:
1 15 :
1 16 :
1 17 :
118 :
119 :
120:
121 :
122 :

declare n riXed binary(31) ;

put skip ;
put list (' *** Sieve of Eratosthenes * * * ') ;
put skip (2);

call readJnput(n);

do while (n > 1) ;
call sift(n);
call readJnput(n);

end;

• Set a breakpoint at line 118 of the main program.

DEB> BREAKPOINT 118

• Enable entry tracing and begin program execution.

10-6

DEB > TRACE ENTRY
DEB > CONTINUE
* * * * PRIME\%ENTRY

* * * Sieve of Eratosthenes * * *

* * * * PRIMES.READJNPUT\%ENTRY
Input maximum prime boundary: 10

* * * * PRIMES.READJNPUT\%EXIT
Break at PRIMES\118

Debugging LPI-PL/1 Programs

• Set a breakpoint at line 94 of the sift routine to break when the
variable count equals itself and continue program execution.

DEB > B SIFT\94 /IF= COUNT = COUNT
DEB> C
* * * * PRIMES.SIFT\%ENTRY
Break at PRIMES.SIFT\94

• Evaluate the value of data items in the sift routine.

DEB > EVALUATE THISYRIME
THISYRIME = 2 {fixed binary (31)}
DEB > E PRIMES(COUNT)
PRIMES(1) = 1 {fixed binary (31)}

• Display stack frame information including argument information.

DEB > STACK /ARGUMENT /ALL

Stack contains 4 frames.
Current execution point is PRIMES.SIFT\94

4: Owner is "PRIMES.SIFT"
Arguments:

N = 10 {fixed binary (31)}
Called from PRIMES\119

3 : Owner is "PRIMES"
Arguments: None
Main program

• Display declaration information about various data items.

DEB > TYPE COUNT
COUNT fixed binary (31) automatic
DEB > TY FLAGS
FLAGS(1 :1000) bit (1) automatic

• Set the default stepping mode to step in and the stepping action list
to print the current source line.

DEB > DSTEP IN [P]

Debugging LPI-PL/1 Programs 10-7

• Step one statement.

DEB > STEP
Step at PRIMES.SIFT\95

95: primes(count) = this_prime;

• Step two statements.

DEB > S 2
Step at PRIMES.SIFT\97

97 : do while (k < n);

• Remove the breakpoint at line 94 and step out of the sift routine.

DEB > NB 94
DEB> STEP OUT
Number of primes found was

1 2 3 5 7

Step at PRIMES.SIFT\%EXIT
106: end sift;

(prime) 5

• Set a breakpoint at the entry point of the read_jnput procedure with
an action list evaluating the value of MAXV. Continue program
execution.

DEB > B read_jnput\%ENTRY [E MAXV]
DEB > C
Break at PRIMES.READJNPUT\%ENTRY
MAXV = 10 {fixed binary (31)}

• Modify the value of MAXV.

DEB > LET MAXV = MAXV/2

• Change the current evaluation environment to primes and evaluate
the new value of N. Continue program execution.

10-8

DEB > ENVIRONMENT PRIMES
DEB> E N
N = 5 { rlXed binary}

Debugging LPI-PL/1 Programs

• Reset the current evaluation environment to the previous evaluation
environment by using the ENVIRONMENT command without an
argument.

DEB> ENV
Environment reset to PRIMES.READJNPUT

• Go to line 21 and continue program execution.

DEB > GOTO 21
Execution point is now PRIMES.READJNPUT\21
DEB > C
Input maximum prime boundary: 10
* * * * READJNPUT\%EXIT
Break at PRIMES\118

• Set a breakpoint at the entry point of the isprime procedure and
continue execution.

DEB > B isprime\%entry
DEB > C
* * * * PRIMES.SIFT\%ENTRY ** * *
* * * * PRIMES.PRINT_OUT\%ENTRY ** * *
Number o f primes found was

Break at PRIMES.ISPRIME\%ENTRY

• Set the return value of isprime to 15 .

DEB> RETURN 15

• List the return value of isprime.

DEB > LRETURN
Return value for PRIMES.ISPRIME is 1 5 {fiXed binary (31)}

• Defme a macro that lists all breakpoints, the current evaluation
environment, all macros, and the current execution point.

DEB> MACRO info = [LB /A; LENV; LMA /A; WHERE]

Debugging LPI-PL/1 Programs 10-9

• Use the macro.

DEB > info
Break set at PRIME\118 (count = 2)
Break set at PRIMES.READJNPUT\%ENTRY

(count = 1) [E MAXV;]
Break set at PRIME.ISPRIME\%ENTRY (COUNT = 1)
Evaluation environment is PRIMES.ISPRIME

info = [LB /ALL; LENV; LMA /ALL; WHERE]
Current execution point is PRIMES.ISPRIME\EXIT

• Quit the debugging session.

DEB > QUIT
Code Watch Quit . . . Bye!

10-10 Debugging LPI-PL/I Programs

Program Listings

Source File: primes.pll
Compiled: 1-Jan-85 12 :00:01 by LPI-PL/1, Rev 01 .00.00
Options: deb opt 2 1

Compiler &; Runtime Library Products,
Copyright (c) Language Processors, Inc. 1985.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1 8
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

/* Sieve of Eratosthenes * /

primes: procedure;

%replace FALSE
%replace TRUE

by 'O'B;
by '1 'B;

%replace MAX_VALUE
%replace MAX...PRIMES

by 1000;
by 500;

readJnput: procedure (maxv) ;

declare maxv fiXed binary(31) ;
declare instring char(128) varying;

declare ok bit(1) ;

ok = FALSE;

do while (Aok) ;

end;

put list (' Input maximum prime boundary: ') ;
get list (instring);
maxv = decimal(instring) ;
if maxv > MAX_VALUE then do;

put list (' Value too big. Try again. ') ;
put skip ;

end;
else do;

ok = TRUE;
end;

end read_jnput;

Debugging LPI-PL/1 Programs 10-11

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

10-12

isprime: procedure (number,values,total) returns (fixed binary (31)) ;

declare number fixed binary (31) ,
values (l :MAX...PRIMES) fiXed binary (31) ,
total fiXed binary (31) ;

declare n fiXed binary (31) ;

do n = 1 to total;
if number = values(n) then

return (number);
end;

return (-1) ;

end isprime;

print_out: procedure (values,total);

declare values(l :MAX_PRIMES) fiXed binary(31) ,
total fiXed binary(31) ;

declare i fiXed binary(15);

put list (' Number of primes found was');
if isprime (total,values,total) >= 0 then

put list (' (prime)');
put edit (total) (F(4)) ;
put skip (2);

do i = 1 to total;
put edit (values(i)) (F(7)) ;
if mod(i,10) = 0 then do;

put skip;
end;

end;

put skip (2) ;

end print_out;

sift: procedure (n);

declare n fiXed binary(31) ;

Debugging LPI-PL/I Programs

80 declare (i, k, count, this�rime) fiXed binary(31) ,
81 flags(l :MAX_VALUE) bit(l) ,
82 primes(l :MAX...PRIMES) fiXed binary(31) ;
83
84 do i = 1 to n ;
85 flags(i) = TRUE;
86 end;
87
88 count = 1;
89 primes(!) = 1 ;
90
91 do i = 1 to n;
92 i f flags(i) = TRUE then do;
93 this�rime = i + 1 ;
94 count = count + 1 ;
9 5 primes(count) = this�rime;
96 k = i + this�rime;
97 do while (k < n) ;
98 /* cancel all multiples *I
99 flags(k) = FALSE;
100 k = k + this�rime;
101 end;
102 end;
103 end;
104 call print_out(primes,count-1) ;
105
106 end sift;
107
108 /* main procedure *I
109
110 declare n fiXed binary(31) ;
1 1 1
1 1 2 put sk� ;
1 1 3 pu t list (' ** * Sieve of Eratosthenes * * * ') ;
1 1 4 put skip (2) ;
1 1 5
1 1 6 call read_jnput(n);
1 1 7
1 1 8 do while (n > 1) ;
1 1 9 call sift(n) ;
120 call read_jnput(n);
1 2 1 end;
122
123 end;

Debugging LPI-PL/1 Programs 10-13

Glossary

absolute activation
number

action list

activation number

active environment

breakpoint

command interpreter

default evaiuation
environment

display mode

A positive integer that specifies the exact
activation of a procedure.

A set of one or more CodeWatch commands
that are separated by semicolons and
enclosed within square brackets (for
example, [PRINT 10; LENVIRONMENT]).

An integer that specifies a particular
activation of a procedure when one or more
such activations exist.

An environment that exists on the current
stack.

A point set by the BREAKPOINT command
at which program execution pauses to allow
the debugger to process an action list or
accept additional commands.

A system program that acts an an
intermediary between a user (or a process)
and the operating system. It reads,
interprets, and (in some cases) executes
commands.

The environment that contains the current
point of execution.

The mode in which the value of an
expression is printed, either ASCII, BIT,
FLOAT, HEX, INTEGER, OR OCTAL.

Glossary-1

entry point The location during execution where a
procedure has been called, but before
variable size local storage has been allocated
and before other prelude code has been run.

entry tracing The printing of messages identifying the
entry point of each procedure as it is called
during program execution.

environment A program block that establishes a frame of
reference for identifying specific instances of
variables and statements.

evaluation environment The environment that currently supplies
scope and context to the debugger for
referencing variables and statements.

evaluation language The source language in which the current
evaluation environment's program was
written .

execution pointer A debugger pointer that tracks the point of
program execution.

exit point The location in a procedure after which a
return value, if any, has been computed, but
before the return statement has been
executed.

inactive environment

line number offset

Glossary-2

An environment that does not exist on the
current stack .

A plus sign followed by a positive integer
after a source line number or a statement
label. It in dicates the num her of physical
source lines to count from the source line
number or the label to locate another
statement when its label or source line
number is unknown. The current statement
has a line number offset of zero. For
example, line 15 of a program may be
referred to by 11 1 1 + 4 11 •

macro

program block

program block name

relative activation
number

shell

skip count

source file pointer

source line number

statement identifier

statement label

statement offset

A name defined by the MACRO command
as a shorthand for an action list.

A unit of code that supplies scope and
context for the debugger. Program blocks
are defined according to the source language .

The name used to refer a program block.

Either zero or a negative integer. Zero
specifies the current activation of a
procedure. A negative integer specifies an
activation of a procedure by counting the
number of activations prior to the current
activation.

The UNIX command interpreter, a system
program that reads, interprets, and (in some
cases) executes commands.

The number of times a breakpoint or a
watchpoint is to be skipped.

Pointer to the current line in the current
source file.

The physical line number in the source file
on which a statement begins.

A source line number, a source line number
and a statement offset, or a statement label.

A source-language-defined mark for
identifying statements.

A period followed by a positive integer after
a line number offset indicating the number
of statements to count from the first
statement on a line. The first statement has
a statement offset of zero. A plus sign must
precede the period if the line number offset
equals zero.

Glossary-3

statement tracing

variable name

watch point

Glossary-4

The printing of messages identifying each
statement prior to its execution.

A source-language-defined identifier for a
variable. In the debugger, an environment
name followed by a backslash (\) can
precede the variable name to identify a
variable in another program block.

A point set by the WATCH command that
is used to monitor any changes to data
When a watched variable changes, program
execution stops and control is returned to
the debugger.

Index

: , 2-7
-, 2-7
I command, 3-10, 4-67
%, 2-7, 2-9, 2-13 , 2- 14
%ENTRY, 2-14
%EXIT, 2-14
%EXTERN, 9-2 , 10-2 , 10-3
%INCLUDE, 2-15
+, 2-7 , 2-14

f , 2-7
;, 2-7 , 2-9
[] , 2-10
A 1 2-1 5
' , 2-7

A
Abbreviations, 1-3
Aborted program recovery, 2-17
Absolute activation numbers, 2-12
Action lists, 2-10

defming, 1-2
delimiters, 2-7

Activation number indicator, 2-7
Active environment, 3-4
Addition, 2-7, 2-14
Angle brackets, 2-7
ARG, 3-6 , 4-2
ARGUMENTS command, 3-6 , 4-2
ASCII, 4-14

B
B, 3-2, 4-3

lndex-1

BIT, 4-14
Block activation numbers, 2-1 1
Brackets, 2-10

angle, 2-7
square, 2-7

BREAKPOINT command, 2-12 , 2-13 , 3-2, 4-3
Breakpoint, 1-2, 3- 1 , 7-4

counter, 3-2, 4-4
Built-in functions

LPI-BASIC, 5-1
LPI-C, 6-1
LPI-FORTRAN, 8-1
LPI-P AS CAL, 9-4
LPI-PL/1, 10-4

c
C, 3-3 , 4-7
Caret, 2-15
Catching, 1 -2 , 3-2

commands, 3-2
codewatch, 2-2 , 2-6 , 5-3 , 6-3 , 7-4, 8-2 , 9-5 , 10-5
CodeWatch, 1-1

abbreviations, 1-3
arguments, 1-3
commands, 1-3 , 2-7 , 3-1
error messages, 2- 15
installation, 2- 1
invoking, 2-2 , 5-3 , 6-3 , 7-4, 8-2 , 9-5 , 10-5
options, 1-3
prompt, 2-9

Command
files, 1-2, 3-9
line continuator, 2-7
option indicator, 2-7
separator, 2-7

CAT 3-2 , 4-6 . 1
CATCH command, 3-2, 4-6 . 1
C command, 2-9, 3-3 , 4-7
CONTINUE command, 2-9 , 3-3, 4-7

Index-2

Controlling program execution , 1-1
Copied files, 2-15
COPY, 3-8 , 4-53
Current evaluation environment, 7-6

D
deb option, 2-1 , 5-2 , 6-2 , 7-3 , 8-2 , 9-4 , 10-5
Debugging, 1-1

overview, 1-1
with multiple modules , 2-5

Default mode, 4-9
Display mode, 4-13
DS, 3- 1 , 4-9
DSTEP command, 3-2 . 1 , 4-9

E
E, 3-6 , 4-1 3
Ending a debugging session , 2-5
Entry points, 2- 14
ENV, 3-4, 4-1 1
ENVIRONMENT command, 3-4 , 4- 1 1
Environment, 2-15

control, 1 -2 , 3-4
Error messages, 1-2, 2- 15
EVALUATE command, 3-6 , 4-13
Evaluating expressions, 3-6
Evaluation environment, 3-4, 9- 1 , 10-1
Examining the source program, 1-2
Execution pointer, 2-10, 3-2 .2 , 4- 1 1 , 4- 18 , 4-53 , 4-57
Exit points, 2- 14

indicator, 2-7
External procedure, 9- 1 , 10-1

F
F, 3-7 , 4- 1 6
Files

command, 3-9

Index-3

FIND command, 3-7, 4-16
FLOAT, 4-14

G

GO, 3-3 , 4-18
GOTO command, 3-3 , 4-18

H
H, 4-20
HELP command, 4-20
Help

online, 3-9
HEX, 4-14

I
IF option, 4-5
IGNORE, 4-5
Ignore flag, 4-5
Inactive environment, 3-4
INCLUDE, 3-8, 4-53
Included files , 2- 15
Installation, 2-1
INTEGER, 4-14
Invoking CodeWatch, 2-2 , 5-3 , 6-3 , 7-4, 8-2 , 9-5 , 10-5

K
Keywords, 1-2, 2-7

L
L, 3-6 , 4-25
1 option, 5-2 , 6-2 , 7-3 , 8-2 , 9-4, 10-5
LB, 3-2, 4-22
LBREAKPOINT command, 3-2, 4-22
LENV, 3-5 , 4-24
LENVIRONMENT command, 3-5 , 4-24

lndex-4

LCAT 3-2, 4-23.1
LCATCH command, 3-2 , 4-23.1
LET command, 3-6, 4-25
Line number, 2- 13 , 2- 14, 3-7

offset, 3-3 , 4-18
Line offsets, 2-14
LM, 3-9
LMA, 4-27
LMACRO command, 3-9 , 4-27
10, 4-28
LOG command, 3-9 , 4-28
LPI-BASIC, 5-1

built-in functions, 5-1
program blocks, 5-1
program listings , 5-9
sample session, 5-2

LPI-0, 6-1
built-in functions, 6-1
modifying variables, 6-1
program blocks, 6-1
program listings, 6-9
sample session, 6-2

LPI-COBOL, 7-1
data types, 7-2
program blocks , 7-1
program listings, 7-10
sample session, 7-3

LPI-FORTRAN, 8-1
built-in functions, 8-1
common block names, 8-1
program blocks, 8-1
program listings, 8-8
sample session, 8-2

LPI-PASCAL, 9-1
built-in functions, 9-4
program blocks, 9- 1 , 9-4
program listings, 9-10
sample session, 9-4

LPI-PL/1, 10-1
built-in functions , 10-4

Index-5

program blocks, 10-1
program listings, 10- 1 1
sample session, 10-4

LRET, 4-30
LRETURN command, 3-7 , 4-30
LS, 3-2 , 4-33
LSO, 4-3 1
LSOURCE command, 4-31
LSTEP command, 3-2 . 1 , 4-33
LWA, 3-2 .2 ,4-33 . 1
LWATCH command, 3-2 .2 , 4-33 .1

M
MA, 3-8 , 4-34
MACRO command, 3-8 , 4-34
Macros

defining, 1-2, 3-8
Minus sign, 2-7

N
NB, 3-2 , 4-36
NBREAKPOINT command, 3-2, 4-36
NCAT 3-2 , 4-37 .1
NCATCH command, 3-2 , 4-37 .1
Nested blocks, 9- 1 , 10-1
NLO, 4-38
NLOG command, 3-9, 4-38
NM, 3-9
NMA, 4-40
NMACRO command, 3-9 , 4-40
NTR E, 3-3 , 4-41
NTR S, 3-2 .2 , 4-41
NTRACE command, 3-2 .2 , 4-41
NW A, 3-2 .2 , 4-41 . 1
NW ATCH command, 3-2 .2 , 4-41 .1

Index-6

0
OCTAL, 4-14
Online help , 3-9

p
P, 3-8 , 4-44
Percent sign, 2-9, 2-1 3
Plus sign, 2-7 , 2-14
PO, 4-42
POINT command, 3-8 , 4-42
Pointers, 2-10

execution, 2-10, 4-1 1 , 4- 1 8 , 4-53 , 4-57
source file, 2-1 1 , 4- 1 1 , 4- 1 6 , 4-42, 4-53

PRINT command, 2-9 , 3-8 , 4-44
Procedure entry point, 2-7
Program blocks, 2-1 1 , 3-3 , 4- 1 8

LPI-BASIC, 5-1
LPI-C, 6-1
LPI-COBOL, 7-1
LPI-FORTRAN, 8- 1
LPI-P ASCAL , 9-4
LPI-PL/I, 10-4

Program control, 3-1
Program execution , 3-2.2
Program listings, 5-9 , 6-9 , 7- 10 , 8-8 , 9- 10 , 10- 1 1

Q
Q, 3-3 , 4-46 , 7-9
QUIT command, 2-5 , 3- 3 , 4-46 , 7-!l

R
R, 4-49
REA, 4-47
READ command, 3-9 , 4-47
Referencing arrays and aggregate structures

in LPI-BASIC programs , 5-2
in LPI-C programs, 6- 1

Index-7

in LPI-COBOL programs, 7-1
in LPI-FORTRAN programs, 8-1
in LPI-P AS CAL programs, 9-4
in LPI-PL/I programs, 10-4

Referencing program entities, 2- 11
Relative activation numbers, 2-12
Release notes, 2-1
RELOAD command, 3-3 , 4-49
RET, 4-5 1
RETURN command, 3-3 , 3-7, 4-51

s
S , 3-1 , 4-57
Semicolons, 2-9
Skip count, 4-5
SKIP option, 4-4
so, 3-8 , 4-53
SOURCE command, 2-15 , 3-8, 4-53
Source me pointer, 2-1 1 , 4-1 1 , 4-16 , 4-42, 4-53
Source languages

evaluating, 1-2
Source line numbers, 2-1 3
Special symbols, 2-6 , 2-7
STAC, 3-5 , 4-55
STACK command, 3-5 , 4-55
Stack frames, 3-5, 4-55
Statement reference qualifier, 2-7
Statement

identifier, 2-12 , 3-4, 4-1 1
label, 2- 13 , 3-7 , 4-65
label indicator, 2-7
offset, 2-14 , 3-3 , 4-18
reference, 2-1 5
tracing, 7-6

STEP command, 3-2 . 1 , 3-3, 4-57
Stepping, 1-2, 3-1

default mode, 3-1
String delimiters, 2-7
Subtraction, 2-7

Index-8

Syntax errors, 2-1 6

T
TR E, 3-2. 1 , 4-60
TR S , 3-2. 1 , 4-62
TRACE ENTRY command, 3-2 . 1 , 4-60
TRACE STATEMENT command, 3-2 . 1 , 4-62
Tracepoints, 1-2, 3-2 .1
Tracing, 3-1
TY, 3-7 , 4-63
TYPE command, 3-7 , 4-63

v
Variable names, 3-5

w
Watchpoint, 1-2, 3-1

commands, 3-2 .2
W A, 3-2.2, 4-64. 1
WATCH command, 3-2 .2 , 4-64.1
WH, 3-7 , 4-65
WHERE command, 3-7 , 4-65

lndex-9

--------- - - - - - - - -- - -- -

I NTERACTIVE
• • • • • • • • • • • • • •

A Kodak Company

DOC0114-2Z

